RECEIVED

2:17 pm, Jan 14, 2008

Alameda County Environmental Health

January 14, 2008

Alameda County Environmental Health Services Mr. Jerry Wickham 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:Further Site Investigation and Remedial Action Report
461 McGraw Avenue, Livermore, California 94550
EIS Project # 717-3

Dear Mr. Wickham,

On behalf of Whitney Newland, Administrator of the Estate of the late Crandal Mackey, and Probate Court-authorized agent for Call Mac Transportation Company, Environmental Investigation Services Inc. (EIS) is submitting this report to document further site investigation and soil removal activities at 461 McGraw Avenue, Livermore, California (the site) for your approval. This report documents the following activities conducted on the site between October 29, 2007 and November 21, 2007:

- Excavation and disposal of arsenic-impacted building pad soils
- Excavation and disposal of DO3 area soils
- Decommissioning of a former water supply well,
- Groundwater monitoring well installation, development, sampling, and
- Soil gas sampling

The site is located northeast of the intersection of McGraw Avenue and Preston Road in Livermore, Alameda County, California. The nearest surface water is Arroyo Seco, located approximately $\frac{1}{2}$ mile south of the site. Surface water in Arroyo Seco flows to the northwest. The site location is shown on Figure 1. Figure 2 depicts the site plan, including various features of concern. The site is currently vacant, but was formerly used by Call Mac Transportation Company as truck and trailer storage yard.

BACKGROUND

In 1995, Remediation Risk Management, Inc. (RRM) removed a 12,000-gallon diesel underground storage tank (UST) from the northern portion of the site (Figures 2 and 3). According to RRM's October 17, 1995 report, *Underground and Above Ground Storage Tank Removal and Sampling Report, 461 McGraw Avenue, Livermore, California 94550*, there were no visible penetrating holes in the walls of the UST, nor was there any visible staining of the soil at the bottom of the excavation, twelve to fourteen feet below ground surface (bgs). However, the report states that

staining was noted around the pipe leading to the dispenser. The three soil samples collected from approximately 1 foot below the base of the excavation and the grab groundwater sample collected from the UST excavation contained no detectable total petroleum hydrocarbons as diesel (TPH-d), total petroleum hydrocarbons as oil (TPH-o), or benzene, toluene, ethylbenzene, xylenes (BTEX). A fourth soil sample collected from near the dispenser piping was found to contain 17,000 mg/kg TPH-d. The report states that the sample from near the dispenser piping "was collected from an area of obvious overspillage" (RRM, October 17, 1995). The report does not provide any additional information or any recommendations about the contaminated area. The excavation was reportedly backfilled with stockpiled soil from the excavation (reported to contain up to 100 mg/kg TPH-o) and with clean imported fill material.

In their report, RRM briefly describes removing a 5,000-gallon diesel aboveground storage tank (AST) from the southeast corner of the site and collecting two surface soil samples from beneath two other ASTs located in the southern portion of the site. There is little information provided about these activities. Recommendations provided in RRM's October 17, 1995, report included characterizing the contents of thirty-nine 55-gallon drums on the site, collecting additional surface samples from areas suspected to be contaminated by petroleum hydrocarbons, and removing the remaining ASTs from the site.

After at least two letters had been issued by the Alameda County Environmental Health Department (ACEH) regarding an order to clean up the diesel-stained area near the former UST piping, RRM issued *Workplan to Excavate Diesel Impacted Soil Adjacent to the Former Diesel Dispenser, 461 McGraw Avenue, Livermore, California 94550*, on December 21, 1995. RRM proposed to excavate the diesel-impacted soil in the vicinity of the dispenser island, with a maximum excavation volume of 75 cubic yards, and to collect five soil confirmation samples and one water sample, if groundwater were encountered. ACEH issued *Workplan Approval for 461 McGraw Ave, Livermore 94550* on December 27, 1995, approving RRM's proposed excavation in the vicinity of the dispenser island. However, the proposed work was not performed, possibly due to the mental incapacity of Crandall Mackey, the sole owner of Call Mac Transportation Company. Near this time Mr. Mackey was diagnosed with severe dementia and Alzheimer's disease. Mr. Mackey passed away in late 2003 and his Probate Estate was opened in 2005.

Other than a few letters and notices of violation from ACEH, EIS does not have documents regarding the site history between ACEH's December 27, 1995, workplan approval letter and a July 17, 2003, document from the Livermore-Pleasanton Fire Department (LPFD) describing a site inspection.

On July 17, 2003, Livermore-Pleasanton Fire Department (LPFD) conducted a hazardous materials inspection of the site, which is described in their *Hazardous Materials Inspection Report Narrative, Call Mac Transportation, 461 McGraw Ave., Livermore.* The LPFD document states that a large number of containers of hazardous materials and/or hazardous waste were observed onsite, both inside trailers and on the ground. Improper storage practices, security issues, and fire hazards were described at the site.

According to the Department of Toxic Substances Control's (DTSC) *Inspection Report, Call Mac Transportation, 461 McGraw Road, Livermore, California 94551* issued December 2, 2003, DTSC

conducted a site inspection on November 13, 2003, to take an inventory of hazardous waste onsite that would be used to select sampling points for a future site visit.

DTSC conducted their next site visit on November 20, 2003, during which they collected a total of twelve samples of suspected hazardous materials, hazardous wastes, and suspected release locations (i.e., stained soil). The sampling and sample results are described in DTSC's *Sampling Report, Call Mac Transportation, 461 McGraw Road, Livermore, California 94551* (January 6, 2004). Laboratory analyses of the samples showed that three of the twelve samples collected had characteristics that defined those substances as hazardous waste: two samples qualified as hazardous waste as corrosive materials because they had pHs greater than 12.5, and one sample qualified as hazardous waste both as a toxic material, with greater than 1,000 mg/kg lead, and as an ignitable material, with a flash point below 140 degrees Fahrenheit. Each of these three samples was collected from drums stored inside trailers. Soil samples collected in the vicinities of ASTs T-1 and T-2, and from some surface stained areas on the northern portion of the property contained high concentrations of petroleum hydrocarbons. Another soil sample collected from former AST location T-4 contained a high concentration of arsenic. These soils were determined not to be hazardous waste.

Remedy Environmental Services, LLC (Remedy) issued *Preliminary Site Assessment, Phase I* (*Modified*), on June 7, 2006, in preparation for the removal of the vehicles and the hazardous and non-hazardous materials onsite. According to this report, numerous types of hazardous materials and hazardous wastes were observed on the property during the site inspection, "but none in such condition that there is an eminent health or safety risk." Also, the report states that the ground was noted to be stained in many areas during the site inspection.

On April 2, 2007, Applied Remedial Technologies (ART) submitted *Work Plan to Remove the Three Remaining Storage Tanks, 461 McGraw Avenue, Livermore, California 94550* to LPFD, outlining procedures for decommissioning and disposing of the ASTs and their contents, and for sampling the soil beneath the ASTs. The DTSC's 2004 Sampling Report includes data from soil samples collected from underneath two of the ASTs; the data showed that the soil under the ASTs had been impacted, and that overexcavation would be required.

ART submitted, *Proposed Work Plan to Conduct Soil Removal and Confirmation Sampling of the Impacted Soils at the Former Diesel UST Dispenser Island, Below the Former Above Ground Storage Tanks, and at the Recent Diesel Spill Areas, 461 McGraw Avenue, Livermore, California, 94550, to ACEH on April 2, 2007.* In this workplan, ART describes plans to remove the concrete pad and former pump station and to excavate any contaminated soil they find underneath. ART also included a plan to excavate surface diesel and oil stains attributed to Golden State Metals, Inc.'s (Golden State) demolition of the vehicles stored onsite, and to collect a water sample from the well in the northeastern corner of the site.

In their April 10, 2007, plan check of ART's Work Plan to Remove the Three Remaining Storage Tanks, 461 McGraw Avenue, Livermore, California 94550, LPFD approved the workplan for the AST removals, contingent upon approval by ACEH's approval of Proposed Work Plan to Conduct Soil Removal and Confirmation Sampling of Impacted Soils at the former Diesel UST Dispenser Island, Below the Former Above Ground Storage Tanks, and at the recent Diesel Spill Areas, 461 McGraw Avenue, Livermore, CA 94550. The LPFD plan check specified that soil

samples must be collected within two working days of the AST removals, and that ACEH would be responsible for overseeing the soil sampling.

ACEH issued the letter, *Fuel Leak Case No. RO0000311 and Geotracker Global ID T0600102204*, *Call Mac Transportation, 461 McGraw Avenue, Livermore, CA 94550* on April 11, 2007, requesting revisions regarding the excavation and sampling in the vicinity of the former pump island, the AST excavations and sampling, the excavations and sampling of the surface stains from Golden State's demolition activities, and the water well sampling. In addition, ACEH requested that the workplan include collecting eight samples from the soil loading dock, eight samples from the former lead-acid battery storage area near the building pad, two samples from the former storage container location, and two samples from the soil building pad. Finally, ACEH requested six soil borings, with grab groundwater samples collected from each, and soil samples collected where relevant.

On May 18, 2007, EIS issued *Revised Workplan for Site Investigation and Remedial Action, 461 McGraw Avenue, Livermore, California 94550*, which included all of the revisions to the plans for the proposed excavations that ACEH requested, proposed surface sample locations and sampling methods consistent with ACEH requirements, and proposed and described plans for six soil borings, as requested by ACEH.

ACEH approved Revised Workplan for Site Investigation and Remedial Action, 461 McGraw Avenue, Livermore, California 94550 on May 23, 2007, in the letter, Fuel Leak Case No. RO0000311 and Geotracker Global ID T0600102204, Call Mac Transportation, 461 McGraw Avenue, Livermore, California 94550 – Work Plan Approval.

On May 29, 2007, EIS coordinated with Macoy Resources Corporation (MRC) to remove the former pump island, the concrete pad, and the piping/utilities underneath them. In addition, to excavating any impacted soil encountered.

On July 26, 2007, EIS issued *Soil Removal and Site Investigation Report, 461 McGraw Avenue, Livermore, California 94550.* Based on the site activities, analytical data, and documentation presented in this report, EIS reached the following conclusions:

- MRC successfully removed the former pump station and related facilities and excavated to a depth of four feet bgs (two feet below the former facilities). No evidence of contamination was detected in the soil or groundwater in the vicinity of the former UST or pump station.
- Arsenic concentrations in soil samples collected from the building pad and shipping container area were elevated relative to ESLs, PRGs, and Site background concentrations.
- Based on the analytical results of eight shallow soil samples, the former storage of leadacid batteries to the west of the building pad does not appear to have impacted the shallow soil onsite.
- Based on the analytical results of eight shallow soil samples, the soil loading dock does not appear to have been impacted by TPH-d, TPH-o, or metals above their ESLs or background concentrations on Site..

- MRC excavated approximately 417.1 tons of contaminated soil attributed to Golden State's truck demolition activities onsite, successfully removing 34 small and 7 large surface stains.
- Surface stain DO-3 was underlain by an additional layer of contamination, beginning at approximately 4 feet bgs. MRC excavated approximately 85.2 tons of contaminated soil from below 4 feet bgs in the vicinity of surface stain DO-3 (Excavation DO3). Analytical results of soil samples collected from the bottom of the excavation showed that not all of the contaminated soil was excavated. The data indicated that soil may be contaminated to as deep as 11 feet bgs. The four sidewall samples from Excavation DO3 indicate that the lateral extent of the contaminated soil was reached in four locations. However, the nature and extent of the contamination in the western and southwestern portions of the excavation were not defined.
- MRC excavated over 197 tons of soils from AST areas T-1 through T-4. Confirmation samples collected from these four excavation areas indicate that the extent of the contaminated soil in Excavations T-1 through T-4 was successfully removed.
- Buried debris and a 6- to 8-inch-diameter well were discovered in Excavation T-4. Additional excavation continued in the area until all the debris was removed; a total of approximately 58.3 cubic yards of soil and debris was excavated. Four confirmation soil samples collected from the debris excavation showed no detectable TPH-d or TPH-o, or elevated metals.. The well that was uncovered was not addressed at this time.
- Analytical results of soil and grab groundwater samples from borings B-1, B-2, and B-3, and of grab groundwater samples from borings B-4, B-5, and B-6 suggest that contamination from the former ASTs and UST and associated facilities and the have not impacted the soil or groundwater to levels greater than ESLs or background concentrations outside of the boundaries of the excavations.
- Based on the analytical results of the water sample collected from the water supply well in the northeast corner of the site, the well had not been impacted by past site activities. The well head which had previously been unprotected was fitted with a locking well cap and restored to Zone 7 Water District's protection standards.

On August 3, 2007 ACEH responded to EIS's *Soil Removal and Site Investigation Report*, and stated that no additional investigation or soil removal was required for several locations, including the vicinity of the former pump island and underground storage tank (UST), the former lead-acid battery storage area, the surface stains attributed to Golden State Metals, Inc. activities (except for Area DO3, see Figure 2), and three of the former aboveground storage tank areas (AST Areas T-1, T-2, and T-3, see Figure 2). The work to assess and restore the water supply well in the northeast corner of the site was also satisfactory. ACEH requested remediation of the arsenic-impacted material of the building pad, explanation of the future use and/or disposal of the loading dock, additional excavation in area DO3, proper abandonment of the well in excavation T-4, a historical review for the site, the installation and sampling of three monitoring wells, and a soil gas survey.

On August 30, 2007, EIS submitted *Site Investigation and Remedial Action Workplan to* address ACEH's request for additional work except for the soil gas survey, as the design of the soil gas survey depends on the results of the historical review.

ACEH's September 7, 2007, letter was issued in response to EIS's *Site Investigation and Remedial Action Workplan*. In this letter ACEH's requested a historic review of the property, a well survey, and a workplan for a soil gas survey. The ACEH concurred with the proposed excavation and disposal of arsenic-impacted soil from the building pad, excavation and disposal of soil from excavation DO3, reuse plan of loading dock soil, decommissioning of water supply well in excavation T-4, and the plan to install and sample three groundwater monitoring wells.

EIS conducted the historical review of the property and prepared a report describing the research sources and findings dated October 31, 2007. Based on the historic review of the property a Soil Gas Survey Workplan dated November 2, 2007 was prepared.

ACEH's November 8, 2007, letter was issued in response to this Soil Gas Survey *Workplan*. In this letter ACEH accepted the Soil Gas Survey workplan, with slight modifications to boring locations. The ACEH letter requested two of the soil gas borings be placed in approximate locations of former waste oil and polymer resin drums. The ACEH letter concluded with a request for submittal of the Site Investigation and Remedial Action Report by January 29, 2008.

PRE-FIELD ACTIVITIES

Before commencing field activities, EIS prepared a Site-Specific Health and Safety Plan reflecting the work to be performed, the potential contaminants, appropriate safety precautions, and emergency response procedures. EIS coordinated with regulatory agencies; scheduling activities to coincide with LPFD or ACEH visits to the site. EIS obtained a monitoring well boring permit from the Zone 7 Water Agency. EIS marked the site boundaries with white paint and notified Underground Service Alert (USA) 48 hours before beginning field activities so that companies with underground utilities in the vicinity of the site could mark their locations

EXCAVATION AND DISPOSAL OF ARSENIC-IMPACTED SOIL FROM THE BUILDING PAD AREA

Excavation Activities

Laboratory analysis of soil samples collected May 31, 2007 from the building pad area indicated a widespread distribution of elevated arsenic concentrations. After reviewing the initial data, EIS proposed to excavate and dispose of arsenic impacted soil from the building pad area. The proposed excavation dimensions (100 feet long x 50 feet wide x 1.25 feet deep) were designed to completely remove soil with arsenic concentrations exceeding the RWQCB ESL.

EIS contracted with Macoy Resources Corporation (MRC) of Paso Robles, California, to excavate the arsenic-contaminated soil from the building pad area and remove it from the site. On November 29 and 30, 2007, a total of 377.33 tons of soil were removed from the building pad excavation area. Contaminated soil removed from the excavation was stockpiled on plastic sheeting prior to disposing it to Altamont Landfill under non-hazardous waste manifest. The top surface was hard and comprised of gravel mixed with clay. During excavation, a layer of black ash material was observed at approximately 0.5 feet below ground surface covering the building pad area. The arsenic-impacted soil excavation area is shown on Figures 3.

Soil Sampling

On November 30, 2007, EIS collected ten confirmation samples from the building pad excavation area. For each sample location, a 3-inch diameter hand auger was used to advance a soil boring to approximately 6 inches bgs. Soil was transferred from the hand auger into clean 2-inch diameter by 6-inch long stainless steel sleeves. The stainless-steel sleeves were sealed with Teflon sheets and plastic caps, labeled, logged onto a chain of custody document, and placed into a chilled ice chest for transport to McCampbell Analytical, Inc., of Pittsburg, California. The hand auger was thoroughly decontaminated by double-washing it with a non-phosphate detergent solution, triple rinsing it with tap water, and allowing it to dry before the next sample was collected. Sample locations were backfilled with soil and gravel from their immediate surroundings.

Soil Sample Analytical Results

The soil samples collected from the building pad area were analyzed for arsenic using EPA Method 6020A. Based on the results of the laboratory analysis, the arsenic concentrations in all ten samples slightly exceed the RWQCB's newly revised ESLs for arsenic in commercial and residential soils of 1.5 mg/kg. However, all ten samples (AX-1 through AX-10) had arsenic concentrations ranging from 3.5 mg/kg to 6.2 mg/kg. These arsenic concentrations are consistent with background concentrations of Livermore. The analytical data are summarized in Table 1. The analytical reports for the building pad area samples are included in Attachment A.

EXCAVATION AND DISPOSAL OF SOIL FROM EXCAVATION DO3 AREA

October 29, 2007 Excavation Activities

On October 29, 2007, EIS coordinated with MRC to excavate deep contaminated soil at area DO-3 that was discovered when removing surface stained material apparently caused by demolishing activities conducted by Golden State (Figure 2). In order to differentiate this excavation from the previous excavation for the Golden State surface stain (Stain DO-3), this excavation is called Over Excavation of DO3 Area.

Over Excavation of DO3 was deepened to eleven feet from its original depth of seven feet. The excavation was expanded laterally as well to trace a layer of contaminated soil starting at approximately three feet. There was no evidence of contaminated of soil above eleven feet in the expanded excavation areas.

Decisions made in the field on whether to continue expanding the excavation laterally were based on visual indications of staining, obvious odors, and soil screening using a photoionization detector (PID). When there where no staining or obvious odors apparent and the PID readings showed no significant presence of VOCs in the soil the excavation work was halted and confirmation soil samples were collected for analysis.

Soil obtained by the backhoe from the bottom of the excavation, at 11 feet bgs, had a strong petroleum hydrocarbon odor and elevated PID readings, though no discoloration was noted. In the southern expansion area, EIS noted a faint petroleum hydrocarbon odor in the sidewall, but

no discoloration was visible. Groundwater began seeping into the excavation at 11 feet bgs so the excavation was not deepened further at this time. MRC excavated approximately 89 tons of contaminated soil in the area of DO3. The excavation boundaries of the DO3 contamination area are shown on Figure 4.

EIS collected six confirmation soil samples (DO3-8 through DO3-13) from Over Excavation of DO3 on October 29, 2007. Soil samples were collected from the backhoe bucket. All soil samples were placed into clean 2-inch-diameter by 6-inch-long stainless-steel sleeves. The stainless-steel sleeves were sealed with Teflon sheets and plastic caps, labeled, logged onto a chain-of-custody document, and placed into a chilled ice chest for transport to the laboratory. Samples DO3-8 and DO3-9 were collected from the side wall of the excavation. Samples DO3-10 through DO3-13 were collected from the bottom of the excavation at a depth of 11 feet bgs (Figure 4).

Soil Sample Analysis

The soil samples collected from Over Excavation of DO3 were analyzed by McCampbell Analytical, Inc., of Pittsburg, California using the following methods:

- EPA Method 8015B for TPH-d, TPH-o
- EPA Method 8021B for BTEX TPH-g and MTBE.

Soil Sample Analytical Results

The analytical results for the excavation confirmation samples are summarized in Table 2, and the laboratory analytical reports are included in Attachment B.

TPH-d was detected in samples DO3-10, DO3-11, DO3-12 and DO3-13 at 110 mg/kg, 840 mg/kg, 880 mg/kg and 16 mg/kg respectively. TPH-d in three of the four samples exceeded the ESL of 100 mg/kg in soil on an industrial property where groundwater is currently or potentially a drinking water source.

TPH-o was detected in samples DO3-10, DO3-11, DO3-12 and DO3-13 at 55 mg/kg, 320 mg/kg, and 320 mg/kg, 9.7 mg/kg, respectively. None of the values exceeded the ESLs for TPH-o.

TPH-g was detected in samples DO3-10, DO3-11, DO3-12 and DO3-13 at 43 mg/kg, 120 mg/kg, 33 mg/kg, and <1.0 mg/kg, respectively. Only one sample DO3-11 exceeded the ESL of 100 mg/kg for TPH-g.

There was no BTEX, or MTBE detected in any of the confirmation samples

November 13, 2007 Excavation Activities

After reviewing the data from the confirmation samples collected on October 29, 2007, EIS proposed to deepen the excavation even though it was below the current water table to remove as much of the contamination source as possible. On November 13, 2007, MRC deepened the excavation an additional 3.5 feet to a total depth of 14.5 feet bgs before field indications showed that the bulk of the contamination had been removed and confirmation samples were collected.

The volume of contaminated soil, removed from this additional excavation was approximately 42 tons. MRC loaded the soil into trucks and transported it to Altamont Landfill under non-hazardous waste manifest.

EIS collected two confirmation soil samples DO3-14 and DO3-15 from Over Excavation of DO3 on November 13, 2007. Soil samples were collected from the backhoe bucket. All soil samples were placed into clean 2-inch-diameter by 6-inch-long stainless-steel sleeves. The stainless-steel sleeves were sealed with Teflon sheets and plastic caps, labeled, logged onto a chain-of-custody document, and placed into a chilled ice chest for transport to the laboratory. Soil sample DO3-14 was collected from the north side and DO3-15 was collected from the south side of the excavation, each from a depth of 14.5 feet bgs (Figure 4).

Soil Sample Analysis

The soil samples collected from Over Excavation of DO3 were analyzed by McCampbell Analytical, Inc., of Pittsburg, California using the following methods:

- EPA Method 8015B for TPH-d, TPH-o
- EPA Method 8021B for BTEX TPH-g and MTBE.

Soil Sample Analytical Results

The analytical results of soil samples DO3-14 and DO3-15 indicated only a trace of TPH-d (1.8 mg/kg) in sample DO3-15. No other detectable concentrations of TPH-o, TPH-d, TPH-g, BTEX or MTBE were present.

DECOMMISSIONING OF WATER SUPPLY WELL IN T4 AREA

The water supply well discovered during the excavation of the T4 area was 70 feet deep and the groundwater level was measured to 12.95 feet bgs. EIS contract Exploration Drilling Services, a C-57 licensed drilling company to decommission the water supply well in Excavation T-4 according to Zone 7 Water Agency requirements. As per the Zone 7 Water Agency requirements, the well was cleared of soil, mud and debris to its original depth and filled from the bottom to the surface with cement slurry. The driller used a mud-rotary drill rig to drill out the soil and debris in the well prior to pumping cement slurry into the well. The decommissioned well location is shown in Figure 2. A copy of Zone 7 Water Agency decommissioning well permit is included as Attachment C of this report.

MONITORING WELL INSTALLATION

On November 5, 2007 monitoring wells MW-1 through MW-3 were installed at the locations shown on Figure 2. The monitoring well will be used to verify the success of recent remedial action on improving groundwater quality, groundwater flow direction, and groundwater flow gradient in the vicinity of the site. A copy of Zone 7 Water Agency well permit is included as Attachment D of this report.

EIS marked the proposed monitoring well location with white paint and contacted Underground Service Alert (USA) for underground utility location 48 hours before the beginning of the field activities.

On November 5, 2007, EIS Hydrogeologist Panindhar Krishnamraju and Exploration Geoservices, a C-57 licensed drilling company, mobilized to the site. The proposed new monitoring wells MW-1 through MW-3 were drilled using 8-inch diameter hollow-stem auger drilling equipment. The exploratory borings were advanced into the shallowest aquifer, extending to a total depth of 20 feet bgs. EIS logged the soil borings for MW-1 through MW-3.

Lean clay was encountered to a depth of approximately 20 feet bgs in well borings MW-1 and MW-3. Soils encountered in well boring MW-2 included clayey sand at 18.0 - 20.0 feet bgs. The clay encountered was very consistent throughout the site. In all three borings from 0 to 5 feet bgs the clay was very dark grayish in color then it changed to yellowish brown with abundant caliche, low to medium plasticity and hard. Wet conditions were first described between 11.5 and 18.5 feet bgs. The boring logs are included at Attachment E

Soil samples for logging and laboratory analysis were collected at 5-foot depth intervals using a modified California split-spoon sampler fitted with clean 2-inch diameter stainless steel liners. Soil samples selected for laboratory analysis were preserved by sealing the ends of the liners with TeflonTM sheets and plastic end-caps. The samples were then labeled, sealed in clean plastic bags, logged onto chain-of-custody documentation, and stored in an iced cooler pending transport to the laboratory.

Soil Sample Analysis

The soil samples from each monitoring well boring were analyzed for the presence of TPH-g, BTEX, and MTBE using EPA 8021B, TPH-d and TPH-o using EPA 8015B, VOCs using EPA Method 8260 and CAM 17 metals. Tables 3 and 4 summarize laboratory analytical results for the soil samples. The analyses were performed by McCampbell Analytical, Inc., of Pittsburg, California. Laboratory analytical reports and chain-of-custody documents for the soil samples are included in Attachment F.

Soil Sample Analytical Results

TPH-d, TPH-o and/or TPH-g were detected in two of the ten samples collected from borings MW-1 through MW-3 at concentrations below the regulatory screening levels. Sample MW-2, 4.5-5.0 (collected from a depth of 4.5 feet bgs) contained TPH-d at 1.6 mg/kg and TPH-o at 5.8 mg/kg. Sample MW-3, 4.5-5.0 (collected from a depth of 4.5 feet bgs) contained TPH-g at 3.1 mg/kg. The analytical results are summarized on Table 3 showing a comparison to regulatory agency screening levels (e.g., RWQCB ESLs and the EPA Preliminary Remediation Goals (PRGs)). There was no detectable BTEX, VOCs, or fuel oxygenates in any of the soil samples (Table 3).

Low concentrations of arsenic, barium, chromium, cobalt, copper, lead, nickel, vanadium and zinc metals were detected in the samples from boring MW-1 through MW-3 (Table 4). With the exception of arsenic and cobalt none of the metals were present in concentrations above the ESLs or the PRGs. Arsenic and cobalt were present at concentrations that EIS believes are normal background concentrations for the area.

Well Surveying

Mid Coast Engineers, a California-licensed surveying firm surveyed the new groundwater monitoring well locations on November 7, 2007 using US State Plane 1983 coordinate system and NAD 1983 datum. The horizontal positions and measuring point elevations of the wells were surveyed with a reported accuracy of approximately 1 centimeter. Figure 2 was derived from the Mid Coast Engineers survey data.

Well Development

The monitoring wells were developed to clear the well casing and surrounding sand pack from construction related materials and naturally occurring fine sands and silts. The monitoring wells were developed on November 8, 2007. Well development was conducted using the surge block method followed by groundwater and sediment removal using a peristaltic pump. A total of 10 to 16 well casing volumes were purged until well stabilization was indicated by temperature, conductivity, turbidity, and pH measurements where successive readings were within 10%. Purge water resulting from well development is being stored on-site in labeled 55-gallon drums. Well development field records are presented in Attachment G.

GROUNDWATER SAMPLING

Monitoring Well Sample Collection

On November 9, 2007 groundwater elevation measurements and groundwater samples were collected from monitoring wells MW-1, MW-2, and MW-3 using low flow sampling method. Prior to groundwater sampling, the depth to groundwater and total depth of each monitoring well was measured using the top of casing (TOC) as a reference point.

Prior to conducting the initial sampling event, all equipment were properly cleaned and kept away from the contaminants. A dedicated pump was used to purge the water and continuous periodic water level measurements were recorded. The pump was set at 300 ml/min low flow rate and continuously measured the water level till the stabilized pumping was achieved. During purging, electrical conductivity (EC), and temperature were monitored to ensure that the drawdown and chemical indicator parameters stabilized. Following purging, each sample was collected and sealed within EPA-approved containers provided by the laboratory. The water samples were then labeled, logged onto chain-of-custody documentation, and transported on ice to the laboratory. Field forms documenting EIS's sample collection activities are presented in Attachment H.

Monitoring Well Sample Analyses

Groundwater samples collected from monitoring wells MW-1, MW-2, and MW-3 were analyzed for the presence of TPH-g, BTEX, MTBE using EPA Method 8021B, TPH-d using EPA Method 8015B, VOCs using EPA Method 8260B and Total CAM 17 metals using EPA Method E200.8.

Groundwater Flow Direction and Gradient

Groundwater elevation data measured on November 9, 2007 are presented on Table 5.

Groundwater elevations were used to construct a groundwater elevation contour map (Figure 5). Based on the November 9, 2007 data, groundwater appears to flow toward the northwest. The groundwater flow gradient is about 0.011 feet per foot.

Monitoring Well Groundwater Sample Analytical Results

The laboratory analytical report and chain-of-custody document for the groundwater samples are included in Attachment I. The groundwater sample collected from monitoring well MW-1 contained 10 micrograms per liter (μ g/L) of tetrachloroethene (PCE). No TPH-g, TPH-d, BTEX compounds, or other VOCs were detected in the November 9, 2007 groundwater samples collected from monitoring wells MW-1, MW-2 and MW-3. The California Department of Health Services maximum contaminant level (MCL) for tetrachloroethene (PCE) is 5 μ g/L. (Table 6)

Low concentrations of arsenic, barium, chromium, cobalt, copper, nickel, selenium, and vanadium metals were detected in the sample from monitoring wells MW-1 through MW-3 (Table 7), but none of them were present in concentrations above the ESLs or the PRGs.

SOIL GAS SURVEY

At the request of Mr. Jerry Wickham of ACEH, four soil gas samples were collected at specific areas of concern onsite. Figures 2 show the soil gas sample locations SG-1 through SG-4. The soil gas sample locations SG-1 through SG-4 were chosen based on the historical review and site history to investigate the chemical storage areas.

Soil gas borings installation

The soil gas sample borings were installed using a truck-mounted direct push/hollow-stem auger combination drill rig. The soil gas sample boreholes were advanced by continuously coring each borehole with a 1.5-inch (outside diameter) sample tool. EIS contracted with a C-57 licensed drilling company to install the soil gas sample borings.

At each soil gas sample location, a 1.5-inch diameter borehole was completed to about 5 feet below ground surface (bgs). Each soil gas sample location was then completed as a "semi-permanent soil gas probe."

Semi-permanent soil gas probes, consisting of an 8-inch wire-mesh screen fitted onto a 7-foot length of polyethylene tubing, were constructed by lowering the wire-mesh screen and tubing assembly to about 5 feet bgs. Fine sand was then poured into the borehole from 5 to 4 feet bgs. Dry granular bentonite was then poured into the borehole in 6 inch lifts and hydrated. The semi-permanent soil gas probes were allowed to equilibrate for at least 30 minutes prior to soil gas sample collection.

Soil gas sampling

Soil gas samples were collected using 6-liter air sampling Summa canisters supplied by the analytical laboratory. A T-joint fitting was attached to the tubing connecting one end to Summa canister and the other end to an air compressor pump. The soil gas probe was purged for three minutes before collecting the soil samples. After purging the line the valve was turned to allow the Summa canister to fill with gas from the probe. A pressure gauged fitted in line with the system

was monitored so that it was known when the Summa canister was filled. While filling the Summa canisters the connections in the system were swapped with isopropyl alcohol as a mean to check the integrity of the system when the sample is analyzed. The presence of isopropyl alcohol in the sample likely means that the system was not completely sealed and some outside air was able to enter the Summa canister. Once filled the Summa canisters were sealed using an integral valve and transported to the analytical laboratory under a chain-of-custody document. After the collection of the sample, soil gas probe tubing was removed and sealed using neat cement.

Soil gas sampling analysis and findings

The soil gas samples were analyzed by McCampbell Analytical, Inc., of Pittsburg, California. Each soil gas sample was analyzed for volatile organic compounds using Environmental Protection Agency (EPA) Method 8260B.

No volatile organic compounds were detected in the November 13, 2007 soil gas samples collected from SG-2 and SG-3 soil gas samples. Soil gas samples SG-1 and SG-4 failed and were not analyzed since samples were not recovered and reported open. Soil gas probes SG-1 and SG-4 were re-installed and sampled on November 21, 2007 in the same manner described above using Summa canisters supplied by McCampbell Analytical, Inc., of Pittsburg, California. Analytical reports and chain-of-custody documentation for the soil gas samples are included in Attachment J of this report.

Sample SG-1 contained 28 μ g/l of benzene, 120 μ g/l isopropyl alcohol (used as a leak check agent while sampling), 49 μ g/l ethylbenzene, 20 μ g/l 1,2,4-trimethylbenzene, 250 μ g/l toluene, and 190 μ g/l xylenes. Sample SG-4 contained 44 μ g/l of benzene, 21 μ g/l ethylbenzene, 60 μ g/l tetrachloroethene, 150 μ g/l toluene and 78 μ g/l xylenes. Volatile organic compound analytical data from the soil gas samples are summarized in Table 8. Analytical reports and chain-of-custody documentation for the soil gas samples are included in Attachment K of this report.

As indicated in Table 8, all detected concentrations were below California Regional Water Quality Control Board soil gas screening levels for shallow soil gas data (collected less than 1.5 meters [5 feet] below a building foundation or the ground surface) intended for evaluation of potential indoor-air impacts for residential land use.

CONCLUSIONS

Based on the site activities, analytical data, and documentation presented in this report, EIS has reached the following conclusions:

- MRC successfully excavated approximately 377 tons of arsenic impacted soil from the building pad area and transported it to a disposal facility.
- Analytical data of ten soil samples collected from excavated building pad area indicate that the remaining arsenic concentrations exceed the RWQCB's newly revised ESLs for arsenic in commercial and residential soils. However, the arsenic concentrations in the remaining soil are consistent with those found elsewhere on site, such as in samples from borings MW-1, MW-2 and MW-3 collected as deep as 18.5 feet bgs. It is believed that the arsenic concentrations found in the confirmation samples beneath the building pad are normal levels for the Site. No further excavation work is required at the building pad.

- On October 29 and 30, 2007, MRC excavated approximately 89 tons of contaminated soil from the DO3 over excavation, beginning at approximately 7 feet to 11.0 feet bgs. MRC further excavated an additional 42 tons of contaminated soil beginning at approximately 11.0 feet bgs to 14.5 feet bgs on November 13, 2007. The contaminated soil was transported to the Altamont landfill.
- Based on the analytical results of confirmation samples collected from the bottom and sidewalls of the over excavation of DO3, the excavation work succeeded in removing nearly all the contaminated soil, leaving only trace concentrations of hydrocarbons that are well below ESLs.
- Exploration Drilling Services, successfully decommissioned the water supply well in T4 area in accordance with the Zone 7 Water Agency requirements.
- EIS installed three onsite groundwater monitoring wells, MW-1 through MW-3.
- Soil samples collected from borings MW-1 through MW-3 contained no constituents of concern above ESLs or PRGs, with the exception of arsenic and cobalt which appear to be normal concentrations for the area.
- The groundwater sample collected from monitoring well MW-1 on November 9, 2007 contained 10 μ g/L of PCE, but no petroleum hydrocarbons, fuel additives of elevated metals concentrations. The concentration of PCE exceeded the ESL of 5 μ g/L.
- Based on November 9, 2007 groundwater elevation data, groundwater appears to flow toward the northwest. The groundwater flow gradient is about 0.011 feet per foot.
- The limited soil gas survey indicated the presence of low concentrations of VOCS in the subsurface. None of the compounds detected were at concentrations above the respective ESLs for shallow soil gas (collected less than 1.5 meters [5 feet] below a building foundation or the ground surface) intended for evaluation of potential indoor-air impacts for residential land use.

RECOMMENDATIONS

EIS has already expanded the site investigation to delineate the extent of PCE in groundwater beneath the site that was detected in well MW-1. The results of that investigation are forthcoming. Recommendations for additional work will be including in that report.

LIMITATIONS

This report includes analytical results for samples taken during the course of the work. The number and location of samples were chosen to provide information on shallow soil and on groundwater in selected areas of the site, but it cannot be assumed that they are representative of areas not sampled. The variations that may exist between sampling points cannot be anticipated, nor could they be entirely accounted for, in spite of exhaustive additional testing. Conclusions beyond those stated and reported herein should not be inferred from this document.

All reports and findings are based on the conditions and practices observed and information made available to Environmental Investigation Services, Inc.

Sincerely,

Environmental Investigation Services, Inc.

4. Pailer

Panindhar R. Krishnamraju, Ph.D. Hydrogeologist

Q. Wed 10/09 No. 6323

Allen J. Waldman, PG#6323 Project Geologist

Attachments:

- Table 1 -- Summary of Soil Sample Analytical Results, Excavation Building Pad Area
- Table 2 -- Summary of Soil Sample Analytical Results, Excavation DO3 Area
- Table 3 -- Summary of Soil Sample Analytical Results, Monitoring Well Borings MW-1 Through MW-3
- Table 4 -- Summary of Soil Sample Analytical Results, Monitoring Well Borings MW-1 Through MW-3
- Table 5 -- Summary of Groundwater Elevation Measurements
- Table 6 -- Summary of Groundwater Sample Analytical Results
- Table 7 -- Summary of Groundwater Sample Analytical Results for Metals
- Table 8 -- Summary of Soil Gas Sample Analytical Results
- Figure 1 -- Site Location Map
- Figure 2 -- Site Plan
- Figure 3 -- Building Pad Excavation and Soil Sample Locations Map
- Figure 4 -- Excavation Boundaries and Confirmation Sample Locations for Excavation DO3
- Figure 5 Groundwater Elevation Contour Map
- Attachment A Building Pad Soil Samples Laboratory Analytical Reports
- Attachment B DO3 Soil Samples Laboratory Analytical Reports
- Attachment C Decommission Well Permit
- Attachment D Monitoring Well Permit
- Attachment E Monitoring Well Boring Logs
- Attachment F Monitoring Well Boring Soil Samples Laboratory Analytical Reports
- Attachment G Monitoring Well Development Field Sheets
- Attachment H Groundwater Sampling Field Sheets
- Attachment I Groundwater Sampling Laboratory Analytical Reports
- Attachment J Soil Gas Sampling Laboratory Analytical Reports
- Attachment K Soil Gas Sampling Laboratory Analytical Reports of SG-1 and SG-4

REFERENCES

- Alameda County Environmental Health Department. Workplan Approval for 461 McGraw Ave, Livermore, 94550. December 27, 1995.
- Alameda County Environmental Health Department. Fuel Leak Case No. RO0000311 and Geotracker Global ID T06001602204, Call Mac Transportation, 461 McGraw Avenue, Livermore, CA 94550. April 11, 2007.
- Alameda County Environmental Health Department. *Fuel Leak Case No. RO0000311 and Geotracker Global ID T06001602204, Call Mac Transportation, 461 McGraw Avenue, Livermore, CA 94550 Work Plan Approval.* May 23, 2007.
- Applied Remedial Technologies. Proposed Work Plan to Conduct Soil Removal and Confirmation Sampling of Impacted Soils at the Former Diesel UST Dispenser Island, Below the Former Above Ground Storage Tanks, and at the Recent Diesel Spill Areas, 461 McGraw Avenue, Livermore, California 94550. April 2, 2007.
- Applied Remedial Technologies. Work Plan to Remove the Three Remaining Storage Tanks, 461 McGraw Avenue, Livermore, California 94550. April 2, 2007.
- California Regional Water Quality Control Board, San Francisco Bay. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. February 2005.
- Department of Toxic Substances Control. Inspection Report, Call Mac Transportation, 461 McGraw Road, Livermore, California 94551. December 2, 2003.
- Department of Toxic Substances Control. Sampling Report, Call Mac Transportation, 461 McGraw Road, Livermore, California 94551. January 6, 2004.
- Environmental Investigation Services, Inc. Revised Workplan for Site Investigation and Remedial Action, 461 McGraw Avenue, Livermore, California 94550. May 18, 2007.
- Environmental Investigation Services, Inc. Aboveground Storage Tank Closure Report, 461 McGraw Avenue, Livermore, California. July 24, 2007.

Environmental Investigation Services, Inc. Site Investigation and Remedial Action Workplan, 461 McGraw Avenue, Livermore, California 94550. August 30, 2007.

- Environmental Investigation Services, Inc. *Historical Review Report, 461 McGraw Avenue, Livermore, California.* October 31, 2007.
- Livermore-Pleasanton Fire Department. Hazardous Materials Inspection Report Narrative, Call Mac Transportation, 461 McGraw Ave., Livermore. July 17, 2003.
- Livermore-Pleasanton Fire Department. Plan Check Number DEM07014, Workplan to Remove Three Aboveground Storage Tanks, 461 McGraw Avenue, Livermore, April 10, 2007.

- Remediation Risk Management, Inc., Underground and Above Ground Storage Tank Removal and Sampling Report, 461 McGraw Avenue, Livermore, California. October 17, 1995.
- Remediation Risk Management, Inc., Workplan to Excavate Diesel Impacted Soil Adjacent to the Former Diesel Dispenser, 461 McGraw Avenue, Livermore, California. December 21, 1995.
- Remedy Environmental Services, LLC. *Preliminary Site Assessment, Phase I (Modified).* June 7, 2006.
- United States Environmental Protection Agency, Region 9. *Preliminary Remediation Goals Table*. October 2004.
- Wilson, S.A. et al. *Analysis of soil samples from the San Joaquin Valley of California*. Open File Report 90-214. United States Geological Survey, 1990.

TABLES

Date	Soil Sample	Arsenic					
10/30/2007	AX-1	4.1					
10/30/2007	AX-2	4.0					
10/30/2007	AX-3	6.2					
10/30/2007	AX-4	4.2					
10/30/2007	AX-5	4.3					
10/30/2007	AX-6	6.0					
10/30/2007	AX-7	3.5					
10/30/2007	AX-8	5.1					
10/30/2007	AX-9	3.8					
10/30/2007	AX-10	4.5					
RWQCB ESL (Com	RWQCB ESL (Commercial/Industrial)						
RWQCB ESL	RWQCB ESL (Residential)						
USEPA	USEPA PRG						

Table 1 - Summary of Soil Sample Analytical ResultsExcavation Building Pad Area461 McGraw Avenue, Livermore, California

Notes:

Data are reported in milligrams per kilogram (mg/kg).

Nov 2007 RWQCB ESL = Regional Water Quality Control Board's Shallow Soil Environmental Screening Level for Commercial, Industrial or Residential Property where groundwater is currently or potentially a drinking water resource.

Bold = results which are greater than the Nov 2007 RWQCB Shallow Soil ESL for Commercial/Industrial Properties

USEPA PRG = United States Environmental Protection Agency's Preliminary Remediation Goal, 2004

EPA Method 6020A for Arsenic

Table 2- Summary of Soil Analytical Results Excavation DO3 Area 461 McGraw Avenue, Livermore, California

Soil Sample	Depth (feet)	Date	трн-d	трн-о	ТРН-9	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes
DO3-2	6.0	6/6/2007	<10	<50	<0.5	<0.020	<0.005	<0.005	<0.005	<0.010
DO3-3	7.0	6/6/2007	<10	<50	<0.5	<0.020	<0.005	<0.005	<0.005	<0.010
DO3-4	6.0	6/6/2007	<10	<50	<0.5	<0.020	<0.005	<0.005	<0.005	<0.010
DO3-5	6.0	6/6/2007	<10	<50	<0.5	<0.020	<0.005	<0.005	<0.005	<0.010
DO3-6	7.0	6/6/2007	2,500	<50	34	<0.1	0.030	0.217	0.029	1.940
DO3-7	11.0	6/6/2007	64	<50	<0.5	<0.020	<0.005	<0.005	<0.005	<0.010
DO3-8	6.0	10/29/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005
DO3-9	7.0	10/29/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005
DO3-10	11.0	10/29/2007	110,a	55	43,g	<1.0	<0.10	<0.10	<0.10	<0.10
DO3-11	11.0	10/29/2007	840,a	320	120,g	<1.0	<0.10	<0.10	<0.10	<0.10
DO3-12	11.0	10/29/2007	880,a	320	33,g	<0.50	<0.050	<0.050	<0.050	<0.050
DO3-13	11.0	10/29/2007	16,a	9.7	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005
DO3-14	14.5	11/13/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005
DO3-15	14.5	11/13/2007	1.8,a	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005
RWQCB ESL (Co	mmercial/Industria	al)	83	2,500	83	0.023	0.044	2.9	3.3	2.3
RWQCB ESL (Re	sidential)		83	4,100	83	0.023	0.044	2.9	3.3	2.3
USEPA PRG						70	1.4	520	400	420

Notes:

Data are reported in milligrams per kilogram (mg/kg)

Method 8015M for TPH-d, TPH-o, and TPH-g; Method 8021 for BTEX and MTBE

TPH-d = Total Petroleum Hydrocarbons as diesel

TPH-o = Total Petroleum Hydrocarbons as oil

TPH-g = Total Petroleum Hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes

a = Unmodified or weakly modified diesel is significant

g = Strongly aged gasoline or diesel range compounds are significant

= Not Established

Bold = results which are greater than the Nov 2007 RWQCB Shallow Soil ESL for Commercial/Industrial Properties

Nov 2007- RWQCB ESL = Regional Water Quality Control Board's Shallow Soil Environmental Screening Level for Commercial, Industrial or Residential Property where groundwater is currently or potentially a drinking water resource.

USEPA PRG = United States Environmental Protection Agency's Preliminary Remediation Goal for Industrial Soil. (2004)

Soil Sample	Depth (feet)	Date	TPH-d	TPH-o	TPH-g	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	Other VOCs	Other Oxygenates
MW-1, 9.5-10.0	9.5-10.0	11/5/2007	1.1,b	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-1, 14.5-15.0	14.5-15.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-2, 4.5-5.0	4.5-5.0	11/5/2007	1.6,g,b	5.8	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-2, 9.5-10.0	9.5-10.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-2, 14.5-15.0	14.5-15.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-2, 18.5-19.0	18.5-19.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-3, 4.5-5.0	4.5-5.0	11/5/2007	<10	<5.0	3.1,g	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-3, 9.5-10.0	9.5-10.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-3, 14.5-15.0	14.5-15.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
MW-3, 18.5-19.0	18.5-19.0	11/5/2007	<1.0	<5.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005	ND	ND
RWQCB ESL (Comr	mercial/Industrial)	1	83	2,500	83	0.023	0.044	2.9	3.3	2.3		
RWQCB ESL (Resid	lential)		83	4,100	83	0.023	0.044	2.9	3.3	2.3		
USEPA PRG						70	1.4	520	400	420		

Table 3 - Summary of Soil Analytical Results Monitoring Well Borings MW-1 Through MW-3 461 McGraw Avenue, Livermore, California

Notes:

Data are reported in milligrams per kilogram (mg/kg).

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

TPH-o = Total Petroleum Hydrocarbons as oil

VOCs = Volatile Organic Compounds MTBE = Methyl tert-Butyl Ether BTEX = Benzene, Toluene, Ethylbenzene, Xylenes ND = Not Detected -- = Not Established

Nov 2007- RWQCB ESL = Regional Water Quality Control Board's Shallow Soil Environmental Screening Level for Commercial, Industrial or Residential Property where groundwater is currently or potentially a drinking water resource.

USEPA PRG = United States Environmental Protection Agency's Preliminary Remediation Goal for Industrial Soil. (2004)

Method 8015B for TPH-d and TPH-o; Method 8260B for TPH-g, VOCs, Fuel Oxygenates, BTEX and MTBE

Table 4 - Summary of Soil Sample Analytical Results Monitoring Well Borings MW-1 Through MW-3 461 McGraw Avenue, Livermore, California

Soil Sample	Depth (feet)	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-1, 9.5-10.0	9.5-10.0	11/5/2007	<0.5	5.3	180	<0.5	<0.25	35	12	19	7.3	<0.05	<0.5	42	<0.5	<0.5	<0.5	44	50
MW-1, 14.5-15.0	14.5-15.0	11/5/2007	<0.5	5.4	150	<0.5	<0.25	30	7.8	16	5.5	<0.05	<0.5	34	<0.5	<0.5	<0.5	38	96
MW-2, 4.5-5.0	4.5-5.0	11/5/2007	0.56	6.8	260	<0.5	<0.25	40	9.2	23	11	<0.05	<0.5	41	<0.5	<0.5	<0.5	49	101
MW-2, 9.5-10.0	9.5-10.0	11/5/2007	<0.5	5.2	260	<0.5	<0.25	35	11	20	6.8	<0.05	<0.5	41	<0.5	<0.5	<0.5	46	104
MW-2, 14.5-15.0	14.5-15.0	11/5/2007	<0.5	5.5	180	<0.5	<0.25	32	8.6	19	6.6	<0.05	<0.5	35	<0.5	<0.5	<0.5	43	48
MW-2, 18.5-19.0	18.5-19.0	11/5/2007	<0.5	4.9	270	<0.5	<0.25	33	10	20	6.7	<0.05	<0.5	38	<0.5	<0.5	<0.5	45	51
MW-3, 4.5-5.0	4.5-5.0	11/5/2007	<0.5	5.1	110	<0.5	<0.25	34	7.1	16	5.2	<0.05	<0.5	33	<0.5	<0.5	<0.5	32	42
MW-3, 9.5-10.0	9.5-10.0	11/5/2007	<0.5	5.4	170	0.52	<0.25	53	11	20	6.4	<0.05	<0.5	40	<0.5	<0.5	<0.5	48	57
MW-3, 14.5-15.0	14.5-15.0	11/5/2007	<0.5	5.3	93	<0.5	<0.25	32	5.8	16	4.9	<0.05	<0.5	28	<0.5	<0.5	<0.5	40	102
MW-3, 18.5-19.0	18.5-19.0	11/5/2007	<0.5	6.0	150	<0.5	<0.25	34	11	21	7.6	<0.05	<0.5	40	<0.5	<0.5	<0.5	42	100
RWQCB ESL (Comn	nercial/Indus	trial)	40	1.5	1,500	0.1	7.4	58*	80	230	750	10	40	150	10	40	15	190	600
RWQCB ESL (Resid	ential)		6.1	0.38	750	0.038	1.7	58*	40	230	200	1	40	150	10	20	1.2	15	600
USEPA PRG (Comm	nercial/Indust	trial)	410	0.25	67,000	1,900	450	450	1900	41,000	800	310	5,100	20,000	5,100	5,100	67	1,000	100,000

Notes:

Data are reported in milligrams per kilogram (mg/kg).

Nov 2007- RWQCB ESL = Regional Water Quality Control Board's Shallow Soil Environmental Screening Level for Commercial, Industrial, or Residential Property where groundwater is currently or potentially a drinking water resource.

58* = Total Chromium ESL Values used are from 2005 since the Nov 2007 version does not include an ESL for Total Chromium commercial/industrial or residential properties.

USEPA PRG = United States Environmental Protection Agency's Preliminary Remediation Goal for Industrial Soil. (2004)

EPA Method 6010B for CAM-17 Metals

Bold = results which are greater than the Nov 2007 RWQCB Shallow Soil ESL for Commercial/Industrial Properties

Table 5 - Summary of Groundwater Elevation Measurements461 McGraw Avenue, Livermore, California

Well	Date	Measuring Point Elevation	Total Well Depth	Depth to Water	Groundwater Elevation
MW-1	11/9/2007	524.66	19.41	10.05	514.61
MW-2	11/9/2007	527.15	19.52	11.21	515.94
MW-3	11/9/2007	526.99	19.85	11.27	515.72

Notes:

Depth measurements are reported in feet below the measuring point.

Elevations are reported in feet above mean sea level.

Measuring Point Elevations are surveyed on 11/07/2007 by Mid Coast Engineers

Boring	Date	TPH-g	TPH-d	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	Other VOCs	Other Oxygenates
MW-1	11/9/2007	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	10	ND	ND
MW-2	11/9/2007	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	<1.0	ND	ND
MW-3	11/9/2007	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	<1.0	ND	ND
CDHS MC	L			5 ^(a)	1	150	300	1,750	5		
Drinking W	/ater ESLs	210	210	13	1.0	150	300	1,800	5		

Table 6 - Summary of Groundwater Sample Analytical Results461 McGraw Avenue, Livermore, California

Notes:

Data are reported in micrograms per liter (μ g/L)

TPH-g = Total Petroleum Hydrocarbons as gasoline TPH-d = Total Petroleum Hydrocarbons as diesel

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes

VOCs = Volatile Organic Compounds MTBE = Methyl tert-Butyl Ether PCE = Tetrachloroethene

(a) = This is the secondary MCL for MTBE, which is based on qualitative factors such as taste and odor. The primary MCL for MTBE, the value that has been determined to be protective of human health, is 13 micrograms per liter.

Drinking Water ESLs = Regional Water Quality Control Board's Environmental Screening Levels for drinking water. 2007

CDHS MCL = California Department of Health Services' Maximum Contaminant Level for Drinking Water, CCR Title 22, 2005

Method 8015 M for TPH-d, Method 8260B for VOCs, TPH-g, Fuel Oxygenates, BTEX, MTBE and VOCs

ND = Not Detected

-- = Not Established

Boring	Date	Sb	As	Ва	Be	Cd	Cr	Co	Cu	Pb	Hg	Мо	Ni	Se	Ag	TI	V	Zn
MW-1	11/9/2007	<0.5	2.3	240	<0.5	<0.25	8.6	<0.5	<0.5	<0.5	0.040	1.9	<0.5	1.4	<0.19	<0.5	14	<5.0
MW-2	11/9/2007	<0.5	2.7	140	<0.5	<0.25	1.9	0.60	0.83	<0.5	0.059	2.2	1.1	<0.5	<0.19	<0.5	12	<5.0
MW-3	11/9/2007	<0.5	3.5	120	<0.5	<0.25	2.6	0.67	1.6	<0.5	0.038	2.3	1.3	0.71	<0.19	<0.5	9	<5.0
CDHS MC	CL	6	50	1,000	4	5	50		1,000 ^(a)	15 ^(b)	2		100	50	100 ^(c)	2		5,000 ^(c)
Drinking V	Vater ESLs	6.0	50	1,000	4.0	5.0	50	140	1,000 ^(d)	15	2.0	35	100	50	100	2.0	15	5,000

Table 7 - Summary of Groundwater Sample Analytical Results for Total Metals 461 McGraw Avenue, Livermore, California

Notes:

Data are reported in micrograms per liter (μ g/L)

- Sb = Antimony
- As = Arsenic
- Ba = Barium
- Be = Beryllium
- Cd = Cadmium
- Cr = Chromium
- Co = Cobalt
- Cu = Copper
- Pb = Lead
- Hg = Mercury
- Mo = Molybdenum Ni = Nickel
- Se = Selenium
- Ag = Silver
- TI = Thallium
- V = Vanadium
- Zn = Zinc

CDHS MCL = California Department of Health Services' Maximum Contaminant Level for Drinking Water (2006 list)

(a) = Secondary MCL, a standard based on qualitative factors such as taste and odor. The Regulatory Action Level (a concentration that, if a system exceeds, requires it to take certain actions), is 1,300 μ g/L. The Regulatory Action Level Replaces the MCL.

(b) = Regulatory Action Level, a concentration that, if a system exceeds, requires it to take certain actions

(c) = Secondary MCL, a standard based on qualitative factors such as taste and odor.

(d) = Ceiling level for copper. The drinking water (human health-protective) ESL is 1,300 μ g/L.

Drinking Water ESLs = Regional Water Quality Control Board's Environmental Screening Levels for drinking water. (Nov 2007)

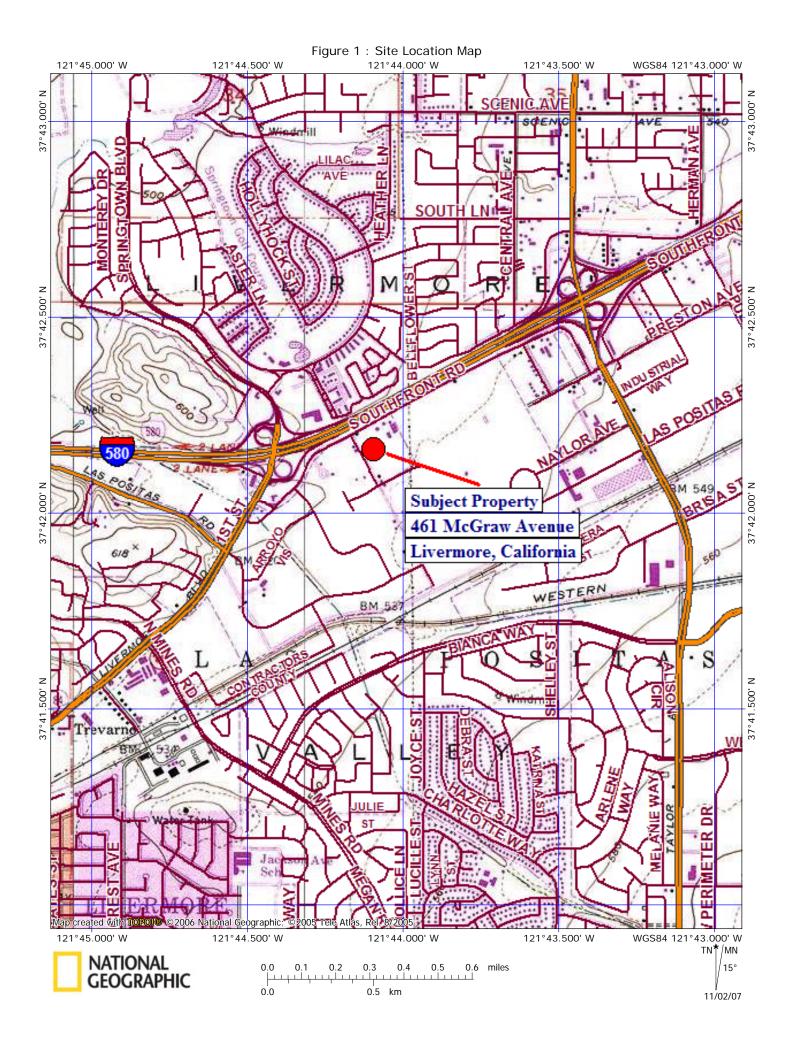
-- = Not Established

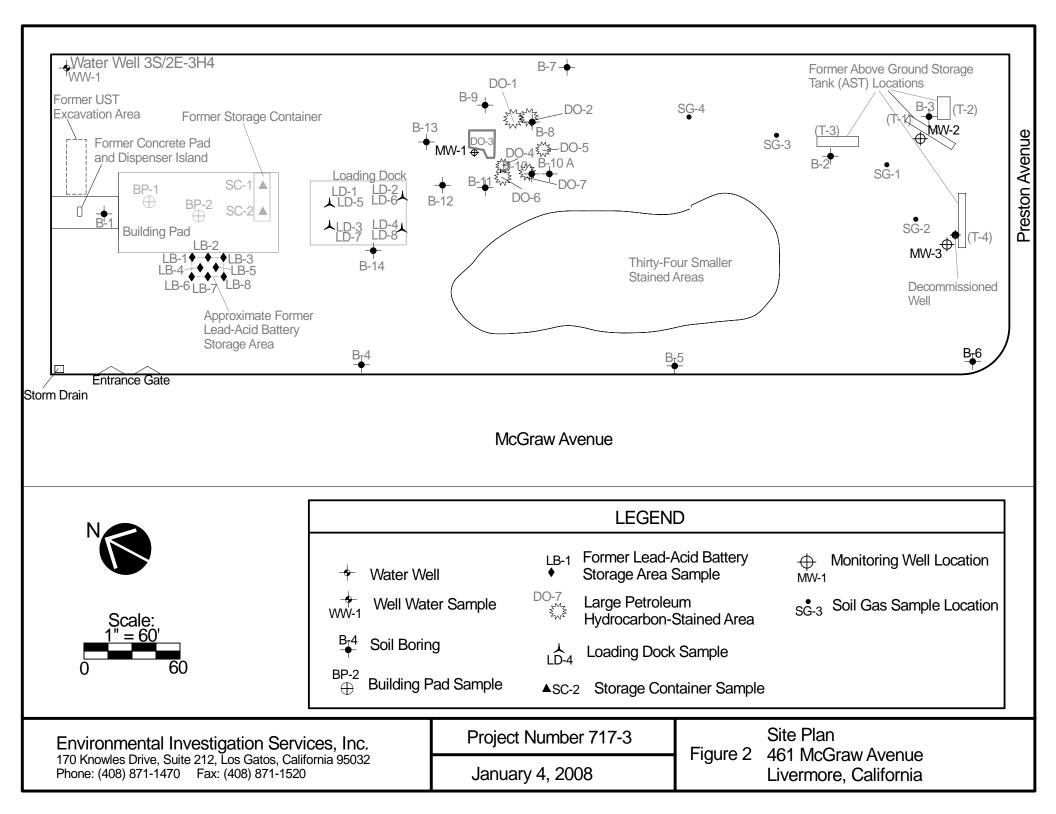
CAM 17 Total Metals by EPA 200.8 Method

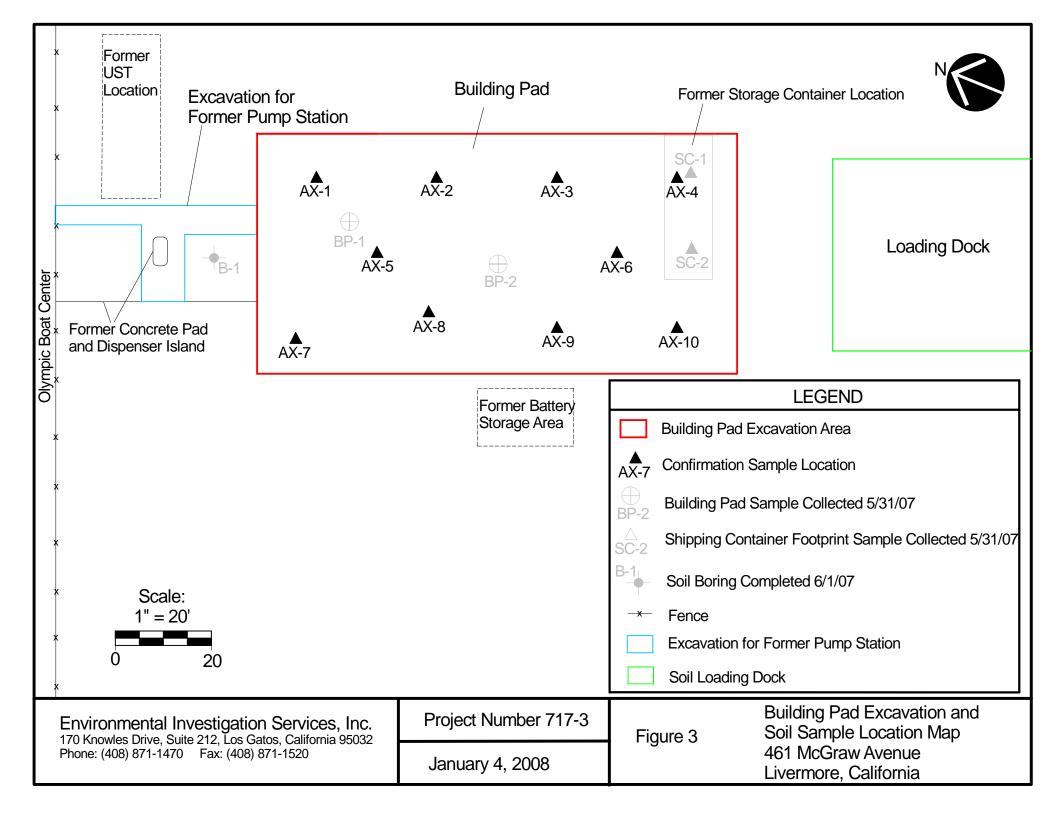
Sample	Date	Benzene	Isopropyl Alcohol	Ethylbenzene	1,2,4-Trimethylbenzene	PCE	Toluene	Xylenes	Other VOC's
SG-1	11/21/2007	28	120	49	20	<14	250	190	ND
SG-2	11/13/2007	<6.5	<25	<8.8	<10	<14	<7.7	<27	ND
SG-3	11/13/2007	<6.5	<25	<8.8	<10	<14	<7.7	<27	ND
SG-4	11/21/2007	44	<25	21	<10	60	150	78	ND
CHHSL Shall Screening		36.2				180	135,000	315,000	
RWQCB ESL Screening		85		210,000		410	63,000	21,000	

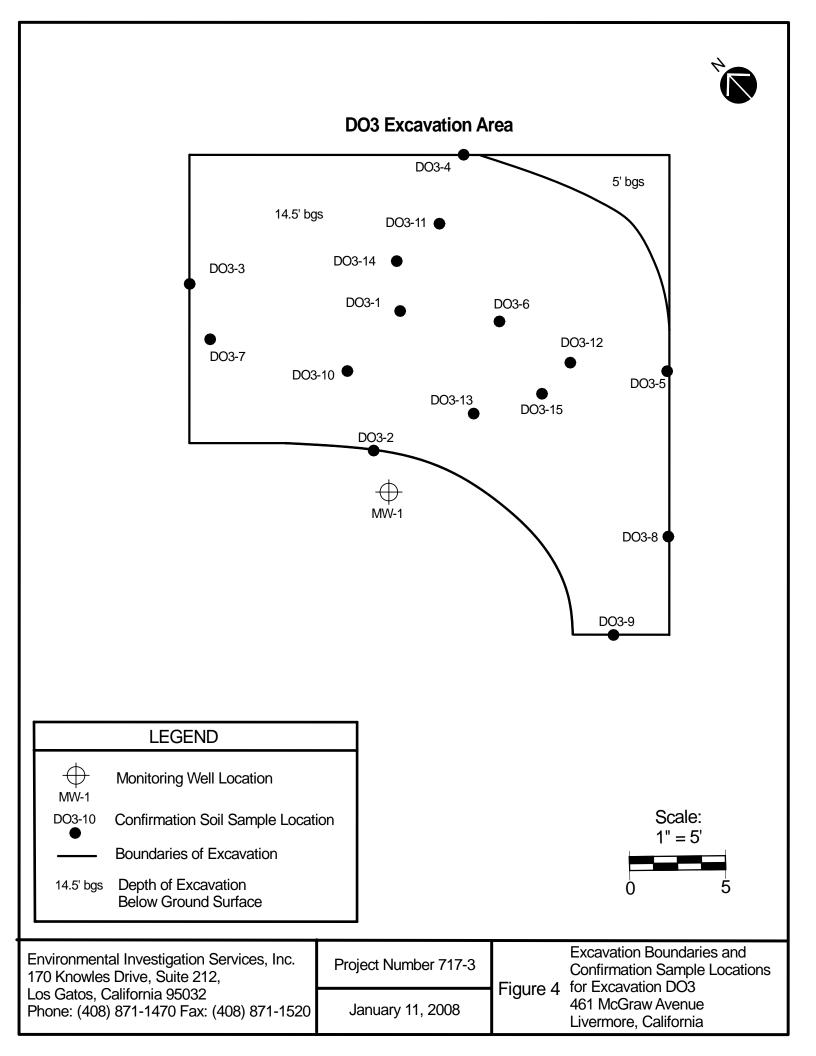
Table 8 - Summary of Soil Gas Sample Analytical Results461 MacGraw Avenue, Livermore, California

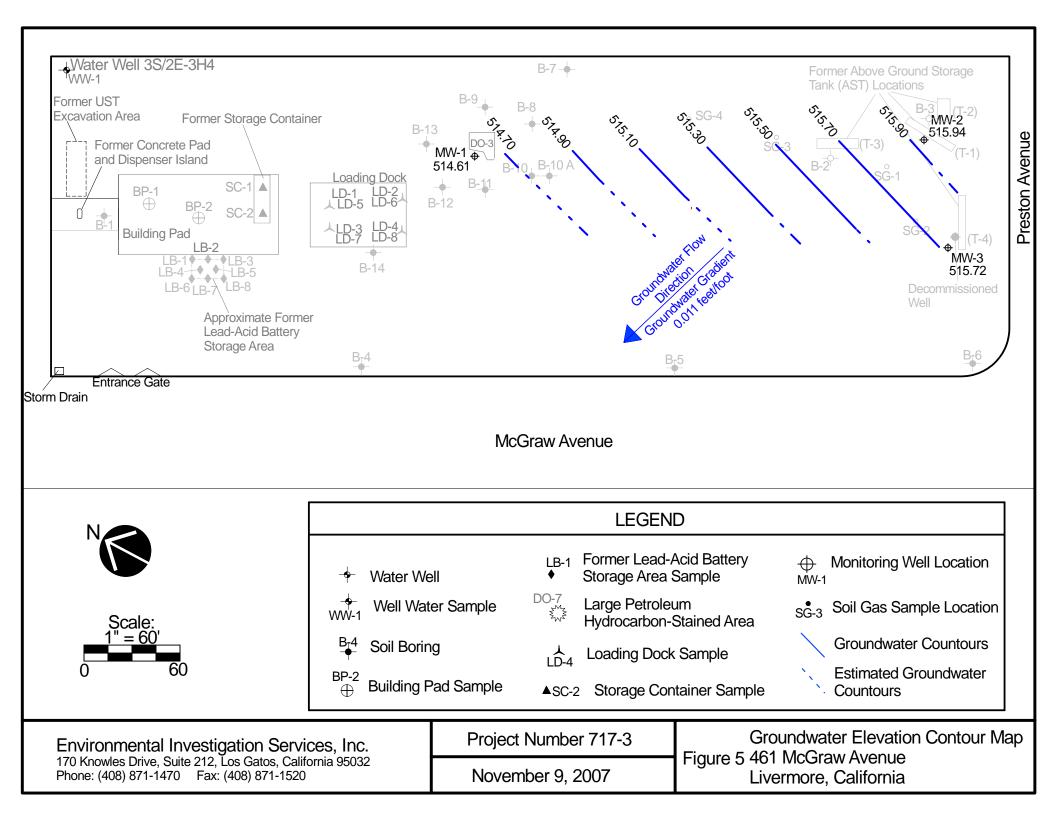
Notes:


Data and CHHSL Shallow Soil Gas Screening Levels are reported in micrograms per liter (µg/m³)


CHHSL Soil Gas Screening Levels are based on soil gas data collected less than 1.5 meters (5 feet) below a building foundation or the ground surface. Intended for evaluation of potential indoor-air impacts for **Residential Land Use**.


Nov 2007- RWQCB ESL Soil Gas Screening Levels are based on soil gas data collected less than 3.0 meters (10 feet) below a building foundation or ground surface. Intended for evaluation of potential indoor-air impacts for **Residential Land Use.**


Not Established	ND = Not Detected	
PCE = Tetrachloroethene	VOCs = Volatile Organic Compounds	Soil Gas Analysis by EPA Method TO15


FIGURES

ATTACHMENTS

Attachment A Building Pad Soil Samples Laboratory Analytical Reports

McCampbell Analytical, Inc.

"When Ouality Counts"

Environmental Investigation Servi	Client Project ID: #712-2; Cal Mae	Date Sampled: 10/30/07
170 Knowles Drive, Suite 212	Transport	Date Received: 10/30/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 10/31/07
205 00005, 011 75052	Client P.O.:	Date Completed: 10/31/07

WorkOrder: 0710935

October 31, 2007

Dear Peter:

Enclosed are:

- 1). the results of 10 analyzed samples from your #712-2; Cal Mae Transport project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

																		07	110	93	5								4	8 Hr	¥	
McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: <u>www.mccampbell.com</u> Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269										RN oTr	AR ack	(ROU er]	EDI	F Q	ľ	PD Ch	F	RUS E	ы Ех	24 kcel	HR	R	48 I Wr	HR 72 ite On 10 ite J" flag	IR IR IW) is re	the state of the s						
Report To: E	IS		B	Bill To	0: E	2	LS	-	A			>		⊢					A	nal	ysis	Rec	ues	t						Other	C	mments
Report To: E Company: E 170 KM Tele: (40%) & Project #: 71 Project Location: Sampler Signatur	71-14 2-2 461 M	nive, 10 Vegn	LOS C E F P Colt	est: Gol G-Mai Tax: (Projec Ave	gel os, il: p (408 en Nar	C Li ne:	al marcali	if if if ve	nae yh	2000	15000	1.0 1.0 ne	eo. Let pn	2/8021 1 8015)/ MTBE		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	irbons (418.1)	021 (HVOCs)	PA 602 / 8021)	esticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	icides)	Cl Herbicides)	(0Cs)	VOCs)	AHs / PNAs)	00.8 / 6010 / 6020)	00.8 / 6010 / 6020)	/ 6020)	EPA 6010 B	Sa foi an	lter mples Metals alysis: s / No
Sampler Signatur		SAME	PLING			Г	MA	TR	IX		IAL C	inc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			& G	droca	10/8	LY (E	(CI P	3's ON	Pest	idic C	60 (V	70 (S	10 (P)	0.7/2	.7/2(6010	2		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	er			Sludge	T			Other	TPH as	8	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCE	EPA 507 / 8141 (NP Pesticides)	EPA 515/ 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	ARSENIC-E		
	AX-1	10/3d1	14:41	1	35		X		-	İχ	c	1	1	t	1	1														X	+	
	Ax-2	10]3da '1	14:15	F1	11		X			×	0	-			1		1													X		
	Ax-2 Ax-3 Ax-4	,,	14:05	1	4		X			ľx	:						1													X		
	AX-4	Ŋ	13:55	1	11		X			X		1					1													X		
	AX-5	11	4:55	1	11		X			17	0	*																		\times		
	AX-6	1)	15:10	(11		X			X																				X		
	AX-6 Ax-7	11	15:20	1	1)		X			X	1																			X		
	AX-8	11	15:18	1	11		X			17	!																			X		
	AX-9 AX-10	11	15:15	1	4		x			X																				X		
	AX-10	11	13:45	1	11		×	-	_	/>	0	-				-							_							X	-	
																1	DT	5														
Relinquished By:	h		Time: Siz		ived B								ICE/1°_1°C GOOD CONDITION HEAD SPACE ABSENT Ø_				8 H	tris														
Relinquished By:	- 12	Date:	Time:	T	ived By	W	Ll	ai	t	_	_			AJ	ECH PPRO RESE	PR	ATE	CO	NTAI		RS	~									V	
Relinquished By:	te	Date:	Time: (Poq	Rece	ived By BU	y: Rl	X	/						PF	RESE	RVA	TIO		DAS	08	¢G	ME pH<		s (отн	ER		`				

of

	AW	ĺ
1	-100	1
1		S
		1

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	2A 94565-1701 9262					Work	Order	: 07109	935	(ClientID	: EISI					
				EDF		Excel		Fax	I	Email		Hard	Сору	Thir	rdParty		
Report to: Peter Littman Environmental I 170 Knowles Di Los Gatos, CA		Email: plittma TEL: (408) 8 ProjectNo: # 712-2 PO:	71-1470			t	En 17 Los	rbar vironme 0 Know s Gatos rbara@	les Driv , CA 9	ve, Suit 5032	ition Ser e 212	vices,	Dat	uested e Rece e Prin	eived:	2 10/30/ 11/01/	
									Req	uested	Tests (See leg	gend b	elow)			
Sample ID	ClientSampID	M	atrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0710935-001	AX-1		Soil	10/30/07 2:45:00		А	А								Τ	Т	T
0710935-002	AX-2	;	Soil	10/30/07 2:15:00		А											
0710935-003	AX-3	;	Soil	10/30/07 2:05:00		А											
0710935-004	AX4		Soil	10/30/07 1:55:00		А											
0710935-005	AX-5		Soil	10/30/07 2:55:00		А											
0710935-006	AX-6		Soil	10/30/07 3:10:00		А											
0710935-007	AX-7	:	Soil	10/30/07 3:20:00		А											
0710935-008	AX-8	;	Soil	10/30/07 3:18:00		А											
0710935-009	AX-9	;	Soil	10/30/07 3:15:00		А		1		1							
0710935-010	AX-10	:	Soil	10/30/07 1:45:00		А											

Test Legend:

1 ASMS_S	2 PREDF REPORT	3	4
6	7	8	9
11	12]	

•	

5					
10	Γ				

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 **Sample Receipt Checklist** Date and Time Received: 10/30/2007 5:20:44 PM Client Name: Environmental Investigation Services, Inc. Project Name: # 712-2; Cal Mae Transport Checklist completed and reviewed by: Kimberly Burks WorkOrder N°: 0710935 Carrier: Derik Cartan (MAI Courier) Matrix Soil Chain of Custody (COC) Information V No 🗆 Chain of custody present? Yes No 🗆 V Chain of custody signed when relinquished and received? Yes \checkmark No 🗌 Chain of custody agrees with sample labels? Yes No 🗌 V Yes Sample IDs noted by Client on COC? ✓ No 🗆 Yes Date and Time of collection noted by Client on COC? No 🗌 ✓ Sampler's name noted on COC? Yes Sample Receipt Information No 🗆 NA 🔽 Custody seals intact on shipping container/cooler? Yes No 🗌 V Yes Shipping container/cooler in good condition? No 🗌 \checkmark Yes Samples in proper containers/bottles? No \checkmark Sample containers intact? Yes \checkmark No Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information

All samples received within holding time?	Yes 🗹	No 🗌	
Container/Temp Blank temperature	Cooler Temp:	16.0°C	NA 🗆
Water - VOA vials have zero headspace / no bubbles?	Yes 🗌	No 🗆	No VOA vials submitted 🗹
Sample labels checked for correct preservation?	Yes 🗹	No 🗌	
TTLC Metal - pH acceptable upon receipt (pH<2)?	Yes 🛛	No 🗆	NA 🔽

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Analytical, Inc.

<u> </u>	ampbell Analyti "When Ouality Counts"	ical, Inc		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Environmental Inv	restigation Services, In			# 712-2; Cal Mae Date Sampled: 10/30/07							
170 Knowles Drive	e, Suite 212	Transport		Date Received: 10/30/07							
Los Gatos, CA 950	132	Client Co	ntact: Pe	ter Littman	Date Extracted: 10/30/07						
105 0005, 011 750	52	Client P.O).:		Date Analyzed: 10/31	/07					
		А	rsenic by	ICP-MS*							
Extraction method: SW30			Analytical m	ethods: 6020A		Work 0	Order: 07	10935			
Lab ID	Client ID		Matrix	Extraction Type		Arsenic	DF	% SS			
0710935-001A	AX-1		S	TOTAL		4.1	1	102			
0710935-002A	AX-2		S	TOTAL		4.0	1	101			
0710935-003A	AX-3		S	TOTAL		6.2	1	96			
0710935-004A	AX4		S	TOTAL		4.2	1	101			
0710935-005A	AX-5		S	TOTAL		4.3	1	100			
0710935-006A	AX-6		S	TOTAL		6.0	1	98			
0710935-007A	AX-7		S	TOTAL		3.5	1	103			
0710935-008A	AX-8		S	TOTAL		5.1	1	99			
0710935-009A	AX-9		S	TOTAL		3.8	1	103			
0710935-010A	AX-10		S	TOTAL		4.5	1	97			

Reporting Limit for DF =1;	W	TOTAL	NA	µg/L
ND means not detected at or above the reporting limit	S	TOTAL	0.5	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL[^] metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

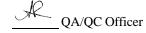
"When Ouality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil QC Matrix: Soil										WorkO	rder: 07109	35	
EPA Method 6020A Extraction SW)B	В	atchID: 3	Spiked Sample ID 0710935-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)
, analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Arsenic	4.1	50	97.9	95.1	2.67	10	101	103	1.67	70 - 130	20	80 - 120	20
%SS:	102	250	104	105	0.839	250	101	102	1.10	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 31628 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710935-001A	10/30/07 2:45 PM	A 10/30/07	10/31/07 4:00 PM	0710935-002A	10/30/07 2:15 PM	A 10/30/07	10/31/07 4:26 PM
0710935-003A	10/30/07 2:05 PM	A 10/30/07	10/31/07 4:31 PM	0710935-004A	10/30/07 1:55 PM	A 10/30/07	10/31/07 4:37 PM
0710935-005A	10/30/07 2:55 PM	A 10/30/07	10/31/07 5:08 PM	0710935-006A	10/30/07 3:10 PM	A 10/30/07	10/31/07 5:14 PM
0710935-007A	10/30/07 3:20 PM	A 10/30/07	10/31/07 5:20 PM	0710935-008A	10/30/07 3:18 PM	A 10/30/07	10/31/07 5:25 PM
0710935-009A	10/30/07 3:15 PM	A 10/30/07	10/31/07 5:31 PM	0710935-010A	10/30/07 1:45 PM	A 10/30/07	10/31/07 5:37 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

Attachment B DO3 Soil Samples Laboratory Analytical Reports

"When Quality Counts"

Environmental Investigation Servi	Client Project ID: #717-2; Cal Mac	Date Sampled: 10/29/07
170 Knowles Drive, Suite 212	Transportation	Date Received: 10/29/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 10/30/07
	Client P.O.:	Date Completed: 10/31/07

WorkOrder: 0710910

October 31, 2007

Dear Peter:

Enclosed are:

- 1). the results of 7 analyzed samples from your **#717-2; Cal Mac Transportation project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	ebsite: www.m	1534 WI PITTSBU ccampbe	LLOW PA JRG, CA 9- ILcom En	SS RO 4565-1 nail: n	AD 701 nain@	meca	mpt	ell.co	10			5.449	6	100		AR	ou er E	EDF			PD Ch	F	RUS Market State	Ey mp	24 xce	ня I Ç		48 Wr	HR rite)RD 72 ⁴ On (I	IR 5 D/ DW)
Report To: E Company: F m 170 K m Tele: (408) & Project #: 7/ Project Location Sampler Signatu	2-2	Meg	In Lo I I I I I I I I I I I I I I I I I I	Sill To Sel G-Mai Sax: (Projec	1: p lip lip lip	=] 1: H 1: H ne: < 1: 4	S Con 271	Se Lis - Lis Mi	S 2 ac	als o Tr	il.m nou	In ref	8021 8 MTBE	-0-HJ.	rease (1664 / 5520 E/B&F)	arbons (418.1)	8021 (HVOCs)			EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	Rec (sepieration of the second		82603-1		AHs / PNAs)	Metch Control	210	1/ 6020)		Other	Comn Filter Sampl for Me analys Yes / M
SAMPLE ID	LOCATION/ Field Point Name		Time	# Containers	Type Containers	er	Vir Soil	Sludge	F	ME PRES		VED	BTEX & TPH as Gas	TPH us Diesel Comp	Total Petroleum Oil & G	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's O	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA: \$260B (VOCS)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	TITLE 22	T 5 Metals (200.7 / 2	Lead (200.7 / 200.8 / 6010 / 6020)			
	D03-8 D03-9 D03-10	1, 1	2.15:11 15:11 13:54	1	SS 11		X X X			X X X			XX	XXX																	7
	DO3-11 DO3-12	1.1.1	13:45		ti n		×)	x			XXX	×																	
	DO3-13 COMP-E4	ti 1]	9:15		15		x			¢			*	×		_							X			×					
			1.42	798458													_														
Palinauichad Pu		Data	Timer	Berg									100	140	e	4															
Relinquished By: Relinquished By: Relinquished By:	R	Date: 0 2907 Date: 0 2907 Date: 0 2907	Time: 3:30 Time: 7:30 Time: 7:00	Recei	ived By	1 (c 	20	2	0			_	GO HE DE API	OD O AD S CHL PRO	CON PAC ORI PRIA VEI	DITI TE AI NAT	BSEN ED I CON LAB	NT_NLA	B	2	ēS			OTHI			CO!	AME	ENTS		

NO K
1

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C. (925) 252-9	A 94565-1701 9262					Work(Order	: 07109	910	C	ClientID: EIS	I				
				EDF		Excel		Fax	E	🗸 Email	Har	dCopy	Thir	rdParty		
Report to: Peter Littman		Email:	plittman@eis	1.net, jmorris@e	is1.ne		Bill to: Ba	ırbar				Rec	luested	TAT:	1	l day
Environmental I 170 Knowles Dr Los Gatos, CA	,	TEL: ProjectNo: PO:	(408) 871-1470		371-152		En 17 Lo		les Driv s, CA 9	/e, Suit 5032	tion Services e 212		te Recei te Print		10/29/ 10/29/	
									Req	uested	Tests (See le	egend k	pelow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9	10	11	12
0710910-001	D03-8		Soil	10/29/07 3:10:00				А	А	А				<u> </u>	T	1
0710910-002	D03-9		Soil	10/29/07 1:35:00				Α		А						
0710910-003	D03-10		Soil	10/29/07 1:54:00				А		А						
0710910-004	D03-11		Soil	10/29/07 1:45:00				А		А						
0710910-005	D03-12		Soil	10/29/07 2:00:00				А		А						
0710910-006	D03-13		Soil	10/29/07 3:00:00				Α		А					1	1
0710910-007	COMP- F4		Soil	10/29/07 9:15:00		А	А									

Test Legend:

1 8260B_S	2 CAM17MS_S	3 G-MBTEX_S	4 PREDF REPORT	5 TPH(DMO)_S
6	7	8	9	10
11	12			

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	Campbell Analytical, Inc. "When Ouality Counts"	<u>.</u>		Web: www.me	llow Pass Road, Pittsburg, CA 94565-1701 ccampbell.com E-mail: main@mccampbell.com ione: 877-252-9262 Fax: 925-252-9269
	Sa	mple	Receip	ot Checklis	st
Client Name:	Environmental Investigation Servi	ices, I	Inc.	Date a	nd Time Received: 10/29/07 7:28:05 PM
Project Name:	#712-2; Cal Mac Transportation			Checkl	list completed and reviewed by: Rosa Venegas
WorkOrder N°:	0710910 Matrix <u>Soil</u>			Carrier	r: Derik Cartan (MAI Courier)
	<u>Chain</u>	of Cu	<u>stody (C</u>	OC) Informa	tion
Chain of custody	v present?	Yes		No 🗌	
Chain of custody	v signed when relinquished and received?	Yes		No 🗆	
Chain of custody	agrees with sample labels?	Yes	\checkmark	No 🗆	
Sample IDs noted	by Client on COC?	Yes	\checkmark	No 🗆	
Date and Time of	f collection noted by Client on COC?	Yes	\checkmark	No 🗆	
Sampler's name	noted on COC?	Yes	\checkmark	No 🗆	
	<u>S</u>	ample	Receipt	Information	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	\checkmark	No 🗆	
Samples in prop	er containers/bottles?	Yes		No 🗆	
Sample containe	rs intact?	Yes	\checkmark	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	\checkmark	No 🗌	
	Sample Prese	rvatio	n and Ho	ld Time (HT)	Information
All samples recei	ived within holding time?	Yes		No 🗆	
Container/Temp	Blank temperature	Coole	er Temp:	8.4°C	
Water - VOA via	ls have zero headspace / no bubbles?	Yes		No 🗆	No VOA vials submitted 🗹
Sample labels ch	necked for correct preservation?	Yes	\checkmark	No 🗌	
TTLC Metal - pH	acceptable upon receipt (pH<2)?	Yes		No 🗆	NA 🗹

Client contacted:

Date contacted:

Contacted by:

Comments:

When Quality		<u>ıc.</u>		Web: www.mccan	v Pass Road, Pittsburg, CA ppbell.com E-mail: ma : 877-252-9262 Fax: 9	in@mccampbell.com		
Environmental Investigation Serv	ices, In Client	Project	ID: #71	17-2; Cal Mac	Date Sampled:	10/29/07		
	Transp	ortation	l		Date Received:	10/29/07		
170 Knowles Drive, Suite 212	Client	Contact	: Peter I	ittman	Date Extracted	10/29/07		
Los Gatos, CA 95032	Client		. 100011	310011001	Date Analyzed			
					•	. 10/20/07		
	Volatile Organ	•		d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B		Analytica	l Method:			Work Order: 07109	010	
Lab ID					10-007A			
Client ID					1P- E4			
Matrix			D	S	oil			
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reportin Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	ner (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	• `	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	4)	ND	1.0	0.05
n-Butyl benzene tert-Butyl benzene	ND ND	1.0	0.005	sec-Butyl benzene Carbon Disulfide		ND ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.003
Chloroform	ND	1.0	0.005	Chloromethane	Luier	ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chlo	ropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzen	e	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorome		ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane		ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe		ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropan		ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropan		ND	1.0	0.005
1,1-Dichloropropene trans-1,3-Dichloropropene	ND ND	1.0	0.005	cis-1,3-Dichloropro Diisopropyl ether (I		ND ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ethe	,	ND	1.0	0.005
Freon 113	ND	1.0	0.005	Hexachlorobutadien	· · · ·	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz		ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethau	ne	ND	1.0	0.005
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND	1.0	0.005	Trichloroethene 1,2,3-Trichloroprop	200	ND ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,2,3-Tricnloroprop		ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes		ND	1.0	0.005
·				ecoveries (%)		1.0	1.0	0.000
%SS1:	9			%SS2:		10	0	
%SS3:	11	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10	~	

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Ar "When Quality		cal, In	<u>c.</u>		Web: www.mccar		A 94565-1701 in@mccampbell.c 25-252-9269	com
Environmental Investigation Servi	ces, In	Client Pr	roject ID:	#717-	2; Cal Mac	Date Sampled:	10/29/07	
-	,	Transpor	rtation			Date Received:	10/29/07	
170 Knowles Drive, Suite 212		Client C	ontact: Pe	tor Lit	man	Date Extracted		
					IIIaII			
Los Gatos, CA 95032		Client P.	.0.:			Date Analyzed:	10/31/07	
		C	CAM / CCF	R 17 Me	tals*			
Lab ID	07109	10-007A					Reporting Lin	nit for DF =1:
Client ID	CON	MP- E4					ND means	
Matrix		S					S	W
Extraction Type	TC	TAL					mg/Kg	mg/L
			MS Motola	Conce	ntration*		00	6-
Analytical Method: 6020A			MS Metals, raction Method				Work Order:	0710910
Dilution Factor		1					1	1
Antimony	().71					0.5	NA
Arsenic		6.7					0.5	NA
Barium		290					5.0	NA
Beryllium		ND					0.5	NA
Cadmium).44					0.25	NA
Chromium		41					0.5	NA
Cobalt		11					0.5	NA
Copper		26					0.5	NA
Lead		25					0.5	NA
Mercury	0	.054					0.05	NA
Molybdenum	().52					0.5	NA
Nickel		48					0.5	NA
Selenium		ND					0.5	NA
Silver		ND					0.5	NA
Thallium		ND					0.5	NA
Vanadium		49					0.5	NA
Zinc		110					5.0	NA
%SS:		105						
	1		1		1			
Comments								
*water samples are reported in µg/L, productsoil/sludge/solid samples in mg/kg, wipe sautsoil/sludge/solid samples in mg/kg, wipe sautsoil/sludge/slu	nples in µ	ıg/wipe, filt	er samples ir	µg/filte	r.		-	-
$\Gamma OTAL = acid digestion.$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		approacte to and out		
WET = Waste Extraction Test (STLC).								
DI WET = Waste Extraction Test using de-i	onized wa	ater.						
 i) aqueous sample containing greater than ~ metals, a representative sediment-water mix quantitation limits; k) reporting limit raised interference; n) results are reported on a dry 	ture was due to ma	digested; j) i atrix interfer	reporting lim rence; m) est	it raised mated v	due to insufficient	t sample amount; J) ana	lyte detected b	elow

	McCampbell	Analyti ality Counts"	ical, Inc.		Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 2 Fax: 925-252-9	ampbell.com		
Enviro	onmental Investigation Se	ervices, In			7-2; Cal Mac		Date Sample	ed: 10/29/07	1	
170 K	nowles Drive, Suite 212		Transporta	tion			Date Receiv	ed: 10/29/07	1	
Lac	ataa CA 05022		Client Con	tact: Peter L	ittman		Date Extract	ted 10/29/07	r	
Los G	atos, CA 95032		Client P.O	.:			Date Analyz	ed: 10/29/07	-10/3	0/07
Extraction	Gasoline] on method: SW5030B	Range (C6		tile Hydroca		oline with B'	TEX and MT	BE* Work Orde	:: 0710	910
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	D03-8	S	ND	ND	ND	ND	ND	ND	1	76
002A	D03-9	S	ND	ND	ND	ND	ND	ND	1	98
003A	D03-10	S	43,g	ND<1.0	ND<0.10	ND<0.10	ND<0.10	ND<0.10	20	84
004A	D03-11	S	120,g	ND<1.0	ND<0.10	ND<0.10	ND<0.10	ND<0.10	20	121
005A	D03-12	S	33,g	ND<0.50	ND<0.050	ND<0.050	ND<0.050	ND<0.050	10	87
006A	D03-13	S	ND	ND	ND	ND	ND	ND	1	86
Re	porting Limit for DF =1; means not detected at or	W	NA	NA	NA	NA	NA	NA	1	ug/L
	bove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

DHS ELAP Certification N° 1644

McC:	ampbell Analyti "When Quality Counts"	cal, Inc.	Web: www.mcca	low Pass Road, Pittsburg, CA 9456 ampbell.com E-mail: main@mc ne: 877-252-9262 Fax: 925-252	campbell.cor	n
Environmental Inv	vestigation Services, In		#717-2; Cal Mac	Date Sampled: 10/	/29/07	
170 Knowles Driv	ve, Suite 212	Transportation		Date Received: 10/	/29/07	
		Client Contact: P	eter Littman	Date Extracted 10/	/29/07	
Los Gatos, CA 95	032	Client P.O.:		Date Analyzed: 10/	/30/07	
Extraction method: SW35	Diesel (C10-23) and Oil	(C18+) Range Extra Analytical metho	-		rk Order: 0'	710910
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0710910-001A	D03-8	S	ND	ND	1	
0710910-002A	D03-9	S	ND	ND	1	
0710910-003A	D03-10	S	110,a	55	1	
0710910-004A	D03-11	S	840,a	320	1	
0710910-005A	D03-12	S	880,a	320	1	
0710910-006A	D03-13	S	16,a	9.7	1	
Reportin ND mea	ng Limit for DF =1; ans not detected at or	W	NA	NA	ug	g/L
	the reporting limit	S	1.0	5.0	mg	/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

DHS ELAP Certification Nº 1644

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0710910

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 31	530	Sp	iked Sam	ole ID:	0710791-00	4A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
/ indiyio	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	99.8	103	3.17	97.7	100	2.45	70 - 130	30	70 - 130	30
Benzene	ND	0.050	99.7	105	4.99	102	102	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	89.7	81.4	9.70	83.9	80.9	3.64	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	118	123	4.05	123	123	0	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	117	117	0	113	114	1.04	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	109	109	0	106	107	1.77	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	115	120	3.97	114	117	2.32	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	95.3	99.7	4.52	94.3	96.7	2.55	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	96.6	99	2.44	93.9	95.9	2.02	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	104	102	1.61	96.9	98.4	1.53	70 - 130	30	70 - 130	30
Toluene	ND	0.050	101	106	4.63	105	104	1.44	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	88.8	91.5	2.97	90.7	90.4	0.295	70 - 130	30	70 - 130	30
%SS1:	94	0.050	103	100	3.32	100	100	0	70 - 130	30	70 - 130	30
%SS2:	102	0.050	101	101	0	100	99	1.35	70 - 130	30	70 - 130	30
%SS3:	111	0.050	100	104	3.51	102	102	0	70 - 130	30	70 - 130	30

BATCH 31530 SUMMARY Sample ID Date Sampled Date Extracted Date Analyzed Sample ID Date Sampled Date Extracted Date Analyzed 0710910-007A 10/29/07 9:15 AM 10/29/07

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample M	atrix: Soil				QC Ma	atrix: Soil					WorkO	rder: 07109	10
EPA Method 6	020A			Extracti	on SW3050)B	В	atchID: 3	1611	Spiked Sa	mple	ID 0710910-	-007A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptanc	e Criteria (%)
/ mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	0.71	50	103	100	2.33	10	99.6	99.6	0	70 - 130	20	80 - 120	20
Arsenic	6.7	50	100	100	0	10	102	103	1.46	70 - 130	20	80 - 120	20
Barium	290	500	108	103	2.96	100	100	100	0	70 - 130	20	80 - 120	20
Beryllium	ND	50	92.8	90.9	2.11	10	103	104	1.45	70 - 130	20	80 - 120	20
Cadmium	0.44	50	101	97.6	3.43	10	101	101	0	70 - 130	20	80 - 120	20
Chromium	41	50	95.2	91.9	1.86	10	100	100	0	70 - 130	20	80 - 120	20
Cobalt	11	50	95.3	93.3	1.69	10	106	106	0	70 - 130	20	80 - 120	20
Copper	26	50	101	99.1	1.19	10	104	102	1.65	70 - 130	20	80 - 120	20
Lead	25	50	105	113	5.03	10	103	104	1.16	70 - 130	20	80 - 120	20
Mercury	0.054	1.25	87.4	86	1.49	0.25	83.9	85.3	1.61	70 - 130	20	80 - 120	20
Molybdenum	0.52	50	101	97.9	2.87	10	97.8	98.6	0.794	70 - 130	20	80 - 120	20
Nickel	48	50	106	101	2.37	10	104	105	1.06	70 - 130	20	80 - 120	20
Selenium	ND	50	101	99.8	0.914	10	103	102	1.27	70 - 130	20	80 - 120	20
Silver	ND	50	104	101	3.03	10	96.6	98.4	1.85	70 - 130	20	80 - 120	20
Thallium	ND	50	100	98.1	2.15	10	100	102	1.09	70 - 130	20	80 - 120	20
Vanadium	49	50	97.3	93.9	1.75	10	99.5	98.8	0.635	70 - 130	20	80 - 120	20
Zinc	110	500	104	101	2.43	100	100	100	0	70 - 130	20	80 - 120	20
%SS:	105	250	110	107	3.50	250	103	102	0.587	70 - 130	20	70 - 130	20

BATCH 31611 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710910-007A	10/29/07 9:15 AI	M 10/29/07 10)/31/07 12:41 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

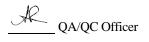
QC Matrix: Soil

WorkOrder 0710910

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 31	576	Sp	iked Sam	ole ID:	0710795-00	4A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	103	105	2.29	111	108	2.87	70 - 130	30	70 - 130	30
MTBE	ND	0.10	104	104	0	109	118	7.81	70 - 130	30	70 - 130	30
Benzene	ND	0.10	96.9	101	3.99	106	108	1.02	70 - 130	30	70 - 130	30
Toluene	ND	0.10	87.7	90.8	3.43	98.9	101	1.83	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	97.7	102	3.99	108	109	1.44	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	95.7	96.7	1.04	107	107	0	70 - 130	30	70 - 130	30
%SS:	88	0.10	86	90	4.58	95	96	1.00	70 - 130	30	70 - 130	30
All target compounds in the Method F NONE	lank of this	extraction	batch we	ere ND les	ss than the	method R	RL with th	ne following	exceptions:			

BATCH 31576 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710910-001A	10/29/07 3:10 PM	10/29/07	10/30/07 10:34 AM	0710910-002A	10/29/07 1:35 PM	10/29/07	10/29/07 10:40 PM
0710910-003A	10/29/07 1:54 PM	10/29/07	10/30/07 12:55 AM	0710910-004A	10/29/07 1:45 PM	10/29/07	10/30/07 12:21 AM
0710910-005A	10/29/07 2:00 PM	10/29/07	10/30/07 7:59 AM	0710910-006A	10/29/07 3:00 PM	10/29/07	10/29/07 11:14 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

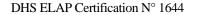
QC Matrix: Soil

WorkOrder 0710910

EPA Method SW8015C	Extra	ction SW	3550C		Bat	chID: 31	577	Sp	iked Sam	ble ID:	0710795-00	4A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
-	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	9.8	20	114	108	3.68	115	115	0	70 - 130	30	70 - 130	30
%SS:	105	50	105	104	1.25	91	114	22.3	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	e following	exceptions:			

BATCH 31577 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0710910-001A	10/29/07 3:10 PM	I 10/29/07	10/30/07 8:13 AM	0710910-002A	10/29/07 1:35 PM	10/29/07	10/30/07 8:13 AM
0710910-003A	10/29/07 1:54 PM	I 10/29/07	10/30/07 9:23 AM	0710910-004A	10/29/07 1:45 PM	10/29/07	10/30/07 9:23 AM
0710910-005A	10/29/07 2:00 PM	I 10/29/07	10/30/07 8:39 AM	0710910-006A	10/29/07 3:00 PM	10/29/07	10/30/07 10:41 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Environmental Investigation Servi	Client Project ID: #707-3A; Cal Mae	Date Sampled: 11/13/07
170 Knowles Drive, Suite 212	Transportation	Date Received: 11/13/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 11/19/07
205 04005, 011 75052	Client P.O.:	Date Completed: 11/19/07

WorkOrder: 0711339

November 19, 2007

Dear Peter:

Enclosed are:

- 1). the results of 2 analyzed samples from your #707-3A; Cal Mae Transportation project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

		_		_						_	_	_		-		_																	
M M	IcCAMP		ANA]			AL	, IP	NC	•														° C	US	STO)Y	R	E		RI)	51
		PITTSBU	RG, CA 94	4565-1	701										rur										1	پ 24	HR		40.1	- III LIDD	7		
	bsite: <u>www.m</u>			nail: n										d	-eo'	Tra	cke	er F	ant.	τG	\mathbf{x}	рп	F	RUS	F	24		h v	48 I Wr	ite	On'		5 DAY W)
	ephone: (877) 252-92	62		Fax:	: (92	(5) 2:	52-5	1209					20	geo.	114	CAC	лц	JD1	Ē													s required
Report To: Per	ter L	iHm	anE	Bill Te	0:	E	T	S		_			-	8					A	nal	ysis	Contractory of the local division of the loc	the second s							_	Othe	the second se	Comments
Company: Ev	wirony	nent	T.	m	ert	29	ali	I'm	25	ic.	2	Fi (co	Cb		_																	
Company: EV 170 KW	DISIES d	hive	, Lo	JC	ial	37		e	al	it	0	in	no	TBE		B&F					gene												Filter
		V	E	2-Mai	il: P	11	tto	A	né	56	25!	1.	nel	8015) V MTBE	0	20 E/					Con						(0)	(0					Samples for Metals
Tele: (408.8	71-10	140	F	Fax: ((4")	0	8	21	E	13	-2	0		8015	0	1 551	(17	Cs)	021)		lors /		es)			s)	/ 602	/ 602					analysis:
	07-3	A			et Nan				10	e	T	Xo	2	hou	tw	1664	(418	IVO	2/80	des)	Aroc		bicid			PNA	6010	6010					Yes / No
Project Location:	4-61 N	acy	Vare 1	fre	new	/	1î'	we	12	~	m	1	2	/ 802 f	4 d	case (bons	21 (F	A 60	sticic	LY;	ides)	Her)Cs)	OCs	Hs/	0.8/	0.8/0	6020				
Sampler Signatur	e: re-	st~			T	—					MET	, HOH	n	Gas (602	A.	6 Gre	ocar	0 / 80	((EP	CIPe	NOS	estic	ic Cl	OV)	VS) ((PA	7/20	/ 200	010 /				
		SAMI	PLING	~	lers		MAT	ſRI	X		RESE			Gas	015)	Fotal Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
SAMPLE ID	LOCATION/			ner	ttain					Γ				H as	el (8(eum	eum	601 /	EX 0	8/8(082 P	141 (151 (624 /	625 /	/WI	tals (tals (/ 200				
SAMPLEID	Field Point Name	Data	Time	Containers	Type Containers	1		1	e .			3		& TP	TPH as Diesel (8015)	etrole	etrole	2.2 /	/ BTJ	5/ 60	8/8	7/8	5/8	4.2 /	5.2 /	270 S	7 Me	Met	00.7				
	Name	Date	Time	Cor	pe	Water	Soil	1	Other	ICE	HCL	HNO ₃	Other	BTEX	H as	tal P	tal P	A 50	LBE	A 50	A 60	A 50	A 51	A 52	A 52	A 82	M 1	FT 5	ad (2				
				#	T,	M	S	AIL	0	IΥ	H	H	Ò	BT	TP	To	To	EP	IM	EP	EP	EP	EP	EP	EP	EP	CA	Γſ	Le				
	003-14	11(13)	12.2	1	55		×			X				X	X																		
	D03-15	10	19:31	21	55		N			x	,			×	X																		
		.,																															
										\square																							
								+		\vdash																							
							-	-		\vdash																							
								-		\vdash														-									
							-	-	+	\vdash	+				$\left \right $			-						-									
					<u> </u>		-	-	+	\vdash								-						-		_					\square		
							+	+	+	\vdash				\vdash				-		_		-		-		_					\square		
							-	+	+	\vdash			\square					-		-		-	-	-		-							
				-			-	+	-	\vdash			\square				-	-		-	_	-	-	-		_							
							+	+		\vdash								-		-				-		_							
Relinquished By:	Δ	Date:	Time:	Reco	ved B	v: /		2	0	_			\dashv	IC	E/t°	21	7			-								CON	1ME	ENTS	j:		
12 - 0-	Ky.	11/18/0	1550	9	P	re	el	a	5	-	-			GC	DOD EAD S	CON	DIT			a													
Relianutshed By	1	Date:	Time:	Rece	eived By	y:	-0	20							ECHL						_		_										
Ozha	st-	1/17/07	1800	K	BL	LP	45								PPRO					NER	1 <u>S_1</u>	/	_										
Relinquished By:		Date:	Time:	Rece	eived By	y:								IK	ESEI	N Y E	DIN																
														PR	RESEI	RVA	TION		DAS	0&		ME' pH<		5 (OTH	ER							

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94 (925) 252-9262					WorkO	order: 071	1339	ClientID:	EISI				
				EDF	Excel	Fax	V Er	mail [HardCopy	/ Thirc	dParty		
Report to: Peter Littman		Email:	plittman@eis	s1.net, jmorris@eis [,]	_	ill to: Barbar			Re	equested ⁻	TAT:	5 (days
Environmental Inve 170 Knowles Drive, Los Gatos, CA 950	, Suite 212	TEL:	(408) 871-147	=	-1520	Environn 170 Kno Los Gato	nental Invest wles Drive, S os, CA 95032 @eis1.net	Suite 212	D	ate Recei ate Printe		11/13/ 11/13/	
							Reques	ted Tests (S	See legend	l below)			
Sample ID	ClientSampID		Matrix	Collection Date H	old 1	2 3	4	56	7 8	9	10	11	12

0711339-001	D03-14	Soil	11/13/2007	А	А	А					
0711339-002	D03-15	Soil	11/13/2007	А		А					

Test Legend:

1 G-MBTEX_S	2 PREDF REPORT	3 TPH(DMO)_S	4	5
6	7	8	9	10
11	12			

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Sample Receipt Checklist 11/13/2007 7:38:21 PM Client Name: Environmental Investigation Services, Inc. Date and Time Received: Project Name: # 707-3A; Cal Mae Transportation Checklist completed and reviewed by: **Kimberly Burks** WorkOrder N°: 0711339 Carrier: Derik Cartan (MAI Courier) Matrix Soil Chain of Custody (COC) Information V No 🗆 Chain of custody present? Yes No 🗆 V Yes Chain of custody signed when relinquished and received? \checkmark No Chain of custody agrees with sample labels? Yes No 🗌 V Yes Sample IDs noted by Client on COC? No 🗆 \checkmark Date and Time of collection noted by Client on COC? Yes ✓ No 🗆 Sampler's name noted on COC? Yes **Sample Receipt Information** No 🗆 NA 🔽 Custody seals intact on shipping container/cooler? Yes No 🗌 V Yes Shipping container/cooler in good condition? No 🗌 ✓ Yes Samples in proper containers/bottles? No Sample containers intact? Yes \checkmark \checkmark No Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information ✓ No 🗌 All samples received within holding time? Yes NA 12.9°C Cooler Temp: Container/Temp Blank temperature No 🗌 No VOA vials submitted 🗹 Water - VOA vials have zero headspace / no bubbles? Yes

 \checkmark

Yes Yes 🗌 No

No 🗌

Client contacted:

Sample labels checked for correct preservation?

TTLC Metal - pH acceptable upon receipt (pH<2)?

Date contacted:

Contacted by:

NA 🗸

1534 Willow Pass Road, Pittsburg, CA 94565-1701

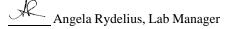
Comments:

	McCampbell	Analyt	ical, Inc	<u>,</u>	Web: www.		Pittsburg, CA 94565 E-mail: main@mcca 62 Fax: 925-252-9	mpbell.com		
Envir	onmental Investigation S	ervices, In			707-3A; Cal Mae	e	Date Sample	ed: 11/13/07		
170 K	nowles Drive, Suite 212		Transport	ation			Date Receiv	ed: 11/13/07		
Los G	atos, CA 95032		Client Co	ntact: Pet	er Littman		Date Extract	ed: 11/13/07		
Los G	alos, CA 75052		Client P.O).:			Date Analyz	ed 11/14/07		
Extracti	Gasolir on method SW5030B	ne Range ((-	ocarbons as Gas	oline with BT	EX and MTBE	* Work Order	:: 0711	339
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	D03-14	S	ND	ND	ND	ND	ND	ND	1	95
002A	D03-15	S	ND	ND	ND	ND	ND	ND	1	92
	porting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.



	Campbell Analyti	cal, Inc.	Web: www.mcca	w Pass Road, Pittsburg, CA 9450 ampbell.com E-mail: main@mco ne: 877-252-9262 Fax: 925-252	campbell.com	1
Environmenta	l Investigation Services, In		# 707-3A; Cal Mae	Date Sampled: 11/	13/07	
170 Knowles I	Drive, Suite 212	Transportation		Date Received: 11/	13/07	
Los Gatos, CA	95032	Client Contact: P	eter Littman	Date Extracted: 11/	13/07	
Los Galos, CA	. 93032	Client P.O.:		Date Analyzed 11/	15/07	
	Diesel (C10-23) and Oil (C18+) Range Extra	ctable Hydrocarbons a	as Diesel and Motor Oil*		
Extraction method:	SW3550C	Analytical meth	ods: SW8015C	Wor	k Order: 07	711339
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0711339-001A	D03-14	S	ND	ND	1	108
0711339-002A	D03-15	S	1.8,a	ND	1	108
	porting Limit for DF =1;	W	NA	NA	ug	/L
	means not detected at or pove the reporting limit	S	1.0	5.0	mg	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

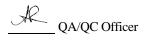
QC Matrix: Soil

WorkOrder 0711339

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	tchID: 31	866	Sp	iked Sam	ole ID:	0711313-00	5A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	103	107	4.46	113	105	7.13	70 - 130	30	70 - 130	30
MTBE	ND	0.10	98.8	90.9	8.43	89	90.3	1.37	70 - 130	30	70 - 130	30
Benzene	ND	0.10	97.9	86.8	12.0	88	93.6	6.21	70 - 130	30	70 - 130	30
Toluene	ND	0.10	101	94.1	7.40	93.6	99.2	5.72	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	118	109	7.84	109	116	6.15	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	113	107	6.06	107	113	6.06	70 - 130	30	70 - 130	30
%SS:	92	0.10	101	90	11.2	94	100	6.32	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 31866 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711339-001A	11/13/07 1:25 PM	I 11/13/07	11/14/07 5:16 PM	0711339-002A	11/13/07 1:30 PM	11/13/07	11/14/07 5:46 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

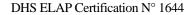
W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711339

EPA Method SW8015C Extraction SW3550C			Bat	chID: 31	820	Sp	oiked Sample ID: 0711244-002a					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	18	20	123	87.8	17.9	115	115	0	70 - 130	30	70 - 130	30
%SS:	91	50	90	73	20.7	93	92	0.307	70 - 130	30	70 - 130	30

BATCH 31820 SUMMARY							
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711339-001A	11/13/07 1:25 PM	11/13/07	11/15/07 10:08 PM	0711339-002A	11/13/07 1:30 PM	11/13/07	11/15/07 11:17 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K QA/QC Officer

Attachment C Decommission Well Permit

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY. LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 461 McG-Man Angue	PERMIT NUMBER 27193 WELL NUMBER 3S/2E-3H5 APN 099-0040-005-02
Libernore, California	APN099-0040-005-02
California Coordinates Sourceft. Accuracy •ft. CCN ft. CCEft. APN 77-40-5-2	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Ettake of Crandall Mackey Clouchen Hass-Har South Name Ettake of Crandall Mackey Clouchen Hass-Fronts Address 205 E. Anapamus street Phone 205 765 7014 City Santa Barbara, CA 9998 Zip 93/01 APPLICANT Name Environmental Invistigation Southers Inc. Email <u>plittema & cislater</u> Address 170 Kumber Drive #212 Phone 408 871 1475	 A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects, or dnilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date
City Loi Control CA Zip 9532 TYPE OF PROJECT: Well Construction Geotechnical Investigation Well Construction Contamination Investigation Geotechnical Investigation Cathodic Protection Contamination Investigation Geotechnical Investigation PROPOSED WELL USE: Imigation Groundwater Monitoring Domestic Groundwater Monitoring Groundwater Monitoring Dewatering Other Groundwater Monitoring DRILLING METHOD: Contamination Groundwater Monitoring	 B. WATER SUPPLY WELLS 1. Minimum surface seal diameter is four inches greater than the well casing diameter 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. 3. Grout placed by tremie. 4. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 5. A sample port is required on the discharge pipe near the wellhead. C GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
Mud Rotary X. Air Rotary Hollow Stem Auger Cable Tool Direct Push Other DRILLING COMPANY Explantion Drilling Services DRILLER'S LICENSE NO. 431604	 Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. Grout placed by tremie.
WELL SPECIFICATIONS: in. Maximum 70 Drill Hole Diameter	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings In Depth ft (ESTIMATED STARTING DATE II/1/2/27	 E. CATHODIC Fill hole above anode zone with concrete placed by tremie F. WELL DESTRUCTION. See attached G SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No 73-68. APPLICANT'S District Date (0/29/67 Aller Waldmenn	Approved Wyman Hong Date 11/2/07

Allen Waldmen ATTACH SITE PLAN OR SKETCH Attachment D Monitoring Well Permit

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR UFFICE USE
LIVETMORE CA	PERMIT NUMBER 27194 WELL NUMBER 3S/2E-5H6 to 5H8 (MW-1 to MW-3) APN 099-0040-005-02
California Coordinates Sourceft_Accuracyft CCNft_CCEft_CCEft_CCE	PERMIT CONDITIONS Ordea Permit Pacturements Accin
CLIENT Name Estate of Chandrall Markey Clocheldon Hors-Mir. So Address 205 E. A maganik Strut Phone & 965 Toly City Sauth Parban Ch Zip 93901 APPLICANT	chillers report of equivalent for weit projects, or draining logs and
Name Image: Arrow of the second sec	 location sketch for geotechnical projects Permit is void if project not begun within 90 days of approval date
City Livre Heart CA Zip 9 59 32 TYPE OF PROJECT: Well Construction Geotechnical Investigation Well Destruction Contamination Investigation Cathodic Protection Other PROPOSED WELL USE: Irrigation Domestic Remediation Industrial Groundwater Monitoring Dewatering Other	 B WATER SUPPLY WELLS 1. Minimum surface seal diameter is four inches greater than the well casing diameter 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. 3. Grout placed by tremie 4. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 5. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD Mud Rotary Air Rotary Holiow Stem Auger Cable Tool Direct Push Other DRILLING COMPANY // YouPublish DRILLER'S LICENSE NO	 C GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1 Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2 Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS. Dril Hole Diameterin Maximum Casing Diameterin Cepthf Surface Seal Depthf Number5	D GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS Number of Borings Maximum	E CATHODIC. Fill hole above anode zone with concrete placed b tremie.
Hole Diameter In Depth ESTIMATED STARTING DATE 5,2007 ESTIMATED COMPLETION DATE 6,2007	 F WELL DESTRUCTION See attached G SPECIAL CONDITIONS Submit to Zone 7 within 61 asks after completion of permitted work the well unstantion recom- including all soil and water laboratory analysis results
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Wyman Hong Date 11/2/07
APPLICANTS Auchine Date	availantiong

ATTACH SITE PLAN OR SKETCH

Attachment E Monitoring Well Boring Logs

	1	Environmental 1 170 Know	-			, <i>Inc</i> .	Well Number
_	Los Gatos, Califor Ph: (408) 871-1470 Fa					0	MW-1
	MONITORING WELL LOG						
		Mac Transportation		Dri	0	· · -	ation Geoservices
Job Numb		McGraw Avenue Livermore, (3A	ĊA			ring Dia: 8 inch g Depth: 20 feet	
Logged B		indhar R. Krishnamraju, Ph.D).		hod of	Drilling: Hollow	
Dates Dril	led: 11/0	5/2007		Sar	npling	Method: Califor	nia Split Spoon
🖂 Wat	er level d	uring drilling : 11.5 feet bgl		Water lev	vel in co	ompleted well : N	Not Measured
Depth 1 ithology	USCS	Soil Description	Sample Number	Blow Counts	PID	Boring Completion	Well Description
	CL	CL: dark brown, dry, soft, medium plasicity, no odor.	MW-1 9.5-10.0	9 11 19 7 9 16			Concrete seal Bentonite Backfilled with sand. Screened interval From -7' to -20'
NOTES:							Page 1 of 2

170 Knowles Los Gatos, J Ph: (408) 871-14 MONITO Project Name: Cal Mac Transportation Site Location: 461 McGraw Avenue Livermore, CA Job Number: 717-3A Logged By: Panindhar R. Krishnamraju, Ph.D. Dates Drilled: 11/05/2007 Vater level during drilling : 11.5 feet bgl 1 0 <th>, Californ 470 Fax: RING A</th> <th>ia 95032 (408) 87 WELL Dri Met Sar Water lev</th> <th>1-1520 LOG illing C Bor Boring thod of npling</th> <th></th> <th>nia Split Spoon</th>	, Californ 470 Fax: RING A	ia 95032 (408) 87 WELL Dri Met Sar Water lev	1-1520 LOG illing C Bor Boring thod of npling		nia Split Spoon
Project Name: Cal Mac Transportation Site Location: 461 McGraw Avenue Livermore, CA Job Number: 717-3A Logged By: Panindhar R. Krishnamraju, Ph.D. Dates Drilled: 11/05/2007 Water level during drilling : 11.5 feet bgl	A	Dri Met Sar Water lev	illing C Bor Boring hod of npling	ompany: Explor ing Dia: 8 inch g Depth: 20 feet Drilling: Hollow Method: Califor	y Stem Auger mia Split Spoon
Site Location: 461 McGraw Avenue Livermore, CA Job Number: 717-3A Logged By: Panindhar R. Krishnamraju, Ph.D. Dates Drilled: 11/05/2007 Water level during drilling : 11.5 feet bgl U U U U U U U U U U U U U U U U U U U	*	Met Sar Water lev	Bor Boring hod of	ing Dia: 8 inch g Depth: 20 feet Drilling: Hollow Method: Califor	y Stem Auger mia Split Spoon
Here Solution Solution 0 CL: yellowish brown, moist, loose, medium plasticity, slight diesel odor. 0 CL 1 CL 5 CL 6 CL 9 CL </th <th>Sample Number</th> <th></th> <th></th> <th>I</th> <th></th>	Sample Number			I	
CL: yellowish brown, moist, loose, medium plasticity, slight diesel odor. @ 11.5 feet: wet 5 5 6 6 7 7 7 7 8 @ 18 feet: dry, hard, no		Blow Count	PID	Boring Completion	Well Description
End of Boring at 20 feet bgl.	MW-1 14.5-15.0	6 6 10 14 14 23			

MW-2 MW-2 MW-2 MW-2 MONITORING WELL LOG Project Name: Cal Mac Transportation Dilling: Company: Exploration Geoservices Site Location: 461 McGraw Avenue Livermore, CA Boring Dia: 8 inch Job Number: 717-30 Method of Drilling: Holdwitzen Dates Drilled: 11/05/2007 Sampling Method: California Split Spoon Maction Sold Description Output State Sampling Method: California Split Spoon Maction Sold Description Output State Sampling Method: California Split Spoon Maction Soil Description Output State Sampling Method: California Split Spoon Maction Output State Soil Description Output State Sampling Method: California Maction Output State Soil Description Output State Sampling Method: California Maction Output State Soil Description Output State Sampling Method: Concrete seal State CL: Clay, very dark brown, low plasicity, soft, no odor, dry. 6 Hethonite Beackfilled with san	1	Environmental Investigation Services, Inc.Well Number170 Knowles Drive, Suite# 212						
Project Name: Cal Mac Transportation Drilling Company: Exploration Geoservices Site Location: 461 McGraw Avenue Livermore, CA Boring Dia: 8 inch Job Number: 717-3A Boring Depth: 20' Logged By: Panindhar R. Krishnamraju, Ph.D. Method of Drilling: Hollow Stem Anger Dates Drillei: 11/05/2007 Sampling Method: California Split Spoon SZ Water level during drilling : 18.5 feet bgl Water level in completed well : Not Measured Image: Barrier Barr								
Site Location: 461 McGraw Avenue Livermore, CA Job Number: 717-3A Logged By: Panindhar R. Krishnamraju, Ph.D. Dates Drilled: 11/05/2007 Water level during drilling : 18.5 feet bgl Water level during drilling : 18.5 feet bgl GRAVEL: gravel base rock CL: Clay, very dark brown, low plasticity, soft, no odor, dry.		MONITO	ORING	WELL	LOG			
0 C223 GRAVEL: gravel base rock CL: Clay, very dark brown, CL: Clay, very dark brown, Concrete seal -5 CL CL: Clay, very dark brown, Bentonite -5 CL CL: Lean Clay, yellowish 6 Bentonite CL CL: Lean Clay, yellowish 6 Bentonite 0 Districtly, medium soft, no 6 Screened interval from -7' to -20'	Site Location:461 MeJob Number:717-3ALogged By:PanineDates Drilled:11/05/2).	Met Sar	Boring hod of npling	ring Dia: 8 inch g Depth: 20' Drilling: Hollow Method: Califor	7 Stem Auger mia Split Spoon		
0 C220 GRAVEL: gravel base rock CL: Clay, very dark brown, low plasicity, soft, no odor, Concrete seal -5 CL CL: Clay, very dark brown, Bentonite -5 CL CL: Lean Clay, yellowish 6 Bentonite CL: Lean Clay, yellowish 6 Bentonite Backfilled with sand. -5 CL: Lean Clay, yellowish 6 Screened interval from -7' to -20'	Depth Lithology USCS	Soil Description	Sample Number	Blow Counts	PID	-		
-10 11 17 17 10 17 17 10 17 17 10 17		CL: Clay, very dark brown, low plasicity, soft, no odor, dry. CL: Lean Clay, yellowish brown, caliche rich, medium plasticity, medium soft, no	MW-2 4.5-5.0 MW-2	6 4 6 7 11			Bentonite Backfilled with sand. Screened interval	
NOTES: Page 1 of 2			1 2.0 10.0	I	I	<u> </u> <u> .</u>	Page 1 of 2	

1	Environmental 1 170 Know	Investiga les Drive,			, Inc.	Well Number		
Los Gatos, California 95032 Ph: (408) 871-1470 Fax: (408) 871-1520						MW-2		
MONITORING WELL LOG								
Project Name:Cal Mac TransportationSite Location:461 McGraw Avenue Livermore, CAJob Number:717-3ALogged By:Panindhar R. Krishnamraju, Ph.D.Dates Drilled:11/05/2007✓ Water level during drilling : 18.5 feet bgl✓				Boring Boring hod of npling	Company: Explor ring Dia: 8 inch g Depth: 20' Drilling: Hollow Method: Califor	7 Stem Auger mia Split Spoon		
Depth Lithology USCS	Soil Description	Sample Number	Blow Counts	PID	Boring Completion	Well Description		
10 10 10 CL 15 5C 20	Lean Clay, yellowish brown, caliche rich, medium plasticity, medium soft, no odor, moist. SC: Clayey Sand, yellowish brown, 70% fine sand, 30% fines with low plasticity, slight diesel odor, wet. End of boring @ 20' bgs.	MW-2 14.5-15.0 MW-2 18.0-18.5	6 7 8 10 13 18					
NOTES:						Page 2 of 2		

Environmental Investigation Services, Inc.Well Number170 Knowles Drive, Suite# 212								
Los Gatos, California 95032 Ph: (408) 871-1470 Fax: (408) 871-1520								
MONITORING WELL LOG								
Project Name:Cal Mac TransportationSite Location:461 McGraw Avenue Livermore, CAJob Number:717-3ALogged By:Panindhar R. Krishnamraju, Ph.D.Dates Drilled:11/05/2007Vater level during drilling : 17 feet bglS	 Drilling Company: Exploration Geoservices Boring Dia: 8 inch Boring Depth: 20' Method of Drilling: Hollow Stem Auger Sampling Method: California Split Spoon Water level in completed well : Not Measured 							
Depth Lithology USCS USCS Sample	La String No Boring Completion Well Description							
0 C2/Xi GRAVEL: gravel base rock CL: Clay, very dark brown, low plasicity, hard, no odor, dry. CL: Clay, yellowish brown, medium soft, medium plasticity, slight diesel odor, dry. -5 CL CL CL CL Clay, very dark brown, medium soft, medium plasticity, slight diesel odor, dry.	Concrete seal Concrete seal Bentonite Backfilled with sand.							
-10 MW 9.5-10								
NOTES:	Page 1 of 2							

	E <i>nvironmental 1</i> 170 Know	Investigat les Drive, S			, Inc.	Well Number
	Los Gatos Ph: (408) 871-	s, Californi 1470 Fax:)	MW-3
	MONIT	ORING V	VELL	LOG		
Project Name:Cal Mac TransSite Location:461 McGraw AJob Number:717-3ALogged By:Panindhar R. IDates Drilled:11/05/2007	venue Livermore, (Krishnamraju, Ph.D).	Met Sar	Boring Boring thod of npling	ring Dia: 8 inch g Depth: 20' Drilling: Hollov	v Stem Auger rnia Split Spoon
Depth Lithology USCS	1 Description	Sample Number	Blow Counts	PID	Boring Completion	Well Description
-15 — CL @17 feet	tinued, no odor, ; black spots, wet oring @20' bgs	MW-3 14.5-15.0 MW-3 18.0-18.5	7 10 14 9 13 15			
-20/ NOTES:						Page 2 of 2

Attachment F Monitoring Well Boring Soil Samples Laboratory Analytical Reports

McCampbell Analytical, Inc.

"When Ouality Counts"

Environmental Investigation Servi	Client Project ID: #717-3A; Cal Mac	Date Sampled: 11/05/07
170 Knowles Drive, Suite 212	Transport	Date Received: 11/05/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 11/09/07
203 0403, CA 95052	Client P.O.:	Date Completed: 11/09/07

WorkOrder: 0711096

November 09, 2007

Dear Peter:

Enclosed are:

- 1). the results of 10 analyzed samples from your #717-3A; Cal Mac Transport project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

i	· · · · · · · · ·	1096	0																										3	0	\$	
		IcCAMP ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccampbel	LLOW PAS RG, CA 94 Lcom Em	SS RO 565-1	AD 701	meca	ampb	ell.co	om 69						RN /		ou	ND) TI	MI	PD	FG		H Exe	24) cel	HR	v	48 H Vri	I IR Ite (RD 72 H On (D " flag	week
	Report To:	EIS		В	ill To	o: 1	EI	5						6					A	naly	sis										ther	Comments
	Tele: (44%) Project #: 717 Project Location: Sampler Signatur			H	- 1/1 91									· 8045) / MTBE -	PH-CO	64 / 5520 E/B&F)	(18.1)	0Cs)	(8021)	()	oclors / Congeners		sides)			(As)	10 / 6020)	10 / 6020)		d	64103	Filter Samples for Metals analysis: Yes / No
	Project Location:	461 N	1654	AL A	104	26	-14	W/M	nev	e,	C	A		TCUS	F	se (16	ons (4	I (HV	602	licide	Y; Ar	les)	Ierbie	8	(S)	S/P	8 / 60	8 / 60	020)	5		1007110
	Sampler Signatur	re: Par				_								6024	1	Grea	ocarb	/ 802	(EPA	1 Pest	INO	esticie	CI I	000	(SVO	HV4)	/ 200.	2001	10/6	9		
	SAMPLE ID	LOCATION/ Field Point Name		Time	# Containers	Type Containers	er	Air	RIX	+	ME	SERV	D ED	BTEX & TPH as Gas (TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / C	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 5242-6334 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Title 2		
		MW-1 9.5-10)	1)5/0)	8:51	46	<u>\$</u> \$		X		;	×		-	8		F	-	-	~	ш	-		-	×				-	-	×		
-		Men-1 125-15-1	, ''	9:10	1	12		×)	¢			×	×									×		-			-	×		
		ML.2 4.5-5.0	,,,	9:50	1	85		r		7	ĸ			×	×					_			1					_		X		
-	(9.5-10.0	> "	9:55	,	95		1		ľ	×			×	×						_			2	_					*		
-	(MV-2 15-5-15-15-15-15-15-15-15-15-15-15-15-15	2 '	10:00	1	55	,	*		1	*	-		7	×					-			N N	*		_				x		
-		(K.5-19- MW-3	9	10:45	1	53		×		-	×			X	×								2	×		-				X		
-	Relinquished By:	(45-50)	Date:	Time:		ived By	ÿC	1			/			ICE	z/t°	CON	4	Z					1				C	ОМ	MEN	NTS:	1	1.1.1
-	Relinquished By:	2	Date:	Time:	02	ived By	U	n s	2		_	-		HE/ DEC	AD S CHL PRO	SPAC ORI PRIA RVEI	E A NAT	BSEI ED I CON	N L/		s	~	-	PR	av	1	2.1	-	ve	que	est.	1/6/07
	Stuhler		145/57	(902>	(U,	1	\cap	K	X	2	/		PRE	ESEI	RVA	TION		AS	0&	G F	MET H<2		0	THE	R						

	bsite: <u>www.m</u> ephone: (87	1534 WII PITTSBU ccampbel	LLOW PA RG, CA 9 Lcom En 62	SS RO 4565-1 nail: n)AD 701 nain@ Fax	mee		bell.	com						UR Geo T			ou	EDH	T T T		E PD Ch)F eck	RUS if sa	SH E	24 cce) ,	48 48 Wr	ite O nd "J'	72 H n (D ' flag	R 5 DAY W) 🖬 is required
Report To:	EIS		E	Bill To	0:	E	10							0		_	_		A	nal	ysis	Rec	ques	t					_	60	her	Comments
Company: En	1. Your	ento	1 15	ver	ass	el		<	82	v	V	ic	-	(Ja W		6					cus									0		Filter
			F	C-Mai	il:									945) / MTBE	P	20 E/B&					Congen						(0)	(0		601		Samples for Metals
Tele: ()			F	ax: (()					-		_	9945	1	155	ŝ	3	021)		lors /		8			()	/ 602	602		2		analysis:
	7-3A		P	rojec	et Nai	ne:	Ca	1 B	1a	e	IN	m	24	Ł	HOI	1664	(418	NOC	2/80	les)	Arocl		picid			NAS	6010	010	-	te		Yes / No
Project Location:	Live-	and	e,	46	21	np	G	ve	20				_	1802	F	ase	bons	21 (H	A 60	sticid	N: /	ides)	Hert	Cs)	OCs)	Hs / I	0.8/	18/6	6020	26		
Sampler Signatur	e: P=		/		-	-					4 12/10/1	lon	_	209	0	Gre	ocarl	/ 803	(EP.	l Pe	INO	estic	c Cl	(VO	(SV	(PAI	/ 200	/ 200	10/	5		
		SAMI	PLING	2	ners		MAT	FRI	X			HOD RVE	D	s Gas (602	8015) (0il &	Hydro	/ 8010	AUNO	8081 (C	PCB's	(NP P	(Acidi	/ 8260	/ 8270	/ 8310	(200.7	(200.7	0,8 / 60	2		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH a	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524227624/ 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Title		
	MW-3	uldo		1	11			-	-					×	×										-					X	-	
	9.1-10.2	11)5/0	10:55		DS.		X	-	+	Y		+	-1	2	-	-			-											1		
				1			-	+	+			+			-1			-	-			-	-	200			-					
	MW-3	4	11:05		55		4	-	+	7	-	-		×	X			-	-			-		X				-		X	-	
(14.5-150			-	<u> </u>			+	-		-+	+	+	-		-	-	-	-	-	-	-	-1	mar			-				-	
	mkj-3	. 11	11:10	1	295		Y	+	-	*	-	-	X	2	A	-	-	-	-	-	-	-		-		-		_		X		
	18.5-19.)			-			-	-	ľ	-	-	+	-	-		_		_		-	-		-							-	
					<u> </u>		_	-	-		_	-	+			_					_	_									_	
							_	_				_		-	_																	
																								۰.								
								-	1																							
								-			-						-								15.27							
				-				-	-		+	+	+	-	-	-	-	-			-	-	-					-			-	
Relinquished By:		Date:	Time:	Rece	ived B	V:	~					1	+	ICF	C/t°	_	_		_		_						-	COM	IME	NTS:		
1. P=R	w	11/5	11-45	1	20	1	A	1						GO	OD				11990	_					ma	Cit.				A COLUMN TWO IS NOT	DIL	ed
Relinquished By:	4	Date:	Time:	Rece	ived B	y:/	1			-	-	_			AD S					AB	-	-			20	-	02	100		5	.2	appet
U. Park	-B	15/5		r	Ser	ll	m	~	_	-	~			API	PRO	PRIA	TE	CON	TAI	1. Contraction of the local division of the	s		•				Pl	r		P.L	- 1-4	afres.
Relinquished By:	4	Date: 1/5/01	Time: 17æ(Rece	ived B	×:	\sim	L	N	_	-				ESEF			vo		0&		ME pH<		s (отн			h	16	107		

2)

McCampbell Analytical, Inc.

-	A	U)
7	X	3
-	17	-
-	6.1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	CA 94565-1701 9262					Work	Order	:: 0711	096	C	lientI	D: EIS	I				
				EDF	Γ	Excel		Fax		Email		Har	dCopy	Thi	rdParty		
Report to: Peter Littman Environmental 170 Knowles D Los Gatos, CA		Email: TEL: ProjectNo: PO:	(408) 871-1470	1.net, jmorris@e) FAX: (408) 8 Mac Transport		et	Er 17 Lo	: arbar nvironme 70 Know os Gatos arbara@	les Dri s, CA 9	ve, Suit 5032		ervices	Dat	uested e Rece e Prin	ived:		
									Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711096-001	MW-1 (9.5-10)		Soil	11/05/07 8:51:00		А	А	А	Α	А					<u> </u>		
0711096-002	MW-1(14.5-15.0))	Soil	11/05/07 9:10:00		А	Α	А		А							
0711096-003	MW-2 (4.5-5.0)		Soil	11/05/07 9:50:00			Α	А		А							
0711096-004	MW-2 (9.5-10.0)		Soil	11/05/07 9:55:00			Α	Α		А							
0711096-005	MW-2 (14.5-15.0)	Soil	11/05/07 10:00:00			Α	Α		А							
0711096-006	MW-2 (18.5-19.0)	Soil	11/05/07 10:15:00			Α	Α		А							
0711096-007	MW-3 (4.5-5.0)	,	Soil	11/05/07 10:45:00			Α	Α		А							
0711096-008	MW-3 (9.5-10.0)		Soil	11/05/07 10:55:00			Α	Α		А							
0711096-009	MW-3 (14.5-15.0		Soil	11/05/07 11:05:00			Α	Α		А					1	1	1
0711096-010	MW-3 (18.5-19.0	/	Soil	11/05/07 11:10:00	16		Α	А		А							1

Test Legend:

1 8260B_S	2 CAM17MS_S	3 G-MBTEX_S	4 PREDF REPORT	5 TPH(DMO)_S
6	7	8	9	10
11	12			

Prepared by: Elisa Venegas

VOCs cancelled 11/06/07 for sample 003A-010A per P.L. **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Sample Receipt Checklist 11/5/07 5:50:01 PM Client Name: Environmental Investigation Services, Inc. Date and Time Received: Project Name: #717-3A; Cal Mac Transport Checklist completed and reviewed by: Ana Venegas WorkOrder N°: 0711096 Carrier: Derik Cartan (MAI Courier) Matrix Soil Chain of Custody (COC) Information V No 🗆 Chain of custody present? Yes No 🗆 V Yes Chain of custody signed when relinquished and received? \checkmark No Chain of custody agrees with sample labels? Yes No 🗌 \checkmark Yes Sample IDs noted by Client on COC? No 🗆 ✓ Date and Time of collection noted by Client on COC? Yes ✓ No 🗆 Sampler's name noted on COC? Yes **Sample Receipt Information** No 🗆 NA 🔽 Custody seals intact on shipping container/cooler? Yes No 🗌 V Yes Shipping container/cooler in good condition? No 🗌 \checkmark Yes Samples in proper containers/bottles? No Sample containers intact? Yes \checkmark \checkmark No Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information ✓ No All samples received within holding time? Yes NA 🗸 Cooler Temp: Container/Temp Blank temperature No 🔲 No VOA vials submitted 🗹 Yes Water - VOA vials have zero headspace / no bubbles? \checkmark No Sample labels checked for correct preservation? Yes

Yes 🗌

No 🗌

Client contacted:

TTLC Metal - pH acceptable upon receipt (pH<2)?

Date contacted:

Contacted by:

NA 🗸

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Comments:

McCampbell Ana "When Quality Co		<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA bbell.com E-mail: main 377-252-9262 Fax: 92	n@mccampbell.com		
Environmental Investigation Services		Proiect ID	: #717	7-3A; Cal Mac	Date Sampled:	11/05/07		
-	Transpo			,	Date Received:			
170 Knowles Drive, Suite 212	Client	Contact:	Dotor I	ittman				
Los Gatos, CA 95032			r elei L	Attillall				
Los Galos, CA 95052	Client P	20.:			Date Analyzed	11/0//0/		
	Volatile Organ	nics by P&	&T and	d GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	1	Analytical M	ethod:	SW8260B		Work Order: 0711	096	
Lab ID				0711096	5-001A			
Client ID				MW-1 (9.5-10)			
Matrix				So	,			
	oncentration *	DF	Reporting	Compour		Concentration *	DF	Reporting
			Limit					Limit
Acetone Acrylonitrile	ND ND	$\frac{1.0}{1.0}$	0.05	Acrolein (Propenal)		ND ND	1.0	0.05
Benzene	ND ND	1.0	0.02	tert-Amyl methyl e Bromobenzene	mer (TAME)	ND ND	<u>1.0</u> 1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	lane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	11)	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Viny	l Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chlo	propropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane		ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzen	e	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorome	thane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane		ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroeth	ene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropan		ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropan		ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropro		ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (l		ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl eth		ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadien	e	ND	1.0	0.005
Hexachloroethane Isopropylbenzene	ND ND	1.0	0.005	2-Hexanone		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND ND	1.0 1.0	0.005	4-Isopropyl toluene Methylene chloride		ND ND	<u>1.0</u> 1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005
1.1.2.2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	zene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha		ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	bane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005
Vinvl Chloride	ND	1.0				ND	1.0	0.005
		Surro	gate Re	coveries (%)		1		
%SS1:	9:	5		%SS2:		9	5	
%SS3:	11	4						
Comments:								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell A	nalyti litv Counts"	cal, Ir	<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, Ca pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com		
Environmental Investigation Ser		Client F	Project IE): #717	-3A; Cal Mac	Date Sampled:	11/05/07		
	,	Transpo				Date Received:			
170 Knowles Drive, Suite 212		Client(Contact:	Dotor I	ittman	Date Extracted:			
Los Gatos, CA 95032				r elei L	attinan	-			
Los Gatos, CA 75052		Client P	2.0.:			Date Analyzed	11/0//0/		
	Volat	ile Orgar	nics by P	&T and	l GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B		1	Analytical N	Aethod:	SW8260B		Work Order: 0711	096	
Lab ID					0711090	5-002A			
Client ID					MW-1(14	4.5-15.0)			
Matrix					Sc	nil			
Compound	Concen	tration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reporting Limit
Acetone		ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05
Acrylonitrile		ND ND	1.0	0.03	tert-Amyl methyl e		ND	1.0	0.005
Benzene	1	١D	1.0	0.005	Bromobenzene	,	ND	1.0	0.005
Bromochloromethane		١D	1.0	0.005	Bromodichlorometh	nane	ND	1.0	0.005
Bromoform	Ν	١D	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	Ν	JD	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05
n-Butyl benzene	Ν	1D	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	1	JD	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride		١D	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	1	1D	1.0	0.005	2-Chloroethyl Viny	l Ether	ND	1.0	0.01
Chloroform		1D	1.0	0.005	Chloromethane		ND	1.0	0.005
2-Chlorotoluene	1	ND ND	<u>1.0</u> 1.0	0.005	4-Chlorotoluene 1,2-Dibromo-3-chlo		ND ND	<u>1.0</u> 1.0	0.005
Dibromochloromethane 1,2-Dibromoethane (EDB)		ID ID	1.0	0.005	Dibromomethane	propropane	ND ND	1.0	0.005
1,2-Dichlorobenzene	1	ND ND	1.0	0.005	1,3-Dichlorobenzen	A	ND	1.0	0.005
1,4-Dichlorobenzene		ND	1.0	0.005	Dichlorodifluorome		ND	1.0	0.005
1,1-Dichloroethane	1	ND	1.0	0.005	1,2-Dichloroethane		ND	1.0	0.005
1,1-Dichloroethene	1	١D	1.0	0.005	cis-1,2-Dichloroeth		ND	1.0	0.005
trans-1,2-Dichloroethene	Ν	JD	1.0	0.005	1,2-Dichloropropar	ie	ND	1.0	0.005
1,3-Dichloropropane	Ν	١D	1.0	0.005	2,2-Dichloropropar	ie	ND	1.0	0.005
1,1-Dichloropropene	Ν	JD	1.0	0.005	cis-1,3-Dichloropro	pene	ND	1.0	0.005
trans-1,3-Dichloropropene	Ν	1D	1.0	0.005	Diisopropyl ether (1	DIPE)	ND	1.0	0.005
Ethylbenzene	1	JD	1.0	0.005	Ethyl tert-butyl eth		ND	1.0	0.005
Freon 113		1D	1.0	0.1	Hexachlorobutadien	e	ND	1.0	0.005
Hexachloroethane		ND ID	1.0	0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene		ND ID	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE) 4-Methyl-2-pentanone (MIBK)		ND ND	<u>1.0</u> 1.0	0.005	Methylene chloride		ND ND	<u>1.0</u> 1.0	0.005
4-Methyl-2-pentanone (MIBK) Nitrobenzene		1D 1D	1.0	0.005	Naphthalene n-Propyl benzene		ND ND	1.0	0.005
Styrene		ND ND	1.0	0.1	n-Propyl benzene 1,1,1,2-Tetrachloro	bethane	ND ND	1.0	0.005
1,1,2,2-Tetrachloroethane		ND ND	1.0	0.005	Tetrachloroethene	ochane	ND	1.0	0.005
Toluene	1	ND	1.0	0.005	1,2,3-Trichlorobenz	zene	ND	1.0	0.005
1,2,4-Trichlorobenzene		ND	1.0	0.005	1,1,1-Trichloroetha		ND	1.0	0.005
1,1,2-Trichloroethane		JD	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	Ν	JD	1.0	0.005	1,2,3-Trichloroprop	bane	ND	1.0	0.005
1,2,4-Trimethylbenzene		JD	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005
Vinvl Chloride	Ν	ID	1.0				ND	1.0	0.005
				gate Re	coveries (%)		1		
%SS1:		9			%SS2:		9	8	
%\$\$3:		11	9						
Comments:									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

When Quality		cal, In	<u>c.</u>		1534 Willow P Web: www.mccampb Telephone: 8			com
Environmental Investigation Service	ces, In	Client P	roject ID:	#717-3	3A; Cal Mac	Date Sampled:	11/05/07	
-	,	Transpo	rt		·	Date Received:	11/05/07	
170 Knowles Drive, Suite 212		Client C	ontact: Pe	ter Litt	man	Date Extracted	Pmccampbell.co. 252-9269 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/05/07 11/06/07 Reporting Limit ND means no above the reported in mg 8 mg/Kg Work Order: 0 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 <td< td=""><td></td></td<>	
Las Catas CA 05022								
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed:	11/00/07	
		C	CAM / CCR	17 Met	als*			
Lab ID	07110	96-001A	0711096	-002A	0711096-003A	0711096-004A	Reporting Lin	nit for DF =1
Client ID	MW-1	(9.5-10)	MW-1(14.	5-15.0)	MW-2 (4.5-5.0)	MW-2 (9.5-10.0)	ND means 1	not detected
Matrix		S	S		S	S	S	W
Extraction Type	TC	DTAL	TOTA	AL	TOTAL	TOTAL	mg/Kg	mg/L
••		ICP-N	MS Metals,	Concer	tration*			
Analytical Method: 6020A			raction Method				Work Order:	0711096
Dilution Factor		1	1		1	1	1	1
Antimony		ND	ND		0.56	ND	0.5	NA
Arsenic		5.3	5.4		6.8	5.2	0.5	NA
Barium		180	150)	260	260	5.0	NA
Beryllium		ND	ND		ND	ND	0.5	NA
Cadmium		ND	ND		ND	ND	0.25	NA
Chromium		35	30		40	35		NA
Cobalt		12	7.8		9.2	11	0.5	NA
Copper		19	16		23	20	0.5	NA
Lead		7.3	5.5		11	6.8	0.5	NA
Mercury		ND	ND		ND	ND	0.05	NA
Molybdenum		ND	ND		ND	ND	0.5	NA
Nickel		42	34		41	41	0.5	NA
Selenium		ND	ND		ND	ND	0.5	NA
Silver		ND	ND		ND	ND	0.5	NA
Thallium		ND	ND		ND	ND	0.5	NA
Vanadium		44	38		49	46	0.5	NA
Zinc		50	40		68	51	5.0	NA
%SS:		100	96		101	104		
Comments								
^k water samples are reported in µg/L, produc						LC / SPLP extracts are	reported in n	ng/L,
 soil/sludge/solid samples in mg/kg, wipe sar # means surrogate diluted out of range; ND FOTAL = acid digestion. WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using de-id 	means no	ot detected a	I	10		oplicable to this sampl	e or instrume	ent.

(1) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

"When Quality O		cal, In	<u>c.</u>		1534 Willow P Web: www.mccampb Telephone: 87		94565-1701 @mccampbell.c -252-9269	com
Environmental Investigation Servic	es. In	Client Pr	roject ID: #	#717-	3A; Cal Mac	Date Sampled:	11/05/07	
		Transpor	-			Date Received:	11/05/07	
170 Knowles Drive, Suite 212		Client C	ontact: Pete	er Litt	man	Date Extracted	11/05/07	
Los Gatos, CA 95032		Client P.				Date Analyzed:	Period Content of the second secon	
		Chefit I.	0			Date Anaryzed.	11/00/07	
		С	AM / CCR	17 Me	tals*			
Lab ID	07110	96-005A	0711096-0	06A	0711096-007A	0711096-008A	Reporting Lin	nit for DF =1
Client ID		-2 (14.5- 5.0)	MW-2 (18 19.0)	8.5-	MW-3 (4.5-5.0)	MW-3 (9.5-10.0)	ND means 1	
Matrix		S	S		S	S	S	W
Extraction Type	TC	DTAL	TOTAI	L	TOTAL	TOTAL	mg/Kg	mg/L
I		ICP-N	AS Metals, C	Concer	ntration*			
Analytical Method: 6020A			raction Method:				Work Order:	0711096
Dilution Factor		1	1		1	1	1	1
Antimony		ND	ND		ND	ND	0.5	NA
Arsenic		5.5	4.9		5.1	5.4	0.5	NA
Barium		180	270		110	170	5.0	NA
Beryllium		ND	ND		ND	0.52	0.5	NA
Cadmium		ND	ND		ND	ND	0.25	NA
Chromium		32	33		34	53	0.5	NA
Cobalt		8.6	10		7.1	11	0.5	NA
Copper		19	20		16	20	0.5	NA
Lead		6.6	6.7		5.2	6.4	0.5	NA
Mercury		ND	ND		ND	ND	0.05	NA
Molybdenum		ND	ND		ND	ND	0.5	NA
Nickel		35	38		33	40	0.5	NA
Selenium		ND	ND		ND	ND	0.5	NA
Silver		ND	ND		ND	ND	0.5	NA
Thallium		ND	ND		ND	ND	0.5	NA
Vanadium		43	45		32	48	0.5	NA
Zinc		48	51		42	57	5.0	NA
%SS:		98	101		103	101		
Comments								

metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte detected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Ar "When Quality		ical, In	<u>c.</u>		Web: www.mccamp		, CA 94565-1701 main@mccampbell.c x: 925-252-9269	om
Environmental Investigation Service	ces. In	Client Pr	roject ID:	#717-3	3A; Cal Mac	Date Sample	ed: 11/05/07	
	, in	Transpor			,	-	ed: 11/05/07	
170 Knowles Drive, Suite 212		Client C	ontact: Pe	tor Litt	mon		ed 11/05/07	
					liali			
Los Gatos, CA 95032		Client P.	0.:			Date Analyz	ed: 11/06/07	
		С	AM / CCR	17 Me	als*			
Lab ID	07110)96-009A	0711096	-010A			Reporting Lin	it for DE -1:
Client ID		-3 (14.5-	MW-3 (19.0				ND means r above the re	not detected
Matrix	-	S	S	/			S	W
Extraction Type	Т	DTAL	TOTA	AL.			mg/Kg	mg/L
Extraction Type	1		_		4 *			
Analytical Method: 6020A			AS Metals, raction Method				Work Order:	0711096
Dilution Factor		1	1				1	1
								-
Antimony		<u>ND</u> 5.3	ND 6.0				0.5	NA
Arsenic							0.5	NA
Barium		93	150				5.0	NA
Beryllium		ND ND	ND				0.5	NA
Cadmium		ND	ND				0.25	NA
Chromium		32	34				0.5	NA
Cobalt		5.8	11				0.5	NA
Copper		16	21				0.5	NA
Lead		4.9	7.6				0.5	NA
Mercury		ND	ND				0.05	NA
Molybdenum		ND	ND				0.5	NA
Nickel		28	40				0.5	NA
Selenium		ND	ND				0.5	NA
Silver		ND	ND				0.5	NA
Thallium		ND	ND				0.5	NA
Vanadium		40	42				0.5	NA
Zinc		45	50				5.0	NA
%SS:		102	100					
Comments								
 *water samples are reported in µg/L, product soil/sludge/solid samples in mg/kg, wipe sar # means surrogate diluted out of range; ND TOTAL = acid digestion. WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using de-initial sectors. 	nples in p	µg/wipe, filt	er samples in	µg/filter			-	-
 aqueous sample containing greater than ~ metals, a representative sediment-water mix quantitation limits; k) reporting limit raised interference; n) results are reported on a dry 	ture was due to m	digested; j) i atrix interfer	eporting lim ence; m) esti	it raised of mated va	lue to insufficient	sample amount; J)	analyte detected be	elow

	McCampbell	Analyt	ical, Inc.		Web: www.m	ccampbell.com	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
Enviro	onmental Investigation S	ervices, In	Client Proj	ect ID: #71	7-3A; Cal Mac	Transport	Date Sample	ed: 11/05/07		
170 Ki	nowles Drive, Suite 212						Date Receive	ed: 11/05/07		
L G	GA 05022		Client Con	tact: Peter I	Littman		Date Extract	ed: 11/05/07		
Los Ga	atos, CA 95032		Client P.O.	:			Date Analyz	ed 11/06/07		
Extracti	Gasolin on method SW5030B	e Range (C		-	arbons as Gasol SW8021B/8015Cm	ine with BTI	EX and MTBE	* Work Order	: 071	1096
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1 (9.5-10)	S	ND	ND	ND	ND	ND	ND	1	91
002A	MW-1(14.5-15.0)	S	ND	ND	ND	ND	ND	ND	1	93
003A	MW-2 (4.5-5.0)	S	ND	ND	ND	ND	ND	ND	1	94
004A	MW-2 (9.5-10.0)	S	ND	ND	ND	ND	ND	ND	1	88
005A	MW-2 (14.5-15.0)	S	ND	ND	ND	ND	ND	ND	1	89
006A	MW-2 (18.5-19.0)	S	ND	ND	ND	ND	ND	ND	1	88
007A	MW-3 (4.5-5.0)	S	3.1,g	ND	ND	ND	ND	ND	1	86
008A	MW-3 (9.5-10.0)	S	ND	ND	ND	ND	ND	ND	1	88
009A	MW-3 (14.5-15.0)	S	ND	ND	ND	ND	ND	ND	1	82
010A	MW-3 (18.5-19.0)	S	ND	ND	ND	ND	ND	ND	1	82
	porting Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mcc	ow Pass Road, Pittsburg, CA 945 ampbell.com E-mail: main@mc ne: 877-252-9262 Fax: 925-252	campbell.con	1
Environmental	Investigation Services, In	•	#717-3A; Cal Mac	Date Sampled: 11/	05/07	
170 Knowles D	Drive, Suite 212	Transport		Date Received: 11/	05/07	
Los Cotos, CA	05022	Client Contact: Pe	eter Littman	Date Extracted: 11/	05/07	
Los Gatos, CA	95052	Client P.O.:		Date Analyzed 11/	06/07	
	Diesel (C10-23) and Oil (C18+) Range Extrac	ctable Hydrocarbons	as Diesel and Motor Oil*		
Extraction method: S	SW3550C	Analytical meth	ods: SW8015C	Wor	k Order: 0'	711096
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0711096-001A	MW-1 (9.5-10)	S	1.1,b	ND	1	88
0711096-002A	MW-1(14.5-15.0)	S	ND	ND	1	108
0711096-003A	MW-2 (4.5-5.0)	S	1.6,g,b	5.8	1	108
0711096-004A	MW-2 (9.5-10.0)	S	ND	ND	1	94
0711096-005A	MW-2 (14.5-15.0)	S	ND	ND	1	108
0711096-006A	MW-2 (18.5-19.0)	S	ND	ND	1	94
0711096-007A	MW-3 (4.5-5.0)	S	3.7,g,b	ND	1	93
0711096-008A	MW-3 (9.5-10.0)	S	ND	ND	1	92
0711096-009A	MW-3 (14.5-15.0)	S	ND	ND	1	92
0711096-010A	MW-3 (18.5-19.0)	S	ND	ND	1	105
	orting Limit for DF =1;	W	NA	NA	ug	ı/L
	means not detected at or ove the reporting limit	S	1.0	5.0	mg	/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

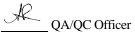
QC Matrix: Soil

WorkOrder 0711096

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 31	715	Sp	iked Samp	ole ID:	0710867-01	6A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	108	106	1.52	105	111	5.27	70 - 130	30	70 - 130	30
Benzene	ND	0.050	115	115	0	114	119	4.74	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	83.2	83.4	0.172	81	85.7	5.63	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	129	124	4.00	128	129	1.05	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	111	103	8.13	109	115	5.41	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	97.7	95.7	2.06	95.6	105	9.81	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	114	112	1.48	115	115	0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	111	111	0	109	116	6.36	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	101	99.4	1.26	99.3	107	7.11	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	97.3	95	2.39	96.7	106	8.94	70 - 130	30	70 - 130	30
Toluene	ND	0.050	108	103	4.65	107	110	2.37	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	94.3	96.5	2.32	94.5	103	8.31	70 - 130	30	70 - 130	30
%SS1:	86	0.050	93	95	1.72	93	98	5.25	70 - 130	30	70 - 130	30
%SS2:	98	0.050	93	92	1.25	94	95	0.610	70 - 130	30	70 - 130	30
%SS3:	113	0.050	96	94	1.38	96	96	0	70 - 130	30	70 - 130	30

BATCH 31715 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711096-001A	11/05/07 8:51 AM	I 11/05/07	11/07/07 10:55 AM	0711096-002A	11/05/07 9:10 AM	11/05/07	11/07/07 11:43 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

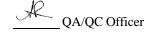
"When Ouality Counts"

QC SUMMARY REPORT FOR 6020A

EPA Method	6020A			Extracti	on SW3050)B	В	atchID: 3	1714	Spiked Sa	mple	ID 0710867·	-021A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptanc	e Criteria (%	»)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	50	110	110	0	10	98.3	98.9	0.619	70 - 130	20	80 - 120	20
Arsenic	7.3	50	113	112	0.425	10	101	101	0	70 - 130	20	80 - 120	20
Barium	320	500	118	118	0	100	99.9	100	0.280	70 - 130	20	80 - 120	20
Beryllium	0.70	50	89.4	89.1	0.243	10	97.3	96.9	0.350	70 - 130	20	80 - 120	20
Cadmium	ND	50	109	110	1.37	10	101	99.6	1.40	70 - 130	20	80 - 120	20
Chromium	64	50	98.5	97.3	0.532	10	91.2	93.9	2.93	70 - 130	20	80 - 120	20
Cobalt	12	50	92.7	92.7	0	10	102	102	0	70 - 130	20	80 - 120	20
Copper	39	50	112	111	0.392	10	96.5	98.7	2.26	70 - 130	20	80 - 120	20
Lead	13	50	109	111	1.51	10	100	100	0	70 - 130	20	80 - 120	20
Mercury	ND	1.25	90.6	92.6	2.12	0.25	81.2	81.8	0.687	70 - 130	20	80 - 120	20
Molybdenum	ND	50	110	111	1.10	10	97.3	98	0.747	70 - 130	20	80 - 120	20
Nickel	51	50	116	115	0.367	10	95.8	98.3	2.51	70 - 130	20	80 - 120	20
Selenium	0.70	50	111	109	1.47	10	100	101	1.19	70 - 130	20	80 - 120	20
Silver	ND	50	110	111	0.899	10	120	119	0.418	70 - 130	20	80 - 120	20
Thallium	ND	50	107	109	1.50	10	96.3	96.4	0.114	70 - 130	20	80 - 120	20
Vanadium	74	50	104	102	0.796	10	93.8	96.4	2.63	70 - 130	20	80 - 120	20
Zinc	77	500	115	116	1.22	100	111	113	1.78	70 - 130	20	80 - 120	20
%SS:	106	250	112	113	1.03	250	101	99	2.72	70 - 130	20	70 - 130	20

BATCH 31714 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711096-001A	11/05/07 8:51 AI	M 11/05/07	11/06/07 8:20 PM	0711096-002A	11/05/07 9:10 AM	11/05/07	1/06/07 8:53 PM
0711096-003A	11/05/07 9:50 AI	M 11/05/07	11/06/07 9:01 PM	0711096-004A	11/05/07 9:55 AM	11/05/07	1/06/07 9:08 PM
0711096-005A	1/05/07 10:00 AI	M 11/05/07	11/06/07 9:15 PM	0711096-006A	1/05/07 10:15 AM	11/05/07	1/06/07 9:23 PM
0711096-007A	1/05/07 10:45 AI	M 11/05/07	11/06/07 9:30 PM	0711096-008A	1/05/07 10:55 AM	11/05/07	1/06/07 9:37 PM
0711096-009A	1/05/07 11:05 AI	M 11/05/07	11/06/07 9:45 PM	0711096-010A	1/05/07 11:10 AM	11/05/07	1/06/07 9:52 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

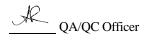
QC Matrix: Soil

WorkOrder 0711096

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 31	729	Sp	iked Sam	ole ID:	0711087-01	6A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) ^f	ND	0.60	88.4	91.7	3.71	105	102	3.00	70 - 130	30	70 - 130	30
MTBE	ND	0.10	96.3	91	5.63	88.6	90.6	2.26	70 - 130	30	70 - 130	30
Benzene	ND	0.10	99.1	95.5	3.64	96.8	95.8	1.04	70 - 130	30	70 - 130	30
Toluene	ND	0.10	97.9	94.4	3.66	89	89.1	0.0821	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	105	101	3.67	99.2	100	1.01	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	117	113	2.90	91.7	91.7	0	70 - 130	30	70 - 130	30
%SS:	102	0.10	106	94	12.1	76	91	18.5	70 - 130	30	70 - 130	30

BATCH 31729 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711096-001A	11/05/07 8:51 AM	11/05/07	11/06/07 1:32 AM	0711096-002A	11/05/07 9:10 AM	11/05/07	11/06/07 2:05 AM
0711096-003A	11/05/07 9:50 AM	11/05/07	11/06/07 4:16 AM	0711096-004A	11/05/07 9:55 AM	11/05/07	11/06/07 4:49 AM
0711096-005A	11/05/07 10:00 AM	11/05/07	11/06/07 5:22 AM	0711096-006A	11/05/07 10:15 AM	11/05/07	11/06/07 5:54 AM
0711096-007A	11/05/07 10:45 AM	11/05/07	11/06/07 8:39 AM	0711096-008A	11/05/07 10:55 AM	11/05/07	11/06/07 9:12 AM
0711096-009A	11/05/07 11:05 AM	11/05/07	11/06/07 10:19 AM	0711096-010A	11/05/07 11:10 AM	11/05/07	11/06/07 5:34 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

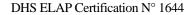
QC Matrix: Soil

WorkOrder 0711096

K QA/QC Officer

EPA Method SW8015C	Extra	ction SW	3550C		Bat	chID: 31	724	Sp	iked Sam	ole ID:	0711087-01	8A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	123	123	0	117	116	0.643	70 - 130	30	70 - 130	30
%SS:	109	50	108	108	0	71	71	0	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method F	RL with th	e following	exceptions:			

			BATCH 31724 SL	JMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711096-001A	11/05/07 8:51 AM	11/05/07	11/06/07 2:03 PM	0711096-002A	11/05/07 9:10 AM	11/05/07	11/06/07 6:44 AM
0711096-003A	11/05/07 9:50 AM	11/05/07	11/06/07 7:52 AM	0711096-004A	11/05/07 9:55 AM	11/05/07	11/06/07 3:14 PM
0711096-005A	11/05/07 10:00 AM	11/05/07	11/06/07 10:09 AM	0711096-006A	11/05/07 10:15 AM	11/05/07	11/06/07 4:25 PM
0711096-007A	11/05/07 10:45 AM	11/05/07	11/06/07 3:35 AM	0711096-008A	11/05/07 10:55 AM	11/05/07	11/06/07 4:44 AM
0711096-009A	11/05/07 11:05 AM	11/05/07	11/06/07 5:53 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

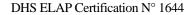
QC Matrix: Soil

WorkOrder 0711096

EPA Method SW8015C	Extra	ction SW	3550C		Bat	chID: 31	731	Sp	iked Samp	le ID:	0711096-01	0A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, indi j to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	120	122	2.32	126	129	1.86	70 - 130	30	70 - 130	30
%SS:	105	50	105	106	1.24	108	107	0.788	70 - 130	30	70 - 130	30

|--|

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711096-010A	11/05/07 11:10 AM	I 11/05/07	11/06/07 6:44 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K QA/QC Officer

Attachment G Monitoring Well Development Field Sheets

WELL D		PMENT					MW	-1	
and the second second			F	Project In	formatio	n			
Project N	يت :ame	1 Mae	Tramp	malin	Date: /	1 8 2	2007		
Site Addr	ess: 4-6	1 MCG1	The Aves	, ,	Field Per	sonnel: f	Jamina	dhay	K.
Project N		717-3				nove,	Colida	ornig	
							0		
				Well Info	ormation				
Well Diar	neter :		2	inches					
Depth to	Water:	10	:05	feet	Time Me	asured:	11:15		
Product T	hickness	: -	-	feet	Time Mea	asured:			
Total Dep	oth:	18	155	feet	Time Me	asured:	11:16		
Length of	Water C	olumn: 😔	3.50	feet					
Well Volu			. 36	gallons		NO			
80% Rec	harge De		.75	feet	Purge Me	ethod: Su	15 merge	zib)e	Pump
								Ø 12	V v
		A New ALL of State of Constraints of All All and	ield Meas	surement	s and Ob	servation	IS		
	Depth to	Volume	Tama						
The	Water	Purged	Temp.		Cond.	Turbidity	Optor	Chasse	Orlan
Time	(feet)	(gallons)	(°C)	pH	(µS/cm)	(NTU)	Color	Sheen	Odor
11:24	10:05	1.50	18.9	7.47	1315	High	Brown	NO	NO
11:27	e	11	19.3	7.47	1313	11	11	V	li
11:30	(ų	19.5	7.38	1310	11	11	4	εy
11:35	-	ÿ	19.5	7.33	1316	Medium	11	1	Pl
11:40	-	â	19.4	7.33	1306	11	11	11	t/
11:43	-	11	19.5	7:36	1314	1)	L. Brown	11	1/
11:46		(1	19.5	7.26	1304	17	11	2	11
11:50	-	1/	19.6	7.25	1306	l.	1	37	H
11:55	-	1/	19.2	7.28	1305	Light	ч	Y	11
11:59	19:42	1.00	19.2	7.27	1304	1,	21	17	1
	Well	Went	Dry						
			0						
			1						
Total Pur	ae Volum	ne: //.		gallons					

Notes

WELL C	EVELO	PMENT					MW-	2							
Site Addr	ess: 46	si ma	Sraw A	wenn	Date: Field Per	1 8 2 2 sonnel:	Danis	ndhan	r.K						
				South Street Stree	ormation										
				•	T:			<u>_</u>							
			23				12:4	5							
								1.							
-		· · · · · · · · · · · · · · · · · · ·				asureu.	12:4	4							
and the second division of the second divisio				,	Sheen [.]	110									
	6 Recharge Depth: feet Purge Method: Submersible phone Field Measurements and Observations Depth to Volume Water Purged Temp. Cond. Turbidity (feet) (gallons) (°C) pH (µS/cm) (NTU) Color Sheen Odor														
6	Secharge Depth: feet Purge Method: Submervation Field Measurements and Observations Field Measurements and Observations Temp. Cond. Turbidity Water Purged Temp. Cond. Turbidity Oldor 2:56 (1123 (.50 19.2 7.37 1650 H'sh D.Bern No No 2:56 (1123 (.50 19.2 7.37 1650 H'sh D.Bern No No 2:56 (1123 (.50 19.2 7.37 1650 H'sh D.Bern No No 2:01 11 20.0 7.39 1520 1 11 1 3:06 1 19.6 7.32 1550 1 1 1 1 3:10 1/1 19.2 7.35 14.59 Meduim Brown 1 1 3:13 1/1 19.2 7.33 14.75 1 1 1 1 3:13 1/1 19.3 7.33 14.72 1														
	Depth to Volume Water Purged Temp. Cond.														
			Temp		Cand	Table									
Time		-		nH			Color	Sheen	Odor						
12:56															
13:01	())														
13:02							4	и	11						
13:06		11	19-6			11		N	V						
13:10		4	19.2	7.30	1459	medin	Brown	84	11						
13:13		11	19.4	7.35	1475			þ	八						
13:16		r/	19.3	7.33	1422	//	4	<i>P</i> ₁	11						
13119		11	19.3	7-30		11		10	11						
13:22		11		6		LOW	L. Brow	()	11						
13:27	19,52	11	19.6	7.25	1352	11	11	11	14						
	Dry														
	0														
Total Pur	ge Volum	e:)	5.0	gallons											

Notes

WELL C	DEVELO	PMENT					MW	-3	
Contraction of the				Project In	formatio	n			1. 1.
Project N	ame: 🗅	d'Ma	2 Trank	PErtabin	Date: i	1 81:	2007		
	ess: 46	SI MCC	Braw A	ve,	Field Per	sonnel:	Panin	ndha	r.K.
Project N	umber:	717-3				nore	Cali.		7
-,						,			1
	a she was			Well Info	ormation		and the second se		
Well Diar	neter :	2		inches					
Depth to	Water:	11.2	2 8	feet	Time Me	asured:	14:00)	
Product 7	Thickness	; 		feet	Time Me	asured:			
Total Dep	oth:	19.	82	feet	Time Me	asured:	14:0	1	
Length of	f Water C	olumn: E	3.54	feet			,	•	
Well Volu			36	gallons	Sheen:	NO			
80% Rec	harge De	pth: –		feet	Purge Me	ethod: Si	bner	sible	Dump
								,	τγ
	Contraction of	× F	ield Meas	surement	s and Ob	servation	IS		
	Depth to	Volume	T						
-	Water	Purged	Temp.		Cond.	Turbidity			
Time	(feet)	(gallons)	(°C)	pH	(µS/cm)	(NTU)	Color	Sheen	Odor
14:05	11:28	1.50	19.9	7-61	2325	Hish	D. Brown	NO	NO
14:10		//	20.2	7.50	2390	11	(1	11	11
141 12		11	19.7	7.45	2173	11	/1	M	64
14:15		11	20.0	7:36	1827	Medium	11	y	И
14:18		11	19.4	7.33	1620	4	Brown	И	1
14:20		11	19.5	7.30	1490	Light	L. Bran	М	11
14:23		11	19.6	7.38	1524	11	11	14	7
14:26		1/	19,6	7.33	1585	11	(n	. 1	11
14:30		11	19.4	7.45	1435	11	h	11	(1
14:33	Dry	11	19.4	7.45	1440	И	11	n	11
	U		· · · ·						
Total Pur	ge Volum	ne: <u> S</u>	5.0	gallons					

Notes

Attachment H Groundwater Sampling Field Sheets

0

1

1,

Well ID: MW-1 GROUNDWATER SAMPLING RECORD Project Information Project Name: Cal Mcc Transporter Date: 1912007 Site Address: 461 MCGran Brenie Field Personnel: Danindhar Livermore, Californy Project Number: 717-3A Well Information Well Diameter : inches Depth to Water: 10.05 feet Time Measured: 10:66 Product Thickness: Time Measured: feet ____ Time Measured: 10:07 Total Depth: 19.41 feet Length of Water Column: 9.26 feet Well Volume: gallons Sheen: NO 1,50 80% Recharge Depth: feet Purge Method: LOW flow 11.92 **Field Measurements and Observations** Depth to Volume Temp. Cond. Water Purged Turbidity $(^{\circ}C)$ Time (feet) (gallons) pH $(\mu S/cm)$ (NTU) Color Sheen Odor 10:23 0-5 19.3 7.51 NII 10:30 Ł 242 15 N 16.24 0.5 19.1 1312 11 11 ~} 316 50 0.5 (A) . 3 1 11 10 7.6 4 .4 312 18 RD 0.5 19 11 11 11 114 in 42 303 11 C 14 5 -1 ι, 2 201 ha 0. 11 24 31 19 2 201 15 11 3 32 91 21 ~ 205 ł. D 29 Ò 5. 301 nJ 11 12 200 11 C 11 0. 1.5 1501 A.F 0 c 11

Total Purge Volume: gallons Δ

5

0.

56

) (

. 1

Ša	mp	le Information	
Sample ID: Mルー1		Sample Time:	12:30
Sampling Method: Low flow		Sampled By:	PIQ
Sample Containers (number/type):	3	VOAK	1002
		/	
		Notes	

1301

GROUN	IDWATE	R SAM		RECORD)	Well ID:	MW	- 2							
tan	and the second	13. A.B.	F	Project In	formation	,]		F5 - 25 - 7 A + 8							
Project N	ame: Co	1 Mar	Tromy	Plutin	Date:	192	001								
Site Addr	ess: 44	SI MCG	raw A	emme	Field Per	sonnel: D	anin	dhan.	K						
Project N	umber:′ '	717-3	A						Q						
				1040 DF T #			-		\ '						
		_			ormation				and the second second						
	Well Information/ell Diameter :2inchesepth to Water:[1]; 2.[feetTime Measured:[3:0]roduct Thickness:														
Silling and a second			(5.01								
And the second s		and the second se	A												
-						asurea.	3:02								
					Shoon										
				-			011	1011							
00701100	narge De			ICCE	T urge me		UN t	FIDW							
		Fi	eld Meas	urement	s and Ob	servation	S								
	Length of Water Column:Solution:Vell Volume:I3gallonsSheen: \downarrow OPurge Method:Low $flowField Measurements and ObservationsTime (feet)Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.TurbidityVaterPurgedTemp.Cond.VaterVaterPurgedTemp.VaterVaterPurgedTemp.VaterVaterPurgedVaterVaterPurgedVaterVaterPurgedVaterVaterPurgedVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVaterVate$														
T :		Purged		- 11		-	0	Ohana	Orlan						
		(gailons)		рн											
	Field Personnel: Damma Low, K ect Number: 717-3A Well Information IDiameter: 2 inches the Water: 11, 21 feet Time Measured: 13:01 duct Thickness:feet Time Measured: 13:01 Time Measured: 13:02 gallons Field Measurements and Observations Volume <														
10:10	Project Informationect Name: Call Mat. Ivery product of Date: 191 2007Address: Call Mat. Ivery product of Date: 191 2007Field Personnel: Date: 191 2007Field Personnel: Date: 191 2007Well InformationIDiameter: 2inchesthet Very more Call formedJundkow, KLy example: 13.0Well InformationIDiameter: 2Time Measured: 13.01thet Time Measured: 13.02gallonsSheen: JOField Measurements and ObservationsPertition (feet)VolumeValueMater PurgedTemp.Cond.TurbidityCond.TurbidityOut of Mater Column: 8: 31Field Measurements and ObservationsPurged Temp.Cond.TurbidityCond.TurbidityCond.TurbidityOut of Mater Column: 8: 31Field Measurements and ObservationsTemp.Cond.TurbidityCond.TurbidityColspan="2">Temp.Cond. </td														
12.27	Project Information Date: $[1+1] 2 \in C$ Date: $[1+1] 2 \in C$ Project Information Date: $[1+1] 2 \in C$ Field Personnel: $p a n d h or K$ Colspan="2">Colspan="2" Well Information eld Dersonnel: $p a n d h or K K$ Colspan="2">Colspan="2" Time Measured: $[2:0]$ Time Measured: $[2:0]$ Time Measured: $[2:0]$ Time Measured: $[2:0]$ Time Measurements and Observations Field Measurements and Observations Time Measurements and Observations Time Measurements and Observations Time Measurements and Observations Cond. Turbidity Colspan="2" Time Measurements and Observations <td colspa<="" td=""></td>														
1 2 1	Project Information oject Name: Call Mar. Team Date: 191 2007 te Address: Gal Mar. Gaw														
L	roject Name: Cal Plac Trempton Date: 19 2007 roject Number: 717-3 A Title Address: Cal Project Number: 717-3 A Well Information Well Information Well Information Well Information Mell Diameter: 2 inches epth to Water: 11; 21 feet feet Time Measured: 13:0) Time Measured: - otal Depth: 19:20 feet Field Measurements and Observations Purge Method: Low How 3:23 (1:51 or 20: - 1:32 field Measurements and Observations Field Measurements and Observations Field Measurements and Observations Purge Method: Low How 3:24 (1:51 or 20: - 3:22														
	Project Information roject Name: Call Mar. Very Project Name: Call Mar. Call														
	Project Information roject Name: Call Mar. Very Project Name: Call Mar. Call														
13:47				E					14						
Total Pur	ge Volum	e: 2	· /	gallons											
			G	Sample Ir	formatio	n									
Sample I	<mark>۴ √ ا</mark>	$\Lambda I I = 2$		ampic n			1. 1 17 5		ELECTRONIC CO.						
			LOW					<u>,</u>							
e				ZVA				12	,						
				No	ites										

GROUN	DWATE	R SAMP	PLING F	RECORD	2	Well ID:	Mw-	-3	
	t de la company	an constants		Projectile	formation	1			
Project Na	ame: Ca	1 Mcc	[Yanspi	wachin	Date: 👔	192	_007		
Site Addr	ess: L+61	McGra	WAV.	enne.	Field Per	sonnel: p	anin d	har il	\leq
Project N	umber:	717-3	3A	· · ·	<u>> Live</u>	mor	c, Ca	li for	ie
							/	0) '
and the second second				Well Info	ormation				
Well Dian	neter :	2		inches					
Depth to		_11.2	27	feet	Time Mea		14.0	9	
Product T	hickness	:		feet	Time Mea	asured:		/	
Total Dep			85	feet	Time Mea	asured:	14. l	0	
Length of	Water Co	olumn: 🤵	5.58	feet		_	1		
Well Volu	me:		37	gallons	Sheen:	NO			
80% Rec	harge De	pth:	~	feet	Purge Me	ethod: (OW F	100	
				_			,		
			eld Meas	urement	is and Ob	servation	IS		enson and a second s
	Depth to	Volume	Tomo			_			
Time	Water	Purged	Temp.	-11	Cond.	Turbidity	Color	Chase	Oder
Time	(feet)	(gallons)	(°C)	рН	(µS/cm)	(NTU)	Color	Sheen	Odor
14,20	11:68	300m	20.1		1462	-			
14:23	<u>h</u>	11	20.0	-	1452	<u> </u>	<u></u>		
14:26	11		19.9		1449	-		-	
14:29	11	,1	2010	-	1416	<u>^</u>			
14:32	- 11	۲ ۲	20.		1445	~			
14:35	<u>t</u>	11	20.0		1445	-			
			0	l					
Total Pur	ge Volum	ie: [.	80	gallons					
						an a	Section (States)	100 MAR 1	1999 B
		0 A .		Sample I	nformatio				
Sample I		MW-	3	-	Sample -		+:40		
	Method:		Flow	<u>)</u>	Sampled	By:		P	
Sample (Container	s (number	/type):	3 11	A		سلانے	-7-	
		The second second second	(A)						New Josef Barry
			AN IN STATISTICS	Ne	otes				
			\sim	1/	<u> </u>	A			
			P	HN	at to	Jorkin	ρ		

Attachment I Groundwater Sampling Laboratory Analytical Reports

McCampbell Analytical, Inc.

"When Ouality Counts"

Environmental Investigation Servi	Client Project ID: Cal Mac Transportation;	Date Sampled: 11/09/07
170 Knowles Drive, Suite 212	717-3A	Date Received: 11/09/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 11/14/07
200 00000, 011 75052	Client P.O.:	Date Completed: 11/14/07

WorkOrder: 0711274

November 14, 2007

Dear Peter:

Enclosed are:

- 1). the results of **3** analyzed samples from your **Cal Mac Transportation; 717-3A project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

								_					_	_			_			_													
	AcCAMP					AL	., II	NC															F C	U	ST	OI	DY	R	E	CORI	D		1
		1534 WI PITTSBU												Т	UF	RN /	AR	ou	NI) T	IM	E		Ç	1	Ę			Ç			Ū,	
	ebsite: www.m	ccampbe	Lcom E		main@									0	100	Tro	ale		n	2 15	1	DD	F	RUS	SH F	24	HR	ι.	481	ite On	2 HR	5 DA	Ϋ́
	elephone: (87	/) 252-92	.62		Fax	: (9)	25) 2	52-	9269					0	reo	114	CK	er r	.DI	_										nd "J" f			ed
Report To:	EIS]	Bill T	o:	E	18	5						1					A	nal	_	Red	_	_						Othe	_	Comm	
Company: Ev	Windown	- ente	1 1	nve	460	3 -	12-	-	SA	2hr	2h	2	4	-		6					ers									2		12214	
170 50	owlen	Din	e, L	20	50	to	-	_	C.	ł.				TBF		/B&I					ngene									2		Filter Sample	es
Tele: (Cps E) -	84.	11100		E-Ma		1							-	8015) / MTBE		520 F			-		0 / Co						020)	20)		60		for Me	etals
Project #: Ca	Kenn	Vani	Ant	Fax: Proife) me:	e	71	~		21	F	-	108 4		64/5	(1.81)	OCs)	8021	_	clors		ides)	1		As)	9/0	0 / 60				analys	
Project Location	: I.LI	in	540	Clane.	A	inc.	1	1	re				-	021-9		e (16	ns (4	(HV	602 /	cides	Are	n	erbic	1	3	/PN	1/ 601	/ 601	20)	2		Yes / N	0
Sampler Signatu		1 id	710		w		/	1		4	OF	5		02-13		Freas	carbo	8021	EPA	Pesti	VIN	ticide	CIH	VOC	SVO	PAHs	200.8	200.8	0 / 60	Metab			
		SAM	PLING		r's		MA	FRI	X		4ET ESE			Gas (692-28021,+	2)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 534-2+624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
	LOCATION/			Containers	Type Containers					-				33	TPH as Diesel (8015)	0 mn	Hun	01/8	X ON	/ 808	32 PC	41 (N	51 (A	24/8	25/8	M/8	als (2)	ls (20	200.8	22			
SAMPLE ID	Field Point		-	tair	Cont		1					_	.	BTEX & TPH	Diese	trole	trole	216	BTE	5/ 608	1 804	1 81	1 81	310	52/6	70 SI	Meth	Metu	0.7 /				
	Name	Date	Time	Col	pe	Water	Soil	Sludan	Other	ICE	HCL	HNO3	Other	EX &	H as	al Pe	al Pe	A 502	BE /	A 505	A 608	A 507	A 515	A 534	A 525	A 82	M 17	FT 5	od (20	Title			
/				#	L,	×	So	Shur	ōŌ	P	Ĥ	H	ō	BT	41	Tot	Tot	EP	LW	EP	EP	EP	EP	EP	EP	EP	CA	LU LU	Les	F			
	MW-1	11/9/0	12:30	> 3	US A	*				X	x			X	8	-								×						X		2	0
\sim	MW-2	11910	4:01	3	Vol	1 1 1				Y	×			X	x									X						×			
	MW-3	119/0	iLeilt	3	Vap					X	X			X	X									X						X			
		110	,,,,	1						1														1									
																			1.1														
												1																					
								1	1				1																				
							1	1	1				1																				
													+			1																	
								+	1		+		1							+													
								-												+													
Relinquished By:	1	Date:	Time:	Rece	ived B	y;	1		1			1	+	ICE	E/t°	2	2	-		-	-						(COM	IME	NTS:	_		
Rel	n	1127	14:45	E	en	k	là	2			-					PAC															-		
Relinquished By:	0-	Date:	Time:	Rece	ived B	y:								DE	CHL	ORI	NAT	ED I	NL/	-	0	/	/										
12t	-Th	UB	14:5	-												PRIA				NER	SV		2										
Relinquished By:	1-	Date	Time: /6.7.»	Rece	ived B	y:	A.	15	2									vo	AS	0.0	G	MF	TAL	s	отн	ER							
and a	A	12/01	10.01	()	~	e	V		0					PRI	ESER	INVAT	TION			Unde		pH<			5111								

McCampbell Analytical, Inc.

NO K
1

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92					WorkC	order:	07112	74	ClientID:	EISI					
				EDF	Excel		Fax	Ema	il 🗌	HardCo	ору	Thir	dParty		
Report to: Peter Littman		Email:	plittman@eis	1.net, jmorris@eis		Bill to: Barl	oar				Requ	uested	TAT:	5	days
Environmental In 170 Knowles Driv Los Gatos, CA 9	,	TEL: ProjectNo: PO:	(408) 871-147(Cal Mac Tran	9 FAX: (408) 87 sportation; 717-3A	1-1520	170 Los	Knowle Gatos,	ntal Investig es Drive, Su CA 95032 eis1.net				e Recei e Print		11/09/ 11/12/	
								Requested	d Tests (S	ee lege	and be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	lold 1	2	3	4 5	6	7	8	9	10	11	12
				<u> </u>		_								—	1

0711274-001	MW-1	Water	11/9/07 12:00:00	В	D	А	А	С				
0711274-002	MW-2	Water	11/9/07 2:05:00	В	D	А		С				
0711274-003	MW-3	Water	11/9/07 2:40:00	В	D	А		С				

Test Legend:

1 8260B_W	2 CAM17(T)MS_W	3 G-MBTEX_W	4 PREDF REPORT	5 TPH(D)_W
6	7	8	9	10
11	12			

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Sample Receipt Checklist Date and Time Received: 11/9/07 6:58:51 PM Client Name: Environmental Investigation Services, Inc. Project Name: Cal Mac Transportation; 717-3A Checklist completed and reviewed by: Ana Venegas WorkOrder N°: 0711274 Carrier: Derik Cartan (MAI Courier) Matrix Water Chain of Custody (COC) Information V No 🗆 Chain of custody present? Yes No 🗆 V Yes Chain of custody signed when relinquished and received? \checkmark No Chain of custody agrees with sample labels? Yes No 🗌 V Yes Sample IDs noted by Client on COC? No 🗆 \checkmark Date and Time of collection noted by Client on COC? Yes No 🔽 Sampler's name noted on COC? Yes **Sample Receipt Information** No 🗆 NA 🔽 Custody seals intact on shipping container/cooler? Yes No 🗌 V Yes Shipping container/cooler in good condition? No 🗌 ✓ Yes Samples in proper containers/bottles? No Sample containers intact? Yes \checkmark \checkmark No Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information ✓ No 🗌 All samples received within holding time? Yes NA 12.2°C Cooler Temp: Container/Temp Blank temperature No D No VOA vials submitted D \checkmark Water - VOA vials have zero headspace / no bubbles? Yes No \checkmark Sample labels checked for correct preservation? Yes

Client contacted:

TTLC Metal - pH acceptable upon receipt (pH<2)?

Date contacted:

Yes 🗌

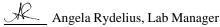
No 🗌

Contacted by:

NA 🗸

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Comments:

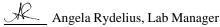

McCampbell A		cal, Ir	<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C.	n@mccampbell.com			
"When Ouality Counts" Environmental Investigation Services, In Client Project ID:					Telephone: 877-252-9262 Fax: 925-252-9269 Cal Mac Date Sampled: 11/09/07					
Environmental investigation Serv	ices, iii	Transpo	•							
170 Knowles Drive, Suite 212	-				Date Received:	11/09/07				
	Client C	Contact:	Peter L	ittman	Date Extracted:	11/13/07				
Los Gatos, CA 95032		Client P	.0.:		Date Analyzed 11/13/07					
	Volati	lo Orgon	iog by D	8-T on	l GC/MS (Basic Ta	angot Ligt)*				
	volau		•			arget List).				
Extraction Method: SW5030B		A	Analytical I	Method:	SW8260B		Work Order: 07112	274		
Lab ID					0711274					
Client ID					MW	7-1				
Matrix					Wa	ter			-	
Compound	Concent	tration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit	
Acetone	N	D	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	1	D	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5	
Benzene	N	D	1.0	0.5	Bromobenzene	· ·	ND	1.0	0.5	
Bromochloromethane	N	D	1.0	0.5	Bromodichlorometh	iane	ND	1.0	0.5	
Bromoform	N	D	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	N	D	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0	
n-Butyl benzene	N	D	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	1	D	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride		D	1.0	0.5	Chlorobenzene		ND ND	1.0	0.5	
Chloroethane	1	D	1.0	0.5		-Chloroethyl Vinyl Ether		1.0	1.0	
Chloroform		D	1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	1	D	1.0	0.5	4-Chlorotoluene		ND ND	1.0	0.5	
Dibromochloromethane		D	1.0	0.5		,2-Dibromo-3-chloropropane		1.0	0.5	
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	1	D D	<u>1.0</u> 1.0	0.5	Dibromomethane 1,3-Dichlorobenzene		ND ND	<u>1.0</u> 1.0	0.5	
1,4-Dichlorobenzene		D D	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5	
1,1-Dichloroethane	1	D D	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5	
1,1-Dichloroethene	1	D	1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5	
trans-1,2-Dichloroethene		D	1.0	0.5	1,2-Dichloropropan		ND	1.0	0.5	
1,3-Dichloropropane	1	D	1.0	0.5	2,2-Dichloropropan		ND	1.0	0.5	
1,1-Dichloropropene	1	D	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5	
trans-1,3-Dichloropropene	1	D	1.0	0.5	Diisopropyl ether (l		ND	1.0	0.5	
Ethylbenzene	N	D	1.0	0.5	Ethyl tert-butyl eth	er (ETBE)	ND	1.0	0.5	
Freon 113	N	D	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5	
Hexachloroethane	Ν	D	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	N	D	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	N	D	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	N	D	1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene		D	1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene		D	1.0	0.5	1,1,1,2-Tetrachloro	oethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane		D	1.0	0.5	Tetrachloroethene		10	1.0	0.5	
Toluene		D	1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5	
1,2,4-Trichlorobenzene		D	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
1,1,2-Trichloroethane Trichlorofluoromethane		D D	<u>1.0</u> 1.0	0.5	Trichloroethene 1,2,3-Trichloropropane		ND ND	1.0 1.0	0.5	
1,2,4-Trimethylbenzene		D	1.0	0.5	1,2,3-Trientoroprop 1,3,5-Trimethylben		ND	1.0	0.5	
Vinvl Chloride	1	D D	1.0	0.5	Xvlenes		ND	1.0	0.5	
		~			coveries (%)			1.0	1 0.0	
%SS1:		11		But Rt	%SS2:		07	7		
%SS1: %SS3:		<u> </u>			70.552.		97			
/UDDJ.		9.	,		L					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.

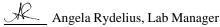

McCampbell A		cal, Ir	<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, Ca bell.com E-mail: mai	n@mccampbell.com		
"When Ouali						Date Sampled:	25-252-9269		
Environmental Investigation Services, In Client Project II						11/09/07			
170 Knowles Drive, Suite 212	Transpo	ortation;	717-3A		Date Received:	11/09/07			
170 Kilowies Drive, Suite 212	Client C	Contact:	Peter L	ittman	Date Extracted:	11/12/07			
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/12/07		
	Valat		ing has T	00 T am					
	volau	-	-		l GC/MS (Basic Ta	arget List)*			
Extraction Method: SW5030B	1	A	Analytical l	Method:	SW8260B		Work Order: 07112	274	
Lab ID					0711274	4-002B			
Client ID					MW	7-2			
Matrix					Wat	ter			
Compound	Concen	tration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	N	١D	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile		ND	1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5
Benzene	1	1D	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	Ν	١D	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	Ν	١D	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	Ν	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0
n-Butyl benzene	Ν	١D	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	Ν	JD	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	Ν	١D	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	Ν	JD	1.0	0.5	2-Chloroethyl Vinyl Ether		ND	1.0	1.0
Chloroform	Ν	JD	1.0	0.5	Chloromethane		ND	1.0	0.5
2-Chlorotoluene	Ν	JD	1.0	0.5			ND	1.0	0.5
Dibromochloromethane	Ν	JD	1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5
1,2-Dibromoethane (EDB)		JD	1.0	0.5			ND	1.0	0.5
1,2-Dichlorobenzene	Ν	JD	1.0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5
1,4-Dichlorobenzene	1	JD	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5
1,1-Dichloroethane	1	JD	1.0	0.5	1,2-Dichloroethane		ND	1.0	0.5
1,1-Dichloroethene		1D	1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5
trans-1,2-Dichloroethene	1	ND ID	1.0	0.5	1,2-Dichloropropan		ND	1.0	0.5
1,3-Dichloropropane		ND ID	1.0	0.5	2,2-Dichloropropan		ND	1.0	0.5
1,1-Dichloropropene	1	ND ID	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5
trans-1,3-Dichloropropene		ND ND	1.0	0.5	Diisopropyl ether (I		ND	1.0	0.5
Ethylbenzene Freon 113	1	ID ID	$\frac{1.0}{1.0}$	0.5	Ethyl tert-butyl ethe Hexachlorobutadien		ND ND	<u>1.0</u> 1.0	0.5
Hexachloroethane		ND ND	1.0	0.5	2-Hexanone	e	ND	1.0	0.5
Isopropylbenzene	_	ND ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5
Methyl-t-butyl ether (MTBE)		ND ND	1.0	0.5	Methylene chloride		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	1	ND	1.0	0.5	Naphthalene		ND	1.0	0.5
Nitrobenzene		ND	1.0	10	n-Propyl benzene		ND	1.0	0.5
Styrene		ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5
1.1.2.2-Tetrachloroethane		ND	1.0	0.5			ND	1.0	0.5
Toluene		1D	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5
1,2,4-Trichlorobenzene		ND.	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5
1,1,2-Trichloroethane	Ν	JD	1.0	0.5			ND	1.0	0.5
Trichlorofluoromethane	Ν	JD	1.0	0.5			ND	1.0	0.5
1,2,4-Trimethylbenzene		JD	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5
Vinvl Chloride	Ν	JD	1.0	0.5	Xvlenes		ND	1.0	0.5
			Surre	ogate Re	coveries (%)				
%SS1:		10	0		%SS2: 90				
%\$\$3:		91	7						
Comments:									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.


McCampbell A		cal, Ir	<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C.	n@mccampbell.com			
"When Ouality Counts" Environmental Investigation Services, In Client Project ID:					Telephone: 877-252-9262 Fax: 925-252-9269 Cal Mac Date Sampled: 11/09/07					
	ices, iii		ortation;			-				
170 Knowles Drive, Suite 212						Date Received:	11/09/07			
	Client C	Contact:	Peter L	ittman	Date Extracted:	11/13/07				
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/13/07			
	Volati	la Organ	ios by D	&T on	l GC/MS (Basic Ta	argot Lict)*				
	v olati	-	-			arget List).				
Extraction Method: SW5030B		F	Analytical l	Method:			Work Order: 07112	274		
Lab ID					0711274					
Client ID					MW	7-3				
Matrix					Wa	ter				
Compound	Concent	ration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit	
Acetone	N	D	1.0	10	Acrolein (Propenal)		ND	1.0	5.0	
Acrylonitrile	N		1.0	2.0	tert-Amyl methyl e		ND	1.0	0.5	
Benzene	N	D	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	N	D	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5	
Bromoform	N	D	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	N	D	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	5.0	
n-Butyl benzene	N	D	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	N		1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	N		1.0	0.5	Chlorobenzene		ND ND	1.0	0.5	
Chloroethane	N		1.0	0.5		2-Chloroethyl Vinyl Ether		1.0	1.0	
Chloroform	N		1.0	0.5	Chloromethane		ND	1.0	0.5	
2-Chlorotoluene	N		1.0	0.5	4-Chlorotoluene		ND	1.0	0.5	
Dibromochloromethane	N		1.0	0.5	1,2-Dibromo-3-chloropropane		ND	1.0	0.5	
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	N N		$\frac{1.0}{1.0}$	0.5	Dibromomethane 1,3-Dichlorobenzene		ND ND	<u>1.0</u> 1.0	0.5	
1,4-Dichlorobenzene	N		1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.5	
1,1-Dichloroethane	N		1.0	0.5	1,2-Dichloroethane (1,2-DCA)		ND	1.0	0.5	
1,1-Dichloroethene	N		1.0	0.5	cis-1,2-Dichloroeth		ND	1.0	0.5	
trans-1,2-Dichloroethene	N		1.0	0.5	1,2-Dichloropropan		ND	1.0	0.5	
1,3-Dichloropropane	N		1.0	0.5	2,2-Dichloropropan		ND	1.0	0.5	
1,1-Dichloropropene	N		1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5	
trans-1,3-Dichloropropene	N	D	1.0	0.5	Diisopropyl ether (l	DIPE)	ND	1.0	0.5	
Ethylbenzene	N	D	1.0	0.5	Ethyl tert-butyl eth	er (ETBE)	ND	1.0	0.5	
Freon 113	N	D	1.0	10	Hexachlorobutadien	e	ND	1.0	0.5	
Hexachloroethane	N	D	1.0	0.5	2-Hexanone		ND	1.0	0.5	
Isopropylbenzene	N	D	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)		D	1.0	0.5	Methylene chloride		ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	N		1.0	0.5	Naphthalene		ND	1.0	0.5	
Nitrobenzene	N		1.0	10	n-Propyl benzene		ND	1.0	0.5	
Styrene		D	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	N		1.0	0.5	Tetrachloroethene		ND	1.0	0.5	
Toluene 1.2.4-Trichlorobenzene	N		1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5	
1,2,4-Trichlorobenzene		D	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
Trichlorofluoromethane	N N		<u>1.0</u> 1.0	0.5	Trichloroethene 1,2,3-Trichloropropane		ND ND	1.0 1.0	0.5	
1,2,4-Trimethylbenzene		D D	1.0	0.5	1,2,5-Trimethylben		ND	1.0	0.5	
Vinvl Chloride		D D	1.0	0.5	Xvlenes	20110	ND	1.0	0.5	
					coveries (%)					
%SS1:		11		But Rt			07	7		
%SS1: %SS3:	<u>110</u> 95				%SS2: 97					
0/2003					1					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.

McCampbell An "When Quality		cal, In	<u>c.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: mair 77-252-9262 Fax: 92	n@mccampbell.c	com	
Environmental Investigation Service	Client Pr	Client Project ID: Cal Mac			Date Sampled:	11/09/07			
-		rtation; 71			Date Received: 11/09/07				
170 Knowles Drive, Suite 212	Client C	ontact: Pe	eter Litt	man	Date Extracted:	11/12/07			
Los Gatos, CA 95032	Client P.	0.:			Date Analyzed	11/13/07			
		C	AM / CCF	R 17 Me	tals*				
Lab ID	Lab ID 07112			-002D	0711274-003D		Demonstrand Lin		
Client ID	MW-1		MW	7-2	MW-3		ND means	Limit for DF =1; s not detected reporting limit	
Matrix	-	W	W		W		s	W	
Extraction Type	TC	DTAL	TOT	AL	TOTAL		mg/kg	μg/L	
	<u> </u>	ICP-N	IS Metals	Conce	ntration*	1	<u> </u>	<u> </u>	
Analytical Method: E200.8			action Method				Work Order:	0711274	
Dilution Factor		1	1		1		1	1	
Antimony		ND	ND)	ND		NA	0.5	
Arsenic	1	2.3	2.7		3.5		NA	0.5	
Barium		240	140		120		NA	5.0	
Beryllium		ND	ND		ND		NA	0.5	
Cadmium		ND	ND		ND		NA	0.25	
Chromium		8.6			2.6		NA	0.5	
Cobalt	ND		1.9 0.60		0.67		NA	0.5	
Copper	ND		0.83		1.6		NA	0.5	
Lead	ND		ND		ND		NA	0.5	
Mercury	0.040		0.059		0.038		NA	0.012	
Molybdenum	1.9		2.2		2.3		NA	0.5	
Nickel		ND	1.1		1.3		NA	0.5	
Selenium		1.4	ND		0.71		NA	0.5	
Silver		ND	ND		ND		NA	0.19	
Thallium		ND	ND		ND		NA	0.15	
Vanadium		14	12		9.0		NA	0.5	
Zinc		ND	ND		ND		NA	5.0	
%SS:		103	102		108			5.0	
								*	
	1								
Comments							<u> </u>		
*water samples are reported in μg/L, proc mg/L, soil/sludge/solid samples in mg/kg, # means surrogate diluted out of range; Ν	wipe san	nples in µg/v	wipe, filter s	amples i	n µg/filter.		-		
nstrument. ΓΟΤΑL = acid digestion.									
WET = Waste Extraction Test (STLC).									
DI WET = Waste Extraction Test using o	le-ionize	d water.							
i) aqueous sample containing greater thar TOTAL [^] metals, a representative sedime detected below quantitation limits; k) rep caused by matrix interference; n) results	nt-water orting li	mixture wa mit raised d	s digested; ue to matrix	j) report k interfe	ing limit raised due rence; m) estimated	to insufficient samp value due to low/hi	ple amount; J) analyte	

	McCampbell	Analy uality Counts'		<u>-</u>		Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com				
Envir	onmental Investigation Se	ervices, In	-	ject ID: 0	Cal M	ac Transport	ation; 717-	Date Sample	d: 11/09/07				
170 K	nowles Drive, Suite 212		3A					Date Receive	e Received: 11/09/07				
Los	atos, CA 95032		Client Cor	ntact: Pet	er Litt	tman		Date Extract					
Los G	alos, CA 95052		Client P.O	.:				Date Analyz	ed 11/10/07				
Extract	Gasolin	e Range (line with BTI	EX and MTBE	* Work Order	: 0711	274						
Lab ID	Client ID	Matrix	TPH(g)	MTBE	- T	8021B/8015Cm Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-1	W	ND	ND		ND	ND	ND	ND	1	90		
002A	MW-2	W	ND	ND		ND	ND	ND	ND	1	94		
003A	MW-3	W	ND	ND		ND	ND	ND	ND	1	89		
	porting Limit for DF =1;	W	50	5.0		0.5	0.5	0.5	0.5	1	µg/L		
	means not detected at or bove the reporting limit	S	NA	NA		NA	NA	NA	NA	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

<u> </u>	Campbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bbell.com E-mail: main@mccam 377-252-9262 Fax: 925-252-926	pbell.com				
Environmental In 170 Knowles Dri	nvestigation Services, In	Client Project ID: Transportation; 7		Date Sampled: 11/09/ Date Received: 11/09/					
Los Gatos, CA 95		Client Contact: F							
Extraction method SW3		ge (C10-C23) Extra	actable Hydrocarbons as methods SW8015C	Date Analyzed 11/13/07-11/14/0 s as Diesel* Work Order: 07112					
Lab ID	Client ID	Matrix	TPH(d))	DF	% SS			
0711274-001C	MW-1	W	ND		1	91			
0711274-002C	MW-2	W	ND		1	91			
0711274-003C	MW-3	W	ND		1	91			

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

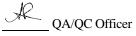
QC Matrix: Water

WorkOrder 0711274

EPA Method SW8260B		Bat	chID: 31	839	Sp	piked Sample ID: 0711274-002B						
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD			LCS-LCSD Acceptance Criteria (%)				
7 mayte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	100	103	2.67	99.3	102	2.48	70 - 130	30	70 - 130	30
Benzene	ND	10	113	115	2.26	114	116	1.17	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	75.2	77.1	2.47	75.1	79.1	5.26	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	113	115	1.08	122	118	2.89	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	108	110	2.30	115	104	10.8	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	88	88.6	0.718	89.2	85.9	3.75	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	108	95.7	12.3	97.1	81.3	17.8	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	101	104	3.79	103	104	1.75	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	94.8	97.8	3.09	95.4	94.6	0.880	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	95.2	98.4	3.24	95.6	90.2	5.88	70 - 130	30	70 - 130	30
Toluene	ND	10	98.5	99.9	1.39	105	99.6	5.20	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	95.3	97.3	2.13	97.5	94.9	2.73	70 - 130	30	70 - 130	30
%SS1:	100	10	104	106	1.76	96	93	3.38	70 - 130	30	70 - 130	30
%SS2:	90	10	90	91	0.589	89	87	2.66	70 - 130	30	70 - 130	30
%SS3:	97	10	97	99	1.83	97	97	0	70 - 130	30	70 - 130	30

BATCH 31839 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711274-001B	11/09/07 12:00 PM	11/13/07	11/13/07 4:28 AM	0711274-002B	11/09/07 2:05 PM	11/12/07	11/12/07 2:56 PM
0711274-003B	11/09/07 2:40 PM	11/13/07	11/13/07 5:14 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0711274

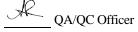
EPA Method E200.8	Extra	ction E20	0.8		Bat	chID: 31	837	Sp	piked Sample ID: 0711287-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	CSD LCS-LCSD Acceptance Criteria (%)					
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Antimony	5.5	10	114	108	3.85	116	117	0.675	70 - 130	20	80 - 120	20	
Arsenic	160	10	130	139, F1	0.519	102	106	4.13	70 - 130	20	80 - 120	20	
Barium	7.1	100	113	115	1.73	109	108	0.0921	70 - 130	20	80 - 120	20	
Beryllium	ND	10	106	109	2.32	111	111	0	70 - 130	20	80 - 120	20	
Cadmium	ND	10	107	109	1.95	110	108	1.10	70 - 130	20	80 - 120	20	
Chromium	ND	10	105	106	1.09	107	107	0	70 - 130	20	80 - 120	20	
Cobalt	0.58	10	102	104	2.30	108	107	0.186	70 - 130	20	80 - 120	20	
Copper	4.3	10	118	125	4.37	108	113	4.33	70 - 130	20	80 - 120	20	
Lead	7.9	10	112	113	0.573	108	109	0.368	70 - 130	20	80 - 120	20	
Mercury	0.33	0.25	113	113	0	102	100	1.82	70 - 130	20	80 - 120	20	
Molybdenum	2.3	10	116	118	1.71	104	103	1.35	70 - 130	20	80 - 120	20	
Nickel	9.4	10	103	105	0.962	106	106	0	70 - 130	20	80 - 120	20	
Selenium	6.9	10	116	121	2.34	106	111	4.90	70 - 130	20	80 - 120	20	
Silver	ND	10	102	104	2.24	105	105	0	70 - 130	20	80 - 120	20	
Thallium	ND	10	115	116	0.867	107	107	0	70 - 130	20	80 - 120	20	
Vanadium	0.76	10	111	112	0.927	107	106	0.658	70 - 130	20	80 - 120	20	
Zinc	24	100	107	110	1.81	111	112	0.720	70 - 130	20	80 - 120	20	
%SS:	111	750	111	118	5.29	106	106	0	70 - 130	20	70 - 130	20	

NONE

F1 = MS / MSD outside of acceptance criteria. LCS - LCSD validate prep batch.

	BATCH 31837 SUMMARY													
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed							
0711274-001D	11/09/07 12:00 PM	11/12/07	11/13/07 4:11 PM	0711274-002D	11/09/07 2:05 PM	11/12/07	11/13/07 4:24 PM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification N° 1644

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0711274

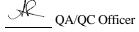
EPA Method E200.8	Extra	ction E20	0.8		BatchID: 31853					piked Sample ID: 0711274-003D				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Criteria (%))		
/ mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Antimony	ND	10	106	109	2.35	103	104	0.580	70 - 130	20	80 - 120	20		
Arsenic	3.5	10	100	99.4	0.739	97.9	96.4	1.53	70 - 130	20	80 - 120	20		
Barium	120	100	99.6	98.6	0.454	97.6	98.2	0.644	70 - 130	20	80 - 120	20		
Beryllium	ND	10	90.1	91.1	1.14	101	99.9	0.976	70 - 130	20	80 - 120	20		
Cadmium	ND	10	97.8	95.7	2.21	99.3	99.2	0.0806	70 - 130	20	80 - 120	20		
Chromium	2.6	10	94.8	97.6	2.20	97.4	98.8	1.41	70 - 130	20	80 - 120	20		
Cobalt	0.67	10	88.1	89.4	1.34	104	104	0	70 - 130	20	80 - 120	20		
Copper	1.6	10	95.9	95.4	0.449	102	103	1.47	70 - 130	20	80 - 120	20		
Lead	ND	10	100	103	2.30	97.5	98.2	0.716	70 - 130	20	80 - 120	20		
Mercury	0.038	0.25	101	101	0	87.6	89	1.58	70 - 130	20	80 - 120	20		
Molybdenum	2.3	10	99.5	99.6	0.0817	95.1	94.8	0.327	70 - 130	20	80 - 120	20		
Nickel	1.3	10	95.2	98.2	2.73	92.3	92.1	0.260	70 - 130	20	80 - 120	20		
Selenium	0.71	10	97.5	101	3.11	100	101	0.199	70 - 130	20	80 - 120	20		
Silver	ND	10	95	95.3	0.326	100	100	0	70 - 130	20	80 - 120	20		
Thallium	ND	10	95.9	98.1	2.26	92.6	93.2	0.603	70 - 130	20	80 - 120	20		
Vanadium	9.0	10	99.8	101	0.735	98.5	99.1	0.638	70 - 130	20	80 - 120	20		
Zinc	ND	100	89.8	91.8	2.10	96.6	98.4	1.74	70 - 130	20	80 - 120	20		
%SS:	108	750	104	104	0	99	97	2.22	70 - 130	20	70 - 130	20		

NONE

BATCH 31853 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711274-003D	11/09/07 2:40 PM	I 11/12/07	11/13/07 3:06 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification Nº 1644

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

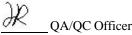
QC Matrix: Water

WorkOrder: 0711274

EPA Method SW8021B/8015Cm		BatchID: 31832 Spiked Sample ID: 0711274-0										
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria						Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	94.6	90.5	4.45	86.8	92	5.84	70 - 130	30	70 - 130	30
MTBE	ND	10	92.7	95	2.48	76.3	95.1	22.0	70 - 130	30	70 - 130	30
Benzene	ND	10	99.3	102	2.49	106	99.6	6.48	70 - 130	30	70 - 130	30
Toluene	ND	10	101	104	2.95	108	101	6.71	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	105	108	2.49	113	106	6.77	70 - 130	30	70 - 130	30
Xylenes	ND	30	120	120	0	127	120	5.41	70 - 130	30	70 - 130	30
%SS:	89	10	91	95	3.61	99	91	8.84	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	s than the	method R	RL with th	e following	exceptions:			

BATCH 31832 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711274-001A	11/09/07 12:00 PM	11/10/07	11/10/07 1:31 AM	0711274-002A	11/09/07 2:05 PM	I 11/10/07	11/10/07 2:04 AM
0711274-003A	11/09/07 2:40 PM	11/10/07	11/10/07 3:11 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

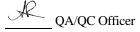
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0711274

EPA Method SW8015C	Extra	ction SW	3510C		BatchID: 31794 Spiked Sample ID: N/A								
Analyte	Sample Spiked MS MSD N				MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(d)	N/A	1000	N/A	N/A	N/A	98.6	113	13.9	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	83	100	18.0	N/A	N/A	70 - 130	30	
All target compounds in the Method I NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	CL with th	e following	exceptions:				

			BATCH 31794 SU	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711274-001C	11/09/07 12:00 PM	11/12/07	11/13/07 10:30 PM	0711274-002C	11/09/07 2:05 PM	11/12/07	11/13/07 11:40 PM
0711274-003C	11/09/07 2:40 PM	11/12/07	11/14/07 8:58 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Attachment J Soil Gas Sampling Laboratory Analytical Reports

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Environmental Investigation Servi	Client Project ID: #717-3B; Cal Mac	Date Sampled: 11/13/07
170 Knowles Drive, Suite 212	Transportation	Date Received: 11/13/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 11/19/07
205 04005, 011 75052	Client P.O.:	Date Completed: 11/19/07

WorkOrder: 0711336

November 19, 2007

Dear Peter:

Enclosed are:

- 1). the results of 2 analyzed samples from your **#717-3B; Cal Mac Transportation project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

07/1336

Environmental Investigation Services, Inc.

15466 Los Gatos Boulevard, Suite 109-062 Los Gatos, California 95032 Phone: 408-871-1470 Fax: 408-871-1520

Page _____ of ___

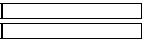
	Project Numbe	er: 717-	- 3B			Turnereune				ANA	LYSI	S REQ	UES	ΓED				<u> </u>
	Project Name:	Cal M	ac Tr	an	Sportation	Turnaround Time	1	20										
	Site Address:	461 Mo	regram	P	Wenne	Requested:		60										
								2										1.0
	Report To:- E	wirso	men	Fd	Imenia 8	m P.L	1.Hmeny	00										
	e-mail: P	iHman	Dei	C 1	!			A									2. 2. A.	
			1 ect	27.	net			14										
	Special Instruc	tions.																
	100-002							- 4										
	170-043							U									· · · · · · · · · · · · · · · · · · ·	
	SAMPL	E DESCRIPT	ION	C	ONTAINER(S)			0									initia	1 Analp
	Sample ID	Date	Time	No.	Туре	Matrix	Preservation										Notes	
8	59-1	11/13/07	15:50	1	Caringen	gaz		X					can	celle	d	1/19	received	open
	39-2	51	15:00	1	U	1		x									13,51.	26.93
	SG-B	'n	16:00	í	6	r		7									13.97	27.93
	59-4	ц	16:10	1		()	*	X					Can	celle	d	1/19	recieveo	1 open
	,				X	1		<i>′</i>										_ '
										_	\square					_		
										_	\downarrow					_		
										_	++		_	+		_		_
	AND COL									-	+		_		_	_	1	-
	TOTA BOR MOT									_			_	+	_	_		_
	Collected By:		. 0		Data/Time: /	2												-
	Relinquished B	v. R = l	T.E.	5	Date/Time:	13207-	Received By	N	entel	A			D	ate/Ti	ime	16:0	0 11-13-5	7
	Relinguished B		al		Date/Time: ((-(3-)	7 1800	Received By	The owner water water	fre	R	E.	_					-07	-
	Relinquished B	1			Date/Time:	15	Received By			V	- 1			ate/Ti	_	11		
							Condition of	Samp	ole:									

McCampbell Analytical, Inc.

	-	AW)
1	7	S
	-	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD


Page 1 of 1

Pittsburg, C (925) 252-9	CA 94565-1701 9262					Work	Order	: 0711	336	Cl	ientID:	EISI					
				EDF	Ľ	Excel		Fax	[Email		HardC	Сору	Thir	rdParty		
Report to: Peter Littman Environmental 170 Knowles D Los Gatos, CA	,	Email: TEL: ProjectNo: PO:	(408) 871-1470	1.net, jmorris@ei) FAX: (408) 8 Mac Transportatic	371-152	et	En 17 Lo	irbar ivironm 0 Know s Gatos		ve, Suite 5032	on Servic 212	es	Dat	uested e Rece e Print	ived:	5 d 11/13/ 11/14/	
									Req	uested T	ests (Se	e lege	end b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711336-001	SG-1		Air	11/13/07 3:50:00		А											
0711336-002	SG-2		Air	11/13/07 3:40:00		Α											
0711336-003	SG-3		Air	11/13/07 4:00:00		А											
0711336-004	SG-4		Air	11/13/07 4:10:00		А											

Test Legend:

1	TO15_SOIL(UG/M3)	2	
6		7	
11		12	

	3	
	8	

4		
9		

5			
10			

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Sample Receipt Checklist 11/13/07 6:19:35 PM Client Name: Environmental Investigation Services, Inc. Date and Time Received: Project Name: #717-3B; Cal Mac Transportation Checklist completed and reviewed by: Ana Venegas WorkOrder N°: 0711336 Carrier: Derik Cartan (MAI Courier) Matrix Air Chain of Custody (COC) Information V No 🗆 Chain of custody present? Yes No 🗆 V Yes Chain of custody signed when relinquished and received? \checkmark No Chain of custody agrees with sample labels? Yes No 🗌 V Yes Sample IDs noted by Client on COC? No 🗆 \checkmark Date and Time of collection noted by Client on COC? Yes No 🔽 Sampler's name noted on COC? Yes **Sample Receipt Information** No 🗆 NA 🔽 Custody seals intact on shipping container/cooler? Yes No 🗌 V Yes Shipping container/cooler in good condition? No 🗌 \checkmark Yes Samples in proper containers/bottles? No 🗌 Sample containers intact? Yes \checkmark ✓ No Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information ✓ No All samples received within holding time? Yes NA 🗸 Cooler Temp: Container/Temp Blank temperature

 \checkmark

No

No 🗌

Yes

Yes Yes 🗌

Client contacted:

Water - VOA vials have zero headspace / no bubbles?

Sample labels checked for correct preservation?

TTLC Metal - pH acceptable upon receipt (pH<2)?

Date contacted:

Contacted by:

NA 🗸

No 🔲 No VOA vials submitted 🗹

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Comments:

WcCampbell A "When Ouali		ical, Ir	<u>nc.</u>		Web: www.mccan	Pass Road, Pittsburg, CA apbell.com E-mail: main 877-252-9262 Fax: 92	n@mccampbell.com				
Environmental Investigation Serv	ices, In	Client P	roject II	D: #717	-3B; Cal Mac	Date Sampled:	11/13/07				
C	*	Transpo			,	Date Received:	11/13/07				
170 Knowles Drive, Suite 212		Cliant		Data # I	:						
		Client C		Peter L	Attman	Date Extracted:					
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/14/07				
		Vola	tile Org	ganic Co	mpounds in µg/m	13*					
Extraction Method: TO15		A	Analytical	Method:	TO15		Work Order: 07113	336			
Lab ID				0711	336-002A		Initial Pres	sure	13.		
Client ID					SG-2		Final Pres		26.		
Matrix					Air		T mai i ies	Suic			
Compound	Concer	ntration *	DF	Reporting	Compou	und	Concentration *	DF	Reporti		
				Limit		ind			Limi		
Acetone tert-Amyl methyl ether (TAME)		ND ND	$\frac{1.0}{1.0}$	120 8.5	Acrylonitrile Benzene		ND ND	<u>1.0</u> 1.0	4.4		
Benzyl chloride		ND ND	1.0	11	Bromodichloromet	hane	ND	1.0	14		
Bromoform		ND	1.0	21	Bromomethane	inane	ND	1.0	200		
1,3-Butadiene		ND	1.0	4.5	2-Butanone (MEK)	ND	1.0	150		
t-Butyl alcohol (TBA)		ND	1.0	150	Carbon Disulfide)	ND	1.0	6.3		
Carbon Tetrachloride		ND	1.0	130	Chlorobenzene		ND	1.0	61		
Chloroethane		ND	1.0	13	Chloroform		ND	1.0	9.9		
Chloromethane		ND	1.0	4.2	Cyclohexane		ND	1.0	180		
Dibromochloromethane		ND		4.2	1,2-Dibromo-3-ch	oronronana	ND,k	1.0	20		
1,2-Dibromoethane (EDB)						16	1,2-Dichlorobenzene		ND,K ND	1.0	210
	ND		1.0 1.0	100	1,4-Dichlorobenzene			1.0	12		
1,3-Dichlorobenzene Dichlorodifluoromethane		ND ND	1.0	100	1,1-Dichloroethan		ND ND	1.0	8.2		
1,2-Dichloroethane (1,2-DCA)		ND ND	1.0	8.2	1,1-Dichloroethen		ND	1.0	20		
cis-1,2-Dichloroethene		ND ND	1.0	36	trans-1,2-Dichloro		ND	1.0	73		
1,2-Dichloropropane		ND	1.0	9.4	cis-1,3-Dichloropr		ND	1.0	9.2		
trans-1,3-Dichloropropene		ND ND	1.0	9.4		,2-tetrafluoroethan	ND	1.0	9.2		
Diisopropyl ether (DIPE)		ND ND	1.0	8.5	1,2-Dicino10-1,1,2	,2-tetranuoroetiiaii	ND	1.0	7.3		
Ethanol		ND	1.0	96	Ethyl acetate		ND	1.0	7.3		
Ethyl tert-butyl ether (ETBE)		ND	1.0	8.5	Ethylbenzene		ND	1.0	8.8		
4-Ethyltoluene		ND	1.0	10	Freon 113		ND	1.0	16		
Heptane		ND	1.0	210	Hexachlorobutadie	ne	ND	1.0	22		
Hexane		ND	1.0	180	2-Hexanone	lie	ND	1.0	210		
Isopropyl Alcohol		ND	1.0	25	4-Methyl-2-pentar	one (MIRK)	ND	1.0	83		
Methyl-t-butyl ether (MTBE)		ND	1.0	48	Methylene chloride		ND	1.0	12		
Naphthalene	_	ND	1.0	11	Propene	·	ND	1.0	88		
Styrene		ND	1.0	8.6	1,1,1,2-Tetrachlor	oethane	ND	1.0	14		
1,1,2,2-Tetrachloroethane		ND	1.0	14	Tetrachloroethene		ND	1.0	14		
Tetrahydrofuran	1	ND	1.0	6.0	Toluene		ND	1.0	7.7		
1,2,4-Trichlorobenzene		ND	1.0	15	1,1,1-Trichloroeth	ane	ND	1.0	11		
1,1,2-Trichloroethane		ND	1.0	11	Trichloroethene		ND	1.0	11		
Trichlorofluoromethane		ND	1.0	11	1.2.4-Trimethylbe	nzene	ND	1.0	10		
1.3.5-Trimethylbenzene		ND	1.0	10	Vinyl Acetate		ND	1.0	18		
Vinvl Chloride		ND	1.0	5.2	Xvlenes		ND	1.0	27		
		<u> </u>			coveries (%)				<i></i> /		
%SS1:		10		san Rt	%SS2:		10	2			
%\$\$1: %\$\$\$3:		10 90			70.002.		10	4			
	1	90	1		1						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

sportation at Contact t P.O.: Datile Or	Peter L ganic Co	ompounds in µg/n	und thane) loropropane	11/14/07	ssure	14 27.9 Reportin Limit 4.4 6.5 14 200 150 6.3 61 9.9 180 20
sportation tt Contact t P.O.: Datile Or Analytical * DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Reporting Limit 120 8.5 11 21 4.5 150 13 4.2 17 16	Littman Dimpounds in µg/n TO15 1336-003A SG-3 Air Compose Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	Date Received: Date Extracted: Date Analyzed n ^{3*}	11/14/07 11/14/07 Work Order: 07112 Initial Pres Final Pres Final Pres Concentration * ND ND ND ND ND ND ND ND ND ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.9 Reportin Limit 4.4 6.5 14 2000 1500 6.3 61 9.9 180
t P.O.: Datile Or Analytical * DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Reporting Limit 120 8.5 11 21 4.5 150 13 4.2 17 16	pmpounds in µg/n TO15	Date Extracted: Date Analyzed n ^{3*}	11/14/07 11/14/07 Work Order: 07112 Initial Pres Final Pres Final Pres Concentration * ND ND ND ND ND ND ND ND ND ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.9 Reportin Limit 4.4 6.5 14 2000 1500 6.3 61 9.9 180
t P.O.: Datile Or Analytical * DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Reporting Limit 120 8.5 11 21 4.5 150 13 4.2 17 16	pmpounds in µg/n TO15	Date Analyzed n ^{3*} und thane loropropane	11/14/07 Work Order: 07113 Initial Pres Final Pres Concentration * Concentration * ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.9 Reportir Limit 4.4 6.5 14 200 150 6.3 61 9.9 180
Analytical * DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Method: O711 0711 0711 Imit 120 8.5 11 21 4.5 150 13 13 4.2 17 16	TO15 336-003A SG-3 Air Component Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	n ^{3*}	Work Order: 07111 Initial Pres Final Pres Concentration * ND ND ND ND ND ND ND ND ND ND ND ND ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.9 Reportin Limit 4.4 6.5 14 2000 1500 6.3 61 9.9 180
Analytical * DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Method: O711 0711 0711 Imit 120 8.5 11 21 4.5 150 13 13 4.2 17 16	TO15 336-003A SG-3 Air Component Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	und thane) loropropane	Initial Pres Final Pres Concentration * ND ND ND ND ND ND ND ND ND ND ND ND ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.5 Reportin Limit 4.4 6.5 14 2000 1500 6.3 61 9.9 1800
Analytical * DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Method: O711 0711 0711 Imit 120 8.5 11 21 4.5 150 13 13 4.2 17 16	TO15 336-003A SG-3 Air Component Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	und thane) loropropane	Initial Pres Final Pres Concentration * ND ND ND ND ND ND ND ND ND ND ND ND ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.5 Reportin Limit 4.4 6.5 14 2000 1500 6.3 61 9.9 1800
$\begin{array}{c c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	Reporting Limit 120 8.5 11 21 4.5 150 13 4.2 17 16	SG-3 Air Combo Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	thane) loropropane	Final Pres	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.9 Reporti Limit 4.4 6.5 14 2000 1500 6.3 61 9.9 1800
$\begin{array}{c c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	Reporting Limit 120 8.5 11 21 4.5 150 13 4.2 17 16	SG-3 Air Combo Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	thane) loropropane	Final Pres	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.5 Reporti Limi 4.4 6.5 14 200 150 6.3 61 9.9 180
$\begin{array}{c c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	Limit 120 8.5 11 21 4.5 150 13 13 4.2 17 16	Air Combo Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	thane) loropropane	Concentration * ND	DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Reporti Limi 4.4 6.5 14 2000 1500 6.3 61 9.9 1800
$\begin{array}{c c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	Limit 120 8.5 11 21 4.5 150 13 13 4.2 17 16	Compor Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	thane) loropropane	ND ND ND ND ND ND ND ND ND ND ND,k	$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	Limi 4.4 6.5 14 200 150 6.3 61 9.9 180
$\begin{array}{c c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	$ \begin{array}{r} 120\\ 8.5\\ 11\\ 21\\ 4.5\\ 150\\ 13\\ 4.2\\ 17\\ 16\\ \end{array} $	Acrylonitrile Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	thane) loropropane	ND ND ND ND ND ND ND ND ND ND ND,k	$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	4.4 6.5 14 200 150 6.3 61 9.9 180
$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	$\begin{array}{c c} 8.5 \\ 11 \\ 21 \\ 4.5 \\ 150 \\ 13 \\ 13 \\ 4.2 \\ 17 \\ 16 \end{array}$	Benzene Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze) loropropane	ND ND ND ND ND ND ND ND ND,k	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	6.5 14 200 150 6.3 61 9.9 180
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$ \begin{array}{c} 11\\ 21\\ 4.5\\ 150\\ 13\\ 13\\ 4.2\\ 17\\ 16\\ \end{array} $	Bromodichlorome Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze) loropropane	ND ND ND ND ND ND ND ND,k	$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	14 200 150 6.3 61 9.9 180
$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	21 4.5 150 13 4.2 17 16	Bromomethane 2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze) loropropane	ND ND ND ND ND ND ND,k	$ \begin{array}{r} 1.0 \\ 1$	200 150 6.3 61 9.9 180
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.5 150 13 13 4.2 17 16	2-Butanone (MEK Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	loropropane	ND ND ND ND ND ND,k	1.0 1.0 1.0 1.0 1.0	150 6.3 61 9.9 180
$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	150 13 13 4.2 17 16	Carbon Disulfide Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze	loropropane	ND ND ND ND ND,k	1.0 1.0 1.0 1.0	6.3 61 9.9 180
$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	13 13 4.2 17 16	Chlorobenzene Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze		ND ND ND ND,k	1.0 1.0 1.0	61 9.9 180
1.0 1.0 1.0 1.0 1.0	13 4.2 17 16	Chloroform Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze		ND ND ND,k	1.0 1.0	9.9 180
1.0 1.0 1.0 1.0	4.2 17 16	Cyclohexane 1,2-Dibromo-3-ch 1,2-Dichlorobenze		ND ND,k	1.0	180
1.0 1.0 1.0	17 16	1,2-Dibromo-3-ch 1,2-Dichlorobenze		ND,k		
1.0 1.0	16	1,2-Dichlorobenze			1.0	- 20
1.0			ne		1.0	
	100	1 4-Dichlorobenze			1.0	210
1.0				ND	1.0	12
	10	1,1-Dichloroethan		ND	1.0	8.2
1.0	8.2	1,1-Dichloroethen		ND	1.0	200
1.0	36	trans-1,2-Dichloro		ND	1.0	73
1.0	9.4	cis-1,3-Dichlorop		ND	1.0	9.2
1.0	9.2		2,2-tetrafluoroethan	ND	1.0	14
1.0	8.5	1,4-Dioxane		ND	1.0	7.3
1.0	96	Ethyl acetate		ND	1.0	7.3
1.0	8.5	Ethylbenzene		ND	1.0	8.8
1.0	10	Freon 113		ND	1.0	16
1.0	210	Hexachlorobutadie	ne	ND	1.0	22
1.0	180	2-Hexanone		ND	1.0	210
1.0	25	4-Methyl-2-pentai		ND	1.0	83
1.0	48	Methylene chloride	e	ND	1.0	12
1.0	11	Propene		ND	1.0	88
1.0	8.6			ND	1.0	14
						14
						7.7
			lane	1 1		11
						11
			nzene			10
						180
					1.0	27
Suri	ogate Re					
		%SS2:		10	3	
99		1				
-	1.0 1.0 1.0 1.0 1.0 1.0 1.0 99	1.0 14 1.0 6.0 1.0 15 1.0 11 1.0 11 1.0 10 1.0 5.2 Surrogate Re 99	1.0 14 Tetrachloroethene 1.0 6.0 Toluene 1.0 15 1,1,1-Trichloroeth 1.0 11 Trichloroethene 1.0 11 Trichloroethene 1.0 11 1,2,4-Trimethylbe 1.0 10 Vinyl Acetate 1.0 5.2 Xvlenes Surrogate Recoveries (%) 99 %SS2:	1.0 14 Tetrachloroethene 1.0 6.0 Toluene 1.0 15 1,1,1-Trichloroethane 1.0 11 Trichloroethene 1.0 11 Trichloroethene 1.0 11 1,2,4-Trimethylbenzene 1.0 10 Vinyl Acetate 1.0 5.2 Xylenes Surrogate Recoveries (%) 99	1.0 14 Tetrachloroethene ND 1.0 6.0 Toluene ND 1.0 15 1,1,1-Trichloroethane ND 1.0 11 Trichloroethene ND 1.0 11 Trichloroethene ND 1.0 11 1,2,4-Trimethylbenzene ND 1.0 10 Vinyl Acetate ND 1.0 5.2 Xylenes ND Surrogate Recoveries (%)	1.0 14 Tetrachloroethene ND 1.0 1.0 6.0 Toluene ND 1.0 1.0 15 1,1,1-Trichloroethane ND 1.0 1.0 11 Trichloroethane ND 1.0 1.0 11 Trichloroethene ND 1.0 1.0 11 1,2,4-Trimethylbenzene ND 1.0 1.0 10 Vinyl Acetate ND 1.0 1.0 5.2 Xvlenes ND 1.0 Surrogate Recoveries (%) 99 %SS2: 103

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

When Oualit		cal, Ir	<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com				
Environmental Investigation Servi	ces, In Client Project ID: #717-3B; Cal Mac Date Sampled: 1						11/13/07				
e	,	Transpo	•		,	Date Received:	11/13/07				
170 Knowles Drive, Suite 212					•						
		Client C	contact:	Peter L	littman	Date Extracted:					
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/14/07				
		Vola	atile Org	ganic Co	ompounds in nL/L	*					
Extraction Method: TO15				Method: '	-		Work Order: 07113	336			
Lab ID				0711	336-002A		Initial Pres	sure	13.		
Client ID					SG-2		Final Pres		26.		
Matrix					Air		Final Pres	sure	20.		
Compound	Concer	tration *	DF	Reporting	Compou	nd	Concentration *	DF	Report		
				Limit		lia			Lim		
Acetone		ND ID	1.0	50	Acrylonitrile		ND	1.0	2.0		
tert-Amyl methyl ether (TAME)		ND ID	1.0	2.0	Benzene	1	ND	1.0	2.0		
Benzyl chloride		ND ID	1.0	2.0	Bromodichloromet	hane	ND	1.0	2.0		
Bromoform		ND ID	1.0	2.0	Bromomethane		ND	1.0	50		
1,3-Butadiene		ND	1.0	2.0	2-Butanone (MEK)		ND	1.0	50		
t-Butyl alcohol (TBA)		ND	<u>1.0</u> 1.0	50	Carbon Disulfide		ND	1.0	2.		
Carbon Tetrachloride		ND		2.0	Chlorobenzene		ND	1.0	13		
Chloroethane		ND		5.0	Chloroform		ND	1.0	2.		
Chloromethane		ND 1				2.0	Cyclohexane		ND	1.0	5(
Dibromochloromethane	ND		1.0	2.0	1,2-Dibromo-3-chloropropane		ND,k	1.0	2.		
1,2-Dibromoethane (EDB)	ND		1.0	2.0	1,2-Dichlorobenzene		ND	1.0	34		
1,3-Dichlorobenzene		ND .	1.0	17	1,4-Dichlorobenzene		ND	1.0	2.		
Dichlorodifluoromethane		ND .	1.0	2.0	1,1-Dichloroethane		ND	1.0	2.		
1,2-Dichloroethane (1,2-DCA)		ND .	1.0	2.0	1,1-Dichloroethene		ND	1.0	50		
cis-1,2-Dichloroethene		ND	1.0	9.0	trans-1,2-Dichloro		ND	1.0	18		
1,2-Dichloropropane		ND .	1.0	2.0	cis-1,3-Dichloropro		ND	1.0	2.		
trans-1,3-Dichloropropene		ND	1.0	2.0	1,2-Dichloro-1,1,2	2-tetrafluoroethan	ND	1.0	2.		
Diisopropyl ether (DIPE)	1	ND .	1.0	2.0	1,4-Dioxane		ND	1.0	2.		
Ethanol		ND .	1.0	50	Ethyl acetate		ND	1.0	2.		
Ethyl tert-butyl ether (ETBE)	1	ND .	1.0	2.0	Ethylbenzene		ND	1.0	2.		
4-Ethyltoluene	1	ND	1.0	2.0	Freon 113		ND	1.0	2.		
Heptane	1	ND .	1.0	50	Hexachlorobutadie	ie	ND	1.0	2.		
Hexane	1	ND	1.0	50	2-Hexanone		ND	1.0	5		
Isopropyl Alcohol	1	ND .	1.0	10	4-Methyl-2-pentan	one (MIBK)	ND	1.0	20		
Methyl-t-butyl ether (MTBE)	1	ND	1.0	13	Methylene chloride		ND	1.0	3.		
Naphthalene	1	ND	1.0	2.0	Propene		ND	1.0	5		
Styrene	N	ND .	1.0	2.0	1,1,1,2-Tetrachlor	oethane	ND	1.0	2.		
1,1,2,2-Tetrachloroethane		ND	1.0	2.0	Tetrachloroethene		ND	1.0	2.		
Tetrahydrofuran		ND	1.0	2.0	Toluene		ND	1.0	2.		
1,2,4-Trichlorobenzene		ND	1.0	2.0	1,1,1-Trichloroeth	ane	ND	1.0	2.		
1,1,2-Trichloroethane		ND	1.0	2.0	Trichloroethene		ND	1.0	2.		
Trichlorofluoromethane		ND	1.0	2.0	1,2,4-Trimethylber	izene	ND	1.0	2.		
1,3,5-Trimethylbenzene		ND .	1.0	2.0	Vinyl Acetate		ND	1.0	50		
Vinvl Chloride	<u> </u>	ND	1.0	2.0	Xvlenes		ND	1.0	6.		
	1			ogate Re	coveries (%)		1				
%SS1:		10			%SS2:		10	2			
%SS3:	1	99)								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

j) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

When Oualit		cal, Ir	<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com				
Environmental Investigation Servi	ices, In	Client P	roject II	D: #717	7-3B; Cal Mac Date Sampled: 11/13/07						
U	,	Transpo	•		,	Date Received: 11/13/07					
170 Knowles Drive, Suite 212		<u></u>		D T	•						
		Client C	Contact:	Peter L	littman	Date Extracted:	11/14/07				
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/14/07				
		Vola	atile Org	ganic Co	ompounds in nL/L	,* '					
Extraction Method: TO15				Method:	-		Work Order: 07113	336			
Lab ID				0711	336-003A		Initial Pres	sure	14		
Client ID					SG-3		Final Pres		27.		
Matrix					Air		Filial Fles	sule	27.		
	C	4	DE	Reporting			Composition *	DE	Reporti		
Compound		tration *	DF	Limit	Compou	Ind	Concentration *	DF	Limi		
Acetone		ND ID	1.0	50	Acrylonitrile		ND	1.0	2.0		
tert-Amyl methyl ether (TAME)		ND ID	1.0	2.0	Benzene		ND	1.0	2.0		
Benzyl chloride		ND	1.0	2.0	Bromodichloromet	ND	1.0	2.0			
Bromoform	1	ND	1.0	2.0	Bromomethane	ND	1.0	50			
1,3-Butadiene		ND	1.0	2.0	2-Butanone (MEK)		ND	1.0	50		
t-Butyl alcohol (TBA)	ND		1.0	50	Carbon Disulfide		ND	1.0	2.0		
Carbon Tetrachloride	ND		1.0	2.0	Chlorobenzene		ND ND	1.0	13		
Chloroethane	ND		1.0	5.0	Chloroform					1.0	2.0
Chloromethane	ND		1.0 1.0	2.0	Cyclohexane		ND	1.0	50		
Dibromochloromethane	1	ND		2.0	1,2-Dibromo-3-chl		ND,k	1.0	2.0		
1,2-Dibromoethane (EDB)	1	ND		2.0	1,2-Dichlorobenzer	ne	ND	1.0	34		
1,3-Dichlorobenzene	1	ND .	1.0	17	1,4-Dichlorobenzer		ND	1.0	2.0		
Dichlorodifluoromethane		ND .	1.0	2.0	1,1-Dichloroethane		ND	1.0	2.0		
1,2-Dichloroethane (1,2-DCA)		ND .	1.0	2.0	1,1-Dichloroethene	ND		1.0	50		
cis-1,2-Dichloroethene		ND	1.0	9.0	trans-1,2-Dichloro		ND	1.0	18		
1,2-Dichloropropane	1	ND .	1.0	2.0	cis-1,3-Dichloropr		ND	1.0	2.0		
trans-1,3-Dichloropropene	1	ND	1.0	2.0	1,2-Dichloro-1,1,2	,2-tetrafluoroethan	ND	1.0	2.0		
Diisopropyl ether (DIPE)		ND .	1.0	2.0	1,4-Dioxane		ND	1.0	2.0		
Ethanol	1	ND .	1.0	50	Ethyl acetate		ND	1.0	2.0		
Ethyl tert-butyl ether (ETBE)	1	ND .	1.0	2.0	Ethylbenzene		ND	1.0	2.0		
4-Ethyltoluene	1	ND	1.0	2.0	Freon 113		ND	1.0	2.0		
Heptane	1	ND	1.0	50	Hexachlorobutadie	ne	ND	1.0	2.0		
Hexane	1	ND .	1.0	50	2-Hexanone		ND	1.0	50		
Isopropyl Alcohol	1	ND .	1.0	10	4-Methyl-2-pentan	one (MIBK)	ND	1.0	20		
Methyl-t-butyl ether (MTBE)	1	ND	1.0	13	Methylene chloride		ND	1.0	3.5		
Naphthalene	1	ND .	1.0	2.0	Propene		ND	1.0	50		
Styrene	1	ND .	1.0	2.0	1,1,1,2-Tetrachlor		ND	1.0	2.0		
1,1,2,2-Tetrachloroethane	1	ND	1.0	2.0	Tetrachloroethene		ND	1.0	2.0		
Tetrahydrofuran		ND	1.0	2.0	Toluene		ND	1.0	2.0		
1,2,4-Trichlorobenzene	1	ND .	1.0	2.0	1,1,1-Trichloroethane		ND	1.0	2.0		
1,1,2-Trichloroethane		ND	1.0	2.0			ND	1.0	2.0		
Trichlorofluoromethane		ND	1.0	2.0	1,2,4-Trimethylber	nzene	ND	1.0	2.0		
1,3,5-Trimethylbenzene		ND	1.0	2.0	Vinyl Acetate		ND	1.0	50		
Vinvl Chloride	1	ND	1.0	2.0	Xvlenes		ND	1.0	6.0		
				ogate Re	coveries (%)						
%SS1:		99			%SS2:		10	3			
%SS3:	1	10	1		1						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

j) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

QC SUMMARY REPORT FOR TO15

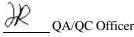
W.O. Sample Matrix: Air/Air

QC Matrix: Air

WorkOrder: 0711336

EPA Method TO15	Extra	ction TO	15		Bat	tchID: 31	891	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Acrylonitrile	N/A	25	N/A	N/A	N/A	93.1	102	9.28	N/A	N/A	70 - 130	30
tert-Amyl methyl ether (TAME)	N/A	25	N/A	N/A	N/A	95.5	107	11.4	N/A	N/A	70 - 130	30
Benzene	N/A	25	N/A	N/A	N/A	90.6	88.8	1.93	N/A	N/A	70 - 130	30
Benzyl chloride	N/A	25	N/A	N/A	N/A	93.4	90	3.75	N/A	N/A	70 - 130	30
Bromodichloromethane	N/A	25	N/A	N/A	N/A	115	121	5.74	N/A	N/A	70 - 130	30
Bromoform	N/A	25	N/A	N/A	N/A	106	112	4.73	N/A	N/A	70 - 130	30
Carbon Disulfide	N/A	25	N/A	N/A	N/A	95.9	92	4.14	N/A	N/A	70 - 130	30
Carbon Tetrachloride	N/A	25	N/A	N/A	N/A	98.4	106	7.07	N/A	N/A	70 - 130	30
Chlorobenzene	N/A	25	N/A	N/A	N/A	97.3	94.6	2.91	N/A	N/A	70 - 130	30
Chloroethane	N/A	25	N/A	N/A	N/A	92.6	112	18.9	N/A	N/A	70 - 130	30
Chloroform	N/A	25	N/A	N/A	N/A	100	104	4.28	N/A	N/A	70 - 130	30
Chloromethane	N/A	25	N/A	N/A	N/A	86	97.3	12.3	N/A	N/A	70 - 130	30
Dibromochloromethane	N/A	25	N/A	N/A	N/A	109	114	4.61	N/A	N/A	70 - 130	30
1,2-Dibromo-3-chloropropane	N/A	25	N/A	N/A	N/A	102	95.7	6.08	N/A	N/A	70 - 130	30
1,2-Dibromoethane (EDB)	N/A	25	N/A	N/A	N/A	101	98.6	2.72	N/A	N/A	70 - 130	30
1,3-Dichlorobenzene	N/A	25	N/A	N/A	N/A	81.1	79.2	2.41	N/A	N/A	70 - 130	30
1,4-Dichlorobenzene	N/A	25	N/A	N/A	N/A	109	107	1.97	N/A	N/A	70 - 130	30
Dichlorodifluoromethane	N/A	25	N/A	N/A	N/A	78.4	95	19.1	N/A	N/A	70 - 130	30
1,1-Dichloroethane	N/A	25	N/A	N/A	N/A	99.4	101	1.55	N/A	N/A	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	N/A	25	N/A	N/A	N/A	99.5	106	6.24	N/A	N/A	70 - 130	30
cis-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	97.2	95.3	1.89	N/A	N/A	70 - 130	30
trans-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	94.2	92.1	2.27	N/A	N/A	70 - 130	30
1,2-Dichloropropane	N/A	25	N/A	N/A	N/A	96.6	93.3	3.45	N/A	N/A	70 - 130	30
cis-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	113	109	4.07	N/A	N/A	70 - 130	30
trans-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	110	108	1.27	N/A	N/A	70 - 130	30
1,2-Dichloro-1,1,2,2-tetrafluoroetha	N/A	25	N/A	N/A	N/A	85.7	94.4	9.57	N/A	N/A	70 - 130	30
Diisopropyl ether (DIPE)	N/A	25	N/A	N/A	N/A	94.2	105	11.0	N/A	N/A	70 - 130	30
1,4-Dioxane	N/A	25	N/A	N/A	N/A	100	94.3	6.10	N/A	N/A	70 - 130	30
Ethyl acetate	N/A	25	N/A	N/A	N/A	97.1	96.5	0.626	N/A	N/A	70 - 130	30
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	96.5	110	12.9	N/A	N/A	70 - 130	30
Ethylbenzene	N/A	25	N/A	N/A	N/A	97.2	97.7	0.519	N/A	N/A	70 - 130	30
4-Ethyltoluene	N/A	25	N/A	N/A	N/A	93	91.1	2.14	N/A	N/A	70 - 130	30

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Air/Air

QC Matrix: Air

WorkOrder: 0711336

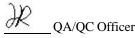
EPA Method TO15	Extra	ction TO	15		Ba	tchID: 31	891	Sp	iked Samp	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Freon 113	N/A	25	N/A	N/A	N/A	93.5	96.8	3.44	N/A	N/A	70 - 130	30
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	102	93.9	8.39	N/A	N/A	70 - 130	30
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	92	90.4	1.78	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	95.6	99.7	4.17	N/A	N/A	70 - 130	30
Methylene chloride	N/A	25	N/A	N/A	N/A	90.8	90.2	0.654	N/A	N/A	70 - 130	30
Naphthalene	N/A	25	N/A	N/A	N/A	111	89.1	21.8	N/A	N/A	70 - 130	30
Styrene	N/A	25	N/A	N/A	N/A	99.3	95.6	3.75	N/A	N/A	70 - 130	30
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	96.1	109	12.5	N/A	N/A	70 - 130	30
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	92.6	86	7.36	N/A	N/A	70 - 130	30
Tetrachloroethene	N/A	25	N/A	N/A	N/A	90.1	90.3	0.211	N/A	N/A	70 - 130	30
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	90.8	88.3	2.84	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	94.1	92	2.30	N/A	N/A	70 - 130	30
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	107	96.5	10.1	N/A	N/A	70 - 130	30
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	104	114	9.13	N/A	N/A	70 - 130	30
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	97.7	93.5	4.43	N/A	N/A	70 - 130	30
Trichloroethene	N/A	25	N/A	N/A	N/A	94.8	101	6.74	N/A	N/A	70 - 130	30
Trichlorofluoromethane	N/A	25	N/A	N/A	N/A	105	118	11.4	N/A	N/A	70 - 130	30
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	82.6	81.8	1.06	N/A	N/A	70 - 130	30
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	88.4	88.6	0.221	N/A	N/A	70 - 130	30
Vinyl Chloride	N/A	25	N/A	N/A	N/A	86.2	98.2	12.9	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	94.7	92	2.86	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	98	105	6.92	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	101	102	0.484	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	97	99	2.24	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 31891 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711336-002A	11/13/07 3:40 PM	I 11/14/07	11/14/07 6:20 PM	0711336-002A	11/13/07 3:40 PM	11/14/07	11/14/07 6:20 PM
0711336-003A	11/13/07 4:00 PM	I 11/14/07	11/14/07 6:57 PM	0711336-003A	11/13/07 4:00 PM	11/14/07	11/14/07 6:57 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Environmental Investigation Servi	Client Project ID: #717-3C; Cal Mac	Date Sampled: 11/21/07
170 Knowles Drive, Suite 212	Transportation	Date Received: 11/21/07
Los Gatos, CA 95032	Client Contact: Peter Littman	Date Reported: 11/29/07
205 04005, 011 75052	Client P.O.:	Date Completed: 11/29/07

WorkOrder: 0711593

November 29, 2007

Dear Peter:

Enclosed are:

- 1). the results of **2** analyzed samples from your **#717-3C; Cal Mac Transportation project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

Attachment K Soil Gas Sampling Laboratory Analytical Reports of SG-1 and SG-4

Environmental Investigation Services, Inc.

15466 Los Gatos Boulevard, Suite 109-062

Los Gatos, California 95032 Phone: 408-871-1470

Fax: 408-871-1520 07/1593

Project Numbe	er: 717	-3C			Turnaround		_	_	ANA	LYSIS	REQU	JESTER		-	
Project Name:	C~1 ma	al To	an	sportalis-	Time		t								
Site Address:	Liver	ove,	CO	~	Requested:		1-0								
Report To: 4	eter L	ittma	n				5								
Report To: f e-mail:	1: Aman	@el	51	Met			Ad				-				
Special Instruc	tions:						N								6 e
						0	8								5
							00								
SAMPL	E DESCRIPTI	ON	C	ONTAINER(S)			3								
Sample ID	Date	Time	No.	Туре	Matrix	Preservation	-	_			+	\rightarrow	++	-	Notes
SG-4 SG-1	11/21/07		1	Signes	Gas		X	_			+			_	-
SG-1	11		1	4	11		×							-	•
,															
						5									
												-			
Collected By:				Date/Time:			0	1	~						
Relinguished E		- An	-	Date/Time: 11	21/07	Received By		only		~		Date	/Time:	11-21	07 1630
Relinquished E		aut			107 1730	Received By		7/4	m	2 -	23			1/2/	107 1760
Relinquished E	By:			Date/Time:		Received By		1			-	Date	/Time:		
						Condition of	Samp	ole:							
									N	2		-			/
								ICE/	· M	1	/	APPT	OPRIAT	B	/

GOOD CONDITION.

PRESERVATION

HEAD SPACE ABSENT.

DECHLORINATED IN LAB.

CONTAINERS

VOAS | O&G | METALS | OTHER.

PRESERVED IN LAB.

Page

McCampbell Analytical, Inc.

ĺ		1	A	D)
	1	-	X	y
	6		17	5
		_	6	
		- 8	×.	2

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 945 (925) 252-9262	565-1701				WorkO	Order: 071	1593	ClientII): EISI					
				EDF	Excel	☐ Fax		Email	HardCo	ору	ThirdF	Party		
Report to: Peter Littman		Email:	plittman@eis	s1.net, jmorris@eis		Bill to: Barbar				Reque	ested T	AT:	5 c	days
Environmental Inves 170 Knowles Drive, Los Gatos, CA 9503	Suite 212	TEL: ProjectNo: PO:	(408) 871-147(#717-3C; Ca	0 FAX: (408) 87 I Mac Transportatio		170 Kno Los Gato					Receiv Printe		11/21/2 11/21/2	
							Reque	ested Tests	(See lege	nd bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold 1	2 3	4	5 6	7	8	9	10	11	12

0711593-001	SG-4	Air	11/21/07	А						
0711593-002	SG-1	Air	11/21/07	A						

Test Legend:

1	TO15_SOIL(UG/M3)	2	3	4
6		7	8	9
11		12		

1	
)	

5		
10		

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Sample Receipt Checklist 11/21/07 5:54:20 PM Client Name: Environmental Investigation Services, Inc. Date and Time Received: Project Name: #717-3C; Cal Mac Transportation Checklist completed and reviewed by: Maria Venegas WorkOrder N°: 0711593 Carrier: Matrix Air Client Drop-In Chain of Custody (COC) Information V No 🗆 Chain of custody present? Yes No 🗆 V Yes Chain of custody signed when relinquished and received? \checkmark No Chain of custody agrees with sample labels? Yes No 🗌 \checkmark Yes Sample IDs noted by Client on COC? No 🗆 ✓ Date and Time of collection noted by Client on COC? Yes ✓ No 🗆 Sampler's name noted on COC? Yes **Sample Receipt Information** No 🗆 NA 🔽 Custody seals intact on shipping container/cooler? Yes No 🗌 V Yes Shipping container/cooler in good condition? No 🗌 \checkmark Yes Samples in proper containers/bottles? No Sample containers intact? Yes \checkmark ✓ No Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information ✓ No 🗌 All samples received within holding time? Yes NA 3.8°C Cooler Temp: Container/Temp Blank temperature \checkmark No D No VOA vials submitted D Yes Water - VOA vials have zero headspace / no bubbles? No \checkmark Sample labels checked for correct preservation? Yes Yes 🗌 No 🗌

Client contacted:

TTLC Metal - pH acceptable upon receipt (pH<2)?

Date contacted:

Contacted by:

NA 🗸

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Comments:

WcCampbell A "When Ouali"		ical, In	<u>ic.</u>		Web: www.mccan	Pass Road, Pittsburg, CA ppbell.com E-mail: main 877-252-9262 Fax: 92	n@mccampbell.com				
Environmental Investigation Services, In Client Project ID: #					-3C; Cal Mac	11/21/07					
-	Transportation					Date Sampled: Date Received:					
170 Knowles Drive, Suite 212	ontact.	Peter L	ittmon	Date Extracted:							
Los Gatos, CA 95032				I CICI L	Attillall						
Los Gatos, CA 95052		Client P	.0.:			Date Analyzed	11/21/07				
		Vola	tile Org	ganic Co	mpounds in µg/n	1 ^{3*}					
Extraction Method: TO15		A	nalytical	Method:	TO15		Work Order: 0711:	593			
Lab ID				0711	593-001A		Initial Pres	sure	13.5		
Client ID					SG-4		Final Pres		26.9		
Matrix					Air		1 mai 1 les	suic			
Compound	Concer	ntration *	DF	Reporting Limit	Compor	ınd	Concentration *	DF	Reportir Limit		
Acetone	ז	ND	1.0	120	Acrylonitrile		ND	1.0	4.4		
tert-Amyl methyl ether (TAME)		ND	1.0	8.5	Benzene		44	1.0	6.5		
Benzyl chloride		ND	1.0	11	Bromodichloromet	thane	ND	1.0	14		
Bromoform		ND	1.0	21	Bromomethane		ND	1.0	200		
1.3-Butadiene		ND		4.5	2-Butanone (MEK)	ND	1.0	150		
t-Butyl alcohol (TBA)	1	ND		150	Carbon Disulfide		ND	1.0	6.3		
Carbon Tetrachloride		ND		13	Chlorobenzene		ND	1.0	61		
Chloroethane	1	ND		ND		13	Chloroform		ND	1.0	9.9
Chloromethane	1	ND		4.2	Cyclohexane		ND	1.0	180		
Dibromochloromethane	1	ND	1.0	17	1,2-Dibromo-3-ch	loropropane	ND,k	1.0	20		
1,2-Dibromoethane (EDB)	1	ND	1.0	16	1,2-Dichlorobenze	ne	ND	1.0	210		
1,3-Dichlorobenzene	1	ND	1.0	100	1,4-Dichlorobenze	ne	ND	1.0	12		
Dichlorodifluoromethane	1	ND	1.0	10 1,1-Dichloroethane		ND	1.0	8.2			
1,2-Dichloroethane (1,2-DCA)	1	ND	1.0	8.2	1,1-Dichloroethen	,1-Dichloroethene		1.0	200		
cis-1,2-Dichloroethene	1	ND	1.0	36	trans-1,2-Dichloro	ethene	ND	1.0	73		
1,2-Dichloropropane		ND	1.0	9.4	cis-1,3-Dichloropr		ND	1.0	9.2		
trans-1,3-Dichloropropene		ND	1.0	9.2		2,2-tetrafluoroethan	ND	1.0	14		
Diisopropyl ether (DIPE)		ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3		
Ethanol		ND	1.0	96	Ethyl acetate		ND	1.0	7.3		
Ethyl tert-butyl ether (ETBE)		ND	1.0	8.5	Ethylbenzene		21	1.0	8.8		
4-Ethyltoluene		ND	1.0	10	Freon 113		ND	1.0	16		
Heptane		ND	1.0	210	Hexachlorobutadie	ne	ND	1.0	22		
Hexane Isopropyl Alcohol		ND	1.0	180	2-Hexanone 4-Methyl-2-pentar	(MIDK)	ND ND	1.0	210		
		ND ND	<u>1.0</u> 1.0	25 48			ND	<u>1.0</u> 1.0	83		
Methyl-t-butyl ether (MTBE) Naphthalene	_			48	Methylene chloride	2					
Styrene		ND ND	1.0	8.6	Propene 1,1,1,2-Tetrachlor	cothene	ND ND	<u>1.0</u> 1.0	88		
1,1,2,2-Tetrachloroethane		ND ND	1.0	8.0	Tetrachloroethene		60 ND	1.0	14		
Tetrahydrofuran	1	ND	1.0	6.0	Toluene		150	1.0	7.7		
1,2,4-Trichlorobenzene		ND	1.0	15	1,1,1-Trichloroeth	ane	ND	1.0	11		
1,1,2-Trichloroethane	1	ND	1.0	11	Trichloroethene		ND	1.0	11		
Trichlorofluoromethane		ND	1.0	11	1.2.4-Trimethylbe	nzene	ND	1.0	10		
1,3,5-Trimethylbenzene		ND	1.0	10	Vinyl Acetate		ND	1.0	180		
Vinvl Chloride		ND	1.0	5.2	Xvlenes		78	1.0	27		
			Surr	ogate Re	coveries (%)						
%SS1:		93			%SS2:		10	5			
%SS3:		10									

*vapor samples are reported in $\mu g/m^3$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

When Oualit		ical, Ir	<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: mair 877-252-9262 Fax: 92	n@mccampbell.com						
Environmental Investigation Servi	Client P	D: #717	-3C; Cal Mac	11/21/07									
Transportation						Date Sampled: Date Received:							
170 Knowles Drive, Suite 212					•								
				Peter L	ittman	Date Extracted:							
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/21/07						
		Vola	tile Org	ganic Co	mpounds in µg/m	3*							
Extraction Method: TO15		1	Analytical	Method:	ГО15		Work Order: 0711	593					
Lab ID				0711	593-002A		Initial Pres	sure	12.4				
Client ID					SG-1		Final Pres	sure	24.				
Matrix					Air		T mui T ieu	sure					
Compound	Concer	tration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reporti				
Acetone	ז	ND	1.0	120	Acrylonitrile		ND	1.0	4.4				
tert-Amyl methyl ether (TAME)		ND	1.0	8.5	Benzene		28	1.0	6.5				
Benzyl chloride		ND	1.0	11	Bromodichloromet	hane	ND	1.0	14				
Bromoform	ľ	ND	1.0	21	Bromomethane		ND	1.0	200				
1,3-Butadiene		ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150				
t-Butyl alcohol (TBA)	1	ND				150	Carbon Disulfide		ND	1.0	6.3		
Carbon Tetrachloride	1	ND				13	Chlorobenzene		ND	1.0	61		
Chloroethane	1	ND		ND		13	Chloroform		ND	1.0	9.9		
Chloromethane	1	ND		ND		ND		4.2	Cyclohexane		ND	1.0	180
Dibromochloromethane	1	ND	1.0	17	1,2-Dibromo-3-chl	oropropane	ND,k	1.0	20				
1,2-Dibromoethane (EDB)	1	ND	1.0	16	1,2-Dichlorobenzer	ne	ND	1.0	210				
1,3-Dichlorobenzene	1	ND	1.0	100	1,4-Dichlorobenzer	ne	ND	1.0	12				
Dichlorodifluoromethane	1	ND	1.0	10			ND ND	1.0	8.2				
1,2-Dichloroethane (1,2-DCA)		ND	1.0	8.2	1,1-Dichloroethene			1.0	200				
cis-1,2-Dichloroethene		ND	1.0	36	trans-1,2-Dichloroe		ND ND	1.0	73				
1,2-Dichloropropane		ND	1.0	9.4		,3-Dichloropropene		1.0	9.2				
trans-1,3-Dichloropropene		ND	1.0	9.2	1,2-Dichloro-1,1,2	,2-tetrafluoroethan	ND	1.0	14				
Diisopropyl ether (DIPE)		ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3				
Ethanol		ND ID	1.0	96	Ethyl acetate		ND	1.0	7.3				
Ethyl tert-butyl ether (ETBE)		ND VD	1.0	8.5	Ethylbenzene		49	1.0	8.8				
4-Ethyltoluene		ND ID	1.0	10	Freon 113		ND	1.0	16				
Heptane		ND VD	1.0	210	Hexachlorobutadier	ie	ND	1.0	22				
Hexane Isopropyl Alcohol		ND 120	<u>1.0</u> 1.0	180 25	2-Hexanone 4-Methyl-2-pentan	one (MIDV)	ND ND	<u>1.0</u> 1.0	210				
		120 ND	1.0	48	4-Methylene chloride		ND ND	1.0	83				
Methyl-t-butyl ether (MTBE)		ND ND	1.0	48	_		ND		88				
Naphthalene Styrene		ND ND	1.0	8.6	Propene 1,1,1,2-Tetrachloro	oethane	ND	<u>1.0</u> 1.0	14				
1,1,2,2-Tetrachloroethane		ND ND	1.0	14	Tetrachloroethene	Jonano	ND	1.0	14				
Tetrahydrofuran		ND	1.0	6.0	Toluene		250	1.0	7.7				
1,2,4-Trichlorobenzene		ND ND	1.0	15	1,1,1-Trichloroetha	ane	ND	1.0	11				
1,1,2-Trichloroethane		ND	1.0	11	Trichloroethene		ND	1.0	11				
Trichlorofluoromethane		ND	1.0	11	1,2,4-Trimethylber	20	1.0	10					
1,3,5-Trimethylbenzene		ND	1.0	10	Vinyl Acetate		ND	1.0	180				
Vinvl Chloride		ND	1.0	5.2	Xvlenes		190	1.0	27				
			Surr	ogate Re	coveries (%)								
%SS1:		94			%SS2:		10	2					
%SS3:			0										

*vapor samples are reported in $\mu g/m^3$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

When Ouality		ical, Ir	<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, Ca pbell.com E-mail: mail 877-252-9262 Fax: 92	n@mccampbell.com				
Environmental Investigation Services, In Client Project ID: #						11/21/07					
C	Transportat					Date Sampled: Date Received:					
170 Knowles Drive, Suite 212	Drive, Suite 212				ittmon	Date Extracted:					
				Peter L	attinan						
Los Gatos, CA 95032		Client P	.0.:			Date Analyzed	11/21/07				
		Vola	atile Org	ganic Co	ompounds in nL/L	*					
Extraction Method: TO15		A	Analytical	Method:	го15		Work Order: 0711:	593			
Lab ID			-	0711	593-001A		Initial Pres	sure	13.		
Client ID					SG-4		Final Pres		26.9		
Matrix					Air		1 mai 1 les	suic	20.2		
Compound	Concer	tration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reportin		
Acetone	1	ND	1.0	50	Acrylonitrile		ND	1.0	2.0		
tert-Amyl methyl ether (TAME)		ND ND	1.0	2.0	Benzene		14	1.0	2.0		
Benzyl chloride		ND	1.0	2.0	Bromodichloromet	hane	ND	1.0	2.0		
Bromoform	1	ND	1.0	2.0	Bromomethane		ND	1.0	50		
1,3-Butadiene	1	ND	1.0	2.0	2-Butanone (MEK)		ND	1.0	50		
t-Butyl alcohol (TBA)	1	ND		ND		50	Carbon Disulfide		ND	1.0	2.0
Carbon Tetrachloride	1	ND		2.0	Chlorobenzene		ND	1.0	13		
Chloroethane	1	ND		5.0	Chloroform		ND	1.0	2.0		
Chloromethane	1	ND		ND 1		2.0	Cyclohexane		ND	1.0	50
Dibromochloromethane	1	ND	1.0	2.0	1,2-Dibromo-3-chl	oropropane	ND,k	1.0	2.0		
1,2-Dibromoethane (EDB)	1	ND	1.0	2.0	1,2-Dichlorobenzer	ne	ND	1.0	34		
1,3-Dichlorobenzene		ND	1.0	17	1,4-Dichlorobenzer		ND ND	1.0	2.0		
Dichlorodifluoromethane		ND	1.0	2.0	1,1-Dichloroethane	•		1.0	2.0		
1,2-Dichloroethane (1,2-DCA)		ND	1.0	2.0	1,1-Dichloroethene		ND	1.0	50		
cis-1,2-Dichloroethene		ND	1.0	9.0	trans-1,2-Dichloro		ND	1.0	18		
1,2-Dichloropropane		ND ID	1.0	2.0	cis-1,3-Dichloropro		ND	1.0	2.0		
trans-1,3-Dichloropropene		ND ID	1.0	2.0	1,2-Dichloro-1,1,2	,2-tetrafluoroethan	ND	1.0	2.0		
Diisopropyl ether (DIPE)		ND ID	1.0	2.0	1,4-Dioxane		ND	1.0	2.0		
Ethanol Ethyl tert-butyl ether (ETBE)		ND ND	<u>1.0</u> 1.0	50 2.0	Ethyl acetate Ethylbenzene		ND 4.8	<u>1.0</u> 1.0	2.0		
4-Ethyltoluene		ND ND	1.0	2.0	Freon 113		4.8 ND	1.0	2.0		
Heptane		ND ND	1.0	50	Hexachlorobutadie	20	ND	1.0	2.0		
Hexane		ND	1.0	50	2-Hexanone	le	ND	1.0	50		
Isopropyl Alcohol		ND	1.0	10	4-Methyl-2-pentan	one (MIBK)	ND	1.0	20		
Methyl-t-butyl ether (MTBE)		ND	1.0	13	Methylene chloride		ND	1.0	3.5		
Naphthalene	-	ND	1.0	2.0	Propene		ND	1.0	50		
Styrene		ND	1.0	2.0	1,1,1,2-Tetrachlor	oethane	ND	1.0	2.0		
1,1,2,2-Tetrachloroethane		ND	1.0	2.0	Tetrachloroethene		8.7	1.0	2.0		
Tetrahydrofuran	1	ND	1.0	2.0	Toluene		40	1.0	2.0		
1,2,4-Trichlorobenzene		ND	1.0	2.0	1,1,1-Trichloroeth	ane	ND	1.0	2.0		
1,1,2-Trichloroethane	1	ND	1.0	2.0	Trichloroethene		ND	1.0	2.0		
Trichlorofluoromethane	1	ND	1.0	2.0	1,2,4-Trimethylber	izene	ND	1.0	2.0		
1,3,5-Trimethylbenzene		ND	1.0	2.0	Vinyl Acetate		ND	1.0	50		
Vinvl Chloride	1	ND	1.0	2.0	Xvlenes		17	1.0	6.0		
	1			ogate Re	coveries (%)						
%SS1:		93			%SS2:		10	5			
%SS3:	1	10	0								

*vapor samples are reported in nL/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

j) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

When Oualit		ical, Ir	<u>ic.</u>		Web: www.mccan	Pass Road, Pittsburg, Ca pbell.com E-mail: main 877-252-9262 Fax: 92	n@mccampbell.com						
Environmental Investigation Services, In Client Project ID: #					-3C; Cal Mac	11/21/07							
Transportation						Date Received:	11/21/07						
170 Knowles Drive, Suite 212 Client Contact:					ittman	Date Extracted:							
Los Gatos, CA 95032		-		I ctor L	Attilian								
Los Galos, CA 75052		Client P	.0.:			Date Analyzed	11/21/07						
		Vola	tile Org	ganic Co	ompounds in nL/I	<u>/*</u>							
Extraction Method: TO15		A	Analytical	Method: '	ТО15		Work Order: 0711	593					
Lab ID				0711	593-002A		Initial Pres	ssure	12.4				
Client ID					SG-1		Final Pres	sure	24.				
Matrix					Air								
Compound	Concer	tration *	DF	Reporting Limit	Compoi	ınd	Concentration *	DF	Reporti Limi				
Acetone	1	ND	1.0	50	Acrylonitrile		ND	1.0	2.0				
tert-Amyl methyl ether (TAME)		ND	1.0	2.0	Benzene		8.7	1.0	2.0				
Benzyl chloride	1	ND	1.0	2.0	Bromodichloromet	hane	ND	1.0	2.0				
Bromoform	1	ND	1.0	2.0	Bromomethane		ND	1.0	50				
1,3-Butadiene	١	ND	1.0	2.0	2-Butanone (MEK)	ND	1.0	50				
t-Butyl alcohol (TBA)	ľ	ND		50	Carbon Disulfide		ND	1.0	2.0				
Carbon Tetrachloride		ND		2.0	Chlorobenzene		ND	1.0	13				
Chloroethane	ľ	ND		ND		ND		5.0	Chloroform		ND	1.0	2.0
Chloromethane		ND		2.0	Cyclohexane		ND	1.0	50				
Dibromochloromethane	ľ	ND		2.0	1,2-Dibromo-3-ch	oropropane	ND,k	1.0	2.0				
1,2-Dibromoethane (EDB)		ND		2.0	1,2-Dichlorobenze		ND	1.0	34				
1.3-Dichlorobenzene	1	ND	1.0	17	1,4-Dichlorobenze	ne	ND	1.0	2.0				
Dichlorodifluoromethane		ND	1.0	2.0	1,1-Dichloroethan		ND	1.0	2.0				
1,2-Dichloroethane (1,2-DCA)	1	ND	1.0	2.0	1,1-Dichloroethen	-Dichloroethene		1.0	50				
cis-1,2-Dichloroethene		ND	1.0	9.0	trans-1,2-Dichloro		ND ND	1.0	18				
1,2-Dichloropropane	1	ND	1.0	2.0	cis-1,3-Dichloropr	opene	ND	1.0	2.0				
trans-1,3-Dichloropropene		ND	1.0	2.0		,2-tetrafluoroethan	ND	1.0	2.0				
Diisopropyl ether (DIPE)		ND	1.0	2.0	1,4-Dioxane	• • • • • • • • • • • • •	ND	1.0	2.0				
Ethanol	1	ND	1.0	50	Ethyl acetate		ND	1.0	2.0				
Ethyl tert-butyl ether (ETBE)	١	ND	1.0	2.0	Ethylbenzene		11	1.0	2.0				
4-Ethyltoluene	1	ND	1.0	2.0	Freon 113		ND	1.0	2.0				
Heptane	١	ND	1.0	50	Hexachlorobutadie	ne	ND	1.0	2.0				
Hexane	1	ND	1.0	50	2-Hexanone		ND	1.0	50				
Isopropyl Alcohol		48	1.0	10	4-Methyl-2-pentar	one (MIBK)	ND	1.0	20				
Methyl-t-butyl ether (MTBE)	1	ND	1.0	13	Methylene chloride	•	ND	1.0	3.5				
Naphthalene	1	ND	1.0	2.0	Propene		ND	1.0	50				
Styrene	1	ND	1.0	2.0	1,1,1,2-Tetrachlor	oethane	ND	1.0	2.0				
1,1,2,2-Tetrachloroethane		ND	1.0	2.0	Tetrachloroethene		ND	1.0	2.0				
Tetrahydrofuran	1	ND	1.0	2.0	Toluene		66	1.0	2.0				
1,2,4-Trichlorobenzene	1	ND	1.0	2.0	1,1,1-Trichloroethane		ND	1.0	2.0				
1,1,2-Trichloroethane	1	ND	1.0	2.0	Trichloroethene		ND	1.0	2.0				
Trichlorofluoromethane	1	ND	1.0	2.0	1,2,4-Trimethylbe	nzene	4.1	1.0	2.0				
1,3,5-Trimethylbenzene	1	ND	1.0	2.0	Vinyl Acetate		ND	1.0	50				
Vinvl Chloride	1	ND	1.0	2.0	Xvlenes		42	1.0	6.0				
			Surr	ogate Re	coveries (%)								
%SS1:		94	ļ		%SS2:		10	2					
%SS3:		10	0										

*vapor samples are reported in nL/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

j) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) this compound was analyzed by 8260B.

QC SUMMARY REPORT FOR TO15

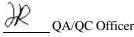
W.O. Sample Matrix: Air

QC Matrix: Air

WorkOrder: 0711593

EPA Method TO15	Extra	ction TO	15		Bat	tchID: 32	048	Sp	piked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)		
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Acrylonitrile	N/A	25	N/A	N/A	N/A	96.8	95.1	1.86	N/A	N/A	70 - 130	30	
tert-Amyl methyl ether (TAME)	N/A	25	N/A	N/A	N/A	98.9	99.8	0.906	N/A	N/A	70 - 130	30	
Benzene	N/A	25	N/A	N/A	N/A	96.8	93.2	3.74	N/A	N/A	70 - 130	30	
Benzyl chloride	N/A	25	N/A	N/A	N/A	95.8	99	3.25	N/A	N/A	70 - 130	30	
Bromodichloromethane	N/A	25	N/A	N/A	N/A	116	123	5.78	N/A	N/A	70 - 130	30	
Bromoform	N/A	25	N/A	N/A	N/A	109	115	4.50	N/A	N/A	70 - 130	30	
Carbon Disulfide	N/A	25	N/A	N/A	N/A	102	97.7	3.91	N/A	N/A	70 - 130	30	
Carbon Tetrachloride	N/A	25	N/A	N/A	N/A	95.4	106	10.7	N/A	N/A	70 - 130	30	
Chlorobenzene	N/A	25	N/A	N/A	N/A	102	101	1.44	N/A	N/A	70 - 130	30	
Chloroethane	N/A	25	N/A	N/A	N/A	98.7	115	15.1	N/A	N/A	70 - 130	30	
Chloroform	N/A	25	N/A	N/A	N/A	101	108	6.58	N/A	N/A	70 - 130	30	
Chloromethane	N/A	25	N/A	N/A	N/A	96.9	106	8.59	N/A	N/A	70 - 130	30	
Dibromochloromethane	N/A	25	N/A	N/A	N/A	112	117	4.15	N/A	N/A	70 - 130	30	
1,2-Dibromo-3-chloropropane	N/A	25	N/A	N/A	N/A	107	109	2.08	N/A	N/A	70 - 130	30	
1,2-Dibromoethane (EDB)	N/A	25	N/A	N/A	N/A	106	106	0	N/A	N/A	70 - 130	30	
1,3-Dichlorobenzene	N/A	25	N/A	N/A	N/A	85.6	87.3	1.94	N/A	N/A	70 - 130	30	
1,4-Dichlorobenzene	N/A	25	N/A	N/A	N/A	115	117	1.96	N/A	N/A	70 - 130	30	
Dichlorodifluoromethane	N/A	25	N/A	N/A	N/A	89.2	98.9	10.4	N/A	N/A	70 - 130	30	
1,1-Dichloroethane	N/A	25	N/A	N/A	N/A	102	105	2.08	N/A	N/A	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	N/A	25	N/A	N/A	N/A	97.4	106	8.37	N/A	N/A	70 - 130	30	
cis-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	104	101	3.06	N/A	N/A	70 - 130	30	
trans-1,2-Dichloroethene	N/A	25	N/A	N/A	N/A	101	97.2	3.72	N/A	N/A	70 - 130	30	
1,2-Dichloropropane	N/A	25	N/A	N/A	N/A	102	98.4	3.19	N/A	N/A	70 - 130	30	
cis-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	117	119	1.66	N/A	N/A	70 - 130	30	
trans-1,3-Dichloropropene	N/A	25	N/A	N/A	N/A	110	114	3.69	N/A	N/A	70 - 130	30	
1,2-Dichloro-1,1,2,2-tetrafluoroetha	N/A	25	N/A	N/A	N/A	101	106	4.43	N/A	N/A	70 - 130	30	
Diisopropyl ether (DIPE)	N/A	25	N/A	N/A	N/A	99	98.9	0.0445	N/A	N/A	70 - 130	30	
1,4-Dioxane	N/A	25	N/A	N/A	N/A	106	103	2.86	N/A	N/A	70 - 130	30	
Ethyl acetate	N/A	25	N/A	N/A	N/A	100	101	0.497	N/A	N/A	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	98.4	102	3.42	N/A	N/A	70 - 130	30	
Ethylbenzene	N/A	25	N/A	N/A	N/A	102	104	1.63	N/A	N/A	70 - 130	30	
4-Ethyltoluene	N/A	25	N/A	N/A	N/A	95.2	100	5.28	N/A	N/A	70 - 130	30	
						-							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Air

QC Matrix: Air

WorkOrder: 0711593

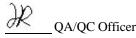
EPA Method TO15	Extraction TO15 BatchID: 32048 Spiked Sample ID: N/A							N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Freon 113	N/A	25	N/A	N/A	N/A	99.3	101	2.05	N/A	N/A	70 - 130	30
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	104	110	5.38	N/A	N/A	70 - 130	30
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	94.4	94.1	0.342	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	97.8	103	4.83	N/A	N/A	70 - 130	30
Methylene chloride	N/A	25	N/A	N/A	N/A	97.3	94.6	2.80	N/A	N/A	70 - 130	30
Naphthalene	N/A	25	N/A	N/A	N/A	120	121	0.321	N/A	N/A	70 - 130	30
Styrene	N/A	25	N/A	N/A	N/A	105	103	1.57	N/A	N/A	70 - 130	30
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	98.3	104	5.32	N/A	N/A	70 - 130	30
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	98.1	95.8	2.40	N/A	N/A	70 - 130	30
Tetrachloroethene	N/A	25	N/A	N/A	N/A	94.2	94.7	0.578	N/A	N/A	70 - 130	30
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	95.2	93.6	1.76	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	98.4	96.1	2.32	N/A	N/A	70 - 130	30
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	111	114	2.55	N/A	N/A	70 - 130	30
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	102	113	10.5	N/A	N/A	70 - 130	30
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	102	101	1.52	N/A	N/A	70 - 130	30
Trichloroethene	N/A	25	N/A	N/A	N/A	99.7	99.6	0.106	N/A	N/A	70 - 130	30
Trichlorofluoromethane	N/A	25	N/A	N/A	N/A	104	118	12.6	N/A	N/A	70 - 130	30
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	86.5	89.7	3.59	N/A	N/A	70 - 130	30
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	94.8	97.3	2.65	N/A	N/A	70 - 130	30
Vinyl Chloride	N/A	25	N/A	N/A	N/A	98.1	107	8.71	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	97.3	97.3	0	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	95	104	8.97	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	105	105	0	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	100	103	2.86	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

BATCH 32048 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711593-001A	11/21/07	11/21/07	11/21/07 8:19 PM	0711593-002A	11/21/07	7 11/21/07	11/21/07 9:02 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

