

RECEIVED

10:09 am, Aug 17, 2009

Alameda County

Environmental Health

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, California 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

14 August 2009

Re: On-Site Soil Investigation and Second Quarter 2009 Ground-Water Monitoring Report Former BP Service Station #11266 1541 Park Street Alameda, California ACEH Case # RO0000318

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

D Inool.

Paul Supple Environmental Business Manager

Prepared for:

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by:

BROADBENT & ASSOCIATES, INC. ENGINEERING, WATER RESOURCES & ENVIRONMENTAL

1324 Mangrove Ave., Suite 212 Chico, California 95926 (530) 566-1400 <u>www.broadbentinc.com</u>

14 August 2009

Project No. 06-88-658

ON-SITE SOIL INVESTIGATION AND SECOND QUARTER 2009 GROUND-WATER MONITORING REPORT Former BP Station No. 11266

1541 Park Street Alameda, California ACEH Case No. RO0000318

14 August 2009

Project No. 06-88-658

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re: On-Site Soil Investigation and Second Quarter 2009 Ground-Water Monitoring Report, Former BP Station No.11266, 1541 Park Street, Alameda, California; ACEH Case #RO0000318

Dear Mr. Supple:

Broadbent & Associates, Inc. (BAI) is pleased to submit this *On-Site Soil Investigation* and Second Quarter 2009 Ground-Water Monitoring Report for Former BP Station No.11266 (herein referred to as Station No.11266) located at 1541 Park Street, Alameda, California (Site). This report presents a description of field activities conducted and results obtained from the advancement of two soil borings at the Site on 10 June 2009. This work was conducted in accordance with the *Work Plan for Soil & Water Investigation* (BAI, 15 December 2008) and the Addendum Work Plan for Soil & Water Investigation (BAI, 8 May 2009), as approved with additional comments by Alameda County Environmental Health (ACEH) in their letter dated 8 April 2009. This report also presents a summary of results from the one-time ground-water monitoring event conducted at the Site during the Second Quarter of 2009.

Should you have questions or require additional information, please do not hesitate to contact us at (530) 566-1400.

Sincerely, BROADBENT & ASSOCIATES, INC.

Joson Ruda

Jason Duda Project Scientist

_0.

Thomas A. Venus, P.E. Senior Engineer

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site) Mr. Chris Jimmerson, Delta Environmental Consultants (electronic copy uploaded to ENFOS) Electronic copy uploaded to GeoTracker

ON-SITE SOIL INVESTIGATION AND SECOND QUARTER 2009 GROUND-WATER MONITORING REPORT

Former BP Station No.11266 1541 Park Street Alameda, California

TABLE OF CONTENTS

Page

1.0	Introduction1								
2.0	Site Background1								
3.0	Site Geology and Hydrogeology								
4.0	Soil	Boring Investigation	.3						
	4.1	Preliminary Field Activities	.3						
	4.2	Soil Boring Advancement and Soil Sampling	.3						
	4.3	Investigation-Derived Residuals Management	.4						
	4.4	Site Survey	.4						
	4.5	Results of Investigation	.4						
5.0	Seco	nd Quarter 2009 Ground-Water Monitoring	.5						
	5.1	Site Identification Summary	.5						
	5.2	Work Performed This Quarter (Second Quarter 2009)	.5						
	5.3	Work Proposed For Next Quarter (Third Quarter 2009)	.5						
	5.4	Quarterly Results Summary	.5						
	5.5	Discussion	.6						
6.0	Cone	clusions	.7						
7.0	Recommendations								
8.0	Closure								
9.0	Refe	rences	.8						

ATTACHMENTS

Drawing 1	Site Vicinity Map
Drawing 2	Site Map with Soil Boring Locations
Drawing 3	Ground-Water Elevation Contour and Analytical Summary Map, 30 June 2009, Station #11266, 1541 Park Street, Alameda, California
Table 1	Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #11266, 1541 Park Street, Alameda, CA
Table 2	Summary of Fuel Additives Analytical Data, Station #11266, 1541 Park Street, Alameda, CA

APPENDICES

Appendix A Recent Regulatory Correspondence

No. Section

Appendix B Stratus Soil Boring Data Package (Includes Field Data Sheets, Boring Logs, Drilling Permit, Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)

ON-SITE SOIL INVESTIGATION AND SECOND QUARTER 2009 GROUND-WATER MONITORING REPORT

Former BP Station No.11266 1541 Park Street Alameda, California

TABLE OF CONTENTS (Cont.)

- Appendix C GeoTracker Upload Confirmation Reports
- Appendix D Stratus Ground-Water Sampling Data Package (Includes Field Data Sheets, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)
- Appendix E Historic Soil and Ground-Water Data

ON-SITE SOIL INVESTIGATION AND SECOND QUARTER 2009 GROUND-WATER MONITORING REPORT Former BP Station No.11266

1541 Park Street Alameda, California

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company, RM – a BP affiliated company, Broadbent & Associates, Inc. (BAI) has prepared this On-Site Soil Investigation and Second Quarter 2009 Ground-Water Monitoring Report for additional soil and ground-water characterization at the Former BP Station No.11266, located at 1541 Park Street, Alameda, California (Site). The onsite soil and water investigation was completed to evaluate the effectiveness of the remediation system that operated between 1992 and 1995 by assessing the presence of residual petroleum hydrocarbon-impacted soil within the source area. In addition, a one-time ground-water sampling event was also part of this investigation in order to refute or confirm the presence and significance of petroleum hydrocarbons within ground water at the Site. Investigation activities were conducted in accordance with the BAI Work Plan for Soil & Water Investigation dated 5 January 2009 and the Addendum Work Plan for Soil & Water Investigation dated 5 May 2009, as approved with additional comments by the Alameda County Environmental Health (ACEH) in their response letter dated 8 April 2009. A copy of this letter is provided in Appendix A. This report includes discussions on the Site Background, Site Geology and Hydrogeology, Soil Boring Investigation, Second Quarter 2009 Ground-Water Monitoring, Conclusions and Recommendations.

2.0 SITE BACKGROUND

The Site is an active 76-brand retail gasoline service station located on the southwestern corner of Park Street and Lincoln Avenue in Alameda, California (Drawing 1 and Drawing 2). The land use in the immediate vicinity of the Site is commercial. The Site consists of a service station building, two pump islands, one 12,000-gallon and two 10,000-gallon double-walled fiberglass gasoline underground storage tanks (USTs) with associated piping and dispensers, and one 1,000-gallon double-walled fiberglass used oil UST. Each of the four USTs at the Site was installed in 1987 after the former USTs were removed. The Site is covered with asphalt or concrete surfacing except for planters along the property boundaries containing shrubs and trees.

Numerous subsurface investigations and remedial activities have been conducted on-site since 1987. A comprehensive Site history can be found within the *Work Plan for Soil & Water Investigation* prepared by BAI dated 15 December 2008. Section 4.0 of this report details the most recent subsurface investigation field activities conducted in response to the request by ACEH.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

According to the *East Bay Plain Ground-water Basin Beneficial Use Evaluation Report* (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located along the northeastern edge of the Central Sub-Area of the East Bay Plain of the San Francisco Basin. The Central Sub-Area extends beneath San Francisco

Bay. The boundaries of the sub-area are based on the Young Bay Mud. The Young Bay Mud has a sharp "edge" in some areas, and in other areas, the boundary is less well-defined. Alameda and Bay Farm Islands are located along the northeastern edge of the sub-area. Historically, there were artesian wells in the sub-area that produced from gravels below the Yerba Buena Mud, but saltwater intrusion shut down these wells. Single-family residences historically relied on the Merrit Sand for water supply. However, septic systems and some saltwater intrusion resulted in localized contamination. More recently, deep wells (700 to 1,000 feet deep) were drilled at the Alameda City Golf Course. Production rates were lower than expected but this is believed due to drilling problems. Water quality was satisfactory for irrigation.

Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of ground-water flow is from east to west or from the Hayward Fault to the San Francisco Bay. Ground-water flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east to west direction. In the southern end of the study area however, near the San Lorenzo Sub-Area, the direction of flow may not be this simple. According to information presented in *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, the small set of water level measurements available seemed to show that the ground water in the upper aquifers may be flowing south, with the deeper aquifers, the Alameda Formation, moving north (SFRWQCB, 1999). The nearest natural water body is the Tidal Canal, located approximately 0.4 miles northeast of the Site.

The Site elevation is approximately 29 feet above mean sea level. The water table fluctuates seasonally. According to historic data provided by previous consultants, depth-to-water measurements have ranged from 6.24 to 23.40 feet below the measuring points of the Site monitoring wells. Previous to this investigation and Second Quarter 2009 ground-water monitoring event, the previous most recently measured ground-water flow direction during the one-time Third Quarter 2006 monitoring event on 24 August 2006 was to the south at a gradient of 0.01 ft/ft.

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, the single-most important ground-water quality parameter directly influencing a beneficial use determination is the Total Dissolved Solids (TDS) concentration. Resolution 89-39, Sources of Drinking Water, exempts the Municipal and Domestic (MUN) Supply Beneficial Use designations for ground waters with TDS concentrations greater than 3,000 mg/l and are not reasonably expected by the SFRWQCB to supply a public water system (note that the United States Environmental Protection Agency uses the 10,000 mg/l TDS value in determining potential drinking water sources). In 1996, SFRWQCB staff reviewed the General Plans for the East Bay Plain Cities of Alameda, Albany, El Cerrito, Berkeley, Emeryville, Hayward, Oakland, Piedmont, Richmond, and San Leandro, along with the Alameda County Resource Conservation District, the Alameda County Flood Control and Water Conservation District, the North Richmond Shoreline, and Alameda County. None of these cities had "any plans to develop local groundwater resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." However, the SFRWQCB's Basin Plan denotes existing beneficial uses of MUN, industrial process supply (PROC), industrial service

supply (IND), and agricultural supply (AGR) for the East Bay Plain ground-water basin (SFRWQCB, 1999).

Geologic data derived from on-site borings generally indicates that the soils underlying the Site consist primarily of poorly graded fine- to medium-grained sands from the surface to the total depth explored (25 feet bgs).

4.0 SOIL BORING INVESTIGATION

This on-site soil investigation was completed to evaluate the effectiveness of the remediation system that operated between 1992 and 1995 by assessing the presence of residual petroleum hydrocarbon-impacted soil. On 10 June 2009, Stratus attempted to advance two hand auger soil borings (identified as B-1 and B-2) at the Site. Soil boring B-1 was initially proposed in the general vicinity of the previously collected soil sample C-1, immediately south of the existing USTs in between the dispenser islands. However, during soil boring advancement, pea gravel, concrete and a metal object were encountered. Due to the presence of pea gravel and the close proximity of the boring to the dispenser islands, product lines, and underground utilities, the boring was abandoned. Boring B-2 was advanced in the general vicinity of historic sample W.O.-1, approximately five feet west-northwest of well MW-3, near the former waste oil tank excavation pit. The soil boring locations from this investigation are shown in Drawing 2.

4.1 Preliminary Field Activities

Prior to initiating field activities, Stratus obtained the necessary well drilling permits from the Alameda County Public Works Agency (See Appendix B), prepared a site health and safety plan specific to the work scope; and cleared the Site for subsurface utilities. The utility clearance included notifying Underground Service Alert of the work a minimum of 48 hours prior to initiating the field investigation, and additionally securing the services of Cruz Brothers, a private utility locating company to confirm the absence of underground utilities at the boring location.

4.2 Soil Boring Advancement and Soil Sampling

On 26 March 2009, Stratus personnel observed RSI Drilling of Woodland, California as they attempted to advance two soil borings (B-1 and B-2). Soil boring B-1 was abandoned due to the presence of pea gravel and its close proximity to the dispenser islands, product lines, and underground utilities. A hand auger was utilized to collect depth-discrete samples at soil boring location B-2 to a maximum depth of 9.5 ft bgs. Physical soil samples were collected at specific depths for laboratory analysis based on field observations and the scope of work proposed in the work plan. Soil samples were collected from boring B-2 at five, 6.5, eight, and 9.5 feet bgs. Reportedly, no obvious visual contamination was observed. Screening with a photo-ionization detector found no evidence of contamination by volatile organic compounds between approximately 2.5 and 9.5 feet bgs. Silty sand was observed from below the surface asphalt to approximately seven feet bgs and nine to 9.5 feet bgs, the final depth of the boring. Silty sand with clay was encountered from approximately seven to nine feet bgs. Following completion of

soil boring advancement and collection of samples, neat cement grout was used to fill the boring to just below ground surface and was completed to match the existing surface surroundings. The boring log (GEO_BORE) for B-2 was uploaded to the GeoTracker AB2886 database. The GeoTracker upload confirmation receipt is provided in Appendix C.

4.3 Investigation-Derived Residuals Management

Residual solids and liquids generated during the Site investigation activities were stored temporarily onsite in Department of Transportation-approved 55-gallon drums pending analytical results and profiling. Following characterization and profiling, Belshire Environmental Services was scheduled to transport the investigation-derived residuals to an Atlantic Richfield Company-approved facility for treatment or disposal.

4.4 Site Survey

Since the Site had not been previously surveyed to GeoTracker standards, Stratus commissioned a survey of the Site by Wood Rodgers Engineering, Mapping, Planning and Surveying. The Site wells and recent boring latitude and longitude positions were surveyed in accordance with GeoTracker standards to the North American Datum of 1983 (NAD83). Elevations of the measuring points within the Site monitoring wells were surveyed in accordance with GeoTracker standards to the North American Datum of 1988 (NAVD88). A Site Map (GEO_MAP), monitoring well and recent boring positions (GEO_XY) and monitoring well elevations (GEO_Z) were uploaded to the GeoTracker AB2886 database. Copies of the GeoTracker upload confirmation receipts are provided within Appendix C.

4.5 Results of Investigation

Soil samples were shipped to Calscience Environmental Laboratories, Inc. (Garden Grove), a California State-certified laboratory, under chain-of-custody protocol. Samples were analyzed for Gasoline Range Organics (GRO, hydrocarbon chain lengths between C6-C12) by EPA Method 8015B; and for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether (DIPE), Tert-Butyl Alcohol (TBA), 1,2-Dichloroethane (1,2-DCA), 1,2-Dibromoethane (EDB), and halogenated and non-halogenated volatile organic compounds using EPA Method 8260B; and Total Lead by EPA Method 200.7. No significant irregularities were reported during laboratory analysis of the soil boring samples.

Lead was detected above the laboratory reporting limit in each of the four soil samples collected at concentrations up to 96.6 milligrams per kilogram (mg/kg) in sample B-2 8'. However, the observed lead concentrations were significantly below the California Department of Public Health and California Environmental Protection Agency's concentrations of significance of 400 milligrams per kilogram (mg/kg). The remaining tested analytes were not detected above their respective laboratory reporting limit in the four soil samples collected. A copy of the laboratory analytical report with chain-of-custody documentation is provided in Appendix B. Laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. The GeoTracker upload confirmation receipt is provided in Appendix C.

5.0 SECOND QUARTER 2009 GROUND-WATER MONITORING

A special one-time monitoring and sampling event of the Site wells was conducted in the Second Quarter 2009 in accordance with the ACEH request and approved work plan. The results of this special ground-water monitoring event are summarized below.

5.1 Site Identification Summary

Facility No.: <u>11266</u> Address:	1541 Park Street, Alameda, California			
Environmental Business Manager:	Mr. Paul Supple			
Consulting Co./Contact Persons:	Broadbent & Associates, Inc.(BAI)/Rob Miller & Tom Venus			
	(530) 566-1400			
Consultant Project No.:	06-88-658			
Primary Agency/Regulatory ID No.:	Alameda County Environmental Health (ACEH)			
	ACEH Case #RO0000318			
Facility Permits/Permitting Agency:	NA			

5.2 Work Performed This Quarter (Second Quarter 2009)

- Prepared and submitted First Quarter 2009 Status Report (BAI, 4/30/2009).
- Prepared and submitted Addendum Work Plan for Soil & Water Investigation to ACEH on 8 May 2009.
- Conducted on-site soil boring investigation on 10 June 2009. Work performed by Stratus Environmental, Inc. (Stratus).
- Conducted position and elevation survey of the Site on 22 June 2009. Work performed by Wood Rodgers for Stratus.
- Conducted a special one-time ground-water monitoring/sampling event per request of ACEH. Work performed on 30 June 2009 by Stratus.

5.3 Work Proposed For Next Quarter (Third Quarter 2009)

- Prepared and submitted *On-Site Soil Investigation and Second Quarter 2009 Ground-Water Monitoring Report* (contained herein).
- No environmental field work is scheduled at the Site for the Third Quarter 2009.

5.4 Quarterly Results Summary

Current phase of project:	Case Closure Evaluation
Frequency of ground-water	
monitoring:	One time event (Second Quarter 2009)
Frequency of ground-water sampling:	One time event (Second Quarter 2009)
Is free product (FP) present on-site:	No
Current remediation techniques:	NA
Depth to ground water (below TOC):	8.61 ft (MW-5) to 10.16 ft (RW-1)
General ground-water flow direction:	East
Approximate hydraulic gradient:	0.01 ft/ft

5.5 Discussion

Second Quarter 2009 ground-water monitoring and sampling was conducted at Station #11266 on 30 June 2009 by Stratus. Water levels were gauged in each of the seven wells at the Site. No irregularities were noted during water level gauging. Depth-to-water measurements ranged from 8.61 ft at MW-5 to 10.16 ft at RW-1. Resulting ground-water surface elevations ranged from 20.14 ft above datum in well MW-4 to 18.47 ft in well RW-1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the east at approximately 0.01 ft/ft. Ground-water monitoring field data sheets are provided within Appendix D. Measured depths to ground water and respective ground-water elevations are summarized in Table 1. Potentiometric ground-water elevation contours are presented in Drawing 3.

Water samples were collected from wells MW-1 through MW-6 and RW-1 on 30 June 2009. The water column in well MW-5 was approximately one foot or less, which resulted in Stratus deeming the well dry. Hence a sample was not collected from well MW-5. No other irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. (Garden Grove, California), for analysis of GRO (C6-C12) by EPA Method 8015B; Lead by EPA Method 200.7; and for the full spectrum of volatile organic compounds (VOCs) available through analysis by EPA Method 8260B in order to evaluate the absence or presence and significance of halogenated and non-halogenated VOCs as analyzed in historic ground-water samples. The reporting limits for 8260B laboratory analyses performed on the sample collected from well MW-6 were raised due to high levels of non-target analytes. No other significant irregularities were encountered during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix D.

Gasoline Range Organics (GRO) were detected above the laboratory reporting limit in two of the six wells sampled at concentrations of 290 micrograms per liter (µg/L) in well RW-1 and 11,000 μ g/L in well MW-1. Benzene was detected above the laboratory reporting limit in one of the six wells sampled at a concentration of 5.1 µg/L in well MW-1. Toluene was detected above the laboratory reporting limit in two of the six wells sampled at concentrations of 15 µg/L in well RW-1 and 29 µg/L in well MW-1. Ethylbenzene was detected above the laboratory reporting limit in two of the six wells sampled at concentrations of 9.6 µg/L in well RW-1 and 310 µg/L in well MW-1. Total Xylenes were detected above laboratory reporting limits in two of the six wells sampled at concentrations of 51 µg/L in well RW-1 and 1,200 µg/L in well MW-1. TAME was detected above the laboratory reporting limit in one of the six wells sampled at a concentration of 1.0 µg/L in well MW-2. TBA was detected above the laboratory reporting limit in one of the six wells sampled at a concentration of 10 µg/L in well MW-1. MTBE was detected above the laboratory reporting limit in one of the six wells sampled at a concentration of $17 \,\mu g/L$ in well MW-2. Lead was detected above the laboratory reporting limit in five of the six wells sampled at concentrations up to 54.2 µg/L in well MW-1. Chlorobenzene was detected above the laboratory reporting limit in two of the six wells sampled at concentrations of 1.9 µg/L in well MW-1 and 0.81 µg/L in well MW-3. 1,2-Dichlorobenzene was detected above the laboratory reporting limit in one of the six wells sampled at a concentration of 1.5 µg/L in well MW-3. The remaining analytes were not detected above their laboratory reporting limits in the six wells sampled during this event.

Detected analyte concentrations were within the historic minimum and maximum ranges recorded for each well with the exception of MTBE, which reached a historic minimum concentration of $<0.50 \mu g/L$ in well MW-1. Historic laboratory analytical results are summarized in Table 1, Table 2, and Appendix E. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 3. A copy of the Laboratory Analytical Report, including chain-of-custody documentation is provided in Appendix D. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. GeoTracker upload confirmation receipts are provided in Appendix C.

6.0 CONCLUSIONS

On behalf of the Atlantic Richfield Company, RM – a BP affiliated company, BAI prepared this On-Site Soil Investigation and Second Quarter 2009 Ground-Water Monitoring Report for Station No.11266, located at 1541 Park Street, Alameda, California. Investigation activities were conducted in accordance with the BAI *Work Plan for Soil & Water Investigation* dated 5 January 2009 and the *Addendum Work Plan for Soil & Water Investigation* dated 5 May 2009, as approved with comments by the ACEH in their response letter dated 8 April 2009. Based on the information obtained and presented in this soil and water investigation and ground-water monitoring report, BAI concludes the following:

- No petroleum hydrocarbons, halogenated or non-halogenated volatile organic compounds were detected in the four soil samples collected from boring B-2.
- The absence of contaminants within the source area indicates that the residual hydrocarbons in on-site soils have significantly decreased since the operation of the remediation system between 1992 and 1995.
- Ground-water contaminant concentrations above laboratory reporting limits were observed in three of the six wells sampled during the one-time monitoring event conducted on 30 June 2009.
- GRO concentrations exceeded the Environmental Screening Level (ESL) of 210 μ g/L established by the San Francisco Regional Water Quality Control Board for ground water that is not a current or potential drinking water resource in wells MW-1 (11,000 μ g/L) and RW-1 (290 μ g/L).
- Ethylbenzene (310 μ g/L) and total xylene (1,200 μ g/L) concentrations exceeded their respective ESLs of 43 μ g/L and 100 μ g/L in well MW-1.
- The ground-water plume appears to be isolated on-site and horizontally defined.

7.0 **RECOMMENDATIONS**

Based on the information obtained and presented in this soil and ground-water investigation report, BAI makes the following recommendation:

• Based on the analytical results obtained from the soil investigation, no further action relating to soil contamination should be required.

8.0 CLOSURE

This document has been prepared for the exclusive use of Atlantic Richfield Company. The findings presented in this report are based upon the observations of Stratus field personnel, points of investigation and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Services were performed in accordance with the generally accepted standard of practice at the time this report was written. No warranty, expressed or implied, is intended. It is possible that variations in the soil or ground-water conditions could exist beyond the points explored in this investigation. Also, changes in site conditions could occur at some time in the future due to variations in rainfall, temperature, regional water usage or other factors.

9.0 **REFERENCES**

- ACEH, 8 April 2009. Fuel Leak Case No. RO 0000318 and GeoTracker Global ID T0600100207, BP #11266, 1541 Park Street, Alameda, CA 94501. Letter from Mr. Paresh Khatri (ACEH) to Mr. Paul Supple (Atlantic Richfield Company) approving work plan with technical comments.
- Broadbent & Associates, Inc., 15 December 2008. Work Plan for Soil & Water Investigation, Former BP Service Station No. 11266, 1541 Park Street, Alameda, CA, ACEH Case No. RO0000318.
- Broadbent & Associates, Inc., 8 May 2009. Addendum Work Plan for Soil & Water Investigation, Former BP Service Station No. 11266, 1541 Park Street, Alameda, CA, ACEH Case No. RO0000318.
- California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee, June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda County and Contra Costa Counties, CA.
- California Regional Water Quality Control Board, San Francisco Bay Region, May 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater.

		тос	Depth to	Water Level		Concentrations in (µg/L)								
Well and		Elevation	Water	Elevation	GRO/	DRO/			Ethyl-	Total			DO	
Sample Date	P/NP	(feet msl)	(feet bgs)	(feet msl)	TPHg	TPHd	Benzene	Toluene	Benzene	Xylenes	MtBE	Lead	(mg/L)	Comments
MW-1														
8/24/2006	Р	19.19	7.75	11.44	1,900	1,000	6.4	1.9	48	41	1.2	<100		
6/30/2009	Р	28.62	8.85	19.77	11,000		5.1	29	310	1,200	<0.50	54.2	2.98	b, c
MW-2														
8/24/2006	Р	19.32	8.25	11.07	55	<47	0.57	< 0.50	< 0.50	1.0	47	<100		
6/30/2009	Р	28.76	9.85	18.91	<50		<0.50	<0.50	<0.50	<0.50	17	7.44	3.13	b
MW-3														
8/24/2006	Р	19.99	9.61	10.38	96	130	< 0.50	0.52	< 0.50	< 0.50	1.2	<100		
6/30/2009	Р	29.43	10.03	19.40	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	2.40	b
MW-4														
8/24/2006	Р	20.17	8.98	11.19	<50	<47	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<100		
6/30/2009	Р	29.61	9.47	20.14	<50		<0.50	<0.50	<0.50	<0.50	<0.50	35.7	3.53	b
MW-5														
8/24/2006	Р	19.41	8.12	11.29	<50	<47	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<100		
6/30/2009		28.72	8.61	20.11										b, d
MW-6														
8/24/2006	Р	19.40	8.26	11.14	<50	<47	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<100		
6/30/2009	Р	28.82	9.83	18.99	<50		<10	<10	<10	<10	<10	9.95	2.56	a, b
RW-1														
6/30/2009	Р	28.63	10.16	18.47	290		<0.50	15	9.6	51	<0.50	5.47	3.34	b

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses

Station #11266, 1541 Park Street, Alameda, CA

NOTES:

a = Reporting limits raised due to high levels of non-target analytes.

b = Well surveyed 6/22/2009.

c = Sheen in well.

d = Insufficient water to sample.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data

Well and	Concentrations in (µg/L)								
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
8/24/2006	<600	<40	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	
6/30/2009	<50	10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
8/24/2006	<300	<20	47	< 0.50	< 0.50	2.2	< 0.50	< 0.50	
6/30/2009	<50	<10	17	<0.50	<0.50	1.0	<0.50	<0.50	
MW-3									
8/24/2006	<300	<20	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/30/2009	<50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-4									
8/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/30/2009	<50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-5									
8/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-6									
8/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
6/30/2009	<1,000	<200	<10	<10	<10	<10	<10	<10	
RW-1									
6/30/2009	<50	<10	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	

Station #11266, 1541 Park Street, Alameda, CA

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

APPENDIX A

RECENT REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

RECEIVED OCT 2 2 2008

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

October 16, 2008

Paul Supple Atlantic Richfield Company (A BP Affiliated Company) P.O. Box 1257 San Ramon, CA 94583 Terry Grayson Conoco Phillips 76 Broadway Street Sacramento, CA 95818 Raymond Yeung 1541 Park Street Alameda, CA 94501-2933

Subject: Fuel Leak Case No. RO0000318 and GeoTracker Global ID T0600100207, BP #11266, 1541 Park Street, Alameda, CA 94501

Dear Messrs. Supple, Grayson, and Yeung:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the abovereferenced site including the document entitled, "Third Quarter 2006 Ground-Water Monitoring Report," dated October 26, 2006 and the recently submitted "Second Quarter 2008 Status Report," dated July 18, 2008, which were prepared by Broadbent & Associates, Inc. (BAI) for the subject site. Based on a review of the case file, it appears that four underground storage tanks (USTs) were excavated and removed from the site in September 1987. Soil sample analytical results detected total petroleum hydrocarbons (TPH) as gasoline (g) and benzene at concentrations of 3,200 mg/kg and 81 mg/kg, respectively in soil sample C1 collected at approximately 11.5 feet below the ground surface (bgs). A "grab" groundwater sample collected from the UST pit detected TPH-g and benzene at concentrations of 530,000 µg/L and 6,300 µg/L, respectively. In February 1988, Kaprealian Engineering installed three groundwater monitoring wells at the site. Groundwater sample analytical results detected TPH-g and benzene at concentrations of 95,000 µg/L and 2,000 µg/L, respectively, in a groundwater sample collected from monitoring well MW-1. From 1992 to 1995, Hydro Environmental Technologies installed and operated a groundwater extraction and treatment system at the site.

According to BAI, case closure was requested by BP on February 21, 2003. ACEH responded in our July 7, 2006 correspondence requesting more recent groundwater monitoring data with additional sampling parameters for fuel oxygenates, ethanol, and lead scavengers. According to BAI, concentrations of contaminants detected in groundwater are similar to those previously detected and requests case closure. Although groundwater sample analytical data is consistent with historical sampling results, confirmation soil samples do not appear to have been collected to verify remediation system effectiveness. Since data gaps have been identified, ACEH cannot consider case closure at this time. This decision to deny closure is subject to appeal to the State Water Resources Control Board (SWRCB), pursuant to Section 25299.39.2(b) of the Health and Safety Code (Thompson-Richter Underground Storage Tank Reform Act - Senate Bill 562). Please contact the SWRCB Underground Storage Tank Program at (916) 341-5851 for information regarding the appeal process.

ACEH requests that you address the following technical comments and send us the technical reports requested below.

Dear Messrs. Supple, Grayson, and Yeung RO0000318 October 16, Page 2

TECHNICAL COMMENTS

1. Confirmation Soil Sampling & Contaminant Source Area Characterization – As mentioned above, significantly elevated concentrations of TPH-g and benzene were detected in soil following the UST removals in 1987. Although a groundwater extraction system operated at the site, depth and screened interval of extraction well, estimated contaminant mass in the subsurface, and total contaminant mass removed were not available in our case file, and confirmation soil sampling to evaluate system effectiveness does not appear to have been conducted since Hydro Environmental Technologies stated "[n]o soil remediation has been undertaken." Also VOCs were previously detected in groundwater samples collected on August 1, 1991 from site groundwater monitoring wells. Therefore, VOC analysis to confirm or refute the presence of VOCs also appears warranted. Please propose a scope of work to address the above-mentioned concerns and submit a work plan by the date specified below.

REQUEST FOR INFORMATION

ACEH's case file for the subject site contains the following electronic reports as listed on our website (<u>http://www.acgov.org/aceh/lop/ust.htm</u>). You are requested to submit copies of all other reports related to environmental investigations for this property (including Remediation System Installation Reports, etc.) by **November 14, 2008**.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

• December 15, 2008 – Soil and Water Investigation Work Plan

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years,

Dear Messrs. Supple, Grayson, and Yeung RO0000318 October 16, Page 3

responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml</u>.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Dear Messrs. Supple, Grayson, and Yeung RO0000318 October 16, Page 4

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist

Donna L. Drogos, PE Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Tom Venus, Broadbent & Associates, Inc., 1324 Mangrove Ave., Ste 212, Chico, CA 95926 Donna Drogos, ACEH Paresh Khatri, ACEH File

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

APR 1 1 2009

BY:

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

April 8, 2009

Paul Supple Atlantic Richfield Company (A BP Affiliated Company) P.O. Box 1257 San Ramon, CA 94583

Terry Grayson Conoco Phillips 76 Broadway Street Sacramento, CA 95818

Raymond Yeung 1541 Park Street Alameda, CA 94501-2933

Subject: Fuel Leak Case No. RO0000318 and GeoTracker Global ID T0600100207, BP #11266, 1541 Park Street, Alameda, CA 94501

Dear Messrs. Supple, Grayson, and Yeung:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the abovereferenced site including the recently submitted document entitled, "Work Plan for Soil & Water Investigation," dated December 15, 2008, which was prepared by Broadbent & Associates, Inc. (BAI) for the subject site. In response to ACEH's concerns regarding treatment system effectiveness, BAI has proposed to install two borings to characterize residual contamination in the former source area(s) and initiate one round of groundwater sampling.

ACEH generally concurs with the proposed scope of work and the proposed scope of work may be implemented provided that the modifications requested in the technical comments below are addressed and incorporated during the field implementation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed.

We request that you address the following technical comments, perform the proposed work, and send us the technical reports requested below.

TECHNICAL COMMENTS

1. <u>Verification Sampling</u> – BAI proposes to install two borings to characterize current soil conditions within the former source areas at the site. BAI states that "[b]oring B-1 is proposed in the general vicinity of sample C-1 and well MW-1, approximately five feet south-southwest of well MW-1 and five feet north of the northeast corner of the dispenser islands, near the former UST excavation pit." However, based on a review of Kaprealian Engineering's site figure, the proposed boring location B-1 appears to be over 10 feet away from the location of soil sample C-1 collected at 11.5 feet bgs, which detected TPH-g and benzene at concentrations of 3,200 mg/kg and 81 mg/kg, respectively. Therefore, please install an additional boring immediately adjacent to soil sample C-1. Should safety concerns prevent boring installation, please note that this boring may be hand-augered to the desired sampling depth or soil vapor sampling wells can be installed in the immediate vicinity to evaluate subsurface conditions.

Dear Messrs. Supple, Grayson, and Yeung RO0000318 April 8, 2009, Page 2

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and complete the fieldwork activities by the date specified below and provide ACEH with at least three (3) business days notification prior to conducting the fieldwork.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Paresh Khatri), according to the following schedule:

- May 8, 2009 Revised Figure (and Soil Vapor Sampling Scope of Work, if applicable)
- July 7, 2009 Soil and Water Investigation Report
- Due within 45 days of Sample Collection Quarterly Monitoring Report (2nd Quarter 2009)

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover

Dear Messrs. Supple, Grayson, and Yeung RO0000318 April 8, 2009, Page 3

letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 777-2478 or send me an electronic mail message at paresh.khatri@acgov.org.

Sincerely,

Paresh C. Khatri Hazardous Materials Specialist

Donna L. Drogos, PE Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Tom Venus, Broadbent & Associates, Inc., 1324 Mangrove Ave., Ste 212, Chico, CA 95926 Donna Drogos, ACEH Paresh Khatri, ACEH GeoTracker File

APPENDIX B

STRATUS SOIL BORING DATA PACKAGE (Includes Field Data Sheets, Boring Logs, Drilling Permit, Site Plan, and Certified Laboratory Analytical Report with Chain-of-Custody Documentation)

AUG 1 4 2009

BY:_____

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

August 11, 2009

Mr. Tom Venus Broadbent & Associates, Inc. 1324 Mangrove Avenue Chico, California 95926

Re: Soil Boring Data Package, Former BP Service Station No. 11266, located at 1541 Park Street, Alameda, California (field activities performed between May 29, 2009 and June 10, 2009).

General Information

Data Submittal Prepared / Reviewed by: Collin Fischer and Scott Bittinger / Jay Johnson Phone Number: (530) 676-2062 / (530) 676-6000

Date: May 29, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Health and safety meeting with utility locating subcontractor (Cruz Brothers Locators). Locate all utilities onsite and sketch on site map per ground disturbance procedures. Clear 2 boring locations and mark site for USA.

Variations from Work Scope: Location of boring B-1 was adjusted, relative to site features, after discussions with scoping contractor. The B-1 location illustrated in the work plan was located beneath an underground storage tank (UST). The Stratus representative included the approximate location of the current facilities on the utility location map sketch.

Date: June 8, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Fill out health and safety forms. Check USA markings, update USA tracking sheet, and update underground utility location sketch per ground disturbance procedures.

Variations from Work Scope: None noted

Date: June 10, 2009

On-Site Supplier Representative: Collin Fischer

Scope of Work Performed: Health and safety meeting with drilling subcontractor. Hand auger 1 boring (B-2) to 9.5 feet below ground surface (bgs). and collect soil samples. *Variations from Work Scope:* Boring location (B-1) was attempted, but after coring through concrete, pea gravel and a metal object were found below the concrete surface.

Mr. Tom Venus, Broadbent & Associates, Inc Soil Boring Data Package Former BP Station No. 11266, Alameda, CA Page 2

August 11, 2009

After discussions with scoping contractor, the location was abandoned due to the presence of pea gravel and its close proximity to the dispenser islands, product lines, and utility lines.

This submittal presents the data collected in association with the completion of one soil boring. The attachments include field data sheets, a soil boring log for B-2, a drilling permit, an underground utility location map sketch, a surveyed site plan, a certified analytical report, and chain-of-custody documentation. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations.

Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Sincerely,

STRATUS ENVIRONMENTAL. INC.

Scott G. Bittinger, P.G. Project Geologist

Attachments:

- Field Data Sheets
- Boring log
- Drilling permit
- Underground Utility Location Map Sketch

RED

Scott G. Bittinger

No. 7477

OF CALL

- Surveyed Site Plan
- Certified Analytical Reports
- Chain-of-Custody Documentation

cc: Paul Supple, BP/ARCO

Jay R. Johnsol No. 586 Jol hson, P.G. Project Manager

5/29/2009 ARLO 11266 - Collin FISCHER Clauss CRUZ BROS.

0745 -> ONSUR, FILL OUT SAFETY PAPERWORK, SITE WALK.

- 0920 9 CRUZ BEDS ONSOME, SAFETS MEETING.
- 1840 -> BEDIN CLEARING SITE, THE WI STATION MUNAGER ABOUT WOLK SCHEDULE, ALSO ASK ABOUT HISTORICAL & CULLENT TANK SONSOL/ Electrical lines. The SAGS NO FARSE/REBAILD ACTIVITIES THREE OCCURED & CONTRA PRIMEL IS LOCIATED WILL USE PANEL TO LOCATE LINES & SKETCH ON MUP.
- 0910 -> CAN OFFICE TO DISCUSS (B-1) LOCATION & INNACCURATION OF MAP. STEPLAN MUSP OF SITE LAYOUT ON OVO MAP.
- 0945-3 NO GAR FOUND Q STATION, ASK MANAGEL, HE CONFILMS THAT HAVERE IS NO GAS LINE COMING WHO THE BUILDING. CONTINUE ON OTHER WITHITES. SEVER, the, & Electric Found, ISBWER CLEDNONT IS ANOTED STUDT, MARK OTHIGE alexander.
- 1010 -> MARE OUT AND ELECTRICAL & SENSOR & PUMP SENSOR ELECTRIC INES. METHL SCHERT
- 1115 -> SFETCH mul FUSALIZE & MORE FOR USA
- 1130 -> OPFSITE

STOLOWING ENV., INC.

ARLO 11266 - Collini Fischer

- O615 -> ansate, ful our gravers fasterments.
- 0630 -> MEATE USA TEACEING SHEET & SKETCH HING HODITIONING. UTILITIES ONTO SUTE THINF.
- 0645 -3 Offsure

STRATUS EN We.

Field	d Data Sheet
Site: A2CO 11266	Date: 6/10/2009
Personnel on site: Collw Feschwere	RSI DRilling
Veather Conditions: Cloudy	
lotes:	
LONCHETE COULD'9.	erous show up (B-1) & start
1330 -> ulow coring Thereast C	UNCLOTE, PERFORMUL SURPOUNDING A PURCH
of morne DEBMS is	BOUND. (B-1) LOCATION 18 COMPNOMMED; COM
MULAN WHILL MUVE	TO (B-2)
1345 -> RANCH ASTHALT SULLARY	& Clem Hole.
1355-2 start time Any Rei	NO (B-Z). the TODO TO IN (MW-3)
1430 -> Darrey Geout twill	* fater Survey 2 (R-2) + (B-)
1500 -> classing to Secure	Anno
ISIS -> OFF SULL	
<u> </u>	
//h = -	
jul 1	
STRIAT US ENV-	(VC.
	1
· · · · ·	······································
	· · · · · · · · · · · · · · · · · · ·

.

SOIL BORING LOG		Boring No. B-2			
Client	Former BP Station 1120	66 Date	June 10, 2009	· · · · · · · · · · · · · · · · · · ·	
Address	1541 Park Street	Drilling Co.	RSI Drilling	rig type: 6620 DT (pavement coring)	
	Alameda, CA	Driller	Norman		
Project No.	E11266	Method	Hand Auger	Hole Diameter: 3"	
Logged By:	Collin Fischer				

Sample		Sample		Sample		Sample		Sample		Sample		Wall	Denth	Lithologia		BID
Туре	No.	Date	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM)							
						- ¹			<u> </u>							
				.	*	_2										
						3										
		+						Silty sand, SM, (0'-7'), dark brown, moist								
		+				4		85% medium grained sand, 15% silt								
S	B-2 5'	6/10/09	1405	100		5	SM		0							
s	B-2 6.5'	6/10/09	1410	100		– °			0							
		+				7			_							
s	B-2 8'	6/10/09	1420	100		8		Silty sand with clay, SM, (7'-9'), dark brown, moist, 20% medium grained sand, 20% silt, 10% clay	0							
									·····							
	B-295"	6/10/00	1425	100		9		Silty sand SM (0.9.5) dark vallavish brave wet								
³	D-2 9.0	0/10/08	1420	100	998-988 - 10-10-	10		85% medium grained sand, 15% silt	0							
						<u> </u>										
		******				-11										
		ļ		 		12										
						— ₁₃										
						_"										
						— ¹⁴		· · · · · · · · · · · · · · · · · · ·								
						15										
						-10										
						_17										
┣┦						— ¹⁹										
						20										
				Recove				Comments								
					,			oonmenta.								
				Canapla												
				Sample												
								GTRATUG								

Alameda County Public Works Agency - Water Resources Well Permit

Public	399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510	5 0)782-1939				
Application Approved	on: 06/03/2009 By jamesy	Permit Numbers: W2009-0446 Permits Valid from 06/10/2009 to 06/10/2009				
Application Id:	1243641071787	City of Project Site:Alameda				
Project Start Date: Assigned Inspector:	06/10/2009 Contact John Shouldice at (510) 670-5424 or john	Completion Date:06/10/2009 ohns@acpwa.org				
Applicant:	Stratus Envr Scott Bittinger	04 05000	Phone: 530-676-2062			
Property Owner:	BPO ARCO	CA 95602	Phone: 925-275-3801			
Client:	** same as Property Owner **					
	T Receipt Number: WR2009-0199 T Payer Name : Stratus F	Fotal Due: F otal Amount I Paid By: CHEC	\$230.00 Paid:\$230.00 ≺ PAID IN FULL			

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 2 Boreholes Driller: RSI - Lic #: 802334 - Method: Hand

Work Total: \$230.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2009-	06/03/2009	09/08/2009	2	4.00 in,	4.00 ft
0446					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to
Alameda County Public Works Agency - Water Resources Well Permit

starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

June 25, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-06-1049 Client Reference: ARCO 11266

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/11/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Richard Villey)

Calscience Environmental Laboratories, Inc. Richard Villafania Project Manager

CA-ELAP ID: 1230

 1230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

Calscience								
📕 nvironmental		Analyt						
🗕 aboratories, In	C.							
Stratus Environmental, inc.			Date Rec	ceived:				
3330 Cameron Park Drive, Suite	e 550		Work Ord	der No:		09		
Cameron Park, CA 95682-8861		Preparati	ion:			E		
			Method:					
Project: ARCO 11266							Pa	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	
B-2 5'	· .	09-06-1049-1-A	06/10/09 14:05	Solid	ICP 5300	06/12/09	06/13/09 13:38	
Parameter	<u>Result</u>	RL	DF	Qual	Units			
Lead	47.9	0.500	1		mg/kg			
B-2 6.5'		09-06-1049-2-A	06/10/09 14:10	Solid	ICP 5300	06/12/09	06/13/09 13:40	
Parameter	<u>Result</u>	<u>RL</u>	DE	Qual	<u>Units</u>			
Lead	15.8	0.500	1		mg/kg			

B-2 8'		09-06-1049-3-A	06/10/09 14:20	Solid	ICP 5300	06/12/09	06/13/09 13:43	090612L02
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Lead	96.6	0.500	1		mg/kg			
B-2 9.5'		09-06-1049-4-A	06/10/09 14:25	Solid	ICP 5300	06/12/09	06/13/09 13:45	090612L02
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Lead	17.2	0.500	1		mg/kg			
Method Blank		097-01-002-12,399	N/A	Solid	ICP 5300	06/12/09	06/13/09 13:04	090612L02
Parameter	Result	RL	<u>DF</u>	Qual	Units			
Lead	ND	0.500	1		mg/kg			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

06/11/09 09-06-1049 EPA 3050B EPA 6010B

Page 1 of 1

QC Batch ID

090612L02

090612L02

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan

Page 2 of 2

Stratus Environmental, inc.	Date Received:	06/11/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: ARCO 11266

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-697-118	N/A	Solid	GC 1	06/12/09	06/12/09 11:13	090612B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	83	42-126						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	06/11/09
Work Order No:	09-06-1049
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg
	Page 1 of 6

Project: ARCO 11266

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/ d Analy	l'ime zed	QC Batch ID
B-2 5'			09-06-	1049-1-A	06/10/09 14:05	Solid	GC/MS Z	06/12/09	06/13	3/09 50	090612L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	RL	DF	Qual
Benzene	ND	0.0010	1		t-1,2-Dichloroet	hene		ND	0.0010	1	
Bromochloromethane	ND	0.0010	1		1,2-Dichloropro	pane		ND	0.0010	1	
Bromodichloromethane	ND	0.0010	1		c-1,3-Dichlorop	ropene		ND	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.010	1		t-1,3-Dichlorops	ropene		ND	0.0010	1	
Bromoform	ND	0.0010	1		Ethylbenzene			ND	0.0010	1	
Bromomethane	ND	0.010	1		Methylene Chlo	ride		ND	0.010	1	
Carbon Tetrachloride	ND	0.0010	1		1,1,2,2-Tetrach	loroethane		ND	0.0010	1	
Chlorobenzene	ND	0.0010	1		Tetrachloroethe	ne		ND	0.0010	1	
Chloroethane	ND	0.0010	1		Toluene			ND	0.0010	1	
Chloroform	NÐ	0.0010	1		1,1,1-Trichloroe	ethane		ND	0.0010	1	
Chloromethane	ND	0.0010	1		1,1,2-Trichloroe	thane		ND	0.0010	1	
Dibromochloromethane	ND	0,0010	1		Trichloroethene			ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Trichlorofluoron	nethane		ND	0.010	1	
1,2-Dichlorobenzene	ND	0.0010	1		Vinyl Chloride			ND	0.0010	1	
1,3-Dichlorobenzene	ND	0.0010	1		Xylenes (total)			ND	0.0010	1	
1,4-Dichlorobenzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	E)	ND	0.0010	1	
Dichlorodifluoromethane	ND	0.0010	1		Tert-Butyl Alcoh	nol (TBA)		ND	0.010	1	
1,1-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
1,2-Dichloroethane	ND	0.0010	1		Ethyl-t-Butyl Eth	ner (ETBE)		ND	0.0020	1	
1,1-Dichloroethene	ND	0.0010	1		Tert-Amyl-Meth	yl Ether (TA	ME)	ND	0.0020	1	
c-1,2-Dichloroethene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:		į	<u>REC (%)</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	100	75-141			1,2-Dichloroetha	ane-d4		105	73-151		
Toluene-d8	99	87-111			1,4-Bromofluoro	obenzene		97	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Uhn

Page 2 of 6

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	06/11/09
Work Order No:	09-06-1049
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg

Project: ARCO 11266

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/ d Anal	Time yzed	QC Batch ID
B-2 6.5'	· · · ·		09-06-1	1049-2-A	06/10/09 14:10	Solid	GC/MS Z	06/13/09	06/1 13:	3/09 18	090613L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0010	1		t-1,2-Dichloroet	hene		ND	0.0010	1	
Bromochioromethane	ND	0.0010	1		1,2-Dichloropro	pane		ND	0.0010	1	
Bromodichloromethane	ND	0.0010	1		c-1,3-Dichlorop	ropene		ND	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.010	1		t-1,3-Dichloropr	opene		ND	0.0010	1	
Bromoform	ND	0.0010	1		Ethylbenzene			ND	0.0010	1	
Bromomethane	ND	0.010	1		Methylene Chio	ride		ND	0.010	1	
Carbon Tetrachloride	ND	0.0010	1		1,1,2,2-Tetrachl	loroethane		ND	0.0010	1	
Chlorobenzene	ND	0.0010	1		Tetrachloroethe	ne		ND	0.0010	1	
Chloroethane	ND	0.0010	1		Toluene			ND	0.0010	1	
Chioroform	ND	0.0010	1		1,1,1-Trichloroe	thane		ND	0.0010	1	
Chloromethane	ND	0.0010	1		1,1,2-Trichloroe	thane		ND	0.0010	1	
Dibromochloromethane	ND	0.0010	1		Trichloroethene			ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Trichlorofluorom	nethane		ND	0.010	1	
1,2-Dichlorobenzene	ND	0.0010	1		Vinyl Chloride			ND	0.0010	1	
1,3-Dichlorobenzene	ND	0.0010	1		Xylenes (total)			ND	0.0010	1	
1,4-Dichlorobenzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE)	ND	0.0010	1	
Dichlorodifluoromethane	ND	0.0010	1		Tert-Butyl Alcoh	iol (TBA)		ND	0.010	1	
1,1-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
1,2-Dichloroethane	ND	0.0010	1		Ethyl-t-Butyl Eth	er (ETBE)		ND	0.0020	1	
1,1-Dichloroethene	ND	0.0010	1		Tert-Amyl-Methy	yl Ether (TA	ME)	ND	0.0020	1	
c-1,2-Dichloroethene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:		F	REC (%)	<u>Control</u> Limits		Qual
Dibromofluoromethane	104	75-141			1,2-Dichloroetha	ane-d4		108	73-151		
Toluene-d8	99	87-111			1,4-Bromofluoro	benzene		97	71-113		

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ٠

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	06/11/09
Work Order No:	09-06-1049
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg
	Page 3 of 6

Project: ARCO 11266

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	/Date d Anal	Tíme /zed	QC Balch ID
B-2 8'		· · ·	09-06-	09-06-1049-3-A 06/10/09 Solid 14:20		Solid	GC/MS Z	06/12/09	06/13 07:	3/09 19	090612L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0010	1		t-1,2-Dichloroet	hene		ND	0.0010	1	
Bromochloromethane	ND	0.0010	1		1,2-Dichloropro	pane		ND	0.0010	1	
Bromodichloromethane	ND	0.0010	1		c-1,3-Dichlorop	ropene		ND	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.010	1		t-1,3-Dichloropr	opene		ND	0.0010	1	
Bromoform	ND	0.0010	1		Ethylbenzene			ND	0.0010	1	
Bromomethane	ND	0.010	1		Methylene Chlo	ride		ND	0.010	1	
Carbon Tetrachloride	ND	0.0010	1		1,1,2,2-Tetrach	loroethane		ND	0.0010	1	
Chlorobenzene	ND	0.0010	1		Tetrachloroethe	ne		ND	0.0010	1	
Chloroethane	ND	0.0010	1		Toluene			ND	0.0010	1	
Chloroform	ND	0.0010	1		1,1,1-Trichloroe	thane		ND	0.0010	1	
Chloromethane	ND	0.0010	1		1,1,2-Trichloroe	thane		ND	0.0010	1	
Dibromochloromethane	ND	0.0010	1		Trichloroethene			ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Trichlorofluoron	nethane		ND	0.010	1	
1,2-Dichlorobenzene	ND	0.0010	1		Vinyl Chloride			ND	0.0010	1	
1,3-Dichlorobenzene	ND	0.0010	1		Xylenes (total)			ND	0.0010	1	
1,4-Dichlorobenzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	.)	ND	0.0010	1	
Dichlorodifluoromethane	ND	0.0010	1		Tert-Butyl Alcoh	iol (TBA)		ND	0.010	1	
1,1-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
1,2-Dichloroethane	ND	0.0010	1		Ethyl-t-Butyl Eth	ner (ETBE)		ND	0.0020	1	
1,1-Dichloroethene	ND	0.0010	1		Tert-Amyl-Meth	yl Ether (TA	ME)	ND	0.0020	1	
c-1,2-Dichloroethene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		1	REC (%)	<u>Control</u> Limits		<u>Quai</u>
Dibromofluoromethane	103	75-141			1,2-Dichloroetha	ane-d4		108	73-151		
Toluene-d8	101	87-111			1,4-Bromofluoro	benzene		96	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

09-06-1049 EPA 5030B EPA 8260B mg/kg

Page 4 of 6

06/11/09

Project: ARCO 11266

Client Sample Number		La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/ d Analy	Time /zed	QC Batch ID	
B-2 9.5'			09-06-	1049-4-A	9-4-A 06/10/09 Solid GC/MS Z 14:25		GC/MS Z	06/12/09	06/13 07:	3/09 49	090612L01
Parameler	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0010	1		t-1,2-Dichloroet	hene		ND	0.0010	1	
Bromochloromethane	ND	0.0010	1		1,2-Dichloropro	pane		ND	0.0010	1	
Bromodichloromethane	ND	0.0010	1		c-1,3-Dichlorop	ropene		ND	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.010	1		t-1,3-Dichloropr	opene		ND	0.0010	1	
Bromoform	ND	0.0010	1		Ethylbenzene			ND	0.0010	1	
Bromomethane	ND	0.010	1		Methylene Chlo	ride		ND	0.010	1	
Carbon Tetrachloride	ND	0.0010	1		1,1,2,2-Tetrach	loroethane		ND	0.0010	1	
Chlorobenzene	ND	0.0010	1		Tetrachloroethe	ne		ND	0.0010	1	
Chloroethane	ND	0.0010	1		Toluene			ND	0.0010	1	
Chloroform	ND	0.0010	1		1,1,1-Trichloroe	thane		ND	0.0010	1	
Chloromethane	ND	0.0010	1		1,1,2-Trichloroe	thane		ND	0.0010	1	
Dibromochloromethane	ND	0.0010	1		Trichloroethene			ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Trichlorofluorom	nethane		ND	0.010	1	
1,2-Dichlorobenzene	ND	0.0010	1		Vinyl Chloride			ND	0.0010	1	
1,3-Dichlorobenzene	ND	0.0010	1		Xylenes (total)			ND	0.0010	1	
1,4-Dichlorobenzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	E)	ND	0.0010	1	
Dichlorodifluoromethane	ND	0.0010	1		Tert-Butyl Alcoh	ol (TBA)		ND	0.010	1	
1,1-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
1,2-Dichloroethane	ND	0.0010	1		Ethyl-t-Butyl Eth	ner (ETBE)		ND	0.0020	1	
1,1-Dichloroethene	ND	0.0010	1		Terl-Amyl-Methy	yl Ether (T/	ME)	ND	0.0020	1	
c-1,2-Dichloroethene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:		[<u>REC (%)</u>	<u>Control</u> Limíts		<u>Qual</u>
Dibromofluoromethane	104	75-141			1,2-Dichloroetha	ane-d4		110	73-151		
Toluene-d8	99	87-111			1,4-Bromofiuoro	benzene		96	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received:06/11/09Work Order No:09-06-1049Preparation:EPA 5030BMethod:EPA 8260BUnits:mg/kgPage 5 of 6

Project: ARCO 11266

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ d Analy	Time /zed	QC Batch ID
Method Blank			099-12	-709-149	N/A	Solid	GC/MS Z	06/12/09	06/13 02:	3/09 24	090612L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0010	1		t-1,2-Dichloroet	hene		ND	0.0010	1	
Bromochloromethane	ND	0.0010	1		1,2-Dichloropro	pane		ND	0.0010	1	
Bromodichloromethane	ND	0.0010	1		c-1,3-Dichlorop	ropene		ND	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.010	1		t-1,3-Dichloropr	opene		ND	0.0010	1	
Bromoform	ND	0.0010	1		Ethylbenzene			ND	0.0010	1	
Bromomethane	ND	0.010	1		Methylene Chlo	ride		ND	0.010	1	
Carbon Tetrachloride	ND	0.0010	1		1,1,2,2-Tetrach	loroethane		ND	0.0010	1	
Chlorobenzene	ND	0.0010	1		Tetrachloroethe	ne		ND	0.0010	1	
Chloroethane	ND	0.0010	1		Toluene			ND	0.0010	1	
Chloroform	ND	0.0010	1		1,1,1-Trichloroe	thane		ND	0.0010	1	
Chioromethane	ND	0.0010	1		1,1,2-Trichloroe	thane		ND	0.0010	1	
Dibromochloromethane	ND	0.0010	1		Trichloroethene			ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Trichlorofluoron	nethane		ND	0.010	1	
1,2-Dichlorobenzene	ND	0.0010	1		Vinyl Chloride			ND	0.0010	1	
1,3-Dichlorobenzene	ND	0.0010	1		Xylenes (total)			ND	0.0010	1	
1,4-Dichlorobenzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	.)	ND	0.0010	1	
Dichlorodifluoromethane	ND	0.0010	1		Terl-Butyl Alcoh	iol (TBA)		ND	0.010	1	
1,1-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
1,2-Dichloroethane	ND	0.0010	1		Ethyl-t-Butyl Eth	er (ETBE)		ND	0.0020	1	
1,1-Dichloroethene	ND	0.0010	1		Tert-Amyl-Methy	yl Ether (TA	ME)	ND	0.0020	1	
c-1,2-Dichloroethene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		Ē	REC (%)	<u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	98	75-141			1,2-Dichloroetha	ane-d4		101	73-151		
Toluene-d8	97	87-111			1,4-Bromofluoro	benzene		95	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 6 of 6

Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	06/11/09
Work Order No:	09-06-1049
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	mg/kg

Project: ARCO 11266

Client Sample Number			La	ıb Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ d Analy	Time /zed	QC Batch ID
Method Blank			099-12	-709-151	N/A	Solid	GC/MS Z	06/13/09	06/1: 12:	3/09 49	090613L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0010	1		t-1,2-Dichloroet	hene		ND	0.0010	1	
Bromochloromethane	ND	0.0010	1		1,2-Dichloropro	pane		ND	0.0010	1	
Bromodichloromethane	ND	0.0010	1		c-1,3-Dichlorop	ropene		ND	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.010	1		t-1,3-Dichloropr	opene		ND	0.0010	1	
Bromoform	ND	0.0010	1		Ethylbenzene			ND	0.0010	1	
Bromomethane	ND	0.010	1		Methylene Chlo	ride		ND	0.010	1	
Carbon Tetrachloride	ND	0.0010	1		1,1,2,2-Tetrach	loroethane		ND	0.0010	1	
Chlorobenzene	ND	0.0010	1		Tetrachloroethe	ne		ND	0.0010	1	
Chloroethane	ND	0.0010	1		Toluene			ND	0.0010	1	
Chloroform	ND	0.0010	1		1,1,1-Trichloroe	thane		ND	0.0010	1	
Chloromethane	ND	0.0010	1		1,1,2-Trichloroe	thane		ND	0.0010	1	
Dibromochloromethane	ND	0.0010	1		Trichloroethene			ND	0.0010	1	
1,2-Dibromoethane	ND	0.0010	1		Trichlorofluorom	nethane		ND	0.010	1	
1,2-Dichlorobenzene	ND	0.0010	1		Vinyl Chloride			ND	0.0010	1	
1,3-Dichlorobenzene	ND	0.0010	1		Xylenes (total)			ND	0.0010	1	
1,4-Dichlorobenzene	ND	0.0010	1		Methyl-t-Butyl E	ther (MTBE	.)	ND	0.0010	1	
Dichlorodifluoromethane	ND	0.0010	1		Tert-Butyl Alcoh	ol (TBA)		ND	0.010	1	
1,1-Dichloroethane	ND	0.0010	1		Diisopropyl Ethe	er (DIPE)		ND	0.0020	1	
1,2-Dichloroethane	ND	0.0010	1		Ethyl-t-Butyl Eth	er (ETBE)		ND	0.0020	1	
1,1-Dichloroethene	ND	0.0010	1		Tert-Amyl-Methy	l Ether (TA	ME)	ND	0.0020	1	
c-1,2-Dichloroethene	ND	0.0010	1								
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:		Ē	REC (%)	Control		Qual
Dibromofluoromethane	103	<u>Limits</u> 75-141			1.2-Dichloroetha	ane-d4		104	<u>Limits</u> 73-151		
Toluene-d8	98	87-111			1,4-Bromofluoro	benzene		96	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

alscience nvironmental aboratories, Inc.

Stratus Environmental, inc.	Date Received:	06/11/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-06-0361-1	Solid	ICP 5300	06/12/09		06/13/09	090612502
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Lead	99	99	75-125	0	0-20	

RPD - Relative Percent Difference , CL - Control Limit

alscience aboratories, Inc.

Quality Control - PDS / PDSD

Stratus Environmental, inc.	Date Received	06/11/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date	Analyzed	PDS/PDSD Batch Number
09-06-0361-1	Solid	ICP 5300	06/12/09	06	/13/09	090612S02
Parameter	PDS %REC	PDSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Lead	97	96	75-125	0	0-20	

RPD - Relative Percent Difference , CL - Control Limit

alscience nvironmental aboratories, Inc.

Stratus Environmental, inc.	Date Received:	06/11/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-06-1047-1	Solid	GC 1	06/12/09		06/12/09	090612S01
Parameter	MS_%REC	MSD %REC	<u>%REC CL</u>	RPD	<u>RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	86	87	42-126	1	0-25	

RPD - Relative Percent Difference , CL - Control Limit

alscience nvironmental aboratories, Inc.

Stratus Environmental, inc.	Date Received:	06/11/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-06-1047-2	Solid	GC/MS Z	06/12/09		06/13/09	090612S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	84	87	78-114	3	0-14	
Chloroform	89	81	80-120	10	0-20	
1,1-Dichloroethane	84	85	80-120	1	0-20	
1,2-Dichloroethane	90	93	80-120	3	0-20	
1,1-Dichloroethene	82	83	73-127	1	0-21	
Ethanol	91	89	45-135	2	0-29	
Tetrachloroethene	70	73	80-120	5	0-20	LN,AY
Toluene	83	85	74-116	2	0-16	
Trichloroethene	82	84	74-122	2	0-17	
Methyl-t-Butyl Ether (MTBE)	90	93	69-123	4	0-18	

RPD - Relative Percent Difference, CL - Control Limit

hu_

alscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Stratus Environmental, inc.	Date Received:	06/11/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
B-2 6.5'	Solid	GC/MS Z	06/13/09		06/13/09	090613S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	<u>RPD CL</u>	Qualifiers
Benzene	82	83	78-114	1	0-14	
Chloroform	88	87	80-120	2	0-20	
1,1-Dichloroethane	84	84	80-120	0	0-20	
1,2-Dichloroethane	90	88	80-120	2	0-20	
1,1-Dichloroethene	79	80	73-127	1	0-21	
Ethanol	84	77	45-135	8	0-29	
Tetrachloroethene	60	60	80-120	0	0-20	LN,AY
Toluene	82	82	74-116	0	0-16	
Trichloroethene	78	78	74-122	1	0-17	
Methyl-t-Butyl Ether (MTBE)	90	89	69-123	0	0-18	

RPD - Relative Percent Difference , CL - Control Limit

Mulhan

alscience nvironmental Quality Control - LCS/LCS Duplicate *aboratories, Inc.*

Date Received:	N/A
Work Order No:	09-06-1049
Preparation:	EPA 3050B
Method:	EPA 6010B
	Date Received: Work Order No: Preparation: Method:

Project: ARCO 11266

Quality Control Sample ID	Matrix	Matrix Instrument		nte ared	Date Analyzed		LCS/LCSD Batc Number	h
097-01-002-12,399	Solid	ICP 5300	06/1	2/09	06/13/	09	090612L02	
Parameter	LCS	6REC LC	SD %REC	<u>%RE</u>	C CL	RPD	RPD CL	Qualifiers
Lead	101		103	80	-120	2	0-20	

RPD - Relative Percent Difference, CL - Control Limit

alscience nvironmental aboratories, Inc.

Stratus Environmental inc	Date Received:	NI/A
2220 Compron Dark Drive, Suite 550	Mark Order Net	
5550 Cameron Park Drive, Suite 550	Work Order No:	09-06-1049
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: ARCO 11266

Quality Control Sample ID	Matrix	Matrix Instrument		Date Prepared		te /zed	LCS/LCSD Bate Number	:h
099-12-697-118	Solid	GC 1	06/1	2/09	06/12	/09	090612B01	
Parameter	LCS	<u> KREC LO</u>	CSD %REC	<u>%R</u>	<u>EC CL</u>	RPD	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	92		96	70	-118	5	0-20	

RPD - Relative Percent Difference, CL - Control Limit

ha

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: N/A Work Order No: 09-06-1049 Preparation: EPA 5030B Method: EPA 8260B

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-709-149	Solid	GC/MS Z	06/12/09	06/12/09		090612L	.01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	102	102	84-114	79-119	0	0-7	
Bromobenzene	102	102	80-120	73-127	0	0-20	
Bromochloromethane	95	96	80-120	73-127	1	0-20	
Bromodichloromethane	102	102	80-120	73-127	1	0-20	
Bromoform	103	101	80-120	73-127	3	0-20	
Bromomethane	86	82	80-120	73-127	4	0-20	
n-Butylbenzene	106	110	77-123	69-131	4	0-25	
sec-Butylbenzene	105	110	80-120	73-127	4	0-20	
tert-Butylbenzene	105	108	80-120	73-127	3	0-20	
Carbon Disulfide	101	102	80-120	73-127	1	0-20	
Carbon Tetrachloride	100	101	69-135	58-146	0	0-13	
Chlorobenzene	100	100	85-109	81-113	0	0-8	
Chloroethane	100	101	80-120	73-127	1	0-20	
Chloroform	97	95	80-120	73-127	2	0-20	
Chloromethane	93	96	80-120	73-127	3	0-20	
2-Chlorotoluene	105	103	80-120	73-127	2	0-20	
4-Chlorotoluene	102	105	80-120	73-127	4	0-20	
Dibromochloromethane	101	100	80-120	73-127	1	0-20	
1,2-Dibromo-3-Chloropropane	95	101	80-120	73-127	6	0-20	
1,2-Dibromoethane	100	99	80-120	73-127	2	0-20	
Dibromomethane	102	102	80-120	73-127	0	0-20	
1,2-Dichlorobenzene	101	105	80-110	75-115	3	0-10	
1,3-Dichlorobenzene	100	104	80-120	73-127	3	0-20	
1,4-Dichlorobenzene	97	103	80-120	73-127	6	0-20	
Dichlorodifluoromethane	101	100	80-120	73-127	1	0-20	
1,1-Dichloroethane	100	101	80-120	73-127	1	0-20	
1,2-Dichloroethane	103	103	80-120	73-127	0	0-20	
1,1-Dichloroethene	102	102	83-125	76-132	0	0-10	
c-1,2-Dichloroethene	98	98	80-120	73-127	0	0-20	
I-1,2-Dichloroethene	102	102	80-120	73-127	0	0-20	
1,2-Dichloropropane	98	100	79-115	73-121	2	0-25	
1,3-Dichloropropane	99	98	80-120	73-127	1	0-20	
2,2-Dichloropropane	94	96	80-120	73-127	2	0-20	
1,1-Dichloropropene	101	102	80-120	73-127	0	0-20	
c-1,3-Dichloropropene	105	105	80-120	73-127	0	0-20	
t-1,3-Dichloropropene	104	103	80-120	73-127	1	0-20	
Ethylbenzene	107	105	80-120	73-127	2	0-20	
Isopropylbenzene	109	107	80-120	73-127	1	0-20	

RPD - Relative Percent Difference , CL - Control Limit

hM

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Stratus Environmental, inc.	Date Received:
3330 Cameron Park Drive, Suite 550	Work Order No:
Cameron Park, CA 95682-8861	Preparation:
	Method:

N/A 09-06-1049

EPA 5030B EPA 8260B

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 06/12/09		LCS/LCSD Batch Number 090612L01	
099-12-709-149	Solid	GC/MS Z	06/12/09				
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
p-Isopropyltoluene	104	108	80-120	73-127	4	0-20	
Methylene Chloride	99	99	80-120	73-127	0	0-20	
Naphthalene	95	102	80-120	73-127	7	0-20	
n-Propylbenzene	108	107	80-120	73-127	0	0-20	
Styrene	108	107	80-120	73-127	1	0-20	
Ethanol	98	94	50-134	36-148	4	0-23	
1,1,1,2-Tetrachloroethane	102	101	80-120	73-127	1	0-20	
1,1,2,2-Tetrachloroethane	92	92	80-120	73-127	0	0-20	
Tetrachloroethene	105	105	80-120	73-127	1	0-20	
Toluene	101	101	79-115	73-121	0	0-8	
1,2,3-Trichlorobenzene	93	100	80-120	73-127	7	0-20	
1,2,4-Trichlorobenzene	92	101	80-120	73-127	9	0-20	
1,1,1-Trichloroethane	100	102	80-120	73-127	2	0-20	
1,1,2-Trichloroethane	105	100	80-120	73-127	5	0-20	
Trichloroethene	105	108	87-111	83-115	2	0-7	
Trichlorofluoromethane	97	97	80-120	73-127	1	0-20	
1,2,3-Trichloropropane	97	99	80-120	73-127	3	0-20	
1,2,4-Trimethylbenzene	105	108	80-120	73-127	3	0-20	
1,3,5-Trimethylbenzene	104	104	80-120	73-127	0	0-20	
Vinyl Acetate	80	79	80-120	73-127	2	0-20	
Vinyl Chloride	95	99	72-126	63-135	4	0-10	
p/m-Xylene	107	105	80-120	73-127	1	0-20	
o-Xylene	110	106	80-120	73-127	4	0-20	
Methyl-t-Butyl Ether (MTBE)	95	98	75-129	66-138	3	0-13	
Tert-Butyl Alcohol (TBA)	100	96	66-126	56-136	4	0-24	
Diisopropyl Ether (DIPE)	96	98	77-125	69-133	2	0-13	
Ethyl-t-Butyl Ether (ETBE)	98	100	72-132	62-142	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	100	102	77-125	69-133	2	0-10	

Total number of LCS compounds : 66 Total number of ME compounds : 1 Total number of ME compounds allowed : 3 LCS ME CL validation result : Pass

> RPD - Relative Percent Difference, CL - Control Limit

n M

Date Received:

Work Order No:

Preparation:

Method:

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

N/A 09-06-1049 EPA 5030B

EPA 8260B

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-709-151	Solid	GC/MS Z	06/13/09	06/13/09		090613L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	91	94	84-114	79-119	3	0-7	
Bromobenzene	96	97	80-120	73-127	1	0-20	
Bromochloromethane	91	112	80-120	73-127	21	0-20	RB
Bromodichloromethane	96	99	80-120	73-127	4	0-20	
Bromoform	97	100	80-120	73-127	3	0-20	
Bromomethane	77	78	80-120	73-127	1	0-20	LR
n-Butylbenzene	96	99	77-123	69-131	3	0-25	
sec-Butylbenzene	93	95	80-120	73-127	2	0-20	
tert-Butylbenzene	96	98	80-120	73-127	2	0-20	
Carbon Disulfide	91	92	80-120	73-127	1	0-20	
Carbon Tetrachloride	89	91	69-135	58-146	2	0-13	
Chlorobenzene	91	92	85-109	81-113	1	0-8	
Chloroethane	91	93	80-120	73-127	2	0-20	
Chloroform	96	100	80-120	73-127	5	0-20	
Chloromethane	88	89	80-120	73-127	2	0-20	
2-Chlorotoluene	93	94	80-120	73-127	1	0-20	
4-Chlorotoluene	95	97	80-120	73-127	2	0-20	
Dibromochloromethane	98	98	80-120	73-127	0	0-20	
1,2-Dibromo-3-Chloropropane	85	89	80-120	73-127	5	0-20	
1,2-Dibromoethane	97	98	80-120	73-127	1	0-20	
Dibromomethane	98	101	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	99	103	80-110	75-115	4	0-10	
1,3-Dichlorobenzene	97	99	80-120	73-127	2	0-20	
1,4-Dichlorobenzene	95	96	80-120	73-127	1	0-20	
Dichlorodifluoromethane	84	86	80-120	73-127	2	0-20	
1,1-Dichloroethane	92	95	80-120	73-127	3	0-20	
1,2-Dichloroethane	97	99	80-120	73-127	2	0-20	
1,1-Dichloroethene	90	91	83-125	76-132	2	0-10	
c-1,2-Dichloroethene	91	111	80-120	73-127	21	0-20	RB
t-1,2-Dichloroethene	92	93	80-120	73-127	1	0-20	
1,2-Dichloropropane	95	97	79-115	73-121	2	0-25	
1,3-Dichloropropane	97	98	80-120	73-127	1	0-20	
2,2-Dichloropropane	93	90	80-120	73-127	3	0-20	
1,1-Dichloropropene	90	92	80-120	73-127	2	0-20	
c-1,3-Dichloropropene	105	108	80-120	73-127	2	0-20	
t-1,3-Dichloropropene	105	107	80-120	73-127	2	0-20	
Ethylbenzene	93	94	80-120	73-127	1	0-20	
Isopropylbenzene	94	95	80-120	73-127	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

hu

Stratus Environmental, inc.						
3330 Cameron Park Drive, Suite 550						
Cameron Park, CA 95682-8861						

Date Received:	N/A
Work Order No:	09-06-1049
Preparation:	EPA 5030B
Method:	EPA 8260B

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-709-151	Solid	GC/MS Z	06/13/09	06/13/09		090613L)1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
p-lsopropyltoluene	94	96	80-120	73-127	2	0-20	
Methylene Chloride	96	98	80-120	73-127	2	0-20	
Naphthalene	97	101	80-120	73-127	4	0-20	
n-Propylbenzene	93	95	80~120	73-127	1	0-20	
Styrene	99	102	80-120	73-127	3	0-20	
Ethanol	90	88	50-134	36-148	2	0-23	
1,1,1,2-Tetrachloroethane	95	96	80-120	73-127	0	0-20	
1,1,2,2-Tetrachloroethane	99	98	80-120	73-127	1	0-20	
Tetrachloroethene	79	83	80-120	73-127	5	0-20	LR
Toluene	91	93	79-115	73-121	2	0-8	
1,2,3-Trichlorobenzene	98	101	80-120	73-127	3	0-20	
1,2,4-Trichlorobenzene	99	100	80-120	73-127	1	0-20	
1,1,1-Trichloroethane	88	91	80-120	73-127	3	0-20	
1,1,2-Trichloroethane	100	101	80-120	73-127	1	0-20	
Trichloroethene	87	92	87-111	83-115	5	0-7	
Trichlorofluoromethane	81	85	80-120	73-127	4	0-20	
1,2,3-Trichloropropane	92	93	80-120	73-127	2	0-20	
1,2,4-Trimethylbenzene	97	100	80-120	73-127	3	0-20	
1,3,5-Trimethylbenzene	93	93	80-120	73-127	0	0-20	
Vinyl Acetate	118	121	80-120	73-127	2	0-20	
Vinyl Chloride	85	89	72-126	63-135	5	0-10	
p/m-Xylene	94	95	80-120	73-127	1	0-20	
o-Xylene	97	98	80-120	73-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	100	102	75-129	66-138	2	0-13	
Tert-Butyl Alcohol (TBA)	97	101	66-126	56-136	3	0-24	
Diisopropyl Ether (DIPE)	98	101	77-125	69-133	3	0-13	
Ethyi-t-Butyl Ether (ETBE)	102	116	72-132	62-142	12	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	105	77-125	69-133	2	0-10	

Total number of LCS compounds : 66

Total number of ME compounds : 3

Total number of ME compounds allowed : 3

LCS ME CL validation result : Pass

RPD - Relative Percent Difference . CL - Control Limit

hu

M

When _

Work Order Number: 09-06-1049

<u>Qualifier</u>	Definition
AX	Sample too dilute to quantify surrogate.
BA	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.

Mulum_

<u>Qualifier</u>	Definition
LR	LCS recovery below method control limits.
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

۰ (Richfield ompany	Ladora BP/ARC P/ BP/ARC Fa	atory Ma roject Name: acility No:	nag	jer	ner	nt F Zizi	Pro	gra	m I	LaN	1P	Cha	in	Of C Req Lab	Cus I Due Wor	toc Dati	ly R e (mn der N	lec n/dd/	ord yy):		(òн		R	F ush TA	^v age T: Yes_	i	of NoX
Lab Na Lab Ad Lab PM Lab Ph Lab Sh Other II BP/AR(ame: CALSUBNCE Idress: 7440 LINCOIN U A: FICHAND V- ione: (744) 895 - 5494 ipping Acent: A255 ttle Order No: nfo: CEBM: PAML Surve	with frances	22 Granue	BP/ City Lea Cali Enfo Acc Stag	/ARC /, Sta id Re iforni os Pi count ge: M :	Faci ate, Zi egulate a Glo ropos ing M	lity Ac iP Coo ory Ag bal ID al No: ode;	ddress de: gency No.:	5: V: 1 : A : A : D : Co	SH BL C C O O O O O O O O O O O O O O O O O	1 2001 2001 - 00 - 00 - 00	PAL 100 100 001 001 000 Pres	A DC-BU		F	C-RM			Cons Cons Addr Cons Phor Ema Invoi	er: sultant sultant ess: sultant ne: il EDD ce To:	/Contra /Contra /Contra 30 (To:	ictor CA ctor F CA ctor F CA ctor F	ST Project M:	PUA NO: LON SAL	EVI PAL STRI	12.60 te Dr OHNS UHNS Contract	, , , , , , , , , , , , , , , , , , ,	550)) ET
EBM Er	none: mail:				uid			er of Containers	q						(2015 3)	+(Br60)	(elle)	(9760)	A (8260)	(f. 002) and	112 VIC'S (020)				 Fu	S Il Data F	ype & Q itandard _ Package _	C Le	
No.	B-2 5 B-2 5 B-2 5 B-2 5 B-2 5 C-2 4-5		11me 1405 1410 1420 1425	+ + + Soil/Solid	Water / Lig	Air / Vapor		Total Numt	+ + + T Unpreserve	H ₂ SO ₄	HNO3	H	Methanol		++++ + Geo	++++ + Bere	++++ 504	+ + + + + E08	++++++ 12DL	+ + + + + + Perm 1	+ + + + + Hullogena				Vote: If s. Sample" i Ind initial	Cc ample noi in comme any prep	Domments t collected, inits and sin rinited samp	S indicat gle-str ple des	e "No ike out :cription,
Sampler	's Name: CE					R	elinq	uish	edB	iy / A	ffillat	ion			Da	te	Tin				Accep		By/A	filia	fion				
Sampler Shipmen Shipmen Special T	s Company: Status t Method: GSD t Tracking No: 10616 Instructions: HIS LINE - LAB USE ONLY: Custo	Ship Date: 6	ioloq e: Yes / No		emp	Blani	Ca k: Yes	5 / No		zĘ co	E	emp c	on Rece	eipt: _	6 ₁₀	69	¥20 °F/C		Trip	2 Biant		- (25				Date 9/1/3	9 /1	E adde 24 of 25

-

-

1. I I I I I I I

....

1 - - - 1 - - 1

	WOI	RK ORDER #:	09-0	Pa 6-1	ge 25 of 25
aboratories, Inc. SAMPL	EREC	EIPT FOR	RM	Cooler _	_ of _/
CLIENT: <u>stratus</u>			DATE	06/1	109
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, Temperature	not frozen) CF) = APM contact aceived on ic d on ice fo	ed by:). e/chilled on same d r transport by Co	□ Blank ay of sam; purier. Only	<mark>⊘ Samp</mark> bling.	le 1. Y L
CUSTODY SEALS INTACT: Cooler Sample	ot Intact) ot Intact)	⊡ Not Present ☑ Not Present	□ N/A	Initia Initia	1: YL 1: YL
SAMPLE CONDITION:	<u></u>		Yes	No	N/A
Chain-Of-Custody (COC) document(s) receive	ed with sam	ples	. EÍ		
COC document(s) received complete			. Z		
□ Collection date/time, matrix, and/or # of container	s logged in ba	sed on sample labels.			
COC not relinquished. D No date relinquished	i. 🗌 No tirr	e relinquished.	,		
Sampler's name indicated on COC			р		
Sample container label(s) consistent with CO	D	• • • • • • • • • • • • • • • • • • • •	ď		
Sample container(s) intact and good condition	l	••••••••••••••••••••••••••••	Ø		
Correct containers and volume for analyses re	equested		Z		
Analyses received within holding time	• • • • • • • • • • • • • • • • • • • •	•••••••	Ź		. 🗔
Proper preservation noted on COC or sample	container	••••••			$\not\!$
□ Unpreserved vials received for Volatiles analy	/sis				
Volatile analysis container(s) free of headspace	æ	• • • • • • • • • • • • • • • • • • • •			Ø
Tedlar bag(s) free of condensation	• • • • • • • • • • • • • • • • • • • •				\square
CONTAINER TYPE:	,				
Solid:	2 Sleeve	□EnCores [®] □	TerraCor	es® □	
Water: □VOA □VOAh □VOAna₂ □125AG	B 🗆 125AC	Bh □125AGBp	□1AGB	□1AGB na₂ [⊐1AGBs
□500AGB □500AGJ □500AGJs □250AG	GB □250C	GB □250CGBs	□1PB	□500PB □5	i00PBna
□250PB □250PBn □125PB □125PBznna	□100PB	□100PB na₂ □			
Air: □Tedlar [®] □Summa [®] □ O	ther: 🗆		Checke	d/Labeled bv:	ri
Container: C: Clear A: Amber P: Plastic G: Glass J: Ja Preservative: h: HCL n: HNC3 na2:Na2S2Oa Na: NaOH p	יר (Wide-mouth) וויי (Wide-mouth)	B: Bottle (Narrow-mou	ith) Field-filtered	Reviewed by: Scanned by:	RM YL

. . .

SOP T100_090 (03/13/09)

GLOBAL_ID	FIELD_PT_NAME	FIELD_PT_X	Y_SURVEY LAT	TTUDE L	ONGITUDE	XY_MET	HOC XY_DATUM XY_	_ACC_VAL	XY_SURVEY_ORG	GPS_EQUIP_TY XY_SURVEY_DES
T0600100207	MW-1	MW	6/22/2009	37.7666142	-122.2412812	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	MW-2	MW	6/22/2009	37.7665461	-122.2411150	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	MW-3	MW	6/22/2009	37.7664036	-122.2412079	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	MW-4	MW	6/22/2009	37.7665568	-122.2414497	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	MW-5	MW	6/22/2009	37.7666556	-122.2414517	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	MW-6	MW	6/22/2009	37.7666447	-122.2411498	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	B-1		6/22/2009	37.7665277	-122.2412634	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	B-2		6/22/2009	37.7664155	-122.2412226	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR
T0600100207	RW-1		6/22/2009	37.7665845	-122.2411828	CGPS	NAD83	30	WOOD RODGERS PLS 7944	TR

\\Chico\public\Projects\2006\06-08-658 BP 11266 1541 Park Alameda\200906 Survey\CA_11266_090622_WR_-_GEO_XY_Lat_Long_Survey.xls

GLOBAL_ID	FIELD_PT_NAMEELE	/_SURVEY_E	LEVATION ELEV_N	IETHOD ELEV_DATUM	ELEV_ACC_VAL ELEV_SURVEY_ORG	RISER_HT ELEV_DESC
T0600100207	MW-1	6/22/2009	28.62 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.54
T0600100207	MW-2	6/22/2009	28.76 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.52
T0600100207	MW-3	6/22/2009	29.43 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.48
T0600100207	MW-4	6/22/2009	29.61 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.29
T0600100207	MW-5	6/22/2009	28.72 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.26
T0600100207	MW-6	6/22/2009	28.82 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.20
T0600100207	B-1	6/22/2009	29.59 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	
T0600100207	B-2	6/22/2009	30.12 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	
T0600100207	RW-1	6/22/2009	28.63 DIG	NAVD88	0.01 WOOD RODGERS PLS 7944	-0.53

EFF_DATE

APPENDIX C

GEOTRACKER UPLOAD CONFIRMATION REPORTS

STATE WATER RESOURCES CONTROL BOARD

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: EDF - Site Investigation Hand Auger Boring 0609 T0600100207 BP #11266 09061049 fix.zip Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 7/22/2009 9:36:51 AM 5335898160

VIEW QC REPORT

VIEW DETECTIONS REPORT

GEOTRACKER ESI

UPLOADING A GEO_BORE FILE

SUCCESS

Your GEO_BORE file has been successfully submitted!

Submittal Type: Facility Global ID: Field Point: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_BORE T0600100207 B-2 BP #11266 GEO_BORE B-2.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 7/30/2009 1:02:55 PM 5645488917

Copyright © 2008 State of California

1 of 1

STATE WATER RESOURCES CONTROL BOARD

UPLOADING A GEO_MAP FILE

SUCCESS

Your GEO_MAP file has been successfully submitted!

Submittal Type: Facility Global ID: Facility Name: File Name: Username: Username: IP Address: Submittal Date/Time: Confirmation Number:

GEO_MAP T0600100207 BP #11266 1541 Park St_2009-06-22.pdf Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 8/3/2009 1:38:55 PM 3069307625

GEOTRACKER ESI

UPLOADING A GEO_XY FILE

5	000233
Processing is co Your file has b	mplete. No errors were found! een successfully submitted!
Submittal Type:	GEO_XY
<u>Submittal Title:</u>	GEO_XY MW-1 to 6, B-1, B-2, RW-1
Facility Global ID:	T0600100207
Facility Name:	BP #11266
File Name:	GEO_XY.zip
Organization Name:	Broadbent & Associates, Inc.
<u>Username:</u>	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	8/3/2009 1:44:05 PM
Confirmation Number:	1991161525

GEOTRACKER ESI

UPLOADING A GEO_Z FILE

0	000200
Processing is con Your file has be	nplete. No errors were found! een successfully submitted!
Submittal Type:	GEO_Z
Submittal Title:	GEO_Z MW-1 to 6, B-1, B-2, RW-1
Facility Global ID:	T0600100207
Facility Name:	BP #11266
File Name:	GEO_Z.zip
Organization Name:	Broadbent & Associates, Inc.
<u>Username:</u>	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	8/3/2009 1:46:41 PM
Confirmation Number:	4160086393
GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

30	100E33
Processing is com Your file has bee	plete. No errors were found! en successfully submitted!
<u>Submittal Type:</u>	GEO_WELL
Submittal Title:	2Q09 GEO_WELL 11266
Facility Global ID:	T0600100207
Facility Name:	BP #11266
File Name:	GEO_WELL.zip
Organization Name:	Broadbent & Associates, Inc
<u>Username:</u>	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	7/22/2009 9:15:09 AM
Confirmation Number:	9546746373

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Submittal Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: EDF - Monitoring Report - Quarterly 2Q09 GW Monitoring T0600100207 BP #11266 09070019.zip Broadbent & Associates, Inc. BROADBENT-C 67.118.40.90 7/22/2009 9:17:36 AM 6792077481

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

APPENDIX D

STRATUS GROUND-WATER SAMPLING DATA PACKAGE (Includes Field Data Sheets, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

July 15, 2009

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, NV 89502

Re: Groundwater Sampling Data Package, BP Service Station No. 11266, located at 1541 Park Street, Alameda, California

General Information

Data Submittal Prepared / Reviewed by: Carol Huff / Jay Johnson Phone Number: (530) 676-6000 On-Site Supplier Representative: Tony Hill

Sampling Date: June 30, 2009 Unusual Field Conditions: None Scope of Work Performed: Quarterly monitoring and sampling Variations from Work Scope: Well MW-5 was dry.

This submittal presents the data collected in association with routine groundwater monitoring. The attachments include field data sheets, non-hazardous waste data form, chain of custody documentation, certified analytical results, and field procedures for groundwater sampling. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations.

Mr. Rob Miller, Broadbent & Associates, Inc. Groundwater Sampling Data Package BP No. 11266, Alameda, CA Page 2

Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

- Non-Hazardous Waste Data Form
- Chain of Custody Documentation
- Certified Analytical Results
- Field Procedures for Groundwater Sampling

CC: Mr. Paul Supple, BP/ARCO

S7 ENVIR	KATUS

al and dependence on the other states	\A.			Signature	<u> </u>	B				. Proje	ect PM DATE	5	12/2/	-04 histon			
	V	ater Level [Data		a and a second	Purge \	/olume Cal	culations					had 1	0-1	·····		
Well ID	Time	Depth to Product	Depth to Water	Total	Water	Diamotor		3 casing	Actual		Purge	Metho	d	DTW	Sample Rec	ord	Field
MILT		(feet)	(feet)	(feet)	column (feet)	(inches)	Multiplier	volumes (gallons)	water purged	No Purge	Bailer	Pump	other	sample	Sample I.E	Sample	D
	1105		8.85	24.14	15.29	2	. گ	7.65	(gallons) 7.5	<u> </u> 				(feet)		Time	(mg
3	1653		10.03	19.32	9.29	2	.5	7.46	7.5	 	Ŷ			10.82	MW.	1205	0.0
1 5	111 a 1109		9.47	21.55	12.08	à	.s	6.04	4.5		X			10.38	3	1320	Q.4
1W-6	1315		1.83	18.70	8.89	d	.5		-	$\left \right\rangle$				1.01	$\left \begin{array}{c} 1 \\ 1 \\ \zeta \end{array} \right $	1140	3.5
711-1	1051		10.16	98.10	17.94	6	4.4	1.75	4.5		_X	$\overline{\mathbf{v}}$		9.83	MN1-6	1340	RE
														12.00	KNN-1	1220	3.3
Mu	5 6																
liplier	·D 2044	bottom	. DRY-1	97 Crosh	ease refer t	Somet	hing down	n well.	<u> </u>								
RW-	1.0 4" = 2. Now	0 6" = 4.4 Function	ing pump	in het	I/Conductivi	ity/tempera	ater sampli ture Meter	ng field pro - Oakton M	cedures odel PC-10)	÷			C/ pH	ATH	N DATE	1
110	~1 ~ SOU	us in	well'	4 - 00	- meter - Oa	akton 300 S	Series (DO	is always n	easured b	efore <u>p</u>	urge)		Conc	iuctivity		/	

Site Address 1541 Rock St City Alameda I CA Site Sampled b TH

Site Number <u>Ario 11266</u> Project No. <u>E11266-04</u> Project PM <u>Jay Johnson</u> Date Sampled 6 30 04

	1W·4			1140	Well ID	MW.	1	· ·		 ہم/
purge stan	t time baller			No od	Jourge st	tart time	balor	(.	Shern)	$-\frac{1}{da}$
	Temp C	Hq	.cond	j gallo	ns		Temp (Ha C	cor	
time	21.1	7.10	557	v Ø	time		19.8	6.9	7 13	20
time	20.1	7.02	564	3	time		20.2	7.0	7 604	5 4
time	<i>d0.</i> [7.00	553	6	ltime		19.9	7.16	630	7.
ltime					time					
purge stop	time				pugre sto	op time				
Well ID 🖡	W-1			1250	Well ID	MW.C	2			1301
purge start l	ime 1208			edor	purge sta	art time 🖌	Sailer			No a
		pH	cond	gallon	5		Temp C	рН	conc	galio
time	17.6	7.35	557	$ \phi $	time		19.9	7.61	528	C
time	20.0	7.65	554	40	time		19.6	7.42	554	4
time	<u> </u>	7.55	350	79	time		19,2	7.57	564	7.5
time					time				-	
purge stop til	me 1248				purge stor	o time				
Well ID Mu	<u>y.3</u>			1320		7W-6				1340
purge start tir	ne bally		N	6 adol	purge star	t time 🛵	Ur			10 add
		pH	cond	gallons		· ·	Temp C	рН	cond	gallon
ime	d.d	7.54	686	Ø	time		<i>da.</i> 1	7.18	561	Ø
ime	dia	1.45	647	<u>d</u> .5	time		71.6	7.10	575	2.5
ime	d.d.	1.98	107	4.5	time	á	1.4	7.11	565	4.5
me					time				<u> </u>	
urge stop tim	le 				ourge stop	time				
Veli ID					Vell ID					
urge start tim	e 1 1				ourge start i	time				
·	Temp C	pH	cond g	allons		T	emp C	Hq_	cond	gallons
ne				<u> ti</u>	me					
ne				<u> ti</u>	me					
nə				ti	ne			,		
าอ					ne					
rge stop time					urge stop ti	mie			_	

WELLHEAD OBSERVATION FORM

Site Name/Number: Ario 11266 Date: 630109 Technican: A.H.

Wel LD	-	Box in Good Condition?	Lock Missing?	Water in Wellbox?	Water Level Relative to Cap?	- Well Cap?	Bolts Missing?	Bolts Stupped?	Bolt Holes Stripped?	Cracked or Broken Lid?	Cracked or Broken Box?	Grout Level more than Ift below TOC?		Additional Comments
-		N = Yes Blank = Mo	X = Yes (replaced) Work = ths	X = Yee Mod e Ha	$\lambda = \lambda \text{bove cap}$ B = 0 clove cap L = 1, cost w/ cap	f = lubia M = Missing or Compromized (explored)	X in Yes Maak = 1de	N = Yes Mark = Pro	N = Yes Dinak = pla	X = Yes Maak = ido	R = Yes Mint = No	X≈Yes Blackj≉ Flo		an en en elland
tim-	1	7						Charles and Constraints of the Andrew Spin of the Constraints of the C	an full different propriation in the state of the subsection of					
	0/2	5	 	<u>X</u>	B	-								ан талана ну тур кулад алана ал тур улан түр
	<u>ン</u> 4	×	[]	<u> </u>										
*** ***	5		·····		-		V -					/ ==== == ============================	- P 1.	
MW-	6	X					<u>}</u>						Dolfs	Broke off in bult hole
RW-	1_	<u> </u>												
··			·							A - 14	· · · · · · · · · · · · · · · · · · ·			
the and the field and the second of														
· · · · · · · · · · · · · · · · · · ·														
· · · · · · · · · · ·		······································					i				· · · · · · · · · · · · · · · · · · ·			
·····		·							·				·	
d.,							· · · · · · · · · · · · · · · · · · ·			. *				
	·····	· · · · · · · · · · · · · · · · · · ·												
A	,		· · · · · · · · · · · · · · · · · · ·							L				

DRUM INVENTORY

Drums on site? Type and # Steel No (circle)

Plastic:

Note whether droms are fall or empty, solids or liquids:

Yes

Ornm label info (description, date, contact info):

GENERAL SITE CONDITIONS

Make notes on housekeeping conditions (such as trash around remediation system enclosure/compound, bent or missing bollards, signs missing from compound fences, grafitti on compound, etc.)

NO. 672131

NON-HAZARDOUS WASTE DATA FORM

00			NONE	DISCREPANOY	/	
		RT/CD	HWDF			
TRANS		S B				
GEN	OLD/NEW	L A	TONS			
		TYF	PED OR PRINTED FULL N	AME & SIGNATURE		DATE
PHONE NO. 530-75						····
CITY, STATE, ZIP	/ISTA, CA 94	de L	······································			· · · · · · · · · · · · · · · · · · ·
ADDRESS 1105 AT	RPORT RD #C					
NAMEINSTRAT	y INC				I.D. NO, DISPOSAL	METHOD
TRUCK, UNIT, I.D. NO.		TY	PED OR PRINTED FULL N	AME & SIGNÂTURE	EPA	DATE
PHONE NO.	6-2021					
CITY, STATE, Z论 <u>机的</u>	RON PARK. C	<u>A 93682</u>			PICK UP DATE	
ADDRESS <u>3510 (</u>	Haviers (JN MAR				SERVICE ORDER NO.	
NAME OF MALLS			· · · · · · · · · · · · · · · · · · ·		NU.	
Trinspo Cto atte	rier #1 = ==uursnam	THTA	Transporber #	+2	EPA LD.	
NON-HAZARDOL	IS. IS 1		rry Mresthart P	AME & SIGNATURE		
	R CERTIFIES THAT	THE				
HANDLING INSTRUCTIO	NS:		<u>YPRTATE</u> DRAT			
4 PROPERTIES: 7 ~ pF	solid	 		8	OTHER	
3				7RCST		
2		-C 1.9/a	<u> </u>	6	<u> </u>	. <u> </u>
1		1.4MP70		5		
WASTE DESCRIPTION COMPONEI	VTS OF WASTE	<u>HO WALD</u> PPM	9/0	GENERATING PROC	ESSELL PURCHANCHUECOF PONENTS OF WASTE	PPM %
				IS LI OTHER		
		 ۱۹	VOLU	ME	WEIGHT	
CON				1. 7	- PHONE NO ()
	O SANTA MAI 22688	GARITA		in the second se		, ,
ADDRESS P.O. BC	X 80249			r	PROFILE NO.	
	the second s	Carl Sand S . Sand Law Engl	and the second s			
NAME BP WEST	COASTRACT	11770. L L P		Nel.	NO. NOT REQUIR	ED

Atla	antic	Labora	tory Mar	nage	ment	Pro	grai	m L	_aM	P C	Chai	n c	of Cu	uste	ody	/ Re	ecoi	ď					Page	
Còi	npany	BP/ARC Pro	oject Name:	ARCO	0 11266						i <u>At A</u>	i L	Req D)ue D	Date	(mm/	dd/yy): (TD	- TA	17	Ruch T		
() A BF	P affiliated company	BP/ARC Fac	cility No:							1	1266	»°.	Lab V	Vork	Orde	ər Nu	mber:					Nu3II 1	AI. 165	
Lab Name:	Cal Science			BP/AR	C Facility	Address	9:	1541	1 Park	Street	t					1	Consul	ant/Cor	tractor					
Lab Address:	7440 Lincoln Way			City, S	tate, ZIP (Code:		Alan	neda, (CA							Consultant/Contractor. Stratus Environmental							
Lab PM:	Richard Villafania			Lead F	Regulatory	Agency	:	Alan	neda C	ounty	(Address Consultant/Contractor Project No: E11266-QM/O&M							
Lab Phone:	714-895-5494 / 714-895-750	1 (fax)		California Global ID No.: T0600100207						Concul		o cam	eron Par	к Dr.,	Cameron Pa	k. CA 95682								
Lab Shipping	Acont			Enfos	Proposal I	No:		000	NC-000	02							Dhoneu	ani/Cor	tractor	PM: Ja	ay Joh	Inson		
Lab Bottle Or	der No:			Accour	nting Mode) :	Рго	vision	ı X	00	C-BIJ		000	RM			-none; 	53U	-0/0-01	JUU / 530)-676-1	-6005 (fax)		
Other Info:				Stage:	Operat	e	Ac	ctivity:	Field	d Cha	aracte	eriza	tion											
BP/ARC EBM	: Paul Supple			Г М	/latrix	No	o. Co	ntain	ners /	Pres	ervati					Invoice to: BP/ARC Contractor					ctor	and the second party of the second data and the second second second second second second second second second		
EBM Phone:	925-275-3506				TT	7		<u> </u>	T			-		T	N J	eque	sted / ایند-	nalys	es			Report	Type & QC	Level
EBM Email:	paul.supple@bp.com					iners							Z	*[\mathbf{x}	76	भू भू	8					Standard	<u>< </u>
	nn an 1997 ann					of Contai							8015	5,1,2	DA		≫]. ≫ -	d k				Full Data	Package	
Lab No.	Sample Description	Date	Time	Solid 1 Inuid	/apor	Number	served	4	-	O	2		-af-	12	ei /	4 ho	<u>Jenat</u>	B				C	omments	
		2009		Soil /	Air /	Total	Jnpre	1 ₂ SO	-INO ₃	Ξ	Aetha	ė		Ũ	8	Ę.	10	0			No Sa	lole: If sample n ample" in comm	of collected, in tents and singl	dicate "No e-strike out
- My	1-1-	6/30	1205		<u>d`</u> †-	-Z-			$\overline{\overline{\mathbf{n}}}$	$\overline{\nabla}$		{					Th				an	nd initial any pre	printed sample	description.
	2		1300	<u> </u>		fΨ			$ \uparrow\rangle$	쉐			4	\mathcal{H}	X -	Ă -	42	<u> </u>				X by	5260	
	3		1320			╉┼┤				╶┼┼			-+		+	╉╋		_			4-	·		
	4		1140						┝─┼┤			<u> </u>		++	+		-{-							
M	1-6		1340						┝╼┼			-+		+	$\left \cdot \right $	+								
RY	V-1		1250			┼┤				╶┟			-#-			╢						·······		
			10-20			+			-4	4			4	4	<u>×</u>	2	4	<u> </u>						
TB-	11266-0630,2009				+-+	12																-1 total	container	s per will
						104													╞╼╍╉		<u>+</u>	ON HO	ld	
					+																	<u>_</u>		
Sampler's Nam	не: Д.Ц/Ц			Į	Reli	1 1 Jauish	ed Bi		filiati												<u> </u>			
Sampler's Com	pany: Stratus	· · · · · · · · · · · · · · · · · · ·			$\overline{\mathcal{A}}$	1							Date		Time	·		Acc	epted	By / Af	filiati	ion	Date	Time
Shipment Meth	od: 650	Ship Date:	20/11/		$ \bigcirc $	<u></u> [=	7-				·	(0 40	(1)	140	12	Tin (204	n[]	41 C	<u>EL</u>	<u> </u>	5/3/07	1445
Shipment Track	king No:		20104		\frown	/													/					
pecial Instr	uctions: Please cc results to	o bpedf@broadbi	entinc.com		· · · ·																			
THIS LI	NE - LAB USE ONLY: Custod	v Seals In Piace	Yes/No	Tom	- Ripetu M	a	I							_										
		, , , , , , , , , , , , , , , ,	. 037 140	rem		es / No		Coc	oler Te	mp on	Recei	pt:		°F,	IC	-	rip Bla	nk: Yes	/ No	M	S/MSI	D Sample Sul	mitted: Yes	/ No

July 14, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-07-0019 Client Reference: ARCO 11266

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 7/1/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Richard Villey:

Calscience Environmental Laboratories, Inc. Richard Villafania Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 A 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Stratus Environmental, inc.	Date Received:	07/01/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-07-0019
Cameron Park, CA 95682-8861	Preparation:	N/A
	Method:	EPA 200.7

Project: ARCO 11266

Project: ARCO 11266							Pa	age 1 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch IE
MW-1		09-07-0019-1-G	06/30/09 12:05	Aqueous	ICP 5300	07/10/09	07/10/09 17:52	090710LA1
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Lead	54.2	5.00	1		ug/L			
MW-2		09-07-0019-2-G	06/30/09 13:00	Aqueous	ICP 5300	07/10/09	07/10/09 18:03	090710LA1
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
Lead	7.44	5.00	1		ug/L			
MW-3		09-07-0019-3-G	06/30/09 13:20	Aqueous	ICP 5300	07/10/09	07/10/09 18:05	090710LA1
Parameter	Result	RL	DF	Qual	<u>Units</u>			
ead	ND	5.00	1		ug/L			
MW-4		09-07-0019-4-G	06/30/09 11:40	Aqueous	ICP 5300	07/10/09	07/10/09 18:06	090710LA1
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Units			
ead	35.7	5.00	1		ug/L			
MW-6		09-07-0019-5-G	06/30/09 13:40	Aqueous	ICP 5300	07/10/09	07/10/09 18:08	090710LA1
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
ead	9.95	5.00	1		ug/L			
RW-1		09-07-0019-6-G	06/30/09 12:50	Aqueous	ICP 5300	07/10/09	07/10/09 18:09	090710LA1
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

alscience nvironmental aboratories, Inc.	Analy	tical Report		Page 3 of 33			
Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861		Date Received: Work Order No Preparation: Method:			07/01/09 09-07-0019 N/A EPA 200.7		
Project: ARCO 11266		- 11			Page 2 of 2		
Client Sample Number	Lab Sample Number	Date/Time Collected Matrix	Instrument	Date Prepared	Date/Time Analyzed QC Batch ID		
Method Blank	097-01-012-3,87	4 N/A Aqueou	IS ICP 5300	07/10/09	07/10/09 090710LA1 17:46		

Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>
Lead	ND	5.00	1		ug/L

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Stratus Environmental, inc.	
3330 Cameron Park Drive, Suite 55	50
Cameron Park, CA 95682-8861	

Date Received: Work Order No: Preparation: Method:

EPA 5030B EPA 8015B (M)

07/01/09

09-07-0019

Project: ARCO 11266

Project: ARCO 11266							Pa	ige 1 of 3
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1		09-07-0019-1-E	06/30/09 12:05	Aqueous	GC 4	07/01/09	07/01/09 21:17	090701B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
Gasoline Range Organics (C6-C12)	11000	1000	20		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	104	38-134						
MW-2		09-07-0019-2-E	06/30/09 13:00	Aqueous	GC 4	07/01/09	07/01/09 18:32	090701B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	109	38-134						
MW-3		09-07-0019-3-E	06/30/09 13:20	Aqueous	GC 4	07/01/09	07/01/09 21:50	090701B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	103	38-134						
MW-4		09-07-0019-4-D	06/30/09 11:40	Aqueous	GC 4	07/03/09	07/03/09 15:42	090703B01

Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Quai</u>	
1,4-Bromofluorobenzene	104	38-134			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

hu

Stratus Environmental, inc.	
3330 Cameron Park Drive, Suite 550)
Cameron Park, CA 95682-8861	

Project: ARCO 11266

Date Received: Work Order No: Preparation: Method:

Page 2 of 3

EPA 8015B (M)

07/01/09

09-07-0019

EPA 5030B

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW-6		09-07-0019-5-F	06/30/09 13:40	Aqueous	GC 4	07/06/09	07/06/09 22:22	090706B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Units			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	98	38-134						
RW-1		09-07-0019-6-D	06/30/09 12:50	Aqueous	GC 4	07/02/09	07/03/09 12:25	090702B01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	290	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	109	38-134						
Method Blank		099-12-695-594	N/A	Aqueous	GC 4	07/01/09	07/01/09 16:53	090701B01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	90	38-134						
Method Blank		099-12-695-595	N/A	Aqueous	GC 4	07/02/09	07/02/09 15:58	090702B01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofiuorobenzene	102	38-134						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

hm

<u>_a</u> ls	cience
a a a a a a a a a a a a a a a a a a a	vironmental
	aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method:

Page 6 of 33

07/01/09 09-07-0019 EPA 5030B EPA 8015B (M)

Page 3 of 3

Project: ARCO 11266

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-695-596	N/A	Aqueous	GC 4	07/03/09	07/03/09 14:04	090703B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	86	38-134						
Method Blank		099-12-695-597	N/A	Aqueous	GC 4	07/06/09	07/06/09 17:59	090706B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	103	38-134						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MM

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	07/01/09
Work Order No:	09-07-0019
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 1 of 8

Project: ARCO 11266

Client Sample Number			La I	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ 1 Anal	Time yzed	QC Batch ID
MW-1			09-07-()019-1-A	06/30/09 12:05	Aqueous	GC/MS BB	07/07/09	07/0 04	8/09 :58	090707L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Benzene	5.1	0.50	1		1,2-Dichlorop	ropane		ND	0.50	1	
Bromochloromethane	ND	0.50	1		c-1,3-Dichlord	propene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		t-1,3-Dichloro	propene		ND	0.50	1	
Bromoform	ND	0.50	1		Ethylbenzene			310	20	40	
Bromomethane	ND	0.50	1		Methylene Ch	loride		ND	0.50	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	0.50	1	
Chlorobenzene	1.9	0.50	1		Tetrachloroeth	nene		ND	0.50	1	
Chloroethane	ND	0.50	1		Toluene			29	0.50	1	
Chloroform	ND	0.50	1		1,1,1-Trichlord	pethane		ND	0.50	1	
Chloromethane	ND	0.50	1		1,1,2-Trichlord	o-1,2,2-Trifluo	proethane	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		1,1,2-Trichlor	oethane		ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Trichloroether	ie		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Trichlorofluoro	methane		ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Xylenes (total)	•		1200	20	40	
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl	Ether (MTBE	E)	ND	0.50	1	
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alco	ohol (TBA)		10	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Met	thyl Ether (TA	ME)	ND	0.50	1	
t-1,2-Dichloroethene	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		I	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>		<u>Qual</u>
1,2-Dichloroethane-d4	104	80-128			Dibromofluoro	methane		112	80-127		
Toluene-d8	97	80-120			1,4-Bromofluo	robenzene		93	68-120		

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: Units:

07/01/09 09-07-0019 EPA 5030B EPA 8260B ug/L Page 2 of 8

Project: ARCO 11266

Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal	Time vzed	QC Batch ID
MW-2			09-07-	0019-2-B	06/30/09 13:00	Aqueous	GC/MS BB	07/10/09	07/1 17:	0/09 37	090710L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		1,2-Dichloropr	opane		ND	0.50	1	
Bromochloromethane	ND	0.50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		t-1,3-Dichlorop	ropene		ND	0.50	1	
Bromoform	ND	0.50	- 1		Ethylbenzene			ND	0.50	1	
Bromomethane	ND	0.50	1		Methylene Chl	oride		ND	0.50	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	0.50	1	
Chlorobenzene	ND	0.50	1		Tetrachloroeth	ene		ND	0.50	1	
Chloroethane	ND	0.50	1		Toluene			ND	0.50	1	
Chloroform	ND	0.50	1		1,1,1-Trichlord	ethane		ND	0.50	1	
Chloromethane	ND	0.50	1		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		1,1,2-Trichlore	ethane		ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Trichloroethen	e		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Trichlorofluoro	methane		ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Xyienes (total)			ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl	Ether (MTBE	E)	17	0.50	1	
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alco	hol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Eth	ner (DIPE)		ND	0.50	1	
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl Et	ther (ETBE)		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Met	hyl Ether (TA	ME)	1.0	0.50	1	
t-1,2-Dichloroethene	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>		<u>Qual</u>	Surrogates:		Ē	<u>REC (%)</u>	Control Limits		Qual
1,2-Dichloroethane-d4	91	80-128			Dibromofluoror	nethane		95	80-127		
Toluene-d8	99	80-120			1,4-Bromofluor	obenzene		103	68-120		

Page 3 of 8

Analytical Report

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

07/01/09
09-07 - 0019
EPA 5030B
EPA 8260B
ug/L

Project: ARCO 11266

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ i Anal	Time vzed	QC Batch ID
MW-3			09-07-0	0019-3-B	06/30/09 13:20	Aqueous	GC/MS BB	07/07/09	07/0 04:	8/09 :26	090707L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		1,2-Dichloropr	opane		ND	0.50		
Bromochloromethane	ND	0.50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		t-1,3-Dichlorop	propene		ND	0.50	1	
Bromoform	ND	0.50	1		Ethylbenzene			ND	0.50	1	
Bromomethane	ND	0.50	1		Methylene Chl	oride		ND	0.50	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetracl	hloroethane		ND	0.50	1	
Chlorobenzene	0.81	0.50	1		Tetrachloroeth	ene		ND	0.50	1	
Chloroethane	ND	0.50	1		Toluene			ND	0.50	1	
Chloroform	ND	0.50	1		1,1,1-Trichloro	ethane		ND	0.50	1	
Chloromethane	ND	0.50	1		1,1,2-Trichloro	-1,2,2-Trifluo	proethane	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		1,1,2-Trichloro	ethane		ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Trichloroethen	9		ND	0.50	1	
1,2-Dichlorobenzene	1.5	0.50	1		Trichlorofluoro	methane		ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Xylenes (total)			ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl I	Ether (MTBE	3	ND	0.50	1	
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alco	hol (TBA)	-	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Eth	er (DIPE)		ND	0.50	1	
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Meth	nyl Ether (TA	ME)	ND	0.50	1	
t-1,2-Dichloroethene	ND	0.50	1		Ethanol		,	ND	50	1	
<u>Surrogates:</u>	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:		ŀ	REC (%)	Control	•	Qual
1,2-Dichloroethane-d4	102	80-128			Dibromofluoron	nethane		106	80-127		
Toluene-d8	95	80-120			1,4-Bromofluor	obenzene		95	68-120		

RL - Reporting Limit DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: Units:

07/01/09 09-07-0019 EPA 5030B EPA 8260B ug/L

Page 4 of 8

Project: ARCO 11266

Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepareo	Date Ana	/Time lyzed	QC Batch ID
MW-4			09-07-	0019-4-В	06/30/09 11:40	Aqueous	GC/MS BB	07/10/09	07/1 14	10/09 :24	090710L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		1,2-Dichloropro	opane		ND	0.50	1	
Bromochloromethane	ND	0.50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		t-1,3-Dichlorop	ropene		ND	0.50	1	
Bromoform	ND	0.50	1		Ethylbenzene	•		ND	0.50	1	
Bromomethane	ND	0.50	1		Methylene Chic	oride		ND	0.50	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrach	loroethane		ND	0.50	1	
Chlorobenzene	ND	0.50	1		Tetrachloroethe	ene		ND	0.50	1	
Chloroethane	ND	0.50	1		Toluene			ND	0.50	1	
Chloroform	ND	0.50	1		1,1,1-Trichloro	ethane		ND	0.50	1	
Chloromethane	ND	0.50	1		1,1,2-Trichloro	-1,2,2-Trifluo	oroethane	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		1,1,2-Trichloro	ethane		ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Trichloroethene	e		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Trichlorofluoror	methane		ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Xylenes (total)			ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl E	Ether (MTBE	E)	ND	0.50	1	
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alcol	hol (TBA)	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Eth	er (DIPE)		ND	0.50	1	
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Meth	yl Ether (TA	ME)	ND	0.50	1	
t-1,2-Dichloroethene	ND	0.50	1		Ethanol	•		ND	50	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:		E	<u>REC (%)</u>	Control Limits		Qual
1,2-Dichloroethane-d4	93	80-128			Dibromofluoron	nethane		97	80-127		
Toluene-d8	98	80-120			1,4-Bromofluor	obenzene		104	68-120		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	07/01/09
Work Order No:	09-07-0019
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 5 of 8

Project: ARCO 11266

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date. Anal	/Time lyzed	QC Batch ID
MW-6			09-07-(0019-5-B	06/30/09 13:40	Aqueous	GC/MS BB	07/10/09	07/1 18	0/09 :09	090710L01
Comment(s): BH - Reporting	g limits raised due	to high leve	is of non	-target and	alytes.						
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			Result	RL	DF	Qual
Benzene	ND	10	20		1,2-Dichloropr	ropane		ND	10	20	
Bromochloromethane	ND	10	20		c-1.3-Dichloro	propene		ND	10	20	
Bromodichloromethane	ND	10	20		t-1,3-Dichloro	propene		ND	10	20	
Bromoform	ND	10	20		Ethylbenzene			ND	10	20	
Bromomethane	ND	10	20		Methylene Chl	loride		ND	10	20	
Carbon Tetrachloride	ND	10	20		1,1,2,2-Tetrac	hloroethane		ND	10	20	
Chlorobenzene	ND	10	20		Tetrachloroeth	nene		ND	10	20	
Chloroethane	ND	10	20		Toluene			ND	10	20	
Chloroform	ND	10	20		1,1,1-Trichlord	bethane		ND	10	20	
Chloromethane	ND	10	20		1,1,2-Trichlord	o-1,2,2-Triflue	proethane	ND	10	20	
Dibromochloromethane	ND	10	20		1,1,2-Trichlord	bethane		ND	10	20	
1,2-Dibromoethane	ND	10	20		Trichloroethen	e		ND	10	20	
1,2-Dichlorobenzene	ND	10	20		Trichlorofluoro	methane		ND	10	20	
1,3-Dichlorobenzene	ND	10	20		Vinyl Chloride			ND	10	20	
1,4-Dichlorobenzene	ND	10	20		Xylenes (total)			ND	10	20	
Dichlorodifluoromethane	ND	10	20		Methyl-t-Butyl	Ether (MTBE	E)	ND	10	20	
1,1-Dichloroethane	ND	10	20		Tert-Butyl Alco	bhol (TBA)		ND	200	20	
1,2-Dichloroethane	ND	10	20		Diisopropyi Eth	ner (DIPE)		ND	10	20	
1,1-Dichloroethene	ND	10	20		Ethyl-t-Butyl Et	ther (ETBE)		ND	10	20	
c-1,2-Dichloroethene	ND	10	20		Tert-Amyl-Met	hyl Ether (TA	ME)	ND	10	20	
t-1,2-Dichloroethene	ND	10	20		Ethanol		,	ND	1000	20	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:		Ē	<u>REC (%)</u>	Control Limits		Qual
1,2-Dichloroethane-d4	97	80-128			Dibromofluoror	methane		100	80-127		
Toluene-d8	99	80-120			1,4-Bromofluor	robenzene		103	68-120		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	07/01/09
Work Order No:	09-07-0019
Preparation:	EPA 5030B
Method:	EPA 8260B
Units:	ug/L
	Page 6 of 8

Project: ARCO 11266

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal	Time yzed	QC Batch ID
RW-1			09-07-()019-6-B	06/30/09 12:50	Aqueous	GC/MS BB	07/10/09	07/1 18:	0/09 41	090710L01
Parameter	Result	<u>RL</u>	DE	Qual	Parameter			Result	RL	DE	Qual
Benzene	ND	0.50	1		1,2-Dichlorop	ropane		ND	0.50	1	
Bromochloromethane	ND	0.50	1		c-1,3-Dichlord	propene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		t-1,3-Dichloro	propene		ND	0.50	1	
Bromoform	ND	0.50	1		Ethylbenzene	• •		9.6	0.50	1	
Bromomethane	ND	0.50	1		Methylene Ch	loride		ND	0.50	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	chloroethane		ND	0.50	1	
Chlorobenzene	ND	0.50	1		Tetrachloroetl	nene		ND	0.50	1	
Chloroethane	ND	0.50	1		Toluene			15	0.50	1	
Chloroform	ND	0.50	1		1,1,1-Trichlor	oethane		ND	0.50	1	
Chloromethane	ND	0.50	1		1,1,2-Trichlor	o-1,2,2-Triflu	oroethane	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		1,1,2-Trichlor	oethane		ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Trichloroether	ne		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Trichlorofluor	omethane		ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride	•		ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Xylenes (total))		51	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.50	1	
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	
t-1,2-Dichloroethene	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		ļ	<u>REC (%)</u>	<u>Control</u> Limits		Qual
1,2-Dichloroethane-d4	94	80-128			Dibromofluoro	methane		100	80-127		
Toluene-d8	97	80-120			1,4-Bromofluc	robenzene		96	68-120		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861
 Date Received:
 07/01/09

 Work Order No:
 09-07-0019

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 ug/L

 Page 7 of 8

Project: ARCO 11266

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date d Anal	/Time yzed	QC Batch	- ID
Method Blank			099-10	-025-1,096	i N/A	Aqueous	GC/MS BE	07/07/09	07/0 00	8/09 :11	090707L0	1
Parameter	<u>Result</u>	RL	<u>DF</u>	Quai	Parameter			<u>Result</u>	<u>RL</u>	DE	Qua	
Benzene	ND	0.50	1		1,2-Dichloropro	opane		ND	0.50	1		
Bromochloromethane	ND	0.50	1		c-1,3-Dichlorop	propene		ND	0.50	1		
Bromodichloromethane	ND	0.50	1		t-1,3-Dichlorop	ropene		ND	0.50	1		
Bromoform	ND	0.50	1		Ethylbenzene			ND	0.50	1		
Bromomethane	ND	0.50	1		Methylene Chlo	oride		ND	0.50	1		
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrach	nloroethane		ND	0.50	1		
Chlorobenzene	ND	0.50	1		Tetrachloroethe	ene		ND	0.50	1		
Chloroethane	ND	0.50	1		Toluene			ND	0.50	1		
Chloroform	ND	0.50	1		1,1,1-Trichloro	ethane		ND	0.50	1		
Chloromethane	ND	0.50	1		1,1,2-Trichloro	-1,2,2-Triflu	oroethane	ND	0,50	1		
Dibromochloromethane	ND	0.50	1		1,1,2-Trichloro	ethane		ND	0.50	1		
1,2-Dibromoethane	ND	0.50	1		Trichloroethene	е		ND	0.50	1		
1,2-Dichlorobenzene	ND	0.50	1		Trichlorofluoror	methane		ND	0.50	1		
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride			ND	0.50	1		
1,4-Dichlorobenzene	ND	0.50	1		Xylenes (total)			ND	0.50	1		
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl E	Ether (MTB8	E)	ND	0.50	1		
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alco	hol (TBA)		ND	10	1		
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Eth	er (DIPE)		ND	0.50	1		
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.50	1		
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Meth	yl Ether (TA	AME)	ND	0.50	1		
t-1,2-Dichloroethene	ND	0.50	1		Ethanoi	,	,	ND	50	1		
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	
1,2-Dichloroethane-d4	97	80-128			Dibromofluoron	nethane		96	80-127			
Toluene-d8	96	80-120			1,4-Bromofluor	obenzene		95	68-120			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

07/01/09 09-07-0019 EPA 5030B EPA 8260B ug/L Page 8 of 8

Project: ARCO 11266

Client Sample Number			La I	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date Ana	/Time lyzed	QC Batch ID
Method Blank			099-10	-025-1,103	3 N/A	Aqueous	GC/MS BB	07/10/09	07/1 13	0/09 :19	090710L01
Parameter	<u>Result</u>	RL	DF	Qual	Parameter			Result	RL	DE	Qual
Benzene	ND	0.50	1		1,2-Dichloropro	opane		ND	0.50	1	
Bromochloromethane	ND	0.50	1		c-1,3-Dichlorop	propene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		t-1,3-Dichlorop	ropene		ND	0.50	1	
Bromoform	ND	0.50	1		Ethylbenzene	•		ND	0.50	1	
Bromomethane	ND	0.50	1		Methylene Chlo	oride		ND	0.50	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrach	loroethane		ND	0.50	1	
Chlorobenzene	ND	0.50	1		Tetrachloroethe	ene		ND	0.50	1	
Chloroethane	ND	0.50	1		Toluene			ND	0.50	1	
Chloroform	ND	0.50	1		1,1,1-Trichloro	ethane		ND	0.50	1	
Chloromethane	ND	0.50	1		1,1,2-Trichloro-	-1,2,2-Triflue	proethane	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		1,1,2-Trichloroe	ethane		ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Trichloroethene	9		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		Trichlorofiuoror	methane		ND	0.50	1	
1,3-Dichlorobenzene	ND	0.50	1		Vinyl Chloride			ND	0.50	1	
1,4-Dichlorobenzene	ND	0.50	1		Xylenes (total)			ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Methyl-t-Butyl E	Ether (MTBE	.)	ND	0.50	1	
1,1-Dichloroethane	ND	0.50	1		Tert-Butyl Alcol	hol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Eth	er (DIPE)		ND	0.50	1	
1,1-Dichloroethene	ND	0.50	1		Ethyl-t-Butyl Etl	her (ETBE)		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		Tert-Amyl-Meth	yl Ether (TA	ME)	ND	0.50	1	
t-1,2-Dichloroethene	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:		Ţ	<u>REC (%)</u>	Control Limits		Qual
1,2-Dichloroethane-d4	93	80-128			Dibromofluoron	nethane		99	80-127		
Toluene-d8	96	80-120			1,4-Bromofluoro	obenzene		97	68-120		

Stratus Environmental, inc.	Date Received:	07/01/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-07-0019
Cameron Park, CA 95682-8861	Preparation:	N/A
	Method:	EPA 200.7

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	MS/MSD Batch Number
MW-1	Aqueous	ICP 5300	07/10/09	07/10/0)9	090710SA1
Parameter	MS %REC	MSD %REC	%REC CL	RPD	<u>RPD CL</u>	Qualifiers
Lead	99	103	80-120	4	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - PDS / PDSD

, aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received 07/01/09 Work Order No: 09-07-0019 Preparation: N/A Method: EPA 200.7

Project: ARCO 11266

Quality Control Sample ID	Matrix	instrument	Date Prepared	ł	Date Analyzed	PDS/PDSD Batch Number
MW-1	Aqueous	ICP 5300	07/10/09		07/10/09	090710SA1
Parameter	PDS %REC	PDSD %REC	%REC CL	RPD	<u>RPD CI</u>	Qualifiers
Lead	102	103	75-125	1	0-20	

RPD - Relative Percent Difference , CL - Control Limit

alscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: 07/01/09 09-07-0019 EPA 5030B

EPA 8015B (M)

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-2	Aqueous	GC 4	07/01/09		07/01/09	090701S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD_CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	101	101	38-134	1	0-25	

RPD - Relative Percent Difference, CL - Control Limit

alscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: 07/01/09 09-07-0019 EPA 5030B EPA 8015B (M)

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-07-0136-5	Aqueous	GC 4	07/02/09		07/02/09	090702S01
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	98	93	38-134	4	0-25	

RPD - Relative Percent Difference, CL - Control Limit

Calscience nvironmental aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: 07/01/09 09-07-0019 EPA 5030B

EPA 8015B (M)

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date		Date	MS/MSD Batch
MW-4	Aqueous	GC 4	Prepared 07/03/09		Analyzed 07/03/09	Number 090703S01
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	99	99	38-134	0	0-25	

RPD - Relative Percent Difference , CL - Control Limit

Mulhun

alscience nvironmental aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: 07/01/09 09-07-0019 EPA 5030B EPA 8015B (M)

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date f Analyzed	MS/MSD Batch Number
09-07-0125-5	Aqueous	GC 4	07/06/09	N d d	07/06/09	090706S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	96	95	38-134	1	0-25	

RPD - Relative Percent Difference, CL - Control Limit

alscience nvironmental Qu *aboratories, Inc.*

Quality Control - Spike/Spike Duplicate

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method:

07/01/09 09-07-0019 EPA 5030B EPA 8260B

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
09-07-0139-3	Aqueous	GC/MS BB	07/07/09	07/08/09	090707S01

Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	106	106	76-124	1	0-20	
Carbon Tetrachloride	95	94	74-134	1	0-20	
Chlorobenzene	103	104	80-120	1	0-20	
1,2-Dibromoethane	101	102	80-120	0	0-20	
1,2-Dichlorobenzene	105	108	80-120	2	0-20	
1,1-Dichloroethene	108	107	73-127	1	0-20	
Ethylbenzene	98	99	78-126	2	0-20	
Toluene	100	103	80-120	4	0-20	
Trichloroethene	96	96	77-120	0	0-20	
Vinyl Chloride	77	95	72-126	21	0-20	BA,AY
Methyl-t-Butyl Ether (MTBE)	104	107	67-121	2	0-49	
Tert-Butyl Alcohol (TBA)	117	112	36-162	1	0-30	
Diisopropyl Ether (DIPE)	106	109	60-138	3	0-45	
Ethyl-t-Butyl Ether (ETBE)	105	107	69-123	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	97	101	65-120	3	0-20	
Ethanol	105	95	30-180	10	0-72	

RPD - Relative Percent Difference, CL - Control Limit

Mulum

Stratus Environmental, inc.	Date Received:	07/01/09
3330 Cameron Park Drive, Suite 550	Work Order No:	09-07-0019
Cameron Park, CA 95682-8861	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
MW-4	Aqueous	GC/MS BB	07/10/09	07/10/09	090710S01

Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	97	96	76-124	1	0-20	
Carbon Tetrachloride	79	79	74-134	1	0-20	
Chlorobenzene	99	96	80-120	3	0-20	
1,2-Dibromoethane	98	97	80-120	1	0-20	
1,2-Dichlorobenzene	99	96	80-120	3	0-20	
1,1-Dichloroethene	91	86	73-127	5	0-20	
Ethylbenzene	93	87	78-126	6	0-20	
Toluene	98	94	80-120	4	0-20	
Trichloroethene	91	89	77-120	2	0-20	
Vinyl Chloride	95	79	72-126	18	0-20	
Methyl-t-Butyl Ether (MTBE)	95	94	67-121	1	0-49	
Tert-Butyl Alcohol (TBA)	98	101	36-162	3	0-30	
Diisopropyl Ether (DIPE)	88	88	60-138	0	0-45	
Ethyl-t-Butyl Ether (ETBE)	90	90	69-123	0	0-30	
Tert-Amyl-Methyl Ether (TAME)	95	92	65-120	3	0-20	
Ethanol	97	102	30-180	5	0-72	

RPD - Relative Percent Difference, CL - Control Limit

Mulha

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: N/A 09-07-0019 N/A

EPA 200.7

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h
097-01-012-3,874	Aqueous	ICP 5300	07/10/09	07/10/09	090710LA1	
Parameter	LCS %F	REC LCSD	<u>%REC %R</u>	EC CL RPE	<u>) RPD CL</u>	Qualifiers
Lead	101	104	4 85	5-115 2	0-20	

RPD - Relative Percent Difference , CL - Control Limit

Muhhn_

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

N/A 09-07-0019

EPA 5030B EPA 8015B (M)

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-695-594	Aqueous	GC 4	07/01/09	07/01/09	090701B01	
Parameter	LCS %R	EC LCSD	<u>%REC %R</u>	EC CL RP	D <u>RPD CL</u>	<u>Qualifiers</u>
Gasoline Range Organics (C6-C12)	96	103	78	3-120 7	0-20	

RPD - Relative Percent Difference, CL - Control Limit

hA

alscience nvironmental Quality Control - LCS/LCS Duplicate aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: N/A 09-07-0019 EPA 5030B EPA 8015B (M)

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h
099-12-695-595	Aqueous	GC 4	07/02/09	07/02/09	090702B01	
Parameter	LCS %RI	EC LCSD	<u>%REC %RE</u>	<u>EC CL</u> RP	D RPD CL	<u>Qualifiers</u>
Gasoline Range Organics (C6-C12)	98	101	78	-120 3	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Mulha

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: N/A 09-07-0019 EPA 5030B

EPA 8015B (M)

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	d	LCS/LCSD Bate Number	ch
099-12-695-596	Aqueous	GC 4	07/03/09	07/03/09		090703B01	N Maria
Parameter	LCS %F	EC LCSD 9	<u>%REC %R</u>	EC CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	108	106	7	8-120	2	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Calscience nvironmental Quality Control - LCS/LCS Duplicate *aboratories, Inc.*

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: N/A 09-07-0019

EPA 5030B EPA 8015B (M)

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch	1
099-12-695-597	Aqueous	GC 4	07/06/09	07/06/09	090706B01	
Parameter	LCS %	REC	<u>%REC %RI</u>	EC CL RPE	<u> RPD CL</u>	Qualifiers
Gasoline Range Organics (C6-C12)	99	99	78	8-120 0	0-20	

RPD - Relative Percent Difference , CL - Control Limit

Mulum

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Quality Control - LCS/LCS Duplicate

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method:

N/A 09-07-0019 EPA 5030B EPA 8260B

Project: ARCO 11266

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Ba Number	itch
099-10-025-1,096	Aqueous	GC/MS BB	07/07/09	07/07	/09	090707L01	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	100	101	80-120	73-127	1	0-20	
Carbon Tetrachloride	98	99	74-134	64-144	1	0-20	
Chiorobenzene	98	99	80-120	73-127	2	0-20	
1,2-Dibromoethane	101	101	79-121	72-128	1	0-20	
1,2-Dichlorobenzene	99	99	80-120	73-127	1	0-20	
1,1-Dichloroethene	105	107	78-126	70-134	2	0-28	
Ethylbenzene	96	97	80-120	73-127	1	0-20	
Toluene	96	97	80-120	73-127	1	0-20	
Tríchloroethene	101	104	79-127	71-135	3	0-20	
Vinyl Chloride	79	77	72-132	62-142	2	0-20	
Methyl-t-Butyl Ether (MTBE)	99	98	69-123	60-132	0	0-20	
Tert-Butyl Alcohol (TBA)	97	101	63-123	53-133	4	0-20	
Diisopropyl Ether (DIPE)	97	98	59-137	46-150	0	0-37	
Ethyl-t-Butyl Ether (ETBE)	97	98	69-123	60-132	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	95	93	70-120	62-128	2	0-20	
Ethanol	90	94	28-160	6-182	4	0-57	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed :

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

1

М

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

N/A 09-07-0019 EPA 5030B EPA 8260B

Project: ARCO 11266

Quality Control Sample ID	ntrol Sample ID Date Prepared		Date Analyzed		LCS/LCSD Ba Number	atch	
099-10-025-1,103	Aqueous	GC/MS BB	07/10/09	07/10/	09	090710L01	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	97	101	80-120	73-127	4	0-20	
Carbon Tetrachloride	85	89	74-134	64-144	5	0-20	
Chlorobenzene	98	102	80-120	73-127	4	0-20	
1,2-Dibromoethane	99	104	79-121	72-128	5	0-20	
1,2-Dichlorobenzene	98	102	80-120	73-127	3	0-20	
1,1-Dichloroethene	96	101	78-126	70-134	5	0-28	
Ethylbenzene	95	97	80-120	73-127	2	0-20	
Toluene	97	103	80-120	73-127	6	0-20	
Trichloroethene	92	99	79-127	71-135	7	0-20	
Vinyl Chloride	95	102	72-132	62-142	7	0-20	
Methyl-t-Butyl Ether (MTBE)	94	101	69-123	60-132	7	0-20	
Tert-Butyl Alcohol (TBA)	96	92	63-123	53-133	4	0-20	
Diisopropyl Ether (DIPE)	86	92	59-137	46-150	7	0-37	
Ethyl-t-Butyl Ether (ETBE)	88	95	69-123	60-132	8	0-20	
Tert-Amyl-Methyl Ether (TAME)	92	98	70-120	62-128	6	0-20	
Ethanol	99	107	28-160	6-182	7	0-57	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

n A1

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Work Order Number: 09-07-0019

<u>Qualifier</u>	Definition
AX	Sample too dilute to quantify surrogate.
BA	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
BH	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.

Mulum_

<u>Qualifier</u>	Definition
LR	LCS recovery below method control limits.
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

lantic Richfield Company OA BP affiliated company

Laboratory Management Program LaMP Chain of Custody Record

00. 'aœ - TAT Rush TAT: Yes No

BP/ARC Project Name:	ARCO 11266
BD/ABC Encility No.	

Req Due Date (mm/dd/yy):

BPIARC Facility No:		11266
· · · · · · · · · · · · · · · · · · ·	BP/ARC Facility Address:	1541 Park Street
	City State 7/D Out	

Lab Work Order Number:

D

Lab Name: Cal Science	BP/ARC Facility Address: 1541 Park Street Consultant/Contractor: Stratus Environmental
Lab Address: 7440 Lincoln Way	City, State, ZIP Code: Alameda, CA Consultant/Contractor Project No: E11266-QM/Q&M
Lab PM: Richard Villafania	Lead Regulatory Agency: Alameda County Address: 3330 Cameron Park Dr., Cameron Park, CA 95682
Lab Phone: 714-895-5494 / 714-895-7501 (fax)	California Global ID No.: T0600100207 Consultant/Contractor PM: Jay Johnson
Lab Shipping Accnt:	Enfos Proposal No: 000NC-0002 Phone: 530-676-6000 / 530-676-6005 (fax)
ab Bottle Order No:	Accounting Mode: Provision X OOC-BU OOC-RM Email EDD To: chuff@stratusinc.pet
Other Info:	Stage: Operate Activity: Field Characterization Invoice To: BP/ARC Contractor
3P/ARC EBM; Paul Supple	Matrix No. Containers / Preservative Requested Analyses Report Type & OC Level
BM Phone: 925-275-3506	7
BM Email: paul.supple@bp.com	Standard Full Data Package
Lab No. Sample Description Date Time	Soil / Soil Soil / Soil Water / Liquid Soil / Soil Water / Liquid Water / Liquid Water / Liquid Matter / Liquid Mater / Liquid Mater / Liquid
6/30 1205	X Z XX XXXXX XX XA
2 300	
7 3 1320	
4 1 4 1140	
<u>s 11W-6</u> 1340	
6 KW- Y 1250	
	-7 total containens and it
7 15-11266-010302009	DN UNI
ampler's Name: A. H. 11	Relinquished By / Affiliation Date Time Accepted By / Affiliation Date Time
ampler's Company. 34:4463	6 300 1440 Tax Amplin CKI, 6/2/00/14/40
hipment Method: 6 30/09	Tan ampley TOGSO K/202/730 Weekt (27)
hipment Tracking No: 512163789	
pecial Instructions: Please cc results to bpedf@broadbentinc.com	
THIS LINE - LAB USE ONLY: Custody Seals In Place: Yes / No	Temp Blank: Yes / No Cooler Temp on Receipt:°F/C Trip Blank: Yes / No MS/MSD Sample Submitted: Yes / No

Celecience	WORK ORDER #: 09-07- 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
aboratorias, Inc. S	AMPLE REC	EIPT FOR	RM o	ooler <u></u>	_ of __		
CLIENT: GTRATUS ENV'		· .	DATE:	7/01	109		
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 2 • 1 °C - 0.2 °C (CF) =9 °C Blank Sample □ Sample(s) outside temperature criteria (PM/APM contacted by:).							
CUSTODY SEALS INTACT: Cooler Sample	□ No (Not Intact) □ No (Not Intact)	☑ Not Present ,☑ Not Present	□ N/A	Initia Initia	1: <u>WB</u> 1: <u>7,N</u>		
SAMPLE CONDITION:			Yes	No	N/A		
Chain-Of-Custody (COC) docume	nt(s) received with sam	oles	Ø				
COC document(s) received complete	ete		Ø				
COC not relinquished. No date Sampler's name indicated on COC	# of containers logged in bas te relinquished.	ed on sample labels. e relinquished.	ø				
Sample container (a) integt and gas		•••••••					
Correct container(s) mact and you		·····					
Analyses received within holding ti	analyses requested	••••••••••••••••••••••	Д —	<u> </u>			
Proper processories pated on COC			Ø				
Unpreserved vials received for Vo	or sample container						
Volatile analysis container(s) free c	of headspace	••••••••	Ø				
ledlar bag(s) free of condensation.		••••••			Ţ∕		
CONTAINER TYPE:							
Solid: 40zCGJ 80zCGJ	16ozCGJ ⊡Sleeve	□EnCores [®] □1	TerraCores	®			
Water: DVOA ZVOAh DVOAna	₂ □125AGB □125AGI	Bh □125AGBp [⊐1AGB □	1AGB na₂ ⊑]1AGBs		
□500AGB □500AGJ □500AGJs	■ 250AGB 2250CC	GB □250CGBs		500PB □50)0PB na		
□250PB Ø250PBn □125PB □1	25PB znna □100PJ □	100PJ na₂ □					
Air: □Tedlar [®] □Summa [®] □ Container: C: Clear A: Amber P: Plastic Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃	Other: Image: Comparison of the comparison o	B: Bottie (Narrow-mouth znna: ZnAc ₂ +NaOH f: F	Checked/L n) Re ield-filtered S	abeled by: _ viewed by: _ canned by: _	TN Nisc T.N		
	* 			SOP T100_0	90 (03/13/09)		

ATTACHMENT

FIELD PROCEDURES FOR GROUNDWATER SAMPLING

The sampling procedures for groundwater monitoring events are contained in this appendix.

Groundwater and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

Prior to measuring the depth to liquid in the well, the well caps are removed and the liquid level allowed to stabilize. A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the groundwater depth in monitoring wells that do not contain LPH. Depth to groundwater or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typically a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Groundwater

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Sampling

In many cases, determining whether to purge or not to purge wells prior to sample collection is made in the field and is often based on depth to water relative to the screen interval of the well. Site-specific field data sheets present details associated with the purge method and equipment used.

Monitoring wells, when purged, use a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water has been removed. Field measuring equipment is calibrated and maintained according to the manufacturer's instructions. If three well volumes cannot be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a groundwater sample is then collected from each of the wells using disposable bailers.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air accumulation in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Groundwater Sample Labeling and Preservation

Samples are collected in appropriate containers supplied by the laboratory. All required chemical preservation is added to the bottles prior to delivery to Stratus. Sample label information includes a unique sample identification number, job identification number, date, and time. After labeling, all groundwater samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip and temperature blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

All reusable sampling equipments are cleaned using phosphate-free detergents and rinsed with de-ionized water.

APPENDIX E

HISTORIC SOIL AND GROUND-WATER DATA

COPY TO BP

✗ Sample Location

MOBIL Service Station 1541 Park Street Alameda, California KEI-J87-097 October 12, 1987 Page 5

TABLE 1

SUMMARY OF LABORATORY ANALYSES

(all analyses in parts per million)

<u>Sample #</u>	Type	<u>Depth</u>	Total <u>Hydrocarbon</u>	Benzene	Toluene	<u>Xylene</u>
A1	soil	11.54	<1.0	<0.1	<0.1	<0.1
A2	Soil	11.5'	<1.0	<0.1	<0.1	<0.1
B1	soil	11.5'	<1.0	<0.1	<0.1	<0.1
B2	soil	11.5'	340	<0.1	<0.1	8.6
Cl	soil	11.5'	3200	81	42	450
C2	soil	11.5'	490	2.6	13	180
D1	soil	11.5'	<1.0	<0.1	<0.1	<0.1
D2	soil	11.5'	75	0.3	6.1	40
W.O-1*	soil	7.5	<10			
W-1	water	12'	530	6.3	66	200

* TOG = 150 ppm

بالمتحاج ويراي والمراج المراجع والاختلاف والعامة

733 Dartmouth Avenue San Carlos, CA 94070 • (415) 591-5820

Kaprealian Engineering Inc. P.O. BOX 913 Benicia, CA 94510 Attn: Mardo Kaprealian, P.E. President

Date Sampled: 09-15-87 Date Received: 09-16-87 Date Reported: 10-04-87

Sample Number 097036 Sample Description Mobil Alameda Park & Lincoln WO-1

PRIORITY POLLUTANTS

VOLATILE ORGANIC COMPOUNDS results in ppb

Benzene
Bromomethane
Bromodichloromethane
Bromoform
Carbon tetrachloride
Chlorobenzene
Chloroethane
2-Chloroethylvinyl ether <50
Chloroform
Chloromethane
Dibromochloromethane
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene

trans-1,2-Dichloroethane	<50
1,2-Dichloropropane	<50
1,3-Dichloropropene	<50
Ethylbenzene	<50
Methylene chloride	<50
1,1,2,2-Tetrachloroethane	<50
Tetrachloroethane	<50
1,1,1-Trichloroethane	<50
1,1,2-Trichloroethane	<50
Trichloroethene	<50
Toluene	<50
Vinyl chloride	100
1,2-Dichlorobenzene	:100
1,3-Dichlorobenzene	:100
1.4-Dichlorobenzene	:100

HAZCAT

Ronald G. Evans Lab Director

NOTE: Analysis was performed using methods 8010 and 8020

COPY TO BP

() Groundwater elevation (feet)

 Surface elevation at top of MW3 assumed 100* as datum KEI-P87-097A-1 March 4, 1988 Page 8

. •

<u>TABLE - 1</u>

Results of Soil Analyses - Parts Per Million (ppm)

Sample <u>Number</u>	Depth <u>(feet)</u>	<u>TPH</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylene</u>	<u>Ethylbenzene</u>
MW-1	10	2.4	0.1	0.2	0.7	<0.1
MW-2	10	<1.0	<0.1	<0.1	<0.1	<0.1
MW 3	10	<1.0	<0.1	<0.1	<0.1	<0.1

Results of Water Analyses - parts per billion (ppb)

Sample <u>Number</u>	Depth <u>(feet)</u>	TPH	<u>Benzene</u>	<u>Toluene</u>	Xylene	<u>Ethylbenzene</u>
MW-1	9.50	95,000	2000	5900	10,000	1100
MW-2	10.208	<50	<0.5	<0.5	<0.5	<0.5
MW-3+	10.667	<50	<0.5	<0.5	<0.5	<0.5

- * TPH = Total Petroleum Hydrocarbon
- + MW-3 (water) had TPH diesel <50 ppb; TOG <50 ppb; EPA 601 and 602 constituents all non-dedectable.

HAZCAT Mobile Organics Lab

733 Dartmouth Avenue San Carlos, CA 94070 • (415) 591-5820

Kaprealian Engineering Inc. P.O. BOX 913 Benicia, CA 94010 Attn: Mardo Kaprealian President

Date Sampled:02-17-88 Date Received:02-17-88 Date Reported:02-28-88

Sample Number 028093 Sample Description Mobil-Alameda Park & Lincoln MW-3 WATER

PRIORITY POLLUTANTS

VOLATILE ORGANIC COMPOUNDS

results in ppb

Benzene	<0.5
Bromomethane	<0.5
Bromodichloromethane	<0.5
Bromoform	<0.5
Carbon tetrachloride	<0.5
Chlorobenzene	<0.5
Cloroethane	<0.5
2-Chloroethylvinyl ether	<0.5
Chloroform	<0.5
Chloromethane	<0.5
Dibromochloromethane	<0.5
1,1-Dichloroethane	<0.5
1,2-Dichloroethane	<0.5
1,1-Dichloroethene	<0.2

trans-1,2-Dichloroethane	<0.5
1,2-Dichloropropane	<0.5
1,3-Dichloropropene	<0.5
Ethylbenzene	<0.5
Methylene chloride	<0.5
1,1,2,2-Tetrachloroethane	<0.5
Tetrachloroethane	<0.5
1,1,1-Trichloroethane	<0.5
1,1,2-Trichloroethane	<0.5
Trichloroethene	<0.5
Toluene	<0.5
Vinyl chloride	<0.5
1,2-Dichlorobenzene	<0.5
1,3-Dichlorobenzene	<0.5
1,4-Dichlorobenzene	<0.5

HAZCAT

Ronald G. Evans Lab Director NOTE: Analysis was performed using EPA methods 601 and 602

KAPREALIAN ENGINEERING, INC.

Consulting Engineers P. O. BOX 913 BENICIA, CA 94510 (415) 676 - 9100 (707) 746 - 6915

Mobil Service Station #10-EYD 1541 Park Street Alameda, California ٠.

KEI-P87-0907.R4 April 19, 1989

• • · . . . •

TABLE 2

SUMMARY OF LABORATORY ANALYSES SOIL

(Results in ppm) (Collected on March 22, 1989)

Sample <u>Number</u>	Depth <u>(feet)</u>	<u>TPH</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylenes</u>	<u>Ethylbenzene</u>
MW4	5	ND	ND	ND	ND	ND
MW4	10	ND	ND	ND	ND	ND
MW5	6	ND	ND	ND	ND	ND
MW5	10	ND	ND	ND	ND	ND
MW6	5	ND	ND	ND	ND	ND
MW6	10	ND	ND	ND	ND	ND
Detecti	on					
Limits		1.0	0.05	0.1	0.1	0.1

SUMMARY OF LABORATORY ANALYSES WATER

(Results in ppb) (Collected on March 29, 1989)

Sample <u>Number</u>	Depth <u>(feet)</u>	TPH	<u>Benzene</u>	Toluene	<u>Xylenes</u>	<u>Ethylbenzene</u>
MW1	8.93	25,000	930	2,600	3,100	24
MW2	9.77	ND	1.1	0.78	1.7	ND
MW3	10.28	ND	ND	ND	ND	ND
MW4	9.30	ND	ND	ND	ND	ND
MW5	8.33	ND	ND	ND	ND	ND
MW6	9.28	ND	ND	ND	ND	ND
Detecti	on					
Limits		50.0	0.5	0.5	0.5	0.5

TPH = total petroleum hydrocarbon as gasoline.

ND = Non-detectable.

Table 1

SUMMARY OF GROUND-WATER ELEVATION AND CHEMISTRY DATA (µg/i, ppb)

Well	Sample Date	Depth to Ground Water (ft)	Top-of- Casing Elevation (ft-msl)	Ground- Water Elevation (ft-msl)	TPH Gas	Benzene	Toluene	Xylenes	Ethylbenzene
MW-1	11/28/89	9.77	22.63	12.86	15.000	280	880	1,200	340
MW-2	11/28/89	10.25	22.75	12.50	170 ¹	< 5.72	<1	<3	<1
MW-3	11/28/89	10.72	23.45	12.73	<50	<0.5	<1	<3	<1
MW-4	11/28/89	10.41	23.63	13.22	<50 ¹	<0.5	<1	<3	<1
MW-5	11/28/89	9.83	22.87	13.04	<50	<0.5	<1	<3	<1
MW-6	11/28/89	10.30	22.85	12.55	<50	<0.5	<1	<3	<1
B-1*	11/15/89	NM			3	<0. 6	2	<0.8	0.6
B-2*	11/15/89	NM			3	<0.6	2	<0.8	1
B-3*	11/15/89	NM			14	<0.6	1	<0.8	13
B-4	11/15/89	NM		••	12	<0.6	5	<0.8	<0.6
8-5	11/15/89	NM	-		4	<0.6	2	<0.8	<0.6

1. An unknown, discrete, volatile, non-fuel hydrocarbon was observed.

2. Raised detection limit due to unknown volatile component.

* Direct push ground-water samples

NM = Not measured

PJC C900406.00W

March 15, 1

*1*2

EMCON ASSOCIATES/BP GAS/ALAMEDR, CALIFORNIA JOB#K-257-89-5G 11/15/89 CONDENSED DATA

SAMPLE	BENZENE ug/1	TOLUENE ug/1	ETHYL BENZENE ug/1	XYLENES ug/1	TPH C1-C7 ug/1	TPH C9~C14 ug/1	_
flir	0.7	Э	<0,3	<0.4	6	<0.3	
B1-10.51	<0.6	2	0.6	<0.8	2	<0.6	
B2~13'	<0.6	2	1	<0.8	Э	76	
83-12'	<0.6	1	12	<0.8	14	<0.6	
B4-10'	<0.6	5	<0.6	<0.8	12	<0.6	
85-10*	<0.6	2	<0.6	<0.8	4	<0.6	

Rnalyzed by: S. Evans Checked by: G. Santo Proofed by: A. MytArkala

.

;

Tracer Research Corporation

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

CLIENT: EMCON Associates	DATE RECEIVED:	11/30/89
SUBMITTED BY: Client	DATE EXTRACTED:	N/A
PROJECT: C90-04.03	DATE ANALYZED:	12/07/89
SAMPLE DESCRIPTION: Water	WORK ORDER #:	E89-1667

BTEX Analyses DHS LUFT Method EPA Method 602/8020 ug/L(ppb)

Sample Name:		MW-1	MW-2	MW-3	
	MRL				
Benzene	0.5	280	<5.7*	<0.5	
Toluene	1	880	<1	<1	
Ethyl Benzene	1	340	<1	<1	
Total Xylenes	3	1200	<3	<3	
Gasoline	50	15000	170**	<50	
Sample Name:	<u>,</u>	MW4	M W- 5	MW-6	
Benzene		<0.5	<0.5	<0.5	
Toluene		1	<1	<1	
Fthyl Benzene		<1	<1	<1	
Total Xylenes		<3	<3	<3	
Gasoline		<50**	<50	<50	

MRL - Method Reporting Limit

- 1²

* Raised reporting limit due to presence of unknown, volatile component. **An unknown discrete, volatile, non-fuel hydrocarbon was observed in this sample.

whith P. Dan Date 89 Approved by

TABLE 1

Cumulative Analytical Results of Soil Samples BP Oil Facility No. 11266 Alameda, California

TANK EXCAVATION

Date	Sample	Depth	TPH	В	Т	· · · · X
10/87	AÍ	11.5	<1.0	<0.1	< 0.1	<0.1
-	A2	11.5	<1.0	<0.1	<0.1	<0.1
	B1	11.5	<1.0	< 0.1	<0.1	<0.1
	B2	11.5	340	< 0.1	<0.1	8.6
	C1	11.5	3200	81	42	450
	2	11.5	490	2.6	13	180
	D1	11.5	<1.0	<0.1	< 0.1	<0.1
	D2	11.5	75	0.3	6.1	4.0
	W.0-1	11.5	<10	NA	NA	NA

WELL INSTALLATION

Date	Sample	Depth	TPH	В	Т	E	x
3/88	MW-1	10.0	2.1	0.1	0.2	<0.1	0.7
	MW-2	10.0	<0.1	<0.1	<0.1	<0.1	< 0.1
	MW-3	10.0	<0.1	<0.1	<0.1	<0.1	<0.1
	MW-4	5.0	ND	ND	ND	NĎ	ND
	MW-4	10.0	ND	ND	ND	ND	ND
	MW-5	5.0	ND	ND	ND	ND	ND
	MW-5	10.0	ND	ND	ND	ND	ND
	MW-6	5.0	ND	ND	ND	ND	ND
	MW-6	10.0	ND	ND	ND	ND	ND

PIPING REPLACEMENT

Date	Sample	TPH	В	Т	Ē	x
9/90	Composite A	ND	ND	ND	ND	ND
•	D1	ND	ND	ND	ND	ND
	D2	ND	ND	ND	ND	ND
	D3	ND	ND	ND	ND	ND
	D4	ND	ND	ND	ND	ND

All results are reported in mg/kg by KEI

TPH=Total Petroleum Hydrocarbons (no distinction given)

B=benzene T=toluene E=ethylbenzene X=xylene

ND=not detected in concentrations exceeding the laboratory detection limit

NA=not analyzed

KEI=Kaprealian Engineering, Inc.

TABLE 2 Cumulative Analytical Results of Water Samples BP Oil Facility No. 11266 Alameda, California

Well No.	Sample Date	Collector	TPHg	B	т	Е	x
*	10/87	KEI	530	6.3	66	NA	200
MW-1	3/4/88	KEI	95,000	2,000	5,900	1,100	10,000
	3/29/89	KEI	25,000	930	2,600	24	3,100
	11/28/89	EMCON	15,000	280	880	340	1,200
	2/13/91	EMCON	25,000	680	2,700	1,100	3,200
	1/8/92	HETI	10,000	260	1,100	570	2,000
MW-2	3/4/88	KEI	ND	ND	ND	ND	ND
	3/29/89	KEI	ND	1.1	0.78	ND	1.7
	11/28/89	EMCON	170	ND -	ND	ND	ND
	2/13/91	EMCON	150	1.4	ND	ND	0.9
	1/8/92	HETI	ND	1.4	ND	ND	1.1
MW-3**	3/28/88	KEI	ND	ND	ND	ND	ND
	3/29/89	KEI	ND	ND	ND	ND	ND
	11/28/89	EMCON	ND	ND	ND	ND	ND
	2/13/91	EMCON	ND	ND	ND	ND	ND
	1/8/92	HETI	ND	ND	ND	ND	ND
MW-4	3/29/89	KEI	ND	ND	ND	ND	ND
	11/28/89	EMCON	ND	ND	ND	ND	ND
	2/13/91	EMCON	430	6.2	0.6	12	3.3
	1/8/92	HETI	ND	ND	ND	ND	ND
MW-5	3/29/8 9	KEI	ND	ND	ND	ND	ND
	11/28/89	EMCON	ND	ND	ND	ND	ND
	2/13/91	EMCON	ND	ND	ND	ND	ND
	1/8/92	HETI	ND	ND	ND	ND	ND
MW-6	4/19/89	KEI	ND	ND	ND	ND	ND
	11/28/89	EMCON	ND	ND	ND	ND	ND
	2/13/91	EMCON	ND	ND	ND	ND	ND
	1/8/92	HETI	ND	ND	ND	ND	ND

All concentrations in µg/l (ppb) TPHg = Total petroleum hydrocarbons as gasoline.

B = Benzene	ND = Not detected in concentrations
T = Toluene	exceeding the laboratory method
E = Ethylbenzene	detection limit
X = Total Xylenes	KEI = Kaprealian Engineering, Inc.
	EMCON= EMCON Associates

*Sample was obtained from the tank excavation in 1987

**In March of 1988, KEI reported less than 50 ppb as diesel in MW-3

P: \0AALAND\ACAD\T0500\70500-006.03425.602-001.DWG

1

,

1

Table 1 Soil Analytical Data Product Lines and Dispeners

Tosco (Former BP) Service Station # 11266 1541 Park Street

Alameda, California

	Sample		TPH as	• • • • • • • • • •		Ethly-		MTBE		Lead	Lead
Sample	Depth	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8020/8260	Total Lead	By STLC	By TCLP
Name	(teet bgs)	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)
PD-1	2.0'	12/06/99	ND<1.00	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.05/NA	ND<5	NA	NA NA
PD-2	2.0'	12/06/99	ND<1.00	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.05/NA	6	NA	NA
PD-3	2.0'	12/06/99	2.00	0.009	0.051	0.013	0.15	ND<0.05/NA	140	6	ND<0.5
PD-4	2.0'	12/06/99	ND<1.00	ND<0.005	0.15	ND<0.005	0.09	ND<0.05/NA	910	39	1,2
PL-1	2.0'	12/06/99	ND<1.00	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.05/NA	10	NA	NA
PL-2	2.0'	12/06/99	ND<1.00	ND<0.005	ND<0.005	800.0	ND<0.010	ND<0,05/NA	10	NA	NA
TPH = Total p	etroleum hydr	ocarbons			STLC = Solu	ble Limit Thre	shold Conce	ntration			

mg/L = milligrams per liter

MTBE = Methyl tertiary butyl ether

TCLP = Toxicity Characteristic Leaching Procedure

ND = Not detected above specified laboratory reporting limits

NA = Not analyzed

+ 1 > _

mg/kg = milligrams per kilogram

Well	Date Sampled	2-Butanone (MEK)	Chlorobenzene (CB)	Tetrachloroethene (PCE)	Styrene
MW-1	11/29/89	1			
	02/13/91	14	2.8	<1	<1
	05/10/91	<10	3.0	<1	1.7
	08/01/91	<10	2	<1	<1
MW-2	11/29/89	1			
	02/13/91	<10	<1	<1	<1
	05/10/91	<10	<1	<1	<1
	08/10/91	<10	<1	<1	<1
MW-3	11/29/89	1			
	02/13/91	<10	<1	<1	<1
	05/10/91	<10	<1	<1	<1
	08/01/91	<10	<1	<1	<1
MW-4	11/29/89	1	an an		
ĺ	02/13/91	<10	1.9	2.5	<1
	05/10/91	<10	1.4	2.8	<1
	08/01/91	<10	<1	<1	<1
MW-5	11/29/89	1			
	02/13/91	<10	<1	<1	<1
	05/10/91	<10	<1	<1	<1
	08/01/91	<10	<1	<1	<1
MW-6	11/29/89	·			
	02/13/91	<10	<1	<1	<1
	05/10/91	<10	<1	<1	<1
	08/01/91	<10	2	2	<1
1. Ground-wat	er samples were no	t analyzed for EPA	method 8240 during the	November 1989 monitorin	g event.

Table 3 Ground-Water Analyses Microgram Per Liter (parts per billion) BP Service Station 11266, Alameda, California

WELL ID		DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feel)	GROUNDWATER ELEVATION (Feet)	(b)	TPH-G (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
MW-1		03/04/88	19.19					95000	2000	5900	1100	10000			-	
MW-1		03/29/89	19.19					25000	930	2600	24	3100				
MW-1		11/28/89	19.19					15000	280	880	340	1200			recenter	
MW-1		02/13/91	19.19					25000	680	2700	1100	3200			·	
MW-1		01/08/92	19.19					10000	260	1100	570	2000				
MW-1		03/30/92	19.19		8.15	11.04		5800	290	570	500	1100		(h)		PACE
MW-1		07/02/92	19,19		9.38	9.81		2500	170	60	310	300				ANA
MW-1		07/22/92	19.19		9.62	9.57						—				
MW-1		10/02/92	19.19		9.98	9.21		4000	86	190	270	350				ANA
QC-1	(C)	10/02/92						3600	89	180	270	340				ANA
MW-1		12/14/92	19.19		9.90	9.29		6800	75	540	200	670				ANA
QC-1	(C)	12/14/92				www.iva		5900	68	480	190	600				ANA
MW-1		03/24/93	19.19		8.52	10.67		6400	150	310	370	710	1400	(D)		PACE
MW-1		06/17/93	19.19		9.37	9.82		3800	110	160	310	480	220	(a)		PACE
MW⊦1		09/29/93	19.19		10.80	8.39		1100	22	16	54	110	320	(D)		PACE
MW-1		12/28/93	19.19		9.27	9.92		1800	26	110	((300	220	(a) (b)	24	PACE
MW-1		03/29/94	19.19		8.77	10.42		22000	990	560	970	2000	20000	(E1) (a)	3.1	PACE
MW-1		07/07/94	19.19		9.18	10.01		18000	67	3Z 0.6		140	30000	(D) (b)	3.6	PACE
MW-1		10/18/94	19.19		9.85	9.34		270	1.9	0.0	1100	080		(11)	5.0	
MW-1		02/01/95	19.19		7.04	12.15		12000	200	500	060	300			5.0	
MW-1		04/12/95	19.19		1.74	11.45		13000	200	020	900 510	2000	4200		5.0 E 3	ATI
MW-1		09/13/95	19_19		9.58	9.61		5800	110	110	400	030	4300		5.2	ATE
QC-1	(c)	09/13/95				40.04		5800	01	420	490	1000	4000		5.2	
MW-1		01/11/96	19.19		8.95	10.24		5400	91	100	010	950	2000		J.Z	ATI
QC-1	(C)	01/11/96				10.70		2100	100	/20	1100	1560	2100		4.5	SPI
MW-1		04/18/96	19.19		8.40	10.79		12000	100	390	1100	1440	2000			SPL
QC-1	(c)	04/18/96			0.09	10.11		12000	100	130	670	1180	4600			SPL
MW-1		06/28/96	19.18		\$.00	10.11		11000	100	140	690	1290	4600			SPL
QC-1	(c)	06/28/96	40.40		0.01	0.38		8800	55	28	520	430	5700		5,5	SPL
MW-1		11/05/96	19,19		9,01	5.00		8800	48	ND<25	490	413	5600			SPL
QC-1	(c)	11/05/96	40.40		7.91	11 38		12000	180	160	1200	1650	3200		8.0	SPL
MW-1	6	01/17/97	(3.13		1.01			13000	190	160	1200	1770	3200			SPL
QC-1	(C)	01/17/97	10.10		0.13	10.06		8600	160	49	950	850	3200		7.0	SPL
MW-1	10	05/01/97	19.19		0.10	10.00		9000	160	39	940	820	3100		—	SPL
QC-1	(C)	05/01/97	10.10		9 55	9.64		10000	93	27	720	476	4500		6.3	SPL
MW-1		07/09/97	19.19		لي ہے۔ منہ	0.07		7600	42	13	340	175	4300			SPL
WU-1	(¢)	10/16/97	19,19		9.77	9.42		2100	71	14	420	1 9 4	500		6.8	SPL

۰ ،

• •

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	DEPTH TO (a) WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
QC-1 (c) 10/16/97				2600	80	17	500	276	510			SPI
MW-1	01/08/98	19.19	8.36	10.83	2500	33	21	180	183	1200		6.1	SPL
QC-1 (c) 01/08/98				2400	32	20	170	154	1300		_	SPL
MW-1	04/17/98	19.19	7.48	11.71	14000	140	410	730	1980	2400		3.7	SPL
QC-1 (c) 04/17/98				14000	140	460	770	2220	2500			SPL
MW-1	09/11/98	19.1 9	9.30	9.89	7700	65	38	580	880	1700		5.6	SPL
QC-1 (c) 09/11/98				10000	81	59	710	1410	1800			SPL
MW-1	03/09/99	19.19	6.80	12.39	6300	93	99	510	790	780/700	(f)		SPL
MW-1	09/23/99	19.19	8.31	10.88	8500	93	88	910	1900	640	.,		SPL
MW-1	03/27/00	19.19	6.82	12.37	2100	35	6.2	240	120	160			PACE
MW-1	09/27/00	1 9.19	8.58	10.61	810	13	0.62	43	12	46			PACE
MW-1	03/21/01	19.19	7.47	11.72	1500	28.2	1.68	107	90.5	15.2			PACE
MW-1	09/18/01	19.19	8.95	10.24	990	24	9.57	44.6	62.6	31.2			PACE

.

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	DEPTH TO (a) WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
MW-2	03/04/88	19.32	·		ND	ND	ND	ND	ND				
MW-2	03/29/89	19.32	—	5	ND	1.1	0.78	ND	1.7				
MW-2	11/28/89	19.32			170	NÐ	ND	ND	ND				
MW-2	02/13/91	19.32			150	1.4	ND	ND	0.9				
MW-2	01/08/92	19.32			ND	1.4	ND	ND	1.1				
MW-2	03/30/92	19.32	9.03	10.29	91	0.7	ND	ND	ND		(h)		PACE
MW-2	07/02/92	19.32	9.96	9.36	150	3.1	0.6	0.6	1.1		• • •	****	ANA
MW-2	07/22/92	19.32	10.12	9.20									
MW-2	10/02/92	19.32	10.42	8.90	56	ND<0.5	0.8	0.8	1.2				ANA
MW-2	12/14/92	19.32	10.77	8.55	210	1.5	ND<0.5	0.9	2.7				ANA
MW-2	03/24/93	19.32	9.33	9.99	94	0.8	ND<0.5	ND<0.5	0.9			····-	PACE
QC-1	(c) 03/24/93				150	1.8	0.6	1.3	1.3				PACE
MW-2	06/17/93	19.32	9.91	9.41	ND<50	ND<0.5	ND<0.5	ND<0.5	0.7	23	(d)		PACE
MW-2	09/29/93	19.32	11.39	7.93	68	ND<0.5	0.9	0.7	1.9	59	(d)		PACE
MW-2	12/28/93	19.32	9.75	9.57	260	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1300	(d)		PACE
QC-1	(c) 12/28/93				240	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1100	(d)		PACE
MW-2	03/29/94	19.32	9.39	9.93	150	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1622	(d),(h)	4,9	PACE
QC-1	(c) 03/29/94				140	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1600	(d)		PACE
MW-2	07/07/94	19.32	9.68	9.64	1100	0.6	1.7	0.6	3.2	2000	(d)	**	PACE
MW-2	10/18/94	19.32	10.22	9.10	290	3.1	0.8	ND<0.5	5.1		(h)	3.3	PACE
MW-2	02/01/95	19.32	8.03	11.29	100	ND<0.5	ND<0.5	ND<0.5	ND<1			6.0	ATI
MW-2	04/12/95	19.32	8.71	10.61	1200	ND<1.0	ND<1.0	ND<1.0	ND<2.0			8.3	ATI
MW-2	09/13/95	19.32	10.19	9.13	480	ND<2.5	ND<2.5	ND<2.5	ND<5.0	2300		7.8	ATI
MW-2	01/11/96	19.32	9.59	9,73	3400	ND<25	ND<25	ND<25	ND<50	11000		5.4	ATI
MW-2	04/18/96	19.32	9.04	10.28	130	ND<0.5	ND<1	ND<1	ND<1	170		5.5	SPL
MW-2	06/28/96	19.32	9.72	9.60	300	ND<0.5	ND<1	ND<1	ND<1	430		4.9	SPL
MW-2	11/05/96	19.32	10.43	8.89	710	ND<2.5	ND<5.0	ND<5.0	ND<5.0	960		5.3	SPL
MW-2	01/17/97	19.32	8.80	10.52	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	24		5.3	SPL
MW-2	05/01/97	19.32	10.06	9.26	80	ND<0.5	ND<1.0	ND<1.0	ND<1.0	100		5.2	SPL
MW-2	07/09/97	19.32	10.50	8.82	150	ND<0.5	ND<1.0	ND<1.0	ND<1.0	170		4.3	SPL
M₩-2	10/16/97	19.32	10.18	9.14	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	260		5.0	SPL
MW-2	01/08/98	19.32	9.04	10.28	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	18		4.4	SPL
MW-2	04/17/98	19.32	8.56	10.76	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		3.9	SPL
MW-2	09/11/98	19.32	9.79	9.53	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		6.1	SPL
MW-2	03/09/99	19.32	7.93	11.39	200	ND<1.0	ND<1.0	ND<1.0	ND<1.0	190			SPL
MW-2	09/23/99	19.32	8.52	10.80	<250	ND<5.0	ND<5.0	ND<5.0	ND<5.0	84			SPL
MW-2	03/27/00	19.32	7.98	11.34	200	ND<0.5	ND<0.5	ND<0.5	ND<0.5	490			PACE
MW-2	09/27/00	19.32	8.84	10.48	180	ND<0.5	ND<0.5	ND<0.5	ND<0.5	730			PACE

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feet)	DEPTH TO WATER (Feel)	GROUNDWATER ELEVATION (Feet)	TF (b) (u	PH-G [ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/t)	MTBE (ug/l)	DO (ppm)	LAB
MW-2	03/21/01	19.32	8.34	10.98		270	1.02	ND<0.5	ND<0.5	ND<1.5	341		PACE
MW-2	09/18/01	19.32	9.29	10.03		100	ND<0.5	ND<0.5	ND<0.5	ND<1.5	178		PACE

Blaine Tech Services, Inc., Report 010918-R-1, BP Oil 11266 at 1541 Park Street, Alameda, California

s •

.

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a (Feet)	DEPTH TO a) WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	B (ug/l)	T (ug/l)	E (ug/i)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
MW-3	03/04/88	19.99			ND	ND	ND	ND					
MW-3	03/29/89	19.99			ND	ND	ND	ND	ND				
MW-3	11/28/89	19.99			ND	ND	ND	ND	ND				
MW-3	02/13/91	19.99	Reference		ND	ND	ND	ND	ND	·			
MW-3	01/08/92	19.99			ND	ND	ND	ND	ND				
MW-3	03/30/92	19.99	9.71	10.28	ND	ND	ND	ND	ND		(6)		DACE
MW-3	07/02/92	19.99	10.52	9.47	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ųψ		FACE
MW-3	07/22/92	19.99	10.62	9.37				142 -0.0	110 -0.0				ANA
MW-3	10/02/92	19.99	10.86	9,13	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				A.N.8
MW-3	12/14/92	19.99	10.53	9.46	NO<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ANA
MW-3	03/24/93	19.99	9.06	10.93	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ANA
MW-3	06/17/93	19.99	10.44	9.55	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-3	09/29/93	19.99	11.06	8.93	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-3	12/28/93	19.99	9.43	10.56	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-3	03/29/94	19.99	10.01	9.98					110-0.0			•••	PACE
MW-3	07/07/94	19.99	10.14	9.85	ND<50	ND<0.5	07	ND<0.5	ND<0.5				BACE
QC-1 (c)	07/07/94				ND<50	ND<0.5	0.7	ND<0.5	ND<0.5				PACE
MW-3	10/18/94	19.99	10.56	9.43	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		(b)	32	PACE
MW-3	02/01/95	19.99	8.98	11.01	ND<50	ND<0.5	1.0	0.5	1.9		()	5.9	
MW-3	04/12/95	19.99	9.70	10.29									
MW-3	09/13/95	19.99	10.70	9.29	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		5.7	ΑΤΙ
MW-3	01/11/96	19.99	10.18	9.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		5.5	ATI
MW-3	04/18/96	19.99	9.53	10.46									
MW-3	06/28/96	19.99	9.21	10.78	ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10		4.3	SPI
MW-3	11/05/96	19. 9 9	9.94	10.05									
MW-3	01/17/97	19.99	9.29	10.70	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		5.D	SPI
MW-3	05/01/97	19.99	10.53	9.46				*					
MW-3	07/09/97	19.99	10.92	9.07	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4.0	SPI
MW-3	10/16/97	19.99	11.24	8.75					******				
MW-3	01/08/98	19.99	10.12	9.87		*	****			B-4-4-			
MW-3	04/17/98	19.99	9.62	10.37	 -							—	
MW-3	09/11/98	19.99	10.83	9.16					_				
MW-3	03/09/99	19.99	9.00	10.99	17000	8.2	ND<1.0	ND<1.0	5.90	17000			SPL
MW-3	09/23/99	19.99	9.20	10.79				-				·····	_
MW-3	03/27/00	19.99	9.10	10.89	1200	4.5	1.2	3.0	3.1	2800		-	PACE
MW-3	09/27/00	19.99	9.96	10.03					****				
MW-3	03/21/01	19.99	9.46	10.53	610	2.97	ND<2.5	8.66	7.85	572			PACE
MW-3	09/18/01	19.99	10.13	9.86		—							

.

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	DEPTH TO (a) WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	B (ug/l)	Т (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
MW-4	03/04/88	20.17			ND	ND	ND	ND	ND				
MW-4	03/29/89	20.17			ND	ND	ND	ND	ND				
MW-4	11/28/89	20.17			430	6.2	0.6	12	3.3				
MW-4	02/13/91	20.17			ND	ND	ND	ND	ND			<u> </u>	
MW-4	01/08/92	20.17			ND	ND	ND	ND	ND				
MW-4	03/30/92	20.17	8.73	11.44	ND	ND	ND	ND	ND		(h)	_	PACE
MW-4	07/02/92	20.17	10.04	10.13	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ANA
MW-4	07/22/92	20.17	10.26	9.91									
MW-4	10/02/92	20.17	10.63	9.54	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ANA
MW-4	12/14/92	20.17	10.02	10.15	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ANA
MW-4	03/24/93	20.17	9.08	11.09	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-4	06/17/93	20.17	10.03	10.14	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-4	09/29/93	20.17	10.96	9.21	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-4	12/28/93	20.17	9.33	10.84	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-4	03/29/94	20.17	9.42	10.75									
MW-4	07/07/94	20.17	9.82	10.35	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-4	10/18/94	20.17	10.36	9.81	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		(h)	3.1	PACE
MW-4	02/01/95	20.17	7.50	12.67	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1			9.3	ATI
MW-4	04/12/95	20.17	8.21	11.96		—				_			
MW-4	09/13/95	20.17	10.20	9.97	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		4.3	ATI
MW-4	01/11/96	20.17	9.57	10.60	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		5.1	ATI
MW-4	04/18/96	20.17	9.03	11.14	~~~								
MW-4	06/28/96	20.17	8.73	11.44	ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10		4.6	SPL
MW-4	11/05/96	20.17	9.47	10.70					***				
MW-4	01/17/97	20.17	8.79	11.38	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		5.4	SPL
MW-4	05/01/97	20.17	10.08	10.09	***					_			
MW-4	07/09/97	20.17	10.52	9.65	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4,1	SPL
MW-4	10/16/97	20.17	10.85	9.32									
MW-4	01/08/98	20.17	9.60	10.57	—								****
MW-4	04/17/98	20.17	9.11	11.06									
MW-4	09/11/98	20.17	10.32	9.85	****							*	
MW-4	03/09/99	20.17	7.30	12.87	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			SPL
MW-4	09/23/99	20.17	7.86	12.31									
MW-4	03/27/00	20.17	7.57	12.60	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		-	PACE
MW-4	09/27/00	20.17	9.59	10.58									
MW-4	03/21/01	20.17	8.14	12.03	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5			PACE
MW-4	09/18/01	20.17	9.74	10.43									_

ł

. .

.

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	N (a)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	8 (ug/l)	T (ug/ł)	E (ug/l)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
MW-5	03/04/88	19.41		TUCH		ND	ND	ND	ND	ND	<u> </u>			
MW-5	03/29/89	19,41				ND	ND	ND	ND	ND				
MW-5	11/28/89	19.41			—	ND	ND	ND	ND	ND				
MW-5	02/13/91	19.41				ND	ND	ND	ND	ND				
MW-5	01/08/92	19.41			~~~	ND	ND	ND	ND	ND				
MW-5	03/30/92	19_41		7.85	11.56	ND	ND	ND	ND	ND		(h)		PACE
MW-5	07/02/92	19.41		9.27	10.14	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			•	ANA
MW-5	07/22/92	19.41		9.55	9.86									
MW-5	10/02/92	19.4 1		9.97	9.44	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ANA
MW-5	12/14/92	19.41		9.14	10.27	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	*		****	ANA
MW-5	03/24/93	19.41		8.17	11.24	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-5	06/17/93	19.41		8.29	11.12	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
QC-1	(c) 06/17/93					ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-5	09/29/93	19.41		10.31	9.10	ND<50	ND<0.5	ND<0.5	ND<0.5	0.6			·	PACE
MW-5	12/28/93	19.41		8.91	10.50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-5	03/29/94	19.41		8.50	10.91									
MW-5	07/07/94	19.41		8.99	10.42	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
MW-5	10/18/94	19.41		9.61	9.80	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	(h)	3.5	PACE
MW-5	02/01/95	19.41		6.55	12.86	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		• •	7.6	ATI
MW-5	04/12/95	19.41		7.27	12.14			_						
MW-5	09/13/95	19.41		9.49	9.92	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		4.9	ATI
MW-5	01/11/96	19.41		8.82	10.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		4.9	ATI
MW-5	04/18/96	19.41		8.30	11.11									
MW-5	06/28/96	19.41		8.96	10.45	ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10		4.2	SPL
MW-5	11/05/96	19.41		9.69	9.72					14- p				-
MW-5	01/17/97	19.41		9.02	10.39	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		5.2	SPL
MW-5	05/01/97	19.41		10.29	9.12									
MW-5	07/09/97	19.41		10.71	8.70	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4.2	SPL
MW-5	10/16/97	19,41		11.03	8.38									
MW-5	01/08/98	19.41		10.00	9.41								-	
MW-5	04/17/98	19.41		8.73	10.68									
MW-5	09/11/98	19.41		9.91	9.50									
MW-5	03/09/99	19.41		6.24	13.17	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			SPL
MW-5	09/23/99	19.41		6.74	12.67									
MW-5	03/27/00	19.41		6.64	12.77	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<0.5			PACE
MW-5	09/27/00	19.41		8.76	10.65									-
MW-5	03/21/01	19.30	(g)	7.15	12.15	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5			PACE
MW-5	09/18/01	19.30		8.85	10.45									

3

, ,

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	DEPTH TO (a) WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	B (ug/l)	T (ug/l)	E (ug/i)	X (ug/l)	MTBE (Ug/I)		DO (ppm)	LAB
MW-6	03/04/88	19.40			ND	ND	ND	ND	ND				
MW-6	03/29/89	19.40			ND	ND	ND	ND	ND				
MW-6	11/28/89	19.40			ND	ND	ND	ND	ND				
MW-6	02/13/91	19.40		<u></u>	ND	ND	ND	ND	ND				_
MW-6	01/08/92	19.40			ND	ND	ND	ND	ND				
MW-6	03/30/92	19.40	8.86	10.54	ND	ND	ND	ND	ND		ው		DACE
MW-6	07/02/92	19.40	9.94	9.46	ND<50	ND<0.5	ND<0.5	ND<0.5			(iii)		PACE
MW-6	07/22/92	19.40	10.10	9.30					10-0.5				ANA
MW-6	10/02/92	19.40	10.48	8.92	ND<50	ND<0.5	ND<0.5	ND<0.5					 A & I &
MW-6	12/14/92	19.40	10.76	8 64	ND<50	ND<0.5	ND<0.5		ND<0.5			—	
MW-6	03/24/93	19.40	9.19	10.21	ND<50	ND<0.5	ND<0.6	ND<0.5	ND<0.5	-			ANA
MW-6	06/17/93	19.40	9.91	9 49	ND<50	ND<0.5	ND<0.5						PACE
MW-6	09/29/93	19.40	11.49	7.91	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			—	PACE
MW-6	12/28/93	19 40	9.88	9.52	ND<50	ND<0.5	ND<0.5	ND<0.5					PACE
MW-6	03/29/94	19.40	9.36	10 04	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	00.0	1-1		PACE
MW-6	07/07/94	19 40	9.75	9.65	ND<50	ND<0.5		ND<0.5	ND<0.5	00,3	(n) (4)	5.0	PACE
MW-6	10/18/94	19.40	10.30	9.10	ND<50	ND<0.5	ND<0.5	NO<0.5	ND<0.5	30	(0) (5)		PACE
MW-6	02/01/95	19,40	7.92	11.48	ND<50	ND<0.5	140-0.0 8 9	ND<0.5	11		(11)	3.3 E #	PACE
MW-6	04/12/95	19.40	8.41	10.99	220	ND<0.50	ND<0.50	ND<0.50	ND<1.0			J.4 A7	
MW-6	09/13/95	19.40	10.05	9.35	180	ND<1.0	ND<1.0	ND<1.0	ND<2.0	770		4.7	
MW-6	01/11/96	19.40	9.52	9.88	670	ND<2.5	ND<2.5	ND<2.5	ND<5.0	2400		4.5	AT1
MW-6	04/18/96	19.40	9.03	10.37	560	ND<0.5	ND<1	ND<1	ND<1	860		51	201
MW-6	06/28/96	19,40	8.76	10.64	620	ND<0.5	ND<1	ND<1	ND<1	540		10	SPI
MW-6	11/05/96	19.40	9.48	9.92	810	ND<5	ND<10	ND<10	ND<10	970		4.8	SDI
MW-6	01/17/97	19.40	8.58	10.82	830	ND<0.5	ND<1.0	ND<10	ND<1.0	960		80	SDI
MW-6	05/01/97	19.40	9.92	9.48	780	ND<5	ND<10	ND<10	ND<10	970		77	SDI
MW-6	07/09/97	19,40	10.33	9.07	990	ND<0.5	ND<1.0	ND<1.0	ND<1.0	1100		80	OFL CDI
MW-6	10/16/97	19.40	10.66	8.74	ND<50	ND<0.5	ND<10	ND<10	ND<1.0	750		67	OFE COI
MW-6	01/08/98	19 40	8 92	10.48	120	ND<0.5	ND<1.0	ND<1.0	ND<1.0	120		0,7 6.6	SUI COL
MW-6	04/17/98	19.40	8.12	11.28	ND<50	ND<0.5	ND<10	ND<10	ND<1.0	62		30	OFL CDI
MW-6	09/11/98	19.40	9.31	10.09	ND<50	ND<0.5	ND<10	ND<10	ND<10	50		0. 3 55	OFL ODI
MW-6	03/09/99	19.40	7.25	12.15	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2 9/ND<10	/f\	<i></i>	OF L CDt
MW-6	09/23/99	19.40	7.79	11.61	ND<250	ND<5.0	ND<5.0	ND<5.0	ND<5.0	200710~10	(1)		SPL SDI
MW-6	03/27/00	19.40	7 03	12 37	ND<50	ND<0.5	ND<0.5	ND<0.5	24	ND<0.5			DACE
MW-6	09/27/00	19.40	8.57	10.83	ND<50	ND<0.5	ND<0.5	ND<0.5	ج.ج ND<0.5	ND<0.5		-	
MW-6	03/21/01	19.40	7.47	11.93	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5			PACE
MW-6	09/18/01	19 40	9.12	10.28	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<15	ND<0.5			DACE

WELL ID		DATE OF SAMPLING/ MONITORING	CASING ELEVATION (Feet)	(a)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (Feet)	(b)	TPH-G (ug/l)	B (ug/l)	T (ug/i)	E (ug/l)	X (ug/l)	MTBE (ug/l)		DO (ppm)	LAB
RW-1		07/22/92			9.66			13000	1000	3400	380	2800				<u> </u>
RW-1		10/02/92			10,28							2000				A11/A
RW-1		12/14/92			23.28											
RW-1		03/24/93			8.93			660	21	25	8.3	100	315	(h)		PACE
RW-1		06/17/93			9.66			850	13	1.0	15	100	390	(d)		PACE
RW-1		09/29/93	19.27		23.40	-4,13		1200	26	27	11	150	1800	(d)		PACE
QC-1	(C)	09/29/93						1200	26	28	11	160	1900	(d)		PACE
RW-1	• •	12/28/93	19.27		9.76	9.51		3500	300	220	180	480	1900	(d)		PACE
RW-1		03/29/94	19.27		8.93	10.34		12000	640	1700	450	2200	899	(a) (b)	63	PACE
RW-1		07/07/94	19.27		9.45	9.82		7600	530	1100	380	1800	410	(d)		PACE
RW-1		10/18/94	19.27		10.11	9.16		5300	47	100	150	280		(d) (b)	34	PACE
QC-1	(c)	10/18/94						430	ND<0.5	ND<0.5	ND<0.5	ND<0.5		(0),(17)		PACE
RW-1	\- 7	02/01/95	19.27		8.54	10.73		27000	2400	6100	1800	5300	_		4.5	
QC-1	(c)	02/01/95						15000	1300	3300	970	2900				ATE
RW-1		04/12/95	19.27		8.21	11.06		6200	330	910	350	1500			5.2	ΑΤΙ
QC-1	(C)	04/12/95						7600	400	1100	440	1900				ATI
RW-1	• •	09/13/95	19.27		9.84	9.43		920	140	60	34	110	1200		5.1	ATI
RW-1		01/11/96	19.27		9.25	10.02		ND<50	0.95	0.61	ND<0.50	2.1	43		5.4	ATI
RW-1		04/18/96	19.27		8.73	10.54		ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10		4.7	SPL
RW-1		06/28/96	19.27		9.40	9.87		ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10		4.5	SPL
RW-1		11/05/96	19.27		10.12	9.15		ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4.9	SPL
RW-1		01/17/97	19.27		8.10	11.17		ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4.8	SPL
RW-1		05/01/97	19.27		9.43	9.84		ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4.6	SPL
RW-1		07/09/97	19.27		10.83	8.44		ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		4.1	SPL
RW-1		10/16/97	19.27		11.17	8.10								-	_	
RW-1		01/08/98	19.27		10.03	9.24										
RW-1		04/17/98	19.27		8.79	10.48									•	-
RW-1		09/11/98	19.27		9.98	9.29										****
RW-1		03/09/99	19.27		7.19	12.08										
RW-1		09/23/99	19.27		7.63	11.64		-								
RW-1		03/27/00	19.27		7.04	12.23		~~~								
RW-1		09/27/00	19.27		8.55	10.72										
RW-1		03/21/01	19.27		7.48	11.79										
RW-1		09/18/01	19.27		9.13	10.14										

- t

. .

The second s

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a (Feet)	DEPTH TO a) WATER (Feet)	GROUNDWATER ELEVATION (Feet)	TPH-G (b) (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DO (ppm)	LAB
QC-2 (e)	10/02/92				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			ΔΝΙΔ
QC-2 (e)	12/14/92				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
QC-2 (e)	03/24/93				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
QC-2 (e)	06/17/93				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
QC-2 (e)	09/29/93				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
QC-2 (e)	12/28/93				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-		PACE
QC-2 (e)	03/29/94	_		575	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
QC-2 (e)	07/07/94				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
QC-2 (e)	10/18/94				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		Market and	PACE
QC-2 (e)	02/01/95				ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1			ATI
QC-2 (e)	04/12/95				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0			ATI
QC-2 (e)	09/13/95				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0		ATI
QC-2 (e)	01/11/96				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0	_	ATI
QC-2 (e)	04/18/96				ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10	_	SPL
QC-2 (e)	06/28/96				ND<50	ND<0.5	ND<1	ND<1	ND<1	ND<10		SPL

.

· ·

TABLE 1 - SUMMARY OF RESULTS OF GROUNDWATER MONITORING

ADDITIONAL ANALYSES

Well ID	DATE OF SAMPLING/ MONITORING	Dissolved Lead (ug/l)	LAB
RW-1	03/21/01	ND<50	PACE
RW-1	09/18/01	ND<50	PACE

ABBREVIATIONS:

- TPH-G Total petroleum hydrocarbons as gasoline
- 8 Benzene
- т Toluene Ε Ethylbenzene
- х Total xvienes
- MTBE
- Methyl tert butyl ether
- DO Dissolved oxygen
- Micrograms per liter ug/l Parts per million
- ppm
- Not measured/applicable/analyzed ND Not detected above reported detection limit
- PACE Pace, inc.
- Anametrix, Inc. ANA
- ATL
- Analytical Technologies, Inc. SPL
- Southern Petroleum Laboratories

NOTES:

- Casing elevations surveyed to nearest 0.01 foot (a) above mean sea level, with an assigned elevation of 22.82 feet (City datum).
- Groundwater elevations in feet above mean sea level. (b)
- (c) Blind duplicate.
- A copy of the documentation for this data is included in Appendix C (d) of Alisto report 10-050-07-004.
- Travel blank. (e)
- EPA Methods 8020/8260 used. **(f)**
- Elevation changed due to well maintenance. (g)
- (h) A copy of the documentation for this data is included in Blaine Tech Services report 010918-R-1. No chromatograms could be located for all samples taken on October 18, 1994. The data for sampling events taken on March 30, 1992 have been destroyed.

.