RECEIVED

2:25 pm, Aug 15, 2008

ERAS

Alameda County Environmental Health

Environmental, Inc.

1533 B Street

Hayward, CA 94541

(510) 247-9885 Facsimile: (510) 886-5399

info@eras.biz

SUBSURFACE INVESTIGATION AND GROUNDWATER MONITORING REPORT QUARTER 2, 2008

FOR

FORMER PACO PUMPS FACILITY 9201 SAN LEANDRO STREET OAKLAND, CALIFORNIA

Prepared for

Mr. Mark Vignoles Service West 9201 San Leandro Street Oakland, California 94603

July 31, 2008

TABLE OF CONTENTS

CERTI	FICATIONI	11
1.0	INTRODUCTION AND BACKGROUND	1
1.1	PREVIOUS INVESTIGATIONS	. 2
1.2	GEOLOGY AND HYDROGEOLOGY	3
2.0	WORK PERFORMED	4
2.1	PIPING ASSOCIATED WITH FORMER 550-GALLON UST	. 4
2.2	HAND AUGER BORINGS AND SOIL SAMPLING	4
2	.2.1 SOIL ALONG RAILROAD TRACKS	4
2	.2.2 PCB IN SOIL	.4
2	2.3 BURINGS IN VICINITY OF MW-2	.5 5
2.3	3.1 FORMER 550-GALLON LIST	. ว
2	2.3.1.1 Soil and Groundwater Sampling	.5
	2.3.1.2 Soil-Gas Sampling	.6
2	.3.2 SUSPECTED 2 ^{WD} UST AREA	.7
2.4	WELL MONITORING AND SAMPLING	8
3.0	RESULTS OF INVESTIGATION	9
3.1	HYDROGEOLOGY	.9
3.2	ANALYTICAL RESULTS	. 9
3	.2.1 SOIL	. 9
	3.2.1.1 Soil Along Railroad Tracks	.9
	3.2.1.2 PCBS IIT SUII	10
	3.2.1.4 Soil From Direct-Push Borings	10
3	.2.2 GROUNDWATER	1
	3.2.2.1 Shallow Water-Bearing Zone	11
3	3.2.2.2 Lower water-bearing zone	12
		. ~
4.0	STTE CONCEPTUAL MODEL 1	3
4.1	HYDROGEOLOGY	13
4.2	EXTENT OF CONTAMINATION	13
4	2.1 SUIL	13
4	.2.2 GROUNDWATER	13
5.0	RECOMMENDATIONS 1	5
5.1	SOIL CONTAMINATION ALONG RAILROAD TRACKS	15
5.2	PCB CONTAMINATION IN VICINITY OF MW-1	15
5.3	HYDROCARBON CONTAMINATION IN VICINITY OF MW-2	15
5.5 5	CUNTAIVIINATION ASSOCIATED WITH 550-GALLON UST	15
5	.5.2 PROCEDURES FOR PROPOSED DIRECT-PUSH SAMPLES	17
5	.5.3 PROCEDURES FOR PROPOSED WELL INSTALLATION	18
5.6	CONTAMINATION ASSOCIATED WITH UST NEAR MW-4	8
5.7	GROUNDWATER MONITORING AND ANALYSIS	8

FIGURES

- 1. Site Location Map
- 2. Site Plan
- 3. Detailed View of Boring Locations along the Rail Road
- 4. Detailed View of Soil Sample Locations for PCB Analysis
- 5. Detailed View of Former UST Excavation Area
- 6. Groundwater Potentiometric Map Quarter 2, 2008
- 7. Proposed Sample Locations
- 8. UST Area Detail w/ Proposed Sub-Slab and Monitoring Well Locations

TABLES

- 1. Historical Analytical Results Soil Samples
- 2. Analytical Results Groundwater Grab-Samples
- 3. Historical Analytical Results Groundwater Monitoring Well Samples
- 4. Analytical Results Soil Gas Samples
- 5. Groundwater Data and Analytical Results Monitoring Wells, Quarter 2, 2008
- 6. Analytical Results Soil Samples

APPENDICES

- A ACEH Letters
- B Map of UST Excavation
- C Permit
- D Standard Operating Procedures
- E Boring Logs
- F Field Forms
- G Laboratory Report for Hand Auger Soil Samples
- H Laboratory Reports for Direct-Push Boring and Monitor Well Samples
- I Laboratory Report for Soil Gas Sample
- J Geo Tracker Upload Confirmation

CERTIFICATION

This **Subsurface Investigation and Groundwater Monitoring Report, Quarter 2, 2008**, for 9201 San Leandro Street in Oakland, California, has been prepared by ERAS Environmental, Inc. (ERAS) under the professional supervision of the Registered Geologist whose signature appears hereon.

This report was prepared in general accordance with the accepted standard of practice that exists in Northern California at the time the investigation was performed. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted professional practices within the area at the time of our investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

This report may be used only by the client and only for the purposes stated within a reasonable time from its issuance. Land use, site conditions (both on-site and off-site) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify ERAS of such intended use. Based on the intended use of report, ERAS may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release ERAS from any liability resulting from the use of this report by any unauthorized party.

Respectfully submitted,

Gail M. Jones California Registered Geologist 5725

July 31, 2008

1.0 INTRODUCTION AND BACKGROUND

ERAS Environmental, Inc. (ERAS) is pleased to present this report with the findings of the subsurface investigation and groundwater well monitoring conducted in June 2008 at the PACO Pumps, Inc. (PACO) fuel leak site at 9201 San Leandro Street in Oakland, California (the "Property"). The location of the Property is shown on **Figure 1**, Site Location Map. The site layout is shown on **Figure 2**.

This investigation is based on the Work Plan for Former PACO Pumps Facility (ERAS, March 17, 2008) and on the Technical Comments in the letter from Alameda County Environmental Health dated May 9, 2008 that is included in **Appendix A**. The objectives of this investigation are as follows.

- 1. Locate the terminus of the piping that extended from the former 550-gallon UST.
- 2. Delineate the horizontal and vertical extent of contamination along the western Property boundary adjacent to railroad tracks to assess if contamination was sufficiently removed by previous excavations in that area.
- 3. Collect soil samples in the near the western corner of the Property to delineate the PCB contamination in the area of well MW-1.
- 4. Collect soil samples to further delineate motor oil and other hydrocarbon contamination near the south corner of the Property and to assess if any chlorinated hydrocarbon contamination associated with the adjacent paint room facility may have impacted the shallow soil in the area.
- 5. Characterize the contamination of the soil and groundwater Characterize the contamination of the soil and groundwater in the vicinity of the former 550-gallon UST, including vertical variation of groundwater contamination, in the vicinity of the former 550-gallon UST, and in down-gradient locations along the Property boundaries to assess if contamination associated with the former UST has advanced offsite.
- 6. Collect groundwater grab-samples in the down-gradient and cross-gradient directions from well MW-4 to assess if the well is likely to be representative of the groundwater contamination in the vicinity of the suspected second UST and the down-gradient extent of contamination associated with the suspected UST.
- 7. Collect a soil-gas sample adjacent to well 9MW-3 and the former 550-gallong UST to characterize the location of maximum likely vapor-phase contamination.
- 8. Add detail to the floor usage inside the buildings particularly in the area near the 550gallon UST.

This investigation was conducted in conjunction with a groundwater monitoring event for the five onsite groundwater monitoring wells.

1.1 **PREVIOUS INVESTIGATIONS**

The following is a summary of the previous subsurface investigation that has been performed at the Property. Work prior to 2007 was performed by the environmental consultant for PACO, Jonas & Associates. The analytical results from the previous investigations for which information was available was compiled in **Tables 1 through 4**.

<u>1992 UST Removal</u>

A Soil Characterization Report and Work Plan by Jonas & Associates dated in October 1992 identified a former 550-gallon UST located on the southeast side of the Operations Building (see **Figure 2**) on the Property. The UST was removed and gasoline impacted soil was discovered. This site was over excavated but impacted soil remained near the foundation of the building to the west of the former UST.

1992 Soil Boring Investigation

Soil samples were collected in 1992 from twenty-five locations on the Property. The sample analysis did not detect concentrations of petroleum hydrocarbons, volatile organic compounds (VOCs), or pesticides with one exception. A soil sample from boring B18, located at the southeastern side of the Property near the wood shop building, contained elevated concentrations of Total Petroleum Hydrocarbons as kerosene (TPH-k) and as motor oil (TPH-mo) at shallow depths in an area of surface staining.

The concentration of TPH-k of 8,000 milligrams per kilogram (mg/Kg) is above the current (November 2007) Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) of 83 mg/Kg. The concentration of TPH-mo of 8,000 mg/Kg was above the ESL of 410 mg/Kg. The contaminants detected at B18 were not detected in the nearest sample location B19 northeast or in B16 to the southwest indicating the contamination appeared to be limited in extent.

This report also contained a map displaying details of the excavation and soil samples collected in the area suspected to contain a former UST. Piping found in the excavation was believed to be associated with the former UST and is shown on the map which is included as **Appendix B**.

2000 Risk Management Plan and Monitoring

The Risk Management Plan (Jonas & Associates, 2000) addresses a ventilation system to mitigate vapor exposure risks within a room of Building 4, polychlorinated biphenyls (PCB) in soil, health and safety plans and buyer notification.

The plan recommended that the ventilation system should be maintained, that a small area of PCB contaminated soil currently covered by an asphalt cap not be disturbed, that a Health and Safety Plan be prepared prior to excavation activities in specified areas, that disclosure of these conditions be made to future buyers and that a Risk Management Plan be maintained and provided to any future owner.

The report also documents the detection of polychlorinated biphenyls (PCBs) above the RWQCB ESL of 0.089 mg/Kg in the western corner of the property, at 0.4 milligrams per kilogram (mg/Kg) in soil from boring B6, and 0.67 mg/Kg in soil from boring B7. These analytical results of these and other sample results are presented in **Table 1**.

2002 Addendum to Risk Management Plan

The Addendum to Risk Based Corrective Action Model (Jonas & Associates, 2002) evaluated indoor air risk from benzene in soil vapors and evaluated the RBCA model using a residential scenario. This RBCA identified two carcinogenic risks, based on the average and on the maximum groundwater results, using the residential indoor air exposure carcinogenic risk simulations.

Groundwater Monitoring

A total of five groundwater monitoring wells MW1 through MW5 have been installed at the Property. Monitoring of the groundwater wells was regularly conducted from 1992 to 1998, and occasionally since then. The locations of these wells are shown on **Figure 2**.

All of the wells except for MW3 have contained only low or less than detectable concentrations of gasoline hydrocarbons. Samples from MW3 have contained high concentrations, up to 40,000 micrograms per liter (μ g/L) of TPH-g and 9,000 μ g/L of benzene.

Missing Reports

Several investigations were conducted between 1987 and 1991, while the Property was owned by PACO. Due to an ongoing legal case, ERAS is not authorized to contact PACO Pumps to retrieve the documents requested in the ACEH letter (**Appendix A**).

1.2 GEOLOGY and HYDROGEOLOGY

The Property is located near the northern edge of an area known as the San Leandro Cone, which is in the Fremont of the Santa Clara Valley Groundwater Basin (California Department of Water Resources, 1967). The San Leandro Cone generally consists of thick permeable units separated by thick impermeable units. These sediments act as a groundwater recharge area of the Santa Clara Valley Groundwater Basin. Groundwater in the vicinity occurs in thin discontinuous water bearing strata. The regional groundwater flow follows the topography, moving from areas of higher elevation to areas of lower elevation. The regional groundwater flow direction in the area of the Property has been determined to be to be to the southwest toward San Francisco Bay.

The sediments in the vicinity of the Property are fine-grained alluvial sediments that represent distal deposits of alluvial fans that were deposited by rivers draining upland surfaces to the west and east of the Property. These sediments were deposited in a low energy environment on the margins of San Francisco Bay. At shallow depths beneath these sediments are a series of Recent-age (<10,000 years) blue clay layers that become increasingly thicker toward San Francisco Bay (Helley, et al, 1974). These clay layers are known as the Bay Mud and were deposited in San Francisco Bay during higher stands of sea level. In the vicinity of the Property it is likely that several hundred feet of these sediments overlie sandstone and serpentine sedimentary and metamorphic rocks of the Jurassic-aged Franciscan Formation bedrock.

2.0 WORK PERFORMED

ERAS conducted the subsurface investigation on June 12, 13, and 16, 2008 and groundwater well sampling on June 17 and 18, 2008. Prior to soil boring activities a permit was obtained from the Alameda County Public Works Department and is included as **Appendix C**. The drilling area was marked for USA Digs three days in advance so that private utility companies could mark their lines. All boring locations were given final clearance by Scan Tech of San Jose, a private underground line locator. All soil and groundwater waste are temporarily stored onsite in 55-gallon drums. Pick-up and disposal to an appropriate waste facility has been requested.

2.1 PIPING ASSOCIATED WITH FORMER 550-GALLON UST

ERAS attempted to locate the piping associated with the former 550-gallon UST on June 12th 2008. Scan Tech of San Jose was contracted by ERAS to clear the area where the piping was shown on the map included as **Appendix B**. ERAS planned to expose the piping using a shovel.

ERAS was not able to search this area due to a gas line and electrical line crossing the location preventing the overlaying concrete and asphalt from being cut. Scan Tech did not detect any lines heading toward the former tank pit.

2.2 HAND AUGER BORINGS AND SOIL SAMPLING

The standard operating procedures for collection of soil samples from hand borings are included in **Appendix D**. Boring Logs for all hand auger borings are included in **Appendix E**.

2.2.1 SOIL ALONG RAILROAD TRACKS

Sample locations are shown on **Figure 3**. Elevated concentrations of petroleum hydrocarbons were reported in Pit3 and Pit4, sampled in 1987 (see **Table 1**). A total of six soil borings (Pit3SE, Pit3E, Pit3NW, Pit4SE, Pit4NW, and Pit4E) were dug using a hand-auger on June 12th 2008 in the vicinity of these elevated concentrations to total depths of 2 to 3.5 feet bgs. Two 3-inch soil samples were collected from each boring, one soil sample from between 1 and 1.5 foot bgs, and a second from between 2.5 and 3.5 feet bgs.

Soil samples from the borings were stored in the field in a cooler with blue ice. The samples were refrigerated until transport under chain-of-custody procedures to the laboratory for analysis of total petroleum hydrocarbons as motor oil (TPH-mo) TPH-d, BTEX, MTBE, and polyaromatic hydrocarbons (PAH) which including creosote.

2.2.2 PCB IN SOIL

ERAS advanced three borings (HA-1, HA-2, and HA-3) on June 12th, 2008 by hand in the locations shown on the **Figure 4**. Boring HA-1 was advanced to a depth of 3.25 feet bgs and borings HA-2 and HA-3 were advanced to a depth of 2.75 feet bgs. All three borings were logged and soil samples were collected from 1.25-1.5 feet bgs. A soil sample was also collected from 3-3.25 feet bgs from HA-1 and 2.5-2.75 feet bgs from HA-2 and HA-3.

Soil samples from the borings were stored in the field in a cooler with blue ice. The samples were refrigerated until transport under chain-of-custody procedures to the laboratory. The soil samples from the borings were submitted to a state certified laboratory and analyzed PCBs by EPA method SW8082A.

2.2.3 BORINGS IN VICINITY OF MW-2

Elevated concentrations of kerosene and motor oil were found in soil from this area. ERAS advanced three borings (HA-4, HA-5, and HA-6) on June 12th, 2008 by hand in the locations shown on **Figure 5**. The soil borings were advanced to a depth of 3 feet bgs and soil samples were collected from 1-1.25 feet bgs and 2.75-3 feet bgs for analysis.

Soil samples from the borings were stored in the field in a cooler with blue ice. The samples were refrigerated until transport under chain-of-custody procedures to the laboratory. The samples were submitted to a state certified laboratory for analysis for TPH-d, TPH-mo, and TPH-k and volatile organic compounds (VOCs).

2.3 DIRECT-PUSH BORING AND SAMPLING

The standard operating procedures for direct-push boring and sampling are included in **Appendix D**. Boring Logs for GP-1 through GP-8, and SG-1 are included in **Appendix E**.

2.3.1 FORMER 550-GALLON UST

Concentrations of petroleum hydrocarbons above the ESL for potential drinking water have been consistently detected in samples from monitoring well MW-3. Seven sample borings were advanced on June 12th, 13th, and 16th 2008 to characterize fuel hydrocarbon contamination in soil, groundwater and soil-gas.

2.3.1.1 Soil and Groundwater Sampling

The locations of borings GP-1 through GP-8 are shown on **Figure 2**. Borings GP-2, GP-4, and GP-6 were located approximately 5 to 15 feet from the edge of the former 550-gallon excavation on the northwest, northeast, and southeast sides. Boring GP-8 was advanced along the southwest Property boundary to collect soil and groundwater samples to assess if contamination is migrating off-site in that direction. Borings GP-1 and GP-5 were located along the property boundary northwest of the operations building to assess if contamination is migrating offsite in the down-gradient direction.

The borings were advanced using a direct push sample rig by Vironex of Pacheco. Boring GP-6, located inside the building was drilled using a limited access rig. Soil samples were collected above first water for chemical analysis from those borings in which evidence of contamination was observed. The soil cores were screened for total organic vapors using an organic vapor monitor (OVM) to aid in the selection of soil samples for analysis.

Borings GP-1 and GP-2 were continuously cored to 40 feet bgs. A groundwater sample was collected at the top of the water table by inserting a temporary piezometer with 5 feet of screen to the base of the boring, 16 feet bgs for GP-1 and 13.5 feet bgs for GP-2. The groundwater

samples were collected using plastic tubing with a metal ball check at the base of the tubing (WaTerra-style pump). The ball-check was decontaminated prior to sampling. Groundwater samples were decanted directly into appropriate sample containers which were promptly labeled and stored in a cooler with blue-ice. After shallow water sample was complete, the temporary casing was removed and coring continued for descriptive logging and identification of groundwater sample intervals. Groundwater sample borings were located about 1 foot north of GP-1 and GP-2 for the collection of samples using a Hydropunch[™] sampler. In both GP-1 and GP-2 unsuccessful attempts were made to collect groundwater samples from the interval to represent the basal portion of the screened interval of existing wells MW-1 through MW-5 (18 to 22 feet bgs for GP-1 and 15 to 19 feet for GP-2). However the fine-grained formation silted the sample screen and water did not enter the sample barrel.

All soil and water samples for the remaining locations, GP-4, GP-5, GP-6 and GP-8 were collected from a single boring. The borings were continuously cored until sufficient water entered the boring for the top-of-water sample which collected through a new temporary casing as described above, except in boring GP-8. The attempt to collect the first-water sample using a temporary casing was unsuccessful because the boring caved so that the casing could not be pushed into the water-bearing zone. A shallow water sample using the Hydropunch sampler across the caved interval was also unsuccessful. The shallowest water sample from boring GP-8 was collected from the interval 20 to 24 feet bgs through a Hydropunch sampler. Deeper water samples were collected from the intervals 25 to 29 feet bgs, and 31 to 35 feet bgs. The limited access sample rig encountered refusal at about 30 feet bgs, so the deepest interval water sample was not collected in that boring.

The samples were kept chilled until transport under chain-of-custody by the State certified environmental analytical laboratory. All soil and groundwater samples collected were submitted to a state certified laboratory and analyzed for TPH-g, BTEX, and 5 oxygenates, EDB and 1,2-DCA.

2.3.1.2 Soil-Gas Sampling

On June 16th 2008 ERAS collected one soil-gas and one soil sample from direct-push boring SG-1 located adjacent to monitoring well MW-3. The location of SG-1 is shown on **Figure 6**. The boring was advanced using a direct push sample rig by Vironex of Pacheco. The soil-gas sample was collected by advancing the soil vapor tip to a depth of 5.5 feet bgs and bulling back ½ foot to expose the sample tip from 5-5.5 feet bgs. The area where the rods exit the ground was sealed with hydrated bentonite. The summa canister was leak tested. The tubing and sample interval was purged of three volumes of gas to remove ambient air. A cloth moistened with isopropyl alcohol was tied to all fittings and was periodically re-moistened during sampling.

The soil vapor sample was collected into Summa canisters fitted with a 30-minute flow meter. The sampling was stopped when the vacuum decreased to 5 inches Hg, after about 41 minutes. The vapor sample was submitted to a state certified laboratory and analyzed for TPH-g by Method TO-3, benzene by EPA Method 8250, toluene, ethylbenzene, xylenes, MTBE, and isopropyl alcohol (leak detection compound) by EPA method TO15, oxygen, carbon dioxide and methane by EPA Method D1946.

Once the soil gas sample was collected the boring was advanced to a depth of 15 feet bgs for the collection of a soil sample beneath the soil gas sample. Soil was continuously logged and screened to collect relative level of contamination using an organic vapor meter to the base of the boring. One soil sample was collected from 9.5-10 feet bgs for chemical analysis. The soil sample collected was submitted to a state certified laboratory and analyzed for TPH-g by EPA Method 8015, and BTEX, five oxygenates, EDB and 1,2-DCA by EPA method 8260.

2.3.2 SUSPECTED 2ND UST AREA

No documents verifying the location of this UST near MW-4 reported by Jonas were found in the files of the City of Oakland Fire Department or in the previous reports made available to ERAS. The Jonas report (October 16, 1992) indicated their mapped location of this UST was based on verbal communication of a previous employee of PACO Pumps.

This warehouse is built on a heavily steel reinforced concrete floor for heavy forklift traffic and contains numerous large steel racks. Due to the steel reinforced concrete and the steel racks ground penetrating radar along with other methods of locating the exact location of this UST are not likely to succeed under current conditions. Therefore, it is not feasible at this time to physically locate the UST pit and confirm if the tank was removed while current business operations are ongoing.

ERAS attempted to advance three borings, as shown on **Figure 2**, down-gradient and crossgradient of well MW-4 to investigate the extent of dissolved contamination that may be associated with this suspect 2nd UST. Borings GP-3 and GP-7 were advanced on June 13th and 16th 2008 by Vironex of Pacheco using a direct push sample rig. The planned boring located southeast of the office building was not able to be advanced due to a number of underground high pressure fire suppression lines in this desired location. The nearby alleyway between the buildings was not feasible as a replacement location due to high truck traffic. Therefore, that boring was aborted. A feasible replacement will be proposed later in this report.

Borings GP-3 and GP-7 were advanced to 35 feet bgs. Soil was continuously cored for lithologic logging and screened to 20 feet bgs for borings GP-3 and 15 feet bgs for boring GP-7 to collect relative level of contamination using an organic vapor meter. One soil sample was collected from the vadose zone from boring GP-3 for chemical analysis. Groundwater samples were collected after the first water bearing zone was encountered. Once the necessary samples were collected from the initial water bearing zone a Hydropunch[™] sampler was utilized to collect discrete samples from 25-29 feet bgs and 31-35 feet bgs from boring GP-3, along with a sample from 25-29 feet bgs from borings GP-7. A discrete sample from 31-35 feet bgs was unable to be collected from boring GP-7 due to insufficient water.

All groundwater samples were collected using plastic tubing with a metal ball check at the base of the tubing (WaTerra-style pump). The ball-check was decontaminated prior to sampling. Groundwater samples were decanted directly into appropriate sample containers which were promptly labeled and stored in a cooler with blue-ice. The samples were kept chilled until transport under chain-of-custody by the State certified environmental analytical laboratory. All soil and groundwater samples collected were submitted to a state certified laboratory and analyzed for TPH-d, TPH-g, BTEX, and five oxygenates, EDB and 1,2-DCA.

2.4 WELL MONITORING AND SAMPLING

On the 17th and 18th of June 2008, ERAS recorded groundwater elevations and collected groundwater samples from five on-site monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5. The locations of the monitoring wells are shown on **Figure 2**. The standard operating procedure for groundwater sampling is included as **Appendix D**.

At each monitoring well, the water-tight cap was removed and the water level in the well was allowed to equilibrate to atmospheric pressure at least one-half hour. Static water level was measured using an electronic water-level probe. The probe was decontaminated between wells using a non-phosphate detergent and rinsed with purified water. The field records of water-level measurements are included in **Appendix F**.

Groundwater was purged using a new disposable bailer from each well until the pH, conductivity, and temperature stabilized to within 10%. Samples were then decanted from the bailers using VOC-tips into appropriate containers (except for THP-d sample). The well purging and sampling forms are included in **Appendix F**. The sample containers were labeled and stored in a cooler with blue-ice, to be transported under chain-of-custody documentation to the State certified analytical laboratory for analysis of THP-g, BTEX, five oxygenates, 1,2-DCA and EDB. The chain-of-custody form is included in **Appendix G**.

Purge water is temporarily stored onsite. A request has been submitted to Integrated Wastestream Management (IWM) for transport of the 55-gallon drum will be transported to an appropriate disposal facility.

3.0 **RESULTS OF INVESTIGATION**

3.1 HYDROGEOLOGY

The depth-to-water data and casing elevation data was used to calculate the groundwater elevation in **Table 5**. The groundwater elevation data was used to infer the contours in the potentiometric map of **Figure 6**. The groundwater flow direction between MW-3 and MW-4 was determined to be to the southwest with a gradient of 0.006 ft/ft. The groundwater flow direction under the operations building was found to be toward the northwest at a gradient of 0.003 ft/ft. This groundwater flow pattern mirrors the topographic contours shown on **Figure 1**.

The descriptive field boring logs are included as Attachment E. Beneath the asphalt/concrete the subsurface consisted of clay, with interbedded silt and minor silty sand to about 24 feet bgs. Groundwater was found to occur in two water-bearing zones. First groundwater was encountered at depths between 12.5 and 20 feet bgs. Top of water in the wells has historically been measured as between 7 and 11 feet below top-of-casing. The deeper apparent top-of water in the borings may be due to clay smear of the direct-push boring making water more difficult to detect, rather than confined groundwater conditions. Thus the upper water-bearing zone is in the fine-grained materials from 7 to about 24 feet bgs. The lower water-bearing zone encountered below about 24 feet in borings GP-1 and GP-2 was comprised of poorly graded fine to medium grained sand alternating with well sorted sand and gravel.

3.2 ANALYTICAL RESULTS

3.2.1 SOIL

3.2.1.1 Soil Along Railroad Tracks

The descriptive field boring logs are included as **Attachment E**. Sand and sandy gravel were encountered in borings Pit3SE, Pit3E, Pit3NW, Pit4SE, Pit4E, and Pit4NW to a depth of 2 to 2.5 feet and extended to the base of the borings. No hydrocarbon odors or elevate OVM detections were present.

Soil samples from borings Pit3SE, Pit3E, Pit3NW, Pit4SE, Pit4E, and Pit4NW were submitted to a state certified laboratory and analyzed for total petroleum hydrocarbons as motor oil (TPH-mo), TPH-d, BTEX, MTBE, and polyaromatic hydrocarbons (PAH) which include Creosote. The laboratory analytical report is included as **Appendix G**. A table displaying the results is included as **Table 6**.

TPH-d was only detected above the ESL in the sample collected from Pit3SE at a depth of 1.25-1.5 feet bgs at a concentration of 140mg/Kg. TPH-mo was only detected above the ESL in the sample collected from Pit3SE at a depth of 1.25-1.5 feet bgs at a concentration of 550mg/Kg. The only PAH that was detected above the ESLs was benzo(a) pyrene in the samples collected from Pit3NW at a depth of 1.25-1.5 feet bgs and Pit4SE at a depth of 1-1.25. The concentrations of benzo(a)pyrene were 0.15mg/kg in Pit3NW and 0.042 in boring Pit4SE. No concentrations of BTEX or MTBE were detected above the MRL.

3.2.1.2 PCBs in Soil

The descriptive field boring logs are included as **Appendix E**. Beneath the concrete/asphalt silty clay was encountered in borings HA-1 and HA-2. Sandy gravel was encountered to the base of the boring in HA-3. No PCB odors were present.

The soil samples from borings HA-1, HA-2, and HA-3 were submitted to a state certified laboratory and analyzed PCBs by EPA method SW8082A. The laboratory analytical report is included as **Appendix G**. A table displaying the results is included as **Table 6**.

PCB's were only detected above the ESLs in samples collected from boring HA-2 at a depth of 2.5-2.75 feet bgs and HA-3 at a depth of 2.5-2.75 feet bgs. The concentrations were 0.050mg/Kg and 0.140mg/Kg respectively.

3.2.1.3 Boring MW-2 Area

The descriptive field boring logs are included as **Appendix E**. Sand and sandy gravel were encountered to a depth of 2 feet bgs where a silty clay was encountered which extended to the base of the boring. Hydrocarbon odors were present in all three borings (HA-4, HA-5, and HA-6).

The samples from borings HA-4, HA-5, and HA-6 were submitted to a state certified laboratory for analysis for TPH-d, TPH-mo, and TPH-kerosene by EPA method 8015, BTEX, and volatile organic compounds (VOCs) by EPA method 8260. The laboratory analytical report is included as **Appendix G**. A table displaying the results is included as **Table 6**.

TPH-d was detected above the ESL in the samples collected from boring HA-5 at a depth of 1-1.25 feet bgs and HA-6 at a depth of 1-1.25 feet bgs. The detected concentrations of TPH-d were 1,000mg/Kg and 7,600mg/Kg respectively. TPH-mo was detected above the ESL in the samples collected from boring HA-5 at a depth of 1-1.25 feet bgs and HA-6 at a depth of 1-1.25 feet bgs. The detected concentrations of TPH-d were 1,600mg/Kg and 20,000mg/Kg respectively.

TPH-k was detected above the ESL in the samples collected from boring HA-5 at a depth of 1-1.25 feet bgs and HA-6 at a depth of 1-1.25 feet bgs. The detected concentrations of TPH-d were 1,200mg/Kg and 2,700mg/Kg respectively. No concentrations of VOCs were detected above the ESL in any of samples collected from HA-4, HA-5, or HA-6. No concentrations of THd, TPH-mo, or TPH-k above the ESLs were detected in the samples collected from boring HA-4.

3.2.1.4 Soil From Direct-Push Borings

All soil samples collected from direct push borings were submitted to a state certified laboratory and analyzed for TPH-g by EPA 8015, and for BTEX, five oxygenates, EDB and 1,2-DCA by EPA Method 8260. The laboratory analytical report is included as **Appendix H**. A table displaying the analytical results is included as **Table 6**.

Concentrations of TPH-g were detected above the ESLs in the samples collected from borings GP-2, GP-4, GP-6, and SG-1 ranging from 340mg/Kg (GP-2) to 520mg/Kg (GP-6). Concentrations of benzene were detected above the ESLs in the samples collected from borings GP-2, GP-4, GP-6 and SG-1 ranging from 0.72mg/Kg (GP-4) to 4.6mg/Kg (GP-6). No concentrations of MTBE were detected in the soil samples collected from borings GP-2, GP-8 or SG-1. No concentrations of TPH-g or BTEX were detected in the soil sample collected from GP-8.

The soil sample collected from boring GP-3 to assess contamination associated with the suspected second UST located near well MW-4 was also analyzed for TPH-d by EPA method 8015. No concentrations of TPH-d, TPH-g, BTEX, or MTBE were detected in the soil sample collected from borings GP-3 above the laboratory reporting limit.

3.2.2 GROUNDWATER

All groundwater samples were analyzed for TPH-g by EPA Method 8015, and for BTEX, five oxygenates, EDB and 1,2-DCA by EPA Method 8260. The groundwater samples collected from groundwater monitoring well MW-4 and borings GP-3 and GP-7 was also analyzed for TPH-d by EPA method 8015. The analytical results for groundwater grab-samples are shown on **Table 2**, and groundwater samples from monitoring wells area shown on **Table 5**. The laboratory reports are included as **Appendix H**.

3.2.2.1 Shallow Water-Bearing Zone

Groundwater samples from the shallow water-bearing zone were collected from the monitoring wells MW-1 through MW-5 and borings GP-1 through GP-8. The concentrations of TPH-g and benzene in the shallow water-bearing zone are shown on **Figure 6**. Concentrations of TPH-g were detected in the groundwater samples collected from the shallow water bearing zone (8.5-24 feet bgs) from borings GP-2, GP-4, and GP-6 and wells MW-3 and MW-4 ranged from 81µg/L (MW-4) to 45,000µg/L (GP-2 8.5-13.5).

Concentrations of benzene detected in the groundwater samples collected from the shallow water bearing zone (8.5-24 feet bgs) from borings GP-2, GP-4, GP-6, well MW-4 and MW-3 ranged from $11\mu g/L$ (MW-4) to 4,400 $\mu g/L$ (MW-3). MTBE was detected above the ESL (5 $\mu g/L$) in the shallow water sample from GP-8 (20-24 feet bgs) at 6.1 $\mu g/L$. MTBE was not detected in the water samples from the vicinity of the 550-gallon UST (well MW-3, and borings GP-2, GP-4, and GP-6), but the reporting limits were elevated due to high concentrations of other compounds.

Only the groundwater samples from well MW-4, borings GP-3 and GP-7 were analyzed for TPH-d. TPH-d was detected above the ESL (100 μ g/L) in the shallow samples from GP-3 at 180 μ g/L TPH-d and GP-7 at 280 μ g/L TPH-d. TPH-d was not detected above the reporting limit (50 μ g/L) in the sample from well MW-4.

3.2.2.2 Lower Water-Bearing Zone

Groundwater grab-samples from the interval between 24 and 29 feet bgs were collected from borings GP-1 through GP-8. Groundwater from this interval from the borings adjacent to the 550-gallon UST, GP-2, GP-4, and GP-6 were found to contain concentrations of TPH-g and benzene ranging from 210µg/L TPH-g and 7.1 µg/L benzene (GP-2) to 12,000µg/L TPH-g and 240 µg/L benzene (GP-4). Concentrations of MTBE were detected in the samples from borings GP-2 at 12 µg/L MTBE and GP-8 at 6.1μ g/L MTBE. The MTBE reporting limit for the samples GP-4 and GP-6 were elevated to the ESL of 5µg/L. No concentrations of TPH-g, BTEX or MTBE above the ESLs were detected in the groundwater samples collected from this interval in borings GP-1, GP-3, or GP-5. TPH-d was not detected in the samples from GP-3 and GP-7.

Groundwater grab-samples from the interval between 31 and 36 feet bgs were collected from borings GP-1 through GP-5, and GP-8. Concentrations of TPH-g and benzene were detected in the samples collected from borings GP-2 and GP-4, adjacent to the UST, at 70 μ g/L THP-g and 5.2 μ g/L benzene in GP-2, and 330 μ g/L TPH-g and 15 μ g/L benzene in GP-4. Benzene was detected in the sample from boring GP-1 at 0.71 μ g/L, which is below the ESL. No concentrations of TPH-g or BTEX were detected in the groundwater samples collected from this interval in borings GP-3, GP-5, or GP-8.

3.3.3 SOIL-GAS

The soil vapor sample SG-1 was submitted to a state certified laboratory and analyzed for TPH-g by TO-3, BTEX, MTBE, and isopropyl alcohol (leak detection compound) by TO15, and oxygen, carbon dioxide and methane by EPA Method D1946. The laboratory analytical report is included as **Appendix I**. The results are presented in **Table 4**.

Sample SG-1, 5-5.5 was found to contain TPH-g at 120,000 μ g/m³ and benzene at 11,000 μ g/m³, which are above the ESLs.

4.0 SITE CONCEPTUAL MODEL

4.1 HYDROGEOLOGY

Shallow groundwater flows toward west under most of the site, but toward the northwest in the vicinity of the southeast Property boundary. This conforms to the topography as shown in **Figure 1**. The top of groundwater is roughly from 8 to 10 feet bgs.

The upper 5 feet of the subsurface is comprised of silty sand underlain by alternating silt and clay to about 25 feet bgs. Groundwater is most likely under water-table (unconfined) conditions. Below 25 feet to at least 37.5 feet is comprised primarily of sand with interbedded gravel and silty/clayey sand.

4.2 EXTENT OF CONTAMINATION

4.2.1 SOIL

The onsite extent of fuel hydrocarbon and semi-volatile compounds in soil along the railroad tracks, the onsite extent of PCBs in shallow soil in the western corner of the Property near well MW-1, and onsite extent of total petroleum hydrocarbons in shallow soil near MW-2 have been delineated and found to be limited in horizontal and vertical extent. The estimated extent of TPH and benzo(a)pyrene above the ESLs in the area adjacent to the railroad tracts is shown in **Figure 3**. The estimated extent of PCB in shallow soil in the western corner of the Property is shown on **Figure 4**. The estimated extent of TPH in shallow soil in the area near MW-2 is shown on **Figure 5**.

It is unknown if soil contamination is associated with the suspected UST near MW-4. A soil samples was not collected from well MW-4. Also the area of the suspected UST has not been able to be investigated due to the presence of large steel racks in the area identified as the most likely location of the UST.

Shallow soil samples collected from borings adjacent to pit of the former 550-gallon UST were found to contain TPH-g and benzene concentrations in excess of the current ESLs (see **Figure 5**). Soil collected from boring GP-3 was not found to contain TPH-g or BTEX above the laboratory reporting limits, thus delineating the extent of soil contamination northeast of the former UST. The horizontal extent of soil contamination associated with the UST has not been delineated in other directions.

4.2.2 GROUNDWATER

Groundwater collected at various depths from direct-push borings adjacent to the former UST pit, GP-2, GP-4 and GP-6 indicate that the highest concentrations were found in the shallow zone in the fine grained material. The zone from 25 feet bgs to at least 35 feet (see logs GP-1 and GP-2) is comprised mainly of relatively high permeability sands. The top of the sandy zone from 25 to 29 feet was also found to contain concentrations of TPH-g and benzene (as well as some other compounds in G_3 and GP-6) above the ESLs. Groundwater samples from the zone of 31 to 35 feet bgs (collected from GP-2 and GP4 only), were found to have much lower concentrations with only TPH-g and benzene above the ESLs in boring GP-4 and only benzene

about the ESL in boring GP-2. Thus the contamination has advanced from the upper low permeability silt/clay zone above 25 feet bgs to impact the lower sand zone below 25 feet. The contaminant concentrations attenuate relatively rapidly below 30 feet to two to three orders of magnitude lower concentrations for TPH-g and one to three orders of magnitude lower for benzene.

The down-gradient extent of the dissolved plume is delineated by the results for groundwater from direct-push borings GP1, GP-5, and GP-8. MTBE was detected at 6.1 μ g/L in GP-8 at 20 to 24 feet bgs, just above the current ESL of 5 μ g/L. The groundwater samples from the down-gradient borings were not found to contain detectable concentrations in the shallow zone, but contained toluene in concentrations below the ESL in the upper part of the sandy zone (24 to 29 feet bgs). GP-1 was also found to contain benzene and toluene below the ESLs in the 32 to 36 foot interval. These results indicate the dissolved hydrocarbon plume is not advancing offsite.

The results for groundwater from locations to assess contamination associated with the suspected UST under the northeastern warehouse, MW-4, GP-3, and GP-7, are inconclusive. The sample from well MW-4, believed to be located adjacent to the UST was not found to contain diesel, but contained benzene at 11 μ g/L, above the ESL of 1 μ g/L, along with other aromatic compound in concentrations below the ESLs. This compares to the shallow groundwater samples from borings GP-3 and GP-7 which were found to contain TPH-d above the ESL of 100 μ g/L, but no concentrations of TPH-g or BTEX above the laboratory reporting limit. Unfortunately, the planned location in the most down-gradient direction from MW-4 was aborted due to the proximity of a high pressure fire line and other utilities made the location unsafe to drill. The alley between the northeast warehouse and the adjacent building has very high truck traffic making drilling during normal working hours infeasible.

5.0 **RECOMMENDATIONS**

5.1 SOIL CONTAMINATION ALONG RAILROAD TRACKS

Soil samples indicate that a small amount of soil with TPH and benzo(a)pyrene above the current ESLs exist. ERAS recommends additional excavation to remove this soil. The area of recommended soil removal to 3.5 feet bgs is shown in **Figure 3**. Five confirmation soil samples will be collected at about 1.25 feet bgs on the sidewalls and one bottom wall sample. Confirmation samples will be analyzed for TPH-d and TPH-mo by EPA Method 8015 with silica gel clean-up and SVOCs by 8270.

5.2 PCB CONTAMINATION IN VICINITY OF MW-1

The soil samples collected in the vicinity of 9MW-2 indicate that PCBs exist above the ESLs in soil down to 5 feet bgs. The most likely source of the PCB in soil appears to be the transformer located on the adjacent site just on the other side of the Property line. ERAS recommends removal of soil to 5 feet bgs in the area shown on **Figure 4**. Five confirmation soil samples will be collected from the excavation. Four sidewall samples will be collected at about 1.5 feet bgs and one bottom wall sample. The confirmation samples will be analyzed for PCBs by EPA Method 8082.

5.3 HYDROCARBON CONTAMINATION IN VICINITY OF MW-2

No VOCs were detected above current ESLs. Therefore, ERAS concludes that the usage of the adjacent building as a paint room has not significantly impacted the soil in this area.

Two soil samples collected at 1 to 1.25 feet bgs were found to contain TPH-d, TPH-mo, and TPH-k in excess of the current ESLs. The sample collected at location HA-4 between previous locations B-16 and B-17 was not found to contain contaminants above the current ESLS. None of the three soil samples collected from 2.75 to 3 feet bgs contained contaminants above the ESLs. The source of this contamination is unknown. Based on the highest concentrations being found along the Property line, and the known source and occurrence of hydrocarbon contamination of the adjacent portion of the neighboring property (9235 San Leandro Street), the source of the contamination is likely to have been located on the adjacent property.

ERAS recommends excavation of soil to a depth of 2.5 feet bgs in the area shown on **Figure 5**. Five confirmation soil samples will be collected from the excavation, one bottom wall sample and four sidewall samples will be collected at about 1 foot bgs. Soil samples will be analyzed for TPH-k, TPH-d and TPH-mo by EPA Method 8015 with silica gel clean-up.

5.5 CONTAMINATION ASSOCIATED WITH 550-GALLON UST

The soil samples collected from borings GP-2, GP-3, GP-6 and SG-1 were all found to contain contamination above the current ESLs. However the horizontal extent of soil contamination associated with the former UST has not been delineated.

The groundwater grab-samples collected adjacent to the UST from borings GP-2, GP4, and GP-6 were found to contain high concentrations of TPH-g and BTEX in the shallow groundwater

bearing zone with concentrations above the ESL for benzene extending to 35 feet. Therefore ERAS recommends the installation of a monitoring well adjacent to well MW-3 screened from 25 to 35 feet bgs. The down-gradient and cross-gradient borings G-1, GP-5 and GP-8 were not found to contain TPH-g or BTEX above the ESLs. However, the shallow sample from GP-8 was found to contain MTBE just above the current ESL for the protection of drinking water.

Therefore ERAS proposes the installation of wells adjacent to the locations of borings GP-1 and GP-8 to monitor the quality of groundwater advancing offsite. Each of these locations should include two wells, one screened from about 8 to 23 feet bgs to monitor the upper fine-grained water-bearing zone, and the second screened from 25 to 35 feet bgs to monitor the lower sandy water-bearing zone. Also, ERAS proposes the installation of a well next to well MW-3 that will be screened from 25 to 35 feet bgs to monitor the lower water-bearing zone in the area of the UST. The locations of the proposed well locations are shown on **Figure 7**.

ERAS recommends collection of soil-gas, soil and groundwater grab-samples from inside the southeastern warehouse building to delineate the down-gradient extent of contamination in the vapor phase, soil and groundwater. **Figure 7** shows one proposed sub-slab samples location and six boring locations for the collected of soil gas, soil and groundwater grab-samples. **Figure 8** shows a detailed view of the sub-slab sample location in a storage room, as well as the location of the deep-zone monitoring well adjacent to the UST and three of the multi-phase sample borings.

5.5.1 PROCEDURES FOR PROPOSED SUB-SLAB SAMPLE

The sub-slab sample is proposed for the room in which soil-gas samples B-5 and B-6 were collected in 1998. The data from this sample will give an indication of the degree of the concentration of contaminant vapors that collect under the slab in an area of known high contaminant vapors at 3 feet bgs in soil.

An outer boring will be cut utilizing a drill and a rotary bit about 2-inch diameter with no or minimal hammer to partially penetrate the concrete slab about 3 inches in depth. Cuttings and dust will be continuously vacuumed during advancement. A small inner hole of 5/16th diameter will be advanced and periodically vacuumed penetrating the slab and advancing about 3-inches into the sub-slab material. Stainless steel chromatography grade 3-inch long tubing will be set with the lower end suspended in the inner hole and the upper end connected via Swagelok compression filling to a Swagelok quick-connect fitting. The basal half of the upper larger diameter hole will be sealed using a quick-drying Portland cement pumped into place using a small squeeze-bulb dropper. Prior to sampling the probe will be allowed to equilibrate in the closed position for a minimum of one week. A schematic diagram of the proposed sub-slab sample port is included in **Appendix C**.

The soil-gas sample will be withdrawn through new polyethylene tubing into 6-liter Suma canister with a 30-minute flow regulator and particulate filter. Each canister will go through a leak test to be sure the fittings are air-tight. To pass the test, the canister must hold a vacuum for at least three minutes. Prior to sampling the ambient air will be purged by withdrawing three volumes of the tubing and vapor point holder, PRT tubing adapter and sampling interval (6-inch

(6-inch length of boring) into a separate purge canister. All fittings and potential entry points of ambient air including the top of the direct-push boring will be covered with a cloth or paper towel dampened with isopropyl alcohol as a leak detection compound. During the time of sample collection the cloth will be periodically re-dampened with alcohol.

The sample tubing will enter a flow regulator attached to a t-valve with one tubing path routed to the purge canister and the other tubing routed to the 6-liter sample Suma canister. To purge ambient air from the system, the time required for purging three volumes of the sample space and tubing will be calculated using the draw-rate of the flow regulator. When purging is complete, the T-valve will be switched to draw soil-gas into the sample canister. Sampling will be complete when the pressure gauge on the flow regulator is about five-inches Hg.

A schematic diagram of the sample train is included in **Appendix C**. Standard Operating Procedures for Soil-gas Sampling are included as **Appendix C**. The sample canisters will be stored out of direct sunlight and shipped under chain of custody for analysis of TPH-g by TO-3, BTEX/MTBE and 2-propanol (leak detection) by TO-15 and oxygen, carbon dioxide, methane by ASTM 1946.

5.5.2 PROCEDURES FOR PROPOSED DIRECT-PUSH SAMPLES

The proposed borings will be advanced using a limited access direct-push sample rig to about 30 feet bgs. Based on the drilling of GP-6 using a limited access rig 30 feet bgs is expected to be about the limit of the rig's penetration ability.

At the six soil boring locations, the direct-push sample rig will utilize the Geoprobe Post Run Tubing (PRT) system with $1/4^{th}$ -inch polyethylene tubing and expendable or retractable drive points. The drive point will be driven to 5.5 feet below ground surface (bgs) and retracted to 5 feet bgs. The surface where the rods exit the ground will be sealed with bentonite chips and allowed to hydrate for 30 minutes. The soil-gas samples will be collected as described above for the sub-slab sample.

After soil gas sampling is complete, the borings will be advanced to about 4 feet below the first encountered groundwater. The soil will be cored continuously and screened for contamination using an OVM. A soil sample will be selected from the vadose zone of each boring for analysis of TPH-d by EPA Method 8015, and for TPH-g BTEX, five oxygenates, EDB, and 1,2-DCA by EPA Method 8260.

A temporary piezometer with 5 feet of screen will be inserted to the base of the boring and a groundwater sample will withdrawn and transferred to appropriate containers. The piezometer will then be removed and a Hydropunch[™] style sampler will be advanced to 29 feet and a groundwater sample will be withdrawn from the 25 to 29 foot depth interval. Prior to sample withdrawal, one volume of the sample barrel and rod (about 1 gallon) will be purged to avoid cross contamination of the sample.

The standard operating procedures for direct-push drilling and sampling is included in **Attachment C**.

5.5.3 PROCEDURES FOR PROPOSED WELL INSTALLATION

Borings for the proposed wells will be initially continuously cored by direct-push rig for descriptive logging and refinement of final screened interval. For the shallow wells, a soil sample will be selected for chemical analysis of TPH-d by EPA Method 8015, and TPH-G, BTEX, 5 oxygenates, EDB and 1,2-DCA by EPA Method 8260. The borings for shallow wells will be advanced to about 23 feet bgs. The borings for the deeper wells will be advanced to about 35 feet bgs. The borings will be reamed using 8-inch diameter hollow-stem augers to total depth. The wells will be constructed of 2-inch diameter schedule 40 PVC with 0.002-inch screen. The screened interval will be about 8 to 23 feet for the shallow wells and about 25 to 35 feet for the deeper wells. The filter pack of #2/12 sand will be added to the annulus to 1-foot above the screen, and topped with 2 feet of hydrated bentonite. The remaining annulus will be sealed with neat cement grout to about 6 inches bgs. The deeper wells will be sealed by pumping the grout through a pipe to the base of the seal interval to provide a proper seal. The well-head will be protected with a traffic-rated flush mounted vault.

The wells will be developed at least 48 hours after using a surge block and pump until the silt clears substantially from the purge water. The new wells will be added to the quarterly groundwater monitoring program.

The standard operating procedures for well installation and development are included in **Appendix C.**

All soil and purge water will be stored onsite in 55-gallon drums until transport to an appropriate disposal facility.

5.6 CONTAMINATION ASSOCIATED WITH UST NEAR MW-4

The planned boring most down gradient of well MW-4 was aborted due to the presence of underground utilities. Therefore, ERAS proposes a boring located along the southeast wall of the northeast building as shown on **Figure 7**. Sampling from this direct-push boring would include a vadose zone soil sample if evidence of soil contamination is encountered, and collection of at least two groundwater samples, at least one each from the upper fine-grained water-bearing zone and the lower sandy zone. The boring procedures would be the same as described above, except that a soil-gas sample would not be collected.

5.7 GROUNDWATER MONITORING AND ANALYSIS

The proposed shallow groundwater monitoring wells near borings GP-1 and GP-8 will serve to confirm the interpretation of the potentiometric surface shown in **Figure 3**.

After installation of the proposed new wells, ERAS recommends a round of groundwater monitoring and sampling for all wells that includes the addition of analysis of TPH-d for groundwater from all wells. This is recommended to ascertain if the distribution of TPH-d above the ESL is more widespread than currently thought. Subsequent to that ERAS recommends that quarterly sampling be conducted for wells MW-3 and the new deeper well adjacent to MW-3, MW-4, the proposed shallow and deeper wells near boring GP-1, and the proposed shallow well near boring GP-8.

FIGURES

FIGURE 1 LOCATION MAP 9201 San Leandro Street Oakland, CA 94603

ERAS Environmental, Inc.

TABLES

TABLE 1 - HISTORICAL ANALYTICAL RESULTS - SOIL SAMPLES 9201 San Leandro Street, Oakland, CA

Sample Id	Date	Sample	Depth	TPH-g	TPH-d	TPH-mo	TPH-k	Benzene	Toluene	Ethylbenzene	Xylenes	Oxygenates	VOCs	PCBs	Arsenic*
		Туре	(feet)				(milligrams per kilogram)								
1987 Dames & N	Nore														
Pit 1	7/27/1987	Pit	1.5	NA	NA	250	NA	NA	0.600	NA	NA	NA	NA	NA	NA
Pit 1	7/27/1987	Pit	3	NA	NA	130	NA	NA	0.470	NA	NA	NA	NA	NA	NA
Pit 2	7/27/1987	Pit	1.5	<10	NA	<10	NA	NA	0.420	NA	NA	NA	NA	NA	NA
Pit 2	7/27/1987	Pit	3	NA	NA	<10	NA	NA	0.600	NA	NA	NA	NA	NA	NA
Pit 3	7/27/1987	Pit	1.5	NA	NA	780 (800**)1	NA	NA	0.230	NA	NA	NA	NA	NA	NA
Pit 3	7/27/1987	Pit	3	<10	NA	600	NA	NA	0.380	NA	NA	NA	NA	NA	14
Pit 4	7/27/1987	Pit	1.5	NA	NA	780	NA	NA	0.110	NA	NA	NA	NA	NA	NA
Pit 4	7/27/1987	Pit	3	NA	NA	1100	NA	NA	0.045	NA	NA	NA	NA	NA	NA
1991 Jonas & As	ssoc Rpt														
Location of Pits 1	-4														
B-1 (Pit1)	10/1/1991	Borina	3.5	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA
B-2 (Pit 2)	10/1/1991	Borina	3.5	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA
B-3 (Pit 3)	10/1/1991	Borina	3.5	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA
B-4 (Pit 4)	10/1/1991	Borina	3.5	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA
B-5 (dup of B-4)	10/1/1991	Boring	3.5	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA
Adjacant to MIN 1	I	0													
	10/1/1001	Poring	0.05	NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0 400	NA
B-0 B-7	10/1/1991	Boring	0-0.5	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	0.400	NA
D-7	10/1/1771	Dornig	0-0.5	NA		NA IIIA	NA	NA.	NA I	110	NA	NA I		0.070	110
1992 Jonas & As	soc Rpt														
B-8	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	22	110	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-9	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	660	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-10	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	27	63	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-11	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	120	410	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-12	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-13	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	55	98	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-14	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	21	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-16	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	45	190	ND	ND	0.008	ND	ND	NA	ND	NA	ND
B-17	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	520	290	ND	ND	ND	ND	NA	ND	NA	ND
B-18	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	7800	8000	0.005	0.049	0.088	1.2	NA	ND	NA	ND
B-19	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	170	27	ND	ND	ND	ND	NA	ND	NA	ND
B-20	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	15	120	ND	ND	ND	ND	ND	NA	ND	NA	3.5
B-21	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-22	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	29	ND	ND	ND	ND	ND	NA	ND	NA	3.0
B-23	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	430	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-24	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-25	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	49	210	ND	ND	ND	ND	ND	NA	ND	NA	ND
B-26	4/9,13,14/1992	Boring	0.5, 1.5 ³	NA	12	57	ND	ND	ND	ND	ND	NA	ND	NA	5.4

TABLE 1 - HISTORICAL ANALYTICAL RESULTS - SOIL SAMPLES 9201 San Leandro Street, Oakland, CA

Sample Id	Date	Sample	Depth	TPH-g	TPH-d	TPH-mo	TPH-k	Benzene	Toluene	Ethylbenzene	Xylenes	Oxygenates	VOCs	PCBs	Arsenic*
		Туре	(feet)			(milligrams per kilogram)									
Excavation Sample															
B-1	6/30/1992	Sidewall	6	9.2	ND	NA	NA	0.043	ND	0.086	0.067	NA	NA	NA	NA
B-2	7/27/1992	Sidewall	6	6.2	NA	NA	NA	1.800	ND	0.180	ND	NA	NA	NA	NA
B-3	7/27/1992	Sidewall	6	7.3	NA	NA	NA	0.053	ND	0.200	ND	NA	NA	NA	NA
B-4	7/27/1992	Sidewall	6	5.3	NA	NA	NA	0.650	ND	0.160	0.014	NA	NA	NA	NA
B-5	7/27/1992	Sidewall	6	1.9	NA	NA	NA	0.034	ND	0.012	ND	NA	NA	NA	NA
B-6	8/3/1992	Sidewall	6	13	NA	NA	NA	2.100	0.018	0.340	0.190	NA	NA	NA	NA
B-7	8/3/1992	Sidewall	6	11	NA	NA	NA	2.100	0.011	0.230	0.067	NA	NA	NA	NA
B-8	8/3/1992	Sidewall	6	7.4	NA	NA	NA	0.750	0.0092	0.180	0.026	NA	NA	NA	NA
B-9	8/3/1992	Sidewall	6	2.3	NA	NA	NA	0.039	0.0058	0.008	0.009	NA	NA	NA	NA
B-10	8/11,12/1992	Sidewall	6	4.4	NA	NA	NA	0.371	0.0047	0.080	0.028	NA	NA	NA	NA
B-11	8/11,12/1992	Sidewall	6	13	NA	NA	NA	0.670	0.0076	0.160	0.100	NA	NA	NA	NA
B-12	8/11,12/1992	Sidewall	6	ND	NA	NA	NA	0.010	ND	ND	ND	NA	NA	NA	NA
B-13	8/11,12/1992	Sidewall	6	1.1	NA	NA	NA	0.013	ND	ND	0.007	NA	NA	NA	NA
1993 Jonas & As	soc Rpt														
MW-1	11/4/1992	Boring	5	NA	<1	530	<1.0	NA	NA	NA	NA	NA	NA	0.29	NA
MW-1	11/4/1992	Boring	10	NA	<1	<10	<1.0	NA	NA	NA	NA	NA	NA	<0.1	NA
MW-1	11/4/1992	Boring	15	NA	<1	<10	<1.0	NA	NA	NA	NA	NA	NA	<0.1	NA
MW-2	11/3/1992	Boring	0.5, 1.5 ³	<1	NA	NA	NA	<0.20	<0.20	1.90	9.60	NA	NA	NA	NA
MW-2	11/3/1992	Boring	5	<1	<1	310	14	< 0.005	< 0.005	0.025	0.041	NA	NA	NA	NA
MW-2	11/3/1992	Boring	10	<1	<1	230	8	< 0.005	< 0.005	0.011	0.020	NA	NA	NA	NA
MW-2	11/3/1992	Boring	15	<1	<1	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA
MW-3	11/4/1992	Boring	5	9.5	NA	NA	NA	1.90	0.0095	0.240	0.110	NA	NA	NA	NA
MW-3	11/4/1992	Boring	10	250	NA	NA	NA	3.70	11.00	2.20	6.40	NA	NA	NA	NA
MW-3	11/4/1992	Boring	15	<1	NA	NA	NA	< 0.005	0.0054	< 0.005	0.028	NA	NA	NA	NA
MW-3	11/4/1992	Boring	20	<1	NA	NA	NA	< 0.005	0.010	< 0.005	0.012	NA	NA	NA	NA
MW-3	11/4/1992	Boring	25	1.2	NA	NA	NA	0.031	0.065	0.0078	0.023	NA	NA	NA	NA
MW-3	11/4/1992	Boring	30	10	NA	NA	NA	0.200	0.300	0.039	0.110	NA	NA	NA	NA
MW-4	11/9/1992	Boring	0.5	5.9	<1	<10	<1.0	0.078	< 0.005	0.0099	0.058	NA	NA	NA	NA
MW-4	11/9/1992	Boring	5	6.3	<1	<10	<1.0	0.700	0.014	0.130	0.590	NA	NA	NA	NA
MW-4	11/9/1992	Boring	10	32	<1	<10	<1.0	0.340	0.760	0.910	4.200	NA	NA	NA	NA
MW-4	11/9/1992	Boring	15	<1	<1	<10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA
MW-4	11/9/1992	Boring	20	<1	<1	<10	<1.0	0.0098	0.0093	0.013	0.053	NA	NA	NA	NA
1997 Jonas & Assoc Rpt															
Inside building															
B-1	1/31/1997	Boring	8.5	ND (1.0)	NA	NA	NA	0.012	ND (0.0050)	ND (0.0050)	ND (0.0050)	NA	NA	NA	NA
B-2	1/31/1997	Boring	8.5	9.5	NA	NA	NA	0.042	0.014	0.035	0.058	NA	NA	NA	NA
ESL				83	83	410	83	0.044	2.9	3.3	2.3	-	-	0.089	0.38

Notes

ND = Not detected above the reported detection limit

NA = Not Analyzed

TPH = Total petroleum hydrocarbons quantitated as gasoline (-g), diesel (-d), motor oil (-mo), or kerosene (-k).

VOCs = Volatile Organic Compounds

* = Analyzed for Antimony, Barium, Beryllium, Cadmium, Chromium (total), Cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, zinc as well - all concentrations below residential and industrial ESLs

** = Duplicate Sample

¹ = Quantitated as creosote

³ = composited

ESL = Environmental Screening Level RWQCB, November 2007, residential land use, groundwater is potential drinking water

PCBs = Polychlorinated biphenyls

TABLE 2. ANALYTICAL RESULTS - GROUNDWATER GRAB-SAMPLES9201 San Leandro Street, Oakland, CA

Sample Id	Date	Depth	TPH-d	TPH-g	Benzene	Toluene	thylbenzen	Xylenes	MTBE	Other			
-		-		-						Oxygenates			
		(feet)					(µg/L)						
West of fo	ormer 550-ga	allon UST											
B1	3-Feb-97	15-20	NA	31,000	7,100	4,100	520	1,400	NA	NA			
B2	3-Feb-97	15-20	NA	41,000	14,000	2,600	740	1,700	NA	NA			
B3	2-Feb-98	15-20	NA	1,400	310	9.9	27	56	NA	NA			
B4	2-Feb-98	15-20	NA	<50	<0.5	<0.5	<0.5	<0.5	NA	NA			
ERAS Env	vironmental l	Investigatio	n										
GP-1	12-Jun-08	13.5-16	NA	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	ND			
GP-1	12-Jun-08	24-28	NA	<50	<0.5	0.62	< 0.5	<0.5	<0.5	ND			
GP-1	12-Jun-08	32-36	NA	<50	0.71	0.75	< 0.5	<0.5	<0.5	ND			
GP-2	12-Jun-08	8.5-13.5	NA	45,000	2900	2600	450	1100	<10	14 (1,2-DCA)			
GP-2	12-Jun-08	25-29	NA	210	7.1	7.1	1.0	2.7	1.2	ND			
GP-2	12-Jun-08	31-35	NA	70	5.2	3.0	< 0.5	1.2	1.0	ND			
GP-3	13-Jun-08	19.5-22	180	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5	2.1 (TBA)			
GP-3	13-Jun-08	25-29	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5	ND			
GP-3	13-Jun-08	31-35	NA	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5	ND			
GP-4	13-Jun-08	13-15	NA	19000	860	670	260	420	<17	ND			
GP-4	13-Jun-08	25-29	NA	12000	240	230	130	240	<5.0	ND			
GP-4	13-Jun-08	31-35	NA	330	15	12	5.7	10	0.65	ND			
GP-5	13-Jun-08	16-20	NA	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	ND			
GP-5	13-Jun-08	25-29	NA	<50	<0.5	0.69	< 0.5	<0.5	<0.5	ND			
GP-5	13-Jun-08	31-35	NA	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	ND			
GP-6	16-Jun-08	13.5-18	NA	3100	170	30	22	35	<5.0	ND			
GP-6	16-Jun-08	25-29	NA	3000	160	39	40	75	<5.0	ND			
GP-7	16-Jun-08	13-15	280	<50	<0.5	<0.5	< 0.5	<0.5	0.93	ND			
GP-7	16-Jun-08	25-29	<50	<50	<0.5	<0.5	< 0.5	<0.5	<0.5	ND			
GP-8	16-Jun-08	20-24	NA	<50	<0.5	<0.5	<0.5	<0.5	6.1	1.9 (1,2-DCA)			
GP-8	16-Jun-08	25-29	NA	<50	<0.5	<0.5	<0.5	<0.5	0.78	ND			
GP-8	16-Jun-08	31-35	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ND			
ESL			100	100	1	40	30	20	5	0.5 (1,2(DCA)			

TABLE 2. ANALYTICAL RESULTS - GROUNDWATER GRAB-SAMPLES9201 San Leandro Street, Oakland, CA

Notes

 $\mu g/L$ = Micrograms per liter

TPH-g = Total petroleum hydrocarbons as gasoline

MTBE = Methel Tertiary Butyl Ether

Oxygenates = t-Amyl methyl ether, t-Butyl alcohol (TBA), 1,2-Dibromoethane, 1,2-Dichloroethane (1,2-DCA), Diisopropyl ether, ethyl t-butyl ether

ESL = Environmental screening levels, RWQCB, November 2007, potential drinking water

NA = Not Analyzed

ND = Not Detected
TABLE -4 HISTORICAL ANALYTICAL RESULTS - GROUNDWATER WELL SAMPLES

Sample Id	Date	Depth	TOC	Depth to	GW	TPH-d	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Other
			Elevation	Water	Elevation								Oxygenates
		(feet)	(feet amsl)	(feet)	(feet amsl)				(micro	grams per liter)			
MW-1	15-Nov-92	5.25-20.25	18.05	9.34	8.71	< 50	NA	NA	NA	NA	NA	NA	NA
MW-1	9-Mar-93	5.25-20.25	18.05	8.50	9.55	140	NA	NA	NA	NA	NA	NA	NA
MW-1	21-Jul-93	5.25-20.25	18.05	9.00	9.05	<50	NA	NA	NA	NA	NA	NA	NA
MW-1	29-Jan-94	5.25-20.25	18.05	-	-	<50	NA	NA	NA	NA	NA	NA	NA
MW-1	26-May-94	5.25-20.25	18.05	9.06	8.99	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	24-Aug-94	5.25-20.25	18.05	8.40	9.65	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	22-Nov-94	5.25-20.25	18.05	8.20	9.85	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	8-Feb-95	5.25-20.25	18.05	8.30	9.75	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	31-May-95	5.25-20.25	18.05	9.35	8.70	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	8-Aug-95	5.25-20.25	18.05	9.16	8.89	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	29-Nov-95	5.25-20.25	18.05	9.28	8.77	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	29-Feb-96	5.25-20.25	18.05	7.62	10.43	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	23-May-96	5.25-20.25	18.05	8.28	9.77	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	4-Nov-96	5.25-20.25	18.05	9.20	8.85	MA	NA	NA	NA	NA	NA	NA	NA
MW-1	13-May-97	5.25-20.25	18.05	9.04	9.01	NA	NA	NA	NA	NA	NA	NA	NA
MW-1	27-Oct-00	5.25-20.25	18.05	-	-	NA	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-1	14-Nov-07	5.25-20.00	18.05	8.50	9.55	NA	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0	NA
MW-1	17-Jun-08	5.25-20.00	18.05	9.04	9.01	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.67	ND
MW-2	16-Nov-92	5 25-20 25	19.40	10.05	9 35	< 50	< 50	< 0.5	< 0.5	< 0.5	<15	NA	NA
MW-2	9-Mar-93	5.25-20.25	19.40	9.21	10.19	430	< 50	<0.5	< 0.5	< 0.5	<0.5	NΔ	NΔ
MW-2	21- Jul-93	5 25-20 25	19.40	9.72	9.68	< 50	< 50	<0.5	<0.5	<0.5	<0.5	NΔ	NΔ
MW-2	29_lan_0/	5 25-20 25	19.40	7.72	7.00	< 50	< 50	<2.0	< 2.0	<2.0	<2.0	NΔ	NΔ
MW-2	26-May-94	5 25-20 25	19.40	9.58	9.82	< 50	< 50	23	0.8	< 0.5	<0.5	NA	NA
MW-2	24-Aug-94	5 25-20 25	19.40	9.00	9.42	< 50	< 50	6.1	1 /	0.5	0.6	NΔ	NA
MW-2	22-Nov-94	5.25-20.25	19.40	87	10 70	< 50	< 50	3.4	1.4	<0.5	0.0	NΔ	NΔ
MW-2	8-Feb-95	5.25-20.25	19.40	8.68	10.70	< 50	< 50	15	1.0	<0.5	0.5	NΔ	NΔ
MW-2	31-May-95	5 25-20 25	19.40	9.48	9.92	< 50	NA	NA	NA	NA	NA	NA	NA
MW-2	8-Aug-95	5 25-20 25	19.40	9.64	9.76	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-2	29-Nov-95	5 25-20 25	19.40	9.86	9.54	< 50	NA	NA	NA	NA	NA	NA	NA
MW-2	29-Feb-96	5 25-20 25	19.40	8 12	11 28	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-2	23-May-96	5.25-20.25	19.40	8.70	10.70	< 50	NA	NA	NA	NA	NA	NA	NA
MW-2	4-Nov-96	5.25-20.25	19.40	9.50	9.90	< 50	NA	NA	NA	NA	NA	NA	NA
MW-2	13-May-97	5.25-20.25	19.40	9.44	9.96	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	13-Nov-03	5.25-20.00	19.40	8.94	10.46	NA	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0	NA
MW-2	17-Jun-08	5.25-20.00	19.40	9.57	9.83	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	1.1	ND
M/M/ 3	16 Nov 92	5 25 20 25	10 70	10.35	0.35	~ 50	40.000	2 000	6 700	550	1700	NΙΔ	NA
MW-3	9-Mar-93	5.25-20.25	19.70	9 19	10 51	290	12 000	1,000	300	110	1700	NΔ	NΔ
MM/ 3	21 Jul 03	5 25 20 25	19.70	11 07	8.63	2 70 ~50	3 400	420	63	36	37	NA	NA
MM/ 3	21-Jul-73	5 25 20 25	19.70	11.07	0.05	< 50	5,400	920	220	17	36	NA	NA
MM/ 3	27-Jan-74	5 25 20 25	19.70	10.04	9.66	< 50	5,000	910	190	47	13	NA	NA
NIN/ 2	20-101dy-94	5.25-20.25	19.70	11.04	9.00	< 50	5,200	690 590	76	40	43	N/A	NA NA
NIN/ 2	24-Aug-94	5.25-20.25	19.70	0 0 2	10.02	< 50	2,200	670	120	29	22	N/A	NA NA
NIN/ 2	22-100V-94	5.25-20.25	19.70	0.92	10.76	< 50	2,200	790	130	21	20	N/A	NA NA
NIN/ 2	21 May 05	5.25-20.25	19.70	0.9	0.54	< 50	2,900	2 800	120	01	33	N/A	NA NA
NIVIV-3	31-IVIDY-95	5.20-20.25	19.70	10.10	7.34	NA NA	5,100	2,000	100	71 27	12	NA	NA
IVIVV-3	31-IVIAy-95	5.25-20.25	19.70	10.10	9.54	NA	5,300	1,300	1/0	3/	44	NA NA	NA NA
IVIVV-3	28-Aug-95	5.25-20.25	19.70	9.92	9.78	NA	1,400	< 0.5	<0.5	1.7	1.9	NA NA	NA NA
IVIVV-3	28-Aug-95	5.25-20.25	19.70	9.92	9.78	NA	4,800	2,500	150	53	44	NA NA	NA NA
IVIVV-3	29-INOV-95	5.25-20.25	19.70	10.70	9.00	NA	3,000	/80	43	32	3Z 14	NA NA	NA NA
IVIVV-3	29-1007-95	5.25-20.25	19.70	10.7	9.00	INA	2,400	830	38	21	10	NA	NA

9201 San Leandro Street Oakland, California

TABLE -4 HISTORICAL ANALYTICAL RESULTS - GROUNDWATER WELL SAMPLES

Sample Id	Date	Depth	TOC	Depth to	GW	TPH-d	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Other
			Elevation	Water	Elevation								Oxygenates
		(feet)	(feet amsl)	(feet)	(feet amsl)				(micro	grams per liter)	-	-	
MW-3	29-Feb-96	5.25-20.25	19.70	8.52	11.18	NA	3,800	1,200	130	36	35	NA	NA
MW-3	29-Feb-96	5.25-20.25	19.70	8.52	11.18	NA	8,000	3,400	430	100	99	NA	NA
MW-3	23-May-96	5.25-20.25	19.70	8.15	11.55	NA	6,900	3,300	340	71	74	NA	NA
MW-3	23-May-96	5.25-20.25	19.70	8.15	11.55	NA	4,300	3,200	350	72	74	NA	NA
MW-3	4-Nov-96	5.25-20.25	19.70	7.21	12.49	NA	4,900	2,100	110	70	44	NA	NA
MW-3	4-Nov-96	5.25-20.25	19.70	7.21	12.49	NA	4,500	2,100	130	61	39	NA	NA
MW-3	13-May-97	5.25-20.25	19.70	9.82	9.88	NA	10,000	4,800	530	100	92	<100	NA
MW-3	26-Jan-98	5.25-20.25	19.70	-	-	NA	12,000	5,000	250	91	100	NA	NA
MW-3	27-Oct-00	5.25-20.25	19.70	-	-	NA	19,000	9,000	1,000	250	130	NA	NA
MW-3	13-Nov-03	5.25-19.90	19.70	9.21	10.49	NA	13,000	3,900	370	300	130	<40	NA
MW-3	17-Jun-08	5.25-19.90	19.70	9.81	9.89	NA	13,000	4,400	600	300	150	<100	ND
MW-4	16-Nov-92	5.25-20.25	19.65	8.87	10.78	<50	560	66	73	16	130	NA	NA
MW-4	16-Nov-92	5.25-20.25	19.65	8.87	10.78	<50	520	63	67	15	140	NA	NA
MW-4	9-Mar-93	5.25-20.25	19.65	7.96	11.69	<50	750	67	12	29	62	NA	NA
MW-4	21-Jul-93	5.25-20.25	19.65	8.06	11.59	<50	250	21	4.2	8.4	11	NA	NA
MW-4	29-Jan-94	5.25-20.25	19.65	-	-	<50	180	28	2.2	6.2	10	NA	NA
MW-4	26-May-94	5.25-20.25	19.65	8.57	11.08	NA	130	14	3.2	6.1	4.7	NA	NA
MW-4	24-Aug-94	5.25-20.25	19.65	8.75	10.9	NA	70	6.7	0.9	2.8	2.6	NA	NA
MW-4	22-Nov-94	5.25-20.25	19.65	7.41	12.24	NA	90	16	1.7	5.6	3.4	NA	NA
MW-4	8-Feb-95	5.25-20.25	19.65	7.2	12.45	NA	90	17	1.3	5.5	3.0	NA	NA
MW-4	31-May-95	5.25-20.25	19.65	8.32	11.33	NA	80	13	0.6	2.3	1.2	NA	NA
MW-4	8-Aug-95	5.25-20.25	19.65	8.66	10.99	NA	<50	3.6	< 0.5	1.4	0.6	NA	NA
MW-4	29-Nov-95	5.25-20.25	19.65	8.93	10.72	NA	<50	4.5	0.7	1.0	0.7	NA	NA
MW-4	29-Feb-96	5.25-20.25	19.65	6.54	13.11	NA	80	7.4	1	3.2	2.4	NA	NA
MW-4	23-May-96	5.25-20.25	19.65	7.24	12.41	NA	<50	11	2	2.3	1.9	NA	NA
MW-4	4-Nov-96	5.25-20.25	19.65	8.58	11.07	NA	NA	NA	NA	NA	NA	NA	NA
MW-4	13-May-97	5.25-20.25	19.65	8.42	11.23	NA	NA	NA	NA	NA	NA	NA	NA
MW-4	13-Nov-03	5.25-19.90	19.65	7.61	12.04	<50	<50	6.3	0.56	3.4	1.0	<2.0	NA
MW-4	17-Jun-08	5.25-19.9	19.65	8.31	11.34	<50	81	11	0.51	4.7	1.6	< 0.5	ND
MW-5	24-Aug-94	5.25-20.25	18.49	8.22	10.27	130	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-5	22-Nov-94	5.25-20.25	18.49	7.90	10.59	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-5	8-Feb-95	5.25-20.25	18.49	7.92	10.57	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-5	31-May-95	5.25-20.25	18.49	8.74	9.75	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	8-Aug-95	5.25-20.25	18.49	8.93	9.56	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
MW-5	29-Nov-95	5.25-20.25	18.49	9.11	9.38	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	29-Feb-96	5.25-20.25	18.49	7.36	11.13	NA	<50	0.6	< 0.5	< 0.5	< 0.5	NA	NA
MW-5	23-May-96	5.25-20.25	18.49	7.92	10.57	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	4-Nov-96	5.25-20.25	18.49	8.78	9.71	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	13-May-97	5.25-20.25	18.49	8.82	9.67	NA	<50	< 0.5	<0.5	< 0.5	< 0.5	NA	NA
MW-5	27-Oct-00	5.25-20.25	18.49	-	-	NA	<50	< 0.5	<0.5	< 0.5	< 0.5	NA	NA
MW-5	13-Nov-03	5.25-19.90	18.49	8.16	10.33	NA	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0	NA
MW-5	17-Jun-08	5.25-19.90	18.49	8.75	9.74	NA	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5	ND
ESL						100	100	1	40	30	20	5	

9201 San Leandro Street Oakland, California

Notes

TPH-g = Total petroleum hydrocarbons as gasoline MTBE = Methel Tertiary Butyl Ether

Oxygenates = t-Amyl methyl ether, t-Butyl alcohol (TBA), 1,2-Dibromoethane, 1,2-Dichloroethane (1,2-DCA), Diisopropyl ether, ethyl t-butyl ether ESL = Environmental screening levels, RWQCB, November 2007, potential drinking water ND = Not Detected. NA = Not Analyzed.

TABLE 4 - ANALYTICAL RESULTS - SOIL GAS SAMPLES

9201 San Leandro Street Oakland, California

Sample Id	Date	Depth	TPH-g (C5+)	TPH-g (C2-C4)	TPH-g (C6-C12)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	CO2	Methane	Oxygen
		(feet)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	% by vol	% by vol	% by vol
Southwest	of former 55	0-gallon	UST										
B-5	16-Oct-98	3.0	61,350,000	262,000	-	162,900	25,600	<10,900	19,100	NA	NA	NA	NA
B-6	16-Oct-98	3.0	40,082,000	3,272,000	-	92,700	20,000	<9,100	21,300	NA	NA	NA	NA
2008 ER	AS Environi	mental											
SG-1		5-5.5	-	-	120,000	11,000	190	780	530	<7.3	0.1100	0.0230	20.0000
ESLres			10,000	10,000	10,000	84	63,000	210,000	21,000	9,400	-	-	-
ESLind			29,000	29,000	29,000	280	180,000	580,000	58,000	3,100	-	-	-

Notes

mg/m³ = milligrams per cubic meter

TPH-g = Total petroleum hydrocarbons as gasoline

ESLres = Environmental screening levels set forth by the Reginol Water Quality Control Board, November 2007, residential area, shallow soil gas

ESLind = Environmental screening levels set forth by the Reginol Water Quality Control Board, November 2007, industrial area, shallow soil gas

TABLE 5 - QUARTERLY GROUNDWATER DATA AND ANALYTICAL RESULTS -
MONITORING WELLS, QUARTER 2, 2008

Sample ID	Date Monitored	Total Depth (feet bas)	TOC Elevation (feet amsl)	Depth to Water (feet)	GW Elevation (feet amsl)	TPH-d	TPH-g	Benzene (mi	Toluene crogram p	Ethylbenzene per liter)	Xylenes	MTBE
		、 · · 5 · /						,	<u> </u>	,		
MW-1 MW-2 MW-3 MW-4 MW-5	17-Jun-08 17-Jun-08 17-Jun-08 17-Jun-08 17-Jun-08	20 20 19.9 19.9 19.9	18.05 19.40 19.70 19.65 18.49	9.04 9.57 9.81 8.31 8.75	9.01 9.83 9.89 11.34 9.74	NA NA <50* NA	<50 <50 13,000 81 <50	<0.5 <0.5 4,400 11 <0.5	<0.5 <0.5 600 0.51 <0.5	<0.5 <0.5 300 4.7 <0.5	<0.5 <0.5 150 1.6 <0.5	0.67 1 <100 <0.5 <0.5
ESL						100	100	1	40	30	20	5

9201 San Leandro Street Oakland, California

Notes

TOC ELEV = Top of well casing elevation in feet above mean sea level

GW ELEV = Top of groundwater elevation.

 μ g/L = Micrograms per liter

TPH-G = Total petroleum hydrocarbons as gasoline.

MTBE = Methyl-tert-butyl ether, No other Oxygenates were detected.

NA = Not Analyzed

* = Groundwater sample for TPH-d from MW-4 collected on June 18, 2008

TABLE 6 - ANALYTICAL RESULTS - SOIL, JUNE 2008 9201 San Leandro Street Oakland, CA

SOIL ALONG RAILROAD TRACKS

Sample	Depth	Date	TPH-d	TPH-mo	Anthracene	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(g,h,i)	Benzo(k)	Chrysene	Dibenzo(a,h)	Flouranthene	Indeno (1,2,3-cd)	Phen-	Pyrene	Other SVOCs
ID						anthracene	pyrene	flouranthene	perylene	flouranthene		anthracene		pyrene	anthrene		
	(feet)									(milligrams per	kilogram)						
Pit3SE	1.25-1.5	12-Jun-08	140	550	<0.25	<0.25	<0.25	< 0.25	<0.25	< 0.25	<0.25	<0.25	< 0.25	<0.25	<0.25	<0.25	ND
Pit3SE	2.75-3	12-Jun-08	11	31	< 0.005	0.010	0.012	0.012	0.011	0.012	0.014	< 0.005	0.014	0.0073	0.011	0.014	ND
Pit3E	1.25-1.5	12-Jun-08	2.3	6.5	< 0.025	< 0.025	<0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	ND
Pit3E	2.75-3	12-Jun-08	4.7	22	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND
Pit3NW	1.25-1.5	12-Jun-08	55	170	0.036	0.15	0.15	0.13	0.12	0.14	0.19	0.042	0.19	0.078	0.15	0.23	ND
Pit3NW	2.25-2.5	12-Jun-08	2.3	6.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND
Pit4SE	1-1.25	12-Jun-08	6.5	25	0.0057	0.032	0.042	0.031	0.035	0.032	0.042	0.014	0.030	0.025	0.017	0.042	ND
Pit4SE	3.25-3.5	12-Jun-08	<1.0	<5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND
Pit4E	1.25-1.5	12-Jun-08	71	170	< 0.005	< 0.005	< 0.005	0.0082	< 0.005	0.0058	< 0.005	< 0.005	0.011	< 0.005	< 0.005	0.0081	ND
Pit4E	3-3.25	12-Jun-08	2.8	12	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND
Pit4NW	1.25-1.5	12-Jun-08	8.2	26	< 0.005	0.018	0.020	0.033	0.016	0.021	0.021	0.0065	0.021	0.011	0.013	0.025	ND
Pit4NW	2.75-3	12-Jun-08	<1.0	<5.0	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND
ESL			83	410	-	0.38	0.038	0.38	35	0.38	40	0.062	40	0.62	40	500	-

PCB IN SOIL NEAR WESTERN CORNER OF PROPERTY

Sample	Depth	Date	PCB's
ID			
	(feet)		(mg/kg)
Adjacei	nt to MW-1		
HA-1	1.25-1.5	12-Jun-08	ND
HA-1	3-3.25	12-Jun-08	ND
HA-2	1.25-1.5	12-Jun-08	ND
HA-2	2.5-2.75	12-Jun-08	0.050
HA-3	1.25-1.5	12-Jun-08	ND
HA-3	2.5-2.75	12-Jun-08	0.140
ESL res			0.089

SOIL IN VICINITY OF MW-2

Sample	Depth	Date	TPH-d	TPH-mo	TPH-k	Acetone	2-Butanone	n-Butyl	tert Butyl	cis 1,2-	Toluene	Napthalene	1,2,4 Trimethyl	sec Butyl	Isopropyl	n-Propyl	1,3,5-Trimethyl	Xylenes	Other
ID							(MEK)	Benzene	Benzene	Dichloroethene			Benzene	Benzene	Benzene	Benzene	Benzene		VOCs
	(feet)									(milligrams	per kilogram))							
HA-4	1-1.25	12-Jun-08	2.8	21	2.1	0.12	< 0.02	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	ND
HA-4	2.75-3	12-Jun-08	16	69	2.5	0.20	0.026	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND
HA-5	1-1.25	12-Jun-08	1,000	1,600	1,200	<0.20	<0.080	0.20	< 0.020	<0.020	< 0.020	0.067	0.73	0.16	0.056	0.13	0.36	0.11	ND
HA-5	2.75-3	12-Jun-08	78	180	61	< 0.05	< 0.02	0.077	0.010	0.0079	0.035	0.011	0.032	0.084	0.030	0.057	0.046	0.015	ND
HA-6	1-1.25	12-Jun-08	7,600	20,000	2,700	< 0.05	< 0.02	0.019	< 0.005	< 0.005	0.021	< 0.005	0.042	0.045	0.0073	0.012	0.015	0.0086	ND
HA-6	2.75-3	12-Jun-08	2.3	9.6	<1	<0.05	<0.02	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	ND
ESL			83	2500	83	2.1	3.9	-	-	0.19	-	2.8	-	-	-	-	-	2.3	-

Sample	Depth	Date	TPH-g	TPH-d	Benzene	Toluene	Ethylbenzene	Xylenes	Oxygenates
Id	(feet)			-		milligrams pe	r kilogram)		
GP-2	9.5-10	6/12/2008	340	NA	1.2	0.19	2.2	2.0	ND
SG-1	9.5-10	6/16/2008	400	NA	1.2	2.8	1.9	2.9	ND
GP-3	9.5-10	6/13/2008	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	ND
GP-4	9.5-10	6/13/2008	450	NA	0.72	<0.10	2.1	1.4	ND
GP-6	11.5-12	6/16/2008	520	NA	4.6	2.6	2.6	7.4	ND
GP-8	9.5-10	6/16/2008	<1.0	NA	< 0.005	<0.005	<0.005	<0.005	ND
ESL			83	83	0.044	2.9	3.3	2.3	-

SOIL FROM DIRECT-PUSH BORINGS

Notes

ND = Not detected above the reported detection limit

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

TPH-mo = Total petroleum hydrocarbons as motor oil SVOCs = Semi volitile organic compounds

PCBs = Polychlorinated biphenyls

VOCs = Volatile Organic Compounds

Oxygenates = methyl t-butyl ether, t-amyl methyl ether, t-butyl alcohol, 1,2-dirbromoethane, 1,2-dichloroethane, diisopropyl ether, ethyl t-butyl ether ESL = Environmental Screening Level, RWQCB November 2007, shallow soil, residential land use, groundwater is potential drinking water

APPENDIX A

ACEH LETTER

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

May 9, 2008

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Mr. John Lilla PACO Pumps, Inc. 800 Koomey Road Brookshire, TX 77423 Mr. Harold Vignoles 9201 San Leandro LLC 9201 San Leandro Street Oakland, CA 94603

Mr. Dallas Nelson GP Holdings LLC 5977 Keith Avenue Oakland, CA 94618-1545

Subject: Fuel Leak Case No. RO0000320 and Geotracker Global ID T0600101592, PACO Pumps Inc, 9201 San Leandro Street, Oakland, CA 94603

Dear Mr. Lilla, Mr. Vignoles, and Mr. Nelson:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the recently submitted document entitled, "Workplan for Former Paco Pumps Facility, 9201 San Leandro Street, Oakland, California," dated March 17, 2008. The March 17, 2008 Work Plan, which was prepared on your behalf by ERAS Environmental, Inc., was revised in response to technical comments in ACEH correspondence dated January 31, 2008. The Work Plan provides more detailed maps of proposed sampling locations. However, the Work Plan does not adequately address several of the technical comments. Therefore, we request that you prepare a Revised Work Plan by July 18, 2008 that addresses the technical comments below.

REQUEST FOR INFORMATION

We previously requested that you submit copies of the following reports, which are referenced in other technical reports for the site but are not in the ACEH case file. The Work Plan indicates that ERAS Environmental, Inc. is not authorized to contact PACO Pumps to retrieve the documents requested in our January 31, 2008 correspondence. This correspondence is directed to all responsible parties. All responsible parties are required to cooperate and respond to these requests. Therefore, we request that the responsible party with access to the documents listed below submit the requested documents by July 18, 2008. In addition, please submit any other technical reports presenting the results of environmental investigations or cleanup that were not previously submitted to ACEH.

- Cutliffe, S., 1987. Findings and Results of the Cleanup Project Performed on 14 and 15 December 1987 at PACO Oakland Site.
- Dames & Moore, 1987. Site Contamination Study PACO Pumps Facility, Oakland, for Amsted Industries.

- Ecology and Environment Inc., 1985. CERCLA Site Inspection, PACO Pumps 845 92nd Avenue, Oakland, CA. Site ERRIS #CAD 088772629, Inspection ID# C(85)C371, Date of Inspection 9/17/85, Report Due November 8, 1985.
- Jonas & Associates, Inc., 1991. Soil Characterization Report Stained Asphalt/Concrete Area – PACO Pumps, 9201 San Leandro Street, Oakland, CA, October 30, 1991.
- Van Aken, B., 1987. Internal PACO Correspondence to Mr. John G. Terranova regarding excavation, November 4, 1987.

TECHNICAL COMMENTS

- 1. Piping Associated with Former 550-Gallon UST. Our August 21, 2007 technical comments requested that you determine whether UST system piping encountered during the 1992 UST excavation remains in place beneath the adjacent building or extends to a dispenser in another location. Utility location using magnetic and ground penetrating radar methods was previously proposed within the former UST area. The March 17, 2008 Work Plan does not propose utility locations and instead proposes hand digging at the building foundation to locate the pipe prior to additional investigation. We have no objection to locating the pipe prior to conducting additional investigation to assess whether piping remains in place beneath the adjacent building or extended to a dispenser in another location.
- 2. **Maps Showing Proposed Sampling Locations.** The March 17, 2008 Work Plan includes several detailed maps, which are improvements from the previous Work Plan. We appreciate the generally improved and more accurate presentation of proposed sampling locations.
- 3. Groundwater Characterization for Former 550-Gallon UST Area. The March 17, 2008 Work Plan proposes a total of six soil borings for characterization of the extent of groundwater contamination from the former 550-gallon UST. Three soil borings are proposed within approximately 20 feet of the former UST, one soil boring approximately 125 feet southwest of the former UST, and two soil borings more than 200 feet northwest of the former 550-gallon UST. One additional soil boring is proposed approximately 125 feet northwest of the former 550-gallon UST. One additional soil boring is proposed approximately 125 feet northwest of the former 550-gallon UST, apparently to investigate the second UST. In the Revised Work Plan requested below, please review the potential to move the two proposed borings along the northwest property boundary closer to the former 550-gallon UST. Moving the borings approximately 120 feet to the southeast inside the Warehouse Storage Area would provide a transect of three borings including the proposed boring southeast of the Office shown on Figure 3.
- 4. Vertical Delineation. The March 17, 2008 Work Plan proposes the collection of a grab groundwater sample from first encountered groundwater and a second groundwater sample from each boring at a depth of 15 to 19 feet bgs. In order to characterize the subsurface stratigraphy and select intervals for depth-discrete groundwater sampling, we request that you extend one of the three proposed soil borings in the area of the former 550-gallon UST and each of the three borings downgradient of crossgradient from the 550-gallon UST to a depth of 40 feet bgs. Coarse-grained zones that may act as migration pathways are to be

targeted for grab groundwater sampling. Please include plans in the Revised Work Plan requested below to extend the soil borings to 40 feet bgs and to select subsurface zones for depth-discrete groundwater sampling based on encountered conditions.

- Proposed Groundwater Analyses. Analysis for MTBE using EPA Method 8015/8021 is not acceptable. In the Revised Work Plan requested below, please include analyses for MTBE, TAME, DIPE, ETBE, TBA, 1,2-dichloroethane, and ethylene dibromide using EPA Method 8260B. We also request that soil samples be analyzed for lead.
- Soil Vapor Sampling. Due to the elevated concentrations of benzene detected in previous ... 6. soil gas samples, our January 31, 2008 correspondence indicated that the proposed scope of soil vapor sampling must be expanded. No changes were made to the proposed scope of soil vapor sampling in the March 17, 2008 Work Plan. The March 17, 2008 Work Plan proposes collection of one sub-slab vapor sample within the building and one soil vapor sample outside the building. Table 4 - Historical Analytical Results - Soil Gas Samples contains an error, which makes it appear that the detected concentrations of benzene in soil gas do not exceed screening levels. The correct Environmental Screening Level (ESL) for benzene in soil gas for residential land use is 84 micrograms per cubic meter (µg/m³) and for commercial land use is 280 µg/m³. Table 4 shows units in milligrams per cubic meter (mg/m³). Therefore, the correct ESLs are three orders of magnitude lower than those shown on Table 4. The concentration of benzene detected in soil vapor samples B-5 and B-6 inside the building are more than 300 times higher than the commercial ESL for benzene in soil The scope of the proposed soil vapor sampling investigation is inadequate to das. characterize the extent of the elevated concentrations of benzene in soil vapor and must be expanded in the Revised Work Plan requested below.
- 7. **Proposed Soil Vapor Analyses.** Please review the proposed soil vapor analyses on page 6, specifically whether TPHg will be analyzed by Method TO-15.
- 8. Detailed Map of Former UST Excavation & Proposed Sampling (Figure 4). Figure 4 shows several rooms west of the Former UST Excavation labeled, "Storage." Thank you for including a more detailed map. In the Revised Work Plan requested below, please expand the detailed depiction of building walls and uses to include the area north of the Former UST Excavation. In addition, please include a more detailed description of the occupancy of the adjacent areas to the Former UST Excavation.
- 9. Proposed Utility Survey for UST in Area of Well 9MW4. A geophysical survey was previously proposed in the area of well 9MW4 to locate a suspected UST. The March 17, 2008 Work Plan indicates that ground penetrating radar and other geophysical methods are not feasible due to steel reinforcing in the floor and steel racks. Soil and groundwater sampling from three borings located around the perimeters of the building are proposed in lieu of the geophysical survey. In the Revised Work Plan requested below, please describe the rationale for locating three borings around the perimeter of the warehouse building. In addition, please confirm that the use of ground penetrating radar is not feasible.

- 10. Soil Removal Along Railroad Tracks. We request that soil samples be collected from all intervals where staining, odor, or elevated PID readings are observed. If no evidence of contamination is observed, we request that soil samples be collected from 1.5 and 3.0 feet bgs. We concur with the proposal to extend the borings to a depth of 5 feet bgs and collect a soil sample from 5 feet bgs if contamination is observed at 3 feet bgs. Please include these modifications in the Revised Work Plan requested below.
- 11. **PCBs in Soil.** PCBs were detected in surface soil samples from two of the three sampling locations in the area of well MW-1. In the Revised Work Plan requested below, please include soil samples at depths shallower than 3 to 4 feet.
- 12. Elevated Concentrations of TPH as Kerosene and TPH as Motor Oil Detected in Boring B18. We request that you include one additional sampling location between B-18 and B-17 in order to evaluate whether contamination detected in the two borings is contiguous. Please include this modification in the Revised Work Plan requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

July 18, 2008 – Revised Work Plan

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032

Gail Jones, ERAS Environmental, 1533 B Street, Hayward, CA 94541

Stacie Boothe, Gibson, Dunn, & Crutcher, LLP, 1050 Connecticut Avenue, N.W., Washington, D.C. 20036-5306

.

Donna Drogos, ACEH Jerry Wickham, ACEH File APPENDIX B

MAP OF UST EXCAVATION

APPENDIX C

PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC WORKS	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(51	5 0)782-1939	
Application Approved	on: 06/03/2008 By jamesy	Permit Numbers: W2008- Permits Valid from 06/12/2008 to 06/17/2	0308 2008
Application Id: Site Location:	1212169577084 9201 San Leandro Street	City of Project Site:Oakland	
Project Start Date: Requested Inspection Scheduled Inspection:	12 borings to 40 feet and 1 boring to 10 feet 06/12/2008 06/17/2008 06/17/2008 at 2:30 PM (Contact your inspector, V	Completion Date: 06/17/2008 Vicky Hamlin at (510) 670-5443, to confirm.)	
Applicant:	ERAS Environmental, Inc Andrew Savage	Phone: 510-247-9885	
Property Owner:	Mark Vignoles 9201 San Leandro Street Oakland CA 94603	Phone:	
Client: Contact:	** same as Property Owner ** Andrew Savage	Phone: 510-247-9885 Cell: 925-330-8926	
	Receipt Number: WR2008-0186 Payer Name : Andrew Savage	Total Due:\$20Total Amount Paid:\$20Paid By: MCPAID IN F)0.00) <u>0.00</u> ⁻ULL

Works Requesting Permits:

Specifications

Borehole(s) for Investigation-Environmental/Monitorinig Study - 13 Boreholes Driller: Vironex Inc. - Lic #: 705927 - Method: DP

Work Total: \$200.00

opeenieane					
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	06/03/2008	09/10/2008	13	2.50 in.	40.00 ft
0308					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit

Alameda County Public Works Agency - Water Resources Well Permit

application on site shall result in a fine of \$500.00.

6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX D

STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURE – HAND BORINGS

SOIL CORING AND SAMPLING PROCEDURES

Prior to drilling, the surface is either cored if concrete or hammered through using a pick, if asphalt.

A hand operated coring device equipped with a 3-inch diameter auger bit is advanced into the soil until full. The auger is removed and emptied and this process is repeated until the desired depth is reached. The hand auger is removed and a slide hammer core sampling device, equipped with two 3-inch long, 2-inch diameter brass liners is advanced six inches into the undisturbed soil at the bottom of the borehole.

One of the 3-inch liners is selected and the ends of the tube are covered with Teflon liner and sealed with plastic caps. The soil-filled liner is labeled with the borehole number, sample depth, site location, date, and time. The samples are placed in bags and stored in a cooler containing ice. Soil from the core adjacent to the interval selected for analyses is placed in a plastic zip-top bag. The soil is allowed to volatilize for a period of time, depending on the ambient temperature. The soil is scanned with a flame-ionization detector (FID) or photo-ionization detector (PID).

All sample barrels, rods, and tools are cleaned with Alconox or equivalent detergent and deionized water. All rinsate from the cleaning is contained in covered 5-gallon plastic buckets or 55-gallon drums at the project site.

BOREHOLE GROUTING FOR HAND BORINGS

Upon completion of soil and water sampling, boreholes will be abandoned with neat cement grout. If the borehole was advanced into groundwater, the grout is pumped through a grouting tube positioned at the bottom of the borehole.

STANDARD OPERATING PROCEDURES -GROUNDWATER SAMPLING

Prior to groundwater sampling, a measurement is made of the static water level using a water level probe. At sites where the presence of separate-phase hydrocarbons is suspected, a product bailer or an interface probe is used to measure product thickness. The water level probe is cleaned with non-phosphate detergent and rinsed with de-ionized (DI) water between wells.

STANDARD PURGE PROCEDURES

The static water level and well depth are used to calculate the well casing volume. A minimum of 4 well casing volumes of water are purged from the well prior to sampling in order to obtain a representative sample of the groundwater from the formation surrounding the well. Wells should be purged and sampled in order of least to highest suspected concentrations.

Standard purging equipment is a new disposable bailer for each well. Alternatively, purging and sampling systems may be a stainless steel bailers; HDPE tubing with a foot-valve, or low-flow purging using a peristaltic pumps. Appropriate personal protective equipment is worn during purging. The well is purged until the clarity, pH, and conductivity of the discharged water have stabilized. "Stabilized" is defined as three consecutive readings within 10% of one another.

These parameters are measured and recorded initially, after every well casing volume is removed, and after the sample is collected. In some localities, turbidity, Eh, and dissolved oxygen measurements may also be required. If the well is purged dry prior to the removal of three or four casing volumes of water, the water level is allowed to recover to 80% of the static level before sampling. Whenever possible, samples will be collected within 24 hours after purging. Ideally, samples will be collected immediately after purging to minimize volatilization of aromatic hydrocarbons.

The standard sampling equipment will be inert polyethylene disposable bailers. New sampling gloves are worn during each sample collection. Sample containers typically consist, depending on the analysis, 40 milliliter volatile organic analysis (VOA) vials with Teflon septa, 1 liter amber glass bottles, or plastic bottles. HCl or other preservative are added to the sample containers as appropriate by the laboratory prior to sampling. The groundwater sample is decanted into each VOA vial to form a meniscus at the top to eliminate air bubbles when capped. The sample is labeled with date, time, sample number, project number and analysis. The samples are stored in a cooler with blue ice or ice, and delivered under chain-of-custody to the state-certified analytical laboratory. For quality control purposes, duplicate samples, trip blanks, and equipment blanks may also be collected. The duplicate sample is given a different number than the original sample from the same well. Trip blanks are prepared by the laboratory using DI water and remain in the cooler. Equipment blanks are collected from sampling equipment using DI water after the equipment has been decontaminated and rinsed.

All non-dedicated purging and sampling equipment is washed in non-phosphate detergent solution and double rinsed with DI water after use in every well to avoid cross-contamination.

Purge water will be properly disposed or temporarily contained in labeled steel barrels pending chemical analysis to determine proper disposal procedure.

STANDARD OPERATING PROCEDURE – DIRECT PUSH BORINGS

SOIL CORING AND SAMPLING PROCEDURES

Prior to drilling, all boreholes will be hand dug to a depth of 4-5 feet below ground surface (bgs) to check for underground utility lines.

Soil and groundwater samples are collected for lithologic and chemical analyses using a direct driven soil coring system. A hydraulic hammer drives sampling rods into the ground to collect continuous soil cores. As the rods are advanced, soil is driven into an approximately 2.5-inch-diamter sample barrel that is attached to the end of the rods. Soil samples are collected in sleeves inside the sample barrel as the rods are advanced. After being driven 4 to 5 feet into the ground, the rods are removed from the borehole. The sleeve containing the soil core is removed from the sample barrel, and can then be preserved for chemical analyses, or used for lithologic description. This process is repeated until the desired depth is reached.

A soil core interval selected for analyses is cut from the sleeve using a hacksaw. The ends of the tube are covered with aluminum foil or Teflon liner and sealed with plastic caps. The soil-filled liner is labeled with the bore number, sample depth, site location, date, and time. The samples are placed in bags and stored in a cooler containing ice. Soil from the core adjacent to the interval selected for analyses is placed in a plastic zip-top bag. The soil is allowed to volatilize for a period of time, depending on the ambient temperature. The soil is scanned with a flame-ionization detector (FID) or photo-ionization detector (PID).

All sample barrels, rods, and tools are cleaned with Alconox or equivalent detergent and deionized water. All rinsate from the cleaning is contained in 55-gallon drums at the project site.

GROUNDWATER SAMPLING FROM DIRECT PUSH BORINGS

After the targeted water-bearing zone has been penetrated, the soil-sample barrel is removed from the borehole. Small-diameter well casing with 0.010-inch slotted well screen may be installed in the borehole to facilitate the collection of groundwater samples. Threaded sections of PVC are lowered into the borehole. Groundwater samples may then be collected with a bailer, peristaltic pump, or WaTerra pump until adequate sample volume is obtained.

Groundwater samples are preserved, stored in an ice-filled cooler, and are delivered, under chain-of-custody, to a laboratory certified by the California Department of Health Services (DHS) for hazardous materials analysis.

BOREHOLE GROUTING FOR DIRECT PUSH BORINGS

Upon completion of soil and water sampling, boreholes will be abandoned with neat cement grout to the surface. If the borehole was advanced into groundwater, the grout is pumped through a grouting tube positioned at the bottom of the borehole.

<u>STANDARD OPERATING PROCEDURE –</u> <u>GEOPROBE SOIL-GAS SAMPLING</u>

A soil-gas sample will not be collected within seven days following a measurable precipitation event.

Sample rods are driven to the desired depth. A soil-gas sampling tubing system is inserted into the rods and connected to an expendable point holder. The rods are retracted a desired 6-inch interval and the expendable drive point on the bottom of the rods is released. Hydrated bentonite is placed around where the drill rod exits the ground to prevent surface air migrating down the outer portion of the rods. The bentonite will be allowed to hydrate and expand for at least 30 minutes prior to purging the sample line.

The soil sample is then collected into a Summa canister. A summa canister is a stainless steel vessel which has had the internal surfaces specially passivated using a "Summa" process. The Summa canister arrives pre-cleaned from the laboratory and with an internal vacuum between 25" Hg and 20" Hg. Prior to use, the pressure in the summa canister is checked with a pressure gauge to ensure a vacuum of at least 25" Hg for quality control purposes.

As a check for air leaks a paper towel or rag wetted with isopropyl alcohol will be placed on all sample line fittings and the top of the inside of the drill rod. Analysis of the sample for isopropyl alcohol will indicate if ambient air entered the sample.

A vacuum is applied to the tubing to purge at least three volumes of air from the sample tubing using a flow regulator at a purge rate from 100 to 200 ml/min.

Once the tubing has been purged of ambient air, it is connected to a summa canister. A particulate filter is used in-line to filter out particles and liquids. A flow controller is placed in line between the filter and the canister to maintain a low purge rate.

The valve on the summa canister is opened, and the soil-gas sample is drawn into the canister. The sample tubing will be checked for condensation. If observed, the sample will be discarded. The flow controller will stop drawing in air after a pre-set time interval. The remaining canister vacuum should be about 5-inches Hg. The vacuum left inside the canister is recorded on the chain-of-custody. The soil-gas samples will be transferred under chain-of-custody procedures to a state certified laboratory for analyses. Upon receipt, the laboratory will check the pressure in the canister and compare it to the pressure recorded on the chain-of-custody for quality control purposes.

STANDARD OPERATING PROCEDURE – SUBSLAB SOILGAS SAMPLING

A sub slab soil-gas sample will not be collected within seven days following a measurable precipitation event.

A core will be removed from the building slab. Dirt and base rock will be removed to approximately 1 foot bellow the base of the slab. A particulate filter will be installed on the bottom of sample tubing and place in the hole. A 2/12 Sand pack is placed around the vapor tip to approximately 6 inches below the surface of the slab. Hydrated bentonite is placed around the sample tub to the surface or the slab to prevent surface air migrating under the slab. The bentonite will be allowed to hydrate and expand prior to purging the sample line.

The sub slab sample is then collected into a Summa canister. A summa canister is a stainless steel vessel which has had the internal surfaces specially passivated using a "Summa" process. The Summa canister arrives pre-cleaned from the laboratory and with an internal vacuum between 25" Hg and 20" Hg. Prior to use, the pressure in the summa canister is checked with a pressure gauge to ensure a vacuum of at least 25" Hg for quality control purposes.

As a check for air leaks a paper towel or rag wetted with isopropyl alcohol will be placed on all sample line fittings and the top of the inside of the bentonite sealed slab. Analysis of the sample for isopropyl alcohol will indicate if ambient air entered the sample.

A vacuum is applied to the tubing to purge the ambient air from the sample tubing. Once the tubing has been purged of ambient air, it is connected to a summa canister. A particulate filter is used in-line to filter out particles and liquids.

In areas of fine-grained soils, a flow controller is placed in line between the filter and the canister to maintain a low purge rate.

The valve on the summa canister is opened, and the sub slab soil-gas sample is drawn into the canister. The sample tubing will be checked for condensation. If observed, the sample will be discarded. The flow controller will stop drawing in air after a pre-set time interval. The remaining canister vacuum should be about 5-inches Hg. The vacuum left inside the canister is recorded on the chain-of-custody. The sub slab soil-gas samples will be transferred under chain-of-custody procedures to a state certified laboratory for analyses. Upon receipt, the laboratory will check the pressure in the canister and compare it to the pressure recorded on the chain-of-custody for quality control purposes.

STANDARD OPERATING PROCEDURE ---

GROUNDWATER MONITORING WELL CONSTRUCTION

The boreholes for monitor wells are usually drilled using a truck-mounted hollow-stem auger drill rig. The hollow-stem auger drilling method allows the well screen, casing and filter pack to be installed through the auger, thereby limiting boring cave-in during well installation. The borehole is logged by a geologist during drilling. Soil samples are collected for logging in a split spoon sampler lined with brass tubes at a maximum interval of five feet. Soil samples selected for chemical analyses are sealed at each end with Teflon sheets and plastic end caps, labeled and stored in a cooler with ice.

Well casing typically consists of flush-threaded schedule 40 PVC; however, schedule 80 PVC, Teflon, or stainless steel may be used depending on site conditions. The screened interval usually consists of machined slots for PVC and Teflon casing and continuous wire-wrap for stainless steel screen. The slot or screen size is selected by the geologist according to filter pack grain size and hydrogeologic formation characteristics. The most commonly used slot sizes are 0.010 inch and 0.020 inch. Either a threaded end cap or a PVC slip cap fastened with stainless steel screws is placed at the bottom of the casing. No solvents or cements are used to join casing sections.

The casing is set inside the hollow-stem auger and sand or gravel filter pack material is slowly poured into the annular space from the bottom of the boring to about 2 ft above the top of the well screen while withdrawing the auger. The filter pack grain size is selected by the geologist to conform to the formation grain size and estimated hydraulic conductivity. A 1-ft to 2-ft thick seal composed of hydrated bentonite pellets is placed above the filter pack to prevent grout from infiltrating into the filter pack. Portland cement grout used to seal the annular space form the top of the bentonite seal to about 6 inches below the surface. The grout is pumped under pressure through a pipe if the bentonite seal is below water. A lockable plastic expansion cap is placed at the top of the casing. Traffic-rated vault boxes are set in concrete around well heads in paved areas.

STANDARD OPERATING PROCEDURE ---GROUNDWATER MONITORING WELL DEVELOPMENT

Groundwater monitoring wells are developed after installation to improve well yield by removing fine material, including formation material or drilling mud, from the well casing, filter pack and boring annulus/formation interface. Fine material is also removed and soil grains aligned in the formation surrounding the well screen, thereby increasing porosity and hydraulic conductivity.

Prior to well development, the initial static water level is measured using a water level or interface probe. Standard procedure is to develop wells using a WaTerra surge block and an electric submersible pump. Well development may also be performed by hand using surge blocks and bailers, or by a truck-mounted development rig. The well is the surged along the entire screened interval using a surge block. This creates a back-washing effect that draws fine material from the formation and filter pack into the well casing and aligns the formation grains. Following surging, the well is then purged by using and electric submersible pump to remove fine suspended solids. The purging is continued until the purged water is relatively free of suspended solids and measurements of the groundwater pH, and conductivity have stabilized. "Stabilized" is defined as three consecutive readings within 10% of one another. Typically the amount of water purged is a minimum of 10 casing volumes. Data including well yield purge time and rate, clarity, pH, and conductivity are recorded.

After purging is completed, water levels are measured and recorded while recovering to static level. All development equipment is either steam-cleaned or washed in non-phosphate detergent solution and double-rinsed with de-ionized (DI) water between wells.

The purged water is contained on-site in drums or tanks until properly disposed.

APPENDIX E

BORING LOGS

ER	RA	s	Enviro	nr	ner	nta	I	Log of Pit	3 SE
PROJ	JEC	T: i	Former 1	Pac	o Pi	umj	05	ADDRESS: 9201 San Leandro S	treet
JOB	NU	MBE	R: 07-0	01	-03			LOCATION: RR tracks	
DATE	S S	FART	ED: 06-	12	-08			First Water (ft. bgs.): — [)ATE: 06-12-08
DATE	FI	NISH	IED: 06-	-12	<u>8–08</u>			TOTAL DEPTH: 3 feet	
		3 MI	LIHOD: F	lar	rd A	uge	r	GEOLOGIST: Andrew Savage	
		- U	JMPANT		(A)	Ι.		Reviewed by: Gau Jones, RG	
DEPTH ft.	PID (ppm)	BLOWS/ 1/2	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	G	WELL DIAGRAM	
			Pit3E 1.25-1.5	X			_ Sand (SW), brown (7.5YR fine to coarse well graded -	4/6), damp, medium dense, 1 sand, no HC odor	-
			Pit3E 2 75-3				_ Silty Clay (CL), very dark _ medium plasticity, no HC	brown (7.5YR 2.5/3), damp, medium stiff, odor	
			2.70 0				-		-
5-							-		
							-		-
							-		-
							-		-
10							-		
							-		-
							- -		-
15-							- - 		-
							-		-
							-		-
							+ - -		-
20-							-		-

E RAS E nvironm	nental	Log of Pit	3 E					
PROJECT: Former Paco	o Pumps	ADDRESS: 9201 San Leandro St	reet					
JOB NUMBER: 07-001-	-03	LOCATION: RR tracks						
DATE STARTED: 06-12-0	-08	First Water (ft. bgs.): — D/	ATE: 06-12-08					
DATE FINISHED: 06-12-	-08	TOTAL DEPTH: 3 feet						
DRILLING METHOD: Hand	d Auger	GEOLOGISI: Andrew Savage						
DRILLING COMPANT: ERA		Reviewed By: Gail Jones, RG						
DEPTH ft. PID (ppm) BLOWS/ 1/2 SAMPLE NO. RECOVERY	GRAPHIC LOG WATER LEVEL	GEOLOGIC DESCRIPTION						
- Pit3E	_ Sand (SW), brown (7.5YR fine to coarse well graded	4/6), damp, medium dense, d sand, no HC odor	-					
- Pit3E	Silty Clay (CL), very dark medium plasticity, no HC	brown (7.5YR 2.5/3), damp, medium stiff, odor	-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
			-					
20-			_					

ER/	AS	Enviro	nn	ner	ntc	I	Log of Pit 3 NW		
PROJE	CT:	Former 1	Pac	o Pa	um	ps	ADDRESS: 9201 San Leandro Street		
JOB N	IUMBE	IR: 07–0	01	-03			LOCATION: RR tracks		
DATE	START	ED: 06-	12	-08			First Water (ft. bgs.): — D	ATE: 06-12-08	
DATE	FINISH	HED: 06-	-12	2-08			TOTAL DEPTH: 2.5 feet		
	NG M	ETHOD: 1	Har	rd A	uge	r	GEOLOGISI: Andrew Savage		
					Ι.	ĺ	Reviewed By. Gau Jones, RG		
DEPTH ft. PID (ppm)	BLOWS/ 1/2	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	G	WELL DIAGRAM		
		Pit3NW 1.25-1.5				 Gravely Sand (SW), strong 60% sand, fine to coarse) brown (7.5YR 4/6), damp, medium dense, , 40% 1/8"—1" gravel, no HC odor		
		Pit3NW 2.25-2.5	X	////		- Silty Clay (CL), dark brow _ medium plasticity, no HC	n (7.5YR 2.5/3), damp, medium stiff, odor	-	
						_		-	
						-		-	
5-			Н			_		_	
			H			-		-	
								-	
			Ц			-		_	
-			Н			-		-	
			Н			-		-	
								-	
						-		-	
10-			\vdash			_		_	
			Η			-		-	
								-	
			Н			-		-	
-			Н			+		-	
			Η			F		-	
]						[
			Н			-		-	
15-			Н			+		-	
			Н			F		-	
						Ę			
			Н			-		-	
-			Н			+		-	
			Н			F		-	
]									
			Ц			F		-	
20-			Н			–		–	

3	RA	S	Enviro	nr	ner	ntc	I	Log of Pit 3 SE		
PRC	JEC	:T: _	Former 1	Pac	co Pr	um	ps	ADDRESS: 9201 San Leandro Street		
JOB	B NU	IMBE	IR: 07–0	01	-03			LOCATION: RR tracks		
DAT	ΈS	TART	ED: 06-	12	-08			First Water (ft. bgs.): — D	ATE: 06-12-08	
DAT	EF	INISH	HED: 06-	-12	2-08			TOTAL DEPTH: 3 feet		
		G M	ETHOD: 1	Hai Tri	Id A	uge	r	GEOLOGIST: Andrew Savage		
	LLIN					Γ.		Reviewed By: Gau Jones, RG		
DEPTH ft.	PID (ppm) BLOWS/ 1/2 SAMPLE NO. SAMPLE NO. CRAPHIC LOG WATER LEVEL						G	EOLOGIC DESCRIPTION	WELL DIAGRAM	
-			Pit3SE 1.25-1.5	×			 Sandy Gravel (GW), brown 40% fine to coarse well on the non-the odor 	(7.5YR 4/4), damp, medium dense, graded sand, 60% 1/8"-2" rock,		
			Pit3SE 2.75-3	×	///		_ Silty Clay (CL), dark brow medium plasticity, no HC	n (7.5YR 3/4), damp, medium stiff, odor	-	
5-							-		-	
							-		-	
							-		-	
							-		-	
							-		-	
10-							-		_	
									-	
-							-		-	
-							F			
							Į		-	
							F		-	
-							-		-	
							F		-	
							-			
							F		-	
-							+		-	
							+		-	
									-	
							F		-	
-							F			
							F			
20-									–	

ER	RAS	E nviro	nr	ner	ntc	I	Log of Pit 4 E		
PROJ	ECT:	Former	Pad	co Pr	um	DS	ADDRESS: 9201 San Leandro Street		
JOB	NUM	BER: 07-0	01	-03			LOCATION: RR tracks		
DATE	STA	rted: <i>06-</i>	-12	-08			First Water (ft. bgs.): — D	ATE: 06–12–08	
DATE	FIN	SHED: 06-	-12	2-08			TOTAL DEPTH: 3.25 feet		
DRILL		METHOD: J	Hai	nd A	uge	r	GEOLOGIST: Andrew Savage		
		COMPANY:	EI	AS	<u> </u>		Reviewed By: Gail Jones, RG		
DEPTH ft.	PID (ppm)	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	G	EOLOGIC DESCRIPTION	WELL DIAGRAM	
-		Pit4E 1.25-1.5				 Sandy Gravel (GW), brown 40% fine to coarse well of 	(7.5YR 4/4), damp, medium dense, graded sand, 60% 1/8'-2" rock	-	
		Pit4E				_ Silty Clay (CL), brown (7. _ no HC odor _	5YR 4/4), damp, medium dense,	-	
								-	
5	;					- - -			
						-		-	
						-		-	
						-		-	
-						-		-	
						-		-	
						-		-	
15-						- - 		-	
						-		-	
						+ - -		-	
						- - -		-	
20-						- - -		- - -	

E R,	AS	Enviro	nr	ner	nta	I	Log of Pit 4 NW		
PROJE	ECT:	Former 1	Pac	co Pr	umj	ps	ADDRESS: 9201 San Leandro Street		
JOB N	NUMBE	R: 07-0	01	-03			LOCATION: RR tracks		
DATE	START	ED: 06-	12	-08			First Water (ft. bgs.): — [DATE: 06-12-08	
DATE	FINISH	HED: 06-	-12	2-08			TOTAL DEPTH: 3.5 feet		
DRILLI	ING M	ETHOD: 1	Har	nd A	uge	r	GEOLOGIST: Andrew Savage		
	ING C	OMPANY:	EF	RAS	-		Reviewed By: Gail Jones, RG	1	
DEPTH ft. PID (pom)	BLOWS/ 1/2'	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	G	EOLOGIC DESCRIPTION	WELL DIAGRAM	
				b. 0.0	\sim	3" Asphalt			
						Sandy Gravel baserock (G 30% fine to coarse well (W), 70% rock, araded sand	-	
-		1.25-1.5	\times	00	5			-	
				0.0		-		-	
		Pit4NW	X	///		Silty Clay (CL), brown (7.	5YR 4/4), damp, medium dense.		
		2.75-3			1	no HC odor			
						-		-	
						-		-	
5-						-		-	
-						-		-	
1						-		-	
								_	
						-		-	
-						-		-	
-						-		-	
						-		-	
						-		-	
						-		-	
						-		-	
-			\vdash		1	+		-	
-			\vdash		1	F		-	
1						†		-	
]					1	[
						Ļ		-	
15-						–			
-					1	F		-	
-						F		-	
						F		-	
					1	[
						Ļ		-	
						-		-	
-					1	F		-	
						F		-	
20-						<u> </u>			

E RAS E nvironmental								Log of Pit 4 SE		
PRO	JEC	T: 1	Former 1	Pac	o Pi	umj	ps	ADDRESS: 9201 San Leandro Street		
JOB	NU	MBE	R: 07-0	01	-03			LOCATION: RR tracks		
DATE	<u>S</u>	FART	ED: 06-	12	-08			First Water (ft. bgs.): -	DATE: 06-12-08	
	: +1 /		HED: 06-	-12	2-08 2-1-1			IOTAL DEPTH: 3.5 feet		
				101 FF	ra A ZAS	uge	T	Beviewed By: Gail Iones BC		
		-				Ι.		Neviewed by. Guil Jones, NG		
DEPTH ft.	DEPTH ft. PID (ppm) BLOWS/ 1/2 SAMPLE NO. RECOVERY WATER LEVEL WATER LEVEL							EOLOGIC DESCRIPTION	WELL DIAGRAM	
			Pit4SE 1-1.25				_ Sandy Gravel (GW), dark 40% fine to coarse well o - -	brown (7.5YR 3/4), damp, medium dense, graded sand, 60% 1/8"—3" rock		
			Pit4SE 3.25-3.5				- - Silty Clay (CL), dark brow - medium plasticity, no HC	n (7.5YR 3/4), damp, medium stiff, odor		
5-							- - 		-	
							-		-	
							-		-	
							-		-	
10-							-		-	
							-		-	
							-		-	
							-		-	
				\square			-		-	
							F -		-	
15							 -			
							-		-	
-				Н			+		-	
1									-	
				\vdash			-		-	
-				\vdash			-		-	
20-							-		-	
E RAS E nvironmental	Log of Boring GP1									
--	--	--	--							
PROJECT: Former PACO Pumps	ADDRESS: 9201 San Leandro Street									
JOB NUMBER: 07-001-04	LOCATION: NW corner close to transformer									
DATE STARTED: 06-12-08	First Water (ft. bgs.): <i>15</i> DATE: <i>06-12-08</i>									
DATE FINISHED: 06–12–08	TOTAL DEPTH: 40 feet									
DRILLING METHOD: Direct-Push	GEOLOGIST: Gail Jones, RG									
DRILLING COMPANY: Vironex	Reviewed By: Gail Jones, RG									
DEPTH ft. PID (ppm) BLOWS/ 1/2' SAMPLE NO. SAMPLE NO. GRAPHIC LOG WATER LEVEL	EOLOGIC DESCRIPTION WELL DIAGRAM									
Asphalt - 1 foot Silty Sand (SM), olive bro low to medium plasticity, fine-coarse sand, commo at 5' - in shoe abundan Silty Clay (CL), dark olive fine grained, no HC odor, Silty Clay (CL), dark olive 10%-15% fine sand	wn (2.5Y 3/3), damp, 35%-45% fines, some clay, n caliche, no HC odor 									
10- 10' 5 5 5 5 5 5 5 5 5 5 5 5 5	- - - n (2.5Y 5/6), moist, low plasticity fines,									
15- Image: Second	HC odor = at 10-15 foot drive = at 10-15 foot drive =									

ER.	AS	Enviro	nn	nen	nta	I	Log of Boring	g GP1			
PROJE	PROJECT: Former PACO Pumps			ps	ADDRESS: 9201 San Leandro Street						
JOB N	NUMB	ER: 07-	001	-04			LOCATION: NW corner close to the	ransformer			
DATE	STAR	TED: 06-	-12	-08			First Water (ft. bgs.): 15' D	ATE: 06-12-08			
DATE	FINIS	HED: 06	$\frac{-12}{2}$	2-08	<u></u>	1	TOTAL DEPTH: 40 feet				
	ING N	ILIHOD:		ect–I	Pus	h	GEOLOGIST: Gail Jones, RG				
		UMPANT:		rone	$\frac{x}{1}$		Reviewed By: Gail Jones, RG				
DEPTH ft. PID (nom)	BLOWS/ 1/2	SAMPLE NO.	RECOVERY	CRAPHIC LOG	WATER LEVEL	G	EOLOGIC DESCRIPTION	WELL DIAGRAM			
			H			 Silt (ML), light yellow brow to medium sand, no HC 	wn (2.5Y 6/4), wet, soft, 15%-25% fine odor, minor caliche	-			
			¥			 HP water sample attempt no water entered boring 	at 18'-22' in adjacent boring	-			
						_ Sandy Clay (CL), light oliv sand, low plasticity, no H _	/e brown (2.5Y 5/6), damp, 10%—20% fine C odor, medium stiff	-			
_ 25—			H			 Sand (SP), olive brown (2 fine to medium sand, no 	Sand (SP), olive brown (2.5Y 4/4), wet, no fines, fine to medium sand, no HC odor, medium dense				
			X			HP water sample 24'-28' in adjacent boring					
-						Gravelly Sand (SW), olive brown (2.5Y 4/4), wet, <5% silt, fine to coarse sand, 35%—45% gravel to 3/4" subrounded, no HC odor, medium dense					
- - 30 - -					-?-	? Clayey Sand (SC), light o medium dense, medium p medium sand, some coar 	-? — Clayey Sand (SC), light olive brown (2.5Y 5/6), damp, medium dense, medium plasticity, 25%—35% fines, mostly fine to medium sand, some coarse upto 1/4", no HC odor				
			\mathbb{X}			Sand (SP), light olive bro fine to medium sand, no HP water sample 32'-36'	wn (2.5Y 4/3), wet, <5% silt, HC odor in adjacent boring	-			
			\mathbb{M}			_ Sandy Silt (ML), olive bro fines, 20%—30% fine to n	Sandy Silt (ML), olive brown (2.5Y 5/6), wet, no clay, low plasticity, fines, 20%-30% fine to medium sand, no HC odor				
_ 35—			A			_ Silty Gravel (GM), dark ye dense, 10%—20% silt, 20% — 1.5" subrounded, no odor	llow brown (10YR 4/4), damp, medium 3—30% fine to coarse sand, gravel to	-			
			¥	ត្រា		Sand (SP), light olive bro <10% silt, fine sand, no	wn (2.5Y 5/6), wet, loose, odor	-			
						Silty Gravel (GM), dark ye dense, 10%—20% silt, 20% 1.5" subrounded, no odor - -	llow brown (10YR 4/4), damp, medium 3—30% fine to coarse sand, gravel to				
40-			NR NR			- Bottom of boring 40 fact	- 06-12-08				
		I			L	Bottom of boning to leet	00 12 00	l			

E RAS E nvironmental	Log of Boring GP2				
PROJECT: Former PACO Pumps	ADDRESS: 9201 San Leandro Street				
JOB NUMBER: 07-001-04	LOCATION: SE of UST (east of MW-7)				
DATE STARTED: 06-12-08	First Water (ft. bgs.): <i>12</i> DATE: <i>06–12–08</i>				
DAIE FINISHED: 06-12-08	IOIAL DEPIH: 40 feet				
DRILLING METHOD: Direct-Push	Reviewed By: Gail Jones, RG				
DEPTH ft. PID (ppm) BLOWS/ 1/2' SAMPLE NO. SAMPLE NO. GRAPHIC LOG WATER LEVEL	EOLOGIC DESCRIPTION WELL DIAGRAM				
6" concrete					
12" asphalt	-				
5-5' NR Clay (CL), black (stiff, medium plasticity, tr Clay (CL), black (Clay (CL), black (, damp, race fine sand, very slight odor / (5Y 3/2), dry,stiff,				
HC odor begins at about HC odor begins at about Clay (CL), mottled light of 3/3), damp, stiff, no sar	8' 				
Sundy Sint (ML), onver (ST some clay, 10%−20% fine Sinty Sand (SM), dark oliv no clay, 35%−45% fines,	<pre>// +/, dump, now plasuency, s sand, HC odor // e gray (5Y 3/2), wet, soft, loose, 55%-65% very fine sand, HC odor</pre>				
15 - 15' -	5/1), damp, very stiff,				
 no sand, no odor Silty Sand (SM), olive grading fine sand, slight odor Silty Clay (CL), light olive stiff, medium plasticity, no stiff, medium plastici	y (5Y 4/2), wet, 20%-30% silt, no clay, (2.5Y 5/3-5/6), damp, ninor black organics				
20-					

E RAS E nvironmental	Log of Boring GP2				
PROJECT: Former Paco Pumps	ADDRESS: 9201 San Leandro Street				
JOB NUMBER: 07-001-04	LOCATION: SE of UST (east of MW-7)				
DATE STARTED: 06-12-08	First Water (ft. bgs.): <i>12</i> DATE: <i>06-12-08</i>				
DATE FINISHED: 06-12-08	TOTAL DEPTH: 40 feet				
DRILLING METHOD: Geoprobe	GEOLOGIST: Gail Jones, RG				
DRILLING COMPANY: Vitonex	Reviewed by: Gau Jones, RG				
DEPTH ft. PID (ppm) BLOWS/ 1/2 SAMPLE NO. RECOVERY GRAPHIC LOG WATER LEVEL	EOLOGIC DESCRIPTION WELL DIAGRAM				
- Silty Sand (SM), light oliv - 30%-40% fines w/some	e brown (2.5Y 5/4), wet, clay, fine sand, slight HC odor -				
Sandy Silt (ML), olive (5Y medium plasticity, 25%-3	′5/4), damp, medium stiff, 5% fine sand, no odor – –				
Silty Gravel (GM), olive (5 25%-35% fine to coarse	Y 4/4), damp, 15%—25% fines, sand, gravel to 1", no odor				
Sand (SP), olive (5Y 4/4	Sand (SP), olive (5Y 4/4), wet, medium dense, no odor				
	-				
30 MR Medium Sand (SP) olive	brown (2.5Y 4/4) wet medium dense				
- fine to medium sand, no	fine to medium sand, no odor				
-	4/4), wet, medium dense, <10% silt and ium to coarse sand, gravel to 2", no odor				
	-				
35- Gravelly Sand (SW), olive 10% silt, fine to coarse s	(2.5Y 4/4), wet, medium dense,				
	-				
	-				
	-				
Bottom of boring 40 feet	- 06-12-08				

3	RA	S	Enviro	nr	ner	nta		Log of Boring	g GP-3
PROJECT: Former PACO Pumps			ps	ADDRESS: 9201 San Leandro Street					
JOE	B NU	JMBE	R: 07-0	01	-04		<u> </u>	LOCATION: NW corner of operati	ons building
DAT	ΈS	TART	ED: <i>06</i> -	-13	-08			First Water (ft. bgs.): 19.5' D	ATE: 06–13–08
DAT	ΈF	INISH	IED: 06-	-13	3-08			TOTAL DEPTH: 35 feet	
DRI	LLIN	GM	ETHOD: 1	Нус	drau	lic	Push	GEOLOGIST: Andrew Savage	
DRI	LLIN	G C(DMPANY:	Vi	rone	<i>x</i>	İ	Reviewed By: Gail Jones, RG	I
DEPTH ft.	PID (ppm)	BLOWS/ 1/2'	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	G	EOLOGIC DESCRIPTION	WELL DIAGRAM
_				H			Asphalt over concrete +	bedrock	-
-				₩			-		-
-				\mathbb{H}			Silty Clay (CL) black (2.5	X 25/1) damp medium stiff	-
-				\square			medium plasticity, no HC	odor	-
	3'			\times		1	-		-
-	3.1			NR			-		-
-						1	-		-
				NR			-		-
5-						1	_		-
				\square			at 6' — color change to	olive brown (2.5Y 4/3)	-
-				₩		1	-		-
-				₩	$\langle / /$		-		-
-				\mathbf{H}		1	-		-
				Π					-
				Д		1	-		_
-			GP-3				-		-
10-	10' 2.0		9.5–10	\cap		1	_		_
-				Н			- at 11' color obanao ta	light alive brown (2.57.5/7)	-
_				\square		1	– at ii – color change to –	light blive brown (2.5f 5/5)	-
_				₩.			-		-
-				H	///]	-		-
-				₩	///	1	-		
-				\square	///		F L		-
]					///	1	-		-
15-	15' 0 9			\mathbb{R}	///		L		–
-	0.0			\mathbb{H}		1	_		-
-				W			– at 16' — color change to	light olive brown (2.5Y 5/3)	-
				Λ	V//	1	-		-
-				А		1	-		-
-]	-		-
-	18.5 [°] 0.7			$\overline{\mathbf{N}}$	///	1	F		
				Ď			- moist at 195'		-
20-	20'			\times		1 -			- _
Ľ	0.7						Hydropunch 25'-29', 31'-	-35'	

E RAS E nvironmental	Log of Boring GP-4		
PROJECT: Former PACO Pumps	ADDRESS: 9201 San Leandro Street		
JOB NUMBER: 07-001-04	LOCATION: NE of UST		
DATE STARTED: 06–13–08	First Water (ft. bgs.): 13' DATE: 06–13–08		
DAIL FINISHED: 06-13-08	IOIAL DEPIH: 35 feet		
DRILLING METHOD. Hydrautic Fush	Reviewed By: Cail Jones RC		
DEPTH ft. PID (ppm) BLOWS/ 1// SAMPLE NO. RECOVERY GRAPHIC LO WATER LEVE	EOLOGIC DESCRIPTION WELL DIAGRAM		
Asphalt over concrete +			
3.5' I2.7 5- I2.7 NR I2.7 NR I2.7 I2.7 <td>Y 2.5/1), damp, medium stiff, C odor - - - - - - - - -</td>	Y 2.5/1), damp, medium stiff, C odor - - - - - - - - -		
GP-4 at 6' - color change to slight HC odor at 9' - strong HC odor	dark gray (2.5Y 4/1), damp, - - - - - - - - - -		
10-10' 530 9.5-10 12.5' 3474 9.5-10			
│	(2.5Y 4/1), wet, medium stiff, odor		
15- 15- 15- 15- 15-	brown (2.5Y 4/3), wet, medium stiff, odor		
8.1 Hydropunch 25'-29', 31'-	-35' -		

E RAS E nvironmental	Log of Boring GP-6		
PROJECT: Former PACO Pumps	ADDRESS: 9201 San Leandro Street		
JOB NUMBER: 07-001-04	LOCATION: Inside building		
DATE STARTED: 06-16-08	First Water (ft. bgs.): 13.5 DATE: 06-16-08		
DATE FINISHED: 06-76-08	CEOLOCIST: Andrew Savage		
DRILLING METHOD. Ingulatic Last	Reviewed By: Gail Jones, RG		
DEPTH ft. PID (ppm) BLOWS/ 1/2' SAMPLE NO. RECOVERY GRAPHIC LOG WATER LEVEL	EOLOGIC DESCRIPTION WELL DIAGRAM		
2.25'			
- 25.2 - Silty Clay (CL), black (2.5 medium plasticity, slight i	Y 2.5/1), damp, medium stiff, HC odor - - -		
5- 6' 70.2 - at 7' - color change to - at 8' - odor gets strong	dark gray (2.5Y 4/1)		
$\begin{bmatrix} 12'\\ 2307\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$			
$15 - \frac{15'}{16.2}$			
Hydropunch 25'-29', Refu	usal at 30 feet		

E RAS E nvironmental	Log of Boring GP-8		
PROJECT: Former PACO Pumps	ADDRESS: 9201 San Leandro Street		
JOB NUMBER: 07-001-04	LOCATION: by RR tracks		
DATE STARTED: 06-16-08	First Water (ft. bgs.): - DATE: 06-16-08		
DATE FINISHED: 06–16–08	TOTAL DEPTH: 35 feet		
DRILLING METHOD: Hydraulic Push	GEOLOGIST: Andrew Savage		
DRILLING COMPANY: Vironex	Reviewed By: Gail Jones, RG		
DEPTH ft. PID (ppm) BLOWS/ 1/2 SAMPLE NO. RECOVERY GRAPHIC LOG WATER LEVEL	GEOLOGIC DESCRIPTION WELL DIAGRAM		
- Sandy Gravel (GW), light - 40% fine to coarse well - 5.0.0 - 0.0 -	olive brown (2.5Y 5/3), damp, graded sand, 60% 1/8"-2" gravel, 		
3' 2.4 NR NR NR	5Y 2.5/1), damp, medium stiff, odor - -		
5- - at 5' - color change to 			
GP-8 9.5-10 at 12' - color change to	- 		
15- 15' 0.1 - Clayey Silt (ML), dark gro medium stiff, low to medium - Boring caved below 15 fe at 15'-20' interval. - Attempted Hydropunch sa	ayish brown (2.5Y 4/2), damp to moist, lium plasticity, no HC odor eet, could not collect water sample mple 16'-20', no water entered barrel.		
20- ^{20'} 0 Hydropunch 20'-29', 31'-	-35'		

E RAS E nvironmental	Log of Boring SG-1		
PROJECT: Former PACO Pumps	ADDRESS: 9201 San Leandro Street		
JOB NUMBER: 07-001-04	LOCATION: SW of MW-3		
DATE STARTED: 06-16-08	First Water (ft. bgs.): – DATE: 06–16–08		
DAIL FINISHED: 06-76-08	CEOLOCIST: Androw Savage		
DRILLING METHOD. Inguratite Fast	Reviewed By: Gail Jones. RG		
PTH ft. (ppm) WS/ 1/2' WPLE NO. MPLE NO. APHIC LOG TER LEVEL	EOLOGIC DESCRIPTION WELL DIAGRAM		
NAL REC SAN PID EF			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2.5Y 4/1), damp, medium stiff, HC odor silt content, low to medium plasticity		
	-		

APPENDIX F

FIELD FORMS

~	Project Location:	:	9201 Sa	n Leandro St	t. Date:		6.17.08		_	
	Project Number:	:	07-	-001-04	Inspector:		KC		_	
	Meter Type (WLM	l/IFP)		WLM	Measure P	oint (TOC c	or other)		_	
	Well Number	Time Open	Time Measured	Time Sample (NP only)	Total Depth (Standard Purge only)	Depth to LNAPL	Depth to Water		Comments]
								Last		
	9MW1	8.32	9:47	and the second			9.04	8.50		
	9MW2	8:56	<i><u> </u></i>	:. 4 1.			1.57	8.94		
	9MW3	6:54	10:00		s		9.81	9.21		
	9MW4	5=25	9:55				8.31	7.61		
	9MW5	9.74	9:44				8.75	8.16		
	·									
							····			
					ę.					
							·······			
					,					
	<u></u>					,	 			
	. <u>.</u>	<u></u>					· · · · · · · · · · · · · · · · · · ·			
										1.22
	- 	,	! 							
	North State	•								
					***				- 	
1997 - 1997 1997 - 1997					- *** 'n -				اری این مرکز این مرکز می	
										er og en file Gelig Verse Hereit

Groundwater Level Summary

9MW	/1				
07-001	-04	Project Location	9201 San Leandro St.		
6.17.0	08	Personnel		КС	
Baile	er	Purge Rate (pump only)		ವ	
Oakto	on				
- Depth to Water	= Casing volume	* Volume 0.75"=.023 4"=0	e Factor 3 2"=0.17).66	= Gallons per CV	
9.04	1096	0.6	6	7.23	
Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES
67740	-				
2111-	1	· · · · · · · · · · · · · · · · · · ·		-	
8	65.3	18,6	7.95		· · · · · · · · · · · · · · · · · · ·
16	77-0	18.0	7.95		
			7.01		
24 .	73.9	<u>-7-7</u>	7-92		
10	2.	·····			
SAM	le			· · · · · · · · · · · · · · · · · · ·	
					·····································
				<u>^</u>	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
		······			
					· · · · · · · · · · · · · · · · · · ·
	9MW 07-001 6.17.0 Baile Oakto - Depth to Water 9.04 Gallons Removed 57742 8 16 2.4	$ \begin{array}{r} 9MW1 \\ 07-001-04 \\ 6.17.08 \\ Bailer \\ 0akton \\ \hline 0akton \\ 0akton \\ Casing volume \\ 0log U \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9MW1 Project Location 9201 San Leandro St. 6.17.08 Personnel KC Bailer Purge Rate (purp only)

GROUNDWATER SAMPLE DATA

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed
N	24	3

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
	6.17.08	11:04	Binp Bailer	4/VOA

Well #

ſk.

	GROUNDW	ATER SA	MPLE DAT	A		
Well #	9MW	2				
Project #	07-001	-04	Project Location	9201 Sar	n Leandro St.	
Purge Date	6.17.0	08	Personnel		KC	
Purge Method	Baile)r	Purge Rate (pump only)			
Parameter Meter	Oakto	on .				
Depth to Bottom	- Depth to Water	= Casing volume	* Volume 0.75"=.023 4"=0	e Factor 3 2"=0.17).66	= Gallons per	
19.9	187	1209	0.6	6	6125	
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES
10.	<u> </u>					
1282	31M					
10000	~	Car	10	7-7/2		
12:27		75.6	19-2	1.10		
17.74	15	Car	10 (2 ~~		
1051	13	73-6	18.6	1.17		· · · ·
1-1-702	2 7	<u>67 0</u>	10~	70.0		
12.30		77.0	10.5	1-04		
12 210	CA.					
2-40	Sunp	æ				
		······································	······································			
						·
						4
						· · · · · · · · · · · · · · · · · · ·
	1	L		1		·····

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed	
N	22	3	

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
/	6.17.08	12:40	Bailer	4/VOA

Well #

9MW**Z**.

Well #		ATER SA	MPLE DAT	4				
Project #	07-001	-01	Project Location	9201 Sar	n Leandro St.			
Purge Date	11.14	.07	Personnel		КС			
Purge Method	Baile	er	Purge Rate (pump only)		,			
Parameter Meter	Oakto	on.						
Depth to Bottom	- Depth to Water S.8 9	= Casing volume (0.01	* Volume 0.75"=.023 4"=0	e Factor 3 2"=0.17).66	= Gallons per CV			
20	1-57-	12=4	0.6	6	6.52			
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	pН	Sheen (Y,N,U)		NOTES	
1			-					
12-5-2	STA	1						
						- 19 - 19 19 19 19 19 19 19 19 19 19 19 19 19		_
12:54	7	<u>[[].5</u>	18.9	7.74				
<u>k</u>			-					
13:03	14	[[6.[18-9-	7,79				
[- 05	P 1		10.0	2 1				
13:15	21	10-1-	19.2	うって				_
12 12	<i>c</i> -1	117-1		(* 13				
12.0				i na jista				
13.18	SAMPI	Ľ.				· · ·		
				·		4. 1 - 1 - 1		
							· · · · · · · · · · · · · · · · · · ·	
· · · · ·						•		
	<u> </u>							
								_

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed	
ρ	21	3	

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
\setminus	11.14.07	13:18	Hip Bailer	4/VOA

Well #

9MW#_3

		GROUN	DWATER S	AMPLE DA	ATA	
Well #	9MW	/4				
Project #	07-001	-04	Project Location	9201 Sai	n Leandro St.	
Purge Date	6.17.	08	Personnel KC		-	
Purge Method	Baile	er	Purge Rate (pump only)			_
Parameter Meter	Oakte	on				
Depth to Bottom	- Depth to Water	= Casing volume	* Volume 0.75"=.023 4"=0	e Factor 3 2"=0.17).66	= Gallons per CV	
19.9	8.31	11.59	0.6	66	7.64]
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES
			~			
11:27	SAM	-T	*** • *** *			
1/.21	8	620	171	725		
דציון	0	020	11.0	100		
11-71	11	0	(n)	747		
11-26	10	81.2	11.0	103		
10-01	24	012	165	700		
11-11		01-2	10-1	18.9		
<i> </i>						
[]-44	SAMPLE	·	in the second se		<u> </u>	
	·····				2	
			· · · · · · · · · · · · · · · · · · ·	1 2		
						· · · · · · · · · · · · · · · · · · ·
		3				
			•.		ļ	
	·	<u> </u>	1	L	<u> </u>	

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed	
2	24	3	

-

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
	6.17.08	11:44	-Dimp Bailer	4/VOA

Well #

Well #	GROUNDW. 9MW	ATER SA /4	MPLE DAT	Α				
Project #	07-001	07-001-04		9201 Sa	n Leandro St.	_		
Purge Date	6.18.	08	Personnel	Personnel KC				
Purge Method	Baile	er	Purge Rate (pump only)			- -		
Parameter Meter	Oakt	on						
Depth to Bottom	- Depth to Water	= Casing volume	* Volum 0.75"=.023 4"=(e Factor 3 2"=0.17).66	= Gallons per CV			
19.9	8.31	11.59	0.0	66	7.64			
Time (24 hour clock)	Gallons Removed	EC (uS/cm)	Temp [C]	рН	Sheen (Y,N,U)	NOTES		
101-	<u> </u>					· · · · · · · · · · · · · · · · · · ·		
10-15	2114	-(·····		· · · · · · · · · · · · · · · · · · ·			
16:- 1	8		10.1	7.75	·			
10.21	0	76.5				n		
10								
10- 26-	-10	85-1	18.1	7-03				
10.28	12	835	17.2 -	7.82				
						· · · · · · · · · · · · · · · · · · ·		
10:35	-SAmf	1/2						
·						۲۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰		
		-				·		
	· · · · · · · · · · · · · · · · · · ·				······································			

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed	
P	12	11/2	

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
	6.18.08	10:35	Bailer	2/liter

Well #

GROUNDWATER SAMPLE DATA 9MW5 Well # Project 07-001-04 9201 San Leandro St. Project # Location KC Purge Date 6.17.08 Personnel Purge Purge Rate Bailer Method (pump only) Parameter Oakton Meter * Volume Factor Depth to - Depth to = Casing = Gallons per 0.75"=.023 2"=0.17 Bottom Water volume CV 4"=0.66 19.9 8-75 11.15 0.66 7.35 Time Gallons EC NOTES (24 hour Temp [C] pН Sheen (Y,N,U) Removed (uS/cm) clock) STAN :07 53.9 0:20 -75 - 0 7-89 .8 10:U 55 .50 20 8 SAMPLE .

Well Dewatered (Y/N)	Total Volume Removed (gal)	Casing Vol removed
\mathcal{N}	3	24

Depth to Water at Sampling	Date Sampled	Time Sampled	Sample Method	#/type containers
	6.17.08	10:58	Big Bailer	4/VOA

Well #

APPENDIX G

LABORATORY REPORT AND CHAIN OF CUSTODY FORM FOR HAND-AUGER SOIL SAMPLES

WcCampbell A	nalytical, Inc. v Counts"	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: n one: 877-252-9262 Fax:	CA 94565-1701 nain@mccampbell.com 925-252-9269
ERAS Environmental, Inc.	Client Project ID: #07-001	1-03; 9201 San	Date Sampled:	06/12/08
1533 B Street	Leandro St		Date Received:	06/13/08
Hayward CA 94541	Client Contact: Andrew S	Savage	Date Reported:	06/20/08
	Client P.O.:		Date Completed:	06/19/08

WorkOrder: 0806416

June 20, 2008

Dear Andrew:

Enclosed within are:

- 1) The results of the 24 analyzed samples from your project: #07-001-03; 9201 San Leandro St,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

CHAIN OF CUSTODY FORM

0800A16

										~	_	0001	00				-									1			
	McC	amph	oll An:	aluti	cal	Tr							Turr	ime	und	R	ush		24Hr		48	Hr	7	2 Hr	5	Day			
	PICC	ampu		aiyu	Cal,		IC.						Geo	traci	cer:	P)F	E	xcel		Writ	e On	(DW		_		-		
	1	534 W	lllow	Pas	s Ro	d.										A	aly	sis R	equ	est	ed					Other	C	mm	ents
		925.2	urg, C/ 7.252.9 52.920	4 94 926: 59 -	56! 2 fax	5																					Filte	r Samı tals Ar	ples for naysis
Report To:	ERAS	Bill To:		E	RAS									trip	E			-							-		Ye	5	No
Company:	E	RAS Env	ironmen	tal, Ir	nc.									gels	E/B8			enen				ę							
Telephone:	510-247-9885	Email: Fax:		info@ 510-8	eras 86-5	.biz)						21 + 8015)	() with silica	(1664/5520	s (418.1)	des l	'oclors/Cong	icides)			IAS) + Creos	010/6020)						
Project #	07-001-03												/80	015	ase	hon	E S	AL I	ter b	(S)	C's)	Nd/s	8/6	020					
Project location	9201 San Leandro St			SLIS	B								602		Ge	DCar	Pe	SI S		Š	SVO	E S		10/6					
Sampler:	Andrew and Dave			aine	F								Hg	to t	Dil &	hydr	10	B's C	E H	090	20	200	200	100					
				out	ner								dt y	ŧξ	Ę	1 mp	808	PC	E E	4/82	5/82	1/83	202	00					
		Sam	pling	õ	Itai	M	latri	x F	res	erv	ativ	e	EV.	iese	rolei	rolet	608	808	8151	2/62	2/62	SIN	etal	12.0					
Sample ID	Location/Fiel d Point Name	Date	Time	*	CO	Soil	Water		HCL	HN03 HN03	ICE		MTBE/BT MTBE/BT	TPH as D	Total Pet	Total Pet	EPA 505/	EPA 608/	EPA 515/	EPA 524.	EPA 525.	EPA 8270	LUFT 5 M	Lead (20					
Pit3SE, 1.25-1.5	PIT3SE	6/12/2008	10:42	1	tube	Х					х		Х	Х)	(_
Pit3SE,2.75-3	PIT3SE	6/12/2008	10:58	1	tube	х					х		X	Х				-			>	(
Pit3E,1.25-1.5	PIT3E	6/12/2008	11.06	1	tube	х			_		х	_	X	х)	(
Pit3E,2.75-3	PIT3E	6/12/2008	11:13	1	tube	Х	_		_		х	_	Х	х)	(_			_	
Pit3NW,1.25-1.5	PIT3NW	6/12/2008	11:21	1	tube	Х	_		_		х	_	X	х	_	_		-			>	(_		_				
Pit3NW, 2.25-2.5	PIT3NW	6/12/2008	11:32	1	tube	X	_		-		X	_	X	х	_	-		_			>	(\square	_				
Pit4SE,1-1.25	PIT4SE	6/12/2008	9:15	1	tube	X	_		-		X	_	X	х	-	_	\square	-			>	(\square	_				
Pit4SE,3.25-3.5	PIT4SE	6/12/2008	9:48	1	tube	X	-		-		X	_	X	х	_	-	\square	-			>	(-		_				
Pit4E1.25-1.5	PIT4E	6/12/2008	10:02	1	tube	X	-		-		X	_	X	X	_	-		+			>		-		_				
PIC4E,3-3.25	PIT4E	6/12/2008	10:22	1	tube	X	-		-	+	X	-	X	X	-		$\left \right $	-			>		-		-				
Dit4NW 2 75.2	DITANU	6/12/2008	8:35	1	tube	~	-			+	-	-	X	X	-	-	+	-			>		-		-		-		
FICHIW, 2.75-3	PTIMAA	0/12/2008	0:09	4	tube	^	-		-		-	-	×	^	-	+		-)		-	\vdash	-				
				_		-	-		-	+	+	-	-	+	-	+	$\left \right $	+	-		-	+	-	\vdash	-		-		

RELINQUISHED BY:	RECEIVED BY:	ICE/t-	610	PDF & EDF T0608564059 *
Relinquished by: Date: Time:	Recipied by:	Condition	Jud	1
(ranky) ones 6:13:08 13:34	Denk ante	Head space absent		1
Relinquished by: / / Date: Time:	Reprevent/by:	Dechlorinated in lab		1
Jenk ant 6-13 1838	all 8	Appropriate containers		1
Relinquished by: Date: Time:	Recieved by:	Preserved in Lab		
			VOA's O&G Metals Other	
VOL 10 RETALORAIDISA2		Preservation	pH<2	

CHAIN OF CUSTODY FORM

	McC 1	ampbo 534 W Pittsbu 877	ell Ana Villow I Irg, CA	lyti Pass 94	cal s R 56	, I d. 5	nc						G	eotr	acke	r:[PC Ar	aly	sis	Rec		w	/rite (On (I			0	Other	Cor	nmen	its
		925.2	52.926	9 -	fax	ĸ									d														Filter Meta	iample Is Anay	s for rsis
Report To:	ERAS	Bill To:		E	RAS	5									silica str	-													Yes	3	No
Company:	E	RAS Envi	ironment	al, Ir	IC.										with				leners				sote								
		Email:		nfo@	era	s.bi	z						2015)		8015)	And and a	(1)		s/Cong				Creo	5020)	020)						
Telephone:	510-247-9885	Fax:	5	10-8	86-	539	9		_				4	ਜ਼	ene (C(4)	s	oclor		cides		+ (St	010/6	010/6						
Project #	07-001-03								_				CU8/	/80	eroze		SIOS	ticid	Ar	1	er o	10	Nd	.8/6	8/60	ଛି					
Project location	9201 San Leandro	St		2	a								09	602	100	5	021	Pes	NLY	ţ;			AHS	200	200	20					
Sampler:	Andrew and Dave			ine	Ę								- UH	EPA	tor o		10/8	U	8's O	Per	ë	09	10	00.7	0.7/	200					
				onta	ner				-				F	순	Mol Mol		1/80	808	PC	Ś	A I	4/82	1/83:	s (2)	20	00.					
		Sam	pling	fc	ntai		Ma	trix	P	rese	erva	ative	1EW8	Ň)iesel		2/60	608/	808	8141	8151	2/62	SIV	Metal	letal	0.7/2					
Sample ID	Location/Fiel d Point Name	Date	Time	#	S	Soll	Water	Waste	9	H2SO4	HN03	ICE	MTRF/R/	MTBE/B1	Total Day		EPA 502	EPA 505	EPA 608	EPA 507	EPA 515	EPA 524.	EPA 827	CAM 17	LUFT 5 N	Lead (20					
HA 1 1 35 1 5	HA-1	6/12/2008	13:03	1	tube	Х						X							х												
HA-1,1.23-1.3		< 14 0 00 00 0			1.1.1														X												
HA-1,3-3.25	HA-1	6/12/2008	13:16	1	tube	X						x		-					_				-							_	
HA-1,3-3.25 HA-2,1.25-1.5	HA-1 HA-2	6/12/2008	13:16 13:30	1	tube	X						X X	E	_		+			х												_
HA-1,1.25-1.5 HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75	HA-1 HA-2 HA-2	6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45	1 1 1	tube tube	X X X	_					x x x		_					X X							-					
HA-1,3-3.25 HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75 HA-3,1.25-1.5	HA-1 HA-2 HA-2 HA-3	6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02	1 1 1 1	tube tube tube	X X X X						x x x x		_					X X X												
HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75 HA-3,1.25-1.5 HA-3,2.5-2.75	HA-1 HA-2 HA-2 HA-3 HA-3	6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02 14:11	1 1 1 1 1	tube tube tube tube	X X X X X						X X X X X X		_					X X X X												
HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75 HA-3,1.25-1.5 HA-3,2.5-2.75 HA-4,1-1.25	HA-1 HA-2 HA-2 HA-3 HA-3 HA-4	6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02 14:11 14:40	1 1 1 1 1 1	tube tube tube tube tube	X X X X X X						x x x x x x x x			K				X X X X			×									
HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75 HA-3,1.25-1.5 HA-3,2.5-2.75 HA-4,1-1.25 HA-4,2.75-3	HA-1 HA-2 HA-2 HA-3 HA-3 HA-4 HA-4	6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02 14:11 14:40 14:50	1 1 1 1 1 1 1 1	tube tube tube tube tube tube	X X X X X X X X						X X X X X X X X X			K K				X X X			x									
HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75 HA-3,1.25-1.5 HA-3,2.5-2.75 HA-4,1-1.25 HA-4,2.75-3 HA-5,1-1.25	HA-1 HA-2 HA-2 HA-3 HA-3 HA-4 HA-4 HA-4 HA-5	6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02 14:11 14:40 14:50 15:26	1 1 1 1 1 1 1 1 1	tube tube tube tube tube tube	X X X X X X X X X						X X X X X X X X X X X X			x x x				X X X X			×									
HA-1,3-3.25 HA-2,1.25-1.5 HA-2,2.5-2.75 HA-3,1.25-1.5 HA-3,2.5-2.75 HA-4,1-1.25 HA-4,2.75-3 HA-5,1-1.25 HA-5,2.75-3	HA-1 HA-2 HA-3 HA-3 HA-4 HA-4 HA-5 HA-5	6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02 14:11 14:40 14:50 15:26 15:32	1 1 1 1 1 1 1 1 1 1 1	tube tube tube tube tube tube	X X X X X X X X X X						x x x x x x x x x x x x x x							X X X												
HA-1,3-3.25 HA-2,1.25-1.5 HA-2,1.25-1.5 HA-3,1.25-1.5 HA-3,2.5-2.75 HA-4,1-1.25 HA-4,1-1.25 HA-4,2.75-3 HA-5,1-1.25 HA-5,2.75-3 HA-6,1-1.25	HA-1 HA-2 HA-3 HA-3 HA-4 HA-4 HA-5 HA-5 HA-5 HA-6	6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008 6/12/2008	13:16 13:30 13:45 14:02 14:11 14:40 14:50 15:26 15:32 15:00	1 1 1 1 1 1 1 1 1 1 1 1 1	tube tube tube tube tube tube tube	× × × × × × × × × × × × × ×						x x x x x x x x x x x x x x x x x x x							X X X												

RELI	NQUISHED BY:		RECEIVED BY:	ICE/t-			PDF & EDF T0608564059 🗶
Relinquished by: ran Worres Relinquished by:	Date: 6 - (3.08 Date: 6 - (3	Time: 1334 Time: 1838	Recieved by: Recieved by:	Condition Head space absent Dechlorinated in lab Appropriate containers			
Relinquished by:	Date:	Time:	Recieved by:	Preserved in Lab	VOA's O&	G Metals Other	-

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 52-9262					Work	Order	: 0806	416	(Client(Code: E	RAS				
			WriteOn	EDF	Γ	Excel		Fax	[🖌 Email		Hard	lCopy	🗌 Thir	dParty	J-	flag
Report to: Andrew Sava ERAS Enviro	age onmental, Inc.	Email: cc:	info@eras.biz gale@eras.bi	z Z			Bill to: Ga EF	ail Jone: RAS Env	s /ironme	ental, In	c.		Req Dat	uested e Rece	TAT:	5 c 06/13/	1ays 2008
Hayward, CA (510) 247-988	A 94541 35 FAX (510) 886-5399	ProjectNo:	#07-001-03; §	9201 San Leandro	o St		Ha	ayward,	CA 945	541			Dat	e Prin	ted:	06/19/2	2008
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	Req 4	uested 5	Tests 6	(See leg	gend b 8	elow) 9	10	11	12
0806416 001			Soil	6/12/2008 10:42				^					1				
0806416-001	PII35E, 1.23-1.3		Soli	6/12/2008 10:42	┼┼			A	A	A	A	-			+	┣────	
0806416-002	FII35E,2.75-3		Soil	6/12/2008 11:06	┼┼			A	A		A				+	┣────	
0806416-003	FILSE, 1.25-1.5		Soil	6/12/2008 11:00	┼┝┤			A	A		A				+	<u> </u>	
0806416-004	Dit2NIM 1 25 1 5		Soil	6/12/2008 11:13	┼┝┤			A	A		A				+	<u> </u>	
0806416-005	Dit3NW/ 2 25-2 5		Soil	6/12/2008 11:21	┼岩			Δ	A 		A				+	<u> </u>	
0806416-007	Pit/ISE 1-1 25		Soil	6/12/2008 9:15	┼岩			Δ			Δ				<u> </u>	<u> </u>	
0806416-008	Pit4SE 3 25-3 5		Soil	6/12/2008 9:48	┼┝╴			Δ	Δ		Δ				<u> </u>	<u> </u>	
0806416-009	Pit4F1 25-1 5		Soil	6/12/2008 10:02	片			A	A		A				-		
0806416-010	Pit4F 3-3 25		Soil	6/12/2008 10:22	18			A	A		A						
0806416-011	Pit4NW 1.25-1.5		Soil	6/12/2008 8:35	18			A	A		A						
0806416-012	Pit4NW.2.75-3		Soil	6/12/2008 8:59				A	A		A						
0806416-013	HA-1,1.25-1.5		Soil	6/12/2008 13:03	17	А									1		
0806416-014	HA-1,3-3.25		Soil	6/12/2008 13:16	10	А		1									
Toot Lonondi					•			•			•					k	•

<u>Test Legend:</u>

1 8082A_PCB_S	2 8260B_S
6 TPH(DKMO)WSG_S	7
11	12

3	8270D-PNA_S
8	

4	G-MBTEX_S
9	

5	PREDF REPORT
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

1534 Willow Pass Rd

HA-5,1-1.25

HA-5,2.75-3

HA-6,1-1.25

HA-6,2.75-3

CHAIN-OF-CUSTODY RECORD

А

А

А

А

Page 1 of 1

(925) 25	g, CA 94565-1701 52-9262					Work	Order	: 08064	116	(ClientC	ode: E	RAS				
			WriteOr	n 🖌 EDF	Ľ	Excel		Fax	Ŀ	🖌 Email		Hard	ICopy	🗌 Thi	rdParty	🗌 J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
Andrew Sava ERAS Enviro 1533 B Stree Hayward, C/ (510) 247-988	age onmental, Inc. et A 94541 35 FAX (510) 886-5399	Email: cc: PO: ProjectNo	info@eras.bi gale@eras.b : #07-001-03;	z iz 9201 San Leandro	Gail Jones ERAS Environmental, Inc. 1533 B Street 201 San Leandro St Hayward, CA 94541				с.		Dat Dat	ate Received: 06/13/200 ate Printed: 06/19/200					
									Req	uested	Tests	(See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0806416-015	HA-2,1.25-1.5		Soil	6/12/2008 13:30		Α											
0806416-016	HA-2,2.5-2.75		Soil	6/12/2008 13:45		А											
0806416-017	HA-3,1.25-1.5		Soil	6/12/2008 14:02		А											
0806416-018	HA-3,2.5-2.75		Soil	6/12/2008 14:11		А											
0806416-019	HA-4,1-1.25		Soil	6/12/2008 14:40			А				A						
0806416-020	HA-4.2.75-3		Soil	6/12/2008 14:50			А				Α						

6/12/2008 15:26

6/12/2008 15:32

6/12/2008 15:00

6/12/2008 15:10

Soil

Soil

Soil

Soil

Test Legend:

0806416-021

0806416-022

0806416-023

0806416-024

1 8082A_PCB_S	2 8260B_S	3 8270D-PNA_S	4 G-MBTEX_S	5 PREDF REPORT
6 TPH(DKMO)WSG_S	7	8	9	10
11	12			

А

А

А

А

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	ERAS Environme	ntal, Inc.			Date a	and Time Received:	06/13/08 9	:11:02 PM				
Project Name:	#07-001-03; 9201	San Leandro St			Check	klist completed and r	eviewed by:	Ana Venegas				
WorkOrder N°:	0806416	Matrix <u>Soil</u>			Carrie	r: <u>Derik Cartan (N</u>	MAI Courier)					
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation						
Chain of custody	/ present?		Yes	\checkmark	No 🗆							
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆							
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌							
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆							
Date and Time of	f collection noted by Cli	ent on COC?	Yes	✓	No 🗆							
Sampler's name	noted on COC?		Yes	✓	No 🗆							
	Sample Receipt Information											
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹					
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆							
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆							
Sample containe	ers intact?		Yes	\checkmark	No 🗆							
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌							
		Sample Preser	vatio	<u>n and Ho</u>	ld Time (HT) Information						
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌							
Container/Temp	Blank temperature		Coole	er Temp:	5.6°C		NA 🗆					
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹					
Sample labels cl	Sample labels checked for correct preservation?			✓	No 🗌							
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹					

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality	nalytic _{Counts"}	al, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269												
ERAS Environmental, Inc.	(Client Pro	oject ID: 🗄	#07-001	1-03; 9201 San	Date Sampled:	06/12/08									
1533 B Street]	Leandro	St			Date Received:	06/13/08									
	(Client Co	ontact: Ai	ndrew S	Savage	Date Extracted: 06/13/08										
Hayward, CA 94541	,	Client P.0	D.:			Date Analyzed	06/16/08-0	6/17/08								
Po	olychlorii	nated Bij	phenyls (P	CBs) A	roclors by GC-I	ECD*										
Extraction Method: SW3550C		Anal	ytical Method	: SW808	2A	1	Work Order:	0806416								
Lab ID	080641	6-013A	0806416-	-014A	0806416-015A	0806416-016A										
Client ID	HA-1,1	.25-1.5	HA-1,3-	3.25	HA-2,1.25-1.5	HA-2,2.5-2.75	Reporting DF	Limit for =1								
Matrix	S	5	S		S	S										
DF	1	1	1		1	1	S	W								
Compound				Conce	entration		mg/kg	ug/L								
Aroclor1016 ND NI					ND	ND	0.025	NA								
Aroclor1221	N	ND		ND		ND		ND		ND			ND	ND	0.025	NA
Aroclor1232 ND N					ND	ND	0.025	NA								
Aroclor1242	N	D	ND		ND	ND	0.025	NA								
Aroclor1248	N	D	ND		ND	ND	0.025	NA								
Aroclor1254	N	D	ND		ND	0.050	0.025	NA								
Aroclor1260	N	D	ND		ND	ND	0.025	NA								
PCBs, total, as DCB	N	D	ND		ND	0.050	0.025	NA								
		Surro	ogate Rec	overies	s (%)											
%SS:	8	9	116	i	120	112										
Comments	h	4				h4										
* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. ND means not detected above the reporting limit: N/A means analyte not applicable to this analysis.																
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or surrogate coelutes with another peak.																

h4) sulfuric acid permanganate (EPA 3665) cleanup

Angela Rydelius, Lab Manager

McCampbell An	McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Fax: 925-252-9269											
ERAS Environmental, Inc.	Client P	roject ID:	#07-001	-03; 9201 San	Date Sampled:	06/12/08						
1533 B Street	Leandro	o St			Date Received:	06/13/08						
	Client C	Contact: A	ndrew S	avage	Date Extracted:	06/13/08						
Hayward, CA 94541	Client P	.0.:			Date Analyzed	06/16/08-0	6/23/08					
Po	lychlorinated B	iphenyls (F	PCBs) A	roclors by GC-I	ECD*							
Extraction Method: SW3550C	An	alytical Method	1: SW8082	2A		Work Order:	0806416					
Lab ID	0806416-017A	0806416	-018A									
Client ID	HA-3,1.25-1.5	HA-3,2.5	5-2.75			Reporting DF	Limit for =1					
Matrix	S	S										
DF	1	3				S	W					
Compound			Conce	ntration		mg/kg	ug/L					
Aroclor1016	ND	ND<0.	.075			0.025	NA					
Aroclor1221	ND					0.025	NA					
Aroclor1232	ND	ND<0.	.075			0.025	NA					
Aroclor1242	ND NI		.075			0.025	NA					
Aroclor1248	ND N		.075			0.025	NA					
Aroclor1254	ND	ND<0.	.075			0.025	NA					
Aroclor1260	ND	0.14	4			0.025	NA					
PCBs, total, as DCB	ND	0.14	4			0.025	NA					
	Sur	rogate Rec	overies	(%)								
%SS:	118	113	3									
Comments		h4										
* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.												
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.												
# surrogate diluted out of range or surrogate coelutes with another peak.												

h4) sulfuric acid permanganate (EPA 3665) cleanup

Angela Rydelius, Lab Manager

McCampbell An "When Ouality"	McCampbell Analytical, Inc. "When Ouality Counts" TRAS Environmental. Inc. Client Project ID:				Pass Road, Pittsburg, C obell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 n@mccampbell.com 25-252-9269		
ERAS Environmental, Inc.	Client I	Project ID:	#07-	001-03; 9201 San	Date Sampled:	06/12/08		
	Leandr	o St			Date Received:	06/13/08		
1533 B Street	Client	Contact: A	Andre	w Savage	Date Extracted:	06/13/08		
Hayward, CA 94541	Client I	P.O.:		0	Date Analyzed	06/16/08		
	Volatile Orga	nics by P&	T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	and a second	Analytical	l Metho	d: SW8260B	8	Work Order: 080	6416	
Lah ID				0806416	5-019A			
Client ID				HA-4.1	-1.25			
Matrix				So	il			
Compound	Concentration *	DF R	eporting Limit	Compour	nd	Concentration *	DF	Reporting
Acetone	0.12	1.0	0.05	tert-Amvl methyl e	ther (TAME)	ND	1.0	0.005
Benzene	ND	1.0 (0.005	Bromobenzene	· ·	ND	1.0	0.005
Bromochloromethane	ND	1.0 (0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0 0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0 0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0 0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0 0	0.005	Chlorobenzene		ND	1.0	0.005
Chloromathana	ND	1.0 0	0.005	2 Chlorotoluono		ND	1.0	0.005
4-Chlorotoluene	ND	1.0 0	0.005	2-Chlorotoluene Dibromochlorometh	ane	ND	1.0	0.005
1 2-Dibromo-3-chloropropage	ND	1.0 (0.003	1.2-Dibromoethane	(FDR)	ND	1.0	0.003
Dibromomethane	ND	1.0 (0.004	1.2-Dichlorobenzen	e	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0 (0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0 (0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0 0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0 0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0 (0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0 0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0 0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Disopropyl ether (DIPE)	ND	1.0 0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0 (0.005	Freen 115		ND	1.0	0.005
2-Hexanone	ND	1.0 (0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0 (0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0 (0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0 (0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0 (0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0 0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0 0	0.005	1,2,3-Trichlorobenz	zene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0 0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0 0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0 (<u>0.005</u>	1,2,3-Trichloropror	bane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0 (0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005
		Sume ~	oto Dr	$\frac{1}{2} \frac{1}{2} \frac{1}$		ND	1.0	10.005
0/ 551.	17	o o o o o o o o o o o o	αιτ κι	0/ 552.			1.5	
%551: %\$\$3·	10	<u>)0</u>)3		%332:		1 1.	13	
Comments:		10						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell Analytical, Inc. "When Ouality Counts" RAS Environmental Inc. Client Project ID				1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bbell.com E-mail: mai 377-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269				
ERAS Environmental, Inc.	Client I	Project ID:	#07-	001-03; 9201 San	Date Sampled:	06/12/08				
	Leandr	ro St			Date Received:	06/13/08				
1533 B Street	Client	Contact: A	Andre	w Savage	Date Extracted:	06/13/08				
Hayward, CA 94541	Client I	P.O.:			Date Analyzed	06/16/08				
Vol	atile Orga	nics by P&	T and	d CC/MS (Basic T	arget I ist)*					
Extraction Method: SW5030B	ant orga	Analytica	d Metho	d. SW8260B	arget List)	Work Order: 080	6416			
Lah ID		7 mary ree	a memo	0806416	. 020 4	Work Order. 0000	0410			
				0806416-020A						
Chent ID				HA-4,2						
Mauix		R	Reporting	50	11			Reporting		
Compound Cone	centration *	DF	Limit	Compour	nd	Concentration *	DF	Limit		
Acetone	0.20	1.0	0.05	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ND	1.0	0.005			
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005			
2-Butanone (MEK)	0.026	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05		
n-Butyl benzene	ND ND	1.0	0.005	Sec-Butyl benzene		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005		
CIS-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005		
Dilsopropyl ether (DIPE)	ND ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005		
Ellivi tert-butyl eller (EIBE)	ND	1.0	0.005	Havashlarosthans		ND	1.0	0.005		
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005		
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005		
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005		
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005		
Vinvi Chloride	ND	I 1.0	0.005	Xvlenes		ND	1.0	0.005		
		Surrog	ate Re	coveries (%)		1				
%SS1:	10	00		%SS2:		10	01			
<u>\%883:</u>	10	05		I						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	McCampbell An "When Quality"	nalytical, I v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 877-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269			
Leandro St Date Received: 06/13/08 1533 B Street Client Contact: Andrew Savage Date Extracted: 06/13/08 Hayward, CA 94541 Client P.O.: Date Extracted: 06/13/08 Extraction Method: SW5030B Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Commound Concentration * DF Reporting Commound Concentration * Concentration * DF Reporting Commound Concentration * DF Reporting Acteone ND<0.020	ERAS Environmental, Inc.	Client	Project ID:	#07-	001-03; 9201 San	Date Sampled:	06/12/08			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Leand	ro St			Date Received:	06/13/08			
Hayward, CA 94541 Chiene Contact: Think's Birlinge Date Analyzed 06/17/08 Date Analyzed 06/17/08 Volatile Organics by P&T and GC/MS (Basic Target List)* Estraction Method: SW5030B Work Order: 0806416 Client ID OB060416-021A Client ID Mater SW5030B Work Order: 0806416 Compound Concentration * DF Reporting Commound Concentration * DF Reporting Commound <th colspan<="" td=""><td>1533 B Street</td><td>Client</td><td>Contact: A</td><td>ndre</td><td>w Savage</td><td>Date Extracted:</td><td>06/13/08</td><td></td><td></td></th>	<td>1533 B Street</td> <td>Client</td> <td>Contact: A</td> <td>ndre</td> <td>w Savage</td> <td>Date Extracted:</td> <td>06/13/08</td> <td></td> <td></td>	1533 B Street	Client	Contact: A	ndre	w Savage	Date Extracted:	06/13/08		
Date Analyzed Date Analyzed Option Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Mark term Lab ID Out of the system Lab ID Out of the system Client ID HA-5.1-1.25 Matrix Soil Soil Compound Concentration * DF Reporting Soil Compound Concentration * DF Reporting Acetone ND<0.20	Hayward CA 94541	Client		mare	Suruge	Date Analyzad	06/17/08			
Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0806416 Lab ID 0806416-021A Client ID HA-5,1-1.25 Matrix Soil Compound Concentration * DF Reporting Limit Acetone ND<0.020 4.0 0.005 Bromodichloromethane ND<0.020 4.0 0.020 Compound Concentration * DF Reporting Limit Compound Concentration * DF Reporting Limit Acetone ND<0		Chem	F.U			Date Analyzeu	00/17/08			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Volatile Orga	nics by P&	T and	d GC/MS (Basic Ta	arget List)*				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Extraction Method: SW5030B		Analytica	l Metho	d: SW8260B		Work Order: 080	6416		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Lab ID				0806416	-021A				
Matrix Soil Combound Concentration * DF Reporting Limit Combound Concentration * DF Reporting Feature Acetone ND<0.020	Client ID				HA-5,1	-1.25				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Matrix				Soi	1				
Acetone ND<0.20 4.0 0.05 tert-Amyl methyl ether (TAME) ND<0.020 4.0 0.0 Benzene ND<0.020	Compound	Concentration *	DF	eporting Limit	Compour	nd	Concentration *	DF	Reporting Limit	
Benzene ND<0.020 4.0 0.005 Bromobenzene ND<0.020 4.0 0. Bromochloromethane ND<0.020	Acetone	ND<0.20	4.0	0.05	tert-Amyl methyl e	ther (TAME)	ND<0.020	4.0	0.005	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Benzene	ND<0.020	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Bromochloromethane	ND<0.020	4.0 0	0.005	Bromodichlorometh	ane	ND<0.020	4.0	0.005	
2-Butanone (MEK)ND<0.0804.00.02t-Butyl alcohol (TBA)ND<0.204.00n-Butyl benzene0.204.00.005sec-Butyl benzene0.164.00tert-Butyl benzeneND<0.020	Bromoform	ND<0.020	4.0	0.005	Bromomethane		ND<0.020	4.0	0.005	
n-Butyl benzene 0.20 4.0 0.005 sec-Butyl benzene 0.16 4.0 $0.$ tert-Butyl benzeneND< 0.020 4.0 0.005 Carbon DisulfideND< 0.020 4.0 $0.$ Carbon TetrachlorideND< 0.020 4.0 0.005 ChlorobenzeneND< 0.020 4.0 $0.$ ChloroethaneND< 0.020 4.0 0.005 ChlorobenzeneND< 0.020 4.0 $0.$ ChloroethaneND< 0.020 4.0 0.005 ChloroformND< 0.020 4.0 $0.$ 4 -ChlorotolueneND< 0.020 4.0 0.005 DibromochloromethaneND< 0.020 4.0 $0.$ 4 -ChlorotolueneND< 0.020 4.0 0.005 DibromochloromethaneND< 0.020 4.0 $0.$ 1.2 -Dibromo-3-chloropropaneND< 0.016 4.0 0.005 1.2 -Dibromoethane (EDB)ND< 0.020 4.0 $0.$ DibromothaneND< 0.020 4.0 0.005 1.2 -DichlorobenzeneND< 0.020 4.0 $0.$ 1.3 -DichlorobenzeneND< 0.020 4.0 0.005 1.4 -DichlorobenzeneND< 0.020 4.0 $0.$ 1.2 -Dichloroethane 1.2 -DichloroethaneND< 0.020 4.0 0.005 1.4 -DichlorobenzeneND< 0.020 4.0 $0.$ 1.3 -Dichloroethane 1.2 -DichloroethaneND< 0.020 4.0 0.005 1.4 -DichloroethaneND< 0.020 4.0 $0.$ 1.2 -Dichloroethane 1.2 -DichloroethaneND< 0.020 4.0 <td>2-Butanone (MEK)</td> <td>ND<0.080</td> <td>4.0</td> <td>0.02</td> <td>t-Butyl alcohol (TB</td> <td>A)</td> <td>ND<0.20</td> <td>4.0</td> <td>0.05</td>	2-Butanone (MEK)	ND<0.080	4.0	0.02	t-Butyl alcohol (TB	A)	ND<0.20	4.0	0.05	
tert-Butyl benzeneND<0.0204.00.005Carbon DisulfideND<0.0204.00.Carbon TetrachlorideND<0.020	n-Butyl benzene	0.20	4.0 0	0.005	sec-Butyl benzene		0.16	4.0	0.005	
Carbon TetrachlorideND<0.0204.00.005ChlorobenzeneND<0.0204.00.ChloroethaneND<0.020	tert-Butyl benzene	ND<0.020	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.005	
ChloroethaneND<0.0204.00.005ChloroformND<0.0204.00.ChloromethaneND<0.020	Carbon Tetrachloride	ND<0.020	4.0	0.005	Chlorobenzene		ND<0.020	4.0	0.005	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chloroethane	ND<0.020	4.0 0	0.005	Chloroform		ND<0.020	4.0	0.005	
4-ChlorotolueneND<0.0204.00.005DibromochloromethaneND<0.0204.00.1,2-Dibromo-3-chloropropaneND<0.016	Chloromethane	ND<0.020	4.0 0	0.005	2-Chlorotoluene		ND<0.020	4.0	0.005	
1,2-Dibromo-3-chloropropaneND<0.0164.00.0041,2-Dibromoethane (EDB)ND<0.0164.00,DibromomethaneND<0.020	4-Chlorotoluene	ND<0.020	4.0 0	0.005	Dibromochlorometh	ane	ND<0.020	4.0	0.005	
DibromomentaneND<0.0204.00.0051.2-DichlorobenzeneND<0.0204.00.1,3-DichlorobenzeneND<0.020	1,2-Dibromo-3-chloropropane	ND<0.016	4.0 0	0.004	1,2-Dibromoethane	(EDB)	ND<0.016	4.0	0.004	
1,3-DichlorobenzeneND<0.0204.00.0051,4-DichlorobenzeneND<0.0204.00.DichlorodifluoromethaneND<0.020	1.2 Dishlanshansana	ND<0.020	4.0	0.005	1,2-Dichlorobenzen		ND<0.020	4.0	0.005	
Diction of interview ND<0.020 4.0 0.005 1,1-Dichloroethane ND<0.020 4.0 0.015 1,2-Dichloroethane (1,2-DCA) ND<0.016	1,3-Dichlorodifluoromethane	ND<0.020	4.0	0.005	1,4-Dichloroothana	e	ND<0.020	4.0	0.005	
1,2-Dichlorobethale (1,2-DCA) ND<0.016 4.0 0.004 1,1-Dichlorobethale ND<0.020 4.0 0.0 cis-1,2-Dichloropethene ND<0.020	1.2 Dichloroothono (1.2 DCA)	ND<0.020	4.0	$\frac{0.003}{0.004}$	1,1-Dichloroethane		ND<0.020	4.0	0.005	
Cis-1,2-Dichloropropane ND<0.020 4.0 0.005 trans-1,2-Dichloropropane ND<0.020 4.0 0.0 1,2-Dichloropropane ND<0.020	cis 1.2 Dichloroethene	ND<0.010	4.0	0.004	trans 1.2 Dichloroe	thana	ND<0.020	4.0	0.005	
1.2 Diemotopropane ND<0.020 4.0 0.005 1.3 Diemotopropane ND<0.020 4.0 0. 2,2-Dichloropropane ND<0.020	1.2-Dichloropropage	ND<0.020	4.0	0.005	1 3-Dichloropropan	e	ND<0.020	4.0	0.005	
L_{12} D_{12} D_{12	2 2-Dichloropropane	ND<0.020	4.0 (0.005	1.1-Dichloropropen	e	ND<0.020	4.0	0.005	
Disopropyl ether (DIPE)ND<0.0204.00.005EthylbenzeneND<0.0204.00.Ethyl tert-butyl ether (ETBE)ND<0.020	cis-1.3-Dichloropropene	ND<0.020	4.0	0.005	trans-1.3-Dichlorop	ropene	ND<0.020	4.0	0.005	
Ethyl tert-butyl ether (ETBE) $ND < 0.020$ 4.0 0.005 Ereon 113 $ND < 0.00$ 4.0 0.005	Disopropyl ether (DIPE)	ND<0.020	4.0	0.005	Ethylbenzene	i openie	ND<0.020	4.0	0.005	
	Ethyl tert-butyl ether (ETBE)	ND<0.020	4.0	0.005	Freon 113		ND<0.40	4.0	0.1	
Hexachlorobutadiene ND<0.020 4.0 0.005 Hexachloroethane ND<0.020 4.0 0.	Hexachlorobutadiene	ND<0.020	4.0	0.005	Hexachloroethane		ND<0.020	4.0	0.005	
2-Hexanone ND<0.020 4.0 0.005 Isopropylbenzene 0.056 4.0 0.	2-Hexanone	ND<0.020	4.0	0.005	Isopropylbenzene		0.056	4.0	0.005	
4-Isopropyl toluene ND<0.020 4.0 0.005 Methyl-t-butyl ether (MTBE) ND<0.020 4.0 0.	4-Isopropyl toluene	ND<0.020	4.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND<0.020	4.0	0.005	
Methylene chloride ND<0.020 4.0 0.005 4-Methyl-2-pentanone (MIBK) ND<0.020 4.0 0.	Methylene chloride	ND<0.020	4.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND<0.020	4.0	0.005	
Naphthalene 0.067 4.0 0.005 n-Propyl benzene 0.13 4.0 0.	Naphthalene	0.067	4.0	0.005	n-Propyl benzene		0.13	4.0	0.005	
Styrene ND<0.020 4.0 0.005 1,1,1,2-Tetrachloroethane ND<0.020 4.0 0.	Styrene	ND<0.020	4.0	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.020	4.0	0.005	
1,1,2,2-Tetrachloroethane ND<0.020 4.0 0.005 Tetrachloroethane ND<0.020 4.0 0.	1,1,2,2-Tetrachloroethane	ND<0.020	4.0	0.005	Tetrachloroethene		ND<0.020	4.0	0.005	
Toluene ND<0.020 4.0 0.005 1,2,3-Trichlorobenzene ND<0.020 4.0 0.	Toluene	ND<0.020	4.0	0.005	1,2,3-Trichlorobenz	ene	ND<0.020	4.0	0.005	
1,2,4-Trichlorobenzene ND<0.020 4.0 0.005 1,1,1-Trichloroethane ND<0.020 4.0 0.	1,2,4-Trichlorobenzene	ND<0.020	4.0	0.005	1,1,1-Trichloroetha	ne	ND<0.020	4.0	0.005	
1,1,2-Trichloroethane ND<0.020 4.0 0.005 Trichloroethene ND<0.020 4.0 0.	1,1,2-Trichloroethane	ND<0.020	4.0	0.005	Trichloroethene		ND<0.020	4.0	0.005	
TrichlorofluoromethaneND<0.0204.00.0051,2,3-TrichloropropaneND<0.0204.00.	Trichlorofluoromethane	ND<0.020	4.0	0.005	1,2,3-Trichloroprop	ane	ND<0.020	4.0	0.005	
1,2,4-Trimethylbenzene 0.73 4.0 0.005 1,3,5-Trimethylbenzene 0.36 4.0 0.	1,2,4-Trimethylbenzene	0.73	4.0	0.005	1,3,5-Trimethylben	zene	0.36	4.0	0.005	
Vinvl Chloride ND<0.020 4.0 0.005 Xvlenes 0.11 4.0 0.	Vinvl Chloride	ND<0.020	4.0	0.005	Xvlenes		0.11	4.0	0.005	
Surrogate Recoveries (%)	ļ		Surrog	ate Re	coveries (%)					
%SS1: 99 %SS2: 95	%SS1:		99		%SS2:		9	5		
<u>%SS3:</u> 107	%\$\$3:	1 1	.07							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Ouality"	nalytical, I v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 in@mccampbell.com 25-252-9269		
ERAS Environmental, Inc.	Client	Project ID:	#07-	001-03; 9201 San	Date Sampled:	06/12/08		
1522 D. G.	Leand	ro St			Date Received:	06/13/08		
1533 B Street	Client	Contact: A	Andre	w Savage	Date Extracted:	06/13/08		
Hayward, CA 94541	Client	P.O.:		0	Date Analyzed	06/16/08		
	Volatile Orga	nics by P&	T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	C	Analytica	l Metho	d: SW8260B	0	Work Order: 080	6416	
Lab ID				0806416	-022A			
Client ID				HA-5.2	.75-3			
Matrix				So	1			
Compound	Concentration *	DF	eporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05
n-Butyl benzene	0.077	1.0 0	0.005	sec-Butyl benzene		0.084	1.0	0.005
Carbon Totrachlorida	0.010 ND	1.0	0.005	Chlorobanzana		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	0.0079	1.0 0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
z,z-Dichloropropane	ND	1.0	0.005	trans 1.3 Dichloron	ropana	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	Topene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.005
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		0.030	1.0	0.005
4-Isopropyl toluene	0.035	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005
Naphthalene	0.011	1.0	0.005	n-Propyl benzene		0.057	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0 0	0.005	Tetrachloroethene		ND	1.0	0.005
	ND	1.0 0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005
1,2,4-Trichloroethane		1.0	0.005	Trichloroethene	lie	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1.2.3-Trichloropror	ane	ND	1.0	0.005
1,2,4-Trimethylbenzene	0.032	1.0	0.005	1,3,5-Trimethylben	zene	0.046	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes		0.015	1.0	0.005
		Surrog	ate Re	ecoveries (%)				
%SS1:	1	01		%SS2:		9	5	
%SS3:		70						
Comments:								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Oualit"	<u> McCampbell Analytical, Inc.</u> <u> "When Ouality Counts"</u> RAS Environmental. Inc. Client Project ID				Pass Road, Pittsburg, C. bbell.com E-mail: mai 377-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269		
ERAS Environmental, Inc.	Client I	Project ID:	#07-	001-03; 9201 San	Date Sampled:	06/12/08		
	Leandr	o St			Date Received:	06/13/08		
1533 B Street	Client	Contact: A	Andre	w Savage	Date Extracted:	06/13/08		
Hayward, CA 94541	Client I	P.O.:		0	Date Analyzed	06/16/08		
	Volatile Orga	nics by P&	T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	8	Analytica	l Metho	d: SW8260B	8 /	Work Order: 080	6416	
Lab ID				0806416	5-023A			
Client ID				HA-6.1	-1.25			
Matrix				Soil				
Compound	Concentration *	DF R	eporting Limit	Compour	nd	Concentration *	DF	Reporting
Acetone	ND	1.0	0.05	tert-Amvl methyl er	ther (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05
n-Butyl benzene	0.019	1.0	0.005	sec-Butyl benzene		0.045	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
4 Chlorotoluono	ND	1.0	0.005	2-Chlorotoluene	000	ND	1.0	0.005
4-Chiofotoluelle	ND	1.0	0.003	1.2 Dibromoothana		ND	1.0	0.003
Dibromomethane	ND	1.0	0.004	1.2-Dichlorobenzen	(LDD)	ND	1.0	0.004
1 3-Dichlorobenzene	ND	1.0	0.005	1 4-Dichlorobenzen	e	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1.1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	(2. 2002)	0.0073	1.0	0.005
4-Isopropyl toluene	0.021	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanc	one (MIBK)	ND 0.012	1.0	0.005
Styropo	ND	1.0	0.005	n-Propyl benzene	othono	0.012 ND	1.0	0.005
1 1 2 2 Tetrachloroothana	ND	1.0	0.005	Tatrachloroathana	ethane	ND	1.0	0.005
Toluene	ND	1.0	0.005	1 2 3-Trichlorobenz	zene	ND	1.0	0.005
1.2.4-Trichlorobenzene	ND	1.0	0.005	1 1 1-Trichloroetha	ne	ND	1.0	0.005
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005
1,2,4-Trimethylbenzene	0.042	1.0	0.005	1,3,5-Trimethylben	zene	0.015	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes		0.0086	1.0	0.005
		Surrog	ate Re	ecoveries (%)				
%SS1:	10	00		%SS2:		11	18	
%\$\$3:	10	08						
Comments:								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Oualit"	McCampbell Analytical, Inc. "When Quality Counts" PAS Environmental Inc. Client Project ID:				Pass Road, Pittsburg, C obell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 n@mccampbell.com 25-252-9269		
ERAS Environmental, Inc.	Client I	Project ID:	#07-	001-03; 9201 San	Date Sampled:	06/12/08		
	Leandr	o St			Date Received:	06/13/08		
1533 B Street	Client	Contact: A	Andre	w Savage	Date Extracted:	06/13/08		
Hayward, CA 94541	Client H	P.O.:			Date Analyzed	06/16/08		
	Volatile Orga	nics by P&	T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	, on the organ	Analytica	l Metho	d: SW8260B	- geo 2250)	Work Order: 080	6416	
Lah ID		•		0806416	5-024A			
Client ID				HA-6 2	75-3			
Matrix				So	il			
Compound	Concentration *	DF R	eporting	Compour	nd	Concentration *	DF	Reporting
Acetone	ND	1.0	Limit	tert Amyl methyl e	ther (TAME)	ND	1.0	Limit
Benzene	ND	1.0	0.005	Bromobenzene	ther (TAME)	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	nane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004
Dibromometnane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005
1,3-Dichlorobenzene Diablorodifluoromathana	ND	1.0	0.005	1,4-Dichloroothana	e	ND	1.0	0.005
1.2 Dichloroethane (1.2 DCA)	ND	1.0	0.003	1,1-Dichloroethane		ND	1.0	0.005
cis-1 2-Dichloroethene	ND	1.0	0.004	trans-1 2-Dichloroe	thene	ND	1.0	0.005
1.2-Dichloropropane	ND	1.0	0.005	1.3-Dichloropropan	e	ND	1.0	0.005
2.2-Dichloropropane	ND	1.0	0.005	1.1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	zene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
Triablereflueremethane	ND	1.0	0.005	1 2 2 Trichloropror	2020	ND	1.0	0.005
1.2.4 Trimethylbonzone	ND	1.0	0.005	1,2,5-Trimothulhon	Jane	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	20110	ND	1.0	0.005
		Surrog	ate Re	coveries (%)			1.0	10.005
0/ 551.	17)1	are Re	0/ 552.		17	16	
%551: % \$\$3.	1()1		%552:		1 10	10	
Comments:		/1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

When Ouality Counts"						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, In	Client Project ID: #07-001-03; 9201 San				Date Sampled: 06/12/08						
1533 B Street	Leandro	St			Date Received: 06/13/08						
Hayward CA 94541			Client Co	ontact: A	ndrew S	Savage	Date Extracted: 06/13/08				
			Client P.0	D.:			Date Analyzed 06/16/08-06/18/08				
Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS											
Extraction Method: SW3550C			Anal	ytical Method	l: SW827	1	Work Order:	0806416			
	Lab ID	08064	16-001A	0806416	-002A	0806416-003A	0806416-004A	-			
	Client ID	Pit3SE,1.25-1.5		Pit3SE,2.75-3		Pit3E,1.25-1.5	Pit3E,2.75-3	Reporting DF	Limit for		
	Matrix		S	S		S	S				
	DF		50	1		5	1	S	W		
Compound					Conce	entration		mg/kg	ug/L		
Acenaphthene		ND	0<0.25 NI			ND<0.025	ND	0.005	NA		
Acenaphthylene		ND	< 0.25	ND		ND<0.025	ND	0.005	NA		
Anthracene		ND<0.25		ND		ND<0.025	ND	0.005	NA		
Benzo(a)anthracene		ND<0.25		0.010		ND<0.025	ND	0.005	NA		
Benzo(a)pyrene		ND<0.25		0.	012	ND<0.025	ND	0.005	NA		
Benzo(b)fluoranthene		ND<0.25		0.	012	ND<0.025	ND	0.005	NA		
Benzo(g,h,i)perylene		ND	< 0.25	0.	011	ND<0.025	ND	0.005	NA		
Benzo(k)fluoranthene		ND	< 0.25	0.	012	ND<0.025	ND	0.005	NA		
Chrysene		ND	< 0.25	0.	014	ND<0.025	ND	0.005	NA		
Dibenzo(a,h)anthracene		ND	< 0.25	ND		ND<0.025	ND	0.005	NA		
Fluoranthene		ND	< 0.25	0.	014	ND<0.025	ND	0.005	NA		
Fluorene		ND	< 0.25	ND		ND<0.025	ND	0.005	NA		
Indeno (1,2,3-cd) pyrene		ND	< 0.25	0.0	0073	ND<0.025	ND	0.005	NA		
1-Methylnaphthalene		ND	< 0.25	ND		ND<0.025	ND	0.005	NA		
2-Methylnaphthalene		ND	< 0.25	ND		ND<0.025	ND	0.005	NA		
Naphthalene		ND	< 0.25	ND		ND<0.025	ND	0.005	NA		
Phenanthrene		ND<0.25		<0.25 0		ND<0.025	ND	0.005	NA		
Pyrene NI		ND<0.25 (.014 ND<0.025		ND	0.005	NA			
Surrogate Recoveries (%)											
%SS1			107	78		98	79				
%SS2			120	73	98		75				
Comments			a1			a1					
* water samples in µg/L, soil/	sludge/solid	samples	in mg/kg, w	ipe samples	in µg/w	ipe, product/oil/non	-aqueous liquid samp	les and all T	CLP &		

SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

a1) sample diluted due to matrix interference

McCampbell An "When Quality	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
ERAS Environmental, Inc.	Client Project ID: #07-001-03; 9201 San				Date Sampled: 06/12/08				
1533 B Street	Leandro	St			Date Received: 06/13/08				
	Client C	ontact: Ai	ndrew S	Savage	Date Extracted: 06/13/08				
Hayward, CA 94541		Client P.	0.:			Date Analyzed	06/16/08-06/18/08		
Polvnuclear A	romatic	Hvdroca	*						
Extraction Method: SW3550C		Anal	Work Order:	0806416					
Lab ID	08064	0806416-005A 0		-006A	0806416-007A	0806416-008A			
Client ID	Pit3NW	W,1.25-1.5 Pit3NW,2		.25-2.5 Pit4SE,1-1.25		Pit4SE,3.25-3.5	Reporting	Reporting Limit for	
Matrix		S	S	S		S]		
DF		5	1		1	1	S	W	
Compound				Conce	entration		mg/kg	ug/L	
Acenaphthene	ND<	< 0.025	ND	ND ND		ND	0.005	NA	
Acenaphthylene	ND<	< 0.025	ND		ND	ND	0.005	NA	
Anthracene		0.036	ND		0.0057	ND	0.005	NA	
Benzo(a)anthracene		0.15	5 ND		0.032	ND	0.005	NA	
Benzo(a)pyrene	0.15		ND		0.042	ND	0.005	NA	
Benzo(b)fluoranthene		0.13	ND		0.031	ND	0.005	NA	
Benzo(g,h,i)perylene		0.12	ND		0.035	ND	0.005	NA	
Benzo(k)fluoranthene		0.14			0.032	ND	0.005	NA	
Chrysene		0.19			0.042	ND	0.005	NA	
Dibenzo(a,h)anthracene	0.042		ND		0.014	ND	0.005	NA	
Fluoranthene		0.19			0.030	ND	0.005	NA	
Fluorene	ND<0.025		ND		ND	ND	0.005	NA	
Indeno (1,2,3-cd) pyrene	0.078		ND		0.025	ND	0.005	NA	
1-Methylnaphthalene	ND<0.025		ND		ND	ND	0.005	NA	
2-Methylnaphthalene	ND<	< 0.025	ND		ND	ND	0.005	NA	
Naphthalene	ND<	< 0.025	ND		ND	ND	0.005	NA	
Phenanthrene	0.15		ND		0.017	ND	0.005	NA	
Pyrene		0.23	0.23 ND		0.042	ND	0.005	NA	
Surrogate Recoveries (%)									
%SS1		97	79		80	78			
%SS2		99	75	75		72			
Comments									
* water samples in µg/L, soil/sludge/solid SPLP extracts are reported in mg/L.	samples i	n mg/kg, w	ipe samples	in µg/w	ipe, product/oil/non	aqueous liquid samp	les and all TC	CLP &	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

a1) sample diluted due to matrix interference

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
ERAS Environmental, Inc.	Client Project ID: #07-001-03; 9201 San				Date Sampled: 06/12/08					
1533 B Street	Leandro	St			Date Received: 06/13/08					
	Client Co	ontact: Ai	ndrew S	Savage	Date Extracted: 06/13/08					
Hayward, CA 94541		Client P.0	D.:			Date Analyzed	06/16/08-06/18/08			
Polvnuclear A	romatio	e Hvdroca	rbons (PA	Hs / Pl	NAs) using SIM N	/Iode by GC/MS*	¢			
Extraction Method: SW3550C		Analytical Method: SW8270C Work Order: 0								
Lab ID	0806416-009A		0806416-	-010A	0806416-011A	0806416-012A				
Client ID	Pit4E	Pit4E1.25-1.5		3.25	Pit4NW,1.25-1.5	Pit4NW,2.75-3	Reporting Limit for			
Matrix	S		S		S	S				
DF	DF				1	1	S	W		
Compound				Conce	entration		mg/kg	ug/L		
Acenaphthene		ND	ND		ND	ND	0.005	NA		
Acenaphthylene		ND	ND		ND	ND	0.005	NA		
Anthracene		ND	NE		ND	ND	0.005	NA		
Benzo(a)anthracene		ND	ND		0.018	ND	0.005	NA		
Benzo(a)pyrene		ND	ND		0.020	ND	0.005	NA		
Benzo(b)fluoranthene		0.0082	ND		0.033	ND	0.005	NA		
Benzo(g,h,i)perylene		ND	ND		0.016	ND	0.005	NA		
Benzo(k)fluoranthene		0.0058	ND		0.021	ND	0.005	NA		
Chrysene	ND		ND		0.021	ND	0.005	NA		
Dibenzo(a,h)anthracene	ND		ND		0.0065	ND	0.005	NA		
Fluoranthene	0.011		ND		0.021	ND	0.005	NA		
Fluorene	ND		ND		ND	ND	0.005	NA		
Indeno (1,2,3-cd) pyrene	ND		ND		0.011	ND	0.005	NA		
1-Methylnaphthalene	ND		ND		ND	ND	0.005	NA		
2-Methylnaphthalene	ND		ND		ND	ND	0.005	NA		
Naphthalene		ND	ND		ND	ND	0.005	NA		
Phenanthrene		ND	ND		0.013	ND	0.005	NA		
Pyrene		0.0081	ND	ND 0.025		ND	0.005	NA		
Surrogate Recoveries (%)										
%SS1	78		78		79	79				
%SS2		76	72	75		72				
Comments										
* water samples in µg/L, soil/sludge/solid s SPLP extracts are reported in mg/L.	samples	in mg/kg, w	ipe samples	in µg/w	ipe, product/oil/non-	aqueous liquid samp	les and all TC	CLP &		

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

a1) sample diluted due to matrix interference

WcCampbell Analytical, Inc.					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
ERAS Environmental, Inc. Client Project ID:					#07-001-03; 9201 San Date Sampled: 06/12/08							
1533 B Street						Date Received: 06/13/08						
Client Contact: A					ndrew Savage Date Extracted: 06/13/08							
Client P.O.:						Date Analyzed 06/14/08-06/17/08						
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*										.1	06416	
Lab ID	action method SW5030B			(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xvlenes	DF	% SS	
001A	Pit3SE,1.25-1.5	S			ND	ND	ND	ND	ND	1	89	
002A	Pit3SE,2.75-3	S			ND	ND	ND	ND	ND	1	83	
003A	Pit3E,1.25-1.5	S			ND	ND	ND	ND	ND	1	80	
004A	Pit3E,2.75-3	S			ND	ND	ND	ND	ND	1	86	
005A	Pit3NW,1.25-1.5	S			ND	ND	ND	ND	ND	1	88	
006A	Pit3NW,2.25-2.5	S			ND	ND	ND	ND	ND	1	88	
007A	Pit4SE,1-1.25	S			ND	ND	ND	ND	ND	1	96	
008A	Pit4SE,3.25-3.5	S			ND	ND	ND	ND	ND	1	92	
009A	Pit4E1.25-1.5	S			ND	ND	ND	ND	ND	1	95	
010A	Pit4E,3-3.25	S			ND	ND	ND	ND	ND	1	83	
011A	Pit4NW,1.25-1.5	S			ND	ND	ND	ND	ND	1	92	
012A	Pit4NW,2.75-3	S			ND	ND	ND	ND	ND	1	85	
Reportin	Reporting Limit for DF =1; W 5		50		5.0	0.5	0.5	0.5	0.5	ug/L		
ND means not detected at or above the reporting limit		S	1.0		0.05	0.005	0.005	0.005 0.005		mg	mg/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
	McCampbell Ar	nalyti _{Counts"}	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS I	Environmental, Inc.		Client Project ID: = Leandro St	#07-001-03; 9201 San	Date Sampled: 06/12	2/08			
1533 B	Street								
Havwar	d. CA 94541		Client Contact: An	ndrew Savage	Date Extracted: 06/12	3/08			
	.,		Client P.O.:		Date Analyzed 06/1	5/08-06/1	9/08		
	Total E	xtracta	ble Petroleum Hydro	ocarbons with Silica Gel	Clean-Up*				
Extraction n	nethod SW3550C/3630C		Analytical met	hods SW8015C	Work	Order: 08	06416		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	TPH-Kerosene (C9-C18)	DF	% SS		
019A	HA-4,1-1.25	S	2.8,e7,e4	21	2.1	1	106		
020A	HA-4,2.75-3	S	16,e7,e2	69	2.5	2	106		
021A	HA-5,1-1.25	S	1000,e7,e11	1600	1200	100	118		
022A	HA-5,2.75-3	S	78,e7,e11	180	61	10	101		
023A	HA-6,1-1.25	S	7600,e7,e11	20,000	2700	100	118		
024A	HA-6,2.75-3	S	2.3,e7,e2	9.6	ND	1	99		

Reporting Limit for DF $=1$;	W	NA	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	1.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e11) stoddard solvent/mineral spirit

	cCampbell Ar	alytical,	Inc.	1534 Wi Web: www.m Teleph	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environ	mental, Inc.	Client Proje	ct ID: #07-0	001-03; 9201 San	Date Sampled: 06/1	2/08				
1533 B Street		Leandro St			Date Received: 06/13/08					
1555 D 50000		Client Cont	act: Andrev	v Savage	Date Extracted: 06/1	3/08				
Hayward, CA 9	94541	Client P.O.:			Date Analyzed: 06/1	5/08-06/18/	08			
	Total E	xtractable Pe	etroleum Hyd	lrocarbons with Silica	Gel Clean-Up*					
Extraction method:	SW3550C/3630C		Analytical m	ethods: SW8015C	<u> </u>	Vork Order: 0	806416			
Lab ID Client ID Ma			Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS			
0806416-001A	Pit3SE,1.25-	Pit3SE,1.25-1.5		140,e7,e2	550	10	98			
0806416-002A	Pit3SE,2.75	5-3	S	11,e7,e2	31	1	106			
0806416-003A	Pit3E,1.25-1.5		S	2.3,e7,e10	6.5	1	103			
0806416-004A	Pit3E,2.75-3		S	4.7,e7,e2	22	1	106			
0806416-005A	Pit3NW,1.25	-1.5	S	55,e7,e2	170	1	100			
0806416-006A	Pit3NW,2.25	-2.5	S	2.3,e7,e2	6.0	1	106			
0806416-007A	Pit4SE,1-1.	25	S	6.5,e7,e2	25	1	106			
0806416-008A	Pit4SE,3.25-	3.5	S	ND	ND	1	98			
0806416-009A	Pit4E1.25-1	.5	S	71,e7,e2	170	10	101			
0806416-010A	Pit4E,3-3.2	25	S	2.8,e7,e2	12	1	90			
0806416-011A	Pit4NW,1.25	-1.5	S	8.2,e7,e2	26	1	105			
0806416-012A	Pit4NW,2.7	5-3	S	ND	ND	1	105			

Reporting Limit for $DF = 1$;	W	NA	NA	ug/L
ND means not detected at or	S	1.0	5.0	mg/Kg
above the reporting limit				

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern e7) oil range compounds are significant

e10) fuel oil

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806416

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		BatchID: 36273			Sp	piked Sample ID: 0806354-009A			
Analyte	Sample	Sample Spiked MS			MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	99.9	95.2	4.75	106	118	11.2	70 - 130	20	70 - 130	20
MTBE	ND	0.10	108	114	6.14	108	96.8	10.6	70 - 130	20	70 - 130	20
Benzene	ND	0.10	89.8	87.5	2.54	92.6	96.6	4.16	70 - 130	20	70 - 130	20
Toluene	ND	0.10	96	93	3.07	107	114	6.47	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	99.4	94.9	4.65	101	108	6.22	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	109	105	3.88	112	120	6.75	70 - 130	20	70 - 130	20
%SS:	75	0.10	95	89	6.07	92	97	5.62	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

NONE

BATCH 36273 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806416-001A	06/12/08 10:42 AM	06/13/08	06/17/08 5:31 AM	0806416-002A	06/12/08 10:58 AM	06/13/08	06/15/08 8:16 AM
0806416-003A	06/12/08 11:06 AM	06/13/08	06/16/08 5:09 PM	0806416-004A	06/12/08 11:13 AM	06/13/08	06/16/08 6:42 PM
0806416-005A	06/12/08 11:21 AM	06/13/08	06/17/08 6:04 AM	0806416-006A	06/12/08 11:32 AM	06/13/08	06/14/08 6:55 PM
0806416-007A	06/12/08 9:15 AM	06/13/08	06/15/08 12:59 AM	0806416-008A	06/12/08 9:48 AM	06/13/08	06/15/08 12:29 AM
0806416-009A	06/12/08 10:02 AM	06/13/08	06/15/08 2:29 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806416

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 36	274	Sp	Spiked Sample ID: 0806354-009A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, may to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	99.5	100	0.713	91.5	92.4	0.950	60 - 130	30	60 - 130	30
Benzene	ND	0.050	95.8	94	1.86	92.5	92.8	0.381	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	96.9	95.1	1.92	81.2	88.1	8.08	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	96.9	93.7	3.37	86	86.5	0.545	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	108	104	3.17	92.7	92.1	0.645	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	104	104	0	95.5	96.2	0.723	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	97.5	98	0.473	95.1	97.1	2.08	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	101	101	0	94.3	95.3	1.04	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	106	106	0	95	96.4	1.53	60 - 130	30	60 - 130	30
Toluene	ND	0.050	94.8	90.8	4.26	85.9	85.5	0.470	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	106	103	2.85	94.8	92.5	2.51	60 - 130	30	60 - 130	30
%SS1:	101	0.12	101	102	0.983	101	99	1.54	70 - 130	30	70 - 130	30
%SS2:	100	0.12	99	97	1.38	96	95	0.881	70 - 130	30	70 - 130	30
%SS3:	120	0.12	105	105	0	98	96	2.45	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

NONE

BATCH 36274 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806416-019A	06/12/08 2:40 PM	06/13/08	06/16/08 1:42 PM	0806416-020A	06/12/08 2:50 PM	06/13/08	06/16/08 2:25 PM
0806416-021A	06/12/08 3:26 PM	06/13/08	06/17/08 6:31 PM	0806416-022A	06/12/08 3:32 PM	06/13/08	06/16/08 3:50 PM
0806416-023A	06/12/08 3:00 PM	06/13/08	06/16/08 4:32 PM	0806416-024A	06/12/08 3:10 PM	06/13/08	06/16/08 5:15 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806416

EPA Method SW8082A Extraction SW3550C					BatchID: 36286			Sp	piked Sample ID: 0805307-003A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1
	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND	0.075	103	103	0	98	100	2.04	70 - 130	20	70 - 130	20
%SS:	125	0.050	119	119	0	114	116	1.92	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	3lank of this	extraction	batch we	re ND les	ss than the	method F	CL with th	ne following	exceptions:			

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806416-013A	06/12/08 1:03 PM	06/13/08	06/17/08 11:37 PM	0806416-014A	06/12/08 1:16 PM	06/13/08	06/16/08 10:29 PM
0806416-015A	06/12/08 1:30 PM	06/13/08	06/17/08 8:03 PM	0806416-016A	06/12/08 1:45 PM	06/13/08	06/17/08 1:13 AM
0806416-017A	06/12/08 2:02 PM	06/13/08	06/16/08 11:24 PM	0806416-018A	06/12/08 2:11 PM	06/13/08	06/17/08 2:08 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806416

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		BatchID: 36305			Sp	Spiked Sample ID: 0806416-012A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	94.7	96.2	1.61	94.7	94.6	0.0883	70 - 130	20	70 - 130	20
MTBE	ND	0.10	117	116	1.10	109	116	6.27	70 - 130	20	70 - 130	20
Benzene	ND	0.10	90.4	92.3	2.13	91.4	88.1	3.68	70 - 130	20	70 - 130	20
Toluene	ND	0.10	96.8	98.9	2.14	101	97.4	4.05	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	98	101	2.77	99.9	96.2	3.85	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	109	112	2.53	111	107	3.80	70 - 130	20	70 - 130	20
%SS:	85	0.10	100	102	2.02	94	95	1.40	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method I	RL with th	ne following	exceptions:			

BATCH 36305 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806416-010A	06/12/08 10:22 AM	06/13/08	06/14/08 11:57 PM	0806416-011A	06/12/08 8:35 AM	06/13/08	06/15/08 3:49 AM
0806416-012A	06/12/08 8:59 AM	06/13/08	06/15/08 1:01 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806416

R QA/QC Officer

EPA Method SW8270C	Extra	ction SW	3550C		Ba	tchID: 36	285	Sp	oiked Sam	ole ID:	0806416-01	2A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indy to	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzo(a)pyrene	ND	0.10	81.8	82.5	0.876	83.8	83.5	0.451	30 - 130	30	30 - 130	30
Chrysene	ND	0.10	71.2	71.5	0.450	76.2	75.1	1.41	30 - 130	30	30 - 130	30
1-Methylnaphthalene	ND	0.10	77.3	77	0.444	85.7	84.1	1.82	30 - 130	30	30 - 130	30
2-Methylnaphthalene	ND	0.10	71.9	72	0.161	81.5	79.5	2.46	30 - 130	30	30 - 130	30
Phenanthrene	ND	0.10	76.3	76.7	0.511	84.2	82.3	2.23	30 - 130	30	30 - 130	30
Pyrene	ND	0.10	82.2	82.6	0.479	85.3	87.5	2.59	30 - 130	30	30 - 130	30
%SS1:	79	0.050	79	79	0	81	80	1.17	30 - 130	30	30 - 130	30
%SS2:	72	0.050	71	71	0	73	72	1.33	30 - 130	30	30 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 36285 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806416-001A	06/12/08 10:42 AM	06/13/08	06/18/08 12:11 AM	0806416-002A	06/12/08 10:58 AM	06/13/08	06/17/08 1:39 AM
0806416-003A	06/12/08 11:06 AM	06/13/08	06/17/08 6:10 PM	0806416-004A	06/12/08 11:13 AM	06/13/08	06/17/08 3:11 AM
0806416-005A	06/12/08 11:21 AM	06/13/08	06/17/08 9:09 PM	0806416-006A	06/12/08 11:32 AM	06/13/08	06/17/08 4:43 AM
0806416-007A	06/12/08 9:15 AM	06/13/08	06/17/08 6:14 AM	0806416-008A	06/12/08 9:48 AM	06/13/08	06/17/08 7:46 AM
0806416-009A	06/12/08 10:02 AM	06/13/08	06/17/08 9:16 AM	0806416-010A	06/12/08 10:22 AM	06/13/08	06/17/08 10:48 AM
0806416-011A	06/12/08 8:35 AM	06/13/08	06/17/08 12:18 PM	0806416-012A	06/12/08 8:59 AM	06/13/08	06/16/08 9:05 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806416

EPA Method SW8015C	Extra	ction SW	3550C/3	630C	Bat	chID: 36	306	Sp	iked Sam	ole ID:	0806416-02	4A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	2.3	20	69.4, F1	69.4, F1	0	100	110	9.14	70 - 130	30	70 - 130	30
%SS:	99	50	109	109	0	108	119	9.15	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	CL with th	ne following	exceptions:			

F1 = MS / MSD outside of acceptance criteria. LCS - LCSD validate prep batch.

			BATCH 36306 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806416-001A	06/12/08 10:42 AM	06/13/08	06/17/08 11:22 AM	0806416-002A	06/12/08 10:58 AM	06/13/08	06/16/08 1:16 PM
0806416-003A	06/12/08 11:06 AM	06/13/08	06/16/08 2:27 PM	0806416-004A	06/12/08 11:13 AM	06/13/08	06/15/08 6:59 PM
0806416-005A	06/12/08 11:21 AM	06/13/08	06/15/08 5:49 PM	0806416-005A	06/12/08 11:21 AM	06/13/08	06/17/08 3:15 AM
0806416-006A	06/12/08 11:32 AM	06/13/08	06/15/08 8:09 PM	0806416-007A	06/12/08 9:15 AM	06/13/08	06/15/08 5:49 PM
0806416-008A	06/12/08 9:48 AM	06/13/08	06/15/08 3:26 PM	0806416-009A	06/12/08 10:02 AM	06/13/08	06/16/08 9:36 PM
0806416-010A	06/12/08 10:22 AM	06/13/08	06/16/08 12:41 PM	0806416-011A	06/12/08 8:35 AM	06/13/08	06/18/08 11:45 PM
0806416-012A	06/12/08 8:59 AM	06/13/08	06/15/08 4:38 PM	0806416-019A	06/12/08 2:40 PM	06/13/08	06/15/08 2:15 PM
0806416-020A	06/12/08 2:50 PM	06/13/08	06/19/08 3:15 AM	0806416-021A	06/12/08 3:26 PM	06/13/08	06/19/08 12:55 AM
0806416-022A	06/12/08 3:32 PM	06/13/08	06/17/08 7:44 AM	0806416-023A	06/12/08 3:00 PM	06/13/08	06/17/08 5:21 PM
0806416-024A	06/12/08 3:10 PM	06/13/08	06/15/08 2:15 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX H

LABORATORY REPORTS AND CHAIN OF CUSTODY FORMS FOR DIRECT-PUSH AND MONITOR WELL SAMPLES

McCampbell An "When Ouality"	nalytical, Inc. v Counts"	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: n one: 877-252-9262 Fax:	CA 94565-1701 nain@mccampbell.com 925-252-9269
ERAS Environmental, Inc.	Client Project ID: #07-001	1-04; 9201 San	Date Sampled:	06/13/08-06/16/08
1533 B Street	Leandro Street		Date Received:	06/17/08
Hayward CA 94541	Client Contact: Andrew S	Savage	Date Reported:	06/24/08
	Client P.O.:		Date Completed:	06/24/08

WorkOrder: 0806485

June 24, 2008

Dear Andrew:

Enclosed within are:

- 1) The results of the 27 analyzed samples from your project: #07-001-04; 9201 San Leandro Stre
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	McC	ampb	ell Ana	alyti	cal,	In	с				Turr T Geo	around ime: tracker:	Ru X PD	sh F	24	fr I X	48 I EDF	łr	72 1	Hr	5 D	ay]	1
	1	534 W Pittsbu 877 925.2	illow irg, C/ .252.9 52.926	Pase A 94 9262 59 -	565 565 fax	d. 5							An	alysi	Red	uest	ed				01	ther	Filter Samples for Metals Anaysis	
Report To: Company:	ERAS	Bill To: RAS Envi	ironmen	E tal, Ir	RAS			_			8260												Yes No	
Telephone:	510-247-9885	Email: Fax:		info@ 510-8	eras 86-5	5.biz		_			DCA/EDB												PERG	by 8015
Project # Project location Sampler:	07-001-04 9201 San Lean Andrew Savag	dro Stree	et	ontainers	ner Type			_			5 Oxygenates/12												0100	/
		Sam	oling	of C	ntai	M	atrix	Pre	serva	tive	A ED													
	Location/Fiel	Date	Time	#	S	lio	Vate	Ę	H2SO4 HN03	ICE	a/b-Hd		•											
Sample ID	d Point Name					"	> >		_	Sin 1	FFF			and the second se				and the second division of the second divisio	and in case of the local division of the loc	_				
Sample ID GP-3, 19.5-22	d Point Name GP-3	6/13/2008	9:10	6	VOA		< <			×	X													
Sample ID GP-3, 19.5-22 GP-3, 19.5-22	d Point Name GP-3 GP-3	6/13/2008 6/13/2008	9:10 9:10	6	VOA 1L		<			x	XX													
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29	d Point Name GP-3 GP-3 GP-3	6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51	6 1 6	VOA 1L VOA					X X X	X X X													
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29	d Point Name GP-3 GP-3 GP-3 GP-3	6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 10:51	6 1 6 2	VOA 1L VOA 1L					x x x x x														
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 10:51 11:45	6 1 6 2 6	VOA 1L VOA 1L VOA																			
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 10:51 11:45 12:35	6 1 6 2 6 6	VOA 1L VOA 1L VOA VOA																			
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15 GP-4, 25-29	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4 GP-4	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 10:51 11:45 12:35 12:50	6 1 6 6 6 6	VOA 1L VOA 1L VOA VOA																			
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15 GP-4, 25-29 GP-4, 31-35	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4 GP-4 GP-4	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 10:51 11:45 12:35 12:50 13:10	6 1 6 6 6 6 6	VOA 1L VOA VOA VOA VOA			X																
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15 GP-4, 25-29 GP-4, 31-35 GP-5, 16-20	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4 GP-4 GP-4 GP-4	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 11:51 11:45 12:35 12:50 13:10 15:00	6 1 6 6 6 6 6	VOA 1L VOA 1L VOA VOA VOA VOA										21									
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15 GP-4, 25-29 GP-4, 31-35 GP-5, 16-20 GP-5, 25-29	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4 GP-4 GP-4 GP-4 GP-5 GP-5	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 11:45 12:35 12:50 13:10 15:00	6 1 6 6 6 6 6 • 6	VOA 1L VOA 1L VOA VOA VOA VOA						I I X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X		ICE		21									
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15 GP-4, 25-29 GP-4, 31-35 GP-5, 16-20 GP-5, 25-29 GP-5, 31-35	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4 GP-4 GP-4 GP-5 GP-5 GP-5	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 11:51 12:35 12:50 13:10 15:00 15:10 15:36	6 1 6 6 6 6 6 6 6 6 6 6	VOA 1L VOA 1L VOA VOA VOA VOA VOA										2		EMT		A.99			76- 		
Sample ID GP-3, 19.5-22 GP-3, 19.5-22 GP-3, 25-29 GP-3, 25-29 GP-3, 31-35 GP-4, 13-15 GP-4, 25-29 GP-4, 31-35 GP-5, 16-20 GP-5, 25-29 GP-5, 31-35 GP-6, 13.5-18 CP-6, 13.5-18	d Point Name GP-3 GP-3 GP-3 GP-3 GP-3 GP-4 GP-4 GP-4 GP-5 GP-5 GP-5 GP-5	6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008 6/13/2008	9:10 9:10 10:51 11:51 11:45 12:35 12:50 13:10 15:00 15:10 ⁻ 15:36 10:03	6 1 6 6 6 6 6 6 6 6 6 6	VOA 1L VOA 1L VOA VOA VOA VOA VOA VOA										2		ENT		APP				IN LAB	

	RELINQUISH	ED BY:		RECEIVED BY:
Relinquished by:	K	Date: 6-17-08	Time: 15:30	Recieved by
Relinquished by:		Date: 6/17/08	Time: 1435	Recieve by:
Relinquished by:		Date:	Time:	Recieved by:

Condition - Head space absent - Dechlorinated in lab - ppropriate containers - Preserved in Lab -					T0600101592 Also I wrote the wrong Job number on the samples the Job number is not 07-001-03 it i 07-001-04
	VOA's	O&G	Metals	Other	

CHAIN OF CUSTODY FORM

	МсС	ampbo	ell Ana	alyti	ical,	In	C						Turn Ti Geot	ime trac	ker: X PC	ish DF	24	Hr sl X	48 H EDF	tr	72 Hr		X 5 Day]		
	1	534 W	illow	Pas	s Rd	۱.								_	Ar	alysis	Rec	uest	ed			_	Oth	er	Con	nment
		877 925.2	irg, C/ .252.9 52.920	94 926 59 -	565 2 fax	•									Per										Filter S Meta	Samples Is Anaysi
Report To:	ERAS	Bill To:		E	RAS										SIO										Yes	N
Company:	E	RAS Env	ironmen	tal, I	nc.								260		8											
													88		-											
		Email:		info@	Qeras	.biz							AEC		Ga											
Telephone:	510-247-9885	Fax:		510-8	386-5	399							DQ		a											
Project #	07-001-03												15		30											
Project location	9201 San Lean	dro Stree	et	SIS	a								d 80		OD											
Sampler:	Andrew Savage	е		in l	F								otho													
-				at l	ler								200													
		Sam	pling	l õ	Itai	м	latrix	C P	res	erva	tive		V EP/													
Sample ID	Location/Fiel d Point Name	Date	Time	#	8	Soil	Waste	CH	HOSCH	HN03	ICE		TPH-9/B													
GP-7, 13-15	GP-7	6/16/2008	12:42	6	VOA		<		+	++	X		X				Ħ		H	+	+	Ħ	+			
GP-7, 13-15	GP-7	6/16/2008	12:42	2	1L	1	K				X		X									\square				
GP-7, 25-29	GP-7	6/16/2008	12:50	6	VOA)	×)	1				X													
GP-7, 25-29	GP-7	6/16/2008	12:50	2	1L)	(X		X													
GP-8, 20-24	GP-8	6/16/2008	14:34	6	VOA)	(+		X		X				\square				-	4				
GP-8, 25-29	GP-8	6/16/2008	16:05	6	VOA)	<	>					x				Ħ				+	Ħ				
GP-8, 31-35	GP-8	6/16/2008	16:31	6	VOA)	<	×					x					2		2	+	+				
			12.10						-	-	-			-		Hit	11	4	\square		-		000		TE	
GP-2,9.5-10	GP-2	6/12/2008	13:40	1	tube	X	+	-	+		X		X	-		GO		PAC	EAB	SEN	rt-	AP	CON	TAN	ERS .	-
GP-3 9 5-10	GP-3	6/13/2008	8:03	1	tube	Ŷ	+	-	+		x		X	-		86	CHE	ORIN	ATE	DIN	AD.		PRE	SER	VED	N LA
GP-4, 9.5-10	GP-4	6/13/2008	12:17	1	tube	X			+		X		Y A			-	-	IVAT		VOA	101		HERE SPEC	"	THE PARTY	
GP-6, 11.5-12	GP-6	6/16/2008	9:45	1	tube	X			+	,	x		x				T		T	T		T				
GP-8, 9.5-10	GP-8	6/16/2008	14:19	1	tube	X)	X		x													-
1	RELINQUISHE	D BY:						REC	ĔIV	ED B	Y:	1			ICE/t=							Com	ments:	Glob	al ID #	the the
elinquished by:	-	Date:	08 10	Time:		Recier	ed by:	11			1			O Ineni	snace absent					_		wron	ig Job	numb	er on th	ne samp
elinquished by	T	Date: / 7/0	8 16	Time:	-	Reciev	red by:	7	r	~	J	5	D	echio	rinated in lab							the 3	ob nur 01-04	mber	is not 0	7-001-03
elinquished by:	1	Date:		Time:	F	Reciev	ed by:	m	n				- 1	Prese	erved in Lab							1				
																-				Concerning Statistics		1				

213

	McC 1	ampb 534 W Pittsbu 877 925.2	ell Ana /illow urg, C/ 7.252.9 52.926	alyti Pas 94 926 59 -	cal, s Ro 565 2 fax	Inc 1. 5	2					Geot	ime: racke	RI PE Ar	nalysis	24H Excel	uester	48 Hr IDF d	72 H		Other	FI	Comm Iter Sam Metals A	n ents nples fo Anaysis	
Report To Company	ERAS	Bill To: RAS Env	vironmen	tal, I	nc.	. bin						EDB 8260										1	res PC	NO R	610
Telephone	510.247.9885	Fax:		510.8	86.5	399						2DCA/											G	na	Sb
Project # ject location Sampler:	07-001-04 9201 San L Kasey	eandro S Cordoza	Street	ainers	r Type							xygenates/12													
		Cam	pling	Cont	taine	Ma	triv	Dre	conv	ativo		EX/5 C													
Sample ID	Location/Fiel d Point Name	Date	Time	# of	Cont	Water	Waste	DH	H2SO4 HN03	ICE		TPH-g/BT													
9MW1		6.17.08	11:04	4	VOA	X		X				x	++	++	++	++	++	++	++			-			-
9MW2		6.17.80	13:18	4	VOA	X		X				x	++											_	1
9MW4		6.17.08	11:44	4	VOA	X		X				x													
9MW5		6.17.08	10:38	4	VOA	X		X				X													
9MW6																									4
				-				-				\vdash	++		++	++	++		++	++	++	-			-
				-			++	+	-			\vdash	++		- 0	CE /t	•			++		+			-
				-				+		++-		\vdash	++		0	SOOD	CON	DITIO	N	- 1	APPRO	PRI/	TE		
											•				0	DECH	LORI	ATE	DINU	18	PR	ESE	RVED	IN LA	
										1									VDAS	0.00	3 MET	ALS C	OTHER		_
															1.1.	distantion of the local distance of the loca	_	-							

McCampbell Ana	lytical, Inc.				CH	AIN	-0F-0	UST	YOD ⁻	REC	CORD	Page	1 of	1
Pittsburg, CA 94565 (925) 252-9262	-1701				2	VorkOr	ler: 080	5485	Clic	entCode	: ERAS			
			WriteOn	EDF	Ō	Excel	□ Fax		Email		HardCopy	ThirdParty	J-fl	ag
Report to:						Bill	to:				Rec	uested TAT:	5 di	ays
Andrew Savage ERAS Environmental, II 1533 B Street	лс. 20. 20.	nail: .:	info@eras.biz gale@eras.biz				Gail Jone ERAS Er 1533 B S	es nvironme treet	ntal, Inc.		Dai	te Received:	06/17/2	008
Hayward, CA 94541 (510) 247-9885 FAX	Pro (510) 886-5399	ojectNo:	#07-001-04; 92	:01 San Leandro	o Street		Hayward	, CA 945	41		Dai	te Printed:	06/19/2	008
								Req	uested Te	sts (Se	e legend b	oelow)		
Lab ID	Client ID		Matrix	Collection Date	Hold	-	3	4	5	9	7 8	9 10	11	12
0806485-001	GP-3, 19.5-22		Water	6/13/2008 9:10			A	В	A					
0806485-002	GP-3,25-29		Water	6/13/2008 10:51			A	В						
0806485-003	GP-3, 31-35		Water	6/13/2008 11:45			A	В						
0806485-004	GP-4, 13-15		Water	6/13/2008 12:35			∡	В						
0806485-005	GP-4, 25-29		Water	6/13/2008 12:50			∢	В						
0806485-006	GP-4, 31-35		Water	6/13/2008 13:10			∢	В						
0806485-007	GP-5, 16-20		Water	6/13/2008 15:00			∡	В						
0806485-008	GP-5, 25-29		Water	6/13/2008 15:10			∡	В						
0806485-009	GP-5, 31-35		Water	6/13/2008 15:36		-	A	В						
0806485-010	GP-6, 13.5-18		Water	6/16/2008 10:03		-	A	В						
0806485-011	GP-6, 25-29		Water	6/16/2008 10:30		-	A	В						
0806485-012	GP-7, 13-15		Water	6/16/2008 12:42			∢	В						
0806485-013	GP-7, 25-29		Water	6/16/2008 12:50		-	A	В						
0806485-014	GP-8, 20-24		Water	6/16/2008 14:34			۸	В						
<u>Test Legend:</u>														
1 G-MBTEX_S	2	G-MBTE	N_X	3 MBTE	хохү-82	260B_S		4 MB	ТЕХОХҮ-8	260B_W		5 PREDI	= REPORT	
9	2			8				6				10		
11	12													
The following SampIDs: 001A	, 002A, 012A, 013A, 01	19A cont	ain testgroup.								Prel	pared by: Ana	Venegas	

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell	Analytical, Inc. ^{2ass Rd}				CF CF	HAIN	-0F-	CUS	TOD	ΥRE	CORD		Page	1 of 1	
Pittsburg, CA (925) 252-920	94565-1701 52					WorkOr	30 :195	306485	0	lientCo	le: ERAS				
			UriteOn	EDF	IJ	Excel		ax	Email		HardCopy	È	iirdParty	U-flag	
Report to:						Bil	ll to:				Re	duestee	а тат:	5 day	s
Andrew Savage ERAS Environme 1533 B Street	E ntal, Inc.	Email: č: Ŏ:	info@eras.biz gale@eras.bi	Z			Gail Jc ERAS 1533 E	ones Environn 3 Street	nental, Inc	Ġ	$D\epsilon$	te Rec	eived: (06/17/200	×
Hayward, CA 94: (510) 247-9885	541	ProjectNo:	#07-001-04; {	9201 San Leandrc	o Stree	÷	Haywa	ard, CA 9.	4541		Di	ate Prin	nted:	06/19/200	×
								Re	duested	Tests (S	ee legend	below)			
Lab ID	Client ID		Matrix	Collection Date	Hold	-	8	3 4	5	9	7 8	6	10	11 1	7
0806485-015	GP-8, 25-29		Water	6/16/2008 16:05			A	В							
0806485-016	GP-8, 31-35		Water	6/16/2008 16:31			A	В							
0806485-017	GP-2, 9.5-10		Soil	6/12/2008 13:40		A		A							
0806485-018	SG-1, 9.5-10		Soil	6/16/2008 10:32		A		A							
0806485-019	GP-3, 9.5-10		Soil	6/13/2008 8:03		A	`	A							
0806485-020	GP-4, 9.5-10		Soil	6/13/2008 12:17		A		A							
0806485-021	GP-6, 11.5-12		Soil	6/16/2008 9:45		A		A							
0806485-022	GP-8, 9.5-10		Soil	6/16/2008 14:19		A		٩							
0806485-023	9MW1		Water	6/17/2008 11:04			A	В							
0806485-024	9MW2		Water	6/17/2008 12:40			A	В							
0806485-025	9MW3		Water	6/17/2008 13:18			A	В							
0806485-026	9MW4		Water	6/17/2008 11:44			A	В							
0806485-027	9MW5		Water	6/17/2008 10:38			A	В							
Test Legend.															
							[ĺ				1
1 G-MBTEX	S 2	G-MBTE	≡X_W	3 MBTE	3-YXOX	3260B_S		4 V	IBTEXOXY	-8260B	2	5	PREDF	REPORT	
9				8				6				10			
11	12														
]														

The following SampIDs: 001A, 002A, 012A, 013A, 019A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	ERAS Environme	ental, Inc.			Date a	and Time Received:	6/17/08 7:	35:52 PM
Project Name:	#07-001-04; 920 ²	l San Leandro Str	eet		Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0806485	Matrix Soil/Water			Carrie	r: <u>Michael Herna</u>	ndez (MAI Co	urier)
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?		Yes	✓	No 🗆			
Chain of custody	y signed when relinqu	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time o	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name noted on COC?				✓	No 🗆			
		s	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta		Yes		No 🗆	-	NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	<	No 🗌			
		Sample Prese	rvatio	n and Ho	Id IIme (HI	<u>) Information</u>		
All samples rece	ived within holding tim	le?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	2.6°C		NA 🗆	
Water - VOA via	Ils have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted 🗌	
Sample labels cl	Sample labels checked for correct preservation?				No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	CCampbell Analyti	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
ERAS Enviro	nmental, Inc.	Client Project ID:	#07-001-04; 9201 San	Date Sampled: 06/12	/08-06/16/08		
1533 B Street		Leandro Street		Date Received: 06/17	7/08		
Hayward, CA	94541	Client Contact: A	ndrew Savage	/08			
	, , , , , , , , , , , , , , , , , , , ,	Client P.O.:		Date Analyzed 06/18	/08-06/2	1/08	
Extraction method	Gasoline Ra SW5030B	ange (C6-C12) Vola Analytical m	tile Hydrocarbons as G	asoline* _{Work O}	Order: 0806485		
Lab ID	Client ID	Matrix	TPH	DF	% SS		
017A	GP-2, 9.5-10	S	340,	d1	20	113	
018A	SG-1, 9.5-10	S	400,	d1	20	97	
019A	GP-3, 9.5-10	S	NI	1	88		
020A	GP-4, 9.5-10	S	450,	d1	20	115	
021A	GP-6, 11.5-12	S	520,	d1	20	120	
022A	GP-8, 9.5-10	S	NI)	1	77	
Rep	porting Limit for DF =1;	W	NA	NA			
ND at	neans not detected at or	S	1.0)	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	IcCampbell Analyti "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
ERAS Envir	ronmental, Inc.	Client Project ID:	#07-001-04; 9201 San	8/08-06/17/08			
1533 B Stree	et	Leandro Street		Date Received: 06/17/	17/08		
Howword C	A 04541	Client Contact: A	ndrew Savage	08-06/21/08			
Tiaywaiu, C.	A 74J41	Client P.O.:		Date Analyzed 06/18	/08-06/2	1/08	
	Gasoline Ra	ange (C6-C12) Vola	tile Hydrocarbons as G	asoline*			
Extraction method	1 SW5030B	Analytical n	nethods SW8015Cm	Work O	rder: 08	06485	
Lab ID	Client ID	Matrix	ТРН	(g)	DF	% SS	
001A	GP-3, 19.5-22	W	NI)	1	100	
002A	GP-3,25-29	W	ND,	b1	1	100	
003A	GP-3, 31-35	W	ND,	b1	1	104	
004A	GP-4, 13-15	W	19,000,	d1,b1	10	108	
005A	GP-4, 25-29	W	12,000,	d1,b1	10	103	
006A	GP-4, 31-35	W	330,d	1,61	1	106	
007A	GP-5, 16-20	W	ND,	1	99		
008A	GP-5, 25-29	W	ND,	1	101		
009A	GP-5, 31-35	W	ND,	b1	1	92	
010A	GP-6, 13.5-18	W	3100,d	1,b1	10	88	
011A	GP-6, 25-29	W	3000,d	1,b1	10	88	
012A	GP-7, 13-15	W	ND,	b1	1	93	
013A	GP-7, 25-29	W	ND,	b1	1	109	
014A	GP-8, 20-24	W	ND,	1	104		
015A	GP-8, 25-29	w	ND,	1	101		
016A	GP-8, 31-35	W	ND,	1	102		
R	Reporting Limit for DF =1;	W	50	μg/L			
N	D means not detected at or above the reporting limit	S	NA	ł	N	Α	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

	IcCampbell Analyti "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
ERAS Enviro	onmental, Inc.	Client Project ID:	#07-001-04; 9201 San	Date Sampled: 06/13	/08-06/17/08		
1533 B Street	t	Leandro Street		Date Received: 06/17/08			
Hayward, CA	94541	Client Contact: A	ndrew Savage	/08-06/21/08			
		Client P.O.:		Date Analyzed 06/18	/08-06/2	1/08	
Extraction method	Gasoline Ra SW5030B	ange (C6-C12) Vola Analytical m	tile Hydrocarbons as G	asoline* Work O	Order: 0806485		
Lab ID	Client ID	Matrix	TPH	(g)	DF	% SS	
023A	9MW1	w	NI)	1	103	
024A	9MW2	W	NI)	1	101	
025A	9MW3	W	13,00	0,d1	10	113	
026A	9MW4	W	81,0	11	1	101	
027A	9MW5	w	NI)	1	102	
Re	porting Limit for DF =1;	W	50	μg/L			
ND a	b means not detected at or bove the reporting limit	S	NA	A	NA		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

McCampbell An "When Ouality	nalyti _{Counts"}	<u>cal, In</u>	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Pro	oject ID:	#07-001	1-04; 9201 San	Date Sampled:	06/12/08-0	5/16/08	
1533 B Street		Leandro S	Street		Date Received:	06/17/08			
		Client Co	ontact: A	ndrew	Savage	Date Extracted:	06/17/08		
Hayward, CA 94541		Client P.C	D.:			Date Analyzed:	06/19/08		
	ates and B	BTEX b	y GC/MS*						
Extraction Method: SW5030B		Analy	ytical Method	I: SW826	0B		Work Order:	0806485	
Lab ID 0806485-017A 080648					0806485-019A	0806485-020A			
Client ID GP-2, 9.5-10 SG-1, 9					GP-3, 9.5-10	GP-4, 9.5-10	Reporting	Limit for	
Matrix	S		S	S	DF	=1			
DF 20					1	20	S	W	
Compound				Conce	entration		mg/kg	ug/L	
tert-Amyl methyl ether (TAME)	ND	< 0.10	ND<0	.20	ND	ND<0.10	0.005	NA	
Benzene		1.2	1.2		ND	0.72	0.005	NA	
t-Butyl alcohol (TBA)	NI	D<1.0	ND<2	2.0	ND	ND<1.0	0.05	NA	
1,2-Dibromoethane (EDB)	ND	<0.080	ND<0	.16	ND	ND<0.080	0.004	NA	
1,2-Dichloroethane (1,2-DCA)	ND	< 0.080	ND<0	.16	ND	ND<0.080	0.004	NA	
Diisopropyl ether (DIPE)	ND	< 0.10	ND<0	.20	ND	ND<0.10	0.005	NA	
Ethylbenzene		2.2	1.9		ND	2.1	0.005	NA	
Ethyl tert-butyl ether (ETBE)	ND	< 0.10	ND<0	.20	ND	ND<0.10	0.005	NA	
Methyl-t-butyl ether (MTBE)	ND	< 0.10	ND<0	.20	ND	ND<0.10	0.005	NA	
Toluene	C	.19	2.8		ND	ND<0.10	0.005	NA	
Xylenes		2.0	2.9		ND	1.4	0.005	NA	
		Surro)gate Rec	overies	s (%)				
%SS1:		92	99		101	100			
%SS2:		103	106	ő	99	112			
%SS3:		97	103	3	108	108			
Comments									
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, so es in μg/	il/sludge/sol wipe.	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TCI	LP & SPLP	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	nalyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Pr	oject ID:	#07-001-04; 9201 San Date Sampled:			06/12/08-06/16/08		
1533 B Street		Leandro	Street			Date Received:	06/17/08		
Havavard CA 9/15/11		Client Co	ontact: A	ndrew	Savage	Date Extracted: 06/17/08			
Client P.O.:						Date Analyzed:	06/19/08		
		Oxygen	ates and B	BTEX b	y GC/MS*				
Extraction Method: SW5030B Analytical Method: SW8260B Work Or									
Lab ID	0806485	-022A							
Client ID	GP-6,	11.5-12	GP-8, 9	.5-10			Reporting	Limit for	
Matrix		S	S				DF	=1	
DF 40							S	W	
Compound				Conce	entration		mg/kg	ug/L	
tert-Amyl methyl ether (TAME)	ND	< 0.20	ND)			0.005	NA	
Benzene		4.6	ND)			0.005	NA	
t-Butyl alcohol (TBA)	NI	D<2.0	ND)			0.05	NA	
1,2-Dibromoethane (EDB)	ND	< 0.16	ND	1			0.004	NA	
1,2-Dichloroethane (1,2-DCA)	ND	< 0.16	ND	1			0.004	NA	
Diisopropyl ether (DIPE)	ND	< 0.20	ND	1			0.005	NA	
Ethylbenzene		2.6	ND	1			0.005	NA	
Ethyl tert-butyl ether (ETBE)	ND	< 0.20	ND				0.005	NA	
Methyl-t-butyl ether (MTBE)	ND	< 0.20	ND	1			0.005	NA	
Toluene		2.6	ND	1			0.005	NA	
Xylenes		7.4	ND	1			0.005	NA	
		Surr	ogate Rec	overies	(%)				
%SS1:		100	101	l					
%SS2:		107	99						
%SS3:									
omments									
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl ND means not detected above the reporti	μg/L, sc es in μg/ ng limit;	oil/sludge/so wipe. N/A mean	olid samples s analyte no	in mg/kg ot applica	g, product/oil/non-a	aqueous liquid sample s.	es and all TC	LP & SPLP	

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Pr	oject ID:	#07-001	-04; 9201 San	Date Sampled:	06/13/08-0	6/17/08	
1533 B Street		Leandro	Street			Date Received:	06/17/08		
		Client Contact: Andrew Savage Date Ext					stad: 06/18/08 06/20/08		
Hayward, CA 94541				indie w i	Suvugo	Date Extracted.	06/10/00 0	c/20/00	
		Client P.	J.:			Date Analyzed:	06/18/08-00	5/20/08	
		Oxygen	ates and B	TEX b	y GC/MS*				
Extraction Method: SW5030B	00064	Anal	ytical Method	1: SW826	0B	0906495 004D	Work Order:	0806485	
Lab ID	85-001B	0806485	-002B	0806485-003B	0806485-004B	-			
Client ID	19.5-22	GP-3,2	5-29	GP-3, 31-35	GP-4, 13-15	Reporting	Limit for		
Matrix	W	W		W	W	- DF	=1		
DF	1	1		1	33	S	W		
Compound		Conce	entration	1	ug/kg	µg/L			
tert-Amyl methyl ether (TAME)		ND	ND		ND	ND<17	NA	0.5	
Benzene]	ND	ND		ND	860	NA	0.5	
t-Butyl alcohol (TBA)		2.1	ND		ND	ND<67	NA	2.0	
1,2-Dibromoethane (EDB)]	ND	ND		ND	ND<17	NA	0.5	
1,2-Dichloroethane (1,2-DCA)]	ND	ND		ND	ND<17	NA	0.5	
Diisopropyl ether (DIPE)		ND	ND		ND	ND<17	NA	0.5	
Ethylbenzene		ND	ND		ND	260	NA	0.5	
Ethyl tert-butyl ether (ETBE)		ND	ND		ND	ND<17	NA	0.5	
Methyl-t-butyl ether (MTBE)		ND	ND		ND	ND<17	NA	0.5	
Toluene		ND	ND		ND	670	NA	0.5	
Xylenes		ND	ND		ND	420	NA	0.5	
		Surr	ogate Rec	overies	s (%)				
%SS1:		100	103	;	102	104			
%SS2:		108	107	1	107	105			
%SS3:		127	130)	130	108			
Comments		:1/-11/	b1	: /1	b1	b1			
 water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reporting # surrogate diluted out of range or coelute 	µg/L, sc es in µg/ ng limit; es with a	wipe. N/A mean	s analyte no s analyte no s; &) low su	t applica	g, product/011/non-a able to this analysidue to matrix inter	iqueous riquid sample s. ference.	es and all TCI	Lr & SPLP	

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Pr	oject ID:	#07-001	-04; 9201 San	Date Sampled:	06/13/08-0	6/17/08	
1533 B Street		Leandro	Street			Date Received:	06/17/08		
		Client Co	ontact: A	ndrew	Savage	Date Extracted: 06/18/08-06/20/08			
Hayward, CA 94541		Client P).			Date Analyzed:	06/18/08-0	5/20/08	
		0	-4 J D			2 400 1 1141 / 2001	00, 10, 00 0		
Extraction Method: SW5030B Analytical Method: SW8260B Work C									
Lab ID	08064	85-005B	0806485	-006B	0806485-007B	0806485-008B			
Client ID	4, 25-29	GP-4, 3	1-35	GP-5, 16-20	GP-5, 25-29	Reporting	Limit for		
Matrix		W	W		W	W	- DF	=1	
DF		10	1		1	1	s	W	
Compound			Conce	entration	ug/kg	µg/L			
tert-Amyl methyl ether (TAME)	NI	D<5.0	ND		ND	ND	NA	0.5	
Benzene		240	15		ND	ND	NA	0.5	
t-Butyl alcohol (TBA)	N	D<20	ND		ND	ND	NA	2.0	
1,2-Dibromoethane (EDB)	NI	D<5.0	ND		ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	NI	D<5.0	ND		ND	ND	NA	0.5	
Diisopropyl ether (DIPE)	NI	D<5.0	ND		ND	ND	NA	0.5	
Ethylbenzene		130	5.7		ND	ND	NA	0.5	
Ethyl tert-butyl ether (ETBE)	NI	D<5.0	ND		ND	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	NI	D<5.0	0.65	5	ND	ND	NA	0.5	
Toluene		230	12		ND	0.69	NA	0.5	
Xylenes		240	10		ND	ND	NA	0.5	
		Surr	ogate Rec	overies	s (%)				
%SS1:		99	97		99	99			
%SS2:		104	102	!	104	104			
%SS3:		91	94		104	108			
Comments		b1	b1		b1	b1			
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reporti	μg/L, sc es in μg/ ng limit;	oil/sludge/so wipe. N/A mean	lid samples s analyte no	in mg/kg t applica	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP	

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
ERAS Environmental, Inc.		Client Pr	oject ID:	#07-001	-04; 9201 San	Date Sampled:	06/13/08-0	6/17/08		
1533 B Street		Leandro	Street			Date Received: 06/17/08				
		Client Co	ontact: A	ndrew	Savage	Date Extracted: 06/18/08-06/20/08				
Hayward, CA 94541		Client P	0·			Date Analyzed:	06/18/08-0	5/20/08		
		Orregon	otog and D	TEV h		2 400 1 1144 j 2001				
Extraction Method: SW5030B		Anal	lytical Method	1: SW826	9 GC/1915* 0B		Work Order:	0806485		
Lab ID	08064	85-009B	0806485	-010B	0806485-011B	0806485-012B				
Client ID	5, 31-35	GP-6, 13	3.5-18	GP-6, 25-29	GP-7, 13-15	Reporting	Limit for			
Matrix		W	W		W	W	- DF	=1		
DF		1	10		10	1	S	W		
Compound			Conce	entration	<u>.</u>	ug/kg	µg/L			
tert-Amyl methyl ether (TAME)		ND	ND<5	5.0	ND<5.0	ND	NA	0.5		
Benzene		ND	170)	160	ND	NA	0.5		
t-Butyl alcohol (TBA)		ND	ND<	20	ND<20	ND	NA	2.0		
1,2-Dibromoethane (EDB)		ND	ND<5	5.0	ND<5.0	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)		ND	ND<5	5.0	ND<5.0	ND	NA	0.5		
Diisopropyl ether (DIPE)		ND	ND<	5.0	ND<5.0	ND	NA	0.5		
Ethylbenzene		ND	22		40	ND	NA	0.5		
Ethyl tert-butyl ether (ETBE)		ND	ND<5	5.0	ND<5.0	ND	NA	0.5		
Methyl-t-butyl ether (MTBE)		ND	ND<5	5.0	ND<5.0	0.93	NA	0.5		
Toluene		ND	30		39	ND	NA	0.5		
Xylenes		ND	35		75	ND	NA	0.5		
		Surr	ogate Rec	overies	s (%)					
%SS1:		102	103	3	101	99				
%SS2:		105	104	ļ	105	104				
%SS3:	%SS3: 116 107 97 107									
Comments		bl	bl		bl	bl				
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reporti	µg/L, so es in μg/ ng limit;	oil/sludge/so /wipe. ; N/A mean	olid samples s analyte no	in mg/kg ot applica	g, product/oil/non-a	iqueous liquid sample s.	es and all TC	LP & SPLP		

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Pr	oject ID:	#07-001	-04; 9201 San	Date Sampled:	06/13/08-0	6/17/08
1533 B Street		Leandro	Street			Date Received:	06/17/08	
		Client Co	ontact: A	ndrew	Savage	Date Extracted: 06/18/08-06/20/08		
Hayward, CA 94541		Client P.0	D.:		-	Date Analyzed:	06/18/08-0	5/20/08
		Ovvgen	ates and R	TEX b	v GC/MS*			
Extraction Method: SW5030B		Anal	ytical Method	1: SW826	0B		Work Order:	0806485
Lab ID	08064	85-013B	0806485	-014B	0806485-015B	0806485-016B		
Client ID	7, 25-29	GP-8, 2	0-24	GP-8, 25-29	GP-8, 31-35	Reporting	Limit for	
Matrix		W	W		W	W	- DF	=1
DF	1	1		1	1	s	W	
Compound				Conce	entration	<u>.</u>	ug/kg	µg/L
tert-Amyl methyl ether (TAME)		ND	ND		ND	ND	NA	0.5
Benzene		ND	ND		ND	ND	NA	0.5
t-Butyl alcohol (TBA)		ND	ND	1	ND	ND	NA	2.0
1,2-Dibromoethane (EDB)		ND	ND		ND	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)		ND	1.9		ND	ND	NA	0.5
Diisopropyl ether (DIPE)		ND	ND	1	ND	ND	NA	0.5
Ethylbenzene		ND	ND		ND	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)		ND	ND		ND	ND	NA	0.5
Methyl-t-butyl ether (MTBE)		ND	6.1		0.78	ND	NA	0.5
Toluene		ND	ND		ND	ND	NA	0.5
Xylenes		ND	ND		ND	ND	NA	0.5
		Surr	ogate Rec	overies	s (%)			
%SS1:		98	99		97	98		
%SS2:		95	95		95	95		
%SS3:		89	89		89	90		
Comments		bl	bl		bl	bl		
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reporti-	μg/L, sc es in μg/ ng limit;	vil/sludge/so wipe. N/A mean	olid samples s analyte no	in mg/kg ot applica	g, product/oil/non-a	iqueous liquid sampl s.	es and all TCI	LP & SPLP

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	alyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Pr	oject ID:	#07-001	-04; 9201 San	Date Sampled:	06/13/08-0	5/17/08	
1533 B Street		Leandro	Street			Date Received:	l: 06/17/08		
1555 D 50000		Cliant Contact: Andrew Savage Date Extracted:					06/19/09 06/20/09		
Hayward, CA 94541				nurews	Javage	Date Extracted.	00/10/00-00	J/20/00	
		Client P.	D.:			Date Analyzed:	06/18/08-00	5/20/08	
Oxygenates and BTEX by GC/MS*									
Extraction Method: SW5030B		Work Order:	0806485						
Lab ID	85-023B	0806485	-024B	0806485-025B	0806485-026B				
Client ID	9N	4W1	9MW	/2 9N	9MW3	9MW4	Reporting	Limit for	
Matrix	W	W		W	W	- DF	=1		
DF		1	1		200	1	S	W	
Compound		Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	1	ND	ND		ND<100	ND	NA	0.5	
Benzene	1	ND	ND		4400	11	NA	0.5	
t-Butyl alcohol (TBA)	1	ND	ND		ND<400	ND	NA	2.0	
1,2-Dibromoethane (EDB)	1	ND	ND		ND<100	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	1	ND	ND		ND<100	ND	NA	0.5	
Diisopropyl ether (DIPE)	1	ND	ND		ND<100	ND	NA	0.5	
Ethylbenzene	1	ND	ND		300	4.7	NA	0.5	
Ethyl tert-butyl ether (ETBE)	1	ND	ND		ND<100	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	0	.67	1.1		ND<100	ND	NA	0.5	
Toluene	1	ND	ND		600	0.51	NA	0.5	
Xylenes	1	ND	ND		150	1.6	NA	0.5	
		Surr	ogate Rec	overies	s (%)				
%SS1:		97	97		102	103			
%SS2:		95	94		104	105			
%SS3:		88	89		106	107			
Comments									
 * water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reportin # surrogate diluted out of range or coelute 	μg/L, so es in μg/ [,] ng limit; es with a	il/sludge/so wipe. N/A mean nother peal	lid samples s analyte no s; &) low su	in mg/kg t applica	g, product/oil/non-a able to this analysidue to matrix inter	queous liquid sampl s. ference.	es and all TCI	LP & SPLP	

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	<u>.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
ERAS Environmental, Inc.	Client Pr	oject ID:	#07-001-	-04; 9201 San	Date Sampled:	06/13/08-0	5/17/08	
1533 B Street	Leandro	Street			Date Received:	06/17/08		
Harmond CA 04541	Client C	ontact: A	ndrew S	avage	Date Extracted:	06/18/08-06/20/08		
Hayward, CA 94541	Client P.	0.:	06/18/08-0	5/20/08				
	Oxygen	nates and B	BTEX by	GC/MS*				
Extraction Method: SW5030B	Ana	lytical Method	1: SW8260	В	1	Work Order:	0806485	
Lab ID	0806485-027B							
Client ID	9MW5					Reporting	Limit for	
Matrix	W						-1	
DF	1					S	W	
Compound		Concer	ntration		ug/kg	μg/L		
tert-Amyl methyl ether (TAME)	ND					NA	0.5	
Benzene	ND					NA	0.5	
t-Butyl alcohol (TBA)	ND					NA	2.0	
1,2-Dibromoethane (EDB)	ND					NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND					NA	0.5	
Diisopropyl ether (DIPE)	ND					NA	0.5	
Ethylbenzene	ND					NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND					NA	0.5	
Methyl-t-butyl ether (MTBE)	ND					NA	0.5	
Toluene	ND					NA	0.5	
Xylenes	ND					NA	0.5	
	Surr	ogate Rec	overies	(%)				
%SS1:	104							
%SS2:	106							
%SS3:	108							
Comments	(* ••• / • • • /							
ND means not detected above the reporti	μg/L, son/siudge/se es in μg/wipe. ng limit; N/A mean	is analyte no	ot applicat	ble to this analysis	s.	es and all TC	LP & SPLP	
# surrogate diluted out of range or coelut	es with another peal	k; &) low st	irrogate d	ue to matrix inter	ference.			
b1) aqueous sample that contains greater	than ~1 vol. % sedi	iment						

Angela Rydelius, Lab Manager

	CCampbell Analyti	<u>cal, Inc.</u>	1534 Willow I Web: www.mccamp Telephone: {	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 877-252-9262 Fax: 925-252-92	1701 pbell.com 69				
ERAS Enviro	nmental, Inc.	Client Project ID:	#07-001-04; 9201 San	Date Sampled: 06/13	/08				
1533 B Street		Leandro Street	Date Received: 06/1						
Hayward, CA	94541	Client Contact: A	Andrew Savage	Date Extracted: 06/17/	08				
		Client P.O.:	/08						
	То	tal Extractable Pet	roleum Hydrocarbons*						
Extraction method	SW3550C	Analytical	methods: SW8015C	Work Or	der: 080	06485			
Lab ID	Client ID	Matrix	TPH-Dies (C10-C23	sel	DF	% SS			
0806485-019A	GP-3, 9.5-10	S	ND		1	118			

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or	c	1.0	ma/V a
above the reporting limit	3	1.0	ing/ k g

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	cCampbell Analyti	<u>cal, Inc.</u>	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	1701 pbell.com 69	
ERAS Environ	nmental, Inc.	Client Project ID:	#07-001-04; 9201 San	Date Sampled: 06/13/	/08-06/1	6/08
1533 B Street		Leandro Street		Date Received: 06/17/	/08	
Hayward CA	94541	Client Contact: A	Date Extracted: 06/17/	08		
	71511	Client P.O.:		Date Analyzed 06/20/	/08-06/2	4/08
	То	tal Extractable Pet	roleum Hydrocarbons*			
Extraction method	SW3510C	Analytical	methods: SW8015C	Work Or	der: 080	06485
Lab ID	Client ID	Matrix	TPH-Dies (C10-C23)	sel	DF	% SS
0806485-001A	GP-3, 19.5-22	W	180,e7,e	22	1	82
0806485-002A	GP-3,25-29	W	ND,b1		1	120
0806485-012A	GP-7, 13-15	W	280,e7,e2	,b1	1	99
0806485-013A	GP-7, 25-29	w	ND,b1		1	107

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or	S	ΝA	NΛ
above the reporting limit	3	INA	INA

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

e7) oil range compounds are significant

e2) diesel range compounds are significant; no recognizable pattern

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806485

EPA Method SW8015C	Extra	ction SW	3550C		BatchID: 36314 Si				piked Sample ID: 0806435-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	8300	20	NR	NR	NR	123	121	1.52	70 - 130	30	70 - 130	30
%SS:	118	50	109	116	5.97	120	119	1.35	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:			

BATCH	36314	SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-019A	06/13/08 8:03 AM	06/17/08	06/20/08 12:10 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8015Cm	Extra	ction SW	5030B		Bat	tchID: 36	330	Sp	biked Sam	ole ID:	0806475-00	5A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	98.2	95.3	3.02	96	99.8	3.89	70 - 130	20	70 - 130	20
MTBE	ND	10	111	116	4.82	115	111	3.15	70 - 130	20	70 - 130	20
Benzene	ND	10	100	101	1.31	105	104	1.17	70 - 130	20	70 - 130	20
Toluene	ND	10	91.2	93.3	2.38	94.5	94.1	0.392	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	101	103	1.88	104	104	0	70 - 130	20	70 - 130	20
Xylenes	ND	30	101	101	0	101	100	1.04	70 - 130	20	70 - 130	20
%SS:	97	10	96	96	0	100	97	3.18	70 - 130	20	70 - 130	20
All target compounds in the Method	Blank of this	extraction	batch we	ere ND les	ss than the	method H	RL with th	ne following	exceptions:			

NONE

BATCH 36330 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-001A	06/13/08 9:10 AM	06/18/08	06/18/08 7:55 PM	0806485-002A	06/13/08 10:51 AM	06/18/08	06/18/08 8:26 PM
0806485-003A	06/13/08 11:45 AM	06/18/08	06/18/08 8:56 PM	0806485-004A	06/13/08 12:35 PM	06/18/08	06/18/08 9:27 PM
0806485-005A	06/13/08 12:50 PM	06/19/08	06/19/08 9:28 PM	0806485-006A	06/13/08 1:10 PM	06/19/08	06/19/08 9:59 PM
0806485-007A	06/13/08 3:00 PM	06/19/08	06/19/08 10:29 PM	0806485-008A	06/13/08 3:10 PM	06/21/08	06/21/08 2:11 AM
0806485-009A	06/13/08 3:36 PM	06/18/08	06/18/08 6:53 PM	0806485-010A	06/16/08 10:03 AM	06/19/08	06/19/08 3:03 AM
0806485-011A	06/16/08 10:30 AM	06/19/08	06/19/08 3:33 AM	0806485-012A	06/16/08 12:42 PM	06/18/08	06/18/08 7:26 PM
0806485-013A	06/16/08 12:50 PM	06/19/08	06/19/08 4:03 AM	0806485-014A	06/16/08 2:34 PM	06/19/08	06/19/08 4:34 AM
0806485-015A	06/16/08 4:05 PM	06/19/08	06/19/08 5:04 AM	0806485-016A	06/16/08 4:31 PM	06/21/08	06/21/08 3:11 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8015C	Extra	3510C		BatchID: 36331 Spiked Sample ID: N/A						N/A		
Analyte	Sample Spiked MS MSI			MSD	MS-MSD LCS L		LCSD	LCS-LCSD	Acce	cceptance Criteria (%)		
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	120	120	0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	118	119	0.364	N/A	N/A	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

			<u>BATCH 36331 SL</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-002A	06/13/08 10:51 AM	06/17/08	06/20/08 4:14 PM	0806485-013A	06/16/08 12:50 PM	06/17/08	06/22/08 1:17 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8260B	Extra	ction SW	5030B	EPA Method SW8260B Extraction SW5030B BatchID: 36332 Spiked Sample ID: 0806										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Criteri				1		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
tert-Amyl methyl ether (TAME)	ND	10	95.8	93.7	2.29	96.8	101	4.26	70 - 130	30	70 - 130	30		
Benzene	ND	10	93.7	93.3	0.443	94	99	5.18	70 - 130	30	70 - 130	30		
t-Butyl alcohol (TBA)	ND	50	85.4	83.6	2.22	81.9	87.2	6.24	70 - 130	30	70 - 130	30		
1,2-Dibromoethane (EDB)	ND	10	90.7	88.6	2.25	93.7	95.7	2.18	70 - 130	30	70 - 130	30		
1,2-Dichloroethane (1,2-DCA)	ND	10	98.7	97	1.74	99.4	106	6.44	70 - 130	30	70 - 130	30		
Diisopropyl ether (DIPE)	ND	10	105	102	2.19	104	110	5.13	70 - 130	30	70 - 130	30		
Ethyl tert-butyl ether (ETBE)	ND	10	100	97.6	2.47	100	105	4.74	70 - 130	30	70 - 130	30		
Methyl-t-butyl ether (MTBE)	ND	10	98.2	96.7	1.53	98.2	103	5.26	70 - 130	30	70 - 130	30		
Toluene	ND	10	82.8	84.6	2.10	83.4	87.2	4.45	70 - 130	30	70 - 130	30		
%SS1:	98	25	94	93	1.03	97	98	0.935	70 - 130	30	70 - 130	30		
%SS2:	101	25	95	97	1.62	95	94	0.777	70 - 130	30	70 - 130	30		
%SS3:	115	25	89	92	2.80	94	93	0.978	70 - 130	30	70 - 130	30		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 36332 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-001B	06/13/08 9:10 AM	06/18/08	06/18/08 5:04 PM	0806485-002B	06/13/08 10:51 AM	06/18/08	06/18/08 9:36 PM
0806485-003B	06/13/08 11:45 AM	06/18/08	06/18/08 10:27 PM	0806485-004B	06/13/08 12:35 PM	06/19/08	06/19/08 4:41 PM
0806485-005B	06/13/08 12:50 PM	06/19/08	06/19/08 10:33 PM	0806485-006B	06/13/08 1:10 PM	06/19/08	06/19/08 12:37 AM
0806485-007B	06/13/08 3:00 PM	06/19/08	06/19/08 11:59 PM	0806485-008B	06/13/08 3:10 PM	06/20/08	06/20/08 12:43 AM
0806485-009B	06/13/08 3:36 PM	06/19/08	06/19/08 2:47 AM	0806485-010B	06/16/08 10:03 AM	06/19/08	06/19/08 3:30 AM
0806485-011B	06/16/08 10:30 AM	06/19/08	06/19/08 4:14 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

~ QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8260B	Extraction SW5030B				BatchID: 36347 Si			piked Sample ID: 0806476-009A				
Analyte	Sample	Sample Spiked MS i			MS-MSD LCS LCSD			LCS-LCSD Acceptance Criteria (%)				1
/ indivio	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND<2.5	10	108	111	2.97	95.7	96.1	0.367	70 - 130	30	70 - 130	30
Benzene	ND<2.5	10	120	123	2.55	104	105	0.196	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND<10	50	97.6	103	4.96	90.2	93.2	3.34	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND<2.5	10	115	117	2.45	100	97.3	3.03	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND<2.5	10	119	122	2.78	103	105	1.99	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<2.5	10	117	120	2.57	105	108	3.62	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<2.5	10	126	129	2.30	113	116	3.05	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND<2.5	10	118	121	2.36	105	106	1.07	70 - 130	30	70 - 130	30
Toluene	ND<2.5	10	108	109	0.777	95.9	94.7	1.26	70 - 130	30	70 - 130	30
%SS1:	101	25	101	102	0.810	97	97	0	70 - 130	30	70 - 130	30
%SS2:	106	25	106	106	0	94	95	0.337	70 - 130	30	70 - 130	30
%SS3:	109	25	107	108	0.400	111	113	1.37	70 - 130	30	70 - 130	30
			1 1	ND 1)T					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-012B	06/16/08 12:42 PM	06/19/08	06/19/08 4:57 AM	0806485-013B	06/16/08 12:50 PM	06/19/08	06/19/08 12:56 AM
0806485-014B	06/16/08 2:34 PM	06/19/08	06/19/08 1:39 AM	0806485-015B	06/16/08 4:05 PM	06/19/08	06/19/08 2:21 AM
0806485-016B	06/16/08 4:31 PM	06/19/08	06/19/08 3:03 AM	0806485-023B	06/17/08 11:04 AM	06/19/08	06/19/08 3:45 AM
0806485-024B	06/17/08 12:40 PM	06/19/08	06/19/08 4:27 AM	0806485-025B	06/17/08 1:18 PM	06/19/08	06/19/08 3:18 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8015Cm	EPA Method SW8015Cm Extraction SW5030B					BatchID: 36353			Spiked Sample ID: 0806485-027A			
Analyte	Sample Spiked MS MS			MSD	D MS-MSD LCS LCSD		LCS-LCSD Acceptance Criteria (%))	
, analyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	101	100	1.19	98.3	96.4	1.95	70 - 130	20	70 - 130	20
MTBE	ND	10	113	105	7.84	110	111	0.781	70 - 130	20	70 - 130	20
Benzene	ND	10	107	105	1.76	103	99.4	3.20	70 - 130	20	70 - 130	20
Toluene	ND	10	96.6	96.6	0	92.2	89.6	2.95	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	107	107	0	102	98.9	3.09	70 - 130	20	70 - 130	20
Xylenes	ND	30	105	106	0.801	98.9	96.1	2.85	70 - 130	20	70 - 130	20
%SS:	102	10	97	98	0.656	98	98	0	70 - 130	20	70 - 130	20
All target compounds in the Method I NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method H	RL with th	ne following	exceptions:			

BATCH 36353 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0806485-023A	06/17/08 11:04 AM	06/19/08	06/19/08 6:04 AM	0806485-024A	06/17/08 12:40 PM	06/19/08	06/19/08 6:34 AM	
0806485-025A	06/17/08 1:18 PM	06/20/08	06/20/08 1:30 AM	0806485-026A	06/17/08 11:44 AM	06/19/08	06/19/08 8:35 AM	
0806485-027A	06/17/08 10:38 AM	06/19/08	06/19/08 9:05 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8260B Extraction SW5030B					BatchID: 36354				Spiked Sample ID: 0806485-026B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	98	105	7.08	94.4	97.9	3.65	70 - 130	30	70 - 130	30
Benzene	11	10	113	125	5.35	94.3	95.9	1.67	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	92.7	102	9.13	78.4	84.5	7.50	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	91.6	98.5	7.20	89.8	93.5	4.03	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	110	118	6.89	99.4	101	1.83	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	115	124	7.47	103	106	2.73	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	121	129	6.73	98.5	102	3.44	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	107	116	7.71	96.6	100	3.77	70 - 130	30	70 - 130	30
Toluene	0.55	10	91.7	97.3	5.61	83.7	85.1	1.54	70 - 130	30	70 - 130	30
%SS1:	103	25	99	101	2.01	96	97	0.445	70 - 130	30	70 - 130	30
%SS2:	105	25	96	96	0	95	95	0	70 - 130	30	70 - 130	30
%SS3:	107	25	113	111	1.89	91	93	1.75	70 - 130	30	70 - 130	30
All target compounds in the Method I	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 36354 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-026B	06/17/08 11:44 AM	06/19/08	06/19/08 3:57 PM	0806485-027B	06/17/08 10:38 AM	06/19/08	06/19/08 2:34 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

~ QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806485

EPA Method SW8015Cm	Extra	ction SW	5030B		Ba	tchID: 36	356	Sp	iked Sam	ole ID:	0806485-01	9A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
/ individe	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	109	120	9.57	103	99.8	2.66	70 - 130	20	70 - 130	20
MTBE	ND	0.10	109	105	3.13	108	106	2.22	70 - 130	20	70 - 130	20
Benzene	ND	0.10	94.8	91.1	3.90	93.5	94.2	0.758	70 - 130	20	70 - 130	20
Toluene	ND	0.10	108	101	5.64	108	110	1.05	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	106	103	2.57	103	104	1.01	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	116	116	0	115	116	0.965	70 - 130	20	70 - 130	20
%SS:	88	0.10	97	93	4.48	95	96	1.08	70 - 130	20	70 - 130	20
All target compounds in the Method I NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:			

BATCH 36356 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-017A	06/12/08 1:40 PM	06/17/08	06/19/08 11:45 PM	0806485-018A	06/16/08 10:32 AM	06/17/08	06/20/08 12:15 AM
0806485-019A	06/13/08 8:03 AM	06/17/08	06/18/08 6:11 PM	0806485-020A	06/13/08 12:17 PM	06/17/08	06/20/08 12:46 AM
0806485-021A	06/16/08 9:45 AM	06/17/08	06/20/08 1:16 AM	0806485-022A	06/16/08 2:19 PM	06/17/08	06/21/08 8:10 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

QC Matrix: Soil WorkOrder 0806485 W.O. Sample Matrix: Soil EPA Method SW8260B Extraction SW5030B BatchID: 36322 Spiked Sample ID: 0806483-001A Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) Analvte % Rec. % Rec. mg/Kg mg/Kg % Rec. % Rec. % RPD % RPD MS / MSD RPD LCS/LCSD RPD tert-Amyl methyl ether (TAME) ND 0.050 106 108 2.06 104 104 0 60 - 130 60 - 130 30 30 0.050 102 0 60 - 130 102 108 109 1.61 60 - 130 30 30 Benzene ND 0.25 t-Butyl alcohol (TBA) ND 95.1 102 7.01 94.4 105 10.5 60 - 130 30 60 - 130 30 1,2-Dibromoethane (EDB) ND 0.050 110 113 1.95 110 113 2.09 60 - 130 30 60 - 130 30 0.050 60 - 130 1,2-Dichloroethane (1,2-DCA) ND 107 108 0.975 120 118 1.70 30 60 - 130 30 Diisopropyl ether (DIPE) ND 0.050 105 106 1.34 110 110 0 60 - 130 30 60 - 130 30 Ethyl tert-butyl ether (ETBE) ND 0.050 107 109 1.98 118 120 1.82 60 - 130 30 60 - 130 30 0.050 1.31 60 - 130 Methyl-t-butyl ether (MTBE) ND 111 113 1.73 111 112 30 60 - 130 30 Toluene ND 0.050 96.4 95.8 0.638 108 107 0.768 60 - 130 30 60 - 130 30 %SS1: 99 98 0.869 98 0.12 102 101 0.687 70 - 130 30 70 - 130 30 %SS2: 115 0.12 96 95 0.533 107 106 1.03 70 - 130 30 70 - 13030 %SS3: 103 0.12 102 101 1.83 125 124 0.457 70 - 130 30 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 36322 SUMMARY Lab ID Date Sampled Date Extracted Lab ID Date Sampled Date Extracted Date Analyzed Date Analyzed 0806485-017A 06/12/08 1:40 PM 06/17/08 06/19/08 4:49 PM 0806485-018A 06/19/08 5:37 PM 06/16/08 10:32 AM 06/17/08

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0806485

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 36	357	Sp	iked Sam	ole ID:	0806485-02	2A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	83.8	82.4	1.70	95	97.8	2.91	60 - 130	30	60 - 130	30
Benzene	ND	0.050	80.7	79.2	1.83	91.1	92.4	1.48	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	74.3	73.8	0.679	84.5	91.2	7.59	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	90.6	88.1	2.79	99.1	102	2.71	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	83	81.1	2.37	93.6	96.8	3.35	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	86.4	85.1	1.55	92.8	95.3	2.64	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	85.3	84.5	1.04	95.8	97.6	1.90	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	86.5	85	1.75	98.7	102	3.32	60 - 130	30	60 - 130	30
Toluene	ND	0.050	79.7	77.5	2.74	86.1	87.4	1.47	60 - 130	30	60 - 130	30
%SS1:	101	0.12	98	97	0.580	100	100	0	70 - 130	30	70 - 130	30
%SS2:	99	0.12	100	100	0	96	96	0	70 - 130	30	70 - 130	30
%SS3:	107	0.12	97	95	1.77	101	101	0	70 - 130	30	70 - 130	30
All target compounds in the Method F	Rank of this	extraction	hatch we	ere ND le	ss than the	method F	RI, with th	ne following	exceptions:			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exception NONE

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-019A	06/13/08 8:03 AM	06/17/08	06/19/08 9:13 PM	0806485-020A	06/13/08 12:17 PM	06/17/08	06/19/08 6:19 PM
0806485-021A	06/16/08 9:45 AM	06/17/08	06/19/08 7:02 PM	0806485-022A	06/16/08 2:19 PM	06/17/08	06/19/08 9:59 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806485

EPA Method SW8015C	Extra	ction SW	3510C		Bat	tchID: 36	331	Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	120	120	0	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	118	119	0.364	N/A	N/A	70 - 130	30	
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:				

			BATCH 36331 SU	<u>IMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806485-001A	06/13/08 9:10 AM	06/17/08	06/24/08 3:20 PM	0806485-002A	06/13/08 10:51 AM	06/17/08	06/20/08 4:14 PM
0806485-012A	06/16/08 12:42 PM	06/17/08	06/24/08 11:37 AM	0806485-013A	06/16/08 12:50 PM	06/17/08	06/22/08 1:17 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell A	nalytical, Inc. v Counts"	1534 Will Web: www.mc Telepho	low Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 nain@mccampbell.com 925-252-9269
ERAS Environmental, Inc.	Client Project ID: #07-001	1-04; 9201 San	Date Sampled:	06/18/08
1533 B Street	Leandro Street		Date Received:	06/19/08
Havward, CA 94541	Client Contact: Kasey Co	ordoza	Date Reported:	06/24/08
	Client P.O.:		Date Completed:	06/23/08

WorkOrder: 0806550

June 24, 2008

Dear Kasey:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #07-001-04; 9201 San Leandro Stre
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0806550 CHAIN OF CUSTODY FORM

	McC	Campb	ell An	alyt	ical	, II	nc							Ge	Tim	e: cker	XP	Ush DF	Б	24Hr kcel	4	8 Hr DF	72	? Hr	5 D.	ay		
	Contraction of the second	925.2	urg, C. 7.252. 52.92	A 94 926 69 -	56 2 fax	5											A	naly	sis R	eque	sted				Ot	ther	Cor	Sampl
Report To: Company:	ERAS	Bill To: RAS Env	/ironmer	ntal, I	nc.						1																Yes	is Ani
Telephone:	510.247.9885	Email: Fax:		<u>info@</u> 510.8	eras 86.5	399	<u>,</u>		-3 22 23																			
Project #	07-001-04			un l					-																			
Sampler:	9201 San L Kasey	eandro S Cordoza	street	tainer	er Type		1																					
		Sam	pling	of Cor	ontain	N	latri	x	Pre	eser	vati	ve																
Sample ID	Location/Fiel d Point Name	Date	Time	#	Ŭ	Soil	Waste		Ę	H2SOM	IC IC	None		P-HdT														
							-					-		H	-				-		-				+			
9MW4		6.18.08	10:35											x														
						+						-		H	-									-				
						-								H	-													
						+	-					_																
1. /													•															
telinguished by:	RELINQUISHE	D BY: Date: Date:	[2:3-	Time: 7		Recie	yed by	R //	ECE		BY:	0			(Head Dechk	ICE/t= Conditio space a orinated	n ibsent I in lab	-	3.	Q				Cor TO6	mment 500101	s: Glol 1592	al ID # leport M	TBE t
Refinquished by:	1 4/19	/0g Date:	1/3	Time:	P	Recier	ved by	-2	1	V_	~	5	۰	A	ppropr Pres	riate cor erved in	rtainers I Lab	_	VOA's	086	Met	ale O	thar					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Bitteburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	rder: 080655	0 Clier	ntCode: ERAS		
		WriteOn	EDF	Excel	Fax	Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Rec	uested TAT:	5 days
Kasey Cordoza	Email:	kasey@eras.biz			Gail Jones				
ERAS Environmental, Inc.	CC:				ERAS Enviro	onmental, Inc.	Da	to Received.	06/10/2008
1533 B Street	PO:				1533 B Stre	et	Du	ie Receiveu.	00/17/2000
Hayward, CA 94541	ProjectNo	: #07-001-04; 920 ⁻	1 San Leandro	Street	Hayward, C/	A 94541	Dat	te Printed:	06/19/2008
(510) 247-9885 FAX (510) 886-5399									

							Req	uested	Tests (See leg	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date Ho	ld 1	2	3	4	5	6	7	8	9	10	11	12
			1							1	1			1	
0806550-001	9MW4	Water	6/18/2008 10:35	A	А										

Test Legend:

1	PREDF REPORT
6	
11	

2	TPH(D)_W
7	
12	

3	
8	

4	
9	

5	
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	ERAS Environme	ntal, Inc.	Date a	Date and Time Received: 6/19/08 6:45:11 PM								
Project Name:	#07-001-04; 9201	San Leandro Str	eet		Check	klist completed and r	eviewed by:	Ana Venegas				
WorkOrder N°:	0806550	Matrix <u>Water</u>			Carrie	er: <u>Michael Herna</u>	ndez (MAI Co	urier)				
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation						
Chain of custody	/ present?		Yes	✓	No 🗆							
Chain of custody	v signed when relinqui	shed and received?	Yes	\checkmark	No 🗆							
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌							
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆							
Date and Time of	f collection noted by Cl	ent on COC?	Yes	✓	No 🗆							
Sampler's name	noted on COC?		Yes	✓	No 🗆							
Sample Receipt Information												
Custody seals in	Custody seals intact on shipping container/cooler? Yes \square No \square NA \checkmark											
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆							
Samples in prop	er containers/bottles?		Yes	✓	No 🗆							
Sample containe	ers intact?		Yes	✓	No 🗆							
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌							
		Sample Prese	rvatio	and Ho	ld Time (HT) Information						
		<u>dample rrese</u>	vatio			<u>y mormation</u>						
All samples rece	ived within holding tim	e?	Yes	⊻	No 🛄		_					
Container/Temp	Blank temperature		Coole	er Temp:	3.6°C		NA					
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹					
Sample labels cl	necked for correct pre	servation?	Yes	✓	No 🗌							
TTLC Metal - pH	acceptable upon rece	pt (pH<2)?	Yes		No 🗆		NA 🗹					

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	CCampbell Analyti	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
ERAS Enviro	nmental, Inc.	Client Project ID:	#07-001-04; 9201 San	Date Sampled: 06/18	/08							
1533 B Street		Leandro Street		Date Received: 06/19								
Hayward, CA	94541	Client Contact: H	Zlient Contact: Kasey Cordoza Date Extracted: 06/19									
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Client P.O.:	Date Analyzed 06/20/08									
	То	tal Extractable Pe	troleum Hydrocarbons*									
Extraction method	SW3510C	Analytical	methods: SW8015C	Work Or	der: 080)6550						
Lab ID	Client ID	Matrix	TPH-Dies (C10-C23	sel)	DF	% SS						
0806550-001A	9MW4	W	ND,b1	1	120							

Reporting Limit for $DF = 1$;	W	50	μg/L
ND means not detected at or	C	NI A	NIA
above the reporting limit	3	INA	INA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0806550

EPA Method SW8015C Extraction SW3510C						chID: 36	371	Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	-LCSD Acceptance (Criteria (%)		
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	118	118	0	N/A	N/A	70 - 130	30		
%SS:	N/A	2500	N/A	N/A	N/A	110	110	0	N/A	N/A	70 - 130	30		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

			<u>JMMARY</u>				
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806550-001A	06/18/08 10:35 AM	06/19/08	06/20/08 11:04 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX I

LABORATORY REPORT AND CHAIN OF CUSTODY FORM FOR SOIL GAS SAMPLE

McCampbell An "When Ouality"	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
ERAS Environmental, Inc.	Client Project ID: #07-001	-04; 9201 San	06/16/08					
1533 B Street	Leandro		Date Received:	06/17/08				
Hayward, CA 94541	Client Contact: Andrew S	Savage	Date Reported:	06/27/08				
	Client P.O.:		Date Completed:	06/27/08				

WorkOrder: 0806486

June 27, 2008

Dear Andrew:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #07-001-04; 9201 San Leandro,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAN Telephone: (925) 2	MPBELI 1534 W Pittsbury www.mai 52-9262	J ANA /illow Pa g, CA 94 n@mccan	LYTICAL INC. ss Road 565-1701 ipbell.com Fax: (925)	252-9269	CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coelt (Normal) No Write On (DW) No PPP									
Report To: ERAS			Bill To: ERA	S	The second	L	ab Use C	Inly	and the second					
Company: ERAS E.	wronm	ental,	Inc.		化成何 计算机数据 计正式	ine.			Pressurization Gas					
	E-Mail: mG @ cra5, 6:2 He: (5(0)) 247-9885 Fax: (5(0)) 886-5399					Pressurized By D								
Tele: (\$10) 247-98	He: $(50) 247-9885$ Fax: $(50) 886-5399$									10				
Project #: 07-001-0	4		Project Name: 92	01 San Leondro					- 22.20	1				
Project Location: 970 (1.00	1	41										
Sampler Signature:					Notes:						-			
Field Sample ID	Colle	ction	Conjeton SNH	Sampler Kit SN#		Indoor So			· · ·	ister Pressure/Vacuum				
(Location)	Date	Time	Canister Six#		Analysis Requested	Air	Gas	Initial	Final	Receipt	im Fina			
				111111111111			510				(psi			
SG-1, S-S. 5	6-16-08	9:51	4704	MAN316-687	TPH-g byTO-3		X	27	5	185				
					BIEXMIBES					State - 1				
					2-proponal by TO-15					-				
					Oxygen, CO2 Methane					1	-			
					by ASIM1945D					23.5				
										They are	-			
										The second second				
Relinquished By	Date: 6-17-	00 15-3	Received By:	1	Temp (°C) · Condition:	Work Ord	er #:							
Relinquished By:		0 1195			Custody Seals Intact?: V	PC	No	None						

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	rder: 080648	6 Clien	ntCode: ERAS		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	II to:		Rec	5 days	
Andrew Savage	Email:	info@eras.biz			Gail Jones				
ERAS Environmental, Inc. 1533 B Street	cc: PO:	gale@eras.biz			ERAS Envir 1533 B Stre	onmental, Inc. et	Da	te Received:	06/17/2008
Hayward, CA 94541	ProjectNo:	#07-001-04; 920	1 San Leandro		Hayward, C	A 94541	Dat	te Printed:	06/24/2008
(510) 247-9885 FAX (510) 886-5399									

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
				1	1	1	1	T	1	1	1	1	1		1
0806486-001	SG-1,5-5.5	Soil Vapor	6/16/2008 9:51	Α	Α	Α									

Test Legend:

1	LG_SUMMA_SOILGAS
6	
11	

2	PREDF REPORT
7	
12	

3	TO3_SOILGAS
8	

4	
9	

	5	
1	0	

The following SampID: 001A contains testgroup.

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	ERAS Environme	ntal, Inc.		Date and Time Received: 06/17/08 8:11:19 PM							
Project Name:	#07-001-04; 9201	San Leandro			Checklist completed and reviewed by: Melissa Valles						
WorkOrder N°:	0806486	Matrix Soil Vapor			Carrie	r: <u>Michael Herna</u>	ndez (MAI Co	<u>urier)</u>			
		Chain	of Cu	stodv (COC	C) Informa	ation					
Chain of custody	present?		Yes		No 🗆						
Chain of custody	signed when relingui	shed and received?	Yes		No 🗆						
Chain of custody	agrees with sample l	ahels?	Yes		No 🗆						
Sample IDs noted	h by Client on COC2		Vec								
Data and Time of	f collection poted by Cl	iont on COC2	Vee								
	r collection noted by Cl	ient on COC?	Yes								
Sampler's name	noted on COC?		res	V							
		Si	ample	Receipt In	formation	<u>1</u>					
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽				
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆						
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆						
Sample containe	ers intact?		Yes	\checkmark	No 🗆						
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌						
		Sample Prese	vation	and Hold	Time (HT) Information					
A 11	See al control to the station of the	<u>oumple rreser</u>	Valio			<u>j intormation</u>					
All samples rece	ived within holding tim	e?	Yes								
Container/Temp	Blank temperature		Coole	er Temp:	_		NA 🗹				
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗌	No VOA vials subm	itted 🔽				
Sample labels cl	hecked for correct pre	servation?	Yes	\checkmark	No						
TTLC Metal - pH acceptable upon receipt (pH<2)?			Yes		No 🗆		NA 🗹				

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

WcCampbell Analytical, Inc.				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
ERAS Environmental, Inc.	Client Project ID: #07-001-04; 9201 San				Date Sampled: 06/16/08			
1533 B Street		Leandro				Date Received:	06/17/08	
		Client Cor	ntact: Ai	ndrew S	Savage	Date Extracted:	06/25/08	
Hayward, CA 94541		Client P.O).:			Date Analyzed:	06/25/08	
			Light (Gases*		·		
Extraction Method: ASTM D 1946-90		Analy	tical Method	I: ASTM	D 1946-90		Work Order:	0806486
Lab ID	86-001A							
Client ID	Client ID SG-							T • • • •
Matrix Soil		Vapor					DF =1	
Initial Pressure (psia) 12		12.08					(Final/In	itial) = 2
Final Pressure (psia)	2	24.1						
DF		1					SoilVapor	W
Compound				Conce	entration	μL/L	ug/L	
Carbon Dioxide	1	100					250	NA
Methane	2	230					5.0	NA
Oxygen 20		0,000					500	NA
		Surro	gate Rec	overies	s (%)			
%SS:	1	N/A						
Comments	Comments							
* soil vapor samples are reported in µL/L.								

* soil vapor samples are reported in $\mu L/L$.

When Ouality Counts"			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Env	rironmental, Inc.	Client Project ID:	#07-001-04;	9201 San	Date Sampled: 06/16/08			
1533 B Street					Date Received: 06/17/	/08		
Hayward,	CA 94541	Client Contact: A	Andrew Sava	ge	Date Extracted: 06/24/	/08		
		Client P.O.:			Date Analyzed 06/24	/08		
Extraction meth	od SW/5030B	Volatile Organics I	by P&T and (GC/MS*	Work O	rder: 08(06486	
Lab ID	Client ID	Matrix I	nitial Pressure	titial Pressure Final Pressure Benzene D				
001A	SG-1,5-5.5	SoilVapor	12.08	24.1	11,000	1	108	
	Reporting Limit for DF =1;	W	psia	psia	NA	N	A	
	ND means not detected at or above the reporting limit	SoilVapor	psia	psia	500	μg	/m³	
*soil vapor sa	amples are reported in $\mu g/m^3$.							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
ERAS Envi	ronmental, Inc.	Client Project ID:	#07-001-04;	9201 San	Date Sampled: 06/16/08			
1533 B Street					Date Received: 06/17/	/08		
Hayward, C	A 94541	Client Contact: A	Andrew Sava	ge	Date Extracted: 06/24/	/08		
		Client P.O.:			Date Analyzed 06/24	/08		
Extraction method		Volatile Organics b	y P&T and (GC/MS*	Work O	rder: 081	06486	
Lab ID	Client ID	Matrix I	nitial Pressure	Final Pressu	re Benzene	DF	% SS	
001A	SG-1.5-5.5	SoilVapor	12.08	24.1	3200	1	108	
R	eporting Limit for DF =1;	W	psia	psia	NA	N	A	
N	D means not detected at or above the reporting limit	SoilVapor	psia	psia	150	nI	L/L	
*soil vapor san	nples are reported in nL/L.							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc. 1533 B Street		Client Project ID:	#07-001-04;	9201 San	Date Sampled: 06/16/08				
		Leandro			Date Received: 06/17	/08			
Hayward,	CA 94541	Client Contact:	Andrew Sava	ge	Date Extracted: 06/19/	/08			
		Client P.O.:			Date Analyzed 06/19	/08			
Extraction meth	nod TO15	Leak Check Analytical	k Compound [*] methods TO15	*	Work O	rder: 08	06486		
Lab ID	Client ID	Matrix	initial Pressure	Final Pressu	re Isopropyl Alcohol	DF	% SS		
001A	SG-1,5-5.5	SoilVapor	12.08	24.1	ND	1	111		
							-		
							-		
							<u> </u>		
							-		
						-			
							+		
						-	1		
	Reporting Limit for DF =1;	W	psia	psia	NA	N	IA		
	above the reporting limit	SoilVapor	psia	psia	10	μ	g/L		

* leak check compound is reported in $\mu g/L$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, January 28, 2003, page 10, section 2.4.2

"Tracer compounds, such as ...isopropanol..., may be used as leak check compounds, if a detection limit of 10 ug/L or less can be achieved." This implies that 10ug/L is the cut off definition for a leak, which equals 10,000 ug/m3. The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.

McCampbell Analytical, Inc. "When Quality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.	Client Project ID: #07-001-04; 9201 San			Date Sampled:	06/16/08				
1533 B Street		Leandro	Leandro			Date Received: 06/17/08			
		Client Contact: A	ndrew	Savage	Date Extracted:	06/19/08			
Hayward, CA 94541		Client P.O.:			Date Analyzed	06/19/08			
		Volatile Organic Co	ompour	nds in µg/m³*					
Extraction Method: TO15		Analytical Metho	d: TO15			Work Order:	0806486		
Lab ID	08064	86-001A							
Client ID	SG-	1,5-5.5				-			
Matrix	Soil	Vapor				- Reporting DF	Limit for =1		
Initial Pressure (psia)	1	12.08				and Press (Final/In	ure Ratio itial) = 2		
Final Pressure (psia)	2	24.1				-			
		1							
DF		1				SoilVapor	W		
Compound			$\mu g/m^3$	ug/L					
Ethylbenzene		780				8.8	NA		
Isopropyl Alcohol		ND				25	NA		
Methyl-t-butyl ether (MTBE)		ND				7.3	NA		
Toluene		190				7.7	NA		
Xylenes		530				27	NA		
		Surrogate Rec	coveries	s (%)					
%SS1:		111							
%SS2:		107							
%SS3:		113							
Comments									
*vapor samples are reported in μg/m ³ . ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.									
# surrogate diluted out of range or surrogate coelutes with another peak.									

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
ERAS Environmental, Inc.		Client Project ID: #07-001-04; 9201 San			Date Sampled:	06/16/08			
1533 B Street		Leandro	Leandro			Date Received: 06/17/08			
		Client Contact:	Andrew	Savage	Date Extracted:	06/19/08			
Hayward, CA 94541		Client P.O.:			Date Analyzed	06/19/08			
		Volatile Organic	Compou	nds in nL/L*					
Extraction Method: TO15		Analytical Me	thod: TO15			Work Order:	0806486		
Lab ID	08064	86-001A							
Client ID	SG-	1,5-5.5				-			
Matrix	Soil	Vapor				- Reporting DF	Limit for =1		
Initial Pressure (psia)	1	2.08				and Press (Final/In	ure Ratio itial) = 2		
Final Pressure (nsia)		24.1				_			
		1				-			
DF		1				SoilVapor	W		
Compound		Concentration					ug/L		
Ethylbenzene		180			2.0	NA			
Isopropyl Alcohol		ND				10	NA		
Methyl-t-butyl ether (MTBE)		ND				2.0	NA		
Toluene		49				2.0	NA		
Xylenes		120				6.0	NA		
		Surrogate I	Recoverie	s (%)					
%SS1:		111							
%SS2:		107							
%SS3:		113							
Comments									
*vapor samples are reported in nL/L. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.									
[#] surrogate diluted out of range or surrogate coelutes with another peak.									

	McCampbell Analyti	ical, Inc.	We	1534 Willow F b: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565 bell.com E-mail: main@mccar 377-252-9262 Fax: 925-252-92	-1701 npbell.com 269	
ERAS En	vironmental, Inc.	Client Project ID:	#07-001-04;	9201 San	Date Sampled: 06/16	5/08	
1533 B St	reet	Leandro			Date Received: 06/17	//08	
Hayward	CA 94541	Client Contact: A	andrew Sava	ge	Date Extracted: 06/23	/08	
Thuy ward,		Client P.O.:			Date Analyzed 06/23	3/08	
	Gasoline Range	(C6-C12) Volatile	Hydrocarbo	ns as Gasoli	ine in μg/m³*		
Extraction me	hod TO3	Analytical 1	methods TO3	D' 1 D	Work ()rder: 08	06486
Lab ID	Client ID	Matrix Ir	nitial Pressure	Final Pressu	re TPH(g)	DF	% SS
001A	SG-1,5-5.5	SoilVapor	12.08	24.1	120,000	1	N/A
							<u> </u>
							1
	Reporting Limit for DF =1;	W	psia	psia	NA	N	JA
	ND means not detected at or above the reporting limit	SoilVapor	psia	psia	1800	μg	₅/m³
*soil vapor ND means r	samples are reported in $\mu g/m^3$.	; N/A means analyte n	ot applicable to	o this analysis	s.	<u>.</u>	

surrogate diluted out of range or surrogate coelutes with another peak.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCampbell Analyti "When Ouality Counts"	ical, Inc.	We	1534 Willow F b: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565 bell.com E-mail: main@mccar 377-252-9262 Fax: 925-252-9	-1701 mpbell.com 269	
ERAS En	vironmental, Inc.	Client Project ID:	#07-001-04;	9201 San	Date Sampled: 06/16	5/08	
1533 B St	reet	Leandro			Date Received: 06/17	7/08	
Hayward	СА 94541	Client Contact: A	andrew Sava	ge	Date Extracted: 06/23	3/08	
		Client P.O.:			Date Analyzed 06/23	3/08	
	Gasoline Range	e (C6-C12) Volatile	Hydrocarbo	ns as Gasoli	ine in nL/L*		
Extraction met	hod TO3	Analytical 1	methods TO3	51 1 5	Work (Order: 08	06486
Lab ID	Client ID	Matrix Ir	nitial Pressure	Final Pressu	re TPH(g)	DF	% SS
001A	SG-1,5-5.5	SoilVapor	12.08	24.1	34,000	1	N/A
						<u> </u>	
						<u> </u>	
						<u> </u>	
	Reporting Limit for DF =1;	W	psia	psia	NA	N	JA
	ND means not detected at or above the reporting limit	SoilVapor	psia	psia	500	nI	L/L
*soil vapor	samples are reported in nL/L.	; N/A means analyte n	ot applicable to	o this analysis	 S.		

surrogate diluted out of range or surrogate coelutes with another peak.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR ASTM D 1946-90

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

WorkOrder: 0806486

EPA Method ASTM D 1946-90	Extra	ction AS	TM D 194	6-90	Ba	tchID: 36	361	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, and y to	μL/L	µL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Carbon Dioxide	N/A	1000	N/A	N/A	N/A	100	101	0.565	N/A	N/A	70 - 130	20
Methane	N/A	10	N/A	N/A	N/A	114	115	0.869	N/A	N/A	70 - 130	20
Oxygen	N/A	1000	N/A	N/A	N/A	96.3	97	0.808	N/A	N/A	70 - 130	20
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	ss than the	method R	L with th	ne following	exceptions:			

			<u>BATCH 36361 SL</u>	<u>JMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806486-001A	06/16/08 9:51 AM	06/18/08	06/25/08 11:24 AM	0806486-001A	06/16/08 9:51 AM	06/18/08	06/25/08 11:24 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

WorkOrder 0806486

EPA Method TO15	Extra	ction TO	15		Bat	tchID: 36	345	Sp	iked Sam	ple ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Benzene	N/A	25	N/A	N/A	N/A	101	105	3.74	N/A	N/A	70 - 130	30
Ethylbenzene	N/A	25	N/A	N/A	N/A	101	106	5.25	N/A	N/A	70 - 130	30
Isopropyl Alcohol	N/A	25	N/A	N/A	N/A	99.3	102	2.60	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	106	110	4.14	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	103	108	4.62	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	106	111	4.30	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	104	109	3.99	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	102	106	4.67	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	105	110	4.11	N/A	N/A	70 - 130	30
All target compounds in the Method NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method I	RL with th	ne following	exceptions:	:		

BATCH 36345 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806486-001A	06/16/08 9:51 AM	06/18/08	06/19/08 6:31 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil Vapor

QC Matrix: Water

WorkOrder 0806486

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 36	354	Sp	iked Sam	ple ID:	0806485-02	6B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	98	105	7.08	94.4	97.9	3.65	70 - 130	30	70 - 130	30
Benzene	11	10	113	125	5.35	94.3	95.9	1.67	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	92.7	102	9.13	78.4	84.5	7.50	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	88.9	94.7	6.40	87.1	88.2	1.25	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	91.6	98.5	7.20	89.8	93.5	4.03	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	110	118	6.89	99.4	101	1.83	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	83.7	87.4	4.32	77.2	80	3.62	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	115	124	7.47	103	106	2.73	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	121	129	6.73	98.5	102	3.44	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	107	116	7.71	96.6	100	3.77	70 - 130	30	70 - 130	30
Toluene	0.55	10	91.7	97.3	5.61	83.7	85.1	1.54	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	99.5	106	5.98	92.3	94.2	2.07	70 - 130	30	70 - 130	30
%SS1:	103	25	99	101	2.01	96	97	0.445	70 - 130	30	70 - 130	30
%SS2:	105	25	96	96	0	95	95	0	70 - 130	30	70 - 130	30
%SS3:	107	25	113	111	1.89	91	93	1.75	70 - 130	30	70 - 130	30
All target compounds in the Method F	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 36354 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 0806486-001A 06/16/08 9:51 AM 06/24/08 06/24/08 1:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR TO3

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

WorkOrder 0806486

EPA Method TO3	Extra	ction TO	3		Bat	chID: 36	346	Sp	oiked Samp	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(g)	N/A	1250	N/A	N/A	N/A	99	99.4	0.443	N/A	N/A	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	s than the	method F	RL with th	e following	exceptions:			

BATCH 36346 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0806486-001A	06/16/08 9:51 AM	I 06/18/08	06/23/08 1:59 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

APPENDIX J GEOTRACKER UPLOAD CONFIRMATION

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: SWI_R 9201 - Subsurface Investigation T0600101592 PACO PUMPS INC 0806415.zip ERAS Environmental, Inc. eras 63.203.234.76 7/18/2008 10:56:01 AM 4191069662

VIEW QC REPORT

Copyright © 2008 State of California

	Your EE	DF file has beer	n success	fully uploade	d!
Confirmat	ion Nu	ı mber: 433337	5334		
Date/Time d	of Subr	mittal: 7/2/200)8 9:40:3 ⁻	7 AM	
Facili	ty Glob	bal ID: T06001	01592		
Fa	acility N	Name: PACO P	UMPS IN	С	
Sul	omittal	l Title: 9201 - 3	Subsurfac	ce Investigati	on & GWM ED
Sub	mittal	Type: Soil & V	Vater Inv	estigation Re	port
C	lick <u>here</u>	to view the dete	ctions rep	ort for this upl	oad.
PACO PUMPS	INC	Regional Boa	ard - Case	#: 01-1721	
9201 SAN LEAN OAKLAND, CA	DRO 94603	SAN FRANCISC Local Agency ALAMEDA COU	JO BAY RW y (lead ag JNTY LOP -	(JTW)	2) #: RO0000320
CONF #	TITLE				QUARTER
4333375334	9201 -	Subsurface Invest	igation & G	WM EDF	Q2 2008
SUBMITTED BY		<u>SUBMIT DATE</u> 7/2/2008	<u>s</u> D	TATUS ENDING REV/IE	=\//
# EIELD POINTS (<u>S REPORT</u>			10
# FIELD POINTS \	WITH DETE	ECTIONS			13
# FIELD POINTS \	WITH WATE	ER SAMPLE DETECTIO	INS ABOVE M	ICL	7
SAMPLE MATRIX	TYPES				SOIL,WATER
METHOD QA	1/QC R	EPORT			
METHODS USED				SW8015B,S	W8021F,SW8260B
LAB NOTE DATA (ALYTES? S			Y N
QA/QC FOR	8021/	8260 SERIES	SAMPLES	5	
TECHNICAL HOLD	DING TIME	VIOLATIONS		-	0
METHOD HOLDIN	G TIME VIC			T	0
LAB BLANK DETER		SOVE REPORTING DET		1	0
DO ALL BATCHES	WITH THE	E 8021/8260 SERIES	INCLUDE THE	FOLLOWING?	_
- LAB METHOD E	BLANK				Y
- WATRIX SPIKE		E			N N
- MATRIX SPIKE					Y
- MATRIX SPIKE - BLANK SPIKE	PIKE - NC	ON-STANDARD SURRO	OGATE USED		Y
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S		D 9021/9260 CED	IES		
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S WATER SAMP	<u>LES FOI</u>	<u>R 0021/020</u> 0 3ER		ETW/EEN 65 1350	б Y
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S WATER SAMP MATRIX SPIKE / M	<u>PLES FOI</u> //ATRIX SPI	IKE DUPLICATE(S) %	RECOVERY B		
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S WATER SAMP MATRIX SPIKE / M MATRIX SPIKE / M	PLES FOI MATRIX SPI MATRIX SPI	IKE DUPLICATE(S) % IKE DUPLICATE(S) RP	RECOVERY B D LESS THAN	I 30%	Y
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S WATER SAMP MATRIX SPIKE / M SURROGATE SPIK BLANK SPIKE / BI	PLES FOI MATRIX SPI MATRIX SPI (ES % REC) ANK SPIKE	IKE DUPLICATE(S) % IKE DUPLICATE(S) RP COVERY BETWEEN 85- E DUPLICATES % REC	RECOVERY B D LESS THAN 115% OVERY BETW	I 30% /EEN 70-130%	Y N Y
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S WATER SAMP MATRIX SPIKE / M MATRIX SPIKE / M SURROGATE SPIK BLANK SPIKE / BL	PLES FOI MATRIX SPI MATRIX SPI MATRIX SPI (ES % REC) ANK SPIKE	IKE DUPLICATE(S) % IKE DUPLICATE(S) % COVERY BETWEEN 85- E DUPLICATES % REC	RECOVERY B D LESS THAN 115% OVERY BETW	I 30% /EEN 70-130%	Y N Y
- MATRIX SPIKE - BLANK SPIKE - SURROGATE S WATER SAMP MATRIX SPIKE / M	<u>'LES FOI</u> /ATRIX SPI	IKE DUPLICATE(S) %	RECOVERY B		

MATRIX SPIKE / MATRIX SPIK	E DUPLICATE(S) RPD LESS THAN 30%	Y
SURROGATE SPIKES % RECC	VERY BETWEEN 70-125%	Y
BLANK SPIKE / BLANK SPIKE	DUPLICATES % RECOVERY BETWEEN 70-130%	6 n/a
FIELD QC SAMPLES		
FIELD QC SAMPLES SAMPLE	COLLECTED	DETECTIONS > REPD
FIELD QC SAMPLES SAMPLE QCTB SAMPLES	COLLECTED N	DETECTIONS > REPD
FIELD QC SAMPLES SAMPLE QCTB SAMPLES QCEB SAMPLES	COLLECTED N N	DETECTIONS > REPD 0 0

	nic Submittal Informa	tion EDD
Your E	DF file has been successfully uploaded	ji
Confirmati	on Number: 2946302056	
Date/Time o	f Submittal: 7/2/2008 9:51:01 AM	
Facility	v Global ID: T0600101592	
Fac	cility Name: PACO PUMPS INC	
Sub	mittal Title: 9201 - soil-gas EDE	
Sub	mittal Type: Soil & Water Investigation	n Report
300		
Click <u>her</u>	e to view the detections report for this uplo	oad.
PACO PUMPS INC	Regional Board - Case #: 01-1721	
9201 SAN LEANDRO	SAN FRANCISCO BAY RWQCB (REGION 2	?) #• BOO0022(
OARLAND, CA 94003	ALAMEDA COUNTY LOP - (JTW)	#. K00000320
CONF #		UARTER
2946302056	9201 - soil-gas EDF C	22 2008
<u>SUBMITTED BY</u> Kasey Cordoza	<u>SUBMIT DATE</u> <u>STATUS</u> 7/2/2008 PENDING REVIEV	\ \ /
# FIELD POINTS SAMPLE	D D D D D D D D D D D D D D D D D D D	1
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS LISED	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT	1 1 SOIL GAS
SAMPLE DETECTION # FIELD POINTS SAMPLED # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD QA/QC METHODS USED TESTED FOR REQUIRED A	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT NALYTES?	1 1 SOIL GAS 5,ETO3,SW8260B Y
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD QA/QC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT D1946,ETO15 NALYTES? ERS	1 1 SOIL GAS 5,ETO3,SW8260B Y N
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH W/ SAMPLE MATRIX TYPES METHOD QA/QC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE QA/QC FOR 8021	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT INALYTES? ERS MA260 SERIES SAMPLES	1 1 SOIL GAS 5,ETO3,SW8260B Y N
SAMPLE DETECTION # FIELD POINTS SAMPLED # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIME	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT NALYTES? ERS /8260 SERIES SAMPLES IE VIOLATIONS VIOLATIONS	1 1 SOIL GAS 5,ETO3,SW8260B Y N
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIME METHOD HOLDING TIME LAB BLANK DETECTIONS	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT INALYTES? ERS MALYTES? TRS MALYTES D1946,ETO15 D1946,ETO15 D1946,ETO15 D1946,ETO15 D1946,ETO15 ABOVE REPORTING DETECTION LIMIT	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIM METHOD HOLDING TIM METHOD HOLDING TIM LAB BLANK DETECTIONS LAB BLANK DETECTIONS	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT INALYTES? ERS MALYT	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH W/ SAMPLE MATRIX TYPES METHOD QA/QC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE QA/QC FOR 8021 TECHNICAL HOLDING TIME LAB BLANK DETECTIONS LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT NALYTES? ERS	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD QA/QC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE QA/QC FOR 8021 TECHNICAL HOLDING TIM METHOD HOLDING TIME LAB BLANK DETECTIONS LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK - MATRIX SPIKE	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT INALYTES? ERS /8260 SERIES SAMPLES NOLATIONS ABOVE REPORTING DETECTION LIMIT HE 8021/8260 SERIES INCLUDE THE FOLLOWING?	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0 7 Y Y
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIME LAB BLANK DETECTIONS LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK - MATRIX SPIKE MATRIX SPIKE	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL D1946,ET015 NALYTES? ERS MALYTES?	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0 0 7 4 7 4
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE COA/OC FOR 8021 TECHNICAL HOLDING TIME METHOD HOLDING TIME LAB BLANK DETECTIONS LAB BLANK DETECTIONS LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK - MATRIX SPIKE - BLANK SPIKE - SURROGATE SPIKE	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT NALYTES? ERS /8260 SERIES SAMPLES TE VIOLATIONS VIOLATIONS ABOVE REPORTING DETECTION LIMIT HE 8021/8260 SERIES INCLUDE THE FOLLOWING? ATE	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0 0 7 Y Y Y Y
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIME LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE - SURROGATE SPIKE	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT INALYTES? ERS /8260 SERIES SAMPLES IE VIOLATIONS ABOVE REPORTING DETECTION LIMIT HE 8021/8260 SERIES INCLUDE THE FOLLOWING? ATE OR 8021/8260 SERIES	1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0 0 7 Y Y Y Y
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH W/ SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIME LAB BLANK DETECTIONS LAB BLANK DETECTIONS DO ALL BATCHES WITH TI - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE - SURROGATE SPIKE MATRIX SPIKE / MATRIX S MATRIX SPIKE / MATRIX S	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT MALYTES? ERS /8260 SERIES SAMPLES TE VIOLATIONS VIOLATIONS ABOVE REPORTING DETECTION LIMIT HE 8021/8260 SERIES INCLUDE THE FOLLOWING? ATE OR 8021/8260 SERIES SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-1359 SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-1359 SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-1359 SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-1359	1 1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIM METHOD HOLDING TIME LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK - MATRIX SPIKE MATRIX SPIKE SURROGATE SPIKE WATER SAMPLES F MATRIX SPIKE / MATRIX S MATRIX SPIKE / MATRIX S MATRIX SPIKE / MATRIX S MATRIX SPIKE / MATRIX S SURROGATE SPIKES % R	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT INALYTES? ERS	1 1 1 SOIL GAS 9,ETO3,SW8260B Y N 0 0 0 0 0 0 0 0 0 7 Y Y Y Y Y Y Y
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH W/ SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIME LAB BLANK DETECTIONS LAB BLANK DETECTIONS DO ALL BATCHES WITH TI - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE - SURROGATE SPIKE WATER SAMPLES F MATRIX SPIKE / MATRIX S MATRIX SPIKE / MATRIX S	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT MALYTES? ERS //8260 SERIES SAMPLES NALYTES? ERS //8260 SERIES SAMPLES NALYTES? ERS //8260 SERIES SAMPLES NOULATIONS ABOVE REPORTING DETECTION LIMIT HE 8021/8260 SERIES INCLUDE THE FOLLOWING? ATE OR 8021/8260 SERIES SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-1359 SPIKE DUPLICATE(S) % RECOVERY BETWEEN 70-130%	1 1 1 SOIL GAS 5,ETO3,SW8260B Y N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAMPLE DETECTION # FIELD POINTS SAMPLEE # FIELD POINTS WITH DE # FIELD POINTS WITH WA SAMPLE MATRIX TYPES METHOD OA/OC METHODS USED TESTED FOR REQUIRED A LAB NOTE DATA QUALIFIE OA/OC FOR 8021 TECHNICAL HOLDING TIM METHOD HOLDING TIME LAB BLANK DETECTIONS DO ALL BATCHES WITH T - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE - SURROGATE SPIKE WATER SAMPLES FOR MATRIX SPIKE / MATRIX S SURROGATE SPIKES % RI BLANK SPIKE / BLANK SPI	NS REPORT D TECTIONS ATER SAMPLE DETECTIONS ABOVE MCL REPORT MALYTES? ERS	1 1 1 SOIL GAS 9,ETO3,SW8260B Y N 0 0 0 0 0 0 0 7 Y Y Y Y Y Y Y Y Y Y Y Y

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%			n/a
SURROGATE SPIKES % RECOVERY BETWEEN 70-125%			
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%			
FIELD QC SAMPLES			
FIELD QC SAMPLES SAMPLE	COLLECTED	DETECTIO	NS > REPDI
FIELD QC SAMPLES SAMPLE QCTB SAMPLES	<u>COLLECTED</u> N	DETECTIO	I <u>NS > REPDI</u> 0
FIELD QC SAMPLES SAMPLE QCTB SAMPLES QCEB SAMPLES	<u>COLLECTED</u> N N	DETECTIO	I <u>NS > REPDI</u> 0 0

Electronic Submittal Information <u>Main Menu</u> <u>View/Add Facilities</u> <u>Upload EDD</u> <u>Check EDD</u>					
Your EDF file has been successfully uploaded! Confirmation Number: 4482598423					
					Date/Time of
Facility	Global ID: T06001	01592			
Faci	lity Name: PACO P	UMPS INC			
Subr	\mathbf{t}		Ч		
Submittal Type: Soil & Water Investigation Depart					
50011					
Click <u>here</u>	Click <u>here</u> to view the detections report for this upload.				
PACO PUMPS INC 9201 SAN LEANDRO OAKLAND, CA 94603	Regional Board - C SAN FRANCISCO BAY Local Agency (lead ALAMEDA COUNTY L	Case #: 01-1 (RWQCB (REG d agency) - (OP - (JTW)	<mark>721</mark> GION 2) Case #: RO0000320		
CONF #	TITLE		QUARTER		
4482598423	9201 - Q2.08 TPH-d		Q2 2008		
	SUBMIT DATE	STATUS			
SUBMITTED BY Kasey Cordoza SAMPLE DETECTIONS # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT	7/2/2008		REVIEW		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD QA/QC R METHODS USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS N - SW8015B REQUIRES M - SW8015B REQUIRES T - SW8015B REQUIRES T	7/2/2008 S REPORT SCTIONS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED AME TO BE TESTED IPE TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED DB TO BE TESTED Z TO BE TESTED Z TO BE TESTED	PENDING F	REVIEW 1 0 WATER SW8015B N		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD OA/OC R METHODS USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS N - SW8015B REQUIRES M - SW8015B REQUIRES D - SW8015B REQUIRES B - SW8015B REQUIRES B - SW8015B REQUIRES B - SW8015B REQUIRES E - SW8015B REQUIRES E - SW8015B REQUIRES E - SW8015B REQUIRES E - SW8015B REQUIRES T	7/2/2008 S REPORT CODIMINISATIONS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED TBE TO BE TESTED AME TO BE TESTED DAME TO BE TESTED CA12 TO BE TESTED CA12 TO BE TESTED CA12 TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED Z TO BE TESTED Z TO BE TESTED Z TO BE TESTED S	PENDING R	REVIEW 1 0 0 WATER SW8015B N		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD OA/OC R METHOD USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS M - SW8015B REQUIRES M - SW8015B REQUIRES T - SW8015B REQUIRES D - SW8015B REQUIRES B - SW8015B REQUIRES E - SW8015B REQUIRES E - SW8015B REQUIRES E - SW8015B REQUIRES E - SW8015B REQUIRES E	7/2/2008 S REPORT CODIMINICATIONS S REPORT CODIMINICATIONS CODINATIONS CODIMINICA	PENDING F	REVIEW		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD QA/QC R METHOD USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS N - SW8015B REQUIRES M - SW8015B REQUIRES M - SW8015B REQUIRES T - SW8015B REQUIRES T - SW8015B REQUIRES T - SW8015B REQUIRES T - SW8015B REQUIRES D - SW8015B REQUIRES D - SW8015B REQUIRES B - SW8015B REQUIRES A - S	7/2/2008 S REPORT SCTIONS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED TBE TO BE TESTED AME TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED Z TO BE TESTED Z TO BE TESTED Z TO BE TESTED Z TO BE TESTED S B260 SERIES SAME VIOLATIONS	PENDING F	REVIEW		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD QA/QC R METHOD QA/QC R METHODS USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS N - SW8015B REQUIRES M - SW8015B REQUIRES D - SW8015B REQUIRES B - SW8015B REQUIRES E - SW8015B REQUIRES B - SW8015B REQUIRES C - SW8015	7/2/2008 S REPORT CCTIONS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED TBE TO BE TESTED TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED CA12 TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED Z TO BE TESTED Z TO BE TESTED Z TO BE TESTED S B260 SERIES SAME VIOLATIONS DATIONS		REVIEW		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD QA/QC R METHOD GA/QC R METHODS USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS M - SW8015B REQUIRES M - SW8015B REQUIRES T - SW8015B REQUIRES E - SW80	7/2/2008 S REPORT CODIMINIONNE S REPORT CODINS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED TBE TO BE TESTED TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED Z TO BE TESTED S B260 SERIES SAMF VIOLATIONS DIATIONS BOVE REPORTING DETECTION	PENDING F	REVIEW		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD QA/QC R METHODS USED TESTED FOR REQUIRED AN/ MISSING PARAMETERS N - SW8015B REQUIRES M - SW8015B REQUIRES M - SW8015B REQUIRES D - SW8015B REQUIRES B - SW8015B REQUIRES B - SW8015B REQUIRES B - SW8015B REQUIRES B - SW8015B REQUIRES E - SW8015B REQUIRES B - SW8015B REQUIRES E - SW8015B REQUIRES T - SW8015B REQUIRES C -	7/2/2008 S REPORT CODIMINIENT T/2/2008 S REPORT CODINS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED TBE TO BE TESTED TO BE TESTED CA12 TO BE TESTED DB TO BE TESTED CA12 TO BE TESTED CA1	PENDING F	REVIEW		
SUBMITTED BY Kasey Cordoza # FIELD POINTS SAMPLED # FIELD POINTS WITH DETE # FIELD POINTS WITH DETE # FIELD POINTS WITH WAT SAMPLE MATRIX TYPES METHOD QA/QC R METHOD SUSED TESTED FOR REQUIRED AN/ MISSING PARAMETERS M - SW8015B REQUIRES M - SW8015B REQUIRES M - SW8015B REQUIRES T - SW8015B REQUIRES E -	7/2/2008 S REPORT CCTIONS ER SAMPLE DETECTIONS ABO EPORT ALYTES? OT TESTED: TBE TO BE TESTED TBE TO BE TESTED TBE TO BE TESTED TO BE TESTED DB TO BE TESTED DB TO BE TESTED DB TO BE TESTED ZTO BE TESTED ZTO BE TESTED ZTO BE TESTED ZTO BE TESTED ZTO BE TESTED S B260 SERIES SAMF VIOLATIONS DIATIONS BOVE REPORTING DETECTION E 8021/8260 SERIES INCLUE	PENDING F	REVIEW		

- BLANK SPIKE			Y
- SURROGATE SPIKE - NO	ON-STANDARD SURROGATE USED		Y
WATER SAMPLES FO	R 8021/8260 SERIES		
MATRIX SPIKE / MATRIX SP	IKE DUPLICATE(S) % RECOVERY BE	ETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%			n/a
SURROGATE SPIKES % RECOVERY BETWEEN 85-115%			N
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%			Y
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% SURROGATE SPIKES % RECOVERY BETWEEN 70-125%			n/a n/a n/a
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%			n/a
FIELD QC SAMPLES			
SAMPLE	<u>COLLECTED</u>	DETECTION	S > REPD
QCTB SAMPLES	Ν	()
QCEB SAMPLES	Ν	(C
			_

Electronic Submittal Information Main Menu View/Add Facilities Upload EDD Check EDD				
UPLOADING A GEO_WELL	FILE			
Processing is compl Your file has been	ete. No errors were found! successfully submitted!			
Submittal Title:	9201 - Q2.08 Geo_well			
Facility Global ID:	T0600101592			
Facility Name:	PACO PUMPS INC			
Submittal Date/Time:	7/2/2008 8:50:49 AM			
Confirmation Number:	6530760049			
Back to Main Menu				
Electronic Submittal Information <u>Main Menu View/Add Facilities Upload EDD Check EDD</u>				
--	--	--	--	
Your EDF file h	has been successfully uploaded!			
Confirmation Nun	nber: 2086611688			
Date/Time of Subm	ittal: 7/2/2008 9:22:16 AM			
Eacility Globa	1 ID : T0600101592			
Eacility N				
Submittal	Title: 9201 - hand auger EDF			
Submittal T	Soil & Water Investigation R	eport		
Click <u>here</u> to view	the detections report for this upload.			
PACO PUMPS INC Reg	ional Board - Case #: 01-1721			
9201 SAN LEANDRO SAN	FRANCISCO BAY RWQCB (REGION 2)	0000022		
OAKLAND, CA 94603 <u>LOCA</u> ALAN	MEDA COUNTY LOP - (JTW)	00000320		
CONF # <u>TITLE</u>	QUAF	RTER		
2086611688 9201 - 1	hand auger EDF Q2 2	2008		
SUBMITTED BY SUB				
-				
SAMPLE DETECTIONS REPO	DRT			
# FIELD POINTS SAMPLED		12		
# FIELD POINTS WITH DETECTIONS # FIELD DOINTS WITH WATED SAMDLE DETECTIONS ADOVE MOL		11 5		
SAMPLE MATRIX TYPES	LE DETECTIONS ADOVE MICE	SOIL		
METHOD QA/QC REPORT	<u>T</u>			
	SW8015B,SW8021F,SW8082,SW8260E	3,SW8270C		
METHODS USED				
TESTED FOR REQUIRED ANALYTES?		Y		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS		Y N		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES	Y N		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS OA/OC FOR 8021/8260 S TECHNICAL HOLDING TIME VIOLATION METHOD HOLDING TIME VIOLATIONS	SERIES SAMPLES DNS S	9 N 0 0		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS QA/QC FOR 8021/8260 S TECHNICAL HOLDING TIME VIOLATION METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REP	SERIES SAMPLES DNS S PORTING DETECTION LIMIT	Y N 0 0 0		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT	Y N 0 0 0 0		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING?	Y N 0 0 0 0		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING?	Y N 0 0 0 0 0 7 Y Y		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING?	Y N 0 0 0 0 0 7 Y Y Y		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING?	Y N 0 0 0 0 0 7 Y Y Y Y		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED	Y N 0 0 0 0 0 7 Y Y Y Y Y		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED /8260 SERIES	Y N 0 0 0 0 0 7 Y Y Y Y		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS QA/QC FOR 8021/8260 S TECHNICAL HOLDING TIME VIOLATION METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REP LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/83 - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE DUPLICATE - BLANK SPIKE - SURROGATE SPIKE - NON-STANI WATER SAMPLES FOR 8021/ MATRIX SPIKE / MATRIX SPIKE DUPL	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED (8260 SERIES) ICATE(S) % RECOVERY BETWEEN 65-135%	Y N 0 0 0 0 0 7 Y Y Y Y N/a		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED /8260 SERIES IICATE(S) % RECOVERY BETWEEN 65-135% IICATE(S) % RECOVERY BETWEEN 65-135% IICATE(S) RPD LESS THAN 30%	Y N 0 0 0 0 0 7 Y Y Y Y Y N/a n/a		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES ONS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED (Seconstructure) (Seconstructure) ICATE(S) % RECOVERY BETWEEN 65-135% ICATE(S) % RECOVERY BETWEEN 65-135% ICATE(S) RPD LESS THAN 30% SETWEEN 85-115% ATES % RECOVERY BETWEEN 70, 130%	Y N 0 0 0 0 7 Y Y Y Y Y Y Y 2 Y 2 Y 2 Y 2 2 2 2 2 2		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED (8260 SERIES) ICATE(S) % RECOVERY BETWEEN 65-135% ICATE(S) % RECOVERY BETWEEN 65-135% ICATE(S) RPD LESS THAN 30% ETWEEN 85-115% ATES % RECOVERY BETWEEN 70-130%	Y N 0 0 0 0 V Y Y Y Y Y N/a n/a n/a		
TESTED FOR REQUIRED ANALYTES? LAB NOTE DATA QUALIFIERS	SERIES SAMPLES DNS S PORTING DETECTION LIMIT 260 SERIES INCLUDE THE FOLLOWING? DARD SURROGATE USED (8260 SERIES) ICATE(S) % RECOVERY BETWEEN 65-135% ICATE(S) % RECOVERY BETWEEN 65-135% ICATE(S) RPD LESS THAN 30% ETWEEN 85-115% ATES % RECOVERY BETWEEN 70-130%	Y N 0 0 0 0 V Y Y Y Y Y n/a n/a n/a		

MATRIX SPIKE / MATRIX SPII	KE DUPLICATE(S) RPD LESS THAN 3	30%	Y	
SURROGATE SPIKES % RECOVERY BETWEEN 70-125%				
BLANK SPIKE / BLANK SPIKE	DUPLICATES % RECOVERY BETWE	EN 70-130%	n/a	
SAMPLE	COLLECTED	DETECTION	<u>S > REPDL</u>	
OCTR SAMDLES	N	DETECTION	$\frac{13}{2}$ <u>KLFDL</u>	
OCEB SAMPLES	N		0	
OCAB SAMPLES	N		0	
20/18 0/11/1 220				

Logged in as eras (AUTH_RP)

CONTACT SITE ADMINISTRATOR.