Mark Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

RO0000321

Yee Property

eteryll eter Yee

726 Harrison Street Oakland, CA 94602

Dear Mr. Detterman:

Attached please find a copy of the Groundwater Sampling Report dated 3/20/2012 for the above referenced site. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

RECEIVED

4:30 pm, Mar 29, 2012

Alameda County Environmental Health

March 20, 2012

GROUNDWATER SAMPLING DATA REPORT FEBRUARY 2012 GROUNDWATER SAMPLING ASE JOB NO. 3412

at Yee Property 726 Harrison Street Oakland, CA 94602

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
55 Oak Court, Suite 220
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

Site Location (Site), See Figure 1
Yee Property
(Previously Former Chan's Shell Station)
726 Harrison Street
Oakland, CA 94602
(510) 444-6583

Responsible Party
Peter Yee
1000 San Antonio Avenue
Alameda, CA 94501

Environmental Consulting Firm Aqua Science Engineers, Inc. (ASE) 55 Oak Court, Suite 220 Danville, CA 94526 Contact: Robert Kitay, Senior Geologist (925) 820-9391

Arcadis US, Inc. 2000 Powell Street, 7th Floor Emeryville, CA 94608 Contact: Katherine Brandt, Project Geologist (510) 596-9675

Agency Review
Alameda County Health
Care Services Agency (ACHCSA)
1131 Harbor Bay Pkwy
Suite 250
Alameda, CA 94502
Contact: Mr. Steven Plunkett
(510) 567-6700

The following is a report detailing the February 2012 groundwater sampling at the Yee Property, previously referred to as the former Chan's Shell Station. This sampling was conducted as required by the ACHCSA and RWQCB. ASE has prepared this report on behalf of Peter Yee, the current responsible party, who purchased the property from Kin Chan. This report is intended to supplement the ASE report: "Report of Soil and Groundwater Assessment" dated January 8, 1999. At the request of the ACHCSA, one report is to be submitted for the three properties with comingled plumes: Yee property, the adjacent property former ARCO Station located at 706 Harrison Street, and the operating 76 Station located at 800 Harrison Street. A full report will be written by Arcadis. This report only provides a description of the sampling and data collected at the Yee property.

2.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On February 7, 2012, ASE measured the depth to groundwater in all six site monitoring wells using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. No free-floating hydrocarbons were observed in any site well. ASE coordinated this groundwater sampling with Arcadis, who is investigating the adjacent properties located at 706 Harrison Street, referred to in this report as the former ARCO station, and the 76 Station located at 800 Harrison Street. Tables and a potentiometric surface map will be provided in a report prepared by Arcadis for all three properties.

3.0 GROUNDWATER SAMPLE COLLECTION

On February 7, 2012, ASE collected groundwater samples from monitoring wells MW-1 through MW-6. Prior to sampling, each well was purged of three well casing volumes of groundwater using disposable polyethylene bailers. The parameters pH, temperature and conductivity were monitored during the well purging, and samples were not collected until these parameters stabilized. Groundwater samples were collected from each well using disposable polyethylene bailers and were decanted from the bottom of the bailers using low-flow emptying devices into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid. The samples were capped without headspace, labeled, and placed in coolers with wet ice for transport to BC Laboratories, Inc. of Bakersfield, California under appropriate chain-of-custody documentation. Well sampling field logs are presented in Appendix A. Well sampling purge water was contained in a sealed and labeled 55-gallon steel drum and is being currently stored on-site until off-site disposal can be arranged.

4.0 GROUNDWATER SAMPLING ANALYSIS

All groundwater samples were analyzed by BC Laboratories, Inc. for total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene and total xylenes (collectively known as BTEX), methyl tertiary butyl ether (MTBE), and lead scavengers by EPA Method 8260B. The certified analytical report and chain-of-custody documentation are included as Appendix B. All data interpretation will be provided in the report prepared by Arcadis for all three properties in the comingled plume.

6.0 REPORT LIMITATIONS

The results presented in this report represent conditions at the time of the groundwater sampling, at the specific locations where the groundwater samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from sources other than the former underground storage tanks and associated plumbing at the site, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-DHS certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project, and trust that this report meets your needs. Please feel free to call us at (925) 820-9391 if you have any questions or comments.

Respectfully submitted,

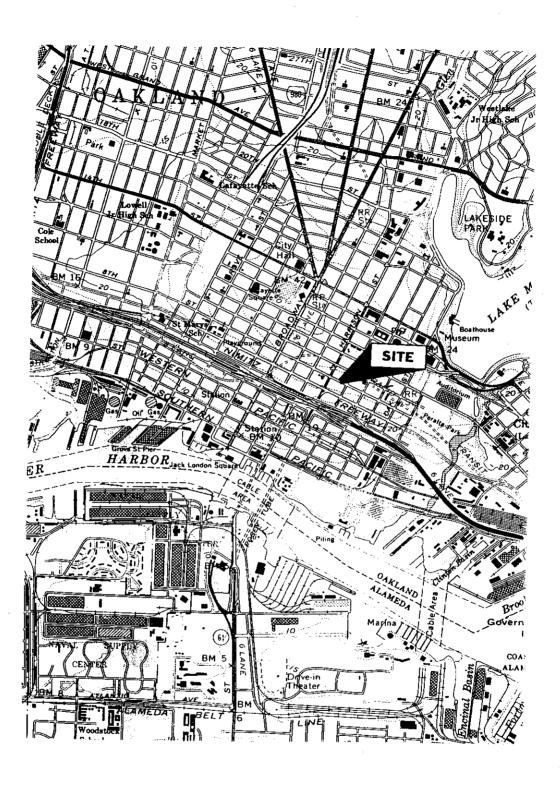
AQUA SCIENCE ENGINEERS, INC.

Pm C. Kity

Robert E. Kitay, P.G., R.E.A. Senior Geologist

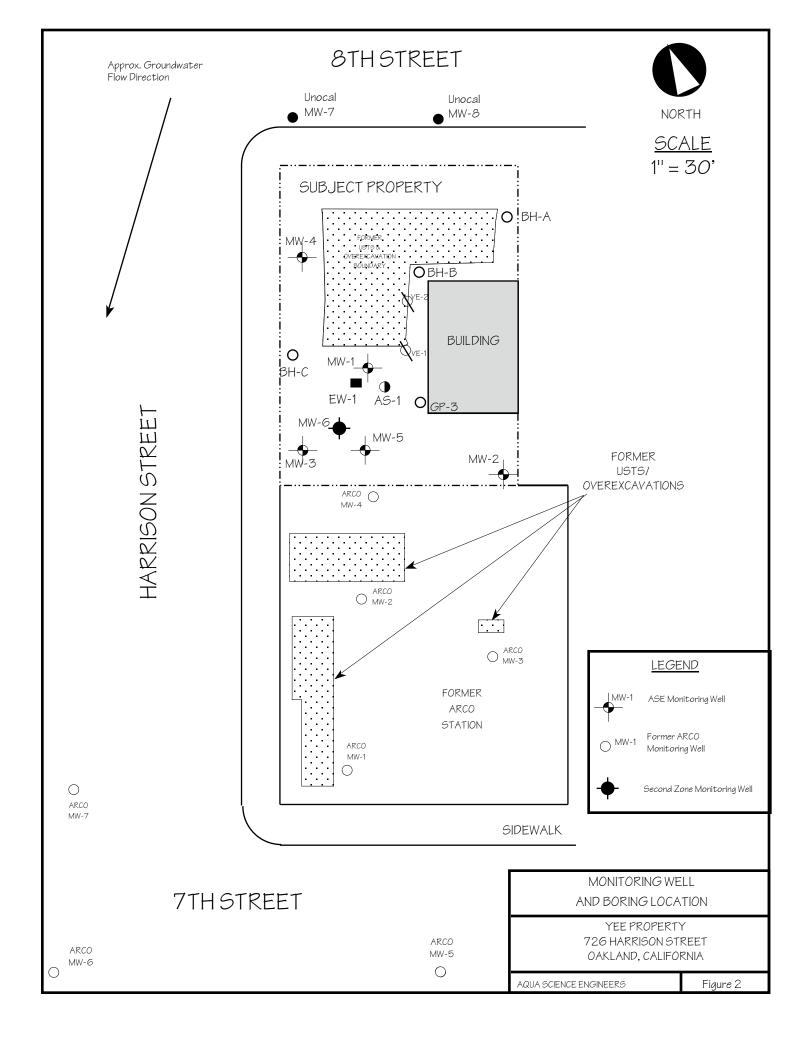
Attachments: Figures 1 and 2

Appendices A and B


cc: Mr. Steven Plunkett, Alameda County Health Care Services Agency

RWQCB, San Francisco Bay Region via Geotracker

FIGURES



SITE LOCATION MAP

YEE PROPERTY
726 HARRISON STREET
OAKLAND, CALIFORNIA

AQUA SCIENCE ENGINEERS

Figure 1

APPENDIX A

Well Sampling Field Logs

WELL SAMPLING FIELD LOG

PROJECT NAME YEE	
JOB NUMBER 3412	DATE OF SAMPLING 02.07.12
WELLID. MW-1	SAMPLER DA
TOTAL DEPTH OF WELL 27.2	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 18.77	TIME OF MEASUREMENT 0700
PRODUCT THICKNESS -6	
DEPTH OF WELL CASING IN WATER 8.43	
NUMBER OF GALLONS PER WELL CASING VOLUME	1.34
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRI	OR TO SAMPLING 4
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 68 22	TIME EVACUATION COMPLETED 0830
TIME SAMPLES WERE COLLECTED 683 2	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED +	
SAMPLING DEVICE NEW DISPOSABLE BA	ILER)
SAMPLE COLOR 4 GRAY	DOOR/SEDIMENT MOD HE SYLHT

CHEMICAL DATA

YOLUME PURGED	TEMPERATURE	Section 1 Septimes	CONDUCTIVITY
	19.2	6.5	540
2	14.3	6.4	(40
3	19.3	6.4	540

SAMPLE	# OF CONTAINER	SIZE AND TYPE OF CONTAIN	ER ANALYSIS	PRESERVED
MW-1	3	40 M VOA	8260B	/

WELL SAMPLING FIELD LOG

PROJECT NAME YEE	
JOB NUMBER 3412	DATE OF SAMPLING 02-07-12
WELLID. MW-2	SAMPLER DA
TOTAL DEPTH OF WELL 28.0	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 19.52	TIME OF MEASUREMENT 0654
PRODUCT THICKNESS 6	
DEPTH OF WELL CASING IN WATER 8. +8	
NUMBER OF GALLONS PER WELL CASING VOLUME	1.35
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRI	OR TO SAMPLING 4
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 0720	TIME EVACUATION COMPLETED 0728
TIME SAMPLES WERE COLLECTED 0730	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 4	
SAMPLING DEVICE NEW DISPOSABLE BA	ILER
SAMPLE COLOR W BA	ODOR/SEDIMENT NO/SCIUNT

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH.	CONDUCTIVITY
	19.2	6.8	410
2	19.3	6.9	390
3	19.3	6.8	390

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-2	3	40 ml VOA	8260B	<i>i</i>

WELL SAMPLING FIELD LOG

PROJECT NAME YEE	
JOB NUMBER 3412	DATE OF SAMPLING 02-07-12
WELLID. MW-3	SAMPLER DA
TOTAL DEPTH OF WELL 29.2	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 18.71	TIME OF MEASUREMENT 0656
PRODUCT THICKNESS O	
DEPTH OF WELL CASING IN WATER 10.4	9
NUMBER OF GALLONS PER WELL CASING VOLUME	1.7
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	OR TO SAMPLING 5
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 0805	TIME EVACUATION COMPLETED 6815
TIME SAMPLES WERE COLLECTED 6816	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 5	
SAMPLING DEVICE NEW DISPOSABLE BA	uler)
SAMPLE COLOR 4 6M	ODOR/SEDIMENT TO HC/SLIGHT
	τ

CHEMICAL DATA

YOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	19.7	6.6	410
2	19,6	6.5	440
3	14.6	6.5	440

SAMPLE	# OF CONTAINE	RS SIZE AND TYPE OF CONTAINE	R ANALYSIS	PRESERVED
MW-3	3	40 nl vox	8260B	<i>'</i>

WELL SAMPLING FIELD LOG

PROJECT NAME YEE	
JOB NUMBER 3412	DATE OF SAMPLING 02.07.12
WELLID. MW-4	SAMPLER DA
TOTAL DEPTH OF WELL 29.7	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 19.09	TIME OF MEASUREMENT 66 58
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER (0.6	(
NUMBER OF GALLONS PER WELL CASING VOLUME	1.7
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRI	OR TO SAMPLING 5
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 6 4 40	TIME EVACUATION COMPLETED 685
TIME SAMPLES WERE COLLECTED 0852	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	5
SAMPLING DEVICE NEW DISPOSABLE BA	LER)
SAMPLE COLOR LT GRANGE	DDOR/SEDIMENT SLHZ/SLIGHT

CHEMICAL DATA

VOLUME PURGED.	TEMPERATURE	∴ PH	CONDUCTIVITY
	19.4	5.2	550
2	19.4	5.2	570
3	14.5	5.2	570

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-4	3	40 M VOA	8260B	

WELL SAMPLING FIELD LOG

PROJECT NAME YEE	
JOB NUMBER 3412	DATE OF SAMPLING 02.07.12
WELLID. MW-5	SAMPLER DA
TOTAL DEPTH OF WELL 28.5	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 19.16	TIME OF MEASUREMENT 0702
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER 9.34	
NUMBER OF GALLONS PER WELL CASING VOLUME	1.5
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	IOR TO SAMPLING 4-5
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 0738	TIME EVACUATION COMPLETED 0747
TIME SAMPLES WERE COLLECTED 07 48	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	4.5
SAMPLING DEVICE NEW DISPOSABLE BA	NLER
SAMPLE COLOR U GRAY	ODOR/SEDIMENT MOD HE/SUCHT
	,

CHEMICAL DATA

YOLUME PURGED	TEMPERATURE	PH	EONDUCTIVITY"
	19.3	6.5	1120
2	14.5	6.4	1120
3	(9.4	6.5	1110

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-5	3	40 ml VOA	8260B	<i>i</i>

WELL SAMPLING FIELD LOG

PROJECT NAME Y	kk	
JOB NUMBER 341	ι	DATE OF SAMPLING 02.07.12
WELLID. MW-	6	SAMPLER DA
TOTAL DEPTH OF WELL	49.1	WELL DIAMETER 2
DEPTH TO WATER PRIOR	TO PURGING 16.5	TIME OF MEASUREMENT 0704
PRODUCT THICKNESS	0	
DEPTH OF WELL CASING	INWATER 22.	57
NUMBER OF GALLONS PE	ER WELL CASING VOLUME	13,54
NUMBER OF WELL CASING	G VOLUMES TO BE REMO	VED 3 sinews plus Isolio
REQUIRED VOLUME OF G	ROUNDWATER TO BE PUR	GED PRIOR TO SAMPLING 8.5
EQUIPMENT USED TO PUR	GE WELL	NEW DISPOSABLE BAILER
TIME EVACUATION START	ED 0749	TIME EVACUATION COMPLETED 6759
TIME SAMPLES WERE CO	LLECTED 0,00	
DID WELL GO DRY	No	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWAT	ER PURGED	8
SAMPLING DEVICE	NEW DISPOSA	ABLE BAILER

CHEMICAL DATA

YOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
	19, 4	7.	400
2	19.+	7.0	410
3	19,5	7.0	400

SAMPLE	# OF CONTAINERS	SIZE AND TYPE C	F CONTAINER	ANALYSIS	PRESERVED
pw-6	 3	40 mc	V04	8260B	

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Date of Report: 02/15/2012

Robert Kitay

Aqua Science Engineers, Inc. 55 Oak Court, Ste. 220 Danville, CA 94526

Project: Yee

BC Work Order: 1202338
Invoice ID: B116454

Enclosed are the results of analyses for samples received by the laboratory on 2/9/2012. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rinda Mademan

Contact Person: Linda Phoudamneun

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1202338-01 - MW-1	
Volatile Organic Analysis (EPA Method 8260)	7
1202338-02 - MW-2	
Volatile Organic Analysis (EPA Method 8260)	8
1202338-03 - MW-3	
Volatile Organic Analysis (EPA Method 8260)	9
1202338-04 - MW-4	
Volatile Organic Analysis (EPA Method 8260)	10
1202338-05 - MW-5	
Volatile Organic Analysis (EPA Method 8260)	11
1202338-06 - MW-6	
Volatile Organic Analysis (EPA Method 8260)	12
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	13
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	

	All results listed in this report are f	The results in this repor
4	for the	rt app
00 A	e exclu	dy to
tlas (usive us	the s
Sour	use of	ampl
т В	the s	es ana
kers	submitting	Ÿ
field, C	ing pa	zed in acc
S	ng party. BC La	ccora
9330		Іапсе ч
œ	borator	ìth
(661)	tories, In	the ci
327-49	0.	hain o
.4911 F/	mes	of custo
FA	no respoi	tody
× 66	ponsibil	docur
31	Ţ	nent.
1) 327-19	for repor	This
3	rt alt	analy
www.	eration	tical 1
읎	, separ	eport i
bs.com	ration,	musi
Ħ	detacl	be re
	hment	prod
	or third	uced
	rd part	in its
	ty inte	s entirety.
	iterpreta	ety.

55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853 SAMPLER (SIGNATURE)	- (72)	33		_	n T	PRO	JECT	NAME	f (ΕE	P 1	201 E	RTY	,			JOB	NO.	34	-12-
ANALYSIS REQUEST					┌┸	ADD	ness		126	HAI	145	<i>ν</i> Τ	$\overline{}$	EET. I			, סי	<u>CA</u>	T	
SPECIAL INSTRUCTIONS:					FPH-GAS / MTBE & BTEX EPA 5030/8015-8020)	EL /8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	METALS 0+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	ES)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS (EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	ALS (5) +7000)	TE 4:1		1655×19765/ 64,6013 -8268)
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS (EPA 5030	TPH-DIESEL (EPA 3510/8015)	TPH-DIES (EPA 3510	CAM 17 METALS (EPA 6010+7000)	SEMI-VOL (EPA 625/	Pb (TOTA (EPA 6010	PESTICIDES (EPA 8081)	FUEL OXY (EPA 8260	PURGEA (EPA 601/	TPH-G/BT (EPA MET	MULTI-RA HYDROCA GEL CLEA	VOLATILE (EPA 624/8	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF	学を
MW-1	4/7/12		W	3															X	×
MW-2	\longrightarrow	atio		7															X	\succ
MW-3 MW-4	- (-	0816	H	/														·	X	X
MW-5	+)-	0852	H	1				<u> </u>											×	<u> </u>
MW-6		0748		1															~	*
μω- υ		6800	W	*						_	1 (НК В	,			_			χ	
				\dashv							15	B		TEX.	RIBUT	ION			ļ	
	_			-							[Pr.	7	SI	B-OL		_	-		
				<u></u>		-									D-00				<u> </u>	
				+							-									
RELINQUISHED BY:	RECEIVE					1		HED B				EIVED	BY LA	BORAT	DRY:	CO	MMEN	TS:	ļ	
Ouru Ul 1456 signature) (time)	Haws (signature								- / (time	900	(sign	ature)		(um	e)	_				
DAVIDALLEN 2/7/12						GA	-アソノ	30 ६ म	υ							╛,		RN AR		
printed name) (date) Company-ASE, INC.	(printed na	,		(date	•	1"	ed nam	•	(date	•		ed narr	ie)	(dat	e)	1 —	MDARI HER:	D_24F	ir 481	dr 72Hr
se. Reluy	Company-					Comp	any- /	Sc LA!	05 21	18/12	Com	pany-				ı				

Chain of Custody and Cooler Receipt Form for 1202338 Page 2 of 2

BC LABORATORIES INC.	-, , , , , , , , , , , , , , , , , , , 	SAMPL	E RECEIF	T FORM	Re	v. No. 12	06/24/08	Page _	Of /	
Submission #: 12-023	38									
SHIPPING INFO	ORMATIOI Hand De er □ (Specif	livery 🗆		SHIPPING CONTAINER Ice Chest None Box Other (Specify)						
Refrigerant: Ice∯ Blue Ice	. □ Non	e □ O1	her 🗆	Commen	s:					
Custody Seals Ice Chest □ Intact? Yes □ No □	Contain	ers 🗆	None 5	Comme	nts:					
All samples received? Yeş No 🗆	All sample	s containe	s intact? Y	es/I No.	7	Descript	ion(e) mat	ch CUCS, A	: ∕es [□ No<	
COC Received	Emissivity	98	Container:	1 AC	hermomet			Date/Tim	10 7 9 17 nig VA	
SAMPLE CONTAINERS		<u> </u>	1	1	SAMPLE	UMBERS				
QT GENERAL MINERAL/ GENERAL PHYSIC	1 1	2	3	4	5	6	7	8	9	10
PT PE UNPRESERVED	-AL	1	1	 					 	
OT INORGANIC CHEMICAL METALS			<u> </u>						ļ	
PT INORGANIC CHEMICAL METALS									 	
PT CYANIDE										
PT NITROGEN FORMS									1	
PT TOTAL SULFIDE									 	
20z. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON				-						
PT TOX		ļ								
PT CHEMICAL OXYGEN DEMAND										
P4A PHENOLICS		ļ								
10ml VOA VIAL TRAVEL BLANK		> 21 -2	4 ~	,,						
40ml VOA VIAL	17-12	7/13	17:5	43	13	AB	t	1	1	()
OT EPA 413.1, 413.2, 418.1			<u></u>							
PT ODOR			 -						·	
RADIOLOGICAL			<u> </u>							
BACTERIOLOGICAL			ļ					ļ		
40 ml VOA VIAL- 504			1					ļ		
OT EPA 508/608/8080 OT EPA 515.1/8150										
OT EPA 525		-								
QT EPA 525 TRAVEL BLANK		<u> </u>								
100ml EPA 547										<u> </u>
100ml EPA 531.1			<u> </u>						 	
QT EPA 548										
OT EPA 549								 -		
QT EPA 632										
QT EPA 8015M										
OT AMBER										
OZ. JAR										
2 OZ. JAR										
OIL SLEEVE]
PCB VIAL		<u> </u>								
PLASTIC BAG		<u> </u>								
FERROUS IRON										
ENCORE		<u> </u>	<u> </u>							
omments: NO	time	Dn 6	rind	<i>6</i> 3						
ample Numbering Completed By:		Date/Ti	me: 7		16	-				

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1202338-01 COC Number: ---

Project Number: Yee Property

Sampling Location: --Sampling Point: MW-1
Sampled By: ASED

Receive Date: 02/08/2012 23:00 **Sampling Date:** 02/07/2012 08:32

Sample Depth: --Lab Matrix: Water

Sample Type: Drinking Water

Delivery Work Order: Global ID: T0600102122 Location ID (FieldPoint): MW-1

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202338-02 COC Number: ---

Project Number: Yee Property

Sampling Location: --Sampling Point: MW-2
Sampled By: ASED

Receive Date: 02/08/2012 23:00 **Sampling Date:** 02/07/2012 07:30

Sample Depth: ---Lab Matrix: Water

Sample Type: Drinking Water

Delivery Work Order: Global ID: T0600102122 Location ID (FieldPoint): MW-2

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202338-03 COC Number: ---

Project Number: Yee Property

Sampling Location: --Sampling Point: MW-3
Sampled By: ASED

Receive Date: 02/08/2012 23:00 **Sampling Date:** 02/07/2012 08:16

Sample Depth: ---Lab Matrix: Water

Sample Type: Drinking Water

Delivery Work Order: Global ID: T0600102122 Location ID (FieldPoint): MW-3

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1202338-04 COC Number:

Project Number: Yee Property

Sampling Location: --Sampling Point: MW-4

Sampled By: ASED

Sampling Date: 02/07/2012 08:52 **Sample Depth:** ---

Lab Matrix: Water

Sample Type: Drinking Water

02/08/2012 23:00

Delivery Work Order: Global ID: T0600102122 Location ID (FieldPoint): MW-4

Matrix: W

Receive Date:

Sample QC Type (SACode): CS

Cooler ID:

1202338-05 COC Number: ---

Project Number: Yee Property

Sampling Location: --Sampling Point: MW-5
Sampled By: ASED

Receive Date: 02/08/2012 23:00 Sampling Date: 02/07/2012 07:48

Sample Depth: ---Lab Matrix: Water

Sample Type: Drinking Water

Delivery Work Order: Global ID: T0600102122 Location ID (FieldPoint): MW-5

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202338-06 COC Number: ---

Project Number: Yee Property

Sampling Location: --Sampling Point: MW-6
Sampled By: ASED

Receive Date: 02/08/2012 23:00

Sampling Date: 02/07/2012 08:00 **Sample Depth:** ---

Lab Matrix: Water

Sample Type: Drinking Water

Delivery Work Order: Global ID: T0600102122 Location ID (FieldPoint): MW-6

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

MU

Aqua Science Engineers, Inc. 55 Oak Court, Ste. 220 Danville, CA 94526 **Reported:** 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

BCL Sample ID:	1202338-01	Client Sampl	e Name:	Yee Prope	Yee Property, MW-1, 2/7/2012 8:32:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Benzene		46	ug/L	0.50	0.083	EPA-8260	ND		1		
1,2-Dibromoethane		ND	ug/L	0.50	0.16	EPA-8260	ND		1		
1,2-Dichloroethane		ND	ug/L	0.50	0.17	EPA-8260	ND		1		
Ethylbenzene		4.2	ug/L	0.50	0.098	EPA-8260	ND		1		
Methyl t-butyl ether		3800	ug/L	25	5.5	EPA-8260	ND	A01	2		
Toluene		1.7	ug/L	0.50	0.093	EPA-8260	ND		1		
Total Xylenes		4.5	ug/L	1.0	0.36	EPA-8260	ND		1		
p- & m-Xylenes		4.0	ug/L	0.50	0.28	EPA-8260	ND		1		
o-Xylene		0.52	ug/L	0.50	0.082	EPA-8260	ND		1		
Total Purgeable Petrole	eum	370	ug/L	50	7.2	Luft-GC/MS	ND		1		
1,2-Dichloroethane-d4 (Surrogate)	91.6	%	76 - 114 (LC	L - UCL)	EPA-8260			1		
1,2-Dichloroethane-d4 (Surrogate)	93.2	%	76 - 114 (LC	L - UCL)	EPA-8260			2		
Toluene-d8 (Surrogate)		96.5	%	88 - 110 (LC	L - UCL)	EPA-8260			1		
Toluene-d8 (Surrogate)		93.3	%	88 - 110 (LC	L - UCL)	EPA-8260			2		
4-Bromofluorobenzene ((Surrogate)	103	%	86 - 115 (LC	L - UCL)	EPA-8260			1		
4-Bromofluorobenzene ((Surrogate)	108	%	86 - 115 (LC	L - UCL)	EPA-8260			2		

Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/10/12	02/10/12 15:42	JMC	MS-V12	1	BVB0806	
2	EPA-8260	02/10/12	02/14/12 13:13	JMC	MS-V12	50	BVB0806	

Mul

Aqua Science Engineers, Inc. 55 Oak Court, Ste. 220 Danville, CA 94526 Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

BCL Sample ID:	202338-02	Client Sample	e Name:	Yee Prope	erty, MW-2	, 2/7/2012 7:30:	MA00		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	0.083	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	0.16	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	0.17	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	0.11	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	0.093	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	7.2	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	90.1	%	76 - 114 (LC	L - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		94.6	%	88 - 110 (LC	L - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	110	%	86 - 115 (LC	L - UCL)	EPA-8260			1

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	02/10/12	02/13/12 15:21	JMC	MS-V12	1	BVB0691			

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

BCL Sample ID:	1202338-03	Client Sampl	e Name:	Yee Prope	erty, MW-3	, 2/7/2012 8:16:	00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	0.083	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	0.16	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	0.17	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260	ND		1
Methyl t-butyl ether		2.1	ug/L	0.50	0.11	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	0.093	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260	ND		1
Total Purgeable Petroleun Hydrocarbons	1	25	ug/L	50	7.2	Luft-GC/MS	ND	J	1
1,2-Dichloroethane-d4 (Sur	rogate)	91.2	%	76 - 114 (LC	L - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		90.7	%	88 - 110 (LC	L - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	104	%	86 - 115 (LC	L - UCL)	EPA-8260			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/10/12	02/10/12 15:06	JMC	MS-V12	1	BVB0691	

Reported: 02/15/2012 15:53

Project Number: 3412
Project Manager: Robert Kitay

BCL Sample ID: 1202	338-04 Clien	t Sample Name	Yee P	roperty, MW-4	1, 2/7/2012 8:5	52:00AM		
Constituent	Re	sult Unit	s PQL	. MDL	Method	MB Bias	Lab Quals	Run #
Benzene	1	ND ug/L	0.50	0.083	EPA-8260	ND		1
1,2-Dibromoethane	1	ND ug/L	0.50	0.16	EPA-8260	ND		1
1,2-Dichloroethane	1	ND ug/L	0.50	0.17	EPA-8260	ND		1
Ethylbenzene	1	ND ug/L	0.50	0.098	EPA-8260	ND		1
Methyl t-butyl ether		17 ug/L	_ 0.50	0.11	EPA-8260	ND		1
Toluene	1	ND ug/L	0.50	0.093	EPA-8260	ND		1
Total Xylenes	1	ND ug/L	1.0	0.36	EPA-8260	ND		1
p- & m-Xylenes	ı	ND ug/L	0.50	0.28	EPA-8260	ND		1
o-Xylene	1	ND ug/L	0.50	0.082	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	2	:10 ug/l	_ 50	7.2	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogat	e) 9	1.4 %	76 - 114	(LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	9	7.0 %	88 - 110	(LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surroga	te) 1	05 %	86 - 115	(LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/10/12	02/10/12 14:49	JMC	MS-V12	1	BVB0691	

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

BCL Sample ID: 1	202338-05	Client Sampl	e Name:	Yee Prope	erty, MW-5	, 2/7/2012 7:48:	00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		890	ug/L	100	17	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	ug/L	6.2	2.0	EPA-8260	ND	A01	2
1,2-Dichloroethane		ND	ug/L	6.2	2.1	EPA-8260	ND	A01	2
Ethylbenzene		360	ug/L	6.2	1.2	EPA-8260	ND	A01	2
Methyl t-butyl ether		17000	ug/L	100	22	EPA-8260	ND	A01	1
Toluene		410	ug/L	6.2	1.2	EPA-8260	ND	A01	2
Total Xylenes		990	ug/L	12	4.5	EPA-8260	ND	A01	2
p- & m-Xylenes		830	ug/L	6.2	3.5	EPA-8260	ND	A01	2
o-Xylene		160	ug/L	6.2	1.0	EPA-8260	ND	A01	2
Total Purgeable Petroleum Hydrocarbons		19000	ug/L	620	90	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surr	ogate)	92.5	%	76 - 114 (LC	L - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surr	ogate)	91.9	%	76 - 114 (LC	L - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		95.4	%	88 - 110 (LC	L - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		96.5	%	88 - 110 (LC	L - UCL)	EPA-8260			2
4-Bromofluorobenzene (Sur	rogate)	104	%	86 - 115 (LC	L - UCL)	EPA-8260			1
4-Bromofluorobenzene (Sur	rogate)	101	%	86 - 115 (LC	L - UCL)	EPA-8260			2

			Run		QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260	02/10/12	02/13/12 16:13	JMC	MS-V12	200	BVB0691		
2	EPA-8260	02/10/12	02/10/12 14:31	JMC	MS-V12	12.500	BVB0691		

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

BCL Sample ID: 1	202338-06	Client Sampl	e Name:	Yee Prope	erty, MW-6	, 2/7/2012 8:00:	MA00		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	0.083	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	0.16	EPA-8260	ND		1
1,2-Dichloroethane		0.79	ug/L	0.50	0.17	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260	ND		1
Methyl t-butyl ether		970	ug/L	10	2.2	EPA-8260	ND	A01	2
Toluene		ND	ug/L	0.50	0.093	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		410	ug/L	50	7.2	Luft-GC/MS	ND	A90	1
1,2-Dichloroethane-d4 (Surr	ogate)	91.7	%	76 - 114 (LC	L - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surr	ogate)	92.2	%	76 - 114 (LC	L - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		95.8	%	88 - 110 (LC	L - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.6	%	88 - 110 (LC	L - UCL)	EPA-8260			2
4-Bromofluorobenzene (Sur	rogate)	103	%	86 - 115 (LC	L - UCL)	EPA-8260			1
4-Bromofluorobenzene (Sur	rogate)	106	%	86 - 115 (LC	L - UCL)	EPA-8260			2

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/10/12	02/10/12 14:13	JMC	MS-V12	1	BVB0691	
2	EPA-8260	02/10/12	02/13/12 15:55	JMC	MS-V12	20	BVB0691	

Aqua Science Engineers, Inc. 55 Oak Court, Ste. 220 Danville, CA 94526 Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVB0691						
Benzene	BVB0691-BLK1	ND	ug/L	0.50	0.083	
1,2-Dibromoethane	BVB0691-BLK1	ND	ug/L	0.50	0.16	
1,2-Dichloroethane	BVB0691-BLK1	ND	ug/L	0.50	0.17	
Ethylbenzene	BVB0691-BLK1	ND	ug/L	0.50	0.098	
Methyl t-butyl ether	BVB0691-BLK1	ND	ug/L	0.50	0.11	
Toluene	BVB0691-BLK1	ND	ug/L	0.50	0.093	
Total Xylenes	BVB0691-BLK1	ND	ug/L	1.0	0.36	
p- & m-Xylenes	BVB0691-BLK1	ND	ug/L	0.50	0.28	
o-Xylene	BVB0691-BLK1	ND	ug/L	0.50	0.082	
Total Purgeable Petroleum Hydrocarbons	BVB0691-BLK1	ND	ug/L	50	7.2	
1,2-Dichloroethane-d4 (Surrogate)	BVB0691-BLK1	96.4	%	76 - 114	4 (LCL - UCL)	
Toluene-d8 (Surrogate)	BVB0691-BLK1	97.1	%	88 - 110	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BVB0691-BLK1	98.5	%	86 - 11	5 (LCL - UCL)	
QC Batch ID: BVB0806						
Benzene	BVB0806-BLK1	ND	ug/L	0.50	0.083	
1,2-Dibromoethane	BVB0806-BLK1	ND	ug/L	0.50	0.16	
1,2-Dichloroethane	BVB0806-BLK1	ND	ug/L	0.50	0.17	
Ethylbenzene	BVB0806-BLK1	ND	ug/L	0.50	0.098	
Methyl t-butyl ether	BVB0806-BLK1	ND	ug/L	0.50	0.11	
Toluene	BVB0806-BLK1	ND	ug/L	0.50	0.093	
Total Xylenes	BVB0806-BLK1	ND	ug/L	1.0	0.36	
p- & m-Xylenes	BVB0806-BLK1	ND	ug/L	0.50	0.28	
o-Xylene	BVB0806-BLK1	ND	ug/L	0.50	0.082	
Total Purgeable Petroleum Hydrocarbons	BVB0806-BLK1	ND	ug/L	50	7.2	
1,2-Dichloroethane-d4 (Surrogate)	BVB0806-BLK1	93.2	%	76 - 114 (LCL - UCL)		
Toluene-d8 (Surrogate)	BVB0806-BLK1	96.8	%	88 - 110	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BVB0806-BLK1	101	%	86 - 11	5 (LCL - UCL)	

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

Aqua Science Engineers, Inc. 55 Oak Court, Ste. 220 Danville, CA 94526

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

						Control Limits			
QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
BVB0691-BS1	LCS	21.880	25.000	ug/L	87.5		70 - 130		
BVB0691-BS1	LCS	20.370	25.000	ug/L	81.5		70 - 130		
BVB0691-BS1	LCS	9.3300	10.000	ug/L	93.3		76 - 114		
BVB0691-BS1	LCS	9.6500	10.000	ug/L	96.5		88 - 110		
BVB0691-BS1	LCS	10.320	10.000	ug/L	103		86 - 115		
BVB0806-BS1	LCS	24.920	25.000	ug/L	99.7		70 - 130		
BVB0806-BS1	LCS	22.900	25.000	ug/L	91.6		70 - 130		
BVB0806-BS1	LCS	9.2600	10.000	ug/L	92.6		76 - 114		
BVB0806-BS1	LCS	9.6000	10.000	ug/L	96.0		88 - 110		
BVB0806-BS1	LCS	10.130	10.000	ug/L	101		86 - 115		
	BVB0691-BS1 BVB0691-BS1 BVB0691-BS1 BVB0691-BS1 BVB0691-BS1 BVB0806-BS1 BVB0806-BS1 BVB0806-BS1 BVB0806-BS1	BVB0691-BS1 LCS BVB0691-BS1 LCS BVB0691-BS1 LCS BVB0691-BS1 LCS BVB0691-BS1 LCS BVB0691-BS1 LCS BVB0806-BS1 LCS BVB0806-BS1 LCS BVB0806-BS1 LCS BVB0806-BS1 LCS	BVB0691-BS1 LCS 21.880 BVB0691-BS1 LCS 20.370 BVB0691-BS1 LCS 9.3300 BVB0691-BS1 LCS 9.6500 BVB0691-BS1 LCS 10.320 BVB0806-BS1 LCS 24.920 BVB0806-BS1 LCS 22.900 BVB0806-BS1 LCS 9.2600 BVB0806-BS1 LCS 9.6000	QC Sample ID Type Result Level BVB0691-BS1 LCS 21.880 25.000 BVB0691-BS1 LCS 20.370 25.000 BVB0691-BS1 LCS 9.3300 10.000 BVB0691-BS1 LCS 9.6500 10.000 BVB0691-BS1 LCS 10.320 10.000 BVB0806-BS1 LCS 24.920 25.000 BVB0806-BS1 LCS 22.900 25.000 BVB0806-BS1 LCS 9.2600 10.000 BVB0806-BS1 LCS 9.6000 10.000	QC Sample ID Type Result Level Units BVB0691-BS1 LCS 21.880 25.000 ug/L BVB0691-BS1 LCS 20.370 25.000 ug/L BVB0691-BS1 LCS 9.3300 10.000 ug/L BVB0691-BS1 LCS 9.6500 10.000 ug/L BVB0691-BS1 LCS 10.320 10.000 ug/L BVB0806-BS1 LCS 24.920 25.000 ug/L BVB0806-BS1 LCS 22.900 25.000 ug/L BVB0806-BS1 LCS 9.2600 10.000 ug/L BVB0806-BS1 LCS 9.6000 10.000 ug/L	QC Sample ID Type Result Level Units Recovery BVB0691-BS1 LCS 21.880 25.000 ug/L 87.5 BVB0691-BS1 LCS 20.370 25.000 ug/L 81.5 BVB0691-BS1 LCS 9.3300 10.000 ug/L 93.3 BVB0691-BS1 LCS 9.6500 10.000 ug/L 96.5 BVB0691-BS1 LCS 10.320 10.000 ug/L 103 BVB0806-BS1 LCS 24.920 25.000 ug/L 99.7 BVB0806-BS1 LCS 22.900 25.000 ug/L 91.6 BVB0806-BS1 LCS 9.2600 10.000 ug/L 92.6 BVB0806-BS1 LCS 9.6000 10.000 ug/L 96.0	QC Sample ID Type Result Level Units Recovery RPD BVB0691-BS1 LCS 21.880 25.000 ug/L 87.5 87.5 BVB0691-BS1 LCS 20.370 25.000 ug/L 81.5 93.3 BVB0691-BS1 LCS 9.3300 10.000 ug/L 96.5 96.5 BVB0691-BS1 LCS 10.320 10.000 ug/L 103 103 BVB0806-BS1 LCS 24.920 25.000 ug/L 99.7 99.7 BVB0806-BS1 LCS 22.900 25.000 ug/L 91.6 91.6 BVB0806-BS1 LCS 9.2600 10.000 ug/L 92.6 92.6 BVB0806-BS1 LCS 9.6000 10.000 ug/L 96.0 96.0	QC Sample ID Type Result Level Units Recovery RPD Recovery BVB0691-BS1 LCS 21.880 25.000 ug/L 87.5 70 - 130 BVB0691-BS1 LCS 20.370 25.000 ug/L 81.5 70 - 130 BVB0691-BS1 LCS 9.3300 10.000 ug/L 93.3 76 - 114 BVB0691-BS1 LCS 9.6500 10.000 ug/L 96.5 88 - 110 BVB0691-BS1 LCS 10.320 10.000 ug/L 103 86 - 115 BVB0806-BS1 LCS 24.920 25.000 ug/L 99.7 70 - 130 BVB0806-BS1 LCS 22.900 25.000 ug/L 91.6 70 - 130 BVB0806-BS1 LCS 9.2600 10.000 ug/L 92.6 76 - 114 BVB0806-BS1 LCS 9.6000 10.000 ug/L 96.0 88 - 110	QC Sample ID Type Result Level Units Recovery RPD Recovery RPD BVB0691-BS1 LCS 21.880 25.000 ug/L 87.5 70 - 130 70 - 130 BVB0691-BS1 LCS 20.370 25.000 ug/L 81.5 70 - 130 76 - 114 BVB0691-BS1 LCS 9.3300 10.000 ug/L 93.3 76 - 114 76 - 114 BVB0691-BS1 LCS 9.6500 10.000 ug/L 96.5 88 - 110 86 - 115 BVB0806-BS1 LCS 10.320 10.000 ug/L 99.7 70 - 130 70 - 130 BVB0806-BS1 LCS 24.920 25.000 ug/L 99.7 70 - 130 70 - 130 BVB0806-BS1 LCS 9.2600 10.000 ug/L 92.6 76 - 114 BVB0806-BS1 LCS 9.6000 10.000 ug/L 96.0 88 - 110

Reported: 02/15/2012 15:53

Project: Yee
Project Number: 3412
Project Manager: Robert Kitay

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Control Limits		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVB0691	Use	d client samp	ole: N								
Benzene	− MS	1201079-51	ND	24.390	25.000	ug/L		97.6		70 - 130	
	MSD	1201079-51	ND	22.110	25.000	ug/L	9.8	88.4	20	70 - 130	
Toluene	MS	1201079-51	ND	23.100	25.000	ug/L		92.4		70 - 130	
	MSD	1201079-51	ND	21.180	25.000	ug/L	8.7	84.7	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1201079-51	ND	9.3700	10.000	ug/L		93.7		76 - 114	
	MSD	1201079-51	ND	9.4000	10.000	ug/L	0.3	94.0		76 - 114	
Toluene-d8 (Surrogate)	MS	1201079-51	ND	9.6500	10.000	ug/L		96.5		88 - 110	
	MSD	1201079-51	ND	9.8300	10.000	ug/L	1.8	98.3		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1201079-51	ND	10.240	10.000	ug/L		102		86 - 115	
	MSD	1201079-51	ND	10.080	10.000	ug/L	1.6	101		86 - 115	
QC Batch ID: BVB0806	Use	d client samp	ole: N								
Benzene	MS	1202328-02	ND	20.090	25.000	ug/L		80.4		70 - 130	
	MSD	1202328-02	ND	23.470	25.000	ug/L	15.5	93.9	20	70 - 130	
Toluene	MS	1202328-02	ND	21.420	25.000	ug/L		85.7		70 - 130	
	MSD	1202328-02	ND	22.650	25.000	ug/L	5.6	90.6	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1202328-02	ND	9.0600	10.000	ug/L		90.6		76 - 114	
	MSD	1202328-02	ND	8.6800	10.000	ug/L	4.3	86.8		76 - 114	
Toluene-d8 (Surrogate)	MS	1202328-02	ND	9.8400	10.000	ug/L		98.4		88 - 110	
	MSD	1202328-02	ND	9.8700	10.000	ug/L	0.3	98.7		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1202328-02	ND	10.300	10.000	ug/L		103		86 - 115	
	MSD	1202328-02	ND	10.430	10.000	ug/L	1.3	104		86 - 115	

Reported: 02/15/2012 15:53

Project: Yee Project Number: 3412

Project Manager: Robert Kitay

Notes And Definitions

55 Oak Court, Ste. 220

Danville, CA 94526

Aqua Science Engineers, Inc.

Estimated Value (CLP Flag)

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit Relative Percent Difference RPD

PQL's and MDL's are raised due to sample dilution. A01

A90 TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.