January 6, 2015

Mr. Mark E. Detterman, PG, CEG Environmental Protection Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Fuel Leak Case No. R0000320, Former Paco Pumps, Inc., 9201 San Leandro Street, Oakland, CA

RECEIVED

By Alameda County Environmental Health at 10:22 am, Jan 08, 2015

Dear Mr. Detterman:

Please find enclosed the *Data Gaps Investigation and Groundwater Monitoring Report* (Report) for the Former Paco Pumps facility located at 9201 San Leandro in Oakland, California (the Site). The investigation activities performed were completed to fill data gaps in the site characterization and update the focused conceptual site model.

Results from this investigation and groundwater monitoring event indicate that soil and groundwater affected by petroleum hydrocarbons and related compounds remain on Site at concentrations that pose a very low threat to human health and the environment. As presented in the Report, one additional groundwater monitoring event is scheduled for April 2015. Based on the results of the 2014 investigations and anticipated results of the April 2015 sampling event, and the proposed deed restriction, PCC will request Site closure under the State Water Resource Control Board's Low-Threat Underground Storage Tank Case Closure Policy.

If you have any questions during your review of the Report, please feel free to contact Paisha Jorgensen at 925-951-2856 or pjorgensen@thesourcegroup.net.

I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Dave Murray PCC Flow Technologies, Inc.

Cc: Mr. Peter Serrurier, Stoel Rives LLP Mr. Marc Zeppetello, Barg Coffin Lewis & Trapp, LLP Mr. Paisha Jorgensen and Paul Parmentier, The Source Group

DATA GAPS INVESTIGATION AND GROUNDWATER MONITORING REPORT

Former PACO Pumps Site 9201 San Leandro Street, Oakland, California

04-PFT-005

Prepared For:

PCC Flow Technologies Holdings, Inc. 4600 SE Harney Dr. Portland, OR 97206-0898

Prepared By:

1962 Freeman Avenue Signal Hill, California 90755

January 6, 2015

Prepared By: No. 7806 Paisha Jorgensen PRA

Senior Geologist

Reviewed By:

itrem

Paul Parmentier, P.G., C.HG. Principal Hydrogeologist

TABLE OF CONTENTS

PAGE

LIST C	F TAB	IRES LES ENDICES	iii
1.0	INTRO 1.1 1.2	DUCTION Regulatory Background Report Organization	1-1
2.0	SITE E 2.1 2.2 2.3	BACKGROUND Site Location and History Previous Site Investigations and Remediation Activities Conceptual Site Model	2-1 2-1
3.0	DATA 3.1 3.2 3.3 3.4 3.5	GAPS INVESTIGATION ACTIVITIES Pre-Field Activities Shallow Soil Sampling Shallow Groundwater Monitoring Well Installation Groundwater Monitoring and Sampling Event 3.4.1 Groundwater Monitoring 3.4.2 Groundwater Sampling Waste Management	3-1 3-1 3-2 3-3 3-3 3-3 3-3
	3.6 3.7	Building 1 Floor Features Well Conditions Inspection	3-4
4.0	INVES 4.1 4.2 4.3	TIGATION AND SAMPLING RESULTS A Site Geology and Hydrogeology A Soil Sample Results A Groundwater Sampling Results A 4.3.1 Groundwater Elevations 4.3.2 Groundwater Analytical Results	4-1 4-1 4-2 4-2
5.0	DATA 5.1 5.2	EVALUATION AND RECOMMENDATIONS Data Evaluation 5.1.1 Soil	5-1 5-1 5-2
6.0	REFE	RENCES	6-1

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Groundwater Elevation and Potentiometric Surface Map October 2014
- Figure 4 MTBE, Benzene, TPH-GRO, and TPHd Concentrations in Groundwater October 2014

LIST OF TABLES

Table 1 Current and Historical Groundwater Elevations
Table 2 Summary of Analytical Results for Soil
Table 3 Summary of Analytical Results for Groundwater – Quarter 3, 2014
Table 4 Summary of Historical Analytical Results for Groundwater

LIST OF APPENDICES

- Appendix A Updated Response to Comments
- Appendix B Revised Conceptual Site Model
- Appendix C Alameda County Environmental Health (ACEH) Drilling Permit
- Appendix D MW-12 Boring Log
- Appendix E Well Development Field Form
- Appendix F Surveyor's Report
- Appendix G Groundwater Sampling Field Forms
- Appendix H Laboratory Analytical Data

1.0 INTRODUCTION

The Source Group, Inc. (SGI), on behalf of PCC Flow Technologies Holdings, Inc. (PCC), is submitting this *Data Gaps Investigation and Groundwater Monitoring Report* (Report) for the former PACO Pumps facility located at 9201 San Leandro Street in Oakland, California (Site) (Figures 1 and 2). The investigation activities were presented in SGI's *Data Gaps Work Plan* (Work Plan; SGI, 2014) dated June 18, 2014.

The objectives of the Data Gaps investigation activities were to:

- Evaluate the potential presence of polychlorinated biphenyls (PCBs) associated with elevated total extractable petroleum hydrocarbons (TEPH) in shallow soil in the alley along the western portion of the Site, particularly adjacent to monitoring wells MW-10 and MW-11.
- Install one shallow groundwater monitoring well in the southwestern corner of the Site to confirm Site-wide groundwater flow direction and delineate impacted groundwater along the southwestern portion of the Site.
- Evaluate the presence of TEPH in shallow soil beneath an area that appeared to be stained along the western property boundary.
- Assess groundwater conditions by conducting two Site-wide groundwater monitoring and sampling events.
- Collect additional information relating to the construction of floor drains inside the eastern warehouse (Building 1 shown on Figure 2).

All of the data collected during the above referenced characterization and groundwater monitoring activities are presented in subsequent sections of this report.

1.1 Regulatory Background

In 2013, SGI submitted the *Remedial Investigation Activities and Groundwater Monitoring Report* (SGI, 2013) to Alameda County Environmental Health (ACEH) and requested case closure for the Site under the California Regional Water Quality Control Board's Low-Threat Underground Storage Tank Case Closure Policy (LTCP; CRWQCB, 2012). ACEH rejected the case closure request in a letter dated March 7, 2014 (ACEH, 2014a). The letter summarized the ACEH evaluation for Site closure under the LTCP. On April 22, 2014, a meeting and Site inspection attended by ACEH staff, PCC representatives, and SGI representatives was held to discuss the status of the Site, current data gaps, and strategize towards Site closure. While most of the issues raised by ACEH in the March 7, 2014 letter were addressed and resolved during the meeting, a few data gaps remained.

In response to the March 7, 2014 letter from ACEH (ACEH, 2014a) and the April 22, 2014 meeting, SGI prepared the Work Plan (SGI, 2014). The Work Plan presented 1) a plan to address the remaining data gaps, and 2) responses to ACEH comments from the March 7, 2014 letter. ACEH

approved the Interim Remedial Action Plan (IRAP) in an August 26, 2014 *Conditional Work Plan Approval* (Conditional Approval; ACEH, 2014b).

The Conditional Approval identified the following conditions for approval of the Work Plan. The text in italics is quoted from the ACEH Conditional Approval letter followed by SGI's response:

• **PCB Investigation** — Two shallow soil bores are proposed for installation in the vicinity of wells MW-10 and MW-11 due to the detection of extractable-ranged hydrocarbons in soil samples collected at a depth of 2.5 feet below grade surface (bgs) in both of these soil bores. The work plan proposes to submit soil samples for analysis at a depth of 1.0 feet bgs, and to hold samples proposed to be collected at 2.5 and 5 feet bgs. ACEH additionally requests that soil samples from the 2.5 foot depth also be analyzed in order to target soil documented (or anticipated) to contain elevated extractable-ranged hydrocarbons over a reasonably large portion of the area adjacent to the western rail line (area presumed to be between MW-10 and MW-11), or at a minimum, to be in proximity to impacted soil.

<u>SGI Response</u> – Soil samples from all three depths (1.0, 2.5, and 5.0 feet bgs) were analyzed for PCBs. Laboratory analytical results are discussed in Section 4.2.

• Western Boundary Surface Soil Staining — The work plan also proposes to collect representative soil samples from surficial staining at the southwestern portion of the subject site and analyze the soil samples for extractable-ranged hydrocarbons. Because the staining appeared to be motor oil related, ACEH additionally requests that the samples also be analyzed for the five wear metals. ACEH anticipates that other standard waste oil constituents, such as chlorinated organic compounds and benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds are not a significant concern due to the sun-washed environment of this corner of the site.

<u>SGI Response</u> – Soil samples from soil borings SB-SGI-1 and SB-SGI-2 were analyzed for the five wear metals. Laboratory analytical results are discussed in Section 4.2 and 5.1.1.

• Soil Sample Selection Protocols — The work plan proposes to install one groundwater monitoring well in the southwestern portion of the site to define a downgradient direction. The work plan proposes to collect and retain for laboratory analysis one to three soil samples. ACEH requests that soil samples be analyzed at significant lithology changes, photoionization detections, and other signs of contamination such as staining or discoloration.

<u>SGI Response</u> – Two soil samples from boring MW-12 were selected for analysis at lithology changes. No signs of contamination were observed during drilling.

• **Groundwater Sampling Matrix** — The referenced work plan included a groundwater monitoring matrix (Table 1) proposed for two groundwater monitoring and sampling events. ACEH has reviewed the matrix, is in general agreement with the matrix; however, requests additional sampling at five wells in order to understand changes in groundwater

concentrations at these locations since the pilot test work, and also to eliminate potential confusion caused by older non-representative groundwater data. Specifically, ACEH additionally requests the collection of all analytes (Volatile Organic Compounds [VOCs] and Total Petroleum Hydrocarbons [TPH] as gas by EPA 8260, TPH as diesel [TPHd] and motor oil [TPHmo] by EPA 8015) at wells E-5, E-9, E-10, and E-11, and TPHd and TPHmo at well MW-7. This is expected to clarify residual groundwater contamination beneath Area 4 at the site.

<u>SGI Response</u> – The requested analytes were added to the sampling matrix. Wells E-10 and E-11 could not be located and appear to have been paved over.

• Silica Gel Cleanup — The work plan proposes to use silica gel cleanup (SGC) on extractable-ranged analytical testing in groundwater. ACEH requests that all soil and groundwater samples analyzed for extractable-ranged hydrocarbons be analyzed with SGC.

<u>SGI Response</u> – All groundwater samples were analyzed for extractable-ranged hydrocarbons following silica gel cleanup. Only soil samples from the 2.5 feet bgs depth in borings SB-SGI-1 and SB-SGI-2 were analyzed extractable-ranged hydrocarbons following silica gel cleanup. Laboratory analytical results are discussed in Section 4.2 and 5.1.1.

The findings from the Data Gaps investigation and groundwater monitoring event have been included on an Updated Response to Comments table, included in Appendix A.

1.2 Report Organization

The remainder of this Report is organized into the following sections:

Section 2.0: Site Background

This section presents the background and history of the Site, including a Revised Conceptual Site Model.

Section 3.0: Data Gap Investigation Activities

This section presents the methodology of the soil, groundwater, soil vapor sampling performed at the Site.

Section 4.0: Investigation and Sampling Results

This section presents the investigation and sampling activities results and provides discussion of the results.

Section 5.0: Data Evaluation and Recommendations

This section presents a summary of Data Gap Investigation activities, evaluation and discussion of the data, and recommendations.

Section 6.0: References

This section presents a summary of referenced documents used in preparation of this report.

2.0 SITE BACKGROUND

2.1 Site Location and History

The former PACO Pumps facility is located at 9201 San Leandro Street in Oakland, California (the Site, Figures 1 and 2). The Site is an approximately 4.6-acre parcel that is generally bounded by: an access road and heavy industrial/manufacturing business to the north; San Leandro Street, Union Pacific Railroad tracks, and elevated Bay Area Rapid Transit (BART) tracks to the east; Union Pacific Railroad tracks and easements for petroleum pipelines to the west; and industrial/warehousing businesses to the south. The surrounding area is a mix of industrial and heavy industrial (manufacturing) use, although there is residential uses located approximately 450 feet south/southwest of the Site. Currently, the entire Site is covered with either asphalt, concrete, or buildings constructed on concrete slabs. Two large warehouse buildings occupy the western and eastern areas of the Site. The nearest surface water body is San Leandro Creek, which is located approximately 5,000 feet southwest of the Site. No drinking water wells have been identified within 1/4-mile of the Site (SGI, 2012a).

The Site was historically used as a manufacturing facility since 1945 for industrial pumps, tents, and as a foundry (Jonas & Associates, Inc. [Jonas], 1991) and has been used for warehousing and medicinal plant growing. Currently, the Site is owned by 9201 San Leandro LLC and used for transportation, storage, and warehousing company.

2.2 Previous Site Investigations and Remediation Activities

Subsurface soil and groundwater conditions have been investigated since the 1980's by various consultants including Jonas, ERAS Environmental Inc. (ERAS), Levine Fricke Recon Inc. (LFR), and most recently SGI. According to the ERAS *Subsurface Investigation and Groundwater Monitoring Report* (ERAS, 2008), the Jonas *Site Characterization Report* (Jonas, 1992) identified the location of a former 550-gallon UST located on the southeast side of Building 3. According to LFR, the former UST was used for gasoline storage. The UST was reportedly removed prior to a 1992 investigation of the assumed former tank pit area, where gasoline-impacted soil was discovered. This former UST location was over excavated in the 1992 investigation and soil was removed from the Site. These activities removed major sources of subsurface contamination, but impacted soil remained near the foundation of the building to the west of the former UST location. Several investigations were completed in the area, including drilling of soil borings inside the building located west of the former UST.

LFR conducted additional investigations and a remediation pilot test in 2009 and recommended site remediation by air sparging, soil vapor extraction, and ozone injection. LFR completed five soil borings using membrane interface probe (MIP) technology to evaluate the distribution of contaminants in this part of the Site. LFR also collected two shallow groundwater samples (17 to 20 feet bgs) and two deep groundwater samples (27 to 30 feet bgs), installed two new groundwater monitoring wells, one shallow and one deep air sparge wells, and three soil vapor extraction (SVE)

test wells. The results of the investigation, as summarized by LFR (LFR, 2009), indicated that the deeper groundwater did not contain detectable concentrations of petroleum contaminants, and this finding has been confirmed during subsequent groundwater monitoring events.

After review of the previous site investigation data and LFR vapor extraction test data, SGI made alternative recommendations for remediation with the following approach (SGI, 2009):

- Focused, high- vacuum extraction of vadose zone hydrocarbons in the edges of the former UST excavation, including beneath Building 3; and
- Extraction of hydrocarbons from the shallow groundwater zone, followed by natural attenuation.

In October 2009, SGI submitted a *Remediation Work Plan* (SGI, 2009) that proposed episodes of high-vacuum dual-phase extraction (HVDPE) rather than construction and operation of a fixed remediation system. In April 2010, a 24-hour remedial action pilot test was conducted, and the results indicated that a longer-term remedial action was warranted. In June 2010, after installation of 12 extraction wells and an additional groundwater monitoring well (MW-8), SGI conducted a 10-day dual-phase extraction episode that resulted in the removal of significant hydrocarbon mass and the collection of reliable site contaminant distribution data.

Based on the limited air flow and groundwater extraction rates, low hydrocarbon concentrations present in soil, and a laterally and vertically delineated, limited benzene plume, any effort focused on in-situ remediation of hydrocarbons would be both lengthy and costly, and not substantially more effective than the apparent on-going natural attenuation of hydrocarbons. The *Post Remediation Sampling and First Semi-Annual Monitoring Report*, dated October 8, 2010, described the results of the investigation/remediation at Area 4, post-remediation sampling, and first semi-annual groundwater monitoring. The report also included a human health risk evaluation of soil vapor intrusion into Building 3 indoor air.

On January 5, 2012, at the request of ACEH, SGI submitted a Remedial Investigation (RI) Work Plan (SGI, 2012a) for sub-slab soil gas sampling to confirm the previous soil gas interpretations. The RI Work Plan included a preferential pathway study. Following ACEH comments, RI Work Plan modifications were submitted on June 20, 2012 (SGI, 2012b). ACEH's comments indicated that additional downgradient wells would be appropriate, and suggested that SGI conduct the investigation based on guidance presented in the CRWQCB's LTCP (CRWQCB, 2012). Additional modifications were made to the investigation plan and were discussed with ACEH via email prior to implementation.

In March 2013, three groundwater monitoring wells were installed along the western boundary of the Site. In addition, eight soil vapor probes were installed In Areas 4 (5 probes) and Area 5 (3 probes). Results of subsequent groundwater sampling indicated that groundwater leaving the Site to the west was not impacted with benzene and contained very low concentrations of methyl tert butyl ether (MTBE) and TEPH. Soil vapor sampling indicated that total petroleum hydrocarbons-gasoline range organics (TPH-GRO) and benzene were the most common

compounds detected in soil vapor. Results of the remedial investigation are presented in the *Remedial Investigation Activities and Groundwater Monitoring Report* (SGI, 2013). Semi-annual groundwater monitoring and sampling addresses groundwater conditions site-wide.

2.3 Conceptual Site Model

A revised conceptual site model (CSM) that assesses the nature, extent, and mobility of the release has been developed and is presented Appendix B. Per the LTCP, not all of the supporting data and analysis used to develop the CSM are necessarily presented in this report; however, they may be found in historical reports submitted to ACEH and referenced in Appendix B.

3.0 DATA GAPS INVESTIGATION ACTIVITIES

The objectives of the Data Gap activities were to:

- Evaluate the potential presence of PCBs associated with elevated TEPHs in shallow soil in the alley along the western portion of the Site, particularly adjacent to monitoring wells MW-10 and MW-11.
- Install one shallow groundwater monitoring well in the southwestern corner of the Site to confirm Site-wide groundwater flow direction and delineate impacted groundwater in the southwestern portion of the Site.
- Evaluate the presence of TEPH in shallow soil beneath an area that appeared to be stained along the western property boundary.
- Assess groundwater conditions by conducting two Site-wide groundwater monitoring and sampling events.
- Collect additional information relating to the construction of floor drains inside the eastern warehouse (Building 1 shown on Figure 2).

3.1 **Pre-Field Activities**

Prior to investigative activities at the Site, an application to advance four borings and install one groundwater monitoring wells were prepared and submitted along with appropriate fees to ACEH. A copy of the boring permit is included in Appendix C.

A site visit was performed to mark the locations of the proposed borings at the Site. Underground Services Alert (USA) was notified of the drilling activities as required.

3.2 Shallow Soil Sampling

On September 19, 2014, SGI contracted with Gregg Drilling of Martinez, California to conduct soil sampling at the Site. In response to ACEH concerns regarding the potential presence of PCBs in association with elevated concentrations of TEPH detected in shallow soil during the installation of monitoring wells MW-10 and MW-11, soil samples were collected from two soil borings located adjacent to monitoring wells MW-10 and MW-11. Ground surface in the area of these two sampling locations consisted of asphalt. The two soil borings were completed to approximately five feet bgs using direct-push technology. Soil samples were collected from approximately 1.0, 2.5, and 5.0 feet bgs and submitted to TestAmerica Laboratories Inc. in Pleasanton, California for PCB analysis by USEPA Method 8082.

During an on-Site meeting with ACEH on April 22, 2014, two areas of soil that appeared to have been impacted with what appeared to be used motor oil were observed along the southwestern fence line of the property. This area was being used for stockpiles of broken asphalt. Most of the asphalt appeared to be removed by the property owner prior to the Data Gaps investigation;

however, some broken asphalt remained. Two soil borings were advanced to confirm soil was not impacted at depth. Soil samples were collected from approximately 1.0, 2.5, and 5.0 feet bgs and submitted to TestAmerica Laboratories Inc. in Pleasanton, California for TEPH analysis by USEPA Method 8015, and metals analysis by USEPA Method 6010. Initially, only the soil samples collected from 1.0 ft bgs were analyzed, and the deeper samples were placed on hold pending results.

Following sample collection the borings were backfilled to surface with cement grout.

3.3 Shallow Groundwater Monitoring Well Installation

One shallow groundwater monitoring well (MW-12) was constructed in the southwestern corner of the Site, in an area used for warehousing storage. The well location is presented on Figure 2.

Prior to well installation, a continuous soil boring was advanced at the well location using directpush technology. The soil boring was advanced to a total depth of 20 feet bgs. A soil core from the borehole was visually evaluated, and the description of soil core included the following information with depth:

- Percentage of sample recovery;
- Depth to first encountered groundwater;
- Grain size classification with Unified Soil Classification System (USCS), (percentages of gravel, sand, silt, and clay);
- Color (Munsell color chart);
- Density;
- Odor; and
- Degree of moisture.

Soil samples were screened in the field for volatile organic compounds (VOCs) using an organic vapor monitor (OVM) equipped with a photo-ionization detector (PID). Approximately 20 grams of soil from various sections of soil core were placed in a self-sealing plastic bag to allow VOCs that may be present in the pore spaces to volatilize. The headspace in the plastic bag then was monitored for VOCs with the OVM. Based on field observations, select soil samples were collected from the boring and were analyzed for total petroleum hydrocarbons-diesel range organics (TPH-DRO, [C10-C28]) and total petroleum hydrocarbons-motor oil range organics (TPH-MRO, [C24-C36]) by EPA Method 8015M (collectively referred to as TEPH); and for VOCs, including TPH-GRO (C5-C12), and BTEX, and fuel additives, by EPA Method 8260B. Soil samples collected for laboratory analysis by EPA Method 8260B were field preserved using Terra Core samplers, an approved sampling protocol for EPA Method 5035. Soil samples were labeled and placed in an ice-filled cooler, and a chain-of-custody record was initiated in the field to accompany the soil samples to the laboratory. Observations of lithology during drilling are described in Section 4.1.

Following completion of the soil boring, the depth and length of the well screen was selected based on lithology of the soil core. The screen was selected to be set from 10 to 20 feet bgs. Prior to well construction, the soil boring was over-drilled with an 8-inch-diameter hollow stem auger.

The well was constructed using 2-inch diameter schedule 40 polyvinyl chloride (PVC). The well screen was constructed using 2-inch diameter schedule 40 PVC with 0.020-inch slots. #2/12 Monterey sand was placed from total depth of well screen to two feet above the well screen. Two feet of bentonite chips were placed above the sand pack followed by neat cement grout to approximately 1-foot bgs. The well was completed at grade with a 12-inch, flush-mounted well box sealed with concrete. The boring log and well construction details for well MW-12 is included in Appendix D.

Following the required curing period, the new well was developed by surging, bailing, and pumping, to produce representative water quality samples. Development continued until the water was clear and generally free of sediment and water quality parameters (pH, temperature, conductivity, and turbidity) stabilized to approximately 10 percent between successive measurements. Well development field data were documented on a groundwater monitoring well development form (included in Appendix E). Following development, the well was surveyed to a common datum, referenced to mean sea level (msl) by a licensed surveyor. The surveyor's report is included in Appendix F.

3.4 Groundwater Monitoring and Sampling Event

Blaine Tech Services, Inc. of San Jose, California was contracted to conduct the Quarter 3, 2014 semi-annual groundwater monitoring and sampling event on October 16, 2014. This section details the monitoring and sampling activities completed.

3.4.1 Groundwater Monitoring

Groundwater levels were measured in 24 groundwater monitoring wells. Four wells were not accessible during the sampling event: well MW-3 appeared to be missing the well lid and filled with dirt, and wells MW-8, E-10 and E-11 could not be located and appear to have been paved over. All inaccessible well locations are located upgradient of other wells, therefore the lack of data from these four wells during this monitoring event is not considered to be a significant data gap. Groundwater levels in all wells were gauged from the top of the well casing (TOC) using an electronic water level indicator graduated to 0.01-foot. The surveyed top of casing elevations are referenced to msl. Quarter 3, 2014 and historical groundwater elevations are presented in Table 1 and represented as a potentiometric surface on Figure 3.

3.4.2 Groundwater Sampling

Groundwater samples were collected from 17 of the 24 wells that were used for monitoring. Groundwater wells were purged using standard three well casing purging methods with submersible pumps or disposable bailers. Groundwater samples were collected with disposable bailers. Water quality parameters were measured and recorded during the groundwater purging to ensure the groundwater samples were representative of aquifer conditions. Samples were transferred directly into laboratory-supplied containers and placed on ice for transport to Accutest, Inc. of San Jose, California under chain-of-custody control. The monitoring well field sampling forms are included in Appendix G. Groundwater samples collected during the sampling event were analyzed for TPH as diesel (TPHd) and TPH as motor oil (TPHmo) by USEPA Method 8015M, TPH-GRO (C6-C10) and VOCs by USEPA Method 8260B, and/or polychlorinated biphenyls (PCBs) by USEPA Method 8082. Results of the groundwater monitoring and sampling event are presented below.

3.5 Waste Management

Soil cuttings, well purge water, well development water, and decontamination water generated during drilling and sampling were stored on Site in properly labeled 55-gallon steel drums pending waste characterization. All waste will be disposed in accordance with applicable laws and regulations.

3.6 Building 1 Floor Features

During the April 22, 2014 Site visit floor drain features were observed in the eastern warehouse (Building 1). ACEH requested an evaluation of the features. SGI used a PID to monitor for the presence of VOCs in the floor drain features. SGI also inquired with the property owner as to the historical use of the floor drain features and any information regarding why at least one of the features has been sealed with cement.

Current property owner is not aware of the use of these features. PID monitoring of the open floor drain features did not detect any vapors. SGI will request the owner to cover the inlet of feature so as not to provide a potential preferential pathway to the subsurface.

3.7 Well Conditions Inspection

During the Quarter 3, 2014 groundwater monitoring event, Blaine Tech inspected all wells and well boxes. The results of this inspection indicated that the lid to the well box and the well cap itself was missing at well MW-3. The well appeared to be filled with dirt and debris, and therefore was not accessible. The inspection also revealed that the lid to well AS-1S is broken, and bolts or tabs are missing from the well boxes as wells E-1, E-2, E-3, E-8, E-9, E-12, AS-1D, ASMW-2S, and ASMW-2D.

In addition, wells MW-8, E-10, and E-11 could not be located. Well MW-8 was last located in September 2012, well E-10 was last located in March 2012, and well E-11 was last located in April 2013. SGI suspects that these wells have been paved over by the property owner during maintenance of the storage yard.

4.0 INVESTIGATION AND SAMPLING RESULTS

4.1 Site Geology and Hydrogeology

As discussed above, soil samples were collected continuously during construction of groundwater monitoring well MW-12. The MW-12 boring log with well probe construction details is presented in Appendix D. Soil was not logged during the drilling of the four shallow soil boring as the soil was logged during previous investigations.

At the well MW-12 location, ground surface cover consisted of approximately six inches of asphalt. Subsurface soils consist primarily of coarse-grained soil to a depth of 3.5 feet bgs, and fine-grained soil (lean clay) to a depth ranging from approximately 13 feet bgs. Silty sand was observed from 13 to 20 feet bgs, the total depth of the borehole.

Groundwater was observed at approximately 14 feet bgs in the borehole during drilling. Following monitoring well development, groundwater was measured at 9.27 feet bgs in well MW-12. This variation between initial depth to groundwater observed during drilling and final depth to groundwater measured in the completed well was observed during drilling activities in the past. Based on lithology observed during drilling and previous investigations, it appears that the clay present to a depth of approximately 13.5 feet bgs acts as a confining or semi-confining layer.

4.2 Soil Sample Results

A total of 12 soil samples were analyzed from the five soil borings drilled on Site. Three soil samples were analyzed from each of borings SB-MW-10 and SB-MW-11; two soil samples were analyzed from each of borings SB-SGI-1 and SB-SGI-2; and two soil samples were analyzed from boring MW-12. Laboratory analytical reports are included in Appendix H, and discussed below.

- PCB concentrations were detected in all six samples in which they were analyzed. PCB congener Aroclor 1254 was detected in five samples a concentrations ranging from 0.028 milligrams per kilogram (mg/kg) in sample SB-MW-10-5 at 5 feet bgs to 2.5 mg/kg in sample SB-MW-11-5 at 5 feet bgs. PCB congener Aroclor 1260 was detected in at a depth of 2.5 feet bgs in SB-MW-10-2.5 at a concentration of 0.013 mg/kg. Laboratory analytical results for PCB analysis are presented in Table 2.
- TPH-DRO concentrations were detected in five of the six soil samples in which they were analyzed. At borehole MW-12, TPH-DRO was detected at a concentration of 44 mg/kg at 4 feet bgs, but was not detected at a depth of 14 feet bgs. TPH-DRO was detected at borehole SB-SGI-1 at a concentration of 280 mg/kg at 1.0 foot bgs and 51 mg/kg at 2.5 feet bgs. TPH-DRO was detected at borehole SB-SGI-2 at a concentration of 580 mg/kg at 1.0 foot bgs and 280 mg/kg at 2.5 feet bgs. Soil samples collected from 2.5 feet bgs in borings SB-SGI-1 and SB-SGI-2 were analyzed for TPH-DRO following silica gel cleanup. Laboratory analytical results for TPH-DRO analysis are presented in Table 2.

- TPH-MRO concentrations were detected in five of the six soil samples in which they were analyzed. At borehole MW-12, TPH-MRO was detected at a concentration of 200 mg/kg at 4 feet bgs, but was not detected at a depth of 14 feet bgs. TPH-MRO was detected at borehole SB-SGI-1 at a concentration of 890 mg/kg at 1.0 foot bgs and 66 mg/kg at 2.5 feet bgs. TPH-MRO was detected at borehole SB-SGI-2 at a concentration of 1,800 mg/kg at 1.0 foot bgs and 600 mg/kg at 2.5 feet bgs. Soil samples collected from 2.5 feet bgs in borings SB-SGI-1 and SB-SGI-2 were analyzed for TPH-MRO following silica gel cleanup. Laboratory analytical results for TPH-MRO analysis are presented in Table 2.
- Cadmium, chromium, lead, nickel, and zinc concentrations were analyzed in four soil samples. Cadmium was detected in three of the four samples at a maximum concentration of 6.4 mg/kg (SB-SGI-2 at 2.5 feet bgs). Chromium was detected in all four samples at a maximum concentration of 140 mg/kg (SB-SGI-2 at 1.0 feet bgs). Lead was detected in all four samples at a maximum concentration of 310 mg/kg (SB-SGI-2 at 1.0 feet bgs). Nickel was detected in all four samples at a maximum concentration of 310 mg/kg (SB-SGI-2 at 1.0 feet bgs). Nickel was detected in all four samples at a maximum concentration of 10 mg/kg (SB-SGI-2 at 2.5 feet bgs). Zinc was detected in all four samples at a maximum concentration of 1,700 mg/kg (SB-SGI-2 at 2.5 feet bgs). Laboratory analytical results for metals analysis are presented in Table 2.
- VOCs, including TPH-GRO, BTEX, and fuel additives were analyzed in soil samples SB-MW-12-4 and SB-MW-12-14. There were no detections of these compounds, or any other VOCs, in these two soil samples. Laboratory analytical results for VOCs were not tabulated due to the absence of detected compounds.

A discussion of the laboratory analytical results for soil samples is presented in the Data Evaluation section.

4.3 Groundwater Sampling Results

The Quarter 3, 2014 semi-annual groundwater monitoring and sampling event was conducted on October 16, 2014. Groundwater levels were measured in all accessible wells, and groundwater samples were collected from a subset of the wells.

4.3.1 Groundwater Elevations

The depth-to-water measurements ranged from 6.95 feet below top of casing (btoc) in MW-6 to 9.80 feet btoc in E-3. Groundwater elevations ranged from 9.72 feet msl in E-3 to 12.51 feet msl in MW-6. However, a review of historical groundwater elevation data indicates that the groundwater level measured in well MW-6 was abnormally low and in well E-3 it was abnormally high.

A review of elevation data and the potentiometric surface map indicates shallow zone groundwater flows in a westerly direction at a gradient of approximately 0.0038 feet/foot in Areas 4 and 5. The flow direction and gradient is consistent with historical groundwater flow patterns.

A potentiometric surface map was constructed from the shallow groundwater elevation data and is presented as Figure 3. Quarter 3, 2014 and historical groundwater elevation data are included in Table 1.

4.3.2 Groundwater Analytical Results

On October 16, 2014, total of 19 wells were sampled as part of the Quarter 3, 2014 groundwater monitoring event. Groundwater samples from all 19 wells were analyzed for TPHd and TPHmo. In addition, groundwater samples from a subset of 14 wells were also analyzed for VOCs (including TPH-GRO, BTEX, and fuel additives). Laboratory analytical results for MTBE, benzene, TPH-GRO, and TPHd are presented on Figure 4. Quarter 3, 2014 laboratory analytical results and historical laboratory analytical results are summarized in Tables 3 and 4, respectively. The laboratory analytical report for groundwater samples are presented in Appendix H and results summarized below:

- TPH-GRO concentrations were detected in eight wells: MW-4, MW-6, E-3, E-6, E-7, E-8, E-9, and E-12. Concentrations in these wells were generally within historic ranges with concentrations ranging from 66.2 micrograms per liter (μg/L) in MW-4 to 39,300 μg/L in E-9. TPH-GRO concentration trends have been stable in all wells, with the highest concentrations in wells downgradient of the former UST adjacent to Building 3. TPH-GRO was not detected in perimeter wells MW-1, MW-5, MW-9, MW-10, MW-11, and newly constructed well MW-12, indicating that groundwater containing TPH-GRO is delineated within the Site.
- TPHd concentrations were detected in all 19 wells sampled. Concentrations were generally within historic ranges with concentrations ranging from 24.5 µg/L in MW-9 to 106,000 µg/L in E-3. TPHd concentration trends have been stable or decreasing. The highest concentrations were detected in wells E-3 and E-5, downgradient of the former UST adjacent to Building 3. TPHd was detected at low concentrations in boundary wells MW-1, MW-5, MW-9, MW-10, and MW-11. The groundwater sample collected from newly constructed well MW-12 had a TPHd concentration of 39.9 µg/L. The low concentrations of TPHd in boundary wells indicate that TPHd-containing groundwater is generally delineated within the Site.
- TPHmo concentrations were detected in all 19 wells sampled. TPHmo concentrations ranged from 48.5 µg/L in E-12 to 153,000 µg/L in E-3. Concentration trends are generally stable or decreasing, and within historic ranges. The highest concentrations were detected in wells E-3, E-5, and E-7, downgradient of the former UST adjacent to Building 3. TPHmo was detected at low concentrations in boundary wells MW-1, MW-5, MW-9, MW-10, and MW-11. The groundwater sample collected from newly constructed well MW-12 had a TPHmo concentration of 63.1 µg/L. The low concentrations of TPHmo in boundary wells indicate that TPHmo-containing groundwater is generally delineated within the Site.
- Benzene concentrations were detected in nine wells: shallow wells MW-6, E-3, E-6, E-7, E-8, E-9, and E-12, and deeper well AS-1D. Concentrations were generally within historic

ranges with concentrations ranging from 0.30 μ g/L in E-6 to 2,460 μ g/L in E-9. Benzene concentration trends are generally stable or decreasing. Elevated benzene concentrations are co-located with elevated TPH-GRO concentrations. Benzene was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, MW-11, and newly constructed well MW-12, indicating that benzene-containing groundwater is delineated within the Site.

- MTBE concentrations were detected in only six wells MW-9, MW-12, E-3, E-5, E-6, and E-7. Concentrations were generally within historic ranges with concentrations ranging from 0.28 μg/L in MW-12 to 1.4 μg/L in E-7. Where detected, MTBE concentration trends have been stable or decreasing.
- Wells MW-10 and MW-11 were sampled for PCBs after the soil analytical results indicated PCB impacts to shallow soil adjacent to these two wells. PCBs were not detected in these two groundwater samples.
- Fuel constituents/additives toluene, ethylbenzene, xylenes, 1,2-dichloroethane (1,2-DCA), and tert-butyl alcohol (TBA) were also detected in groundwater samples. Concentration trends of these constituents appear to be stable or decreasing in all wells.
- Laboratory analytical results from the sample collected from the deep monitoring well in the former UST area (AS1D) indicated that only very low concentrations of TPHd, TPHmo, and benzene were detected in the sample. This confirms previous findings that contamination is vertically defined and limited to the shallow groundwater zone.

Results of the Quarter 3, 2014 semi-annual groundwater sampling indicate the downgradient boundary wells (MW-1, MW-5, MW-9, MW-10, MW-11, and MW-12) contain low and decreasing concentrations of TPHd and TPHmo. The absence TPH-GRO, BTEX, and MTBE in groundwater samples collected from the downgradient boundary wells indicates the volatile organic plume is stable and contained on Site.

5.0 DATA EVALUATION AND RECOMMENDATIONS

This report documents the Data Gaps investigation activities and groundwater monitoring for Site soil and groundwater conducted at 9201 San Leandro Street, Oakland, California in September and October 2014. A discussion of SGI's conclusions and recommendations based on the results, are presented below.

5.1 Data Evaluation

The following sections discuss the results of the soil and groundwater investigations at the Site. A discussion of how the results compare with the appropriate screening criteria is included.

5.1.1 Soil

Results of the Data Gaps investigation indicate that PCBs are present in all six shallow soil samples collected from locations where elevated concentrations of TEPH were previously detected. Because the PCB impacts in shallow soil along the western boundary of the Site are not considered to be sourced from the former UST, it is appropriate to screen PCB results against the CRWQCB's Environmental Screening Levels. PCBs concentrations above the ESL for direct contact (0.74 mg/kg) were detected in two of the six samples. PCB Aroclor 1254 was detected at concentrations of 1.0 mg/kg in sample SB-MW-10-1 at 1.0 foot bgs, and 2.5 mg/kg in sample SB-MW-11-5 at 5.0 foot bgs. The area is covered by asphalt and the current property owner has no plans to alter the current use; therefore, a current exposure pathway for direct contact with PCB-impacted soil is not complete.

Shallow soil samples were collected from an area along the southwestern fenceline that was used for stockpiling of broken asphalt. Soil appeared to be stained from surface disposal of what appeared to be used motor oil. TEPH and metals were detected in all four soil samples. Because these shallow soil impacts along the western boundary of the Site are not considered to be sourced from the former UST, it is appropriate to screen the TEPH and metals results against ESLs. While the ESL ceiling value for TPH-DRO and TPH-MRO are the lowest screening levels, they are not appropriate to use since the impacted area is really limited and would not cause a nuisance to the general public. It is appropriate to screen the TPH-DRO results against the leaching to groundwater criteria (570 mg/kg) and to screen the TPH-MRO results against the direct exposure criteria (100,000 mg/kg). As presented on Table 2, the TEPH results are well below their appropriate corresponding screening levels. TEPH results from soil samples collected from boring MW-12, advanced approximately 20 feet east of SB-SGI-2, indicate very low concentrations of TEPH in shallow soil (4.0 feet bgs). TEPH were not detected in the deeper soil sample collected from 14 feet bgs. These results confirm that the shallow TEPH impacts in this area were sourced from the surface disposal of what appeared to be used motor oil, and not from the former UST. Laboratory analytical results for TEPH analysis and appropriate screening criteria are presented on Table 2.

The four shallow soil samples from the areas of stained soil were also analyzed for the five wear metals (cadmium, chromium, lead, nickel, and zinc). Laboratory analytical results indicate that metals concentrations were below their corresponding screening criteria in all four shallow soil samples analyzed from borings SB-SGI-1 and SB-SGI-2. The lower of the direct exposure or ceiling value was used as the appropriate ESL criteria. While the urban area ecotoxicity ESL was the lowest ESL for cadmium, nickel, and zinc, this criterion is not appropriate for use due to the limited extent of an environment capable of supporting terrestrial plants and animals.

As discussed above VOCs, soil samples SB-MW-12-4 and SB-MW-12-14 were also analyzed for TPH-GRO, BTEX, and fuel additives. There were no detections of these compounds, or any other VOCs, in these two soil samples.

5.1.2 Groundwater

The Quarter 3, 2014 semi-annual groundwater monitoring and sampling event was conducted on October 19, 2014. Groundwater elevation data indicates shallow zone groundwater flows in a westerly direction at a gradient of approximately 0.0038 feet/foot, which is consistent with historical groundwater flow patterns.

TPH-GRO concentration trends are stable in all wells, with the highest concentrations in wells downgradient of the former gasoline UST at Building 3. TPH-GRO was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, MW-11, and newly constructed well MW-12, indicating that groundwater containing TPH-GRO is delineated within the Site.

TPHd concentration trends are stable or decreasing. The highest concentrations were detected in wells E-3 and E-5, downgradient of the former gasoline UST at Building 3. TPHd was detected at low concentrations in boundary wells MW-1, MW-5, MW-9, MW-10, MW-11, and MW-12, indicating that TPHd-containing groundwater is essentially delineated within the Site.

TPHmo concentration trends are generally stable or decreasing, and within historic ranges. The highest concentrations were detected in wells E-3, E-5, and E-7, downgradient of the former UST adjacent to Building 3. TPHmo was detected at low concentrations in boundary wells MW-1, MW-5, MW-9, MW-10, MW-11, and MW-12. The low concentrations of TPHmo in boundary wells indicate that TPHmo-containing groundwater is essentially delineated within the Site.

Benzene concentration trends are generally stable or decreasing. Benzene was not detected in boundary wells MW-1, MW-5, MW-9, MW-10, MW-11, and newly constructed well MW-12, indicating that benzene-containing groundwater has been delineated and is not migrating from the Site.

MTBE concentrations were detected in only six wells and generally are within historic ranges. Where detected, MTBE concentration trends have been stable or decreasing.

Groundwater samples from wells MW-10 and MW-11 were analyzed for PCBs after the analytical results indicated PCB impacts to shallow soil at these locations. PCBs were not detected in these

two groundwater samples, and therefore confirm that PCBs in shallow soil have not leached into groundwater at these locations.

5.2 Recommendations

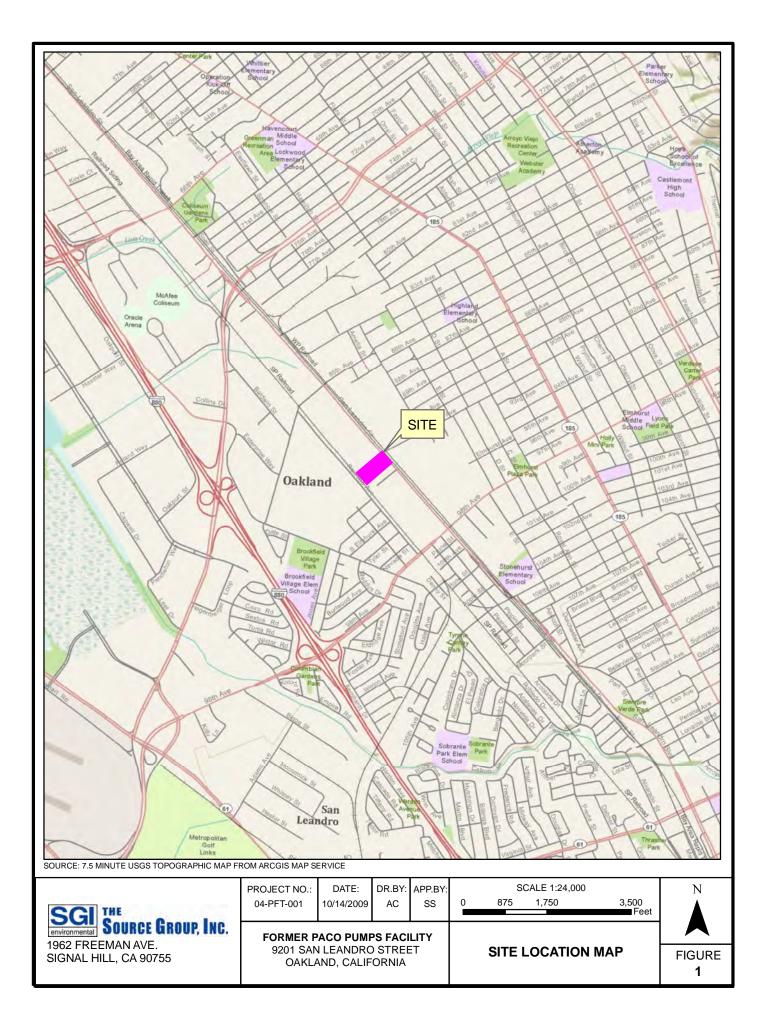
Based on the results of the well conditions inspection, a review of historical groundwater concentration trends and the presence of nearby wells, SGI recommends the destruction of well MW-3, rather than rehabilitation of well MW-3. Well AS-1S, located approximately 8 feet downgradient of well MW-3, has very similar concentration values and trends of TEPH and VOCs (Table 4). The presence of these two wells in such close proximity is redundant.

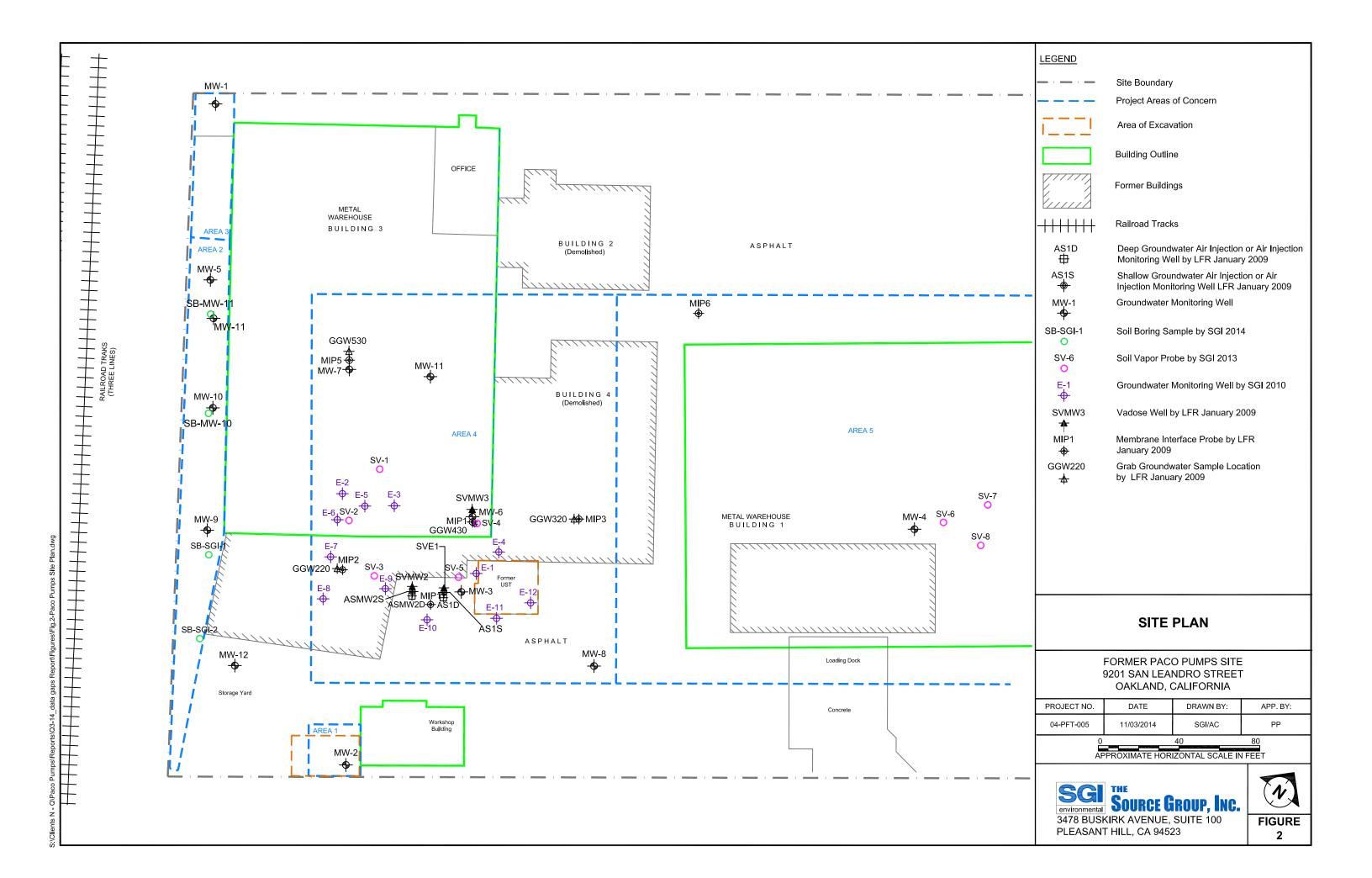
A Deed Restriction will be prepared by PCC and the current property owner that will address ACEH's concerns raised in March 7, 2014 comment letter and denial of Site closure. The Deed Restriction will be completed with ACEH's oversight and is expected to include building usage and site usage and soil management requirements.

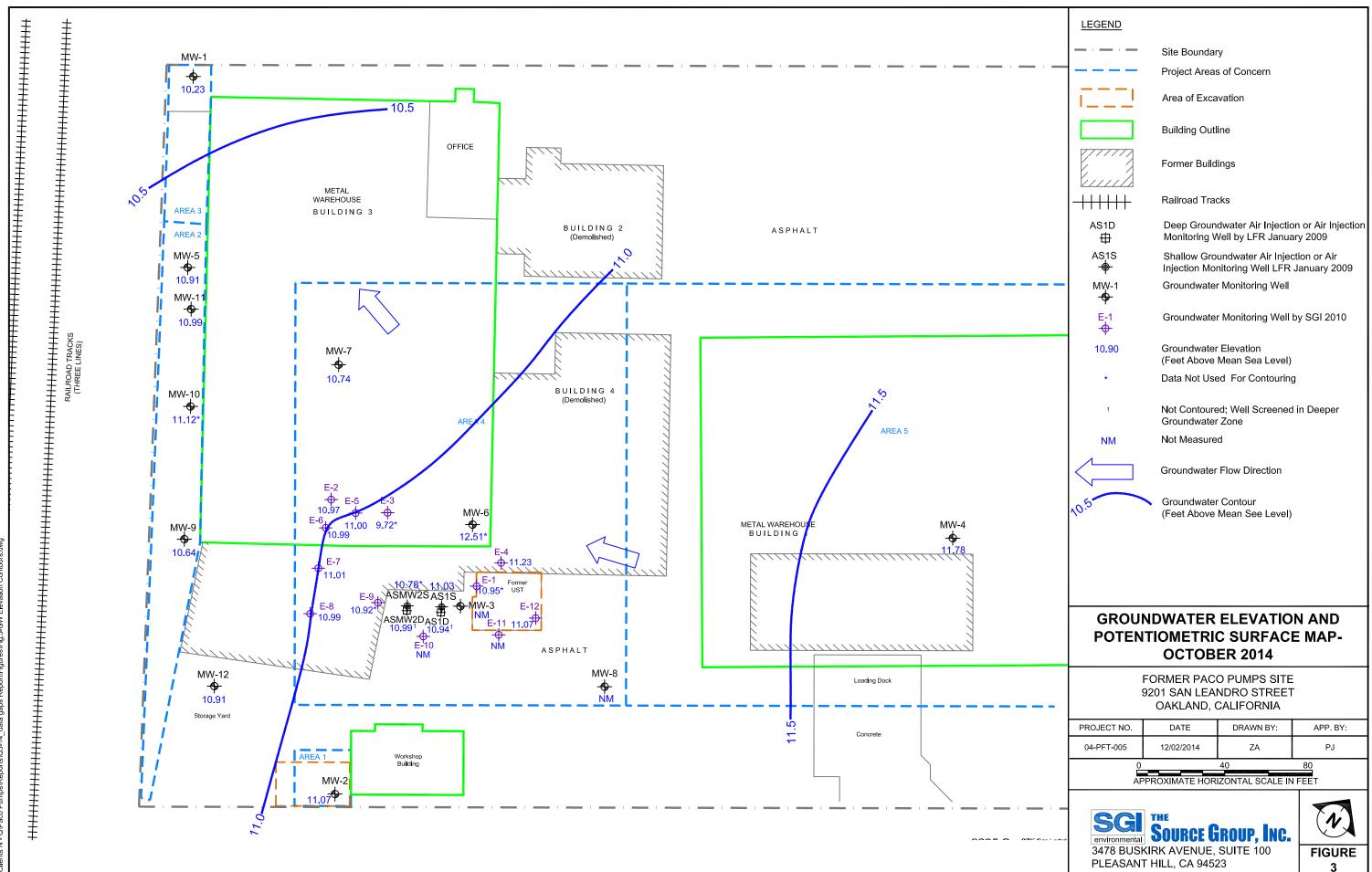
As proposed in the Work Plan, semi-annual groundwater sampling is planned for April 2015. Based on the results of the 2014 investigations and anticipated results of the April 2015 sampling event, SGI will request Site closure under the State Water Resource Control Board's Low-Threat Underground Storage Tank Case Closure Policy (CRWQCB, 2012).

6.0 **REFERENCES**

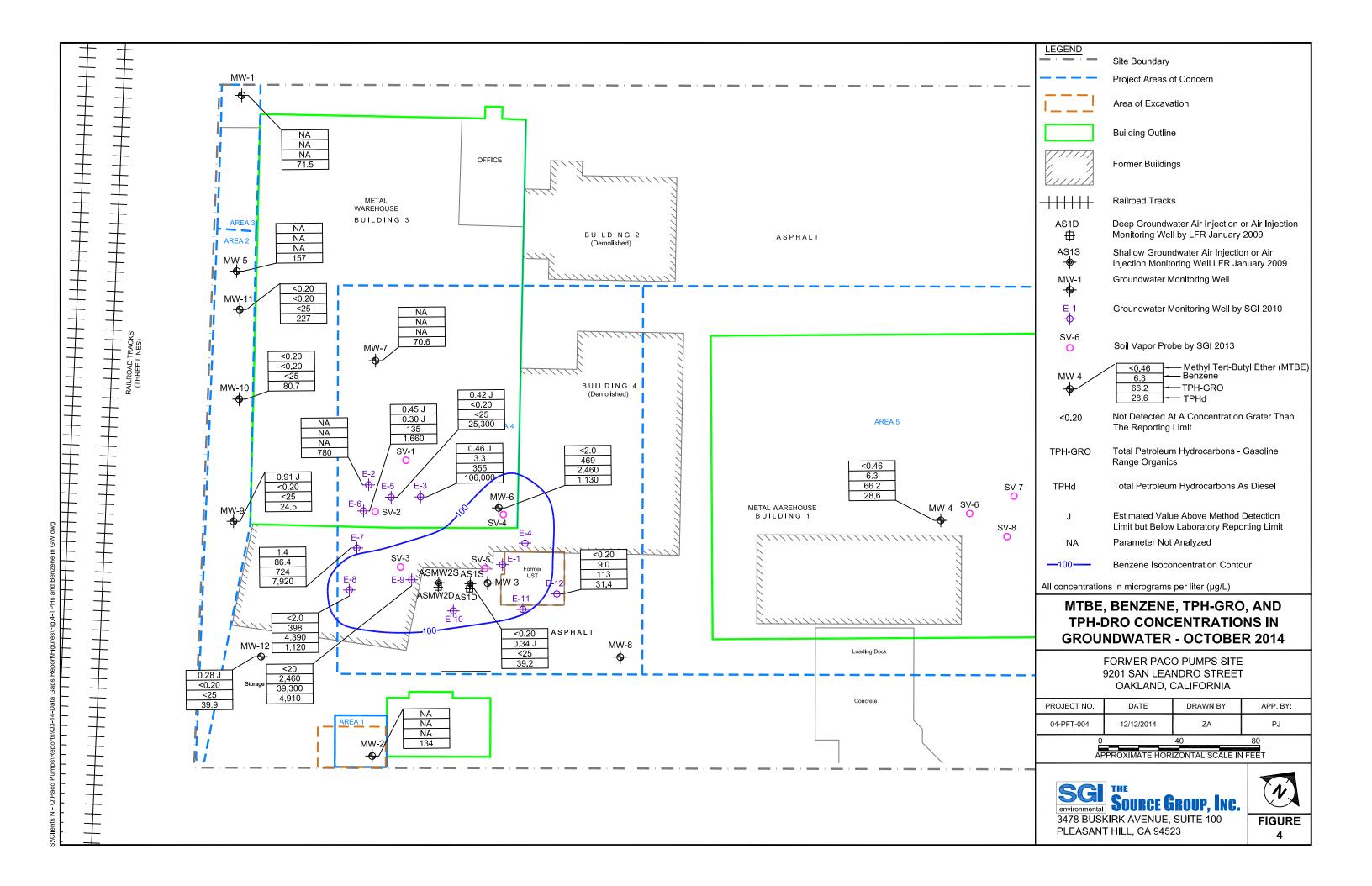
- Alameda County Environmental Health (ACEH). 2014a. Request for a Focused SCM and Data Gap Investigation Work Plan. 9201 San Leandro Street, Oakland, California. March 7.
- ACEH. 2014b. Conditional Work Plan Approval. 9201 San Leandro Street, Oakland, California. August 26.


CRWQCB. 2012. Low-Threat Underground Storage Tank Case Closure Policy. May 1.


- ERAS Environmental Inc. (ERAS). 2008. Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008, Former PACO Pumps Facility, 9201 San Leandro Street, Oakland, California. July 31.
- Jonas and Associates Inc. (Jonas). 1991. Soil Characterization Report, Soil Excavation Area. October 30.
- Jonas. 1992. Site Characterization Report, PACO Pumps Facility, 9201 San Leandro Street in Oakland, California. October 16.


Levine Fricke Recon Inc. (LFR). 2009. Investigation and Remediation Activities Report. May 15.

- The Source Group, Inc. (SGI). 2009. Remediation Work Plan Area 4, Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. October 30.
- SGI. 2012a. Sub-Slab Vapor Survey and Remedial Investigation Work Plan. Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. January 5.
- SGI. 2012b. Revisions to Sub-Slab Vapor Survey and Remedial Investigation Work Plan. Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. June 20.
- SGI. 2013. Remedial Investigation Activities and Groundwater Monitoring Report. Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. July 25.
- SGI. 2014. Data Gaps Work Plan. Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. June 18.
- USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Solid Waste and Emergency Response. December.
- USEPA. 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. February 22.


FIGURES

::\Clients N - Q\Paco Pumps\Reports\Q3-14_data gaps Report\Figures\Fig.3-GW Elevation Contours.dv

TABLES

Well Identification	Date Measured	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾		
MW-1	15-Nov-92	18.05	9.34	8.71		
	9-Mar-93	10.00	8.50	9.55		
	21-Jul-93		9.00	9.05		
	26-May-94		9.06	8.99		
	24-Aug-94		8.40	9.65		
	22-Nov-94		8.20	9.85		
	8-Feb-95		8.30	9.75		
	31-May-95		9.35	8.70		
	8-Aug-95		9.16	8.89		
	29-Nov-95		9.28	8.77		
	29-Feb-96		7.62	10.43		
	23-May-96		8.28	9.77		
	4-Nov-96		9.20	8.85		
	13-May-97		9.04	9.01		
	14-Nov-07		8.50	9.55		
	17-Jun-08		9.04	9.01		
	13-Jan-09	17.76	8.65	9.11		
	28-Apr-09	17.70	8.67	9.09		
	6-Nov-09		8.79	8.97		
	28-Jun-10		8.77	8.99		
	30-Dec-10		7.20	10.56		
	8-Jun-11		8.12	9.64		
	15-Dec-11		8.76	9.04		
			6.90	10.86		
	28-Mar-12		8.92	8.84		
	<u>13-Sep-12</u> 5-Apr-13		7.73	10.03		
			8.68	9.08		
	<u>1-Oct-13</u> 16-Oct-14		7.53	10.23		
		10.40				
MW-2	15-Nov-92	19.40	10.05	9.35		
	9-Mar-93		9.21	10.19		
	21-Jul-93		9.72	9.68		
	26-May-94		9.58	9.82		
	24-Aug-94		9.98	9.42		
	22-Nov-94		8.70	10.70		
	8-Feb-95		8.68	10.72		
	31-May-95		9.48	9.92		
	8-Aug-95		9.64	9.76		
	29-Nov-95		9.86	9.54		
	29-Feb-96		8.12	11.28		
	23-May-96		8.70	10.70		
	4-Nov-96		9.50	9.90		
	13-May-97		9.44	9.96		
	14-Nov-07		8.94	10.46		
	17-Jun-08	10.10	9.57	9.83		
	13-Jan-09	19.12	9.21	9.91		
	28-Apr-09		9.30	9.82		
	6-Nov-09		8.91	10.21		
	28-Jun-10		9.33	9.79		
	30-Dec-10		7.52	11.60		
	8-Jun-11		8.52	10.60		
	15-Dec-11		9.25	9.87		
	28-Mar-12		7.45	11.67		
	13-Sep-12		9.50	9.62		
	5-Apr-13		8.19	10.93		
	1-Oct-13		9.06	10.06		
	16-Oct-14		8.05	11.07		

Well Identification	Date Measured	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾		
MW-3	15-Nov-92	19.70	10.35	9.35		
	9-Mar-93		9.19	10.51		
	21-Jul-93		11.07	8.63		
	26-May-94		10.04	9.66		
	24-Aug-94		11.08	8.62		
	22-Nov-94		8.92	10.78		
	8-Feb-95		8.90	10.80		
	31-May-95		10.16	9.54		
	8-Aug-95		9.92	9.78		
	29-Nov-95		10.7	9.00		
	29-Feb-96		8.52	11.18		
			8.15	11.55		
	23-May-96		7.21	12.49		
	4-Nov-96					
	13-May-97		9.82	9.88		
	14-Nov-07		9.21	10.49		
	17-Jun-08	10.10	9.81	9.89		
	13-Jan-09	19.42	9.58	9.84		
	28-Apr-09		9.59	9.83		
	6-Nov-09		9.52	9.90		
	28-Jun-10		9.60	9.82		
	30-Dec-10		7.74	11.68		
	8-Jun-11		8.80	10.62		
	15-Dec-11		9.54	9.88		
	28-Mar-12		7.74	11.68		
	13-Sep-12		9.69	9.73		
	5-Apr-13		8.65	10.77		
	1-Oct-13		9.39	10.03		
	16-Oct-14		NA			
MW-4	15-Nov-92	19.65	8.87	10.78		
	9-Mar-93		7.96	11.69		
	21-Jul-93		8.06	11.59		
	26-May-94		8.57	11.08		
	24-Aug-94		8.75	10.90		
	22-Nov-94		7.41	12.24		
			7.20	12.45		
	8-Feb-95		8.32	11.33		
	31-May-95			10.99		
	8-Aug-95		8.66			
	29-Nov-95		8.93	10.72		
	29-Feb-96		6.54	13.11 12.41		
	23-May-96		7.24			
	4-Nov-96		8.58	11.07		
	13-May-97		8.42	11.23		
	14-Nov-07		7.61	12.04		
	17-Jun-08	10.05	8.31	11.34		
	13-Jan-09	19.37	NM	NM		
	28-Apr-09		NM	NM		
	6-Nov-09		8.00	11.37		
	28-Jun-10		8.05	11.32		
	30-Dec-10		5.70	13.67		
	8-Jun-11		6.88	12.49		
	15-Dec-11		8.88	10.49		
	28-Mar-12		5.77	13.60		
	13-Sep-12		8.29	11.08		
	5-Apr-13		6.96	12.41		
	1-Oct-13		8.04	11.33		
	16-Oct-14		7.59	11.78		

Vell Identification	Date Measured	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾		
MW-5	24-Aug-94	18.49	8.22	10.27		
	22-Nov-94		7.90	10.59		
	8-Feb-95		7.92	10.57		
	31-May-95		8.74	9.75		
	8-Aug-95		8.93	9.56		
	29-Nov-95		9.11	9.38		
	29-Feb-96		7.36	11.13		
	23-May-96		7.92	10.57		
	4-Nov-96		8.78	9.71		
	13-May-97		8.82	9.67		
	14-Nov-07		8.16	10.33		
	17-Jun-08		8.75	9.74		
	13-Jan-09	18.21	8.46	9.75		
	28-Apr-09		8.50	9.71		
	6-Nov-09		9.93	8.28		
	28-Jun-10		8.42	9.79		
	30-Dec-10		6.68	11.53		
	8-Jun-11		7.64	10.57		
	15-Dec-11		8.45	9.76		
	28-Mar-12		6.77	11.44		
	13-Sep-12		8.63	9.58		
	5-Apr-13		7.45	10.76		
	1-Oct-13		8.33	9.88		
	16-Oct-14		7.30	10.91		
		10.10				
MW-6	13-Jan-09	19.46	9.59	9.87		
	28-Apr-09		9.65	9.81		
	6-Nov-09		9.60	9.86		
	28-Jun-10		9.54	9.92		
	30-Dec-10		7.80	11.66		
	8-Jun-11		8.74	10.72		
	15-Dec-11		9.64	9.82		
	28-Mar-12		7.77	11.69		
	13-Sep-12		9.82	9.64		
	5-Apr-13		8.69	10.77		
	1-Oct-13		9.45	10.01		
	16-Oct-14		6.95	12.51		
MW-7	13-Jan-09	19.44	9.66	9.78		
	28-Apr-09		9.67	9.77		
	6-Nov-09		9.64	9.80		
	28-Jun-10		NM	NM		
	30-Dec-10		7.89	11.55		
	8-Jun-11		8.79	10.65		
	15-Dec-11		9.64	9.80		
	28-Mar-12		7.81	11.63		
	13-Sep-12		9.80	9.64		
	5-Apr-13		8.70	10.74		
	1-Oct-13		9.50	9.94		
	16-Oct-14		8.70	10.74		
MW-8	28-Jun-10	18.27	8.07	10.20		
	30-Dec-10	10.27	5.92	12.35		
	8-Jun-11		7.30	10.97		
			7.86	10.97		
	15-Dec-11		6.09	12.18		
	28-Mar-12					
	13-Sep-12		8.10	10.17		
	5-Apr-13		NA NA			
1	1-Oct-13					

Well Identification	Date Measured	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾		
MW-9	5-Apr-13	18.53	8.20	10.33		
	1-Oct-13		8.69	9.84		
	16-Oct-14		7.89	10.64		
MW-10	5-Apr-13	18.12	7.34	10.78		
	1-Oct-13		8.21	9.91		
	16-Oct-14		7.00	11.12		
MW-11	5-Apr-13	18.32	7.53	10.79		
	1-Oct-13		8.42	9.90		
	16-Oct-14		7.33	10.99		
MW-12	16-Oct-14	19.41	8.50	10.91		
AS-1S	13-Jan-09	19.38	9.45	9.93		
	28-Apr-09		9.67	9.71		
	6-Nov-09		9.63	9.75		
	28-Jun-10		9.90	9.48		
	30-Dec-10		7.65	11.73		
	8-Jun-11		8.65	10.73		
	15-Dec-11		9.01	10.37		
	28-Mar-12		7.68	11.70		
	13-Sep-12		8.89	10.49 10.88		
	5-Apr-13 1-Oct-13		8.50 9.51	9.87		
	16-Oct-14		8.35	11.03		
ASMW2S		19.38	9.51	9.87		
ASIVIW25	13-Jan-09 28-Apr-09	19.30	9.55	9.83		
	6-Nov-09		9.53	9.85		
	28-Jun-10		10.30	9.08		
	30-Dec-10		7.73	11.65		
	8-Jun-11		8.70	10.68		
	15-Dec-11		9.51	9.87		
	28-Mar-12		7.67	11.71		
	5-Apr-13		8.47	10.91		
	1-Oct-13		9.35	10.03		
	16-Oct-14		8.60	10.78		
AS-1D	13-Jan-09	19.31	9.42	9.89		
	28-Apr-09		9.48	9.83		
	6-Nov-09		9.50	9.81		
	28-Jun-10		9.90	9.41		
	30-Dec-10		7.65	11.66		
	8-Jun-11		8.60 9.47	<u> </u>		
	15-Dec-11 28-Mar-12		9.47 7.66	<u> </u>		
	13-Sep-12		9.65	9.66		
	5-Apr-13		8.40	10.91		
	1-Oct-13		9.30	10.01		
	16-Oct-14		8.37	10.94		
ASMW-2D	13-Jan-09	19.52	9.65	9.87		
	28-Apr-09		9.69	9.83		
	6-Nov-09		9.70	9.82		
	28-Jun-10		9.70	9.82		
	30-Dec-10		7.88	11.64		
	8-Jun-11		8.85	10.67		
	15-Dec-11		9.65	9.87		
	28-Mar-12		7.86	11.66		
	5-Apr-13		8.66	10.86		
	1-Oct-13		9.50	10.02		
	16-Oct-14	l	8.53	10.99		

Well Identification	Date Measured	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾ 9.92		
E-1	15-Dec-11	19.35	9.43			
	28-Mar-12		6.82	12.53		
	13-Sep-12		9.57	9.78		
	5-Apr-13		8.52	10.83		
	1-Oct-13		9.25	10.10		
	16-Oct-14		8.40	10.95		
E-2	30-Dec-10	19.56	7.95	11.61		
L-2	8-Jun-11	19.50	8.91	10.65		
	15-Dec-11		9.70	9.86		
	28-Mar-12		7.93	11.63		
	30-Jun-10		7.30	19.56		
			0.00			
	13-Sep-12		9.90	9.66		
	5-Apr-13		8.81	10.75		
	1-Oct-13		9.58	9.98		
	14-Oct-14		8.59	10.97		
E-3	15-Dec-11	19.52	9.72	9.80		
	28-Mar-12		7.84	11.68		
	13-Sep-12		10.10	9.42		
	5-Apr-13		8.67	10.85		
	1-Oct-13					
			9.53	9.99		
	16-Oct-14		9.80	9.72		
E-4	15-Dec-11	19.52	9.60	9.92		
	28-Mar-12		7.80	11.72		
	13-Sep-12		9.71	9.81		
	5-Apr-13		8.78	10.74		
	1-Oct-13		9.50	10.02		
	16-Oct-14		8.29	11.23		
E-5	15-Dec-11	19.53	9.69	9.84		
L-J	28-Mar-12	19.55	7.89	11.64		
	13-Sep-12		9.90	9.63		
	5-Apr-13		8.61	10.92		
	1-Oct-13		9.53	10.00		
	16-Oct-14		8.53	11.00		
E-6	15-Dec-11	19.46	9.61	9.85		
-	28-Mar-12		7.81	11.65		
	13-Sep-12		9.20	10.26		
	5-Apr-13		9.00	10.46		
	1-Oct-13		9.48	9.98		
	16-Oct-14		8.47	10.99		
E-7	30-Dec-10	19.59	7.95	11.64		
	8-Jun-11		8.89	10.70		
	15-Dec-11		9.72	9.87		
	28-Mar-12		7.94	11.65		
	13-Sep-12		10.00	9.59		
	5-Apr-13		8.75	10.84		
	1-Oct-13		9.63	9.96		
	16-Jan-14		8.58	11.01		
		10 50				
E-8	30-Dec-10	19.59	7.96 8.88	11.63		
	8-Jun-11			10.71		
	15-Dec-11		9.73	9.86		
	28-Mar-12		7.93	11.66		
	13-Sep-12		9.90	9.69		
	5-Apr-13		8.70	10.89		
	1-Oct-13		9.60	9.99		
	16-Oct-14		8.60	10.99		

Well Identification	Date Measured	Top-of-Casing Elevation ⁽¹⁾	Depth to Groundwater ⁽²⁾	Groundwater Elevation ⁽¹⁾
E-9	15-Dec-11	19.49	9.63	9.86
	28-Mar-12		7.84	11.65
	13-Sep-12		10.07	9.42
	5-Apr-13		9.20	10.29
	1-Oct-13		9.55	9.94
	16-Oct-14		8.57	10.92
E-10	15-Dec-11	19.3	9.44	9.86
	28-Mar-12		7.64	11.66
	13-Sep-12		N/A	
	5-Apr-13		N/A	
	1-Oct-13		N/A	
	16-Oct-14		N/A	
E-11	15-Dec-11	19.19	9.28	9.91
	28-Mar-12		7.45	11.74
	13-Sep-12		10.05	9.14
	5-Apr-13		8.29	10.90
	1-Oct-13		N/A	
	1-Oct-13		N/A	
E-12	15-Dec-11	18.89	8.89	10.00
	28-Mar-12		7.05	11.84
	13-Sep-12		9.08	9.81
	5-Apr-13		8.02	10.87
	1-Oct-13		8.80	10.09
	16-Oct-14		7.82	11.07

Notes:

⁽¹⁾ Top-of-casing and groundwater elevation in North America Vertical Datum 1988; wells re-surveyed by Tronoff Assocaites Land Surveying on February 2, 2009.

⁽²⁾ Depth to water measured in feet below top of casing.

N/A = Not Available.

-- = not measured.

Table 2 Summary of Analytical Results for Soil Former Paco Pumps Site

9201 San Leandro Street, Oakland, California

				Total Petr	oleum Hydrocarb	oons (TPH)	Vola	atile Organic C	Compounds (VC)Cs)			Metals			-	orinated Is (PCBs)
Sample ID	Location	Date Sampled	Depth	Gasoline Range Organics (C5-C12)	Diesel Range Organics (C10-C28)	Motor Oil Range Organics (C24-C36)	Benzene	Toluene	Ethylbenzen e	Xylenes	Cadmium	Chromium	Lead	Nickel	Zinc	Aroclor 1254	Aroclor 1260
			(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-SGI-1-1'	SB-SGI-1	9/19/2014	1	<0.25	280	890					<0.48	110	27	74	160		
SB-SGI-1-2.5'	SB-SGI-1	9/19/2014	2.5	<0.22	51 H ¹	66 H ¹					0.46	35	24	43	160		
SB-SGI-2-1'	SB-SGI-2	9/19/2014	1	NA	580	1,800					4.7	140	310	93	1,500		
SB-SGI-2-2.5'	SB-SGI-2	9/19/2014	2.5	NA	280 H ¹	600 H ¹					6.4	120	240	100	1,700		
SB-MW-12-4'	MW-12	9/19/2014	4	NA	44	200	< 0.005	<0.005	<0.005	<0.01							
SB-MW-12-14'	MW-12	9/19/2014	14	NA	<1.0	<50	<0.0044	<0.0044	<0.0044	<0.0088							
SB-MW-10-1'	SB-MW-10	9/19/2014	1													1.0	< 0.062
SB-MW-10-2.5		9/19/2014	2.5													<0.0025	0.013
SB-MW-10-5'	SB-MW-10	9/19/2014	5													0.028	<0.0025
SB-MW-11-1'	SB-MW-11	9/19/2014	1						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							0.14	<0.012
SB-MW-11-2.5		9/19/2014	2.5													0.72	<0.05
SB-MW-11-5'	SB-MW-11	9/19/2014	5													2.5	<0.12
Environmental S Commercial/Ind	•	,		770 ³	570 ³	100,000 ⁴	0.044 ³	3.3 ³	2.9 ³	2.3 ³	1,000 ⁴	2,500 ⁵	320 ⁴	2,500 ⁵	2,500 ⁵	0.74 ⁴	0.74 ⁴

Notes:

Detections are shown in **bold.**

ft bgs = feet below ground surface.

mg/kg = milligrams per kilogram.

<0.25 = not detected at or above the indicated laboratory reporting limit.

H = Sample was prepped or analyzed beyond the specified holding time.

-- = Constituent not analyzed

¹ = Sample analyzed following silica gel cleanup

² = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels, February 2013

³ = ESL Table G: Soil Screening Levels for Leaching Concern

⁴ = ESL Table K-2: Direct Exposure Soil Screening Levels, Commercial/Industrial Worker Exposure Scenario

⁵ = ESL Table H-2: Components for Ceiling Levels in Shallow Soil

Table 3 Summary of Current Analytical Results for Groundwater - Quarter 3, 2014 Former Paco Pump Site 9201 San Leandro Street

Oakland, California

Sample Location	Date Collected	Depth	TPHd	TPHmo	3	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	PCBs	Other Fuel Additives
		(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L 	μg/L	μg/L	μg/L	μg/L	μg/L
	outhwestern	1	-			shop buildi	ng″					
MW-2	16-Oct-14	5.25-20.25	134	195	NA	NA	NA	NA	NA	NA	NA	NA
FR Area 2 - A	rea South of	the Wareho	use Stora	ige Area	Building	g Adjacent	to the Sou	thern Prope	erty Bound	ary		
MW-1	16-Oct-14	5.25-20.25	71.5	83.2	NA	NA	NA	NA	NA	NA	NA	NA
FR Area 4 - F	ormer UST ne	ear Groundv	vater Mor	nitoring V	Vell MW	-3						
MW-5	16-Oct-14	5.25-20.25	157	94.4	NA	NA	NA	NA	NA	NA	NA	NA
MW-6	16-Oct-14	10-17	1,130	200	2,460	469	19.8	57.2	14.8 J	<2.0	NA	41.8 (1,2-DCA) 57.1 J (TBA)
MW-7	16-Oct-14	20-28	70.6	140	NA	NA	NA	NA	NA	NA	NA	NA
MW-9	16-Oct-14	12-17	24.5	58.2	<25	<0.20	<0.20	<0.20	<0.46	0.91 J	NA	
MW-10	16-Oct-14	10-20	80.7	78.9	<25	<0.20	<0.20	<0.20	<0.46	<0.20	<0.097	
MW-11	16-Oct-14	10-20	227	129	<25	<0.20	<0.20	<0.20	<0.46	<0.20	<0.10	
MW-12	16-Oct-14	10-20	39.9	63.1	<25	<0.20	<0.20	<0.20	<0.46	0.28 J	NA	
AS-1D	16-Oct-14	31-34	39.2	55.1	<25	0.34 J	<1.0	<0.20	<0.46	<0.20	NA	
AS-1D DUP-1	16-Oct-14	31-34	649	458	4,390	398	<1.0	180	145	<2.0	NA	
E2	16-Oct-14	8-18	780	1,080	NA	NA	NA	NA	NA	NA	NA	NA
E3	16-Oct-14	8-18	106,000	153,000	355	3.3	<1.0	<0.20	<2.0	0.46 J	NA	4.5 J (TBA)
E5	16-Oct-14	8-18	25,300	32,500	<25	<0.20	<0.20	<0.20	<0.46	0.42 J	NA	
E6	16-Oct-14	8-18	1,660	1,850	135	0.30 J	<0.20	0.24 J	<0.46	0.45 J	NA	
E7	16-Oct-14	8-18	7,920	14,100	724	86.4	17.7	12.2	33.7	1.4	NA	1.3 (1,2-DCA)
E8	16-Oct-14	8-18	1,120	1,030	4,090	385	8.2 J	172	139	<2.0	NA	
E9	16-Oct-14	8-18	4,910	490	39,300	2,460	2,250	595	3,110	<20	NA	0.85 J (1,2-DCA)
E12	16-Oct-14	8-18	31.4	48.5	113	9.0	0.24 J	1.4	<0.46	<0.20	NA	0.40 J (1,2-DCA)
FR Area 5 - S	uspected For	mer UST ne	ar Groun	dwater N	Ionitorii	ng Well MV	/-4					
MW-4	16-Oct-14	5.25-20.25	28.6	72	66.2	6.3	0.29 J	0.49 J	<2.0	<0.46	NA	
SL's Ground			100	100	100	1.0	40	30	20	5.0	5.0	0.5 (1,2-DCA), 12 (TBA)

Notes:

bgs = below ground surface

µg/L = micrograms per liter

Bold Font denotes concentration was greater than the ESL.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

(D) = duplicate sample

<6.0 = not detected at or above the laboratory reporting limit.

E = Indicates value exceeds calibration range

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

MTBE = methyl tert butyl ether

PCBs = polychlorinated biphenyls

1,2-DCA = 1,2-dichloroethane

TBA = tertiary butyl alcohol

J = Estimated value above method detection limit but below laboratory reporting limit.

ESL = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels Table F-1a and Table F-1b RWQCB February 2013.

Table 4 Summary of Historical Analytical Results for Groundwater Former Paco Pump Site 9201 San Leandro Street

Oakland, California

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
Location	Collected	(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LFR Area 1 - S	Southwestern (Corner of the	Site, west of tl	he "workshop	building'	,					
MW-2	16-Nov-92	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	9-Mar-93	5.25-20.25	430	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	21-Jul-93	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	29-Jan-94	5.25-20.25	<50	NA	<50	<2.0	<2.0	<2.0	<2.0	NA	NA
MW-2	26-May-94	5.25-20.25	<50	NA	<50	2.3	0.8	<0.5	<0.5	NA	NA
MW-2	24-Aug-94	5.25-20.25	<50	NA	<50	3.1	1.4	0.5	0.6	NA	NA
MW-2	22-Nov-94	5.25-20.25	<50	NA	<50	3.4	1.8	<0.5	0.5	NA	NA
MW-2	8-Feb-95	5.25-20.25	<50	NA	<50	4.5	1.3	<0.5	0.5	NA	NA
MW-2	31-May-95	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	8-Aug-95	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	29-Nov-95	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	29-Feb-96	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-2	23-May-96	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	4-Nov-96	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	ND
MW-2	13-Nov-03	5.25-20.25	NA	NA	<50	<0.5	< 0.5	<0.5	<2.0	NA	ND
MW-2	17-Jun-08	5.25-20.25	NA	NA	<50	<0.5	< 0.5	<0.5	< 0.5	1.1	ND
MW-2	6-Nov-09	5.25-20.25	360	NA	<50	<0.5	< 0.5	<0.5	<1.0	0.63	ND
MW-2	28-Jun-10	5.25-20.25	53.4J	NA 2.040	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-2	30-Dec-10	5.25-20.25	<280 NA	3,240 NA	29.2 J ^a	<1.0	<1.0	<1.0	<2.0	<1.0	ND ND
MW-2 MW-2	8-Jun-11 15-Dec-11	5.25-20.25 5.25-20.25		NA 422/311*	<50 <50	<1.0 <1.0	<1.0	<1.0 <1.0	<2.0 <2.0	<1.0 <1.0	ND
MW-2	13-Sep-12	5.25-20.25	95/<94* 301	<190	<50 <50	<1.0	<1.0 <1.0	<1.0	<2.0	0.20	ND
MW-2	5-Apr-13	5.25-20.25	<95	<190 434	42	<1.0	<1.0	<1.0	<2.0	0.20	ND
MW-2	1-Oct-13	5.25-20.25	<95 102	434 171 J	42 <50	<1.0	<1.0	<1.0	0.58	<1.0	ND
MW-2	16-Jan-14	5.25-20.25	134	195	NA	NA	NA	×1.0 NA	NA	NA	NA
										NA.	NA NA
	Area South of t		-		-			-	1		
MW-1	15-Nov-92	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	9-Mar-93	5.25-20.25	140	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	21-Jul-93	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	29-Jan-94	5.25-20.25	<50	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	26-May-94	5.25-20.25	NA	NA	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5	NA NA
MW-1 MW-1	24-Aug-94	5.25-20.25	NA	NA NA	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5	NA
MW-1	22-Nov-94	5.25-20.25	NA NA	NA	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	NA
MW-1	8-Feb-95 31-May-95	5.25-20.25 5.25-20.25	NA	NA	<50 <50	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	NA
MW-1	23-May-95	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	NA
MW-1	27-Oct-00	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
MW-1	14-Nov-07	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA
MW-1	17-Jun-08	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	0.67	NA
MW-1	6-Nov-09	5.25-20.25	<51	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
MW-1	28-Jun-10	5.25-20.25	56.8J	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-1	30-Dec-10	5.25-20.25	<94	114 J	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-1	16-Dec-11	5.25-20.25	<94*	522*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-1	28-Mar-12	5.25-20.25	<94*	<190*	NA	NA	NA	NA	NA	NA	NA
MW-1	13-Sep-12	5.25-20.25	187	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-1	5-Apr-13	5.25-20.25	<97	323	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-1	1-Oct-13	5.25-20.25	71.9 J	97.9 J	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-1	16-Oct-14	5.25-20.25	71.5	83.2	NA	NA	NA	NA	NA	NA	NA
FR Area 4 - F	ormer UST ne	ar Groundwat	er Monitoring	Well MW-3							
B-1	3-Feb-97	15-20	NA	NA	31,000	7,100	4,100	520	1,400	NA	NA
B-2	3-Feb-97	15-20	NA	NA	41,000	14,000	2,600	740	1,700	NA	NA
B-3	3-Feb-97	15-20	NA	NA	1,400	310	9.9	27	56	NA	NA
B-4	3-Feb-97	15-20	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-3	16-Nov-92	5.25-20.25	<50	NA	40,000	2,900	6,100	550	1,700	NA	NA
MW-3	9-Mar-93	5.25-20.25	290	NA	12,000	1,000	300	110	170	NA	NA
MW-3	21-Jul-93	5.25-20.25	<50	NA	3,400	420	63	36	37	NA	NA

Table 4Summary of Historical Analytical Results for GroundwaterFormer Paco Pump Site9201 San Leandro StreetOakland, California

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other Fuel Additives
Location	Collected	(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-3	29-Jan-94	5.25-20.25	<50	NA	5,600	910	220	47	36	NA	NA
MW-3	26-May-94	5.25-20.25	<50	NA	5,200	890	180	45	43	NA	NA
MW-3	24-Aug-94	5.25-20.25	<50	NA	5,200	580	76	29	22	NA	NA
MW-3	22-Nov-94	5.25-20.25	<50	NA	2,200	670	130	31	28	NA	NA
MW-3	8-Feb-95	5.25-20.25	<50	NA	2,900	780	120	31	33	NA	NA
MW-3	31-May-95	5.25-20.25	NA	NA	9,100	2,800	160	91	72	NA	NA
MW-3 (D)	31-May-95	5.25-20.25	NA	NA	5,300	1,300	170	37	44	NA	NA
MW-3	28-Aug-95	5.25-20.25	NA	NA	1,400	<0.5	<0.5	1.7	8.9	NA	NA
MW-3 (D)	28-Aug-95	5.25-20.25	NA	NA	4,800	2,500	150	53	44	NA	NA
MW-3	29-Nov-95	5.25-20.25	NA	NA	3,000	780	43	32	32	NA	NA
MW-3 (D)	29-Nov-95	5.25-20.25	NA	NA	2,400	830	38	21	16	NA	NA
MW-3	29-Feb-96	5.25-20.25	NA	NA	3,800	1,200	130	36	35	NA	NA
MW-3 (D)	29-Feb-96	5.25-20.25	NA	NA	8,000	3,400	430	100	99	NA	NA
MW-3	23-May-96	5.25-20.25	NA	NA	6,900	3,300	340	71	74	NA	NA
MW-3 (D)	23-May-96	5.25-20.25	NA	NA	4,300	3,200	350	72	74	NA	NA
MW-3	4-Nov-96	5.25-20.25	NA	NA	4,900	2,100	110	70	44	NA	NA
MW-3 (D)	4-Nov-96	5.25-20.25	NA	NA	4,500	2,100	130	61	39	NA	NA
MW-3 (D)	13-May-97	5.25-20.25	NA	NA	10,000	4,800	530	100	92	<100	NA
MW-3	26-Jan-98	5.25-20.25	NA	NA	12,000	4,800	250	91	92 100	<100 NA	NA
MW-3	26-Jan-98 27-Oct-00	5.25-20.25	NA	NA	12,000	9,000	1,000	250	130	NA	NA NA
MW-3			NA	NA		9,000 3,900	370	300	130	NA <40	NA
	3-Nov-03	5.25-20.25			13,000						
MW-3	17-Jun-08	5.25-20.25	NA	NA	13,000	4,400	600	300	150	<100	NA
MW-3	6-Nov-09	5.25-20.25	710	NA	13,000	3,400	400	310	220	<2.5	4.1 (1,2-DCA)
MW-3	28-Jun-10	5.25-20.25	699	NA	22,200	1,740	2,100	318	1,060	<50	ND
MW-3 (D)	28-Jun-10	5.25-20.25	722	NA	31,000	1,560	2,210	380	1,240	<50	ND
MW-3	10-Aug-10	5.25-20.25	NA	NA	12,000	1,400	1,200	190	540	<13	ND
MW-3	30-Dec-10	5.25-20.25	36,500	3,900	22,200	1,730	2,030	406	1,530	<50	ND
MW-3	8-Jun-11	5.25-20.25	NA	NA	20,400	2,180	2,040	273	765	<25	ND
MW-3	16-Dec-11	5.25-20.25	1,710/832*	312 J/<190*	9,000	1,220	1,290	163	518	<25	ND
MW-3 (D)	16-Dec-11	5.25-20.25	1,530/2,530*	<570/<750*	13,200	1,590	1,680	207	671	<50	ND
MW-3	13-Sep-12	5.25-20.25	5,040	4,710	12,800	677	607	161	445	<25	ND
MW-3	5-Apr-13	5.25-20.25	1,960	<950	14,200	1,030	547	152	374	<20	ND
MW-3 (D)	5-Apr-13	5.25-20.25	2,210	<1,900	9,970	835	454	142	363	<10	2.9 J (1,2-DCA)
MW-3	1-Oct-13	5.25-20.25	1,600	261	3,420	317	92.8	43.7	96.0	<20	ND
MW-3 (D)	1-Oct-13	5.25-20.25	1,030	136 J	6,030 E	430	145	64.5	156	<10	ND
MW-5	24-Aug-94	5.25-20.25	130	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5 (D)	22-Nov-94	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5	8-Feb-95	5.25-20.25	<50	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5	31-May-95	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5	8-Aug-95	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5	29-Feb-96	5.25-20.25	NA	NA	<50	0.6	<0.5	<0.5	<0.5	NA	NA
MW-5	13-May-97	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5	27-Oct-00	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW-5	13-Nov-03	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<2.0	NA
MW-5	17-Jun-08	5.25-20.25	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND
MW-5	6-Nov-09	5.25-20.25	1,300	NA	<50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
MW-5	28-Jun-10	5.25-20.25	289	NA	<50 <50	<0.5	<0.5	<0.5	<1.0	<0.5	ND
MW-5	30-Dec-10	5.25-20.25	209 <94	808	<50 <50	<1.0	<1.0		<2.0		ND
								<1.0		<1.0	
MW-5	16-Dec-11	5.25-20.25	<94/<95*	681/547*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-5	28-Mar-12	5.25-20.25	196*	212*	NA	NA	NA	NA	NA	NA	NA
MW-5	13-Sep-12	5.25-20.25	376	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-5	5-Apr-13	5.25-20.25	<96	1,220	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-5	1-Oct-13	5.25-20.25	235	289	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
	16-Oct-14	5.25-20.25	157	94.4	NA	NA	NA	NA	NA	NA	NA
MW-5	10-001-14										
MW-5 MW-6	14-Jan-09	10-17	NA	NA	740	66	48	6.3	23	1.2	17 (1,2-DCA)
		10-17 10-17	NA 1,200	NA NA	740 4,500	66 1,300	48 270	6.3 110	23 44	1.2 <2.5	17 (1,2-DCA) 39 (1,2-DCA)

Table 4 Summary of Historical Analytical Results for Groundwater Former Paco Pump Site 9201 San Leandro Street Oakland, California

Sample	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
Location	Collected	(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-6	10-Aug-10	10-17	NA	NA	4,600	800	160	160	210	<6.3	12 (1,2-DCA)
MW-6	30-Dec-10	10-17	2,470	<380	9,720	1,130	469	364	1,360	<20	20.7 (1,2-DCA)
MW-6	8-Jun-11	10-17	NA	NA	8,140	1,460	377	206	515	<20	15.4 (1,2-DCA)
MW-6	16-Dec-11	10-17	2,200/874*	2,350/1,670	5,920	1,500	74.9	135	254	<25	12.4 (1,2-DCA)
MW-6	28-Mar-12	10-17	380*	<190*	2,180	347	20.5	36	56	<5.0	6.8 (1,2-DCA)
MW-6	13-Sep-12	10-17	930	<190	3,550	557	45	59.9	126	<10	5.8 (1,2-DCA)
MW-6	5-Apr-13	10-17	350	<190	5,090	750	67.1	57.3	127	<10	6.4 (1,2-DCA)
MW-6	1-Oct-13	10-17	1,630	126 J	6,550 E	922	77.8	84.4	168	<10	6.1 J (1,2-DCA) 84.5 J (TBA)
MW-6	16-Oct-14	10-17	1,130	200	2,460	469	19.8	57.2	14.8 J	<2.0	41.8 (1,2-DCA) 57.1 J (Tert-Butyl Alcohol)
MW-9	5-Apr-13	12-17	<110	<220	<50	<1.0	<1.0	<1.0	<2.0	1.1	0.67 (1,2-DCA)
MW-9	1-Oct-13	12-17	121	219	<50	<1.0	<1.0	<1.0	<2.0	1.1	0.70 J (1,2-DCA)
MW-9	16-Oct-14	12-17	24.5	58.2	<25	<0.20	<0.20	<0.20	<0.46	0.91 J	
MW-10	5-Apr-13	10-20	<110	690	<50	<1.0	<1.0	<1.0	<2.0	0.20	0.26 (1,2-DCA)
MW-10	1-Oct-13	10-20	239	339	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-10	16-Oct-14	10-20	80.7	78.9	<25	<0.20	<0.20	<0.20	<0.46	<0.20	ND
MW-11	5-Apr-13	10-20	<94	718	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-11	1-Oct-13	10-20	472	490	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-11	16-Oct-14	10-20	227	129	<25	<0.20	<0.20	<0.20	<0.46	<0.20	
MW-12	16-Oct-14		39.9	63.1	<25	<0.20	<0.20	<0.20	<0.46	0.28 J	
AS-1S	13-Jan-09	14-17	NA	NA	41,000	4,100	2,700	510	1,000	<25	ND
AS-1S AS-1S	6-Nov-09	14-17		NA	3,800	4,100 950	7.3	76	42	<25	
AS-15 AS-15	28-Jun-10	14-17	1,300 214	NA	1,630	950 202	26.2	9.1	42 25.4	<0.5 2.1	3.1 (1,2-DCA) 3.1 (1,2-DCA)
AS-13 AS-15	10-Aug-10	14-17	NA	NA	1,030	370	20.2 44	34	25.4 34	<2.1	2.6 (1,2 DCA)
AS-13 AS-1S	30-Dec-10	14-17	2,790	<570	30,000	4,530	4,040	538	1,100	<100	ND
AS-15 AS-15	15-Dec-11	14-17	1,340*	582*	7,640	772	788	290	590	<20	ND
					-						
ASMW-2S	13-Jan-09	10-17	NA	NA	9,100	2,800	430	140	230	<10	25 (1,2-DCA)
ASMW-2S ASMW-2S	6-Nov-09 28-Jun-10	10-17 10-17	2,400 479	NA NA	18,000 8,330	4,700 416	540 434	330 151	530 583	<2.5 <33	50 (1,2-DCA), 46 (TBA) ND
ASMW-2S	10-Aug-10	10-17	NA	NA	3,200	410	69	61	130	<3.1	3.4 (1,2 DCA)
ASMW-2S	30-Dec-10	10-17	3,440	<2,000	5,300	447	80.1	95.0	181	ND<10	5.7 (1,2 DCA)
ASMW-2S	15-Dec-11	10-17	998*	148*	2,250	253	19.8	49.9	77.4	<10	ND
MW-7	14-Jan-09	20-28	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	1.1	ND
MW-7	6-Nov-09	20-28	<52	NA	<50	<0.5	<0.5	<0.5	<1.0	1.3	ND
MW-7	30-Dec-10	20-28	<96	<190	<50	<1.0	<1.0	<1.0	<2.0	1.1	ND
MW-7	8-Jun-11	20-28	NA	NA	<50	<1.0	<1.0	<1.0	<2.0	1.0	ND
MW-7	16-Dec-11	20-28	<94*	832*	<50	0.67	<1.0	0.35 J	<2.0	0.88 J	ND
MW-7 (D)	16-Dec-11	20-28	<94*	1,730*	<50	0.62 J	<1.0	0.33 J	<2.0	0.91 J	ND
MW-7	28-Mar-12	20-28	<94*	<190*	NA	NA	NA	NA	NA	NA	NA
MW-7	13-Sep-12	20-28	<190	3,510	<50	<1.0	<1.0	<1.0	<2.0	0.41	ND
MW-7	5-Apr-13	20-28	<100	<200	<50	<1.0	<1.0	<1.0	<2.0	0.58	ND
MW-7	1-Oct-13	20-28	87.1 J	207	<50	<1.0	<1.0	<1.0	<2.0	0.40 J	ND
MW-7	16-Oct-14	20-28	70.6	140	NA	NA	NA	NA	NA	NA	NA
MW-8	28-Jun-10	8-18	<100	NA	<50	0.81J	1.3	0.41J	1.6 J	0.62J	ND
MW-8	30-Dec-10	8-18	<95	<190	<50	<1.0	<1.0	<1.0	<2.0	0.53J	ND
MW-8	8-Jun-11	8-18	NA	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-8	16-Dec-11	8-18	<95*	155 J*	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
MW-8	13-Sep-12	8-18	304	<190	<50	0.37	0.28	<1.0	<2.0	0.29	ND
AS-1D	13-Jan-09	31-34	NA	NA	<50	0.69	0.54	<0.5	<0.5	<0.5	ND
AS-1D AS-1D	6-Nov-09	31-34	<53	NA	<50	<0.5	<0.54	<0.5	<1.0	<0.5	ND
AS-1D AS-1D	28-Jun-10	31-34	<94	NA	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1D AS-1D	30-Dec-10	31-34	<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1D AS-1D	15-Dec-11	31-34	<54 86.2 J*	<190*	27.6	1.7	3.1	0.54	2.3	<1.0	ND
AS-1D AS-1D	13-Sep-12	31-34	161	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1D	5-Apr-13	31-34	<94	<190	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1D	1-Oct-13	31-34	<96	138 J	<50	<1.0	<1.0	<1.0	<2.0	<1.0	ND
AS-1D	16-Oct-14	31-34	39	55.1	<25	0.34 J	<1.0	<0.20	<0.46	<0.20	
AS-1D Dup	16-Oct-14	31-34	649	458	4,390	398	<1.0	180	145	<2.0	
					.,						

Table 4Summary of Historical Analytical Results for GroundwaterFormer Paco Pump Site9201 San Leandro Street

Oakland, California

SMM 20 13.Jun 00 24.34 NA NA 450 0.05	Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Other Fuel Additives
KNM-702 6-Hov-69 24-34 6-51 NA 6-50 10 ND SMW/20 30-be-10 24-34 400 -200 -50 0.700 2.00 7.50 2.170 -25 -25 E1 30-Jun-10 8-18 NA NA 7.20 5.3 5.51 2.21 16.11 2.75 -5.0 ND E2 15-Jun-10 8-18 NA NA 7.70 -51 0.51 2.00 1.0 -10 -10 -20 1.8 0.51(12.0CA) E2 30-Jun-10 8-18 NA <		10 Jan 00	(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
ASMW-20 28-Jun-10 24-34 -(304 NA -(500 -(10) -(10) -(200 -(50) -(10) -(10) -(20) -(20) -(30) -(30) -(30) -(30) -(30) -(30) -(30) -(30) -(30) -(30) -(10) -(10) -(10) -(20) -(30) -(300) <td></td>												
ASMW-20 Solution 24.34 94.10												
ASMW-20 15 Dech1 24:44 98:17												
EI 16-Jun-10 8-18 NA NA NA NA NA NA NA PA 15 77 -1 C25 -23 E1 15-ban-10 8-18 NA NA 72 5.3 5.9 0.89 4.9 2.1 0.868 (1.2 DCA) E2 16-bun-10 8-18 NA NA -250 -1.0 -1.0 -1.0 -2.0 0.86 (1.2 DCA) E2 30-ban-10 8-18 NA NA -2.0 -1.0 -1.0 -1.0 -2.0 -0.5 1.7 -0.5 0.5 -2.0 -0.5 -1.0 -1.0 -2.0 -2.0 -0.5 -1.0 -1.0 -2.0 -0.5 -1.0 -2.0 -0.5 -1.0 -1.0 -2.0 -0.5 -1.0 -1.0 -0.0 -0.5 -1.0 -1.0 -0.0 -0.5 -1.0 -1.0 -0.0 -0.5 -1.0 -1.0 -0.0 -0.5 -0.0 -0.0 -0.0 <												
E1 30-Jun-10 8-18 NA NA 124 11.7 9.4 1.5 7.7 <1 0.31 (12 DCA) E2 16-Jun-10 8-18 NA NA 7.00 55.5 5.9 0.89 4.9 2.1 0.68 (1.2 DCA) E2 30-Jun-10 8-18 NA NA 7.2 5.3 5.9 0.89 4.9 2.1 0.68 (1.2 DCA) E2 30-Jun-10 8-18 NA NA 5.0 <1.0												
E1 19-Dec11 8-18 322 1,700 55.5 22.1 16.1 27.6 <.5.0 ND E2 18-bun-10 8-18 NA NA 72 5.3 6.9 0.89 0.49 2.1 0.08(12 DCA) E2 30-buc-10 8-18 NA NA 72 5.3 6.9 0.89 0.49 2.1 0.08(12 DCA) E2 30-buc-10 8-18 VA NA NA<							,					
E2 30-Jun-10 8-18 NA NA -450 <1.0 <1.0 <1.0 <1.0 2.0 0.5 (1,2 DCA) E2 8-Jun-11 8-18 3,740 <1.0		16-Dec-11	8-18	323*	<190^	1,700			16.1	27.6		ND
E2 5-Jun-11 8-16 NA NA <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <												
E2 15 Dec:11 8-18 -695-66* 15701/270* -50 -1.0 -1.0 -1.0 -1.0 -1.0 1.0 NA												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
E2 13-Sep-12 9-18 <190 2.990 <50 <10 <10 <20 $0.57J$ $0.36J$ $1/2$ -CA) E2 5-Apr-13 8-18 444 670 <50												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,
E2 16-Oct:14 8-18 780 1,000 NA NA NA NA NA NA NA E3 16-Dec:11 8-18 13,000' 15,600' 185 1.2 <1.0												
E3 16-Dec-11 8-18 13,900* 1560* 185 1.2 <1.0 <1.0 <2.0 0.74 J 1.0 (1,2-DCA) E3 13-Sep-12 8-18 1.060* 1.860* 151 1.4 <1.0												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E2	16-Oct-14	8-18	780	1,080	NA	NA	NA	NA	NA	NA	NA
E3 13 Sep:12 8-18 62,500 93,700 46.8 0.56 <1.0 <1.0 <2.0 0.55 J 0.99 J(12 DCA) E3 1-Oct:13 8-18 <24,000	E3						1.2	<1.0	<1.0	<2.0	0.74 J	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E3		8-18	1,060*	1,860*	151	1.4	<1.0	<1.0	<2.0	0.53 J	
E3 1-Oct:13 8-18 20,700 34,500 82.6 1.6 <1.0 <1.0 <2.0 0.46.1 0.73 J (1,2-DCA) E4 16-Oct:14 8-18 106,000 153,000 355 3.3 <1.0	E3	13-Sep-12	8-18	62,500	93,700	46.8	0.56	<1.0	<1.0	<2.0	0.55 J	0.99 J (1,2-DCA)
E3 16-Oct-14 8-18 106,000 153,000 355 3.3 <1.0 <0.20 <2.0 0.46 J 4.5 J (Tert Butyl Alcohol) E4 16-Dec-11 8-18 244' 447' 1,500 240 9.9 18.3 5.8.J <5.0		5-Apr-13	8-18	<24,000	357,000	161	1.0	<1.0	<1.0	<2.0	0.43 J	0.71 J (1,2-DCA)
E4 16-Dec-11 8-18 264' 447' 1,580 240 9.9 18.3 5.8 J <5.0 2.7 (1,2-DCA) E5 15-Dec-11 8-18 11,100' 11,500' 27,1 J <1.0	E3	1-Oct-13	8-18	20,700	34,500	82.6	1.6	<1.0	<1.0	<2.0	0.46 J	0.73 J (1,2-DCA)
E5 15-Dec-11 8-18 11,100* 11,500* 27.1 J <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	E3	16-Oct-14	8-18	106,000	153,000	355	3.3	<1.0	<0.20	<2.0	0.46 J	4.5 J (Tert-Butyl Alcohol)
E5 16-Oct-14 8-18 25,300 32,500 <25 <0.20 <0.20 <0.46 0.42 J E6 15-Dec-11 8-18 1,460' 931' 617 17.6 <2.0	E4	16-Dec-11	8-18	264*	447*	1,580	240	9.9	18.3	5.8 J	<5.0	2.7 (1,2-DCA)
E5 16-Oct-14 8-18 25,300 32,500 <25 <0.20 <0.20 <0.46 0.42 J E6 15-Dec-11 8-18 1,460' 931' 617 17.6 <2.0	E5	15-Dec-11	8-18	11 100*	11 500*	27.1.1	<10	<10	<10	<20	0.83.1	ND
E6 15-Dec-11 8-18 1,460' 931' 617 17.6 <2.0 3.3 <4.0 <2.0 ND E6 28-Mar-12 8-18 93.9 J' 191' 273 4.4 <1.0												
E6 28-Mar-12 8-18 93.9 J* 191* 273 4.4 <1.0 2.8 <2.0 0.78 J ND E6 13-Sep-12 8-18 <190												ND
E6 13-Sep-12 8-18 <190 2,440 427 2.8 <1.0 2.3 <2.0 0.85 ND E6 5-Apr-13 8-18 <480												
E6 5-Apr-13 8-18 <480 3,210 529 2.2 <1.0 4.3 <2.0 0.69 ND E6 1-Oct-13 8-18 262 617 520 3.6 <1.0												
E6 1-Oct-13 8-18 262 617 520 3.6 <1.0 4.5 <2.0 0.63 J ND E6 16-Oct-14 8-18 1,660 1,850 135 0.30 J <0.20												
E6 16-Oct-14 8-18 1,660 1,850 135 0.30 J <0.20 0.24 J <0.46 0.45 J E7 16-Jun-10 8-18 NA NA 780 100 73 20 80 5.2 1.9 (1,2 DCA) E7 30-Jun-10 8-18 NA NA 3,460 207 258 <25		•										
E7 16-Jun-10 8-18 NA NA 780 100 73 20 80 5.2 1.9 (1,2 DCA) E7 30-Jun-10 8-18 NA NA 3,460 207 258 <25												ND
E7 30-Jun-10 8-18 NA NA 3,460 207 258 <25 360 3.8 2.5 (1,2 DCA) E7 30-Dec-10 8-18 1,360 <190												
E7 30-Dec-10 8-18 1,360 <190 3,380 339 20.0 83.3 23.9 5.4 3.5 (1,2 DCA) E7 8-Jun-11 8-18 NA NA 1,580 143 17.4 26.9 21.7 4.3 2.2 (1,2-DCA) E7 15-Dec-11 8-18 373/287* <190/490*												
E7 8-Jun-11 8-18 NA NA 1,580 143 17.4 26.9 21.7 4.3 2.2 (1,2-DCA) E7 15-Dec-11 8-18 373/287* <190'												
E7 15-Dec-11 8-18 373/287* <190/<190* 1,070 144 29.5 16 27.2 4.4 3.1 (1,2-DCA) E7 28-Mar-12 8-18 53.8 J* <190*						-						
E7 28-Mar-12 8-18 53.8 J* < (190*) 806 97 11.9 12.9 18.4 3.2 1.6 J (1,2-DCA) E7 13-Sep-12 8-18 214 <200												
E7 13-Sep-12 8-18 214 <200 1,790 169 67.3 27.8 82.3 3.5 2.6 (1,2-DCA) E7 5-Apr-13 8-18 75.1 <190						-						
E7 $5 \cdot Apr \cdot 13$ $8 \cdot 18$ 75.1 < 190 $1,060$ 125 20.9 17.4 28.7 3.3 $1.9 J (1,2 \cdot DCA)$ E7 $1 \cdot Oct \cdot 13$ $8 \cdot 18$ $1,490$ $2,220$ 917 143 23.2 16.0 29.7 $1.2 J$ $1.8 J (1,2 \cdot DCA)$ E7 $16 \cdot Oct \cdot 14$ $8 \cdot 18$ $7,920$ $14,100$ 724 86.4 17.7 12.2 33.7 1.4 $1.3 (1,2 \cdot DCA)$ E8 $30 \cdot Dec \cdot 10$ $8 \cdot 18$ $1,220$ < 190 $8,930$ 480 19.1 164 51.8 < 10 $4.8 (1, 2 \cdot DCA)$ E8 $30 \cdot Dec \cdot 10$ $8 \cdot 18$ $1,220$ $< 190^{\circ}$ $8,930$ 480 19.1 164 51.8 < 10 $4.8 (1, 2 \cdot DCA)$ E8 $30 \cdot Dec \cdot 11$ $8 \cdot 18$ NA NA $3,520$ 178 9.6 55.7 49.5 < 5 $2.7 (1, 2 \cdot DCA)$ E8 $15 \cdot Dec \cdot 11$ $8 \cdot 18$ 508° $< 190^{\circ}$ $2,000$ 208 4.0 42.9 14.0 < 5.0 ND E8 $15 \cdot Dec \cdot 11$ $8 \cdot 18$ 508° $< 190^{\circ}$ $1,380$ 92 4.0 20.3 26.5 < 4.0 $13 J (TBA)$ E8 $13 \cdot Sep \cdot 12$ $8 \cdot 18$ 314 < 200 $2,450$ 2.0 < 5.0 < 10 2.8 ND E8 $1 - Oct \cdot 13$ $8 \cdot 18$ $1,420$ $1,010$ $4,750$ 707 61 118 119 < 5.0 $3.6 (1,2 \cdot DCA)$ <td></td>												
E71-Oct-138-181,4902,22091714323.216.029.71.2 J1.8 J (1,2-DCA)E716-Oct-148-187,92014,10072486.417.712.233.71.41.3 (1,2-DCA)E830-Dec-108-181,220<190												
E7 16-Oct-14 8-18 7,920 14,100 724 86.4 17.7 12.2 33.7 1.4 1.3 (1,2-DCA) E8 30-Dec-10 8-18 1,220 <190						-						
E8 30-Dec-10 8-18 1,220 <190 8,930 480 19.1 164 51.8 <10 4.8 (1,2-DCA) E8 8-Jun-11 8-18 NA NA 3,520 178 9.6 55.7 49.5 <5												
E8 8-Jun-11 8-18 NA NA 3,520 178 9.6 55.7 49.5 <5 2.7 (1,2-DCA) E8 15-Dec-11 8-18 508* <190*												
E8 15-Dec-11 8-18 508* <190* 2,000 208 4.0 42.9 14.0 <5.0 ND E8 28-Mar-12 8-18 64 J* <190*				-		-						
E8 28-Mar-12 8-18 64 J* < 190* 1,380 92 4.0 20.3 26.5 <4.0 13 J (TBA) E8 13-Sep-12 8-18 314 <200						-						
E8 13-Sep-12 8-18 314 <200 2,450 2.0 <5.0 <10 2.8 ND E8 5-Apr-13 8-18 1,420 1,010 4,750 707 61 118 119 <5.0						-						
E8 5-Apr-13 8-18 1,420 1,010 4,750 707 61 118 119 <5.0 3.6 (1,2-DCA) E8 1-Oct-13 8-18 529 569 1,500 178 6.0 32.3 29.8 0.49 J 3.6 (1,2-DCA) E8 16-Oct-14 8-18 1,120 1,030 4,090 385 8.2 J 172 139 <2.0						-						
E8 1-Oct-13 8-18 529 569 1,500 178 6.0 32.3 29.8 0.49 J 3.6 (1,2-DCA) 12.7 J (TBA) E8 16-Oct-14 8-18 1,120 1,030 4,090 385 8.2 J 172 139 <2.0						-						
E8 1-Oct-13 8-18 529 569 1,500 178 6.0 32.3 29.8 0.49 J 12.7 J (TBA) E8 16-Oct-14 8-18 1,120 1,030 4,090 385 8.2 J 172 139 <2.0	E8	5-Apr-13	8-18	1,420	1,010	4,750	707	61	118	119	<5.0	
E9 15-Dec-11 8-18 7,950* <190* 35,100 4,810 5,710 768 3,260 <100 ND E9 28-Mar-12 8-18 894* <190*						-			32.3	29.8		
E9 28-Mar-12 8-18 894* <190* 24,200 2,440 2,550 396 1,810 <100 ND E9 16-Oct-14 8-18 4,910 490 39,300 2,460 2,250 595 3,110 <20	E8	16-Oct-14	8-18	1,120	1,030	4,090	385	8.2 J	172	139	<2.0	
E9 28-Mar-12 8-18 894* <190* 24,200 2,440 2,550 396 1,810 <100 ND E9 16-Oct-14 8-18 4,910 490 39,300 2,460 2,250 595 3,110 <20	E9	15-Dec-11	8-18	7,950*	<190*	35,100	4,810	5,710	768	3,260	<100	ND
E10 15-Dec-11 8-18 10,400* <190* 32,800 4,350 6,450 667 2,880 <100 37 (1,2-DCA)	E9		8-18	894*	<190*	24,200	2,440	2,550	396	1,810	<100	ND
E10 15-Dec-11 8-18 10,400* <190* 32,800 4,350 6,450 667 2,880 <100 37 (1,2-DCA)	E9	16-Oct-14	8-18	4,910	490	39,300	2,460	2,250	595	<u>3,110</u>	<20	0.85 J (1,2-DCA)
	E10	15-Dec-11	8-18	10.400*	<190*	32,800	4,350	6,450	667	2,880	<100	
	E10	28-Mar-12	8-18	1,630*	<190*	30,000	3,090	4,140	515	2,310	<100	20.6 J (1,2-DCA)

Table 4Summary of Historical Analytical Results for GroundwaterFormer Paco Pump Site9201 San Leandro StreetOakland, California

Sample Location	Date Collected	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Other Fuel Additives
		(feet bgs)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
E11	16-Jun-10	8-18	NA	NA	25,000	1,800	1,500	480	980	<13	<13
E11	30-Jun-10	8-18	NA	NA	15,300	268	509	473	1,140	<40	<40
E11	16-Dec-11	8-18	3,920*	<970*	17,200	634	916	384	934	<50	ND
E11	28-Mar-12	8-18	960*	<190*	15,700	377	544	237	902	<50	ND
E12	16-Jun-10	8-18	NA	NA	4,300	190	15	43	49	<2	2.0 (1,2 DCA)
E12	30-Jun-10	8-18	NA	NA	1,570	130	6.6	<3	24.2	<3	<3
E12	16-Dec-11	8-18	69.9 J*	<190*	297	27.5	1.1 J	3.2	<4.0	<2.0	ND
E12	13-Sep-12	8-18	88.8	<190	633	50.8	2.6	7.2	2.7	<1.0	18.9 (TBA)
E12	5-Apr-13	8-18	62.4	<190	496	64.1	3.3	8.1	3.0	<1.0	ND
E12	1-Oct-13	8-18	<96	142 J	347	28.4	1.2	4.8	1.3 J	<1.0	ND
E12	16-Oct-14	8-18	31.4	48.5	113	9.0	0.24 J	1.4	<0.46	<0.20	0.40 J (1,2-DCA)
LFR Area 5 - S	Suspected Form	mer UST near	Groundwater	Monitoring W	/ell MW-4						
MW-4	16-Nov-92	5.25-20.25	<50	NA	560	66	73	16	130	NA	NA
MW-4 (D)	16-Nov-92	5.25-20.25	<50	NA	520	63	67	15	140	NA	NA
MW-4	9-Mar-93	5.25-20.25	<50	NA	750	67	12	29	62	NA	NA
MW-4	21-Jul-93	5.25-20.25	<50	NA	250	21	4.2	8.4	11	NA	NA
MW-4	29-Jan-94	5.25-20.25	<50	NA	180	28	2.2	6.2	10	NA	NA
MW-4	26-May-94	5.25-20.25	NA	NA	130	14	3.2	6.1	4.7	NA	NA
MW-4	24-Aug-94	5.25-20.25	NA	NA	70	6.7	0.9	2.8	2.6	NA	NA
MW-4	22-Nov-94	5.25-20.25	NA	NA	90	16	1.7	5.6	3.4	NA	NA
MW-4	8-Feb-95	5.25-20.25	NA	NA	90	17	1.3	5.5	3.0	NA	NA
MW-4	31-May-95	5.25-20.25	NA	NA	90	13	0.6	2.3	1.2	NA	NA
MW-4	8-Aug-95	5.25-20.25	NA	NA	80	3.6	<0.5	1.4	0.6	NA	NA
MW-4	29-Nov-95	5.25-20.25	NA	NA	<50	4.5	0.7	1.0	0.7	NA	NA
MW-4	29-Feb-96	5.25-20.25	NA	NA	<50	7.4	1.0	3.2	2.4	NA	NA
MW-4	23-May-96	5.25-20.25	NA	NA	80	11	2.0	2.3	1.0	NA	NA
MW-4	3-Nov-03	5.25-20.25	<50	NA	<50	6.3	0.56	3.4	1.0	<2.0	NA
MW-4	18-Jun-08	5.25-20.25	<50	NA	81	11	0.51	4.7	1.6	<0.5	ND
MW-4	6-Nov-09	5.25-20.25	<50	NA	<50	4.0	<0.5	1.3	<1.0	<0.5	ND
MW-4	28-Jun-10	5.25-20.25	<100	NA	186	12.3	0.85	5.9	2.3	<1.0	ND
MW-4	30-Dec-10	5.25-20.25	<94	<190	77.4	7.4	<1.0	2.6	0.98	<1.0	ND
MW-4	8-Jun-11	5.25-20.25	NA	NA	94.2	10.2	0.59	3.4	1.60	<1.0	ND
MW-4	16-Dec-11	5.25-20.25	<97*	130 J*	<50	2.6	<1.0	<1.0	<2.0	<1.0	ND
MW-4	13-Sep-12	5.25-20.25	83 J	<190	34.3 J	5.4	0.51 J	0.82 J	0.73 J	<1.0	ND
MW-4	5-Apr-13	5.25-20.25	<95	<190	97.9	11	0.57 J	1.3	0.98 J	<1.0	ND
MW-4	1-Oct-13	5.25-20.25	<98	<200	<50	3.5	<1.0	0.58 J	<2.0	<1.0	ND
MW-4	16-Oct-14	5.25-20.25	28.6	72	66.2	6.3	0.29 J	0.49 J	<2.0	<0.46	
	water <u>is</u> curre king water sou		100	100	100	1.0	40	30	20	5.0	0.5 (1,2-DCA), 12 (TBA)

Notes:

bgs = below ground surface

 $\mu g/L = micrograms per liter$

Bold Font denotes concentration was greater than the ESL.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

(D) = duplicate sample

<6.0 = not detected at or above the laboratory reporting limit.

E = Indicates value exceeds calibration range

J = Estimated value above method detection limit but below laboratory reporting limit.

ESL = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels Table F-1a and Table F-1b RWQCB February 2013.

TPHd = total petroleum hydrocarbons as diesel TPHmo = total petroleum hydrocarbons as motor oil TPHg = total petroleum hydrocarbons as gasoline MTBE = methyl tert butyl ether 1,2-DCA = 1,2-dichloroethane TBA = tertiary butyl alcohol APPENDIX A

UPDATED RESPONSE TO COMMENTS

Former Paco Pump Site9201 San Leandro, Oakland

SGI Reference		County Concerns	Response/ Comment	Recommendation
1	1 Area 1	PCBs present in Area 1?	Previous reports on site usage do not indicate the potential for PCBs in this area. If PCBs were present in association with the oil, the removal of petroleum hydrocarbons conducted as part of the 2009 removal would also have removed the PCBs, and therefore this area can be assumed to contain no residual PCBs in soil.	No Further Action
2 & 4	1 Area 2	Potential PCBs in Area 2?	Previous (2008) report indicates that the PCBs are likely due to leaky transformer north of the site. 18 soil samples in Area 2 were tested for PCBs, with 13 non- detected and 5 samples with detected PCB concentrations from ND to <0.74 mg/kg (Current USEPA RSL, Industrial site). 2008 LFR Workplan proposes no action. One historical sample at 5 ft depth (B-7) with 530 ppm TPHmo had PCBs at 0.29mg/kg. Recent soil contained up to 8,800 mg/kg TPHmo.	Potential Data Gap: sample 2013 location with high TPHmo shallow soil for PCBs; MW-10 2.5 ft (8,800 TPH mo) and MW-11 2.5 ft (2,100 TPH mo). See Data Gaps Investigation Work Plan.
3	1 Area 2	Arsenic in Area 2?	One Pit 3 sample at 3 ft contained 14 ppm As-no other data from 1987, but 3 samples in that alley in 1992: B 8, B9 and B10 at 1 ft : ND arsenic. Other soil samples were also analyzed for metals throughout the site. This area's future use will also be controlled by the proposed Deed Restriction.	SGI conducted a review of As concentrations in soil for the site (see attachment 1), and this risk evaluation indicates that arsenic is not a concern at the site
4	1 Area 3	Low PCBs?- See Comment 2	See Comment 2	See Comment 2
Areas of Concern	Areas 1, 2, 3	County proposes that separate site issues be separated into distinct Area of Concern, separate cases	Unnecessary: all issues can be addressed by data gaps investigation and deed restriction.	Maintain one case under County oversight
5A	2 Area 4	LNAPL present?	SGI agrees that the dissolved hydrocabons values are locally high, similar to concentrations at sites with LNAPL, The well screens in wells in the source area are screened such that LNAPL would have been measured. This site has a very high density of wells: extraction wells are 10-30 ft apart. None have recorded LNAPL over multiple gauging events. No evidence of free-phase hydrocarbons was noted in soil samples during drilling.	Monitor for LNAPL during subsequest sampling events. While concentrations are within LNAPL range and LNAPL could be present in localized areas, fine-grained soil would limit migration
5B	2 Area 4	MW 8, 9, 10, 11 - screen interval starting at 10-12 ft, water found at 8 ft.	The lithology encountered indicates a confined first groundwater, with dry clay extending to the depth to first water (10-12 ft), and water levels rising in the well after installation. In any case, the downgradient wells have no detectable Benzene, TPHg or TPHd. If LNAPL were present, the samples would contain dissolved hydrocarbons.	The downgradient wells have TPHd and TPHmo detections consistent with adjacent well MW-5. If LNAPL were present, the samples would contain dissolved hydrocarbons at much higher concentrations.

	Updated Response/Comments (December 2014)	Attachment
ation 3s; W-11 os	Results of Data Gaps Investigation indicate that PCBs are present in 2 of 6 shallow soil samples above ESL for direct contact. Area is covered by asphalt. Concentrations are well below ESL for leaching concerns. GW samples from adjecnt wells confirm that PCBs have not impacted GW.	
ר ו at		Attachment 1
sight		
t ns could iined	LNAPL was not detected in any of the wells that were monitored in October 2014. Wells will be monitored during next semi-annual sampling event in April 2015.	
Ind		
er		

Former Paco Pump Site9201 San Leandro, Oakland

SGI Reference		County Concerns	Response/ Comment	Recommendation	Updated Response/Comments (December 2014)	Attachment
6	3 CSM	General comment: CSM insufficient	Data Gaps Investigation Workplan addresses data gaps to update CSM.	See Data Gaps Investigation Work Plan	An revised Conceptual Site Model is included as Appendix B.	
7	4 Area 4	Source removal incomplete?	According to ERAS 2008 & Jonas 1992, the suspected UST area has been thoroughly excavated, & the former site has been backfilled. No tank was found. It is clear that some soil excavation in the area known to be contaminated did occur, likely removing a significant mass of contamination (250 cubic yds). Geophysical utility clearance prior to installing well and vapor points did not identify any signs of a UST.	Further attempts to drill or geophysically search to determine if a UST was removed or if a waste oil tank may be present are not likely to be effective. Add note to the deed to check for UST upon building removal.		
8	4 Area 5	Source removal incomplete?	Reports point to the absence of a UST. Issue of potential UST may be unresolvable until building is removed. Multiple samples downgradient (GP-3, B- 23, GGW-6, and MIP-6) indicate no significant downgradient groundwater migration, indicating the GW impacts at MW-4 have limited mobility. One single soil gas probe with benzene>CHHSL.	Recommend deed restriction that further excavation under that building may encounter soil with hydrocarbons- no further immediate work.		Attachment 2
9A	5 Area 4-a	Groundwater contamination to southwest undefined	As shown in rose diagram of previous gradient directions, historical data indicate groundwater gradient to the northwest, and downgradient wells in that direction are non-detect.	Benzene plume is small and groundwater gradient historically points to the location of the new wells. One additional well will be installed in the southwest corner of the Site.	Well MW-12 was installed in the southwest corner of the Site. An updated potentiometric map indicates that GW flows to the west, as previously posited. Sample contained low concentrations of TPHd, TPHmo, and a very low estimated concentration of MTBE.	Attachment 3
9B	5 Area 4-a	TPHd, TPH mo Not evaluated	Silica gel cleanup proposed	After installation of new well, conduct two rounds of quarterly groundwater monitoring, then request closure with deed restriction for potential hydrocarbons in future excavations. Silica gel cleanup proposed.	Concentrations in all wells are either decreasing, or stable (meaning concentrations do not show an increasing trend).	
10	5 Area 4-b	Plume stability not demonstrated	County will require more data including silica gel testin	g	All recent TPHd and TPHmo samples were analyzed with silica gel cleanup.	
11	5 Area 4-c	Private well 620 ft to the southwest	Noted: Data Gaps Investigation Work Plan includes a map showing location of well	See Data Gaps Investigation Work Plan	The suspect well in listed as an irrigation well. The total depth or screened interval of the well is not known. Regardless, current and historical groundwater flow direction is to the west, cross-gradient of the suspect well.	

Former Paco Pump Site9201 San Leandro, Oakland

SGI Reference		County Concerns	Response/ Comment	Recommendation
12	5 Area 4-d	Unlined ditch 360 ft to the southwest	SGI conducted two visits to verify the suspected unlined ditch. No swale, ditch, or drainage feature was observed in the suspected area. Data Gaps Investigation Work Plan includes a map showing approximate location of surface water accumulation area.	See Data Gaps Investigation Work Plan
13	5 Area 4-e	General comment: is deed restriction applicable?	Deed Restriction is applicable	RP has initiated discussions with current property owner.
14	5 Area 5-a	Area 5 Plume length at unknown source incomplete (see SGI Reference #8)	Presence of a UST is unresolvable until building removed. See SGI Reference #8 above.	Recommend two quarters of groundwate sampling after new well installation and deed restriction that excavation under tha building look for UST and hydrocarbons- no further immediate work.
15	5 Area 5-b	Plume stability at unknown source incomplete (see SGI Reference #8)	See above	
Vapor Intrusion, Area 4	6 Area 4	Bioattenuation Zone too thin	Building is well ventilated by large rollup doors, high ceiling, and no air tight walls or roofing. No vapor accumulation expected. Additionally, under the building, only the southeastern well (MW-6) at the corner of the building has concentrations above the bioattenuation criteria (1,000 and 100 ug/L)- very localized concern.	Under current building conditions and usage, no further action.
Vapor Intrusion, Area 4	6 Area 4	Some TPH in shallow soil	See above	Under current building conditions and usage, no further action.
Vapor Intrusion, Area 4	6 Area 4	Benzene in groundwater > 1,000 μg/L	See above	Under current building conditions and usage, no further action.
Vapor Intrusion, Area 4	6 Area 4	Low O2 and high benzene at SV-1 may indicate localized source. Benzene high near source (outside).	Presence of a source under building can not be ascertained.	
Vapor Intrusion, Area 4	6 Area 4	V.I concern is significant: backfill may be coarser grain, some gravel encountered.	All soil gas probe installation boreholes reported the presence of lean clay starting at a depth of a couple of feet. The clay lithology is appropriate in estimating the upwards flux of vapors from groundwater, the presumed main source of VOCs into the building. Vapor intrusion was evaluated by SGI Senior Toxicologist by Johnson & Ettinger modeling.	
Vapor Intrusion, Area 5	6 Area 5	Source unknown - vapor intrusion uncertain. Additional soil gas testing required.	Presence of a UST unresolvable until building removed. Building is well ventilated, with high ceilings and large rollup doors. No concerns of vapor accumulation under current usage.	Under current building conditions and usage, no further action.
Direct Contact	7 Area 4	Not sufficiently characterized	Insignificant issue under current use. Only narrow strip in southern corner of Site consists of bare soil.	Deed Restriction would include provision for monitoring/mitigation during site excavation/construction.

	Updated Response/Comments (December 2014)	Attachment
ı	Current and historical groundwater flow direction is to the west, cross-gradient of the suspect drainage feature.	
nt		
ter hat S-	See Updated Comment to SGI Reference #9A above.	Attachment 2
n		

Former Paco Pump Site9201 San Leandro, Oakland

SGI Reference		County Concerns	Response/ Comment	Recommendation
Direct Contact	7 Area 5	Not sufficiently characterized - unknown source	Insignificant issue under current use. Only narrow strip in southern corner of Site consists of bare soil.	Recommend deed restriction that excavation under that building look for UST- no immediate concern.
General Site Conditions	Area 2	During April 22, 2014 site visit and meeting, asphalt, soil, oily rags, and spilled oil were observed piled on bare soil. Remove all debris and oily soil, collect soil sample.	SGI was unaware of debris piles and alerted property owner to the situation.	Soil samples will be collected once oily soil is removed.
General Site Conditions	Area 5	During April 22, 2014 site visit and meeting, an open floor drain or vent pipe was observed adjacent to location of suspected former UST. The function of this feature is unknown.	Current property owner is not aware of the use of this feature. During Data Gaps Investigation activities, SGI will use PID to assess vapors in the pipe. If no significant (>50 ppm) vapors are detected, SGI will instruct owner to cover the inlet of feature. If vapors are detected greater than 50 ppm, the nearest soil vapor monitoring probe will be resampled.	
General Site Conditions	Site Wide	During April 22, 2014 site visit and meeting, some well boxes were observed to be in poor condition.	Well boxes appear to have been damaged by current tenent trucking activities.	Well boxes in poor condition will be repaired or replaced.
Data Gap Workplan	March 31	Notify of meeting/conduct meeting - workplan due 60 days after meeting	Completed: Meeting at Site was held on April 22, 201	Data Gaps Investigation Work Plan includes PCB soil sampling in west alley, well box repair, installation of one well, and two quarterly groundwater monitoring events.
Groundwater Monitoring		Semi-annual sampling report due May 16, Oct 31	Extension requested and granted via email on May 15, 2014. Sampling will be completed after additional	Discuss schedule with County- pending o additional investigation

Attachments

Attachment 1: Arsenic data evaluation Technical Memo Attachment 2: Figure showing sampling locations and results in Area 5 Attachment 3: Groundwater Gradient Rose Diagram

	Updated Response/Comments (December 2014)	Attachment
	PID monitoring of the open floor drain features did not detect any vapors. SGI will request the owner to cover the inlet of feature so as not to provide a potential preferential pathway to the subsurface.	
	Data Gaps Investigation Report recommends repair of damaged well boxes, or destruction of the wells.	
/,		
ng		
on		

June 10, 2014

Mr. Mark E. Detterman, PG, CEG Environmental Protection Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Data Evaluation for Arsenic in Soil Former Paco Pumps, Inc. 9201 San Leandro Street Oakland, California

Dear Mr. Detterman:

As discussed at the meeting on April 22, 2014 at the former Paco Pumps in Oakland California (the Site), The Source Group, Inc. (SGI) reviewed the historical arsenic data collected from soil at the Site. Based on the 1992 Site Characterization Report prepared by Jonas & Associates (Jonas, 1992), a total of 21 soil samples were collected and analyzed for arsenic. Three soil samples were collected on October 1, 1991, revealing non-detect concentrations (at a laboratory reporting limit of 0.25 milligrams per kilogram [mg/kg]) to 14 mg/kg of arsenic in the soil sampled collected from Pit 3 at 3 feet below ground surface (bgs). Subsequently, four soil samples were collected on April 9, 1992, revealing non-detect concentrations of arsenic. On April 13, 1992, 14 soil samples were collected. Of the 14 soil samples, arsenic was only detected in soil samples B20, B22, and B26 at concentrations of 3 mg/kg, 3.5 mg/kg, and 5.4 mg/kg, respectively. All soil samples per acre, which were collected from bare soil and beneath the asphalt/concrete surface, this dataset adequately characterizes the arsenic in Site soil. The arsenic data in soil is summarized on Table 1.

Arsenic is a naturally occurring metal that is often present in Bay Area soil. Therefore, a comparison of maximum detected concentrations with background concentrations will identify if any non-site-related arsenic impacts exist at the Site. U.S. Environmental Protection Agency (USEPA, 1989), Department of Toxic Substances Control (DTSC, 2013), and California Regional Water Quality Control Board (CRWQCB, 2013) recommend that metals detected at background (ambient) levels should be eliminated as chemicals of potential concern COPCs at a site. The maximum detected arsenic concentration in soil was 14 mg/kg; however, the second highest maximum detected arsenic concentration was 5.4 mg/kg.

Mr. Mark Detterman June 10, 2014 Page 2 of 3

To further evaluate the arsenic data, a 95-percent upper confidence limit of the mean (95UCL) was estimated. It is unlikely that a potential receptor will spend the entire exposure duration (1 year for construction worker receptor, 25 years for commercial/industrial worker receptor, 30 years for resident receptor) residing over maximum detected concentrations in soil. Therefore, it is relevant and appropriate to statistically evaluate the soil data on an area-wide basis. Consistent with USEPA (1989) procedures, when evaluating a reasonable maximum exposure (RME) scenario the lesser of the maximum detected concentration and the 95UCL was selected as the appropriate EPC for comparison with background. The EPC represents the amount of a chemical to which a hypothetical receptor at the Site is assumed exposed. The EPC is a conservative estimate of the average chemical concentration in an environmental medium (e.g., soil). For exposure pathways involving direct contact with soil, the EPCs are estimated from measured soil concentrations. A USEPA software package, ProUCL Version 5.0.00, was used to estimate the 95UCL. The ProUCL and USEPA (2013) guidance make recommendations for estimating 95UCLs and were developed as tools to support risk assessment. The soil data used to estimate a 95UCL is summarized in Table 1. The 95UCL for arsenic in soil was 2.8 mg/kg (Table 2), which is less than the maximum detected concentration so the 95UCL was selected at the appropriate EPC.

The EPC for arsenic was compared with the CRWQCB San Francisco Bay Region arsenic background concentration of 11 mg/kg (Duverge, 2011). This value represents the upper estimate for background arsenic (99th percentile) within undifferentiated urbanized flatland soils.

Arsenic was only detected in 4 out of 21 soil samples (19-percent detection frequency). As shown in the following table, the arsenic EPC is well below the regional arsenic background concentration of 11 mg/kg.

Arsenic in Soil						
Maximum Detected Concentration	EPC	Regional Background Concentration				
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
14	2.8	2.8	11			

In summary, only one soil sample detected arsenic at a concentration exceeding the regional background concentration of 11 mg/kg. The remaining 20 soil samples for arsenic were either non-detect concentrations (at a laboratory reporting limit of 0.25 mg/kg) or well below the regional background concentration. As a result of further data evaluation, the 95UCL of the arsenic dataset was 2.8 mg/kg, which is well below the regional background concentration. Therefore, arsenic is not a COPC at the former Paco Pumps and does not need to be evaluated further.

The Source Group, Inc.

Mr. Mark Detterman June 10, 2014 Page 3 of 3

Sincerely,

The Source Group, Inc.

wy mou

Ivy Inouye Senior Toxicologist

Attachments:

Table 1	Summary of Arsenic Data in Soil
Table 2	ProUCL Statistical Evaluation of Arsenic in Soil

References:

- California Regional Water Quality Control Board (CRWQCB). 2013. User's Guide: Derivation and Application of Environmental Screening Levels. Interim Final. California Environmental Protection Agency (CalEPA). December.
- Department of Toxic Substance Control (DTSC). 2013. Preliminary Endangerment Assessment Guidance Manual. California Environmental Protection Agency (CalEPA). October.
- Duverge, Dylan Jacques. 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region. A thesis submitted to the faculty of San Francisco State University. December.

Jonas & Associates, Inc. 1992. Site Characterization Report. Paco Pumps, Inc. October 16.

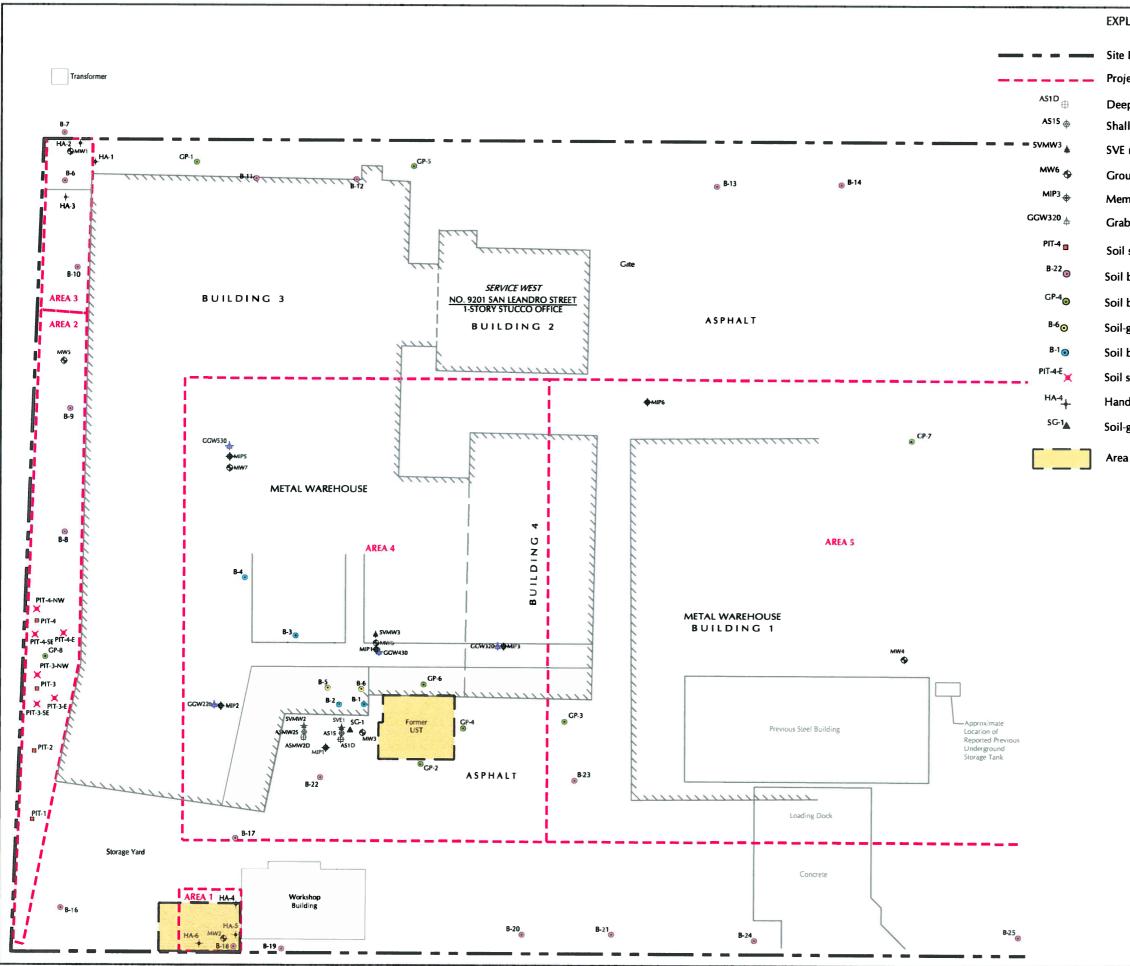
- U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. Solid Waste and Emergency Response. December.
- USEPA. 2013. ProUCL Version 5.0.00 [Software, accompanied by "ProUCL User's Guide."]. Prepared for USEPA by Lockheed Martin. September.

Table 1Summary of Arsenic Data in SoilFormer Paco PumpsOakland, California

Boring	Date sampled	Matrix	Sample Depth (feet)	Arsenic (mg/kg)
B6	10/01/91	Soil	0-0.5	ND<0.25
B7	10/01/91	Soil	0-0.5	ND<0.25
Pit 3	10/01/91	Soil	3	14
B11	04/09/92	Soil	0-0.5/1-1.5	ND<0.25
B12	04/09/92	Soil	0-0.5/1-1.5	ND<0.25
B13	04/09/92	Soil	0-0.5/1-1.5	ND<0.25
B14	04/09/92	Soil	0-0.5/1-1.5	ND<0.25
B8	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B9	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B10	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B16	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B17	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B18	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B19	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B20	04/13/92	Soil	0-0.5/1-1.5	3.5
B21	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B22	04/13/92	Soil	0-0.5/1-1.5	3
B23	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B24	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B25	04/13/92	Soil	0-0.5/1-1.5	ND<0.25
B26	04/13/92	Soil	0-0.5/1-1.5	5.4

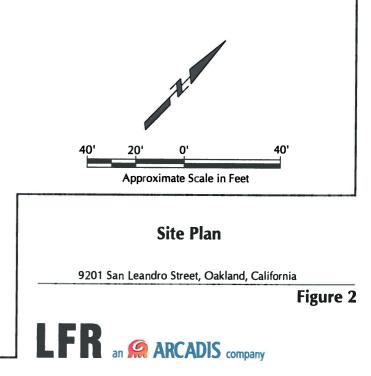
Notes:

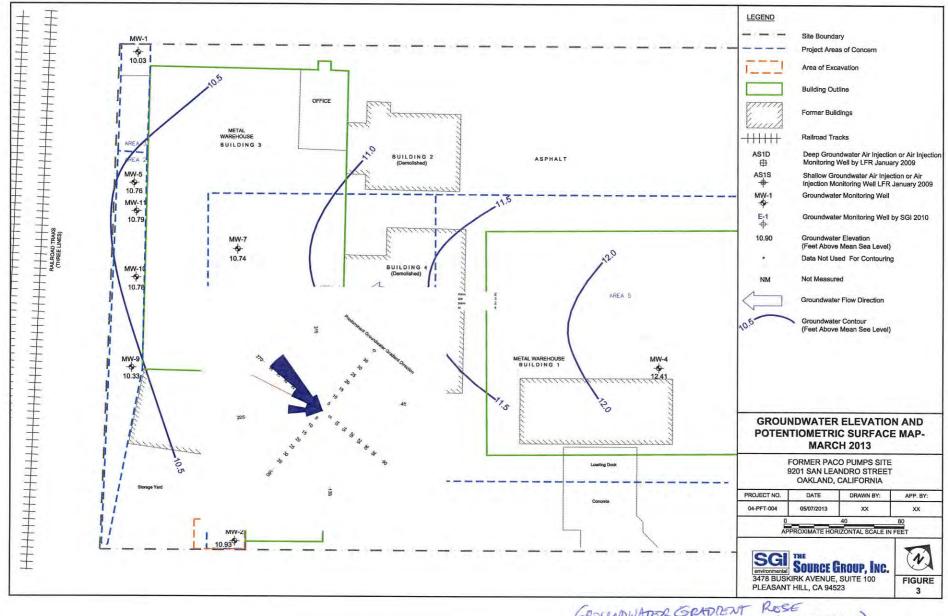
Data from 1992 Site Characterization Report by Jonas & Associates.


mg/kg = milligram per kilogram.

ND = not detected above laboratory reporting limit indicated.

Table 2ProUCL Statistical Evaluation of Arsenic in SoilFormer Paco PumpsOakland, California


Lognormal R	OS Statistics	Using Imputed Non-Detects	
Mean in Original Scale	1.512	Mean in Log Scale	-1.179
SD in Original Scale	3.185	SD in Log Scale	1.948
95% t UCL (assumes normality of ROS data)	2.711	95% Percentile Bootstrap UCL	2.727
95% BCA Bootstrap UCL	3.385	95% Bootstrap t UCL	4.815
95% H-UCL (Log ROS)	11.99		
		ates when Detected data are Lognormally Distributed	
KM Mean (logged)	-0.804	95% H-UCL (KM -Log)	2.103
KM SD (logged)	1.228	95% Critical H Value (KM-Log)	2.89
KM Standard Error of Mean (logged)	0.309		
	DL/2 S	Statistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.335	Mean in Log Scale	-1.365
SD in Original Scale	3.235	SD in Log Scale	1.532
95% t UCL (Assumes normality)	2.552	95% H-Stat UCL	2.612
DL/2 is not a recommended r	nethod, prov	ided for comparisons and historical reasons	
N			
		ution Free UCL Statistics	
Detected Data appe	ar Normal D	istributed at 5% Significance Level	
	Suggested	I UCL to Use	
95% KM (t) UCL	2.791	95% KM (Percentile Bootstrap) UCL	N/A
<u></u>			


I:\Design\001\09679\San Leandro Street PER SURVEY 2009.dwg May 06,2009-2:58pm

EXPLANATION

- Site Boundary
- Project areas of concern
- Deep groundwater air injection or air injection monitoring well by LFR January 2009 Shallow groundwater air injection or air injection monitoring well LFR January 2009
- SVE monitoring well by LFR January 2009
- Groundwater monitoring well
- Membrane interface probe by LFR January 2009
- Grab groundwater sample location by LFR January 2009
- Soil samples by Dames & Moore 1987
- Soil boring by Jonas & Associates 1992
- Soil boring by ERAS June 2008
- Soil-gas sample by Jonas & Associates 1998
- Soil boring by Jonas & Associates 1998
- Soil sample by ERAS June 2008
- Hand auger boring location by ERAS June 2008
- Soil-gas and soil sample location by ERAS 2008
- Area of excavation

Source: LFR, 2009

GROUNDWATTER GRADIENT RESE DIAGRAM (11 AVAILABLE DATA) APPENDIX B

REVISED CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Supporting Data/Figure References
Exposure Setting and Land Use		The former PACO Pumps facility is an approximately 4.6 acre parcel located at 9201 San Leandro Street in Oakland, California. The Site was historically used as a manufacturing facility since 1945, and as a foundry (Jonas, 1991) and is now used for warehousing. Currently, the entire Site is covered with either asphalt, concrete, or buildings constructed on concrete slabs. Two large warehouse buildings occupy the western and eastern areas of the Site. Both buildings have large, roll-up doors. An office has been constructed inside the northern corner of Building 3. The Site is generally bounded by a mix of industrial and heavy industrial use (manufacturing) and transportation right-of-ways (i.e., BART, active railroad tracks, and city streets).	A Site Location Map and a Site Plan are presented as Figures 1 and 2, respectively.
Geology/ Hydrogeology	Regional	The Site is located near the northern edge of an area known as the San Leandro Cone, which is in the Fremont of the Santa Clara Valley Groundwater Basin. The San Leandro Cone generally consists of thick permeable units separated by thick impermeable units. These sediments act as a groundwater recharge area of the Santa Clara Valley Groundwater Basin. Groundwater in the vicinity occurs in thin discontinuous water bearing strata. The regional groundwater flow follows the topography, moving from areas of higher elevation to areas of lower elevation. The regional groundwater flow direction in the area of the Site has been determined to be to the southwest toward San Francisco Bay. The sediments in the vicinity of the Site are fine-grained alluvial sediments that represent distal deposits of alluvial fans that were deposited by rivers draining upland surfaces to the west and east of the Site. These sediments were deposited in a low energy environment on the margins of San Francisco Bay. At shallow depths beneath these sediments are a series of Recent-age (<10,000 years) blue clay layers that become increasingly thicker toward San Francisco Bay. These clay layers are known as the Bay Mud and were deposited in San Francisco Bay during higher stands of sea level. In the vicinity of the Site it is likely that several hundred feet of these sediments overlie sandstone and serpentine sedimentary and metamorphic rocks of the Jurassic-aged Franciscan Formation bedrock.	 Discussions of the geologic and hydrogeologic setting are presented in: Section 4.1 of the <i>Remedial Investigation Activities and</i> <i>Groundwater Monitoring Report</i> (SGI, 2013); Section 2.2 of the <i>Investigation and Remediation Activities Report</i> (LFR, 2009); and Section 1.2 of the <i>Subsurface Investigation and Groundwater</i> <i>Monitoring Report</i>, <i>Quarter 2, 2008</i> (ERAS, 2008). Historical groundwater elevation data are presented in Table 1 of this Report. Geologic cross sections have been presented as Figures 3, 4A, and 4B in the <i>Remediation Workplan – Area 4</i> (SGI, 2009). Well construction and soil boring logs showing geologic and hydrogeologic conditions beneath the Site are presented in: Appendix B of the <i>Remedial Investigation Activities and</i> <i>Opendix B of the Remedial Investigation Activities and</i>
	Local	In general, the site lithology appears to consist of clay to a depths ranging from approximately nine to 13 feet bgs, where clay with an increased percentage of coarse grains contains the first encountered groundwater. More clay extends to approximately 23 feet bgs, where a deeper groundwater zone has been observed. During Quarter 3, 2014, shallow zone groundwater flowed in a westerly direction at a gradient of approximately 0.0038 foot/foot in Areas 4 and 5. The westerly gradient is consistent with historical groundwater flow patterns, and was confirmed with the recent construction of well MW-12.	 Groundwater Monitoring Report (SGI, 2013); Appendix C of the Investigation/Remediation (Area 4), Post- Remediation Sampling and First Semi-Annual Monitoring Report (SGI, 2010); Appendix C of the Investigation and Remediation Activities Report (LFR, 2009); Appendix E of the Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008 (ERAS, 2008); Completion of Monitoring Well 9MW5 (Jonas, 1994); and Appendix D of the First Quarterly Status Report (Jonas, 1993).
Hydrology	Regional/Local	The nearest surface water body is San Leandro Creek, which is located approximately 5,000 feet southwest of the Site. Alameda County Environmental Health (ACEH)	

CSM Element	CSM Sub- Element	Description	Supporting Data/Figure References
		suggested a drainage feature was present approximately 360 feet southwest of the Site. Two visits were conducted to verify presence of the suspected unlined ditch. No swale, ditch, or drainage feature was observed in the suspected area. Additionally, current and historical groundwater flow direction is to the west, cross-gradient of the suspect drainage feature.	
Release History		The potential source(s) of constituents released into the environment are interpreted to be leaks associated with the operation of an underground storage tank (UST) at the Site in Area 4, and a suspected UST in Area 5 (Figure 2). The UST in Area 4 is reported to have been removed in 1992. Following UST removal, soil was over-excavated and removed under and in the vicinity of the former UST, but residual hydrocarbons remained due to limited access in the area. The location of the suspected UST in Area 5 has never been confirmed, and is assumed to have been removed during building construction. Additionally, shallow soil is impacted with total extractable petroleum hydrocarbons (TEPH) under the southern portion of Building 3, and between the building and the property boundary fence.	
Affected Media and Contaminant Distribution	Soil	Elevated concentrations of hydrocarbon constituents/additives in soil is present in the vicinity of the former gasoline USTs at Building 1 and 3, and shallow soil in the southwestern area of the Site. Additionally, elevated concentrations of polychlorinated biphenyls (PCBs) in shallow soil are present in the area along the western portion of Building 3.	 Laboratory analytical data for soil samples collected at the presented in: Table 2 of this Report; Table 2 of the <i>Remedial Investigation Activities and Contoring Report</i> (SGI, 2013); Table 2 of the <i>Investigation/Remediation (Area 4), Perediation Sampling and First Semi-Annual Monito</i> (SGI, 2010); and Table 1 of the <i>Investigation and Remediation Activitie</i> (<i>LFR, 2009</i>).
	Groundwater	Elevated concentrations of hydrocarbon constituents/additives in groundwater appear to be associated with a gravelly clay layer, observed in soil borings and by geophysical methods during the MIP investigation (LFR, 2009). Recent analytical results from six downgradient boundary wells indicate that only very low concentrations of TEPH are present at the Site boundary. Based on the dramatic decrease in TEPH concentrations between the source area and the Site boundary, it is estimated that impacted groundwater	All historical laboratory analytical data for groundwater s collected at the Site are presented in Table 5 of this Rep

ta for soil samples collected at the Site are dial Investigation Activities and Groundwater GI, 2013); igation/Remediation (Area 4), Post-ng and First Semi-Annual Monitoring Report igation and Remediation Activities Report analytical data for groundwater samples presented in Table 5 of this Report.

CSM Element	CSM Sub- Element	Description	Supportin
	Soil Vapor	 extends less than 100 feet off-Site. While the dissolved hydrocarbon concentrations are locally high, similar to concentrations at sites with light non-aqueous phase liquid (LNAPL), the well screens in wells in the source area are screened such that LNAPL would have been measured. This site has a very high density of wells: wells are 10-30 feet apart in source area. None have recorded LNAPL over multiple gauging events. No evidence of free-phase hydrocarbons has been noted in soil samples during drilling. The lithology encountered indicates a confined first groundwater, with dry clay extending to the depth to first water (10-12 feet bgs), and water levels rising in the well after installation. In any case, the downgradient boundary wells have no detectable benzene or total petroleum hydrocarbon as gasoline (TPHg), and very low concentration of TPH as diesel (TPHd). If LNAPL were present at the Site boundary, the wells would contain much higher concentrations of dissolved hydrocarbons. 	Laboratory analytical data
		the vicinity of the former gasoline USTs at Buildings 1 and 3.	 Table 3 of the Remedia Monitoring Report (SGI Table 4 of the Investiga Remediation Sampling (SGI, 2010); Table 7 of the Investiga (LFR, 2009); and Table 4 of the Subst Monitoring Report, Quarter
Contaminant Transport and Fate		Chemical properties of the detected constituents and the physical characteristics of the Site were reviewed to identify factors that might allow the release and transport of a chemical from soil, soil vapor, or groundwater. Currently, the entire Site is covered with either asphalt, concrete, or buildings constructed on concrete slabs. Two large warehouse buildings occupy the western and eastern areas of the Site. The former UST in Area 4 is located outside Building 3 (western portion of Site), and the suspected UST in Area 5 is located beneath Building 1 (eastern portion of Site).	Contaminant migration alou corridors) was evaluated in 2012a). Utility corridors ide Figure 3 in the RI Work Pla
		to alter current conditions. Therefore, future receptors may be directly exposed to soil on Site. Release of chemicals can potentially occur through volatilization, wind and/or mechanical erosion (i.e., during construction), or migration of chemicals into the groundwater or surface water. These potential release mechanisms are discussed in more detail below.	

ing Data/Figure References ta for soil vapor samples collected at the Site dial Investigation Activities and Groundwater GI, 2013); igation/Remediation (Area 4), Post-ng and First Semi-Annual Monitoring Report gation and Remediation Activities Report bsurface Investigation and Groundwater ter 2, 2008 (ERĂS, 2008). long preferential pathways (e.g., utility in Section 3.1 of the RI Work Plan (SGI, identified in Area 4 of the Site are shown on Plan.

CSM Element	CSM Sub- Element	Description	Supportin
		Based on previous investigations, some of the Site-related constituents include volatile organic hydrocarbons (VOCs). These chemicals typically have a low organic carbon partition coefficient (Koc), a low molecular weight, and a high Henry's Law constant, indicating that these chemicals may volatilize. Therefore, volatilization of VOCs is considered a potential transport mechanism.	
		Some of the chemicals detected at the Site adsorb readily to dust particles. Chemicals adsorbed to soil particles can be blown into air. This is referred to as fugitive dust. Therefore, exposure to constituents in soil via fugitive dust emissions is considered a potential transport mechanism.	
		The potential for chemicals to leach from soil or migrate laterally in soil vapor depends on the physical and chemical properties of the chemicals, the chemical concentration, soil type, and other site-specific conditions. For example, chemicals with high water solubilities tend to leach more readily than chemicals with lower solubilities. In addition, a chemical's Koc is important for assessing the degree of chemical sorption to soil particles; chemicals with a high sorption potential do not tend to leach as readily. Site-specific conditions are also important for assessing whether leaching may occur, such as soil type (leaching occurs more readily in sandy soils than in clayey or silty soils), amount of rainfall, gradient, etc. In addition, other competing migration pathways can affect the tendency of a chemical to leach. Site-related constituents (e.g., gasoline-range petroleum hydrocarbons) may migrate downward from shallow soils to deeper soils and/or groundwater through leaching. Therefore, potential leaching to groundwater is considered a transport mechanism.	
Confirmed and Potential Exposure Points and Receptors		Under current Site conditions, the direct contact with soil is prevented by the asphalt/concrete cover. Under future Site conditions, where the condition of the cover is unknown, receptors at the Site may be directly exposed to soil. Therefore, under future Site conditions, the exposure point for soil is defined as the area within the Site. As recommended by the Department of Toxic Substances Control (DTSC; 2011a,b), for the volatilization pathway into indoor air, exposure to subsurface contamination is best characterized through the collection of soil vapor samples. Therefore, soil vapor data are	A Human Health Risk Eval <i>Remedial Investigation Ac</i> (SGI, 2013).
		 used in the evaluation of potential indoor air impacts. Currently, two buildings exist onsite. Under future Site conditions, the exposure point for soil vapor is defined as the entire area within the Site (assuming a future building may be located anywhere on the Site). Although the exposure point for groundwater is defined as the groundwater within the Site, no point of direct contact with groundwater was identified for the Site. There are no known active drinking water supply wells pumping from shallow aquifers for beneficial use 	

ting Data/Figure References

valuation is presented in Section 6.0 of the Activities and Groundwater Monitoring Report

The Source Group, Inc.

CSM Element	CSM Sub- Element	Description	Support
		within an approximate 1,300-foot radius of the Site. A suspected irrigation well is listed in the Alameda County Public Works Wells database as being located approximately 620 feet southwest of the Site. The total depth or screened interval of the well is not known. Regardless, current and historical groundwater flow direction is to the west, cross-gradient of the suspect well. The shallow water-bearing zone is generally not considered a drinking water source due to inadequate yields and other water quality issues (e.g., bacteria, total dissolved solids). Therefore, no point of direct contact with groundwater as a beneficial water resource was identified for the hypothetical receptors. Based on the historic depth to groundwater of approximately 10 feet bgs, a hypothetical outdoor construction worker receptor could potentially contact groundwater during deep excavation, this contact is expected to be very infrequent and involve only minor contact, if any, with contaminated groundwater. In general, any hypothetical construction worker receptor will be performing activities consistent with a Site health and safety plan (HASP). This HASP and best management practices (BMPs) would likely require engineering controls (e.g., dewatering) to preclude any direct contact with groundwater for workers at the Site.	
		Volatile compounds can be released from the subsurface into indoor and outdoor air resulting in an indirect exposure to constituents in soil, soil vapor, and groundwater. Soil, soil vapor, and groundwater samples have been collected from the same general areas of the Site. As recommended by U.S. Environmental Protection Agency (USEPA; 1996 and 2002), soil concentrations are used for evaluating soil vapor emissions from soil to outdoor air. As recommended by the DTSC (2011a,b), for the vapor intrusion pathway into indoor air, exposure to subsurface contamination is best characterized through the collection of soil vapor samples. Therefore, concentrations detected in soil were used in evaluation of potential outdoor air impacts, as presented in the LTCP. Detected concentrations of soil vapor were used in the evaluation of potential indoor air impacts.	
		In addition to exposure points, potential hypothetical receptors are necessary for an exposure pathway to be complete. Hypothetical human receptors were identified on the basis of proximity to the Site, proposed activities that could possibly result in direct or indirect contact with Site-related constituents, and Site use. The Site is located in an industrial area, which is expected to remain industrial in the future. The following hypothetical human receptors were identified:	
		 Hypothetical On-Site Outdoor Commercial/Industrial Worker Receptor (current and future exposure scenario); Hypothetical On-Site Indoor Commercial/Industrial Worker Receptor (current and future exposure scenario); and Hypothetical On-Site Construction Worker Receptor (future exposure scenario). 	

orting Data/Figure References

The Source Group, Inc.

CSM Element	CSM Sub- Element	Description	Supporting
		The nearest surface water body is San Leandro Creek, which is located approximately 5,000 feet southwest of the Site (Figure 1). San Leandro Creek is channeled through urban areas including engineered underground conveyances and drains stormwater into San Leandro Bay (approximately 1 mile west of the Site). Due to the distance from the Site to the point of potential interception, interaction between constituents in surface water runoff or groundwater and regional surface water features is not expected.	
References:			
	nmental Protection on Guidance).	on Agency, Department of Toxic Substances Control (DTSC). 2011a. Guidance for the Evalu October.	uation and Mitigation of Subs
DTSC. 2011b. H	luman Health Ri	sk Assessment Note Number: 4, Screening Level Human Health Risk Assessments. June 9.	
ERAS Environme California. Ju	· · · · · ·). 2008. Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008, For	mer PACO Pumps Facility, 9
Jonas and Assoc	iates Inc. (Jonas	s). 1991. Soil Characterization Report, Soil Excavation Area. October 30.	
Jonas. 1993. Fir	st Quarterly Stat	tus Report, PACO Pumps Facility, 9201 San Leandro Street in Oakland, California. February	/ 24.
Levine Fricke Red	con Inc. (LFR).	2009. Investigation and Remediation Activities Report. May 15.	
The Source Grou	p, Inc. (SGI). 20	009. Remediation Work Plan - Area 4, Former PACO Pumps Site, 9201 San Leandro Street,	Oakland, California. Octobe

SGI. 2010. Investigation/Remediation (Area 4), Post-Remediation Sampling and First Semi-Annual Monitoring Report, Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. October.

SGI. 2013. Remedial Investigation Activities and Groundwater Monitoring Report, Former PACO Pumps Site, 9201 San Leandro Street, Oakland, California. July 25.

U.S. Environmental Protection Agency (USEPA). 1996. Soil Screening Guidance: User's Guide. Office of Solid Waste and Emergency Response. July.

USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Solid Waste and Emergency Response. December.

ing Data/Figure References bsurface Vapor Intrusion to Indoor Air , 9201 San Leandro Street, Oakland, ber 30. San Leandro Street, Oakland, California. ornia. July 25.

APPENDIX C

ALAMEDA COUNTY ENVIRONMENTAL HEALTH (ACEH) DRILLING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/09/2014 By jamesy Permit Numbers: W2014-0574 to W2014-0575 Permits Valid from 06/25/2014 to 06/25/2014 City of Project Site:Oakland Application Id: 1401304028307 Site Location: 9201 San Leandro Street **Project Start Date:** 06/25/2014 Completion Date:06/25/2014 Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org **Applicant:** The Source Group, Inc - Paisha Jorgensen Phone: 510-847-9217 3478 Buskirk Ave, Suite 100, Pleasant Hill, CA 94523 **Property Owner: Richard Padovani** Phone: --9201 San Leandro Street, Oakland, CA 94603 Client: Dave Murray Phone: --4650 SW Macadam Ave, Suite 400, Portland, OR 97239

	Total Due:	\$662.00
Receipt Number: WR2014-0235		\$662.00
Payer Name : Paisha Jorgensen	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 1 Wells Driller: Gregg Drilling and Testing, Inc. - Lic #: 485165 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2014- 0574	06/09/2014	09/23/2014	MW-12	8.00 in.	2.00 in.	8.00 ft	20.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and

Work Total: \$397.00

Alameda County Public Works Agency - Water Resources Well Permit

mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Borehole(s) for Investigation-Environmental/Monitorinig Study - 4 Boreholes Driller: Gregg Drilling and Testing, Inc. - Lic #: 485165 - Method: hstem

Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2014-	06/09/2014	09/23/2014	4	2.00 in.	5.00 ft
0575					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

6. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX D

MW-12 BORING LOG

			THE					BORING/WELL ID:		
O enviro					CE G	ROUP, INC.		MW-12		
PROJE	CT N/			DRESS			San Leandro Street, Oakland, CA	Project No. 04-PFT-005		
BORIN	G LOO	CATIO	N (AT S	SITE):		Southwest corner of Site		Logged By: C. Collins		
					T:	Gregg/Drill Rig DV-8		P.G. Approval: P. Jorgensen #7806		
SAMPLING METHOD:						Hand auger/Direct push	MiniRae 2000			
START	DATE	/TIME	:			9/19/14 7:30am	MONITORING DEVICE: FINISH DATE/TIME:	9/19/14 10:30am		
FIRST/S	STATI		ER LE	EVEL(B	GS):	14 feet/8.5 feet CASING DEPTH(S): 20 feet bgs				
				ON (MS		0.23/19.41 SCREEN INTERVAL(S) (BGS): 10 - 20 feet bgs				
TOTAL	BORI	NG DI	AMETI	ER/DEP	TH:	8 inches/20 feet bgs SCREEN SLOT SIZE/TYPE: 0.020 inches/PVC				
е Щ 8:30	PID reading (ppm)	Samples Collected	Sample Recovery	Oepth (feet)	₀ USCS ≅ Classification	ALL PERCENTAGES and P	LITHOLOGIC DESCRIPTIO on, color, moisture, density, grain s ERMEABILITY ARE APPROXIMA gs - hand auggered, soil logged	size/plasticity, other) TE UNLESS OTHERWISE STATED		
8:45	0.0	SB- MW- 12-4		1 2 3 4 5	SM	0% clay		5% gravel, 75% sand, 20% silt, 5% silt, 95% clay, organic odor neat cement grout 2-inch, Sch 40 PVC blank casing		
	0.0			6 7 8 9 10	CL	↓ LEAN CLAY: greenish	n black (GLEY 1 2.5/10Y), 0% g	bentonite		
8:55	0.0	SB- MW- 12-14		11 12 13 14 15 16	SM	 ↓ brown (7.5YR 4/3) ↓ SILTY SAND: dark ye 40% silt, 50% sand, 1 ↓ wet ↓ dark yellowish brown 		2-inch, Sch 40 PVC, 0.020-inch slot screen		
				17 18 19		↓ dark yellowish brown	(10YR 4/4)			
				20		1	Bottom of Boring at 20 feet	bgs		
						Pa	age 1 of 1			

APPENDIX E

WELL DEVELOPMENT FIELD FORMS

MONITORING WELL DEVELOPMENT LOG

Page _____ of _____

All measurements taken from:	Top of Casing	Protective Casing	Ground Level
Well Number	Boreho	ole Diameter	8-
Date 9-24-14	Screer	Length	1047
Time Start: <u>540</u> End: <u>1015</u>	Measu	ired Depth (pre-developn	nent) 19.7
Client Source group	Measu	red Depth (post-develop	
Project FORMER PAGE DUNIDS	Static V	Water Level (ft.)	8.55
Job Number <u>D2140300</u>	Standi	ng Water Column (ft.)	11.15
Installation Date	One Ca	asing Volume (gal.)	1. 8955
Well Diameter	One Ar	nnulus Vol. (gal.)	

5 <u> </u>
Ç ₄ , ~
Borehole Diameter
Screen Length IO F
Measured Depth (pre-development) 19.76
Measured Depth (post-development)9.16
Static Water Level (ft.) 5-55
Standing Water Column (ft.)
One Casing Volume (gal.)
One Annulus Vol. (gal.)

Sample ID
Qty. of Drilling Fluid Lost
Minimum Gal. to be Purged 15.955
Bart- pump
Purging Equipment SS Bailer 2 punp
Water Level Equipment Solumst
pH/EC Meter HORThan US3
Turbidity Meter
Other

	Field Parameters Measured										
Time	Amount Purged (gal.)	рН	EC	Turbidity	D.O.	Temperature	SAL.	GPM Wal.	Comments		Field Tech.
931	20	7.26	1.13	652		19.76	0.6	1/5	9.27	Bail- 5 906	
935	7-2	6.85	1013	322	-	19.50	0.6	112	9.27	Surge 10 M.	P
939	24	6.81	1.15	200		19.78	06	1/2	9.27	Bailt 599	V
943	26	6.83	1.12	10-3	19429	19.74	0.6	1/2	9.27	STORT PUMP	G92
941	26	6.61	1.15	42.3	~	19.76	0.6	11-2	927	ile OPM	
950	30	10.79	anaran aninga	26.5		19.98	0.6	1/2	9.27		
954	32	0.30	1.16	21.3		19.96	0.6	1/2	9.27		
958	B	18.0	1.15	23.1	CHARMEN,	1974	0.6	1/2	1:27		
*											
л. Ц				FINAL	FIELD PARA	METER MEAS	UREMENTS				
5 - ⁶											

SURVEYOR'S REPORT

APPENDIX F

Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

October 24, 2014 Project No.: 2999-06

Paisha Jorgensen The Source Group, Inc. 3478 Buskirk Ave., Suite 100 Pleasant Hill, CA 94523

Subject: Monitoring Well Survey 9201 San Leandro Street Oakland, CA

Dear Paisha:

This is to confirm that we have proceeded at your request to survey the new wells add borings at the above referenced location. The survey was completed on October 2, 2014. The benchmark for this survey was a PK nail and shiner in the median island on Hegenberger Ave., approximately 100 feet south of Coliseum Way. The latitude, longitude and coordinates are for top of casings and are based on the Calif. State Coordinate System, Zone III (NAD83). Benchmark Elev. =13.455 feet (NAVD 88).

Latitude	Longitude	Northing	Easting	Elev.	Desc.
37.7416643 37.7417493 37.7416579 37.7418885	-122.1857005 -122.1858635 -122.1857760 -122.1860306	2096908.45 2096940.25 2096906.54 2096991.81	6074270.83 6074224.27 607424.97 6074176.87	20.23 19.41 18.54 18.69 18.59	RIM MW-12 TOC MW-12 SB-SGI-1 SB-SGI-2 SB-MW-10
37.7419886	-122.1861448	2097028.83	6074144.50	18.61	SB-MW-11

Sincerely, <u>Virgil D. Chavez</u>, PLS 6323 / **APPENDIX G**

GROUNDWATER SAMPLING FIELD FORMS

WELL GAUGING DATA

Project # <u>H1016-J01</u> Date <u>10-16-14</u> Client <u>SGI</u>

Site 9201 Sun Leandro 9t. Oakland cht

Well ID	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)		1	Depth to well bottom (ft.)	Survey Point: TOB or TOG	Notes
Mw-1	0920	Ц					7.53	20.00	Ŭ.	
Mw-Z	0952	4					8.05	2015		
MW-3			, ve	i filled	with	DiA				
MW-4	1250	4					7.54	20.62		
MW-5	0432	4					7.30	20.05		
MW-6	0940	2					6.95	16.33		
Mu-7	0935	2					8-20	27.12		
111-8			Ural	le to	locate	•				
MW-9	6941	2					7.89	16.87		
MU -10	0937	2					7.00	21.35		
MW-11	0944	Ζ					7.33	19.38		
MW-12	0949	Ζ					8.50	19.50		
E-1	0744	2					8.40	17.05		
	0947	2					8.59	19.25		
53	0955	2					9.80	18:30		
E-4	0959	2					8.29	19.21		
E-5	6950	2					8.53	17.97	I	

WELL (GAU	GING	DATA
--------	-----	------	------

Project # 101(14 -10)	14-301
-----------------------	--------

Date 10-16-14

Client <u>561</u>

St Dallard on Site 9201 Sun Leundro

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	4 State 1 August 1	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOG	Notes
E-6	1200	2					8.47	18.25	\checkmark	
<u>E-7</u>	1010	2					B.58	18.15		
<u>e-9</u>	1014	2	÷.,				8.60	17.94		
E-9	1012	2					8,57	17.94 17.04 18.10 18.10		
E-10			U	able	to la	xale				
E-11				rable	이는 것은 것을 못했다.	ocute				
12-12	1009						7.97	1776.		
145-1S	0756	2					8.35	16.58		
AS-1D	0959	2					8.34	32.94		
AS-MWZS	1002	2					8.60	16.92		
145-MW-ZD	1005	2					9.53	33.70		

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

						(
V	V ar 1	$\Box L$	MONITO	RING	DATA	SHŁ.	ي بخر

Project #: 1	41016· J	01		Client: The	Source G	NOVP	
Sampler:	ND			Date: [0]16		· •	
Well I.D.:	MW-1			Well Diameter: 2 3 4 6 8			
Total Well I	Depth (TD):	20.00	Depth to Water (DTW): 7.53			
Depth to Fre	ee Product	•		Thickness of Free Product (feet):			
Referenced	to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH	
DTW with 8	30% Recha	urge [(H	eight of Water	Column x 0.20)) + DTW]:	10.62	
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other in Dedicated Tubing Other:							
8.1 ((1999 Mark Mark Andrea Anna an A	5	742	1"	0.04 4" 0.16 6"	0.65	
$\frac{\mathcal{O} \cdot (}{1 \text{ Case Volume}} $		フ fied Volum	$= \frac{24.3}{\text{Calculated Vol}}$	_Gals. $\ -$	0.37 Other	radius ² * 0.163	
Time	Temp (°F or C)	pH	Cond. (mS or/µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1020	202	7.96	796	193	8.1		
1023	202	7.72	932	209	16.2		
1026	20.3	7.71	-930	201	24.3		
Did well de	water?	Yes (No	Gallons actual	y evacuated:	24.3	
Sampling D	ate: 10/16	114	Sampling Tim	e: 1646	Depth to Water	r:	
Sample I.D.	: Mw	- (Laboratory:	Kiff CalScience	Other <u>NEV+est</u>	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Se	e coc	
EB I.D. (if a	applicable)	:	@ Time	Duplicate I.D.	(if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req	'd): (Pi	e-purge	0.24	^{mg} / _L	ost-purge:	0.27 ^{mg} / _L	
O.R.P. (if re	eq'd): (Pr	re-purge:	152	mV (I	Post-purge:	160 mV	

Project #:	41016-101			Client: SGI				
Sampler:	JD			Date: $10 - 16 \cdot 14$				
Well I.D.:	MW-2_			Well Diameter: 2 3 4 6 8				
Total Well	Depth (TD): Z	0.15	Depth to Water (DTW): 8.05				
Depth to Fr	ee Product			Thickness of Free Product (feet);				
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): (YSI) HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.2	0) + DTW]:	10.47		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other: Well Diameter Multiplier Multiplier								
7.8 1 Case Volume	$\frac{1}{12} (Gals.) X = \frac{2}{12} \frac{1}{12} \frac{1}{12$							
Time 1245	Temp (°F or °C) 20.9	рН 6.90	Cond. (mS or(µS))	Turbidity (NTUs)	Gals. Removed	Observations		
1248	21.2	6.94	1064	16	15.6	¥		
1251	21.2	6.93	1062	16	7.3.4	· .		
		*						
					· ·			
Did well dev	water?	Yes (No	Gallons actua	ally evacuated:	Z3.4		
Sampling D	ate: 10-	(6-14	Sampling Time	: 1300	Depth to Wate	er: [0.00		
Sample I.D.	: Mi	-2		Laboratory:	Kiff CalScienc	e Other <u>Acculent</u>		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Seu	2 000		
EB I.D. (if a	pplicable):	;	@ · Time	Duplicate I.D	. (if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'	d): (Pr	e-purge;	0.64	^{mg} / _L	Post-purge:	().60 ^{mg} / _L		
O.R.P. (if re	q'd): (Pr	e-purge:	116	mV	Post-purge:	Joy mV		

r				26 - 1				
Project #: /	41016-50	.1		Client: The Source Group				
Sampler: N	IM			Client: The Sauce Group Date: 10-16-14				
Well I.D.:	$n\omega - 4$			Well Diameter: 2 3 ④ 6 8				
Total Well): 20	02	Depth to Water (DTW): 7,59				
Depth to Fr					Thickness of Free Product (feet):			
Referenced	to:	PVC) Grade	D.O. N	D.O. Meter (if req'd): (YSI) HACH			
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]: 70,	.07	
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Dedicated Tubing Electric Submersible Other N Other: Other: Øultiplier Multiplier Multiplier Multiplier Image: Method: Image: Sampling Method: Image: Sampling Method: Bailer Image: Method: Disposable Bailer Extraction Pump Extraction Port Image: Method: Other Image: Sampling Method: Dedicated Tubing Image: Method: Image: Sampling Method: Image: Sampling Method: Bailer Image: Method: Image: Sampling Method: Image: Sampling Method: Image: Sampling Method: Bailer Image: Method: Image: Sampling Method: Image: Sampling Method: Image: Sampling Method: Bailer Image: Method: Image: Sampling Method: Image:							Bailer Disposable Baster Extraction Port Dedicated Tubing Diameter Multiplier 0.65	
1 Case Volume		fied Volum			3"		radius ² * 0.163	
Time	Temp (°F or °C)	pH	Cond. (mS or μS)		oidity TUs)	Gals. Removed	Observations	
1258	19.6	7.44	1105	7	3	8.1	cloudy	
1300	19,2	7.27	945	27	E	16:2	V	
	WELL	DEUR	TERGD					
1310	18.7	7,83	969	140	e O	GRAB		
			5.M				· · · · · ·	
Did well de	water?	Yes	No	Gallon	s actuall	y evacuated: Z	0,5	
Sampling D	ate: 10 - 16	-14	Sampling Time	e: / 3/0)	Depth to Wate	r: <i>E, 4</i> 6	
Sample I.D.	: MW-4			Labora		Kiff CalScience	1 1	
Analyzed for		BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See		
EB I.D. (if a	applicable)		@ Time	Duplic		(if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	α α τ τ τ τ τ τ τ τ τ τ τ τ τ	
D.O. (if req	'd): Pr	e-purge:	0.76	^{mg} /L	Р	ost-purge:	0,60 ^{mg} /L	
O.R.P. (if re	eq'd): Pr	e-purge:	198	mV	P	ost-purge:	162 mV	

W___L MONITORING DATA SHE.

Project #:	141016-5	ø		Client: Sal				
Sampler:	50	`		Date:	10-1	6-14		
Well I.D.:	Mu-	5		Well Diameter: 2 3 (4) 6 8				
Total Well	Depth (TD):	20.05	Depth	Depth to Water (DTW): 7.30			
Depth to Fr	ee Product	•		Thickr	Thickness of Free Product (feet):			
Referenced	to:	(PVO	Grade	D.O. N	Aeter (if	req'd): (YSJ HACH	
DTW with	80% Rech	arge [(H	leight of Water	Colum	1 x 0.20)) + DTW]:	9.95	
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Well Diameter Multiplier Well Diameter Multiplier								
B-2 (1 Case Volume	Gals.) X Speci	<u>S</u> fied Volun	= nes Calculated Vo	_Gals. Dume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65	
Time	Temp (°F or °C)	рн 7-21	Cond. (mS or µS)	(N'	bidity TUs) 2	Gals. Removed	Observations	
1107	20.7	7.19	55%	1	3	16.4		
1109	20.7	7.17	562	٢	3	24.6	·	
Did well dev	water?	Yes (No	Gallon	s actuall	y evacuated:	24.6	
Sampling D	ate: 10-1	6-14	Sampling Time	e: 111-	Γ	Depth to Wate	r: 7,72	
Sample I.D.	: Mu	-5		Labora	tory:	Kiff CalScience	e Other second	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: Sa	e ca	
EB I.D. (if a	pplicable)	•	@ . Time	Duplic	ate I.D. ((if applicable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	·	
D.O. (if req'	d): (Pr	e-purge:	1.34	^{mg} /L	P	ost-purge:	1.20 . mg/L	
O.R.P. (if re	q'd): Pr	e-purge:	一形	mV	P	ost-purge.	- CB mV	

		И	L MONIT	ORING	G DATA	SHE		
Project #:	141016 -	101		Client:	The	Source	Siverp	
Sampler:	ND			Date: $10/16/4$				
Well I.D.:	MW-(0		Well D	iameter	:(2) 3 4	6 8	
Total Well	Depth (TD):	16.33	Depth to Water (DTW): 6.95				
Depth to Fr	ee Product	- • * •		Thickness of Free Product (feet):				
Referenced	to:	(PVC)	Grade	D.O. N	leter (if	req'd):	YSI) HACH	
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	8.82	
Purge Method:	ent Extrac Other	Waterra Peristaltic tion Pump		Sampling Method	E: Bailer Disposable Bailer Extraction Port Dedicated Tubing			
L.S.($\frac{1}{1 \text{ Case Volume}} \underbrace{\frac{3}{1 \text{ Case Volume}}}_{\text{Specified Volumes}} = \underbrace{\frac{4.5}{\text{Calculated Volume}}}_{\text{Calculated Volume}} \underbrace{\frac{1}{1} \text{ Well Diameter Multiplier}}_{0.04 4" 0.65}$							
Time	Temp (°F or Ĉ	pH	Cond. (mS or (uS)	1	oidity ГUs)	Gals. Removed	Observations	
1430	21.4	b.98	1260	9	7	1.5		
1435	21.3	6.89	(314	9	4	3.0		
1440	21.3	6.93	1300	9	2	4.5		
·								
Did well de	water?	Yes	No	Gallon	s actuall	y evacuated:	4.5	
Sampling D	ate: 10/16	114	Sampling Time	e: \L	145	Depth to Wate	er: 7.99	
Sample I.D.	.: Mh	-6		Labora	tory:	Kiff CalScienc	e Other <u>WCV+est</u>	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: Se	ee coc	
EB I.D. (if a	applicable)):	@ Time	Duplic	ate I.D.	(if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	• •	Other:		
D.O. (if req	'd): (P1	e-purge?	1.01	^{mg} /L	P	ost-purge:	1.39 ^{mg} /L	
O.R.P. (if re	eq'd): (Pi	re-purge:	> ~(7)	mV	(P	ost-purge:	- [4 mV	

W _L MONITORING DATA SHE.

Project #:)	roject #: 141016 · Jo1				The	Source	Grovp	
Sampler:	ND			Date:	10/16		· •	
Well I.D.:	Mw-	ł		Well Di	iameter:	2 3 4	6 8	
Total Well I	Depth (TD): T	7.12	Depth to Water (DTW): Q_{2} $\neq 0$				
Depth to Fre	ee Product	:		Thickness of Free Product (feet):				
Referenced	to:	(PVC)	Grade	D.O. M	eter (if	req'd): (YSI) HACH	
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]:	(2.38)	
Purge Method:	Bailer Disposable Ba Positive Air I Electric Subr	Displaceme	nt Extrac Other		Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing		
]	Well Diameter	r Multiplier We 0.04 4"	1 Diameter Multiplier 0.65	
	Gals.) X		= 9.0	_Gals.	2" · 3"	0.16 6" 0.37 Oth	1.47	
1 Case Volume	Speci	fied Volum	es Calculated Vo	lume	J	0.57 04		
Time	Temp (°F or °C)	pH	Cond. (mS or(µS)	Turb (NT	idity `Us)	Gals. Remove	d Observations	
1115	20.9	7.77	991	27	(3.0		
1125	21.0	7.25	889	700	20	6.0		
1133	21.0	7.26	890	>100	0	9.0		
		× .						
Did well de	water?	Yes (Noj	Gallons	actuall	y evacuated:	9.6	
Sampling D	ate: 10116	114	Sampling Time	e: 114	.6	Depth to Wa	ter: 10.00	
Sample I.D.	: N	1w-7		Labora	tory:	Kiff CalScier	ce Other <u>KCV+est</u>	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: 5	ee coc	
EB I.D. (if a	applicable):	@ Time	Duplica	ate I.D.	(if applicable)	:	
Analyzed for	or: TPH-G	BŢEX	MTBE TPH-D	Oxygena	ates (5)	Other:		
D.O. (if req	'd): (Pi	re-purge	0.88	^{mg} /L	¢	ost-purge:	0.78 ^{mg} /L	
O.R.P. (if re	eq'd): (P	re-purge:	150	mV	P	ost-purge:	\७⊖ mV	

Project #:	<u>141016-Ja</u>			Client: SGT					
Sampler:	So			Date:	10-16	2-14			
Well I.D.:	MW-9		****	Well I	Diameter	(2) 3	4	6 8	
Total Well	Depth (TD): ((6.87	Depth	Depth to Water (DTW): 7.99				
Depth to Fr	ee Product	••		Thickr	Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. N	/leter (if	req'd):	(YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20) + DTW]	:	9.68	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	:	Sampling ter Multiplier	Other:	Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	Gals.) X Speci	3 fied Volun	$= \frac{4.2}{\text{Calculated Vc}}$	Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47	
Time	Temp (°F or °C)	pH	Cond. (mS or μS)	1	bidity TUs)	Gals. Rei	moved	Observations	
1200	20.1	7.24	1077	710	90	1.4			
1203	20.2	7.22	1084	7100	Ú	2.9			
1206	20.2	7-21	1087	200	<i>°</i> U	42			
						· · · · ·	•		
Did well dev	water?	Yes (No	Gallon	s actuall	ly evacuat	ed:	4.7	
Sampling D	ate: 10-1	16-14	Sampling Time	e: [2]	D	Depth to	Water	S	
Sample I.D.:	Sample I.D.: Mw-9 Laboratory: Kiff CalScience Other Accordent								
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:								See inc	
EB I.D. (if applicable): [@] Duplic						(if applica	able): [.]	1	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen		Other:	······		
D.O. (if req'	d): Pr	e-purge:	0.70	^{mg} /L	P	ost-purge:		0.69 . mg/L	
O.R.P. (if re	q'd): Pr	e-purge:	36	mV	Р	ost-purge:		Z(mV	

Project #:						Client: SGI				
Sampler:	So			Date:	10-16	,				
Well I.D.:	<u>Mw - 10</u>			Well I	Diamete	er: 🗘 3	4	6 8		
Total Well	Depth (TD):	21.35	Depth	Depth to Water (DTW): 7.00					
Depth to Fr	ee Product	•	(Thickr	Thickness of Free Product (feet): —					
Referenced	to:	PVO	Grade	D.O. N	/leter (i	f req'd):	(YSI HACH		
DTW with	80% Recha	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]	•	9.87		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65							Disposable Bailer Extraction Port Dedicated Tubing			
2-Z (1 Case Volume		<u> </u>	$\frac{1}{1} = \frac{0.6}{1}$	Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	1.47		
Time	Temp (°F or C)	pH	Cond. (mS or (µS)	1	bidity TUs)	Gals. Rer	noved	Observations		
1044	20.8	70	870	20	OV	2.2				
1047	20.8	7.04	868	7100	N	4,4				
1050	20.9.	7-06	870	100	20	6.6				
·										
Did well de	water?	Yes	Nø	Gallon	s actual	lly evacuate	ed:	6.6		
Sampling D	ate: 10-1	.6-14	Sampling Tim	e: 105	55	Depth to	Wate			
Sample I.D.										
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	See	2000		
EB I.D. (if applicable): [@] _{Time} Duplicat						(if applica		V		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:	· · · · ·			
D.O. (if req'	d): Pr	e-purge:	0.97	^{mg} /L		Post-purge:	,	0.99 mg/L		
O.R.P. (if re	q'd): Pr	e-purge:	-27	mV		Post-purge:		-34 mV		

Project #:	Project #: 141016-501					Client: 565				
Sampler:	So			Date:	10-16	,				
Well I.D.:	MW-1			Well I	Diameter	~	4 6 8			
Total Well				Depth	to Wate	r (DTW):	7.33			
Depth to Fr	ee Product	: /		Thickr	Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. N	D.O. Meter (if req'd): (YS) HACH					
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	9.74			
Purge Method:	Bailer Qisposable B Positive Air I Electric Subn	Displacem	ent Extrac Other	Waterra Peristaltic ction Pump	;	Sampling Met	hod: Bailer Disposable Bailer Extraction Port Dedicated Tubing ther:			
<u> </u>					Well Diamete		Vell Diameter <u>Multiplier</u> 1" 0.65			
$\frac{2.0}{1 \text{ Case Volume}}$ (0	Gals.) X Speci	<u> </u>	$\frac{1}{1} = \frac{6}{6}$	Gals.	2" 3"	0.16 6	5" 1.47 Dther radius ² * 0.163			
· · · ·			T	/		T				
Time	Temp (°F or ℃)	pH	Cond. (mS or (LS))	1	bidity TUs)	Gals. Remov	ved Observations			
1020	20.7	7.30	562	R	Ģ	2.0				
1023	20.6	7,31	569	Ì	000	64.0				
1026	20.6.	7.32	570	ંગ્રત	000	6.0	-			
						· .				
Did well dev	water?	Yes	No	Gallon	s actuall	y evacuated:	6.0			
Sampling Da	ate: 10 - 1	6-14	Sampling Time	e: 163	D	Depth to Wa	ater: 188			
Sample I.D.:	MW-	v		Labora	tory:	Kiff CalScie				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: <	re ca			
EB I.D. (if a	pplicable):	•	@ · · · · · · · · · · · · · · · · · · ·	Duplic	ate I.D. ((if applicable				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:				
D.O. (if req'	d): (Pr	e-purge:	1.00	^{mg} / _L Post-purge: 0.87			0.87 ^{mg} /L			
O.R.P. (if re	q'd): Pr	e-purge:	- 29	mV	Р	ost-purge:	-33 mV			

WELL MONITORING DATA SHLET

Project #:	141016-101	F		Client: SGT				
Sampler:	J10 '		с. А.	Date: 10	-16-14			
Well I.D.:	MW-12			Well Diamete	r: 2 3 4	6 8		
Total Well	Depth (TD):	19.50	Depth to Wate	er (DTW): G	1.5D		
Depth to Fr	ee Product	:	€-s ^{anta} r.	Thickness of Free Product (feet):				
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): (YSI) HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 10.70				
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displacem	ent Extrac Other	Waterra Peristaltic ction Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing		
1.8 ((1 Case Volume	Gals.) X Speci	<u>S</u> fied Volum	$\frac{1}{1} = \frac{5.4}{Calculated Vol$	Gals. 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163		
Time	Temp (°F or O	pH	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations		
1220	21.4	7.64	1369	71000	1.9			
1223	21.2	2.57	1370	71006	3.6			
1226	21.2	7.54	1377	71000	5.4			
					· · · ·			
Did well dev	water?	Yes	Nd	Gallons actual	ly evacuated:	5.4		
Sampling Da	ate: 10-1(0-14	Sampling Time	e: 1230	Depth to Wate	r: 6.62		
Sample I.D.:	: Mw-	12		Laboratory:	Kiff CalScience			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Se	e co		
EB I.D. (if a	pplicable)	•	@ · Time	Duplicate I.D.	(if applicable):			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'	d): (Pr	e-purge:	01.00	^{mg} / _L Post-purge: 0.9L				
O.R.P. (if re	q'd): (Pr	e-purge?	76	mV (Post-purge:	64 mV		

W _____L MONITORING DATA SHE

Project #: 1	41016· _	01		Client:	The	Source	G	NUNP	
Sampler:	ND	-		Date:	10/16			· 1	
Well I.D.:	E·2			Well Di	iameter:	2 3	4	68	
Total Well I	Depth (TD): 19	5.25	Depth t	o Water	· (DTW):	8.0	59	
Depth to Fre	ee Product			Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSD HACH					
DTW with 8	30% Recha	urge [(H	eight of Water	Column x 0.20) + DTW]: 10.83					
Purge Method:					Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	>		
l Case Volume	Fals.) X Speci	3 fied Volum	$= \frac{4.8}{\text{Calculated Vol}}$	_Gals.	Vell Diamete 1" 2" - 3"	r Multiplier 0.04 0.16 0.37	Well D 4" 6" Other	iameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp (°F or °C)	pH	Cond. (mS or (μS))	1	idity 'Us)	Gals. Remo	oved	Observations	
1200	21.1	7-61	1416	46	1	1.6			
1210	21.1	6.97	1531	49		3.2			
1218	21.2	6.90	1377	49	Q.	4.8			
D'1 11 1							·		
Did well de		Yes	No		actuall	y evacuate		4.8	
Sampling D	ate: 10116	114	Sampling Tim	e: (7	125	Depth to V	Vater	: 9.76	
Sample I.D.	: t-		Labora	tory:	Kiff CalS	cience	Other NEV lest	-	
Analyzed for	or: TPH-G	MTBE TPH-D	Oxygena	tes (5)	Other:	Se	e coc		
EB I.D. (if applicable):					ate I.D.	(if applicat	ole):		
Analyzed for	or: TPH-G	BŢEX	MTBE TPH-D	Oxygena	• •	Other:		5	
D.O. (if req	0.70	^{mg} / _L Post-purge: 0.74			0.74	^{mg} /L			
O.R.P. (if re	eq'd): (P	re-purge:	-71	mV (Post-purge:) - 55			- 55	mV	

W _L MONITORING DATA SHE

Project #: 1	01		Client:	The	Source	- STUNP		
Sampler:	ND			Date:	10/16		· 4	
Well I.D.:	E-3			Well Di	ameter:	2 3 4	6 8	
Total Well I	Depth (TD): 12	5.30	Depth t	o Water	(DTW):	1.80	
Depth to Fre	ee Product	:		Thickness of Free Product (feet):				
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSD HACH				
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: 17-35				
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	hisplaceme		_	Well Diamete		Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier	
L.S.(C 1 Case Volume	Gals.) X Speci	<u>3</u> fied Volum	$= \frac{4.5}{\text{Calculated Vc}}$	_ Gals. olume	1" 2" · 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 sr radius ² * 0.163	
Time	Temp (°F or °C)	pH	Cond. (mS or (uS)	Turb (NT	idity 'Us)	Gals. Removed	Observations	
1359	21.2	7.03	1279	700	יט	1.5		
1410	21.1	691	1264	>1000		3.0		
1419	21.1	6.91	1258	7100		4.5		
Did well de	water?	Yes (No	Gallons	actuall	y evacuated:	4.5	
Sampling D	ate: 10/16	114	Sampling Tim	e: 19	125	Depth to Wat	er: 10,70	
Sample I.D.	: 巨-3	, ,		Laborat	tory:	Kiff CalScien	ce Other <u>WEV+est</u>	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: 5	ee coc	
EB I.D. (if a):	@ Time	Duplica	ate I.D.	(if applicable)			
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D					Other:		
D.O. (if req	re-purge?	0.92	^{mg} / _L Post-purge: B. 9]			6.9 ^{mg} /L		
O.R.P. (if re	eq'd): (Pr	re-purge:	2 -61	mV (Post-purge:) -64			-64 mV	

W _____L MONITORING DATA SHE

Project #: 1	41016.		Client:	The	Source	e G	NUNP		
Sampler:	ND			Date:	10/16			· ¥	
Well I.D.:	E-5			Well Di		~	4	68	
Total Well I	Depth (TD):	17.97	Depth to	o Water	·(DTW):	: 8	.53	
Depth to Fre	ee Product	•		Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSD HACH					
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+DTW]	:	10.41	
Purge Method:	Bailer Disposable Bailer Positive Air I Electric Subm	Displaceme			Vell Diameter	Sampling I	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
L Case Volume	Gals.) X Speci	3 fied Volum	= 4.8 nes Calculated Vo	_Gals.	1" 2" - 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163	
Time	Temp (°F ot °C)	pH	Cond. (mS or μ S)	Turb (NT	-	Gals. Rer	noved	Observations	
1315	21.(6.92	1181	590		1.6			
1325	21.2	691	1196	586 3.2					
1335	21.2	691	1199	607	2	4.8			
Did well de	water?	Yes	No	Gallons	actuall	y evacuat	ed:	4.B	
Sampling D	ate: 10/16	114	Sampling Time	e: 134	5	Depth to	Water	r: 10.09	
Sample I.D.	: E	-5		Laborat	ory:	Kiff Cal	Science	Other <u>KEV+eq</u>	<u>5</u>
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See COC								
EB I.D. (if a	applicable):	@ Time	Duplica	te I.D.	(if applica	able):		
Analyzed for	or: TPH-G	BŢĒX	MTBE TPH-D	Oxygena	tes (5)	Other:		5. (3) (4)	
D.O. (if req	'd): (Pi	re-purge	1.06	^{mg} / _L Post-purge: 1.7		1.27	^{mg} /L		
O.R.P. (if re	eq'd): (P	re-purge:	0 - 59	mV	(P	ost-purge:	>	-40	mV

W ____L MONITORING DATA SHE.

Project #: 1	41016.	01		Client:	The	Source	G	JUNP	
Sampler:	ND			Date:	10/16			· •	
Well I.D.:	E-6			Well Di	ameter:	(2) 3	4	68	
Total Well I	Depth (TD):	8.25	Depth to	o Water	(DTW):	. 8	. 47	
Depth to Fre	ee Product	:		Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. M	eter (if i	req'd):	\subset	YSI) HACH	
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]:	:	10.42	
0	Bailer Disposable Ba Positive Air I Electric Subr	Displaceme					thod:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	>
L G (C	Fals.) X Speci	3 fied Volum	$= \frac{4.8}{Calculated Vol$	_Gals.	Vell Diameter 1" 2" · 3"	r <u>Multiplier</u> 0.04 0.16 0.37	Well D 4" 6" Other	iameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163	
Time	Temp (°F or °C)	pH	Cond. (mS or μS)	Turb (NT	-	Gals. Remo	oved	Observations	
1235	21.1	7.20	1162	47	17	1.6			
1245	21.1	7.09	1155	956 3.Z					
1255	21.2	7-03	1159	8(0	4.8			
Did well de	water?	Yes	No	Gallons	actuall	y evacuated	1:	4.8	
Sampling D	ate: 10/16	114	Sampling Tim	e: 13	00	Depth to V	Vater	. 9,90	
Sample I.D.	Sample I.D.: 5-6 Laboratory: Kiff CalScience Other Harderst								
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See COC								
EB I.D. (if a	applicable)	@ Time	Duplica	te I.D.	(if applicab	le):			
Analyzed for	or: TPH-G	MTBE TPH-D	Oxygena	tes (5)	Other:				
D.O. (if req	^{mg} / _L Post-purge: 1.09			1.09	^{mg} /L				
O.R.P. (if re	eq'd): (Pi	re-purge:	-66	mV (Post-purge:) -77			-72	mV	

		И	L MONIT	ORING	DATA	SHE		
Project #:	141016 . 1	0		Client:	56	T	·	
Sampler:	So			Date:	10-1	6-14		
Well I.D.:	E-7			Well Diameter 2 3 4 6 8				
Total Well	Depth (TD): \°	n.(5	Depth to Water (DTW): 9.58				
Depth to Fr	ee Product	:		Thickness of Free Product (feet):				
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd):	узр насн	
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	16.49	
Purge Method:BailerWaterraSampling Method:BailerDisposable BailerPeristalticDisposable BailerDisposable BailerDisposable BailerPositive Air DisplacementExtraction PumpExtraction PortDedicated TubingElectric SubmersibleOtherNOther:Dedicated TubingUnderstandGals.) X 3 3 3 0.37 OtherUnderstand 3 0.37 Other 7.4163								
1 Case Volume		fied Volun	$\frac{1}{1000} = \frac{(1000)}{Calculated Vc}$	- (1	3"	0.37 Other	radius ² * 0.163	
Time	Temp (°F or C)	pH	Cond. (mS or µS)	(N7	oidity 'Us)	Gals. Removed	Observations	
1345	21.2	677	964	62		1.5	odor	
1348	21.6	6:26	900	63		3.0	F	
(351	21.5	6-74	897	64	J.	4,5	()	
					·····		·	
Did well de	water?	Yes	No	Gallons	actuall	y evacuated:	4.5	
Sampling D	ate: (0-(6-14	Sampling Time			Depth to Wate	· ·	
Sample I.D.								
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See							
EB I.D. (if a	applicable)	:	@ Time			(if applicable):	<u> </u>	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:		
D.O. (if req	'd): 🖭	e-purge.	0.64	^{mg} /L	P	ost-purge:	0.52 mg/L	
O.R.P. (if re	O.R.P. (if req'd): Rre-purge? -117 mV Post-purge: -86 mV							

Project #:	141016 - Jo			Client	: SGI			Х
Sampler:	So			Date:	10-16-	- 14		,
Well I.D.:	E-8			Well I	Diameter	: 2 3	4	6 8
Total Well	Depth (TD):	17.94	Depth	to Water	(DTW):	8	.(66
Depth to Fr	ee Product	•		Thickness of Free Product (feet):				
Referenced	to:	(PVQ	Grade	D.O. Meter (if req'd): (YSI) HACH				
DTW with	80% Rech	arge [(H	leight of Water	$Column \ge 0.20) + DTW]: 0.46$				
Purge Method:	Bailer Oisposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Well Diamete		Other: Well D	Bailer Disposable Bailer Extraction Port Dedicated Tubing
1.5 (Gals.) X	3	= 4:5	Gals.	1" 2"	0.04 0.16	4" 6"	0.65 1.47
1 Case Volume		fied Volum		-	3"	0.37	Other	radius ² * 0.163
Time	Temp(°F or C	pH	Cond. (mS or fiS)	(N	bidity TUs)	Gals. Rem	loved	Observations
1320	20.9	6.69	1492	<u> </u>	26	1.5		
1322	4.2	6.68	497	6	26	3.0		
1326	21.4	6.67	1499	6	70	4.5		
			······································					
Did well de	water?	Yes (No	Gallon	s actuall	y evacuate	ed:	4.5
Sampling D	Date: 10-1	6-14	Sampling Time	e: ()·	30	Depth to	Water	r: 8,77
Sample I.D	: 七-	8		Labora	atory:	Kiff Cals	Science	Other Accutest
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	Ser	l cap
EB I.D. (if	applicable)	•	@ Time	Duplic	ate I.D. ((if applica	ble):	DUD-10 1335
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:		
D.O. (if req	'd): (Pr	e-purge:	D. 0.77	^{mg} /L	P	ost-purge:)	0,76 mg/L
O.R.P. (if re	eq'd): (Pr	e-purge:) -112	mV	P	ost-purge:)	$\sum_{i=1}^{n}$	- (06 mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

,

W. L MONITORING DATA SHE

WELL MONITORING DATA SHLET

Project #: /	Project #: 1410/6-501					Client: The Sarce Grap Date: 10-16-14				
Sampler:				Date:	10-16-1	4	. /			
Well I.D.:	Eq			Well I	Diameter	: ② 3	4	68		
Total Well	Depth (TD):	18.10	Depth	to Wate	r (DTW):	Ø	. 57		
Depth to Fr	ee Product			Thick	Thickness of Free Product (feet):					
Referenced	to: <	PVC	Grade	D.O. N	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	16.4	17		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	;	-)ther:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
<u> </u>	Gals.) X Speci	3 fied Volum	ma		1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163		
Time	Temp (°F or °C)	pH	Cond. (mS or aS)	1	bidity TUs)	Gals. Remo	ved	Observations		
1359	22.2	7,23				1.5		odor		
1401	22.4	7,25	1282	>1000		3.0				
1403	22.5	7.26	1299	>100	0	4.5		¥		
					<u></u>					
Did well dev	water?	Yes	Ňo	 Gallon	s actuall	y evacuated	: 4	E		
Sampling Da	ate: 10-16-		Sampling Time			Depth to W				
Sample I.D.:		****		Labora		Kiff CalSci		Other Accutest		
	nalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See CoC									
EB I.D. (if a	pplicable):	:	@ · Time	Duplic		(if applicabl				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:				
D.O. (if req'o	d): Pr	e-purge:	0.75	$\frac{mg}{L}$ Post-purge: $O, \mathcal{E} \neq$			0.87 ^{mg} /L			
O.R.P. (if red	q'd): Pr	e-purge:	-93	mV	P	ost-purge:		~ 89 mV		

í.	FTT.	MONIT	ORING	ΠΑΤΑ	SHEET
r		MOUTH	OUUIG	DAIA	STILLI

Project #: /	41016-50	5 <i>1</i>		Client: -	he S	Sarce Grap				
Sampler: _M				Date: 10	-16-1	<i>'</i> 4				
Well I.D.: ¿	=-12					: 2 3 4	6 8			
Total Well): 17, 3	70 .	Depth to Water (DTW): 7,82						
Depth to Fr				Thickness of Free Product (feet):						
Referenced	to:	PVC)	Grade	D.O. Met	er (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x	0.20)	+DTW]: 97	19			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic tion Pump	Diamete	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
<u>/, ((</u> 1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{4}{2} \frac{2}{2}$	_Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47			
Time	Temp (°F or ①		Cond. (mS or uS)	Turbidi (NTUs	•	Gals. Removed	Observations			
1326	22.2	7.48	962	584		1.6	cloud,			
1328	21.9	7.32	962	>1000	<u>ر</u>	3,2				
1331	21.6	7.27	961	>1000	3	4,8	<u> </u>			
						· ·				
Did well dev	water?	Yes <	No	Gallons ac	ctuall	y evacuated: ح				
Sampling D	ate: 10-16	-14	Sampling Time			Depth to Water	≈ &, o3			
Sample I.D.	E-12			Laborator	y:	Kiff CalScience	Other Accutest			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other: <u>See</u> C	ese			
EB I.D. (if a	pplicable):	:	@ · Time	Duplicate		(if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:				
D.O. (if req'	d): Pr	e-purge:	1.06	^{mg} /L	P	ost-purge:	1,25 mg/L			
O.R.P. (if re	q'd): Pro	e-purge:	- 9	mV	P	ost-purge:	// mV			

\bigcirc		
FELL	MONITORING DATA	SHEET

Sampler: MM Date: $0^{-1/6-1/4}$ Well I.D.: $6^{6} - 10^{-1}$ Well Diameter: 2^{-3} 4^{-6} 8^{-1} Total Well Depth (TD): 5^{-2} - 9^{-9} Depth to Water (DTW): 6^{-3} 6^{-3} Depth to Free Product: Thickness of Free Product (feet): Referenced to: 9^{-1} 9^{-1} 9^{-1} DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 1^{-3} 2^{-2} 9^{-1} 9^{-1} 1^{-2} 9^{-1} Purge Method: Bailer Bailer Parisatic Bailer Bailer 9^{-1}	Project #:	3/10-301			Client	The S	arce Gran						
Well 1D: $\[mathbb{Phi-\sqrt{D}\]$ Well Diameter: $\[mathbb{2\]$ $\[mathbb{3\]$ $\[mathbb{2\]$ $\[$					Date:	10-16-1	4						
Depth to Free Product:Referenced to:(PTC)GradeD.O. Meter (if req'd):(TSI)DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]:/3. 2.6Purge Method:BailerSampling Method:BailerDisposable BailerDeristaticSampling Method:BailerDeptitive Air DisplacementExtraction PumpSampling Method:BailerUterraDeficienceWell DiameterMultiplierWell DiameterUterraSpecified Volume(MaterraWell DiameterMultiplierUterraSpecified Volume=/ZGals.UterraSpecified Volume=/ZGals.Time(FocC)pH(mS or gS)(NTUs)Gals.Z 0.77.0YZES4/4/2.2.32.0.77.20Z.4/2S.9/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Z 0.77.20Z.4/2S.9/Z/2.3.2Did well dewater?YesGallons actually evacuated: /	Well I.D.:	125-10											
Referenced to: (PVC Grade D.O. Meter (if req'd): (SI) HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: / 3.2.6 Purge Method: Bailer Sampling Method: Bailer Disposable Bailer Sampling Method: Bailer Purge Method: Bailer Positive Air Displacement Extraction Pump Other Sampling Method: Bailer Veter Topic Suble Bailer Positive Air Displacement Extraction Pump Other Well Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier Vel Diameter Multiplier Well Diameter Multiplier Well Diameter Multiplier Vel Diameter Multiplier Vel Diameter Multiplier <th <<="" colspan="2" td=""><td>Total Well I</td><td>Depth (TD</td><td>):</td><td>32-94</td><td colspan="7">Depth to Water (DTW): 8-37</td></th>	<td>Total Well I</td> <td>Depth (TD</td> <td>):</td> <td>32-94</td> <td colspan="7">Depth to Water (DTW): 8-37</td>		Total Well I	Depth (TD):	32-94	Depth to Water (DTW): 8-37						
Referenced to: FVC Grade D.O. Meter (if req'd): χ SI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: /3.2.8 Purge Method: Bailer Digposable Bailer Sampling Method: Bailer Digposable Bailer Peristaltic Sampling Method: Bailer Purge Method: Bailer Digposable Bailer Dedicated Tubing Digposable Bailer Other Other Dedicated Tubing Other Other Other Other Dedicated Tubing (Gals.) X 3 = /2 Gals. Multiple: Multiple: Multiple: Multiple: Multiple: Multiple: Multiple: 0.65 1 Case Volume Specified Volumes = /2 Gals. Multiple: Multiple: </td <td>Depth to Fre</td> <td>ee Product</td> <td>•</td> <td></td> <td colspan="7">Thickness of Free Product (feet):</td>	Depth to Fre	ee Product	•		Thickness of Free Product (feet):								
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Referenced	to:	PVC	Grade	1	***							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DTW with 8	80% Recha	arge [(H	leight of Water	Colum	n x 0.20))+DTW]: 73	· 28					
$\frac{4'}{1 \text{ (Gals.) X}} \underbrace{3}_{\text{Specified Volumes}} = \frac{72}{\text{Calculated Volume}} \begin{bmatrix}1^{\circ} & 0.04 & 4^{\circ} & 0.65 \\2^{\circ} & 0.16 & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.16}_{37} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{mdiss}^2 \circ 0.163 \end{bmatrix}$ $\frac{1}{2^{\circ}} \underbrace{0.37}_{0.16} & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & \text{Other} & \text{Observations} \\3^{\circ} & 0.16 & 6^{\circ} & 1.47 \\3^{\circ} & 0.37 & 0^{\circ} & 0^{$	Purge Method:	Disposable B Positive Air I	Displaceme		Peristaltic	•	Other	Disposable Bailer Extraction Port Dedicated Tubing					
1 Case VolumeSpecified VolumesCalculated Volume 3^{*} 0.37Otherradius**0.163TimeTemp (°F of °C)pHCond. (mS or AS)Turbidity (NTUs)Gals. RemovedObservations/22321.37.67 47285 466 4 $51ghth, c.lmdy$ /22720.9 $7_1/7$ $2^{4}4'6$ 566 4 /22720.9 $7_1/7$ $2^{4}4'6$ 566 4 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23220.7 7.20 $2^{4}/2$ 59 12 /23320.7 7.20 $2^{4}/2$ 59 12 /24120.9Gallons actually evacuated: 12 12 Sampling Date: $10^{-1/6}$ YesLaboratory:KiffAnalyzed for:TH-GBTEXMTBETH-DAnalyzed for:TH-GBTEXMTBETH-DD.O. (if req'd):Pre-purge: $1,006$ 70 D.O. (if req'd):Pre-purge: $1,006$ 70			~			1"	0.04 4"	0.65					
Time($^{\circ}F \circ c \circ c \circ$)pH(mS or $_{4}S \circ$)(NTUs)Gals. RemovedObservations122321.37.0742.854/64Stightly, cloudy122720.97.1724465/6E1123220.77.2024125.91.21123220.77.2024125.91.21123220.77.2024125.91.21123220.77.2024125.91.21123220.77.2024125.91.21123320.77.2024125.91.21123420.77.2024125.91.211235Depth to Water?YesSampling Time: 72.35 Depth to Water: $g, 4/9$ Sample I.D.: $A \leq -10$ Laboratory:KiffCalScienceOther Acc. lastAnalyzed for: TPH-G BTEXMTBE TPH-DOxygenates (5)Other: $SCe Coec$ EEB I.D. (if applicable): $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ Analyzed for: TPH-G BTEXMTBE TPH-DOxygenates (5)Other: $^{\circ}$ D.O. (if req'd):Pre-purge: $1,066$ $^{\circ}$ Post-purge: $1,760$						-							
1227 20.9 7.17 2446 56 8 1232 26.7 7.20 2412 59 12 Did well dewater?YesNoGallons actually evacuated: 12 Sampling Date: $0-16-14$ Sampling Time: 7235 Depth to Water: 8.49 Sample I.D.: $A5-18$ Laboratory:Kiff CalScienceAnalyzed for: TPH-G BTEXMTBE TPH-DOxygenates (5)Other: $5ce coe$ EB I.D. (if applicable):TimeTimeDuplicate I.D. (if applicable):Analyzed for: TPH-G BTEXMTBE TPH-DOxygenates (5)Other:D.O. (if req'd):Pre-purge: $1/069$ $1/069$ mg/L Post-purge: $1/069$	Time		pH	-	1	•	Gals. Removed	Observations					
1227 20.9 7.17 2446 56 E 1232 20.7 7.20 2412 59 12 1232 20.7 7.20 2412 59 12 Did well dewater?YesNoGallons actually evacuated: 12 Sampling Date: $10-16-14$ Sampling Time: 1235 Depth to Water: 2.49 Sample I.D.: $10-16-14$ Sampling Time: 1235 Depth to Water: 2.49 Sample I.D.: $10-16$ Laboratory:KiffCalScienceOther AcculatedAnalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other:Self ColeEB I.D. (if applicable): 100 TimeDuplicate I.D. (if applicable):Analyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other:D.O. (if req'd):Pre-purge: 1.00 100 1.00 100 1.00 100 1.00 100 1.00 100	1223	21.3	7.67	4285	4	16	4	slighth, cloudy					
Did well dewater?YesYesGallons actually evacuated: $/2$ Sampling Date: $/0-1/6-1/4$ Sampling Time: $/2.3.5$ Depth to Water: $\mathcal{E}, 4/9$ Sample I.D.: $A.S-10$ Laboratory:KiffCalScienceOther AcculustAnalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other: $SCCOC$ EB I.D. (if applicable): $mine$ Malyzed for:TPH-GBTEXMTBETimeDuplicate I.D. (if applicable):Analyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other: 10.70 D.O. (if req'd):Pre-purge: $1/0.06$ $mig/1$ Post-purge: $1/70$	1227	20.9	7,17	2446	5	6	8						
Sampling Date: $10-16-14$ Sampling Time: 1235 Depth to Water: $2,4/9$ Sample I.D.: $A5-10$ Laboratory: Kiff CalScience Other AccufestAnalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other: $5CeCoe$ EB I.D. (if applicable):@TimeDuplicate I.D. (if applicable):Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other:Duplicate I.D. (if req'd):Pre-purge: $100, (if req'd):$ Pre-purge: $100, (if req) (if$	1232	20.7	7.20	2412	5	7	12						
Sampling Date: $10-16-14$ Sampling Time: 1235 Depth to Water: $2,4/9$ Sample I.D.: $A5-10$ Laboratory: Kiff CalScience Other AccufestAnalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other: $5CeCoe$ EB I.D. (if applicable):@TimeDuplicate I.D. (if applicable):Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other:Duplicate I.D. (if req'd):Pre-purge: $100, (if req'd):$ Pre-purge: $100, (if req) (if$													
Sampling Date: $10-16-14$ Sampling Time: 1235 Depth to Water: $2,4/9$ Sample I.D.: $A5-10$ Laboratory: Kiff CalScience Other AccufestAnalyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other: $5CeCoe$ EB I.D. (if applicable):@TimeDuplicate I.D. (if applicable):Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5)Other:Duplicate I.D. (if req'd):Pre-purge: $100, (if req'd):$ Pre-purge: $100, (if req) (if$													
Sample I.D.: $A \le -10$ Laboratory:KiffCalScienceOther AccuratesAnalyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other: $Secce$ EB I.D. (if applicable): $@$ TimeDuplicate I.D. (if applicable):Analyzed for:TPH-GBTEXMTBETPH-DOxygenates (5)Other:D.O. (if req'd):Pre-purge: $/.0 \ G$ $^{mg/L}$ Post-purge: $/.7 \ G$ $^{mg/L}$	Did well dev	water?	Yes <	No	Gallon	s actuall	y evacuated: /	2					
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See coe EB I.D. (if applicable): @ Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: D.O. (if req'd): Pre-purge: //oC6 Tmg/L Post-purge: //o76 Tmg/L	Sampling Da	ate: 10-16-	-14	Sampling Time	e:/Z3	5	Depth to Wate	r: 8,49					
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See coe EB I.D. (if applicable): @ Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: D.O. (if req'd): Pre-purge: //oC6 Tmg/L Post-purge: //o76 Tmg/L	Sample I.D.:	A-5-10			Labora	tory:	Kiff CalScience	e Other <u>Accutest</u>					
EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: D.O. (if req'd): Pre-purge: //o (o mg/L Post-purge: //o 70 mg/L		•	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: Sep CC	e.					
D.O. (if req'd): Pre-purge: $1/0$ mg/L Post-purge: $1/70$	EB I.D. (if a	pplicable):	,		Duplic								
	Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	D Oxygenates (5) Other:								
O.R.P. (if req'd): Pre-purge: 123 mV Post-purge: 171 m	D.O. (if req'o	d): Pro	e-purge:	1.06	^{mg} / _L Post-purge:			1.70 mg/L					
	O.R.P. (if red	q'd): Pro	e-purge:	183	mV	P	ost-purge:	17/ mV					

WELLHEAD INSPECTION CHECKLIST

Page 2 of 2

Client 5	GI							Date	10-16	5-1	4	
Site Address	<u> </u>	-01	Бан		Leandro	H	Oakland				1	
Job Number								nician	Jo/N	лЪĮ	MAI	
		No C	nspected - orrective		Water Bailed From	Components	Cap Replaced	Lock Replaced	Other Action Taken (explain		Well Not Inspected (explain	Repair Order Submitted
Well ID			Required		Wellbox	Cleaned			below)		below)	
E-5			\leq									
£-6		l	<									
E-7			<						*			
E-9									X			
6-9	,								8			
E-10		-			U	adde .	o loca	He				
E-11					u	hable }	o luca					
E-12								6	X			
AS-15									E F			
AS-10	¥								V			
SMW2S							,		X			
AS MWZD									·)			
					·							
NOTES:	 E	 Q	-21	2	Bulk	E-	9 1/2	Talys.	-1/2 %	. L. b<] E-1'	لــــــا >
NOTES: -712 Bolt	<u></u>	AS	MW 25	7	-212	Bolts,	ASMU	20 -2	1/2 Bolh	1	A5-	15 Wel
Broken	- (US-	· tþ	~	12301	ts .						

BLAINE TECH SERVICES, INC.

WELLHEAD INSPECTION CHECKLIST

Date <u>0 - 16 - 14</u> Client SGT Sun Leundro St outland on Ol _____ Technician JULND/MM Site Address 9201 Job Number 14(0(6-J0) Other Action Well Not Well Inspected -Water Bailed Wellbox Сар Lock Taken Inspected Repair Order No Corrective From Components Replaced Replaced (explain (explain Submitted Action Required Wellbox Well ID Cleaned below) below) MW-1 MW2 X Mu -3 MW-4 X MW-5 \succ MW-6 MW-7 40 Unable MW-8 locate X Mw-9 \times MW-10 \mathbf{x} M41-11 \checkmark . MW-12 E-1 X $\boldsymbol{\times}$ 4.7. × E.-3 1-4 MW-5 No well hid Mw-3 No well hid, well filled up pirt. -212 Bolts E-2 -1/2 Ebs stoppid, E-3 1/2 tails stoppi NOTES: -212 2-1

ţ

Page _____ of _____

		C 4	NIOCE	1680 1	ROGERS	AVENUE		со	NDUC	T ANAI	LYSIS	TO DE	TECT	LAB	ACCUTES		DHS #
BLA	INC	JA	N 303E,	F	AX (408)	573-7771								ALL ANALYSES N	IUST MEET SPEC ALIFORNIA DHS A		ID DETECTION
TECH SEP	RVICES, IN	C.		РНО	NE (408)	573-0555			5M)					EPA			GION
CHAIN OF CU	STODY		<u> </u>]			151						۰.		
	······	BTS #	14	196-	70]	ŭ			(801								
CLIENT	The Sou	irce Gro	up						B					SPECIAL INSTRU	CTIONS		
SITE	Paco Pu	mps				CONTAINERS			w/SGC					Invoice and R	eport to : The	Source Grc	oup
	9201 Sa	n Leand	lro St.						- no					Attn: Paul Pari	nentier pparme	entier@theso	urcegroup.net
	Oakland,	CA				11F	TPH-g (8260B)	(8260B)	TPH-mo	(8082)				(562)597-105	5 ext106	Ŭ	0 1
			MATRIX		ONTAINE	RS O	(8)	8	1~	(80				PO #: 04-PF7			
			S= SOIL W=H ₂ 0		1	RS COMPOSITE	H-g-H	VOC's	TPH-d	PCB's				Geotracker E	DD files requ	ired	I
SAMPLE I.D.	DATE	TIME		TOTAL	-	" 0	<u>I</u>	VC VC	TP	PC				ADD'L INFORMATI	ON STATUS	CONDITION	LAB SAMPLE #
E-2	10-16-14	1225	w	2	AL A	CIB			X								
<u>E-3</u>	1	1425	1	5	Mix	2Î	$ \chi $	×	×								
E-5		1345					<u>ک</u>	~	X								
E-6		1300					2	X	X							++	
E-5 E-6 E-7 E-8		1355					$\overline{\times}$		$\frac{2}{2}$								
E-8		1330					X	K	i X								
E-9		1465					1	X	X							+	
E-9 E-20		1333			1		k	X	6								••••••••••••••••••••••••••••••••••••••
145-1D		1235					X	\mathbf{x}	\times								*****
PUP-1		13:35		¥	ļ		X	×	\times								
SAMPLING COMPLETED	DATE		SAMPLII PERFOF		Y	CN7 F		1				L	I	RESULTS NEEDED	Standard TA		
RELEASED BY	M	l				DAT	те 16-1	4	TIME 162	0	, P	RECEI	VED BY	feln		IDATE 14/6/4	TIME 1620
RELEASED BY	1/1	778-1				DAT			TIME		F	RECEI	VED BY			DATE	
RELEASED BY				4.949,-1224,-1242,-122-122,-122-122,-122-12		DAT	E	1	TIME	:		RECEIN	/ED BY			DATE	TIME
SHIPPED VIA	Sanaan (an a					DAT	E SEN	T	TIMES	SENT	C	OOLE	R#				
ha						L					l			1			

		64	N IOSE	1680	ROGERS AVEN ORNIA 95112-1	IUE		CO	NDUC	ΓΑΝΑ	LYSIS	TO DE	TECT		LAB	ACCUTEST	•	DHS #
BLA			W 903E	F	AX (408) 573-77	771									ALL ANALYSES MU LIMITS SET BY CAL	ST MEET SPECI	FICATIONS AN	ID DETECTION
TECH SEF	RVICES, ING			PHU	NE (408) 573-08	555			5M)						EPA		ND RWQCB RE	GION
CHAIN OF CU	STODY	BTS #	e 14	1016 -	-101]_			(8015]									0.011
CLIENT	The C			1016		TERS			C (8						SPECIAL INSTRUCT			
SITE	The Sou		oup			CONTAINERS			w/SG						SPECIAL INSTRUC	IUNS		
	Paco Pur	^							/m (Invoice and Rep	port to : The	Source Gro	up
	9201 Sar	1 Leanc	lro St.			ALL	B	B	-mc						Attn: Paul Parme	entier pparme	ntier@theso	urcegroup.net
	Oakland,	CA				COMPOSITE	(8260B)	(8260B)	/ TPH-mo	(8082)					(562)597-1055	ext106	Ŭ	
			MATRI		ONTAINERS	MPO	8 (8)	s (8)	L/I	(80					PO #: 04-PFT-			
			S= SOIL W=H ₂ 0		1	lo 0	TPH-g (VOC's	D-HdT	PCB's					Geotracker ED	D files requi	red	
SAMPLE I.D.	DATE	TIME	- 8 = 8 =	ΤΟΤΑΙ	-	U.	E	×	1	PC	[]				ADD'L INFORMATION	N STATUS	CONDITION	LAB SAMPLE #
Mu-1	10-16-14	1040	1 in	2	1LAGB	ļ		<u> </u>	X									
MW-2		1300		2	1L AGB				$\boldsymbol{\lambda}$									
MW-4		1316		5	mixed		え	\times	\times									
MW-5		1115		2	IL AGB				X								1	
MW-6		1445		5	mixed		X	×	\times									
MW-7		114D		2	ILAGB				×						******			
MU-9		1210		5	Mixed		X	\times	\mathbf{x}					1				
MW-10	_	1055		7	Mixed		X	\checkmark	\sim	$\overline{\mathbf{x}}$				\uparrow				
MW-11		1030		7	Mixed		X	×	\times	<				\uparrow				*****
MW-12	T	1230	ŀ	7	Mixed		X	1	2					\uparrow				
SAMPLING COMRLETED			SAMPLI	NG	1			·		ł	L		I		RESULTS NEEDED		<u>l</u>	
RELĘĄSĘD BY	10-16-14	1530							TIME			FORM		1		Standard TAT		
61/7							16-19		(62)	0		ECEN	A CN	Þ	elu		DATE 10/16/14	TIME [620
RELEASED BY						DATE		[-	ГІМЕ		R	ECEN	ED BY	<			DATE	TIME
RELEASED BY					1	DATE		[]	TIME		 R	ECEI	ED BY			I	DATE	TIME
SHIPPED VIA						DATE	SENT	ī	TME S	ENT		OOLE	R #					

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	NE GGI	Paro Pin	Ð	PROJECT NUN	IBER 141016	-201	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Ulter wedgett	6222314	10-16-14 0615	7,10,4 3900-	7.01,10.00,4.06	yes	17°C	K
YSI 550A DO Meter	OGELUZU AI	10-16-14	100%.	995.	yes	NA	40
					U		

- 88-

đ.

APPENDIX H

LABORATORY ANALYTICAL DATA

10/23/14

Technical Report for

The Source Group - Pleasant Hill

T0600101592 - Paco Pumps

Accutest Job Number: C36561

Sampling Date: 10/16/14

Report to:

ATTN: Paul Parmentier

Total number of pages in report: 108

Jung. Musy

James J. Rhudy Lab Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Tony Vega 408-588-0200

Certifications: CA (ELAP 2910) AK (UST-092) AZ (AZ0762) NV (CA00150) OR (CA300006) WA (C925) DoD ELAP (L-A-B L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Northern California • 2105 Lundy Ave. • San Jose, CA 95131 • tel: 408-588-0200 • fax: 408-588-0201 • http://www.accutest.com

Table of Contents

3

2 3 4 5

9

Section 2: Summary of Hits	5
Section 3: Sample Results	
3.1: C36561-1: MW-1	11
3.2: C36561-2: MW-2	12
3.3: C36561-3: MW-4	13
3.4: C36561-4: MW-5	17
3.5: C36561-5: MW-6	18
3.6: C36561-6: MW-7	22
3.7: C36561-7: MW-9	23
3.8: C36561-8: MW-10	27
3.9: C36561-9: MW-11	32
3.10: C36561-10: MW-12	37
3.11: C36561-11: E-2	41
3.12: C36561-12: E-3	42
3.13: C36561-13: E-5	46
3.14: C36561-14: E-6	50
3.15: C36561-15: E-7	54
3.16: C36561-16: E-8	58
3.17: C36561-17: E-9	62
3.18: C36561-18: E-12	66
3.19: C36561-19: AS-10	70
3.20: C36561-20: DUP-1	74
Section 4: Misc. Forms	78
4.1: Chain of Custody	79
Section 5: GC/MS Volatiles - QC Data Summaries	82
5.1: Method Blank Summary	83
5.2: Blank Spike/Blank Spike Duplicate Summary	89
5.3: Laboratory Control Sample Summary	95
5.4: Matrix Spike/Matrix Spike Duplicate Summary	97

Section 6: GC Semi-volatiles - QC Data Summaries1006.1: Method Blank Summary1016.2: Blank Spike/Blank Spike Duplicate Summary1046.3: Matrix Spike/Matrix Spike Duplicate Summary107

-1-

Section 1: Sample Summary

Sample Summary

The Source Group - Pleasant Hill

Job No: C36561

T0600101592 - Paco Pumps

Sample Number	Collected Date Time By	Mat Received Cod		Client Sample ID
C36561-1	10/16/14 10:40 JO	10/16/14 AQ	Ground Water	MW-1
C36561-2	10/16/14 13:00 JO	10/16/14 AQ	Ground Water	MW-2
C36561-3	10/16/14 13:16 JO	10/16/14 AQ	Ground Water	MW-4
C36561-4	10/16/14 11:15 JO	10/16/14 AQ	Ground Water	MW-5
C36561-5	10/16/14 14:45 JO	10/16/14 AQ	Ground Water	MW-6
C36561-6	10/16/14 11:40 JO	10/16/14 AQ	Ground Water	MW-7
C36561-7	10/16/14 12:10 JO	10/16/14 AQ	Ground Water	MW-9
C36561-8	10/16/14 10:55 JO	10/16/14 AQ	Ground Water	MW-10
C36561-9	10/16/14 10:30 JO	10/16/14 AQ	Ground Water	MW-11
C36561-10	10/16/14 12:30 JO	10/16/14 AQ	Ground Water	MW-12
C36561-11	10/16/14 12:25 JO	10/16/14 AQ	Ground Water	E-2
C36561-12	10/16/14 14:25 JO	10/16/14 AQ	Ground Water	E-3
C36561-13	10/16/14 13:45 JO	10/16/14 AQ	Ground Water	E-5

Sample Summary (continued)

The Source Group - Pleasant Hill

Job No: C36561

T0600101592 - Paco Pumps

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C36561-14	10/16/14	13:00 JO	10/16/14	AQ	Ground Water	E-6
C36561-15	10/16/14	13:55 JO	10/16/14	AQ	Ground Water	E-7
C36561-16	10/16/14	13:30 JO	10/16/14	AQ	Ground Water	E-8
C36561-17	10/16/14	14:05 JO	10/16/14	AQ	Ground Water	E-9
C36561-18	10/16/14	13:33 JO	10/16/14	AQ	Ground Water	E-12
C36561-19	10/16/14	12:35 JO	10/16/14	AQ	Ground Water	AS-10
C36561-20	10/16/14	13:35 JO	10/16/14	AQ	Ground Water	DUP-1

C36561

Summary of Hits

Job Number:	C36561
Account:	The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps
Collected:	10/16/14

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C36561-1	MW-1					
TPH (C10-C28)		0.0715 J	0.094	0.024	mg/l	SW846 8015B M
TPH (> C28-C4	0)	0.0832 J	0.19	0.047	mg/l	SW846 8015B M
C36561-2	MW-2					
TPH (C10-C28)		0.134	0.097	0.024	mg/l	SW846 8015B M
TPH (> C28-C4	0)	0.195	0.19	0.049	mg/l	SW846 8015B M
C36561-3	MW-4					
Benzene		6.3	1.0	0.20	ug/l	SW846 8260B
Ethylbenzene		0.49 J	1.0	0.20	ug/l	SW846 8260B
Isopropylbenzen	9	0.32 J	1.0	0.20	ug/l	SW846 8260B
Naphthalene		0.51 J	5.0	0.50	ug/l	SW846 8260B
n-Propylbenzene		0.87 J	2.0	0.20	ug/l	SW846 8260B
Toluene	710	0.29 J	1.0	0.20	ug/l	SW846 8260B
TPH-GRO (C6-C	210)	66.2	50	25	ug/l	SW846 8260B
TPH (C10-C28)	0)	0.0286 J	0.094	0.024	mg/l	SW846 8015B M
TPH (> C28-C4	0)	0.0720 J	0.19	0.047	mg/l	SW846 8015B M
C36561-4	MW-5					
TPH (C10-C28)		0.157	0.10	0.025	mg/l	SW846 8015B M
TPH (> C28-C4	0)	0.0944 J	0.20	0.050	mg/l	SW846 8015B M
C36561-5	MW-6					
Benzene		469	10	2.0	ug/l	SW846 8260B
sec-Butylbenzene		4.1 J	20	2.0	ug/l	SW846 8260B
tert-Butylbenzen		4.7 J	20	2.8	ug/l	SW846 8260B
1,2-Dichloroetha	ine	41.8	10	2.0	ug/l	SW846 8260B
Ethylbenzene		57.2	10	2.0	ug/l	SW846 8260B
Isopropylbenzen		10.9	10	2.0	ug/l	SW846 8260B
p-Isopropyltolue		2.4 J	20	2.0	ug/l	SW846 8260B
	do	22.8 J	100	20	ug/l	SW846 8260B
Methylene chlori	ue			~ 0	/1	CILLO 1 C OG COD
Methylene chlori Naphthalene		9.8 J	50	5.0	ug/l	SW846 8260B
Methylene chlori Naphthalene n-Propylbenzene		28.3	20	2.0	ug/l	SW846 8260B
Methylene chlori Naphthalene n-Propylbenzene Tert-Butyl Alcoh	ol	28.3 57.1 J	20 100	2.0 24	ug/l ug/l	SW846 8260B SW846 8260B
Methylene chlori Naphthalene n-Propylbenzene Tert-Butyl Alcoh 1,2,4-Trimethylt	ol penzene	28.3 57.1 J 47.5	20 100 20	2.0 24 2.0	ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B
Methylene chlori Naphthalene n-Propylbenzene Tert-Butyl Alcoh 1,2,4-Trimethylt 1,3,5-Trimethylt	ol penzene	28.3 57.1 J 47.5 3.5 J	20 100 20 20	2.0 24 2.0 2.0	ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B
Methylene chlori Naphthalene n-Propylbenzene Tert-Butyl Alcoh 1,2,4-Trimethylt 1,3,5-Trimethylt Toluene	ol penzene	28.3 57.1 J 47.5 3.5 J 19.8	20 100 20 20 10	2.0 24 2.0 2.0 2.0	ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
Methylene chlori Naphthalene n-Propylbenzene Tert-Butyl Alcoh 1,2,4-Trimethylt 1,3,5-Trimethylt	ool benzene benzene	28.3 57.1 J 47.5 3.5 J	20 100 20 20	2.0 24 2.0 2.0	ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B

Page 1 of 5

Ν

Summary of Hits

Job Number:	C36561
Account:	The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps
Collected:	10/16/14

					
Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
TPH (C10-C28)	1.13	0.094	0.024	mg/l	SW846 8015B M
TPH (> C28-C40)	0.200	0.19	0.047	mg/l	SW846 8015B M
C36561-6 MW-7					
TPH (C10-C28)	0.0706 J	0.095	0.024	mg/l	SW846 8015B M
TPH (> C28-C40)	0.140 J	0.19	0.048	mg/l	SW846 8015B M
C36561-7 MW-9					
1,2-Dichloroethane	0.85 J	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether	0.91 J	1.0	0.20	ug/l	SW846 8260B
TPH (C10-C28)	0.0245 J	0.096	0.024	mg/l	SW846 8015B M
TPH (> C28-C40)	0.0582 J	0.19	0.048	mg/l	SW846 8015B M
C36561-8 MW-10					
TPH (C10-C28)	0.0807 J	0.094	0.024	mg/l	SW846 8015B M
TPH (> C28-C40)	0.0789 J	0.19	0.047	mg/l	SW846 8015B M
C36561-9 MW-11					
TPH (C10-C28)	0.227	0.10	0.025	mg/l	SW846 8015B M
TPH (> C28-C40)	0.129 J	0.20	0.050	mg/l	SW846 8015B M
C36561-10 MW-12					
1,2-Dichloroethane	0.40 J	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether	0.28 J	1.0	0.20	ug/l	SW846 8260B
TPH (C10-C28)	0.0399 J	0.10	0.025	mg/l	SW846 8015B M
TPH (> C28-C40)	0.0631 J	0.20	0.050	mg/l	SW846 8015B M
C36561-11 E-2					
TPH (C10-C28)	0.780	0.094	0.024	mg/l	SW846 8015B M
TPH (> C28-C40)	1.08	0.19	0.047	mg/l	SW846 8015B M
C36561-12 E-3					
Acetone	8.6 J	20	4.0	ug/l	SW846 8260B
Benzene	3.3	1.0	0.20	ug/l	SW846 8260B
Isopropylbenzene	0.61 J	1.0	0.20	ug/l	SW846 8260B
n-Propylbenzene	1.4 J	2.0	0.20	ug/l	SW846 8260B
Tert-Butyl Alcohol	4.5 J	10	2.4	ug/l	SW846 8260B
TPH-GRO (C6-C10)	355	50	25	ug/l	SW846 8260B

N

Summary of Hits

Job Number:	C36561
Account:	The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps
Collected:	10/16/14

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
TPH (C10-C28)	106	19	4.7	mg/l	SW846 8015B M
TPH (> C28-C40)	153	38	9.4	mg/l	SW846 8015B M
C36561-13 E-5					
Acetone	4.8 J	20	4.0	ug/l	SW846 8260B
Methyl Tert Butyl Ether	0.42 J	1.0	0.20	ug/l	SW846 8260B
ТРН (С10-С28)	25.3	3.8	0.94	mg/l	SW846 8015B M
TPH (> C28-C40)	32.5	7.5	1.9	mg/l	SW846 8015B M
C36561-14 E-6					
Acetone	5.9 J	20	4.0	ug/l	SW846 8260B
Benzene	0.30 J	1.0	0.20	ug/l	SW846 8260B
tert-Butylbenzene	1.6 J	2.0	0.28	ug/l	SW846 8260B
Ethylbenzene	0.24 J	1.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether	0.45 J	1.0	0.20	ug/l	SW846 8260B
n-Propylbenzene	0.24 J	2.0	0.20	ug/l	SW846 8260B
TPH-GRO (C6-C10)	135	50	25	ug/l	SW846 8260B
TPH (C10-C28)	1.66	0.47	0.12	mg/l	SW846 8015B M
TPH (> C28-C40)	1.85	0.94	0.24	mg/l	SW846 8015B M
C36561-15 E-7					
Acetone ^a	15.6 J	20	4.0	ug/l	SW846 8260B
Benzene ^a	86.4	1.0	0.20	ug/l	SW846 8260B
n-Butylbenzene ^a	0.72 J	2.0	0.20	ug/l	SW846 8260B
sec-Butylbenzene ^a	0.41 J	2.0	0.20	ug/l	SW846 8260B
1,2-Dichloroethane ^a	1.3	1.0	0.20	ug/l	SW846 8260B
Ethylbenzene ^a	12.2	1.0	0.20	ug/l	SW846 8260B
Isopropylbenzene ^a	2.7	1.0	0.20	ug/l	SW846 8260B
p-Isopropyltoluene ^a	0.21 J	2.0	0.20	ug/l	SW846 8260B
Methyl Tert Butyl Ether ^a	1.4	1.0	0.20	ug/l	SW846 8260B
Naphthalene ^a	6.1	5.0	0.50	ug/l	SW846 8260B
n-Propylbenzene ^a	5.8	2.0	0.20	ug/l	SW846 8260B
1,2,4-Trimethylbenzene ^a 1,3,5-Trimethylbenzene ^a	15.8 0.89 J	2.0	0.20 0.20	ug/l	SW846 8260B
Toluene ^a		2.0 1.0	0.20	ug/l	SW846 8260B
Xylene (total) ^a	17.7 33.7	2.0	0.20 0.46	ug/l ug/l	SW846 8260B SW846 8260B
TPH-GRO (C6-C10) ^a	724	2.0 50	0.40 25	ug/1 ug/1	SW846 8260B
TPH (C10-C28)	7.92	1.9	0.48	mg/l	SW846 8015B M
TPH (> C28-C40)	14.1	3.8	0.48	mg/l	SW846 8015B M
	- 11 -	5.0	0.20		2

Ν

Summary of Hits

Job Number:	C36561
Account:	The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps
Collected:	10/16/14

C36561-16 E-8 Benzene 385 10 2.0 ug/l SW846 8260B sec-Butylbenzene 2.2 J 20 2.0 ug/l SW846 8260B Ethylbenzene 172 10 2.0 ug/l SW846 8260B Isopropylbenzene 173 10 2.0 ug/l SW846 8260B Naphthalene 44.1 J 50 5.0 ug/l SW846 8260B n-Propylbenzene 38.6 20 2.0 ug/l SW846 8260B 1,2,4-Trimethylbenzene 112 20 2.0 ug/l SW846 8260B	
sec-Butylbenzene2.2 J202.0ug/lSW846 8260BEthylbenzene172102.0ug/lSW846 8260BIsopropylbenzene17.3102.0ug/lSW846 8260BNaphthalene44.1 J505.0ug/lSW846 8260Bn-Propylbenzene38.6202.0ug/lSW846 8260B1,2,4-Trimethylbenzene112202.0ug/lSW846 8260B	
Ethylbenzene172102.0ug/lSW846 8260BIsopropylbenzene17.3102.0ug/lSW846 8260BNaphthalene44.1 J505.0ug/lSW846 8260Bn-Propylbenzene38.6202.0ug/lSW846 8260B1,2,4-Trimethylbenzene112202.0ug/lSW846 8260B	
Isopropylbenzene17.3102.0ug/lSW846 8260BNaphthalene44.1 J505.0ug/lSW846 8260Bn-Propylbenzene38.6202.0ug/lSW846 8260B1,2,4-Trimethylbenzene112202.0ug/lSW846 8260B	
Naphthalene44.1 J505.0ug/lSW846 8260Bn-Propylbenzene38.6202.0ug/lSW846 8260B1,2,4-Trimethylbenzene112202.0ug/lSW846 8260B	
n-Propylbenzene 38.6 20 2.0 ug/l SW846 8260B 1,2,4-Trimethylbenzene 112 20 2.0 ug/l SW846 8260B	
1,2,4-Trimethylbenzene 112 20 2.0 ug/l SW846 8260B	
1,3,5-Trimethylbenzene 20.1 20 2.0 ug/l SW846 8260B	
Toluene 8.2 J 10 2.0 ug/l SW846 8260B Value 10 2.0 10 10 2.0 10	
Xylene (total) 139 20 4.6 ug/l SW846 8260B TDU GDO (GC G10) 1000 500 250 (IIII) SW846 8260B	
TPH-GRO (C6-C10) 4090 500 250 ug/l SW846 8260B TPH-GRO (C6-C10) 1.12 0.20 0.074 mu/l SW846 8260B	
TPH (C10-C28) 1.12 0.29 0.074 mg/l SW846 8015B M TPH (> C28-C40) 1.03 0.59 0.15 mg/l SW846 8015B M	
TPH (> C28-C40) 1.03 0.59 0.15 mg/l SW846 8015B M	
C36561-17 E-9	
Benzene 2460 100 20 ug/l SW846 8260B	
Ethylbenzene 595 100 20 ug/l SW846 8260B	
Isopropylbenzene 78.7 J 100 20 ug/l SW846 8260B	
Naphthalene 628 500 50 ug/l SW846 8260B	
n-Propylbenzene 220 200 20 ug/l SW846 8260B	
1,2,4-Trimethylbenzene 3110 200 20 ug/l SW846 8260B	
1,3,5-Trimethylbenzene 734 200 20 ug/l SW846 8260B	
Toluene 2250 100 20 ug/l SW846 8260B	
Xylene (total) 3110 200 46 ug/l SW846 8260B	
TPH-GRO (C6-C10) 39300 5000 2500 ug/l SW846 8260B	
TPH (C10-C28) 4.91 0.48 0.12 mg/l SW846 8015B M	
TPH (> C28-C40) 0.490 J 0.96 0.24 mg/l SW846 8015B M	
C36561-18 E-12	
Benzene 9.0 1.0 0.20 ug/l SW846 8260B	
n-Butylbenzene 0.29 J 2.0 0.20 ug/l SW846 8260B	
Ethylbenzene 1.4 1.0 0.20 ug/l SW846 8260B	
Isopropylbenzene 0.64 J 1.0 0.20 ug/l SW846 8260B	
Naphthalene 0.76 J 5.0 0.50 ug/l SW846 8260B	
n-Propylbenzene 1.7 J 2.0 0.20 ug/l SW846 8260B	
1,2,4-Trimethylbenzene 0.24 J 2.0 0.20 ug/l SW846 8260B	
Toluene 0.24 J 1.0 0.20 ug/l SW846 8260B	
TPH-GRO (C6-C10) 113 50 25 ug/l SW846 8260B	
TPH (C10-C28) 0.0314 J 0.096 0.024 mg/l SW846 8015B M	
TPH (> C28-C40) 0.0485 J 0.19 0.048 mg/l SW846 8015B M	

Summary of Hits

Job Number:	C36561
Account:	The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps
Collected:	10/16/14

C36561-19AS-10Benzene TPH (C10-C28) TPH (> C28-C40) $0.34 J$ $0.0551 J$ 1.0 0.094 0.19 0.20 0.024 0.024 0.047 mg/l mg/l mg/l $SW846 8015B M$ C36561-20DUP-1Benzene sec-Butylbenzene 398 $2.2 J$ $2.0 L20$ 10 $2.0 ug/l$ $2.0 ug/l$ $2.0 ug/l$ $SW846 8260B$ Ethylbenzene lsopropylbenzene 180 10 $2.0 ug/l$ $2.0 ug/l$ $2.0 ug/l$ $SW846 8260B$ Naphthalene $1.2, 4-Trimethylbenzene18.1102.02.0 ug/l2.0 ug/l2.0 ug/l2.0 ug/lSW846 8260B1, 2, 4-Trimethylbenzene1.3, 5-Trimethylbenzene21.7202.0 ug/l2.0 ug/l$	Lab Sample ID Client Sa Analyte	mple ID Result/ Qual	RL	MDL	Units	Method
$\begin{array}{ccccccc} TPH \ (C10-C28) \\ TPH \ (> C28-C40) \end{array} & \begin{array}{c} 0.0392 \ J \\ 0.0551 \ J \end{array} & \begin{array}{c} 0.094 \\ 0.19 \end{array} & \begin{array}{c} 0.024 \\ 0.047 \end{array} & \begin{array}{c} mg/l \\ mg/l \end{array} & \begin{array}{c} SW846 \ 8015B \ M \\ SW846 \ 8015B \ M \\ SW846 \ 8015B \ M \\ \end{array} \\ \hline \\ \hline$	C36561-19 AS-10					
Benzene398102.0ug/lSW846 8260Bsec-Butylbenzene2.2 J202.0ug/lSW846 8260BEthylbenzene180102.0ug/lSW846 8260BIsopropylbenzene18.1102.0ug/lSW846 8260BNaphthalene47.5 J505.0ug/lSW846 8260Bn-Propylbenzene41.0202.0ug/lSW846 8260B1,2,4-Trimethylbenzene119202.0ug/lSW846 8260B1,3,5-Trimethylbenzene21.7202.0ug/lSW846 8260BToluene8.7 J102.0ug/lSW846 8260BXylene (total)145204.6ug/lSW846 8260B	ТРН (С10-С28)	0.0392 J	0.094	0.024	mg/l	SW846 8015B M
sec-Butylbenzene2.2 J202.0ug/lSW846 8260BEthylbenzene180102.0ug/lSW846 8260BIsopropylbenzene18.1102.0ug/lSW846 8260BNaphthalene47.5 J505.0ug/lSW846 8260Bn-Propylbenzene41.0202.0ug/lSW846 8260B1,2,4-Trimethylbenzene119202.0ug/lSW846 8260B1,3,5-Trimethylbenzene21.7202.0ug/lSW846 8260BToluene8.7 J102.0ug/lSW846 8260BXylene (total)145204.6ug/lSW846 8260B	C36561-20 DUP-1					
TPH (C10-C28) 0.649 0.095 0.024 mg/l SW846 8015B M	sec-Butylbenzene Ethylbenzene Isopropylbenzene Naphthalene n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Toluene Xylene (total) TPH-GRO (C6-C10)	2.2 J 180 18.1 47.5 J 41.0 119 21.7 8.7 J 145 4390	20 10 10 50 20 20 20 20 10 20 500	$2.0 \\ 2.0 \\ 2.0 \\ 5.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 4.6 \\ 250$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B

(a) Sample vial contained more than 0.5cm of sediment.

N

ယ

Sample Results

Report of Analysis

Rej	port of Analysis	

Client San Lab Samj Matrix: Method: Project:	ole ID: C36561 AQ - G SW846	round Wa 8015B M	ater I SW846 35100 Paco Pumps	С	Da	te Sampled: 10 te Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH317976.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	⁷ olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0715 0.0832	0.094 0.19	0.024 0.047	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	83%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

		Analysis		Page 1 of 1			
Client San Lab Samp Matrix: Method: Project:	le ID: C36561 AQ - Gi SW846	ound W 8015B N	ater 1 SW846 35100 Paco Pumps	C	Da	I I	/16/14 /16/14 a
Run #1 Run #2	File ID HH317977.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382
Run #1 Run #2	Initial Volume 1030 ml	Final 1.0 ml	Volume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.134 0.195	0.097 0.19	0.024 0.049	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	81%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.2

Client Sa Lab Sam Matrix: Method: Project:	AQ - SW84	61-3 Ground Wa 46 8260B	nter Paco Pumps		Da	nte Sampled: 10 nte Received: 10 ncent Solids: n/	
Run #1 Run #2	File ID R29693.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	6.3	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 3 $\overset{\omega}{\overleftarrow{}}$

ယ

ACCUTEST C36561

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	MW-4		
Lab Sample ID:	C36561-3	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	0.49	1.0	0.20	ug/l	J
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	0.32	1.0	0.20	ug/l	J
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	0.51	5.0	0.50	ug/l	J
103-65-1	n-Propylbenzene	0.87	2.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	0.29	1.0	0.20	ug/l	J
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	66.2	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

ယ ပ

Report	of	Analysis	
--------	----	----------	--

Method: SW846 8260B Percent Solids: n/a	
Project: T0600101592 - Paco Pumps	

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 2037-26-5 Toluene-D8 99% 70-130% 460-00-4 4-Bromofluorobenzene 102% 70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω ω

	Report of Analysis Page 1									
Client Sar Lab Samp Matrix: Method: Project:	le ID: C36561 AQ - G SW846	round Wa 8015B M	ater I SW846 35100 Paco Pumps	C	Da	L	/16/14 /16/14 a			
Run #1 Run #2	File ID HH317978.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382			
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	olume							

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0286 0.0720	0.094 0.19	0.024 0.047	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	85%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ယ ပ

Report of Analysis	
---------------------------	--

Client Sar Lab Samp Matrix: Method: Project:	ple ID: C36561 AQ - Gi SW846	ound Wa 8015B M	ater 1 SW846 35100 Paco Pumps	С	Da	ate Sampled: 10 ate Received: 10 ercent Solids: n/	
Run #1 Run #2	File ID HH317979.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382
Run #1 Run #2	Initial Volume 1000 ml	Final V 1.0 ml	olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.157 0.0944	0.10 0.20	$0.025 \\ 0.050$	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	100%		32-1	24%	

ND = Not detected MDL = Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

3.4

ω

17 of 108 ACCUTEST: C36561

	Report of Analysis									
Client San Lab Sam Matrix: Method: Project:	ple ID: C36 AQ SW	7-6 5561-5 - Ground Wa 846 8260B 00101592 - F			Da	ate Sampled: 10 ate Received: 10 ercent Solids: n/				
Run #1 Run #2	File ID Q24637.D	DF 10	Analyzed 10/23/14	By BQ	Prep Date n/a	Prep Batch n/a	Analytical Batch VQ1039			
Run #1 Run #2	Purge Volu 10.0 ml	me								

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	200	40	ug/l	
71-43-2	Benzene	469	10	2.0	ug/l	
108-86-1	Bromobenzene	ND	10	2.0	ug/l	
74-97-5	Bromochloromethane	ND	10	2.0	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.0	ug/l	
75-25-2	Bromoform	ND	10	2.2	ug/l	
104-51-8	n-Butylbenzene	ND	20	2.0	ug/l	
135-98-8	sec-Butylbenzene	4.1	20	2.0	ug/l	J
98-06-6	tert-Butylbenzene	4.7	20	2.8	ug/l	J
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	20	2.0	ug/l	
106-43-4	p-Chlorotoluene	ND	20	2.6	ug/l	
56-23-5	Carbon tetrachloride	ND	10	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	2.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	2.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	10	2.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	20	4.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	2.0	ug/l	
107-06-2	1,2-Dichloroethane	41.8	10	2.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	2.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	10	2.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	20	2.2	ug/l	
594-20-7	2,2-Dichloropropane	ND	10	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	10	2.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	10	2.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	10	2.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

E = Indicates value exceeds calibration range

J = Indicates an estimated value

•	Client Sample ID:	MW-6		
]	Lab Sample ID:	C36561-5	Date Sampled:	10/16/14
I	Matrix:	AQ - Ground Water	Date Received:	10/16/14
I	Method:	SW846 8260B	Percent Solids:	n/a
]	Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result		MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.0	ug/l	
100-41-4	Ethylbenzene	57.2	10	2.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	20	2.2	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
87-68-3	Hexachlorobutadiene	ND	20	2.0	ug/l	
98-82-8	Isopropylbenzene	10.9	10	2.0	ug/l	
99-87-6	p-Isopropyltoluene	2.4	20	2.0	ug/l	J
108-10-1	4-Methyl-2-pentanone	ND	100	10	ug/l	
74-83-9	Methyl bromide	ND	20	2.0	ug/l	
74-87-3	Methyl chloride	ND	10	3.0	ug/l	
74-95-3	Methylene bromide	ND	10	2.0	ug/l	
75-09-2	Methylene chloride	22.8	100	20	ug/l	J
78-93-3	Methyl ethyl ketone	ND	100	20	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.0	ug/l	
91-20-3	Naphthalene	9.8	50	5.0	ug/l	J
103-65-1	n-Propylbenzene	28.3	20	2.0	ug/l	
100-42-5	Styrene	ND	10	2.0	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	20	4.0	ug/l	
75-65-0	Tert-Butyl Alcohol	57.1	100	24	ug/l	J
630-20-6	1,1,1,2-Tetrachloroethane	ND	10	3.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	2.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	2.2	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	2.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	20	2.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	2.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	47.5	20	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	3.5	20	2.0	ug/l	J
127-18-4	Tetrachloroethylene	ND	10	3.0	ug/l	
108-88-3	Toluene	19.8	10	2.0	ug/l	
79-01-6	Trichloroethylene	ND	10	2.0	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	ND	10	2.0	ug/l	
1330-20-7	Xylene (total)	14.8	20	4.6	ug/l	J
	TPH-GRO (C6-C10)	2460	500	250	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	108%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

Report of	² Analysis
------------------	-----------------------

Client Sample ID:	MW-6		
Lab Sample ID:	C36561-5	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		
, i i i i i i i i i i i i i i i i i i i	*		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	95%		70-130%
460-00-4	4-Bromofluorobenzene	97%		70-130%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

	Report of Analysis							Page 1 of 1	
Lab Sample ID: Matrix: Method:		SW846					te Received: 10		
Project:		T06001	01592 - P	aco Pumps					
	File ID		DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1 Run #2	HH3179	81.D	1	10/17/14	AG	10/16/14	OP10984	GHH1382	
D.u. #1	Initial V	olume	Final V	olume					
Run #1 Run #2	1060 ml		1.0 ml						

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL Units		Q
	TPH (C10-C28) TPH (> C28-C40)	1.13 0.200	0.094 0.19	0.024 0.047	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	93%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Client Sar Lab Samj Matrix: Method: Project:	ple ID: C36561 AQ - G SW846				Date Sampled:10/16/14Date Received:10/16/14Percent Solids:n/a			
Run #1 Run #2	File ID HH317982.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382	
Run #1 Run #2	Initial Volume 1050 ml	Final V 1.0 ml	olume					

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result RL		MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0706 0.140	0.095 0.19	$0.024 \\ 0.048$	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	un# 2 Limits		
630-01-3	Hexacosane	81%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3.6

Lab Samj Matrix: Method: Project:	AQ - SW84	Ground Wa 6 8260B			Date Sampled:10/16/14Date Received:10/16/14Percent Solids:n/a			
Project: Run #1 Run #2	File ID R29695.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106	
Run #1 Run #2	Purge Volum 10.0 ml	e						

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.85	1.0	0.20	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.7

ယ

Client Sample ID:	MW-9		
Lab Sample ID:	C36561-7	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

156-60-5trans-1,2-DichloroethyleneND1.00.20ug/l10061-02-6trans-1,3-DichloropropeneND1.00.30ug/l100-41-4EthylbenzeneND1.00.20ug/l637-92-3Ethyl Tert Butyl EtherND2.00.22ug/l591-78-62-HexanoneND102.0ug/l87-68-3HexachlorobutadieneND2.00.20ug/l98-82-8IsopropylbenzeneND1.00.20ug/l99-87-6p-IsopropyltolueneND2.00.20ug/l108-10-14-Methyl-2-pentanoneND101.0ug/l74-83-9Methyl bromideND1.00.30ug/l74-87-3Methyl chlorideND1.00.20ug/l75-09-2Methylene bromideND1.00.20ug/l1634-04-4Methyl Tert Butyl Ether0.911.00.20ug/l103-65-1n-PropylbenzeneND5.00.50ug/l103-65-1n-PropylbenzeneND2.00.20ug/l100-42-5StyreneND1.00.20ug/l994-05-8Tert-Amyl Methyl EtherND1.00.20ug/l75-65-0Tert-Butyl Alcohol aND1.00.20ug/l75-561,1,1-TrichloroethaneND1.00.20ug/l75-561,1,2-TetrachloroethaneND1.00.20ug/l7	CAS No.	Compound	Result	RL	MDL	Units	Q
10061-02-6trans-1,3-DichloropropeneND 1.0 0.30 ug/l $100-41-4$ EthylbenzeneND 1.0 0.20 ug/l $637-92-3$ Ethyl Tert Butyl EtherND 2.0 0.22 ug/l $591-78-6$ 2 -HexanoneND 10 2.0 ug/l $87-68-3$ HexachlorobutadieneND 2.0 0.20 ug/l $98-82-8$ IsopropylbenzeneND 1.0 0.20 ug/l $99-87-6$ p-IsopropyltolueneND 2.0 0.20 ug/l $108-10-1$ 4 -Methyl-2-pentanoneND 10 1.0 ug/l $74-83-9$ Methyl bromideND 2.0 0.20 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $103-65-1$ n -PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $94-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $94-05-8$ Tert-Amyl Methyl EtherND 1.0 0.30 ug/l $75-66-0$ Tert-Butyl Alcohol aND 1.0 0.20 ug/l $71-55-6$ $1, 1, 2.7$ -TetrachloroethaneND	156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
100-41-4EthylbenzeneND 1.0 0.20 ug/l $637-92-3$ Ethyl Tert Butyl EtherND 2.0 0.22 ug/l $591-78-6$ 2 -HexanoneND 10 2.0 ug/l $87-68-3$ HexachlorobutadieneND 2.0 0.20 ug/l $98-82-8$ IsopropylbenzeneND 1.0 0.20 ug/l $99-87-6$ p-IsopropyltolueneND 2.0 0.20 ug/l $108-10-1$ 4 -Methyl-2-pentanoneND 10 1.0 ug/l $74-83-9$ Methyl bromideND 2.0 0.20 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methyl ethyl ketoneND 10 2.0 ug/l $78-93-3$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $103-65-1$ n -PropylbenzeneND 5.0 0.50 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $94-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $94-05-8$ Tert-Amyl Methyl EtherND 1.0 0.30 ug/l $75-65-0$ Tert-Butyl Alcohol ^a ND 1.0 0.20 ug/l $75-65-0$ Tert-Amyl Methyl EtherND 1.0 0.30 ug/l $71-55-6$ $1, 1, 2.7$ -TetrachloroethaneND <td< td=""><td>10061-02-6</td><td>•</td><td>ND</td><td>1.0</td><td>0.30</td><td></td><td></td></td<>	10061-02-6	•	ND	1.0	0.30		
637-92-3Ethyl Tert Butyl EtherND 2.0 0.22 ug/l $591-78-6$ 2 -HexanoneND 10 2.0 ug/l $87-68-3$ HexachlorobutadieneND 2.0 0.20 ug/l $98-82-8$ IsopropylbenzeneND 1.0 0.20 ug/l $99-87-6$ p-IsopropyltolueneND 2.0 0.20 ug/l $108-10-1$ 4 -Methyl-2-pentanoneND 10 1.0 ug/l $74-83-9$ Methyl bromideND 2.0 0.20 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methyl ethyl ketoneND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $103-65-1$ n -PropylbenzeneND 1.0 0.20 ug/l $103-65-1$ n -PropylbenzeneND 1.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $94-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $75-65-0$ Tert-Butyl Alcohol ^a ND 10 2.4 ug/l $630-20-6$ $1, 1, 1.2$ -TetrachloroethaneND 1.0 0.20 ug/l $71-55-6$ $1, 1, 1.2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-00-5$ $1, 1, 2-Trichloroethane$ ND <td>100-41-4</td> <td></td> <td>ND</td> <td>1.0</td> <td>0.20</td> <td>-</td> <td></td>	100-41-4		ND	1.0	0.20	-	
591-78-62-HexanoneND102.0ug/l87-68-3HexachlorobutadieneND2.00.20ug/l98-82-8IsopropylbenzeneND1.00.20ug/l99-87-6p-IsopropyltolueneND2.00.20ug/l108-10-14-Methyl-2-pentanoneND101.0ug/l74-83-9Methyl bromideND2.00.20ug/l74-87-3Methyl chlorideND1.00.30ug/l74-95-3Methylene bromideND1.00.20ug/l75-09-2Methylene chlorideND102.0ug/l78-93-3Methyl ethyl ketoneND102.0ug/l1634-04-4Methyl Tert Butyl Ether0.911.00.20ug/l103-65-1n-PropylbenzeneND2.00.20ug/l100-42-5StyreneND1.00.20ug/l994-05-8Tert-Amyl Methyl EtherND1.00.20ug/l75-65-0Tert-Butyl Alcohol ^a ND1.00.30ug/l71-55-61, 1, 1, 2-TetrachloroethaneND1.00.20ug/l79-34-51, 1, 2, 2-TetrachloroethaneND1.00.20ug/l79-00-51, 1, 2-TrichloroethaneND1.00.22ug/l	537-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22		
98-82-8IsopropylbenzeneND 1.0 0.20 ug/l 99-87-6p-IsopropyltolueneND 2.0 0.20 ug/l $108-10-1$ 4-Methyl-2-pentanoneND 10 1.0 ug/l $74-83-9$ Methyl bromideND 2.0 0.20 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-87-3$ Methyl enbromideND 1.0 0.20 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $103-65-1$ n -PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $75-65-0$ Tert-Butyl Alcohol ^a ND 10 2.4 ug/l $630-20-6$ $1,1,1,2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1,1,2.7$ -TetrachloroethaneND 1.0 0.20 ug/l	591-78-6	2-Hexanone	ND	10	2.0	ug/l	
99-87-6p-IsopropyltolueneND 2.0 0.20 ug/l $108-10-1$ 4-Methyl-2-pentanoneND 10 1.0 ug/l $74-83-9$ Methyl bromideND 2.0 0.20 ug/l $74-83-9$ Methyl chlorideND 1.0 0.30 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $91-20-3$ NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n -PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $75-65-0$ Tert-Butyl Alcohol aND 1.0 0.30 ug/l $71-55-6$ $1,1,1,2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1,1,2$ -TrichloroethaneND 1.0 0.22 ug/l	37-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
99-87-6p-IsopropyltolueneND 2.0 0.20 ug/l $108-10-1$ 4-Methyl-2-pentanoneND 10 1.0 ug/l $74-83-9$ Methyl bromideND 2.0 0.20 ug/l $74-83-9$ Methyl chlorideND 1.0 0.30 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $91-20-3$ NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n -PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $75-65-0$ Tert-Butyl Alcohol aND 1.0 0.30 ug/l $71-55-6$ $1,1,1,2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1,1,2$ -TrichloroethaneND 1.0 0.22 ug/l	98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
74-83-9Methyl bromideND 2.0 0.20 ug/l $74-87-3$ Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $91-20-3$ NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n -PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $75-65-0$ Tert-Butyl Alcohol ^a ND 1.0 0.30 ug/l $71-55-6$ $1,1,1,2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1,1,2.7$ -TetrachloroethaneND 1.0 0.20 ug/l	99-87-6		ND	2.0	0.20	ug/l	
74-87-3Methyl chlorideND 1.0 0.30 ug/l $74-95-3$ Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $91-20-3$ NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n -PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 1.0 0.20 ug/l $75-65-0$ Tert-Butyl Alcohol ^a ND 1.0 0.30 ug/l $71-55-6$ $1,1,1,2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1,1,2$ -TrichloroethaneND 1.0 0.20 ug/l	108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-95-3Methylene bromideND 1.0 0.20 ug/l $75-09-2$ Methylene chlorideND 10 2.0 ug/l $78-93-3$ Methyl ethyl ketoneND 10 2.0 ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $103-65-1$ n-PropylbenzeneND 5.0 0.50 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 2.0 0.40 ug/l $75-65-0$ Tert-Butyl Alcohol ^a ND 1.0 0.30 ug/l $630-20-6$ $1, 1, 1, 2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1, 1, 2, 2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-00-5$ $1, 1, 2$ -TrichloroethaneND 1.0 0.22 ug/l	74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
75-09-2Methylene chlorideND102.0ug/l $78-93-3$ Methyl ethyl ketoneND102.0ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l $91-20-3$ NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n-PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 2.0 0.40 ug/l $75-65-0$ Tert-Butyl Alcohol aND 10 2.4 ug/l $630-20-6$ $1, 1, 1, 2$ -TetrachloroethaneND 1.0 0.30 ug/l $71-55-6$ $1, 1, 1, 2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1, 1, 2$ -TrichloroethaneND 1.0 0.22 ug/l	74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
78-93-3Methyl ethyl ketoneND102.0ug/l $1634-04-4$ Methyl Tert Butyl Ether 0.91 1.0 0.20 ug/l J $91-20-3$ NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n-PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 2.0 0.40 ug/l $75-65-0$ Tert-Butyl Alcohol aND 10 2.4 ug/l $630-20-6$ $1, 1, 1, 2$ -TetrachloroethaneND 1.0 0.30 ug/l $71-55-6$ $1, 1, 1, 2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-34-5$ $1, 1, 2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-00-5$ $1, 1, 2$ -TrichloroethaneND 1.0 0.22 ug/l	74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75-09-2	Methylene chloride	ND	10	2.0	ug/l	
91-20-3NaphthaleneND 5.0 0.50 ug/l $103-65-1$ n-PropylbenzeneND 2.0 0.20 ug/l $100-42-5$ StyreneND 1.0 0.20 ug/l $994-05-8$ Tert-Amyl Methyl EtherND 2.0 0.40 ug/l $75-65-0$ Tert-Butyl Alcohol aND 10 2.4 ug/l $630-20-6$ $1, 1, 1, 2$ -TetrachloroethaneND 1.0 0.30 ug/l $71-55-6$ $1, 1, 1$ -TrichloroethaneND 1.0 0.20 ug/l $79-34-5$ $1, 1, 2$ -TetrachloroethaneND 1.0 0.20 ug/l $79-00-5$ $1, 1, 2$ -TrichloroethaneND 1.0 0.22 ug/l	78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	634-04-4	Methyl Tert Butyl Ether	0.91	1.0	0.20	ug/l	J
100-42-5StyreneND1.00.20ug/l994-05-8Tert-Amyl Methyl EtherND2.00.40ug/l75-65-0Tert-Butyl Alcohol aND102.4ug/l630-20-61,1,1,2-TetrachloroethaneND1.00.30ug/l71-55-61,1,1-TrichloroethaneND1.00.20ug/l79-34-51,1,2,2-TetrachloroethaneND1.00.20ug/l79-00-51,1,2-TrichloroethaneND1.00.22ug/l	91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
994-05-8Tert-Amyl Methyl EtherND2.00.40ug/l75-65-0Tert-Butyl Alcohol aND102.4ug/l630-20-61,1,1,2-TetrachloroethaneND1.00.30ug/l71-55-61,1,1-TrichloroethaneND1.00.20ug/l79-34-51,1,2-TetrachloroethaneND1.00.20ug/l79-00-51,1,2-TrichloroethaneND1.00.22ug/l	103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
75-65-0Tert-Butyl Alcohol aND102.4ug/l630-20-61,1,1,2-TetrachloroethaneND1.00.30ug/l71-55-61,1,1-TrichloroethaneND1.00.20ug/l79-34-51,1,2,2-TetrachloroethaneND1.00.20ug/l79-00-51,1,2-TrichloroethaneND1.00.22ug/l	100-42-5	Styrene	ND	1.0	0.20	ug/l	
630-20-61,1,1,2-TetrachloroethaneND1.00.30ug/l71-55-61,1,1-TrichloroethaneND1.00.20ug/l79-34-51,1,2,2-TetrachloroethaneND1.00.20ug/l79-00-51,1,2-TrichloroethaneND1.00.22ug/l	994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
71-55-61,1,1-TrichloroethaneND1.00.20ug/l79-34-51,1,2,2-TetrachloroethaneND1.00.20ug/l79-00-51,1,2-TrichloroethaneND1.00.22ug/l	75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
79-34-51,1,2,2-TetrachloroethaneND1.00.20ug/l79-00-51,1,2-TrichloroethaneND1.00.22ug/l	530-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.22 ug/l	71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
	79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
	79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 2.0 0.20 ug/l	37-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4 1,2,3-Trichloropropane ND 2.0 0.20 ug/l	96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 2.0 0.20 ug/l	120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6 1,2,4-Trimethylbenzene ND 2.0 0.20 ug/l	95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8 1,3,5-Trimethylbenzene ND 2.0 0.20 ug/l	108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4 Tetrachloroethylene ND 1.0 0.30 ug/l	127-18-4			1.0	0.30	ug/l	
108-88-3 Toluene ND 1.0 0.20 ug/l	108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6 Trichloroethylene ND 1.0 0.20 ug/l	/9-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4 Trichlorofluoromethane ^a ND 1.0 0.20 ug/l	/5-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4 Vinyl chloride ND 1.0 0.20 ug/l	/5-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7 Xylene (total) ND 2.0 0.46 ug/l	1330-20-7		ND			ug/l	
TPH-GRO (C6-C10) ND 50 25 ug/l		TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 Dibromofluoromethane 99% 70-130%	1868-53-7	Dibromofluoromethane	99%		70-1	30%	

5/14

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:	MW-9		
Lab Sample ID:	C36561-7	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		
_	-		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	96%		70-130%
460-00-4	4-Bromofluorobenzene	102%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.7

Report of A	Analysis
--------------------	----------

Client Sar Lab Samp Matrix: Method: Project:	e ID: C36561 AQ - Gi SW846	MW-9 C36561-7 AQ - Ground Water SW846 8015B M SW846 3510C T0600101592 - Paco Pumps			Da	te Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH317983.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382
Run #1 Run #2	Initial Volume 1040 ml	Final V 1.0 ml	olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0245 0.0582	0.096 0.19	$0.024 \\ 0.048$	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	76%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ယ

3.7

Client Sar Lab Samj Matrix: Method: Project:	ple ID: C365 AQ - SW84					Date Sampled: 10/16/14 Date Received: 10/16/14 Percent Solids: n/a			
Run #1 Run #2	File ID R29696.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106		
Run #1 Run #2	Purge Volum 10.0 ml	e							

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ

Client Sample ID:	MW-10		
Lab Sample ID:	C36561-8	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%	70-130		30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ 8

Lab Sample ID: C36561-8 Date Sampled: 10/16/14 Matrix: AQ - Ground Water Date Received: 10/16/14 Method: SW846 8260B Percent Solids: n/a			MW-10	Client Sample ID:
Method: SW846 8260B Percent Solids: n/a	10/16/14	Date Sampled:	C36561-8	Lab Sample ID:
	10/16/14	Date Received:	AQ - Ground Water	Matrix:
	n/a	Percent Solids:	SW846 8260B	Method:
Project: T0600101592 - Paco Pumps			T0600101592 - Paco Pumps	Project:

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	95%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω. 8

Report of Analysis							Page 1 of 1
Client Sa Lab Sam	-				De	nte Sampled: 10)/16/14
Matrix:	-	round W	ater			-)/16/14
Method:	•		W846 3510C		Pe	rcent Solids: n/	a
Project:	T06001	01592 - I	Paco Pumps				
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	PP038492.D	1	10/20/14	RV	10/20/14	OP11009	GPP1240
Run #2							
	Initial Volume	Final V	olume				
Run #1	1030 ml	1.0 ml					
Run #2							

PCB List

CAS No.	Compound	Result	RL MDL Unit		Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	0.097 0.097 0.097 0.097 0.097 0.097 0.097	0.019 0.049 0.049 0.049 0.049 0.049 0.049 0.029	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No. 877-09-8 877-09-8 2051-24-3	Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	Run# 1 68% 59% 74%	Run# 2 Limits 27-112% 27-112% 32-136%		its 12% 12%	
2051-24-3	Decachlorobiphenyl	86%	32-136%			

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

f 1 吕 🐱

ω

30 of 108 ACCUTEST C36561

Client San Lab Sam Matrix: Method: Project:	ple ID: C36561 AQ - Gi SW846	-8 round Wa 8015B M	ater I SW846 35100 Paco Pumps	С	Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH317984.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL MDL Unit			Q
	TPH (C10-C28) TPH (> C28-C40)	0.0807 0.0789	0.094 0.19	0.024 0.047	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
630-01-3	Hexacosane	72%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ω

C36561

Client Sar Lab Samj Matrix: Method: Project:	AQ - SW84	61-9 Ground Wa 46 8260B	ater Paco Pumps		Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID R29697.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 3

3.9 3.9

ယ

Analysis			Page 2 of 3

3.9

 <u>م</u>	

Client Samj Lab Sample Matrix: Method:					Date	Sampled: Received: ent Solids:	10/16/14 10/16/14 n/a
Project: VOA 8260 l	T0600101592 - Paco 1	Fumps					
CAS No.	Compound	Result	RL	MDL	Units	Q	
156-60-5 10061-02-6	trans-1,2-Dichloroethylene trans-1,3-Dichloropropene	ND ND	$1.0 \\ 1.0$	0.20 0.30	ug/l ug/l		

156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	95%		70-1	30%

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of	of Analysis	
-----------	-------------	--

Client Sample ID:	MW-11		
Lab Sample ID:	C36561-9	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	95%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.9 3.9

Report of Analysis									
Client San Lab Samp Matrix: Method: Project:	le ID: C36561 AQ - Gi SW846	round Wat 8082 SW	er /846 3510C aco Pumps		Da	ate Sampled: 10 ate Received: 10 prcent Solids: n/			
Run #1 Run #2	File ID PP038493.D	DF 1	Analyzed 10/20/14	By RV	Prep Date 10/20/14	Prep Batch OP11009	Analytical Batch GPP1240		
Run #1 Run #2	Initial Volume 1000 ml	Final Vo 1.0 ml	olume						

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	$\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ \end{array}$	$\begin{array}{c} 0.020\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.030 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	60% 56% 67% 71%		27-1 27-1 32-1 32-1	12% 36%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.9

Report of Analysis									
Client San Lab Samp Matrix: Method: Project:	le ID: C36561 AQ - G SW846	-9 round Wa 8015B M	ater 1 SW846 35100 Paco Pumps	C	Da	I)/16/14)/16/14 a		
Run #1 Run #2	File ID HH317985.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382		
Run #1 Run #2	Initial Volume 1000 ml	Final V 1.0 ml	Volume						

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.227 0.129	0.10 0.20	$0.025 \\ 0.050$	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	65%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.9

Client Sa Lab Samj Matrix: Method: Project:	ple ID: C365 AQ - SW84	61-10 Ground Wa 46 8260B	ater Paco Pumps		Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID R29698.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	0.40	1.0	0.20	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

	ယ္
Daga 2 of 2	<u> </u>
Page 2 of 3	0

 Client Sample ID:
 MW-12

 Lab Sample ID:
 C36561-10
 Date Sampled:
 10/16/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/16/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

 Project:
 T0600101592 - Paco Pumps
 Pace Pumps
 Pace Pumps

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.28	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
1868-53-7	Dibromofluoromethane	100%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

Client Sample ID:	MW-12		
Lab Sample ID:	C36561-10	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		
5	*		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	97%		70-130%
460-00-4	4-Bromofluorobenzene	102%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report	of	Analysis	
--------	----	----------	--

Client San Lab Sam Matrix: Method: Project:	ple ID: C36561 AQ - G SW846	-10 round Wa 8015B M	ater I SW846 35100 Paco Pumps	С	Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH317986.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382
Run #1 Run #2	Initial Volume 1000 ml	Final V 1.0 ml	/olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0399 0.0631	0.10 0.20	$0.025 \\ 0.050$	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	88%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Report of	Analysis
------------------	----------

Lab Samj Matrix: Method: Project:	ple ID: C36561 AQ - G SW846	 E-2 C36561-11 AQ - Ground Water SW846 8015B M SW846 3510C T0600101592 - Paco Pumps 				Date Sampled:10/16/14Date Received:10/16/14Percent Solids:n/a			
Run #1 Run #2	File ID HH317987.D	DF 1	Analyzed 10/17/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1382		
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	olume						

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.780 1.08	0.094 0.19	0.024 0.047	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	71%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	ple ID: C3650 AQ - SW84	 ID: E-3 C36561-12 AQ - Ground Water SW846 8260B T0600101592 - Paco Pumps 				Date Sampled:10/16/14Date Received:10/16/14Percent Solids:n/a			
Run #1 Run #2	File ID Q24638.D	DF 1	Analyzed 10/23/14	By BQ	Prep Date n/a	Prep Batch n/a	Analytical Batch VQ1039		
Run #1 Run #2	Purge Volum 10.0 ml	e							

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	8.6	20	4.0	ug/l	J
71-43-2	Benzene	3.3	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Client Sample ID:	E-3		
Lab Sample ID:	C36561-12	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	0.61	1.0	0.20	ug/l	J
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	1.4	2.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol	4.5	10	2.4	ug/l	J
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	355	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	109%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

3.12

Report of Analysis

Client Sample ID:	E-3		
Lab Sample ID:	C36561-12 D	ate Sampled:	10/16/14
Matrix:	AQ - Ground Water D	ate Received:	10/16/14
Method:	SW846 8260B P	ercent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	101%		70-130%
460-00-4	4-Bromofluorobenzene	89%		70-130%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.12

ω

Report of Analysis	

Client San Lab Samp Matrix: Method: Project:	AQ - G SW846	round Wa 8015B M	tter I SW846 35100 Paco Pumps	С	Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH318015.D	DF 200	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	106 153	19 38	4.7 9.4	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	98%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

Lab Samj Matrix: Method: Project:	AQ - SW84	Ground Wa 46 8260B	ater Paco Pumps		Da	te Sampled: 10 te Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID R29700.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.8	20	4.0	ug/l	J
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	E-5		
Lab Sample ID:	C36561-13	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		
0	1		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.42	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

3.13

Client Sample ID:	E-5		
Lab Sample ID:	C36561-13	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VUA 8260 L

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	102%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

			Repo	ort of A	nalysis		Page 1 of 1
Client Sar Lab Samp Matrix: Method: Project:	ole ID: C36561 AQ - G SW846	round Wa 8015B M	ter SW846 35100 aco Pumps	С	Da	1	0/16/14 0/16/14 /a
Run #1 Run #2	File ID HH318016.D	DF 40	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	olume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	25.3 32.5	3.8 7.5	0.94 1.9	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	66%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Samj Matrix: Method: Project:	AQ - SW8	61-14 Ground Wa 46 8260B 0101592 - H	ater Paco Pumps		Da	ate Sampled: 10 ate Received: 10 ercent Solids: n/	
Run #1 Run #2	File ID R29701.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	le					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.9	20	4.0	ug/l	J
71-43-2	Benzene	0.30	1.0	0.20	ug/l	J
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	1.6	2.0	0.28	ug/l	J
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Client Sample ID:	E-6		
Lab Sample ID:	C36561-14	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	0.24	1.0	0.20	ug/l	J
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.45	1.0	0.20	ug/l	J
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	0.24	2.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	135	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	95%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 2 of 3

ω

3.14

Client Sample ID:	E-6		
Lab Sample ID:	C36561-14	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	105%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

Report of	of Analysis
-----------	-------------

Client Sa Lab Samj Matrix: Method: Project:	AQ - G SW846	E-6 C36561-14 AQ - Ground Water SW846 8015B M SW846 3510C T0600101592 - Paco Pumps			Date Sampled:10/16/14Date Received:10/16/14Percent Solids:n/a			
Run #1 Run #2	File ID HH318017.D	DF 5	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383	
Run #1 Run #2	Initial Volume 1060 ml	Final V 1.0 ml	olume					

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	1.66 1.85	0.47 0.94	0.12 0.24	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	72%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Samp Matrix: Method: Project:	AQ - SW84	 C36561-15 AQ - Ground Water SW846 8260B T0600101592 - Paco Pumps 				Date Sampled:10/16/14Date Received:10/16/14Percent Solids:n/a			
Run #1 ^a Run #2	File ID R29702.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106		
Run #1 Run #2	Purge Volum 10.0 ml	e							

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	15.6	20	4.0	ug/l	J
71-43-2	Benzene	86.4	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	0.72	2.0	0.20	ug/l	J
135-98-8	sec-Butylbenzene	0.41	2.0	0.20	ug/l	J
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^b	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	1.3	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Client Sample ID:	E-7		
Lab Sample ID:	C36561-15	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	12.2	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	2.7	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	0.21	2.0	0.20	ug/l	J
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1.4	1.0	0.20	ug/l	
91-20-3	Naphthalene	6.1	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	5.8	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^b	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	15.8	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	0.89	2.0	0.20	ug/l	J
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	17.7	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane b	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	33.7	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	724	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		70-130%		

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.15

C36561 55 of 108 C36561

Client Sample ID:	E-7		
Lab Sample ID:	C36561-15	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		
	_		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	97%		70-130%
460-00-4	4-Bromofluorobenzene	105%		70-130%

(a) Sample vial contained more than 0.5cm of sediment.

(b) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.15 3

Report of Analysis							
Client Sar Lab Sam Matrix: Method: Project:	ple ID: C36561 AQ - G SW846	round W 8015B N	ater 1 SW846 3510 Paco Pumps	С	D	ate Sampled: 10 ate Received: 10 ercent Solids: n/	
Run #1 Run #2	File ID HH318018.D	DF 20	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1040 ml	Final V 1.0 ml	Volume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	7.92 14.1	1.9 3.8	0.48 0.96	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	63%		32-1	24%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.15

Lab Sam Matrix: Method: Project:	AQ - SW84	C-8 C36561-16 AQ - Ground Water SW846 8260B T0600101592 - Paco Pumps			Da Da Pe	0/16/14 0/16/14 a	
Run #1 Run #2	File ID R29704.D	DF 10	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	200	40	ug/l	
71-43-2	Benzene	385	10	2.0	ug/l	
108-86-1	Bromobenzene	ND	10	2.0	ug/l	
74-97-5	Bromochloromethane	ND	10	2.0	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.0	ug/l	
75-25-2	Bromoform	ND	10	2.2	ug/l	
104-51-8	n-Butylbenzene	ND	20	2.0	ug/l	
135-98-8	sec-Butylbenzene	2.2	20	2.0	ug/l	J
98-06-6	tert-Butylbenzene	ND	20	2.8	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	20	2.0	ug/l	
106-43-4	p-Chlorotoluene	ND	20	2.6	ug/l	
56-23-5	Carbon tetrachloride	ND	10	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	2.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	2.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	10	2.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	20	4.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	2.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	2.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	2.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	10	2.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	20	2.2	ug/l	
594-20-7	2,2-Dichloropropane	ND	10	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	10	2.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	10	2.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	10	2.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	E-8		
Lab Sample ID:	C36561-16	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.0	ug/l	
100-41-4	Ethylbenzene	172	10	2.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	20	2.2	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
87-68-3	Hexachlorobutadiene	ND	20	2.0	ug/l	
98-82-8	Isopropylbenzene	17.3	10	2.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	20	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	100	10	ug/l	
74-83-9	Methyl bromide	ND	20	2.0	ug/l	
74-87-3	Methyl chloride	ND	10	3.0	ug/l	
74-95-3	Methylene bromide	ND	10	2.0	ug/l	
75-09-2	Methylene chloride	ND	100	20	ug/l	
78-93-3	Methyl ethyl ketone	ND	100	20	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.0	ug/l	
91-20-3	Naphthalene	44.1	50	5.0	ug/l	J
103-65-1	n-Propylbenzene	38.6	20	2.0	ug/l	
100-42-5	Styrene	ND	10	2.0	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	20	4.0	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	100	24	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	10	3.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	2.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	2.2	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	2.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	20	2.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	2.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	112	20	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	20.1	20	2.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	3.0	ug/l	
108-88-3	Toluene	8.2	10	2.0	ug/l	J
79-01-6	Trichloroethylene	ND	10	2.0	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	ND	10	2.0	ug/l	
1330-20-7	Xylene (total)	139	20	4.6	ug/l	
	TPH-GRO (C6-C10)	4090	500	250	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		70-130%		

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.16

Client Sample ID:	E-8		
Lab Sample ID:	C36561-16	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	106%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.16

ω

Report	of	Analysis
--------	----	----------

Client Sar Lab Samj Matrix: Method: Project:	AQ - G SW846	E-8 C36561-16 AQ - Ground Water SW846 8015B M SW846 3510C F0600101592 - Paco Pumps			Da	ate Sampled: 10 ate Received: 10 prcent Solids: n/	
Run #1 Run #2	File ID HH318019.D	DF 3	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1020 ml	Final 1.0 ml	Volume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	1.12 1.03	0.29 0.59	0.074 0.15	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	64%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Report of Ar	nalvsis
--------------	---------

Client San Lab Samj Matrix: Method: Project:	AQ - SW84	61-17 Ground Wa 6 8260B 0101592 - P			Da	te Sampled: 10/16/14 te Received: 10/16/14 rcent Solids: n/a		
Run #1 Run #2	File ID R29707.D	DF 100	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106	
Run #1 Run #2	Purge Volum 10.0 ml	e						

CAS No.	Compound	Result	RL	MDL	Units (Q
67-64-1	Acetone	ND	2000	400	ug/l	
71-43-2	Benzene	2460	100	20	ug/l	
108-86-1	Bromobenzene	ND	100	20	ug/l	
74-97-5	Bromochloromethane	ND	100	20	ug/l	
75-27-4	Bromodichloromethane	ND	100	20	ug/l	
75-25-2	Bromoform	ND	100	22	ug/l	
104-51-8	n-Butylbenzene	ND	200	20	ug/l	
135-98-8	sec-Butylbenzene	ND	200	20	ug/l	
98-06-6	tert-Butylbenzene	ND	200	28	ug/l	
108-90-7	Chlorobenzene	ND	100	20	ug/l	
75-00-3	Chloroethane	ND	100	20	ug/l	
67-66-3	Chloroform	ND	100	20	ug/l	
95-49-8	o-Chlorotoluene	ND	200	20	ug/l	
106-43-4	p-Chlorotoluene	ND	200	26	ug/l	
56-23-5	Carbon tetrachloride	ND	100	20	ug/l	
75-34-3	1,1-Dichloroethane	ND	100	20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	100	20	ug/l	
563-58-6	1,1-Dichloropropene	ND	100	20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	200	40	ug/l	
106-93-4	1,2-Dibromoethane	ND	100	20	ug/l	
107-06-2	1,2-Dichloroethane	ND	100	20	ug/l	
78-87-5	1,2-Dichloropropane	ND	100	20	ug/l	
142-28-9	1,3-Dichloropropane	ND	100	20	ug/l	
108-20-3	Di-Isopropyl ether	ND	200	22	ug/l	
594-20-7	2,2-Dichloropropane	ND	100	20	ug/l	
124-48-1	Dibromochloromethane	ND	100	20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	100	20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	100	20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	100	20	ug/l	
541-73-1	m-Dichlorobenzene	ND	100	20	ug/l	
95-50-1	o-Dichlorobenzene	ND	100	20	ug/l	
106-46-7	p-Dichlorobenzene	ND	100	20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

J = Indicates an estimated value

Client Sample ID:	E-9		
Lab Sample ID:	C36561-17	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL MDL Un		Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	100	20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	100	30	ug/l	
100-41-4	Ethylbenzene	595	100	20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	200	22	ug/l	
591-78-6	2-Hexanone	ND	1000	200	ug/l	
87-68-3	Hexachlorobutadiene	ND	200	20	ug/l	
98-82-8	Isopropylbenzene	78.7	100	20	ug/l	J
99-87-6	p-Isopropyltoluene	ND	200	20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	1000	100	ug/l	
74-83-9	Methyl bromide	ND	200	20	ug/l	
74-87-3	Methyl chloride	ND	100	30	ug/l	
74-95-3	Methylene bromide	ND	100	20	ug/l	
75-09-2	Methylene chloride	ND	1000	200	ug/l	
78-93-3	Methyl ethyl ketone	ND	1000	200	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	100	20	ug/l	
91-20-3	Naphthalene	628	500	50	ug/l	
103-65-1	n-Propylbenzene	220	200	20	ug/l	
100-42-5	Styrene	ND	100	20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	200	40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	1000	240	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	100	30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	100	20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	100	22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	200	20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	200	20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	200	20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	3110	200	20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	734	200	20	ug/l	
127-18-4	Tetrachloroethylene	ND	100	30	ug/l	
108-88-3	Toluene	2250	100	20	ug/l	
79-01-6	Trichloroethylene	ND	100	20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	100	20	ug/l	
75-01-4	Vinyl chloride	ND	100	20	ug/l	
1330-20-7	Xylene (total)	3110	200	46	ug/l	
	TPH-GRO (C6-C10)	39300	5000	2500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	106%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

63 of 108 ACCUTEST C36561

Client Sample ID:	E-9		
Lab Sample ID:	C36561-17	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	104%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

64 of 108 ACCUTEST C36561

ω

Client San Lab Samj Matrix: Method: Project:	AQ - Gi SW846	round W 8015B N	ater 1 SW846 35100 Paco Pumps	С	Da	nte Sampled: 10 nte Received: 10 prcent Solids: n/	
Run #1 Run #2	File ID HH318020.D	DF 5	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1040 ml	Final 1.0 ml	Volume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	4.91 0.490	0.48 0.96	0.12 0.24	mg/l mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	62%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Client San Lab Samj Matrix: Method: Project:	AQ - SW84	61-18 Ground Wa 46 8260B 0101592 - I	ater Paco Pumps		Da	ate Sampled: 10 ate Received: 10 prcent Solids: n/	
Run #1 Run #2	File ID R29705.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	9.0	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	0.29	2.0	0.20	ug/l	J
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Client Sample ID:	E-12		
Lab Sample ID:	C36561-18	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	RL MDL Units		Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	1.4	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	0.64	1.0	0.20	ug/l	J
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	0.76	5.0	0.50	ug/l	J
103-65-1	n-Propylbenzene	1.7	2.0	0.20	ug/l	J
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	0.24	2.0	0.20	ug/l	J
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	0.24	1.0	0.20	ug/l	J
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	113	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

C36561 67 of 108

Client Sample ID:	E-12		
Lab Sample ID:	C36561-18	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	96%		70-130%
460-00-4	4-Bromofluorobenzene	103%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

68 of 108

C36561

Report	of	Analysis
πτρυτι	UI	111111 y 515

Client San Lab Sam Matrix: Method: Project:	AQ - Gi SW846	E-12 C36561-18 AQ - Ground Water SW846 8015B M SW846 3510C T0600101592 - Paco Pumps			Da	ate Sampled: 10 ate Received: 10 ercent Solids: n/		
Run #1 Run #2	File ID HH318021.D	DF 1	Analyzed 10/20/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1383	
Run #1 Run #2	Initial Volume 1040 ml	Final V 1.0 ml	olume					

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0314 0.0485	0.096 0.19	$0.024 \\ 0.048$	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	89%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Report of	Analysis
------------------	----------

Lab Sam Matrix: Method: Project:	AQ - SW84	61-19 Ground Wa 46 8260B	ater Paco Pumps		Da	ate Sampled: 10 ate Received: 10 ercent Solids: n/	
Run #1 Run #2	File ID R29703.D	DF 1	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	20	4.0	ug/l	
71-43-2	Benzene	0.34	1.0	0.20	ug/l	J
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

-			
Page	2	of 3	

Client Sample ID:	AS-10		
Lab Sample ID:	C36561-19	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		
-	- -		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	98%	70-130%			

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Client Sample ID:	AS-10		
Lab Sample ID:	C36561-19	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	103%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

72 of 108 ACCUTEST C36561

Report	of	Analysis
--------	----	----------

Client Sar Lab Sam Matrix: Method: Project:	AQ - G SW846	round W 8015B N	ater 1 SW846 35100 Paco Pumps	C	Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH318027.D	DF 1	Analyzed 10/20/14	By AG	Prep Date 10/20/14	Prep Batch OP11000	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1060 ml	Final 1.0 ml	Volume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.0392 0.0551	0.094 0.19	0.024 0.047	mg/l mg/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	88%		32-1	24%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3.19 **3**

Lab Sam Matrix: Method: Project:	AQ - SW84	61-20 Ground Wa 46 8260B 0101592 - H	ater Paco Pumps		Da	ate Sampled: 10 ate Received: 10 arcent Solids: n/	
Run #1 Run #2	File ID R29706.D	DF 10	Analyzed 10/22/14	By BD	Prep Date n/a	Prep Batch n/a	Analytical Batch VR1106
Run #1 Run #2	Purge Volum 10.0 ml	e					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	200	40	ug/l	
71-43-2	Benzene	398	10	2.0	ug/l	
108-86-1	Bromobenzene	ND	10	2.0	ug/l	
74-97-5	Bromochloromethane	ND	10	2.0	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.0	ug/l	
75-25-2	Bromoform	ND	10	2.2	ug/l	
104-51-8	n-Butylbenzene	ND	20	2.0	ug/l	
135-98-8	sec-Butylbenzene	2.2	20	2.0	ug/l	J
98-06-6	tert-Butylbenzene	ND	20	2.8	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	2.0	ug/l	
95-49-8	o-Chlorotoluene	ND	20	2.0	ug/l	
106-43-4	p-Chlorotoluene	ND	20	2.6	ug/l	
56-23-5	Carbon tetrachloride	ND	10	2.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	2.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	2.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	10	2.0	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^a	ND	20	4.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	2.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	2.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	2.0	ug/l	
142-28-9	1,3-Dichloropropane	ND	10	2.0	ug/l	
108-20-3	Di-Isopropyl ether	ND	20	2.2	ug/l	
594-20-7	2,2-Dichloropropane	ND	10	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.0	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.0	ug/l	
541-73-1	m-Dichlorobenzene	ND	10	2.0	ug/l	
95-50-1	o-Dichlorobenzene	ND	10	2.0	ug/l	
106-46-7	p-Dichlorobenzene	ND	10	2.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page	2	of	3	

Client Sample ID:	DUP-1		
Lab Sample ID:	C36561-20	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.0	ug/l	
100-41-4	Ethylbenzene	180	10	2.0	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	20	2.2	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
87-68-3	Hexachlorobutadiene	ND	20	2.0	ug/l	
98-82-8	Isopropylbenzene	18.1	10	2.0	ug/l	
99-87-6	p-Isopropyltoluene	ND	20	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	100	10	ug/l	
74-83-9	Methyl bromide	ND	20	2.0	ug/l	
74-87-3	Methyl chloride	ND	10	3.0	ug/l	
74-95-3	Methylene bromide	ND	10	2.0	ug/l	
75-09-2	Methylene chloride	ND	100	20	ug/l	
78-93-3	Methyl ethyl ketone	ND	100	20	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.0	ug/l	
91-20-3	Naphthalene	47.5	50	5.0	ug/l	J
103-65-1	n-Propylbenzene	41.0	20	2.0	ug/l	
100-42-5	Styrene	ND	10	2.0	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	20	4.0	ug/l	
75-65-0	Tert-Butyl Alcohol ^a	ND	100	24	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	10	3.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.0	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	2.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	2.2	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	2.0	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	20	2.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	2.0	ug/l	
95-63-6	1,2,4-Trimethylbenzene	119	20	2.0	ug/l	
108-67-8	1,3,5-Trimethylbenzene	21.7	20	2.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	3.0	ug/l	
108-88-3	Toluene	8.7	10	2.0	ug/l	J
79-01-6	Trichloroethylene	ND	10	2.0	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	ND	10	2.0	ug/l	
1330-20-7	Xylene (total)	145	20	4.6	ug/l	
	TPH-GRO (C6-C10)	4390	500	250	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		70-1	30%	

ND = Not detected MDL = Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Client Sample ID:	DUP-1		
Lab Sample ID:	C36561-20	Date Sampled:	10/16/14
Matrix:	AQ - Ground Water	Date Received:	10/16/14
Method:	SW846 8260B	Percent Solids:	n/a
Project:	T0600101592 - Paco Pumps		

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	98%		70-130%
460-00-4	4-Bromofluorobenzene	105%		70-130%

(a) CCV outside of control limits (biased high); not detected in sample.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report	of	Analysis
--------	----	----------

Client San Lab Samj Matrix: Method: Project:	AQ - G SW846	round W 8015B N	ater 1 SW846 35100 Paco Pumps	С	Da	nte Sampled: 10 nte Received: 10 rcent Solids: n/	
Run #1 Run #2	File ID HH318028.D	DF 1	Analyzed 10/20/14	By AG	Prep Date 10/20/14	Prep Batch OP11000	Analytical Batch GHH1383
Run #1 Run #2	Initial Volume 1050 ml	Final V 1.0 ml	Volume				

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (C10-C28) TPH (> C28-C40)	0.649 0.458	0.095 0.19	0.024 0.048	mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	51%		32-1	24%	

3.20

ω

ND = Not detected MDL = Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Section 4

Δ

Misc. Forms	
Custody Documents and Other Forms	

Includes the following where applicable:

• Chain of Custody

	BLA		SA	N JOSE.		ROGERS AVEN DRNIA 95112-1			co	NDUC.	F ANAL	YSIS T) DE	TECT		LAB	ACCUTEST	C365	ol _{DHS#}
		ECH SERVICES, INC. PHONE (408) 573-0555							Ŵ						ALL ANALYSES MUS LIMITS SET BY CALIF	FORNIA DHS AN	FICATIONS AN ID RWQCB RE		
	CHAIN OF CUS	STODY	BTS #	141	016 -	·Val]"			8015						LIA OTHER			
ľ	CLIENT	The Sou					L L L L CONTAINERS			l SC (%)						SPECIAL INSTRUCTI	ONS		
Ī	SITE	Paco Pu		up			ATA			v/SC						Invice and Day.			
ł		9201 Sa		ro St.		······	ALC			no v						Invoice and Repo			1
ſ		Oakland,					- E	60B	60B	H	ନ୍ଥି				ĺ	Attn: Paul Parmer (562)597-1055 e	tter pparme	ntier@theso	urcegroup.net
ſ				MATRIX	CC	ONTAINERS	COMPOSITE	8	(82	E	80				1	PO #: 04-PFT-0			
	Sample I.D.	DATE	TIME	S= SOIL W=H ₂ 0	TOTAL		c = cov	TPH-g (8260B)	VOC's (8260B)	TPH-d / TPH-mo w/SGC (8015M)	PCB's (8082)					Geotracker EDI) files requi status	red	
1	MW-1	10-16-14	1040		2	ILAGIB				X				- -	Ť		314103	CONDITION	LAB SAMPLE
	NW-2	- <u> </u>	1300	1	2	1L AGE				X									
_	MW-4		1316		84	mixed		X	×	\times					\uparrow				
_	MW-5		1115		2	IL AGB				X									
_	NW-6		1445		5	mixed		$\left \right\rangle$	×	×									
1	NW-7		1140		2	LAGB				\times									
-	WW-9		1210		5	Mixed		$\boldsymbol{\chi}$	\times	\succ									
	MW-10		1055		7	Mixed		X	\checkmark	\succ	\times								
_	Mw-11		1030		7	Mixed		X	\times	\mathbf{x}	<								
s c	MW-12 AMPLING OMALETED	1 DATE 10-16-14		¥ SAMPLII PERFOR		× UV 1		X	k							ESULTS NEEDED	Standard TAT		1
·	ELEASED BY						DATE - -	16-19	5 '	TIME (62) TIME	υ			ED BY	Ų	2lu		DATE 10/16/14	
•	ELEASED BY											Ą		ÆÐ BY	~	·		DATE '	TIME
f.re							DATE	:	ſ	TIME		RE	CEIV	ED BY				DATE	TIME
SI	HIPPED VIA						DATE	SENT		TIME S	ENT	cc	OLE	R #	Τ				
L		uf 2														6-0.1=4.5/			

C36561: Chain of Custody Page 1 of 3

4.4

	INT	_	641		1680	ROGEF	RS AVEN	UE		co	NDUC	T ANAL	YSIS 1	O DE	TECT	LAB	ACCUTEST	C 3656	DI DHS#
BLA TECH SE			JAI	N JUSE,	F	AX (40	95112-11 8) 573-77 8) 573-05	71								ALL ANALYSES MUS LIMITS SET BY CALI	ST MEET SPECI FORNIA DHS AN	FICATIONS AN	ID DETECTION
CHAIN OF CL	ISTODY		BTS #	141	196.	- 201] _			(8015M)							🗌 RWQCB RE	GION
CLIENT	The	Source	e Groi		1-1-			Ш.								SPECIAL INSTRUCT	IONS		
SITE		Pum		<u></u>			-	CONTAINERS			//SG								
—		San I		ro St						_	DO W					Invoice and Rep			-
		and, C/		10 51.				TE ALL	(8260B)	(g)	H-n	ର				Attn: Paul Parme (562)597-1055 e	ntier pparme	ntier@theso	urcegroup.net
	Ouni	uno, 07		MATRIX	C	ONTAIN	IERS	.ISOc	(82	(826	/TP	(8082)				PO #: 04-PFT-0			
SAMPLE I.D.	DAT	еІт	іме	S= SOIL W=H ₂ 0	τοτα			C = COMPOSITE	TPH-g (VOC's (8260B)	TPH-d / TPH-mo w/SGC	PCB's (Geotracker ED	· ·	1	
E.7.	10-1		225	N	2		Acrib	Ŭ		<u> </u>	X		\neg	-+		ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
E-3	_ <u>,</u> 1		425	1	5	Mi			V	×	X								
5-5	1		345		-				Ĵ	$\overline{}$	X								
E-6	_		300						Ŝ	ž	r K	-	-						
E-7		— —	355						\mathbf{x}	k K	$\frac{1}{2}$			-+					
E-8			330						X	ر ک	$\frac{1}{2}$	-†							
E-9			465					-	2	Z	5			-					
Eizo			333						x	\times	6			- -					
1AS-10		١	235						×	$\overline{\mathbf{x}}$	\times								
PUP-1	1	3	35	4	¥				X	\mathbf{x}	× 1						-		(
SAMPLING COMPLETED RELEASED BY				PERFOR		۲J.	CN7 F				I		-			RESULTS NEEDED	Standard TAT		
RELEASED BY	<u>p</u>								5-14		TIME 162	0	B		P BY	feln		DATE 101614	TIME 1620
· l	121						Ir	MIC		1	ГIME			:CEIV	EDBY	\checkmark		DATE	TIME
RELEASED BY							C	ATE		T	TIME			CEIV	ED BY			DATE	TIME
SHIPPED VIA							Ċ	ATE	SENT	T	TIME S	ENT	cc	OLEF	R #				

Temp: 4.3-0.1=4.2 4.6-0.1=4.5 3.3-0.1=3.2 3.9-0.1=3.8

> C36561: Chain of Custody Page 2 of 3

Accutest Laboratories Sample Receipt Summary

LABOR	ATORIES					
Accutest Job Number:	C36561	Client:	THE SOURCE GROUP		Project: PACO PUMPS	3
Date / Time Received:	10/16/2014 4:2	20:00 PM	Delivery Method:	Client	Airbill #'s:	
Cooler Temps (Initial/Ad	ljusted): <u>#1: (4</u>	4.3/4.2); #2:	(3.3/3.2); #3: (4.6/4.5); #	4: <u>(3.9/3.8);</u>		
Cooler Security	Y or N		Y or N	Sample Inte	grity - Documentation	Y or N
1. Custody Seals Present:		 COC Pr Smpl Date 		1. Sample lab	els present on bottles:	
2. Custody Seals Intact:		4. Shipi Dale	s/Time OK 🔽 🗌		abeling complete:	
Cooler Temperature	Y or	N		3. Sample co	ntainer label / COC agree:	
1. Temp criteria achieved:	\checkmark			Sample Inte	grity - Condition	Y or N
2. Cooler temp verification:	-			1. Sample red	cvd within HT:	
3. Cooler media:	Ice (E	•		2. All contain	ers accounted for:	
4. No. Coolers:	4			3. Condition of	of sample:	Intact
Quality Control Preserv	vation Y or	<u>N N/A</u>		Sample Inte	grity - Instructions	Y or N N/A
1. Trip Blank present / cool	er:			1. Analysis r	equested is clear:	
2. Trip Blank listed on COC	: 🗆			-	ceived for unspecified tests	
3. Samples preserved prop	oerly:			3. Sufficient	volume recvd for analysis:	
4. VOCs headspace free:	\checkmark			4. Compositi	ng instructions clear:	
				5. Filtering in	structions clear:	

5. Filtering instructions clear:

Comments Received 5 total bottls 2 ambers and 3 hcl vials for MW-12 9 (C36561-10)

Accutest Laboratories V:408.588.0200

2105 Lundy Avenue F: 408.588.0201

San Jose, CA 95131 www/accutest.com

4.1 **4**

C36561: Chain of Custody Page 3 of 3

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

S

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
VR1106-MB	R29689.D	1	10/22/14	BD	n/a	n/a	VR1106			
The QC reporte	The QC reported here applies to the following samples: Method: SW846 8260B									

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	20	4.0	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l
75-25-2	Bromoform	ND	1.0	0.22	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	1.0	0.20	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
VR1106-MB	R29689.D	1	10/22/14	BD	n/a	n/a	VR1106			
The QC reporte	The QC reported here applies to the following samples: Method: SW846 8260B									

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	Result	RL	MDL	Units Q
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Page 2 of 3

Sample	File ID	DF	Analyzed	Bv	Pr
Project:	T0600101592	 Paco Pumj 	ps		
Account:	TSGCAPH Th	e Source Gr	oup - Pleasant H	Hill	
Job Number:	C36561				

Sample	File ID	DF	Analyzed	By	Prep Date	Prep E	Batch	Analytical Batch		
VR1106-MB	R29689.D	1	10/22/14	BD	n/a	n/a		VR1106		
The QC reporte	The QC reported here applies to the following samples: Method: SW846 8260B									

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	98%	70-130%
2037-26-5	Toluene-D8	98%	70-130%
460-00-4	4-Bromofluorobenzene	102%	70-130%

G

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VQ1039-MB	Q24634.D	1	10/23/14	BQ	n/a	n/a	VQ1039

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-5, C36561-12

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	20	4.0	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l
75-25-2	Bromoform	ND	1.0	0.22	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	1.0	0.20	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	· I I	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l

C36561

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed 10/23/14	By	Prep Date	Prep Batch	Analytical Batch
VQ1039-MB	Q24634.D	1		BQ	n/a	n/a	VQ1039

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-5, C36561-12

CAS No.	Compound	Result	RL	MDL	Units Q
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Job Number: Account: Project:	C36561 TSGCAPH The T0600101592 -		1	Hill		
Sample	File ID	DF	Analyzed 10/23/14	By	Prep Date	Prep Batch
VQ1039-MB	Q24634.D	1		BQ	n/a	n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-5, C36561-12

CAS No.	Surrogate Recoveries		Limits
	Dibromofluoromethane	103%	70-130%
	Toluene-D8	104%	70-130%
	4-Bromofluorobenzene	103%	70-130%

S

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed 10/22/14 10/22/14	By	Prep Date	Prep Batch	Analytical Batch
VR1106-BS	R29685.D	1		BD	n/a	n/a	VR1106
VR1106-BSD	R29686.D	1		BD	n/a	n/a	VR1106

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	80	76.6	96	75.7	95	1	38-159/24
71-43-2	Benzene	20	18.2	91	18.4	92	1	77-122/25
108-86-1	Bromobenzene	20	19.0	95	18.9	95	1	76-126/17
74-97-5	Bromochloromethane	20	18.5	93	18.8	94	2	77-130/17
75-27-4	Bromodichloromethane	20	21.3	107	21.6	108	1	75-127/16
75-25-2	Bromoform	20	19.4	97	19.6	98	1	69-141/17
104-51-8	n-Butylbenzene	20	20.3	102	19.8	99	2	72-129/18
135-98-8	sec-Butylbenzene	20	20.0	100	19.6	98	2	74-128/18
98-06-6	tert-Butylbenzene	20	20.2	101	19.9	100	1	73-127/18
108-90-7	Chlorobenzene	20	18.6	93	18.6	93	0	77-122/16
75-00-3	Chloroethane	20	20.5	103	20.7	104	1	69-133/18
67-66-3	Chloroform	20	19.8	99	20.2	101	2	74-126/17
95-49-8	o-Chlorotoluene	20	20.0	100	20.0	100	0	72-127/20
106-43-4	p-Chlorotoluene	20	20.4	102	20.0	100	2	68-127/18
56-23-5	Carbon tetrachloride	20	18.7	94	18.7	94	0	71-133/19
75-34-3	1,1-Dichloroethane	20	18.7	94	19.1	96	2	71-125/17
75-35-4	1,1-Dichloroethylene	20	15.8	79	16.2	81	2	66-125/20
563-58-6	1,1-Dichloropropene	20	18.2	91	18.3	92	1	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	20	24.2	121	24.5	123	1	65-131/20
106-93-4	1,2-Dibromoethane	20	20.1	101	20.3	102	1	75-135/17
107-06-2	1,2-Dichloroethane	20	21.2	106	21.6	108	2	71-131/17
78-87-5	1,2-Dichloropropane	20	18.8	94	18.9	95	1	78-124/16
142-28-9	1,3-Dichloropropane	20	19.5	98	19.8	99	2	78-123/16
108-20-3	Di-Isopropyl ether	20	19.2	96	19.7	99	3	68-129/17
594-20-7	2,2-Dichloropropane	20	20.7	104	21.0	105	1	70-131/19
124-48-1	Dibromochloromethane	20	21.3	107	21.7	109	2	76-132/16
75-71-8	Dichlorodifluoromethane	20	18.8	94	18.6	93	1	32-168/28
156-59-2	cis-1,2-Dichloroethylene	20	17.7	89	17.9	90	1	73-126/17
10061-01-5	cis-1,3-Dichloropropene	20	20.6	103	21.0	105	2	72-130/16
541-73-1	m-Dichlorobenzene	20	18.8	94	18.7	94	1	75-124/16
95-50-1	o-Dichlorobenzene	20	18.9	95	18.9	95	0	76-124/16
106-46-7	p-Dichlorobenzene	20	18.7	94	18.5	93	1	75-124/16
156-60-5	trans-1,2-Dichloroethylene	20	17.4	87	17.7	89	2	71-126/18
10061-02-6	trans-1,3-Dichloropropene	20	22.0	110	22.2	111	1	71-126/16
100-41-4	Ethylbenzene	20	19.7	99	19.6	98	1	76-126/17
637-92-3	Ethyl Tert Butyl Ether	20	20.9	105	21.5	108	3	75-134/17

* = Outside of Control Limits.

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed 10/22/14 10/22/14	By	Prep Date	Prep Batch	Analytical Batch
VR1106-BS	R29685.D	1		BD	n/a	n/a	VR1106
VR1106-BSD	R29686.D	1		BD	n/a	n/a	VR1106

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
591-78-6	2-Hexanone	80	90.7	113	92.7	116	2	67-150/22
87-68-3	Hexachlorobutadiene	20	20.9	105	20.4	102	2	69-135/20
98-82-8	Isopropylbenzene	20	20.1	101	20.1	101	0	61-125/17
99-87-6	p-Isopropyltoluene	20	20.4	102	20.2	101	1	68-127/18
108-10-1	4-Methyl-2-pentanone	80	86.7	108	89.8	112	4	71-142/21
74-83-9	Methyl bromide	20	20.9	105	21.3	107	2	68-132/18
74-87-3	Methyl chloride	20	18.7	94	19.4	97	4	39-150/28
74-95-3	Methylene bromide	20	20.2	101	20.6	103	2	77-127/16
75-09-2	Methylene chloride	20	18.9	95	19.4	97	3	67-128/18
78-93-3	Methyl ethyl ketone	80	86.7	108	88.2	110	2	56-155/23
1634-04-4	Methyl Tert Butyl Ether	20	21.3	107	22.0	110	3	73-132/17
91-20-3	Naphthalene	20	20.6	103	20.8	104	1	70-136/20
103-65-1	n-Propylbenzene	20	20.2	101	19.8	99	2	71-127/17
100-42-5	Styrene	20	20.2	101	20.2	101	0	72-134/16
994-05-8	Tert-Amyl Methyl Ether	20	20.8	104	21.6	108	4	73-133/17
75-65-0	Tert-Butyl Alcohol	100	129	129	126	126	2	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	20	19.9	100	20.2	101	1	77-130/16
71-55-6	1,1,1-Trichloroethane	20	19.8	99	20.1	101	2	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	20	19.8	99	20.0	100	1	77-129/17
79-00-5	1,1,2-Trichloroethane	20	19.1	96	19.5	98	2	77-125/16
87-61-6	1,2,3-Trichlorobenzene	20	19.5	98	19.7	99	1	70-133/18
96-18-4	1,2,3-Trichloropropane	20	20.1	101	20.7	104	3	69-126/18
120-82-1	1,2,4-Trichlorobenzene	20	19.7	99	19.7	99	0	68-129/17
95-63-6	1,2,4-Trimethylbenzene	20	20.6	103	20.4	102	1	74-129/17
108-67-8	1,3,5-Trimethylbenzene	20	20.9	105	20.7	104	1	77-129/17
127-18-4	Tetrachloroethylene	20	17.8	89	17.7	89	1	69-127/20
108-88-3	Toluene	20	19.1	96	18.9	95	1	75-122/17
79-01-6	Trichloroethylene	20	18.4	92	18.3	92	1	78-123/17
75-69-4	Trichlorofluoromethane	20	21.0	105	21.1	106	0	65-136/23
75-01-4	Vinyl chloride	20	20.6	103	21.1	106	2	57-146/22
1330-20-7	Xylene (total)	60	58.0	97	57.8	96	0	77-125/17
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
1868-53-7	Dibromofluoromethane	99%	101	%	70-130	%		

* = Outside of Control Limits.

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR1106-BS	R29685.D	1	10/22/14	BD	n/a	n/a	VR1106
VR1106-BSD	R29686.D	1	10/22/14	BD	n/a	n/a	VR1106

The QC reported here applies to the following samples:

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Toluene-D8	98%	98%	70-130%
460-00-4	4-Bromofluorobenzene	104%	105%	70-130%

Method: SW846 8260B

5.2.1

G

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VQ1039-BS	Q24631.D	1	10/23/14	BQ	n/a	n/a	VQ1039
VQ1039-BSD	Q24632.D	1	10/23/14	BQ	n/a	n/a	VQ1039

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-5, C36561-12

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	80	81.5	102	80.8	101	1	38-159/24
71-43-2	Benzene	20	19.6	98	19.8	99	1	77-122/25
108-86-1	Bromobenzene	20	21.7	109	18.5	93	16	76-126/17
74-97-5	Bromochloromethane	20	20.3	102	20.4	102	0	77-130/17
75-27-4	Bromodichloromethane	20	22.7	114	22.3	112	2	75-127/16
75-25-2	Bromoform	20	20.4	102	18.9	95	8	69-141/17
104-51-8	n-Butylbenzene	20	19.7	99	21.1	106	7	72-129/18
135-98-8	sec-Butylbenzene	20	20.3	102	22.1	111	8	74-128/18
98-06-6	tert-Butylbenzene	20	20.1	101	19.8	99	2	73-127/18
108-90-7	Chlorobenzene	20	20.4	102	20.4	102	0	77-122/16
75-00-3	Chloroethane	20	18.0	90	17.5	88	3	69-133/18
67-66-3	Chloroform	20	21.2	106	21.2	106	0	74-126/17
95-49-8	o-Chlorotoluene	20	22.8	114	19.8	99	14	72-127/20
106-43-4	p-Chlorotoluene	20	22.5	113	18.8	94	18	68-127/18
56-23-5	Carbon tetrachloride	20	20.7	104	22.7	114	9	71-133/19
75-34-3	1,1-Dichloroethane	20	19.4	97	19.6	98	1	71-125/17
75-35-4	1,1-Dichloroethylene	20	17.3	87	18.9	95	9	66-125/20
563-58-6	1,1-Dichloropropene	20	20.3	102	22.1	111	8	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	20	23.1	116	20.9	105	10	65-131/20
106-93-4	1,2-Dibromoethane	20	21.8	109	21.6	108	1	75-135/17
107-06-2	1,2-Dichloroethane	20	23.3	117	22.7	114	3	71-131/17
78-87-5	1,2-Dichloropropane	20	20.7	104	20.8	104	0	78-124/16
142-28-9	1,3-Dichloropropane	20	20.7	104	20.4	102	1	78-123/16
108-20-3	Di-Isopropyl ether	20	18.0	90	18.0	90	0	68-129/17
594-20-7	2,2-Dichloropropane	20	20.5	103	21.8	109	6	70-131/19
124-48-1	Dibromochloromethane	20	21.6	108	21.3	107	1	76-132/16
75-71-8	Dichlorodifluoromethane	20	18.2	91	16.7	84	9	32-168/28
156-59-2	cis-1,2-Dichloroethylene	20	19.7	99	19.9	100	1	73-126/17
10061-01-5	cis-1,3-Dichloropropene	20	22.9	115	22.6	113	1	72-130/16
541-73-1	m-Dichlorobenzene	20	20.6	103	20.8	104	1	75-124/16
95-50-1	o-Dichlorobenzene	20	20.6	103	20.6	103	0	76-124/16
106-46-7	p-Dichlorobenzene	20	19.7	99	19.7	99	0	75-124/16
156-60-5	trans-1,2-Dichloroethylene	20	18.5	93	19.2	96	4	71-126/18
	trans-1,3-Dichloropropene	20	21.7	109	21.3	107	2	71-126/16
100-41-4	Ethylbenzene	20	19.8	99	20.4	102	3	76-126/17
637-92-3	Ethyl Tert Butyl Ether	20	20.6	103	20.5	103	0	75-134/17

* = Outside of Control Limits.

G

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VQ1039-BS	Q24631.D	1	10/23/14	BQ	n/a	n/a	VQ1039
VQ1039-BSD	Q24632.D	1	10/23/14	BQ	n/a	n/a	VQ1039

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-5, C36561-12

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
591-78-6	2-Hexanone	80	93.3	117	91.5	114	2	67-150/22
87-68-3	Hexachlorobutadiene	20	20.7	104	20.2	101	2	69-135/20
98-82-8	Isopropylbenzene	20	22.9	115	21.7	109	5	61-125/17
99-87-6	p-Isopropyltoluene	20	20.2	101	21.1	106	4	68-127/18
108-10-1	4-Methyl-2-pentanone	80	84.5	106	83.7	105	1	71-142/21
74-83-9	Methyl bromide	20	16.2	81	15.9	80	2	68-132/18
74-87-3	Methyl chloride	20	18.9	95	17.8	89	6	39-150/28
74-95-3	Methylene bromide	20	22.5	113	22.1	111	2	77-127/16
75-09-2	Methylene chloride	20	25.0	125	22.4	112	11	67-128/18
78-93-3	Methyl ethyl ketone	80	89.3	112	88.3	110	1	56-155/23
1634-04-4	Methyl Tert Butyl Ether	20	20.1	101	19.9	100	1	73-132/17
91-20-3	Naphthalene	20	21.8	109	20.0	100	9	70-136/20
103-65-1	n-Propylbenzene	20	22.4	112	19.4	97	14	71-127/17
100-42-5	Styrene	20	23.4	117	21.9	110	7	72-134/16
994-05-8	Tert-Amyl Methyl Ether	20	19.7	99	19.8	99	1	73-133/17
75-65-0	Tert-Butyl Alcohol	100	97.0	97	94.3	94	3	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	20	21.6	108	21.4	107	1	77-130/16
71-55-6	1,1,1-Trichloroethane	20	20.4	102	22.1	111	8	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	20	23.9	120	18.9	95	23* a	77-129/17
79-00-5	1,1,2-Trichloroethane	20	20.6	103	20.4	102	1	77-125/16
87-61-6	1,2,3-Trichlorobenzene	20	21.1	106	19.6	98	7	70-133/18
96-18-4	1,2,3-Trichloropropane	20	22.2	111	19.3	97	14	69-126/18
120-82-1	1,2,4-Trichlorobenzene	20	20.7	104	19.2	96	8	68-129/17
95-63-6	1,2,4-Trimethylbenzene	20	20.1	101	20.6	103	2	74-129/17
108-67-8	1,3,5-Trimethylbenzene	20	22.8	114	19.9	100	14	77-129/17
127-18-4	Tetrachloroethylene	20	18.5	93	19.8	99	7	69-127/20
108-88-3	Toluene	20	19.2	96	19.7	99	3	75-122/17
79-01-6	Trichloroethylene	20	20.2	101	21.0	105	4	78-123/17
75-69-4	Trichlorofluoromethane	20	21.3	107	20.9	105	2	65-136/23
75-01-4	Vinyl chloride	20	20.9	105	20.8	104	0	57-146/22
1330-20-7	Xylene (total)	60	62.8	105	62.4	104	1	77-125/17
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
1868-53-7	Dibromofluoromethane	105%	106	5%	70-1309	%		

* = Outside of Control Limits.

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed 10/23/14 10/23/14	By	Prep Date	Prep Batch	Analytical Batch
VQ1039-BS	Q24631.D	1		BQ	n/a	n/a	VQ1039
VQ1039-BSD	Q24632.D	1		BQ	n/a	n/a	VQ1039
The QC reporte	d here applies t	o the follo		Method: SW846 8260B			

C36561-5, C36561-12

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Toluene-D8	100%	100%	70-130%
460-00-4	4-Bromofluorobenzene	116%	106%	70-130%

(a) Outside laboratory control limits.

Laboratory Control Sample Summary

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VR1106-LCS	R29688.D	1	10/22/14	BD	n/a	n/a	VR1106
The QC reported	d here applies t	o the follo	wing samples:]	Method: SW84	6 8260B

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	Spike ug/l	LCS ug/l	LCS %	Limits
	TPH-GRO (C6-C10)	125	147	118	60-130
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
1868-53-7	Dibromofluoromethane	102%	70	130%	
1000 00 /	Dibionionuoromethane				
2037-26-5	Toluene-D8	99%	70-	130%	
460-00-4	4-Bromofluorobenzene	103%	70-	130%	

C36561

5.3.1 G

Laborate Job Number Account: Project:	er: C36561 TSGCAPH The S T0600101592 - Pa	ource Gro	up - Ple		Page 1 d					
Sample VQ1039-LC	File ID CS Q24633.D	DF 1		lyzed 3/14	By BQ	Prep Date n/a	Prep Batch n/a	Analytical Batch VQ1039	5.3.2	
The QC rep C36561-5, C	ported here applies to C36561-12	the follow	ving san	nples:			Method: SW840	6 8260B	G	
CAS No.	Compound		Spike ug/l	LCS ug/l	LCS %	Limits				
	TPH-GRO (C6-C10)	1	125	159	127	60-130				
CAS No.	Surrogate Recoveries	;]	BSP	L	imits					
1868-53-7	Dibromofluoromethan	e í	103%	7(0-130%					

70-130%

70-130%

98%

97%

2037-26-5

460-00-4

Toluene-D8

4-Bromofluorobenzene

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C36561-3MS	R29708.D	1	10/22/14	BD	n/a	n/a	VR1106
C36561-3MSD	R29709.D	1	10/22/14	BD	n/a	n/a	VR1106
C36561-3	R29693.D	1	10/22/14	BD	n/a	n/a	VR1106

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	C36561 ug/l	-3 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		80	81.5	102	80	84.1	105	3	38-159/24
71-43-2	Benzene	6.3		20	23.4	86	20	23.3	85	0	77-122/16
108-86-1	Bromobenzene	ND		20	18.8	94	20	19.0	95	1	76-126/17
74-97-5	Bromochloromethane	ND		20	18.6	93	20	18.9	95	2	77-130/17
75-27-4	Bromodichloromethane	ND		20	21.2	106	20	21.3	107	0	75-127/16
75-25-2	Bromoform	ND		20	17.2	86	20	17.4	87	1	69-141/17
104-51-8	n-Butylbenzene	ND		20	18.9	95	20	18.9	95	0	72-129/18
135-98-8	sec-Butylbenzene	ND		20	19.0	95	20	19.0	95	0	74-128/18
98-06-6	tert-Butylbenzene	ND		20	18.9	95	20	18.9	95	0	73-127/18
108-90-7	Chlorobenzene	ND		20	18.7	94	20	18.6	93	1	77-122/16
75-00-3	Chloroethane	ND		20	20.7	104	20	20.9	105	1	69-133/18
67-66-3	Chloroform	ND		20	20.8	104	20	21.0	105	1	74-126/17
95-49-8	o-Chlorotoluene	ND		20	20.1	101	20	20.0	100	0	72-127/20
106-43-4	p-Chlorotoluene	ND		20	20.1	101	20	20.1	101	0	68-127/18
56-23-5	Carbon tetrachloride	ND		20	20.3	102	20	19.9	100	2	71-133/19
75-34-3	1,1-Dichloroethane	ND		20	19.5	98	20	19.7	99	1	71-125/17
75-35-4	1,1-Dichloroethylene	ND		20	16.8	84	20	16.8	84	0	66-125/20
563-58-6	1,1-Dichloropropene	ND		20	19.1	96	20	19.1	96	0	75-124/18
96-12-8	1,2-Dibromo-3-chloropropane	ND		20	23.4	117	20	24.1	121	3	65-131/20
106-93-4	1,2-Dibromoethane	ND		20	19.8	99	20	19.9	100	1	75-135/17
107-06-2	1,2-Dichloroethane	ND		20	21.7	109	20	22.0	110	1	71-131/17
78-87-5	1,2-Dichloropropane	ND		20	18.6	93	20	19.0	95	2	78-124/16
142-28-9	1,3-Dichloropropane	ND		20	19.5	98	20	19.5	98	0	78-123/16
108-20-3	Di-Isopropyl ether	ND		20	19.3	97	20	19.8	99	3	68-129/17
594-20-7	2,2-Dichloropropane	ND		20	19.3	97	20	19.4	97	1	70-131/19
124-48-1	Dibromochloromethane	ND		20	20.1	101	20	20.0	100	0	76-132/16
75-71-8	Dichlorodifluoromethane	ND		20	20.9	105	20	20.2	101	3	32-168/28
156-59-2	cis-1,2-Dichloroethylene	ND		20	18.2	91	20	18.5	93	2	73-126/17
10061-01-5	cis-1,3-Dichloropropene	ND		20	19.5	98	20	19.7	99	1	72-130/16
541-73-1	m-Dichlorobenzene	ND		20	18.6	93	20	18.7	94	1	75-124/16
95-50-1	o-Dichlorobenzene	ND		20	18.7	94	20	18.9	95	1	76-124/16
106-46-7	p-Dichlorobenzene	ND		20	18.2	91	20	18.4	92	1	75-124/16
156-60-5	trans-1,2-Dichloroethylene	ND		20	17.9	90	20	17.9	90	0	71-126/18
10061-02-6	, 1 1	ND		20	20.1	101	20	20.2	101	0	71-126/16
100-41-4	Ethylbenzene	0.49	J	20	20.3	99	20	20.0	98	1	76-126/17
637-92-3	Ethyl Tert Butyl Ether	ND		20	21.0	105	20	21.5	108	2	75-134/17

* = Outside of Control Limits.

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C36561-3MS	R29708.D	1	10/22/14	BD	n/a	n/a	VR1106
C36561-3MSD	R29709.D	1	10/22/14	BD	n/a	n/a	VR1106
C36561-3	R29693.D	1	10/22/14	BD	n/a	n/a	VR1106

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Compound	C36561 ug/l	-3 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
591-78-6	2-Hexanone	ND		80	88.4	111	80	89.5	112	1	67-150/22
87-68-3	Hexachlorobutadiene	ND		20	18.1	91	20	18.7	94	3	69-135/20
98-82-8	Isopropylbenzene	0.32	J	20	20.4	100	20	20.1	99	1	61-125/17
99-87-6	p-Isopropyltoluene	ND		20	19.1	96	20	19.0	95	1	68-127/18
108-10-1	4-Methyl-2-pentanone	ND		80	84.1	105	80	86.4	108	3	71-142/21
74-83-9	Methyl bromide	ND		20	20.6	103	20	20.6	103	0	68-132/18
74-87-3	Methyl chloride	ND		20	18.6	93	20	22.5	113	19	39-150/28
74-95-3	Methylene bromide	ND		20	20.3	102	20	20.6	103	1	77-127/16
75-09-2	Methylene chloride	ND		20	18.4	92	20	18.7	94	2	67-128/18
78-93-3	Methyl ethyl ketone	ND		80	86.7	108	80	89.9	112	4	56-155/23
1634-04-4	Methyl Tert Butyl Ether	ND		20	21.6	108	20	22.3	112	3	73-132/17
91-20-3	Naphthalene	0.51	J	20	19.8	96	20	20.6	100	4	70-136/20
103-65-1	n-Propylbenzene	0.87	J	20	20.3	97	20	20.2	97	0	71-127/17
100-42-5	Styrene	ND		20	15.1	76	20	14.4	72	5	72-134/16
994-05-8	Tert-Amyl Methyl Ether	ND		20	20.8	104	20	21.5	108	3	73-133/17
75-65-0	Tert-Butyl Alcohol	ND		100	151	151* a	100	159	159* a	5	60-149/26
630-20-6	1,1,1,2-Tetrachloroethane	ND		20	20.2	101	20	20.1	101	0	77-130/16
71-55-6	1,1,1-Trichloroethane	ND		20	21.2	106	20	21.3	107	0	74-128/19
79-34-5	1,1,2,2-Tetrachloroethane	ND		20	19.4	97	20	19.7	99	2	77-129/17
79-00-5	1,1,2-Trichloroethane	ND		20	19.0	95	20	18.9	95	1	77-125/16
87-61-6	1,2,3-Trichlorobenzene	ND		20	17.5	88	20	18.7	94	7	70-133/18
96-18-4	1,2,3-Trichloropropane	ND		20	19.6	98	20	19.6	98	0	69-126/18
120-82-1	1,2,4-Trichlorobenzene	ND		20	17.9	90	20	18.7	94	4	68-129/17
95-63-6	1,2,4-Trimethylbenzene	ND		20	17.5	88	20	17.2	86	2	74-129/17
108-67-8	1,3,5-Trimethylbenzene	ND		20	19.3	97	20	19.1	96	1	77-129/17
127-18-4	Tetrachloroethylene	ND		20	17.7	89	20	17.4	87	2	69-127/20
108-88-3	Toluene	0.29	J	20	19.4	96	20	19.1	94	2	75-122/17
79-01-6	Trichloroethylene	ND		20	19.1	96	20	19.0	95	1	78-123/17
75-69-4	Trichlorofluoromethane	ND		20	23.4	117	20	22.9	115	2	65-136/23
75-01-4	Vinyl chloride	ND		20	18.9	95	20	18.9	95	0	57-146/22
1330-20-7	Xylene (total)	ND		60	56.9	95	60	56.4	94	1	77-125/17
CAS No.	Surrogate Recoveries	MS		MSD	C3(561-3	Limits				
1868-53-7	Dibromofluoromethane	101%		103%	95%)	70-1309	%			

* = Outside of Control Limits.

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

8.D 1	10/00/14				
0.0 1	10/22/14	BD	n/a	n/a	VR1106
9.D 1	10/22/14	BD	n/a	n/a	VR1106
3.D 1	10/22/14	BD	n/a	n/a	VR1106
	9.D 1 3.D 1				

The QC reported here applies to the following samples:

Method: SW846 8260B

C36561-3, C36561-7, C36561-8, C36561-9, C36561-10, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18, C36561-19, C36561-20

CAS No.	Surrogate Recoveries	MS	MSD	C36561-3	Limits
2037-26-5	Toluene-D8	99%	97%	99%	70-130%
460-00-4	4-Bromofluorobenzene	105%	105%	102%	70-130%

(a) Outside laboratory control limits.

5.4.1

S

Page 3 of 3

Section 6

6

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

a 1		
Project:	T0600101592 - Paco Pumps	
Account:	TSGCAPH The Source Group - Pleasant Hill	
Job Number:	C36561	

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP11009-MB	PP038494A.D	1	10/20/14	RV	10/20/14	OP11009	GPP1240

The QC reported here applies to the following samples:

Method: SW846 8082

C36561-8, C36561-9

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	0.10	0.020	ug/l
11104-28-2	Aroclor 1221	ND	0.10	0.050	ug/l
11141-16-5	Aroclor 1232	ND	0.10	0.050	ug/l
53469-21-9	Aroclor 1242	ND	0.10	0.050	ug/l
12672-29-6	Aroclor 1248	ND	0.10	0.050	ug/l
11097-69-1	Aroclor 1254	ND	0.10	0.050	ug/l
11096-82-5	Aroclor 1260	ND	0.10	0.030	ug/l

CAS No.	Surrogate Recoveries		Limits
	Tetrachloro-m-xylene	76%	27-112%
	Tetrachloro-m-xylene	69%	27-112%
	Decachlorobiphenyl	67%	32-136%
	Decachlorobiphenyl	66%	32-136%

6.1.1

Method Blank Summary Job Number: C36561

Account: Project:	TSGCAPH The S T0600101592 - P		1	Hill			
Sample OP10984-MB	File ID HH317951.D	DF 1	Analyzed 10/16/14	By AG	Prep Date 10/16/14	Prep Batch OP10984	Analytical Batch GHH1380
The QC repor	ted here applies to	the follo	owing samples:]	Method: SW84	6 8015B M
,	561-2, C36561-3, C36561-3, C36561-13, C365		, ,		,	<i>,</i>	, C36561-10, C3656

51-11, C36561-12, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	0.10 0.20	0.025 0.050	mg/l mg/l
CAS No.	Surrogate Recoveries		Limits	:	
630-01-3	Hexacosane	96%	32-124	1%	

Page 1 of 1

6.1.2 6

Method Blank Summary Job Number: C36561

Account: Project:	TSGCAPH The S T0600101592 - Pa		-	sant Hill					
Sample OP11000-N	File ID MB HH318033.D	DF 1	Analy 10/21/		By Ag	-	p Date 20/14	Prep Batch OP11000	Analytical Batch GHH1383
-	eported here applies to 9, C36561-20	the follo	owing samp	oles:				Method: SW84	46 8015B M
CAS No.	Compound		Result	RL	MI	DL	Units	Q	
	TPH (C10-C28) TPH (> C28-C40)		ND ND	0.10 0.20			mg/l mg/l		
CAS No.	Surrogate Recoveries	5		Lin	nits				
630-01-3	Hexacosane		104%	32-	124%				

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

|--|

The QC reported here applies to the following samples:

Method: SW846 8082

C36561-8, C36561-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
	Aroclor 1016 Aroclor 1260	0.4 0.4	0.40 0.31	100 78	0.34 0.28	85 70	16 10	53-114/20 54-125/23
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
877-09-8 877-09-8	Tetrachloro-m-xylene Tetrachloro-m-xylene	71% 72%	609 619		27-112% 27-112%			

8//-09-8	l etrachioro-m-xylene	/1%	60%	27-112%
877-09-8	Tetrachloro-m-xylene	72%	61%	27-112%
2051-24-3	Decachlorobiphenyl	67%	60%	32-136%
2051-24-3	Decachlorobiphenyl	67%	59%	32-136%

೧

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date 10/16/14 10/16/14	Prep Batch	Analytical Batch
OP10984-BS	HH317949.D	1	10/16/14	AG		OP10984	GHH1380
OP10984-BSD	HH317950.D	1	10/16/14	AG		OP10984	GHH1380

The QC reported here applies to the following samples:

Method: SW846 8015B M

C36561-1, C36561-2, C36561-3, C36561-4, C36561-5, C36561-6, C36561-7, C36561-8, C36561-9, C36561-10, C36561-11, C36561-12, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)	1 1	0.799 0.961	80 96	0.763 0.918	76 92	5 5	38-115/22 45-114/20
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			
630-01-3	Hexacosane	90%	88%	6	32-1249	6		

6

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample OP11000-E OP11000-E		DF 1 1	10/20/14 AG 10/20/14 OH		Prep Bate OP11000 OP11000	ch Analytical Batch GHH1383 GHH1383			
The QC reported here applies to the following samples: Method: SW846 8015B M C36561-19, C36561-20									
CAS No.	Compound		Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)		1 1	0.820 0.886	82 89	0.819 0.875	82 88	0 1	38-115/22 45-114/20
CAS No.	Surrogate Recoveries	5	BSP	B	SD	Limits			

99%

32-124%

96%

Page 1 of 1

o

106 of 108 ACCUTEST. C36561

630-01-3

Hexacosane

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP10984-MS	HH318024.D	1	10/20/14	AG	10/16/14	OP10984	GHH1383
OP10984-MSD	HH318025.D	1	10/20/14	AG	10/16/14	OP10984	GHH1383
C36561-4	HH317979.D	1	10/17/14	AG	10/16/14	OP10984	GHH1382

The QC reported here applies to the following samples:

Method: SW846 8015B M

C36561-1, C36561-2, C36561-3, C36561-4, C36561-5, C36561-6, C36561-7, C36561-8, C36561-9, C36561-10, C36561-11, C36561-12, C36561-13, C36561-14, C36561-15, C36561-16, C36561-17, C36561-18

CAS No.	Compound	C36561-4 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)	0.157 0.0944 J	1.96 1.96	2.21 2.24	105 109	1.96 1.96	1.94 2.11	91 103	13 6	38-115/22 45-114/20
CAS No.	Surrogate Recoveries	MS	MSD	C3	6561-4	Limits				
630-01-3	Hexacosane	105%	102%	100	1%	32-1249	%			

6.3.1

Job Number:	C36561
Account:	TSGCAPH The Source Group - Pleasant Hill
Project:	T0600101592 - Paco Pumps

65%

65%

Sample OP11000-MS OP11000-MSD C36561-20	File ID HH318029.D HH318030.D HH318028.D	DF 1 1 1	Analy 10/20 10/20 10/20)/14)/14	By AG AG AG	Prep Date 10/20/14 10/20/14 10/20/14	OP OP	ep Batch 11000 11000 11000	GHH GHH	lytical Batch 11383 11383 11383 11383
The QC reported here applies to the following samples: Method: SW846 8015B M C36561-19, C36561-20										
Compound	C3 mg	86561-20 g/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD
TPH (C10-C28) TPH (> C28-C40		549 458	1.89 1.89	2.46 2.32	96 99	1.89 1.89	2.52 2.60	99 114	2 11	38-115/22 45-114/20
Surrogate Recov	eries M	S	MSD	C	36561-20	Limits				

51%

32-124%

Page 1 of 1

CAS No.

CAS No.

630-01-3

Hexacosane

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

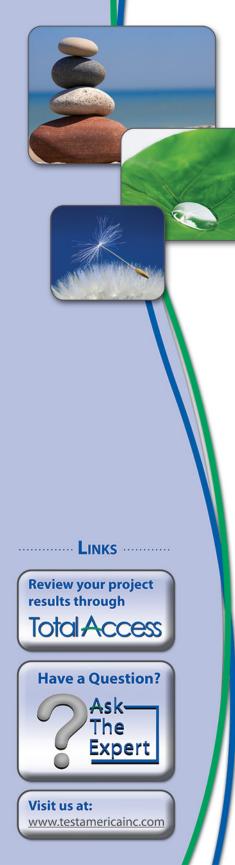
TestAmerica Job ID: 720-60050-1 Client Project/Site: Former Page Pump S

Client Project/Site: Former Paco Pump Site

For:

The Source Group 3478 Buskirk Avenue, Suite 100 Pleasant Hill, California 94523

Attn: Mr. Paisha Jorgensen


Alanef Sal

Authorized for release by: 10/1/2014 5:20:25 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	18
QC Association Summary	30
Lab Chronicle	32
Certification Summary	34
Method Summary	35
Sample Summary	36
Chain of Custody	37
Receipt Checklists	39

3 4

5

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
)	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a
	dilution may be flagged with a D.
(Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	 8
%R	Percent Recovery	
CFL	Contains Free Liquid	9
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-60050-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-60050-1

Comments

No additional comments.

Receipt

The samples were received on 9/19/2014 2:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 6.1° C.

Except:

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): MW-12-4'. The container label lists the sample time at 08:45, while the COC lists the sample time at 08:30.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8015B: The following sample(s) required a dilution due to the nature of the sample matrix: SB-SGI-1-1' (720-60050-4), SB-SGI-2-1' (720-60050-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8082: Surrogate recovery for the following sample(s) was outside control limits: SB-MW-11-2.5' (720-60050-11). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8082: The following sample(s) required a dilution due to the nature of the sample matrix: SB-MW-11-5' (720-60050-12). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8082: The following sample(s) contained more than one Aroclor with insufficient separation to quantify individually. The PCBs present are quantified as the predominant Aroclor: SB-MW-10-5' (720-60050-9).

Method(s) 8082: The following sample appears to contain polychlorinated biphenyls (PCBs); however, due to weathering or other environmental processes, the PCBs in the sample do not closely match any of the laboratory's Aroclor 1260. Due to the poor match with the Aroclor standard(s), there is increased qualitative and quantitative uncertainty associated with this result.SB-MW-10-2.5'(720-60050-8)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: The Source Group Project/Site: Former Paco Pump Site

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	580		20		mg/Kg	20	-	8015B	Total/NA
Motor Oil Range Organics [C24-C36]	1800		1000		mg/Kg	20		8015B	Total/NA
lient Sample ID: SB-SGI-1-1						La	ab	Sample ID): 720-60050-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	280		9.9		mg/Kg	10		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	890		490		mg/Kg	10		8015B	Total/NA
lient Sample ID: SB-MW-10-1						La	ab	Sample ID): 720-60050-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	1000		62		ug/Kg	25	_	8082	Total/NA
lient Sample ID: SB-MW-10-2.	5'					La	ab	Sample ID): 720-60050-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1260	13	· <u> </u>	2.5		ug/Kg	1	—	8082	Total/NA
lient Sample ID: SB-MW-10-5						La	ab	Sample ID): 720-60050-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	28		2.5		ug/Kg	1	_	8082	Total/NA
Client Sample ID: SB-MW-11-1						Lal	b S	Sample ID:	720-60050-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	140		12		ug/Kg	5	_	8082	Total/NA
Client Sample ID: SB-MW-11-2.	5'					Lal	b S	Sample ID:	720-60050-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	720		50		ug/Kg	20	_	8082	Total/NA
lient Sample ID: SB-MW-11-5						Lal	b S	Sample ID:	720-60050-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	2500		120		ug/Kg	50		8082	Total/NA
lient Sample ID: SB-MW-12-4						Lal	b S	ample ID:	720-60050-1
Analyte		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	44		2.0		mg/Kg	2		8015B	Total/NA
Motor Oil Range Organics [C24-C36]	200		99		mg/Kg	2		8015B	Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Client Sample ID: SB-SGI-2-1' Lab Sample ID: 720-60050-1 Date Collected: 09/19/14 10:11 Matrix: Solid Date Received: 09/19/14 14:40 Method: 8015B - Diesel Range Organics (DRO) (GC) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Diesel Range Organics [C10-C28] 580 20 mg/Kg 09/30/14 19:41 10/01/14 10:30 20 1000 10/01/14 10:30 09/30/14 19:41 20 Motor Oil Range Organics 1800 mg/Kg [C24-C36] Surrogate Dil Fac %Recovery Qualifier Limits Prepared Analyzed p-Terphenyl 0 XD 40 - 130 09/30/14 19:41 10/01/14 10:30 20

Client Sample ID: SB-SGI-1-1' Lab Sample ID: 720-60050-4 Date Collected: 09/19/14 10:28 Matrix: Solid Date Received: 09/19/14 14:40 Method: 8015B - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Diesel Range Organics [C10-C28] 280 9.9 mg/Kg 09/30/14 19:41 10/01/14 11:30 490 10/01/14 11:30 09/30/14 19:41 Motor Oil Range Organics 890 mg/Kg [C24-C36] Surrogate %Recovery Qualifier Limits Prepared Analyzed p-Terphenyl 0 XD 40 - 130 09/30/14 19:41 10/01/14 11:30

Dil Fac

Dil Fac

10

10

10

Client Sample ID: SB-MW-10-1'

Date Collected: 09/19/14 11:30 Date Received: 09/19/14 14:40

Lab Sample ID: 720-60050-7 Matrix: Solid

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		62		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
PCB-1221	ND		120		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
PCB-1232	ND		62		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
PCB-1242	ND		62		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
PCB-1248	ND		62		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
PCB-1254	1000		62		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
PCB-1260	ND		62		ug/Kg		09/24/14 13:30	09/26/14 14:50	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	144		15 - 150				09/24/14 13:30	09/26/14 14:50	25

Result Qualifier

ND

ND

ND

ND

ND

ND

13

%Recovery Qualifier

115

Client Sample ID: SB-MW-10-2.5'

Date Collected: 09/19/14 11:33 Date Received: 09/19/14 14:40

Analyte

PCB-1016

PCB-1221

PCB-1232

PCB-1242

PCB-1248

PCB-1254

PCB-1260

Surrogate

DCB Decachlorobiphenyl (Surr)

Lab Sample ID: 720-60050-8 Matrix: Solid

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography MDL Unit D Dil Fac RL Prepared Analyzed 2.5 09/24/14 13:30 09/25/14 16:14 ug/Kg 1 6 5.0 ug/Kg 09/24/14 13:30 09/25/14 16:14 1 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:14 1 2.5 09/24/14 13:30 09/25/14 16:14 ug/Kg 1 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:14 1 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:14 1 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:14 1 Limits Prepared Analyzed Dil Fac 15 - 150 09/24/14 13:30 09/25/14 16:14 1

Client Sample ID: SB-MW-10-5'

Date Collected: 09/19/14 11:34 Date Received: 09/19/14 14:40

Lab Sample ID: 720-60050-9 Matrix: Solid

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Result Qualifier MDL Unit D Dil Fac Analyte RL Prepared Analyzed PCB-1016 ND 2.5 09/24/14 13:30 09/25/14 16:38 ug/Kg PCB-1221 ND 5.0 ug/Kg 09/24/14 13:30 09/25/14 16:38 PCB-1232 ND 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:38 PCB-1242 ND 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:38 PCB-1248 ND 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:38 PCB-1254 28 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:38 PCB-1260 ND 2.5 ug/Kg 09/24/14 13:30 09/25/14 16:38 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 104 15 - 150 09/24/14 13:30 09/25/14 16:38

1

1

1

1

1

1

1

1

Client Sample ID: SB-MW-11-1'

Date Collected: 09/19/14 11:40 Date Received: 09/19/14 14:40

Lab Sample ID: 720-60050-10 Matrix: Solid

5 6 7

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	12		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
PCB-1221	ND	25		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
PCB-1232	ND	12		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
PCB-1242	ND	12		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
PCB-1248	ND	12		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
PCB-1254	140	12		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
PCB-1260	ND	12		ug/Kg		09/24/14 13:30	09/26/14 02:10	5
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	141	15 - 150				09/24/14 13:30	09/26/14 02:10	5

Client Sample ID: SB-MW-11-2.5'

Date Collected: 09/19/14 11:42 Date Received: 09/19/14 14:40

Lab Sample ID: 720-60050-11 Matrix: Solid

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Result Qualifier MDL Unit D Dil Fac Analyte RL Prepared Analyzed PCB-1016 ND 50 09/24/14 13:30 09/25/14 18:12 20 ug/Kg PCB-1221 ND 99 ug/Kg 09/24/14 13:30 09/25/14 18:12 20 PCB-1232 ND 50 ug/Kg 09/24/14 13:30 09/25/14 18:12 20 PCB-1242 ND 50 09/24/14 13:30 09/25/14 18:12 20 ug/Kg PCB-1248 ND 50 ug/Kg 09/24/14 13:30 09/25/14 18:12 20 PCB-1254 720 50 ug/Kg 09/24/14 13:30 09/25/14 18:12 20 50 PCB-1260 ND ug/Kg 09/24/14 13:30 09/25/14 18:12 20 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl (Surr) 158 X 15 - 150 09/24/14 13:30 09/25/14 18:12 20

Client Sample ID: SB-MW-11-5'

Date Collected: 09/19/14 11:43 Date Received: 09/19/14 14:40

Lab Sample ID: 720-60050-12 Matrix: Solid

5 6 7

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		120		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
PCB-1221	ND		250		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
PCB-1232	ND		120		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
PCB-1242	ND		120		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
PCB-1248	ND		120		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
PCB-1254	2500		120		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
PCB-1260	ND		120		ug/Kg		09/24/14 13:30	09/25/14 18:36	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	200	X	15 - 150				09/24/14 13:30	09/25/14 18:36	50

Client Sample ID: SB-MW-12-4'

Date Collected: 09/19/14 08:30 Date Received: 09/19/14 14:40

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Acetone	ND	50	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Benzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Dichlorobromomethane	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Bromobenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Chlorobromomethane	ND	20	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Bromoform	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Bromomethane	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
2-Butanone (MEK)	ND	50	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
n-Butylbenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
sec-Butylbenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
tert-Butylbenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Carbon disulfide	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Carbon tetrachloride	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Chlorobenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Chloroethane	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Chloroform	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Chloromethane	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
2-Chlorotoluene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
4-Chlorotoluene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Chlorodibromomethane	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,2-Dichlorobenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	
1,3-Dichlorobenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,4-Dichlorobenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,3-Dichloropropane	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,1-Dichloropropene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Ethylene Dibromide	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	
Dibromomethane	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Dichlorodifluoromethane	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,1-Dichloroethane	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	
1.2-Dichloroethane	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,1-Dichloroethene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	
trans-1,2-Dichloroethene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
1,2-Dichloropropane	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	
trans-1,3-Dichloropropene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Ethylbenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Hexachlorobutadiene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	
2-Hexanone	ND	50	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
	ND	5.0				1
			ug/Kg	09/26/14 09:58	09/26/14 14:22	
4-Isopropyltoluene	ND ND	5.0 10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Methylene Chloride			ug/Kg	09/26/14 09:58	09/26/14 14:22	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Naphthalene	ND	10	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
N-Propylbenzene	ND	5.0	ug/Kg	09/26/14 09:58	09/26/14 14:22	1
Styrene 1,1,1,2-Tetrachloroethane	ND ND	5.0	ug/Kg ug/Kg	09/26/14 09:58 09/26/14 09:58	09/26/14 14:22 09/26/14 14:22	1

TestAmerica Job ID: 720-60050-1

Lab Sample ID: 720-60050-13 Matrix: Solid

Matrix: Solid

5

6

RL

MDL Unit

D

Prepared

Client Sample ID: SB-MW-12-4' Date Collected: 09/19/14 08:30 Date Received: 09/19/14 14:40

Analyte

p-Terphenyl

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Result Qualifier

81

Lab Sample ID: 720-60050-13 Matrix: Solid

Analyzed

		D	il F	ac	5
2	_			1	
2				1	6
2				1	
2				1	
2				1	
2				1	9
2				1	C
2				1	6
2				1	3
2				1	
2				1	
2				1	
2				1	
2				1	
2				1	
2				1	-
2				1	
2				1	
2				1	

2

Analyte	Result	Quaimer	RL		Jint	U	Frepareu	Analyzeu	DIFAC
1,1,2,2-Tetrachloroethane	ND		5.0	i	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Tetrachloroethene	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Toluene	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,2,3-Trichlorobenzene	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,2,4-Trichlorobenzene	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,1,1-Trichloroethane	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,1,2-Trichloroethane	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Trichloroethene	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Trichlorofluoromethane	ND		5.0	L	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,2,3-Trichloropropane	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,2,4-Trimethylbenzene	ND		5.0	l	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
1,3,5-Trimethylbenzene	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Vinyl acetate	ND		20	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Vinyl chloride	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Xylenes, Total	ND		10	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
2,2-Dichloropropane	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Gasoline Range Organics (GRO) -C5-C12	ND		250	L	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
ТВА	ND		100	ι	Jg/Kg		09/26/14 09:58	09/26/14 14:22	1
DIPE	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
TAME	ND		5.0		ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Ethyl t-butyl ether	ND		5.0	ι	ug/Kg		09/26/14 09:58	09/26/14 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		45 _ 131				09/26/14 09:58	09/26/14 14:22	1
1,2-Dichloroethane-d4 (Surr)	111		60 - 140				09/26/14 09:58	09/26/14 14:22	1
Toluene-d8 (Surr)	96		58 - 140				09/26/14 09:58	09/26/14 14:22	1
– Method: 8015B - Diesel Range O	organics (DRO)	(GC)							
Analyte		Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	44		2.0	r	ng/Kg		09/29/14 14:50	09/30/14 20:20	2
Motor Oil Range Organics [C24-C36]	200		99	r	ng/Kg		09/29/14 14:50	09/30/14 20:20	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

09/29/14 14:50 09/30/14 20:20

40 - 130

Client Sample ID: SB-MW-12-14'

Date Collected: 09/19/14 08:55 Date Received: 09/19/14 14:40

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Acetone	ND	44	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Benzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Dichlorobromomethane	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Bromobenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Chlorobromomethane	ND	18	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Bromoform	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Bromomethane	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
2-Butanone (MEK)	ND	44	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
n-Butylbenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	
sec-Butylbenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
tert-Butylbenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Carbon disulfide	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	
Carbon tetrachloride	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Chlorobenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Chloroethane	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Chloroform	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Chloromethane	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
2-Chlorotoluene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	
4-Chlorotoluene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Chlorodibromomethane	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,2-Dichlorobenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	
1,3-Dichlorobenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,4-Dichlorobenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,3-Dichloropropane	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,1-Dichloropropene	ND	4.4		09/26/14 09:58	09/26/14 14:50	1
	ND	4.4 8.8	ug/Kg		09/26/14 14:50	1
1,2-Dibromo-3-Chloropropane			ug/Kg	09/26/14 09:58		
Ethylene Dibromide	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Dibromomethane	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Dichlorodifluoromethane	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,1-Dichloroethane	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,2-Dichloroethane	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,1-Dichloroethene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
cis-1,2-Dichloroethene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
trans-1,2-Dichloroethene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
1,2-Dichloropropane	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
cis-1,3-Dichloropropene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
trans-1,3-Dichloropropene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Ethylbenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Hexachlorobutadiene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
2-Hexanone	ND	44	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Isopropylbenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
4-Isopropyltoluene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Methylene Chloride	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
4-Methyl-2-pentanone (MIBK)	ND	44	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Naphthalene	ND	8.8	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
N-Propylbenzene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1
Styrene	ND	4.4	ug/Kg	09/26/14 09:58	09/26/14 14:50	1

TestAmerica Job ID: 720-60050-1

Lab Sample ID: 720-60050-14

Matrix: Solid

5

6

Client Sample ID: SB-MW-12-14' Date Collected: 09/19/14 08:55 Date Received: 09/19/14 14:40

Lab Sample ID: 720-60050-14 Matrix: Solid

ND 4.4 ug/Kg 09/26/14 05 1,2,3-Trichlorobenzene ND 4.4 ug/Kg 09/26/14 05 1,2,4-Trichlorobenzene ND 4.4 ug/Kg 09/26/14 05	9:58 09/26/14 14:50 9:58 09/26/14 14:50 9:58 09/26/14 14:50 9:58 09/26/14 14:50 9:58 09/26/14 14:50	1 1 1 1 1 1
ND 4.4 ug/Kg 09/26/14 05 1,2,3-Trichlorobenzene ND 4.4 ug/Kg 09/26/14 05 1,2,4-Trichlorobenzene ND 4.4 ug/Kg 09/26/14 05	0:58 09/26/14 14:50 0:58 09/26/14 14:50 0:58 09/26/14 14:50	1
1,2,3-Trichlorobenzene ND 4.4 ug/Kg 09/26/14 05 1,2,4-Trichlorobenzene ND 4.4 ug/Kg 09/26/14 05	09:5809/26/14 14:5009:5809/26/14 14:50	1
ND 4.4 ug/Kg 09/26/14 05	9:58 09/26/14 14:50	1 1
		1
1.1.1 Trichleroothana ND 4.4 ug/Ka 00/26/14.00	9.58 09/26/14 14:50	
1,1,1-Trichloroethane ND 4.4 ug/Kg 09/26/14 05		1
1,1,2-Trichloroethane ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
Trichloroethene ND 4.4 ug/Kg 09/26/14 05	9:58 09/26/14 14:50	1
Trichlorofluoromethane ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
1,2,3-Trichloropropane ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
1,2,4-Trimethylbenzene ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
1,3,5-Trimethylbenzene ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
/inyl acetate ND 18 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
/inyl chloride ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
Kylenes, Total ND 8.8 ug/Kg 09/26/14 05	9:58 09/26/14 14:50	1
2,2-Dichloropropane ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
Sasoline Range Organics (GRO) ND 220 ug/Kg 09/26/14 09 C5-C12 <td>9:58 09/26/14 14:50</td> <td>1</td>	9:58 09/26/14 14:50	1
TBA ND 88 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
DIPE ND 4.4 ug/Kg 09/26/14 09	0:58 09/26/14 14:50	1
TAME ND 4.4 ug/Kg 09/26/14 09	9:58 09/26/14 14:50	1
Ethyl t-butyl ether ND 4.4 ug/Kg 09/26/14 05	0:58 09/26/14 14:50	1
Surrogate %Recovery Qualifier Limits Prepared	d Analyzed Dil	l Fac
4-Bromofluorobenzene 98 45 - 131 09/26/14 09	9:58 09/26/14 14:50	1
1,2-Dichloroethane-d4 (Surr) 106 60 - 140 09/26/14 09	9:58 09/26/14 14:50	1
Toluene-d8 (Surr) 93 58 - 140 09/26/14 09	9:58 09/26/14 14:50	1
Method: 8015B - Diesel Range Organics (DRO) (GC)		
Analyte Result Qualifier RL MDL Unit D Prepared	d Analyzed Dil	I Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0		mg/Kg		09/29/14 14:50	09/30/14 16:39	1
Motor Oil Range Organics [C24-C36]	ND		50		mg/Kg		09/29/14 14:50	09/30/14 16:39	1
Surrogate	%Recovery 85	Qualifier	Limits 40 - 130				Prepared	Analyzed 09/30/14 16:39	Dil Fac

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-167668/5

Matrix: Solid							
Analysis Bate	ch: 167668						

	MB	MB					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0	ug/Kg		09/26/14 08:33	1
Acetone	ND		50	ug/Kg		09/26/14 08:33	1
Benzene	ND		5.0	ug/Kg		09/26/14 08:33	1
Dichlorobromomethane	ND		5.0	ug/Kg		09/26/14 08:33	1
Bromobenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
Chlorobromomethane	ND		20	ug/Kg		09/26/14 08:33	1
Bromoform	ND		5.0	ug/Kg		09/26/14 08:33	1
Bromomethane	ND		10	ug/Kg		09/26/14 08:33	1
2-Butanone (MEK)	ND		50	ug/Kg		09/26/14 08:33	1
n-Butylbenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
sec-Butylbenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
tert-Butylbenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
Carbon disulfide	ND		5.0	ug/Kg		09/26/14 08:33	1
Carbon tetrachloride	ND		5.0	ug/Kg		09/26/14 08:33	1
Chlorobenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
Chloroethane	ND		10	ug/Kg		09/26/14 08:33	
Chloroform	ND		5.0	ug/Kg		09/26/14 08:33	1
Chloromethane	ND		10	ug/Kg		09/26/14 08:33	1
2-Chlorotoluene	ND		5.0	ug/Kg		09/26/14 08:33	
4-Chlorotoluene	ND		5.0			09/26/14 08:33	1
Chlorodibromomethane	ND		5.0	ug/Kg		09/26/14 08:33	1
				ug/Kg			
1,2-Dichlorobenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
1,3-Dichlorobenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
1,4-Dichlorobenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
1,3-Dichloropropane	ND		5.0	ug/Kg		09/26/14 08:33	1
1,1-Dichloropropene	ND		5.0	ug/Kg		09/26/14 08:33	1
1,2-Dibromo-3-Chloropropane	ND		10	ug/Kg		09/26/14 08:33	1
Ethylene Dibromide	ND		5.0	ug/Kg		09/26/14 08:33	1
Dibromomethane	ND		10	ug/Kg		09/26/14 08:33	1
Dichlorodifluoromethane	ND		10	ug/Kg		09/26/14 08:33	1
1,1-Dichloroethane	ND		5.0	ug/Kg		09/26/14 08:33	1
1,2-Dichloroethane	ND		5.0	ug/Kg		09/26/14 08:33	1
1,1-Dichloroethene	ND		5.0	ug/Kg		09/26/14 08:33	1
cis-1,2-Dichloroethene	ND		5.0	ug/Kg		09/26/14 08:33	1
trans-1,2-Dichloroethene	ND		5.0	ug/Kg		09/26/14 08:33	1
1,2-Dichloropropane	ND		5.0	ug/Kg		09/26/14 08:33	1
cis-1,3-Dichloropropene	ND		5.0	ug/Kg		09/26/14 08:33	1
trans-1,3-Dichloropropene	ND		5.0	ug/Kg		09/26/14 08:33	1
Ethylbenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
Hexachlorobutadiene	ND		5.0	ug/Kg		09/26/14 08:33	1
2-Hexanone	ND		50	ug/Kg		09/26/14 08:33	1
Isopropylbenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
4-Isopropyltoluene	ND		5.0	ug/Kg		09/26/14 08:33	1
Methylene Chloride	ND		10	ug/Kg		09/26/14 08:33	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/Kg		09/26/14 08:33	1
Naphthalene	ND		10	ug/Kg		09/26/14 08:33	1
N-Propylbenzene	ND		5.0	ug/Kg		09/26/14 08:33	1
Styrene	ND		5.0	ug/Kg		09/26/14 08:33	1

Client Sample ID: Method Blank

Prep Type: Total/NA

	Ð
Fac	
1	
1	
1	7
1	
1	8
1	

1	
1	7
1	
1	8
1	
1	9
1	
1	
1	
1	
1	
1	
1	
1	
1	13

		0 D
Method: 8260B/CA_LUFTMS - 8260B / CA LUF1	I MS (CO	ontinued)

Lab Sample ID: MB 720-167668/5

Matrix: Solid
Analysis Batch: 167668

Analysis Batch. 107000	МР	МВ						
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0			Trepared	09/26/14 08:33	1
1,1,2,2-Tetrachloroethane	ND		5.0	ug/Kg			09/26/14 08:33	
Tetrachloroethene	ND		5.0	ug/Kg			09/26/14 08:33	1
Toluene	ND		5.0	ug/Kg			09/26/14 08:33	1
1,2,3-Trichlorobenzene	ND		5.0	ug/Kg			09/26/14 08:33	1
1,2,4-Trichlorobenzene	ND		5.0	ug/Kg			09/26/14 08:33	1
1,1,1-Trichloroethane	ND		5.0	ug/Kg			09/26/14 08:33	
1,1,2-Trichloroethane	ND		5.0	ug/Kg			09/26/14 08:33	1
Trichloroethene	ND		5.0	ug/Kg			09/26/14 08:33	1
Trichlorofluoromethane	ND		5.0	ug/Kg			09/26/14 08:33	1
1,2,3-Trichloropropane	ND		5.0	ug/Kg			09/26/14 08:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ug/Kg			09/26/14 08:33	1
1,2,4-Trimethylbenzene	ND		5.0	ug/Kg			09/26/14 08:33	1
1,3,5-Trimethylbenzene	ND		5.0	ug/Kg			09/26/14 08:33	1
Vinyl acetate	ND		20	ug/Kg			09/26/14 08:33	1
Vinyl chloride	ND		5.0	ug/Kg			09/26/14 08:33	1
Xylenes, Total	ND		10	ug/Kg			09/26/14 08:33	1
2,2-Dichloropropane	ND		5.0	ug/Kg			09/26/14 08:33	1
Gasoline Range Organics (GRO) -C5-C12	ND		250	ug/Kg			09/26/14 08:33	1
ТВА	ND		100	ug/Kg			09/26/14 08:33	1
DIPE	ND		5.0	ug/Kg			09/26/14 08:33	1
TAME	ND		5.0	ug/Kg			09/26/14 08:33	1
Ethyl t-butyl ether	ND		5.0	ug/Kg			09/26/14 08:33	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene			45 - 131		-		09/26/14 08:33	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		45 - 131		09/26/14 08:33	1
1,2-Dichloroethane-d4 (Surr)	111		60 - 140		09/26/14 08:33	1
Toluene-d8 (Surr)	99		58 - 140		09/26/14 08:33	1

Lab Sample ID: LCS 720-167668/6 Matrix: Solid

Analysis Batch: 167668

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	50.0	57.4		ug/Kg		115	70 - 144
Acetone	250	326		ug/Kg		130	30 - 162
Benzene	50.0	49.1		ug/Kg		98	70 - 130
Dichlorobromomethane	50.0	58.8		ug/Kg		118	70 - 131
Bromobenzene	50.0	48.2		ug/Kg		96	70 - 130
Chlorobromomethane	50.0	55.4		ug/Kg		111	70 - 130
Bromoform	50.0	59.3		ug/Kg		119	59 - 158
Bromomethane	50.0	52.2		ug/Kg		104	59 ₋ 132
2-Butanone (MEK)	250	262		ug/Kg		105	53 - 124
n-Butylbenzene	50.0	49.5		ug/Kg		99	70 - 142
sec-Butylbenzene	50.0	45.9		ug/Kg		92	70 - 136
tert-Butylbenzene	50.0	46.5		ug/Kg		93	70 - 130
Carbon disulfide	50.0	41.4		ug/Kg		83	60 - 140

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 720-167668/6

Matrix: Solid

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA %Rec. 5

7

Matrix: Solid Analysis Batch: 167668					Prep Type: Tota
····· · ······························	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Carbon tetrachloride	50.0	56.3	ug/Kg	113	70 - 138
Chlorobenzene	50.0	49.8	ug/Kg	100	70 - 130
Chloroethane	50.0	53.2	ug/Kg	106	65 ₋ 130
Chloroform	50.0	55.5	ug/Kg	111	77 - 127
Chloromethane	50.0	53.1	ug/Kg	106	55 - 140
P-Chlorotoluene	50.0	47.4	ug/Kg	95	70 - 138
-Chlorotoluene	50.0	48.5	ug/Kg	97	70 - 136
Chlorodibromomethane	50.0	63.2	ug/Kg	126	70 - 146
,2-Dichlorobenzene	50.0	50.1	ug/Kg	100	70 - 130
,3-Dichlorobenzene	50.0	49.8	ug/Kg	100	70 - 131
,4-Dichlorobenzene	50.0	49.3	ug/Kg	99	70 - 130
,3-Dichloropropane	50.0	57.9	ug/Kg	116	70 ₋ 140
,1-Dichloropropene	50.0	55.6	ug/Kg	111	70 ₋ 130
,2-Dibromo-3-Chloropropane	50.0	56.3	ug/Kg	113	60 - 145
thylene Dibromide	50.0	61.4	ug/Kg	123	70 ₋ 140
)ibromomethane	50.0	59.9	ug/Kg	120	70 - 139
Dichlorodifluoromethane	50.0	49.5	ug/Kg	99	37 - 158
,1-Dichloroethane	50.0	52.6	ug/Kg	105	70 - 130
,2-Dichloroethane	50.0	60.2	ug/Kg	120	70 - 130
,1-Dichloroethene	50.0	45.6	ug/Kg	91	76 ₋ 122
s-1,2-Dichloroethene	50.0	54.5	ug/Kg	109	70 - 138
ans-1,2-Dichloroethene	50.0	49.4	ug/Kg	99	67 _ 130
,2-Dichloropropane	50.0	53.0	ug/Kg	106	73 ₋ 127
is-1,3-Dichloropropene	50.0	60.1	ug/Kg	120	68 ₋ 147
ans-1,3-Dichloropropene	50.0	66.7	ug/Kg	133	70 - 136
thylbenzene	50.0	46.7	ug/Kg	93	80 - 137
lexachlorobutadiene	50.0	49.0	ug/Kg	98	70 - 132
-Hexanone	250	320	ug/Kg	128	44 - 133
sopropylbenzene	50.0	49.4	ug/Kg	99	70 - 130
-lsopropyltoluene	50.0	46.5	ug/Kg	93	70 - 133
lethylene Chloride	50.0	49.4	ug/Kg	99	70 - 134
-Methyl-2-pentanone (MIBK)	250	320	ug/Kg	128	60 - 160
laphthalene	50.0	55.4	ug/Kg	111	60 - 147
I-Propylbenzene	50.0	45.7	ug/Kg	91	70 - 130
stvrene	50.0	52.0	ug/Kg	104	70 - 130
,1,1,2-Tetrachloroethane	50.0	53.4	ug/Kg	107	70 - 130
,1,2,2-Tetrachloroethane	50.0	53.8	ug/Kg	108	70 - 146
etrachloroethene	50.0	53.6	ug/Kg	107	70 - 132
oluene	50.0	43.3	ug/Kg	87	80 - 128
,2,3-Trichlorobenzene	50.0	52.7	ug/Kg	105	60 - 140
,2,4-Trichlorobenzene	50.0	53.0	ug/Kg	106	60 - 140
,1,1-Trichloroethane	50.0	53.3	ug/Kg	100	70 ₋ 130
,1,2-Trichloroethane	50.0	58.3	ug/Kg	107	70 <u>-</u> 130
richloroethene	50.0	51.3	ug/Kg	103	70 - 133 70 - 133
richlorofluoromethane	50.0	58.5	ug/Kg	103	60 - 140
,2,3-Trichloropropane	50.0	56.9	ug/Kg	117	70 - 146
	50.0	46.2	ug/Kg ug/Kg	92	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	40.2	uy/Ny	52	50 - 1 1 0

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-167668/6

Matrix: Solid Analysis Batch: 167668

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trimethylbenzene	50.0	47.1		ug/Kg		94	70 - 130
1,3,5-Trimethylbenzene	50.0	47.3		ug/Kg		95	70 ₋ 131
Vinyl acetate	50.0	53.4		ug/Kg		107	38 - 176
Vinyl chloride	50.0	52.3		ug/Kg		105	58 ₋ 125
m-Xylene & p-Xylene	50.0	48.2		ug/Kg		96	70 ₋ 146
p-Xylene	50.0	50.4		ug/Kg		101	70 - 140
2,2-Dichloropropane	50.0	54.4		ug/Kg		109	70 ₋ 162
TBA	500	466		ug/Kg		93	63 - 130
DIPE	50.0	56.7		ug/Kg		113	70 - 131
TAME	50.0	60.1		ug/Kg		120	70 ₋ 140
Ethyl t-butyl ether	50.0	58.5		ug/Kg		117	70 - 130

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		45 - 131
1,2-Dichloroethane-d4 (Surr)	114		60 - 140
Toluene-d8 (Surr)	99		58 - 140

Lab Sample ID: LCS 720-167668/8 Matrix: Solid Analysis Batch: 167668

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	1000	1070		ug/Kg	_	107	61 - 128	

-C5-C12

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		45 _ 131
1,2-Dichloroethane-d4 (Surr)	107		60 - 140
Toluene-d8 (Surr)	99		58 - 140

Lab Sample ID: LCSD 720-167668/7 Matrix: Solid

Analysis Batch: 167668

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	56.1		ug/Kg		112	70 _ 144	2	20
Acetone	250	295		ug/Kg		118	30 - 162	10	30
Benzene	50.0	50.7		ug/Kg		101	70 - 130	3	20
Dichlorobromomethane	50.0	58.5		ug/Kg		117	70 _ 131	1	20
Bromobenzene	50.0	49.1		ug/Kg		98	70 - 130	2	20
Chlorobromomethane	50.0	56.0		ug/Kg		112	70 _ 130	1	20
Bromoform	50.0	56.8		ug/Kg		114	59 - 158	4	20
Bromomethane	50.0	51.6		ug/Kg		103	59 _ 132	1	20
2-Butanone (MEK)	250	256		ug/Kg		103	53 _ 124	2	20
n-Butylbenzene	50.0	50.2		ug/Kg		100	70 _ 142	1	20
sec-Butylbenzene	50.0	47.2		ug/Kg		94	70 - 136	3	20
tert-Butylbenzene	50.0	48.0		ug/Kg		96	70 - 130	3	20
Carbon disulfide	50.0	43.0		ug/Kg		86	60 _ 140	4	20

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

5

7

3

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-167668/7

Matrix: Solid	
Analysis Batch: 1676	68

Analysis Batch: 167668	Spike	LCSD LCS	D			0/ Dee		RPD
Analyte	Spike Added	Result Qua		D	%Rec	%Rec. Limits	RPD	Limit
Carbon tetrachloride	- <u> </u>	56.6			113	70 - 138	1	20
Chlorobenzene	50.0	50.0	ug/Kg		100	70 - 130	0	20
Chloroethane	50.0	52.9	ug/Kg		106	65 ₋ 130	0	20
Chloroform	50.0	56.6	ug/Kg		113	77 - 127	2	20
Chloromethane	50.0	50.9	ug/Kg		102	55 - 140	4	20
2-Chlorotoluene	50.0	48.1	ug/Kg		96	70 - 138	1	20
4-Chlorotoluene	50.0	49.5	ug/Kg		99	70 - 136	2	20
Chlorodibromomethane	50.0	62.1	ug/Kg		124	70 - 146	2	20
1,2-Dichlorobenzene	50.0	50.8	ug/Kg		102	70 - 130	1	20
1,3-Dichlorobenzene	50.0	50.6	ug/Kg		101	70 - 131	2	20
1,4-Dichlorobenzene	50.0	49.9	ug/Kg		100	70 - 130	1	20
1,3-Dichloropropane	50.0	57.0	ug/Kg		114	70 - 140		20
1,1-Dichloropropene	50.0	56.2	ug/Kg		112	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	50.0	53.9	ug/Kg		108	60 - 145	4	20
Ethylene Dibromide	50.0	60.6	ug/Kg		121	70 - 140		20
Dibromomethane	50.0	58.9	ug/Kg		118	70 - 139	2	20
Dichlorodifluoromethane	50.0	49.3	ug/Kg		99	37 - 158	0	20
1,1-Dichloroethane	50.0	53.6	ug/Kg		107	70 - 130	2	20
1,2-Dichloroethane	50.0	58.6	ug/Kg		117	70 - 130	3	20
1,1-Dichloroethene	50.0	46.7	ug/Kg		93	76 ₋ 122	2	20
cis-1,2-Dichloroethene	50.0	55.4	ug/Kg		111	70 - 138	2	20
trans-1,2-Dichloroethene	50.0	51.7	ug/Kg		103	67 _ 130	5	20
1,2-Dichloropropane	50.0	54.1	ug/Kg		108	73 - 127	2	20
cis-1,3-Dichloropropene	50.0	59.8	ug/Kg		120	68 - 147		20
trans-1,3-Dichloropropene	50.0	66.8	ug/Kg		134	70 - 136	0	20
Ethylbenzene	50.0	47.5	ug/Kg		95	80 - 137	2	20
Hexachlorobutadiene	50.0	48.6	ug/Kg		97	70 - 132	1	20
2-Hexanone	250	302	ug/Kg		121	44 - 133	6	20
Isopropylbenzene	50.0	49.9	ug/Kg		100	70 - 130	1	20
4-Isopropyltoluene	50.0	47.2	ug/Kg		94	70 - 133	2	20
Methylene Chloride	50.0	50.9	ug/Kg		102	70 - 134	3	20
4-Methyl-2-pentanone (MIBK)	250	300	ug/Kg		120	60 - 160	6	20
Naphthalene	50.0	54.3	ug/Kg		109	60 - 147	2	20
N-Propylbenzene	50.0	47.0	ug/Kg		94	70 - 130	3	20
Styrene	50.0	52.2	ug/Kg		104	70 - 130	0	20
1,1,1,2-Tetrachloroethane	50.0	54.0	ug/Kg		108	70 - 130	1	20
1,1,2,2-Tetrachloroethane	50.0	53.8	ug/Kg		108	70 - 146	0	20
Tetrachloroethene	50.0	53.7	ug/Kg		100	70 - 132	0	20
Toluene	50.0	44.6	ug/Kg		89	80 - 128	3	20
1,2,3-Trichlorobenzene	50.0	52.1	ug/Kg		104	60 - 120	1	20
1,2,4-Trichlorobenzene	50.0	51.6	ug/Kg		103	60 - 140	3	20
1,1.1-Trichloroethane	50.0	53.6	ug/Kg ug/Kg		103	70 ₋ 130		20
1,1,2-Trichloroethane	50.0	58.2	ug/Kg		116	70 - 130 70 - 130	0	20
Trichloroethene	50.0	52.5	ug/Kg		105	70 - 130 70 - 133	2	20
Trichlorofluoromethane	50.0	57.3	ug/Kg ug/Kg		115	60 - 140	2	20
1,2,3-Trichloropropane	50.0	57.5	ug/Kg ug/Kg		111	70 - 140	2	20
	50.0	47.6	ug/Kg ug/Kg		95	70 - 140 60 - 140	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	50.0	0.17	uy/ny		90	00 - 140	5	20

Spike

Added

50.0

50.0

50.0

50.0

50.0

50.0

50.0

500

50.0

50.0

50.0

Limits

45 - 131

60 - 140

58 - 140

Limits 45 - 131 60 - 140

58 - 140

LCSD LCSD

48.1

49.1

51.9

51.7

48.7

50.9

56.6

477

57.6

59.6

58.6

Result Qualifier

Unit

ug/Kg

D

%Rec

96

98

104

103

97

102

113

95

115

119

117

Lab Sample ID: LCSD 720-167668/7

Matrix: Solid

Analyte

Vinyl acetate

Vinyl chloride

o-Xylene

TBA

DIPE

TAME

Surrogate

Analysis Batch: 167668

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

2,2-Dichloropropane

Ethyl t-butyl ether

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

LCSD LCSD %Recovery Qualifier

102

109

99

99

RPD

Limit

20

20

20

20

20

20

20

20

20

20

20

RPD

2

4

3

1

1

1

4

2

2

1

0

Prep Type: Total/NA

Client Sample ID: SB-MW-12-14'

Prep Type: Total/NA

Matrix: Solid
Analysis Batch: 167668

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	1000	1070		ug/Kg		107	61 - 128	0	20
-C5-C12									

00 012		
	LCSD	LCSD
Surrogate	%Recovery	Qualifier
4-Bromofluorobenzene	100	
1,2-Dichloroethane-d4 (Surr)	105	

Lab Sample ID: 720-60050-14 MS	5
Matrix: Solid	

Analysis Batch: 167668

Toluene-d8 (Surr)

Analysis Batch: 167668	Sample	Sample	Spike	MS	MS				Prep Batch: 167692 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	ND		47.9	42.3		ug/Kg		88	69 - 130
Acetone	ND		239	176		ug/Kg		74	37 - 150
Benzene	ND		47.9	41.2		ug/Kg		86	70 - 130
Dichlorobromomethane	ND		47.9	49.1		ug/Kg		103	64 - 135
Bromobenzene	ND		47.9	43.1		ug/Kg		90	70 - 130
Chlorobromomethane	ND		47.9	44.7		ug/Kg		93	65 - 130
Bromoform	ND		47.9	45.9		ug/Kg		96	58 - 132
Bromomethane	ND		47.9	43.2		ug/Kg		90	56 - 130
2-Butanone (MEK)	ND		239	165		ug/Kg		69	41 - 150
n-Butylbenzene	ND		47.9	45.5		ug/Kg		95	60 - 145
sec-Butylbenzene	ND		47.9	42.7		ug/Kg		89	64 - 137
tert-Butylbenzene	ND		47.9	43.9		ug/Kg		92	63 - 134
Carbon disulfide	ND		47.9	35.1		ug/Kg		73	10 - 150

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

%Rec.

Limits

70 - 130

70 - 131

38 - 176

58 - 125

70 - 146

70 - 140

70 - 162

63 - 130

70 - 131

70 - 140

70 - 130

Client Sample ID: Lab Control Sample Dup

Page	23	of	40	
i ugo	20	0.	10	

Lab Sample ID: 720-60050-14 MS

Matrix: Solid

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: SB-MW-12-14' Prep Type: Total/NA Prep Batch: 167692

5

6 7

Analysis Batch: 167668	Sample	Sample	Spike	MS	MS				%Rec.	tch: 1676
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Carbon tetrachloride	ND		47.9	50.5		ug/Kg		105	54 - 130	
Chlorobenzene	ND		47.9	42.8		ug/Kg		89	70 - 130	
chloroethane	ND		47.9	43.6		ug/Kg		91	61 - 130	
chloroform	ND		47.9	47.3		ug/Kg		99	67 - 130	
hloromethane	ND		47.9	46.0		ug/Kg		96	50 ₋ 131	
-Chlorotoluene	ND		47.9	43.6		ug/Kg		91	70 - 130	
-Chlorotoluene	ND		47.9	44.4		ug/Kg ug/Kg		93	70 - 130 70 - 130	
Chlorodibromomethane	ND		47.9	50.1		ug/Kg ug/Kg		105	70 - 130 60 - 141	
			47.9					93	70 - 130	
,2-Dichlorobenzene	ND ND		47.9	44.5 45.3		ug/Kg				
,3-Dichlorobenzene						ug/Kg		95	70 ₋ 130 70 ₋ 130	
,4-Dichlorobenzene	ND		47.9	43.9		ug/Kg		92		
,3-Dichloropropane	ND		47.9	44.9		ug/Kg		94	70 ₋ 130	
,1-Dichloropropene	ND		47.9	47.7		ug/Kg		100	67 - 130	
,2-Dibromo-3-Chloropropane	ND		47.9	42.1		ug/Kg		88	57 - 130	
thylene Dibromide	ND		47.9	47.1		ug/Kg		98	66 - 135	
ibromomethane	ND		47.9	46.7		ug/Kg		98	65 - 131	
ichlorodifluoromethane	ND		47.9	52.7		ug/Kg		110	38 - 130	
,1-Dichloroethane	ND		47.9	44.4		ug/Kg		93	67 - 130	
,2-Dichloroethane	ND		47.9	47.5		ug/Kg		99	70 - 130	
,1-Dichloroethene	ND		47.9	38.2		ug/Kg		80	64 - 130	
s-1,2-Dichloroethene	ND		47.9	45.9		ug/Kg		96	68 - 131	
ans-1,2-Dichloroethene	ND		47.9	41.9		ug/Kg		87	70 - 130	
2-Dichloropropane	ND		47.9	43.4		ug/Kg		91	65 ₋ 133	
s-1,3-Dichloropropene	ND		47.9	47.8		ug/Kg		100	46 - 139	
ans-1,3-Dichloropropene	ND		47.9	53.5		ug/Kg		112	55 ₋ 131	
thylbenzene	ND		47.9	42.0		ug/Kg		88	65 - 130	
exachlorobutadiene	ND		47.9	43.8		ug/Kg		91	58 ₋ 132	
-Hexanone	ND		239	212		ug/Kg		89	44 - 150	
sopropylbenzene	ND		47.9	44.6		ug/Kg		93	65 - 130	
-Isopropyltoluene	ND		47.9	43.2		ug/Kg		90	69 _ 134	
lethylene Chloride	ND		47.9	40.1		ug/Kg		84	63 - 130	
-Methyl-2-pentanone (MIBK)	ND		239	214		ug/Kg		90	51 - 140	
laphthalene	ND		47.9	42.3		ug/Kg		88	45 - 146	
I-Propylbenzene	ND		47.9	43.1		ug/Kg		90	70 - 130	
tyrene	ND		47.9	44.8		ug/Kg		94	58 - 135	
,1,1,2-Tetrachloroethane	ND		47.9	46.8		ug/Kg		98	64 - 133	
,1,2,2-Tetrachloroethane	ND		47.9	42.5		ug/Kg		89	70 ₋ 131	
etrachloroethene	ND		47.9	47.6		ug/Kg		99	67 ₋ 130	
oluene	ND		47.9	38.3		ug/Kg		80	70 - 130	
,2,3-Trichlorobenzene	ND		47.9	42.6		ug/Kg		89	58 - 138	
,2,4-Trichlorobenzene	ND		47.9	44.2		ug/Kg		92	49 - 144	
,1,1-Trichloroethane	ND		47.9	47.5		ug/Kg		99	57 ₋ 133	
,1,2-Trichloroethane	ND		47.9	45.2		ug/Kg		94	68 ₋ 132	
richloroethene	ND		47.9	45.3				94 95	66 ₋ 132	
richlorofluoromethane						ug/Kg				
	ND		47.9 47.0	50.2		ug/Kg		105	61 - 130 62 - 150	
,2,3-Trichloropropane	ND		47.9	44.6		ug/Kg		93	62 - 150	
,1,2-Trichloro-1,2,2-trifluoroetha	ND		47.9	40.3		ug/Kg		84	52 - 130	

Client Sample ID: SB-MW-12-14'

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID:	720-60050-14 MS
Motrix: Colid	

Ma	trix:	Solid	

Analysis Batch: 167668									Prep Batch: 167692
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trimethylbenzene	ND		47.9	43.5		ug/Kg		91	64 - 140
1,3,5-Trimethylbenzene	ND		47.9	44.6		ug/Kg		93	67 - 134
Vinyl acetate	ND		47.9	30.0		ug/Kg		63	52 - 150
Vinyl chloride	ND		47.9	45.1		ug/Kg		94	62 - 130
m-Xylene & p-Xylene	ND		47.9	43.1		ug/Kg		90	70 - 130
o-Xylene	ND		47.9	44.5		ug/Kg		93	68 - 130
2,2-Dichloropropane	ND		47.9	50.7		ug/Kg		106	63 - 130
ТВА	ND		479	463		ug/Kg		97	70 - 130
DIPE	ND		47.9	45.7		ug/Kg		95	70 - 130
TAME	ND		47.9	46.2		ug/Kg		97	70 - 130
Ethyl t-butyl ether	ND		47.9	46.1		ug/Kg		96	70 - 130
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		45 - 131
1,2-Dichloroethane-d4 (Surr)	104		60 - 140
Toluene-d8 (Surr)	97		58 _ 140

Lab Sample ID: 720-60050-14 MSD Matrix: Solid

Analysis Batch: 167668									Prep	Batch: 1	67692
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		44.5	41.4		ug/Kg		93	69 - 130	2	20
Acetone	ND		222	172		ug/Kg		77	37 _ 150	3	20
Benzene	ND		44.5	41.2		ug/Kg		93	70 - 130	0	20
Dichlorobromomethane	ND		44.5	47.1		ug/Kg		106	64 - 135	4	20
Bromobenzene	ND		44.5	44.0		ug/Kg		99	70 - 130	2	20
Chlorobromomethane	ND		44.5	43.3		ug/Kg		97	65 - 130	3	20
Bromoform	ND		44.5	43.6		ug/Kg		98	58 - 132	5	20
Bromomethane	ND		44.5	45.6		ug/Kg		102	56 - 130	6	20
2-Butanone (MEK)	ND		222	174		ug/Kg		78	41 - 150	5	20
n-Butylbenzene	ND		44.5	45.7		ug/Kg		103	60 - 145	1	20
sec-Butylbenzene	ND		44.5	43.3		ug/Kg		97	64 - 137	1	20
tert-Butylbenzene	ND		44.5	44.4		ug/Kg		100	63 - 134	1	20
Carbon disulfide	ND		44.5	35.1		ug/Kg		79	10 - 150	0	20
Carbon tetrachloride	ND		44.5	48.3		ug/Kg		109	54 _ 130	4	20
Chlorobenzene	ND		44.5	42.8		ug/Kg		96	70 - 130	0	20
Chloroethane	ND		44.5	46.0		ug/Kg		103	61 - 130	5	20
Chloroform	ND		44.5	45.6		ug/Kg		103	67 _ 130	4	20
Chloromethane	ND		44.5	47.4		ug/Kg		107	50 _ 131	3	20
2-Chlorotoluene	ND		44.5	44.0		ug/Kg		99	70 - 130	1	20
4-Chlorotoluene	ND		44.5	44.5		ug/Kg		100	70 - 130	0	20
Chlorodibromomethane	ND		44.5	47.2		ug/Kg		106	60 - 141	6	20
1,2-Dichlorobenzene	ND		44.5	44.4		ug/Kg		100	70 - 130	0	20
1,3-Dichlorobenzene	ND		44.5	45.1		ug/Kg		101	70 - 130	1	20
1,4-Dichlorobenzene	ND		44.5	44.2		ug/Kg		99	70 - 130	1	20
1,3-Dichloropropane	ND		44.5	42.6		ug/Kg		96	70 - 130	5	20
1,1-Dichloropropene	ND		44.5	46.7		ug/Kg		105	67 - 130	2	20

Lab Sample ID: 720-60050-14 MSD

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: SB-MW-12-14' Prep Type: Total/NA Prep Batch: 167692 %Rec. RPD 5

6 7

Matrix: Solid										ype: To	
Analysis Batch: 167668	Comula	Comula	Calles	MOD	MOD					Batch: 1	
Analyte		Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
1,2-Dibromo-3-Chloropropane	ND		44.5	40.4		ug/Kg		91	57 - 130	4	20
Ethylene Dibromide	ND		44.5	43.4		ug/Kg		98	66 - 135		20
Dibromomethane	ND		44.5	44.8		ug/Kg		101	65 - 131	4	20
Dichlorodifluoromethane	ND		44.5	54.8		ug/Kg		123	38 - 130	4	20
1,1-Dichloroethane	ND		44.5	43.9		ug/Kg		99	67 ₋ 130		20
1,2-Dichloroethane	ND		44.5	45.1		ug/Kg		101	70 - 130	5	20
1,1-Dichloroethene	ND		44.5	38.3		ug/Kg		86	64 ₋ 130	0	20
cis-1,2-Dichloroethene	ND		44.5	44.5		ug/Kg		100	68 - 131	3	20
trans-1,2-Dichloroethene	ND		44.5	41.7		ug/Kg		94	70 - 130	0	20
1,2-Dichloropropane	ND		44.5	43.1		ug/Kg		97	65 - 133	1	20
cis-1,3-Dichloropropene	ND		44.5	46.9		ug/Kg		105	46 - 139	2	20
trans-1,3-Dichloropropene	ND		44.5	50.6		ug/Kg		114	55 - 131	5	20
Ethylbenzene	ND		44.5	41.4		ug/Kg		93	65 - 130	1	20
Hexachlorobutadiene	ND		44.5	43.4		ug/Kg		98	58 - 132		20
2-Hexanone	ND		222	204		ug/Kg		92	44 ₋ 150	4	20
Isopropylbenzene	ND		44.5	43.6		ug/Kg		98	65 - 130	2	20
4-Isopropyltoluene	ND		44.5	43.6		ug/Kg		98	69 ₋ 134		20
Methylene Chloride	ND		44.5	39.4		ug/Kg		89	63 ₋ 130	2	20
4-Methyl-2-pentanone (MIBK)	ND		222	210		ug/Kg		95	51 - 140	2	20
Naphthalene	ND		44.5	42.9		ug/Kg		97	45 - 146	2	20
N-Propylbenzene	ND		44.5	43.3		ug/Kg		97	70 - 130	0	20
Styrene	ND		44.5	44.1		ug/Kg		99	58 ₋ 135	1	20
1,1,1,2-Tetrachloroethane	ND		44.5	46.2		ug/Kg		104	64 ₋ 133		20
1,1,2,2-Tetrachloroethane	ND		44.5	41.6		ug/Kg		93	70 ₋ 131	2	20
Tetrachloroethene	ND		44.5	44.9		ug/Kg		101	67 ₋ 130	6	20
Toluene	ND		44.5	38.8		ug/Kg		87	70 - 130	1	20
1,2,3-Trichlorobenzene	ND		44.5	43.1		ug/Kg		97	58 ₋ 138	1	20
1,2,4-Trichlorobenzene	ND		44.5	44.6		ug/Kg		100	49 ₋ 144	1	20
1,1,1-Trichloroethane	ND		44.5	45.5		ug/Kg		102	57 _ 133	4	20
1,1,2-Trichloroethane	ND		44.5	42.5		ug/Kg		96	68 ₋ 132	6	20
Trichloroethene	ND		44.5	44.8		ug/Kg		101	66 - 130	1	20
Trichlorofluoromethane	ND		44.5	50.9		ug/Kg		114	61 ₋ 130		20
1,2,3-Trichloropropane	ND		44.5	44.7		ug/Kg		101	62 ₋ 150	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		44.5	39.5		ug/Kg		89	52 <u>-</u> 130	2	20
ne			44.0	00.0		uging		00	02 - 100	2	20
1,2,4-Trimethylbenzene	ND		44.5	44.1		ug/Kg		99	64 _ 140	1	20
1,3,5-Trimethylbenzene	ND		44.5	45.3		ug/Kg		102	67 _ 134	1	20
Vinyl acetate	ND		44.5	29.1		ug/Kg		65	52 - 150	3	20
Vinyl chloride	ND		44.5	46.9		ug/Kg		105	62 - 130	4	20
m-Xylene & p-Xylene	ND		44.5	42.5		ug/Kg		95	70 - 130	1	20
o-Xylene	ND		44.5	43.8		ug/Kg		98	68 - 130	2	20
2,2-Dichloropropane	ND		44.5	46.8		ug/Kg		105	63 - 130	8	20
ТВА	ND		445	453		ug/Kg		102	70 - 130	2	20
DIPE	ND		44.5	45.3		ug/Kg		102	70 - 130	1	20
TAME	ND		44.5	45.3		ug/Kg		102	70 - 130	2	20
Ethyl t-butyl ether	ND		44.5	44.8		ug/Kg		101	70 - 130	3	20

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60050-14 I Matrix: Solid	MSD								C	Client Sa	mple ID: SE Prep Typ		
Analysis Batch: 167668											Prep Ba	tch: 1	16769
	MSD	MSD											
Surrogate	%Recovery	Qualifier	Limits										
4-Bromofluorobenzene	98		45 _ 131										
1,2-Dichloroethane-d4 (Surr)	101		60 - 140										
Toluene-d8 (Surr)	97		58 - 140										
lethod: 8015B - Diesel Ra	nge Organ	ics (DRO)	(GC)										
Lab Sample ID: MB 720-16780	2/1-A								c	Client Sa	mple ID: Me	ethod	Blan
Matrix: Solid											Prep Typ	e: To	otal/N
Analysis Batch: 167858											Prep Ba	tch: 1	16780
		MB MB											
Analyte	Re	esult Qualifier			MDL	Unit		<u>D</u>		epared	Analyzed		Dil Fa
Diesel Range Organics [C10-C28]		ND	0.99			mg/Kg				/14 14:50	09/30/14 12:		
Motor Oil Range Organics [C24-C36]		ND	50	J		mg/Kg			09/29/	/14 14:50	09/30/14 12:	05	
		MB MB											
Surrogate	%Reco	overy Qualifier	Limits						Pre	epared	Analyzed		Dil Fa
p-Terphenyl		109	40 - 130	-					09/29	/14 14:50	09/30/14 12	:05	
Lab Sample ID: LCS 720-1678)2/2-A							С	lient	Sample	ID: Lab Con	trol S	ampl
Matrix: Solid											Prep Typ	e: To	otal/N
Analysis Batch: 167858											Prep Ba	tch: 1	16780
			Spike		LCS						%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Diesel Range Organics [C10-C28]			82.3	83.4			mg/Kg			101	50 ₋ 150		
	LCS	LCS											
Surrogate	%Recovery	Qualifier	Limits										
p-Terphenyl	115		40 - 130										
Lab Sample ID: LCSD 720-167	802/3-A						Cli	ent	Samp	ole ID: La	ab Control S		
Matrix: Solid											Prep Typ		
Analysis Batch: 167858			0	1.000		-					Prep Ba	tch: 1	
Analysis			Spike Added		LCS		11		-	0/ Dee	%Rec.	000	RP
Analyte			82.9	Result 79.1	Qua	Inter	Unit mg/Kg		D	%Rec 95	Limits	RPD 5	3
Diesel Range Organics [C10-C28]			02.9	75.1			ing/itg			33	50 - 150	5	
Surrogate	LCSD %Recovery		Limits										
p-Terphenyl	121	·	40 - 130										
Lab Sample ID: MB 720-16792	2/1-A								c	Client Sa	mple ID: Me	ethod	Blan
-											Prep Typ		
Matrix: Solid											Prep Ba		
		MB MB											
Matrix: Solid Analysis Batch: 167945 Analyte	Re	esult Qualifier	RI		MDL	Unit		D	Pre	epared	Analyzed		Dil Fa
Analysis Batch: 167945	R(RI 0.99 50	9	MDL	Unit mg/Kg		D	09/30	epared /14 19:41 /14 19:41	Analyzed	29	Dil Fa

Lab Sample ID: MB 720-167922/1-A

Matrix: Solid

6 7 8 9 10 11 12 13 14

Prep Batch:	167922	ļ
Analyzed	Dil Fac	
	Prep Type: T Prep Batch:	·

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Analysis Batch: 167945									Prep Ba	tch: 1	67922
	л	MB MB									
Surrogate	%Recove	ery Qualifier	Limits				Р	repared	Analyzed		Dil Fa
p-Terphenyl	1	08	40 - 130	-			09/3	0/14 19:41	10/01/14 12	29	1
- Lab Sample ID: LCS 720-167922//	2-A						Client	Sample	ID: Lab Con	trol Sa	ample
Matrix: Solid									Prep Typ	e: To	tal/NA
Analysis Batch: 167945									Prep Ba		
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics			83.3	81.8		mg/Kg		98	50 - 150		
[C10-C28]											
	LCS L	cs									
Surrogate	%Recovery Q	Qualifier	Limits								
p-Terphenyl	123		40 - 130								
Lab Sample ID: LCSD 720-167922	2/3-A					Clie	nt Sam	ple ID: L	ab Control S	Sampl	e Dup
Matrix: Solid									Prep Typ	e: To	tal/NA
Analysis Batch: 167945									Prep Ba		
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Diesel Range Organics			82.8	82.0		mg/Kg		99	50 - 150	0	35
[C10-C28]											
	LCSD L	CSD									
Surrogate	%Recovery Q	Qualifier	Limits								
p-Terphenyl	112		40 - 130								

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 250-30669/ Matrix: Solid Analysis Batch: 30765							Client Sa	mple ID: Metho Prep Type: T Prep Batch	otal/NA
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	Quaimer	2.5		ug/Kg		09/24/14 13:30	09/26/14 02:33	
PCB-1221	ND		5.0		ug/Kg		09/24/14 13:30	09/26/14 02:33	1
PCB-1232	ND		2.5		ug/Kg		09/24/14 13:30	09/26/14 02:33	1
PCB-1242	ND		2.5		ug/Kg		09/24/14 13:30	09/26/14 02:33	
PCB-1248	ND		2.5		ug/Kg		09/24/14 13:30	09/26/14 02:33	1
PCB-1254	ND		2.5		ug/Kg		09/24/14 13:30	09/26/14 02:33	1
PCB-1260	ND		2.5		ug/Kg		09/24/14 13:30	09/26/14 02:33	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	119		15 - 150				09/24/14 13:30	09/26/14 02:33	1

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 250-3066 Matrix: Solid Analysis Batch: 30765	69/2-A						Client	Sample	e ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 30669
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016			49.4	30.6		ug/Kg		62	50 - 150
PCB-1260			49.4	39.9		ug/Kg		81	50 - 150
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
DCB Decachlorobiphenyl (Surr)	121		15 - 150						

GC/MS VOA

Analy	vsis	Batch:	167668
Alla	1313	Duton.	101000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-13	SB-MW-12-4'	Total/NA	Solid	8260B/CA_LUFT	167692
				MS	
720-60050-14	SB-MW-12-14'	Total/NA	Solid	8260B/CA_LUFT	167692
				MS	
720-60050-14 MS	SB-MW-12-14'	Total/NA	Solid	8260B/CA_LUFT	167692
				MS	
720-60050-14 MSD	SB-MW-12-14'	Total/NA	Solid	8260B/CA_LUFT	167692
				MS	
LCS 720-167668/6	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCS 720-167668/8	Lab Control Sample	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-167668/7	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
LCSD 720-167668/9	Lab Control Sample Dup	Total/NA	Solid	8260B/CA_LUFT	
				MS	
MB 720-167668/5	Method Blank	Total/NA	Solid	8260B/CA_LUFT	
				MS	

Prep Batch: 167692

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-60050-13	SB-MW-12-4'	Total/NA	Solid	5030B	
720-60050-14	SB-MW-12-14'	Total/NA	Solid	5030B	
720-60050-14 MS	SB-MW-12-14'	Total/NA	Solid	5030B	
720-60050-14 MSD	SB-MW-12-14'	Total/NA	Solid	5030B	

GC Semi VOA

Prep Batch: 30669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-60050-7	SB-MW-10-1'	Total/NA	Solid	3550B	
720-60050-8	SB-MW-10-2.5'	Total/NA	Solid	3550B	
720-60050-9	SB-MW-10-5'	Total/NA	Solid	3550B	
720-60050-10	SB-MW-11-1'	Total/NA	Solid	3550B	
720-60050-11	SB-MW-11-2.5'	Total/NA	Solid	3550B	
720-60050-12	SB-MW-11-5'	Total/NA	Solid	3550B	
LCS 250-30669/2-A	Lab Control Sample	Total/NA	Solid	3550B	
MB 250-30669/1-A	Method Blank	Total/NA	Solid	3550B	

Analysis Batch: 30765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-8	SB-MW-10-2.5'	Total/NA	Solid	8082	30669
720-60050-9	SB-MW-10-5'	Total/NA	Solid	8082	30669
720-60050-10	SB-MW-11-1'	Total/NA	Solid	8082	30669
720-60050-11	SB-MW-11-2.5'	Total/NA	Solid	8082	30669
720-60050-12	SB-MW-11-5'	Total/NA	Solid	8082	30669
LCS 250-30669/2-A	Lab Control Sample	Total/NA	Solid	8082	30669
MB 250-30669/1-A	Method Blank	Total/NA	Solid	8082	30669

Analysis Batch: 30788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-7	SB-MW-10-1'	Total/NA	Solid	8082	30669

GC Semi VOA (Continued)

Prep Batch: 167802

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-13	SB-MW-12-4'	Total/NA	Solid	3546	
720-60050-14	SB-MW-12-14'	Total/NA	Solid	3546	
LCS 720-167802/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-167802/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-167802/1-A	Method Blank	Total/NA	Solid	3546	
Analysis Batch: 167855	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-13	SB-MW-12-4'	Total/NA	Solid	8015B	167802
720-60050-14	SB-MW-12-14'	Total/NA	Solid	8015B	167802
Analysis Batch: 167858	}				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-167802/2-A	Lab Control Sample	Total/NA	Solid	8015B	167802
LCSD 720-167802/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	167802
MB 720-167802/1-A	Method Blank	Total/NA	Solid	8015B	167802
Prep Batch: 167922					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-1	SB-SGI-2-1'	Total/NA	Solid	3546	
720-60050-4	SB-SGI-1-1'	Total/NA	Solid	3546	
LCS 720-167922/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-167922/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-167922/1-A	Method Blank	Total/NA	Solid	3546	
Analysis Batch: 167945	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-167922/2-A	Lab Control Sample	Total/NA	Solid	8015B	167922
LCSD 720-167922/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	167922
MB 720-167922/1-A	Method Blank	Total/NA	Solid	8015B	167922
Analysis Batch: 167946	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-1	SB-SGI-2-1'	Total/NA	Solid	8015B	167922
720-60050-4	SB-SGI-1-1'	Total/NA	Solid	8015B	167922

10/1/2014

Total/NA Total/NA

Analysis

8082

: 720-60050-1
Matrix: Solid
: 720-60050-4
Matrix: Solid
: 720-60050-7
Matrix: Solid
: 720-60050-8
Matrix: Solid
: 720-60050-9
: 720-60050-9 Matrix: Solid
Matrix: Solid

TestAmerica Pleasanton

TAL PRT

Page 32 of 40

5

30765 09/26/14 02:10 ELP

Client Sample ID: SB-MW-11-2.5'

Lab Sample ID: 720-60050-12

Lab Sample ID: 720-60050-11 Matrix: Solid

Date Collected: 09/19/14 11:42 Date Received: 09/19/14 14:40

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			30669	09/24/14 13:30	MLH	TAL PRT
Total/NA	Analysis	8082		20	30765	09/25/14 18:12	ELP	TAL PRT

Client Sample ID: SB-MW-11-5' Date Collected: 09/19/14 11:43

Date Received: 09/19/14 14:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			30669	09/24/14 13:30	MLH	TAL PRT
Total/NA	Analysis	8082		50	30765	09/25/14 18:36	ELP	TAL PRT

Client Sample ID: SB-MW-12-4' Date Collected: 09/19/14 08:30 Date Received: 09/19/14 14:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			167692	09/26/14 09:58	YYB	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	167668	09/26/14 14:22	PDR	TAL PLS
Total/NA	Prep	3546			167802	09/29/14 14:50		TAL PLS
Total/NA	Analysis	8015B		2	167855	09/30/14 20:20	JL	TAL PLS

Client Sample ID: SB-MW-12-14' Date Collected: 09/19/14 08:55 Date Received: 09/19/14 14:40

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Analyst Lab Run Total/NA Prep 5030B 167692 09/26/14 09:58 YYB TAL PLS Total/NA Analysis 8260B/CA_LUFTMS 1 167668 09/26/14 14:50 PDR TAL PLS Total/NA Prep 3546 167802 09/29/14 14:50 TAL PLS Total/NA Analysis 8015B 1 167855 09/30/14 16:39 JL TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919 TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

Lab Sample ID: 720-60050-13 Matrix: Solid

Matrix: Solid

13

9

Lab Sample ID: 720-60050-14

Matrix: Solid

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-16

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-13 *
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-15
USDA	Federal		P330-11-00092	04-17-17
Washington	State Program	10	C586	06-23-15

* Certification renewal pending - certification considered valid.

Client: The Source Group Project/Site: Former Paco Pump Site

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PLS
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL PRT

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919 TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

Sample Summary

Matrix

Solid

Client: The Source Group Project/Site: Former Paco Pump Site

Lab Sample ID

720-60050-1

720-60050-4

720-60050-7

720-60050-8

720-60050-9

720-60050-10

720-60050-11

720-60050-12

720-60050-13

720-60050-14

Client Sample ID

SB-SGI-2-1'

SB-SGI-1-1'

SB-MW-10-1'

SB-MW-10-5'

SB-MW-11-1'

SB-MW-11-5'

SB-MW-12-4'

SB-MW-12-14'

SB-MW-11-2.5'

SB-MW-10-2.5'

TestAmerica Job ID: 720-60050-1

Collected	Received
09/19/14 10:11	09/19/14 14:40
09/19/14 10:28	09/19/14 14:40
09/19/14 11:30	09/19/14 14:40
09/19/14 11:33	09/19/14 14:40
09/19/14 11:34	09/19/14 14:40
09/19/14 11:40	09/19/14 14:40
09/19/14 11:42	09/19/14 14:40
09/19/14 11:43	09/19/14 14:40
09/19/14 08:30	09/19/14 14:40
09/19/14 08:55	09/19/14 14:40

									12	Ξ.	10	ò	ġ)	4	é	5	*	<u>w</u> .	У.														
720-50050 Chain of Custody		Relinquished by	Relinquished by:	Custody Seals Infact: Yes No		Spacial Instructions/OC Requirements & Comments:	Possible Hazard identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	Preservation Used: 14 You, 22 HOL: 35 HXSOX: 4-HNOR: 55 No.041 R-Omen	88-MN-11-51	88-MW-11-2-51	SB-MN-11-11	SB-MN-10-51	8B-MN-10-2.5'	813 - MIN-10-1'	3B-SGI-1-51	58-56I-1-2.51	8B-5GI-1-1'	83-541-2-51	SB-5GI-2-25'	23-241-2-11	Sample Identification		PUMP SITE (POPMER)	Project Name: PORMER PARO PUMP SITE		City/State/Zp PLEASANT HILL, CA 94523	Address 3478 ENSKIEK ANEINE (STE 100)	Your Company Name here THE SULACE GRIVE	Client Contact	#NA V V V		Select a Labo	
	Company:	Company	Company SGE	Custody Seal No.:	* Diesel + Notor U		any EPA Waste Codes for the samp			1142	1140	1134	1)23	1130	040	1032	1 1025	1023		6 1101 H/b//b	Sample Sample Control Sample Sample Control Sample Control Sample Control Sample Control Sample Samp	1 day			TAT if different from Below		sis Turnaroun	6-448	7	Regulatory Program:	ら		
	Date/Time: R	~	Date/lime: R		< U.(Unknown		2	× /					· · · · · · · · · · · · · · · · · · ·						80i/ 1	Matrix Comt Filtered S Perform 1	iamp	_	(/ N		WORKING DAYS	1 Time	27 Lab Contact:	Knobensen Isite			Chain of	ı
	Received in Laboratory by:	Received by:	received by: In Ser	ooler Temp. (°C). Obs'd:		Return to Client Disposal by Lab	ampia pisposa (A rea may be assessed														PCBs TEPA							1 	Contact: CHARISTINE CONNOS Date:	RCRA Other:		Chain of Custody Record	
Form No.	Company:	Company:	Company ()		6	y Lab																							4/10/14				
Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013	Date/Time:	Date/Time	9/19/14 1440	Therm ID No	6.1°C	Montris		A Constant of the control of the constant of t	مريع سي المريم مواد به مؤد المريم						FULT	Hous		HALD	HOLD		Sample Specific Notes:		Job / SDG Na.:		Lab Sampling:	For Lab Use Only:	Sampler.	1 of Z COCs	COC No	TestAmerica Laboratories, Inc.	THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica	156387

-

٠

i

Ì

Page 37 of 40

12 13 14

See Terms and Conditions on reverse	Report: D Routine D Level 3 D Level 4 D EDD D EDF Special Instructions / Comments: D Global ID	T1054321Other:ADayDayDayDayDayDayDaySthNDACD	Credit Card Y/N: If yes, please call with payment information ASAP	PO# (SAME) Temp:	04 - PFT -005 - Head Space:	# of Conta	Project Info. Sample Receipt						0855	13 MW-12-41 9/19/14 0830 Soil NIA	Report To Attn: PANSHA DOEGGANSEN Company: THE SOULCE GROUP Address: 4478 BUS High Ave (Eleas and Thin) Bill To: DH - PFT-005 Sampled By: DH - PFT-005 Sampled By: DH - PFT-005 Phone (FLS) 326-5374 Attn. Phone (FLS) 326-5374
Company	Printed Name Date	Signaphie Time	 	Printed Name Date	CHRYSTINE COUNS 9/19/14	Signature 1440	. ŀ								Yolatile Organics GC/MS (VOCs) YelePA 8260B HVOCs by □ EPA 8260B HVOCs by □ EPA 8260B EPA 8260B: Ø Gas Ø BTEX Ø 5 Oxygenales □ DCA, EDB□ Ethanol TEPH EPA 8015B □ Silica Gel Ø Diesel Ø Motor Oli □ Other SemiVolatile Organics GC/MS □ EPA 8270C □ NA/PAH's by □ 8270C □ 8270C SIM Oli and Grease □ Petroleum (EPA 8010/7 470/7 471) Metals: □ 6010B □200.7 □ Lead □ LUFT □RCRA □ Other: Wetals: □ 6020 □ 200.8
Company	Printed Name Date	2) Received by: Signature Time	Company	Printed Name Date		Signature	2) Relinquished by:	/	-						PCBs □ EPA 8082 CAM17 Metais (EPA 6010/7470/7471) GO CA 94 56 66 (925) 44 56 66 (926) 44 5
Company Rev.	Printed Name Date	s) Received by: Signature Time	Company	Printed Name Date		Signature Time	3) Relinquished by:								□ Spec. Cond. □ Alkalinity □ TSS □ SS □ TDS Anions : □ Ci □ SO ₄ □ NO ₃ □ F □ Br □ NO ₂ □ PO ₄ □ Perchlorate by EPA 314.0 COD □ EPA 410 4 □ SM5220D □ Turbidity P = N
Rev.10/2012	ite	(D)		ıte		Ф 	-	 F) age	38 o	f 40	_			Number of Containers 0/1/2014

Login Sample Receipt Checklist

Client: The Source Group

Login Number: 60050 List Number: 1

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-60050-1

Client: The Source Group

Login Number: 60050 List Number: 2 Creator: Svabik-Seror, Philip M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	

N/A

Residual Chlorine Checked.

Job Number: 720-60050-1

List Source: TestAmerica Portland

List Creation: 09/24/14 10:56 AM

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

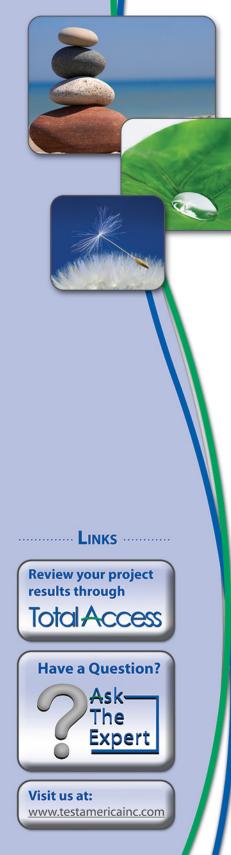
TestAmerica Job ID: 720-60050-3

Client Project/Site: Former Paco Pump Site

For:

The Source Group 3478 Buskirk Avenue, Suite 100 Pleasant Hill, California 94523

Attn: Mr. Paisha Jorgensen


Alanef Sal

Authorized for release by: 10/21/2014 4:21:13 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

Qualifiers

GC Somi VOA

GC Semi vo	
Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
х	Surrogate is outside control limits

Glossary

Qualifiers		3
GC Semi VOA	٠ · · · · · · · · · · · · · · · · · · ·	Λ
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	5
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a	3
	dilution may be flagged with a D.	
Х	Surrogate is outside control limits	
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	_
%R	Percent Recovery	9
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	12
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-60050-3

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-60050-3

Comments

No additional comments.

Receipt

The samples were received on 9/19/2014 2:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 6.1° C.

Except:

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): MW-12-4'. The container label lists the sample time at 08:45, while the COC lists the sample time at 08:30.

GC Semi VOA

Method(s) 8015B: The following sample(s) required a dilution due to the nature of the sample matrix: SB-SGI-2-2.5' (720-60050-2). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8015B: The following sample was analyzed outside of analytical holding time because the analysis was requested after the sample holding time had expired: SB-SGI-2-2.5' (720-60050-2).

Method(s) 8015B: Capric acid Surrogate recovery for the following sample(s) was outside control limits: SB-SGI-1-2.5' (720-60050-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8015B: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to prepared sample out of holding time : SB-SGI-1-2.5' (720-60050-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Job ID: 720-60050-3

Client: The Source Group Project/Site: Former Paco Pump Site

Client Sample ID: SB-SGI-2-1'

2 050-1 3 ype 4

Lab Sample ID: 720-60050-1

Lab Sample ID: 720-60050-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Cadmium	4.7		0.49		mg/Kg	4	6010B	Total/NA
Chromium	140		1.9		mg/Kg	4	6010B	Total/NA
Nickel	93		1.9		mg/Kg	4	6010B	Total/NA
Lead	310		1.9		mg/Kg	4	6010B	Total/NA
Zinc	1500		5.8		mg/Kg	4	6010B	Total/NA

Client Sample ID: SB-SGI-2-2.5'

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	0 Method	Prep Type
Diesel Range Organics [C10-C28]	280	H	5.0		mg/Kg	5	8015B	Silica Gel
								Cleanup
Motor Oil Range Organics [C24-C36]	600	Н	250		mg/Kg	5	8015B	Silica Gel
								Cleanup
Cadmium	6.4		0.42		mg/Kg	4	6010B	Total/NA
Chromium	120		1.7		mg/Kg	4	6010B	Total/NA
Nickel	100		1.7		mg/Kg	4	6010B	Total/NA
Lead	240		1.7		mg/Kg	4	6010B	Total/NA
Zinc	1700		5.0		mg/Kg	4	6010B	Total/NA

Client Sample ID: SB-SGI-1-1'

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chromium	110	1.9	mg/Kg	4	6010B	Total/NA
Nickel	74	1.9	mg/Kg	4	6010B	Total/NA
Lead	27	1.9	mg/Kg	4	6010B	Total/NA
Zinc	160	5.8	mg/Kg	4	6010B	Total/NA

Client Sample ID: SB-SGI-1-2.5'

Lab Sample ID: 720-60050-5

Lab Sample ID: 720-60050-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	51	Н	1.0		mg/Kg	1	_	8015B	Silica Gel
									Cleanup
Motor Oil Range Organics [C24-C36]	66	Н	50		mg/Kg	1		8015B	Silica Gel
									Cleanup
Cadmium	0.46		0.43		mg/Kg	4		6010B	Total/NA
Chromium	35		1.7		mg/Kg	4		6010B	Total/NA
Nickel	43		1.7		mg/Kg	4		6010B	Total/NA
Lead	24		1.7		mg/Kg	4		6010B	Total/NA
Zinc	160		5.2		mg/Kg	4		6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-60050-1

Matrix: Solid

Client Sample ID: SB-SGI-2-1'

Date Collected: 09/19/14 10:11 Date Received: 09/19/14 14:40

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	4.7		0.49		mg/Kg		10/15/14 18:24	10/17/14 17:18	4
Chromium	140		1.9		mg/Kg		10/15/14 18:24	10/17/14 17:18	4
Nickel	93		1.9		mg/Kg		10/15/14 18:24	10/17/14 17:18	4
Lead	310		1.9		mg/Kg		10/15/14 18:24	10/17/14 17:18	4
Zinc	1500		5.8		mg/Kg		10/15/14 18:24	10/17/14 17:18	4

Client Sample ID: SB-SGI-2-2.5'

5 6

Lab Sample ID: 720-60050-2 Matrix: Solid

Date Collected: 09/19/14 10:13 Date Received: 09/19/14 14:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	280	Н	5.0		mg/Kg		10/15/14 14:53	10/17/14 04:53	5
Motor Oil Range Organics	600	н	250		mg/Kg		10/15/14 14:53	10/17/14 04:53	5
[C24-C36]									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0		0 - 1				10/15/14 14:53	10/17/14 04:53	5
p-Terphenyl	0	ХD	38 - 148				10/15/14 14:53	10/17/14 04:53	5
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	6.4		0.42		mg/Kg		10/15/14 18:24	10/17/14 17:23	4
Chromium	120		1.7		mg/Kg		10/15/14 18:24	10/17/14 17:23	4
Nickel	100		1.7		mg/Kg		10/15/14 18:24	10/17/14 17:23	4
Lead	240		1.7		mg/Kg		10/15/14 18:24	10/17/14 17:23	4
Zinc	1700		5.0		mg/Kg		10/15/14 18:24	10/17/14 17:23	4

Lab Sample ID: 720-60050-4

Matrix: Solid

5 6

Client Sample ID: SB-SGI-1-1'

Date Collected: 09/19/14 10:28 Date Received: 09/19/14 14:40

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.48		mg/Kg		10/15/14 18:24	10/17/14 17:28	4
Chromium	110		1.9		mg/Kg		10/15/14 18:24	10/17/14 17:28	4
Nickel	74		1.9		mg/Kg		10/15/14 18:24	10/17/14 17:28	4
Lead	27		1.9		mg/Kg		10/15/14 18:24	10/17/14 17:28	4
Zinc	160		5.8		mg/Kg		10/15/14 18:24	10/17/14 17:28	4

Nickel

Lead

Zinc

10/17/14 17:32

10/17/14 17:32

10/17/14 17:32

6

4 4

4

Client Sample ID: SB-SGI-1-2.5' Lab Sample ID: 720-60050-5 Date Collected: 09/19/14 10:32 Matrix: Solid Date Received: 09/19/14 14:40 Method: 8015B - Diesel Range Organics (DRO) (GC) - Silica Gel Cleanup Analyte Result Qualifier MDL Unit Dil Fac RL D Prepared Analyzed 1.0 10/17/14 14:06 10/20/14 12:25 Diesel Range Organics [C10-C28] 51 H mg/Kg 1 50 10/17/14 14:06 10/20/14 12:25 **Motor Oil Range Organics** 66 H mg/Kg 1 [C24-C36] Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Capric Acid (Surr) $\overline{2}$ \overline{X} 0 - 1 10/17/14 14:06 10/20/14 12:25 1 10/20/14 12:25 p-Terphenyl 78 10/17/14 14:06 38 - 148 1 Method: 6010B - Metals (ICP) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.46 0.43 10/15/14 18:24 10/17/14 17:32 Cadmium mg/Kg 4 Chromium 35 1.7 mg/Kg 10/15/14 18:24 10/17/14 17:32 4

1.7

1.7

5.2

mg/Kg

mg/Kg

mg/Kg

10/15/14 18:24

10/15/14 18:24

10/15/14 18:24

43

24

160

Lab Sample ID: MB 720-168894/1-A

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: Method Blank Prep Type: Silica Gel Cleanup 5 6 7 8 9 10 11 12

	1-A											ample ID: Metho	
Matrix: Solid											Prep T	ype: Silica Gel	
Analysis Batch: 168950												Prep Batch	: 1 <mark>6</mark> 8894
		MB	MB										
Analyte	R	esult	Qualifier	RI	L	MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]		ND		1.0	0		mg/K	g		10/1	5/14 14:53	10/16/14 23:39	1
Motor Oil Range Organics [C24-C36]		ND		50	C		mg/K	g		10/1	5/14 14:53	10/16/14 23:39	1
		MB								_			
Surrogate	%Reco		Qualifier	Limits	_						repared	Analyzed	Dil Fac
Capric Acid (Surr)		0.03		0 _ 1							5/14 14:53	10/16/14 23:39	1
p-Terphenyl		89		38 - 148						10/1	5/14 14:53	10/16/14 23:39	1
									~		•		•
Lab Sample ID: LCS 720-168894	1/2-A								C	lient		ID: Lab Control	
Matrix: Solid											Prep I	ype: Silica Gel	
Analysis Batch: 168950												Prep Batch	: 168894
				Spike		LCS				_	~ -	%Rec.	
Analyte				Added	Result		lifier	Unit		D	%Rec	Limits	
Diesel Range Organics				82.9	40.5)		mg/Kg			49	36 - 112	
[C10-C28]													
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits									
p-Terphenyl	99			38 - 148									
Lab Sample ID: MB 720-169074/	/1- A										Client Sa	ample ID: Metho	d Blank
Matrix: Solid											Prep T	ype: Silica Gel	Cleanup
Analysis Batch: 169174												Prep Batch	: 169074
		МΒ	MB										
Analyte	R	esult	Qualifier	RI	L	MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]		ND		1.0	5		mg/K	g		10/1	7/14 14:06	10/20/14 13:51	1
Motor Oil Range Organics [C24-C36]		ND		50	0		mg/K	g		10/1	7/14 14:06	10/20/14 13:51	1
		ΜВ	МВ										
Surrogate	%Reco			Limits							repared	Analyzed	Dil Fac
Capric Acid (Surr)		0	Quanner	01	_						7/14 14:06	10/20/14 13:51	1
		112		38 - 148							7/14 14:06	10/20/14 13:51	1
p-Terphenyl		112		30 - 140						10/1	//14 14.00	10/20/14 13.51	1
Lab Sample ID: LCS 720-169074	1/2-4								c	liont	Sample	ID: Lab Control	Samplo
Matrix: Solid	12-A								Ŭ	nem		ype: Silica Gel	
Analysis Batch: 169175											перт	Prep Batch	
Analysis Datch. 103175				Spike	LCS	LCS	:					%Rec.	. 103074
Analyte				Added	Result			Unit		D	%Rec	Limits	
Diesel Range Organics				83.3	57.2			mg/Kg		_	69	36 - 112	
[C10-C28]				00.0	07.2			mgang			00	00-112	
	LCS												
Surrogate	%Recovery	Qua	lifier	Limits									
p-Terphenyl	108			38 - 148									
Lab Sample ID: 720-60050-5 MS	5											ample ID: SB-S	
Matrix: Solid											Prep T	ype: Silica Gel	
Analysis Batch: 169155	• ·	~										Prep Batch	: 169074
	Sample		-	Spike		MS				-		%Rec.	
Analyte	Result	Qua	litier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits	

TestAmerica Pleasanton

79

50 - 150

117

mg/Kg

83.3

51 H

Diesel Range Organics

[C10-C28]

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

	MS											ample ID:		
Matrix: Solid											Prep T	ype: Silic	a Gel C	leanup
Analysis Batch: 169155												Prep	Batch:	169074
	MS	MS												
Surrogate	%Recovery	Qualif	fier	Limits										
p-Terphenyl	69			38 - 148										
Lab Sample ID: 720-60050-5	MSD										Client S	ample ID:	SB-SG	il-1-2.5'
Matrix: Solid												ype: Silic		
Analysis Batch: 169155													Batch:	
	Sample	Sampl	le	Spike	MSD	MSD)					%Rec.		RPD
Analyte	Result	Qualif	ier	Added	Result	Qual	lifier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics [C10-C28]	51	H		82.0	102			mg/Kg			63	50 - 150	13	30
	MSD	MSD												
Surrogate	%Recovery	Qualif	fier	Limits										
p-Terphenyl	64			38 - 148										
				38 - 148										
p-Terphenyl lethod: 6010B - Metals (Lab Sample ID: MB 720-1685	(ICP)			38 - 148							Client S	ample ID:	Method	d Blank
lethod: 6010B - Metals ((ICP)			38 - 148							Client S		Methoo Type: To	
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689	(ICP)			38 - 148							Client S	Prep 1		otal/NA
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689 Matrix: Solid Analysis Batch: 169045	(ICP)	MB		38 - 148							Client S	Prep 1	Type: To	otal/NA 168920
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689 Matrix: Solid Analysis Batch: 169045	(ICP) 920/1-A	esult (MB Qualifier			MDL			D	Pr	repared	Prep 1 Prep Analy:	Type: To Batch: ^{zed}	otal/NA
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689 Matrix: Solid Analysis Batch: 169045 Analyte	(ICP) 920/1-A	ND).13	MDL	mg/Kg	-	<u>D</u>	Pr 10/15	r epared 5/14 18:24	Prep 1 Prep Analyz 10/16/14	Type: To Batch: zed 23:43	otal/NA 168920
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689 Matrix: Solid Analysis Batch: 169045 Analyte Cadmium	(ICP) 920/1-A	esult (MDL		-	D	Pr 10/15	repared	Prep 1 Prep Analy:	Type: To Batch: zed 23:43	Dil Fac
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689 Matrix: Solid Analysis Batch: 169045 Analyte Cadmium Chromium	(ICP) 920/1-A	ND		().13	MDL	mg/Kg	g	<u>D</u>	Pr 10/15 10/15	r epared 5/14 18:24	Prep 1 Prep Analyz 10/16/14	Type: To Batch: zed 23:43 23:43	Dil Fac
lethod: 6010B - Metals (Lab Sample ID: MB 720-1689 Matrix: Solid	(ICP) 920/1-A	ND ND		().13).50	MDL	mg/Ko mg/Ko	9 9	<u>D</u>	Pr 10/18 10/18 10/18	epared 5/14 18:24 5/14 18:24	Prep 1 Prep Analy: 10/16/14 10/16/14	Zed 23:43 23:43	Dil Fac

Lab Sample ID: LCS 720-168920/2-A

Matrix: Solid Analysis Batch: 169045

Analysis Batch: 169045							Prep	Batch: 168920
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	50.0	48.5		mg/Kg		97	80 - 120	
Chromium	50.0	50.0		mg/Kg		100	80 - 120	
Nickel	50.0	49.7		mg/Kg		99	80 - 120	
Lead	50.0	50.2		mg/Kg		100	80 - 120	
Zinc	50.0	46.3		mg/Kg		93	80 - 120	

Lab Sample ID: LCSD 720-168920/3-A Matrix: Solid

Analysis Batch: 169045

Analysis Batch: 169045								Batch: 1	68920
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	50.0	48.6		mg/Kg		97	80 - 120	0	20
Chromium	50.0	49.9		mg/Kg		100	80 - 120	0	20
Nickel	50.0	49.8		mg/Kg		100	80 - 120	0	20
Lead	50.0	50.3		mg/Kg		101	80 - 120	0	20
Zinc	50.0	46.6		mg/Kg		93	80 - 120	1	20

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 720-168920/25-A Matrix: Solid Analysis Batch: 169045					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 168920
	Spike	LCSSRM	LCSSRM				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	201	186		mg/Kg		93	67 _ 118
Chromium	106	97.8		mg/Kg		92	67 _ 121
Nickel	305	281		mg/Kg		92	65 ₋ 117
Lead	302	274		mg/Kg		91	62 _ 113
Zinc	388	357		mg/Kg		92	62 - 110

8 9 10 11 12 13

GC Semi VOA

Prep Batch: 168894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-2	SB-SGI-2-2.5'	Silica Gel Cleanup	Solid	3546	
LCS 720-168894/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	3546	
MB 720-168894/1-A	Method Blank	Silica Gel Cleanup	Solid	3546	
nalysis Batch: 16895	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-2	SB-SGI-2-2.5'	Silica Gel Cleanup	Solid	8015B	168894
LCS 720-168894/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	8015B	168894
MB 720-168894/1-A	Method Blank	Silica Gel Cleanup	Solid	8015B	168894
rep Batch: 169074					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-60050-5	SB-SGI-1-2.5'	Silica Gel Cleanup	Solid	3546	
720-60050-5 MS	SB-SGI-1-2.5'	Silica Gel Cleanup	Solid	3546	
720-60050-5 MSD	SB-SGI-1-2.5'	Silica Gel Cleanup	Solid	3546	
LCS 720-169074/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	3546	
MB 720-169074/1-A	Method Blank	Silica Gel Cleanup	Solid	3546	
nalysis Batch: 16915	5				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-60050-5	SB-SGI-1-2.5'	Silica Gel Cleanup	Solid	8015B	169074
720-60050-5 MS	SB-SGI-1-2.5'	Silica Gel Cleanup	Solid	8015B	169074
720-60050-5 MSD	SB-SGI-1-2.5'	Silica Gel Cleanup	Solid	8015B	169074
nalysis Batch: 16917	4				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 720-169074/1-A	Method Blank	Silica Gel Cleanup	Solid	8015B	169074
nalysis Batch: 16917	5				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 720-169074/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	8015B	169074

Metals

Prep Batch: 168920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60050-1	SB-SGI-2-1'	Total/NA	Solid	3050B	
720-60050-2	SB-SGI-2-2.5'	Total/NA	Solid	3050B	
720-60050-4	SB-SGI-1-1'	Total/NA	Solid	3050B	
720-60050-5	SB-SGI-1-2.5'	Total/NA	Solid	3050B	
LCS 720-168920/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-168920/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 720-168920/25-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-168920/1-A	Method Blank	Total/NA	Solid	3050B	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-168920/2-A	Lab Control Sample	Total/NA	Solid	6010B	168920
LCSD 720-168920/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	168920
LCSSRM 720-168920/25-A	Lab Control Sample	Total/NA	Solid	6010B	168920

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Matrix

Solid

Solid

Solid

Solid

Analysis Batch: 169045 (Continued)

Client Sample ID

Client Sample ID

SB-SGI-2-1

SB-SGI-2-2.5

SB-SGI-1-2.5'

SB-SGI-1-1'

Method Blank

Metals (Continued)

Lab Sample ID

Lab Sample ID

720-60050-1

720-60050-2

720-60050-4

720-60050-5

MB 720-168920/1-A

Analysis Batch: 169115

Method

Method

6010B

6010B

6010B

6010B

6010B

2 3 4 5 6 7 8

Prep Batch

Prep Batch

168920

168920

168920

168920

168920

Dilution

Factor

Dilution

Factor

5

4

4

Run

Run

Batch

Number

168920

169115

Batch

Number

168894

168950

168920

169115

Prepared

or Analyzed

10/15/14 18:24

10/17/14 17:18

Prepared

or Analyzed

10/15/14 14:53

10/17/14 04:53

10/15/14 18:24

10/17/14 17:23

Analyst

Analyst

AFM

CTD

SLK

JL

CTD

SLK

Lab

TAL PLS

TAL PLS

TAL PLS

TAL PLS

TAL PLS TAL PLS

Client Sample ID: SB-SGI-2-1'

Batch

Туре

Prep

Client Sample ID: SB-SGI-2-2.5'

Date Collected: 09/19/14 10:13

Date Received: 09/19/14 14:40

Analysis

Batch

Туре

Prep

Prep

Analysis

Analysis

Batch

Method

3050B

6010B

Batch

3546

8015B

3050B

6010B

Method

Date Collected: 09/19/14 10:11

Date Received: 09/19/14 14:40

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Silica Gel Cleanup

Silica Gel Cleanup

Lab Sample ID: 720-60050-1

6

Matrix: Solid

Lab Sample ID: 720-60050-2	
Matrix: Solid	
	9
Lab	40

Client Sample ID: SB-SGI-1-1' Date Collected: 09/19/14 10:28 Date Received: 09/19/14 14:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			168920	10/15/14 18:24	CTD	TAL PLS
Total/NA	Analysis	6010B		4	169115	10/17/14 17:28	SLK	TAL PLS

Client Sample ID: SB-SGI-1-2.5' Date Collected: 09/19/14 10:32 Date Received: 09/19/14 14:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Silica Gel Cleanup	Prep	3546			169074	10/17/14 14:06	JRM	TAL PLS
Silica Gel Cleanup	Analysis	8015B		1	169155	10/20/14 12:25	JL	TAL PLS
Total/NA	Prep	3050B			168920	10/15/14 18:24	CTD	TAL PLS
Total/NA	Analysis	6010B		4	169115	10/17/14 17:32	SLK	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Lab Sample ID: 720-60050-5

Lab Sample ID: 720-60050-4

Matrix: Solid

Matrix: Solid

Certification Summary

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-16

Client: The Source Group Project/Site: Former Paco Pump Site

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: The Source Group Project/Site: Former Paco Pump Site TestAmerica Job ID: 720-60050-3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-60050-1	SB-SGI-2-1'	Solid	09/19/14 10:11	09/19/14 14:40
720-60050-2	SB-SGI-2-2.5'	Solid	09/19/14 10:13	09/19/14 14:40
720-60050-4	SB-SGI-1-1'	Solid	09/19/14 10:28	09/19/14 14:40
720-60050-5	SB-SGI-1-2.5'	Solid	09/19/14 10:32	09/19/14 14:40

13

Mullen, Joan

From:Salimpour, AfsanehSent:Tuesday, October 14, 2014 3:44 PMTo:Mullen, JoanSubject:FW: Additional analysis for 720-60050-1

AFSANEH SALIMPOUR Senior Project Manager

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING 1220 Quarry Lane

Pleasanton, CA 94566

Tel 925.484.1919 | Fax 925.600.3002

www.testamericainc.com

From: Paisha Jorgensen [mailto:pjorgensen@thesourcegroup.net]
Sent: Tuesday, October 14, 2014 3:15 PM
To: Salimpour, Afsaneh
Subject: Additional analysis for 720-60050-1

Hi Afsaneh, I would like to request the following additional analysis: <u>IUFT 5 metals</u> SB-SGI-1-1' SB-SGI-1-2.5' SB-SGI-2-1' SB-SGI-2-2.5'

<u>TPHd/mo with silica gel cleanup</u> SB-SGI-1-2.5' SB-SGI-2-2.5'

Thank you, Paisha

13

720-60050-3

Mullen, Joan

From:Salimpour, AfsanehSent:Tuesday, October 14, 2014 3:44 PMTo:Mullen, JoanSubject:FW: Additional analysis for 720-60050-1

AFSANEH SALIMPOUR Senior Project Manager

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING 1220 Quarry Lane

Pleasanton, CA 94566

Tel 925.484.1919 | Fax 925.600.3002

www.testamericainc.com

720-60050 Chain of Custody

From: Paisha Jorgensen [mailto:pjorgensen@thesourcegroup.net] Sent: Tuesday, October 14, 2014 3:15 PM To: Salimpour, Afsaneh Subject: Additional analysis for 720-60050-1

Hi Afsaneh, I would like to request the following additional analysis: <u>LUFT 5 metals</u> SB-SGI-1-1' SB-SGI-1-2.5' SB-SGI-2-1' SB-SGI-2-2.5'

<u>TPHd/mo with silica gel cleanup</u> SB-SGI-1-2.5' SB-SGI-2-2.5'

Thank you, Paisha

Login Sample Receipt Checklist

Client: The Source Group

Login Number: 60050 List Number: 1

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-60050-3

List Source: TestAmerica Pleasanton