55 Glenlake Parkway, NE Atlanta, GA 30328-3474

> Ms. Barbara Jakub Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

Subject: Corrective Action Plan UPS Oakland Hub 8400 Pardee Drive, Oakland, CA 94621 Global ID T0600100939 State ID # 583 EPA ID # CAD 09707509

RECEIVED

11:02 am, Jan 23, 2012

Alameda County Environmental Health

Dear Ms. Jakub:

Attached please find the Corrective Action Plan for the above-referenced site. The report, which was prepared for United Parcel Service (UPS) by ARCADIS U.S., Inc. (ARCADIS), includes a plan to reduce residual total petroleum hydrocarbon diesel range organic (TPH-DRO) impacts at the UPS Oakland Hub.

I declare under penalty of perjury, that the information and/or recommendations contained in the attached Corrective Action Plan are true and correct.

Please feel free to contact me directly at 404.828.8991 should you have any questions or comments.

Sincerely,

United Parcel Service

Julie Straub Remediation and Assessment Manager

Imagine the result

Corrective Action Plan

United Parcel Service

8400 Pardee Drive, Oakland, California

December 2011

David M. Sonders. Project Environmental Engineer

Gregory Albright, R Principal Geologist

Corrective Action Plan

UPS-Oakland Hub 8400 Pardee Drive Oakland, CA

Prepared for: United Parcel Service

Prepared by: ARCADIS U.S., Inc. 2033 North Main Street Suite340 Walnut Creek, CA 94596 Tel 925-274-1100 Fax 925.274.1103

Our Ref.: B0038398.00004

Date: December 2011

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table o	f Contents
---------	------------

i

Section 1 – Introduction	1
Section 2 – Contaminant and Site Conditions	2
Contaminants	2
Regional and Site Specific Geology and Hydrogeology	3
Geology	3
Hydrogeology	3
Sensitive Receptor Survey	3
Groundwater Well Search	4
Soil and Groundwater Quality	4
Summary of Soil Analytical Data	4
Summary of Groundwater Analytical Data	5
Section 3 – Previous Remediation Efforts	7
UST Removal and Excavation	7
Enhanced Fluid Recovery	7
Passive Skimmers	7
Section 4 – Cleanup Goals	9
Section 5 – Technology Screening	10
Multi-phase Extraction	10
Groundwater Pump and Treat	10
Excavation	10
Chemical Oxidation	11
Enhanced Bioremediation – Anaerobic Biological Oxidation	11
Section 6 – Selected Remedial Technology	13
Phase 1 Injection Setup and Completion	14
Section 7 – Sampling Plan	16

g:\-data\ups\oakland\reports\cap\updated cap - 2nd submittal\cap text and toc_final.doc

Table of Contents

Section	on 8 – Conclusions	18
	Post-Injection Sampling	16
	Injection Sampling	16
	Baseline Sampling	16

Table of Contents

Tables

Table 1	Historical Groundwater Elevation Summary
Table 2	PSH Recovery Event Results
Table 3	Historical Groundwater Monitoring Results Summary
Table 4A	Historical Soil Analytical Results Summary
Table 4B	Historical Soil Analytical Results Summary (PAHs)

Figures

Figure 1	Site Location Map
Figure 2	Facility Layout Map
Figure 3	Site Map
Figure 4	Groundwater Contour Map
Figure 5	Groundwater Quality Map
Figure 6	TPH-DRO Soil ESL Exceedance Map
Figure 7	Injection Plan

Appendices

Appendix A Laboratory Analytical Results

UPS-Oakland Hub

ARCADIS

Section 1 – Introduction

The goal of this Corrective Action Plan (CAP) is reduce residual impacts from the former diesel underground storage tanks (USTs) in accordance with Petroleum Low-Threat Closure Policy proposed by the California Environmental Protection Agency (CA EPA) and the State Water Resources Control Board (SWRCB). The general criteria that must be satisfied by all candidate sites are listed as follows:

a. The unauthorized release is located within the service area of a public water system;

- b. The unauthorized release consists only of petroleum;
- c. The unauthorized ("primary") release from the UST system has been stopped;
- d. Free product has been removed to the maximum extent practicable;
- e. A conceptual site model has been developed;
- f. Secondary source removal has been addressed and

g. Soil or groundwater has been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15.

ARCADIS and UPS believe that all of the conditions above have been met at this site with the exception of the "d" and "f". "d" is currently in the process as being met with the installation of full time passive skimmers in the wells that have historical contained a veneer of free product. "f's" condition will be met by implementation of this CAP. Implementation of the CAP will reduce any secondary sources to CA EPA/SWRCB proposed Petroleum Low-Threat Closure Policy levels.

United Parcel Service (UPS) operates a package distribution center at the Oakland Hub. Fuel dispensing to trucks and minor vehicle maintenance occurs at the site. This includes vehicle oil/lubricant changing operations and oil filter replacement. The CAP is presented to address residual petroleum hydrocarbons associated with the former diesel USTs that were removed in 2009.

The location of the site is shown on the topographic map (United States Geological Survey (USGS) 7.5 minute San Leandro quadrangle) presented as **Figure 1**. The land surface is flat with a ground elevation at the site of approximately 10 feet above mean sea level (ft-amsl). **Figure 2** is an aerial photograph of the site and its vicinity, showing the location of adjacent and nearby properties. **Figure 3** is a site map that depicts the location of the site relative to the surrounding area.

UPS-Oakland Hub

ARCADIS

Section 2 – Contaminant and Site Conditions

Contaminants

The contaminants of concern (COCs) at the site are limited to petroleum hydrocarbons; specifically diesel fuel. Initial discover of the release occurred in 1989. In June 1990, a limited Site Assessment was performed on the southern diesel fuel dispensing facility. Five monitoring wells and three soil borings were installed on the site in August 1990. Monthly free –product, or phase-separated hydrocarbons (PSH) removal and semi-annual groundwater sampling continued from the mid-1990's into 2009 when the southern fueling area diesel USTs were closed via removal. The wells have been sampled for benzene, toluene, ethylbenzene, xylenes (BTEX), and total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and diesel range organics (TPH-DRO).another constituent that has been tested for at the site is methyl tertiary butyl ether (MTBE). Historically, only DRO has been detected above laboratory reporting limits. **Tables 3, 4A,** and **4B** outline the current and historical analytical results for both soil and groundwater.

During the most recent soil and groundwater assessment events conducted in February 2011, the only COC identified above the San Francisco Bay Regional Water Quality Control Board Environmental Screening Level (ESL) was TPH-DRO and TPH-GRO. TPH-DRO concentrations above ESLs were detected in the soil and groundwater. Free product has been intermittently identified in up to 3 monitoring wells on-site. Free product is currently being recovered by a passive skimmer system.

A forensic analysis of the composition of the TPH in soil and groundwater was conducted in May 2010. The results indicated that there were groundwater and soil samples exhibiting a predominantly diesel signature in the proximity of the former UST area. There were also groundwater and soil samples exhibiting a predominantly heavier than diesel hydrocarbon signature. This TPH component is not believed to be associated with petroleum hydrocarbons from the former UST and its origin is unknown and is not assumed to be associated with historical UPS activities.

Analytical results for soil and groundwater collected during the most recent phase of investigation were presented in a Summary of Soil and Groundwater Investigation Activities Report dated February 15, 2011 and previously submitted to the Alameda County Department of Environmental Health (ACEH).

UPS-Oakland Hub

ARCADIS

Regional and Site Specific Geology and Hydrogeology

Geology

The site is located in the East Bay Plain, which is characterized by Quaternary Age Bay mud composed of unconsolidated plastic clay and silty clay rich in organic material with some lenses of silt and sand. The area in which the site is located is underlain by artificial fill over San Francisco Bay mud. Soils encountered during the 2010 and previous investigations were artificial fill composed of gravel, sand and silty sand to depths of 5 feet to approximately 10 feet underlain by native bay muds (clay) to maximum depths of investigation.

Hydrogeology

Regional groundwater flow is indicated from east to west generally correlating to topography, localized groundwater flow can be influenced by east-west oriented buried stream channels as well as the tidal from the nearby Bay. There is a very low, if any, gradient at the site and the groundwater flow appears to alternate to the northwest and southeast. During the most recent groundwater sampling event conducted at the site depths-to-water (DTW) measurements were recorded in monitoring wells MW-2, MW-3, MW-4, MW-8, MW-9, MW-10, MW-11 and OW-1 prior to groundwater sampling. The top of well casing elevations, DTW, and groundwater elevation data are summarized in **Table 1**. The apparent groundwater flow direction was to the southeast. A groundwater contour map is included as **Figure 4**.

Sensitive Receptor Survey

Figure 2 is an aerial photograph of the site and its vicinity, showing the location of adjacent and nearby properties. San Leandro Channel is located about 150 feet from the eastern property boundary and flows in a northwesterly direction toward San Leandro Bay.

On-site utilities are shown on **Figure 3**. The below-ground on-site utilities are sanitary sewer lines, a water line, electrical lines and storm drains. The electrical and sewer lines are in the immediate vicinity of the former UST area. Notification of the CAP will be sent via certified mail to the owners of the properties that are contiguous to the UPS property.

UPS-Oakland Hub

ARCADIS

Groundwater Well Search

The well search was performed for the area within approximately one-mile of the site and identified 25 wells within the search parameters. ARCADIS determined that the well search included 24 shallow monitoring wells and one possible water supply well. The possible groundwater supply well is located approximately 2,500 feet southeast of the site former UST area. Due to the distance and low permeability of the natural sediments and extremely low hydraulic gradient, this possible water supply well is not considered at risk.

Soil and Groundwater Quality

Summary of Soil Analytical Data

Soil analytical results collected at the site prior to April 2010 have been previously submitted in separate reports. The soil analytical results for the soil borings installed in April 2010 are summarized herein and on **Table 4A**.

During the April 2010 site assessment a total of 12 soil borings (SB-01 through SB-12) were advanced at the site. ARCADIS collected a total of 18 samples, including 12 "shallow" soil samples collected at approximately 4 to 7.5 feet bgs for horizontal delineation and 6 "deeper" soil samples collected at approximately 8 to 13 feet bgs for vertical delineation.

Each soil sample was analyzed for BTEX using United States Environmental Protection Agency (U.S. EPA) Method 8260B, and TPH-GRO and TPH-DRO using U.S. EPA Method 8015. Additionally, select soil samples (SB-01 (4.5-5.0), SB-02 (7.0-7.5), SB-05 (4.5-5.0), SB-06 (7.0-7.5), SB-07 (4.5-5.0), and SB-08 (4.5-5.0) were submitted for forensic analysis by full scan gas chromatography mass spectrometry (full scan GS/MS) to assist in the determination of the source of petroleum hydrocarbons detected in the vicinity of the former diesel USTs.

Shallow soil samplings taken at SB-01, SB-02, SB-05, SB-06, and SB-07 exhibited TPH-DRO concentrations exceeding its respective ESL.

No other constituents were detected above their respective ESLs as listed on **Table 4A**. **Figure 6** depicts the location of each soil sample relative to pertinent site features.

UPS-Oakland Hub

ARCADIS

The most recent soil assessment activities were conducted in August 2011. Soil samples were collected from the 0-2' and 8-10' intervals from 10 soil borings locations. These soil samples were analyzed for BTEX PAHs using U.S. EPA Method 8270. These soil samples were compared to the RWQCB ESLs for soils collected where groundwater is a current or potential source of drinking water. The soil samples collected were also compared to Table 1 of the Low-Threat UST Closure Policy Scoping Document.

Analytical data from these soil samples shows that benzo(a)anthracene was detected above the RWQCB ESL of 0.038 milligrams per kilogram (mg/kg) in soil samples collected from SB-4 (8') at 0.51 mg/kg, SB-13 (2') at 0.85 mg/kg, and SB-13A (2') at 0.51 mg/kg.

Benzo(a)pyrene was detected above the RWQCB ESL of 0.038 mg/kg in soil collected from SB-2 (8') at 0.04 mg/kg, SB-4 (8') at 0.4 mg/kg, SB-6 (8') at 0.043 mg/kg, SB-7 (8') at 0.047 mg/kg, SB-13 (2') at 0.061 mg/kg, and SB-13A (2') at 0.45 mg/kg.

Benzo(b)fluoranthene was detected above the RWQCB ESL of 0.038 mg/kg in soil collected from SB-4 (8') at 0.53 mg/kg, SB-13 (2') at 1.3 mg/kg, and SB-13A (2') at 0.87 mg/kg.

Benzo(k)fluoranthene was detected above the RWQCB ESL of 0.038 mg/kg in soil collected from SB-13 (2') at 0.48 mg/kg.

Dibenz(a,h)anthracene was detected above the RWQCB ESL of 0.062 mg/kg in soil collected from SB-4 (8') at 0.087 mg/kg, SB-13 (2') at 0.11 mg/kg, and SB-13A (2') at 0.063 mg/kg.

The soil analytical results for the August 2011 sampling event are summarized in **Table 4B.** The laboratory analytical reports, including chain of custody documentation, are included as **Appendix A**.

Summary of Groundwater Analytical Data

Groundwater analytical results collected at the site prior to September 2011 have been previously submitted in separate reports. The last comprehensive groundwater monitoring event was conducted on September 1, 2011. Analytical results for the September 2011 sampling event are summarized herein and on **Table 3**.

UPS-Oakland Hub

ARCADIS

On September 1, 2011, groundwater samples were collected from existing monitoring wells MW-2, MW-3, MW-4, MW-8, MW-9, MW-10, and MW-11 located at the site.

Groundwater samples collected from monitoring wells MW-2, MW-3, MW-4, MW-8, MW-9, MW-10, and MW-11 on September 1, 2011 were analyzed for TPH-DRO EPA Method 8015B. The samples were also analyzed for BTEX, MTBE, and TPH-GRO by EPA Method 8260B/CA LUFT.

BTEX and MTBE were not detected at or above their respective maximum contaminant levels (MCLs), environmental screening levels (ESLs), or laboratory reporting limit (RL) in monitoring wells MW-2, MW-3, MW-4, MW-8, MW-9, MW-10, or MW-11 during this groundwater monitoring event.

TPH-DRO was detected above the odor and taste threshold per the California Regional Water Quality Control Board regulations (100 μ g/L) and ESLs (100 μ g/L for drinking water and 210 μ g/L for non-drinking water) in monitoring wells MW-2 (4,600 μ g/L) MW-3 (24,000 μ g/L), MW-4 (7,700 μ g/L), MW-9 (240 μ g/L), MW-10 (250 μ g/L), and MW-11 (1,100 μ g/L). In the MW-8, only the drinking water ESL (100 μ g/L) was exceeded (200 μ g/L); however it was below the non-drinking water ESL.

TPH-GRO was detected above ESLs (100 μ g/L) for drinking water in monitoring wells MW-2 (140 μ g/L), MW-3 (450 μ g/L), and MW-4 (430 μ g/L), The ESL for non-drinking water (210 μ g/L) was exceeded only in monitoring wells MW-3 and MW-4.

Figure 5 shows the groundwater sample results and location of the monitoring wells.

UPS-Oakland Hub

ARCADIS

Section 3 – Previous Remediation Efforts

UST Removal and Excavation

Between March 31 and April 3, 2009, three 10,000 gallon diesel USTs, dispensers, and associated product piping were removed from the former UST area. Approximately 626 tons of petroleum impacted soil and pea gravel was removed from the site. Excavation of impacted soils was halted as it became evident that the impacts were wide spread and further assessment was necessary.

Enhanced Fluid Recovery

On April 14, 2010, ARCADIS performed an enhanced fluid recovery (EFR) event to recover free product. Negative pressure was applied to monitoring wells OW-1 and MW-2 using a drop tube and a vacuum truck for the extraction of product, groundwater, and soil vapor. Subsurface pressure and depth to water was monitored at monitoring well MW-3 and at temporary test wells VT-1A, VT-1B, VT-2A, and VT-2B.

Separate EFR events were conducted at monitoring wells MW-3 and OW-1 for a total of 4 hours each well. The drop tube was set to 1-2 feet below the initial depth to water level and a negative pressure of approximately 21 inches of mercury (in Hg) was applied to the well. Approximately 1,700 gallons of groundwater and PSH were recovered during the combined 8-hour EFR event.

On May 5, 2010, the depth to water and product thickness was gauged at the site. Free product was detected in monitoring wells MW-2, MW-3, and OW-1. The EFR event possibly mobilized product to the extraction points. This would suggest that creating a consistent product gradient towards extraction points would aid in timely product recovery versus the EFR intermittent recovery that was currently being conducted at the site. Passive product recovery skimmers which remain in the well were recommended as an alternative to the EFR events for product recovery and believed to be a more effective remediation strategy as they will continuously collect free product.

Passive Skimmers

Downwell passive PSH (free product) recovery skimmers were installed in monitoring wells OW-1, MW-2, and MW-3 in April 2011. Free product is collected in the integral skimmer sump and collected monthly for disposal. The skimmers are equipped with hydrophobic or water-rejecting screen which prevents water from entering the sump

UPS-Oakland Hub

ARCADIS

and allowing collection of PSH only. PSH recovery has been conducted monthly since May 2011 and is on-going to date.

During the recent fieldwork, the PSH thickness of <0.01 feet was maintained in MW-2 and in the months of September and October the product was recovered at full integral holding capacity (20 oz). In MW-3 also, PSH was recovered at almost the full holding capacity. In OW-1, the height of the skimmer was readjusted to recover just about the full holding capacity each month. The skimmers are working well and PSH recovery has been on a consistent basis. The PSH was observed to be translucent with unpleasant odor and was non-measureable. The PSH recovery data collected from June 2011 onwards is presented in **Table 2**.

UPS-Oakland Hub

ARCADIS

Section 4 – Cleanup Goals

The purpose of the remedial actions described in this CAP is to remediate the soil and groundwater impacts associated with the diesel impacts discovered at the former diesel UST area in 1989 per the CA EPA/SWRCB proposed Petroleum Low-Threat Closure Policy. The groundwater and soil will be remediated to ESLs as dictated by the SRWCB ESLs for Environmental Concerns at Sites with Contaminated Soil and Groundwater INTERIM FINAL - November 2007 (Revised May 2008) San Francisco Bay Region, CA, and in accordance with ACEH direction and/or those outlined by the CA EPA/SWRCB proposed Petroleum Low-Threat Closure Policy.

UPS-Oakland Hub

ARCADIS

Section 5 – Technology Screening

Multi-phase Extraction

Two multi-phase extraction (MPE) technology methodologies were evaluated: a system using down-well pumps and a system using a high-vacuum extraction blower. The MPE methodology with down-well pumps utilizes separate mechanical equipment for drawing groundwater (down-well pump) and extracting vapors (vacuum blower) independently. The other type of MPE methodology utilizes a single high-vacuum pump to extract total fluids and vapors simultaneously through a small drop tube (stinger) inserted in a recovery well. The purpose of both technologies is to recover subsurface hydrocarbons, drawdown the water table, and expose the smear zone for mass removal (e.g. dissolved-phase and vapor-phase). It requires the recovery and treatment and disposal of groundwater MPE technology is not recommended for this site due to the site lithology (i.e. clay). *Approximate Cost to closure for implementation - \$1.8 million.*

Groundwater Pump and Treat

The groundwater pump and treat remedial option consists of installing groundwater extraction wells or trenches and treating the groundwater using an ex-situ treatment system. This option could be used to hydraulically control the plume and over time may effectively remediate the COCs. The cleanup timeframe for pump and treat system may be several years to decades long. The infrastructure cost and long term operation and maintenance costs make this option financially unfeasible. *Approximate Cost to closure for implementation - \$5 million.*

Excavation

The excavation remedial option consists of the excavation, transportation, and disposal of petroleum impacted soil. Excavation is an effective method of removing impacts to the soil but is not directly effective in remediating the groundwater. An excavation is also not logistically feasible at this time as the size of the excavation required to remove all the impacted soil would take up the majority of the driveway and significantly impact the capabilities of the sorting and distribution facility. In addition, excavation alone would most likely need additional groundwater treatment to reach ESLs. *Approximate Cost to closure for implementation - \$2.6 million.*

UPS-Oakland Hub

ARCADIS

Chemical Oxidation

Chemical oxidation techniques are in-situ methods that utilize abiotic chemical reactions to destroy COCs in soil and groundwater. Chemical oxidation techniques include the use of reactive chemicals such as peroxide, permanganate, persulfate, or ozone. These reactive chemicals produce strongly oxidizing species, such as hydroxyl radicals from peroxide or sulfate radicals from persulfate that promote desorption of the COCs from the soil and react with and destroy organic COCs in the dissolved phase. By products from the destruction of COCs such as dissolved petroleum hydrocarbons are innocuous and include carbon dioxide and water. It has been ARCADIS' experience that finding an appropriate chemical for the oxidation chemistry to remediate TPH-DRO can be very challenging and may not be the most effective remedial alternative. *Approximate Cost to closure for implementation - \$1.2 million.*

Enhanced Bioremediation – Anaerobic Biological Oxidation

In general, aquifers impacted by petroleum hydrocarbons are typically anaerobic because dissolved oxygen (DO) is energetically favorable and is preferentially consumed by indigenous microbes during aerobic biological oxidation of the petroleum hydrocarbons. In these processes, the hydrocarbon materials serve as an electron donor for microbial respiration and work to deplete available oxygen within the system

Once oxygen has been depleted, alternative electron acceptors (i.e., nitrate, iron, manganese, sulfate, and carbon dioxide) are utilized in the continued anaerobic oxidation of petroleum hydrocarbons. As a result of these processes, geochemical conditions at many hydrocarbon-impacted sites are mildly anaerobic (e.g., iron-, nitrate-, or sulfate-reducing). The anaerobic oxidation of petroleum hydrocarbons under these dominant electron accepting processes is well-founded in the literature (Wiedemeier, et al., 1999; Suthersan and Payne, 2005; and Foght, 2008). Engineered anaerobic biological oxidation has seen less attention in practice while the focus has been on aerobic bioremediation systems (i.e., bio-sparging, air sparging, oxygenated water injection, ORM injection). Similar to enhanced aerobic systems, engineered anaerobic approaches rely on redox couples such as nitrate reduction, ferric iron reduction, sulfate reduction, and methanogenesis to facilitate cellular respiration using the petroleum hydrocarbon as an electron donor.

Anaerobic processes generally occur at slower kinetic rates than that observed with oxygen, but non-oxygen electron acceptors (i.e. sulfate and nitrate) can be

UPS-Oakland Hub

ARCADIS

advantageous to oxygen injection approaches as they are significantly more soluble (sulfate solubility can be greater than 100 grams per liter [g/L]) and as a result can be supplied at elevated dissolved concentrations. In addition, these alternative electron acceptors have minimal abiotic or non-target reactions that typically limit the persistence of oxygen and thereby the effectiveness of aerobic treatment processes within the subsurface. The anaerobic biological oxidation approaches – particularly those utilizing dissolved sulfate – offer distinct advantages when compared to oxygen delivery strategies. The higher concentrations of sulfate that can be delivered and sustained allow for more effective means of achieving hydrocarbon degradation. Thus, while the kinetic rates of anaerobic hydrocarbon bio-oxidation may be moderately slower than those under aerobic conditions, the ability to deliver elevated concentrations of non-oxygen electron acceptors over a relatively long time period during infrequent events is more cost-effective compared to long-term operation of continuous oxygen sparging or other engineered aerobic treatment alternatives.

Historical site data indicate that biological degradation may already be occurring at the site. Since biological degradation is already occurring, enhancement of this natural biodegradation process may be an effective remedial approach and is the selected remedial technology for this site. *Approximate Cost to closure for implementation* - *\$890,000.*

UPS-Oakland Hub

ARCADIS

Section 6 – Selected Remedial Technology

Historical site investigation data suggest that residual hydrocarbon impacts remain within the shallow, saturated soil materials across the Site. To address soil and groundwater impacts at the Site, a network of injection wells will be utilized to support delivery of an electron acceptor solution (i.e., sulfate) within the target treatment interval. Given the distribution of these materials across the Site, a phased implementation approach will be applied to include a preliminary injection in a known hydrocarbon hot spot to allow for collection of hydraulic information (groundwater velocity, volume-radial distribution relationship, injection flow rates) and performance data prior to expansion of the full-scale injection network. A layout of the conceptual phased approach is presented on **Figure 7**.

The Phase 1 injection network will consist of six newly installed injection wells in the former UST area. Phase 1 monitoring will be supported by an existing series of existing monitoring wells to be used to confirm treatment extent. The proposed injection wells will be used for the delivery of a dilute magnesium sulfate (Epsom salts) solution to support further development of sulfate-reducing conditions and promote the biological oxidation process. Distribution of delivered electron acceptors via direct injection and subsequent ambient groundwater flow will establish an anaerobic oxidation reactive zone, the extent of which will be characterized via the monitoring network.

The Phase 2 monitoring and injection wells are proposed to fully cover the former UST area. Coupled with the Phase 1 well network, these wells will support delivery of the sulfate electron acceptor within known hot spots at the Site. Injection monitoring results will be used to characterize hydraulic parameters during the injection event (subsurface injectability, volume-radial distribution relationship); and post-injection sampling will be used to characterize the groundwater velocity and remedial effectiveness. Following the Phase 1 test, these results will be used to determine the required Phase 2 injection network, the sulfate substrate dosing concentrations, and the injection methodology to optimize treatment performance.

The anticipated schedule for the phased implementation approach is detailed below:

- Installation and baseline sampling of proposed Phase 1 injection wells;
- Setup and completion of the first Phase 1 injection event;
- Phase 1 post-injection monitoring period (two quarters);
- Setup and completion of the second Phase 1 injection event;

UPS-Oakland Hub

ARCADIS

- Phase 1 post-injection monitoring period (two quarters);
- Evaluation and design of the Phase 2 well network
- · Phase 2 well network installation;
- Phase 2 injection (both Phase 1 and Phase 2 injection wells, as necessary);
- · Phase 2 post-injection monitoring and sampling; and
- Additional injection and monitoring, as necessary.

Phase 1 Injection Setup and Completion

During the Phase 1 injection event, all six of the proposed monitoring well locations will be injected into simultaneously. Individual wellheads will be connected via abovegrade hose and a distribution manifold to allow for continuous flow from a batch mixing tank to each well location. Flow meters and inline pressure gauges will be used to monitor both the injection rate and wellhead pressure applied. Based on the shallow DTW, the injection pressure will be limited to the extent possible (< five pounds per square inch (psi)) and injections will be initiated under gravity feed. In the event that slow (< 0.5 gallons per minute (GPM)) injection rates are observed under gravity feed conditions, a minimal amount of pressure may be applied with an injection pump to enhance fluid delivery. Based on the Site lithology, it is estimated that injection flow rates will vary between one and two GPM.

Each well will be connected above ground with 1-inch poly hosing to a distribution manifold near the temporary tank. The manifold will include flow control valves and flow meters to adjust the application rate and quantify injection volumes. The manifold will be connected to a variable speed pump at the base of the mixing tank powered by a portable generator. ARCADIS personnel will be on-site to execute the injection process and record injection parameters throughout the event. It is estimated that the Phase 1 injection event will take approximately five to seven days to complete.

As presented on **Figure 7**, the target radius of influence from each individual injection well is approximately 12.5 feet. Injection wells will be constructed utilizing a 0.010-inch slotted stainless steel well screen with a 2-inch PVC riser. Injection screen intervals will be installed between approximately four to nine feet below ground surface (bgs) to target the interval in which soil mass is observed within the saturated zone. A polyethylene holding tank with approximately 3,000 gallon capacity will be temporarily stored on-site for mixing and application of the magnesium sulfate solution. During the Phase 1 injection, approximately 12,000 gallons of potable water from an on-site municipal water source will be used to dissolve approximately 2,635 pounds (lbs) of

UPS-Oakland Hub

ARCADIS

solid magnesium sulfate. The quantities result in a target injection concentration of up to five grams per liter (g/L). The target in-situ sulfate concentration is approximately one to 1.2 g/L, assuming a groundwater dilution factor of approximately three to four along the flow path from injection well to dose response monitoring wells. Based on relevant experience at other sites the sulfate consumption half life is on the order of 10 to 20 days, which results in an anticipated sulfate longevity of three to four months.

Injection volumes are based on a target 12.5-foot radius of influence, a five-foot vertical interval, and an estimated mobile porosity of 10%, up to 350 gallons will be injected per well during the Phase 1 event. During the event, periodic monitoring (i.e., grab sampling via bailer) will be conducted at monitoring wells MW-2, MW-3, MW-4, OW-1, MW-8, and MW-9 to evaluate the distribution of sulfate within the subsurface. Samples will be collected for qualitative analysis with a field hand-held monitoring device (YSI, Horiba, or similar) to confirm evidence of hydraulic breakthrough (i.e., increased response in specific conductance). Injection volumes will be adjusted as necessary in the field to achieve positive confirmation of injected solution at dose response monitoring wells MW-2, MW-3, MW-4, and OW-1. Dose response data will be used to refine the overall injection volumes, the resulting radial distribution of substrate, and the necessary well spacing prior to Phase 2 expansion.

UPS-Oakland Hub

ARCADIS

Section 7 – Sampling Plan

Baseline Sampling

Following Phase 1 injection well installation and development, samples will be collected for TPH-DRO total magnesium, and sulfate from the injection wells and monitoring wells MW-2, MW-3, MW-4, OW-1, MW-8, and MW-9. These locations will be used to complete the delineation of hydrocarbons along the injection line and to ensure that injection in the Phase 1 wells is required. These data will also support evaluation of changes in groundwater concentrations prior to and post-injection.

Injection Sampling

During the injection event, field personnel will collect periodic grab samples from monitoring wells MW-2, MW-3, MW-4, and OW-1 to evaluate for arrival of the injection solution. Field parameters collected for baseline groundwater conditions and the batch injection solution will be used to confirm the relative difference in conductivity (likely two orders of magnitude) prior to injection. Grab samples collected from the injection monitoring network will then be used to evaluate changes in conductivity over the course of injection. Following completion of the injection event, one sample will be collected from each of the above wells and will be submitted for sulfate laboratory analysis.

Post-Injection Sampling

Following completion of the electron acceptor injection, two quarters of groundwater monitoring will be conducted to assess the efficacy of anaerobic bio-oxidation. Post-injection sampling will monitoring wells MW-2, MW-3, MW-4, OW-1, MW-8, and MW-9, and will include select geochemical parameters to characterize overall treatment extent. Total magnesium, sulfate, sulfide, total iron, and dissolved iron analyses will be collected from the monitoring wells and these results will be used as additional lines of evidence to evaluate changes in geochemical conditions as a result of the sulfate injection event.

Ultimately, the results from the Phase 1 injection event will be used to steer the Phase 2 remedial expansion. As presented on **Figure 7**, nine additional injection wells are tentatively proposed as part of the Phase 2 approach, but this quantity will be increased or decreased as appropriate based on the results observed following the Phase 1 injection. The phased approach is meant to support an adaptive remedial

UPS-Oakland Hub

ARCADIS

methodology, and Phase 1 results will be used to make any additional recommendations (injection methods and delivery system, supplemental remedial substrates) in order to optimize Phase 2 expansion.

UPS-Oakland Hub

ARCADIS

Section 8 – Conclusions

Field activities are expected to begin within 60 to 120 days following approval of this CAP and necessary supporting permits. Sampling results and details pertaining to the field activities will be included as part of the ongoing assessment and remediation process. These reports will summarize the field activities, specific field measurements collected during the injection and monitoring events, laboratory analytical data and performance monitoring data, and any recommendations for future monitoring and/or remedial operations at the Site.

As detailed above, sampling results collected during and following the Phase 1 injection event will be used to refine the Phase 2 approach as, or if necessary. These changes may include adjustments to the total injection volumes, the quantity of well locations to be installed, the delivery methodology, and the remedial substrate. Any modifications to this current program will be submitted to Alameda County for approval prior to field implementation.

Tables

UPS-OAKLAND HUB 8400 PARDEE DRIVE OAKLAND, CALIFORNIA STATE ID # 583

Monitoring	Reference	Dut	Depth to Groundwater	Groundwater Elevation	Change in Measurement	Product Thickness	Volume Brock of Resources
Well	Elevation	Date	(ft)	(ft)	(ft)	(ft)	Product Recovered (mL)
		8/28/1990	3.80	3.63		0.00	X011-7
		9/20/1990	3.99	3.44	-0.19	0.00	
		6/19/1991	3.47	3.96	0.52	NM	
		7/23/1991 8/26/1991	3.70 3.92	3.73 3.51	-0.23	NM NM	
		11/18/1991	4.21	3.22	-0.29	NM	+
		2/3/1992	3.99	3.44	0.22	NM	
		6/29/1992	3.38	4.05	0.61	NM	
		6/23/1993	2.72	4.71	0.66	NM	
		10/11/1993 1/4/1994	3.87 3.34	3.56 4.09	-1.15 0.53	NM NM	
		5/10/1994	2.14	5.29	1.20	NM	
		2/1/1995	1.84	5.59	0.30	NM	
		8/2/1995	3.10	4.33	-1.26	NM	
		10/16/1995 12/28/1995	3.75 3.56	3.68 3.87	-0.65 0.19	NM NM	
		6/4/1997	3.16	4.27	0.19	0.00	
		9/30/1999	3.75	3.68	-0.59	0.00	
		10/11/2000	3.88	3.55	-0.13	0.00	
		9/3/2002 10/22/2002	3.73	3.70 2.32	0.15	0.00	
		12/23/2002	3.51	3.92	-1.38 1.60	0.05	NR
		3/28/2003	3.52	3.91	-0.01	0.00	NR
		5/30/2003	3.37	4.06	0.15	0.00	NR
		6/20/2003	3.50	3.93	-0.13	0.00	
		7/14/2003	3.65	3.78	-0.15	0.00	
		8/25/2003 9/9/2003	3.87 4.02	3.56	-0.22 -0.15	0.00	NR
		9/25/2003	4.10	3.33	-0.08	0.00	NR
	1	10/28/2003	4.29	3.14	-0.19	0.00	NR
		11/18/2003	4.32	3.11	-0.03	0.00	
		12/2/2003	4.34	3.09	-0.02	0.00	
		1/27/2004 2/24/2004	3.88	3.55 4.68	0.46	0.00	
	1	3/29/2004	3.45	3.98	~0.70	0.00	
		4/19/2004	3.55	3.88	-0,10	0.00	NR
	-	5/20/2004	3.69	3.74	-0.14	0.00	
	-	6/22/2004 7/27/2004	3.81	3.62	-0.12	0.00	NR
	ł	8/24/2004	4.14	3.29	-0.18 -0.15	0.00	NR
	t	9/29/2004	4.32	3.11	-0.18	0.00	NR
	[10/25/2004	3.89	3.54	0.43	0.00	
		12/15/2004	3.18	4.25	0.71	0.00	NR
	ŀ	1/24/2005 2/23/2005	2.69 2.48	4.74 4.95	0.49 0.21	0.00	NR
A444 4	7.40	3/23/2005	2.21	5.22	0.27	0.00	NR
MW-1	7.43	4/29/2005	2.57	4.86	-0.36	0.00	NR
		5/27/2005	2.68	4.75	-0.11	0.00	NR
	ŀ	6/29/2005 7/20/2005	2.97 3.13	4.46 4.30	-0.29	0.00	NR
	ŀ	8/24/2005	3.48	3.95	-0.16	0.00	NR NR
	ľ	9/27/2005	3.69	3.74	-0.21	0.00	NR
	[10/19/2005	3.87	3.56	-0.18	0.00	NR
	ŀ	11/29/2005	3.79	3.64	0.08	0.00	
	ŀ	12/29/2005	3.08	4.35 4.52	0.71 0.17	0.00	
	ŀ	2/28/2006	2.84	4.59	0.07	0.00	NR
		3/27/2006	2.26	5.17	0.58	0.00	NR
	F	4/28/2006	2.40	5.03	-0.14	0.00	
	ŀ	6/27/2006 7/31/2006	3.09 3.35	4.34	-0.69	0.00	
1	ŀ	8/29/2006	3.60	3.83	-0.26	0.00	
	ŀ	9/28/2006	3.90	3.53	-0.30	0.00	****
	[10/27/2006	3.97	3.46	-0.07	0.00	
	ŀ	11/22/2006	3.64	3.79	0.33	0.00	
	ŀ	1/25/2006	3.04	4.39	-0.22	0.00	NR
	F	2/16/2007	3.12	4.17	0.14	0.00	
	E	3/19/2007	2.91	4.52	0.21	0.00	NR
		4/26/2007	2.93	4.50	-0.02	0.00	
	Ļ	5/29/2007	3.15	4.28	-0.22	0.00	NR
		6/28/2007 7/30/2007	3.42 3.60	4.01 3.83	-0.27 -0.18	0.00	NR
	H	8/30/2007	3.85	3.58	-0.25	0.00	
	E	9/25/2007	4.00	3.43	-0.15	0.00	NR
	F	10/29/2007	4.05	3.38	-0.05	0.00	NR
	F	11/29/2007	4.10	3.33	-0.05	0.00	NR
	ŀ	12/28/2007 1/24/2008	3.80 3.14	3.63	0.30	0.00	NR NR
	F	2/21/2008	2.44	4.99	0.70	0.00	NR
	Ľ	3/28/2008	2.84	4.59	-0.40	0.00	
	Ę	4/30/2008	3.00	4.43	-0.16	0.00	NR
	F	5/29/2008	3.24	4.19	-0.24	0.00	NR
		6/25/2008 7/29/2008	3.39 3.64	4.04 3.79	-0.15 -0.25	0.00	NR
	F	8/27/2008	3.85	3.58	-0.21	0.00	NR
		9/30/2008	4.08	3.35	-0.23	0.00	NR
	Ľ	10/31/2008	4.20	3.23	-0.12	0.00	NR
		11/26/2008	4.14	3.29	0.06	0.00	
	F	12/30/2008	3.94	3.49 3.50	0.20	0.00	NR NR

٣

UPS-OAKLAND HUB 8400 PARDEE DRIVE OAKLAND, CALIFORNIA STATE ID # 583

Monitoring Well	Reference Elevation	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Change in Measurement (ft)	Product Thickness (ft)	Volume Product Recov (mL)		
		8/28/1990	4.98	2.17		0.00	2010 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
		9/20/1990	4.94	2.21	0.04	N/A			
		6/19/1991 7/23/1991	4.66 4.81	2.49	0.28	N/A N/A			
		8/26/1991	4.89	2.26	-0.08	N/A			
		11/18/1991 2/3/1992	4.93	2.22	-0.04	N/A			
		6/29/1992	4.44	2.71 2.35	0.49	N/A N/A			
		6/23/1993	4.38	2.77	0.42	N/A			
		10/11/1993 1/4/1994	5.20 4.56	1.95 2.59	-0.82	N/A N/A			
		5/10/1994	4.20	2.95	0.64	N/A N/A			
		2/1/1995	4.00	3.15	0.20	N/A			
		8/2/1995 10/16/1995	4.71 5.02	2.44 2.13	-0.71 -0.31	N/A N/A			
		12/28/1995	4.56	2.59	0.46	N/A			
		6/12/1996	NM			0.25			
		6/4/1997 9/30/1999	6.02 4.95	1.13	-1.46	Small globules 0.00			
		10/11/2000	4.97	2.18	-0.02	0.08			
		2/12/2002 9/3/2002	4.26	2.89	0.71	0.01	24.00		
		9/27/2002	5.02 4.89	2.13	-0.76 0.13	0.07	222,30		
		10/22/2002	5.11	2.04	-0.22	0.05	125.00		
		12/23/2002 1/16/2003	4.25 4.28	2.90 2.87	0.86	0.04	99.00		
		2/12/2003	4.26	2.87	0.03	0.02	49.00 24.00		
		3/28/2003	4.35	2.80	-0.09	0.01	25.00		
		5/30/2003 6/20/2003	3.60	3.55	0.75	0.02	49.00		
		7/14/2003	4.55 4.56	2.60	-0.95 -0.01	0.01			
		8/25/2003	4.79	2.36	-0.23	0.01	25.00		
		9/9/2003 9/25/2003	4.90	2.25	-0.11	0.01	05.00		
		9/25/2003	4.97 4.98	2.18 2.17	-0.07 -0.01	0.01	25.00		
		11/18/2003	4.83	2.32	0.15	0.00			
		12/3/2003	4.87	2.28	-0.04	0.00			
		1/27/2004 2/24/2004	7.39 4.56	-0.24 2.59	-2.52 2.83	0.00			
		3/29/2004	4.24	2.91	0.32	0.01			
		4/19/2004	4.50	2.65	-0.26	0.01	25.00		
		5/20/2004 6/22/2004	4.53 4.65	2.62 2.50	-0.03 -0.12	0.00	NR		
		7/27/2004	4.80	2.35	-0.15	0.00	NR		
		8/24/2004 9/29/2004	5.93	1.22	-1.13	0.00			
		10/25/2004	5.00 4.68	2.15	0.93	0.02	50.00		
		12/15/2004	4.34	2.81	0.34	0.02	50.00		
	7.15	7.15	7.15	1/24/2005	4.15	3.00	0.19	0.00	74.00
MW-2						2/23/2005 3/23/2005	4.95	2.20 2.19	-0.80 -0.01
W/W-2		4/29/2005	4.23	2.92	0.73	0.10	246.00		
		5/27/2005	4.20	2.95	0.03	0.02	50.00		
		6/29/2005 7/20/2005	4.29 4.48	2.86	-0.09 -0.19	0.00	NR 98.00		
		8/24/2005	4.71	2.44	-0.23	0.00	NR		
		9/27/2005	4.98	2.17	-0.27	0.03	70.00		
		10/19/2005	5.08 4.68	2.07 2.47	-0.10 0.40	0.00	NR		
		12/29/2005	4.19	2.96	0.40	0.01			
		1/31/2006	4.05	3,10	0.14	0.00			
		2/28/2006	4.16	2.99	-0.11	0.00	25.00		
		3/27/2006 4/28/2006	4.11 4.03	3.04 3.12	0.05	0.01	NR		
		6/27/2006	4.03	2.70	0.08	0.00			
	l	7/31/2006	4.60	2.55	-0.15	0.02			
		8/29/2006	4.84	2.31	-0.24	0.01			
	ł	9/28/2006 10/27/2006	4.96 4.98	2.19 2.17	-0.12	0.03			
		11/22/2006	4.98	2.17	-0.02	0.00			
1	t	12/26/2006	4.22	2.93	0.36	0.02			
	ļ	1/25/2007	4.44	2.71	-0.22	0.00	NR		
	-	2/16/2007 3/19/2007	4.13	3.02 2.85	-0.31	0.00	NR		
	ł	4/26/2007	4.30	2.98	0.13	0.03	INFS		
		5/29/2007	4.42	2.73	-0.25	0.01	25.00		
	-	6/28/2007	5.16	1.99	-0.74	0.01	25.00		
	ŀ	7/30/2007 8/30/2007	4.71 4.94	2.44 2.21	-0.23	0.00			
	ŀ	9/25/2007	5.06	2.09	-0.12	0.03	25.00		
	1	10/29/2007	4.75	2.40	0.31	0.01	25.00		
		11/29/2007 12/28/2007	4.69	2.46	0.06	0.00	NR		
	ŀ	1/24/2008	4.35	2.80	0.34	0.00	NR NR		
	t	2/21/2008	3.97	3.18	0.11	0.01	25.00		
	F	3/28/2008	4.18	2.97	-0.21	0.00			
	ŀ	4/30/2008 5/29/2008	4.40 4.58	2.75 2.57	-0.22 -0.18	0.00	NR 20.00		
	ŀ	6/25/2008	4.58	2.57	0.00	0.00	20.00 NR		
	ļ	7/29/2008	4.85	2.30	-0.27	0.00			
	ŀ	8/27/2008	4.89	2.26	-0.04 -0.25	0.01	25.00		
	ŀ	9/30/2008	5.14 5.23	1.92	-0.25	0.04	98.00 NR		
	Ę	11/26/2008	4.74	2.41	0.49	0.04			
	F	12/30/2008	4.33 4.45	2.82	0.41	0.01	25.00		
F		5/5/2010	4.45	5.60	2.90	0.01	25.00		
	_								
	9.63	10/29/2010 2/25/2011	4.98 3.73	4.65 5.90	-0.95	0.08	NR		

UPS-OAKLAND HUB

8400 PARDEE DRIVE OAKLAND, CALIFORNIA STATE ID # 583

Depth to Groundwater Indiwate Change in Product Thickness Volume Product Recovered Reference Elevation Monitoring Well Elevation Measurement Date (ft) (ft) (ft) $\langle ft \rangle$ (mL) 8/28/1990 3.88 3.54 0.00 -0.11 9/20/1990 3.99 3.43 3.49 3.71 3.94 4.23 6/19/1991 7/23/1991 8/26/1991 11/18/1991 3.93 3.71 3.48 3.19 -0.22 0.00 2/3/1992 6/29/1992 6/23/1993 10/11/1993 1/4/1994 4.23 4.01 3.40 2.75 3.84 3.40 2.25 3.41 4.02 4.67 0.22 0.00 3.58 4.02 5.17 -1.0 0.44 1/4/1994 5/10/1994 2/1/1995 8/2/1995 10/16/1995 12/28/1995 6/4/1997 0.00 -0.18 -0.77 -0.52 0.16 2.43 3.20 3.72 4.99 4.22 3.70 3.86 0.00 3.56 3.20 NM 4.22 0.36 0.00 6/3/1998 0.00 3.70 3.54 3.67 9/30/1999 10/11/2000 9/3/2002 -0.52 -0.16 3.72 3.88 3.75 3.50 0.13 0.00 12/23/2002 3.92 0.00 NR 12/23/2002 3/28/2003 5/30/2003 6/20/2003 7/14/2003 8/25/2003 0.00 3.56 3.86 -0.06 NR 3.38 3.52 3.65 3.99 4.04 0.18 -0.14 -0.13 -0.34 0.00 3.77 NR 0.0 0.00 -0.07 -0.09 -0.13 -0.03 0.00 9/9/2003 3.99 3.43 9/25/2003 9/25/2003 10/28/2003 11/18/2003 12/2/2003 4.06 4.15 4.28 3.36 3.27 3.14 3.11 NR NR 0.00 12/2/2003 1/27/2004 2/24/2004 4.31 3.85 0.46 0.00 0.15 0.00 3.72 3.95 2/24/2004 3/29/2004 4/19/2004 5/20/2004 3.47 3.55 3.65 3.83 NR ~0.08 -0.10 0.00 3.77 3.59 NR 6/22/2004 0.00 6/22/2004 7/27/2004 8/24/2004 9/29/2004 10/25/2004 1/25/2004 1/24/2005 2/23/2005 3/23/2005 5/27/2005 0.00 3.98 3.44 -0.15 NR 4.14 4.30 3.85 -0.16 -0.16 0.45 3.28 3.12 3.57 NR 0.0 0.00 NR 3.16 4.26 0.69 2.50 2.48 2.59 2.75 3.05 0.15 0.0 NF 4.92 4.94 4.83 4.67 4.37 7.42 NR NR -0.11 -0.16 -0.30 0.0 MW-3 5/27/2005 6/29/2005 0.0 NR 0.00
0.00
0.00
0.00
0.00 3.10 3.45 3.71 3.73 3.75 -0.05 -0.35 -0.26 7/20/2005 4.32 3.97 3.71 3.69 3.67 4.34 NR NR 7/20/2005 8/24/2005 9/27/2005 10/19/2005 11/29/2005 12/29/2005 NR -0.02 -0.0 0.00 3.08 0.67 0.00 1/31/2006 2/28/2006 3/27/2006 2.99 2.95 2.60 4.43 4.47 4.82 4.52 NR 0.04 0.00 0.00 NR 3/27/2006 4/28/2006 6/27/2006 7/31/2006 8/29/2006 9/28/2006 10/27/2006 11/22/2006 2.90 -0.30 0.00 3.01 4.33 3.62 4.4 -0.11 3.09 3.80 3.62 3.52 3.82 -1.32 0.71 -0.18 0.00 3.80 3.90 -0.1 0.0 0.30 0.53 -0.18 0.16 0.26 0.00 11/22/2006 3.60 11/22/2006 12/26/2006 1/25/2007 2/16/2007 4/26/2007 5/29/2007 6/28/2007 7/30/2007 8/30/2007 9/25/2007 10/29/2007 3.07 3.25 3.09 4.38 4.17 4.30 4.59 4.48 NR 0.00 NR 2.83 2.94 3.18 0.00 -0.11 -0.24 -0.23 -0.21 NR NR 4.24 4.01 3.80 3.58 3.39 3.36 3.18 3.41 3.62 3.84 4.03 -0.22 0.00 -0.19 0.00 NR 10/29/2007 11/29/2007 12/28/2007 NR NR NR 4.06 4.00 4.10 3.78 3.16 -0.04 0.32 0.63 0.75 0.00 3.32 3.64 4.27 1/24/2008 2/21/2008 3/28/2008 0.00 2.41 2.94 3.08 3.24 3.30 3.50 0.00 5.0 NR -0.54 -0.14 -0.16 -0.06 -0.20 -0.34 4.48 0.00 4/30/2008 5/29/2008 6/25/2008 7/29/2008 4.34 4.18 4.12 3.92 3.58 NR NR 0.0 0.0 8/27/2008 9/30/2008 10/31/2008 11/26/2008 12/30/2008 1/22/2009 NR NR NR 3.84 4.03 4.20 4.23 3.96 3.96 0.00 3.39 3.22 3.19 3.46 6.76 5.19 8.35 5.77 6.81 -0.19 -0.17 -0.03 0.27 0.00 3.30 -1.57 3.16 -2.58 NR 0.00 NR 5/5/2010 3.13 0.0 0/3/2010 10/29/2010 2/25/2011 9/1/2011 5/5/2010 4.70 9.89 NR 0.02 NR 2.96 -1.57 MW-4 9.77 10/29/2010 2/25/2011 4.53 5.24 0.00 0.00 NR NR 8.43 3.19 9/1/2011 5/5/2010 3.99 2.56 5.66 0.00 -1.83 MW-8 8.22 10/29/2010 4.39 3.83 0.00 2/25/2011 9/1/2011 2.69 3.67 5.53 4.55 1.70 -0.98 NR NR 0.00 5/5/2010 6.28 8.35 0.00 0.00 0.73 -0.50 6.28 5.55 0.00 10/29/2010 8.35 14.63 MW-9 2/25/2011 NR 9.08 9/1/2011 6.05 8.58 0.00 NR 5/5/2010 10/29/2010 8.28 8.27 1.40 1.41 M\A/_10 9.68 0.00 2/25/2011 4.45 5.23 3.82 0.00 NR 9/1/2011 8.35 -3.90 0.00 NR

1.33

UPS-OAKLAND HUB 8400 PARDEE DRIVE

OAKLAND, CALIFORNIA STATE ID # 583

Monitoring Well	Reference Elevation	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Change in Measurement (ft)	Product Thickness (ft)	Votume Product Recovered (mL)
		5/5/2010	7.21	2.28		0.00	
MW-11	9.49	10/29/2010	6.83	2,66	0.38	0.00	
		2/25/2011	2.83	6.66	4.00	0.00	NR
		9/1/2011 6/4/1997	6.05 7.22	3.44 NC	-3.22	0.00	NR
		9/30/1999	8.35	NC	1.13	0.01	
		10/11/2000	6.90	NC	-1.45	0.09	
		2/12/2002	5.23	NC	-1.67	0.01	38.00
		9/27/2002	7.02	NC	1.79	0.14	345.78
		10/22/2002	7.34	NC	0.32	0.01	40.00
		12/23/2002 1/16/2003	5.17	NC NC	-2.17	0.03	167.00
		2/12/2003	4.97 5.23	NC NC	-0.20	0.01	40.00
		3/28/2003	5.16	NC	-0.07	0.01	25.00
		5/30/2003	4.41	NC	-0.75	0.02	77.00
		6/20/2003	4.93	NC	0.52	0.01	
		7/14/2003	5.33	NC	0.40	0.00	
		8/25/2003	5.85	NC	0.52	0.00	NR
		9/9/2003	6.33	NC	0.48	0.00	
		9/25/2003	6.52	NC NC	0.19	0.01	25.00
		10/28/2003 11/18/2003	7.26 7.29	NC	0.74	0.03	176.00
		12/2/2003	7.23	NC	-0.06	0.00	
		1/27/2004	7.96	NC	0.73	0.00	
		2/24/2004	6.26	NC	-1.70	0.02	
		3/29/2004	6.08	NC	-0.18	0.02	
		4/19/2004	6.29	NC	0.21	0.03	116.00
		5/20/2004	6.16	NC	-0.13	0.00	
		6/22/2004	6.37	NC	0.21	0.00	NR
		7/27/2004 8/24/2004	5.67 6.81	NC NC	-0.70	0.04	225.00
		9/29/2004	7.08	NC	0.27	0.00	152.00
		10/25/2004	6.74	NC	-0.34	0.04	153.00
		12/15/2004	5.33	NC	-1.41	0.04	155.00
		1/24/2005	3.98	NC	-1.35	0.00	1
		2/23/2005	3.44	NC	-0.54	0.01	NR ⁵
	[3/23/2005	3.34	NC	-0.10	0.02	77.00
		4/29/2005	6.89	NC	3.55	0.13	501.00
		5/27/2005	7.18	NC	0.29	0.11	425.00
1		6/29/2005	7.12	NC	-0.06	0.10	450.00
	-	7/20/2005	7.20	NC	0.08	0.10	556.00
	N/A	8/24/2005	7,15	NC	-0.05	0.06	249.00
		9/27/2005	7.43	NC NC	0.28	0.12	450.00 425.00
1		11/29/2005	7.00	NC	-0.48	0.04	425.00
OW-1		12/29/2005	5.22	NC	-1.78	0.00	
000-1		1/31/2006	5.64	NC	0.42	0.00	
		2/28/2006	6.53	NC	0.89	0.00	39.00
	I	3/27/2006	5.80	NC	-0.73	0.01	NR
	1	4/28/2006	6.39	NC	0.59	0.00	7.9.5
	[6/27/2006	7.82	NC	1.43	0.06	
		7/31/2006	5.82	NC	-2.00	0.05	
	L	8/29/2006	7.05	NC	1.23	0.07	
	L	9/28/2006	7.10	NC \	0.05	0.02	
	1	10/27/2006	7.27	NC	0.17	0.02	
	ŀ	11/22/2006	7.05	NC	-0.22	0.02	
	Ļ	12/26/2006	6.73	NC	-0.32	0.03	
	ŀ	1/25/2007	7.15	NC	0.42	0.00	NR
[F	2/16/2007	7.71	NC	0.56	0.01	
	ŀ	3/19/2007 4/26/2007	6.77	NC	-0.94	0.02	NR
	H	5/29/2007	6.66	NC	-0.11	0.01	70.00
1	H	6/28/2007	6.86	NC NC	0.20	0.02	76.00
	F	7/30/2007	7.06	NC	0.11	0.20	75.00
	F	8/30/2007	7.25	NC	0.19	0.03	
	ŀ	9/25/2007	7.25	NC	0.00	0.03	115.00
1	F	10/29/2007	7.43	NC	0.18	0.03	78.00
	ŀ	11/29/2007	7.37	NC	-0.06	0.02	
	F	12/28/2007	7.28	NC	-0.09	0.00	40.00
	F	1/24/2008	6.61	NC	-0.67	0.01	38.00
	F	2/21/2008	6.33	NC	-0.28	0.01	37.00
	[3/28/2008	6.80	NC	0.47	0.01	
		4/30/2008	7.44	NC	0.64	0.03	166.90
	F	5/29/2008	7.09	NC	-0.35	0.01	38.00
	F	6/25/2008	7.07	NC	-0.02	0.02	112.00
	H	7/29/2008	7.34	NC	0.27	0.00	70.00
	H	8/27/2008 9/30/2008	7.28	NC NC	-0.06 0.54	0.02	78.00
	ŀ	9/30/2008	7.82	NC	-0.51	0.03	167.00
	F	11/26/2008	6.93	NC	-0.38	0.01	NR
	F	12/30/2008	7.25	NC	0.32	0.01	112.00
	F	1/22/2009	7.05	NC	-0.20	0.02	56.00
F		5/5/2010	7.08	2.47	-0.20	0.06	00.00
1		10/29/2010	7.37	2.18	-0.29	0.08	
	9.55	2/25/2011	6.17	3.38	1.20	0.05	NR
			7.35		-1.18		

Notes: 1. Reference elevation surveyed relative to mean sea level by Geraghty and Miller (Geraghty and Miller, Inc., 1990) 2. Depth to groundwater measured from notch/mark on north edge of well casing 3. Sources: Ceraghty and Miller, 1996; BBL 4. NM = Not measured; NC = Not calculated; N/A= Not Available; NR = No Recovery 5. SPH detected but amount insufficient to bail Volume of product recovered on 9/27/02 and 3/23/05 calculated based on measurements from field data sheets

TABLE 2 PSH Recovery Event Results

UPS-OAKLAND HUB 8400 PARDEE DRIVE OAKLAND, CALIFORNIA STATE ID # 583

							Amount of		
Monitoring Well	Date Collected	Time	Well Size	Depth to Water(foot)	Depth to Product (foot)	Product Thickness (inches)	product recovered from the Skimmer	Amount of water from the Skimmer	Notes
OW-1	1 12/20/2011	12:20	.9	7.32	7.30	0.02	5 OZ		0.75 vellow and 4.25 black
OW-1	1 11/22/2011	1:00	.9	7.09	7.06	0.03	1 OZ	1	Black liquid
0W-1	10/19/2011	12:20	e.	7.42	7.45	0.03	6 OZ Black 12 OZ Yellow	I	Black & stinky rainbow bubbles, yellow slightly translucent
OW-1	9/20/2011	12:20	.9	7.41	7.37	0.04	20 OZ	ı	Yellow stinky semi-translucent with layer of black liquid
0W-1	8/18/2011	2:20	6"	7.35	7.38	0.03	5 OZ	0	Black stinkv liquid
OW-1	7/19/2011	2:45	6"	7.3	7.1	0.2	4 OZ	16 OZ	16 OZ Yellow brown black substance on top 4 OZ Brownish-black both bad bad smoll
OW-1	6/14/2011	3:25	.9	6.78	6.7	0.08	-	20 OZ	No separation smalls had vallowish
MW-2	12/20/2011	12:30	4"	4.92	4.91	0.01	18 OZ	,	Pretty Clear-Slightly Yellowish
MW-2	11/22/2011	1:20	4"	4.92	,		18 OZ		Yellowish liquid-stinks
MW-2	10/19/2011	12:30	4"	4.77	4.78	0.01	20 OZ Yellow Translucent	ı	Yellow translucent, stinky. Clack sediments
MW-2	6	12:30	4"	5.075	5.07	ı	20 OZ	1	Yellow stinky with layer of black liquid translucent but more transparent, black sheen on top and black particulates floating
MW-2	8/18/2011	2:50	4"	4.8	-	sheen	0	0	Little black stinky liquid
MW-2		3:15	4"	4.72	4.71	0.1	2 OZ	0	Black yellowish liquid
MW-2	9	3:15	4"	4.23	4.2	0.03	0	0	Nothing inside well, black sludge
MW-3	12	12:45	4"	4.7	,	1	18 OZ		Translucent & yellow with black particles, smelly.
MW-3	11	1:30	4"	4.75	1	ł	18 OZ	1	Yellowish, stinky
MW-3	10/19/2011	12;45	4"	4.34	'	1	19 OZ Yellow		Translucent & Smelly, Clearer than other wells
MW-3	9/20/2011	12;45	4	4.41	4.41	0.05	20 OZ	1	Yellow stinky with layer of black liquid translucent but more transparent
MW-3	8/18/2011	2:35	4"	3.98		sheen	20	,	Slightly translucent vellow stinky
MW-3	7/19/2011	3:30	4"	3.53	3.51	0.2	18 OZ	0	Yellowish with little black liguid
MW-3	6/14/2011	3:00	4	3.25	3.2	0.05	sheen	18 OZ	Top of the skimmers have buildups
Nate Doll - DL - D	Associated and the second s								

Note: PSH = Phase Seperated Hydrocarbons

TABLE 3

HISTORICAL GROUNDWATER MONITORING RESULTS SUMMARY

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA STATE ID # 583

Monitoring	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TPH as gasoline	TPH as diesel	D.O.	EDB			T
Well		µg/L	µg/l.,	µg/L	µg/L	µg/L	µg/L	µg/L	(mg/L)	ug/L	1,2-DCA µg/L	Naphthalene µg/L	(mg/L)
MCL ESL - Drinking		1.00	150.00	300.00	1750.00	13.00		100*	~				
Water		1 1	40	30	20	5	100	100	States - Catel	0.05	6	17	
ESL - Non- Drinking Water		46	100	43	100	1	1.00		1 and a state of the			14 .	NA
	8/28/1990	3.00	1.40	4.00	2.40	1800 NA	210 NA	210 21,000	NA	150	200	24	NA.
	6/19/1991 7/23/1991	1.70 1.60	0.70	0.50	0.90	NA	NA	7,100	NA				+
	8/26/1991	180.00	1.10	0.50 31.00	1.50	NA NA	220 NA	8,700 2,800	NA NA				
	11/18/1991 2/3/1992	1.10	0.40	0.50	< 0.3	NA	NA	6,600	NA				
	6/29/1992	0.90	< 0.3 0.40	0.80	0.70	NA NA	NA NA	2,200	NA NA				-
	6/23/1993	0.66	< 0.5	0.50	< 0.5	NĂ	NA	3,200	NA				+
	10/11/1993 1/4/1994	1.30 2.10	< 0.5	< 0.5	< 0.5	NA NA	NA NA	9,600	NA				
	5/10/1994	0.54	0.53	< 0.5	1.10	NA	NA	6,400	NA NA				
	2/1/1995 8/2/1995	< 1.0 < 0.5	< 1.0 < 0.5	1.00	< 1.0 < 0.5	NA	510	10,000	NA				
	10/16/1995	2.80	< 0.5	< 0.5	< 0.5	NA NA	510 830	8,700 15,000	NA NA				
	12/28/1995 6/4/1997	2.10 NA	< 0.5	< 0.5	< 0.5	NA	560	15,000	NA				+
MW-1	9/30/1999	< 0.5	NA 0.60	NA < 0.5	NA 1.80	NA <3.0	NA 1.600	28,000 28,000	0.76				
	10/11/2000	< 0.5	< 0.5	< 0.5	< 1.0	< 5	260	21,000	0.39				+
	9/3/2002 3/28/2003	<0.5 <5	<0.5 <5	<0.5 <5	0.50	<0.5 <5.0	1,00 250	38,000	NA				
	9/9/2003	<0.5	<0.5	<0.5	<1.0	0.60	440	35,000	NM NM				
	4/19/2004 9/29/2004	3.20	<2.5 <1.0	<2.5 <1.0	<5.0	<2.5	280	24,000ndp	NM				
	3/23/2004	<1.0	<1.0	<1.0	<2.0 <2.0	2.10	1,400 g 550 Q1	150,000 ndp 15,000 Q2	NM NM				1
	11/29/2005	< 0.50	< 0.50	< 0.50	<1.0	0.94	310	7800	NM				+
	3/27/2006 9/28/2006	< 0.50	< 0.50 < 0.50	< 0.50 < 0.50	<1.0 <1.0	0.62	420 220	11000	NM				
	3/19/2007	< 0.50	< 0.50	< 0.50	<1.0	<1.0	940	28000	NM NM				+
	9/25/2007 3/28/2008	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	1.1	<0.50	240	9700	NM				+
	9/30/2008	<0.50	<0.50	<0.50	<1.0 <1.0	<0.50 <0.50	55 280	13000 9800	NM NM				
	5/5/2010	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/2011 8/28/1990	NS 0.60	NS 0.40	NS 0.60	NS 0.70	NS NA	NS NA	NS 3,500	NS	NS	NS	NS	NS
	6/19/1991	0.50	< 0.3	< 0.3	< 0.3	NA	NA	<500	NA NA				+
	7/23/1991 8/26/1991	0.70	< 0.3	< 0.3 < 0.3	< 0.3	NA NA	<500	660	NA				1
	11/18/1991	0.80	< 0.3	< 0.3	< 0.3	NA	NA NA	<500 3,200	NA NA				
	2/3/1992 6/29/1992	0.70	< 0.3	< 0.3	0.50	NA	NA	400	NA .				
	6/23/1993	0.55	< 0.5	< 0.3 < 0.5	< 0.3 < 0.5	NA NA	NA NA	250 11.000	NA NA				
	10/11/1993	1.20	< 0.5	< 0.5	1.30	NA	NA	1,400	NA				+
	1/4/1994 5/10/1994	0.72	< 0.5	< 0.5	1.10	NA NA	NA NA	3,700	NA				
	2/1/1995	2.10	< 1.0	< 1.0	< 1.0	NA	<100	2,300 2,100	NA NA				+
	8/2/1995 10/16/1995	< 0.5 0.73	< 0.5	< 0.5	< 0.5	NA	210	3,600	NA				<u> </u>
	12/28/1995	< 0.5	< 0.5	< 0.5	< 0.5	NA NA	130 210	1,400 2,800	NA NA				
	6/12/1996 6/4/1997	NS NA	NS	NS	NS	NS	NS		NS				
MW-2	9/30/1999	< 0.5	NA < 0.5	NA < 0.5	NA < 1.0	NA < 3.0	NA 220	3,300 6,300	0.52 9.50				
	10/11/2000	< 0.5	< 0.5	< 0.5	< 1.0	< 5.0	170	4,400	0.43				
	9/27/2002 3/28/2003	0.7J <25	<2.5 <25	<2.5 <25	<2.5 <50	<2.5 <25	17000 1600	67,000	NM				
	9/25/2003	0.52	<0.50	<0.50	<1.0	<0.50	150	10,000	NM NM				ļ
	3/29/2004 9/29/2004	0.51 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0	<0.50	84 g	7,800 ndp	NM				t
	1/24/2005	<0.50	<0.50	< 0.50	<1.0 <1.0	<0.50 <0.50	630 g 2,300 Q1	10,000 ndp 15,000 Q2	NM NM				
	11/29/2005	<1.0	<1.0	<1.0	<2.0	<1.0	1,900	22,000	NM				<u> </u>
	3/27/2006 9/28/2006	<1.0 <0.50	<1.0 <0.50	<1.0 <0.50	<2.0	<1.0 <0.50	710	8,900	NM				
	3/19/2007	<0.50	<0.50	<0.50	<1.0	<0.50	<50	7,500	NM NM				
	9/25/2007 3/28/2008	<0.50 <0.50	<0.50	<0.50 <0.50	<1.0	<0.50	55	8,700	NM				
	9/30/2008	< 0.50	<0.50	<0.50	<1.0	<0.50 <0.50	210 220	6,200 23,000	NM NM				
			NA	NA	NA	NA	<50	3,700		10 F			
	5/5/2010	NA		INA					NM	<0.5	<0.6	<1.0 ×	2.800
	5/5/2010 2/25/2011 9/1/2011	NA <0.50 0.59	<0.50 4.90	<0.50	<1.0 10.0	<0.50 ND	360 140.00	37,000 4,600	NM NM NA	<0.8	<0.6	<1.0	2,800

TABLE 3

HISTORICAL GROUNDWATER MONITORING RESULTS SUMMARY

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA STATE ID # 583

Monitoring			a Managarati (Ethyl-	Total		TPH as	TPH as	a second and	Contraction of the second second			1
Well	Date	Benzene	Toluene	benzene	Xylenes	MTBE	gasoline	diesel	D.O.	EDB	1,2-DCA	Naphthalene	TDS
T		µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L	(mg/L)	µg/L	µg/L	µg/L	(mg/L)
	8/28/1990	0.50	0.80	4,30	2.30	NA	NA	18,000	NA NA			199 - F	1 congress
	6/19/1991	0.40	0.40	1.70	1.40	NA	NA	1,300	NA				
	7/23/1991	0.30	< 0.3	1.50	0.50	NA	330	6,800	NA				
1	8/26/1991	13.00	13.00	5.80	26,00	NA	NA	<50	NA				+
	11/18/1991	0.60	< 0.3	< 0.3	< 0.3	NA	NA	2,500	NA				
	2/3/1992	0.40	< 0.3	1.30	0.60	NA	NA	1,100	NA				
	6/29/1992	< 0.3	< 0.3	1.30	0.30	NA	NA	3,200	NA				
	6/23/1993	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	8,100	NA				
	10/11/1993	1.00	< 0.5	1.50	2.40	NA	NA	7,100	NA				
	1/4/1994	< 0.5	< 0.5	1.60	< 0.5	NA	NA	7,400	NA				+
	5/10/1994	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	5,700	NA				1
	2/1/1995	< 1.0	< 1.0	2.70	4.10	NA	810	10,000	NA				
	8/2/1995	< 0.5	< 0.5	< 0.5	< 0.5	NA	1200	6,500	NA				
	10/16/1995	< 0.5	< 0.5	< 0.5	< 0.5	NA	930	9,800	NA				1
	12/28/1995 6/4/1997	< 0.5	< 0.5	< 0.5	< 0.5	NA	690	11,000	NA				
		NA	NA	NA	NA	NA	NA	34,000	0.84				
MW-3	9/30/1999	< 0.5	0.60	0.70	1.20	< 3.0	1300	8,700	8.60				
	10/11/2000 9/3/2002	< 0.5	< 0.5	< 0.5	< 1.0	< 5.0	430	20,000	0.51				
		< 0.5	<0.5	< 0.5	<0.5	<0.5	2,300	14,000	NA				
	3/28/2003 9/9/2003	<25 <0.5	<25	<25	<50	<25	2,500	19,000	NM				
	4/19/2003	<0.5	<0.5 <0.50	<0.5	<1.0	<0.5	700	73,000	NM				
	9/29/2004	<0.50		<0.50	<1.0	< 0.50	99	14,000 ndp	NM				
	1/24/2005	<2.5	<2.5 <2.5	<2.5	<5.0	<2.5	390 g	10,000 ndp	NM				
	11/29/2005	< 1.0	< 1.0	<2.5	<5.0	<2.5	330 Q1	14,000 Q2	NM				
	3/27/2006	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	1,200	8,300	NM				
	9/28/2006	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0 < 1.0	430	13,000	NM				
	3/19/2007	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	370	17,000	NM				
	9/25/2007	<1.0	<1.0	<1.0	<2.0	<1.0	510 390	26,000	NM				
	3/28/2008	<0.50	<0.50	<0.50	<1.0	<0.50		11,000	NM				
	9/30/2008	<0.50	<0.50	<0.50	<1.0	<0.50	280 270	21,000	NM	·····			
	5/5/2010	NA	NA	NA	NA NA	NA	<150	9,500	NM				
	2/25/2011	NS	NS	NS	NS	NS	NS	24,000 NS	NM	<0.50	<0.50	2.2	910
	9/1/2011	ND	ND	1.70	2.1	ND	450	24,000	NS	NS	NS	NS	NS
	5/5/2010	NA	NA	NA	NA	NA	<50	5200	NM				· · · · · ·
MW-4	10/29/2010	< 0.5	<0.5	<0.5	<1.0	<0.5	150	2000	NM	<5.0	<5.0	<1.0	1,100
10100-4	2/25/2011	<0.50	< 0.50	<0.50	<1.0	<0.50	250	24,000	NM	NM NM	NM	<1.0	NM
	9/1/2011	ND	ND	ND	ND	ND	430	7,700	INIM	INIVI	NM	NM	NM
	5/5/2010	NA	NA	NA	NA	NA	<50	70	NM	<0.50	10.50		
MW-8	10/29/2010	<0.5	<0.5	<0.5	<1.0	<0.5	<50	1100	NM	NM	<0.50	<1.0	2,900
10100-0	2/25/2011	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<50	280	NM	NM	NM	<1.0	NM
	9/1/2011	ND	ND	ND	ND	ND	ND	200	INIVI	INIVI	NM	NM	NM
	5/5/2010	NA	NA	NA	NA	NA	<50	110	NM	<0,50	10 50		
MW-9	2/25/2011	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<50	580	NM	NM	<0.50 NM	<1.0	6,200
	9/1/2011	ND	0.55	ND	ND	ND	ND	240	1909	INIW	NIM	NM	NM
	5/5/2010	NA	NA	NA	NA	NA	<50	110	NM	<0.50	<0.50	<1.0	0.400
MW-10	10/29/2010	<0.5	<0.5	<0.5	<1.0	<0.5	<50	650	NM	NM	<0.50 NM	<1.0 <1.0	2,100
WIT-10	2/25/2011	<0.50	<0.50	<0.50	<1.0	<0.50	<50	5,600	NM	NM	NM	<1.0 NM	NM NM
tonation and the second se	9/1/2011	ND	0.55	ND	ND	ND	ND	250	1.111	7101	INIVI	INIVI	
	5/5/2010	NA	NA	NA	NA	NA	<50	430	NM	<0.50	< 0.50	<1.0	10,000
MW-11	10/29/2010	<0.5	<0.5	<0.5	<1.0	< 0.5	<50	7200	NM	NM	NM	<1.0	10,000 NM
	2/25/2011	<0.50	<0.50	<0.50	<1.0	< 0.50	<50	1,900	NM	NM	NM	NM	NM NM
L	9/1/2011	ND	0.55	ND	ND	ND	ND	1,100		13191	1 NIVI	INIV	NM

TABLE 3

HISTORICAL GROUNDWATER MONITORING RESULTS SUMMARY

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA STATE ID # 583

Monitoring	Date	-		Ethyl-	Total		TPH as	TPH as	1	T		1	
Wett	Date	Benzene	Toluene	benzene	Xylenes	MTBE	gasoline	diesel	D.O.	EDB	1,2-DCA	Naphthalene	TDS
		hði/r	hð/r	ից/Լ	havr	µg/L	μg/L	µg/L	(mg/L)	uig/L	µg/L	μg/L	20 23 24 Calorina
	6/23/1993	< 0.5	< 0.5	< 0.5	31.00	NA	NA	34,000,000	NA			1	C. Margerey
	6/4/1997	NS	NS	NS	NS	NS	NS	NS	NS				
	9/30/1999	< 2.0	< 2.0	< 2.0	4.20	< 12.0	8,300	28,000,000	9.70				
	9/30/1999	< 1.0	< 1.0	1.90	8.90	< 6.0	2,900	340,000					
	10/11/2000	< 0.5	< 0.5	< 0.5	< 1.0	< 5.0	2,100	58,000	0.74				
	9/27/2002	0.6J	<2.5	<2.5	<2.5	<2.5	17,000	23,000	NA				
	3/28/2003	<50	<50	<50	<100	<50	820	81,000	NM				_
	9/25/2003	<50	530.00	500.00	6200.00	<50	220	91,000	NM				
	3/29/2004	<0.50	< 0.50	< 0.50	<1.0	< 0.50	510	280,000 ndp	NM				
OW-1	9/29/2004	<2.5	<2.5	<2.5	<5.0	<2.5	2.800 g	440,000 ndp	NM				
0.111	1/24/2005	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	220 Q1	16,000 Q2	NM				
	11/29/2005	< 0.50	< 0.50	< 0.50	< 1.0	< 0.50	650	30,000	NM				
	3/27/2006	<13	<13	<13	<25	<13	<1,300	58,000	NM				
	9/28/2006	<2.5	<2.5	<2.5	<5.0	<2.5	820	130,000	NM				
	3/19/2007	<2.5	<2.5	<2.5	<5.0	<2.5	460	76,000	NM				_
	9/25/2007	<2.0	<2.0	<2.0	<4.0	<2.0	<200	42,000	NM				
	3/28/2008	< 0.50	< 0,50	< 0.50	<1.0	<0.50	1,700	120,000	NM	+			
	9/30/2008	< 0.50	< 0.50	< 0.50	<1.0	<0.50	340	180,000	NM				
	5/5/2010	NA	NA	NA	NA	NA	74	7,000	NM				
	2/25/2011	NS	NS	NS	NS	NS	NS	NS	NS	<0.50 NS	<0.50 NS	<1.0 NS	1,800 NS

Notes:

Notes: (ug/L) = are micrograms per liter and mg/L are milligrams per liter. NA = Not Analyzed; NS = Not Sampled; NM = Not Measured TPH = Total perioleum hydrocarbons; MTEE Methyl tertiary butyl ether. Title 22 of the California Code of Regulations, California Maximum Contaminant Levels (MCLs) for drinking water. D.0. = Disoverona vole or regulatoris, canoria availuan contaminance evers (wolls) for animing water. D.0. = Disoverona vole of xygen assured in the field. Results collected between the dates of 8/28/90 and 12/28/95 are based on prior reporting by Geraghty & Miller, Inc. (1996). Bold values indicate analytical detections above MCL.

Eoid values indicate analytical detections above MCL. The 9/96, 10/96 BDL reports revealed concentrations reported as TPH as diesel did not resemble the diesel chromatogram standard, containing > C-26. J - Estimated value between MDL and PCL. Moh - Hydrocarebon reported does not match the pattern of laboratory Diesel standard. * = Not an MCL: Odor and taste threshold per the California Regional Water Quality Control Board regulations Q = Quantity of unknown hydrocarbon(s) in sample based on diesel. Q1 = Quantity of unknown hydrocarbon(s) in sample based on diesel.

RWQGB ESLa = Regional Water Outly Control Board ESLs for Environmental Concerns at Sites with Contaminated Soil and Groundwater INTERIM FINAL -November 2007 (Revised May 2008) San Francisco Bay Region, CA

TABLE 4A

HISTORICAL SOIL ANALYTICAL RESULTS SUMMARY

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA **STATE ID # 583**

Sample ID	Sample Date	Sample Depth (feet bgs)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)
		ESL - drinking water ESL - non-drinking water	83 100	83 100	0.044 0.12	2.9 9.3	2.3 2.3	2.3 11	0.023 8.4
SB-01 4.5-5.0	4/8/2010	4.5 - 5.0	5,000	82	< 0.0039	<0.0039	< 0.0039	<0.0077	<0.0039
SB-01 12-13	4/8/2010	12.0 - 13.0	8.7	<0.25	<0.0050	<0.0050	< 0.0050	<0.010	<0.0050
SB-02 7.0-7.5	4/8/2010	7.0 - 7.5	1,400	1.8	< 0.0041	< 0.0041	0.0043	< 0.0083	< 0.0041
SB-02 9.5-10	4/8/2010	9.5 - 10.0	4.2	< 0.32	<0.0064	<0.0064	< 0.0064	< 0.013	< 0.0064
SB-03 4.0-4.5	4/8/2010	4.0 - 4.5	<1.0	<0.19	< 0.0039	< 0.0039	< 0.0039	< 0.0078	< 0.0039
SB-03 7.5-8.0	4/8/2010	7.5 - 8.0	25	NA	NA	NA	NA	NA	NA
SB-05 4.5-5.0	4/9/2010	4.5 - 5.0	5,000	53	< 0.0037	< 0.0037	<0.0037	<0.0075	<0.0037
SB-05 10.0-10.5	4/9/2010	10.0 - 10.5	<0.99	< 0.33	<0.0066	<0.0066	<0.0066	< 0.013	< 0.0066
SB-06 7.0-7.5	4/9/2010	7.0 - 7.5	990	NA	NA	NA	NA	NA	NA
SB-07 4.5-5.0	4/9/2010	4.5 - 5.0	340	NA	NA	NA	NA	NA	NA
SB-07D ^a	4/9/2010	4.5 - 5.0	670	NA	NA	NA	NA	NA	NA
SB-08 4.5-5.0	4/9/2010	4.5 - 5.0	66	NA	NA	NA	NA	NA	NA
SB-09 5.0-5.5	4/12/2010	5.0 - 5.5	5.3	<0.20	< 0.0041	< 0.0041	< 0.0041	<0.0081	<0.0041
SB-09 9.5-10.0	4/12/2010	9.5 - 10.0	<1.0	<0.26	<0.0053	<0.0053	<0.0053	<0.011	<0.0053
SB-10 7.0-7.5	4/12/2010	7.0 - 7.5	31	< 0.20	< 0.0040	< 0.0040	< 0.0040	<0.0081	< 0.0040
SB-10 9.5-10.0	4/12/2010	9.5 - 10.0	1.0	<0.24	<0.0047	< 0.0047	< 0.0047	<0.0095	<0.0040
SB-11 3.0-3.5	4/12/2010	3.0 - 3.5	<0.99	NA	NA	NA	NA	NA	NA
SB-12 6.0-6.5	4/13/2010	6.0 - 6.5	<1.0	<0.19	<0.0038	<0.0038	<0.0038	< 0.0076	<0.0038

Abbreviations:

bgs = below ground surface

mg/kg = milligrams per kilogram

TPH-DRO = total petroleum hydrocarbons as diesel range organics

TPH-GRO = total petroleum hydrocarbons as gasoline range organics

MTBE = methyl tertiary-butyl ether

< = analyte not detected at or above the noted laboratory method detection limit

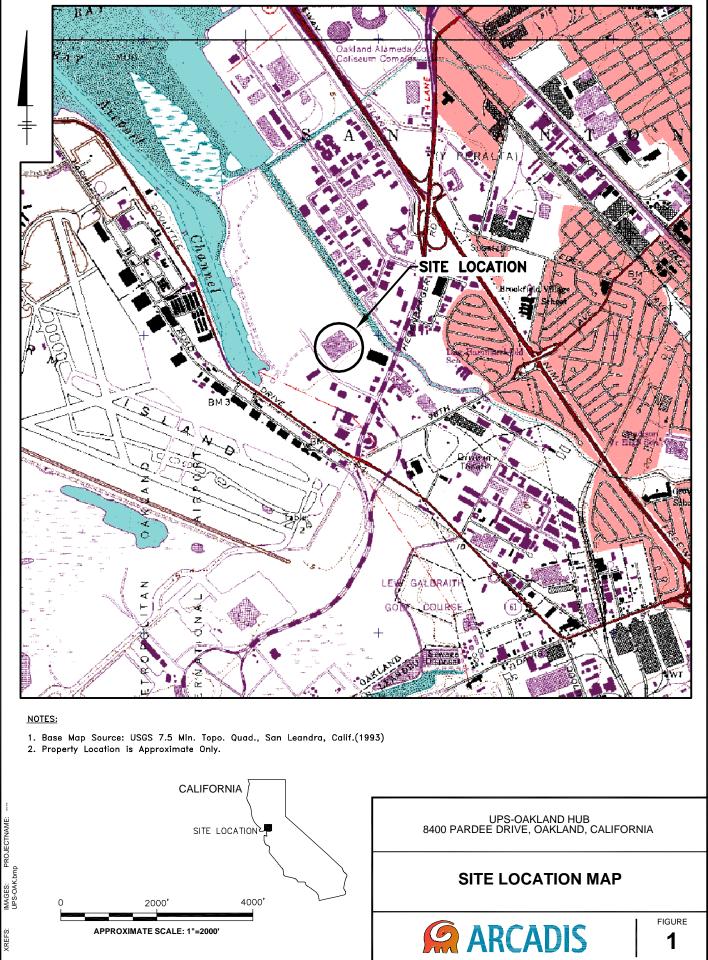
ESL = San Francisco Bay Regional Water Quality Control Board. Environmental Screening Levels, Interim Final - November 2007 (Revised May 2008). Table A, for Shallow Soils, Commercial/industrial Land Use, Groundwater is current of potentail source of drinking water.

Table B, for Shallow Soils, Commercial/industrial Land Use, Groundwater is not current of potentail source of drinking water.

Notes:

Bold = concentration is above one or more of the respective screening levels.

a = duplicate sample


TABLE 4B

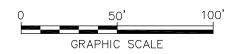
HISTORICAL SOIL ANALYTICAL RESULTS SUMMARY (PAHs)

			Photosocial contraction of the			*****	STATE I	D # 583										
Sample ID		Date Collected	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Anthracene (mg/kg)	senzo[a]anthracene (mgikg)	senzo[a]pyrene (mg/kg)	senzo[b]fluoranthene (mg/kg)	ienzo[g.ħ.i]perylene (mg/kg)	ienzo[k]fluoranthene (mg/kg)	Chrysene (mg/kg)	ibenz(a,h)anthracene (mg/kg)	luoranthene (mg/kg)	luorene (mg/kg)	deno[1.2.3-cd]pyrene (mg/kg)	aphthalene (mg/kg)	henanthrene (mg/kg)	yrene (mg/kg)
RWQCB	Shallow Soil (≤3 m-	Residential	16	13	2.8	0.38	0.038	0.38	27	0.38	23	0.062	40	8.9	0.62	2 1.3	<u> </u>	<u>د</u> 85
Environmental	bgs)	Com./Ind.	16	13	2.8	1.3	0.13	1.3	27	1.3	23	0.21	40	8.9	2.1	2.8	11	85
Screening Levels	Deep Soil (>3 m-	Residential	16	- 13	2.8 -	12	1.5	15	27	- 2.7	23	2.4	60	8.9	13	3.4	11	85
(ESLs)	bgs)	Com./Ind.	16	13 -	2.8	12	1.5	15	27	2.7	23	2.4	60	8.9				
Low-Threat	0-5'		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE			13	3.4	11	85
Standards	5-10'		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	13	NE	NE
SB-01-02-AUG1111	8	8/11/2011	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.032	< 0.025	Constant Section Secti			NE	NE	NE	1500	NE	NE
SB-01-08AUG1111	8	8/11/2011	0.023	0.023	< 0.023	< 0.025	< 0.025	0.032	< 0.025	< 0.025 < 0.01	< 0.025 < 0.01	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
SB-01-08-DUP-AUG1111	8	8/11/2011	0.02	0.047	0.014	0.011	0.011	0.015	0.0067	0.0078	0.01	< 0.01 < 0.005	0.015	0.16 0.057	< 0.01	0.012	0.24	0.019
SB-02-02-AUG1111	2	8/11/2011	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.005	< 0.1	< 0.1	0.0052	0.035	0.098 < 0.1	0.03
SB-02-08-AUG1111	8	8/11/2011	0.061	0.15	0.11	< 0.025	0.04	0.089	0.025	0.026	0.04	< 0.025	< 0.025	0.5	< 0.025			< 0.1
SB-03-02-AUG1111	2	8/11/2011	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.000	0.023	< 0.020	0.04	< 0.025	< 0.025	0.5	< 0.025	0.68	0.89 <	0.029
SB-03-08-AUG1111	8	8/11/2011	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.073	0.052	< 0.05	< 0.012	< 0.0035	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.0099	< 0.0099
SB-04-02-AUG1111	2	8/11/2011	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.012	0.016	0.011	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099		
SB-04-08-AUG1111	8	8/11/2011	< 0.005	0.064	0.21	0.51	0.4	0.53	0.21	0.16	0.49	0.087	< 0.0099 1.1	< 0.0099	0.18	< 0.0099	< 0.0099 0.74	< 0.0099
SB-05-02-AUG1111	2	8/11/2011	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.059	< 0.05	< 0.05	0.081	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.1 < 0.05
SB-05-08-AUG1111	8	8/11/2011	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.052	< 0.025	< 0.025	0.027	< 0.025	0.034	< 0.025	< 0.025	< 0.025	0.037	0.045
SB-06-02-AUG1111	2	8/11/2011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.029	< 0.01	< 0.01	0.032	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.022	0.045
SB-06-08-AUG1111	8	8/11/2011	< 0.0099	0.014	0.013	0.044	0.043	0.074	0.035	0.022	0.051	0.011	0.079	0.019	0.029	0.01	0.022	0.021
SB-07-02-AUG1111	2	8/11/2011	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	0.2	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	0.047	< 0.12
SB-07-08-AUG1111	8	8/11/2011	< 0.025	< 0.025	< 0.025	0.049	0.047	0.085	0.041	< 0.025	0.085	< 0.025	0.12	< 0.025	0.029	0.12	0.14	< 0.12
SB-12-02-AUG1111	2	8/11/2011	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	0.059	< 0.049	< 0.049	< 0.049	< 0.029	< 0.049	< 0.049	< 0.049
SB-12-08-AUG1111	8	8/11/2011	< 0.05	< 0.05	< 0.05	0.066	0.08	0.099	0.062	< 0.05	0.065	< 0.05	0.12	< 0.05	< 0.05	< 0.05	0.093	0.16
SB-13-02-AUG1111	2	8/11/2011	0.44	< 0.099	0.27	0.85	0.75	1.3	0.3	0.48	0.97	0.11	2.2	0.2	0.28	< 0.099	1.7	2
SB-13-08-AUG1111	8	8/11/2011	< 0.005	0.01	0.0053	0.043	0.061	0.097	0.037	0.036	0.055	0.013	0.096	0.02	0.034	< 0.005	0.029	0.099
SB-13A-02-AUG1111	2	8/11/2011	0.55	< 0.049	0.17	0.51	0.45	0.87	0.16	0.26	0.62	0.063	1.1	0.28	0.14	< 0.049	0.97	1.2

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA


Figures

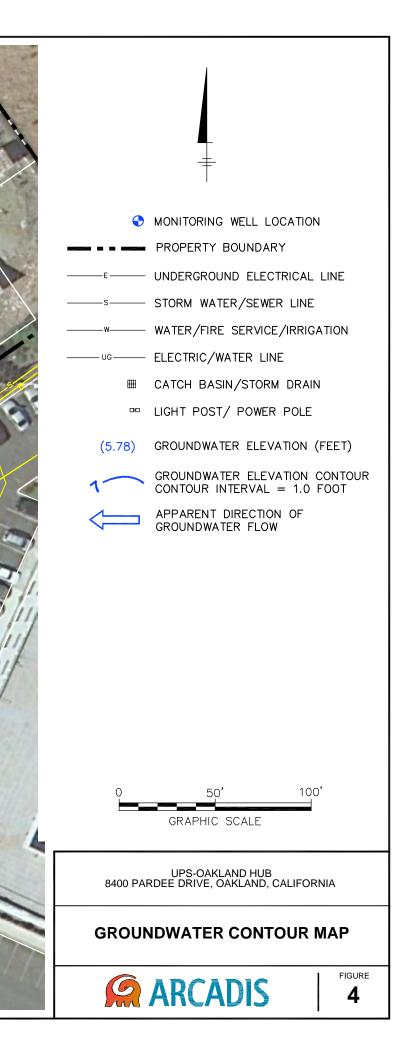
١



PLTFULL.CTB PLOTTED: PDF-AP PLOTSTYLETABLE: 18.0S (LMS TECH) PAGESETUP: 11/14/2011 11:24 AM ACADVER: id) TM:(Opt) LYR:(Opt)ON=*;OFF=*REF* 1\B0038398B01.dwg LAYOUT: 2SAVED: PM:(Reqd) 501 CITY:TAMPA D G:\ENVCAD\Tam

LEGEND:

- MONITORING WELL LOCATION
- ☑ TEMPORARY VACUUM TEST WELL
- ▲ SOIL BORING LOCATION (2010)
- PROPERTY BOUNDARY
- ------ UNDERGROUND ELECTRICAL LINE
- - UG ELECTRIC/WATER LINE
 - CATCH BASIN/STORM DRAIN
 - □ LIGHT POST/ POWER POLE


UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA

SITE MAP

GROUNDWATER QUALITY MAP

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA

GRAPHIC SCALE

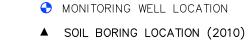
50'

100'

RESULTS REPORTED IN MCROGRAMS PER LITER (μ g/L),

	SAMPLE LOCATION
DATE	SAMPLE DATE
В	BENZENE
Т	TOLUENE
E	ETHYLBENZENE
Х	TOTAL XYLENES
М	METHYL TERT-BUTYL ETHER
TPHG	TPH GASOLINE
TPHD	TPH DIESEL

□ LIGHT POST/ POWER POLE


■ CATCH BASIN/STORM DRAIN

WATER/FIRE SERVICE/IRRIGATION - ELECTRIC/WATER LINE

- STORM WATER/SEWER LINE

- UNDERGROUND ELECTRICAL LINE
- PROPERTY BOUNDARY

LEGEND:

♦ MONITORING WELL LOCATION

- ▲ SOIL BORING LOCATION (2010)
- PROPERTY BOUNDARY

- - CATCH BASIN/STORM DRAIN
 - □ LIGHT POST/ POWER POLE

	SAMPLE LOCATION
DEPTH	SAMPLE DEPTH INTERVAL
ESL	ESL DRINKING/NON-DRINKING
TPHD	TPH-DRO EXCEEDING-ESL

TPH-DRO RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg)

NE = NO EXCEEDANCE

ESL PRESENTED AS DRINKING WATER/NON DRINKING WATER

340[370] = PRIMARY/DUPLICATE SAMPLE RESULTS

>) 50' 100' GRAPHIC SCALE

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA CORRECTIVE ACTION PLAN

TPH-DRO SOIL ESL EXCEEDANCE MAP

FIGURE

ARCADIS

GRAPHIC SCALE

UPS-OAKLAND HUB 8400 PARDEE DRIVE, OAKLAND, CALIFORNIA CORRECTIVE ACTION PLAN

INJECTION PLAN

LEGEND:

MONITORING WELL LOCATION

PROPERTY BOUNDARY

ELECTRIC/WATER LINE

TEMPORARY VACUUM TEST WELL

SOIL BORING LOCATION (2010)

UNDERGROUND ELECTRICAL LINE

WATER/FIRE SERVICE/IRRIGATION

STORM WATER/SEWER LINE

CATCH BASIN/STORM DRAIN

LIGHT POST/ POWER POLE

PHASE I INJECTION WELL

PHASE II INJECTION WELL

PHASE I MONITORING WELL

PHASE II MONITORING WELL

RADIUS OF INFLUENCE 12.5'

 \mathbf{O}

⊞

00

۲

۲ θ

 \square

100'

ARCADIS

Appendix A

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-36911-1 Client Project/Site: UPS-Oakland

For: ARCADIS U.S. Inc 1000 Cobb Place Blvd NW Suite 500-A Kennesaw, Georgia 30144

Attn: Ms. Jennifer LeBeau

Shaema

Authorized for release by: 08/19/2011 02:14:03 PM

Dimple Sharma Project Manager I dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature

is intended to be the legally binding equivalent of a traditionally handwritten signature.

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert

Visit us at: www.testamericainc.com

Page 1 of 22

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland

Glossary

Glossary		 3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	J
EDL	Estimated Detection Limit (Dioxin)	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or method detection limit if shown)	
PQL	Practical Quantitation Limit	8
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	9
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
		13
		14

Job ID: 720-36911-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-36911-1

Comments

No additional comments.

Receipt

Received Trip Blank sample not listed on COC. Sample logged and placed on hold.

All other samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method 8270C SIM: The following sample was diluted due to the abundance of target analytes: SB-02-02-AUG1111 (720-36911-7), SB-02-08-AUG1111 (720-36911-8), SB-04-02-AUG1111 (720-36911-1), SB-04-08-AUG1111 (720-36911-2), SB-05-02-AUG1111 (720-36911-9), SB-06-02-AUG1111 (720-36911-5), SB-06-08-AUG1111 (720-36911-6), SB-07-02-AUG1111 (720-36911-3), SB-07-08-AUG1111 (720-36911-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Client Sample ID: SB-04-02-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzo[a]pyrene	12		9.9		ug/Kg	2	8270C SIM	Total/NA
Benzo[b]fluoranthene	16		9.9		ug/Kg	2	8270C SIM	Total/NA
Benzo[g,h,i]perylene	11		9.9		ug/Kg	2	8270C SIM	Total/NA

Client Sample ID: SB-04-08-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acenaphthylene	64		50		ug/Kg		8270C SIM	Total/NA
Anthracene	210		50		ug/Kg	10	8270C SIM	Total/NA
Benzo[a]anthracene	510		50		ug/Kg	10	8270C SIM	Total/NA
Benzo[a]pyrene	400		50		ug/Kg	10	8270C SIM	Total/NA
Benzo[b]fluoranthene	530		50		ug/Kg	10	8270C SIM	Total/NA
Benzo[g,h,i]perylene	210		50		ug/Kg	10	8270C SIM	Total/NA
Benzo[k]fluoranthene	160		50		ug/Kg	10	8270C SIM	Total/NA
Chrysene	490		50		ug/Kg	10	8270C SIM	Total/NA
Dibenz(a,h)anthracene	87		50		ug/Kg	10	8270C SIM	Total/NA
Fluoranthene	1100		50		ug/Kg	10	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	180		50		ug/Kg	10	8270C SIM	Total/NA
Phenanthrene	740		50		ug/Kg	10	8270C SIM	Total/NA
Pyrene	1100		50		ug/Kg	10	8270C SIM	Total/NA

Client Sample ID: SB-07-02-AUG1111

Analyte		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	200		120		ug/Kg	5		8270C SIM	Total/NA
Chrysene	260		120		ug/Kg	5		8270C SIM	Total/NA
Phenanthrene	140		120		ug/Kg	5		8270C SIM	Total/NA

Client Sample ID: SB-07-08-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	49		25		ug/Kg	5	_	8270C SIM	Total/NA
Benzo[a]pyrene	47		25		ug/Kg	5		8270C SIM	Total/NA
Benzo[b]fluoranthene	85		25		ug/Kg	5		8270C SIM	Total/NA
Benzo[g,h,i]perylene	41		25		ug/Kg	5		8270C SIM	Total/NA
Chrysene	85		25		ug/Kg	5		8270C SIM	Total/NA
Fluoranthene	110		25		ug/Kg	5		8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	29		25		ug/Kg	5		8270C SIM	Total/NA
Naphthalene	250		25		ug/Kg	5		8270C SIM	Total/NA
Phenanthrene	110		25		ug/Kg	5		8270C SIM	Total/NA
Pyrene	110		25		ug/Kg	5		8270C SIM	Total/NA

Client Sample ID: SB-06-02-AUG1111

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	0 Method	Prep Type
Benzo[b]fluoranthene	29	10	ug/Kg	2	8270C SIM	Total/NA
Chrysene	32	10	ug/Kg	2	8270C SIM	Total/NA
Phenanthrene	22	10	ug/Kg	2	8270C SIM	Total/NA
Pyrene	21	10	ug/Kg	2	8270C SIM	Total/NA

Client Sample ID: SB-06-08-AUG1111

Analyte	Result Qual	alifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Acenaphthylene	14	9.9	ug/Kg	2	_	8270C SIM	Total/NA

TestAmerica Job ID: 720-36911-1

Lab Sample ID: 720-36911-1

Lab Sample ID: 720-36911-2

Lab Sample ID: 720-36911-3

Lab Sample ID: 720-36911-4

Lab Sample ID: 720-36911-5

Lab Sample ID: 720-36911-6

Client Sample ID: SB-06-08-AUG1111 (Continued)

Lab Sample ID: 720-36911-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Anthracene	13	9.9	ug/Kg	2	8270C SIM	Total/NA
Benzo[a]anthracene	44	9.9	ug/Kg	2	8270C SIM	Total/NA
Benzo[a]pyrene	43	9.9	ug/Kg	2	8270C SIM	Total/NA
Benzo[b]fluoranthene	74	9.9	ug/Kg	2	8270C SIM	Total/NA
Benzo[g,h,i]perylene	35	9.9	ug/Kg	2	8270C SIM	Total/NA
Benzo[k]fluoranthene	22	9.9	ug/Kg	2	8270C SIM	Total/NA
Chrysene	51	9.9	ug/Kg	2	8270C SIM	Total/NA
Dibenz(a,h)anthracene	11	9.9	ug/Kg	2	8270C SIM	Total/NA
Fluoranthene	79	9.9	ug/Kg	2	8270C SIM	Total/NA
Fluorene	19	9.9	ug/Kg	2	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	29	9.9	ug/Kg	2	8270C SIM	Total/NA
Naphthalene	210	9.9	ug/Kg	2	8270C SIM	Total/NA
Phenanthrene	47	9.9	ug/Kg	2	8270C SIM	Total/NA
Pyrene	120	9.9	ug/Kg	2	8270C SIM	Total/NA

Client Sample ID: SB-02-02-AUG1111

No Detections

Client Sample ID: SB-02-08-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acenaphthene	61		25		ug/Kg	5	8270C SIM	Total/NA
Acenaphthylene	150		25		ug/Kg	5	8270C SIM	Total/NA
Anthracene	110		25		ug/Kg	5	8270C SIM	Total/NA
Benzo[a]pyrene	40		25		ug/Kg	5	8270C SIM	Total/NA
Benzo[b]fluoranthene	89		25		ug/Kg	5	8270C SIM	Total/NA
Benzo[g,h,i]perylene	25		25		ug/Kg	5	8270C SIM	Total/NA
Benzo[k]fluoranthene	26		25		ug/Kg	5	8270C SIM	Total/NA
Chrysene	40		25		ug/Kg	5	8270C SIM	Total/NA
Fluorene	500		25		ug/Kg	5	8270C SIM	Total/NA
Naphthalene	680		25		ug/Kg	5	8270C SIM	Total/NA
Phenanthrene	890		25		ug/Kg	5	8270C SIM	Total/NA
Pyrene	29		25		ug/Kg	5	8270C SIM	Total/NA

Client Sample ID: SB-05-02-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	59		50		ug/Kg	5	_	8270C SIM	Total/NA
Chrysene	81		50		ug/Kg	5		8270C SIM	Total/NA

5

Lab Sample ID: 720-36911-8

Lab Sample ID: 720-36911-9

Lab Sample ID: 720-36911-7

RL

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

9.9

Limits 33 - 120

35 - 146

Result Qualifier

ND

ND

ND

ND

12

16

11

ND

ND

ND

ND

ND

ND

ND

ND

ND

68

94

Qualifier

% Recovery

MDL Unit

ug/Kg

D

Prepared

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-04-02-AUG1111

Date Collected: 08/11/11 10:50

Date Received: 08/12/11 13:00

Analyte

Acenaphthene

Acenaphthylene

Benzo[a]anthracene

Benzo[g,h,i]perylene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Benzo[k]fluoranthene

Benzo[a]pyrene Benzo[b]fluoranthene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

2-Fluorobiphenyl

Terphenyl-d14

Fluoranthene

Naphthalene

Phenanthrene

Lab Sample ID: 720-36911-1

Analyzed

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

08/16/11 17:42

5 6

Dil Fac

2

2

2

2

2

2

2

2

2

2

2

2

2

2

08/16/11 09:57	08/16/11 17:42	2
Prepared	Analyzed	Dil Fac
08/16/11 09:57	08/16/11 17:42	2
08/16/11 09:57	08/16/11 17:42	2
08/16/11 09:57	08/16/11 17:42	2

Prepared	Analyzed	Dil Fa
08/16/11 09:57	08/16/11 17:42	-
08/16/11 09:57	08/16/11 17:42	

Lab Sample ID: 720-36911-2 Matrix: Solid

Date Collected: 08/11/11 10:55 Date Received: 08/12/11 13:00

Client Sample ID: SB-04-08-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Acenaphthylene	64		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Anthracene	210		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Benzo[a]anthracene	510		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Benzo[a]pyrene	400		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Benzo[b]fluoranthene	530		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Benzo[g,h,i]perylene	210		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Benzo[k]fluoranthene	160		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Chrysene	490		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Dibenz(a,h)anthracene	87		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Fluoranthene	1100		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Fluorene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Indeno[1,2,3-cd]pyrene	180		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Naphthalene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Phenanthrene	740		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Pyrene	1100		50		ug/Kg		08/16/11 09:57	08/16/11 18:52	10
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	79		33 - 120				08/16/11 09:57	08/16/11 18:52	10
Terphenyl-d14	91		35 - 146				08/16/11 09:57	08/16/11 18:52	10

Matrix: Solid

08/16/11 09

RL

120

120

120

120

120

120

120

120

120

120

120

120

120

120

120

120

Limits

33 - 120

35 - 146

Result Qualifier

ND

ND

ND

ND

ND

200

ND

ND

260

ND

ND

ND

ND

ND

140

ND

77

88

Qualifier

% Recovery

MDL Unit

ug/Kg

D

Prepared

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-07-02-AUG1111

Date Collected: 08/11/11 11:40

Date Received: 08/12/11 13:00

Analyte

Acenaphthene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

Fluoranthene

Naphthalene

Phenanthrene

2-Fluorobiphenyl

Terphenyl-d14

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Lab Sample ID: 720-36911-3

Analyzed

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

08/16/11 19:15

Matrix: Solid

Dil Fac

5

5

5

5

5

5

5

5

5 6

Prepared	Analyzed	Dil Fac
08/16/11 09:57	08/16/11 19:15	5
08/16/11 09:57	08/16/11 19:15	5

Matrix: Solid

Date Collected: 08/11/11 11:45 Date Received: 08/12/11 13:00

Client Sample ID: SB-07-08-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Acenaphthylene	ND		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Anthracene	ND		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Benzo[a]anthracene	49		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Benzo[a]pyrene	47		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Benzo[b]fluoranthene	85		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Benzo[g,h,i]perylene	41		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Benzo[k]fluoranthene	ND		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Chrysene	85		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Dibenz(a,h)anthracene	ND		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Fluoranthene	110		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Fluorene	ND		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Indeno[1,2,3-cd]pyrene	29		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Naphthalene	250		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Phenanthrene	110		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Pyrene	110		25		ug/Kg		08/16/11 09:57	08/16/11 19:38	5
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		33 - 120				08/16/11 09:57	08/16/11 19:38	5
Terphenyl-d14	98		35 - 146				08/16/11 09:57	08/16/11 19:38	5

Lab Sample ID: 720-36911-4

6 7 8 9 10 11

l1-5 olid	
I Fac	

Lab Sample ID: 720-36911-5
Matrix: Solid

Date Collected: 08/11/11 12:20 Date Received: 08/12/11 13:00

Client Sample ID: SB-06-02-AUG1111

Method: 8270C SIM - PAHs by GCMS (SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Acenaphthylene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Anthracene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Benzo[a]anthracene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Benzo[a]pyrene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Benzo[b]fluoranthene	29		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Benzo[g,h,i]perylene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Benzo[k]fluoranthene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Chrysene	32		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Dibenz(a,h)anthracene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Fluoranthene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Fluorene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Indeno[1,2,3-cd]pyrene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Naphthalene	ND		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Phenanthrene	22		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Pyrene	21		10		ug/Kg		08/16/11 09:57	08/16/11 20:02	2
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67		33 - 120				08/16/11 09:57	08/16/11 20:02	2
Terphenyl-d14	89		35 - 146				08/16/11 09:57	08/16/11 20:02	2

Client Sample ID: SB-06-08-AUG1111 Date Collected: 08/11/11 12:25 Date Received: 08/12/11 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Acenaphthylene	14		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Anthracene	13		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Benzo[a]anthracene	44		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Benzo[a]pyrene	43		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Benzo[b]fluoranthene	74		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Benzo[g,h,i]perylene	35		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Benzo[k]fluoranthene	22		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Chrysene	51		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Dibenz(a,h)anthracene	11		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Fluoranthene	79		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Fluorene	19		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Indeno[1,2,3-cd]pyrene	29		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Naphthalene	210		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Phenanthrene	47		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Pyrene	120		9.9		ug/Kg		08/16/11 09:57	08/16/11 20:25	2
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63		33 - 120				08/16/11 09:57	08/16/11 20:25	2
Terphenyl-d14	83		35 - 146				08/16/11 09:57	08/16/11 20:25	2

Lab Sample ID: 720-36911-6

Matrix: Solid

5 6

0	
0	
0	
0	
0	

10	
Dil Fac	
10	

Matrix: Solid

Lab Sample ID: 720-36911-8

Lab Sample ID: 720-36911-7 Matrix: Solid

Date Collected: 08/11/11 13:48 Date Received: 08/12/11 13:00

Client Sample ID: SB-02-02-AUG1111

Method: 8270C SIM - PAHs by GCMS (SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Acenaphthylene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Anthracene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Benzo[a]anthracene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Benzo[a]pyrene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Benzo[b]fluoranthene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Benzo[g,h,i]perylene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Benzo[k]fluoranthene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Chrysene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Dibenz(a,h)anthracene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Fluoranthene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Fluorene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Indeno[1,2,3-cd]pyrene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Naphthalene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Phenanthrene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Pyrene	ND		100		ug/Kg		08/16/11 09:57	08/16/11 20:49	10
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80		33 - 120				08/16/11 09:57	08/16/11 20:49	10
Terphenyl-d14	102		35 - 146				08/16/11 09:57	08/16/11 20:49	10

Client Sample ID: SB-02-08-AUG1111 Date Collected: 08/11/11 13:55 Date Received: 08/12/11 13:00

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	61		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Acenaphthylene	150		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Anthracene	110		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Benzo[a]anthracene	ND		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Benzo[a]pyrene	40		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Benzo[b]fluoranthene	89		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Benzo[g,h,i]perylene	25		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Benzo[k]fluoranthene	26		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Chrysene	40		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Dibenz(a,h)anthracene	ND		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Fluoranthene	ND		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Fluorene	500		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Indeno[1,2,3-cd]pyrene	ND		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Naphthalene	680		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Phenanthrene	890		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Pyrene	29		25	ug/Kg		08/16/11 09:57	08/16/11 21:12	5
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	89		33 - 120			08/16/11 09:57	08/16/11 21:12	5
Terphenyl-d14	104		35 - 146			08/16/11 09:57	08/16/11 21:12	5

Lab Sample ID: 720-36911-9

Matrix: Solid

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-05-02-AUG1111 Date Collected: 08/11/11 14:10

Date Received: 08/12/11 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Acenaphthylene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Anthracene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Benzo[a]anthracene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Benzo[a]pyrene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Benzo[b]fluoranthene	59		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Benzo[g,h,i]perylene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Benzo[k]fluoranthene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Chrysene	81		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Dibenz(a,h)anthracene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Fluoranthene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Fluorene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Indeno[1,2,3-cd]pyrene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Naphthalene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Phenanthrene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Pyrene	ND		50		ug/Kg		08/16/11 09:57	08/16/11 21:36	5
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	50		33 - 120				08/16/11 09:57	08/16/11 21:36	5
Terphenyl-d14	59		35 - 146				08/16/11 09:57	08/16/11 21:36	5

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 97349

Lab Sample ID: MB 720-97349/1-A Matrix: Solid

Method: 8270C SIM - PAHs by GCMS (SIM)

Analysis Batch: 97365

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Acenaphthylene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[a]anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[a]pyrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Chrysene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Fluoranthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Fluorene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Naphthalene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Phenanthrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Pyrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
	МВ	МВ							

Surrogate	% Recovery	Qualifier Limits	Prepared
2-Fluorobiphenyl	73	33 - 120	08/16/11 09:57
Terphenyl-d14	104	35 - 146	08/16/11 09:57

Lab Sample ID: LCS 720-97349/2-A Matrix: Solid Analysis Batch: 97365

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 97349

Analyzed

08/16/11 17:18

08/16/11 17:18

Dil Fac

1

1

Analysis Daten. 57000							i i op Baton. 370
	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Acenaphthene	333	261		ug/Kg		78	49 - 120
Acenaphthylene	333	261		ug/Kg		78	52 _ 120
Anthracene	333	273		ug/Kg		82	52 - 120
Benzo[a]anthracene	333	254		ug/Kg		76	52 ₋ 120
Benzo[a]pyrene	333	281		ug/Kg		85	54 _ 120
Benzo[b]fluoranthene	333	294		ug/Kg		88	51 ₋ 120
Benzo[g,h,i]perylene	333	283		ug/Kg		85	48 - 120
Benzo[k]fluoranthene	333	241		ug/Kg		73	56 - 120
Chrysene	333	180		ug/Kg		54	40 _ 120
Dibenz(a,h)anthracene	333	311		ug/Kg		94	50 _ 120
Fluoranthene	333	274		ug/Kg		82	57 _ 120
Fluorene	333	256		ug/Kg		77	52 ₋ 120
Indeno[1,2,3-cd]pyrene	333	300		ug/Kg		90	48 - 120
Naphthalene	333	247		ug/Kg		74	46 - 120
Phenanthrene	333	285		ug/Kg		86	48 - 120
Pyrene	333	282		ug/Kg		85	53 _ 120

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	70		33 - 120
Terphenyl-d14	89		35 - 146

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Lab Sample ID: LCSD 720-97349/3-A

Matrix: Solid							Prep Ty	/pe: Tot	tal/NA
Analysis Batch: 97365							Prep	Batch:	97349
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Acenaphthene	332	266		ug/Kg		80	49 - 120	2	20
Acenaphthylene	332	267		ug/Kg		80	52 _ 120	2	20
Anthracene	332	288		ug/Kg		87	52 ₋ 120	6	20
Benzo[a]anthracene	332	264		ug/Kg		79	52 ₋ 120	4	20
Benzo[a]pyrene	332	296		ug/Kg		89	54 - 120	5	20
Benzo[b]fluoranthene	332	293		ug/Kg		88	51 ₋ 120	0	20
Benzo[g,h,i]perylene	332	295		ug/Kg		89	48 - 120	4	20
Benzo[k]fluoranthene	332	271		ug/Kg		82	56 _ 120	12	20
Chrysene	332	183		ug/Kg		55	40 - 120	2	20
Dibenz(a,h)anthracene	332	325		ug/Kg		98	50 - 120	4	20
Fluoranthene	332	286		ug/Kg		86	57 _ 120	4	20
Fluorene	332	259		ug/Kg		78	52 ₋ 120	1	20
Indeno[1,2,3-cd]pyrene	332	313		ug/Kg		94	48 - 120	4	20
Naphthalene	332	255		ug/Kg		77	46 - 120	3	20
Phenanthrene	332	288		ug/Kg		87	48 - 120	1	20
Pyrene	332	286		ug/Kg		86	53 _ 120	1	20

	LCSD	LCSD	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	75		33 - 120
Terphenyl-d14	91		35 - 146

Lab Sample ID: 720-36911-1 MS Matrix: Solid Analysis Batch: 97365

Client Sample ID: SB-04-02-AUG1111 Prep Type: Total/NA Prep Batch: 97349

	Sample	Sample	Spike	MS	MS				% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Acenaphthene	ND		333	263		ug/Kg		79	33 - 120
Acenaphthylene	ND		333	265		ug/Kg		80	28 - 120
Anthracene	ND		333	285		ug/Kg		86	36 - 120
Benzo[a]anthracene	ND		333	275		ug/Kg		81	29 - 120
Benzo[a]pyrene	12		333	295		ug/Kg		85	24 - 120
Benzo[b]fluoranthene	16		333	293		ug/Kg		83	17 _ 132
Benzo[g,h,i]perylene	11		333	297		ug/Kg		86	21 _ 120
Benzo[k]fluoranthene	ND		333	266		ug/Kg		78	35 - 120
Chrysene	ND		333	195		ug/Kg		57	29 - 120
Dibenz(a,h)anthracene	ND		333	307		ug/Kg		91	36 - 120
Fluoranthene	ND		333	282		ug/Kg		83	24 - 120
Fluorene	ND		333	262		ug/Kg		79	35 - 120
Indeno[1,2,3-cd]pyrene	ND		333	297		ug/Kg		87	20 - 126
Naphthalene	ND		333	236		ug/Kg		71	32 - 120
Phenanthrene	ND		333	291		ug/Kg		86	28 - 120
Pyrene	ND		333	317		ug/Kg		93	24 - 123
	MS	MS							
Surrogate	% Recovery	Qualifier	Limits						
2-Fluorobiphenvl	71		33 - 120						

2-Fluorobiphenyl	71	 33 - 120
Terphenyl-d14	95	35 - 146

Client Sample ID: Lab Control Sample Dup

Terphenyl-d14

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

96

Lab Sample ID: 720-36911-1 MSD

Matrix: Solid									Prep Ty	/pe: Tot	tal/NA
Analysis Batch: 97365									Prep	Batch:	97349
	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Acenaphthene	ND		331	262		ug/Kg		79	33 - 120	1	20
Acenaphthylene	ND		331	262		ug/Kg		79	28 - 120	1	20
Anthracene	ND		331	290		ug/Kg		88	36 - 120	2	20
Benzo[a]anthracene	ND		331	277		ug/Kg		82	29 - 120	1	20
Benzo[a]pyrene	12		331	311		ug/Kg		90	24 - 120	5	20
Benzo[b]fluoranthene	16		331	309		ug/Kg		88	17 _ 132	5	20
Benzo[g,h,i]perylene	11		331	319		ug/Kg		93	21 - 120	7	20
Benzo[k]fluoranthene	ND		331	281		ug/Kg		83	35 _ 120	5	20
Chrysene	ND		331	197		ug/Kg		57	29 - 120	1	20
Dibenz(a,h)anthracene	ND		331	327		ug/Kg		98	36 - 120	6	20
Fluoranthene	ND		331	299		ug/Kg		89	24 _ 120	6	20
Fluorene	ND		331	260		ug/Kg		79	35 _ 120	1	20
Indeno[1,2,3-cd]pyrene	ND		331	319		ug/Kg		94	20 - 126	7	20
Naphthalene	ND		331	236		ug/Kg		71	32 _ 120	0	20
Phenanthrene	ND		331	298		ug/Kg		89	28 - 120	2	20
Pyrene	ND		331	320		ug/Kg		94	24 - 123	1	20
	MSD	MSD									
Surrogate	% Recovery	Qualifier	Limits								
2-Fluorobiphenyl	72		33 - 120								

35 - 146

TestAmerica Job ID: 720-36911-1

GC/MS Semi VOA

Prep Batch: 97349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-97349/1-A	Method Blank	Total/NA	Solid	3546	
LCS 720-97349/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-97349/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
720-36911-1 MS	SB-04-02-AUG1111	Total/NA	Solid	3546	
720-36911-1 MSD	SB-04-02-AUG1111	Total/NA	Solid	3546	
720-36911-1	SB-04-02-AUG1111	Total/NA	Solid	3546	
720-36911-2	SB-04-08-AUG1111	Total/NA	Solid	3546	
720-36911-3	SB-07-02-AUG1111	Total/NA	Solid	3546	
720-36911-4	SB-07-08-AUG1111	Total/NA	Solid	3546	
720-36911-5	SB-06-02-AUG1111	Total/NA	Solid	3546	
720-36911-6	SB-06-08-AUG1111	Total/NA	Solid	3546	
720-36911-7	SB-02-02-AUG1111	Total/NA	Solid	3546	
720-36911-8	SB-02-08-AUG1111	Total/NA	Solid	3546	
720-36911-9	SB-05-02-AUG1111	Total/NA	Solid	3546	

Analysis Batch: 97365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-97349/2-A	Lab Control Sample	Total/NA	Solid	8270C SIM	97349
LCSD 720-97349/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C SIM	97349
MB 720-97349/1-A	Method Blank	Total/NA	Solid	8270C SIM	97349
720-36911-1	SB-04-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-1 MS	SB-04-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-1 MSD	SB-04-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-2	SB-04-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-3	SB-07-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-4	SB-07-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-5	SB-06-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-6	SB-06-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-7	SB-02-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-8	SB-02-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36911-9	SB-05-02-AUG1111	Total/NA	Solid	8270C SIM	97349

Batch

97349

Number

Prepared

Or Analyzed

08/16/11 09:57

Dilution

Factor

Run

Date Collected: 08/11/11 10:50

Date Received: 08/12/11 13:00

Prep Type

Total/NA

Client Sample ID: SB-04-02-AUG1111

Batch

Туре

Prep

Batch

3546

Method

100		D 1D. 720 00011 1	
Lab	Sample I	D: 720-36911-1	
		Matrix: Solid	
	Analyst	Lab	5
-	MP	TAL SF	
	ML	TAL SF	

Total/NA 97365 08/16/11 17:42 TAL SF Analysis 8270C SIM 2 MI Client Sample ID: SB-04-08-AUG1111 Lab Sample ID: 720-36911-2 Date Collected: 08/11/11 10:55 Matrix: Solid Date Received: 08/12/11 13:00 Batch Batch Dilution Batch Prepared Method Or Analyzed Factor Number Prep Type Type Run Analyst Lab Prep 3546 97349 08/16/11 09:57 MP TAL SF Total/NA Total/NA Analysis 8270C SIM 10 97365 08/16/11 18:52 ML TAL SF Lab Sample ID: 720-36911-3 Client Sample ID: SB-07-02-AUG1111 Date Collected: 08/11/11 11:40 Matrix: Solid Date Received: 08/12/11 13:00 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Or Analyzed Analyst Lab Total/NA Prep 3546 97349 08/16/11 09:57 MP TAL SF Total/NA Analysis 8270C SIM 5 97365 08/16/11 19:15 ML TAL SF Client Sample ID: SB-07-08-AUG1111 Lab Sample ID: 720-36911-4 Date Collected: 08/11/11 11:45 Matrix: Solid Date Received: 08/12/11 13:00 Batch Dilution Prepared Batch Batch Method Factor Number Or Analyzed Lab Prep Type Туре Run Analyst Total/NA 3546 97349 08/16/11 09:57 MP TAL SF Prep Total/NA 8270C SIM 97365 08/16/11 19:38 TAL SF Analysis 5 ML Client Sample ID: SB-06-02-AUG1111 Lab Sample ID: 720-36911-5 Date Collected: 08/11/11 12:20 Matrix: Solid Date Received: 08/12/11 13:00 Batch Batch Dilution Batch Prepared Method Or Analyzed Prep Type Туре Run Factor Number Analyst Lab Prep 3546 97349 08/16/11 09:57 MP TAL SF Total/NA Total/NA Analysis 8270C SIM 2 97365 08/16/11 20:02 ML TAL SF Lab Sample ID: 720-36911-6 Client Sample ID: SB-06-08-AUG1111 Date Collected: 08/11/11 12:25 Matrix: Solid Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		2	97365	08/16/11 20:25	ML	TAL SF

Lab Sample ID: 720-36911-7

Lab Sample ID: 720-36911-8

Lab Sample ID: 720-36911-9

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: SB-02-02-AUG1111

Date Collected: 08/11/11 13:48 Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		10	97365	08/16/11 20:49	ML	TAL SF

Client Sample ID: SB-02-08-AUG1111 Date Collected: 08/11/11 13:55 Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97365	08/16/11 21:12	ML	TAL SF

Client Sample ID: SB-05-02-AUG1111 Date Collected: 08/11/11 14:10 Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97365	08/16/11 21:36	ML	TAL SF

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica San Francisco	California	State Program	9	2496

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland

Method	Method Description	Protocol	Laboratory
8270C SIM	PAHs by GCMS (SIM)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland TestAmerica Job ID: 720-36911-1

5
8
9
12
13

Lab Sample ID	Client Sample ID	Matrix	Collected	Received		
720-36911-1	SB-04-02-AUG1111	Solid	08/11/11 10:50	08/12/11 13:00		
720-36911-2	SB-04-08-AUG1111	Solid	08/11/11 10:55	08/12/11 13:00		
720-36911-3	SB-07-02-AUG1111	Solid	08/11/11 11:40	08/12/11 13:00		
720-36911-4	SB-07-08-AUG1111	Solid	08/11/11 11:45	08/12/11 13:00		
720-36911-5	SB-06-02-AUG1111	Solid	08/11/11 12:20	08/12/11 13:00		
720-36911-6	SB-06-08-AUG1111	Solid	08/11/11 12:25	08/12/11 13:00		
720-36911-7	SB-02-02-AUG1111	Solid	08/11/11 13:48	08/12/11 13:00		
720-36911-8	SB-02-08-AUG1111	Solid	08/11/11 13:55	08/12/11 13:00		
720-36911-9	SB-05-02-AUG1111	Solid	08/11/11 14:10	08/12/11 13:00		

bdy

Date 8/11/11 Page 1 of

	-	11111111111111111111111111111111111111				Toron (Provident										*********		
						7-Vir	alvsis	Regi	<u>93</u>									1 õ
Attn: Jennifer Halcomb-LeBeau	Gel		8	E	608 608			NA I	3020				ш О					
Company: AR-CAPDIS Kennesaw, GA 30149	Silica Other	2608	N S	D Fetroleum		8310		J RC	200.8/		¹ 20)	λį	်ပို	-				
Address: 1000 CObb Male Blva, Blog 500-A		pγ 8	D ²²⁴	Total Total	8081 8082		Ê	Ē	EPA :		nium for F	lkalin DS					er V	
Phone: 770-400-909 Email: jennifer. 1ebeau Custor		8021	00 00 00		EPA 8081 EPA 8082	8270	747		s by	<u>[</u>]	hron (ime	D Alkalinity D TDS					Containers	
Company: A. P. CA. D. I.S Kennesaw, GA. 30149 Address: 1000 Cobb Place Bivd, Bldg. 500-A Phone: 770-4780-9009 Email: jennifer. 10:00 Cobb Place Bivd, Bldg. 500-A Bill To: RECADIS Sampled By: PROJ # below Kathryn Firich	2 801 801 1 Wo	ΨdΞ	Janic 60B	∼ ase		ū	tals 7470	ead	vietal	r (st	ent C hold	nd.	90 90					
Alle teanifer lebau Phone: TAT 202 7159	Sel C 2608:	(HVOCs) EPA 8021 by 8260B	le Ori	d Gre	ides	ক্র	7 Me 5010/		evel 1 15):	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold lime for H ₂ O)	ပိ ဒန					er of	
Phone: 770-400-909Email: jennifer. lebeau Carrow Bill To: ALCADIS Sampled By: PROj# below Kathryn Firich Attn: Jennifer LeBeau Phone: 703.303.7159	TEPH EPA 8015M* D Silica Gel Diesel D Motor Oil D Other	(HVC	Volatile Organics GC/MS (VOCs) D EPA 8260B D 624 D 0 1 1	Semivolatiles GCMS F H H E EPA 8270 D 525 Oil and Grease D Petroleum (EPA 1664) D Total	Pesticides PCBs	PNAs by	CAM17 Metals (EPA 6010/7470/7471)	Metals: U Lead O LUFT D RCRA	Low Level Metals by EPA 200.86020 (ICP-MS):	00	DA	D Spec. Cond. 1 D TSS	nions				Number	
-SB-01-02 Augin 8/11/1 S N/A					<u> </u>	- UL							<					
53-04-02 - Augilite B/14/11 1050 S None				<u>×-</u>	1			<u> </u>	1						. <u> </u>			
CO OA OB-Minter Alisty (ACR C 1/mag				<u>X</u>		<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>						
58-07-02-Auguill Bright \$940 5 None	<u> </u>	-		×				+	+									
5B-07-09 Aug 111 8/11/11 1145 5 None				× ×					<u> </u>			<u> </u>						f 22
SB-06-02-Auguil 8/11/1 (220 5 Norp				×				· ·····		<u>+</u>	<u> -`</u>							21 of
5B-06-09-200111 8/11/11 1225 5 None				2 L				-		<u></u>		<u> </u>	1					de 2
56-52-02-Augini 8/11/11 1348 5 Nore		-		$\frac{\mathcal{E}}{\mathcal{A}}$														Page
5B-02-08-Augili B/11/11 1355 5 Name					+			+										4
SB-05-02-Augilli 8/11/11/14/0 5 None				$\overline{\mathbf{v}}$	+	+	1			· 			ļ					_
Projectinio Sample/Recept	1) Relinquis	hed by;			1	2) Re	lingvish	ad by		<u> </u>			Relinou	ished by:				
Project Name: # of Containers: 9		Ív	\sim	(<u>130</u> Time)	1	lingvish	X	The	di' l	13;00	>	venndo	isneu oy.				
	Signature	<i>ĭ</i>		Time		Signa	ture			Tim	e	Sig	nature			Time	<u> </u>	
B0039398.0010 NIA	Printed Nar	myn	AN	<u>Ch 81</u>	12/(1	60	sale	<u>l No</u>	tý loi	- 8-1	e Z-11 le							
PO#: Temp:		18 ReA.				Printe	ed Name	е ,		Da	le	Pri	nled Na	ime		Date		
Credil Card#: Conforms to record:	Company	real.	DV^{3}				<u>A-</u>		- 			<u> </u>	-	··				
				,,			\sim	2			NO10701-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		mpany					
$ \begin{vmatrix} A \\ -A \\ -Day \end{vmatrix} \begin{vmatrix} 2 \\ -Day \end{vmatrix} \begin{vmatrix} 1 \\ -Day \end{vmatrix} \begin{vmatrix} 2 \\ -Day \end{vmatrix} \begin{vmatrix} 1 \\ -Day \end{vmatrix} \begin{vmatrix} 0 \\ -Day \end{vmatrix} \begin{vmatrix} 0 \\ -Day \end{vmatrix} $	1) Received	. oy:	Na.	1. 11.	30	27Re	icelyed I	by.)	12	.ov	3)	Receive	ed by:				1
Report: DRoutine DLevel 3 DLevel 4 DEDD DState Tank	Signature	an .	<u>v nog</u>	Time		Signa	<u>ure</u>	w					noturo	·				
Fund EDF Special Instructions / Comments:		I N.	4 Y lou	- 8-12	-11	C	14	an	W	8/	$\frac{1}{2}$		nature			smiT		
	Printed Nar		/	Date		Printi	ad Nam	e		 Da		Pri	nled Na	ime		Dale		
Temp. 4.0°C	T-A	<u>!</u>				T	pri										-	
Sea Terms and Conditions on reverse	Company					Com	pany				<u> </u>	Co	mpany					
TaskAmerica SF reports 8015M from C_{1} - C_{24} (industry norm). Default for 80138 is C_{10} - C_{24}	A															۵	00100	

isco

13

TESTAMERICA San

THE LEADER IN ENVIRONMENTAL TESTING

1112

1220 Quarry La Phone: (925) 4

1.

Login Sample Receipt Checklist

Client: ARCADIS U.S. Inc

Login Number: 36911 List Number: 1

Creator: Apostol, Anita

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 720-36911-1

List Source: TestAmerica San Francisco

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-36912-1 Client Project/Site: UPS-Oakland

For: ARCADIS U.S. Inc 1000 Cobb Place Blvd NW Suite 500-A Kennesaw, Georgia 30144

Attn: Ms. Jennifer LeBeau

Shaema

Authorized for release by: 08/19/2011 02:26:14 PM

Dimple Sharma Project Manager I dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature

is intended to be the legally binding equivalent of a traditionally handwritten signature.

LINKS Review your project results through TOTOLACCESS Have a Question? Ask-The Expert

Visit us at: www.testamericainc.com

Page 1 of 24

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
QC Sample Results	14
QC Association Summary	16
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	24

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit (Dioxin)	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or method detection limit if shown)	
PQL	Practical Quantitation Limit	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TestAmerica Job ID: 720-36912-1

Job ID: 720-36912-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-36912-1

Comments

No additional comments.

Receipt

Received Trip Blank sample not listed on COC. Sample logged and placed on hold.

All other samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method 8270C SIM: The following sample was diluted due to the abundance of non-target analytes: SB-01-02-AUG1111 (720-36912-5), SB-01-08--AUG1111 (720-36912-7), SB-05-08-AUG1111 (720-36912-1), SB-13-02-AUG1111 (720-36912-2), SB-13A-02-AUG1111 (720-36912-4), SB-03-02-AUG1111 (720-36912-6), SB-03-08-AUG1111 (720-36912-9), SB-12-02-AUG1111 (720-36912-10), SB-12-08-AUG1111 (720-36912-11). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Client Sample ID: SB-05-08-AUG1111

Lab Sample ID: 720-36912-1

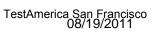
Lab Sample ID: 720-36912-2

Lab Sample ID: 720-36912-3

Lab Sample ID: 720-36912-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Benzo[b]fluoranthene	52		25		ug/Kg	5	8270C SIM	Total/NA
Chrysene	27		25		ug/Kg	5	8270C SIM	Total/NA
Fluoranthene	34		25		ug/Kg	5	8270C SIM	Total/NA
Phenanthrene	37		25		ug/Kg	5	8270C SIM	Total/NA
Pyrene	45		25		ug/Kg	5	8270C SIM	Total/NA

Client Sample ID: SB-13-02-AUG1111


Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Acenaphthene	440	99	ug/Kg	10	8270C SIM	Total/NA
Anthracene	270	99	ug/Kg	10	8270C SIM	Total/NA
Benzo[a]anthracene	850	99	ug/Kg	10	8270C SIM	Total/NA
Benzo[a]pyrene	750	99	ug/Kg	10	8270C SIM	Total/NA
Benzo[b]fluoranthene	1300	99	ug/Kg	10	8270C SIM	Total/NA
3enzo[g,h,i]perylene	300	99	ug/Kg	10	8270C SIM	Total/NA
Benzo[k]fluoranthene	480	99	ug/Kg	10	8270C SIM	Total/NA
Chrysene	970	99	ug/Kg	10	8270C SIM	Total/NA
Dibenz(a,h)anthracene	110	99	ug/Kg	10	8270C SIM	Total/NA
Fluoranthene	2200	99	ug/Kg	10	8270C SIM	Total/NA
Fluorene	200	99	ug/Kg	10	8270C SIM	Total/NA
ndeno[1,2,3-cd]pyrene	280	99	ug/Kg	10	8270C SIM	Total/NA
Phenanthrene	1700	99	ug/Kg	10	8270C SIM	Total/NA
Pyrene	2000	99	ug/Kg	10	8270C SIM	Total/NA

Client Sample ID: SB-13-08-AUG1111

MDL Unit Result Qualifier RL Analyte Dil Fac D Method Prep Type 8270C SIM Acenaphthylene 10 5.0 ug/Kg 1 Total/NA Anthracene 5.3 5.0 8270C SIM Total/NA ug/Kg 1 Benzo[a]anthracene 43 5.0 ug/Kg 1 8270C SIM Total/NA Benzo[a]pyrene 61 5.0 ug/Kg 1 8270C SIM Total/NA Benzo[b]fluoranthene 97 5.0 ug/Kg 1 8270C SIM Total/NA Benzo[g,h,i]perylene 37 5.0 ug/Kg 8270C SIM Total/NA 1 Benzo[k]fluoranthene 36 5.0 1 8270C SIM Total/NA ug/Kg Chrysene 55 ug/Kg 8270C SIM Total/NA 5.0 1 13 8270C SIM Dibenz(a,h)anthracene 5.0 ug/Kg Total/NA 1 Fluoranthene 96 5.0 ug/Kg 1 8270C SIM Total/NA 20 8270C SIM Total/NA Fluorene 5.0 ug/Kg 1 Indeno[1,2,3-cd]pyrene 34 5.0 ug/Kg 1 8270C SIM Total/NA Phenanthrene 29 5.0 ug/Kg 1 8270C SIM Total/NA Pyrene 99 5.0 ug/Kg 1 8270C SIM Total/NA

Client Sample ID: SB-13A-02-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	550		49		ug/Kg	5	_	8270C SIM	Total/NA
Anthracene	170		49		ug/Kg	5		8270C SIM	Total/NA
Benzo[a]anthracene	510		49		ug/Kg	5		8270C SIM	Total/NA
Benzo[a]pyrene	450		49		ug/Kg	5		8270C SIM	Total/NA
Benzo[b]fluoranthene	870		49		ug/Kg	5		8270C SIM	Total/NA
Benzo[g,h,i]perylene	160		49		ug/Kg	5		8270C SIM	Total/NA
Benzo[k]fluoranthene	260		49		ug/Kg	5		8270C SIM	Total/NA
Chrysene	620		49		ug/Kg	5		8270C SIM	Total/NA
Dibenz(a,h)anthracene	63		49		ug/Kg	5		8270C SIM	Total/NA

Lab Sample ID: 720-36912-4

Lab Sample ID: 720-36912-5

Lab Sample ID: 720-36912-6

Lab Sample ID: 720-36912-7

Lab Sample ID: 720-36912-8

5

Client Sample ID: SB-13A-02-AUG1111 (Continued)

Analyte Fluoranthene	Result Qualifier 1100	RL 49	MDL Unit	<u>Dil Fac</u> <u>D</u> 5	Method 8270C SIM	Prep Type Total/NA
Fluorene	280	49	ug/Kg	5	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	140	49	ug/Kg	5	8270C SIM	Total/NA
Phenanthrene	970	49	ug/Kg	5	8270C SIM	Total/NA
Pyrene	1200	49	ug/Kg	5	8270C SIM	Total/NA

Client Sample ID: SB-01-02-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzo[b]fluoranthene	32		25		ug/Kg	5	8270C SIM	Total/NA

Client Sample ID: SB-03-02-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	14		9.9		ug/Kg	2		8270C SIM	Total/NA
Benzo[g,h,i]perylene	13		9.9		ug/Kg	2		8270C SIM	Total/NA
Chrysene	12		9.9		ug/Kg	2		8270C SIM	Total/NA

Client Sample ID: SB-01-08--AUG1111

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Acenaphthene	23	10	ug/Kg	2	8270C SIM	Total/NA
Acenaphthylene	47	10	ug/Kg	2	8270C SIM	Total/NA
Benzo[b]fluoranthene	15	10	ug/Kg	2	8270C SIM	Total/NA
Fluoranthene	15	10	ug/Kg	2	8270C SIM	Total/NA
Fluorene	160	10	ug/Kg	2	8270C SIM	Total/NA
Naphthalene	12	10	ug/Kg	2	8270C SIM	Total/NA
Phenanthrene	240	10	ug/Kg	2	8270C SIM	Total/NA
Pyrene	19	10	ug/Kg	2	8270C SIM	Total/NA

Client Sample ID: SB-01-08-DUP-AUG1111

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Acenaphthene	20	5.0	ug/Kg	1	8270C SIM	Total/NA
Acenaphthylene	16	5.0	ug/Kg	1	8270C SIM	Total/NA
Anthracene	14	5.0	ug/Kg	1	8270C SIM	Total/NA
Benzo[a]anthracene	11	5.0	ug/Kg	1	8270C SIM	Total/NA
Benzo[a]pyrene	11	5.0	ug/Kg	1	8270C SIM	Total/NA
Benzo[b]fluoranthene	26	5.0	ug/Kg	1	8270C SIM	Total/NA
Benzo[g,h,i]perylene	6.7	5.0	ug/Kg	1	8270C SIM	Total/NA
Benzo[k]fluoranthene	7.8	5.0	ug/Kg	1	8270C SIM	Total/NA
Chrysene	16	5.0	ug/Kg	1	8270C SIM	Total/NA
Fluoranthene	22	5.0	ug/Kg	1	8270C SIM	Total/NA
Fluorene	57	5.0	ug/Kg	1	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	5.2	5.0	ug/Kg	1	8270C SIM	Total/NA
Naphthalene	35	5.0	ug/Kg	1	8270C SIM	Total/NA
Phenanthrene	98	5.0	ug/Kg	1	8270C SIM	Total/NA
Pyrene	30	5.0	ug/Kg	1	8270C SIM	Total/NA

Client Sample ID: SB-03-08-AUG1111

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Benzo[b]fluoranthene	73	50	ug/Kg	5	8270C SIM	Total/NA
Benzo[g,h,i]perylene	52	50	ug/Kg	5	8270C SIM	Total/NA

TestAmerica San Francisco 08/19/2011

Lab Sample ID: 720-36912-9

Detection Summary

Client Sample ID: SB-03-08-AUG1111 (Continued) Lab Sample ID: 720-36912-9 MDL Unit RL Analyte Result Qualifier Dil Fac D Method Prep Type Phenanthrene 50 5 8270C SIM Total/NA 56 ug/Kg 50 50 5 8270C SIM Total/NA Pyrene ug/Kg Client Sample ID: SB-12-02-AUG1111 Lab Sample ID: 720-36912-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Chrysene	59		49		ug/Kg	5	_	8270C SIM	Total/NA	

Client Sample ID: SB-12-08-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Benzo[a]anthracene	66		50		ug/Kg	5	8270C SIM	Total/NA
Benzo[a]pyrene	80		50		ug/Kg	5	8270C SIM	Total/NA
Benzo[b]fluoranthene	99		50		ug/Kg	5	8270C SIM	Total/NA
Benzo[g,h,i]perylene	62		50		ug/Kg	5	8270C SIM	Total/NA
Chrysene	65		50		ug/Kg	5	8270C SIM	Total/NA
Fluoranthene	120		50		ug/Kg	5	8270C SIM	Total/NA
Phenanthrene	93		50		ug/Kg	5	8270C SIM	Total/NA
Pyrene	160		50		ug/Kg	5	8270C SIM	Total/NA

Lab Sample ID: 720-36912-11

5

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

Limits 33 - 120

35 - 146

Result Qualifier

ND

ND

ND

ND

ND

52

ND

ND

27

ND

34

ND

ND

ND

37

45

65

95

Qualifier

% Recovery

MDL Unit

ug/Kg

D

Prepared

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-05-08-AUG1111

Date Collected: 08/11/11 15:00

Date Received: 08/12/11 13:00

Analyte

Acenaphthene

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Benzo[b]fluoranthene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

Fluoranthene

Naphthalene

Phenanthrene

2-Fluorobiphenyl

Terphenyl-d14

Lab Sample ID: 720-36912-1

Analyzed

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

08/16/11 21:59

Matrix: Solid

Dil Fac

5

5

5

5

5

5

5

5

5

5

5

5 6

Prepared	Analyzed	Dil Fac
08/16/11 09:57	08/16/11 21:59	5
08/16/11 09:57	08/16/11 21:59	5
08/16/11 09:57	08/16/11 21:59	5
08/16/11 09:57	08/16/11 21:59	5
08/16/11 09:57	08/16/11 21:59	5

Prepared		Analyzed	Dil F
	08/16/11 09:57	08/16/11 21:59	
	08/16/11 09:57	08/16/11 21:59	

Client Sample ID: SB-13-02-AUG1111 Date Collected: 08/11/11 15:50 Date Received: 08/12/11 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	440		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Acenaphthylene	ND		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Anthracene	270		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Benzo[a]anthracene	850		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Benzo[a]pyrene	750		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Benzo[b]fluoranthene	1300		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Benzo[g,h,i]perylene	300		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Benzo[k]fluoranthene	480		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Chrysene	970		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Dibenz(a,h)anthracene	110		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Fluoranthene	2200		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Fluorene	200		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Indeno[1,2,3-cd]pyrene	280		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Naphthalene	ND		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Phenanthrene	1700		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Pyrene	2000		99		ug/Kg		08/16/11 09:57	08/16/11 22:23	10
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		33 - 120				08/16/11 09:57	08/16/11 22:23	10
Terphenyl-d14	88		35 - 146				08/16/11 09:57	08/16/11 22:23	10

5 5

Lab Sample ID: 720-36912-2

Matrix: Solid

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

Limits 33 - 120

35 - 146

Result Qualifier

ND

10

5.3

43

61

97

37

36

55

13

96

20

34

ND

29

99

% Recovery Qualifier

79

117

MDL Unit

ug/Kg

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-13-08-AUG1111

Date Collected: 08/11/11 16:10

Date Received: 08/12/11 13:00

Analyte

Acenaphthene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

Naphthalene

Phenanthrene

2-Fluorobiphenyl

Terphenyl-d14

Fluoranthene

Acenaphthylene

Benzo[a]pyrene Benzo[b]fluoranthene

Benzo[a]anthracene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Lab Sample ID: 720-36912-3

Analyzed

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

08/16/11 22:46

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

6 7 8 9 10 11

Analyzed	Dil Fac
08/16/11 22:46	1
08/16/11 22:46	1
08/16/11 22:46	1

riepaieu	Analyzeu	DIT
08/16/11 09:57	08/16/11 22:46	
08/16/11 09:57	08/16/11 22:46	

Lab Sample ID: 720-36912-4 Matrix: Solid

Date Collected: 08/11/11 16:20 Date Received: 08/12/11 13:00

Client Sample ID: SB-13A-02-AUG1111

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	550		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Acenaphthylene	ND		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Anthracene	170		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Benzo[a]anthracene	510		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Benzo[a]pyrene	450		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Benzo[b]fluoranthene	870		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Benzo[g,h,i]perylene	160		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Benzo[k]fluoranthene	260		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Chrysene	620		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Dibenz(a,h)anthracene	63		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Fluoranthene	1100		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Fluorene	280		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Indeno[1,2,3-cd]pyrene	140		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Naphthalene	ND		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Phenanthrene	970		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Pyrene	1200		49		ug/Kg		08/16/11 09:57	08/16/11 23:09	5
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72		33 - 120				08/16/11 09:57	08/16/11 23:09	5
Terphenyl-d14	89		35 - 146				08/16/11 09:57	08/16/11 23:09	5

Prepared

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

D

00//0/// 00 57	00/10/1
Prepared	Analy
08/16/11 09:57	08/16/11
08/16/11 09:57	08/16/11

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

Limits

33 - 120

35 - 146

Result Qualifier

ND

ND

ND

ND

ND

32

ND

76

100

Qualifier

% Recovery

MDL Unit

ug/Kg

D

Prepared

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-01-02-AUG1111

Date Collected: 08/11/11 16:55

Date Received: 08/12/11 13:00

Analyte

Acenaphthene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

2-Fluorobiphenyl

Terphenyl-d14

Fluoranthene

Naphthalene

Phenanthrene

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Lab Sample ID: 720-36912-5

Analyzed

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

08/16/11 23:33

Matrix: Solid

Dil Fac

5

5

5

5

5

5

5

5

5

6

Analyzod	Dil Eac
08/16/11 23:33	5
08/16/11 23:33	5
08/16/11 23:33	5
08/16/11 23:33	5
08/16/11 23:33	5
08/16/11 23:33	5
08/16/11 23:33	5

Prepared	Analyzed	Dil Fac
08/16/11 09:57	08/16/11 23:33	5
08/16/11 09:57	08/16/11 23:33	5

Client Sample ID: SB-03-02-AUG1111 Date Collected: 08/11/11 17:25 Date Received: 08/12/11 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Acenaphthylene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Anthracene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Benzo[a]anthracene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Benzo[a]pyrene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Benzo[b]fluoranthene	14		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Benzo[g,h,i]perylene	13		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Benzo[k]fluoranthene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Chrysene	12		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Dibenz(a,h)anthracene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Fluoranthene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Fluorene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Indeno[1,2,3-cd]pyrene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Naphthalene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Phenanthrene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Pyrene	ND		9.9		ug/Kg		08/16/11 09:57	08/17/11 21:52	2
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67		33 - 120				08/16/11 09:57	08/17/11 21:52	2
Terphenyl-d14	86		35 - 146				08/16/11 09:57	08/17/11 21:52	2

Lab Sample ID: 720-36912-6

Matrix: Solid

TestAmerica San Franc 08/19/201

10

10

10

10

10

10

10

10

10

10

Method: 8270C SIM - PAHs by GCMS (SIM)

Client Sample ID: SB-01-08--AUG1111

Date Collected: 08/11/11 17:20

Date Received: 08/12/11 13:00

Analyte

Acenaphthene

Anthracene

Chrysene

Fluoranthene Fluorene

Acenaphthylene

Benzo[a]anthracene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene Naphthalene Phenanthrene Pyrene

Benzo[b]fluoranthene

Benzo[a]pyrene

Lab Sample ID: 720-36912-7

Analyzed

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

08/17/11 00:20

Matrix: Solid

Dil Fac

2

2

2

2

2

2

2

2

2

2

2

6 7 8 9 10 11

77		33 - 120		08/16/11 09:57	08/17/11 00:20	2	
% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
19		10	ug/Kg	08/16/11 09:57	08/17/11 00:20	2	
240		10	ug/Kg	08/16/11 09:57	08/17/11 00:20	2	
12		10	ug/Kg	08/16/11 09:57	08/17/11 00:20	2	
ND		10	ug/Kg	08/16/11 09:57	08/17/11 00:20	2	
160		10	ug/Kg	08/16/11 09:57	08/17/11 00:20	2	
15		10	ug/Kg	08/16/11 09:57	08/17/11 00:20	2	

MDL Unit

ug/Kg

D

Prepared

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

08/16/11 09:57

Surrogate	% Recovery Qualit	ïer Limits	Prepared
2-Fluorobiphenyl	77	33 - 120	08/16/11 09:57
Terphenyl-d14	106	35 - 146	08/16/11 09:57

Result Qualifier

23

47

ND

ND

ND

15

ND

ND

ND

ND

Client Sample ID: SB-01-08-DUP-AUG1111 Date Collected: 08/11/11 17:20 Date Received: 08/12/11 13:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	20		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Acenaphthylene	16		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Anthracene	14		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Benzo[a]anthracene	11		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Benzo[a]pyrene	11		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Benzo[b]fluoranthene	26		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Benzo[g,h,i]perylene	6.7		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Benzo[k]fluoranthene	7.8		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Chrysene	16		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Fluoranthene	22		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Fluorene	57		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Indeno[1,2,3-cd]pyrene	5.2		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Naphthalene	35		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Phenanthrene	98		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Pyrene	30		5.0		ug/Kg		08/16/11 09:57	08/17/11 00:43	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		33 - 120				08/16/11 09:57	08/17/11 00:43	1
Terphenyl-d14	90		35 - 146				08/16/11 09:57	08/17/11 00:43	1

Lab Sample ID: 720-36912-8

08/17/11 00:20

Matrix: Solid

Lab Sample ID: 720-36912-9

Matrix: Solid

6

Lab Sample ID: 720-36912-10 **Matrix: Solid**

Client Sample ID: SB-03-08-AUG1111 Date Collected: 08/11/11 17:30 Date Received: 08/12/11 13:00

Method: 8270C SIM - PAHs by GCMS (SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Acenaphthylene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Anthracene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Benzo[a]anthracene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Benzo[a]pyrene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Benzo[b]fluoranthene	73		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Benzo[g,h,i]perylene	52		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Benzo[k]fluoranthene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Chrysene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Dibenz(a,h)anthracene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Fluoranthene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Fluorene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Indeno[1,2,3-cd]pyrene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Naphthalene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Phenanthrene	56		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Pyrene	50		50		ug/Kg		08/16/11 09:57	08/17/11 22:15	5
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		33 - 120				08/16/11 09:57	08/17/11 22:15	5
Terphenyl-d14	80		35 - 146				08/16/11 09:57	08/17/11 22:15	5

Client Sample ID: SB-12-02-AUG1111 Date Collected: 08/11/11 17:50 Date Received: 08/12/11 13:00

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Acenaphthylene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Anthracene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Benzo[a]anthracene	ND	49	u	ig/Kg		08/16/11 09:57	08/17/11 22:38	5
Benzo[a]pyrene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Benzo[b]fluoranthene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Benzo[g,h,i]perylene	ND	49	u	ig/Kg		08/16/11 09:57	08/17/11 22:38	5
Benzo[k]fluoranthene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Chrysene	59	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Dibenz(a,h)anthracene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Fluoranthene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Fluorene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Indeno[1,2,3-cd]pyrene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Naphthalene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Phenanthrene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Pyrene	ND	49	u	ıg/Kg		08/16/11 09:57	08/17/11 22:38	5
Surrogate % F	Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67	33 - 120				08/16/11 09:57	08/17/11 22:38	5
Terphenyl-d14	83	35 - 146				08/16/11 09:57	08/17/11 22:38	5

Lab Sample ID: 720-36912-11 Matrix: Solid

Date Collected: 08/11/11 18:10 Date Received: 08/12/11 13:00

Client Sample ID: SB-12-08-AUG1111

Method: 8270C SIM - PAHs by GCMS (SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	6
Acenaphthene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Acenaphthylene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Anthracene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Benzo[a]anthracene	66		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	6
Benzo[a]pyrene	80		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	Č
Benzo[b]fluoranthene	99		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Benzo[g,h,i]perylene	62		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Benzo[k]fluoranthene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Chrysene	65		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Dibenz(a,h)anthracene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Fluoranthene	120		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Fluorene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Indeno[1,2,3-cd]pyrene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Naphthalene	ND		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Phenanthrene	93		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Pyrene	160		50		ug/Kg		08/16/11 09:57	08/17/11 23:01	5	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	66		33 - 120				08/16/11 09:57	08/17/11 23:01	5	
Terphenyl-d14	83		35 - 146				08/16/11 09:57	08/17/11 23:01	5	

Client Sample ID: Method Blank Prep Type: Total/NA

Method: 8270C SIM - PAHs by GCMS (SIM)

Lab Sample ID: MB 720-97349/1-A Matrix: Solid

								Theb Type. I	
Analysis Batch: 97365								Prep Batch	n: 97349
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Acenaphthylene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[a]anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[a]pyrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Chrysene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Fluoranthene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Fluorene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Naphthalene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Phenanthrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
Pyrene	ND		5.0		ug/Kg		08/16/11 09:57	08/16/11 17:18	1
	МВ	МВ							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73		33 - 120				08/16/11 09:57	08/16/11 17:18	1

35 _ 146

Lab Sample ID: LCS 720-97349/2-A Matrix: Solid -----

Α alvaia P

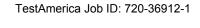
Terphenyl-d14

08/16/11 09:57 08/16/11 17:18 08/16/11 09:57 08/16/11 17:18 1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 97365							Prep Batch: 97349
	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Acenaphthene	333	261		ug/Kg		78	49 - 120
Acenaphthylene	333	261		ug/Kg		78	52 ₋ 120
Anthracene	333	273		ug/Kg		82	52 - 120
Benzo[a]anthracene	333	254		ug/Kg		76	52 ₋ 120
Benzo[a]pyrene	333	281		ug/Kg		85	54 - 120
Benzo[b]fluoranthene	333	294		ug/Kg		88	51 ₋ 120
Benzo[g,h,i]perylene	333	283		ug/Kg		85	48 - 120
Benzo[k]fluoranthene	333	241		ug/Kg		73	56 - 120
Chrysene	333	180		ug/Kg		54	40 - 120
Dibenz(a,h)anthracene	333	311		ug/Kg		94	50 - 120
Fluoranthene	333	274		ug/Kg		82	57 ₋ 120
Fluorene	333	256		ug/Kg		77	52 ₋ 120
Indeno[1,2,3-cd]pyrene	333	300		ug/Kg		90	48 - 120
Naphthalene	333	247		ug/Kg		74	46 - 120
Phenanthrene	333	285		ug/Kg		86	48 - 120
Pyrene	333	282		ug/Kg		85	53 - 120
L	CS LCS						

	203	203	
Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	70		33 - 120
Terphenyl-d14	89		35 - 146


104

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Lab Sample ID: LCSD 720-97349/3-A

Lab Sample ID: LCSD 720-97349/3-A				Client	t Samp	ole ID: La	ab Control	Sampl	e Dup
Matrix: Solid							Prep Ty	vpe: Tot	tal/NA
Analysis Batch: 97365							Prep	Batch:	97349
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Acenaphthene	332	266		ug/Kg		80	49 - 120	2	20
Acenaphthylene	332	267		ug/Kg		80	52 _ 120	2	20
Anthracene	332	288		ug/Kg		87	52 ₋ 120	6	20
Benzo[a]anthracene	332	264		ug/Kg		79	52 _ 120	4	20
Benzo[a]pyrene	332	296		ug/Kg		89	54 - 120	5	20
Benzo[b]fluoranthene	332	293		ug/Kg		88	51 ₋ 120	0	20
Benzo[g,h,i]perylene	332	295		ug/Kg		89	48 - 120	4	20
Benzo[k]fluoranthene	332	271		ug/Kg		82	56 ₋ 120	12	20
Chrysene	332	183		ug/Kg		55	40 _ 120	2	20
Dibenz(a,h)anthracene	332	325		ug/Kg		98	50 - 120	4	20
Fluoranthene	332	286		ug/Kg		86	57 _ 120	4	20
Fluorene	332	259		ug/Kg		78	52 _ 120	1	20
Indeno[1,2,3-cd]pyrene	332	313		ug/Kg		94	48 - 120	4	20
Naphthalene	332	255		ug/Kg		77	46 - 120	3	20
Phenanthrene	332	288		ug/Kg		87	48 - 120	1	20
Pyrene	332	286		ug/Kg		86	53 _ 120	1	20
LCSD LCS	D								

Surrogate	% Recovery	Qualifier	Limits
2-Fluorobiphenyl	75		33 - 120
Terphenyl-d14	91		35 - 146

5 6 7 8 9 10 11 12 13 14

GC/MS Semi VOA

Prep Batch: 97349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-97349/1-A	Method Blank	Total/NA	Solid	3546	
LCS 720-97349/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-97349/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
720-36912-1	SB-05-08-AUG1111	Total/NA	Solid	3546	
720-36912-2	SB-13-02-AUG1111	Total/NA	Solid	3546	
720-36912-3	SB-13-08-AUG1111	Total/NA	Solid	3546	
720-36912-4	SB-13A-02-AUG1111	Total/NA	Solid	3546	
720-36912-5	SB-01-02-AUG1111	Total/NA	Solid	3546	
720-36912-6	SB-03-02-AUG1111	Total/NA	Solid	3546	
720-36912-7	SB-01-08AUG1111	Total/NA	Solid	3546	
720-36912-8	SB-01-08-DUP-AUG1111	Total/NA	Solid	3546	
720-36912-9	SB-03-08-AUG1111	Total/NA	Solid	3546	
720-36912-10	SB-12-02-AUG1111	Total/NA	Solid	3546	
720-36912-11	SB-12-08-AUG1111	Total/NA	Solid	3546	

Analysis Batch: 97365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-97349/2-A	Lab Control Sample	Total/NA	Solid	8270C SIM	97349
LCSD 720-97349/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C SIM	97349
MB 720-97349/1-A	Method Blank	Total/NA	Solid	8270C SIM	97349
720-36912-1	SB-05-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-2	SB-13-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-3	SB-13-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-4	SB-13A-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-5	SB-01-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-7	SB-01-08AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-8	SB-01-08-DUP-AUG1111	Total/NA	Solid	8270C SIM	97349

Analysis Batch: 97431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-36912-6	SB-03-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-9	SB-03-08-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-10	SB-12-02-AUG1111	Total/NA	Solid	8270C SIM	97349
720-36912-11	SB-12-08-AUG1111	Total/NA	Solid	8270C SIM	97349

Dilution

Factor

Dilution

Factor

10

5

Run

Run

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Date Collected: 08/11/11 15:00 Date Received: 08/12/11 13:00

Date Collected: 08/11/11 15:50 Date Received: 08/12/11 13:00

Client Sample ID: SB-05-08-AUG1111

Batch

Туре

Prep

Client Sample ID: SB-13-02-AUG1111

Batch

Туре

Prep

Analysis

Analysis

Batch

3546

Batch

3546

Method

8270C SIM

Method

8270C SIM

Lab Sample ID

Analyst

Lab Sample ID

Analyst

Lab Sample ID

MP

ML

MP

ML

ID. 720-36912-1	2
: 720-36912-1	3
Matrix: Solid	4
Lab	5
TAL SF TAL SF	6
: 720-36912-2	7
Matrix: Solid	8
	9
Lab TAL SF TAL SF	10
	11
: 720-36912-3 Matrix: Solid	12

Client Sample ID: SB-13-08-AUG1111 Date Collected: 08/11/11 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		1	97365	08/16/11 22:46	ML	TAL SF

Client Sample ID: SB-13A-02-AUG1111 Lab Sample ID: 720-36912-4 Date Collected: 08/11/11 16:20 Matrix: Solid Date Received: 08/12/11 13:00 Г

Client Sample ID: SB-01-02-AUG1111

Date Collected: 08/11/11 16:55 Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97365	08/16/11 23:33	ML	TAL SF

Client Sample ID: SB-03-02-AUG1111

Date Collected: 08/11/11 17:25 Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		2	97431	08/17/11 21:52	ML	TAL SF

Batch

97349

97365

Batch

97349

97365

Number

Number

Prepared

Or Analyzed

08/16/11 09:57

08/16/11 21:59

Prepared

Or Analyzed

08/16/11 09:57

08/16/11 22:23

Date Received: 08/12/11 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97365	08/16/11 23:09	ML	TAL SF

Lab Sample ID: 720-36912-6 Matrix: Solid

Matrix: Solid

Lab Sample ID: 720-36912-5

Dilution

Factor

Dilution

Factor

1

2

Run

Run

Date Collected: 08/11/11 17:20

Date Received: 08/12/11 13:00

Date Collected: 08/11/11 17:20

Date Received: 08/12/11 13:00

Date Collected: 08/11/11 17:30

Date Received: 08/12/11 13:00

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA Total/NA

Client Sample ID: SB-01-08--AUG1111

Batch

Туре

Prep

Analysis

Batch

Туре

Prep

Client Sample ID: SB-03-08-AUG1111

Analysis

Client Sample ID: SB-01-08-DUP-AUG1111

Batch

3546

Batch

3546

Method

8270C SIM

Method

8270C SIM

Lab

TAL SF

TAL SF

TAL SF

TAL SF

Matrix: Solid

Analyst

MP

ML

MP

ML

Prepared

Or Analyzed

08/16/11 09:57

08/17/11 00:20

Prepared

Or Analyzed

08/16/11 09:57

08/17/11 00:43

Batch

97349

97365

Batch

97349

97365

Number

Number

Lab Sample ID: 720-36912-7	
Matrix: Solid	
Analyst Lab	5

Matrix: Solid

Lab Sample ID: 720-36912-9 Matrix: Solid

Lab Sample ID: 720-36912-10

Lab Sample ID: 720-36912-8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97431	08/17/11 22:15	ML	TAL SF

Client Sample ID: SB-12-02-AUG1111

Date Collected: 08/11/11 17:50

Date	Received:	08/12/11	13:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97431	08/17/11 22:38	ML	TAL SF

Client Sample ID: SB-12-08-AUG1111 Date Collected: 08/11/11 18:10

Date Received: 08/12/11 13:00

Lab Sample ID:	720-36912-11
	Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3546			97349	08/16/11 09:57	MP	TAL SF
Total/NA	Analysis	8270C SIM		5	97431	08/17/11 23:01	ML	TAL SF

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica San Francisco	California	State Program	9	2496

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland

Method	Method Description	Protocol	Laboratory
8270C SIM	PAHs by GCMS (SIM)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: ARCADIS U.S. Inc Project/Site: UPS-Oakland TestAmerica Job ID: 720-36912-1

	5
	8
	9
1	2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-36912-1	SB-05-08-AUG1111	Solid	08/11/11 15:00	08/12/11 13:00
720-36912-2	SB-13-02-AUG1111	Solid	08/11/11 15:50	08/12/11 13:00
720-36912-3	SB-13-08-AUG1111	Solid	08/11/11 16:10	08/12/11 13:00
720-36912-4	SB-13A-02-AUG1111	Solid	08/11/11 16:20	08/12/11 13:00
720-36912-5	SB-01-02-AUG1111	Solid	08/11/11 16:55	08/12/11 13:00
720-36912-6	SB-03-02-AUG1111	Solid	08/11/11 17:25	08/12/11 13:00
720-36912-7	SB-01-08AUG1111	Solid	08/11/11 17:20	08/12/11 13:00
720-36912-8	SB-01-08-DUP-AUG1111	Solid	08/11/11 17:20	08/12/11 13:00
720-36912-9	SB-03-08-AUG1111	Solid	08/11/11 17:30	08/12/11 13:00
720-36912-10	SB-12-02-AUG1111	Solid	08/11/11 17:50	08/12/11 13:00
720-36912-11	SB-12-08-AUG1111	Solid	08/11/11 18:10	08/12/11 13:00

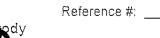
Francisco Chain of Custody 56 1e

133074 Reference #:

Date 9/11/11 Page 1

_of	2-
_	

Report To		Analysis Request	08/
Alla: Jennifer Halcomb-LeBeau	Gel Gel Gel Gel Gel Gel Gel Gol Gol Gol Gol Gol Gol Gol Gol Gol Go		
CompanyARCADIS Legnesaw GA Address: 1000 COBO PIACE BILA, BILG 570-A, 36199		8310 8310 1 RCF	
Address: 1000 0060 Place Bird, Birds 500-A, 30199	15M* [] Si blor Oil [] Oil as [] BHEX [] Di OA, EDBE [] Di OA, EDBE [] Di OA, EDBE [] Di OA [] Di 624 [] Di 625 [] D	D 3 3 29 2 30 10 10 10 10 10 10 10 10 10 10 10 10 10	TTANKING TO A D POA
Phone: 770-428-9009 Email: jenni fer lebeaue	8021 01 02 00 00 00 00 00 00 00 00 00 00 00 00	8270 0 0//471) 10 LUFT 10 LUFT 11 LUFT 11 LUFT 11 LUFT 11 LUFT 11 LUFT 11 LUFT	
Phone: 770-429-9009 Email: jenni fer. 1ebeau @ Bill To: Sampled By: aradis-suscem ARCADIS PIN below Kathryn Finch		PNAS by D 8270 D 8310 CAM17 Metals (EPA 6010/7470/7471) Metals: D Lead D LUFT D RCRA D Other. Low Level Metals by EPA 200.86020 (ICP-MS): D WE.T (STLC) D WE.T (STLC) D HEXAValent Chromium D PH (24h hold time for H ₂ O)	
Alln: Jenni fer left au Phone: 703.303.7158	1 EPA 2568: C 22608: C 22608: C 22608: C 22508: C 2288: C 2482 2482 2482 2482 2482 2482 2585 1664 1666 1666	<pre>: by : by : by : contool : cont</pre>	Inther of
Allin: Jenni fer left au Phone: 703.303.7158	TEPH EPA TEPH EPA EPA 82608: EPA 82608: (HVOCs) E (HVOCs) E (HVOCs) E (HVOCs) E (EPA 820 Colland Gre (EPA 1664 (EPA 1664 Festicides Presticides	PNAS by CI 8270 CI 8310 CAM17 Metals (EPA 6010/7470/7471) Metals: CLead CI LUFT CI RCRA Metals: CI Lead CI LUFT CI RCRA Cov Level Metals by EPA 200.86020 (ICP-MS):	Anions:
SB: 05-08-AUGILI \$/11/11 1500 S NOP			
5B-13-07-Aug 1111 8/11/11 555 5 Nove 5B-13-08-Aug 1111 8/11/11 555 5 Nove			
38-13-08-Aug 1111 8/11/11 655 Nore			
5B-13A-02-AUGIII 8/11/11 1620 5 None.			4
\$17-13 1-08- Bugilli B/n/11 1-720 S None	+		of 2
5B-13A-08-DURAUSIN Ship 1720 5 Noro			8
5B-01-02-Avg1111 8/11/11 1655 5 None			Page 22 of 24
58-03-02-Augil 8/11/1 1725 5 Non			<u> </u>
98-01-08-Aug111 1720			
SB-01-08-DUR Aug 11/1 4 1720 4 1			
Project (n/o Sample Recept	1) Relinquished by:	2) Relinguished by: 13,00	3) Relinquished by:
Project Name: # of Containers: UPS OAK and Head Space:	Signature Time	Signature	Signature Time
Project#: 60039399.0010 Head Space: N/A	Printed Name Date	Signature Scrace NAYON 8-12-11	
PO#: Temp:	Printed Name Date	Printed Name Date	Printed Name Dale
Credit Card#: Conforms to record:	Company	Company	
			Company
$ \begin{vmatrix} 1 & 5 & 3 & 2 & 1 \\ T & Day & Day & Day & Day \end{vmatrix} Day $ Other:	1) Received by: Lun 13:00	$\frac{z}{2}$ Received by: 1300	3) Received by:
Report: D Routine D Level 3 D Level 4 D EDD D State Tank Fund EDF	Signature Time Gerald MAylor SU-1	Signature	Signature Time
Special Instructions / Comments:	Printed Name Date	Printed Name Date	Printed Name Date
Temp. 4.0°C	T.A.	TASP	Franco Name Dale
See Terms and Conditions on reverse	Company	Company	Company
See firms and conditions on reverse "TestAmerices SF reports 8015M from C_1 - C_{14} (industry norm). Default for 8015B is C_{16} - C_{26}	•		001/00/00


13

TESTAMERIO 1220 Quarry I Phone: (92

NIGHTER STATES TO BE AND THE STATES OF ST

Contractor of the contract

THE LEADER IN ENVIRONMENTAL TESTING

Date 9/11/11 Page 2 of 2

2____

13307900

1200011100													An	allysis	Real	est									08/1																															
Atln: Jennifer Halu Company: ARCAOLS)Mp-1	•		SALV GA	D MTBE	ica Get) Ethanol	508	/0Cs)	t t	u ng	П 608 П 608	8310			Low Level Metals by EPA 200.8/6020		Ô	~	ా ద్ ద్రం					8862																															
Address 1000 CALL DIVICE RIND, BLACKSTORA 30145			4500-A 30144			1d. BULGISTON 30144				NO. BULLISTON 30144				Nd BULGESDA 30144				Wd. RIJGISDON 30144				IND BUDGESDON 30144				RIND BUDGESDON 30149				Kennesaw 67 Siva, Bidgesoo-A 30149				RIND, RIDGESDDA 30149				J BTEX CA, EDBC	21 by 82	SCMS (V 1 624	VIS P/	J Petrole J Total	EPA 8081 EPA 8082	0 8270 0 83	471)		oy EPA 20		omium ne for H ₂	Alkalinit TDS	— П NO ₂ П PO,					ainers
BILL TO: ARCADS PN below	Sampled By arcadis US. Com				Sampled By Arcadis US. Com			Phone: 770.478.9009 Email: jennifer. lebeau @ Bill To: ALGADS PN 661600 Attn: Jennifer lobeau Phone: 763.303.71.			05.00m	1 - 0 82608 1 - 0 87EX	TEPH EPA 8015M* D Silica Get Diesel D Motor Oil D Other	EPA 82608: CI Gas CI BTEX CI 5 Oxygenates CI DCA, EDBCI Ethanol	(HVOCs) EPA 8021 by 8260B	Volatife Organics GC/MS (VOCs)	Semivolatiles GC/MS PA W	Oil and Grease D Petroleum (EPA 1664) D Total	оо СО СО	1	CAM17 Metals (EPA 6010/7470/7471)	Metais: CI Lead CI LUFT CI RCRA	el Metals I	E.T (STLC P	Hexavalent Chromium pH (24h hold time for H ₂ O)	C Spec. Cond. C Alkalinity D TSS D TDS						Number of Containers																								
Alln: Jennifer lateau	Phone:	703.	30 ²	5. 7158 Pereita	TPH EPA	TEPH EF CI Diesel	EPA 8260	(HVOCs	Volatile C	Semivola	Oil and G (EPA 166	Pesticides PCBs	PNAs by	CAM17 N (EPA 601	Metafs: C	Low Leve (ICP-MS)		D Hexav D PH (2	C Spec.	Anions :					Number																															
58-03-08-Aug11/1	0/11/11	1730	S	Nove						X																																														
58-03-08-Ag1111 58-12-02-Aug1111 58-12-08-Aug1111		1750	ł	4						メン										· · · ·																																				
														•					-						of 24																															
																									23 of 24																															
	<u> .</u> }								-													-			Page																															
	5		ļ												<u> </u>																																									
ୁ କାର୍ଯ୍ୟ ଅଭାସର ଆଡିକାର	Se	 MDE:	अञ्चलव			1) Rel	inquist	led by	:				2) R	elinguist	hed by:	<u> </u>			3)	Relinqu	Jished b	y:																																		
Project Name: # of Containers:						Signature Time						Signature Time					- Si	Signature Time				ime	-																																	
B00 29398.00	PO#: Temp:					Printed Name ARCADIS						Gerald Mayber 8-12-11 Printed Name Date					Pr	Printed Name					-																																	
Credit Card#: Conforms to record:						Company							Company					10	Company				·····	-																																
T 5 3 2 1 A Day Day Day Day Other:						1) Received by:						2) Received by: 1300					3) Received by:																																							
Report: D Rouline D Level 3 D Level 4 D EDD D State					ank	Signature Time						Signature Time					S	Signature T					_																																	
Special Instructions / Comments: Global ID					Georgial NAybn 8-12-01 Printed Name Date						Printed Name Date				P	rinted N	lame			Dale	-																																			
See Terms and Candifions on reverse	/					Company						Con	Company					Company																																						
*TsslAmerice SF reports 8015M from	Cg+Cgr (indus	iry norm), C	Jelauit fo	r 80158 is C ₁	y-C2t								-											Revino	100																															

13

TESTAMERICA Son Franciso 1220 Quarty Lone of Pleasan Phone: (921) (Paylo 9 ⊛ [

THE LEADER IN ENVIRONMENTAL TESTING

1233

08/19/2011

Client: ARCADIS U.S. Inc

Login Number: 36912 List Number: 1

Creator: Apostol, Anita

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 720-36912-1

List Source: TestAmerica San Francisco