RECEIVED

1:55 pm, Oct 07, 2009

Alameda County Environmental Health

SOURCE AREA SOIL BORING INVESTIGATION REPORT

Dublin Toyota UST Site 6450 Dublin Court Dublin, California

ACEH RO# 0000333

Prepared for:

Dublin Toyota 4321 Toyota Drive Dublin, CA 94568

October 6, 2009

October 6, 2009

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Attention: Paresh Khatri

Subject: Source Area Soil Boring Investigation Report

Dublin Toyota UST Site, 6450 Dublin Court, Dublin, California

Fuel Leak Case RO# 0000333

Ladies and Gentlemen:

Attached please find a copy of the *Source Area Soil Boring Investigation Report*, prepared by Gribi Associates. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Very truly yours,

Scott F. Anderson Chief Financial Officer

Dublin Toyota

October 6, 2009

Alameda County Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Attention: Mr. Paresh Khatri

Subject: Source Area Soil boring Investigation Report

Dublin Toyota UST Site

6450 Dublin Court, Dublin, California

Fuel Leak Case RO# 0000333

Ladies and Gentlemen:

Gribi Associates is pleased to submit this *Source Area Soil Boring Investigation Report* on behalf of Dublin Toyota for the underground storage tank (UST) site located at 6450 Dublin Court in Dublin, California. This letter report describes and documents the drilling and sampling of six soil borings, GB-1 through GB-6, in the former UST source area. This investigation was conducted to satisfy directives contained in an October 4, 2008 letter from Alameda County Environmental Health (ACEH) to further define and characterize the vertical and lateral groundwater MTBE impacts at the subject site and downgradient from the subject site.

We appreciate the opportunity to present this report for your review. Please call if you have any questions or require additional information.

Very truly yours,

Matthew A. Rosman

Project Engineer

James E. Gribi Professional Geologist California No. 5843

MAR/ct

cc: Mr. Scott Anderson, Dublin Toyota

TABLE OF CONTENTS

EXE	CUTIVE SUM	MARY1
1.0	INTRODUC	TION
	1.1 Scope	e of Work
	1.2 Limit	ations
2.0	SITE BACK	GROUND
2.0		ral Site Description
		Environmental Conditions
2.0	DECOMPT	
3.0		ON OF FIELD ACTIVITIES
		eld Activities
		ion of Borings
		ng and Sampling of Soil Borings6
	3.4 Labor	ratory Analysis of Soil and Water Samples
4.0	RESULTS O	F INVESTIGATION7
	4.1 Gene	ral Subsurface Conditions
	4.2 Resul	ts of Laboratory Analyses
5.0	CONCLUSIO	ONS 8
6.0	RECOMME	NDATIONS 8
		TABLES
	Table 1	Summary of Soil and Groundwater Analytical Results
		FIGURES
	Figure 1	Site Vicinity Map
	Figure 2	Site Plan
	Figure 3	Historical Soil Hydrocarbon Results
	Figure 4	Soil Boring Investigation Results
		APPENDICES
	Appendix A	Drilling Permit
	Appendix B	Soil Boring Logs
	Appendix C	Laboratory Data Reports and Chain of Custody Records

EXECUTIVE SUMMARY

Gribi Associates is pleased to submit this *Source Area Soil Boring Investigation Report* on behalf of Dublin Toyota for the underground storage tank (UST) site located at 6450 Dublin Court in Dublin, California. This letter report describes and documents the drilling and sampling of six soil borings (GB-1 through GB-6) in the area of the former site underground storage tanks. This investigation was conducted to satisfy directives contained in an October 4, 2008 letter from Alameda County Environmental Health (ACEH) to further define and characterize the vertical and lateral groundwater MTBE impacts at the subject site and downgradient from the subject site.

In order to further define and characterize residual source area impacts to soil and groundwater, six soil borings, GB-1 through GB-6, were drilled and sampled on July 13, 2009 and July 31, 2009. All activities will be conducted in accordance with applicable local, State, and Federal guidelines and statutes.

Soils in the six investigative borings were generally similar, consisting primarily of dark grey silts and clays down to approximately nine feet in depth, followed by a thin silty sand to about 11 feet in depth, and then by brown silts and clays to 20 feet in depth, the maximum depth cored.

Shallow groundwater was generally encountered at depths ranging from 12 to 16 feet below surface grade. During hydropunch sampling, groundwater was encountered at a depth of approximately 37 feet below surface grade.

During drilling, no evidence of unusual odors or staining were noted in soils and groundwater samples from any of the six soil borings.

Soil analytical results showed no TPH-G or BTEX concentration in any of the soil samples, except very minor ethylbenzene concentrations (0.0078 mg/kg and 0.0097 mg/kg) in soil samples collected at depths of 4.5 feet and 7.5 feet in boring GB-1. Low concentrations of TBA and MTBE, ranging from nondetect to 3.5 mg/kg for TBA and nondetect to 0.30 mg/kg for MTBE, were reported in soil samples at varying depths in all six borings.

Groundwater analytical results showed very low to nondetectable concentrations of TPH-G and BTEX constituents in both shallow and deep groundwater samples from the six borings. Oxygenate concentrations in groundwater were more persistent in shallow samples, with TBA concentrations ranging from nondetect in GB-4 to 6,000 ug/l in GB-6, and MTBE concentrations ranging from 17 ug/l in GB-6 to 240 ug/l in GB-2. Deeper groundwater samples showed TBA concentrations ranging from nondetect in GB-2, GB-3, GB-4, and GB-6 to 11 ug/l in GB-5, and MTBE concentrations ranging from nondetect in GB-3 to 3.9 ug/l in GB-6.

The goal of this investigation was to further define vertical and lateral hydrocarbon impacts in soil and groundwater in the former UST source area. Results of this investigation indicate that residual hydrocarbon impacts in soil and groundwater immediately surrounding the former UST excavation cavity are limited primarily to oxygenate impacts (primarily TBA and MTBE).

Further, given the apparent reduction in hydrocarbon mass over time and the disproportionately high ratio of TBA to MTBE, it appears that hydrocarbons in the former UST source area have attenuated over time via natural processes. We would expect these processes to continue in the future and for source area hydrocarbon concentrations to decrease over time.

1.0 INTRODUCTION

Gribi Associates is pleased to submit this *Source Area Soil Boring Investigation Report* on behalf of Dublin Toyota for the underground storage tank (UST) site located at 6450 Dublin Court in Dublin, California. This letter report describes and documents the drilling and sampling of six soil borings (GB-1 through GB-6) in the area of the former site underground storage tanks (USTs). This investigation was conducted to satisfy directives contained in an October 4, 2008 letter from Alameda County Environmental Health (ACEH) to further define and characterize the vertical and lateral groundwater hydrocarbon impacts in the former UST source area.

1.1 Scope of Work

Gribi Associates was contracted by Dublin Toyota to conduct the following scope of work.

- Task 1 Conduct prefield activities.
- Task 2 Conduct drilling and sampling activities.
- Task 3 Conduct laboratory analyses.
- Task 4 Prepare report of findings.

These tasks were conducted in accordance with the approved workplan and with generally accepted sampling guidelines and protocols.

1.2 Limitations

The services provided under this contract as described in this report include professional opinions and judgments based on data collected. These services have been provided according to generally accepted environmental protocol. The opinions and conclusions contained in this report are typically based on information obtained from:

- 1. Observations and measurements made by our field staff.
- 2. Contacts and discussions with regulatory agencies and others.
- 3. Review of available hydrogeologic data.

2.0 SITE BACKGROUND

2.1 General Site Description

The Site is located in a primarily commercial area of Dublin, California and is formerly the location of a Toyota/Scion automobile dealership (see Figure 1 and Figure 2). The site comprises an irregularly shaped land parcel of nearly 3.5 acres. An irregularly shaped building is located in the center of the site parcel that formerly housed the business activities of the car dealership. The west portion of the site building was primarily a show room and sales area, and the east portion of the site building was primarily used as an automotive service area. The site exterior is almost entirely paved with asphalt.

The Site is bounded to the south by U.S. Interstate 580 freeway, to the west by Dublin Sports Grounds Park, to the north by Dublin Court followed by a retail plaza, and to the east by an office-supply warehouse store.

2.2 Site Environmental Conditions

The Dublin Toyota UST site consisted of three USTs located in a common tank farm located adjacent to the northeast corner of the maintenance garage (see Figure 2 and Figure 3). The tank farm was composed of two 2,000-gallon steel gasoline tanks and one 1,000-gallon steel waste oil tank. The three USTs were removed from a common excavation by Scott Company on June 10, 1998. Based on soil and grab groundwater sampling results, which showed elevated levels of gasoline- and diesel-range hydrocarbons, the UST excavation cavity was over-excavated, and approximately 500 gallons of groundwater was pumped from the excavation cavity. Approximately 92 tons of hydrocarbon-impacted soil were disposed of offsite.

In December 1998, Gribi Associates drilled and sampled four investigative soil borings (IB-1 through IB-4), and drilled, installed, and sampled two groundwater monitoring wells (MW-1 and MW-2) at the site. Soil and groundwater samples collected from the borings and wells contained no significant levels of hydrocarbons, except for the groundwater sample from well MW-1, located about 15 feet southwest from the former UST cavity. Groundwater samples from this well contained elevated levels of methyl tert-butyl ether (MTBE).

In August 2000, Gribi Associates drilled and sampled one soil boring (IB-5) sited inside the Dublin Toyota service building west from the former USTs, and drilled, installed, and sampled one groundwater monitoring well (MW-3) sited south-southwest from the former USTs. Soil analytical results from these borings showed no detectable concentrations of gasoline-range hydrocarbons. Groundwater samples from these borings showed concentrations of MTBE that were significantly lower than MTBE concentrations in MW-1, indicating lateral attenuation of MTBE impacts in groundwater southwest from the former USTs. Subsequent groundwater monitoring of the three site groundwater monitoring wells in May 2002, November 2002, and April 2003 showed decreasing concentrations of MTBE in MW-1.

In May 2005, a soil and water investigation (SWI) was conducted that consisted of drilling and sampling twelve soil boring (B-1 through B-12) at the site (SWI Summary of Findings, Gribi Associates, June 2005). Results of the investigation indicated groundwater MTBE impacts in a shallow "A" zone immediately downgradient from the source (former location of site USTs) and in a deeper "B" zone further downgradient from the source. The SWI summary report included a brief workplan proposing the installation of ten groundwater monitoring wells, to include four shallow "A" zone wells and six deeper "B" zone wells.

In July 2005, two 2-inch diameter extraction wells (EW-1 and EW-2) were installed in a car wash bay of the Dublin Toyota facility to a depth of approximately 15 feet below surface grade. The extraction wells were constructed within the gravel backfill of the former UST excavation.

Between February and April 2006, Gribi Associates conducted seven aggressive fluid vapor recovery (AFVR) events (*Report or Interim Remedial Measures*, Gribi Associates, April 2006). Each event consisted of approximately four hours of extraction of soil vapor and groundwater at wells EW-1 and EW-2 using a vacuum truck. During the AFVR events, groundwater and vapor

samples were collected to monitor remedial progress. The combined total estimated volume of removed groundwater (approximately 3,200 gallons) and the combined total estimated mass of removed gasoline-range hydrocarbons (four pounds) during the seven AFVR events were relatively small. These results indicated that AFVR had only limited applicability as a source area remedial option for the project site. Given the results and conclusions, implementation of additional AFVR activities at the site was not recommended.

In April 2006, Gribi Associates drilled and installed ten 3/4-inch diameter groundwater monitoring wells (MW-4S, MW-4D, MW-5S, MW-5D, MW-6S, MW-6D, MW-7, MW-8, MW-9, and MW-10) at the site. The locations of the monitoring wells closely mirrored the locations of the soil borings conducted during the 2005 investigation. Results of groundwater monitoring and sampling were very similar to results from the soil and water investigation conducted in May 2005. Groundwater results show elevated MTBE concentrations in Zone A (shallow aquifer, above 20 feet in depth) immediately downgradient from the former UST excavation and elevated MTBE levels in Zone B (deeper aquifer, between 30 and 40 feet bgs) further downgradient from the former UST excavation.

Gribi Associates prepared and submitted *Soil and Groundwater Investigation Workplan* and *Soil and Groundwater Investigation Workplan Addendum* on January 8, 2009 and March 4, 2009, respectively. These workplans proposed: (1) The drilling and sampling of seven Cone Penetrometer Test (CPT) borings; and (2) The drilling and sampling of six source area borings at the site. The workplan and workplan addendum were approved by ACEH in a letter dated March 20, 2009.

In April 2009, Gribi Associates drilled and sampled seven investigative Cone Penetrometer Test (CPT) borings. One upgradient CPT boring was located north of the former UST locations, three downgradient CPT borings were located along the southern perimeter of the property, and three offsite borings were located along Johnson Drive, approximately 350 feet south in a downgradient groundwater flow direction from the site. Approximately three depth-discrete groundwater samples were collected from each of the CPT boring locations. Results of this investigation showed a fairly pervasive permeable thin sand zone, previously identified as the "B" Zone, between approximately 30 and 35 feet bgs. This zone was present in all borings except downgradient borings CPT-6 and CPT-7, the respective middle and westerly CPT borings on Johnson Drive. Groundwater analytical results from this investigation and from onsite "B" Zone wells MW-4D, MW-5D, MW-6D, MW-8, MW-9, and MW-10 define a groundwater MTBE plume in the "B" Zone that appears to extend southwest from the UST source area and then, apparently due to lithologic variability, turns to the south beneath US Interstate 580. This "B" Zone MTBE plume appears to extend at least as far south as CPT-5, in Johnson Drive approximately 500 feet south from the Dublin Toyota UST source area. Two deeper unnamed sand zones, one between 50 and 60 feet bgs and the other between 70 and 80 feet bgs, showed no detectable groundwater MTBE impacts. Thus, it appears that MTBE from the project site has migrated laterally in the "B" Zone, but has not migrated vertically deeper than the "B" Zone in significant quantities.

3.0 DESCRIPTION OF FIELD ACTIVITIES

In order to further define and characterize residual source area hydrocarbon impacts, six soil borings (GB-1 through GB-6), were drilled and sampled on July 13, 2009 and July 31, 2009. All activities will be conducted in accordance with applicable local, State, and Federal guidelines and statutes.

3.1 Prefield Activities

Prior to beginning field activities, written approval was obtained from ACEH. A drilling drilling permit was obtained from Alameda County Zone 7 Water Agency and 72-hour notification was given prior to implementing field activities. A copy of the permit is provided as Appendix A.

Prior to implementing field activities, proposed drilling locations were be marked with white paint, and Underground Services Alert (USA) was notified at least 48 hours prior to drilling. A private underground utility locator was retained to conducted an independent clearance of the proposed well locations.

Prior to initiating drilling activities, a Site Safety Plan was prepared, and a tailgate safety meeting will be conducted with all site workers.

3.2 Location of Borings

Soil boring locations are shown on Figure 3 and Figure 4. Borings were located around the perimeter of the former UST excavation. Two borings were located along each of the eastern and western boundaries of the rectangular excavation, and one borings was located along the northern and southern boundaries of the former UST excavation cavity.

3.3 Drilling and Sampling of Soil Borings

The six soil borings, GB-1 through GB-6, were drilled to approximately 40 feet in depth using direct-push coring equipment. For each boring, continuous soil cores were collected to a depth of approximately 16 feel below surface grade. The continuous soil cores were collected in a clear plastic acetate tube, nested inside a stainless steel core barrel. After each four-foot core barrel was brought, a portion of the soil core contained in the acetate liner was removed for preservation and laboratory analysis. Teflon tape was placed over both ends of the sample core and sealed with plastic end-caps. The samples were then labeled and placed in cold storage pending transport to a laboratory. Following sample collection, the core was sliced lengthwise to expose the soil core, examined, logged, and field screened for hydrocarbons by a qualified geologist using sight and smell. Soil boring logs for the six soil borings are included in Appendix B.

Two grab groundwater samples, a shallow and a deeper sample, were collected from five of the borings GB-2 through GB-6. For boring GB-1, a shallow grab groundwater sample was collected; however, attempts to collect a deeper grab groundwater sample were not successful. The shallow grab groundwater samples were collected from first encountered groundwater after coring to approximately 16 feet below ground surface (bgs). The deeper grab groundwater

samples were collected from approximately 35 feet to 40 feet in depth using a depth-discrete "hydropunch" type groundwater sampling device. Each of the shallow open hole grab groundwater samples was collected using a clean stainless steel bailer after placing 3/4-inch diameter well casing in the boring. The hydropunch-type groundwater sampling method involved pushing hollow drilling rod equipped with a disposable tip to the desired depth. Small diameter well screen was then placed inside the rod, and the rod was retracted, exposing the screen to the desired subsurface interval. With both sampling methods, groundwater was then brought to the surface using a clean, small diameter bailer and poured directly into laboratory-supplied containers. Each sample container was then tightly sealed, labeled, and placed in cold storage for transport to the laboratory under formal chain-of-custody.

All coring and sampling equipment was thoroughly cleaned and decontaminated between each sample collection by triple rinsing first with water, then with dilute liquinox solution, and finally with distilled water. Soil cuttings were contained onsite in sealed drums pending laboratory results. After completion, the three soil borings were grouted to match existing surface grade using a cement\sand slurry.

3.4 Laboratory Analysis of Soil and Water Samples

Twenty-three soil samples and eleven groundwater samples were analyzed for the following parameters:

- USEPA 8260B Total Petroleum Hydrocarbons as Gasoline (TPH-G)
- USEPA 8260B Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- USEPA 8260B Oxygenates (TAME, TBA, DIPE, ETBE, and MTBE)

All analyses were conducted by Sunstar, a California-certified laboratory, with standard turnaround time on results.

4.0 RESULTS OF INVESTIGATION

4.1 General Subsurface Conditions

Soils in the six investigative borings were generally similar, consisting primarily of dark grey silts and clays down to approximately nine feet in depth, followed by a thin silty sand to about 11 feet in depth, and then by brown silts and clays to 20 feet in depth, the maximum depth cored.

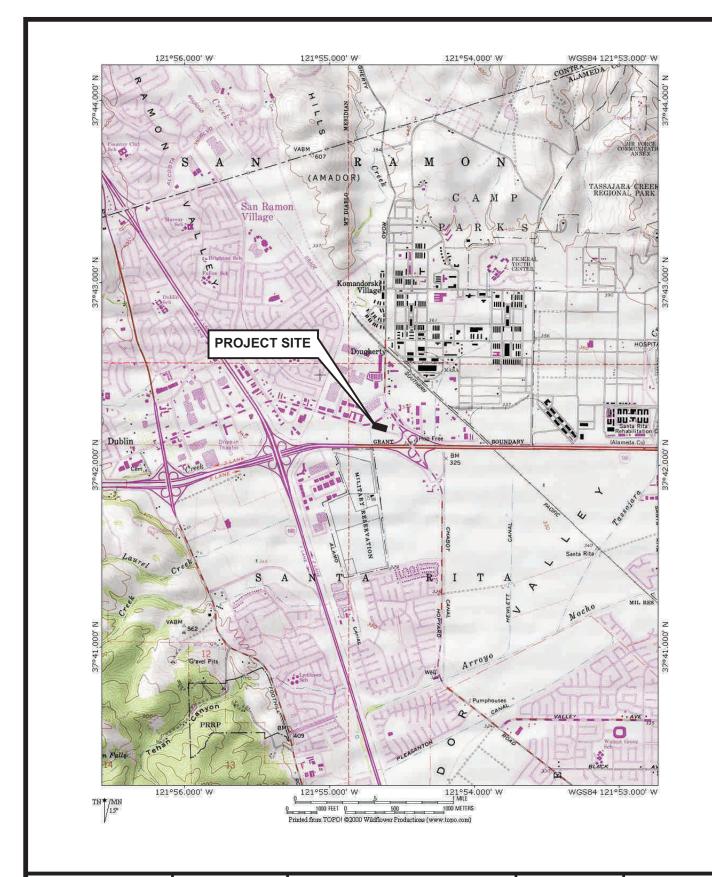
Shallow groundwater was generally encountered at depths ranging from 12 to 16 feet below surface grade. During hydropunch sampling, groundwater was encountered at a depth of approximately 37 feet below surface grade.

During drilling, no evidence of unusual odors or staining were noted in soils and groundwater samples from any of the six soil borings.

4.2 Results of Laboratory Analyses

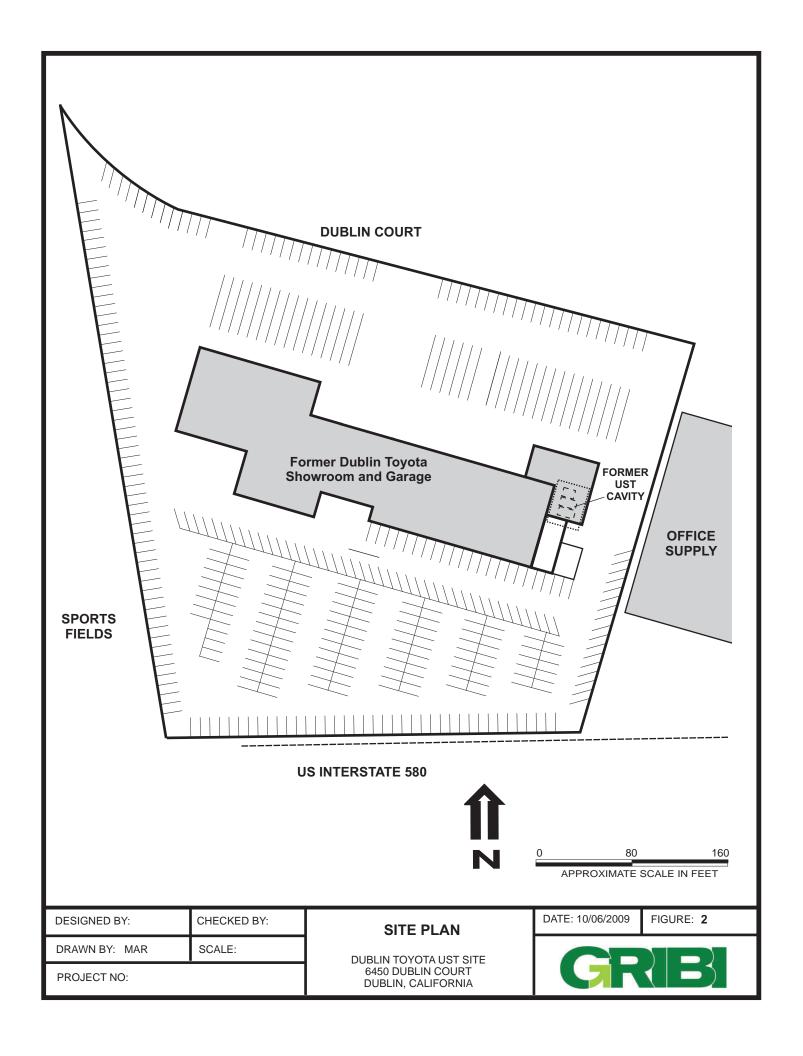
Groundwater analytical results are summarized in Table 1 and on Figure 4. The laboratory data reports and chain of custody records are contained in Appendix C.

Soil analytical results showed no TPH-G or BTEX concentration in any of the soil samples, except very minor ethylbenzene concentrations (0.0078 mg/kg and 0.0097 mg/kg) in soil samples collected at depths of 4.5 feet and 7.5 feet in boring GB-1. Low concentrations of TBA and MTBE, ranging from nondetect to 3.5 mg/kg for TBA and nondetect to 0.30 mg/kg for MTBE, were reported in soil samples at varying depths in all six borings.

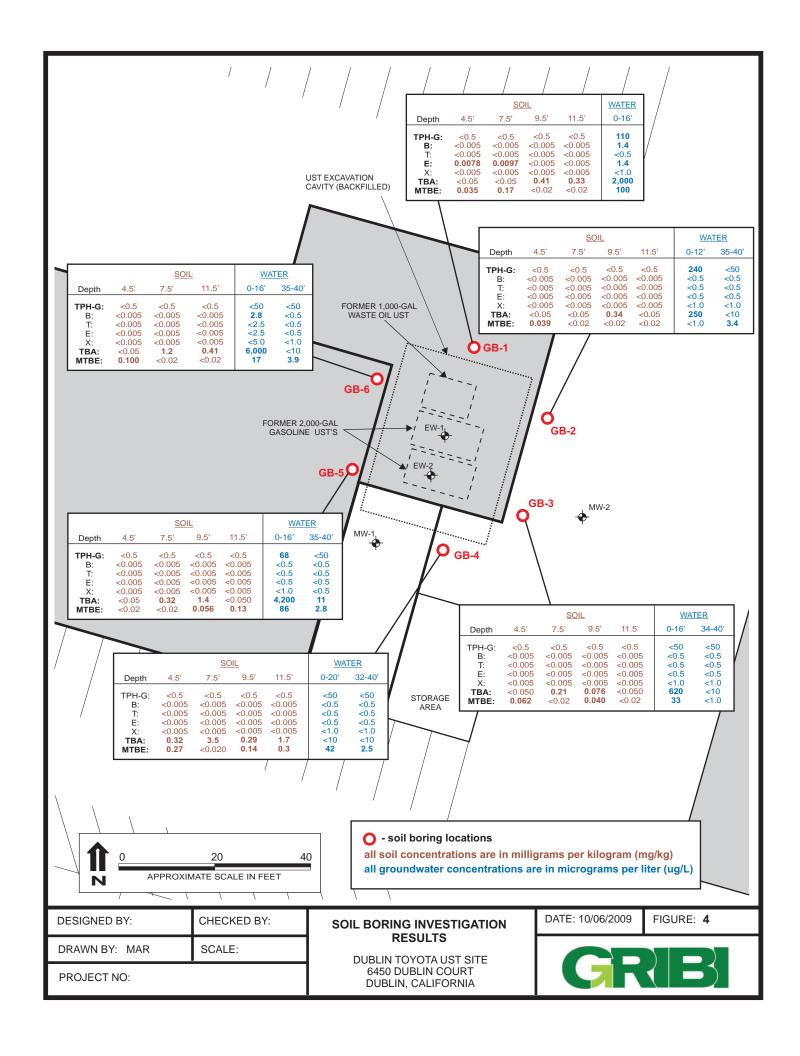

Groundwater analytical results showed very low to nondetectable concentrations of TPH-G and BTEX constituents in both shallow and deep groundwater samples from the six borings. Oxygenate concentrations in groundwater were more persistent in shallow samples, with TBA concentrations ranging from nondetect in GB-4 to 6,000 ug/l in GB-6, and MTBE concentrations ranging from 17 ug/l in GB-6 to 240 ug/l in GB-2. Deeper groundwater samples showed TBA concentrations ranging from nondetect in GB-2, GB-3, GB-4, and GB-6 to 11 ug/l in GB-5, and MTBE concentrations ranging from nondetect in GB-3 to 3.9 ug/l in GB-6.

5.0 CONCLUSIONS

The goal of this investigation was to further define vertical and lateral hydrocarbon impacts in soil and groundwater in the former UST source area. Results of this investigation indicate that residual hydrocarbon impacts in soil and groundwater immediately surrounding the former UST excavation cavity are limited primarily to oxygenate impacts (primarily TBA and MTBE). Further, given the apparent reduction in hydrocarbon mass over time and the disproportionately high ratio of TBA to MTBE, it appears that hydrocarbons in the former UST source area have attenuated over time via natural processes. We would expect these processes to continue in the future and for source area hydrocarbon concentrations to decrease over time.



DESIGNED BY:	CHECKED BY:
DRAWN BY: MAR	SCALE:
PROJECT NO:	


SITE VICINITY MAP

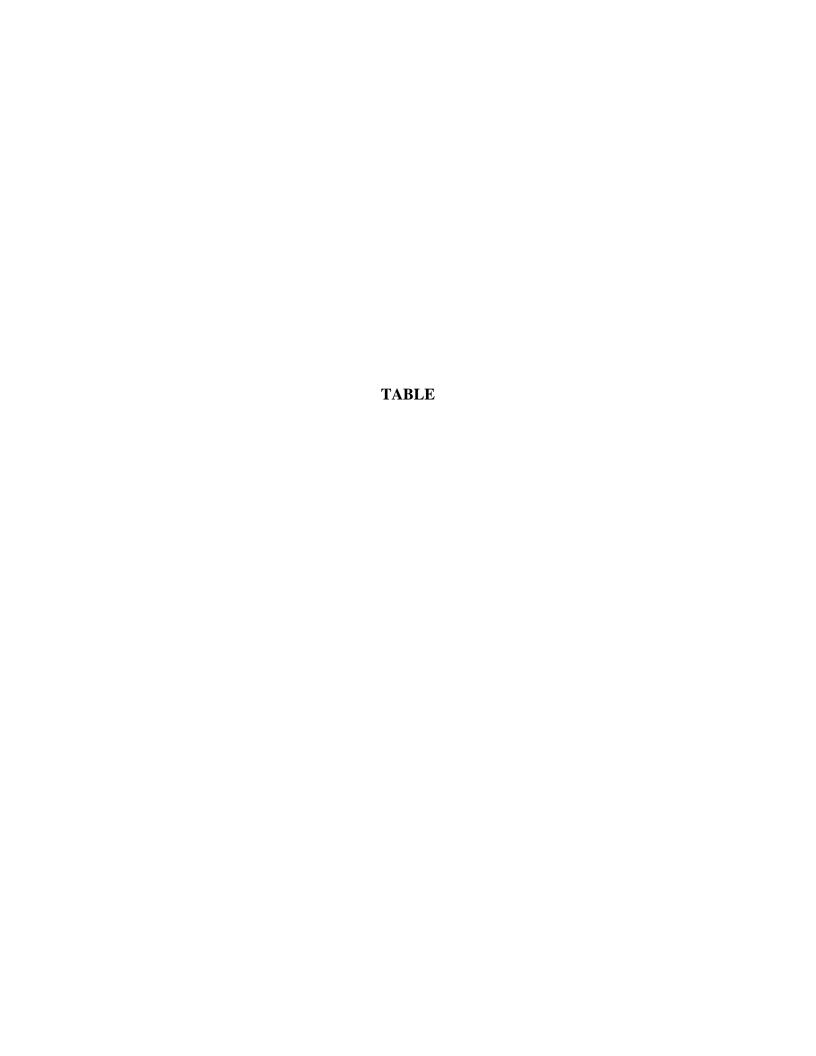

DUBLIN TOYOTA UST SITE 6450 DUBLIN COURT DUBLIN, CALIFORNIA DATE: 10/06/2009 FIGURE: **1**

Table 1 SUMMARY OF SOIL AND GROUNDWATER ANALYTICAL RESULTS Dublin Toyota UST Site

Comple	Sample	Sample	Soil Concentration: milligrams per kilogram (mg/kg), Groundwater Concentration: micrograms per kilogram (ug/L)									
Sample ID	Matrix	Depth	TPH-G	Benzene	Toluene	Ethyl- benzene	Xylenes	ТВА	МТВЕ			
GB-1-4.5	Soil	4.5 feet	< 0.5	< 0.005	< 0.005	0.0078	< 0.01	< 0.050	0.035			
GB-1-75	Soil	7.5 feet	< 0.5	< 0.005	< 0.005	0.0097	< 0.01	< 0.050	0.17			
GB-1-95	Soil	9.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.41	< 0.02			
GB-1-11.5	Soil	11.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.33	< 0.02			
GB-1-GWS	Water	(0-16 feet)	110	1.4	< 0.5	1.4	<1.0	2,000	100			
GB-2-4.5	Soil	4.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	0.039			
GB-2-7.5	Soil	7.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	< 0.02			
GB-2-9.5	Soil	9.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.34	< 0.02			
GB-2-11.5	Soil	11.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	< 0.02			
GB-2-GWS	Water	(0-12 feet)	240	<05	< 0.5	< 0.5	<1.0	250	240			
GB-2-GWD	Water	(35-40 feet)	< 50	<05	< 0.5	< 0.5	<1.0	<10	3.4			
GB-3-4.5	Soil	4.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	0.062			
GB-3-7.5	Soil	7.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.21	< 0.02			
GB-3-9.5	Soil	9.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.076	0.040			
GB-3-11.5	Soil	11.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	< 0.02			
GB-3-GWS	Water	(0-16 feet)	< 50	<05	< 0.5	< 0.5	<1.0	620	33			
GB-3-GWD	Water	(34-40 feet)	< 50	<05	< 0.5	< 0.5	<1.0	<10	<1.0			
GB-4-4.5	Soil	4.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.32	0.27			
GB-4-7.5	Soil	7.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	3.5	< 0.02			
GB-4-9.5	Soil	9.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.29	0.14			
GB-4-11.5	Soil	11.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	1.7	0.30			
GB-4-GWS	Water	(0-20 feet)	< 50	<05	< 0.5	< 0.5	<1.0	<10	42			
GB-4-GWD	Water	(32-40 feet)	< 50	<05	< 0.5	< 0.5	<1.0	<10	2.5			
GB-5-4.5	Soil	4.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	< 0.02			
GB-5-7.5	Soil	7.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.32	< 0.02			
GB-5-9.5	Soil	9.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	1.4	0.056			
GB-5-11.5	Soil	11.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	0.130			
GB-5-GWS	Water	(0-16 feet)	68	<05	< 0.5	< 0.5	<1.0	4,200	86			
GB-5-GWD	Water	(35-40 feet)	<50	<05	< 0.5	< 0.5	<1.0	11	2.8			

Table 1 SUMMARY OF SOIL AND GROUNDWATER ANALYTICAL RESULTS

Dublin Toyota UST Site

Sample	Sample	Sample	Soil Concentration: milligrams per kilogram (mg/kg), Groundwater Concentration: micrograms per kilogram (ug/L)									
IĎ	Matrix	Depth	TPH-G	Benzene	Toluene	Ethyl- benzene	Xylenes	TBA	МТВЕ			
GB-6-4.5	Soil	4.0 feet	<0.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.050	0.100			
GB-6-7.5	Soil	7.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	1.2	< 0.02			
GB-6-11.5	Soil	11.5 feet	< 0.5	< 0.005	< 0.005	< 0.005	< 0.01	0.41	< 0.02			
GB-6-GWS	Water	(0-16 feet)	< 50	2.8	<2.5	< 2.5	< 5.0	6,000	17			
GB-6-GWD	Water	(35-40 feet)	<50	<05	< 0.5	< 0.5	<1.0	<10	3.9			
Shallow Soil ES water source, co		0	83	0.044	2.9	3.3	2.3	0.075	0.023			
Groundwater E water source, co		ter IS a drinking d use.	100	1.0	40	30	20	12	5.0			

Table Notes:

TPH-D = total petroleum hydrocarbons as diesel

TPH-G = total petroleum hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

<1.0 = Not detected above the expressed detection level.

All ND = No detectable concentrations of full list of constituents

ESL = Environmental Screening Levels, as contained in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, San Francisco Bay Regional Water Quality Control Board, Interim Final, May 2008.

APPENDIX A DRILLING PERMIT

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE

FOR OFFICE USE

LOCATION OF PROJECT 6450 DUBLIN COURT, DUBLIN, CALIFORNIA,	PERMIT NUMBER 29054
6430 DOBLIN COORT, DOBLIN, CALIFORNIA,	WELL NUMBER 0/1 1/00 007 00
California Coordinates Source ft. Accuracy : ft. CCN ft. CCE ft	APN941-1400-007-00 PERMIT CONDITIONS
APN	(Circled Permit Requirements Apply)
CLIENT NameDUBLIN_TOYOTA Address6450DUBLIN_COURT	A. GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects Permit is void if project not begun within 90 days of approval
	date.
TYPE OF PROJECT Well Construction Cathodic Protection Water Supply Monitoring Geotechnical Investigation General Contamination Well Destruction	WATER SUPPLY WELLS Minimum surface seal thickness is two inches of cement grout placed by tremie. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
PROPOSED WELL USE New Domestic	 3. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 4. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary	C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal thickness is two inches of cement grout placed by tremie. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
DRILLING COMPANY GREGG DRILLING AND TESTING DRILLER'S LICENSE NO. 485165	D GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout
WELL PROJECTS Dnll Hole Diameterin Maximum Casing Diameterin Depthft Surface Seal Depthft Number	shall be used in place of compacted cuttings. E. CATHODIC Fill hole above anode zone with concrete placed by tremie. WELL DESTRUCTION. See attached.
SOIL BORINGS Number of Borings 6 Maximum Hole Diameter 3.0 in Depth 40 ft.	G.) SPECIAL CONDITIONS Submit to Zone 7 within 60 days after the completion of permitted work the well installation report including all soil and water laboratory analysis results.
ESTIMATED STARTING DATE JULY 27, 2009 ESTIMATED COMPLETION DATE JULY 29, 2009	Approved Wyman Hong Date 8/10/09
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68 APPLICANT'S SIGNATURE APPLICANT'S	Vvyman Hong

APPENDIX B SOIL BORING LOGS

GRIBI Associates

START DATE: 07/13/2009

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT-PUSH

BOREHOLE DIAMETER: 2.5 INCHES

SHEET 1 OF 1

COMPLETION METHOD: GROUT

BORING TOTAL DEPTH: 16.0 FEET

GROUNDWATER DEPTH:

					 _	_	
BORING TYPE:	SOIL BORING						
DOI WITO THE L.	COIL DOMINO						

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING NUMBER: GB-1

BORING LOCATION:

COMPLETION DATE: 07/13/2009

ij							
DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	USCS	LOG OF MATERIAL	PIEZOMETER\ WELL INSTALLATION
5 -	GB-1-4.5 GB-1-7.5	4.5 FT. 7.5 FT.			M	 0.0 - 1.0 ft. Concrete and base. 1.0 - 9.0 ft. Clayey Silt (ML) Dark grey, moist, soft to medium stiff, no odor or staining. 	
10 -	GB-1-9.5 GB-1-11.5	9.5 FT. 11.5 FT.				9.0 - 12.0 ft. Silty Clay (CL) Dark grey, moist, moist, stiff, no odor or staining.	
					SM	12.0 - 14.0 ft. Silty Sand (SM) Dark grey, wet, very fine to fine grain, no odor or staining.	
15 -						14.0 - 16.0 ft. Silty Clay (CL) Dark grey becoming brown, moist, very stiff, no odor or staining.	
						TOTAL DEPTH: 16.0 FEET (below ground surface)	
						Groundwater Sampling	
- 20 -						Grab groundwater sample collected from 0 - 16 fbg. Attempt to collect discrete groundwater sample by hydropunching to 40 fbg. Pull up to 25 fbg in 5-foot increments but water does not come in.	

GRIBI Associates

BORING TYPE: SOIL BORING

BORING NUMBER: GB-2

BORING LOCATION:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 07/13/2009

COMPLETION DATE: 07/13/2009

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT-PUSH

SHEET 1 OF 1

BOREHOLE DIAMETER: 2.5 INCHES COMPLETION METHOD: GROUT

BORING TOTAL DEPTH: 12.0 FEET

GROUNDWATER DEPTH:

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	USCS	LOG OF MATERIAL	PIEZOMETER\ WELL INSTALLATION
5 -	GB-2-4.5 GB-2-7.5 GB-2-9.5	4.5 FT. 7.5 FT. 9.5 FT.			ML SS SS	 7.0 - 1.0 ft. Asphalt and base. 1.0 - 7.0 ft. Clayey Silt (ML) Dark grey, moist, soft to medium stiff, no odor or staining. 7.0 - 10.0 ft. Silty Sand (SM) Dark grey, moist to wet, fine to medium grain, no odor or staining. 10.0 - 12.0 ft. Silty Clay (CL) Dark grey, moist, stiff, no odor or staining. 	
15 -						Groundwater Sampling Grab groundwater sample collected from 0 - 12 fbg. Discrete groundwater sample collected from 35 to 40 fbg.	

BORING LOCATION:

BORING NUMBER: GB-3

GRIBI Associates

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 07/13/2009

COMPLETION DATE: 07/13/2009

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT-PUSH

SHEET 1 OF 1

BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: GROUT

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	USCS	LOG OF MATERIAL	PIEZOMETER\ WELL INSTALLATION
5 -	GB-3-4.5 GB-3-7.5	4.5 FT. 7.5 FT.				 0.0 - 1.0 ft. Asphalt and base. 1.0 - 9.0 ft. Clayey Silt (ML) Dark grey, moist, soft to medium stiff, no odor or staining. 	
10 -	GB-3-9.5 GB-3-11.5	9.5 FT.				9.0 - 12.5 ft. Silty Clay (CL) Dark grey, moist, stiff, no odor or staining. 12.5 - 14.0 ft. Silty Sand (SM) Dark grey, wet, very fine to fine grain, no odor or staining.	
15 -						14.0 - 16.0 ft. Silty Clay (CL) Brown, moist, stiff to very stiff, no odor or staining.	
- - 20 -						Groundwater Sampling Grab groundwater sample collected from 0 - 16 fbg. Discrete groundwater sample collected from 34 to 40 fbg.	

GRIBI Associates

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT-PUSH

SHEET 1 OF 1

BOREHOLE DIAMETER: 2.5 INCHES COMPLETION METHOD: WELL BOX

BORING TOTAL DEPTH: 20.0 FEET

GROUNDWATER DEPTH:

BORING TYPE: SOIL BORING

BORING NUMBER: GB-4

BORING LOCATION:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

START DATE: 07/13/2009

COMPLETION DATE: 07/13/2009

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	USCS		LOG OF MATERIAL	PIEZOMETER\ WELL INSTALLATION
						0.0 - 1.0 ft.	Asphalt and base.	
5 -	GB-4-4.5 GB-4-7.5	4.5 FT. 7.5 FT.			ML	1.0 - 8.0 ft.	Clayey Silt (ML) Dark grey, moist, soft to medium stiff, moderately sandy at 8 to 10 feet, no odor or staining.	
10 -	GB-4-9.5 GB-4-11.5	9.5 FT. 11.5 FT.			SM.	8.0 - 10.0 ft.	Silty Sand (SM) Dark grey, moist, very fine to fine grain, no odor or staining.	
- 15 - - -						10.0 - 20.0 ft.	Silty Clay (CL) Dark grey, moist, stiff, no hydrocarbon odors or staining.	
20 -							TOTAL DEPTH: 16.0 FEET (below ground surface) Groundwater Sampling Indwater sample collected from 0 - 20 fbg. Iroundwater sample collected from 32 to 40 fbg.	

GRIBI Associates

START DATE: 07/13/2009

COMPLETION DATE: 07/13/2009

SHEET 1 OF 1

DRILLING CONTRACTOR: GREGG DRILLING

DRILLING METHOD: DIRECT-PUSH BOREHOLE DIAMETER: 2.5 INCHES

COMPLETION METHOD: WELL BOX

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

BORING TYPE: SOIL BORING

BORING NUMBER: GB-5

BORING LOCATION:

PROJECT NUMBER:

PIEZOMETER\ DEPTH SCALE (FEET) PID READING INTERVAL BLOW COUNTS USCS LOG OF MATERIAL SAMPLE SAMPLE DEPTH NO. ¥ - INITIAL 🛂 - FINAL 0.0 - 1.0 ft. Asphalt and base. ML 1.0 - 9.0 ft. Clayey Silt (ML) GB-5-4.5 4.5 FT. 5 Dark grey, moist, soft to medium stiff, no odor or staining. GB-5-7.5 7.5 FT. GB-5-9.5 9.5 FT. 10 9.0 - 12.0 ft. Silty Clay (CL) CL Dark grey, moist, stiff, no odor or staining. GB-5-11.5 11.5 FT. 12.0 - 13.5 ft. Silty Sand (SM) Dark grey, wet, very fine to fine grain, no odor or staining. CL 13.5 - 16.0 ft. Silty Clay (CL) 15 Brown, moist, stiff to very stiff, no odor or staining. TOTAL DEPTH: 16.0 FEET (below ground surface) **Groundwater Sampling** Grab groundwater sample collected from 0 - 16 fbg. Discrete groundwater sample collected from 35 to 40 fbg. 20

DRILLING CONTRACTOR: GREGG DRILLING DRILLING METHOD: DIRECT-PUSH

SHEET 1 OF 1

BOREHOLE DIAMETER: 2.5 INCHES COMPLETION METHOD: WELL BOX

BORING TOTAL DEPTH: 40.0 FEET

GROUNDWATER DEPTH:

GRIBI Associates

START DATE: 7/31/2009

BORING TYPE: SOIL BORING

PROJECT NAME: DUBLIN TOYOTA DUBLIN, CALIFORNIA

PROJECT NUMBER:

BORING NUMBER: GB-6

BORING LOCATION:

COMPLETION DATE: 7/31/2009

DEPTH SCALE (FEET)	SAMPLE NO.	SAMPLE DEPTH	INTERVAL	PID READING BLOW COUNTS	USCS	LOG OF MATERIAL	PIEZOMETER\ WELL INSTALLATION
5	GB-5-4.5 GB-5-7.5	4.5 FT. 7.5 FT.				 1.0 - 7.0 ft. Clayey Silt (ML) Dark grey, moist, soft to medium stiff, very sandy from 6.5 to 7.0 fbg, no odor or staining. 7.0 - 10.0 ft. Silty Clay (CL) Dark grey, moist, stiff, no odor or staining. 10.0 - 11.0 ft. Silty Sand (SM) Dark grey, wet, very fine to fine grain, no odor or staining. 11.0 - 16.0 ft. Silty Clay (CL) Brown, moist, stiff to very stiff, no odor or staining. 	
-						TOTAL DEPTH: 16.0 FEET (below ground surface)	
-						Groundwater Sampling Grab groundwater sample collected from 0 - 16 fbg. Discrete groundwater sample collected from 35 to 40 fbg.	
20 -							

APPENDIX C

LABORATORY DATA REPORTS AND CHAIN OF CUSTODY RECORDS

22 July 2009

Matt Rosman Gribi Associates 1090 Adam Street, Suite K Benicia, CA 94510

RE: Dublin Toyota

Enclosed are the results of analyses for samples received by the laboratory on 07/17/09 09:46. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

John Shepler

Laboratory Director

Client: Gribi Associates Address: 1090 Adams Stree Phone: 707-748-7743			•	Date:	7/10	s/Z4	09	Page	e: / Of 4	
Address: 1090 Adams Street	+ # K Benicio	, 04 PUS,	72	Project	Name:	Duk	din Toyote	(
Phone: 707-748-7743	Fax: 707-74	8-7763		Collecto	r: M	. Rus	ma		nt Project #:	
Project Manager: M. Rosman				Batch #			•	-	coc 83673	
Sample ID Date Sample: GB-1-4.5 GB-1-7.5 GB-1-9.5 GB-1-1/.5 GB-2-4.5 GB-2-4.5 7(13)	1235 Soil 1240 1245 1250 1250 1250 1030 Soil	Container Type	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8270 8021 BTEX	8015M (gasoline) 8015M (diesel)	8015M Ext./Carbon Chain 6010/7000 Title 22 Metals		1 1 6 2 2 2 Laboratory ID #	Comments/Preservative	Total # of containers
GB-2-7.5 GB-2-9.5 GB-2-11.5	1035	tile	X					07 08 09		
								1 1 1		
Relinquished by: (signature) Part / T Relinquished by: (signature) Date / T	1230 M	by: (signature)	116	te / Time	Ch	nain of Cu	Total # of containers ustody seals Y/N/NA Seals intact? Y/N/NA	57 Y Y	Notes STD. TAT 7-17-09	
Relinquished by: (signature) Date / T //// / 9 Sample disposal Instructions: Disposal @ \$2.00	\mathcal{E}	(signature)		te / Time 9 946			good condition/cold	4.7	7-17-09	- ·

Client: Grb, Associafe) Address: 190 Ackins 4, #K, B Phone: 707-748-7743 Fax: Project Manager: M. Rosman	- - - -	Col	lector:_	M.K	2009 Whin 200 0657	tayo ta		coc 83675	- - -	
Sample ID Date Sampled Tin	Sample Container ne Type Type	8260 8260 + OXY	8260 BTEX, OXY -only TPH- 4 8270	8021 BTEX 8015M (gasoline)	8015M (diesel) 8015M Ext./Carbon Chain	6010/7000 Title 22 Metals		Laboratory ID #	Comments/Preservative	Total # of containers
GB-3-4.5 7/13 08: GB-3-4.5 08: GB-3-9.5 08: GB-3-11.5 08:			X					10		
GB-3-7.5 08	30 Soil yer 30 46 38 1		X					1.0		
GR-3-9.5 08	30 1		X					12		Ш
63-3-11.5	40		X					13		
GB-3-14.0 08	45 0	$\bot \bot$	X				++-	14	HOLD	4
GB-4-4.5 7/13 09	25 501 161	+				+ + +	 	15		+
	30 1 ja/	+-+	 			+ + +	- - 	16		+
GB-4-7.5 09.		+-	> -		 	+ + +		17		+
G/R-4-7.5 07		++-	 - - - - - - - - -		 	1 1 1	+	18		+
GB-4-11.5 09. GB-4-13.5 09.	3	++	文			† † † † †		19	HOLD	+
GR-4-15.5 V 09:	55 6	+ + -	12			1 1		20	AOCD	+ -
0//50 / 1/3 13									- W	
	0 0	†								
Relinguished by: (signature) Date / Time 106 09 1230	Received by: (signature)	7/	Date / T	7	Chain o	Total # o	f containers eals Y/N/NA	57 Y	Notes	
Relinquished by: (signature) Date / Time	Received (signature)	7	Date / T	ime		Seals inta	act? Y/N/NA	Y		j
•		•			Recei	ved good co	ndition/cold	4.7	STD. TAT	
Relinquished by: (signature) Date / Time	Received by: (signature)		Date / T	ime	1	9			1.	BC
		7/17/	109 9	16	T	round time:			7-17-09	
Sample disposal Instructions: Disposal @ \$2.00 each _	Return to client	Picku			」ium ar	ound time:	<u> </u>	!		

Client: Gribi ASS	ociates				_			Dat	e:	7	11	6/	20	09	,		Pag	e: 3 Of 9		
Address: 1090 Adam	5 St, #K,	Benich	e, 0 4 9	7570	_						ne:_		D	اکس	19	70	10-K			
Phone: 707-718-	7743	Fax: <u>70</u>	7-148-	7763	_									~~			Clier	nt Project #:		
Project Manager: M. R	erray	-			-		~	Bat	ch #	:	7	900	96	<u>57</u>	•		-	coc 8367	'4	
Sample ID	Date Sampled	Time	Sample Type	Container Type	8260	8260 + OXY	8260 BTEX, OXY anty TPAL C	8270	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				Laboratory ID #	Comments/Pres	ervative	Total # of containers
· · · · · · · · · · · · · · · · · · ·			1																	-
GB-5-4.5	7/13	1452	Soi	4.50			X,										21			
GB5-7.5	+	1435	 	fese	<u> </u>	<u> </u>	X										22			
GR5-9.5	16	1440	 	 		-	X										23			
GB-5-11.5	<u> </u>	1445	R	<u> </u>	 		X								-		24			
					+		-	-				\vdash			+	+	-		-	
					1-	-	-	_				\vdash			_	_	+			
			<u>†</u>		1	 										+	1			
		•														+				
				1													1			
																	l			
					<u> </u>												ļ			
Dalla and Land Colored	<u> </u>		10/11		<u> </u>	با	Ļ.,	ĻŢ									<u> </u>			
Relinquished by: (signature)	Date / 7in		Received b	y: (signature)	7	, [,		e / Ti					To	otal#	of cont	tainers	57	Notes		
		250	19	hm		<u> [[6</u>	<u> </u>				Cha	ain of	Cus	tody s	eals Y	/N/NA	У			
Relinquished by: (signature)	Date / Tin	ne /	Received	y. (signature)	/		Dat	e / Ti	ime				Se	eals in	tact? Y	//N/NA	Y	STD TAT		
		- 1									R	eceiv	red a	ood c	onditio	n/cold	4.7	SID. IA		\neg
Relinquished by: (signature)	Date / Tin	ne /	Received b	y: (signature)				e / Ti					3					7//	80	- 1
G-S0 7/11/09	946	v	1/5/	baran	7/1	7/0	9	94	' 6		Tur	n ar	nun	d time				STD. TAT	_	
Sample disposal Instructions: D		ach	Return to			Picku			_											

Client: Gribi Associates					Date		7/1	16/	700	9		Page	$: \mathcal{A} \text{ of } \mathcal{A}$	
Address: 1090 Adams Struct, 7 Phone: 707-748-7743 Fa	#K. Bes	icia CA915	7 0		Proie	ct Na	me:	T	Y4.6/	っフ	76 Y 07	4		
Phone: 707-742-7743 F:	ax 707-	718-7763	· ·		Colle	ctor:	M.	.R.	wsm	a			Project #:	
Project Manager: M. Rosman	ax. 107	1.10 F7 C	2		Rate	งเอเ า #:	<u>, , </u>			· -			-	
Project Manager. 1999			_		Date	' "'	•						coc 83676	
												,		
				6					-					
		ļ		276					ļ		-			
								<u> </u>	<u>s</u>					
				*				Chain	Metals					
				OXY ORBY				5	22 N					Total # of containers
	1		1 1	18		8021 B I EX 8015M (gasoline)		(= 1		1 1	1	#		ļaji
			≿	×	}	.≺ ∫ og	ese	15	Ė					8
	1		XO+			BIEX M (gas	Ġ.	<u> </u>	8			혍		d ‡o
	Sa	mple Container	8260 8260 -	8260 BTEX,	8270	2 5	8015M (diesel)	55	6010/7000 Title			Laboratory ID		曹
Sample ID Date Sampled		уре Туре	8260	82	85.	8 8	80	8	8			1	Comments/Preservative	ve ₽
		AV VOA		X								25		
GR3-GWD	0900		1	X,	L			1			_	26		
GB-2-GWS	(100) (140)			13	\vdash		\perp	\sqcup		1		27		
	190			+>	-	_	-			++		28		
	1325			13	\vdash		 			+		Z9 30		
	1400		+	13	\vdash	-	·			+ +-		31		
68-5-6WS 1	575		+ +	TX	$\vdash \vdash$	+	<u> </u>	1		++		32		
	530	b b		ĬŽ								33		
				<u> </u>						\bot				
			1-1-		-	-	-	\vdash	_	++	-			+
			+	+	┝┯┼		-	+-+		++	-			
			+	- 	╂┷┼	_	-			++	+			+
Relinguished by: (signature) Date/ Time	Bec	eved by (signature)		Dat	e / Tir	ne	+		Tota	I # of con	tainers	57	Notes	
JRX 7/16/09/123		1.1/16	7/1/2		00		Ch	ain of		dy seals \		y	,,,,,,	
Relinquished by: (signature) Date / Time		eived by. (signature)	-//	- (e / Tir	ne		airi Ui		s intact? `		$H_{\mathcal{F}}$		
Companies by Ognature)	17	7)	•			-	_					4.7	STD TAT	
Relinquished by: (signature) Date / Time	16.	eived by: (signature)		Det	e / Tir	ne .	⊣ к	eceiv	ea goo	d conditio	on/cold	7./	STD. TAT	0-
11 000		(Signature)					1						7/17/09	BC
GS0 7/17/09 746	· 1 3	Charar	7/1	7/09	-		1_		ound ti			ŀ	///////	. 1

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GB-1-4.5	T900657-01	Soil	07/13/09 12:35	07/17/09 09:46
GB-1-7.5	T900657-02	Soil	07/13/09 12:40	07/17/09 09:46
GB-1-9.5	T900657-03	Soil	07/13/09 12:45	07/17/09 09:46
GB-1-11.5	T900657-04	Soil	07/13/09 12:50	07/17/09 09:46
GB-2-4.5	T900657-06	Soil	07/13/09 10:30	07/17/09 09:46
GB-2-7.5	T900657-07	Soil	07/13/09 10:35	07/17/09 09:46
GB-2-9.5	T900657-08	Soil	07/13/09 10:40	07/17/09 09:46
GB-2-11.5	T900657-09	Soil	07/13/09 10:45	07/17/09 09:46
GB-3-4.5	T900657-10	Soil	07/13/09 08:20	07/17/09 09:46
GB-3-7.5	T900657-11	Soil	07/13/09 08:30	07/17/09 09:46
GB-3-9.5	T900657-12	Soil	07/13/09 08:35	07/17/09 09:46
GB-3-11.5	T900657-13	Soil	07/13/09 08:40	07/17/09 09:46
GB-4-4.5	T900657-15	Soil	07/13/09 09:25	07/17/09 09:46
GB-4-7.5	T900657-16	Soil	07/13/09 09:30	07/17/09 09:46
GB-4-9.5	T900657-17	Soil	07/13/09 09:35	07/17/09 09:46
GB-4-11.5	T900657-18	Soil	07/13/09 09:45	07/17/09 09:46
GB-5-4.5	T900657-21	Soil	07/13/09 14:25	07/17/09 09:46
GB-5-7.5	T900657-22	Soil	07/13/09 14:35	07/17/09 09:46
GB-5-9.5	T900657-23	Soil	07/13/09 14:40	07/17/09 09:46
GB-5-11.5	T900657-24	Soil	07/13/09 14:45	07/17/09 09:46
GB-3-GWS	T900657-25	Water	07/13/09 08:50	07/17/09 09:46
GB-3-GWD	T900657-26	Water	07/13/09 09:00	07/17/09 09:46
GB-2-GWS	T900657-27	Water	07/13/09 11:00	07/17/09 09:46
GB-2-GWD	T900657-28	Water	07/13/09 11:40	07/17/09 09:46
GB-1-GWS	T900657-29	Water	07/13/09 12:55	07/17/09 09:46
GB-4-GWS	T900657-30	Water	07/13/09 13:20	07/17/09 09:46

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GB-4-GWD	T900657-31	Water	07/13/09 14:00	07/17/09 09:46
GB-5-GWS	T900657-32	Water	07/13/09 15:15	07/17/09 09:46
GB-5-GWD	T900657-33	Water	07/13/09 15:15	07/17/09 09:46

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-1-4.5 T900657-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Si	unStar La	aborato	ries, Inc.					
Volatile Organic Compo	unds by EPA Method 8260B								
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	

Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	7.8	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	35	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		101 %	85.5-1	16	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	75.1-1	21	"	"	"	"	
Surrogate: Dibromofluoromethane		135 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-1-7.5 T900657-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	9.7	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	170	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		152 %	90-1.	35	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-1-9.5 T900657-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B													
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B					
Toluene	ND	5.0	"	"	"	"	"	"					
Ethylbenzene	ND	5.0	"	"	"	"	"	"					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	410	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
C6-C12 (GRO)	ND	500	"	"	"	"	"	"					
Surrogate: Toluene-d8		102 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		91.8 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		156 %	90-1.	35	"	"	"	"	S-GC				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-1-11.5 T900657-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.														
Volatile Organic Compounds by E	Volatile Organic Compounds by EPA Method 8260B													
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B						
Toluene	ND	5.0	"	"	"	"	"	n .						
Ethylbenzene	ND	5.0	"	"	"	"	"	n .						
m,p-Xylene	ND	5.0	"	"	"	"	"	n .						
o-Xylene	ND	5.0	"	"	"	"	"	n .						
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n .						
Tert-butyl alcohol	330	50	"	"	"	"	"	n .						
Di-isopropyl ether	ND	20	"	"	"	"	"	"						
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"						
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .						
C6-C12 (GRO)	ND	500	"	"	"	"	"	"						
Surrogate: Toluene-d8		105 %	85.5-1	116	"	"	"	"						
Surrogate: 4-Bromofluorobenzene		96.2 %	75.1-1	121	"	"	"	"						
Surrogate: Dibromofluoromethane		118 %	90-1.	35	"	"	"	"						

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-2-4.5 T900657-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, inc.												
Volatile Organic Compounds by EPA Method 8260B												
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	"				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	ND	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	39	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		102 %	85.5-	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		88.4 %	75.1-	121	"	"	"	"				
Surrogate: Dibromofluoromethane		123 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-2-7.5 T900657-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.												
Volatile Organic Compounds by EPA Method 8260B												
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	"				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	ND	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		98.8 %	85.5-	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		89.4 %	75.1-	121	"	"	"	"				
Surrogate: Dibromofluoromethane		104 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-2-9.5 T900657-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	n .	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	340	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		109 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.1 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-2-11.5 T900657-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar L	aboratori	es, mc.								
Volatile Organic Compounds by EPA Method 8260B												
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	"				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	ND	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		104 %	85.5-	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		84.2 %	75.1-	121	"	"	"	"				
Surrogate: Dibromofluoromethane		72.0 %	90-1	35	"	"	"	"	S-GC			

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-3-4.5 T900657-10 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	62	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		105 %	85.5-1	16	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	75.1-1	21	"	"	"	"	
Surrogate: Dibromofluoromethane		164 %	90-1.	35	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-3-7.5 T900657-11 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.												
Volatile Organic Compounds by EPA Method 8260B												
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	"				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	210	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		102 %	85.5-	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		90.9 %	75.1-	121	"	"	"	"				
Surrogate: Dibromofluoromethane		103 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-3-9.5 T900657-12 (Soil)

	Reporting							
Analyte Resu	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	76	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	40	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		103 %	85.5-1	16	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.5 %	75.1-1	21	"	"	"	"	
Surrogate: Dibromofluoromethane		116 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Project: Dublin Toyota Gribi Associates

1090 Adam Street, Suite K Project Number: [none] Reported: Benicia CA, 94510 Project Manager: Matt Rosman 07/22/09 10:00

GB-3-11.5 T900657-13 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.												
Volatile Organic Compounds by EP	A Method 8260	В										
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	n n				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	ND	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		106 %	85.5-1	16	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		93.2 %	75.1-1	21	"	"	"	"				
Surrogate: Dibromofluoromethane		118 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Project: Dublin Toyota Gribi Associates

1090 Adam Street, Suite K Project Number: [none] Reported: Benicia CA, 94510 Project Manager: Matt Rosman 07/22/09 10:00

GB-4-4.5 T900657-15 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.												
Volatile Organic Compounds by E	PA Method 8260	В										
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	"				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	320	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	270	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		103 %	85.5-	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		88.4 %	75.1-	121	"	"	"	"				
Surrogate: Dibromofluoromethane		118 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-4-7.5 T900657-16 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, file.													
Volatile Organic Compounds by EPA Method 8260B													
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B					
Toluene	ND	5.0	"	"	"	"	"	"					
Ethylbenzene	ND	5.0	"	"	"	"	"	"					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	3500	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
C6-C12 (GRO)	ND	500	"	"	"	"	"	"					
Surrogate: Toluene-d8		104 %	85.5-	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		89.8 %	75.1-	121	"	"	"	"					
Surrogate: Dibromofluoromethane		105 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-4-9.5 T900657-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.												
Volatile Organic Compounds by EP	A Method 8260	В										
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B				
Toluene	ND	5.0	"	"	"	"	"	"				
Ethylbenzene	ND	5.0	"	"	"	"	"	"				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	290	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	140	20	"	"	"	"	"	"				
C6-C12 (GRO)	ND	500	"	"	"	"	"	"				
Surrogate: Toluene-d8		106 %	85.5-1	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		93.2 %	75.1-1	121	"	"	"	"				
Surrogate: Dibromofluoromethane		110 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-4-11.5 T900657-18 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B													
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B					
Toluene	ND	5.0	"	"	"	"	"	n n					
Ethylbenzene	ND	5.0	"	"	"	"	"	n n					
m,p-Xylene	ND	5.0	"	"	"	"	"	n n					
o-Xylene	ND	5.0	"	"	"	"	"	n n					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n n					
Tert-butyl alcohol	1700	50	"	"	"	"	"	n n					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	300	20	"	"	"	"	"	"					
C6-C12 (GRO)	ND	500	"	"	"	"	"	"					
Surrogate: Toluene-d8		107 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		92.2 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		83.9 %	90-1.	35	"	"	"	"	S-GC				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-5-4.5 T900657-21 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, file.													
Volatile Organic Compounds by EPA Method 8260B													
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B					
Toluene	ND	5.0	"	"	"	"	"	"					
Ethylbenzene	ND	5.0	"	"	"	"	"	"					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
C6-C12 (GRO)	ND	500	"	"	"	"	"	"					
Surrogate: Toluene-d8		100 %	85.5-	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		89.1 %	75.1-	121	"	"	"	"					
Surrogate: Dibromofluoromethane		132 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-5-7.5 T900657-22 (Soil)

	Re	eporting							
Analyte Resi	ılt	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstai L	aboi atoi i	cs, IIIc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	m .	
m,p-Xylene	ND	5.0	"	"	"	"	"	m .	
o-Xylene	ND	5.0	"	"	"	"	"	m .	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	m .	
Tert-butyl alcohol	320	50	"	"	"	"	"	m .	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	m .	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	m .	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		108 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-5-9.5 T900657-23 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by I	EPA Method 8260I	3							
Benzene	ND	5.0	ug/kg	1	9071701	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	1400	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	56	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: Toluene-d8		102 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		72.9 %	75.1-1	121	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		106 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-5-11.5 T900657-24 (Soil)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	SunStar Laboratories, Inc.										
Volatile Organic Compounds by EI	PA Method 82601	В									
Benzene	ND	5.0	ug/kg	1	9071608	07/16/09	07/17/09	EPA 8260B			
Toluene	ND	5.0	"	"	"	"	"	"			
Ethylbenzene	ND	5.0	"	"	"	"	"	"			
m,p-Xylene	ND	5.0	"	"	"	"	"	"			
o-Xylene	ND	5.0	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"			
Tert-butyl alcohol	ND	50	"	"	"	"	"	"			
Di-isopropyl ether	ND	20	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Methyl tert-butyl ether	130	20	"	"	"	"	"	"			
C6-C12 (GRO)	ND	500	"	"	"	"	"	"			
Surrogate: Toluene-d8		99.6 %	85.5-1	116	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		92.1 %	75.1-1	121	"	"	"	"			
Surrogate: Dibromofluoromethane		112 %	90-1.	35	"	"	"	"			

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-3-GWS T900657-25 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	iboratori	es, inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	620	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	33	1.0	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		99.1 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-3-GWD T900657-26 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.												
Volatile Organic Compounds by EPA Method 8260B												
Benzene	ND	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B				
Toluene	ND	0.50	"	"	"	"	"	n				
Ethylbenzene	ND	0.50	"	"	"	"	"	"				
m,p-Xylene	ND	1.0	"	"	"	"	"	"				
o-Xylene	ND	0.50	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"				
Tert-butyl alcohol	ND	10	"	"	"	"	"	"				
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
C6-C12 (GRO)	ND	50	"	"	"	"	"	"				
Surrogate: Toluene-d8		98.1 %	84.7-	109	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		91.9 %	83.5-	119	"	"	"	"				
Surrogate: Dibromofluoromethane		109 %	81.1-	136	"	"	"	"				

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-2-GWS T900657-27 (Water)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.										
Volatile Organic Compounds by EI	PA Method 8260	В								
Benzene	ND	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		
Tert-butyl alcohol	ND	10	"	"	"	"	"	"		
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	250	5.0	"	5	"	"	07/21/09	"		
C6-C12 (GRO)	240	50	"	1	"	"	07/20/09	"		
Surrogate: Toluene-d8		98.6 %	84.7-	109	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		88.9 %	83.5-	119	"	"	"	"		
Surrogate: Dibromofluoromethane		109 %	81.1-	136	"	"	"	"		

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-2-GWD T900657-28 (Water)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc

	SunStar La	iboratori	es, Inc.					
PA Method 8260	В							
ND	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B	
ND	0.50	"	"	"	"	"	"	
ND	0.50	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	m .	
ND	0.50	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
ND	10	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
3.4	1.0	"	"	"	"	"	"	
ND	50	"	"	"	"	"	"	
	99.9 %	84.7-	109	"	"	"	"	
	91.8 %	83.5-	119	"	"	"	"	
	108 %	81.1-	136	"	"	"	"	
	PA Method 8260 ND ND ND ND ND ND ND ND ND N	PA Method 8260B ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 1.0 ND 2.0 ND 2.0 ND 10 ND 2.0 ND 2.0 ND 50 ND 2.0 ND 50 PA Method 8260B	PA Method 8260B ND 0.50 ug/l ND 0.50 " ND 0.50 " ND 1.0 " ND 0.50 " ND 1.0 " ND 2.0 " ND 10 " ND 2.0 " ND 2.0 " ND 2.0 " ND 2.0 " ND 50 " 99.9 % 84.7- 91.8 % 83.5-	PA Method 8260B ND 0.50 ug/l 1 ND 0.50 " " ND 0.50 " " ND 1.0 " " ND 0.50 " " ND 1.0 " " ND 2.0 " " ND 10 " " ND 2.0 " " ND 3.4 1.0 " " ND 50 " " 99.9 % 84.7-109 91.8 % 83.5-119	ND 0.50 ug/l 1 9071702 ND 0.50 " " " ND 0.50 " " " ND 0.50 " " " ND 1.0 " " " ND 2.0 " " " ND 10 " " " ND 2.0 " " " ND 2.0 " " " ND 2.0 " " " ND 50 " " " 99.9 % 84.7-109 " 91.8 % 83.5-119 "	PA Method 8260B ND 0.50 ug/l 1 9071702 07/17/09 ND 0.50 " " " " " ND 0.50 " " " " " ND 1.0 " " " " " ND 0.50 " " " " " ND 0.50 " " " " " ND 10 " " " " " ND 2.0 " " " " " ND 3.4 1.0 " " " " " ND 50 " " " " " 99.9 % 84.7-109 " " "	PA Method 8260B ND 0.50 ug/l 1 9071702 07/17/09 07/20/09 ND 0.50 " " " " " " " ND 0.50 " " " " " " " ND 1.0 " " " " " " " ND 0.50 " " " " " " " ND 0.50 " " " " " " " ND 10 " " " " " " " ND 2.0 " " " " " " " ND 2.0 " " " " " " " ND 2.0 " " " " " " " " ND 3.4 1.0 " " " " " " " " 99.9 % 84.7-109 " " " " " 99.8 % 83.5-119 " " " "	PA Method 8260B ND 0.50 ug/l 1 9071702 07/17/09 07/20/09 EPA 8260B ND 0.50 " " " " " " " " " " " " " " " " " " "

SunStar Laboratories, Inc.

Project: Dublin Toyota Gribi Associates

1090 Adam Street, Suite K Project Number: [none] Reported: Benicia CA, 94510 Project Manager: Matt Rosman 07/22/09 10:00

GB-1-GWS T900657-29 (Water)

	Reporting							
Analyte Resul	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

	1	SunStar La	boratori	ies, Inc.				
Volatile Organic Compounds by E	PA Method 8260	В						
Benzene	1.4	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	1.4	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	2000	250	"	25	"	"	07/21/09	"
Di-isopropyl ether	ND	2.0	"	1	"	"	07/20/09	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	m .
Methyl tert-butyl ether	100	25	"	25	"	"	07/21/09	"
C6-C12 (GRO)	110	50	"	1	"	"	07/20/09	"
Surrogate: Toluene-d8		95.2 %	84.7-	109	"	"	"	"
Surrogate: 4-Bromofluorobenzene		95.2 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		107 %	81.1-	136	"	"	"	"

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-4-GWS T900657-30 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	n n	
Ethylbenzene	ND	0.50	"	"	"	"	"	n n	
m,p-Xylene	ND	1.0	"	"	"	"	"	n .	
o-Xylene	ND	0.50	"	"	"	"	"	n n	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	n n	
Tert-butyl alcohol	ND	10	"	"	"	"	"	n n	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	n n	
Methyl tert-butyl ether	42	1.0	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		93.6 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		97.9 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-4-GWD T900657-31 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunSta	ır Labo	ratorie	s, Inc.					
d 8260B								
ND 0	.50 ι	ıg/l	1	9071702	07/17/09	07/20/09	EPA 8260B	
ND 0	.50	"	"	"	"	"	"	
ND 0	.50	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND 0	.50	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
ND	10	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
2.5	1.0	"	"	"	"	"	"	
ND	50	"	"	"	"	"	"	
103	3 %	84.7-10)9	"	"	"	"	
90.1	1 %	83.5-11	19	"	"	"	"	
106	5 %	81.1-13	36	"	"	"	"	
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	MD 00 00 00 00 00 00 00 00 00 00 00 00 00	MD 0.50 ND 0.50 ND 0.50 ND 0.50 ND 1.0 ND 0.50 ND 2.0 ND 10 ND 2.0 ND 2.	ND 0.50 ug/l ND 0.50 " ND 0.50 " ND 0.50 " ND 1.0 " ND 0.50 " ND 1.0 " ND 2.0 " ND 2.0 " ND 2.0 " ND 2.0 " ND 50 " ND 44.7-10 90.1 % 83.5-11	ND 0.50 ug/l 1 ND 0.50 " " ND 0.50 " " ND 0.50 " " ND 1.0 " " ND 0.50 " " ND 2.0 " " ND 3.5 1.0 " " ND 50 " " 103 % 84.7-109 90.1 % 83.5-119	ND 0.50 ug/l 1 9071702 ND 0.50 " " " ND 0.50 " " " ND 0.50 " " " ND 1.0 " " " ND 0.50 " " " ND 2.0 " " " ND 30 4.7-109 " 90.1 % 83.5-119 "	A 8260B ND 0.50 ug/l 1 9071702 07/17/09 ND 0.50 " " " " " ND 0.50 " " " " " ND 1.0 " " " " " ND 0.50 " " " " " ND 2.0 " " " " " ND 50 " " " " " " ND 2.0 " " " " " " ND 3/6 84.7-109 " " "	A 8260B ND 0.50 ug/l 1 9071702 07/17/09 07/20/09 ND 0.50 " " " " " " " " ND 0.50 " " " " " " " ND 1.0 " " " " " " " ND 2.0 " " " " " " " ND 2.0 " " " " " " " ND 2.0 " " " " " " " ND 2.0 " " " " " " " ND 2.0 " " " " " " " " ND 3.0 " " " " " " " " " ND 50 " " " " " " " " " " 103 % 84.7-109 " " " " " "	ND 0.50 ug/l 1 9071702 07/17/09 07/20/09 EPA 8260B ND 0.50 " " " " " " " " " " " " ND ND 0.50 " " " " " " " " " " " " ND ND 0.50 " " " " " " " " " " " " ND ND 0.50 " " " " " " " " " " " " ND ND 0.50 " " " " " " " " " " " " ND ND 2.0 " " " " " " " " " " " " " ND ND 2.0 " " " " " " " " " " " " " ND ND 2.0 " " " " " " " " " " " " " ND ND 2.0 " " " " " " " " " " " " " " ND ND 50 " " " " " " " " " " " " " " " " " "

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

GB-5-GWS T900657-32 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

	:	SunStar La	aboratori	ies, Inc.					
Volatile Organic Compounds by E	CPA Method 82601	В							
Benzene	ND	0.50	ug/l	1	9071702	07/17/09	07/20/09	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	4200	250	"	25	"	"	07/21/09	"	
Di-isopropyl ether	ND	2.0	"	1	"	"	07/20/09	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	86	1.0	"	"	"	"	"	"	
C6-C12 (GRO)	68	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		64.0 %	84.7-	109	"	"	"	"	S-GC
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Project: Dublin Toyota Gribi Associates

1090 Adam Street, Suite K Project Number: [none] Reported: Benicia CA, 94510 Project Manager: Matt Rosman 07/22/09 10:00

GB-5-GWD T900657-33 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

	1	SunStar La	boratori	es, Inc.					
Volatile Organic Compounds by El	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	9071702	07/17/09	07/21/09	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	11	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.8	1.0	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: Toluene-d8		97.2 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.9 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		113 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

RPD

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

	. .	Reporting	**	Spike	Dource		70KLC	p.p.p.	KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 9071608 - EPA 5035 GCMS										
Blank (9071608-BLK1)				Prepared:	07/16/09	Analyzed	1: 07/17/09			
Benzene	ND	5.0	ug/kg			-				
Γoluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
n,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
Геrt-amyl methyl ether	ND	20	"							
Tert-butyl alcohol	ND	50	"							
Di-isopropyl ether	ND	20	"							
Ethyl tert-butyl ether	ND	20	"							
Methyl tert-butyl ether	ND	20	"							
C6-C12 (GRO)	ND	500	"							
Surrogate: Toluene-d8	40.8		"	40.0		102	85.5-116			
Surrogate: 4-Bromofluorobenzene	37.6		"	40.0		94.0	75.1-121			
Surrogate: Dibromofluoromethane	41.4		"	40.0		104	90-135			
LCS (9071608-BS1)				Prepared:	07/16/09	Analyzed	d: 07/17/09			
Chlorobenzene	111	5.0	ug/kg	100		111	75-125			
1,1-Dichloroethene	117	5.0	"	100		117	75-125			
Trichloroethene	88.2	5.0	"	100		88.2	75-125			
Benzene	109	5.0	"	100		109	75-125			
Toluene	106	5.0	"	100		106	75-125			
Surrogate: Toluene-d8	41.2		"	40.0		103	85.5-116			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.1	75.1-121			
Surrogate: Dibromofluoromethane	41.6		"	40.0		104	90-135			
Matrix Spike (9071608-MS1)	So	urce: T90065	55-04	Prepared:	07/16/09	Analyzed	l: 07/17/09			
Chlorobenzene	106	5.0	ug/kg	100	ND	106	75-125			
1,1-Dichloroethene	114	5.0	"	100	ND	114	75-125			
Trichloroethene	85.8	5.0	"	100	ND	85.8	75-125			
Benzene	105	5.0	"	100	ND	105	75-125			
Toluene	95.8	5.0	"	100	ND	95.8	75-125			
Surrogate: Toluene-d8	40.0		"	40.0		100	85.5-116			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.0	75.1-121			
Surrogate: Dibromofluoromethane	43.2		"	40.0		108	90-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John Shepler, Laboratory Director

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9071608 - EPA 5035 GCMS										
Matrix Spike Dup (9071608-MSD1)	Sou	urce: T90065	5-04	Prepared:	07/16/09	Analyzed	d: 07/17/09			
Chlorobenzene	105	5.0	ug/kg	100	ND	105	75-125	1.56	20	
1,1-Dichloroethene	105	5.0	"	100	ND	105	75-125	9.04	20	
Trichloroethene	85.8	5.0	"	100	ND	85.8	75-125	0.00	20	
Benzene	104	5.0	"	100	ND	104	75-125	0.716	20	
Toluene	100	5.0	"	100	ND	100	75-125	4.24	20	
Surrogate: Toluene-d8	40.0		"	40.0		100	85.5-116			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.1	75.1-121			
Surrogate: Dibromofluoromethane	40.1		"	40.0		100	90-135			
Blank (9071701-BLK1)	NTD			Prepared:	07/17/09	Analyzed	d: 07/21/09			
Rlank (0071701 RI K1)				Draparad.	07/17/00	Analyzoo	1. 07/21/00			
Benzene	ND	5.0	ug/kg							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
Tert-amyl methyl ether	ND	20	"							
Tert-butyl alcohol	ND	50	"							
Di-isopropyl ether	ND	20	"							
Ethyl tert-butyl ether	ND	20	"							
Methyl tert-butyl ether	ND	20	"							
C6-C12 (GRO)	ND	500	"							
Surrogate: Toluene-d8	41.8		"	40.0		105	85.5-116			
Surrogate: 4-Bromofluorobenzene	35.9		"	40.0		89.8	75.1-121			
Surrogate: Dibromofluoromethane	44.5		"	40.0		111	90-135			

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Prepared: 07/1701 - EPA 5035 GCMS	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Chlorobenzene	Batch 9071701 - EPA 5035 GCMS										
I,1-Dichloroethene	LCS (9071701-BS1)				Prepared:	07/17/09	Analyze	d: 07/21/09			
Trichloroethene	Chlorobenzene	107	5.0	ug/kg	100		107	75-125			
Benzene	1,1-Dichloroethene	110	5.0	"	100		110	75-125			
Toluene	Trichloroethene	93.1	5.0	"	100		93.1	75-125			
Surrogate: Toluene-d8 39.4	Benzene	110	5.0	"	100		110	75-125			
Surrogate: 4-Bromofluorobenzene 38.8 " 40.0 96.9 75.1-121	Toluene	98.4	5.0	"	100		98.4	75-125			
Surrogate: Dibromofluoromethane 43.1 " 40.0 108 90-135 Matrix Spike (9071701-MS1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Analyzed: 07/21/09 Chlorobenzene 99.4 5.0 ug/kg 100 ND 99.4 75-125 1.1-Dichloroethene 1,1-Dichloroethene 82.4 5.0 " 100 ND 82.4 75-125 75-125 Trichloroethene 81.6 5.0 " 100 ND 81.6 75-125 Benzene 105 5.0 " 100 ND 97.8 75-125 Toluene 97.8 5.0 " 100 ND 97.8 75-125 Surrogate: Toluene-d8 41.8 " 40.0 104 85.5-116 Surrogate: Heromofluorobenzene 40.0 " 40.0 100 75.1-121 Surrogate: Dibromofluoromethane 55.8 " 40.0 139 90-135 Surrogate: Dibromofluoromethane 55.8 " 40.0 139 90-135 Surrogate: Dibromofluoromethane 50.0 " 100 ND ND 104 75-121 Surrogate: Dibromofluoromethane 50.0 " 100 ND 104 75-125 4.09 20 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 1,1-Dichloroethene 87.3 5.0 " 100 ND 87.3 75-125 25.3 20 Benzene 107 5.0 " 100 ND ND 95.7 75-125 2.36 20	Surrogate: Toluene-d8	39.4		"	40.0		98.5	85.5-116			
Matrix Spike (9071701-MS1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 99.4 5.0 ug/kg 100 ND 99.4 75-125 1,1-Dichloroethene 82.4 5.0 " 100 ND 82.4 75-125 Trichloroethene 81.6 5.0 " 100 ND 81.6 75-125 Benzene 105 5.0 " 100 ND 105 75-125 Toluene 97.8 5.0 " 100 ND 97.8 75-125 Surrogate: Toluene-d8 41.8 " 40.0 104 85.5-116 Surrogate: Holbromofluoromethane 55.8 " 40.0 100 75.1-121 Surrogate: Dibromofluoromethane 55.8 " 40.0 139 90-135 S Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 <	Surrogate: 4-Bromofluorobenzene	38.8		"	40.0		96.9	75.1-121			
Chlorobenzene	Surrogate: Dibromofluoromethane	43.1		"	40.0		108	90-135			
1,1-Dichloroethene	Matrix Spike (9071701-MS1)	So	urce: T90065	57-01	Prepared:	: 07/17/09	Analyze	d: 07/21/09			
Trichloroethene	Chlorobenzene	99.4	5.0	ug/kg	100	ND	99.4	75-125			
Benzene 105 5.0 " 100 ND 105 75-125 Toluene 97.8 5.0 " 100 ND 97.8 75-125 Surrogate: Toluene-d8 41.8 " 40.0 104 85.5-116 Surrogate: 4-Bromofluorobenzene 40.0 " 40.0 139 90-135 S Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	1,1-Dichloroethene	82.4	5.0	"	100	ND	82.4	75-125			
Toluene 97.8 5.0 " 100 ND 97.8 75-125 Surrogate: Toluene-d8 41.8 " 40.0 104 85.5-116 Surrogate: 4-Bromofluorobenzene 40.0 " 40.0 100 75.1-121 Surrogate: Dibromofluoromethane 55.8 " 40.0 139 90-135 S Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Trichloroethene	81.6	5.0	"	100	ND	81.6	75-125			
Surrogate: Toluene-d8 41.8 " 40.0 104 85.5-116 Surrogate: 4-Bromofluorobenzene 40.0 " 40.0 100 75.1-121 Surrogate: Dibromofluoromethane 55.8 " 40.0 139 90-135 S Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 10 104 104 104 104 104 104 104 104 104	Benzene	105	5.0	"	100	ND	105	75-125			
Surrogate: 10thene-40 41.6 40.0 104 83.5-110 Surrogate: 4-Bromofluorobenzene 40.0 " 40.0 100 75.1-121 Surrogate: Dibromofluoromethane 55.8 " 40.0 139 90-135 Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 103 75.1-121 75.1-121	Toluene	97.8	5.0	"	100	ND	97.8	75-125			
Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Surrogate: Toluene-d8	41.8		"	40.0		104	85.5-116			
Matrix Spike Dup (9071701-MSD1) Source: T900657-01 Prepared: 07/17/09 Analyzed: 07/21/09 Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	75.1-121			
Chlorobenzene 104 5.0 ug/kg 100 ND 104 75-125 4.09 20 1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Surrogate: Dibromofluoromethane	55.8		"	40.0		139	90-135			S-GC
1,1-Dichloroethene 96.0 5.0 " 100 ND 96.0 75-125 15.3 20 Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Matrix Spike Dup (9071701-MSD1)	So	urce: T90065	57-01	Prepared:	: 07/17/09	Analyze	d: 07/21/09			
Trichloroethene 87.3 5.0 " 100 ND 87.3 75-125 6.75 20 Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Chlorobenzene	104	5.0	ug/kg	100	ND	104	75-125	4.09	20	
Benzene 107 5.0 " 100 ND 107 75-125 2.36 20 Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 85	1,1-Dichloroethene	96.0	5.0	"	100	ND	96.0	75-125	15.3	20	
Toluene 95.7 5.0 " 100 ND 95.7 75-125 2.12 20 Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121 75.1-121	Trichloroethene	87.3	5.0	"	100	ND	87.3	75-125	6.75	20	
Surrogate: Toluene-d8 40.3 " 40.0 101 85.5-116 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Benzene	107	5.0	"	100	ND	107	75-125	2.36	20	
Surrogate: 10tuene-as 40.5 40.0 101 83.5-110 Surrogate: 4-Bromofluorobenzene 41.2 " 40.0 103 75.1-121	Toluene	95.7	5.0	"	100	ND	95.7	75-125	2.12	20	
	Surrogate: Toluene-d8	40.3		"	40.0		101	85.5-116			
Surrogate: Dibromofluoromethane 52.8 " 40.0 132 90-135	Surrogate: 4-Bromofluorobenzene	41.2		"	40.0		103	75.1-121			
	Surrogate: Dibromofluoromethane	52.8		"	40.0		132	90-135			

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9071702 - EPA 5030 GCMS										
Blank (9071702-BLK1)				Prepared:	07/17/09	Analyzed	1: 07/20/09			
Benzene	ND	0.50	ug/l							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
C6-C12 (GRO)	ND	50	"							
Surrogate: Toluene-d8	7.88		"	8.00		98.5	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.20		"	8.00		90.0	83.5-119			
Surrogate: Dibromofluoromethane	8.17		"	8.00		102	81.1-136			
LCS (9071702-BS1)				Prepared:	07/17/09	Analyzed	1: 07/20/09			
Chlorobenzene	21.8	1.0	ug/l	20.0		109	75-125			
1,1-Dichloroethene	21.5	1.0	"	20.0		107	75-125			
Trichloroethene	17.4	1.0	"	20.0		86.8	75-125			
Benzene	21.8	0.50	"	20.0		109	75-125			
Toluene	19.8	0.50	"	20.0		99.2	75-125			
Surrogate: Toluene-d8	7.87		"	8.00		98.4	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.49		"	8.00		93.6	83.5-119			
Surrogate: Dibromofluoromethane	7.92		"	8.00		99.0	81.1-136			
LCS Dup (9071702-BSD1)				Prepared:	07/17/09	Analyzed	1: 07/20/09			
Chlorobenzene	21.8	1.0	ug/l	20.0		109	75-125	0.138	20	
1,1-Dichloroethene	21.7	1.0	"	20.0		108	75-125	1.02	20	
Trichloroethene	17.6	1.0	"	20.0		87.8	75-125	1.15	20	
Benzene	21.8	0.50	"	20.0		109	75-125	0.275	20	
Toluene	20.3	0.50	"	20.0		101	75-125	2.19	20	
Surrogate: Toluene-d8	8.19		"	8.00		102	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.95		"	8.00		99.4	83.5-119			
Surrogate: Dibromofluoromethane	7.93		"	8.00		99.1	81.1-136			

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: [none]Reported:Benicia CA, 94510Project Manager: Matt Rosman07/22/09 10:00

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

07 August 2009

Jim Gribi Gribi Associates 1090 Adam Street, Suite K Benicia, CA 94510

RE: Dublin Toyota

Enclosed are the results of analyses for samples received by the laboratory on 08/04/09 09:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

John Shepler

Laboratory Director

Chain of Custody Record

SunStar Laboratories, Inc. 3002 Dow Ave, Sulte 212 Tustin, CA 92780 714-505-4010

Client: Gnb Address: 1090 Address: 707-748-7	sociates	,			_			Dat	e:	8	0.	3/	72	700	7		_ Pag	ge:	Of <i>[</i>		
Address: 1090 Ada	ms st, 4	K, B	enicia,	<u>C9</u>	_				ject				$\mathcal{D}_{\mathcal{U}}$	6/	<u>'</u>	70	yo/4				_
Phone: 707-748-7	743	Fax: 7	7-748	-7763	-			Col	lecto	r:	M	1	ZUS	n	-			nt Project #	t:		_
Project Manager: 2. 6	かかり				_			Bat	ch #	I	90	07	708	<u> </u>			_		836	77	_
Sample ID GB-6- Y. 5	Date Sampled	0840	Sample Type	Container Type	8260	8260 + OXY	X 8260 BTEX, OXY	8270	8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				O Laboratory ID #	Comn	nents/Pre	servative	Total # of containers
GB-6-7.5		0845					X									1 -	02	†			+
GB-6-11.5		0845					X										03			·····	+
GB-6-15.5	b	0855	4	4			X						\perp			1	04	HOU	2		力
					\vdash				_	_	_				\perp	ļ					
GB-6-GWS	2/2/	0930	Water	VOA	1-1			_	\dashv		-		-+			.	ļ <u>.</u>				4
98-6-GWD	7/31	1030	1				$\stackrel{\bullet}{\sim}$						_				05				3
					+				+	\dashv		+	\dashv	-	-	-					
														\perp							
					-					\dashv	\dashv	+	-			+	-				\perp
					\vdash					\dashv	\dashv	+				+					+
		,	1	1						+	7		_		+-	† · · ·	 				+-1
Relinguished by: (signature)	8/03/09 / 1	ne / Zoò		y: (signature)	F		Date	/ Ti	me 205	1						ainers	11		Notes		
Relinquished by: (signature)	Date Tim		Redelvedby	(signature)	U	ンル	Date			\dashv	Chai	n of (•		N/NA	Y	6.	Tn -	_	
				, (019) (010)	//	•	Jaio		116		_					N/NA	Y	3	TD. T	AT [-+
Relinquished by: (signature)	Date / Tim	ne .	Received by	/: (signature)			Date	/ Ti-	m o		Re	ceive	ed god	od cor	ndition	/cold	7.4		_	- 1	13
				01														_8	-4-09	L	
G-50 8-4-09 Sample disposal Instructions: Di		ch	Return to	Signar .		o - ;		9	120	<u> </u>	Turn	aro	und t	ime:		-			-		

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GB-6-4.5	T900708-01	Soil	07/31/09 08:40	08/04/09 09:20
GB-6-7.5	T900708-02	Soil	07/31/09 08:45	08/04/09 09:20
GB-6-11.5	T900708-03	Soil	07/31/09 08:50	08/04/09 09:20
GB-6-GWS	T900708-05	Water	07/31/09 09:30	08/04/09 09:20
GB-6-GWD	T900708-06	Water	07/31/09 10:30	08/04/09 09:20

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

GB-6-4.5 T900708-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					

Volatile Organic Compounds by El	PA Method 82601	В						
Benzene	ND	5.0	ug/kg	1	9080415	08/04/09	08/04/09	EPA 8260B
Toluene	ND	5.0	"	"	"	"	"	"
Ethylbenzene	ND	5.0	"	"	"	"	"	"
m,p-Xylene	ND	5.0	"	"	"	"	"	"
o-Xylene	ND	5.0	"	"	"	"	"	"
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"
Tert-butyl alcohol	ND	50	"	"	"	"	"	"
Di-isopropyl ether	ND	20	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"
Methyl tert-butyl ether	100	20	"	"	"	"	"	"
C6-C12 (GRO)	ND	500	"	"	"	"	"	m .
Surrogate: 4-Bromofluorobenzene		101 %	75.1-1	121	"	"	"	"
Surrogate: Dibromofluoromethane		127 %	90-1.	35	"	"	"	"
Surrogate: Toluene-d8		109 %	85-1	15	"	"	"	"

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

GB-6-7.5 T900708-02 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B	3							
Benzene	ND	5.0	ug/kg	1	9080415	08/04/09	08/04/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	1200	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75.1-1	'21	"	"	"	"	
Surrogate: Dibromofluoromethane		150 %	90-13	35	"	"	"	"	S-GC
Surrogate: Toluene-d8		107 %	85-1	15	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

GB-6-11.5 T900708-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	L.	unstai L	aboi atoi i	es, inc.					
Volatile Organic Compounds by E	PA Method 8260B	3							
Benzene	ND	5.0	ug/kg	1	9080415	08/04/09	08/04/09	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	410	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
C6-C12 (GRO)	ND	500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		128 %	90-1.	35	"	"	"	"	
Surrogate: Toluene-d8		104 %	85-1.	15	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

GB-6-GWS T900708-05 (Water)

	F	eporting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B									R-04
Benzene	2.8	2.5	ug/l	5	9080414	08/04/09	08/06/09	EPA 8260B	
Toluene	ND	2.5	"	"	"	"	"	"	
Ethylbenzene	ND	2.5	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	2.5	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	10	"	"	"	"	"	"	
Tert-butyl alcohol	6000	50	"	"	"	"	"	"	E-1
Di-isopropyl ether	ND	10	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	10	"	"	"	"	"	"	
Methyl tert-butyl ether	17	5.0	"	"	"	"	"	"	
C6-C12 (GRO)	ND	250	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	66.3-	111	"	"	"	"	S-GC
Surrogate: Toluene-d8		98.1 %	84.7-	109	"	"	"	"	

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

GB-6-GWD T900708-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sumstan Li		05, 1110.					
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	9080414	08/04/09	08/04/09	EPA 8260B	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	3.9	1.0	"	"	"	"	"	"	
C6-C12 (GRO)	ND	50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	77.1-	110	"	"	"	"	
Surrogate: Dibromofluoromethane		121 %	66.3-	111	"	"	"	"	S-GC
Surrogate: Toluene-d8		116 %	84.7-	109	"	"	"	"	S-GC

SunStar Laboratories, Inc.

RPD

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 9080414 - EPA 5030 GCMS										
Blank (9080414-BLK1)				Prepared	& Analyzo	ed: 08/04/	/09			
Benzene	ND	0.50	ug/l							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate: 4-Bromofluorobenzene	8.10		"	8.00		101	77.1-110			
Surrogate: Dibromofluoromethane	8.46		"	8.00		106	66.3-111			
Surrogate: Toluene-d8	8.80		"	8.00		110	84.7-109			S-G0
LCS (9080414-BS1)				Prepared	& Analyze	ed: 08/04	/09			
Chlorobenzene	20.3	1.0	ug/l	20.0		101	75-125			
1,1-Dichloroethene	20.0	1.0	"	20.0		99.8	75-125			
Trichloroethene	20.4	1.0	"	20.0		102	75-125			
Benzene	21.6	0.50	"	20.0		108	75-125			
Toluene	19.8	0.50	"	20.0		98.8	75-125			
Surrogate: 4-Bromofluorobenzene	8.42		"	8.00		105	77.1-110			
Surrogate: Dibromofluoromethane	8.44		"	8.00		106	66.3-111			
Surrogate: Toluene-d8	7.83		"	8.00		97.9	84.7-109			
LCS Dup (9080414-BSD1)				Prepared	& Analyz	ed: 08/04	/09			
Chlorobenzene	18.2	1.0	ug/l	20.0		91.2	75-125	10.5	20	
1,1-Dichloroethene	20.6	1.0	"	20.0		103	75-125	3.06	20	
Trichloroethene	20.9	1.0	"	20.0		104	75-125	2.03	20	
Benzene	20.3	0.50	"	20.0		102	75-125	6.06	20	
Toluene	20.2	0.50	"	20.0		101	75-125	2.01	20	
Surrogate: 4-Bromofluorobenzene	8.18		"	8.00		102	77.1-110			
Surrogate: Dibromofluoromethane	8.35		"	8.00		104	66.3-111			
Surrogate: Toluene-d8	8.12		"	8.00		102	84.7-109			

SunStar Laboratories, Inc.

RPD

%REC

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 9080415 - EPA 5035 GCMS										
Blank (9080415-BLK1)				Prepared	& Analyze	ed: 08/04/	09			
Benzene	ND	5.0	ug/kg							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
Tert-amyl methyl ether	ND	20	"							
Tert-butyl alcohol	ND	50	"							
Di-isopropyl ether	ND	20	"							
Ethyl tert-butyl ether	ND	20	"							
Methyl tert-butyl ether	ND	20	"							
C6-C12 (GRO)	ND	500	"							
Surrogate: 4-Bromofluorobenzene	41.6		"	40.0		104	75.1-121			
Surrogate: Dibromofluoromethane	46.0		"	40.0		115	90-135			
Surrogate: Toluene-d8	44.6		"	40.0		112	85-115			
LCS (9080415-BS1)				Prepared	& Analyze	ed: 08/04/	09			
Benzene	99.0	5.0	ug/kg	100		99.0	75-125			
Toluene	98.9	5.0	"	100		98.9	75-125			
Surrogate: 4-Bromofluorobenzene	39.4		"	40.0		98.6	75.1-121			
Surrogate: Dibromofluoromethane	43.0		"	40.0		108	90-135			
Surrogate: Toluene-d8	40.4		"	40.0		101	85-115			
LCS Dup (9080415-BSD1)				Prepared	& Analyze	ed: 08/04/	09			
Benzene	109	5.0	ug/kg	100		109	75-125	9.43	20	
Toluene	106	5.0	"	100		106	75-125	7.26	20	
Surrogate: 4-Bromofluorobenzene	43.4		"	40.0		108	75.1-121			
Surrogate: Dibromofluoromethane	47.8		"	40.0		120	90-135			
Surrogate: Toluene-d8	40.7		"	40.0		102	85-115			

SunStar Laboratories, Inc.

Gribi Associates Project: Dublin Toyota

1090 Adam Street, Suite KProject Number: 147-01-03Reported:Benicia CA, 94510Project Manager: Jim Gribi08/07/09 16:26

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

R-04 The Reporting Limits for this analysis are elevated due to sample foaming.

E-1 The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though

it was above calibration range.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.