RECEIVED

10:15 am, Dec 11, 2012

Alameda County
Environmental Health

November 2, 2012

Mr. Paresh Khatri **Alameda County Environmental Health Services** 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

2nd Semi-Annual 2012 Groundwater Monitoring Report

Former AutoPro

5200 Telegraph Avenue

Oakland, California

Case Number RO0000323

GeoTracker Global ID T0600100131

PSI Project No. 575-102-6

Dear Mr. Khatri:

Tri Star Partnership is pleased to submit the Semi-Annual Groundwater Monitoring Report for the subject site. Please refer to the attached report for details.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached Groundwater Monitoring Report are true and correct to the best of my knowledge, without independently investigating or verifying the information contained therein.

If you have any questions regarding this report or any aspect of the project, please call Mr. Frank Poss with PSI at 510-434-9200.

Sincerely,

George Tuma General Partner Tri Star Partnership

cc: Mr. Frank Poss, PSI

2nd SEMI-ANNUAL 2012 GROUNDWATER MONITORING REPORT

TEST ONLY SMOG STATION (FORMER AUTOPRO) 5200 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

2nd SEMI-ANNUAL 2012 GROUNDWATER MONITORING REPORT

TEST ONLY SMOG STATION (FORMER AUTOPRO) 5200 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

prepared for

Tri Star Partnership 30 Arjang Court Alamo, California 94507

prepared by

Professional Service Industries, Inc. 4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

October 31, 2012 575-102-6

TABLE OF CONTENTS

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION	i
1.0 INTRODUCTION	1
2.0 SITE BACKGROUND 2.1 HISTORICAL SITE USE	
3.0 GROUNDWATER MONITORING ACTIVITIES 3.1 GROUNDWATER ELEVATION AND HYDRAULIC GRADIENT 3.2 GROUNDWATER SAMPLING 3.3 LABORATORY ANALYSIS, RESULTS, AND DISCUSSION 3.4 COORDINATED REPORTING WITH NEARBY CHEVRON SITE 4.0 CONCLUSIONS AND RECOMMENDATIONS 5.0 REFERENCES	
FIGURES FIGURE 1: SITE LOCATION MAP FIGURE 2: GROUNDWATER ELEVATION MAP (September 25, 2012) TABLES TABLE 1: SUMMARY OF GROUNDWATER ELEVATIONS	
TABLE 2: SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	
APPENDICES APPENDIX A: GROUNDWATER PURGE LOGS AND WATER LEVEL DATA APPENDIX B: LABORATORY REPORT AND CHAIN-OF-CUSTODY RECOR APPENDIX C: CHEVRON #9-3864; GROUNDWATER ELEVATION / SITE M. AND ANALYTICAL TABLES	RD

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

The information provided in this Groundwater Monitoring Report prepared by PSI, Project Number 575-102-6, is intended exclusively for Tri Star Partnership for the evaluation of groundwater contamination as it pertains to the subject site in Oakland, California at the time the activities were conducted. The professional services provided have been performed in accordance with practices generally accepted by other environmental professionals, geologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface soil and groundwater sampling, there is no guarantee that the work conducted has identified any and all sources or locations of petroleum hydrocarbons or hazardous substances or chemicals in the soil or groundwater.

This report is issued with the understanding that Tri Star Partnership is responsible for ensuring that the information contained in this report is brought to the attention of the appropriate regulatory agency. This report has been reviewed by a geologist who is registered in the State of California and whose signature and license number appear below.

Professional Service Industries, Inc.

Frank R. Poss Principal Consultant Brand Burfjeld, PG 6986

GEO

BRAND W. BURFIELL

Project Geologist

1.0 INTRODUCTION

The Subject Property is an approximately 9,000 square foot, triangular-shaped parcel located at 5200 Telegraph Avenue, on the northeastern corner of Telegraph and Claremont Avenue in Oakland, Alameda County, California (see Figure 1 – Site Location Map). The site is asphalt-paved and is currently used as a smog testing facility ("Test Only Smog Station") but was formerly an auto repair facility ("Autopro Inc.") and a Shell gasoline service station. The subject site formerly included five Underground Storage Tanks (USTs) which were removed from three separate excavation areas. The three excavations include an approximately 140 square-foot former waste oil UST excavation on the northeastern portion of the property, a 750 square-foot excavation which contained three former gasoline or diesel USTs near the center of the property, and a 450 square-foot former gasoline UST (and associated piping) excavation on the southern portion of the property. Locations of the existing site improvements and the former UST excavations are depicted on Figure 2.

This report summarizes the 2nd Semi-Annual 2012 groundwater monitoring activities conducted on September 25, 2012, at the former UST site. The purpose of this project is to monitor petroleum hydrocarbon concentrations in groundwater to comply with the sampling requirements of the Alameda County Environmental Health Department (ACEH).

2.0 SITE BACKGROUND

Previous reports and investigations have been completed at the former UST site at 5200 Telegraph Avenue, Oakland, California, while the site was operated as Autopro, an automotive repair facility. The site is currently under the regulatory oversight of the ACEH and is identified by County Fuel Leak Case Number RO0000323 and State Geotracker Global ID T0600100131.

2.1 HISTORICAL SITE USE

The property is currently developed with an active automotive smog testing station. According to regulatory documents reviewed, the Subject Property has been developed as an automotive service station since at least 1973. Information obtained at the Alameda County Department of Environmental Health indicates that the Subject Property was developed as a Shell gasoline service station until 1978 and has operated as an automotive service or smog testing station until present.

The following table summarizes the historic use of the Subject Property.

Summary							
Year(s)	Interpreted Property Use						
1973, 1978	According to Street Directories the subject property is listed as Jordan Shell Service Station.						
1984, 1989, 1990, 1994	According to Street Directories the subject property is listed as Auto Pro Inc. 2. In December 1990, five underground storage tanks (USTs) were removed from the site.						
1999, 2003	According to Street Directories the subject property is listed as Auto Pro Inc.						
2008	The subject property is Test Only SMOG Station.						

2.2 PREVIOUS ENVIRONMENTAL SITE ACTIVITIES

This section summarizes the findings and conclusions of select previous environmental investigations and other pertinent documents (see references; Section 5) made available to PSI.

2.2.1 Underground Storage Tank Removal - 1990

Five USTs were removed from three different excavations at the subject site in December 1990 by Pacific Excavators (Pacific, 1991). Soil and groundwater samples collected from the UST fuel excavations contained levels of total petroleum hydrocarbons as gasoline (TPH-G), total petroleum hydrocarbons as diesel (TPH-D), benzene, toluene, ethylbenzene, total xylenes (BTEX), and total lead. In addition soil samples collected from the waste oil tank excavation contained concentrations of oil and grease (O&G). In addition, in 1991 soil was sampled and a small amount of contaminated soil was excavated and removed from the site (ESE, 1994).

2.2.2 Limited Soil and Groundwater Investigation - 1993

In April 1993, Environmental Science & Engineering Inc. (ESE) conducted a limited soil and groundwater investigation at the site. Two soil borings were drilled in the area of two former UST excavations through the backfill into native material, with soil and groundwater samples collected from the borings. Results of the investigation indicated concentrations of total semi-volatile petroleum hydrocarbons (TSVPH); these hydrocarbons were reported not to consist of diesel or gasoline (ESE, 1993).

2.2.3 Preliminary Site Assessment and Groundwater Monitoring - 1994

ESE conducted a preliminary site assessment (PSA) of the property in April 1994. The investigation consisted of drilling four soil borings, installation of four monitoring wells (MW-1 through MW-4), and collection of soil and groundwater samples. According to the investigation, soil beneath the site consisted of silty clay to between approximately 10 and 13 feet below ground surface (bgs) and groundwater was found to be approximately 11 to

13 feet bgs. Soil and groundwater samples collected during the investigation were found to contain petroleum hydrocarbons (ESE, 1994).

According to the Second Quarter 1994 Groundwater Monitoring Report, groundwater flow direction at the site is bimodal and flows both to the southwest and east, dependent upon the location at the site. According to ESE this may have been a result of the high permeability of the backfill material in the former UST excavations. The data presented in the Second Quarter 1994 monitoring report indicated that petroleum hydrocarbons are migrating off-site to the southwest and concluded that the existing monitoring well network is not sufficient to determine the extent off-site migration (ESE, 1994).

<u>2.2.4 Site Assessment and Groundwater Monitoring - 1996</u>

ESE conducted an additional soil and water investigation (in addition to quarterly groundwater sampling) to determine the on and off-site extent of the soil and groundwater contamination. The 1996 study included seven geoprobe soil borings which were drilled and sampled; a total of 14 soil and seven groundwater samples were collected during the investigation. A concentration of 1.5 mg/kg TPH-G was detected in the sample collected from boring AP-2 at 10 feet. The remaining soil samples were non-detect for all constituents of concern. TPH-D was detected at concentrations ranging from 190 and 74,000 μ g/l in groundwater samples from AP-1, AP-2, AP-3, and AP-6. TPH-G was detected at concentrations ranging between 1,400 and 14,000 μ g/l in groundwater samples from AP-1, AP-2 and AP-3. TPH-MO was detected at a concentration of 1,900 μ g/l in the groundwater sample from AP-6. In addition BTEX constituents were detected in groundwater samples from AP-1, AP-2, and AP-3. MTBE was detected at concentrations of 60 μ g/l and 100 μ g/l in groundwater samples from AP-2 and AP-3 (ESE, 1996).

Second Quarter 1996 groundwater monitoring activities at the site included sampling of monitoring wells MW-1 through MW-4. TPH-G and TPH-D were detected in MW-1, MW-3, and MW-4. BTEX constituents and MTBE were detected in MW-3 and MW-4 (ESE, 1996).

2.2.5 Remediation and Site Closure Report - 1999

In 1998, with approval from the ACEH, it was determined that oxygen release compounds (ORCs) would be introduced into MW-3 and MW-4 to enhance the biodegradation of the contaminant plume at the site. ORCs were placed in MW-3 and MW-4 on March 23, 1998 by QST Environmental (QST). This resulted in a slight increase of BTEX and TPH immediately after the installation of the ORCs. According to QST, the increase in hydrocarbons may have been a result of the increase in the groundwater table elevation; the increased elevation may have caused a mobilization of additional petroleum hydrocarbon constituents from the capillary fringe thus increasing concentrations. Constituents have declined or stabilized since the removal of the ORCs, and as such, QST determined that constituent reduction and degradation was enhanced by the ORC (QST, 1999).

QST conducted a risk assessment as part of their site closure report. The evaluation focused on MW-1 through MW-4, the closest wells to the source. Concentrations of constituents in MW-5 (a nearby off-site Chevron well) indicate that the plume has stabilized in the downgradient (southwest) direction. The risk assessment was tied to the identification of the constituents of concern, potential pathways in environmental media, and potential receptors of exposure. According to the report the objectives of the site conceptual model have been realized through the identification of soil and groundwater as the environmental media for remedial action via soil vapor extraction and water entrainment. Receptors of potential exposure were based on residential land use and groundwater as a drinking water resource (QST, 1999).

Based on the 1996 ESE site investigation report, off-site soil between the Chevron Station and the subject property did not appear to be impacted by hydrocarbon contamination. Groundwater samples collected at the time of the 1996 investigation indicated concentrations of TPH-G, TPH-D, BTEX, and MTBE. Based on a 1996 soil vapor study, the Autopro plume and the Chevron plume are intermingled and the downgradient concentrations could not be accurately ascertained.

Based on exposure and toxicity assessments as part of the risk assessment, and since the site is surfaced with asphalt and concrete, repeat exposure to the constituents of concern is unlikely. The Environmental Protection Agency (EPA) Preliminary Remediation Goal (PRG) for industrial properties for benzene was exceeded in one soil sample collected in 1996. According to QST, the absence of benzene in groundwater at the site eliminates the possibility of vertical migration upward into soil vapor (QST, 1999).

2.2.6 Quarterly Monitoring and Utility Backfill Sampling – 2004

According to Second Quarter 2004 sampling data TPH-G was detected at concentrations of 530, 33,000, and 1,700 μ g/l in MW-1, MW-3, and MW-4 respectively. TPH-D was detected at concentrations between 56 and 1,200 μ g/l in MW-1 through MW-4. Ethylbenzene was detected at concentrations of 0.67 μ g/l in MW-4 and total xylenes were detected at concentrations of 5.6 and 1.22 μ g/l in MW-3 and MW-4. Total petroleum hydrocarbons as motor oil (TPH-MO), benzene, toluene and fuel oxygenates were not detected during the sampling event. Monitoring well MW-5, was damaged at the time of sampling, thus was not sampled (MACTEC, 2004).

According to Third Quarter 2004 sampling data TPH-G was detected at concentrations of 260, 13,000, and 1,800 μ g/l in MW-1, MW-3, and MW-4 respectively. TPH-D was detected at concentrations between 74 and 2,500 μ g/l in MW-1 through MW-4. TPH-MO, BTEX, and fuel oxygenates were not detected during the Third Quarter sampling event (MACTEC, 2004).

In August 2004, two borings were advanced to approximately 16 feet bgs adjacent to the sanitary sewer line and storm drain line to investigate if the utility corridor was a conduit for contamination migration. This investigation was performed at the request of the ACEH in a letter dated December 24, 2002. The intent of the investigation was to

obtain grab groundwater samples from each of the utility trench backfills. However, the boring adjacent to the sanitary sewer line was dry. Therefore, samples were obtained only from the storm drain backfill. The samples collected from the storm drain backfill were tested for TPH-G, TPH-D, benzene, toluene, ethylbenzene and xylenes were detected at concentrations of 57,000, 29,000, 9.5, 36, 11, and 29 μ g/l respectively. Concentrations of contaminants of concern in the areas explored suggest that the release from the site has migrated to the utility trenches, which have acted as a preferential pathway for the contaminants (MACTEC, 2004).

According to the Second and Third Quarter 2004 Monitoring Report (MACTEC, 2004) the slotted casing in each of the wells (MW-1 through MW-4) is below the groundwater level. Since the interval of slotted casing in a well should span the surface of the groundwater aquifer being monitored, the slotted casing in these wells is considered to have been improperly placed at construction. The report indicates that, while these improperly placed slotted intervals will likely have little impact in the monitoring of groundwater levels and contaminant trends, they may adversely affect the ability to determine the presence of free floating product in groundwater at the site.

According to Fourth Quarter 2004 sampling data TPH-G was detected at concentrations of 710, 5,100, and 2,300 μ g/l in monitoring wells MW-1, MW-3, and MW-4 respectively. TPH-D was detected at concentrations between 53 and 3,300 μ g/l in all wells except Chevron well MW-2. TPH-MO was detected at concentrations of 450 and 1,400 μ g/l in MW-1 and MW-4. Benzene concentrations in MW-3 exceeded the California State Drinking Water Standard Maximum Contaminant Level (MCL) of 1.0 μ g/l; the remaining BTEX concentrations did not exceed MCLs for this sampling event. Groundwater flow at the time of sampling was to the northeast which is inconsistent with historical flow to the south/southwest; the reason for the change was unknown and was thought to be a result of heavy rainfall (MACTEC, 2005).

2.2.7 Site Recommendations From the ACEH - 2008

According to a letter from the Alameda County Environmental Health Services Department, dated March 28, 2008, analytical data from the Fourth Quarter 2004 Groundwater Monitoring Report was determined to be insufficient since all monitoring wells at the site have their slotted casing below groundwater. Depth to groundwater at the site ranges between 8 and 13 feet bgs; however MW-1 is screened from 15-30 feet and MW-2, MW-3, and MW-4 are screened between 15-25 feet. The ACEH expressed concerns that concentrations of contaminants detected in the groundwater samples may not be representative of actual site conditions. In addition, grab groundwater samples collected at a nearby cross-gradient site in 2007 indicated concentrations of TPH-G in all three samples. The ACEH stated that further evaluation of preferential pathways and additional off-site plume delineation is warranted at the site and that hydrocarbon concentrations in down gradient well MW-3 warranted further characterization of the onsite plume.

Since groundwater monitoring at the site had not been conducted since Fourth Quarter 2004, the ACEH recommended that quarterly monitoring be initiated and the wells be

re-developed at the site. In addition it was recommended that a new site conceptual model be developed for the subject property and that all analytical data from 2001 onward be submitted via the SWRCB Geotracker website, with all reports from July 1, 2005 onward be submitted to the website as well (ACEH, 2008).

2.2.8 Addressing ACEH Recommendations

On December 16, 2008, all four monitoring wells (MW-1 through MW-4) were redeveloped via the surge-block method to remove silt or clay from the surrounding formation that were caught in the filter pack, and to improve groundwater flow into the monitoring well. After the surge, the wells were purged to remove suspended sediment from the well and to encourage new water to flow into the well from the surrounding soil formation. This series of procedures was repeated three times to each of the monitoring wells with the exception of MW-1 in which the block became lodged at 14 feet. Fortunately, the well recharged easily during purging, suggesting that the filter pack and screen are in good working order.

ACEH was concerned that the "drowned wells" are affecting the detected contaminant concentrations in the wells. On December 22, 2008, the groundwater level was at approximately 8 feet below ground surface (bgs). The references reviewed indicate that the wells are screened from 15-25 feet bgs, with the exception of MW-1 which is screened from 15-30 feet bgs. Based on this data, the top of the screens remain below groundwater levels. While we are in agreement that "drowned wells" would affect the ability to detect product (i.e. fuel or oil) floating on top of the groundwater table, in the absence of floating product, this is not expected to significantly affect the monitoring of dissolved hydrocarbon contaminants in groundwater beneath the site either from a qualitative (ability to detect) or quantitative (detected concentrations) standpoint. We have seen no mention in the references reviewed and no indication from historical analytical data that there is, or has been, free floating product on groundwater at the site. As such, it is our opinion that the ability to accurately detect contaminant concentrations in the on-site wells is not a concern, despite their incorrect installation.

During groundwater sampling, the bottom of each well was sounded to determine the total depth. It was determined that the sounded depths below the top of casing are 26.07, 24.69, 14.54, and 15.69 feet for MW-1 through MW-4 respectively. With the exception of MW-2, these measured depths do not agree with the installation data for the wells; the depths of MW-1, MW-3, and MW-4 all measure to be about 5 to 10 feet less than their stated depth at installation.

There are several possible causes for the discrepancy between the installed and sounded depths of these wells;

- 1. Incorrect installation data.
- 2. Blockage (with a bailer for example).
- 3. Filling of the well casing (by siltation or man-made fill)

Sometime between the ESE 1996 report and the MACTEC 2004 monitoring report, wells MW-3 and MW-4 have seemingly "lost" 10 feet of depth. Since the sounded depths of

MW-3 and MW-4 would put the current bottom of the well at or above the installed slotted casing, and since both of these wells had no problems producing groundwater, the most likely causes of the discrepancy are either incorrect installation data or a partial blockage of the wells.

2.2.9 Workplan for Site Investigation

On June 8, 2009, PSI submitted the "Workplan for Site Investigation" in response to the ACEH letter dated March 28, 2008, addressing the following concerns:

- 1. Monitoring Wells and Hydrologic Setting
- 2. Preferential Pathway Study
- 3. Groundwater Contaminant Plume Definition
- 4. Contaminant Source Area Characterization
- 5. Groundwater Contaminant Plume Monitoring
- 6. Site Conceptual Model
- 7. GeoTracker Compliance

In a letter dated June 26, 2009, the ACEH generally concurred with PSI's findings and scope of work outlined in the Workplan and requested that the proposed work and associated reports be undertaken. Additionally, the letter stated that semi-annual monitoring frequency is appropriate for the site.

2.2.10 Site Investigation - 2012

In May 2012, PSI advanced and sampled soil and groundwater from three geoprobe borings at the subject site; B-1 was drilled to evaluate a former fuel dispenser on the west side of the site as a potential contaminant source; B-2 was drilled to evaluate whether improper installation of the existing monitoring wells at the site are affecting the detected contaminant concentrations; and B-3 was drilled to provide subsurface information near the downgradient (southwest) corner of the site for an upcoming Site Conceptual Model.

The report concluded that the former west-side fuel dispenser island does not appear to be a source of contamination and that the existing monitoring wells appear to provide adequate characterization of contaminant concentrations in groundwater. A well survey was also conducted to provide location and elevation data for the wells that is up to current standards.

3.0 GROUNDWATER MONITORING ACTIVITIES

The current groundwater monitoring program includes semi-annual sampling of monitoring wells MW-1, MW-2, MW-3, and MW-4.

3.1 GROUNDWATER ELEVATION AND HYDRAULIC GRADIENT

Prior to sampling on September 25, 2012, the depth to groundwater in each monitoring well was measured in accordance with the field procedures outlined in Section 3.2 using an electric water level indicator. Water levels are read from the top of the monitoring well casing (TOC) to an accuracy of 0.01 foot. This is performed in order to calculate the groundwater elevations and to determine the groundwater gradient. Before and after each use, the water level indicator was decontaminated to prevent cross-contamination of the wells.

Depths to groundwater and calculated groundwater elevations are presented in Table 1. Groundwater contours representing interpreted water levels beneath the site are shown on Figure 2. Historically, the groundwater flow direction at the subject property has been generally toward the southwest. Southwestern groundwater flow is consistent with data obtained from groundwater monitoring reports for three nearby monitoring sites within 1,000 feet of the subject property. Based on the data from the nearby sites, from historic subject property reports, and from review of the USGS topographic map, it is expected that the groundwater flow is to the southwest, towards the San Francisco Bay. Based on the water level measurements obtained from wells MW-1, MW-2 MW-3, and MW-4 the groundwater flow direction at the subject site is generally toward the west/southwest with a hydraulic gradient of approximately 0.005. New well casing elevation data from a survey conducted in May 2012 confirms an anomaly in the groundwater level at MW-4.

3.2 GROUNDWATER SAMPLING

On September 25, 2012, groundwater samples were collected from monitoring wells MW-1 through MW-4 at the project site. The following procedures for well monitoring, well purging and water sampling were implemented while sampling the wells:

- 1. All non-dedicated equipment was washed prior to entering the well with an Alconox solution, followed by a deionized water rinse.
- 2. Prior to purging the wells, depth to water was measured using a groundwater interface probe to an accuracy of 0.01 foot. The measurements were made to the top of the well casing on the north side.
- 3. The monitoring wells were purged of a minimum of three well volumes of water until pH, conductivity, and temperature stabilized. Each well was purged with a new, single-use dedicated bailer. If purged dry, the wells were allowed to recover to at least 80 percent of their original static groundwater levels or two hours were allowed to pass prior to sampling.

- 4. Water samples were collected with a single-use disposable bailer after the well had been purged. The water collected was immediately decanted into laboratory-supplied vials and bottles. The containers were filled, capped, labeled, and placed in a chilled cooler prior to delivery at the laboratory for analysis.
- 5. Chain of custody procedures, including chain of custody forms, were used to document water sample handling and transport from collection to delivery at the laboratory for analyses.
- 6. Purged water was contained in a DOT approved 55-gallon drum and left on site for proper disposal. The drum was labeled with the contents, date, well number, client name, and project number.

The purge logs are presented in Appendix A.

3.3 LABORATORY ANALYSIS, RESULTS, AND DISCUSSION

Four groundwater samples were submitted for analysis to SunStar Laboratories, Inc of Lake Forest, California, a State of California certified environmental analytical laboratory. The samples were analyzed for the following:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 8015
- Total Petroleum Hydrocarbons as Diesel (TPH-D) using EPA Method 8015
- Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Method 8015
- Volatile Organic Compounds (VOCs) including fuel oxygenates using EPA Method 8260B

The following are the results of the groundwater analysis:

- TPH-G was detected above the laboratory reporting limit of 50 micrograms per liter (μg/L) in the groundwater sample from MW-3 (1,800 μg/L).
- TPH-D was detected above the laboratory reporting limit of 50 μg/L in the groundwater samples from MW-3 (1,500 μg/L) and MW-4 (520 μg/L).
- TPH-MO was not detected above the laboratory reporting limit of 100 μg/L in any of the groundwater samples.
- Various VOCs associated with hydrocarbon contamination were detected above their respective laboratory reporting limit in the groundwater samples collected from MW-3 and MW-4. VOCs were not detected in MW-1 and MW-2.

- BTEX constituents were detected only in the groundwater sample from MW-3;
 - Benzene at 0.67 μg/L
 - Toluene at 0.93 μg/L
 - Ethylbenzene at 0.7 μg/L
 - Total Xylenes at 2.4 μg/L
- None of the tested constituents were detected in the groundwater samples from MW-1 and MW-2.

A summary of the laboratory results for groundwater samples is presented in Table 2. Copies of the laboratory report and chain of custody records are presented in Appendix B.

The groundwater analytical results were compared to their respective San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for Residential Land Use where groundwater is a drinking water resource. The following constituents were detected at greater than their respective ESL;

- TPH-G (ESL of 100 μg/L) in MW-3
- TPH-D (ESL of 100 µg/L) in MW-3 and MW-4

None of the other tested constituents were detected at greater than their respective ESL.

3.4 COORDINATED REPORTING WITH NEARBY CHEVRON SITE #9-3864

As requested by ACEH in their letter dated June 26, 2009, this report includes data and graphics for both the subject site and the nearby Chevron site, located southwest of the subject site at 5101 Telegraph Avenue. The sampling for the Chevron site was performed on September 20, 2012. Copies of the groundwater elevation and analytical table and the site map with groundwater contours for the Chevron site are presented in Appendix C.

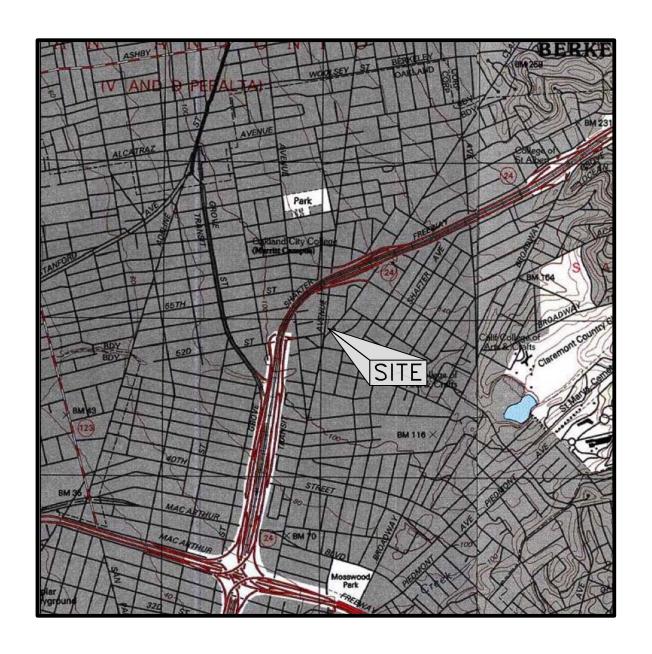
4.0 CONCLUSIONS AND RECOMMENDATIONS

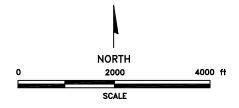
PSI conducted groundwater monitoring activities on September 25, 2012. The results of the monitoring event are summarized below.

- Based on our field measurements, groundwater at the site flows generally toward the west/southwest under a hydraulic gradient of 0.005.
- TPH-G was only detected in the groundwater sample from MW-3.
- TPH-D was detected in the groundwater samples from both MW-3 and MW-4.
- VOCs associated with hydrocarbon contamination were detected in the groundwater samples from MW-3 and MW-4. BTEX constituents were detected only in MW-3.
- The TPH constituents detected in MW-3 and MW-4 were at concentrations greater than their respective ESL.
- None of the tested constituents were detected in the groundwater samples from MW-1 or MW-2.

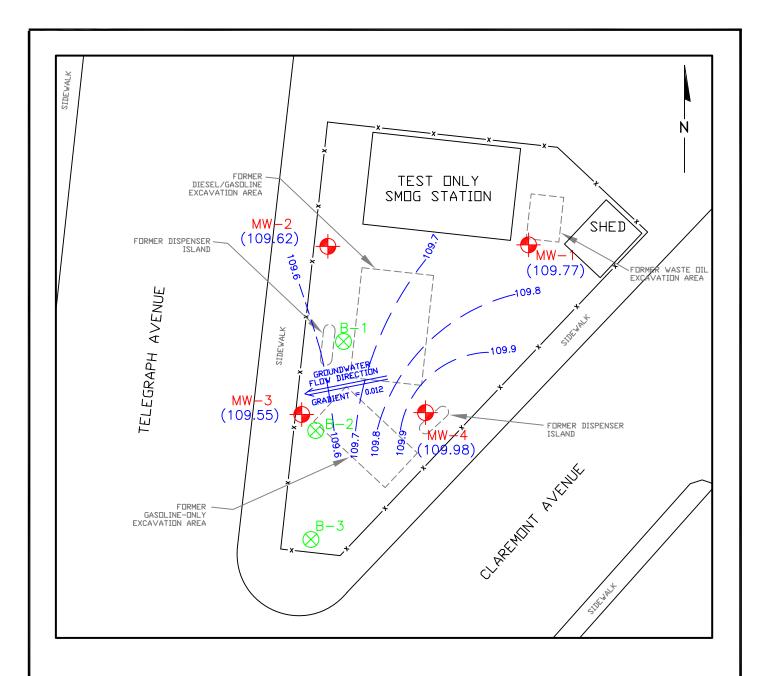
Based on the soil and groundwater analytical results, petroleum hydrocarbon and VOC-impacted groundwater is present in the area of the former UST excavations.

PSI is currently preparing a site conceptual model report for the site to evaluate whether the conditions at the site satisfy the criteria to qualify for closure as a "low-threat underground storage tank case." PSI recommends that semi-annual groundwater monitoring at the site continue until case closure has been granted.


5.0 REFERENCES


- 1. Pacific Excavators, January 24, 1991, "Autopro soils report, 5200 Telegraph Avenue, Oakland, California."
- 2. Environmental Science & Engineering, Inc., April 19, 1993, "Auto Pro 5200 Telegraph Avenue, Oakland, California."
- 3. Environmental Science & Engineering, Inc., August 16, 1994, "Second Quarter Groundwater Monitoring Report, Remedial Investigation, 5200 Telegraph Avenue, Oakland, California."
- 4. Environmental Science & Engineering, Inc., September 5, 1996, "Additional Soil and Groundwater Investigation and Second Quarter 1996 Groundwater Monitoring Report, 5200 Telegraph Avenue, Oakland, California
- 5. US Geological Survey (USGS), 1997 Oakland West Quadrangle, California, 7.5 Minute Series (topographic), United States Department of the Interior, Scale: 1:24,000.
- 6. QST, Inc., July 8, 1999, "Site Closure Report Auto Pro, 5200 Telegraph Avenue, Oakland, California."
- 7. MACTEC, November 30, 2004, "Quarterly Monitoring Second and Third Quarters and Backfill Sampling Summary, Auto Pro Site 5200 Telegraph Avenue, Oakland, California"
- 8. MACTEC, February 10, 2005, "Quarterly Monitoring Fourth Quarter, Auto Pro Site 5200 Telegraph Avenue, Oakland, California"
- 9. Alameda County Health Care Services Agency, Environmental Health Services Department (ACEH), March 28, 2008, "Fuel Leak Case No. RO0000323 and Geotracker ID T0600100131, Auto Pro 5200 Telegraph Avenue, Oakland, California.
- 10. PSI, Inc., June 8, 2009, "Workplan for Site Investigation, Test Only Smog Station (Former Autopro), 5200 Telegraph Avenue, Oakland, California, Fuel Leak Case No. RO0000323, Geotracker ID T0600100131, PSI Project No. 575-8G012."
- 11. PSI, Inc., July 17, 2012, "Soil and Groundwater Investigation Report, Test Only Smog Station (Former Autopro), 5200 Telegraph Avenue, Oakland, California," PSI Project No. 575-401.
- 12. ACEH, March 28, 2008, "Fuel Leak Case No. RO0000323 and Geotracker ID T0600100131, Auto Pro, 5200 Telegraph Avenue, Oakland, CA 94609.
- 13. ACEH, June 26, 2009, "Fuel Leak Case No. RO0000323 and Geotracker ID T0600100131, Auto Pro, 5200 Telegraph Avenue, Oakland, CA 94609.

FIGURES


REFERENCE:

U.S.G.S. OAKLAND WEST AND OAKLAND EAST, CALIFORNIA, 7.5 MINUTE SERIES TOPO-GRAPHIC MAPS, DATED 1993 AND 1997.

psi	Information To Build On						
Engineering • Consulting • Testing							

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

Project Name: TEST ONLY SMOG STATION (FORMER AUTOPRO) 5200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA	Drawn By: S.R.	 File No.: 102-6-1	Figure No.:
SITE LOCATION MAP	Approved By: F.P.	 102-6	

LEGEND

- GROUNDWATER MONITORING WELL LOCATION (GROUNDWATER ELEVATION GIVEN IN FEET MSL)

- APPROXIMATE GEOPROBE LOCATION (5-8-12)

7.9

- INTERPRETED LINE OF EQUAL GROUNDWATER ELEVATION (INDICATED IN FEET MSL)

0 15 30 60ft

APPROXIMATE SCALE

- FENCE

NOTES

I. BASE MAP TAKEN FROM MACTEC,
"GROUNDWATER CONTOUR MAP,"
PLATE 3, PROJECT NO: 4095041620
-03, DATED 12/14/04, GOOGLE
AERIAL PHOTO AND ALAMEDA CO.
ASSESSORS PARCEL MAP.

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

Project	Name: AUTOPRO 200 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA	Drawn By: S.R.		File No.: 102-6-2SA12	Figure No.:
Title:	GROUNDWATER ELEVATION MAP SEPTEMBER 25, 2012	Approved By: F.P.	1 '	102-6	

TABLES

TABLE 1

SUMMARY OF GROUNDWATER ELEVATIONS Test Only SMOG Station (Former Autopro) 5200 Telegraph Avenue, Oakland, California

Well Number	TOC Elevation (ft msl)	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)
MW-1	123.49	12/22/08	11.67	111.82
		3/4/09	8.50	114.99
		5/1/09	12.58	110.91
		7/20/09	13.30	110.19
		3/2/10	10.17	113.32
		9/23/10	13.56	101.88
		3/2/11	10.55	112.94
		7/21/11	12.66	102.78
		3/21/12	10.03	105.41
		9/25/12	13.72	109.77
MW-2	122.69	12/22/08	10.96	111.73
		3/4/09	7.83	114.86
		5/1/09	11.91	110.78
		7/20/09	12.64	110.05
		3/2/10	9.49	113.20
		9/23/10	13.02	101.60
		3/2/11	9.98	112.71
		7/21/11	12.11	102.51
		3/21/12	9.47	105.15
		9/25/12	13.07	109.62
MW-3	121.87	12/22/08	10.30	111.57
		3/4/09	7.22	114.65
		5/1/09	11.30	110.57
		7/20/09	11.93	109.94
		3/2/10	8.94	112.93
		9/23/10	12.15	101.62
		3/2/11	9.23	112.64
		7/21/11	11.34	102.43
		3/21/12	8.65	105.12
		9/25/12	12.32	109.55
MW-4	122.30	12/22/08	10.36	111.94
		3/4/09	7.47	114.83
		5/1/09	10.97	111.33
		7/20/09	11.56	110.74
		3/2/10	8.89	113.41
		9/23/10	11.64	102.61
		3/2/11	8.92	113.38
		7/21/11	10.86	103.39
		3/21/12	8.51	105.74
		9/25/12	12.32	109.98

Notes:

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Test Only SMOG Station (Former Autopro) 5200 Telegraph Avenue, Oakland, California

Sample Number	Date	TPH-G	TPH-D	TPH-MO	Benzene	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl- benzene	Isopropyl- benzene	Ethyl- benzene	p- Isopropyl- toluene	Naph- thalene	n-Propyl- benzene	Toluene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Total Xylenes
MW-1	12/22/08	390	150	<100	<0.5	5.5	3.9	<1.0	3.2	<0.5	<1.0	2.0	7.3	<0.5	<1.0	<1.0	<1.5
	3/4/09	360	64	<100	<0.5	1.8	1.8	<1.0	1.3	0.63	<1.0	1.3	2.8	<0.5	<1.0	<1.0	1.1
	5/1/09	120	130	<100	<0.5	1.5	2.0	<1.0	1.3	<0.5	<1.0	<1.0	2.8	<0.5	<1.0	<1.0	<1.5
	7/20/09	<50	110	330	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	1.3	<0.5	<1.0	<1.0	<1.5
	3/2/10	<50	<50	<100	<0.5	1.1	1.7	<1.0	1.1	<0.5	<1.0	<1.0	2.1	<0.5	<1.0	<1.0	<1.5
	9/23/10	<50	<50	<100	<0.5	<1.0	1.2	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/2/11	57	110	<100	<0.5	<1.0	3.2	<1.0	2.5	<0.5	<1.0	<1.0	4.5	<0.5	<1.0	<1.0	<1.5
	7/21/11	<50	430	<100	<0.5	2.1	1.8	<1.0	1.7	<0.5	<1.0	<1.0	3.9	<0.5	<1.0	<1.0	<1.5
	3/21/12	700	100	<100	<0.5	2.2	1.9	<1.0	2.1	<0.5	<1.0	<1.0	4.3	<0.5	<1.0	<1.0	<1.5
	9/25/12	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
MW-2	12/22/08	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/4/09	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	0.76	<1.0	1.4	<1.0	<0.5	1.1	<1.0	1.7
	5/1/09	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	7/20/09	<50	59	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/2/10	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	9/23/10	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/2/11	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	7/21/11	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/21/12	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	9/25/12	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
MW-3	12/22/08	3,600	1,400	<100	<0.5	<1.0	<1.0	<1.0	39	<0.5	14	<1.0	60	<0.5	<1.0	23	9.8
	3/4/09	3,400	1,000	<100	2.2	17	7.4	<1.0	34	3.9	8.3	2.5	67	3.1	<1.0	1.8	8.68
	5/1/09	2,700	1,700	<100	<0.5	20	7.2	<1.0	21	2.2	7.5	<1.0	44	1.2	<1.0	<1.0	3.9
	7/20/09	2,100	1,400	<100	<0.5	19	9.8	<1.0	25	1.5	5.6	1.0	57	1.1	<1.0	<1.0	4.5
	3/2/10	4,500	1,000	<100	0.8	<1.0	8.8	<1.0	26	2.1	6.6	<1.0	58	2.0	<1.0	<1.0	4.1
	9/23/10	230	880	270	<0.5	13	8.4	<1.0	20	0.88	3.5	<1.0	40	0.63	<1.0	<1.0	3.2
	3/2/11	6,900	1,900	<100	<0.5	<1.0	13	<1.0	38	2.5	8.4	<1.0	81	1.1	<1.0	<1.0	7.2
	7/21/11	1,600	1,700	1,100	<0.5	9.9	6.2	<1.0	15	0.64	3.0	1.1	29	<0.5	<1.0	<1.0	2.2
	3/21/12	2,500	800	<100	<0.5	18	8.3	<1.0	33	1.6	5.2	<1.0	75	1.0	<1.0	<1.0	4.1
	9/25/12	1,800	1,500	<100	0.67	22	8.2	<1.0	20	0.74	5.2	<1.0	47	0.93	<1.0	<1.0	2.4
MW-4	12/22/08	1,200	700	<100	<0.5	18	9.3	<1.0	10	<0.5	9.0	<1.0	21	<0.5	<1.0	<1.0	<1.5
	3/4/09	1,300	410	<100	<0.5	8.4	6.2	1.0	11	1.1	3.6	1.7	22	<0.5	<1.0	<1.0	1.2
	5/1/09	590	400	<100	2.6	6.4	4.8	<1.0	5.8	9.4	2.1	21	13	<0.5	<1.0	<1.0	<1.5
	7/20/09	440	260	<100	<0.5	4.4	3.5	<1.0	3.8	<0.5	1.6	<1.0	7.9	<0.5	<1.0	<1.0	<1.5
	3/2/10	860	370	<100	<0.5	<1.0	4.0	<1.0	4.3	0.57	2.0	<1.0	7.6	<0.5	<1.0	1.9	<1.5
	9/23/10	<50	82	<100	<0.5	1.6	2.0	<1.0	1.7	<0.5	<1.0	<1.0	2.2	<0.5	<1.0	<1.0	<1.5
	3/2/11	<50	8,400	18,000	<0.5	<1.0	2.8	<1.0	2.6	<0.5	1.3	<1.0	4.2	<0.5	<1.0	<1.0	<1.5
	7/21/11	810	1,100	1,200	<0.5	1.1	1.5	<1.0	1.1	<0.5	<1.0	<1.0	1.6	<0.5	<1.0	<1.0	<1.5
	3/21/12	810	120	<100	<0.5	2.1	1.9	<1.0	1.8	<0.5	1.1	<1.0	3.3	<0.5	<1.0	<1.0	<1.5
	9/25/12	<50	520	<100	<0.5	2.0	1.4	<1.0	<1.0	<0.5	<1.0	<1.0	1.4	<0.5	<1.0	<1.0	<1.5

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline TPH-MO = Total Petroleum Hydrocarbons as Motor Oil All VOCs not listed were below their laboratory reporting limit. TPH-D = Total Petroleum Hydrocarbons as Diesel

The units for all presented values are µg/L = Micrograms per liter < = The "less than" symbol indicates not detected above the laboratory reporting limit shown.

APPENDIX A

GROUNDWATER PURGE LOGS AND WATER LEVEL DATA

1		FLUI	D MEASI	JREMENT	ا FIELD ا	DATA				
			, a	,			SHEET: 1	OF 1		
DATE:	DATE: 9/25/2012 PROJECT NAME: Tristar PROJECT NO: 575-102-6									
WATER LEVEL	MEASUREMENT IN	STRUMENT:	SOLINST			SERIAL NO:	12080			
PRODUCT DET	ECTION INSTRUME	NT:	-		e free hours	SERIAL NO:				
EQUIP. DECON	: ALCONO	X WASH 🖫 DIST	DEION 1 RINSE	☐ ISOPROPANOL	☐ ANALYTE (REE FINAL RINSE	☐ TAP WATER I	FINAL RINSE		
☐ TAP W	☐ TAP WATER WASH ☐ DIST/DEIO				OTHER SOLVENT	☑ DIST/DEION	FINAL RINSE	☐ AIR DRY		
WELL	GROUND	TOP OF	DEPTH TO	DEPTH TO	WELL	PRODUCT	WATER	ACTUAL		
NUMBER	SURFACE ELEVATION	CASING ELEVATION	PRODUCT BELOW TOC	WATER BELOW TOC	DEPTH BELOW TOC	THICKNESS	TABLE ELEVATION	TIME		
MW-1		115.44		13.72	26.03	#* y		10:46		
MW-2		114.62		13.07	24.69	the state of the s		10:44		
MW-3		113.77		12.32	14.37			10:51		
MW-4		114.25		12.32	15.69			10:49		
			4	·						
		•								
			-		ý					
uteus	WXW &N	10.23-10	:30				•			
					•	·	· .			
17-04	VEW DE	SITE, THE O	THER DM	m has $pprox$	40-45 6	ALLONS IN	T			
BRIN	4 NEW DR	M NEXT 71	16							
			-							
						v	-			
			· .	40 - 41 -				15		
			. * *	94.						
					. <u>.</u>			f		
			No.							
			 							
PEMEMBER TO CO	PRRECT PRODUCT THIC	KNESS FOR DENSITY E	BEFORE CALCULATING	G WATER TABLE ELEV	ATION	PREPARED BY:	STEPHEN RAMO	s		

			WELL F	PURGIN	IG ANI	SAM	IPLING	DATA		
							WELL N	IO: MW-	1	
DATE:	9/25/2012	PROJEC	CT NAME: TR	RISTAR			PROJEC	CT NO: 575-	102-6	
WEATHER CONDITIONS:										
WELL DIA	WELL DIAMETER (IN.)									
SAMPLE TYPE: GROUNDWATER WASTEWATER SURFACE WATER OTHER										
WELL DEPTH (TOC) 26.03 FT. DEPTH TO WATER BEFORE PURGING (TOC) 13.72									FT.	
LENGTH OF WATER 12.31 FT. CALCULATED ONE WELL VOLUME ¹ : 2.1 GA								GAL.		
PURGING	DEVICE:	PC	DLY BAILER		X DEDIC	ATED [X DISPOSA	BLE DEC	ONTAMINATED)
SAMPLING	G DEVICE:	PC	OLY BAILER		X DEDIC	ATED [X DISPOSA	BLE DEC	ONTAMINATED)
EQUIP. DI			P WATER W		=	ISOPROP	_		E FINAL RINS	E
	CONOX WA		X DIST/DEK	ON 1 RINSE ON 2 RINSE			OLVENT <u> X </u> ER FINAL RIN	DIST/DEION F	FINAL RINSE R DRY	*
	ER PRESE			PRESERVED		PRESER		ISE LIA	N DR1	
			SERIAL NO:							_
				YS	I 556 MPS	Serial # N	161171 AN			
ACTUAL TIME	CUMUL. VOLUME	TEMP □ °F	SPECIFIC CONDUCT.	Hq	DEPTH TO GROUND		WATER APPEAR	(EVID	REMARKS ENT ODOR, COLO	OR PID)
(MIN)	PURGED	⊠ೇ	MS		WATER		CL=CLEAR	(24,5	LITT 05011, 00E0	
	(GAL)		1				CO=CLOUDY TU=TURBID			
11:57	INITIAL	2260	240.8	6.89			U	NO OY	be/ CL	EAR
12:03	2.5	22.0	360.4	6.82	1:		CL	SLIGHT H		11
12:10	വ	21.3	437.4	685			CL	m apple	2/ "	
12:16	7.5	21.5	434.7	6.89			CL	11	/ 4	
			,							
							¥			
		_								
		<u> </u>								
								<u></u>		
	O WATER /	AFTER PU	RGING (TOC	;)				YES XI	NO SIZE	
NOTES:					SAMPLE T			ID#	MW-1	
					DUPLICAT		TIME:	ID#:		_
L					EQUIP. BL			ID#:		
					PREPARE	D BY:	STEPH	EN RAMOS		

Well Purging And Sampling Data Rev. 3/07

¹ A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

			WELL F	PURGIN	IG AN	SAN	IPLING	DATA		
							WELL N	O: MW	-2	
DATE:	9/25/2012	PROJEC	CT NAME: TR	RISTAR			PROJEC	T NO: 575	-102-6	
WEATHER	R CONDITION	ONS:					•			
WELL DIA	METER (IN	l.)	<u> </u>	X 2	<u> </u>	<u> </u>	OTHER			
SAMPLE 1	TYPE: [X GROUNI	OWATER	☐ WAS1	EWATER	SUF	RFACE WATE	R 🗌 OTH	1ER	
WELL DE	PTH (TOC)	2	4.69	FT	DEPTH 1	O WATER	R BEFORE PU	RGING (TOC	13.07	FT.
LENGTH (OF WATER	- 11	.62	FT	CALCUL	ATED ON	IE WELL VOI	LUME ¹ :	2.0	GAL.
PURGING	DEVICE:	PC	DLY BAILER		X DEDIC	ATED	X DISPOSAI	BLE DEC	CONTAMINATED	
SAMPLING	G DEVICE:	PC	DLY BAILER		X DEDIC	ATED	X DISPOSA	BLE DEC	CONTAMINATED	
EQUIP. DE		_	P WATER W			ISOPROP			REE FINAL RINSE	
_ =	CONOX WA		X DIST/DEIG	ON 1 RINSE ON 2 RINSE			OLVENT 🗶 ER FINAL RIN		FINAL RINSE AIR DRY	
	ER PRESE			PRESERVED		PRESER		<u> </u>		
			SERIAL NO:							
					I 556 MPS	Serial # N				
ACTUAL TIME	CUMUL. VOLUME	TEMP	SPECIFIC CONDUCT.	pН	DEPTH TO GROUND		WATER APPEAR	(EVI	REMARKS DENT ODOR, COLOR, PID)
(MIN)	PURGED (GAL)	⊠°c	AA C	5	WATER		CL=CLEAR			
	(GAL)		MS				CO=CLOUDY TU=TURBID			
11:21	INITIAL	22.7	210.2	6.98			CL	NO 00	Ne/CLEAT	_
11:26	2.5	221	316.5	6.85		-	11	"	-/ 4	
11:32	_5	22.4	3305	6.82			10	"	<i>)</i>	
11:37	7.5	22.2	332.2	6.81			14	11	/ 11	
			2							
	<u></u>			<u> </u>						
DEPTH TO	O WATER A	AFTER PU	RGING (TOO	;)	FT.		FILTERED	☐ YES 🗵		
NOTES:					SAMPLE T	IME:	140_	ID#	Mw-2	
					DUPLICAT	E	TIME:	ID#:	1	
					EQUIP. BL	ANK:	TIME:	1D#:		
					PREPARE	D BY:	STEPHI	EN RAMOS		

¹ A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

			WELL F	URGIN	IG ANI	SAM	PLING	DATA		
							WELL N	IO: MW-3		
DATE:	9/25/2012	PROJEC	CT NAME: TR	RISTAR			PROJEC	CT NO: 575-10	02-6	
WEATHER	CONDITIO	ONS:		•			· · ·			
WELL DIA	METER (IN	.)	_ 1	X 2	4	□ 6	OTHER			,
SAMPLE T	YPE: [GROUNI	DWATER	WAST	EWATER	SURF	ACE WATE	R OTHE	R	
WELL DEF	PTH (TOC)	1	4.37	FT	. DEPTH 1	TO WATER	BEFORE PU	IRGING (TOC)	12.32	FT.
LENGTH C	F WATER	2	05	FT	. CALCUL	ATED ONE	E WELL VO	LUME1: O.	35	GAL.
PURGING	DEVICE:	PC	DLY BAILER		X DEDIC	CATED X	DISPOSA	BLE DECO	NTAMINATED	
SAMPLING		PC	DLY BAILER		X DEDIC	ATED X	DISPOSA	BLE DECO	NTAMINATED	
EQUIP. DE			P WATER WA			ISOPROPA		ANALYTE FREE		
	CONOX WA		X DIST/DEIC	ON 1 RINSE ON 2 RINSE	· 📙		R FINAL RIN	DIST/DEION FII NSE DAIR		
CONTAINE				PRESERVED		PRESERV		43E	J. C.	
			SERIAL NO:				:			
				Y &	SI 556 MPS	Serial # Mt	511/1 AN	4		
ACTUAL TIME (MIN)	CUMUL. VOLUME PURGED (GAL)	TEMP Pr II °C	SPECIFIC CONDUCT.	pН	DEPTH TO GROUND WATER		WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID	(EVIDE)	REMARKS NT ODOR, COLOR, PID)	
11:05	INITIAL	22.4	186.2	7.40			CL	SLIGHT +	tr. DOUR/CLA	EAL
11:06	0,5	22.4	190.6	7.12			040	" /1	tc oar/cui	
~~		WELL	PURCE	O DRY	(P) (E	.5 gal	ions (11:07)~	~~	
	隐))					
							,			
		4								
						*	·			
				,			, ,			
			-							
										_
							•	<u></u>		
	WATER A	AFTER PU	RGING (TOC	;)		<u> </u>		YES N		
NOTES:						IME: /3			wz	
					DUPLICAT		TIME:	ID#:		
					EQUIP. BL	·	TIME:	ID#:		
					PREPARE	D BY:	STEPH	EN RAMOS		

¹ A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

WELL PURGING AND SAMPLING DATA									
	WELL NO: MW-4								
DATE: 9/25/2012 PROJECT NAME: TRISTAR	PROJECT NO: 575-102-6								
WEATHER CONDITIONS:									
WELL DIAMETER (IN.) 1 🔀 2	4 6 OTHER								
SAMPLE TYPE: X GROUNDWATER WA	ASTEWATER SURFACE WATER OTHER								
WELL DEPTH (TOC) 15.69	FT. DEPTH TO WATER BEFORE PURGING (TOC) 12.32 FT.								
LENGTH OF WATER 3.37	FT. CALCULATED ONE WELL VOLUME ¹ : 0.57 GAL								
PURGING DEVICE: POLY BAILER	X DEDICATED X DISPOSABLE DECONTAMINATED								
SAMPLING DEVICE: POLY BAILER									
EQUIP. DECON.									
CONTAINER PRESERVATION: X LAB PRESERV	/ED FIELD PRESERVED								
	YSI 556 MPS Serial # M61171 AN								
ACTUAL CUMUL. TEMP SPECIFIC pH TIME VOLUME □ °F CONDUCT. (MIN) PURGED □ °C (GAL)	DEPTH WATER REMARKS TO GROUND APPEAR (EVIDENT ODOR, COLOR, PID) WATER CO=CLOUDY TU=TURBID								
12:42 INITIAL 225 110.5 7.06	CL SHAFT HE DODE/CLEAR								
12:44 1 22.1 109.2 7.01	CL SHUHT TO MUD HE UDOR/9"								
12:47 WAN PWEED									
5									
DEPTH TO WATER AFTER PURGING (TOC)	FT. SAMPLE FILTERED ☐ YES ☒ NO SIZE								
NOTES:	SAMPLE TIME: 14:47 ID# M.U4								
	DUPLICATE TIME: ID#:								
	EQUIP. BLANK: TIME: ID#:								
	PREPARED BY: STEPHEN RAMOS								

¹ A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

APPENDIX B

LABORATORY REPORT AND CHAIN-OF-CUSTODY RECORD

05 October 2012

Brand Burfield PSI -- Oakland 4703 Tidewater Ave Ste B Oakland, CA 94601

RE: Tristar

Enclosed are the results of analyses for samples received by the laboratory on 09/26/12 11:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao

Project Manager

Wordy Flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T121701-01	Water	09/25/12 12:18	09/26/12 11:55
MW-2	T121701-02	Water	09/25/12 11:40	09/26/12 11:55
MW-3	T121701-03	Water	09/25/12 13:08	09/26/12 11:55
MW-4	T121701-04	Water	09/25/12 14:47	09/26/12 11:55

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-1 T121701-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015C								
C6-C12 (GRO)	ND	0.050	mg/l	1	2092825	09/28/12	09/30/12	EPA 8015C	
C13-C28 (DRO)	ND	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		102 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	EPA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-1 T121701-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.								
Volatile Organic Compounds by I cis-1,2-Dichloroethene	EPA Method 8260B ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/1	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"		"	"	"	"
1,3-Dichloropropane	ND	1.0	"		"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-1 T121701-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B										
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		
Tert-butyl alcohol	ND	10	"	"	"	"	"	"		
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		90.2 %	83.5-	119	"	"	"	"		
Surrogate: Dibromofluoromethane		108 %	81-1	36	"	"	"	"		
Surrogate: Toluene-d8		114 %	88.8-117		"	"	"	"		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-2 T121701-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Extractable Petroleum Hydrocarb	ons by 8015C								
C6-C12 (GRO)	ND	0.050	mg/l	1	2092825	09/28/12	09/30/12	EPA 8015C	
C13-C28 (DRO)	ND	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		105 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-2 T121701-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by I cis-1,2-Dichloroethene	EPA Method 8260B ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B			
trans-1,2-Dichloroethene	ND	1.0	ug/1	"	"	"	"	"			
1,2-Dichloropropane	ND	1.0	"		"	"	"	"			
1,3-Dichloropropane	ND	1.0	"		"	"	"	"			
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"			
Isopropylbenzene	ND	1.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"			
Methylene chloride	ND	1.0	"	"	"	"	"	"			
Naphthalene	ND	1.0	"	"	"	"	"	"			
n-Propylbenzene	ND	1.0	"	"	"	"	"	"			
Styrene	ND	1.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"			
Trichloroethene	ND	1.0	"	"	"	"	"	"			
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	ND	1.0	"	"	"	"	"	"			
Benzene	ND	0.50	"	"	"	"	"	"			
Toluene	ND	0.50	"	"	"	"	"	"			
Ethylbenzene	ND	0.50	"	"	"	"	"	"			
m,p-Xylene	ND	1.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-2 T121701-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		ounoun De		es, me.					
Volatile Organic Compounds by EPA	Method 82601	3							
o-Xylene	ND	0.50	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		113 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		113 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-3 T121701-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarbons	by 8015C								
C6-C12 (GRO)	1.8	0.050	mg/l	1	2092825	09/28/12	09/30/12	EPA 8015C	
C13-C28 (DRO)	1.5	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		105 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260)B							
Bromobenzene	ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	22	1.0	"	"	"	"	"	"	
sec-Butylbenzene	8.2	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Oakland CA, 94601

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

PSI -- Oakland Project: Tristar 4703 Tidewater Ave Ste B Project Number: 575-102-6

Project Number: 575-102-6 **Reported:**Project Manager: Brand Burfield 10/05/12 16:31

MW-3 T121701-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	3	unstar La	iboratori	es, inc.				
Volatile Organic Compounds by I	EPA Method 8260B							
trans-1,2-Dichloroethene	ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	20	1.0	"	"	"	"	"	"
p-Isopropyltoluene	5.2	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	47	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	0.67	0.50	"	"	"	"	"	"
Toluene	0.93	0.50	"	"	"	"	"	"
Ethylbenzene	0.74	0.50	"	"	"	"	"	"
m,p-Xylene	2.4	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-3 T121701-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds by	EPA Method 8260B

voice or gaine compounts of El	TI THE COLUMN								
Tert-amyl methyl ether	ND	2.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.6 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		106 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-4 T121701-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarbo	ns by 8015C								
C6-C12 (GRO)	ND	0.050	mg/l	1	2092825	09/28/12	09/30/12	EPA 8015C	
C13-C28 (DRO)	0.52	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		109 %	65-	-135	"	"	"	"	
Volatile Organic Compounds by EF	A Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	2.0	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.4	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

PSI -- Oakland Project: Tristar 4703 Tidewater Ave Ste B Project Number: 575-102-6 Oakland CA, 94601

Reported: 10/05/12 16:31

Project Manager: Brand Burfield

MW-4 T121701-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ans-1,2-Dichloroethene	ND	1.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260E
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	1.4	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

PSI -- Oakland Project: Tristar
4703 Tidewater Ave Ste B Project Number: 575-102-6
Oakland CA, 94601 Project Manager: Brand Burfield

Reported: 10/05/12 16:31

MW-4 T121701-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Tert-amyl methyl ether	ND	2.0	ug/l	1	2092734	09/27/12	09/29/12	EPA 8260B			
Tert-butyl alcohol	ND	10	"	"	"	"	"	"			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			

Di-isopropyl ether	ND	2.0	" "	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	" "	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	" "	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	83.5-119	"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	81-136	"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-117	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

PSI -- Oakland Project: Tristar

4703 Tidewater Ave Ste BProject Number: 575-102-6Reported:Oakland CA, 94601Project Manager: Brand Burfield10/05/12 16:31

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2092825 - EPA 3510C GC										
Blank (2092825-BLK1)				Prepared:	09/28/12	Analyzed	1: 09/30/12			
C6-C12 (GRO)	ND	0.50	mg/l							
C13-C28 (DRO)	ND	0.50	"							
C29-C40 (MORO)	ND	0.50	"							
Surrogate: p-Terphenyl	4.26		"	4.00		106	65-135			
LCS (2092825-BS1)				Prepared:	09/28/12	Analyzed	1: 09/30/12			
C13-C28 (DRO)	19.5	0.50	mg/l	20.0		97.6	75-125			
Surrogate: p-Terphenyl	3.99		"	4.00		99.8	65-135			
Matrix Spike (2092825-MS1)	Sou	rce: T12170	1-01	Prepared:	09/28/12	Analyzed	1: 09/30/12			
C13-C28 (DRO)	21.0	0.50	mg/l	20.0	ND	105	75-125			
Surrogate: p-Terphenyl	4.34		"	4.00		109	65-135			
Matrix Spike Dup (2092825-MSD1)	Sou	rce: T12170	1-01	Prepared:	09/28/12	Analyzed	1: 09/30/12			
C13-C28 (DRO)	19.1	0.50	mg/l	20.0	ND	95.5	75-125	9.47	20	
Surrogate: p-Terphenyl	4.07		"	4.00		102	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

evandy flsia

PSI -- Oakland Project: Tristar

4703 Tidewater Ave Ste BProject Number: 575-102-6Reported:Oakland CA, 94601Project Manager: Brand Burfield10/05/12 16:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2092734 - EPA 5030 GCMS										
Blank (2092734-BLK1)				Prepared:	09/27/12	Analyze	d: 09/29/12			
Benzene	ND	0.50	ug/l			,				
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Methyl tert-butyl ether	ND	1.0	"							
Surrogate: 4-Bromofluorobenzene	7.16		"	8.00		89.5	83.5-119			
Surrogate: Dibromofluoromethane	8.45		"	8.00		106	81-136			
Surrogate: Toluene-d8	8.11		"	8.00		101	88.8-117			
LCS (2092734-BS1)				Prepared:	09/27/12	Analyze	d: 09/29/12			
Benzene	21.4	0.50	ug/l	20.0		107	75-125			
Toluene	18.0	0.50	"	20.0		90.1	75-125			
Surrogate: 4-Bromofluorobenzene	7.50		"	8.00		93.8	83.5-119			
Surrogate: Dibromofluoromethane	11.3		"	8.00		141	81-136			S-G0
Surrogate: Toluene-d8	8.38		"	8.00		105	88.8-117			
Matrix Spike (2092734-MS1)	So	urce: T12170	2-11	Prepared:	09/27/12	Analyze	d: 09/29/12			
Benzene	20.6	0.50	ug/l	20.0	ND	103	75-125			
Toluene	17.1	0.50	"	20.0	ND	85.6	75-125			
Surrogate: 4-Bromofluorobenzene	7.49		"	8.00		93.6	83.5-119			
Surrogate: Dibromofluoromethane	10.2		"	8.00		127	81-136			
Surrogate: Toluene-d8	8.28		"	8.00		104	88.8-117			
Matrix Spike Dup (2092734-MSD1)	So	urce: T12170	2-11	Prepared:	09/27/12	Analyze	d: 09/29/12			
Benzene	23.9	0.50	ug/l	20.0	ND	119	75-125	14.9	20	
Toluene	18.1	0.50	"	20.0	ND	90.5	75-125	5.62	20	
Surrogate: 4-Bromofluorobenzene	7.44		"	8.00		93.0	83.5-119			
Surrogate: Dibromofluoromethane	13.4		"	8.00		167	81-136			S-G0
Surrogate: Toluene-d8	7.70		"	8.00		96.2	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wendy Hsiao, Project Manager

Wordy Plsia

PSI -- Oakland Project: Tristar

4703 Tidewater Ave Ste BProject Number: 575-102-6Reported:Oakland CA, 94601Project Manager: Brand Burfield10/05/12 16:31

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

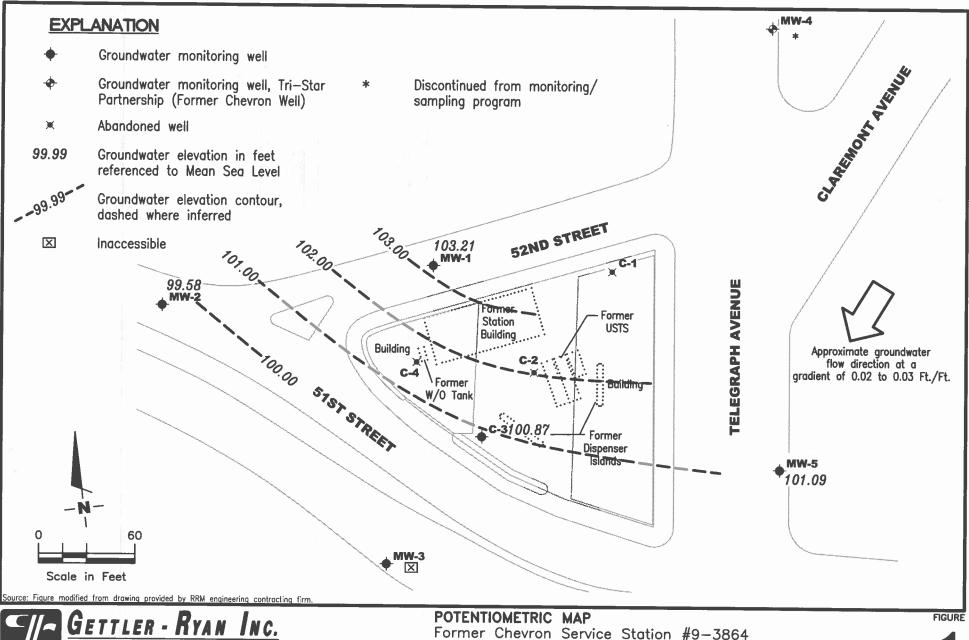
SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020


SAMPLE RECEIVING REVIEW SHEET

BATCH #	
Client Name: PSI - OAKLOND Project:	Tristan
Received by: Balan Date/Time	Received: 9.26.12 11:55
Delivered by: Client SunStar Courier GSO FedE	Ex Other
Total number of coolers received Temp criteria = 6	S°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 $\underline{5.3}$ °C +/- the CF (-0.2°C) = $\underline{5.1}$ °C c	orrected temperature
cooler #2°C +/- the CF (- 0.2°C) =°C c	corrected temperature
cooler #3°C +/- the CF (- 0.2°C) =°C or	corrected temperature
Samples outside temp. but received on ice, w/in 6 hours of final sampling	ng. ⊠Yes □No* □N/A
Custody Seals Intact on Cooler/Sample	☐Yes ☐No* ☒N/A
Sample Containers Intact	
Sample labels match COC ID's	XYes □No*
Total number of containers received match COC	¥Yes □No*
Proper containers received for analyses requested on COC	ĭYes □No*
Proper preservative indicated on COC/containers for analyses requested	Yes □No* □N/A
Complete shipment received in good condition with correct temperature preservatives and within method specified holding times. Yes	es, containers, labels, volumes No*
* Complete Non-Conformance Receiving Sheet if checked Cooler/Samp	ole Review - Initials and date & 9.26.12
Comments:	

APPENDIX C

CHEVRON #9-3864; GROUNDWATER ELEVATION / SITE MAP AND ANALYTICAL TABLES

6747 Sierra Court, Suite J (925) 551-7555

Oakland, Čalifornia DATE September 20, 2012

5101 Telegraph Avenue

REVISED DATE

PROJECT NUMBER

386358

FILE NAME: P:\Enviro\Chevron\9-3864\Q12-9-3864.DWG | Layout Tab: Pot3

REVIEWED BY

Table 1 Groundwater Monitoring Data and Analytical Results

	Oakiaiu, Cainoinia											
WELL ID	1	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE		
DATE		(ft.)	(msl)	(ft.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)		
C-3												
12/06/90		115.70	98.84	16.86	210	2.0	< 0.5	< 0.5	1.0			
12/06/90	(D)				220	2.0	0.6	< 0.5	2.0			
06/06/91	,	115.70	100.01	15.69	6,400	310	21	16	21			
09/16/92		115.70	99.81	15.89	7,100	130	26	12	30			
12/04/91		115.70	100.32	15.38	5,100	120	18	17	20			
06/02/92		115.70	100.30	15.40	6,700	140	44	17	37			
12/21/92		115.70	101.79	13.91	13,000	390	360	100	410			
03/11/93		115.70	101.95	13.75	5,100	86	20	12	23			
06/11/93		115.70	101.03	14.67	7,200	91	38	19	38			
09/13/93		115.70	100.17	15.53	6,800	100	52	41	75			
12/14/93		115.70	101.30	14.40	8,600	74	23	18	36			
03/16/94		115.70	101.44	14.26	6,000	100	42	27	30			
06/17/94		115.70	100.60	15.10	15,000	170	120	120	270			
08/29/94		115.70	100.30	15.40	26,000	51	< 0.5	58	107			
12/06/94		115.70	101.90	13.80	34,000	88	140	98	390			
03/31/95		115.70	102.91	12.79	2,800	42	< 5.0	< 5.0	6.6			
06/24/95		115.70	100.84	14.86	5,200	34	<10	<10	13			
09/12/95		115.70	100.76	14.94	7,000	45	<10	28	42			
12/29/95		115.70	102.12	13.58	5,100	20	<10	<10	19	< 50		
02/29/96		115.70	102.88	12.82	2,600	15	< 5.0	17	16	<25		
06/26/96		115.70	101.32	14.38	4,400	<10	<10	<10	<10	< 50		
09/12/96		115.70	100.75	14.95	5,800	73	22	18	17	61		
12/11/96		115.70	103.08	12.62	8,800	81	<20	<20	37	200		
03/31/97		115.70	100.70	15.00	8,100	38	62	30	42	38		
06/29/97		115.70	100.08	15.62	5,800	<10	<10	<10	67	< 50		
09/30/97		115.70	100.70	15.00	6,200	<10	28	21	27	130		
12/12/97		115.70	103.68	12.02	330	1.6	1.1	<1.0	3.4	< 5.0		
02/19/98		115.70	103.26	12.44	110	1.7	< 0.5	< 0.5	0.51	<2.5		
06/16/98		115.70	102.29	13.41	7,400	63	16	<10	<10	170		
08/31/98		115.70	101.70	14.00	4,400	6.4	<2.5	5.4	16	15		
12/23/98		115.70	102.91	12.79	11,000	83	37	69	76	86		
03/09/99		115.70	102.70	13.00	6,500	45	38	17	30	110		
$06/23/99^1$		115.70	101.92	13.78								
09/30/99		115.70	99.70	16.00	3,870	29.7	8.72	7.08	7.75	< 50		
02/29/00		115.70	102.14	13.56	2,660	22.5	< 5.0	11.2	11.6	< 50		

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
C-3 (cont)									
09/18/00 ³	115.70	103.25	12.45	740^{4}	6.0	4.5	<2.5	6.0	<13
03/21/01 ³	115.70	102.05	13.65	$1,700^4$	21	12	14	19	59
09/04/01 ³	115.70	101.09	14.61	4,100	<10	4.8	6.5	14	<5.0/<2 ⁵
$03/22/02^{3,6}$	115.70	102.49	13.21	3,600	< 5.0	< 5.0	6.1	<15	<2.5
09/16/02 ³	115.70	100.39	15.31	4,000	<10	< 5.0	4.3	<10	7.9
$03/28/03^3$	115.70	101.38	14.32	2,400	<2.5	<2.5	5.5	<7.5	<13
09/02/03 ^{3,7}	115.70	101.33	14.37	2,800	1	0.9	0.9	4	< 0.5
03/18/04 ^{7,8}	115.70	101.56	14.14	5,300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/04 ⁷	115.70	101.50	14.20	3,200	0.8	0.8	1	3	10
03/11/05 ⁷	115.70	102.79	12.91	4,200	0.6	0.5	1	3	< 0.5
09/29/05 ⁷	115.70	101.13	14.57	4,900	0.6	0.5	2	3	< 0.5
03/24/06	115.70	INACCESSIBLE -							
09/12/06 ⁷	115.70	101.29	14.41	5,900	<1	<1	<1	2	<1
03/05/07 ⁷	115.70	102.81	12.89	4,600	< 0.5	< 0.5	0.8	2	< 0.5
09/21/07	115.70	101.39	14.31	5,000	< 0.5	< 0.5	0.6	1	< 0.5
03/06/08 ⁷	115.70	102.15	13.55	3,600	< 0.5	< 0.5	1	1	< 0.5
09/05/08 ⁷	115.70	101.00	14.70	2,700	< 0.5	< 0.5	0.9	1	< 0.5
03/30/09 ⁷	115.70	102.28	13.42	4,200	< 0.5	< 0.5	0.8	3	< 0.5
09/15/09 ⁷	115.70	100.55	15.15	4,700	< 0.5	< 0.5	< 0.5	1	< 0.5
03/02/10 ⁷	115.70	102.22	13.48	3,600	< 0.5	< 0.5	< 0.5	1	< 0.5
09/09/10 ⁷	115.70	100.73	14.97	3,800	< 0.5	< 0.5	< 0.5	1	< 0.5
03/14/11 ⁷	115.70	102.20	13.50	3,400	< 0.5	< 0.5	0.6	1	< 0.5
09/13/11 ⁷	115.70	100.88	14.82	3,800	< 0.5	< 0.5	0.6	1	< 0.5
03/21/12 ⁷	115.70	103.13	12.57	2,400	< 0.5	0.9	0.5	< 0.5	< 0.5
09/20/12 ⁷	115.70	100.87	14.83	4,500	<0.5	<0.5	<0.5	1	<0.5
MW-1									
09/20/93	115.05	102.37	12.68	< 50	< 0.5	< 0.5	< 0.5	<1.5	
12/14/93	115.05	105.01	10.04	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
03/16/94	115.05	103.10	11.95	< 50	< 0.5	1.7	< 0.5	2.1	
06/17/94	115.05	102.51	12.54	350	1.2	3.7	2.0	12	
08/29/94	115.05	101.98	13.07	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/06/94	115.05	104.45	10.60	140	0.9	2.8	1.1	4.2	
03/31/95	115.05	104.74	10.31	< 50	< 0.5	< 0.5	< 0.5	< 0.5	

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/ DATE	TOC (ft.)	GWE (msl)	DTW (ft.)	TPH-GRO (μg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE (μg/L)
	U 7	(*****/	(J.47)	(F8//	(P8//	(F8//	(#8/2/	(PS/2-)	\rs/-/
MW-1 (cont) 06/24/95	115.05	102.44	12.61	<50	< 0.5	< 0.5	<0.5	<0.5	
09/12/95	115.05	102.44	13.05	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	
02/02/96	115.05	102.00	8.86	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	 <2.5
02/02/96	115.05	105.39	9.66	<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
	115.05	102.85	12.20	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
06/26/96 09/12/96	115.05	102.83	13.50	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
12/11/96	115.05	105.90	9.15	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
03/31/97	115.05	102.30	9.13 12.75	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
06/29/97	115.05	102.30	13.04	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
09/30/97	115.05	102.01	13.04	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
12/12/97	115.05	106.06	8.99	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
02/19/98	115.05	105.64	8.99 9.41	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<2.5 <2.5
	115.03	103.48		<50 <50					
06/16/98 08/31/98	115.02	103.48	11.54 12.51	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	2.6 <2.5
12/23/98		102.51	12.51	<50 <50			<0.5		
	115.02			<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
03/09/99 09/30/99	115.02 115.02	104.57	10.45 12.95		<0.5	<0.5	< 0.5	< 0.5	<2.5
	115.02	102.07 105.90	9.12	SAMPLED ANNU <50				 -0.5	 -5 O
02/29/00 09/18/00	115.02	103.90	10.88		< 0.5	0.816	< 0.5	<0.5	< 5.0
						 -0.50			 <2.5
03/21/01 09/04/01	115.02	104.01	11.01 11.42	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.3 /<2 ⁵
03/22/02 ⁶	115.02	103.60		100					/<2 15
	115.02	104.68	10.34		<0.50	24	0.80	4.9	
09/16/02	115.02	102.35	12.67	SAMPLED ANNU					 -2.5
03/28/03 09/02/03	115.02	103.29	11.73	<50	<0.50	< 0.50	< 0.50	<1.5	<2.5
03/18/04 ⁷	115.02	102.74	12.28	SAMPLED ANNU		 -0.5		 -0.5	 -0.5
	115.02	103.11	11.91	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
09/15/04 03/11/05 ⁷	115.02	101.89	13.13	SAMPLED ANNU					
	115.02	104.29	10.73	<50	<0.5	2	< 0.5	< 0.5	< 0.5
09/29/05	115.02	101.97	13.05	SAMPLED ANNU					
03/24/06 ⁷	115.02	104.61	10.41	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/12/06	115.02	101.91	13.11	SAMPLED ANNU					
03/05/07 ⁷	115.02	103.93	11.09	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/21/07	115.02	102.07	12.95	SAMPLED ANNU					
03/06/08 ⁷	115.02	102.92	12.10	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/05/08	115.02	102.54	12.48	SAMPLED ANNU	JALLY				

Table 1 Groundwater Monitoring Data and Analytical Results

	WELLIDY TOO OWE DAW TOUCHO D T E V MADE											
WELL ID/	TOC	GWE	DTW	TPH-GRO	B	T	E	X	MTBE			
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)			
MW-1 (cont)												
03/30/09 ⁷	115.02	103.64	11.38	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
09/15/09	115.02	102.06	12.96	SAMPLED ANNU	JALLY							
03/02/10 ⁷	115.02	103.27	11.75	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
09/09/10	115.02	102.24	12.78	SAMPLED ANNU	JALLY							
03/14/11 ⁷	115.02	103.37	11.65	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
09/13/11	115.02	99.52	15.50	SAMPLED ANNU	JALLY							
03/21/12 ⁷	115.02	105.76	9.26	< 50	< 0.5	3	< 0.5	< 0.5	< 0.5			
09/20/12	115.02	103.21	11.81	SAMPLED ANN	UALLY							
MW-2												
09/20/93	112.08	99.93	12.15	< 50	< 0.5	< 0.5	< 0.5	<1.5				
12/14/93	112.08	97.36	14.72	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
03/16/94	112.08	100.92	11.16	< 50	< 0.5	1.1	< 0.5	0.9				
06/17/94	112.08	100.41	11.67	330	1.4	3.3	1.9	11				
08/29/94	112.08	100.08	12.00	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
12/06/94	112.08	102.57	9.51	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
03/31/95	112.08	103.24	8.84	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
06/24/95	112.08	100.44	11.64	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
09/12/95	112.08	100.00	12.08	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
12/29/95	112.08	101.58	10.50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
02/29/96	112.08	104.08	8.00	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
06/26/96	112.08	100.58	11.50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
09/12/96	112.08	99.81	12.27	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
12/11/96	112.08	104.17	7.91	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
03/31/97	112.08	100.20	11.88	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
06/29/97	112.08	99.89	12.19	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
09/30/97	112.08	99.46	12.62	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
12/12/97	112.08	102.85	9.23	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
02/19/98	112.08	104.87	7.21	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
06/16/98	112.03	101.10	10.93	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
08/31/98	112.03	99.69	12.34	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
12/23/98	112.03	100.59	11.44	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5			
03/09/99	112.03	103.23	8.80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
09/30/99	112.03	101.22	10.81	SAMPLED ANNU	JALLY							

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue

Oakland, California

WELL ID/ DATE	TOC (ft.)	GWE (msl)	DTW (ft.)	TPH-GRO (μg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	X (µg/L)	MTBE (μg/L)
MW-2 (cont)	(J4-)	(mst)	(Ji.)	\\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(µg/L)	(μ _δ / <i>L</i>)	(μζ/L)	(μ _δ /L)	(µ8/L)
02/29/00	112.03	105.12	6.91	< 50	< 0.5	<0.5	< 0.5	< 0.5	< 5.0
09/18/00	112.03	101.00	11.03		<0.5 	<0.5 	<0.5 	~0.5 	<5.0
03/21/01	112.03	101.61	10.42	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5
09/04/01	112.03	101.04	10.42	~50 	<0.50 	~0.50 	<0.50 	<0.50 	/<2 ⁵
03/22/02	112.03	102.14	9.89	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02	112.03	100.02	12.01	SAMPLED ANNU					
03/28/03	112.03	101.23	10.80	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	112.03	100.15	11.88	SAMPLED ANNU					
03/18/04 ⁷	112.03	101.04	10.99	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/04	112.03	99.15	12.88	SAMPLED ANNU					
03/11/05 ⁷	112.03	102.13	9.90	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/29/05	112.03	99.33	12.70	SAMPLED ANNU					
03/24/06 ⁷	112.03	103.04	8.99	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/12/06	112.03	98.97	13.06	SAMPLED ANNU					
03/05/07 ⁷	112.03	101.57	10.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/21/07	112.03	99.35	12.68	SAMPLED ANNU					
03/06/08 ⁷	112.03	100.98	11.05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/05/08	112.03	99.22	12.81	SAMPLED ANNU	JALLY				
03/30/09 ⁷	112.03	101.23	10.80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/09	112.03	98.84	13.19	SAMPLED ANNU	JALLY				
03/02/10 ⁷	112.03	101.34	10.69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/09/10	112.03	99.00	13.03	SAMPLED ANNU	JALLY				
03/14/11 ⁷	112.03	100.14	11.89	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/13/11	112.03	98.64	13.39	SAMPLED ANNU	JALLY				
$03/21/12^7$	112.03	104.28	7.75	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/20/12	112.03	99.58	12.45	SAMPLED ANNU	JALLY				
MW-3									
09/20/93	113.67	97.25	16.42	6,600	400	11	32	23	
12/14/93	113.67	98.95	14.72	8,400	390	9.4	13	<2.5	
03/16/94	113.67	98.45	15.22	6,900	260	30	32	27	
06/17/94	113.67	97.62	16.05	10,000	190	61	58	190	
08/29/94	113.67	97.44	16.23	7,200	74	9.8	26	24	
12/06/94	113.67	99.35	14.32	13,000	610	86	88	140	

Table 1 Groundwater Monitoring Data and Analytical Results

DATE (b) (mb) (b) (mg/L) (m	WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
MW-3 (cont) W-3 (con) W-3 (cont) W-3 (con)										
033195		U+-/	XZ	V/	VF8//	(r-a//	VF-0:/	\ r -a·/	VE-0:7	(rs/-/
662495 113.67 98.02 15.65 6.200 210 24 29 12										
091205										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
022996 113.67 100.91 12.76 1.200 30 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0										
06/26/96 113.67 98.44 15.23 7,900 180 <20										
0911296 113.67 97.73 15.94 11,000 150 <5.0										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
03/31/97 113.67 98.23 15.44 8,700 100 <10										
06/29/97 113.67 97.99 15.68 9,300 120 28 22 19 150 09/30/97 113.67 97.76 15.91 8,200 78 <10										
09/30/97 113.67 97.76 15.91 8.200 78 <10 22 25 96 12/12/97 113.67 100.82 12.85 68 1.8 <0.5										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06/29/97	113.67	97.99		9,300		28			
02/19/98 113.67 100.41 13.26 220 5.6 1.5 <0.5 <0.5 6.1 06/16/98 113.63 99.12 14.51 7.500 97 21 21 27 160 08/31/98 113.63 98.62 15.01 7,600 24 <2.5 9.5 16 38 12/23/98 113.63 100.03 13.60 5,800 69 <50 <50 <50 <20 03/09/99 113.63 99.59 14.04 5,300 <10 <10 16 20 88 06/23/99\bar{1} 113.63 <t< td=""><td>09/30/97</td><td>113.67</td><td>97.76</td><td>15.91</td><td></td><td></td><td><10</td><td>22</td><td>25</td><td>96</td></t<>	09/30/97	113.67	97.76	15.91			<10	22	25	96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02/19/98	113.67	100.41	13.26	220	5.6	1.5	< 0.5	< 0.5	6.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06/16/98	113.63	99.12	14.51	7,500	97	21	21	27	160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08/31/98	113.63	98.62	15.01	7,600	24	<2.5	9.5	16	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12/23/98	113.63	100.03	13.60	5,800	69	< 50	< 50	< 50	<250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/09/99	113.63	99.59	14.04	5,300	<10	<10	16	20	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		113.63								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07/19/99 ¹	113.63								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/30/99	113.63	96.74	16.89	8,660	53.7	16.9	17	19.6	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02/29/00	113.63	INACCESSIBLE							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		113.63	100.41	13.22	$2,400^4$	14	6.8	4.7	7.4	28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03/21/01 ³	113.63	98.88	14.75	$7,600^4$	41	30	<25	50	160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09/04/01	113.63	INACCESSIBLE - C	AR PARKED O	VER WELL					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$03/22/02^3$	113.63	99.46	14.17	7,600	<10	4.2	11	<25	< 5.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		113.63	97.34	16.29	5,900	<20	<10	7.7	<15	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		113.63	98.67	14.96	3,500	<20	3.3	7.3	10	<13
09/15/04 113.63 INACCESSIBLE - CAR PARKED OVER WELL 03/11/05 ⁷ 113.63 99.72 13.91 4,500 2 1 2 4 <0.5		113.63	98.20	15.43	4,500	3	2	2	5	< 0.5
$03/11/05^7$ 113.63 99.72 13.91 $4,500$ 2 1 2 4 <0.5 $09/29/05^7$ 113.63 98.06 15.57 $5,300$ 3 1 2 4 <0.5 $03/24/06^7$ 113.63 100.10 13.53 $3,300$ 1 0.6 1 2 <0.5 $09/12/06^7$ 113.63 98.16 15.47 $6,100$ 2 1 2 4 <0.5	03/18/04 ^{7,8}	113.63	98.91	14.72	5,300	3	1	3	4	< 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/15/04	113.63	INACCESSIBLE - C	AR PARKED O	VER WELL					
$03/24/06^7$ 113.63 100.10 13.53 3,300 1 0.6 1 2 <0.5 $09/12/06^7$ 113.63 98.16 15.47 6,100 2 1 2 4 <0.5	03/11/05 ⁷	113.63	99.72	13.91	4,500	2	1	2	4	< 0.5
$03/24/06^7$ 113.63 100.10 13.53 $3,300$ 1 0.6 1 2 <0.5 $09/12/06^7$ 113.63 98.16 15.47 $6,100$ 2 1 2 4 <0.5	09/29/05 ⁷	113.63	98.06	15.57	5,300	3	1	2	4	< 0.5
$09/12/06^{7}$ 113.63 98.16 15.47 6,100 2 1 2 4 <0.5	03/24/067	113.63	100.10	13.53	3,300	1	0.6	1	2	< 0.5
$03/05/07^7$ 113.63 99.69 13.94 $4,000$ 1 0.6 0.8 2 <0.5	09/12/06 ⁷	113.63	98.16	15.47	6,100	2	1	2	4	< 0.5
	03/05/07 ⁷	113.63	99.69	13.94	4,000	1	0.6	0.8	2	< 0.5

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/ DATE	TOC (ft.)	GWE (msl)	DTW (ft.)	TPH-GRO (μg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE (μg/L)
	U*• /	(1110.5)	(J)	(#\$/£)	(PS/2)	(#8/2)	(PS/2)	(#S [,] L)	(PS//
MW-3 (cont) 09/21/07 ⁷	113.63	98.24	15.39	5,900	2	1	1	4	< 0.5
03/06/08 ⁷	113.63	98.24	13.39	3,900	2	1 0.8	1	4 3	<0.5
09/05/08 ⁷	113.63	98.13	15.50	5,100	1	0.8	2 2	3	<0.5
03/30/09 ⁷	113.63	99.13	14.50	4,800	2	0.7	1	3	<0.5
09/15/09	113.63	INACCESSIBLE		4,800					~0.3
$03/02/10^7$	113.63	99.41	14.22	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/09/10 ⁷	113.63	98.32	15.31	4,000	1	0.5	0.7	3	<0.5
03/14/11 ⁷	113.63	99.46	14.17	1,300	< 0.5	<0.5	<0.5	0.6	< 0.5
09/13/11 ⁷	113.63	97.88	15.75	4,300	1	0.6	0.7	3	< 0.5
$03/21/12^7$	113.63	100.13	13.50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/20/12	113.63	INACCESSIBLE							

MW-5	11674	101.40	1.7.01	500	2.5	1.0	0.6	2.0	
09/20/93	116.74	101.43	15.31	590	25	1.8	0.6	2.0	
12/14/93	116.74	102.19	14.55	210	11	6.3	2.3	6.1	
03/16/94	116.74	101.77	14.97	270	12	16	4.8	17	
06/17/94	116.74	101.36	15.38	220	24	17	6.7	28	
08/29/94	116.74	101.54	15.20	1,000	<0.5	<0.5	<0.5	<0.5	
12/06/94	116.74	102.09	14.65	110	9.2	9.7	2.2	11	
03/31/95	116.74	103.04	13.70	<50	< 0.5	<0.5	<0.5	<0.5	
06/24/95 09/12/95	116.74 116.74	101.95 102.15	14.79 14.59	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
12/29/95	116.74	102.13	14.39	<50 <50	<0.5	<0.5 <0.5	<0.5	<0.5	 <2.5
02/29/96	116.74	103.07	13.67	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
06/26/96	116.74	102.50	14.24	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/12/96	116.74	102.30	14.62	<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/11/96	116.74	102.12	13.81	<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/31/97	116.74	101.29	15.45	<50	<0.5	<0.5	< 0.5	<0.5	<2.5
06/29/97	116.74	102.07	14.67	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/30/97	116.74	101.89	14.85	<50	<0.5	<0.5	< 0.5	<0.5	<2.5
12/12/97	116.74	102.99	13.75	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
02/19/98	116.74	103.68	13.06	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
06/16/98	116.70	102.35	14.35	<50	<0.5	<0.5	<0.5	<0.5	<2.5
08/31/98	116.70	101.54	15.16	<50	< 0.5	<0.5	< 0.5	<0.5	<2.5

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/ DATE	TOC (ft.)	GWE (msl)	DTW (ft.)	TPH-GRO (μg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	X (µg/L)	MTBE (μg/L)
MW-5 (cont)		XZ	U>	Ψ *8.÷2	(173 ° /	V-8//	\ro∙/	VF-6:/	(r.e//
12/23/98	116.70	102.15	14.55	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/09/99	116.70	102.63	14.07	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
09/30/99	116.70	100.80	15.90	SAMPLED ANNU					
02/29/00	116.70	103.40	13.30	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
09/18/00	116.70	101.62	15.08						
03/21/01	116.70	102.04	14.66	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	116.70	101.26	15.44						/<2 ⁵
03/22/026	116.70	101.99	14.71	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02	116.70	101.02	15.68	SAMPLED ANNU					
03/28/03	116.70	101.65	15.05	< 50	< 0.50	< 0.50	< 0.50	<1.5	< 2.5
09/02/03	116.70	101.34	15.36	SAMPLED ANNU	JALLY				
03/18/04 ⁷	116.70	102.14	14.56	< 50	1	0.7	1	3	< 0.5
09/15/04	116.70	101.30	15.40	SAMPLED ANNU	JALLY				
03/11/05 ⁷	116.70	102.50	14.20	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/29/05	116.70	101.23	15.47	SAMPLED ANNU	JALLY				
03/24/06 ⁷	116.70	102.77	13.93	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/12/06	116.70	102.03	14.67	SAMPLED ANNU	JALLY				
03/05/07 ⁷	116.70	102.03	14.67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/21/07	116.70	101.10	15.60	SAMPLED ANNU	JALLY				
03/06/08 ⁷	116.70	102.20	14.50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/05/08	116.70	101.24	15.46	SAMPLED ANNU	JALLY				
03/30/09 ⁷	116.70	101.90	14.80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/09	116.70	100.83	15.87	SAMPLED ANNU	JALLY				
03/02/10 ⁷	116.70	102.40	14.30	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/09/10	116.70	101.00	15.70	SAMPLED ANNU	JALLY				
03/14/11 ⁷	116.70	102.51	14.19	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/13/11	116.70	103.81	12.89	SAMPLED ANNU	JALLY				
$03/21/12^7$	116.70	102.33	14.37	< 50	< 0.5	1	< 0.5	< 0.5	< 0.5
09/20/12	116.70	101.09	15.61	SAMPLED ANNU	UALLY				
C-1		100.11		4.000			•		
12/06/90	117.45	102.11	15.34	1,900	17	11	3.0	21	
06/06/91	117.45	102.83	14.62	3,400	21	15	11	18	
12/04/91	117.45	102.97	14.48	2,700	22	16	13	23	

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)
C-1 (cont)									
06/02/92	117.45	102.92	14.53	1,900	170	170	13	83	
09/16/92	117.45	102.52	14.93	810	5.8	5.7	2.0	6.3	
12/21/92	117.45	103.72	13.73	75	2.4	2.9	1.4	4.7	
03/11/93	117.45	103.62	13.83	150	2.4	20	3.3	23	
06/11/93	117.45	103.26	14.19	400	4.3	2.3	1.0	3.5	
09/13/93	117.45	102.85	14.60	4,100	62	43	34	57	
12/14/93	117.45	103.67	13.78	3,100	9.5	4.5	1.2	11	
03/16/94	117.45	103.44	14.01	410	6.3	3.1	1.3	4.5	
06/17/94	117.45	102.90	14.55	3,700	100	42	30	91	
08/29/94	117.45	102.96	14.49	2,600	15	< 0.5	6.7	9.7	
12/06/94	117.45	104.04	13.41	510	2.0	2.2	1.7	9.4	
03/31/95	117.45	105.33	12.12	5,440	9.0	2.3	2.0	3.6	
06/24/95	117.45	103.45	14.00	260	5.8	1.0	0.94	0.88	
09/12/95	117.45	103.42	14.03	650	14	1.1	1.6	2.4	
12/29/95	117.45	104.50	12.95	990	32	6.3	4.0	3.2	46
02/29/96	117.45	105.27	12.18	840	2.5	<1.0	2.6	7.3	< 5.0
06/26/96	117.45	103.72	13.73	290	3.6	0.73	1.0	1.1	9.9
09/12/96	117.45	103.32	14.13	1,200	17	1.8	4.0	4.4	24
12/11/96	117.45	104.66	12.79	7,700	<10	53	19	44	87
ABANDONED									
C-2									
12/06/90	116.16	100.82	15.34	210	140	9.0	2.0	11	
06/06/91	116.16	101.54	14.62	4,800	340	23	19	23	
12/04/91	116.16	100.73	15.43	3,900	85	15	9.1	15	
06/02/92	116.16	101.74	14.42	3,300	76	9.2	14	15	
09/16/92	116.16	101.35	14.81	3,000	16	15	3.4	7.5	
12/21/92	116.16	102.79	13.37	2,200	21	12	7.1	15	
03/11/93	116.16	102.69	13.47	2,200	33	24	12	25	
06/11/93	116.16	102.18	13.98	2,600	21	25	11	26	
09/13/93	116.16	101.61	14.55	2,100	31	25	18	39	
12/14/93	116.16	102.46	13.70	3,800	<2.5	24	12	20	
03/16/94	116.16	102.51	13.65	2,600	12	15	10	17	
06/17/94	116.16	102.87	13.29	2,400	17	19	28	71	
08/29/94	116.16	111.60	4.56	3,000	29	15	20	4.2	

Table 1 Groundwater Monitoring Data and Analytical Results

					Cumonna				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
C-2 (cont)									
12/06/94	116.16	102.98	13.18	1,900	7.9	30	14	31	
03/31/95	116.16	104.10	12.06	890	<1.3	<1.3	2.6	<1.3	
06/24/95	116.16	102.19	13.97	730	4.8	< 0.5	5.4	0.96	
09/12/95	116.16	102.28	13.88	1,600	<2.5	<2.5	5.4	<2.5	
12/29/95	116.16	103.31	12.85	1,000	9.1	2.7	8.7	2.7	19
02/29/96	116.16	104.09	12.07	850	< 2.5	<2.5	8.7	11	<12
06/26/96	116.16	102.50	13.66	2,500	14	< 5.0	13	6.3	<25
09/12/96	116.16	102.25	13.91	1,800	26	19	17	31	37
12/11/96	116.16	103.82	12.34	2,800	< 5.0	34	14	< 5.0	41
ABANDONED									
C-4									
12/06/90	116.10	98.42	17.68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/18/90	116.10			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/06/91	116.10	99.61	16.49	< 50	1.0	1.0	< 0.5	0.7	
12/04/91	116.10	99.28	16.82	70	6.5	9.8	1.7	8.6	
06/02/92	116.10	99.18	16.92	70	3.0	4.4	1.8	9.0	
09/16/92	116.10	98.39	17.71	< 50	1.4	1.8	< 0.5	1.1	
12/21/92	116.10	100.74	15.36	< 50	0.6	0.7	< 0.5	1.5	
03/11/93	116.10	100.61	15.49	< 50	< 0.5	< 0.5	< 0.5	<1.5	
06/11/93	116.10	99.83	16.27	52	0.9	3.1	0.7	3.8	
09/13/93	116.10	98.92	17.18	64	0.9	1.0	< 0.5	1.7	
12/14/93	116.10	101.03	15.07	< 50	< 0.5	0.8	< 0.5	0.7	
03/16/94	116.10	100.19	15.91	< 50	< 0.5	1.0	< 0.5	0.8	
06/17/94	116.10	99.46	16.64	230	0.6	2.2	2.2	11	
08/29/94	116.10	99.05	17.05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/06/94	116.10	101.52	14.58	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
03/31/95	116.10	102.26	13.84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/24/95	116.10	100.05	16.05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
09/12/95	116.10	99.87	16.23	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/29/95	116.10	101.35	14.75	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/29/96	116.10	102.40	13.70	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/26/96	116.10	100.30	15.80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
C-4 (cont)									
09/12/96	116.10	99.67	16.43	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/11/96	116.10	103.18	12.92	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
ABANDONED									
MW-4									
09/20/93	118.10	107.17	10.93	5,800	16	4.2	35	48	
12/14/93	118.10	108.33	9.77	7,100	19	6.5	24	35	
03/16/94	118.10	107.99	10.11	8,500	83	43	60	70	
06/17/94	118.10	107.20	10.90	21,000	150	20	140	350	
08/29/94	118.10	107.28	10.82	10,000	86	71	44	85	
12/06/94	118.10	108.70	9.40	13,000	68	56	67	110	
03/31/95	118.10	109.31	8.79	6,700	100	9.4	26	23	
06/24/95	118.10	107.60	10.50	6,300	<20	<20	<20	24	
09/12/95	118.10	107.90	10.20	7,100	65	16	<10	21	
12/29/95	118.10	108.86	9.24	3,300	<10	<10	12	14	720
02/29/96	118.10	111.85	6.25	5,100	<10	37	23	21	85
06/26/96	118.10	107.92	10.18	6,800	<20	<20	<20	<20	<100
09/12/96	118.10	107.53	10.57	13,000	150	<10	38	35	240
12/11/96	118.10	109.39	8.71	26,000	<20	<20	<20	170	<100
03/31/97	118.10	107.18	10.92	12,000	120	74	45	70	240
06/29/97	118.10	106.43	11.67	8,800	24	<10	35	36	62
09/30/97	118.10	107.20	10.90	10,000	<10	<10	37	35	72
12/12/97	118.10	105.16	12.94	4,600	95	41	20	25	91
02/19/98	118.10	110.33	7.77	5,400	87	16	32	31	110
06/16/98 ²	118.08	107.82	10.26	10,000	<20	<20	35	37	150
NOT MONITORED	D/SAMPLED								
TRIP BLANK									
12/06/90				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/18/90				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/06/91				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/04/91				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/02/92				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
09/16/92				< 50	< 0.5	< 0.5	< 0.5	< 0.5	

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864

5101 Telegraph Avenue Oakland, California

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
TRIP BLANK (c	cont)								
12/21/92				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
03/11/93				< 50	< 0.5	< 0.5	< 0.5	<1.5	
06/11/93				< 50	< 0.5	< 0.5	< 0.5	<1.5	
09/13/93				< 50	< 0.5	< 0.5	< 0.5	<1.5	
12/14/93				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
03/16/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/17/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
08/29/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/06/94				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
03/31/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/24/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
09/12/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/29/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
02/29/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/26/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/12/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/11/96				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/31/97				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/29/97				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/30/97				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/12/97				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/19/98				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/16/98				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
08/31/98				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/23/98				< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.9
03/09/99				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/30/99				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
02/29/00				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
09/18/00				< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
03/21/01				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01				< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
QA									
03/22/02				< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/28/03				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue

Oakland, California

QA (cont) 09/02/03 ⁷ 03/18/04 ⁷		msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	$(\mu g/L)$	(μg/L)	(µg/L)
09/02/03 ⁷	-								
03/18/04 ⁷				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/04 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
03/11/05 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/29/05 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
03/24/06 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/12/06 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
03/05/07 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/21/07 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
03/06/08 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/05/08 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
03/30/09 ⁷	-			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
DISCONTINUED									

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to February 9, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

 $TOC = Top \ of \ Casing \\ GRO = Gasoline \ Range \ Organics \\ (\mu g/L) = Micrograms \ per \ liter$

(ft.) = FeetB = Benzene-- = Not Measured/Not AnalyzedGWE = Groundwater ElevationT = Toluene(D) = Duplicate

DTW = Depth to Water X = Xylenes

TPH = Total Petroleum Hydrocarbons MTBE = Methyl Tertiary Butyl Ether

- ⁵ MTBE by EPA Method 8260.
- Split samples taken by Harding ESE.
- ⁷ BTEX and MTBE by EPA Method 8260.
- 8 ORC removed from well.

ORC installed.

Transfer of title to Tri-Star Partnership, Inc. effective July 14, 1998.

ORC in well.

Laboratory report indicates gasoline C6-C12.