RECEIVED By dehloptoxic at 1:26 pm, Nov 30, 2006

FILÉ

August 11, 2006

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Site Investigation Report Dublin Auto Wash 7240 Dublin Boulevard Dublin, California ACHCSA Case No. 304

Dear Mr. Chan:

On behalf of Mr. Hooshang Hadjian, Pangea Environmental Services, Inc. has prepared this *Site Investigation Report* for the subject site. This report describes a soil boring adjacent a utility identified as a possible preferential pathway for contaminant migration, a soil boring downgradient of the source, the abandonment of four monitoring wells, and the installation of fourteen monitoring wells.

If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely, Pangea Environmental Services, Inc.

spelidely

Bob Clark-Riddell, P.E. Principal Engineer

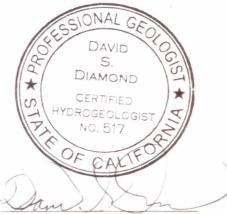
Attachment: Site Investigation Report

cc: Mr. Hooshang Hadjian, 2108 San Ramon Valley Blvd, San Ramon, CA 94583
 cc: Mr. Jim Lange, 6500 Dublin Blvd., Suite 202, Dublin, CA 94568

PANGEA Environmental Services, Inc.

SITE INVESTIGATION REPORT

Dublin Auto Wash 7240 Dublin Boulevard Dublin, California


August 11, 2006

Prepared for:

Mr. Hooshang Hadjian 2108 San Ramon Valley Blvd San Ramon, CA 94583

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

David S. Diamond, Ph.D., C.Hg. Senior Hydrogeologist Written by:

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

August 11, 2006

SITE INVESTIGATION REPORT Dublin Auto Wash 7240 Dublin Boulevard Dublin, California

August 11, 2006

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE BACKGROUND	1
2.1	SITE DESCRIPTION	1
2.2	SUMMARY OF PREVIOUS ENVIRONMENTAL WORK	2
3.0	SITE INVESTIGATION ACTIVITIES	5
3.1	PRE-DRILLING ACTIVITIES	5
3.2	DRILLING PROCEDURES	
3.3	SOIL BORING INSTALLATION	5
3.4	MONITORING WELL ABANDONMENT AND INSTALLATION	
3.5	FLOOD CONTROL CHANNEL ASSESSMENT	9
4.0	SITE INVESTIGATION RESULTS	9
4.1	GEOLOGY AND HYDROGEOLOGY	
4.2	GROUNDWATER FLOW DIRECTION AND GRADIENT	11
4.3	HYDROCARBON DISTRIBUTION IN GROUNDWATER	11
4.4	FUEL OXYGENATE DISTRIBUTION IN GROUNDWATER	
5.0	INTERIM REMEDIAL ACTION	12
6.0	CONCLUSIONS & RECOMMENDATIONS	13

FIGURES

- Figure 1 Site Vicinity
- Figure 2 Monitoring Well & Soil Boring Locations
- Figure 3 Groundwater Elevation and MTBE Concentration Map (Shallow)
- Figure 4 Groundwater Elevation and Benzene Concentration Map (Shallow)
- Figure 5 Groundwater Elevations and Hydrocarbon Concentration Map (Deep)
- Figure 6 Geologic Cross Section A-A', Showing MTBE Concentrations
- Figure 7 Geologic Cross Section A-A', Showing Benzene Concentrations
- Figure 8 Geologic Cross Section B-B', Showing MTBE Concentrations
- Figure 9 Geologic Cross Section B-B', Showing Benzene Concentrations
- Figure 10 Proposed Well Location Map

TABLES

Table 1 – Soil Analytical Data

Table 2 – Groundwater Analytical Data

APPENDICES

- Appendix A Regulatory Correspondence
- Appendix B Permits
- Appendix C Pangea's Standard Operating Procedures for Soil Borings

Appendix D – Boring Logs & Well Construction Diagrams

Appendix E - Laboratory Analytical Reports

Appendix F – Dublin San Ramon Services District Sewer Maps

Appendix G - Pangea's Standard Operating Procedures for Monitoring Wells

Appendix H - Well Development Field Data Sheets

Appendix I - Waste Manifest for Extracted Groundwater

1.0 INTRODUCTION

On behalf of Mr. Hooshang Hadjian, Pangea Environmental Services, Inc. (Pangea) prepared this *Site Investigation Report* (report) for the subject site. The approved scope of work was outlined in Pangea's *Soil and Water Investigation Work Plan* (Work Plan) dated February 20, 2005, and Work Plan Addendum dated January 20, 2006. This work was directed and approved by Alameda County Environmental Health (ACEH) in a letter dated February 9, 2006 and in email/phone correspondence on March 29, 2006 (Appendix A). In addition, some modifications to this scope were made based on field observations, and were approved by ACEH in telephone conversations during the fieldwork. The final approved scope consisted of the following:

- Installation of soil borings SB-1 and SB-1A to evaluate whether a sanitary sewer line adjacent to the site had served as a preferential pathway for contaminant migration,
- Installation of soil boring SB-2 to evaluate contaminant migration downgradient (southwest) of the source.
- Destruction of monitoring wells MW-3, EA-1, EA-2 and EA-3 to eliminate potential dilution of groundwater samples and vertical contaminant migration due to the wells being screened across multiple water-bearing zones.
- Installation of fourteen monitoring wells (MW-3A, MW-6A, MW-6B, MW-6C, MW7AA, MW-7A, MW-7B, MW-7C, MW-8A, MW-9A, MW-9C, MW-10A, MW-10C and MW-11C) to better evaluate the distribution and extent of contamination in the identified water-bearing zones.

2.0 SITE BACKGROUND

2.1 Site Description

The Dublin Auto Wash is located at the southwest corner of Dublin Boulevard and Village Parkway in Dublin, California (Figure 1). The site elevation is approximately 331 feet above mean sea level (msl). The surface slopes gently to the south towards a roughly 10 foot deep southward-flowing flood control channel in the central and western portions of the site, and slopes gently to the southeast in the eastern portion of the site. Onsite facilities consist of two dispenser islands (four dispensers), three 10,000-gallon underground storage tanks (USTs), and a station building with a car wash (Figure 2). Land use immediately surrounding the site is commercial, with residential land use further from the site. The southwest boundary of the site is formed by the access road along the flood control channel. Bordering the channel to the southwest is the Interstate 680 freeway.

2.2 Summary of Previous Environmental Work

The first environmental investigation at the site began in early 1988 when Chevron Product Company (Chevron) hired EA Engineering, Science, and Technology, Inc. (EA), to conduct a soil vapor investigation at the site. The results of the soil gas survey indicated elevated levels of hydrocarbons beneath the site, especially around the southern pump island.

In October 1988, HEW Drilling Company installed three groundwater monitoring wells, EA-1 through EA-3. During the installation of the groundwater monitoring wells, groundwater was encountered at depths ranging between 15 to 23 feet below ground surface (bgs). The depths of the groundwater monitoring wells were 35 to 40 feet bgs. Following the installation of the groundwater monitoring wells, quarterly groundwater monitoring began.

In February 1989, one 5,000-gallon and two 10,000-gallon underground storage tanks (USTs) were excavated and removed from the site and replaced with three new USTs. During this activity, soil and groundwater samples were collected and analyzed for petroleum hydrocarbons. Following the USTs' removal and upgrade, a total of 180 cubic yards of soil was removed from the site and sent to Class I and Class II landfill facilities. During the UST replacement project three horizontal 'wells' consisting of slotted PVC piping were installed between 3 to 4 feet bgs in piping trenches and around the USTs. Well #1 was installed at the northwest end of the pump islands, well #2 along the east side of the pump islands, and well #3 on the north, east and south perimeter of the UST field.

In March 1989, Western Geologic Resources, Inc. (WGR), drilled and sampled five soil boreholes in the area of the former pump island. In addition, nine soil samples were collected from the vicinity of the former product-line trenches at depths ranging from 2.5 feet to 10.5 feet bgs. Laboratory analyses results indicated total petroleum hydrocarbon (TPH) concentrations from non-detectable to 750 milligram per kilograms (mg/kg). In May 1990, three vapor extraction wells were apparently installed to monitor radius of influence during extraction from the horizontal wells. Soil vapor samples contained a maximum of 29,000 parts per million (ppm) benzene at the beginning of the test and 5,300 parts per billion (ppb) after 2,049 minutes into the test. A soil vapor extraction (SVE) system was operated between March 1992 and April 1996 by Geraghty & Miller. Reportedly, during this period a total of over 15,000 pounds of hydrocarbons were removed from the subsurface (although the removal calculations were based on the oxidizer's chart recorder paper rather than measured vapor concentrations and extraction flow rates).

In September 1994, Groundwater Technology, Inc. (GTI), installed three groundwater monitoring wells, MW-1 through MW-3. The total depths of these wells ranged between 21.5 to 26.5 feet bgs. In March 1995, elevated levels (up to 64,000 microgram per liter (ug/L)) of MTBE were reported for the first time in MW-3.

In February 1996, Bay Area Exploration Services, Inc., installed two groundwater monitoring wells (MW-4 and MW-5) each with a depth of 21.5 feet bgs. During the well installation, soil and groundwater samples were collected and analyzed for petroleum hydrocarbons. No petroleum hydrocarbons were detected in the soil or groundwater samples collected from these wells. Apparently, these wells are upgradient wells and have not been impacted by the petroleum hydrocarbons. In December 1996, Weiss Associates conducted a Risk Based Corrective Action (RBCA) and concluded that the site is a "Low Risk" soil and groundwater petroleum release site and recommended the SVE system be shut down. Based on Weiss Associates' recommendation, the SVE system was shut down, although the ACEH required quarterly groundwater monitoring and free product removal reports.

In February 1997, a leak in a stainless steel flex hose was discovered and reported to the ACEH. The leak location was immediately south of the northwesternmost dispenser (dispenser No. 2). During June 1997 testing the secondary piping failed a pressure test. Subsequently, a new product delivery system was installed to replace the existing lines. During the system modifications in July, Parker Environmental Services collected soil samples via hand augering at locations B-1 through B-4. About 31 cubic yards of soil was removed from the release area to a depth of 8 feet bgs. The results of subsequent groundwater monitoring events in December 1998 and March 1999 showed free product in well MW-3. The detection of free product in MW-3 (up to 0.1 feet thick) corresponds to the historically lowest groundwater elevation, when the depth to groundwater in well MW-3 was 12.92 feet in December 1998. Due to the occurrence of a new release at the site, the Chevron Product Company believed that they should no longer be the responsible party for further site characterization, removal and monitoring of contaminants at the site. Later on, Chevron negotiated with Mr. Hooshang Hadjian, and he subsequently assumed the responsibility for the new release at the site.

Gettler-Ryan, Inc. (GRI) monitored the eight existing groundwater monitoring wells at the site until the first quarter of 2003. In 2003, SOMA performed groundwater monitoring at the site. SOMA reported that groundwater in the vicinity of offsite wells MW-4 and MW-5 apparently flowed southeastwards toward the site, while groundwater in the eastern portion of the site groundwater apparently flowed northeastwards. sitesiteThe groundwater flow direction may be affected by the 18" diameter vitrified clay pipe (VCP) sewer line running beneath the southern portion of Dublin Boulevard immediately north of the site. In a letter dated October 30, 1995 to the County, GRI stated that the top of the sanitary sewer line was approximately 16 feet below grade surface (bgs), while the depth to water in nearby wells MW-1 and MW-3 has ranged from approximately 11 to 13 feet bgs. The contaminant plume appeared to be concentrated in the vicinity of well MW-3.

In 2003, SOMA conducted further characterization and remediation activities at the site. SOMA advanced seven shallow soil borings using hand augers (B-1 through B-8), nine soil borings using a Geoprobe[™] direct push rig, and one soil boring using a drill rig equipped with hollow stem augers. Initially, the Geoprobe

borings were intended to be used for cone penetrometer testing (CPT) to log the borings; however, due to subsurface conditions the borings were logged using electric conductivity sensors. The direct push borings included collection of discrete-depth groundwater samples to assess the vertical extent of contamination.

SOMA's investigation confirmed that contaminant concentrations were highest near the north-central portion of the site, and concluded that the sitefill material around the sewer line immediately north of the site could be acting as a preferential pathway for contaminant migration to the east in the direction of sewer flow. SOMA also found contamination in deeper groundwater and concluded that there are three relatively higher permeability zones on the site acting as water-bearing zones – Shallow (10 – 15 to 19 – 23 feet bgs), Middle (19 – 23 to 32 – 36 feet bgs), and Deep (32 – 36 to 43 – 47 feet bgs) – with an Upper Shallow zone (at approximately 2 to 6 feet bgs) noted in a few of the borings. In several locations insufficient water was present in the potential water-bearing zones so no groundwater samples were obtained by SOMA at these locations. Since wells EA-1, EA-2, EA-3, and MW-1 are screened across the multiple water-bearing zones, SOMA recommended that these wells be destroyed to prevent them from acting as vertical conduits for the migration of the contaminants. SOMA also recommended that wells be installed in the Shallow, Middle, and Deep zones at the site to determine the groundwater flow directions in the various zones.

Pangea has performed quarterly groundwater monitoring and sampling at the site since the first quarter of 2005. Pangea found that the inferred groundwater flow direction and dissolved contaminant concentrations were generally consistent with historical trends. During first, second and fourth quarter 2005 and first quarter 2006 groundwater monitoring, free product was again observed in well MW-3.

In February 2005, Pangea prepared a *Soil and Water Investigation Workplan*. The workplan included an evaluation of local and regional geology and hydrogeology, a review of soil and groundwater sampling data from the site (including detailed cross sections), a conduit study, and a sensitive receptor survey to assess potential impacts to wells and surface water bodies. The closest identified water supply well was approximately 1,900 feet southwest of the site, and was not considered to be potentially impacted by site contamination. The adjacent flood control channel is the only nearby surface water body that could potentially be impacted by site contamination. The workplan recommended the installation of borings along the sanitary sewer line in Dublin Boulevard and destruction of select wells screened across multiple water-bearing zones. The workplan also recommended installation of new monitoring wells within the multiple water-bearing zones and implementation of an interim remedial action using vacuum extraction to remove groundwater and free product from selected site wells. During subsequent correspondence the ACEH requested a soil boring (SB-2) downgradient of the 1997 release. The current report discusses the findings of the characterization and remedial activities presented in the workplan.

3.0 SITE INVESTIGATION ACTIVITIES

Pangea's site investigation activities are described below.

3.1 Pre-Drilling Activities

A comprehensive site Safety Plan was prepared to protect site workers and the plan was kept onsite during all field activities. Boring and well installation permits were obtained from the Alameda County Flood Control and Water Conservation District Zone 7 Water Agency (Zone 7). An encroachment permit was obtained from the City of Dublin. Copies of the permits are presented in Appendix B. The proposed drilling locations were marked and Underground Service Alert was notified at least 72 hours before the proposed field activities. Pangea cleared the boring locations using a private line locator. Prior to drilling, concrete coring was performed for soil boring SB-2, for installation of monitoring wells MW-6B, MW-6C, MW-7AA, MW-7A, MW-7B, MW-7C, MW-8A and MW-9A, and for abandonment of wells EA-1 and EA-3.

3.2 Drilling Procedures

All soil borings and monitoring wells were installed in accordance with the procedures described in Pangea's *Soil and Water Investigation Workplan*, dated February 20, 2005. All boring and well locations were handaugered to 5 ft bgs to help avoid subsurface utilities. Pangea retained Gregg Drilling & Testing, Inc. (Gregg) of Martinez, California, to drill the borings and install the monitoring wells. The drilling was observed in the field by Pangea scientist Morgan Gillies and supervised by Bob Clark-Riddell, a California Registered Civil Professional Engineer (P.E.). Soil characteristics such as color, texture, and relative water contents were noted in the field using the USCS classification system and entered onto a field boring log. Field screening of soil samples for potential hydrocarbons and volatile organic compounds included visual and olfactory observations and photo-ionization detector (PID) readings. Undisturbed soil samples were collected for laboratory analysis in acetate or brass liners, and capped with Teflon tape and plastic end caps. All samples were shipped under chain of custody to McCampbell Analytical, Inc., a California-certified laboratory.

3.3 Soil Boring Installation

Drilling Activities

On May 18, 2006, Pangea drilled two soil borings (SB-1 and SB-1A) to help evaluate subsurface conditions north of the site and the potential for contaminant migration along the 18-inch sanitary sewer line in Dublin Boulevard. Soil boring SB-1 was advanced directly over the sanitary sewer line where shown on Figure 2. Soil boring SB-1 was located near the intersection of Dublin Boulevard and Village Parkway and boring SB-1A was located approximately 3 ft south of SB-1.

Boring SB-1 was hand augered to 5 ft bgs to ensure that no unmarked utilities would be damaged during drilling activities. After hand augering, Gregg drilled the boring using direct-push drilling methods to collect continuously cored soil samples. Soil and water samples were collected from each boring in accordance with Pangea's Standard Operating Procedures for Soil Borings (Appendix C). Due to the presence of a sewerline, the boring was advanced to approximately 3 feet above the estimated top of the sewer. Since hand-augering was not feasible, the boring tubes were advanced slowly without use of the hammer to ensure that the sewerline would not be damaged, until resistance was felt. After reaching 14 ft bgs in boring SB-1, the driller noted increased resistance (interpreted to be the sewerline) and stopped. Due to the boring sidewalls collapsing inward Pangea was unable to collect a water sample at this location. Pangea decided to advance a step out boring (SB-1A) approximately three feet south of boring SB-1. Boring SB-1A was advanced to approximately 16 ft bgs and temporary casing was installed and left in the open borehole. Approximately 1 hour after drilling, groundwater was measured at 11.2 ft bgs in boring SB-1A and a groundwater sample was collected using a disposable bailer.

Boring SB-2 was drilled to an approximate total depth of 16 ft bgs, but no water was observed in the temporary casing after 4.5 hours. The boring was advanced another 4 ft to 20 ft bgs and temporary casing was installed in the borehole, no water was observed after 1.5 hours.

During drilling of borings SB-1, SB-1A and SB-2, soil samples were collected continuously to the total depth of 14, 16 and 20 ft bgs, respectively. Soil from boring SB-1 consisted primarily of well graded sandy gravel to the total depth of approximately 14 ft bgs, suggesting that the boring was advanced into the sanitary sewer trench backfill. Soil from boring SB-1A consisted of well-graded sandy gravel (presumably trench fill) above 6 ft bgs, underlain by clay and minor clayey sand (apparently native soil) similar to soils logged in most site monitoring wells. A hydrocarbon odor was observed in soil sampled at 14 ft bgs (adjacent to the sanitary sewer line) in boring SB-1. Boring logs for SB-1, SB-1A and SB-2 are included in Appendix D.

An optional downgradient step-out boring (SB-3) was indicated in the workplan, but was not installed due to traffic control issues.

Soil Boring Sampling and Analysis

Soil samples were collected at depths of 7, 11 and 14 ft bgs from boring SB-1, depths of 5 and 15 ft bgs from boring SB-1A, and depths of 5, 10, 15 and 20 ft bgs from boring SB-2. Select soil samples were analyzed for TPHg by modified EPA Method 8015C, and benzene, toluene, ethylbenzene, and toluene (BTEX) and methyl tert-butyl ether (MTBE) by EPA method 8021B. If detected, MTBE results were confirmed, and four (4) oxygenates, tert-amyl methyl ether (TAME), t-butyl alcohol (TBA), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE) were analyzed using EPA Method 8260B. No contaminants were detected in any of the sampled soil from borings SB-1 and SB-1A, although a PID reading of 274 ppm and a hydrocarbon odor were

observed in soil from 14 ft bgs in boring SB-1. Pangea believes that the soil type (primarily gravel and coarse sand) at this location resulted in the laboratory reporting non-detect levels of contaminants. TPHg was detected in samples from boring SB-2 at 790

mg/kg and 310 mg/kg in soil from 10 ft and 15 ft bgs, respectively, while benzene was detected at a concentration of 2.5 mg/kg in soil from 15 ft bgs. MTBE was not detected in soil samples from boring SB-2, but the detection limits were elevated, as a result of sample dilution, to 10 mg/kg and 5 mg/kg for soil from 10 and 15 ft bgs, respectively.

A grab groundwater sample was collected from boring SB-1A and submitted for laboratory analysis. TPHg, benzene and MTBE were detected in the sample at concentrations of 170 μ g/L, 1.5 μ g/L and 570 μ g/L, respectively. Pangea did not advance the optional soil boring SB-3 presented in the Work Plan due to traffic control considerations and the proximity to boring SB-1 (the proposed location of SB-3 was only approximately 40 ft away). Soil and groundwater analytical results are summarized on Table 1 and Table 2. The laboratory analytical report is included in Appendix E.

3.4 Monitoring Well Abandonment and Installation

On March 27 through March 31, April 3, and May 17, 2006, Pangea installed fourteen monitoring wells (MW-3A, MW-6A, MW-6B, MW-6C, MW-7AA, MW-7A, MW-7B, MW-7C, MW-8A, MW-9A, MW-9C, MW-10A, MW-10C and MW-11C) to help define the vertical and lateral extent of groundwater contamination. On March 29 and 31, April 4 and May 18, 2006, Pangea abandoned wells EA-1, EA-2, EA-3 and MW-3 to reduce the risk of vertical contaminant migration and improve the quality of monitoring data.

Well Drilling Activities

Monitoring wells MW-3, EA-2 and EA-3 were abandoned by overdrilling with 10-inch hollow-stem augers and were then tremmie-grouted to the surface. Pangea had planned on using the drilled out EA-1 borehole to install new well MW-7C, but after removing the well box, a subsurface utility conduit was identified adjacent to EA-1. After consulting Wyman Hong of Zone 7, well EA-1 was pressure grouted and a nearby location was concrete cored for well MW-7C. Monitoring well MW-9C was installed in the borehole for well EA-3 after the casing was removed and all well construction materials had been drilled out. Monitoring wells MW-3A, MW-6C and MW-8A were continuously cored using direct push drilling methods. After reaching the total depth, each boring was reamed using the appropriate sized hollow-stem auger to facilitate the installation of the well. Monitoring wells MW-6A, MW-6B, MW-7AA, MW-7A, MW-7B, MW-7C, MW-9A, MW-10A, MW-10C and MW-11C were drilled using the appropriately sized hollow-stem auger, and soil was sampled using a California-modified split spoon sampler.

Soil Sampling During Well Installation

During drilling, soil samples were collected continuously for select wells to the total depth of the boring. Soil consisted primarily of black, brown and grey clay to approximately 12 to 17 ft bgs, underlain by clay with sand, sandy clay and clayey sand in thin layers and stringers. The depth and extent of clayey sand stringers amongst the fine-grained soils varied at each location, but were generally more prevalent between 25 and 30 ft bgs and again between 33 and 45 ft bgs. The observed soil type was similar to prior soil logging at the site. Boring logs and well construction diagrams for monitoring wells are included in Appendix D.

Select soil samples were analyzed for TPHg by modified EPA Method 8015C, and benzene, toluene, ethylbenzene, and toluene (BTEX) and methyl tert-butyl ether (MTBE) by EPA method 8021B. If detected, MTBE results were confirmed, and four (4) oxygenates, tert-amyl methyl ether (TAME), t-butyl alcohol (TBA), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE) were analyzed using EPA Method 8260B. Soil samples collected approximately every five (5) feet from the vadose zone were submitted for analysis

Soil analytical results are summarized on Table 1. The laboratory analytical report is included in Appendix E. The highest concentrations of TPHg (1,800 mg/kg), benzene (7.8 mg/kg) and MTBE (13 mg/kg) in soil were detected in the boring for well MW-7B at a depth of 11 ft bgs. In general, the highest detected concentration of petroleum hydrocarbons in soil was at 10 to 11 ft bgs, except well MW-6C where the detected concentrations at 15 ft bgs were slightly higher than the 10 ft bgs soil sample. The laboratory noted that the petroleum hydrocarbons at 10 feet bgs in MW-6C were unmodified or weakly modified, whereas those sampled at 15 feet bgs in the same boring appeared to be aged.

Well Construction

The borings were converted to monitoring wells, which were constructed of either 2- or 4-inch diameter, 0.020-inch slotted and blank PVC casing. To assess contamination in the shallow clay near the source zone and at the piezometric surface, monitoring well MW-7AA was screened from approximately 9 to 14 ft bgs, above the previously identified shallow water-bearing zone. Monitoring wells MW-3A, MW-6A, MW-7A, MW-8A, MW-9A and MW-10A were screened in the shallow water-bearing zone composed of clayey sand/sandy clay to provide better assessment of contamination in this zone. Monitoring wells MW-6A, MW-7A, MW-8A, MW-9A and MW-10A were screened from approximately 15 to 20 ft bgs, while MW-3A was screened from approximately 10 to 17 ft bgs; well MW-3A was screened shallower than other A zone wells to ensure that the SPH recently observed in abandoned well MW-3 from 10.8 to 12.3 ft bgs was intercepted by replacement well MW-3A. Monitoring wells MW-6B and MW-7B were screened from approximately 26 to 30 ft bgs in the intermediate water-bearing zone composed of clay, sandy clay and clayey sand to help evaluate contamination in this zone. MON-7C, MW-9C, MW-10C were screened from approximately 35 to 45 ft bgs in the deep water-bearing zone composed of sandy clay, clayey sand, sand

with silt and sand with clay to provide better assessment of contamination in this zone. The wells were protected by traffic-rated vaults and locking well caps. The soil characteristics and hydrogeology are detailed in the boring logs (Appendix D). Additional soil logging and sampling procedures are presented in Pangea's Standard Operating Procedures for soil borings in Appendix C.

Well Development & Sampling

Pangea retained Blaine Tech Services, Inc. (Blaine) of San Jose, California to develop the wells by surge block agitation and evacuation on May 22 to 25, 2006. Groundwater evacuation continued until turbidity was reduced to below 100 Nephelometric Turbidity Units (NTU), the well dewatered, or 25 case volumes had been removed. Monitoring wells MW-3A, MW-6A, MW-7AA, MW-7A, MW-8A, MW-9A, MW-9C, MW-10A and MW-10C dewatered during development, while wells MW-6B, MW-6C, MW-7C and MW-11C were purged until 25 case volumes of groundwater had been removed. Development was stopped for monitoring well MW-7B when the turbidity was reduced to 26 NTU after sixteen (16) case volumes of groundwater had been removed. The investigation-derived waste generated during drilling and development was temporarily stored onsite in a roll-off soil bin and a 2,400-gallon water tank pending analysis. Additional well installation and development procedures are presented in Pangea's Standard Operating Procedures for monitoring wells in Appendix G. The well development field data sheets are presented in Appendix H. Groundwater samples were collected for analysis during regular quarterly site monitoring on May 29 to June 1, 2006.

3.5 Flood Control Channel Assessment

To assess whether a connection existed between the flood control channel and site groundwater, the workplan indicated that a tile probe would be used to assess whether the channel was lined with concrete. However, upon detailed examination of the channel, it was determined that the channel is unlined except for areas adjacent to bridges crossing the channel, so use of a tile probe was determined to be unnecessary. Since the channel is approximately 10 feet deep (similar to the depth to groundwater) and generally contains flowing water, it is likely that the water in the channel interacts with groundwater.

4.0 SITE INVESTIGATION RESULTS

The following discussion of site geology, hydrogeology and sampling results is based on both prior investigations and data collected during the site assessment activities described below. The findings of the investigations are presented on shallow groundwater elevation maps showing MTBE and benzene concentration contours (Figures 3 and 4, respectively), a deep groundwater elevation map showing hydrocarbon concentration data (Figure 5), and on cross sections A-A' (Figures 6 and 7) and B-B' (Figures 8 and 9). Soil and groundwater analytical data are summarized on Table 2. The laboratory analytical reports for

samples collected during the investigation described above are included in Appendix E. The laboratory analytical reports for groundwater samples collected during routine quarterly monitoring are included in Pangea's *Groundwater Monitoring Report – Second Quarter 2006* for the site.

4.1 Geology and Hydrogeology

Subsurface soil encountered during drilling consisted primarily of clay, silty clay and clayey sand. Groundwater was encountered at a depth of approximately 12 to 19 feet below grade surface (bgs) during the well installation and soil boring activities, and subsequently rose to 8.8 to 12.9 ft bgs. During drilling of boring SB-2 (adjacent monitoring well EA-1) no groundwater was encountered to a depth of 20 ft. These observations suggest that site groundwater is under confined to semi-confined conditions. Historically, the depth to groundwater in site monitoring wells has ranged from approximately 7.2 to 13.2 feet bgs.

Throughout much of the site, saturated-zone soil is primarily clay down to approximately 15 ft bgs, although sporadic thin seams of coarser material are also present. Generally, the piezometric surface for the deeper confined to semi-confined water-bearing units lies within this relatively low permeability unit, and the coarser materials within the unit often contain perched groundwater with piezometric surfaces that differ significantly from those of the deeper units, as shown on the cross sections (Figures 6 through 9). However, it should be noted that vapor monitoring well VW-3 was open and exposed to infiltration of irrigation water at the time of measurement, so the perched groundwater shown for that well in Figures 6 and 7 are likely to be anomalously high. The shallowest wells and vapor monitoring wells (MW7AA, VW-1, VW-2 and VW-3) are screened within this unit, which is referred to herein as the upper shallow 'AA' zone. This nomenclature differs slight from prior reports by SOMA, which restricted their "upper shallow zone" to depths of 3 to 6 ft bgs. A waterbearing unit comprised of clayey sand and sandy clay is present at approximately 15 to 18 ft bgs and appears to be laterally persistent throughout most of the site. This is referred to in this report as the shallow 'A' zone. The shallow wells (MW-6A, MW-8A, MW-9A and MW-10A) were screened into this unit of higher permeability materials. The shallow source zone well MW-3A is screened across the 'A' zone but the screen was extended up above the 'A' zone piezometric surface to 9' bgs so as to intersect SPH that had been previously encountered in well MW-3 in the upper shallow 'AA' zone.

Beneath approximately 18 ft bgs soil, is primarily clay until reaching approximately 26 ft bgs where waterbearing units of sandy clay and clayey sand interbedded with layers of clay are present to a depth of approximately 30 ft bgs. The mid-level wells (MW-6B and MW-7B) were screened into this unit of higher permeability material ('B' zone). Beneath approximately 30 ft bgs soil is again primarily clay to approximately 34 ft bgs. At approximately 34 ft bgs clayey sand, sandy clay, and clay with sand is encountered interbedded with layers of clay to a total explored depth of approximately 45 ft bgs. The deeplevel wells (MW-6C, MW-7C, MW-9C, MW-10C and MW-11C) are screened in this zone ('C' zone).

4.2 Groundwater Flow Direction and Gradient

Depth-to-water measurements collected during monitoring events indicate that the groundwater flow direction has been fairly consistent. Groundwater in the shallow monitoring wells appears to flow generally southwards, although the gradient data suggests that westward to northwestward flow occurs in the vicinity of wells MW-3A and MW-6A (Figure 3 and Figure 4). The groundwater flow direction in this area may be affected by the 18-inch diameter sanitary sewer line running beneath the south side of Dublin Boulevard and adjacent to these wells. Pangea measured the depth to the top of the sanitary sewer line to be approximately 14 ft bgs and the depth to water in boring SB-1A adjacent to this line was 11.2 feet. Although this boring was not surveyed relative to the other wells, this depth is apparently lower than water table elevations in the nearby monitoring wells, suggesting that the flow may be towards the sanitary sewer. Depth to water in wells MW-1, MW-3 and EA-3 near the sanitary sewer has historically ranged from approximately 9 to 13 ft bgs.

The groundwater gradient for wells screened in the deeper water-bearing units appears to be northwestward (Figure 5). In addition, comparison of groundwater elevations measured in wells screened in upper and lower water-bearing units indicates the presence of a slight upwards gradient.

4.3 Hydrocarbon Distribution in Groundwater

As illustrated on Figure 3, the highest concentrations of TPHg and benzene are found in upper shallow 'AA' wells MW-3A and MW-7AA in the vicinity of the northernmost dispenser island immediately south of Dublin Boulevard. These wells contain several thousand µg/L TPHg and up to 1,000 µg/L benzene. Well MW-3A contained SPH in May, and the well that it replaced (MW-3) has contained SPH during quarterly monitoring events continuously from May 2003 until August 2005. Both of these wells are screened at very shallow depth across the piezometric surface. In addition, nearby vapor monitoring wells VW-2 and VW-3, which are screened from across the upper shallow 'AA' zone from approximately 3 to 9 feet bgs and contain perched groundwater, also contain elevated concentrations of TPHg and benzene. These observations are consistent with the location of the 1997 release from the flex hose between the dispensers, and the approximate location of previously excavated source soil. The 'A' zone wells screened in the more permeable shallow "A" zone water-bearing unit encountered at approximately 15 to 18 feet bgs appear to have considerably lower TPHg and benzene concentrations than the nearby shallower wells, indicating that downward migration of contamination from the shallow SPH-bearing highly impacted clays is not significant. Notably, no petroleum hydrocarbons were detected in the deep 'C' zone wells (MW-6C, MW-7C, MW-9C, MW-10C and MW-11C) or the middle 'B' zone wells (MW-6B and MW-7B) except for low concentrations of benzene (0.79 μ g/L) and xylenes (0.75 μ g/L) in well MW-7B (Figures 7 and 9). No petroleum hydrocarbons were detected in shallow 'A' zone monitoring wells MW-8A and MW-9A, while low levels were detected in MW-7A (1.3 μ g/L benzene, 0.79 μ g/L ethylbenzene and 0.82 μ g/L xylenes) and MW-10A (0.67 μ g/L xylenes). These data

indicate that the lateral extent of petroleum-hydrocarbon-impacted groundwater is also limited in deeper groundwater.

Considering that the vapor wells are screened from approximately 3 to 9 ft bgs, analytical results suggest that the primary zones of hydrocarbon contamination are in the upper shallow 'AA' and shallow A' water-bearing zones. Broadly, the lateral extent of petroleum hydrocarbon contamination in the shallow 'A' zone appears to be defined by wells MW-10A to the south and MW-9A to the east, while wells MW-1 (screened from approximately 5 to 25 ft bgs) and MW-2 (screened from approximately 5 to 20 ft bgs) define the extent of hydrocarbon contamination to the west. However, it is not know how far west towards MW-1 and MW-2 the highly impacted groundwater in the upper shallow 'AA' and 'A' zones extends from the MW-7 well group.

4.4 Fuel Oxygenate Distribution in Groundwater

The lateral distribution of MTBE in groundwater is similar to that of benzene and TPHg, except that relatively high MTBE concentrations were found in boring SB-1A drilled next to the Dublin Boulevard sewer line and in MW-1, also located close to the sewer line (Figure 4). Both of these occurrences suggest that contaminated groundwater has migrated both westward and eastward through the backfill for the sanitary sewer line. The vertical extent of MTBE is also similar to the extent of benzene contamination (Figures 6 and 8), and has been delineated by the newly installed deep monitoring wells, with the exception of a relatively low concentration ($11 \mu g/L$) found in MW-11C. The lateral extent of upper shallow 'AA' and 'A' zone MTBE contamination is well defined, except to the west in the vicinity of MW-1 and in the area between the MW-7 group and MW-1 and MW-2. It is possible that the 1997 release near the dispensers migrated west toward MW-1.

All groundwater samples that contained detectable concentrations of MTBE by EPA Method 8021B were analyzed for 5 oxygenates (MTBE, TAME, TBA, DIPE and ETBE) by EPA Method 8260B. No oxygenates other than MTBE were detected above reporting limits, with the exception of $12 \mu g/L$ TAME in vapor well VW-1.

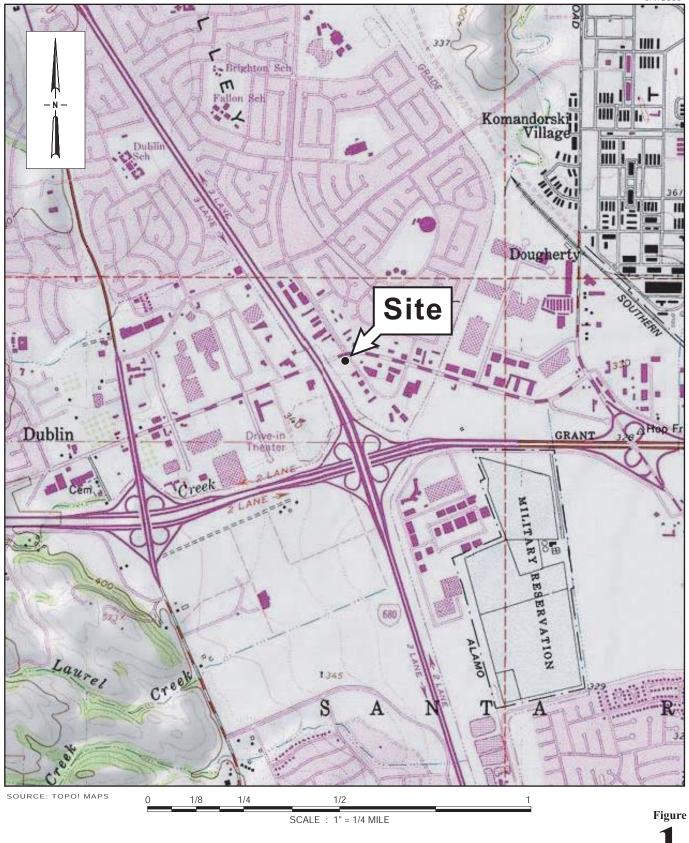
5.0 INTERIM REMEDIAL ACTION

Pangea conducted vacuum extraction from well MW-3A and MW-7AA using a vacuum truck on July 7, 2006. The purpose of the vacuum extraction was to provide cost-effective removal of source area material and provide additional information about subsurface conditions. The vacuum extraction targeted the apparent limited extent of contaminants and the presence of free product likely trapped within the upper shallow 'AA' water-bearing zone. Although SPH had previously been detected in well MW-3A, it was not present immediately prior to conducting vacuum extraction. The groundwater recharge rates for the wells were not sufficient to allow extraction of a large quantity of impacted groundwater. A total of approximately 50 gallons of groundwater (40 gallons from MW-3A and 10 gallons from MW-7AA) were extracted and transported

offsite by a licensed disposal contractor. The non-hazardous waste manifest for the extracted groundwater is included in Appendix I. Groundwater elevations were monitored in wells MW-6A, VW-2, MW-7A and MW-7AA during the vacuum truck extraction from well MW-3A. Maximum drawdowns were 0.26 ft in MW-6A, 0.15 ft in MW-7A, and 0.10 ft in MW-7AA, observed approximately 3 hours after extraction commenced. No drawdown was observed in VW-2. MW-7AA had substantially lower recovery rates than MW-3A, so extraction was curtailed after 25 minutes. Due to the low recovery rates, additional vacuum extraction events were not performed.

The effectiveness of vacuum extraction with a vacuum truck could potentially be enhanced by sealing the extraction well and performing dual-phase extraction. The well sealing would allow the application of a greater vacuum on the subsurface and would extract vapor-phase contaminants. This approach would require the use of vapor treatment (e.g., carbon canisters) and could be evaluated with other interim measures.

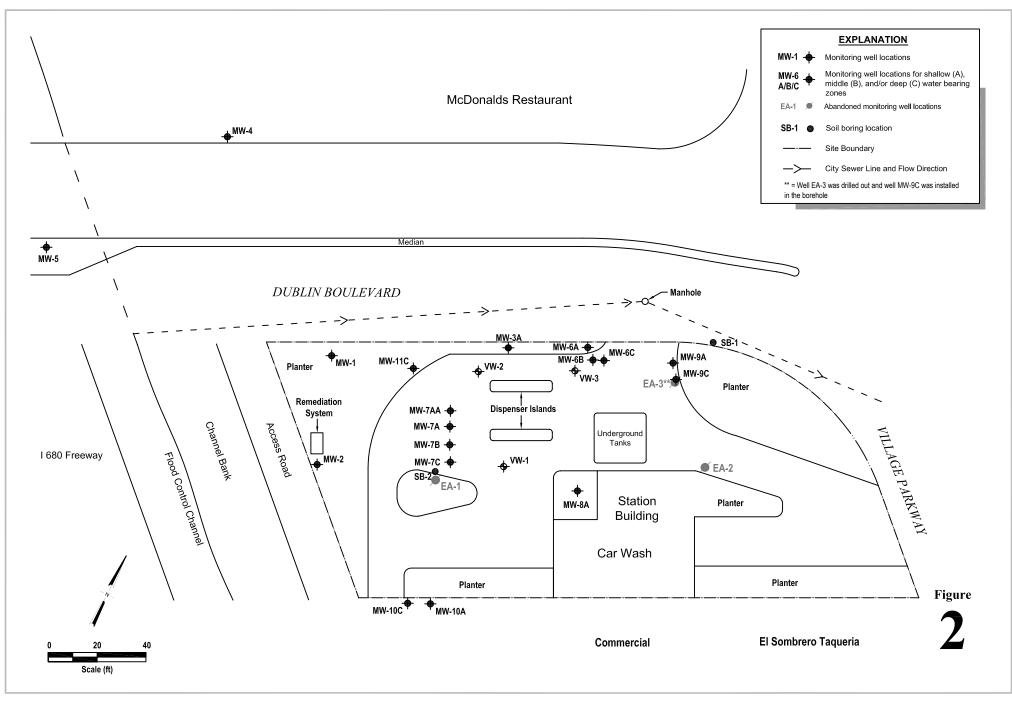
A groundwater sample was collected from MW-3A immediately following completion of vacuum extraction. The results are presented on Table 2 and indicate that contaminant concentrations were substantially lower than those detected in nearby wells (e.g. MW-3 and MW-6) during prior monitoring events. In addition, SPH that had been detected in MW-3A during the preceding quarterly monitoring event was no longer present.


6.0 CONCLUSIONS & RECOMMENDATIONS

Based on the above information, Pangea offers the following conclusions and recommendations:

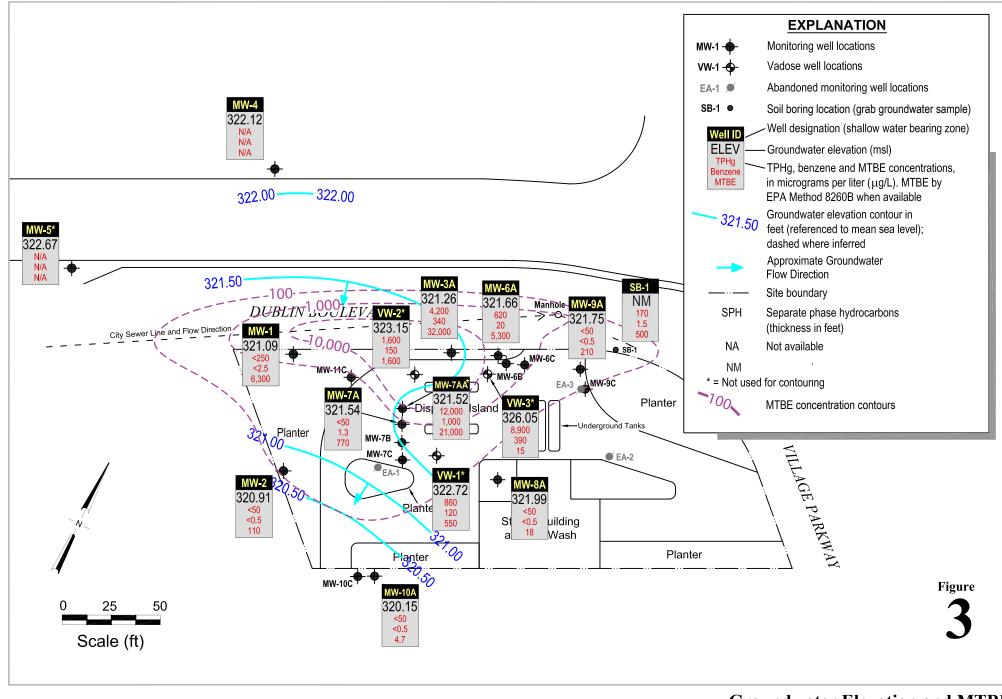
- The vertical extent of hydrocarbon and fuel oxygenate contamination has been well defined by the newly installed site monitoring wells. The hydrocarbon and oxygenate contamination, including SPH, is primarily located in the shallower site subsurface described as the upper shallow 'AA' zone (wells VW-1 through VW-3, MW-7AA and MW3A), and to a lesser extent in the shallow 'A' zone (A zone). Little to no contamination was detected in the deeper B zone and C zone wells.
- The recent boring and well installation provided significant additional delineation of the lateral extent of contamination. The hydrocarbon and oxygenate contamination is primarily located in the vicinity of the northern dispenser island and immediately adjacent to the submerged sanitary sewer line. The lateral extent of contaminants appears sufficiently delineated in the deeper subsurface, but not in to the west of the dispenser islands in the upper shallow water-bearing zones where elevated contaminant concentrations have been detected. Pangea also recommends additional groundwater monitoring of wells VW-1, VW-2 and VW-3 to further evaluate very shallow subsurface conditions.

- Pangea recommends installing additional monitoring well locations west of the dispenser islands (Figure 10). Two wells would be installed, screened from approximately 7 to 14 ft bgs, and from 15 to 20 ft bgs to evaluate contamination in the upper shallow 'AA' zone and the shallow 'A' water-bearing zone.
- Given the fairly limited extent of the most elevated constituent concentrations, Pangea recommends conducting short-term feasibility testing/source removal on key site wells (MW-3A, MW-7AA, MW-7A, MW-6A). Testing/source removal would also be recommended for the proposed new site wells, if elevated concentrations are detected in those wells. Source removal and/or site remediation would improve site conditions and reduce the potential for subsurface contaminants to use the sanitary sewer line backfill as a preferential pathway. If concentrations were observed to decrease in wells nearby the sewer line, no further characterization efforts along the sewer would be recommended. The testing/removal would be conducted using a portable dual phase extraction (DPE) system. DPE is a common and cost-effective technique for remediating sites impacted with elevated concentrations of petroleum hydrocarbons and MTBE, especially for targeting upper shallow 'AA' zone and shallow 'A' zone saturated soil. DPE involves the simultaneous extraction of soil vapor and liquid (groundwater/free product mixture) from site wells using a large above-ground extraction blower. For the short-term testing/source removal, a portable generator and temporary water storage tanks would be used. The testing/source removal would be conducted for up to five days. Pangea would prepare a report presenting test/removal procedures, results, conclusions and recommendations. The report would comment on the benefit of additional short-term source removal (via DPE or vacuum truck extraction events) or additional groundwater monitoring before evaluating the need for additional source removal. If deemed appropriate after the testing/removal, Pangea would recommend preparation of a Corrective Action Plan (CAP), which would compare active remedial alternatives to monitored natural attenuation (MNA). Data from the feasibility test would assist with evaluation of potential remedial alternatives.
- The ultimate goal of any source removal/remediation is to reduce the subsurface impact to the point where residual concentration can naturally attenuate to water quality objective levels within a reasonable timeframe and regulatory case closure can be granted.

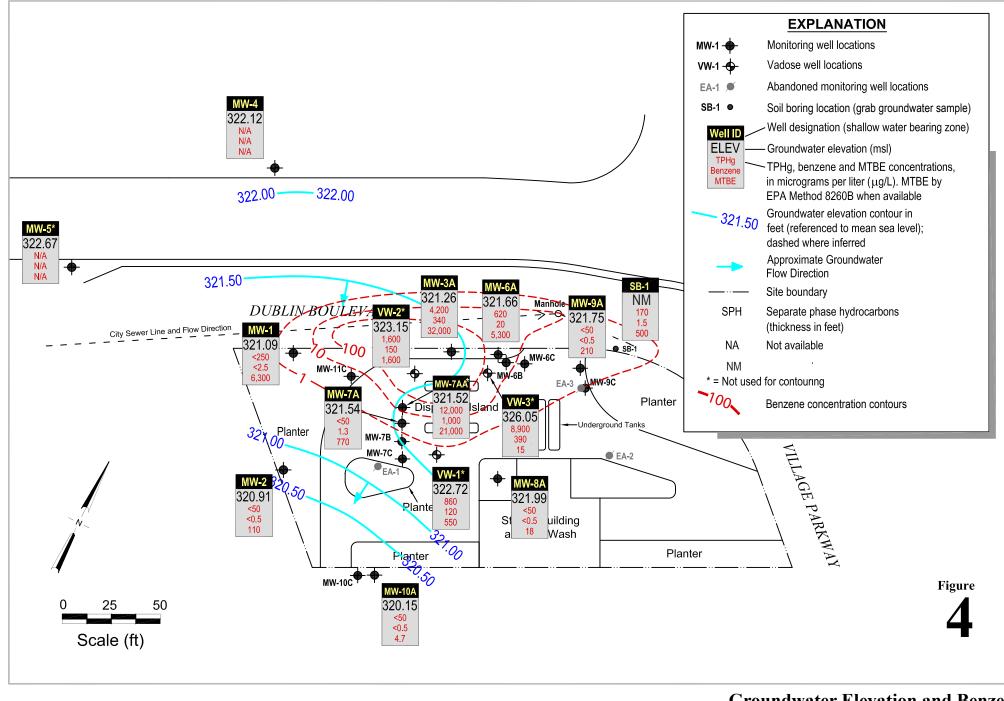

Dublin-Site Invest Rptrev4.doc

Dublin Auto Wash 7240 Dublin Boulevard Dublin, California

Site Location Map

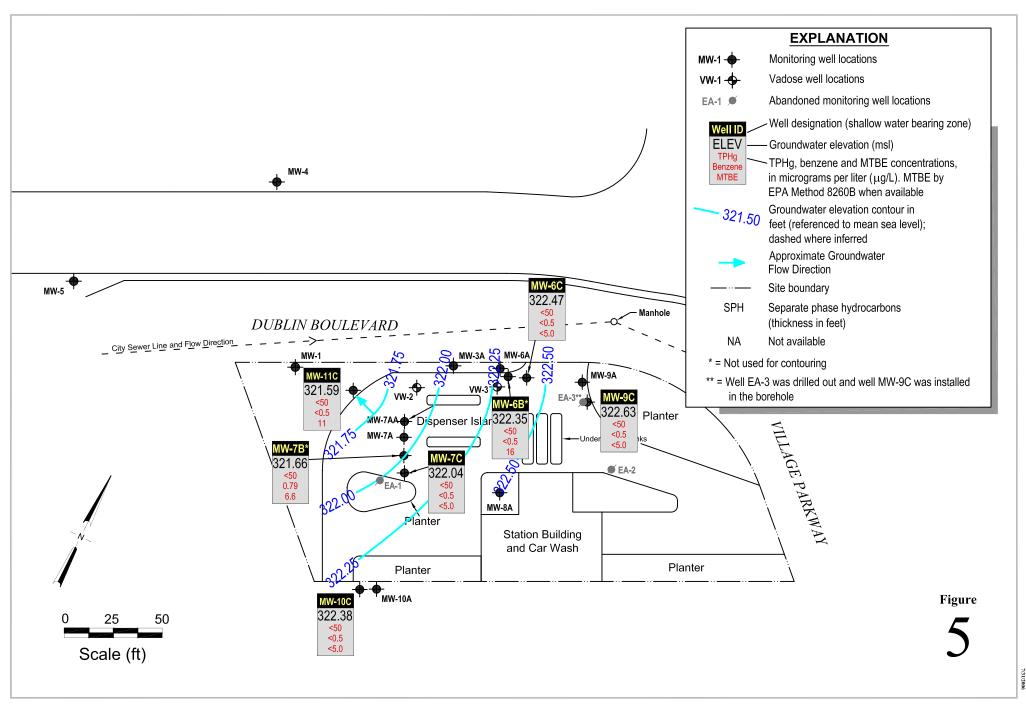


Monitoring Well and Soil Boring Locations


7/31/2006

7240 Dublin Boulevard Dublin, California

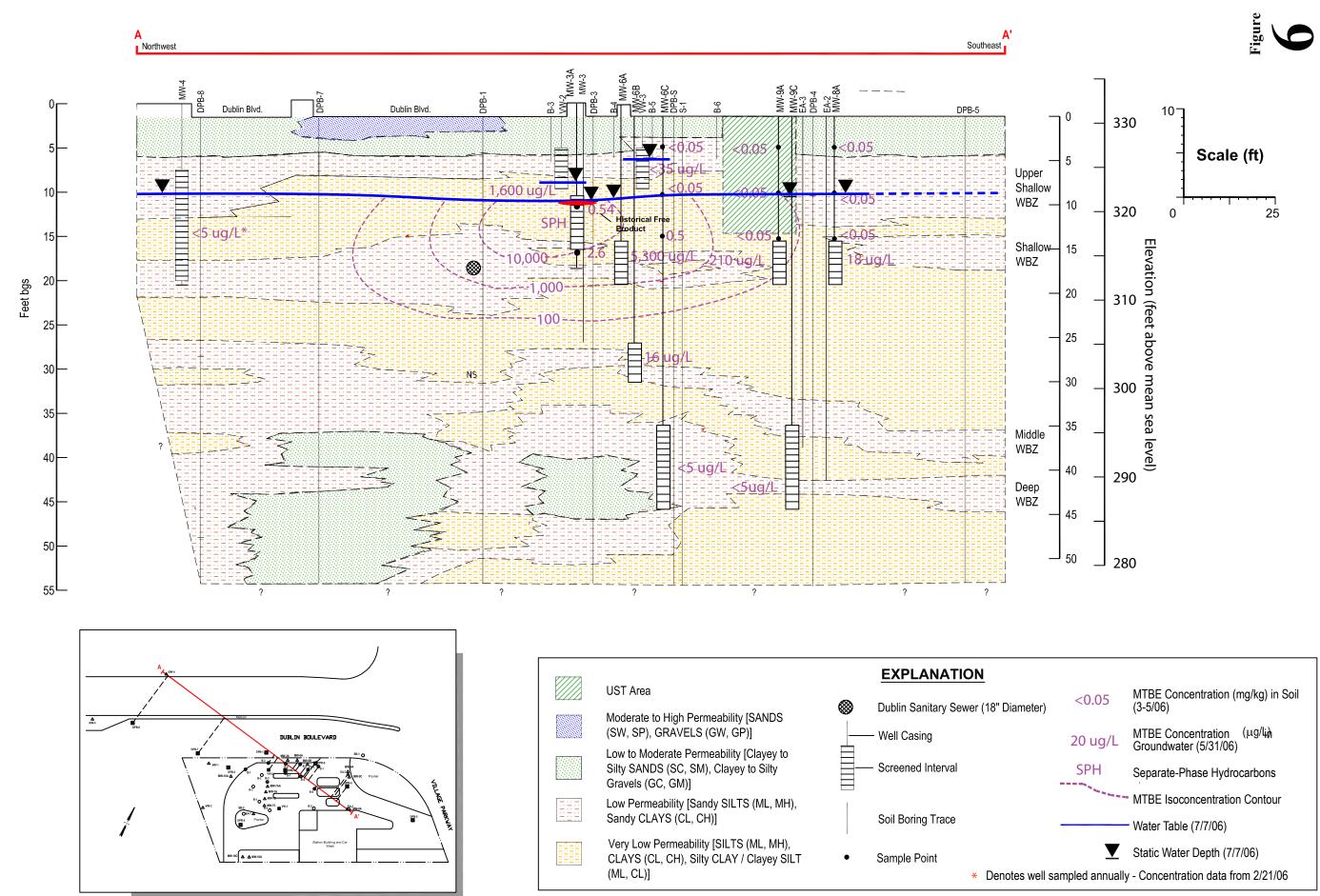
Groundwater Elevation and MTBE Concentration Map (Shallow)

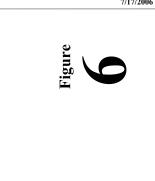

Dublin Auto Wash

7240 Dublin Boulevard Dublin, California

Groundwater Elevation and Benzene Concentration Map (Shallow)

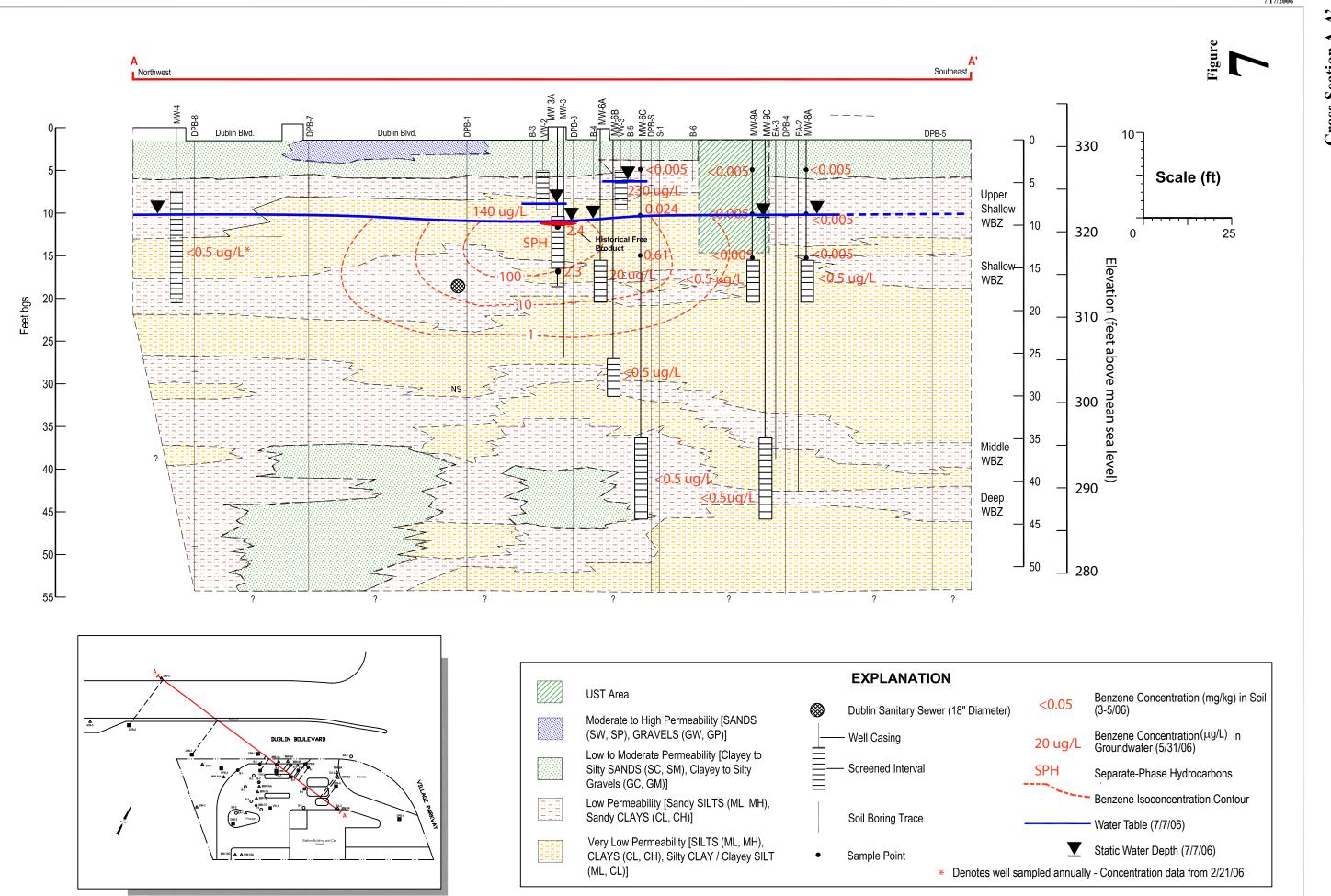
7/31/200



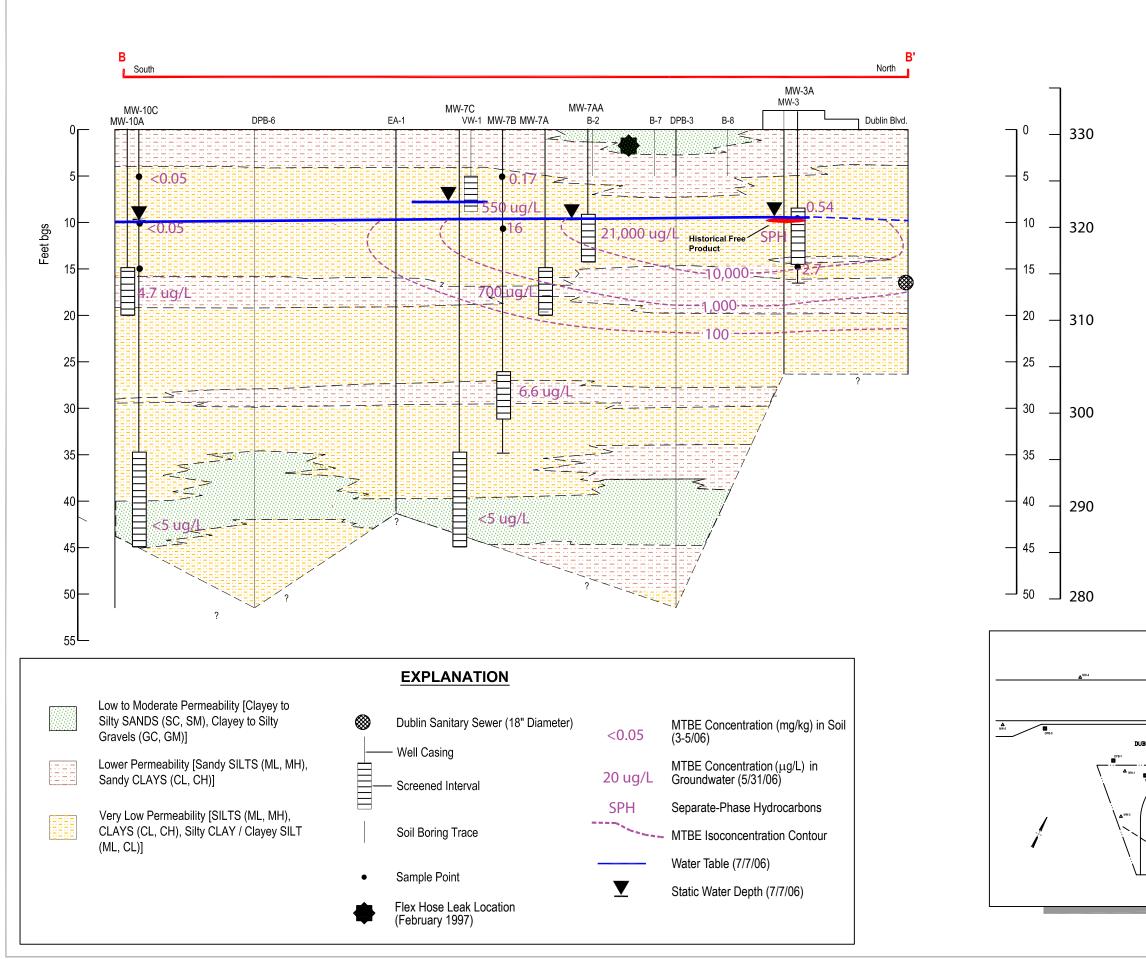

Dublin Auto Wash

7240 Dublin Boulevard Dublin, California

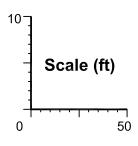
Groundwater Elevation and Hydrocarbon Concentration Map (Deep) July 7, 2006



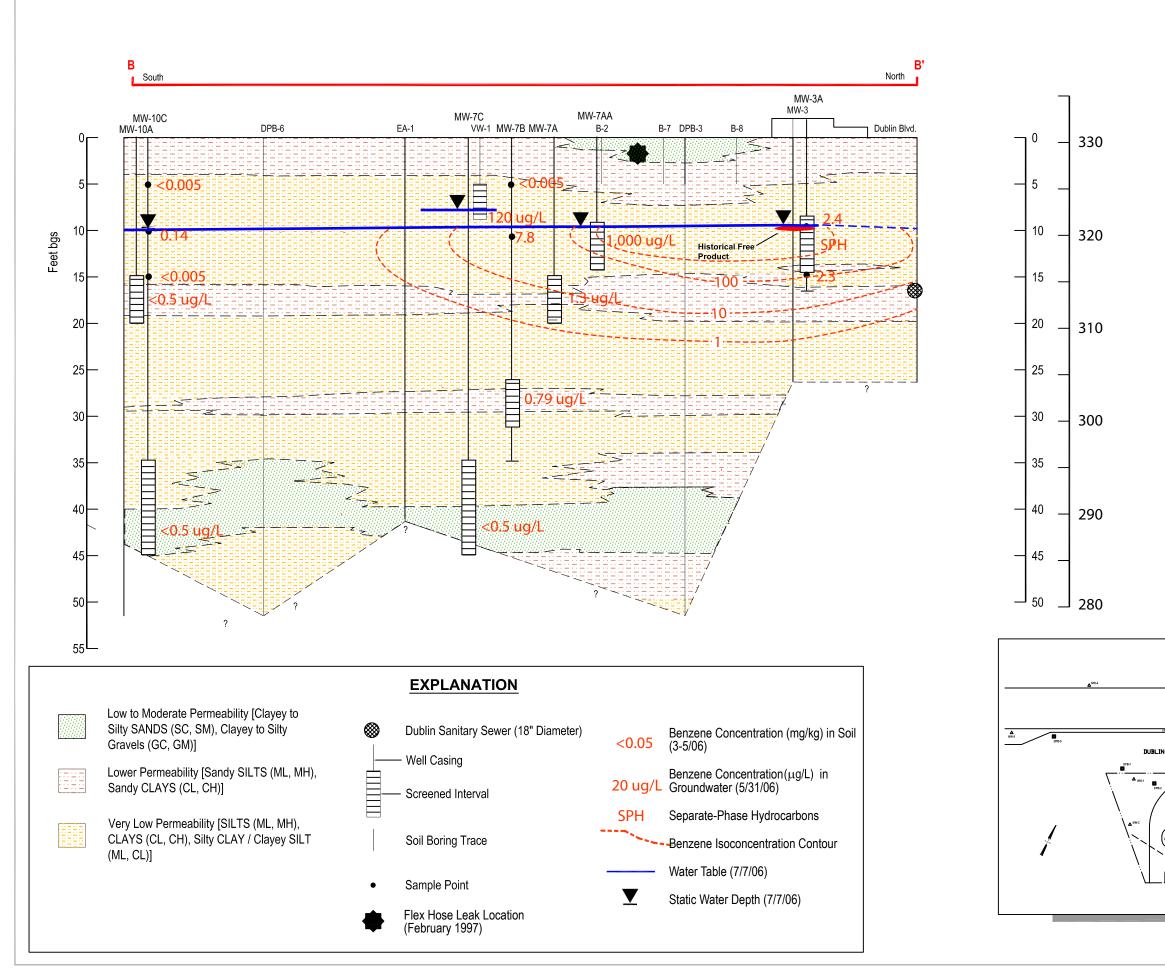
Dublin Auto Wash 7240 Dublin Boulevard Dublin, California

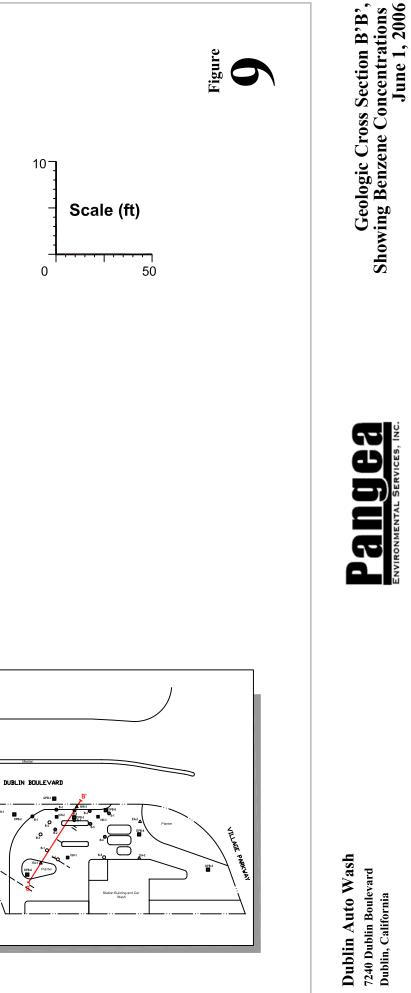

Cross Section A-A' Showing MTBE Concentrations June 2006

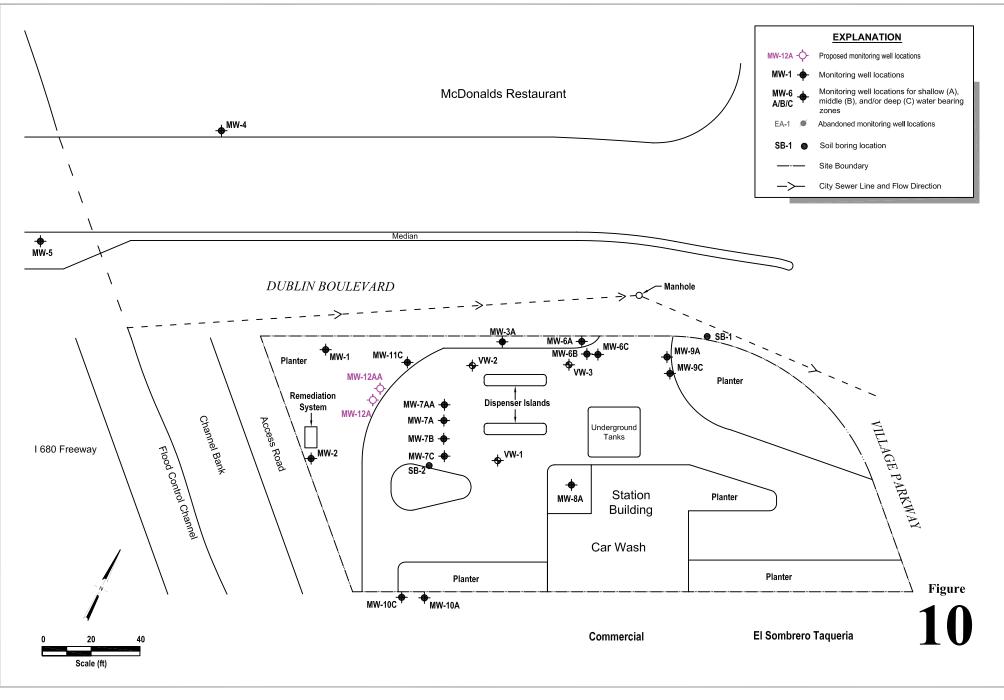
Cross Section A-A' Showing Benzene Concentrations June 2006



Dublin Auto Wash 7240 Dublin Boulevard Dublin, California






Pange Ga

Geologic Cross Section B'B', Showing MTBE Concentrations June 1, 2006

Dublin Auto Wash 7240 Dublin Boulevard Dublin, California

Dublin, California

Proposed Well Location Map

7/31/2006

Boring/Well	Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg ◀	Benzene	Toluene	Ethylbenzene	Xylenes – mg/kg –	MTBE	TAME	TBA	Ethanol	Notes
Comm. ESL - I	ndoor Air Impact	\$		Use soil gas	0.5	420	13	100	5.6	NE	Use soil gas	NE	
Comm. ESL - U	Jrban Ecotoxicity				25					NE		NE	
Comm. ESL - C	Ceiling Value			1,000	1,000	520	230	210	500	NE	500	NE	
Comm. ESL - I	Direct Exposure			5,800	0.38	440	19	180	70	NE	950	NE	
Comm. ESL - C	GW Protection (Le	eaching)		100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
Final ESL - Co	nmercial, Drinkii	ng Water Resourc	e	100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
WELL INST	ALLATION &	SOIL BORIN	GS - 2006										
MW-3A-10	PANGEA	3/30/2006	10	1,500	2.4	5.2	19	83	<10 (0.54)	< 0.33	<3.3		
MW-3A-15	PANGEA	3/30/2006	15	140	2.3	2.6	2.4	16	2.7 (2.6)	< 0.10	<1.0		
4W-6C-5	PANGEA	3/30/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-6C-10	PANGEA	3/30/2006	10	50	0.024	0.072	0.13	1.5	< 0.05				
MW-6C-15	PANGEA	3/30/2006	15	130	0.61	0.29	1.4	9.3	<0.50 (0.050)	< 0.020	< 0.20		
MW-7B-5	PANGEA	3/29/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.17 (0.11)	< 0.005	< 0.05		
MW-7B-11	PANGEA	3/29/2006	11	1,800	7.8	14	30	170	16 (13)	< 0.50	<5.0		
AW-8A-5	PANGEA	5/17/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-8A-10	PANGEA	5/17/2006	10	<1.0	< 0.005	$<\!0.005$	< 0.005	$<\!0.005$	< 0.05				
AW-8A-15	PANGEA	5/17/2006	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
4W-9A-5	PANGEA	4/3/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
AW-9A-10	PANGEA	4/3/2006	10	<1.0	< 0.005	$<\!0.005$	< 0.005	< 0.005	< 0.05				
AW-9A-15	PANGEA	4/3/2006	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
4W-10C-5	PANGEA	3/27/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
AW-10C-10	PANGEA	3/27/2006	10	17	0.14	0.063	0.46	1.3	< 0.05				
MW-10C-15	PANGEA	3/27/2006	15	<1.0	< 0.005	< 0.005	0.0065	0.023	< 0.05				
4W-11C-5	PANGEA	3/28/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
AW-11C-11	PANGEA	3/28/2006	11	700	1.4	12	14	65	<10 (3.1)	< 0.33	<3.3		
AW-11C-15	PANGEA	3/28/2006	15	<1.0	< 0.005	0.023	0.014	0.073	1.0 (0.80)	< 0.033	0.41		
B-1-7	PANGEA	5/18/2006	7	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
B-1-11	PANGEA	5/18/2006	11	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
SB-1-14	PANGEA	5/18/2006	14	<1.0	< 0.005	$<\!\!0.005$	< 0.005	< 0.005	< 0.05				
SB-1A-15	PANGEA	5/18/2006	15	<1.0	< 0.005	$<\!0.005$	< 0.005	< 0.005	< 0.05				

Boring/Well	Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg ◀	Benzene	Toluene	Ethylbenzene	Xylenes — mg/kg —	MTBE	TAME	TBA	Ethanol	Notes
Comm. ESL - I	Indoor Air Impac	ts		Use soil gas	0.5	420	13	100	5.6	NE	Use soil gas	NE	
Comm. ESL - U	Urban Ecotoxicity	y			25					NE		NE	
Comm. ESL - (Ceiling Value			1,000	1,000	520	230	210	500	NE	500	NE	
Comm. ESL - I	Direct Exposure			5,800	0.38	440	19	180	70	NE	950	NE	
Comm. ESL - 0	GW Protection (L	eaching)		100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
Final ESL - Co	mmercial, Drinki	ing Water Resourc	e	100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
SB-2-5	PANGEA	5/18/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
SB-2-10	PANGEA	5/18/2006	10	790	<1.0	2.9	10	58	<10				
SB-2-15	PANGEA	5/18/2006	15	310	2.5	2.4	6.4	27	<5.0				
SB-2-20	PANGEA	5/18/2006	20	<1.0	< 0.005	$<\!0.005$	< 0.005	< 0.005	< 0.05				
			CE HETODI										
EA-1	EA	2 SOIL BORIN 10/17/1988	GS - HISTORIC 6.5 & 11.5	_AL <0.05	0.0019	0.0097	< 0.0005	0.0018					
LA-1	EA	10/17/1988	6.5 & 11.5 16	<0.05 <0.05	0.0019	0.0097	<0.0005 <0.0005	0.0018					
			21	<0.05 <0.05	<0.0007	<0.0015	<0.0005 <0.0005	<0.0008					
EA 2	EA	10/20/1099			<0.0003	< 0.0003		<0.0005 0.0018					
EA-2	EA	10/20/1988	6 11	0.14 0.11	0.02	0.0013	0.0037 0.0013	<0.0018					
			11	<0.05	<0.0093	<0.0034	<0.0013	<0.0005					
EA 2	F 4	10/01/1000	21	0.14	0.02	0.0059	0.0045	0.0043					
EA-3	EA	10/21/1988	6	0.086	0.0054	0.0013	0.0049	0.0024					
			11	0.27	0.032	0.0043	0.0067	< 0.0005					
			16	< 0.05	0.0016	0.0037	<0.0005	<0.0005					
D 4	WCD	2/17/1000	21-36	< 0.05	< 0.0005	< 0.0005	< 0.0005	< 0.0005					
B-1	WGR	3/17/1989	3-4	<0.5	0.24	<0.5	<0.5	<0.5					
			4.5-5.5	<0.5	0.43	<0.5	<0.5	<0.5					
			6.5-7.5	<0.5	0.13	<0.5	< 0.5	<0.5					
			9.5-10.5	< 0.5	0.09	<0.5	< 0.5	<0.5					
D -	WCD	0/17/1000	14.5-15.5	1.8	<0.5	<0.5	<0.5	<0.5					
B-2	WGR	3/17/1989	3.5-4.5	NA	NA	NA	NA	NA					
			5.5-6.5	<0.5	0.06	<0.5	< 0.5	<0.5					
			9.5-10.5	<0.5	<0.5	<0.5	<0.5	<0.5					
			14.5-15.5	<0.5	< 0.5	<0.5	<0.5	<0.5					
B-3	WGR	3/17/1989	5.5-6.5	<0.5	< 0.5	<0.5	<0.5	<0.5					
		3/18/1989	9.5-10.5	<0.5	< 0.5	< 0.5	<0.5	<0.5					
B-4	WGR	3/18/1989	3-4	<0.5	0.06	<0.5	<0.5	<0.5					
			5.5-6.5	<0.5	0.07	< 0.5	< 0.5	<0.5					
			9.5-10.5	<0.5	< 0.5	< 0.5	<0.5	<0.5					
B-5	WGR	3/18/1989	3-4	<0.5	< 0.5	< 0.5	< 0.5	<0.5					
			5.5-6.5	<0.5	0.06	0.2	< 0.5	0.1					
			9.5-10.5	< 0.5	0.9	0.4	0.08	0.09					

Boring/Wel	l Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg ◀	Benzene	Toluene	Ethylbenzene	Xylenes – mg/kg –	MTBE	TAME	TBA	Ethanol	Notes
Comm. ESL	- Indoor Air Impact	ts		Use soil gas	0.5	420	13	100	5.6	NE	Use soil gas	NE	
Comm. ESL	- Urban Ecotoxicity	/			25					NE		NE	
Comm. ESL	- Ceiling Value			1,000	1,000	520	230	210	500	NE	500	NE	
Comm. ESL	- Direct Exposure			5,800	0.38	440	19	180	70	NE	950	NE	
Comm. ESL	- GW Protection (L	eaching)		100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
Final ESL - C	Commercial, Drinki	ng Water Resourc	e	100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
MW-1	GTI	9/13/1994	10	ND	ND	0.0099	ND	ND					
			15	23	0.14	0.47	0.37	1.5					
MW-2	GTI	9/13/1994	10	980	2.7	19	15	78					
			15	ND	ND	ND	ND	ND					
MW-3	GTI	9/13/1994	10	2,500	0.8	4.8	5.1	120					
			15	37	0.21	0.48	0.32	1.5					
MW-4	GRI	2/22/1996	9.5	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.025				
MW-5	GRI	2/22/1996	9.5	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.025				
B-1	PES	7/14/1997	5	10	0.41	0.027	0.16	0.01	6				hand augered
			9	1,400	13	45	26	130	4.5				
B-2	PES	7/14/1997	5	1.8	0.006	0.007	0.013	0.033	0.33				hand augered
			10	1,100	11	35	18	91	20				
B-3	PES	7/15/1997	7	230	2.4	2	3.8	19	6				hand augered
			10	1,000	9.8	32	17	84	10				
B-4	PES	7/15/1997	7	33	0.11	0.034	0.39	0.87	1.5				hand augered
			10	1,900	2.2	14	19	170	<4.5				
B-1	SOMA	4/23/2003	3.5-4	< 0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0005	< 0.1	<1	hand augered
B-2	SOMA	4/23/2003	3.5-4	92,000	12	560	240	1,550	21	20	<100	<1,000	hand augered
B-3	SOMA	4/23/2003	3.5-4	< 0.19	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	0.086	0.86	hand augered
B-4	SOMA	4/23/2003	2.5-3	< 0.17	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	0.083	0.83	hand augered
B-5	SOMA	4/23/2003	3.5-4	< 0.19	< 0.0047	< 0.0047	< 0.0047	0.0079	< 0.0047	< 0.0047	0.094	0.94	hand augered
B-6	SOMA	4/23/2003	2.5-3	< 0.17	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	0.086	0.86	hand augered
B-7	SOMA	4/23/2003	3.5-4	8,700	7.7	270	170	920	7.1	<10	<140	<1,400	hand augered
B-8	SOMA	4/23/2003	4-5.75	9.9	0.0064	< 0.0044	0.033	0.2	0.047	0.012	0.088	0.88	hand augered
DPB-3	SOMA	4/17/2003	14-15	3,500	6.6	120	43	251	17				
			18.5-19.5	< 0.16	< 0.0042	< 0.0042	< 0.0042	< 0.0042	1.4				
DPB-4	SOMA	4/17/2003	9-10	0.2	< 0.0039	< 0.0039	< 0.0039	< 0.0039	0.041				
DPB-5	SOMA	4/17/2003	11-12	< 0.17	< 0.0041	< 0.0041	< 0.0041	< 0.0041	0.0045				
DPB-6	SOMA	4/18/2003	18-18.75	< 0.15	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004				
DPB-7	SOMA	4/18/2003	15.5-16.5	< 0.2	< 0.005	$<\!0.005$	< 0.005	< 0.005	< 0.005				
DPB-S	SOMA	4/18/2003	15-16	1.2	< 0.13	< 0.13	< 0.13	0.36	3.5				

Boring/Well	Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	Ethanol	Notes
				←──				– mg/kg —				\longrightarrow	
Comm. ESL - In	ndoor Air Impacts			Use soil gas	0.5	420	13	100	5.6	NE	Use soil gas	NE	
Comm. ESL - U	Jrban Ecotoxicity				25					NE		NE	
Comm. ESL - C	Ceiling Value			1,000	1,000	520	230	210	500	NE	500	NE	
Comm. ESL - D	Direct Exposure			5,800	0.38	440	19	180	70	NE	950	NE	
Comm. ESL - G	GW Protection (Le	aching)		100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	
Final ESL - Cor	mmercial, Drinkin	g Water Resourc	e	100	0.044	2.9	3.3	1.5	0.023	NE	0.073	NE	

ABBREVIATIONS AND NOTES:

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015M.

MTBE = Methyl tert-butyl ether by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B)

TAME = Tert-amyl methyl ether by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B)

TBA = Tert-butyl alcohol by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B)

mg/kg = milligram per kilogram

EA = EA Engineering Science and Technology Inc.

WGR = Western Geologic Resources

GTI = Groundwater Technology

GRI = Gettler-Ryan Inc.

PES = Parker Environmental Services

SOMA = SOMA Environmental Engineering Inc.

ESL = Environmental Screening Levels from Table A-2, established by the SFBRWQCB, Interim Final -July 2003 and amended February 2004.

-- = Not analyzed

< = Not detected at or above indicated detection limit

Bold = Analytical results at or above the final ESL

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(ft)	Sampica	(ft)	(ft, msl)	↔	Belizene	Toldelle	- μg/L	Aylenes		mg/L	
(ji)		(11)	(11, 11151)				µg/L		,	ilig/L	
rab Groundwa	ter Analytical Dat	a									
SB-1A-W	05/18/06	11.20	NA	170	1.5	1.5	1.2	5.9	570 (500)		TAME=90µg/L, TBA,DIPE,ETBE=NI
DPB-1	05/01/03	16-20	NA	12,000	25	440	440	2,180	8,100		
DPB-2	04/22/03	NA	NA	710	1.1	<1	18	74	540		
DPB-3	04/17/03	16-20	NA	48,000	400	5,800	1,500	9,500	8,900		
	04/17/03	27-31	NA	62,000	700	9,900	1,300	7,900	4,200		
	04/17/03	39-43	NA	27,000	210	3,200	640	4,100	7,700		
DPB-4	04/17/03	32-36	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DPB-5	04/30/03	7-11	NA	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5		
	04/17/03	11-15	NA	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5		
	04/30/03	26-30	NA	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5		
	04/17/03	36-40	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DPB-6	04/18/03	15-19	NA	7,700	18	77	170	640	5.9		
	04/18/03	26-30	NA	4,700	21	76	160	650	6.2		
	04/18/03	35-39	NA	2,900	8.8	24	54	249	100		
DPB-7	04/18/03	15-19	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5		
	04/18/03	20-24	NA	7,000	42	640	190	990	300		
	04/18/03	35-39	NA	150	<0.5	1.8	0.8	5.7	< 0.5		
DPB-8	05/01/03	NA	NA	<50	< 0.5	<0.5	<0.5	<0.5	< 0.5		
DPB-S	04/18/03	14-18	NA	20,000	<170	<170	380	6,600	53,000		
	04/18/03	26-30	NA	1,500	7.1	<3.1	7.4	170	760		
	04/18/03	35-39	NA	4,300	<63	<63	<63	910	42,000		
		ESLs (final sci	reening level)	100	1	40	30	13	5		
roundwater Ma	onitoring Well An	alytical Data									
EA-1	10/17/88			<50	<0.5	<0.5	<0.5	<0.5			
331.21	10/24/88	10.64	322.77								
	11/02/88	10.69	322.72								
	12/20/88	10.51	322.9	<50	<0.5	< 0.5	<0.5	<0.5			
	03/28/89	9.87	323.54	<250	< 0.5	< 0.5	< 0.5	<0.5			
	08/02/89	10.34	323.07	<50	< 0.1	< 0.1	< 0.1	< 0.1			
	11/06/89	10.65	322.76	<500	<3.0	<5.0	<5.0	<5.0			
	01/25/90	10.6	322.81	<50	< 0.5	< 0.5	< 0.5	<0.5			
	04/23/90	10.58	322.83	71	2	5	3	8			
	08/01/90	10.88	322.53	300	86	21	10	33			
	10/24/91	11.12	322.29	280	69	13	11	16			
	01/31/91	11.16	322.25	460	160	11	17	17			
	08/21/91	10.8	322.61	2,400	400	220	44	120			
	08/21/91	10.8	322.61	2,300	390	210	42	120			Duplicate
	10/07/91	10.79	322.62								
	01/28/92	10.79	322.62	3,600	320	360	110	310			
	01/28/92	10.79	322.62	3,000	290	320	99	270			Duplicate
	06/05/92	10.84	322.57	1,700	290	89	61	130			

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(ft)	Sumpled	(ft)	(ft, msl)	←	Benzene	Toluene	μg/L	Aylenes		mg/L	
00		(11)	(11, 1131)				μg/L		· · · ·	ilig/L	
EA-1 (Cont'd)	09/30/92	11.06	322.35	2,100	160	260	80	350			
2.11 I (00111 U)	12/30/92	10.15	323.26	3,200	240	180	110	310			
	03/29/93	9.42	323.99	23,000	700	3,000	610	3,000			
	06/25/93	10.42	322.99	2.7	130	590	130	590			
	09/16/93	10.66	322.75	3.9	410	830	220	890			
	12/20/93	10.6	322.81	27	1,200	2,600	1,100	4,200			
	03/29/94	10.41	323	6.3	250	700	200	830			
	06/22/94	10.41	323.01	4.1	71	240	110	460	<30		
	09/20/94	10.4	323.04	8,500	1,200	1,300	370	1,400			
	10/04/94	10.34	323.04	7,600	97	360	150	620			
	11/30/94	9.46	323.95	8,800	180	490	240	900			
	03/02/95	9.46 9.96	323.95	8,800 6.9	82	490 570	240 210	900 970			
	06/15/95	9.96 9.8	321.07	4.8	82 44	210	160	970 620	<25		
		9.8 10.48	320.55	4.8		620	370	1,400	<125		
	09/26/95			,	150						
	12/28/95	10.14	320.89	11,000	74	250	200	750	79		
	02/29/96	8.74	322.29	17,000	59	480	350	1,600	<125		
	06/27/96	10.21	320.82	3,600	22	130	130	49	46		
	09/12/96	10.49	320.72	2,000	20	<10	18	44	<50		
	03/31/97	10.19	321.02	17,000	87	230	330	1,200	310		
	12/23/98	9.83	321.38	290	20	0.88	1.1	16	<2.5		
	03/25/99	9.13	322.08	500	21	< 0.5	21	<0.5	18		
	02/03/00	9.05	322.16	2,310	35.7	90	21.8	147	1,280 (365)		
	01/23/01									Inaccess	sible
	05/01/01	9.82	321.39	7,710	19.9	12.6	22.3	64	31.8		
	08/28/01	10.04	321.17	4,800	69	<25	50	140	160		
	11/27/01	10.05	321.16	5,300	25	<5.0	30	120	<20		
	02/28/02									Inaccess	sible
	05/22/02	9.05	322.16	110	<1.0	< 0.50	1	<1.5	<2.5		
	08/20/02	9.21	322	410	2.6	< 0.50	8.5	29	<5.0		
	11/11/02	9.01	322.2	3,800	< 0.50	1.3	17	47	<5.0		
	05/08/03	8.23	322.98	1,700	11	0.97	63	161	<2.0		
	12/15/04									Inaccess	sible
	02/21/05									Inaccess	sible
	05/17/05									Inaccess	sible
	08/17/05									Inaccess	sible
	11/27/05									Inaccess	
	02/21/06									Inaccess	
	03/31/06										oandoned
											a at
EA-2	10/17/88			<50	< 0.5	< 0.5	<0.5	1.2			
330.41	10/24/88	9.7	322.89								
	11/02/88	10.03	322.56								
	12/20/88	9.98	322.61	<50	<0.5	< 0.5	<0.5	<0.5			
	03/28/89	8.8	323.79	<250	<2	<0.5	<0.5	<0.5			
	08/02/89	9.44	323.15	<50	<0.1	<0.1	<0.1	<0.1			
	11/06/89	9.53	323.06	<500	<3.0	<5.0	<5.0	<5.0			

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Ōxygen	Notes
(ft)	Sumpled	(ft)	(ft, msl)	←	Denzene	Tolucile	- μg/L	Aylenes		mg/L	
01)		(11)	(11, 1131)				µg/L		,	iiig/L	
EA-2 (Cont'd)	01/25/90	9.27	323.32	<50	< 0.5	< 0.5	< 0.5	<0.5			
Lat 2 (Cont u)	04/23/90	9.35	323.24	<50	0.6	0.8	<0.5	2			
	08/01/90	9.71	322.88	<50	<0.5	<0.5	<0.5	<0.5			
	10/24/90	10.08	322.51	<50	<0.5	<0.5	<0.5	<0.5			
	01/31/91	10.21	322.38	<50	<0.5	<0.5	<0.5	<0.5		I	Duplicate
	01/31/91	10.21	322.38	<50	< 0.5	< 0.5	< 0.5	<0.5			1
	08/21/91	9.8	322.79	<50	< 0.5	< 0.5	<0.5	<0.5			
	10/07/91	9.98	322.61								
	01/28/92	9.81	322.78	<50	0.8	< 0.5	<0.5	<0.5			
	06/05/92	9.86	322.73	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	09/30/92	10.6	321.99	66	1	3.2	1.3	7.4			
	12/30/92	9.11	323.48	<50	<0.5	<0.5	<0.5	<0.5			
	03/29/93	7.73	324.86	<50	<0.5	<0.5	< 0.5	<1.5			
	06/25/93	9.22	323.37	<50	< 0.5	< 0.5	< 0.5	<1.5			
	09/16/93	10	322.59	<50	<0.5	<0.5	< 0.5	<1.5			
	12/20/93	9.38	323.21	<50	< 0.5	< 0.5	< 0.5	<0.5			
	03/29/94	9.3	323.29	<50	< 0.5	0.6	< 0.5	<0.5			
	06/22/94	9.49	323.1	<50	< 0.5	< 0.5	< 0.5	<0.5			
	09/26/94	9.72	322.87	<50	< 0.5	< 0.5	< 0.5	<0.5			
	10/04/94	9.58	323.01	<50	< 0.5	< 0.5	< 0.5	<0.5			
	11/30/94	8.7	323.89	<50	< 0.5	< 0.5	< 0.5	<0.5			
	03/02/95	8.54	321.67	<50	< 0.5	< 0.5	< 0.5	<0.5			
	06/07/95	8.42	321.79	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5		
	09/26/95	9.34	320.87	540	6.8	< 0.5	47	29	13		
	12/28/95	8.84	321.37	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5		
	02/29/96	7.44	322.77	<50	<0.5	< 0.5	< 0.5	1.5	<2.5		
	06/27/96	8.83	321.38	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5		
	09/12/96	9.4	321.01	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	03/31/97	9.11	321.3	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	12/23/98	8.91	321.5	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	03/25/99	8.1	322.31	<50	< 0.5	< 0.5	< 0.5	< 0.5	2.7		
	02/03/00	8.36	322.05	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5 (<2.0)		
	01/23/01	9.08	321.33	441 (1)	1.27	0.542	40.3	31	72.9		
	05/01/01	8.87	321.54			SAMPL	ED ANNUALLY				
	08/28/01	9.45	320.96			SAMPL	ED ANNUALLY				
	11/27/01	9.5	320.91			SAMPL	ED ANNUALLY				
	02/28/02	9.05	321.36	<50	< 0.50	< 0.50	<0.5	<1.5	74		
	05/22/02	9.04	321.37			SAMPL	ED ANNUALLY				
	08/20/02	9	321.41				ED ANNUALLY				
	11/11/02	9.03	321.38				ED ANNUALLY				
	05/08/03	7.26	323.15	<50	<0.5	<0.5	<0.5	<0.5	2.2/0.9		
	12/15/04	8.96	321.45	<50	<0.5	<0.5	<0.5	<0.5	<5.0		
	02/21/05	7.20	323.21	<50	<0.5	<0.5	<0.5	<0.5	13 (11)	0.64	
	05/17/05	8.21	322.20				ED ANNUALLY			0.77	
	08/17/05	7.97	322.44				ED ANNUALLY			0.85	
	11/27/05	9.83	320.58				ED ANNUALLY			0.84	
	02/21/06	8.78	321.63	<50	<0.5	<0.5	< 0.5	<0.5	<5.0	0.51/0.68	
	03/28/06									1	Well Abandoned

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Ōxygen	Notes
(ft)	Sumpled	(ft)	(ft, msl)	←	Benzene	Tolucile	- μg/L	Atylenes		mg/L	
(ji)		(11)	(11, 11151)	<u>`</u>			µg/L		· ·	ilig/L	
EA-3	10/17/88			<50	1.8	< 0.5	<0.5	3			
331.5	10/24/88	11.03	322.61								
	11/02/88	11.03	322.61								
	12/20/88	10.96	322.68	240	90	1.2	13	3.3			
	03/28/89	9.77	323.87	2,300	380	130	240	910			
	08/02/89	10.65	322.99	<50	< 0.1	< 0.1	< 0.1	< 0.1			
	11/06/89	10.78	322.86	<500	<3.0	<5.0	<5.0	<5.0			
	01/25/90	10.66	322.98	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	04/23/90	10.68	322.96	<50	0.8	< 0.5	0.9	< 0.5			
	08/01/90	11.03	322.61	<50	< 0.5	< 0.5	<0.5	< 0.5			
	10/24/90	11.35	322.29	<50	< 0.5	< 0.5	<0.5	< 0.5			
	01/31/91	11.52	322.12	<50	<0.5	< 0.5	< 0.5	< 0.5			
	08/21/91									Duplicate	
	10/07/91	11.15	322.49	180	40	20	4.7	8.4		1	
	10/7/1991			200	43	17	4.1	6.7			
	01/28/92	11.08	322.56	640	69	85	13	46			
	06/05/92	10.98	322.66	250	63	8.3	3	9.5			
	09/30/92	11.38	322.26	330	120	33	6.3	22			
	12/30/92	10.48	323.16	58	7.6	1.3	2.5	5.4			
	03/29/93	9.3	324.34	120	11	4.5	6.2	13			
	06/25/93	10.46	323.18	<50	<0.5	<0.5	<0.5	<1.5			
	09/16/93	10.40	322.74	85	3.9	8.8	4.5	22			
	12/20/93	10.66	322.98	190	12	12	4.5	50			
	03/29/94	10.00	323.14	<50	<0.5	1.2	<0.5	0.9			
	06/22/94	10.64	323.14	<50 <50	<0.5	<0.5	<0.5	<0.5	<3.0		
	09/26/94	10.04	322.92	<50	<0.5	<0.5	<0.5	<0.5	<3.0		
	10/04/94	10.72	322.92	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5			
	11/30/94	9.66	323.98	<30 170	6.1	3	<0.5 6.5	28			
	03/02/95	9.92	321.38	<50 <50	<0.5	<0.5	<0.5	<0.5			
	06/07/95	9.72	321.58	<50	<0.5	<0.5	<0.5	<0.5	3.2		
	09/26/95	10.6	320.7	2,000	140	<5.0	<5.0	190	280		
	12/28/95	9.82	321.48	<50	<0.5	<0.5	<0.5	<0.5	26		
	02/29/96	8.28	323.02	<50	2.1	<0.5	2.5	6	31	¥	
	06/27/96	9.91	321.39	<50	<0.5	<0.5	<0.5	<0.5	<2.5	Inaccessible	
	09/12/96	10.59	320.91	13,000	<20	<20	<20	<20	48	T	
	03/31/97									Inaccessible	
	04/15/97	10.25	321.25	<125	2	<1.2	<1.2	<1.2	680	Inaccessible	
	12/23/98									Inaccessible	
	03/25/99										
	02/03/00										
	01/23/01	10.31	321.19	862 (1)	3.97	1.15	18.9	48.6	289		
	05/01/01	10.15	321.35	_			IPLED SEMI-ANNU				
	08/28/01	10.56	320.94	<50	< 0.5	< 0.5	<0.5	<0.5	37		
	11/27/01	10.65	320.85	_			IPLED SEMI-ANNU				
	02/28/02	10.37	321.13	<50	1.3	< 0.50	2	1.8	90		
	05/22/02	10.27	321.23				IPLED SEMI-ANNU				
	08/20/02	10.3	321.2	<50	< 0.50	< 0.50	< 0.50	<1.5	40		

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(<i>ft</i>)	~	(ft)	(ft, msl)	←			- μg/L	,	→	mg/L	
• ·											
EA-3 (Cont'd)	11/11/02	9.05	322.45			SAN	IPLED SEMI-ANNU	ALLY			
	05/08/03	8.83	322.67	<50	< 0.5	< 0.5	<0.5	< 0.5	39/37		
	12/15/04	10.39	321.11	<50	<0.5	< 0.5	< 0.5	< 0.5	18 (17)		
	02/21/05	8.80	322.70	<50	<0.5	< 0.5	2.3	1.4	180 (290)	0.69	
	05/17/05	9.57	321.93	140	0.68	< 0.5	6.6	0.94	250 (340)	0.86	
	08/17/05	9.23	322.27	3,800	11	3.7	110	24	200 (200)	0.99	
	11/27/05	11.05	320.45	150	< 0.5	1.8	2.4	0.56	88 (85)	0.81	
	02/21/06	10.10	321.40	83	< 0.5	0.72	1.7	< 0.5	40 (49)	0.38/0.65	
	04/03/06									Well A	Abandoned
	10/01/01				4.50						
MW-1	10/04/94	12.8	320.76	2,100	150	170	61	320			
333.66	11/30/94	12.38	321.18	1,500	210	17	73	130			
	03/02/95	12.88	320.68	2,600	510	<10	160	<10			
	06/07/95	12.58	320.98	710	160	<2.0	45	<2.0	<10		
	09/26/95	13.15	320.41	1,100	140	1.4	92	1.8	<5.0		
	12/28/95	13.09	320.47	750	96	2.5	61	7.4	37		
	02/29/96	12.17	321.39	250	17	<0.5	18	0.81	9		
	06/27/96	12.95	320.61	710	72	<2.0	92	2.2	<10		
	09/12/96 03/31/97	13.11 12.99	320.55	300	53	<0.5	32	0.65	21		
	12/23/98	12.99	320.67	<200	4.1	<2.0 <0.5	4.8 <0.5	<2.0 <0.5	640 3200		
	03/25/99		319.79	<50	<50	<0.5 <0.5	<0.5				
	03/23/99 02/03/00	12.01 11.91	321.65 321.75	<50	<0.5	<0.5 <5.0	<0.5 <5.0	<0.5 <5.0	5,200 (5,200) 3,180 (3,350)		
	01/23/01	12.57	321.09	<500 <50.0	<5.0 <0.5	<5.0 <0.5	<3.0 <0.5	<5.0 <0.5	3,180 (3,350) 4,420		
	05/01/01	12.6	321.09	<50.0	<0.5		VIII-ANNU		4,420		
	08/28/01	12.74	320.92	<50	< 0.5	<0.5	<0.5	<0.5	4,800		
	11/27/01	12.74	320.92	<50	<0.5		VIII-ANNU		4,800		
	02/28/02	12.7	320.96	<50	< 0.5	<0.5	<0.5	<1.5	1,400		
	05/22/02	12.38	321.28	<50	<0.5		APLED SEMI-ANNU		1,400		
	08/20/02	12.57	321.09	<50	<0.5	<0.5	<0.5	<1.5	1,400		
	11/11/02	11.31	322.35	~50	<0.5		IPLED SEMI-ANNU		1,400		
	05/08/03	11.85	321.81	<50	<0.5	<0.5	<0.5	<0.5	1,300 (1,200)		
	12/15/04	12.80	320.86	<50	<0.5	<0.5	<0.5	<0.5	1,700 (1,900)		
	02/21/05	11.81	321.85	<100	<1.0	<1.0	<1.0	<1.0	3,000 (3,800)	0.82	
	05/17/05	12.51	321.15	<120	<1.2	<1.2	<1.2	<1.2	3,400 (4,400)	0.75	
	08/17/05	12.35	321.31	<170	<1.7	<1.7	<1.7	<1.7	4,500 (4,900)	0.77	
	11/27/05	13.18	320.48	<170	<1.7	<1.7	<1.7	<1.7	5,400 (4,400)	0.90	
222 60	02/21/06	12.61	321.05	<170	<1.7	<1.7	<1.7	<1.7	5,000 (5,400)	0.29/0.71	
333.69	06/01/06	12.47	321.22	<250	<2.5	<2.5	<2.5	<2.5	6,400 (6,300)	0.46	
	07/07/06	12.60	321.09								
MW-2	10/04/94	8.56	320.62	2300	160	280	96	480			
329.29	11/30/94	8.33	320.85	1,600	170	16	110	120			
	03/02/95	8.35	320.83	1,200	220	5.6	140	36			
	06/07/95	8.62	320.56	160	25	<0.5	16	< 0.5	240		
	09/26/95	8.71	320.47	150	15	<0.5	7.2	< 0.5	120		
	12/28/95	8.78	320.4	400	34	1.3	26	5.1	170		

Pangea

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(ft)	Sampled	(ft)	(ft, msl)	↔	Beillene	Tolucile	- μg/L	Trytenes		mg/L	
00		(11)	(11, 1151)				μ6/1			ing/L	
MW-2 (Cont'd)	02/29/96	7.82	321.36	120	29	<0.5	< 0.5	<0.5	790		
(cont u)	06/27/96	8.72	320.46	150	13	<0.5	7	<0,5	850		
	09/12/96	8.81	320.48	<1,000	18	<10	<10	<10	3,100		
	03/31/97	8.65	320.64	<500	<5.0	<5.0	<5.0	<5.0	1,400		
	12/23/98	8.32	320.97	<50	<0.5	<0.5	< 0.5	<1.5	900		
	03/25/99	7.89	321.4	<50	2.6	< 0.5	<0.5	<0.5	1,100 (670)		
	02/03/00	7.53	321.76	<125	<1.25	<1.25	<1.25	<1.25	1,020 (1,100)		
	01/23/01	8.18	321.11	<50.0	< 0.5	< 0.5	< 0.5	<0.5	642		
	05/01/01	8.43	320.86	70.8	<0.5	< 0.5	< 0.5	<0.5	342		
	08/28/01	8.39	320.9	<50	< 0.5	< 0.5	< 0.5	<0.5	530		
	11/27/01	8.46	320.83	210	<0.5	<0.5	< 0.5	<1.5	260		
	02/28/02	8.48	320.81	<50	<0.5	<0.5	<0.5	<1.5	180		
	05/22/02	8.14	321.15	<50	<0.5	<0.5	<0.5	<1.5	180		
	08/20/02	8.24	321.05	<50	<0.5	<0.5	<0.5	<1.5	160		
	11/11/02	8.06	321.23	<50	<0.5	<0.5	<0.5	<1.5	130		
	05/08/03	7.86	321.43	<50	<0.5	<0.5	<0.5	<0.5	180 (160)		
	12/15/04	8.60	320.69	<50	<0.5	<0.5	<0.5	<0.5	1,400 (1,600)		
	02/21/05	7.55	321.74	<50	<0.5	<0.5	<0.5	<0.5	800 (1,100)	1.35	
	05/17/05	8.52	320.77	<50	<0.5	<0.5	<0.5	<0.5	160 (210)	1.06	
	08/17/05	8.16	321.13	<50	<0.5	<0.5	<0.5	<0.5	190 (210)	0.90	
	11/27/05	9.00	320.29	<50	<0.5	<0.5	<0.5	<0.5	200 (210)	0.92	
	02/21/06	8.51	320.78	<50	<0.5	<0.5	<0.5	<0.5	240 (270)	0.33/0.46	
329.48	06/01/06	8.50	320.98	<50	<0.5	<0.5	<0.5	<0.5	120 (110)	0.38	
020110	07/07/06	8.57	320.91								
MW-3	10/04/94	12.06	320.67	6,300	610	750	68	670			
332.86	11/30/94	11.38	321.35	17	3,600	490	430	610			
	03/02/95	11.97	320.76	8,500	2,200	<50	240	<50	64,000		
	06/07/95	11.54	321.19	3,000	710	18	220	44	3,100		
	09/26/95	12.36	320.37	<10,000	230	<100	130	<100	64,000		
	12/28/95	12.07	320.66	<12,500	760	<125	<125	<125	100,000		
	02/29/96	11.01	321.72	1,600	380	<10	84	17	33,000		
	06/27/96	11.93	320.8	1,400	<2.5	4.3	130	4	96,000		
	09/12/96	12.26	320.6	<10,000	560	<100	110	<100	100,000		0.1' SPH; 0.079 gal SPH removed
	03/31/97	12.04	320.82	<25,000	1,200	370	<250	380	130,000		0.05' SPH; 0.05 gal SPH removed
	12/23/98	12.92	319.94								
	03/25/99	12.56	320.3								Absorbent sock in well
	02/03/00	11.12	321.74	92,100	4,780	11,400	2,270	15,800	137,000 (162,000)		Absorbent sock in well
	1/23/2001	11.78	321.08	60,600	4,810	7,500	1,870	11,000	148,000		Absorbent sock in well
	5/1/2001	10.66	322.2	56,000	3,760	5,640	<2,500	8,740	136,000		Absorbent sock removed
	8/28/2001	11.79	321.07	32,000	3,800	2,600	1,200	7,500	160,000		
	11/27/2001	11.98	320.88	110,000	1,300	2,400	1,500	9,400	90,000		
	02/28/02	11.81	321.05	24,000	1,900	820	520	3,100	90,000		
	05/22/02	11.6	321.26	110,000	4,000	3,200	2,800	18,000	140,000		
	08/20/02	11.81	321.05	37,000	2,600	1,500	890	4,800	110,000		
	11/11/02	11.63	321.23	81,000	2,900	2,100	2,100	14,000	110,000		
	05/08/03	10.91	321.95	5,700	770	69	130	365	76,000 (70,000)		0.01 SPH
	12/15/04	11.97	320.89	33,000	1,700	430	1,300	7,000	70,000 (89,000)		0.08 SPH

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(<i>ft</i>)	I I I	(ft)	(ft, msl)	<u>ب</u>			- μg/L		→	mg/L	
MW-3 (Cont'd)	02/21/05	10.81	322.06							1.29	
	05/17/05	11.63	321.29							1.06	0.19 SPH
	08/17/05	10.83	322.03	39,000	1,500	260	780	2,700	42,000 (47,000)	0.93	0.19 SPH
	11/27/05	12.29	320.72								
	02/21/06	11.73	321.28								
	03/30/06										Well Abandoned
MW-3A	05/29/06	10.13	321.28								0.03 SPH
331.39	07/07/06	10.15	321.26	4,200	340	27	75	 79	32,000		0.05 51 11
551.59	07/07/00	10.15	321.20	4,200	540	21	75	13	52,000		
MW-4	03/01/96	9.9	322.74	<50	<0.5	<0.5	< 0.5	<0.5	<2.5		
332.63	04/02/96	9.77	322.87								
	06/27/96	10	322.64	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	09/12/96	11.67	320.96	<50	< 0.5	<0.5	<0.5	<0.5	3.5		
	03/31/97	10.59	322.04	<50	< 0.5	<0.5	<0.5	<0.5	<2.5		
	12/23/98	10.37	322.26	<50	< 0.5	<0.5	< 0.5	<1.5	<2.5		
	03/25/99	9.91	322.72	<50	< 0.5	<0.5	<0.5	<0.5	<2.5		
	02/03/00	10.32	322.31	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5/<2.0 (3)		
	01/23/01	10.54	322.09	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0		
	05/01/01	10.32	322.31			S	AMPLED ANNUAL				
	08/28/01	10.57	322.06				AMPLED ANNUAL				
	11/27/01	10.29	322.34				AMPLED ANNUAL				
	02/28/02	10.3	322.33	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
	05/22/02	10.12	322.51				AMPLED ANNUAL				
	08/20/02	10.43	322.2				AMPLED ANNUAL				
	11/11/02	9.89	322.74				AMPLED ANNUAL				
	05/08/03	9.79	322.84	<50	<0.5	<0.5	<0.5	<0.5	<2		
	12/15/04	10.56	322.07	<50	<0.5	<0.5	<0.5	<0.5	<5.0		
	02/21/05	9.50	323.13	<50	<0.5	<0.5	<0.5	<0.5	<5.0 (<0.5)	1.60	
	05/17/05	10.20	322.43	<50	<0.5		ED ANNUALLY	<0.5	<5.0 (<0.5)	1.00	
	08/17/05	10.20	322.43				ED ANNUALLY			1.29	
	11/27/05	11.07	321.56				ED ANNUALLY			1.10	
	02/21/06	10.53	322.10	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.14/0.90	
332.64	05/29/06	10.33 10.33	322.10 322.31	<50	\0.5		ED ANNUALLY	<0.5	\ J.0		
552.04	05/29/06	10.55	322.51			SAMPL	ED ANNUALL Y				
	07/07/00	10.34	344.14								
MW-5	03/01/96	10.62	322.58	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
333.47	04/02/96	10.14	323.06								
	06/27/96	10.22	322.98	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5		
	09/12/96	10.85	322.19	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5		
	03/31/97	10.44	322.6	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5		
	12/23/98	10.21	322.83	<50	< 0.5	<0.5	< 0.5	<1.5	<2.5		
	03/25/99	9.92	323.12	<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5		
	02/03/00	9.63	323.41	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5/<2.03		
	01/23/01	10.35	322.69	<50	< 0.5	<0.5	<0.5	<0.5	<5.0		
	05/01/01	10.34	322.7				ED ANNUALLY				
	08/28/01	10.44	322.6				ED ANNUALLY				
	11/27/01	10.17	322.87				ED ANNUALLY				

Pangea

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(ft)		(ft)	(ft, msl)	←			- μg/L	,	>	mg/L	
<u>,</u>		. ,					10			U	
MW-5 (Cont'd)	02/28/02	10.2	322.84	<50	< 0.5	<0.5	<0.5	<1.5	<2.5		
	05/22/02	10.38	322.66			SAMPL	ED ANNUALLY				
	08/20/02	10.36	322.68			SAMPL	ED ANNUALLY				
	11/11/02	10.03	323.01			SAMPL	ED ANNUALLY				
	05/08/03	9.56	323.48	<50	< 0.5	< 0.5	<0.5	< 0.5	3.4/<0.5		
	12/15/04	10.08	322.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0		
	02/21/05	9.90	323.14	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0 (0.54)	1.62	
	05/17/05	10.33	322.71			SAMPL	ED ANNUALLY			1.47	
	08/17/05	10.40	322.64			SAMPL	ED ANNUALLY			1.18	
	11/27/05	10.43	322.61			SAMPL	ED ANNUALLY			1.19	
	02/21/06	10.32	322.72	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	0.48/0.76	
333.13	05/29/06	10.41	322.72				ED ANNUALLY				
	07/07/06	10.46	322.67								
	57707700		022107								
MW-6A	06/01/06	10.38	321.43	620	20	<2.5	<2.5	43	5,700 (5,300)	0.73	
331.81	07/07/06	10.15	321.66								
MW-6B	06/01/06	8.41	322.49	<50	<0.5	<0.5	<0.5	<0.5	18 (16)	0.34	
330.90	07/07/06	8.55	322.35								
MW-6C	06/01/06	8.21	322.67	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.29	
330.88	07/07/06	8.41	322.47								
MW-7AA	05/31/06	9.18	321.49	12,000	1,000	410	180	1,600	23,000 (21,000)	0.44	
330.67	07/07/06	9.15	321.52								
MW-7A	05/31/06	9.19	321.52	<50	1.3	<0.5	0.79	0.82	760 (770)	0.40	
330.71	07/07/06	9.17	321.54								
MW-7B	05/31/06	9.05	321.64	<50	0.79	<0.5	<0.5	0.75	6.4 (6.6)	0.17	
330.69	07/07/06	9.03	321.66								
MW-7C	05/31/06	8.65	322.09	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.12	
330.74	07/07/06	8.70	322.04								
MW-8A	05/29/06	9.55	321.64	<50	<0.5	<0.5	<0.5	<0.5	20 (18)	0.39	
331.19	07/07/06	9.20	321.99								
MW-9A	05/29/06	10.13	321.58	<50	<0.5	<0.5	<0.5	<0.5	210 (210)	0.46	
331.71	07/07/06	9.96	321.75								
MW-9C	05/29/06	16.59	314.89	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.28	
331.48	07/07/06	8.85	322.63								
MW-10A	05/29/06	11.60	318.33	<50	<0.5	<0.5	<0.5	0.67	5.3 (4.7)	0.68	
329.93	07/07/06	9.78	320.15								

Table 2. Groundwater Elevation and Analyt	tical Data - Dublin Auto Wash	, 7240 Dublin Boulevard, Dublin, CA
---	-------------------------------	-------------------------------------

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Öxygen	Notes
(<i>ft</i>)		(ft)	(ft, msl)	←			- μg/L		→	mg/L	
MW-10C	05/29/06	7.28	322.38	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.16	
329.66	07/07/06	7.28	322.38								
MW-11C	05/31/06	9.90	321.71	<50	<0.5	<0.5	<0.5	<0.5	11 (11)	0.29	
331.61	07/07/06	10.02	321.59								
W-1	02/21/06	7.95	322.48	860	120	1.4	32	4.4	390 (440)	1.97	
330.43	06/01/06	7.89	322.54	1,100	92	2.2	11	1.4	600 (550)	0.11	
	07/07/06	7.71	322.72								
N-2	02/21/06	6.01	324.16	1,600	150	2.7	55	20	1,700 (1,600)	1.97	
330.17	06/01/06	6.17	324.00	1,500	140	3.3	24	19	1,600 (1,600)	0.29	
	07/07/06	7.02	323.15								
W-3	02/21/06	6.10	324.39	8,900	390	29	490	650	<50	2.28	
330.49	06/01/06	6.22	324.27	5,900	230	4.5	270	63	<35	0.21	
	07/07/06	4.44	326.05								

ABBREVIATIONS AND NOTES:

SPH = Separate-phase hydrocarbons; calculated groundwater elevation corrected for SPH by the relation: Groundwater Elevation = Well Elevation - Depth to Water +(0.8xSPH Thickness) Groundwater monitoring data and laboratory analytical results prior to December 14, 2004, were scanned from a report by SOMA.

(ft) = Feet

(msl) = Mean sea level

 $TOC \ Elev. (ft) = Top of casing elevation$

 $\mu g/L$ = micrograms per liter - approximately equal to parts per billion = ppb

mg/L = milligrams per liter - approximately equal to parts per million = ppm

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C

BTEX by EPA Method 8020/8021.

MTBE = Methyl tertiary butyl ether by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B).

1,2-DCA = 1,2-Dichloroethane

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

DIPE = Diisopropyl ether

 $ETBE = Ethyl \; tert\text{-}butyl \; ether$

ND = Not detected by laboratory above reporting limits.

-- = Not Measured/Not Analyzed

1 Laboratory report indicates weathered gasoline C6-C12.

Dissolved oxygen concentrations measured downhole pre-purge or pre-purge/post-purge.

APPENDIX A

Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

February 9, 2006

Mr. Hooshang Hadjian 2108 San Ramon Valley Blvd. San Ramon, CA 94583

Mr. Mark Inglis Chevron 6001 Bollinger Canyon Rd., K2256 P.O. Box 6012 San Ramon, CA 94583

Dear Messrs. Hadjian and Inglis:

Subject: Fuel Leak Case RO0000304, Dublin Auto Wash, 7240 Dublin Blvd., Dublin, CA 94568

Alameda County Environmental Health (ACEH) staff has reviewed the file for the subject site including the February 20, 2005 Soil and Water Investigation Work Plan and the January 20, 2006 Soil and Water Investigation Work Plan-Addendum prepared by Pangea Environmental Services, Inc. These work plans respond to the County's November 2, 2004 technical letter and follow a January 6, 2006 meeting with Pangea consultant, Bob Clark-Riddell and our office. The work plan includes a wide scope of work and is approved with the following technical comments and requests.

TECHNICAL COMMENTS

- 1. Well Decommission Proposal- As indicated in the prior Secor technical report, groundwater bearing zones appear to exist in three zones, labeled shallow, middle and deep. Although it is uncertain how contiguous these zones may be, wells screened across all three zones compromise analytical results and may allow for vertical contaminant migration. Therefore, we concur with the proposal to decommission wells MW-3, EA-1, EA-2 and EA-3.
- 2. Conduit/Preferential Pathway Study- The sewer running along the northern boundary of the property was identified as a potential preferential pathway for groundwater migration. This could pose a risk due to the presence of elevated MTBE in this area. Therefore, the proposal to advance at least one boring along the sewer line and collect soil and a groundwater sample is approved. Further investigation of nearby wells and surface water bodies may be put on hold until the completion of this investigation and actual threat evaluated.
- 3. Additional Soil Characterization Down-gradient of Dispenser- To address this earlier request, soil boring SB-2 and MW-10 are proposed to investigate both soil and groundwater delineation in the presumed down-gradient direction. In addition, we concur that the results from sampling of SB-2 shall be used to determine the need for the replacement of well EA-1.

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway. Suite 250 Alameda. CA 94502-6577 (510) 567-6700 FAX (510) 337-9335 Messrs. Hadjian and Ing...s February 9, 2006 Page 2 of 4

- 4. Replacement of Wells- Additional wells with appropriately screened intervals in the shallow, middle and deep water bearing zones are proposed to better characterize and monitor the contaminant plume. Since the middle water bearing zone does not appear in all locations, some of the wells propose only a shallow and deep replacement well cluster. In other wells where contamination has not been identified in any of the three zones, there appears no need to replace these wells. The wells proposed wells; MW3A, MW6A/B/C, MW-7A/B/C, MW-8A, MW-9A/C, MW10A/C and MW11C are approved. We recommend that the location of MW-9A/C be moved to the location of well EA-3 given the lack of contamination historically found in EA-2 and the recent detection of significant TPHg and MTBE in EA-3.
- 5. Interim Remediation- Vacuum extraction from well MW-3A and (MW-6A and MW-7A) based upon groundwater concentrations is proposed. Vacuum extraction should be considered from those wells exhibiting elevated petroleum contaminant levels including the vapor wells. Therefore, vapor wells that contain groundwater should be sampled to see if they are in source areas that would be affected by vacuum extraction. We concur that additional remediation testing ie aquifer testing should be deferred until the completion of the proposed investigation and interim remediation.
- 6. Chemical Analysis- Pangea proposes to analyze the soil and groundwater samples for TPHg, BTEX and MTBE using EPA Method 8021. If MTBE is detected both its presence and that of the other oxygenates will be confirmed using EPA Method 8260. This is acceptable, however, plume characterization will require the complete analysis of the oxygenates and lead scavengers prior to site closure consideration.

TECHNICAL REPORT REQUEST

Please submit the following technical reports to our office according to the following schedule:

• April 11, 2006- Soil and Groundwater Investigation Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Effective **January 31, 2006**, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions fcr submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail. Messrs. Hadjian and Ing...s February 9, 2006 Page 3 of 4

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

In order to facilitate electronic correspondence, we request that you provide up to date electronic mail addresses for all responsible and interested parties. Please provide current electronic mail addresses and notify us of future changes to electronic mail addresses by sending an electronic mail message to me at barney.chan@acgov.org.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup. Messrs. Hadjian and Ing. s February 9, 2006 Page 4 of 4

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6765.

Sincerely,

Barrey M Chan

Barney M. Chan Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: files, D. Drogos

Bob Clark-Riddell, Pangea, 1710 Franklin St., Suite 200, Oakland, CA 94612 Matt Katen, Zone 7 Water District, QIC 80201

2_9_06 7240 Dublin Blvd

? You forwa	arded this message on 3/29/2006 11:47 AM.	
This mess	age was sent with high importance.	
Attachme	nts can contain viruses that may harm your com	puter. Attachments may not display correctly.
Bob Clark-	Riddell	
From:	Bob Clark-Riddell	Sent: Wed 3/29/2006 11:33 AM
То:	barney.chan@acgov.org	
Cc:		
Subject:	7240 Dublin Blvd	
Attachment	bs: _) figure 7-soil x sectionB.pdf(498KB) _) fig	ure 9-gw x sectionB.pdf(552KB)

Barney,

Here are two cross-sectional figures from our approved workplan that are relevant to our discussion on well construction. Data on Figure 7 suggests that soil contamination is highest between 10-14 ft depth (excluding the shallower hits under the former leaking pipe). Figure 7 also shows free product at approximately 12 ft depth in well MW-3. Figure 9 shows an apparently confined water-bearing unit (zone A) from approximately 16 - 20. During drilling this week we found clayey soil with sandy stringers from approximately 5 to 15 ft bgs with significant odor from 10 to 13 ft and little to no odor at 15 ft, and found the water-bearing unit where anticipated (16-20 ft depth). The depth to water in nearby well monitoring well MW-3 has been approximately 11 to 12 feet. The vapor wells are screened much shallower, at approximately 3 to 9 ft bgs.

Based on this information, we plan to screen our A zone wells only in the water-bearing unit (approximately 16-20 ft bgs). We do not wish to screen the well shallower into the more contaminated soil to avoid creating a potential conduit for downward vertical migration of contaminants.

We also recommend installing a separate and shallower well (MW-7AA) from approximately 9 to 14 ft bgs, into the primary soil impact area near MW-7 (about 5-10 ft from the former release area). This well will facilitate evaluation of site conditions in source area material, which is comprised of clayey soil with thin sand stringers. With this proposed well, there would be wells targeting different depths (zones) beneath the site, providing much more thorough assessment information. This proposed well could be used for monitoring, feasibility testing (vapor or dual-phase extraction testing), and/or site remediation in source area material.

Depending on the results on additional drilling (especially boring SB-2 approximately 20 feet downgradient), we may recommend installing one or more other shallow wells from approximately 9-14 ft bgs. We did observe similar conditions further downgradient (about 55 ft downgradient of the source area) during installation of well MW-10A. We screened well MW-10A from 15 to 20 ft bgs, but did not install a well into the clayey soil (with stringers) with heavy odor from 10 to 13 ft bgs.

We would like your input soon since we are constructing some wells today. I will call you to discuss.

Bob Clark-Riddell, P.E. Principal Engineer Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 510.836.3701 direct 510.435.8664 mobile 510.836.3709 fascimile briddell@pangeaenv.com www.pangeaenv.com

Sent: Wed 4/26/2006 1:36 PM

°▼∎▼©↓ÇG ?♥8└ △CP° ≡\$°

Bob Clark-Riddell

 From:
 Chan, Barney, Env. Health [barney.chan@acgov.org]

 To:
 Bob Clark-Riddell

 Cc:
 Subject:

 RE: 7240 Dublin Blvd, Dublin

Attachments:

The extension is approved Barney

From: Bob Clark-Riddell [mailto:BRiddell@pangeaenv.com] Sent: Tuesday, April 18, 2006 11:24 AM To: Chan, Barney, Env. Health Cc: Morgan Gillies Subject: 7240 Dublin Blvd, Dublin

Barney,

Pangea prepared this email to update you on the well installation/abandonment schedule for the subject site. Pangea coordinated the installation of most new wells during the end of March 2006. However, the City of Dublin requires a special insurance endorsement for the encroachment permit to drill in Dublin Blvd, and the endorsement takes one month to obtain from our insurance carrier. We tried to shorten this time and modify the City's requirement, but the City and our insurance broker could not reach an agreement. With the encroachment permit we can drill in Dublin Blvd and have access to install the wells adjacent to Dublin Blvd.

Pangea plans to resume sampling and well installation on May 17 and 18. After well installation Pangea will coordinate well development and sampling, will await laboratory analytical results, and will prepare a well installation report.

Based on the above information, Pangea respectfully requests a 90-day extention from April 11 to July 11, 2006 to complete the well installation work and reporting. Please call me if you have any questions. Thank you.

Bob Clark-Riddell, P.E. Principal Engineer Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 510.836.3701 direct 510.435.8664 mobile 510.836.3709 fascimile briddell@pangeaenv.com www.pangeaenv.com

APPENDIX B

Permits

ANA GEMEN

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551

PHONE (925) 454-5000

March 21, 2006

Mr. Morgan Gillies Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

Dear Mr. Gillies:

Enclosed are drilling permits 26048 and 26049 for the destruction of monitoring wells 3S/1W-1F1 (EA-1), 3S/1W-1F2 (EA-2), 3S/1W-1F3 (EA-3) and 3S/1W-1F15 (MW-3) and for the construction of 13 monitoring wells at 7240 Dublin Boulevard in Dublin for Dublin Auto Wash. Drilling permit applications can be downloaded from our web site (www.zone7water.com) for future projects.

Please note that permit condition A-2 requires that a well destruction and construction report be submitted after completion of the work. The report should include a description of methods and materials used to destroy the wells, location sketch, date of destruction, and permit number. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Wyman Hong // Water Resources Specialist

Enc.

P:\WRE\GPOs\GPO1\GPO1.DESTRUCTION.wpd

AND A DEMONSTRATION

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE
LOCATION OF PROJECT <u>Publin</u> Aute Wash 724: Publin Bluel. Publin, CA
California Coordinates Sourceft_Accuracy• •ft. CCNft_CCEft_ APN
CLIENT Name Hoosharry Hadjian Address 2103 Sthe Party Valley Shalphone (125) 323-5411 City Sur Ramon Zip 94583
APPLICANT Name Kungea Environmental Scrices, Inc. Morgan Gillies Fax GIL 836-3709 Address 1710 Franklin St. Sk. 200 Phone 576/836-3702 City Cakking Zip 946/2
TYPE OF PROJECT Well Construction Geotechnical Investigation Cathodic Protection General Water Supply Contamination Monitoring Well Destruction
PROPOSED WELL USE New Domestic • Municipal • Remediation • Industrial • Dewatering •
DRILLING METHOD: Mud Rotary ·· Air Rotary ·· Hollow Stem Auger ·· Cable Tool ·· Direct Push ·· Other
DRILLING COMPANY Gray Pr. Hing DRILLER'S LICENSE NO. 455165
WELL PROJECTS Drill Hole Diameterin. Maximum Casing Diameterin. Depthft. Surface Seal Depthft. Number
SOIL BORINGS Number of Boringsin, Depthft.
ESTIMATED STARTING DATE 3/27/06 ESTIMATED COMPLETION DATE 3/31/66

I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.

APPLICANT'S _____Date___3/9/06 SIGNATURE Morgan Gillies

PERMIT NUMBER 26048 WELL NUMBER 3S/1W-1F1, 1F2, 1F3 & 1F15 APN 941-1401-019-00

FOR OFFICE USE

PERMIT CONDITIONS

(Circled Permit Requirements Apply)

A.) GENERAL

С

- A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date.
- Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects.
- Permit is void if project not begun within 90 days of approval date.

B. WATER SUPPLY WELLS

- 1. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
- An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.
- A sample port is required on the discharge pipe near the wellhead.
- GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
 - 1. Minimum surface seal thickness is two inches of cement grout placed by tremie.
 - 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
- D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.

E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.

- WELL DESTRUCTION. See attached.
- SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the completion of permitted work the well installation report <u>including all</u> soil and water laboratory analysis results.

Date 3/17/06 Approved Wyman Hong

Revised: April 27, 2005

ATTACH SITE PLAN OR SKETCH

March 21, 2006

Zone 7 Water Resources Engineering Groundwater Protection Ordinance

Dublin Auto Wash 7240 Dublin Boulevard Dublin Wells 35/1W-1F1 (EA-1), 35/1W-1F2 (EA-2), 35/1W-1F3 (EA-3) and 35/1W-1F15 (MW-3) Permit 26048

Destruction Requirements:

- 1. Sound the well as deeply as practicable and record for your report.
- 2. Drill out the well so that the casing, seal, and gravel pack are removed to the bottom of the well.
- 3. Fill the remaining hole to grade or original ground, whichever is the lower elevation, with neat cement sealing material, using a tremie pipe.

P:\WRE\GPOs\Destruct Specs\Drillout.wpd

CITY OF DUBLIN PUBLIC WORKS DEPARTMENT 100 Civic Plaza Dublin, California 94568

. · ·

(925) 833-6630

PERMIT NO. 06-28

ENCROACHMENT PERMIT

PERMIT TO DO WORK IN ACCORDANCE WITH CITY OF DUBLIN MUNICIPAL CODE CHAPTER 7.04 AND ANY SPECIAL REQUIREMENTS SHOWN OR LISTED HEREIN.

Applicant/Permittee:	Permit Fee:		\$ 10.00
R. E. HE.	Plancheck Fee:		\$
Name: rangea Environmental Dervices	Resurfacing Surcharge:		\$ 130.00
ITOFILS STATE	Inspection Fees:		\$
Name: <u>Pangea Environmental Servi</u> ces Address: <u>1710 Frankelin St., Ste. 200</u>			\$
			\$
Oakland, CA 94612	Total Fees:		\$140.00
Telephone (510)836-3702	Bond: Surety: \$	Cash:)	\$ 500.00
	<u>Total Paid:</u>		\$ 640.00
	Receipt No.		
PLEASE READ THIS PERMIT CAREFULLY. KEEP INSPECTION, PHONE 833-6630 AT LEAST 48 HOUR			E FOR
JOB LOCATION: 7240 Dublin Blu	d		
DESCRIPTION OF WORK: (Attach 2 copies of plans. A	ttach additional pages if needed.)	•	
Drill 1 or 2 (2nd boring option			- bring sail
VIII US - LOTING OPTIC	DIL DII i	11/1	A AI
borings along southern edge of we well (MW-3) Jin the planter along t Length of Excavation I.f. Width	Fublin Dist at	Villag	e Phany Aban
he well (MW-3) (, a the planter along t	he sidewalk any the	Scather	. cape of Deblin Bl
Length of Excavation I.t. Width	I.t. Depth <u>20</u> ft.		
U. S. A. IDENTIFICATION NUMBER (if applicable)	088901		
ATTENTION IS DIRECTED TO THE GENERAL PRO	VISIONS PRINTED ON THE	REVERSE	SIDE OF THIS
PERMIT AND TO THE FOLLOWING SPECIAL REQ			
1. Permittee shall provide and keep current a certificate	of Public Liability and Worker	rs Compen	sation Insurance
which names the City of Dublin and its employees and ag		•	
2. Worksites left in an unsafe condition will be secured h		ment and	the cost charged to
he permittee.	······································		g
-	\sim		
INSPECTION REQUIRED FOR	TRAFFIC LOUT	eor	AUT
TINAL			
rosecution of Work: All work authorized by the permit shall be performed in a wo	stmanlike diligent and expeditious manner	and must be cou	mplete to the setisfaction of
rescution of work. An work autionized by the perime shan be performed in a wo	and experiences many and experiences manner,	-,19 MUST DC CU	mprese on one successfielded of
ability and Damages: The permittee shall be responsible for all liability imposed	he law for normant in jum as wannah. to man	which many cart	to out of the work
		-	
ermitted and done by permittee under this permit, or which may arise out of failur		•	
saintenance and encroachment. The permittee shall protect and indemnify the Cit	• • • • •		
ction by law for damage or injury to persons or property that may arise out of or b	e occasioned in any way because of his operation	ons as provided	In this permit.
N	City Province		
Signature of Permittee:	City Engineer		
	- //		
By: the factor	By:		
Su Blacklar	Data of Issuer C.14	-06	

Data of Issue

action by law for damage or lajury to persons or property that may arise out of or be occasioned in any way because of his operations as provided in time persons

_

M f Issue: <u>5:15-06</u>
Issue: <u>5:15-06</u>

.

APPENDIX C

Pangea's Standard Operating Procedures for Soil Borings

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color,
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- · Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent crosscontamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPAapproved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Pangea

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photoionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

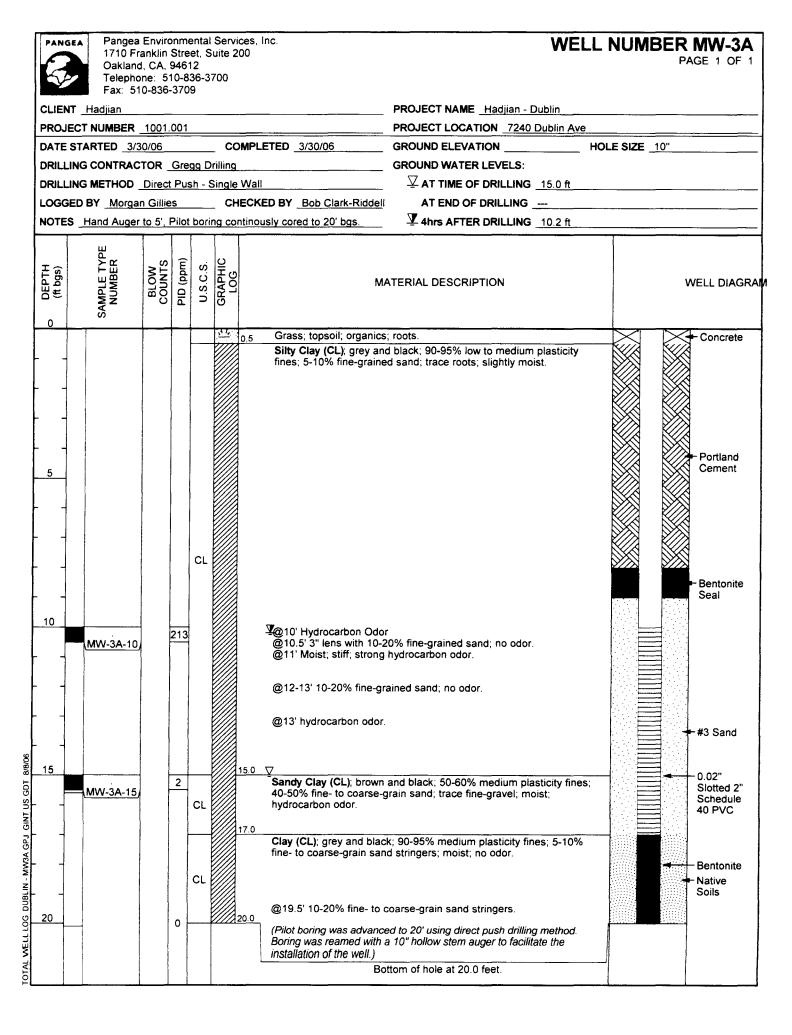
Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential waterbearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.


Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

APPENDIX D

Boring Logs & Well Construction Diagrams

PANG	Pangea 1710 Fr Oakland Telepho Fax: 51	anklin (, CA, 9 ne: 51	Stree 9461 0-83	et, Si 2 36-37	uite 20		N	/ELL NUMBER MW-6A PAGE 1 OF 1
CLIEN	T Hadjian						PROJECT NAME Hadjian - Dublin	
PROJE		1001.	001				PROJECT LOCATION _7240 Dublin	Blvd
							GROUND ELEVATION	HOLE SIZE _8"
DRILL	ING CONTRAC	TOR _	Greg	<u>ig Di</u>	rilling		GROUND WATER LEVELS:	
1						- 8"		<u>ft</u>
LOGG	ED BY Morga	n Gillie	s		СН	ECKED BY Bob Clark-Ric		
NOTES	S Hand Auger	to 5'					2hrs AFTER DRILLING 9.3 f	t
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAM
						See MW-6C boring	log for lithology.	- Concrete - Portland Cement
								► Bentonite Seal
15						Ā		■# 3 Sand
20						20 0	Bottom of hole at 20.0 feet.	- 0.02" Slotted 2" Schedule 40 PVC

PANO	1710 F Oaklan Telepho	Enviror ranklin S d, CA, 9 one: 510 10-836-3	Street, 4612 0-836-3	Suite 2	ces, Inc. 00	N	/ELL NUMBER MW-6B PAGE 1 OF 1
CLIEN						PROJECT NAME Hadjian - Dublin	
PROJ	ECT NUMBER	1001.0	001			PROJECT LOCATION 7240 Dublin	Blvd
DRILL DRILL	LING CONTRAC	TOR _(Gregg Stem	Drilling Auger			HOLE SIZE <u>8"</u>
						T 3hrs AFTER DRILLING 8.9 f	t
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAI
					See MW-6C boring lo ⊻	og for lithology.	Portiand Cement
							⊷ Bentonite Seal ≪#3 Sand
							0.02" Slotted 2"
30	1				30.0		Schedule 40 PVC

PANGEA Pangea Env 1710 Franki Oakland, C/ Telephone: Fax: 510-83	in Street, A, 94612 510-836		Inc. WELL	NUMBER MW-6C PAGE 1 OF 2
CLIENT Hadjian			PROJECT NAME Hadjian - Dublin	
			PROJECT LOCATION 7240 Dublin Blvd	
DATE STARTED	3	COMPL	ETED 3/30/06 GROUND ELEVATION HO	LE SIZE _8"
DRILLING CONTRACTOR	Cregg	Drilling	GROUND WATER LEVELS:	
			AT TIME OF DRILLING 15.0 ft	
LOGGED BY Morgan Gi	llies	CHECK	ED BY Bob Clark-Riddell AT END OF DRILLING	
NOTES Concrete cored,	hand au	ger to 5'.	AFTER DRILLING 9.0 ft	
DEPTH (ft bgs) SAMPLE TYPE NUMBER BLOW	PID (ppm)	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGR
0 5 5 10 10 10 10 10 MWV-6C-10 15 15 20 1 15 15 15 15 15 15 15 10 10 10 10 10 10 10 10 10 10	0 0 5 5 14 CI	C 18.0 C 18.5	 Concrete; baserock. Silty Clay (CL); grey and black; 90-95% low to medium plasticity fines; 5-10% fine-grain sand; slightly moist. @10' Hydrocarbon Odor Sandy Clay (CL); brown; 60-70% medium plasticity fines; 30-40% fine- to coarse-grain sand; trace roots, no odor. Clay (CL); grey and black; 70-80% medium to high plasticity fines; 20-30% fine- to coarse-grain sand stringers; strong hydrocarbon odor. Sandy Clay; brown; 60-70% medium plasticity fines; 30-40% fine- to coarse-grain sand stringers; strong hydrocarbon odor. Sandy Clay; brown; 60-70% medium plasticity fines; 30-40% fine- to coarse-grain sand stringers; strong hydrocarbon odor. Sandy Clay; brown; 60-70% medium plasticity fines; 30-40% fine- to coarse-grain sand stringers; faint hydrocarbon odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand stringers; no odor. Clay (CL); grey and black; 90-95% medium to high plasticity fines; 5-10% fine- to coarse-grain sand	Portland Cement

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA, 94612 Telephone: 510-836-3700 Fax: 510-836-3709

WELL NUMBER MW-6C

PAGE 2 OF 2

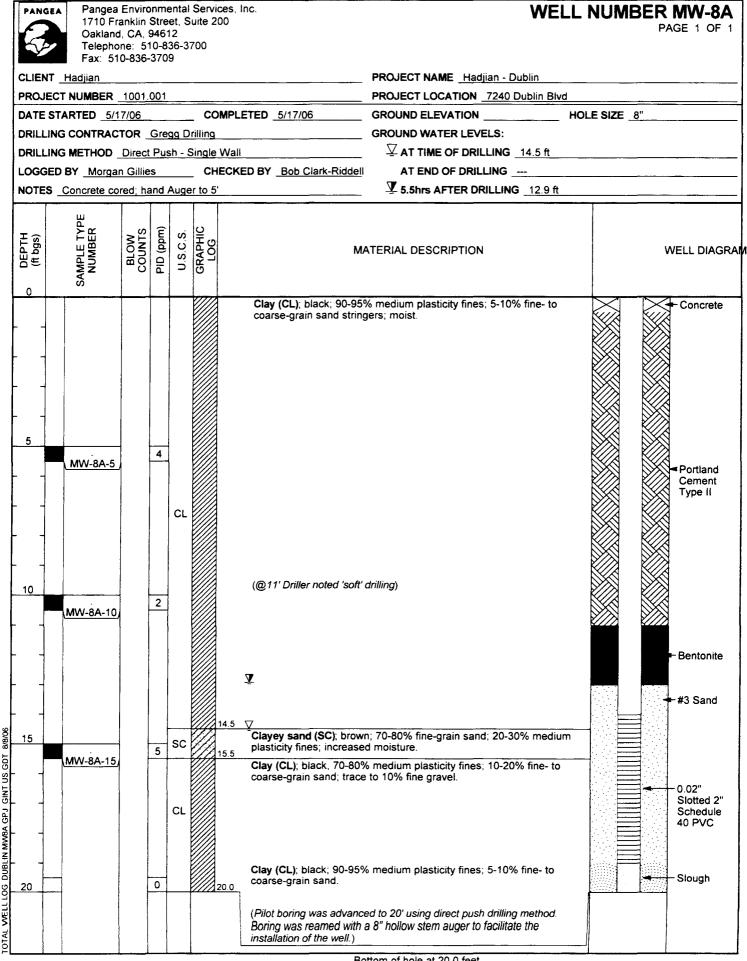
CLIENT Hadjian

PROJECT NAME Hadjian - Dublin

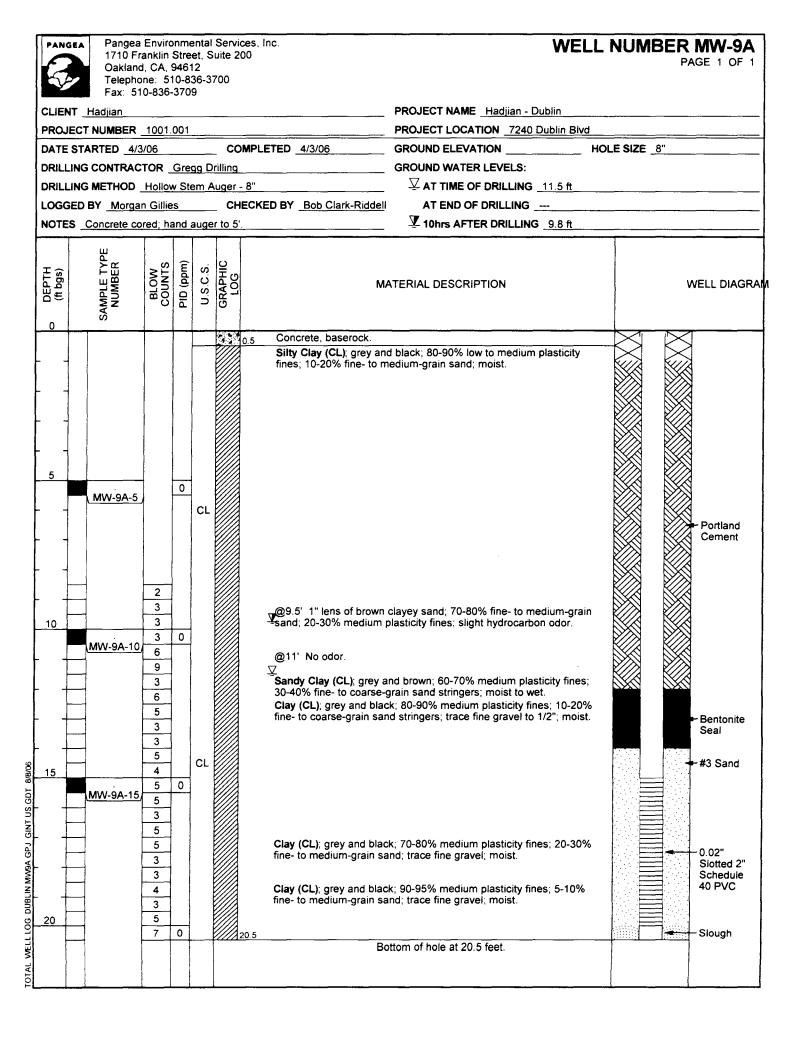
PROJECT NUMBER	1001.001		PROJECT LOCATION _7240 Dublin Blvd						
5 DEPTH (ft bgs) SAMPLE TYPE NUMBER	BLOW COUNTS PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAI				
	21 33 29 0	CL	43.0	Clayey Sand (SC); brown; 60-70% fine- to medium-grain sand;	Bentonite Seal 0.02" Slotted 2" Schedule 40 PVC #3 Sand				

PANGE	Pangea 1710 Fr Oakland Telepho Fax: 51	anklin \$ 1, CA, 9 ine: 51	Stree 9461: 0-83	et, Su 2 36-37	uite 20	ces, Inc. 00	WELL NUMBER MW-7A PAGE 1 OF					
CLIENT	Hadjian						PROJECT NAME Hadjian - Dublin					
PROJEC	TNUMBER	1001.0	001				PROJECT LOCATION 7240 Dublin B	lvd				
							GROUND ELEVATION	HOLE SIZE 10"				
							GROUND WATER LEVELS:					
						10"						
						ECKED BY Bob Clark-Riddell		<u> </u>				
NOTES	Concrete co	red, ha	nd a	uger	to 5'		72hrs AFTER DRILLING 8.8 ft					
o DEPTH o (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG	M	ATERIAL DESCRIPTION	WELL DIAGR/				
						See MW-7B boring log	for lithology.	Concrete Portland Cement Bentonite Seal #3 Sand O.02" Slotted 2" Schedule 40 PVC				

Bottom of hole at 14.0 feet.


PANGEA	Pangea 1710 Fr Oakland Telepho Fax: 5	anklin 3 d, CA, 9 one: 51	Stree 94612 10-83	et, Sui 2 6-370		Inc.	WELL NUMBER MW PAGE 1				
CLIENT							PROJECT NAME Hadjian - Dublin				
PROJEC	TNUMBER	1001.	001				PROJECT LOCATION _7240 Dublin E	Blvd			
							GROUND ELEVATION	HOLE SIZE 10"			
DRILLING	G CONTRAC	TOR _	Greg	g Dril	ling		GROUND WATER LEVELS:				
								t			
LOGGED	BY Morga	n Gillie	S		CHECI	KED BY Bob Clark-f					
NOTES	Concrete co	ored, ha	and a	uger	to 5'		₩ 8hrs AFTER DRILLING 8.7 ft				
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRA			
						See MW-7B borin	ng log for lithology.	- Concrete - Portland Cement			
15						Ā		► Bentonite Seal			
15								-#3 Sand - 0.02" Slotted 2" Schedule 40 PVC			
		ł									
20					20.	0	Bottom of hole at 20.0 feet				

Bottom of hole at 20.0 feet


PANG	Pangea 1710 Fr Oakland Telepho Fax: 51	anklin J, CA, S Ine: 51	Stre 9461 10-8	et, S 12 36-3	uite 20		WELL	NUM	BER MW-7B PAGE 1 OF 2
CLIEN	IT Hadjian						PROJECT NAME Hadjian - Dublin		
PROJ	ECT NUMBER	1001.							
							GROUND ELEVATION HO		8"
DRILL	ING CONTRAC	TOR _	Gre	gg D	rilling		GROUND WATER LEVELS:		
1						8"			
LOGG	ED BY Morga	n Gillie	s		СНЕ	CKED BY Bob Clark-Ridde	AT END OF DRILLING		
NOTE	S Concrete co	red; H	and	Auge	er to 5'		29hrs AFTER DRILLING 8.8 ft		
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG	Ν	MATERIAL DESCRIPTION		WELL DIAGRA
		<u> </u>		ļ		0.5 Concrete 0 Sand		\searrow	Concrete
	MW-7B-11	2 3 3 2 3 2 3 3 2 3 4 3 5 6 3 4 6 3 4 6 2 4 4 5 5 3 5 7 3	0 231 2 0	CL CL		Silty Clay (CL); grey and fines; 5-10% fine-grain @8' Slight hydrocarboo ✓ Clay (CL); grey and bla medium- to coarse-gra strong hydrocarbon od ✓ @15' No hydrocarbon 7.0 Clayey Sand (SC); grey medium plasticity fines 8.5 Clay (CL); grey and bla	ick; 80-90% medium plasticity fines; 10-20% in sand stringers; trace fine gravel; stiff; moist; or.		Portland Cement
25		6 6 2 2 3							⊷ Bentonite Seal

PAN	1710 F Oaklan	ranklin d, CA, I	Stre 9461	et, Si I2	uite 20	es, Inc. WELL I	PAGE 2 OF	3 2
CLIE	Teleph Fax: 5	one: 5' 10-836-	10-8 -370	36-37 9	00	PROJECT NAME Hadjian - Dublin		
	ECT NUMBER	1001.	001			PROJECT LOCATION _7240 Dublin Blvd		
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAG	RA
25		3 5 6 2 2 3 3 5 6 4 6 8 5 9 9 9 5 6 7 4 6 6	0			Clay (CL): grey and black: 80-90% medium plasticity fines; 10-20% medium-to coarse-grain sand stringers; trace fine gravel; stiff, molist. (continued) 27.0 Clayey Sand (SC): grey; 70-80% fine- to medium-grain sand; 20-30% medium plasticity fines; wet. 29.0 Clay (CL): brown and grey; 80-90% medium plasticity fines; 10-20% fine- to coarse-grain sand stringers; stiff to medium stiff. Bottom of hole at 35.5 feet. Software and stringers; stiff to medium stiff.	- Bentonite	•

CLIENT Hadjia		Street, 94612 0-836- 3709	Suite 200) P	WELL NUMBER MW-70 PAGE 1 OF PROJECT NAME Hadjian - Dublin			
DATE STARTEI DRILLING CON DRILLING MET	D _3/31/06_ TRACTOR _ HOD _Hollow Morgan Gillie	Gregg v Stern s	CON Drilling Auger - CHE	PLETED <u>3/31/06</u> G 3" CKED BY <u>Bob Clark-Riddell</u>	$\overline{\mathcal{V}}$ AT TIME OF DRILLING 14.0 ft	HOLE SIZE _8"		
DEPTH (ft bgs) SAMPLE TYPE	BLOW	PID (ppm)	U.S.C.S. GRAPHIC LOG	МАТ	ERIAL DESCRIPTION	WELL DIAGR		
				See MW-7B, EA-1 boring	log for lithology.	Portland Cement Portland Cement Bentonite Seal #3 Sand • 0.02" Slotted 2" Schedule 40 PVC		

Bottom of hole at 20.0 feet.

PANO	Pangea 1710 Fra Oakland Telepho Fax: 51	anklin S , CA, S ne: 51	Stree 9461 0-83	et, Si 2 36-37	uite 20		WE	ELL NUMBER MW-9C PAGE 1 OF 1
CLIEN	IT Hadjian						PROJECT NAME Hadjian - Dublin	
								3ivd
							GROUND ELEVATION	HOLE SIZE _10"
							GROUND WATER LEVELS:	
						<u> 10" </u>		
						ECKED BY Bob Clark-Ridd		
1							9hrs AFTER DRILLING 10.7 ft	
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRA
						See MW-9A, EA-3 bo	oring log for lithology.	Portland Cement Portland Cement Bentonite Seal #3 Sand 0.02" Slotted 2" Schedule 40 PVC

PANGEAPangea Environmental Services, Inc.1710 Franklin Street, Suite 200Oakland, CA, 94612Telephone: 510-836-3700Fax: 510-836-3709							W	ELL NUMBER MW-10A PAGE 1 OF 1
CLIENT	Hadjian	······					PROJECT NAME Hadjian - Dublin	L
PROJEC	T NUMBER	1001.	001				PROJECT LOCATION _7240 Dubli	n Blvd
DATE ST	ARTED 3/2	27/06			CO	WPLETED 3/27/06	GROUND ELEVATION	HOLE SIZE _8"
DRILLING	G CONTRAC	TOR _	Greg	ig Dr	illing		GROUND WATER LEVELS:	
DRILLING	G METHOD	Hollov	v Ste	em Au	uger -	8"	$\mathbf{\nabla}$ AT TIME OF DRILLING <u>17.0</u>) ft
LOGGED	BY Morga	n Gillie	s		CHE	ECKED BY _Bob Clark-Rid	dell AT END OF DRILLING	
NOTES _	Concrete co	ored, ha	and a	auger	to 5'		\mathbf{Y} 24hrs AFTER DRILLING <u>6.</u>	1 ft
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRA
						See MW-10C boring	g log for lithology.	Concrete Portland Cement
								■ Bentonite Seal ■ #3 Sand
						₽ 20 0	Bottom of hole at 20.0 feet.	0.02" Slotted 2" Schedule 40 PVC

PAN	Pangea 1710 Fr Oakland Telepho Fax: 51	anklin \$ d, CA, § one: 51	Street 94612 10-836	, Suite		WELLN	NUMBE	PAGE 1 OF 2
CLIE	NT Hadjian					PROJECT NAME Hadjian - Dublin		
PRO	JECT NUMBER	1001.0				PROJECT LOCATION _7240 Dublin Blvd		
DAT	E STARTED 3/2	7/06			OMPLETED 3/27/06	GROUND ELEVATION HO	LE SIZE 8	"
DRIL	LING CONTRAC	TOR _	Grego	Drillin	g	GROUND WATER LEVELS:		
DRIL	LING METHOD	Hollow	v Sten	n Auge	er - 8"			
LOG	GED BY Morga	n Gillie	s	c	HECKED BY Bob Clark-Ri			
NOT	ES Hand Auger	to 5'.			·····	20hrs AFTER DRILLING 11.2 ft		
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S. GRAPHIC	100	MATERIAL DESCRIPTION		WELL DIAGRA
		2 1 5 5 3 5 5 3 4 6 4 6 3 3 5 4 7 11 3 6	101 3 C		fine- to coarse-grai @5' No odor. @10' Gray and bla ¥ @14.5' No odor. ∑ Clay with sand (CL 10-20% fine- to coa stiff; increased moin	ack; trace roots; moist; hydrocarbon odor.); grey and black; 75-85% medium plasticity fines; arse-grain sand stringers; trace to 5% fine gravel;		Portland Cement
25		6 9			<u> </u>	ad Movt Dage)		

PANGEA	
$\mathbf{\Omega}$	
50	

CLIENT Hadjian

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA, 94612 Telephone: 510-836-3700 Fax: 510-836-3709

WELL NUMBER MW-10C

PAGE 2 OF 2

PROJECT NAME Hadjian - Dublin

PROJECT LOCATION 7240 Dublin Blvd

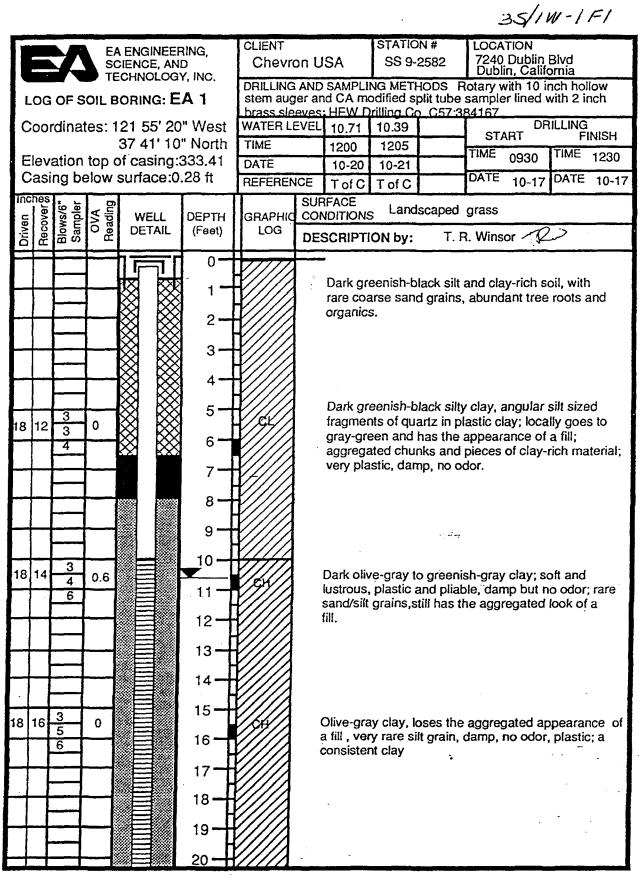
PRO.	JECT NUMBER	1001	.001			PROJECT LOCATION 7240 Dublin Blvd		
5 DEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	v	VELL DIAGRA
30 30 40 40		$\begin{array}{c} 4 \\ 7 \\ 7 \\ 4 \\ 6 \\ 7 \\ 3 \\ 5 \\ 6 \\ 4 \\ 9 \\ 10 \\ 4 \\ 6 \\ 7 \\ 4 \\ 6 \\ 7 \\ 4 \\ 5 \\ 6 \\ 7 \\ 5 \\ 8 \\ 9 \\ 4 \\ 12 \\ 14 \\ 5 \\ 6 \\ 7 \\ 5 \\ 8 \\ 9 \\ 12 \\ 14 \\ 5 \\ 6 \\ 7 \\ 6 \\ 9 \\ 11 \\ 7 \\ 7 \\ \end{array}$	0	CL SC SM		 Clayey Sand (SC); grey; 75-85% fine- to medium-grain sand; 15-25% medium plasticity fines; moist. Clay with sand (CL); grey and black; 75-85% medium plasticity fines; 10-20% fine- to coarse-grain sand stringers; trace to 5% fine gravel; stiff. Clay (CL); grey; 90-95% medium plasticity fines; trace to 5% medium- to coarse-grain sand; trace to 5% fine gravel. @33' increased sand; 20-30% fine- to coarse-grain sand; no gravel. @35' decreased sand; 5-10% medium- to coarse-grain sand stringers. @36' increased sand; 5-10% medium- to coarse-grain sand stringers. @36' increased sand; 5-10% medium- to coarse-grain sand stringers. @38' decreased sand; 5-10% medium- to coarse-grain sand stringers. @38' decreased sand; 5-10% medium- to coarse-grain sand stringers. @38' decreased sand; 5-10% medium- to coarse-grain sand stringers. @38' decreased sand; 5-10% fine- to medium-grain sand; 30-40% low plasticity fines; moist. Sity sand (SM); grey; 60-70% fine- to medium-grain sand; 30-40% low plasticity fines; moist. Well graded sand (SW); grey; 95-100% fine- to coarse-grain sand; trace to 5% non-plastic fines. Bottom of hole at 45.0 feet. 		► Bentonite Seal - 0.02" Slotted 2" Schedule 40 PVC

1710 Fr Oakland Telepho	Environm anklin Str I, CA, 946 ne: 510-i 0-836-37	eet, S 512 836-3	uite 20		WELL	NUMBER MW-11C PAGE 1 OF 2		
CLIENT Hadjian				PROJE	PROJECT NAME Hadjian - Dublin			
PROJECT NUMBER	1001.00				ECT LOCATION _7240 Dublin Blvd			
				IPLETED 3/28/06 GROU				
DRILLING CONTRAC		egg D	rilling	GROU	ND WATER LEVELS:			
					AT TIME OF DRILLING 19.0 ft			
LOGGED BY _Morga	n Gillies		CHE		AT END OF DRILLING			
NOTES				<u> </u>	Thrs AFTER DRILLING 9.0 ft			
o DEPTH (ft bgs) SAMPLE TYPE NUMBER	BLOW COUNTS PID (npm)	U.S.C.S.	GRAPHIC LOG	MATERIA	LDESCRIPTION	WELL DIAGRA		
5 5 10 10 10 MW-11C-11 15 MW-11C-11 20 20	3 4 10 69 3 4 6 3 6 11 3 5 5	CL		 ✓ ✓ Clay (CL); grey; 70-8 fine- to coarse-grain sand. ✓ ✓ Clay (CL); grey and brown; 80-9 medium- to coarse-grain sand s odor. @13' Increased sand stringers @15' Decreased sand stringers @15' Decreased sand stringers @15' Increased moisture @21' Decreased sand stringers @21' Decreased sand stringers @23' Brown 	0% medium plasticity fines; 20-30% 0% medium plasticity fines; 10-20% tringers; moist; strong hydrocarbon (30-40%) (10-20%) (trace - 5%); black; stiff.	 Concrete Concrete Concrete 		

(Continued Next Page)

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA, 94612 Telephone: 510-836-3700 Fax: 510-836-3709

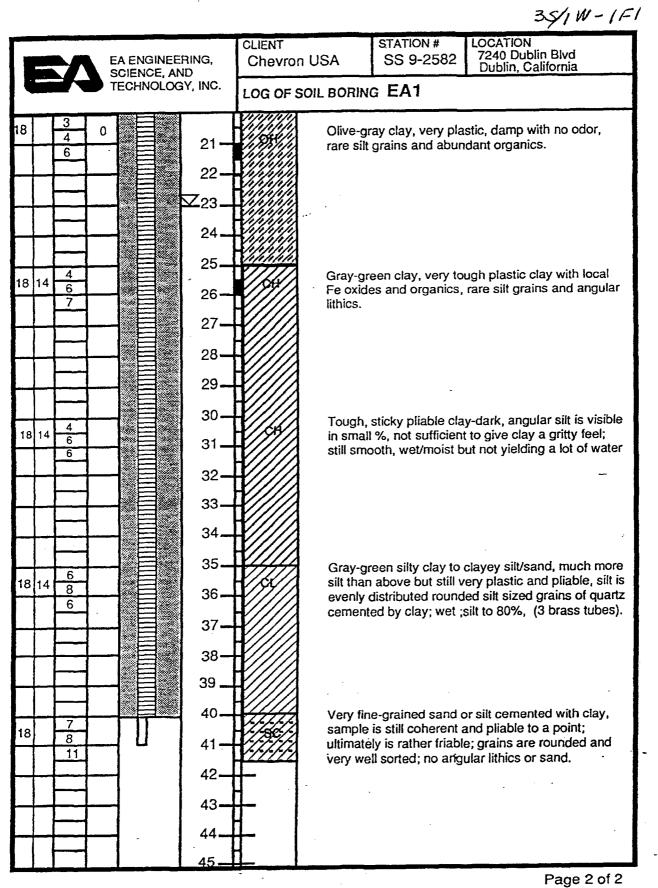
WELL NUMBER MW-11C

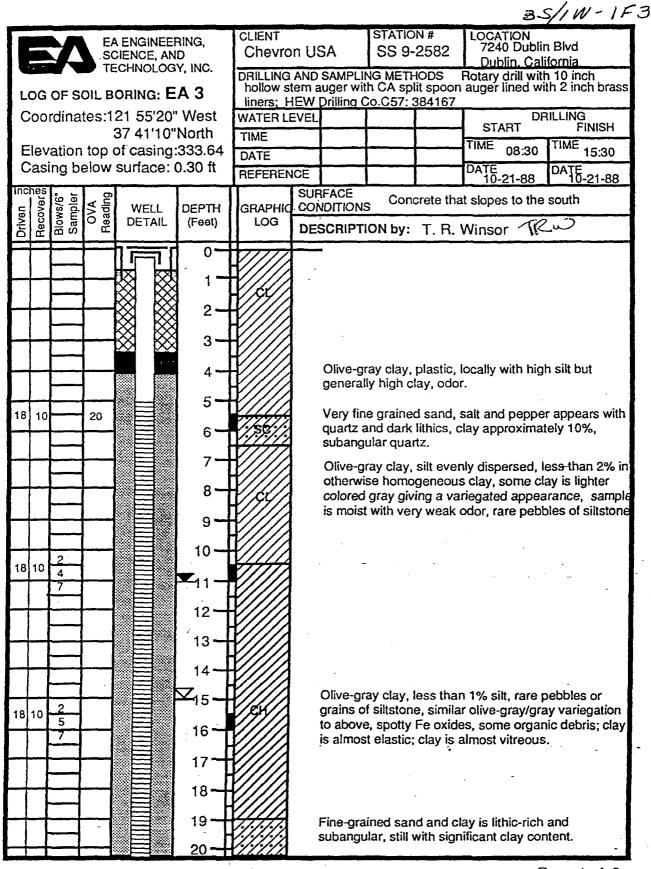

PAGE 2 OF 2

UEPTH (ft bgs)	SAMPLE TYPE NUMBER	BLOW COUNTS	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGF
30		5 7 8 3 4 4 3 6 6 3 5 5 5 2 3 6 4 5	0	CL		 moist. Clay (CL); grey and brown; 80-90% medium plasticity fines; 10-20% medium- to coarse-grain sand stringers; moist. (continued) Sandy Clay with gravel (CL); grey; 40-50% medium to high plasticity fines; 20-30% medium- to coarse-grain sand; 20-30% fine gravel; moist. Clay (CL); grey and brown; 80-90% medium plasticity fines; 10-20% medium- to coarse-grain sand stringers; moist. @29' Less stiff. @30' More stiff as before; increased sand; 20-30% medium- to coarse-grain sand stringers. 	Bentonite Seal
35		6 4 5 3 5 6 3 4 8 3 4	0	SC SP- SC		 Clayey Sand (SC); grey; 50-60% fine- to coarse-grain sands; 40-50% medium plasticity fines; moist. 7.0 Poorly graded sand with clay (SP-SC); grey; 85-95% fine- to medium-grain sand; 5-15% non plastic fines; wet. 	0.02" Slotted 2" Schedule
40		6 3 5 7 3 4 7 3 4 7 3	0	CL BCCLBCL BCCL BCCL BCCL BCCL BCCL BCC		Clay (CL); 80-90% medium plasticity fines; 10-20% fine- to medium-grain sand; 5-15% non plasticity fines; 10-20% fine- to medium-grain sand.	40 PVC

PANGE		ranklir nd, CA, ione: 5	510-830 Stree	6-3700		BO	RING NUMBER SB
CLIENT	Hadjian					PROJECT NAME Hadjian - Dublin	
PROJECT NUMBER 1001.001						PROJECT LOCATION 7240 Dublin Biv	d
RILLIN	IG CONTRA	CTOR	Greg	g Drilling		GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING	
					CKED BY _Bob Clark-Riddell		
	Hand Auge			0/12		AFTER DRILLING	
I		1		Ī			
o (ft pgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	BORING DIAGRAM
		1		0.3	Asphalt		Concrete
2.5			GW	3.0	to 1/2"; 15-25% fine- to coa		
			CL	4.0	coarse-grain sand stringers	·	
			GW	5.0	Well graded sandy gravel(to 1/2"; 15-25% fine- to coa	GW); grey; baserock; 75-85% fine gravel arse-grain sand; moist.	
-				7.0	No Recovery		
.5	SB-1-7	5			Well graded sandy gravel(GW); grey; baserock; 75-85% fine gravel	Portland Cement
			GW		to 1/2"; 15-25% fine- to coa	rse-grain sanα; moist.	
	SB-1-11	1					
2.5					@13' Strong hydrocarbon o	dor	
			ſ		wis strong hydrocarbon o	uu.	
	SB-1-14	274		14.0	and start new hole (SB-1A).)	p of sewer line) and stop. Moved 2' south m of hole at 14.0 feet.	

PANGE	1710 F Oaklan	ranklir d, CA	5 Stree			BOR	ING NUMBER SB-1A		
	Fax: 5		5-3709						
	Hadjian	1001				PROJECT NAME Hadjian - Dublin			
DATE STARTED _5/18/06 COMPLETED _5/18/06 DRILLING CONTRACTOR Gregg Drilling									
						$\overline{\nabla}$			
					Wall ECKED BYBob Clark-Riddel				
				011		This AFTER DRILLING 11.2 ft			
		T	1						
DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MAT	ERIAL DESCRIPTION	BORING DIAGRAM		
				0.1	Asphalt	······································			
			GW	4.0	to 1/2"; 15-25% fine- to co				
]			CL	4.5		nedium plasticity fines; 5-10% fine- to			
5		ļ			coarse-grain sand stringer Well graded sandy gravel	(GW); grey; baserock; 75-85% fine grave			
,	SB-1A-5		GW		to 1/2"; 15-25% fine- to co	arse-grain sand; moist.			
			CL	6.0	Clay (CL); black and grey; fine- to coarse-grain sand;	80-90% medium plasticity fines; 10-20% trace gravel.			
10					No Recovery		Portland Cement		
	-			11.0	✓ Clay (CL); black and grey; fine- to coarse-grain sand;	80-90% medium plasticity fines; 10-20% trace gravel.			
		4	CL						
+	1 [
		7		14.0					
		,	SC	14.5	Clayey Sand (SC); black; 8 plasticity fines; wet.	0-90% fine-grain sand; 10-20% medium			
15	SB-1A-15	3	CL			80-90% medium plasticity fines; 10-20% trace gravel.			
-	00-17-13			16.0	(@16' Set temporary casing Water sample SB-1A-W.)	and left in open borehole for 1 hour.			
					Botto	m of hole at 16.0 feet.			
						·····			

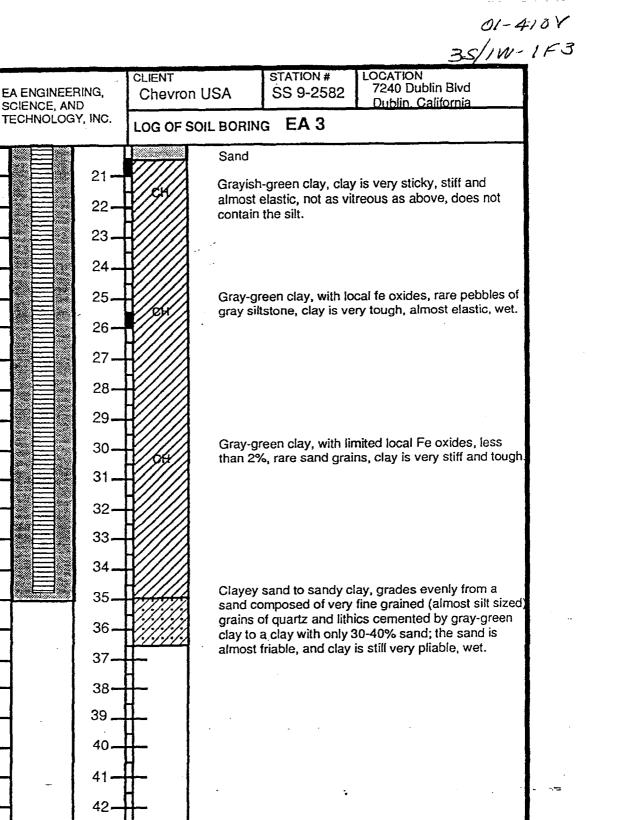

PANO	Pange 1710 F Oaklar Teleph Fax: 5	ranklin nd, CA ione:	n Stree , 9461 510-83	et, Suit 2 36-370		BORING NUMBER SB-2 PAGE 1 OF 1					
CLIEN	IT <u>Hadjian</u>					PROJECT NAME Hadjian - Dublin					
PROJ	ECT NUMBER	100	1.001			PROJECT LOCATION 7240 Dulbin Blvd					
						GROUND ELEVATION					
DRILL	ING CONTRA	CTOR	Greg	<u>ig Drilli</u>	ng	GROUND WATER LEVELS:					
DRILL	ING METHOD	Dire	ct Pus	h - Sin	gle Wall	AT TIME OF DRILLING					
LOGG	ED BY Morg	an Gill	ies		CHECKED BY Bob Clark-Riddell						
NOTE	S Concrete c	ored -	hand	augert	to 5 <u>'.</u>	AFTER DRILLING					
o DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	BORING DIAGRAM				
		1	1		Concrete		Concrete				
	SB-2-10 SB-2-15 SB-2-20	3 81 62 2	CL		Clay with sand (CL); black 20-30% fine- to coarse-gra no odor. @9.5' strong hydrocarbon @12' no odor (@12' no odor Clay (CL); black and grey; a fine- to coarse-grain sand s Clay with sand (CL); brown fines; 20-30% fine- to coars @19.5' A 1" lense of Clayer 20-30% coarse grain sand; (@16' Set temporary casing	and grey; 70-80% medium plasticity fines; in sand stringers; trace fine gravel; moist;	Portland Cement				
					Water.) Botto	m of hole at 20.0 feet.					



Page 1 of 2

01-4107

01-4107



Page 1 of 2

01-410V

age .

18 12 6

43-

18 10

18 10

Page 2 of 2

APPENDIX E

Laboratory Analytical Reports

Pangea Environmental Svcs., Inc.		Date Sampled: 03/27/06
1710 Franklin Street, Ste. 200	Wash	Date Received: 03/31/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Reported: 04/06/06
Carlanu, CA 94012	Client P.O.:	Date Completed: 04/06/06

WorkOrder: 0603702

April 06, 2006

Dear Morgan:

Enclosed are:

- 1). the results of 13 analyzed samples from your #1001.001; Dublin Auto Wash project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

M	cCampbell	Analyti	cal, Inc.		Telep	hone : 925-798-16	7, Pacheco, CA 9455 20 Fax : 925-798-16 1 E-mail: main@mcca	522				
Pangea Envi	ronmental Svcs.,	Inc.		ject ID: #100)1.001; Dubli	n Auto	Date Sampled: 03/27/06-03/30/06					
1710 Frankli	n Street, Ste. 200)	Wash				Date Receive	Date Received: 03/31/06 Date Extracted: 03/31/06				
	0.4.6.1.2		Client Cor	ntact: Morgan	Gillies		Date Extracte					
Oakland, CA	. 94612		Client P.C).: 			Date Analyze	ed: 04/01/0	6-04/0	5/06		
Extraction method		Range (C6		tile Hydroca		oline with B	TEX and MTI		order: 06	03702		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-10C-10	S	17,a	ND	0.14	0.063	0.46	1.3	I	93		
002A	MW-10C-15	S	ND	ND	ND	ND	0.0065	0.023	1	96		
003A	MW-10C-5	S	ND	ND	ND	ND	ND	ND	1	102		
004A	MW-11C-5	S	ND	ND	ND	ND	ND	ND	1	99		
005A	MW-11C-11	S	700,a	ND<10	1.4	12	14	65	200	107		
006A	MW-11C-15	S	ND	1.0	ND	0.023	0.014	0.073	1	96		
007A	MW-7B-5	S	ND	0.17	ND	ND	ND	ND	1	97		
008A	MW-7B-11	S	1800,a	16	7.8	14	30	170	200	106		
009A	MW-3A-10	S	1500, a	ND<10	2.4	5.2	19	83	200	109		
010A	MW-3A-15	S	140,a	2.7	2.3	2.6	2.4	16	20	110		
011A	MW-6C-5	S	ND	ND	ND	ND	ND	ND	I	102		
012A	MW-6C-10	S	50,g,m	ND	0.024	0.072	0.13	1.5	1	99		
013A	MW-6C-15	S	130.a	ND<0.50	0.61	0.29	. 1.4	9.3	10	90		
				· · ·	• •	· · · · · · · · · · · · · · · · · · ·	- - -	· · ·				
	timit for DF =1; not detected at or	w	NA	NA	NA	NA	NA	NA	1	ug/L		
	ie reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (stoddard solvent appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

-Angela Rydelius, Lab Manager

0/06
6/06
060370
% SS
97
96
96
91
97
93
91
· •
4 kg

DHS Certification No. 1644

Angela Rydelius, Lab Manager

W.O.	Sample	Matrix:	Soil
------	--------	---------	------

QC Matrix: Soil

WorkOrder: 0603702

_QA/QC Officer

EPA Method: SW8021B/801	5Cm E	xtraction	SW 5030	В	Batc	hID: 21076	;	Spiked San	nple ID: 060	3700-008A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE
TPH(btex) [£]	ND	0.60	96.6	98.8	2.31	99.1	110	10.3	70 - 130	70 - 130
MTBE	ND	0.10	99.8	106	5.99	110	107	2.95	70 - 130	70 - 130
Benzene	ND	0.10	96.6	103	6.15	104	99.6	3.87	70 - 130	70 - 130
Toluene	ND	0.10	96.5	103	6.11	106	100	5.44	70 - 130	70 - 130
Ethylbenzene	ND	0.10	96.3	101	4.63	101	101	0	70 - 130	70 - 130
Xylenes	ND	0.30	89	. 94.3	5.82	89	94.7	6.17	70 - 130	70 - 130
%SS:	91	0.10	108	97	10.7	102	106	3.85	70 - 130	70 - 130

NONE

			BATCH 2107	6 SUMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603702-001A	3/27/06 9:35 AM	3/31/06	4/01/06 10:47 AM	0603702-002A	3/28/06 9:55 AM	3/31/06	4/01/06 11:20 AM
0603702-003A	3/28/06 9:30 AM	3/31/06	4/01/06 11:53 AM	0603702-004A	3/28/06 10:05 AM	3/31/06	4/01/06 12:26 PM
0603702-005A	3/28/06 10:20 AM	3/31/06	4/01/06 1:00 PM	0603702-006A	3/28/06 10:40 AM	3/31/06	4/01/06 11:26 AM
0603702-007A	3/29/06 7:40 AM	3/31/06	4/05/06 12:23 AM	0603702-008A	3/29/06 8:00 AM	3/31/06	4/01/06 10:06 PM
0603702-009A	3/30/06 8:35 AM	3/31/06	4/01/06 10:36 PM	0603702-010A	3/30/06 8:40 AM	3/31/06	4/01/06 11:35 PM
0603702-011A	3/30/06 10:50 AM	3/31/06	4/04/06 6:48 AM	0603702-012A	3/30/06 11:00 AM	3/31/06	4/02/06 1:04 AM
0603702-013A	3/30/06 11:05 AM	3/31/06	4/03/06 10:21 PM				'

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil				QC Mati	rix: Soil	WorkOrder: 0603702				
EPA Method: SW8260B	E	xtraction	SW5030	B	Batc	hID: 21095	5	Spiked San	nple ID: 060	4020-011A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
, and yes	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Methyl-t-butyl ether (MTBE)	ND	0.050	86.6	95.3	9.54	86.1	89.2	3.58	70 - 130	70 - 130
%\$\$1:	103	0.050	103	100	2.70	103	102	1.06	70 - 130	70 - 130

NONE

BATCH 21095 SUMMARY Sample ID Date Sampled Date Extracted Date Analyzed Sample ID Date Sampled Date Extracted Date Analyzed 0603702-005A 3/28/06 10:20 AM 4/05/06 4/05/06 7:12 PM 0603702-006A 4/05/06 3/28/06 10:40 AM 4/05/06 7:55 PM 3/29/06 7:40 AM 4/05/06 0603702-007A 4/05/06 8:38 PM 0603702-008A 3/29/06 8:00 AM 4/05/06 4/06/06 1:55 AM 0603702-009A 3/30/06 8:35 AM 4/05/06 4/05/06 11:37 PM 0603702-010A 3/30/06 8:40 AM 4/05/06 4/06/06 12:20 AM 0603702-013A 3/30/06 11:05 AM 4/05/06 4/06/06 1:04 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (025) 708-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Report to: Morgan Gillies Pangea Environn 1710 Franklin Str Oakland, CA 946	eet, Ste. 200	TEL: FAX: ProjectNo: PO:	(510) 836-37 (510) 836-37 #1001.001; E				F 1	Bob Cl Pange 710 F	a Env Frank	Riddell vironme lin Stre A 9461	et, Ste		ז כ.	I	Date	ested T Receiv Printe	ved:	5 03/31, 04/05,	
									· · · ·	Por	uestor	Tests	(See la	hana	helo				
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2		3	4	5	6	7	Egena (ī	9	10	11	12
0603702-001	MW-10C-10		Soil	3/27/06 9:35:00 AM		A	ľ	Ĩ				ļ .		1	1.				í
0603702-002	MW-10C-15	Ar trai	Soil	3/28/06 9:55:00 AM		A						<u>+</u>							+
0603702-003	MW-10C-5		Soil	3/28/06 9:30:00 AM	i 🗌 ʻ	Α	+										**************************************	+	1
0603702-004	MW-11C-5	 Second Control (1997) 	Soil	3/28/06 10:05:00		Α	ina. I		÷									·† · ·	4
0603702-005	MW-11C-11	· · · · · · · · · · · · · · · · · · ·	Soil	3/28/06 10:20:00		Α	A	·····+···-				• • • • • • • • • • • • • • • • • • •					 	1	
0603702-006	MW-11C-15		Soil	3/28/06 10:40:00		Α	A						-	-			,	1	1
0603702-007	MW-7B-5		Soil	3/29/06 7:40:00 AM	1	Α	Α	1999 - 19		•		t	ţ		l				1
0603702-008	MW-7B-11	·	Soil	3/29/06 8:00:00 AM		A	A	-									1		
0603702-009	MW-3A-10		Soil	3/30/06 8:35:00 AM	i 🗌	Α	Α												
0603702-010	MW-3A-15	9 20 Y 1 Y 1 Y	Soil	3/30/06 8:40:00 AM	1	Α	Α		1				1						
0603702-011	MW-6C-5		Soil	3/30/06 10:50:00		Α						·**							
0603702-012	MW-6C-10		Soil	3/30/06 11:00:00		А												1	
0603702-013	MW-6C-15	water the second	Soil	3/30/06 11:05:00		Α	A		1									Ī	

Test Legend:

1	G-MBTEX_S	2 MTBE_S	3	4	3	5
6		7	8	9		10
11 🗧		12				

Prepared by: Kathleen Owen

Comments: MTBE conformation added per Bob on 4/5/06 on samples: 005-010, 013

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

040':																															
McCAMP	BELL	ANAL	JYT	IC	AL,	IN	C.									C	HA	- 	N (ĴĒ	' C	US	T	DD	Y	R	ĒC	CO	RD		
	10 - 2 nd AV	'ENUE SO 30, CA 945	UTH,	#D7								Т	UR	N A	R																X
Website: <u>www.mc</u>					nccam	pbel	l.con	1											_	_		USI		24 1			48 H			HR	5 DAY
Telephone: (925) 798	8-1620			the second s	'ax: (9	25)	7 98 -	1622	2			ED	OF R	equ	ired	I? C				́		10		rite	On) (D)	W)				
Report To: Morgan Gillies				: Pa	ngea								· · · · ·				A	nal	ysis	Rec	ues	t	,	y		·		0	ther	-	Comments
Company: Pangea Environm					• •=== •• ••						_																	12	-	20	Filter
1710 Franklin Street, Suite 20	io, Oakla										{	BE	į	&F)			1	1						9				\mathbb{N}		3	Samples
Tele: (510) 836-3702					<u>illies@</u> 836-3		ngea	env.	com			8015)/MTBE		& F/B	18.1	ļ								8				6	130	R	for Metals
Project #: 1001.001				<u>مى بەر</u>	ne: D		n Au	ito V	Vash					Grease (5520 E&F/B&F)	15 (4									625 / 8270 / 8310		1		2	N:		analysis: Yes / No
Project Location: 7240 Dublin	ı Blvd., D				uci D				1 401			20+		e (55)	pot		8020		ίLΥ					5/8	120)	2 0)		12		g	1037140
Sampler Signature:			· .									12/8020		reas	roca		02 /		NO S) / (9	/ 60	200.9 / 6010)	6/2	8	S.	
	T	PLING		8	М	AT	RIX		MET			Gas (60	(8015)	2	Hydi	8021	24 6		CB,			826	210	EP	601(010	9/6	ы N.	6	S.	
			SI	tainers			1-1	-+	RES	ERV	ED	as G	18	io I	a a	10/	E	81	82 P	141	151	24 /	5/8	's by	als (uls (6	200	u,		a	
SAMPLE ID LOCATION			Containers	Conta								HAT	TPH as Diesel	Fotal Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	0.8 /	67	<u>z</u>		
(Field Point Name)	Date	Time	ont	Ŭ	fe		Sludge	Ja la		ő	er	28 X	as [Petr	l Pet	109	0 X	608	608	814	815	524	525	°s /]	1-17	T 5	1 (200.8	Z	S.F.	MTBE	
			Ŭ #	Lyp	Water	Air	Sluc	Other	HCE	HNO ₃	Other	BTEX &	HA	fotal	Fots	EPA	BTE	EPA	EPA	EPA	EPA	EPA	EPA	PAH	CAN	LUF	Lead	4	3	Ę	
MW-10 -10	3/27	9.21-		Brit					7			$\overline{\mathbf{\nabla}}$	·		-	_		_			-						+-1	受	¥	-	
Nin In 15		935	<u> </u>	ilee			+	{	\mathbf{H}	+		\ominus																\Im			
MW-102-15 MW-102-5 MW-112-5	3/2-7	755		+		-		-{	×			ð								<u>-</u>					<u></u>	<u> </u>		\mathbb{C}		·····	
114-106-5	-122	930	- <u> -</u>	$\left\{ -\right\} $	+	<u></u>	$\left - \right $		X X		— ,	\mathfrak{S}		{						ļ					ļ		┼╌┦	$\left \right\rangle$			
170-110-5	3/28	1005	$\downarrow \downarrow$	$\left \right $	$+ \not\leqslant$	<u> </u>	+ +	!	<u>\</u>			\mathfrak{L}									ļ				ļ		ļ!	K.		5	
MW-11C-11	3/28	1020	<u> </u>	\downarrow	ΙĶ	<u> </u>		;	X			$\sum_{i=1}^{N}$							ļ		ļ						ļ	\bigotimes	!	싀	
Mw-110-15	3/28	1040		11	$\perp 2$	$\langle $			X			X							ļ						 		1!	X		X	
MW-78-5	3/29	740	ĺ		1				X			X																X		\times	
MW-7E-11	3/24	800	1						X			X																X		\times	
MW-3A-10	3/30	835	[7]			×		þ	<			X																X		\times	
MW 34-15	3/30	840	Π			1		ŀ	X			X																X		X	
MW-16-5	3/50	1050	T	Π	T X	<			X	1		X					•••••		1		1							\mathbf{X}	1		
1120-60-10 -	3/30	110C	1	\mathbf{T}		1		Ī	X	-		X								+						1	1	X	<u>†</u> †		
MW-61-15	3/30	1105	17	$ \Psi $		<	+	ŀ	X	7		X												↓ 	+		+	X	1	X	
	1 200	102	<u> </u>	1	12	- <u> </u>	+	-	7			<u> </u>			~					<u> </u>	+		ł		+	+	-	<u> </u> ∡⊇	†		
Relinquished By:	Date/	Time: 1	Rec	elyod 1	N. D		\mathbf{z}	4			-	IC	E/t°					<u> </u>	<u></u>	<u> </u>	I	L	L		1	CON	<u>I</u> MMJ	ENTS	ـــــــــــــــــــــــــــــــــــــ	i	
Relinguished By:	tA/	2401			Ķ					\mathcal{V}		GG	DOD	CON	DIT				/												
Religendshed By:	Pate /	Time		eiyed I								DE	EAD S ECHL	ORI	INAT	ſEÐ	IN Ĺ	AB		_	/										
VIII V	X3/101	1512	ß	x ay	he	m	I	Ve	n				PRO					INE	RS_	v											
Relinquished By:	Date:	Time:	Rec	eived I	By:							1 1	in an	ung ti A≟a	KF 113																
	l '											PR	ESE	RVA	TIO		JAS	0	&G	MI pH		S	OTI	IER		_					

Construction and the second

Pangea Environmental Svcs., Inc.	Client Project ID: #1001.001; Dublin Auto	Date Sampled: 04/03/06
1710 Franklin Street, Ste. 200	Wash	Date Received: 04/04/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Reported: 04/11/06
Oaklalid, CA 94012	Client P.O.:	Date Completed: 04/11/06

WorkOrder: 0604043

April 11, 2006

Dear Morgan:

Enclosed are:

- 1). the results of 3 analyzed samples from your #1001.001; Dublin Auto Wash project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

<u> </u>	McCampbell	Analyti	cal, Inc.		Telep	hone : 925-798-16	17, Pacheco, CA 9455; 520 Fax : 925-798-16 n E-mail: main@mcca	522		
Pangea E	Environmental Svcs.,	Inc.	-	ect ID: #1	001.001; Dubli	in Auto	Date Sample	d: 04/03/0	6	
1710 Fra	anklin Street, Ste. 200		Wash				Date Receive	ed: 04/04/0	6	
0.11	C+ 04(12		Client Cont	act: Morga	an Gillies		Date Extracte	ed: 04/04/0	6	
Oakland,	, CA 94612		Client P.O.	:			Date Analyze	ed: 04/05/0	6-04/1	1/06
Extraction n	Gasoline nethod: SW5030B	Range (C6			arbons as Gas SW8021B/8015Cm	oline with B	STEX and MTH		order: 06	504043
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-9A-5	S	ND	ND	ND	ND	ND	ND	1	95
002A	MW-9A-10	S	ND	ND	ND	ND	ND	ND	1	84
003A	MW-9A-15	S	ND	ND	ND	ND	ND	ND	1	102
· · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
					•••••	• •	: 			
						1	· · · · · · · · · · ·		.	• • • •••••
					• · · · ·	· · · · · · · ·	• • • • • •			
ND m	orting Limit for DF =1; heans not detected at or ove the reporting limit	W S	NA 1.0	NA 0.05	NA 0.005	NA 0.005	NA 0.005	NA 0.005	1	ug/L mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dra weight basis.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

QC Matrix: Soil

WorkOrder: 0604043

EPA Method: SW8021B/	/8015Cm E	xtraction	SW5030	В	Batc	nID: 21109		Spiked Sample ID: 0604043-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE		
TPH(btex) [£]	ND	0.60	101	102	1.77	96.6	97.8	1.26	70 - 130	70 - 130		
МТВЕ	ND	0.10	108	112	3.78	112	108	3.53	70 - 130	70 - 130		
Benzene	ND	0.10	103	108	4.60	105	101	3.56	70 - 130	70 - 130		
Toluene	ND	0.10	103	109	4.86	105	102	3.13	70 - 130	70 - 130		
Ethylbenzene	ND	0.10	104	109	4.54	105	103	2.63	70 - 130	70 - 130		
Xylenes	ND	0.30	95	99.3	4.46	95.3	94.3	1.05	70 - 130	70 - 130		
%SS:	95	0.10	111	119	6.96	111	112	0.897	70 - 130	70 - 130		

BATCH 21109 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0604043-001A	4/03/06 8:25 AM	4/04/06	4/05/06 3:22 AM	0604043-002A	4/03/06 11:10 AM	4/04/06	4/11/06 2:46 PM
0604043-003A	4/03/06 12:10 PM	4/04/06	4/05/06 5:01 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

_QA/QC Officer

McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0604043

ClientID: PEO

EDF: NO

Report to: Morgan Gillies Pangea Environ 1710 Franklin S Oakland, CA 94	•	TEL: FAX: ProjectNo: PO:	(510) 836-37((510) 836-37(#1001.001; D		E	Bill to: Bob Clark-Riddell Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612							Requested TAT: Date Received: Date Printed:		04/04	5 days 04/04/2006 04/04/2006	
Sample ID	ClientSampID		Matrix	Collection Date	Hold 1	2	3	Rec 4		d Tests 6	(See le 7	gend be 8	elow) 9	10	11	12	
0604043-001 0604043-002 0604043-003	MW-9A-5 MW-9A-10 MW-9A-15	an a	Soil Soil Soil	04/03/2006 04/03/2006 04/03/2006	A A A A A					- 	: : :	•	:		- 		

Test Legend:

1 G-MBTEX_S	2	3	4	5
6	7	8	9	10
11	12			

Prepared by: Kathleen Owen

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

·	O(0)	104"	5 F	E	O																										
	CAMP	BELL	ANA	LYI	TIC	AL	. IN	IC.					Τ				(Cł	HA	IN	0	F (CU	ST	'OI	DY	' R	E	CO	RD	
	l	10 2 nd Av	VENUE SC	UTH,	#D7									TU	RN	A			ND 1				Ę			<u>ן</u>		Ę			, X K
Websi	ite: <u>www.mc</u>	ampbell.	CO, CA 949 com Emp	il: ma	ov ain@n	ncca	mpbe	ll.co	m														RUS			HR		48 I		72 H	R 5 DAY
Telephone	e: (925) 798	-1620					(925)			22			!	EDF	Rec	lni	red?	Co	oelt (Noi	rma	l)	No	V	Vrit	e O	n (D	W)	N	lo	
Report To: Morga	and the second se): Pa	ngea	1												Ana	lysi	s R	eque	st							Other	Comment
Company: Pangea							•••••••						_										1								Filter
1710 Franklin Stre	et, Suite 200), Oakla		~~~~											G										6	{	1		à		Samples
Tele: (510) 836-37	0.2				l: mg				aen	v.co	m	~ ~~		SUISUM I BE	F/B										831				20		for Metal
Project #: 1001.001					(510) t Nar					W/-					DE&		41		_						270				à		analysis:
Project Location: 7	·				I INAL	ne: 1	ומשכ	IN A	uto	wa	sn			+	(552)			1000	020				1		8.	()	6	{	5		Yes / No
Sampler Signature			uona, C										-	(602/8020	ease				7 8	Ĩ	5				62	00)	602	01	55		
				<u>.</u>		Γ.				М	ETI	IOD	-4	<u>)</u>	ີ່ອີ		yar		8	, a			100	2	EPA	010	10/	/ 60	LE FECTION		
		SAMI	PLING	2	Type Containers		MAT	RIX			ESEI		D ,	BTEX & TPH as Gas (6 TPH as Discal (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)		1 0134 Fetroleum Hydrocarbons (413.1) EPA 401 / 9010 / 9071		BTEX UNLY (EPA 602 / 8020) EPA 608 / 8081	FPA 608 / 8082 PCR's ONLY	. =		EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT S Metals (6010 / 6020)	(0109 / 6010)	200		
SAMPLE ID	LOCATION			ineı	atai									H a	eu H		0160		K J	, S	/ 81	8/	1 62	625	NA.	Meta	fetal	8/2	14		
(Field Point Name)	LUCATION	Date	Time	Containers	Ŝ	1		e				-	-	BTEX & TPH TPH as Dias	eta		Leur		BTEX ONLY (80	EPA 8140 / 8141	EPA 8150 / 8151	24.2	525 /	9 / P	12	SN	(200.8	P.		
				ပိ	ype	Water	Soil	Sludge	Other	ICE	HCL	- NHO	Cher	HA HA	1 T				P A	Vd	d	V A	A	PA	AH'	WW	E	Lead	RY		
				#			\$ <	< N	0	ž		-	2	× ⊢	- F	ŀ		4	× 14			1 4	Ē	E			-	1-	H		L
MW-9A-5 MW-9A-10		4/3	8:25	1	Selice		X			\times			\mathbf{b}	\langle															\times		
MW-9A-10		i	110	1	\mathbf{I}		X			Х			\mathbf{D}	X		Τ											}		K		
MW-9A-15		V	1210	1	U		X	-		X		-	15	4	-	1				1					-		-		X		
					1			-+		r +		-+-	-	-+-	-+	-+-	+			+	-+		-				-	1	<u> </u>	+	
					 	1	-+-	+		$ \rightarrow $			+-			+				+-				+	+	+	+	<u>}</u>	1	+	<u> </u>
						┢─┤		+-		┝╾╍┼										-+		+		+		+-	+	<u>+</u>		┝+	
					 	 										+					+					+			 		<u> </u>
										-								-+		-+									ļ		
					Į										_						.			ļ	_	+					
			_												_														L		
			l								Ţ																				
	-											-			1	1	-	~†-	1	1	1		T		1		1	1			
			1			t †					-+-		1			+			-+	+-		1	-1	-		1	-	+	t	† †	
			l		t			+		┝╌┼	-+-	+			+	+	-+	-+-		- †	+	-	+	-	-	+	+	+	1	┼╴╌┼╌╴	
Relinquished By:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Date: /	Time:	Rec	iver B			1	1	ليبينا			╋	ICE/t		.	_	_		<u></u>						<u> </u>	CO	MM	ENT	1 S:	1
	2-	444	13 15	,¢	N	n							- [(GO0	D CO	ND															
Relingyshed By		Date:	Time:	Res	inged 18	y:			2	//				HEAI DECI					T N LAE	, ,		,									
1/200		(1)	1350		110	N	Ú				∂				OPR	IA	FE C	ONT	FAIN		V										
Relingaished By:		Date:	Time:		eived B								1'	UKE9	IC R V	гIJ	na r	AB_		-											
				l										PRES	ERV	AT		VOA	s ()&G		IETA I<2	LS	or	HER						

🏄 McCampbell Analytical, Inc.

Pangea Environmental Svcs., Inc.	5	Date Sampled: 03/28/06
1710 Franklin Street, Ste. 200	Wash	Date Received: 03/31/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Reported: 04/06/06
	Client P.O.:	Date Completed: 05/01/06

WorkOrder: 0603702

May 01, 2006

Dear Morgan:

Enclosed are:

- 1). the results of 7 analyzed samples from your #1001.001; Dublin Auto Wash project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

McCampbell Anal	ytical, Inc	2.	Telephone :	e South, #D7, Pacheco, C. 925-798-1620 Fax : 925 ampbell.com E-mail: main	ax : 925-798-1622 il: main@mccampbell.com		
Pangea Environmental Svcs., Inc.		2	.001.001; Dublin	Date Sampled:	03/28/06-0	03/30/06	
1710 Franklin Street, Ste. 200	Auto Wa	ish		Date Received:	03/31/06		
Oakland, CA 94612	Client C	ontact: Morg	an Gillies	Date Extracted:	04/05/06		
Oakland, CA 94012	Client P.	0.:		Date Analyzed:	04/05/06-0	04/06/06	
O Extraction Method: SW5030B		l atile Organi alytical Method: SV	cs by P&T & GC/N ^{V8260B}	MS*	Work Orc	ler: 0603702	
Lab ID (0603702-005A	0603702-000	6A 0603702-007A	0603702-008A			
Client ID	MW-11C-11	MW-11C-1	5 MW-7B-5	MW-7B-11	Reporting	Limit for	
Matrix	S	S	S	S		5 = 1	
DF	67	6.7	1	100	s	w	
Compound		C	oncentration		mg/kg	ug/L	
tert-Amyl methyl ether (TAME)	ND<0.33	ND<0.033	ND	ND<0.50	0.005	NA	
t-Butyl alcohol (TBA)	ND<3.3	0.41	ND	ND<5.0	0.05	NA	
Diisopropyl ether (DIPE)	ND<0.33	ND<0.033	ND	ND<0.50	0.005	NA	
Ethyl tert-butyl ether (ETBE)	ND<0.33	ND<0.033	ND	ND<0.50	0.005	NA	
Methyl-t-butyl ether (MTBE)	3.1	0.80	0.11	13	0.005	NA	
	Surro	ogate Recove	ries (%)		L		
%SS1:	97	96	96	91			
1		and an end of the second	and the second	en e			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

K Angela Rydelius, Lab Manager

McCampbell Ana	lytical, Inc	•	Telephone :	e South, #D7, Pacheco, C. 925-798-1620 Fax : 92: anpbell.com E-mail: mair	5-798-1622	om
Pangea Environmental Svcs., Inc.		•	001.001; Dublin	Date Sampled:	03/28/06-0	03/30/00
1710 Franklin Street, Ste. 200	Auto Wa	sh		Date Received:	03/31/06	
	Client Co	ontact: Morg	an Gillies	Date Extracted:	04/05/06	
Oakland, CA 94612	Client P.	0.:		Date Analyzed:	04/05/06-0)4/06/00
C Extraction Method: SW5030B		atile Organi	сѕ by Р&Т & GC/I ^{V8260B}	MS*	Work Ord	er: 060370
Lab ID	0603702-009A	0603702-010	0A 0603702-013A			4
Client ID	MW-3A-10	MW-3A-1:	5 MW-6C-15		Reporting	Limit fo
Matrix	S	S	S		DF	=1
DF	67	20	4		S	w
Compound		C	oncentration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)	ND<0.33	ND<0.10	ND<0.020		0.005	NA
t-Butyl alcohol (TBA)	ND<3.3	ND<1.0	ND<0.20	····	0.05	NA
Diisopropyl ether (DIPE)	ND<0.33	ND<0.10	ND<0.020	· · · · ·	0.005	NA
Ethyl tert-butyl ether (ETBE)	ND<0.33	ND<0.10	ND<0.020	· · · · · · · · · · · · · · · · · · ·	0.005	NA
Methyl-t-butyl ether (MTBE)	0.54	2.6	0.050	• • •••• • • • •	0.005	NA
	Surro	gate Recove	ries (%)		-	
	97	93	91			
%\$\$1:						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

	0403	3707	2					_	÷																							
M	[cCAMP]	BELL	ANA	LYT	FIC.	AL,	, IN	C.	-								C	HA	11	N (DF	C	US	STO	OI)Y	RJ	ĒC	COR	D		
	1	10 2 nd AV PACHEC	/ENUE SC :O, CA 945										r	TUR	N 2	4R									Ę]					X	
	site: <u>www.mcc</u>	ampbell.			ain@r									DE I		• .	10.0			,	. 15		US		24			48 H		2 HR	5 DA	Υ.
The subscription of the su	ne: (925) 798	-1620				'ax: (798	-162	22			E.	DF I	cequ	lirea	1? C		· · · ·				lo		rite	e On	(D)	<u>w)</u>				
Report To: Morg Company: Pange		ntol Sor		Bill To	<u>): Pa</u>	ngea								T		·····			naly	ysis	Rec	ues	t			 1	7		Oth		Comm	ents
1710 Franklin Str					,			<i>.</i>																					3	2010 11 11 11	Filter	
	cety suite 20	o, oana		-Mai		illies	@pa	nge	aenv	v.co	m		8015)/MTBE		B&F	=									310				S		Sample for Me	
Tele: (510) 836-3	702			'ax: (_] <u>[</u>		E&F/	418.									0 / 8				a c	10.4	analysi	
Project #: 1001.00				rojec	t Na	ne: I)ubl	in A	uto	Was	sh		+		5201) SU O		50)		Y					827				A C	10 March 10	Yes / N	
Project Location:				A		·····							12/8020		Grease (5520 E&F/B&F)	carb		602 / 8020)		N					625 / 8270 / 8310	602(5020	6	era.			
Sampler Signatur	e:				T	T				R.C.	ETH	OD	(602/	6		dro	21			8's (09;	0		10/	10/0	/ 601	83			
		SAMP	PLING	s	Type Containers	I I	/AT	RIX			SER		Gas	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA		EPA 608 / 8082 PCB's ONLY	11	12	524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	200.9 / 6010)	-10-			:
SAMPLE ID	LOCATION			Containers	ntai								TPH a	iesel	leum	oleu	801	ILY	EPA 608 / 8081	808	EPA 8140 / 8141	EPA 8150 / 8151	2 / 62	625	NA'S	Meta	letal		60 2			
(Field Point Name)	LUCATION	Date	Time	nta	Ő	er		e Se	5			รไม	& T	as D	Petro	Petr	(109	0	608	608	8140	8150	524.3	525 /	g / P	-17	5	Lead (200.8 /	54			
				°C #	Ž	Water	Soil	Sludge	Other	ICE	HCL	Other	BTEX &	Hd	otal	otal	PA	STE)	PA	PA	PA	PA	EPA	CPA	'HA'	MAC	E	,ead	4.8			
May IN 10		3/27	935	—	Brus		X	+		$\overline{}$			$\overline{\nabla}$	<u> </u>		<u> </u>	_		_	_		_		-		-		F	3			
MW-12-10 MU-100-15	· · · · · · · · · · · · · · · · · · ·		asc		sice		$\frac{2}{X}$			\Im			Ю	h															\bigcirc	+		
Mul Ing F		3/27	122 930	<u> </u>	╂╌╂╴		\mathbf{A}		┼╌┨	\$			Ю														├		IC-	+		
MW-10C-15 MW-10C-5 MW-11C-5		3/28	- a -	H_{Γ}	╂╌┠╴	+	È-			X			Ю	┼──															$\left\{ \right\}$	┼╌┝		
$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10}$		1-0	1005	$\left \cdot \right $	╂╌╂╌	┢╌┟	3-	+		$\frac{1}{X}$			Ю	┼──															ξ-	22		
MW-11C-11 MW-11C-15	······	3/28	1020		┼┼╴	+	$\overline{\mathbf{v}}$			\Rightarrow			Ю																\bigcirc			
		3/28	1040	++	+	+ +				$\left(\right)$			俒	¥														$\left - \right $	\bigcirc			
MW-78-5		3/29	740		++-		K-			X			X																\Diamond			
MW-7B-11		3/29	800	+			$\overline{\mathbf{v}}$						K																Θ			<u></u>
MW-3A-10 MW-34-15			835	<u> </u>	$\left \right $	ŀ		_	┝	X	_		Ķ																$\hat{\boldsymbol{\Sigma}}$			
1-10-24-15		3/30	840	<u> </u>	╂┠╴		ХĻ			X			Ķ															<u> </u>	()			
110-66-5		3/30	1050	<u> </u>			X			Ŷ			Ķ																X-	↓↓		
MW-6C-10		3/30	1100	ĻĻ	H	\downarrow	×	_	↓ 	×			ĸ	ļ														$\left - \right $	Δ		<u>.</u>	
MW-66-15		2/30	105	1			×			Ľ	2		X	1			~												X		S	
Palinquiched D.		Det=/	Time	-		12	-								Ļ	\sim																
Relinquished By:	la	Date:	Time:	Rec	elved			\leq			$\overline{\mathbf{v}}$	7	G	E/t°_ DOD	CON	DIT										1	COM	11111	ENTS:			
Relingutothed By:		Bater.	Time:	Reco	ei y ed i	M By:						,		EAD ECHI							/	,										
12	- Jo	3/10/	515	Å	eiyeet 1 (U	hle	in	2	Ú	n			A	PPRC	PRI	ATE	CO	NTAI		ts	\checkmark	-										
Relinquished By:	7.4	Date:	Time:		eived I	_		<u> </u>					1"	RESE	ĸvĔ	או ע																
		/ ·											PF	RESE	RVA	τιο)AS	08		ME pH<		.s	отн	IER							

McCampbell Analytical, Inc.

Pangea Environmental Svcs., Inc.	Client Project ID: #1001.001; Dublin Auto	Date Sampled: 05/18/06
1710 Franklin Street, Ste. 200	Wash	Date Received: 05/19/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Reported: 05/30/06
Oakland, CA 94012	Client P.O.:	Date Completed: 06/02/06

WorkOrder: 0605414

June 02, 2006

Dear Morgan:

Enclosed are:

- 1). the results of 12 analyzed samples from your #1001.001; Dublin Auto Wash project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	McCampbell	Analyti	cal, Inc.		Telep	hone : 925-798-16	7, Pacheco, CA 9455: 20 Fax : 925-798-16 E-mail: main@mcca	522		
Pangea Ei	nvironmental Svcs.,	Inc.		ect ID: #1	001.001; Dubli	n Auto	Date Sample	d: 05/17/0	6-05/1	8/06
1710 Frar	nklin Street, Ste. 200)	Wash				Date Receive	ed: 05/19/0)6	
	CA 04(12		Client Con	tact: Morga	n Gillies		Date Extracte	ed: 05/19/0	6-05/2	7/06
Oakland,	CA 94612		Client P.O	.:		• • • • • • • •	Date Analyze	ed: 05/19/0	6-05/2	7/06
Extraction me	Gasoline ethod: SW5030B	e Range (C6		•	arbons as Gas W8021B/8015Cm	oline with B	TEX and MTI)rder: 06	.05414
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-8A-5	S	ND	ND	ND	ND	ND	ND	1	96
002A	MW-8A-10	S	ND	ND	ND	ND	ND	ND	1	93
003A	MW-8A-15	S	ND	ND	ND	ND	ND	ND	1	84
004A	SB-2-5	S	ND	ND	ND	ND	ND	ND	1	97
005A	SB-2-1 0	S	790,b,m	ND<10	ND<1.0	2.9	10	58	200	97
006A	SB-2-15	S	310,a	ND<5.0	2.5	2.4	6.4	27	100	113
007A	SB-2-20	S	ND	ND	ND	ND	ND	ND	1	93
008A	SB-1-7	S	ND	ND	ND	ND	ND	ND	1	99
009A	SB-1-11	S	ND	ND	ND	ND	ND	ND	1	95
010A	SB-1-14	S	ND	ND	ND	ND	ND	ND	1	86
011A	SB-1A-15	S	ND	ND	ND	ND	ND	ND	1	104
012A	SB-1A-W	w	170,a,f	570	1.5	1.5	1.2	5.9	1	111
						I				
		. . .			• • •					
	• ••					·····			: : 1	I *- · · ·
<u></u>				, 			· · · · · · · · · · · · · · · · · · ·		:	
	ting Limit for DF =1; eans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

Mc Mc	Campbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 925-798-1620 Fax : 925-7 mpbell.com E-mail: main@	98-1622		····
Pangea Enviro	nmental Svcs., Inc.		#1001.001; Dublin	Date Sampled: 0	5/18/0	6	
1710 Franklin	Street, Ste. 200	Auto Wash		Date Received: 0	5/19/0	6	
		Client Contact: M	Iorgan Gillies	Date Extracted: 0	5/30/0	6	
Oakland, CA 9	4612	Client P.O.:		Date Analyzed: 0	5/30/0	6	
Extraction method: SV	w5030B	-	-Butyl Ether* nethods: SW8260B		Work	Order:	0605414
Lab ID	Client ID	Matrix	Methyl-t-butyl eth	ner (MTBE)		DF	% SS
012A	SB-IA-W	W	500			20	107
		:					
-		. <u>.</u>		·····			· · · · ·
		n an			i		
		· · · · · · · · · · · · · · · · · · ·					ta sa
				· · · · · · · · · · · · · · · · · · ·			
					· ·+	1.4.14	••••••••••••••••••••••••••••••••••••••
		•••• •••	·····				
					· ·		1
	·····		• • • • • • • • • • • • • • • • • • •		· · . · · ·		
		1 1 1	······				
н н н				.	<u>i</u>		
		· · · · · · ·					
							•
				· · · · · · · · · · · · · · · · · · ·	·		!
	orting Limit for DF =1; means not detected at or	W	0.5	·····		μ	g/L
	ove the reporting limit	S	NA			N	A

EPA Method: SW8021B/8015Cm Extraction: SW5030B BatchID: 21767 Spiked Sample ID: 0605392 Analyte Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Crit mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % RPD MS / MSD LCS LCS MS / MSD LC TPH(btex) [£] ND 0.60 102 101 1.15 102 98.7 3.79 70 - 130 MS / MSD LC MTBE ND 0.10 105 109 4.09 104 104 0 70 - 130 70	
Analyte mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % RPD MS / MSD LC TPH(btex) [£] ND 0.60 102 101 1.15 102 98.7 3.79 70 - 130 MTBE ND 0.10 105 109 4.09 104 104 0 70 - 130 Benzene ND 0.10 96.4 101 5.10 97.3 95.6 1.84 70 - 130	2-001a
mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD LC TPH(btex) [£] ND 0.60 102 101 1.15 102 98.7 3.79 70 - 130 MTBE ND 0.10 105 109 4.09 104 104 0 70 - 130 Benzene ND 0.10 96.4 101 5.10 97.3 95.6 1.84 70 - 130	iteria (%)
MTBE ND 0.10 105 109 4.09 104 104 0 70 - 130 Benzene ND 0.10 96.4 101 5.10 97.3 95.6 1.84 70 - 130	CS/LCS
Benzene ND 0.10 96.4 101 5.10 97.3 95.6 1.84 70 - 130	70 - 130
	70 - 130
Toluene ND 0.10 95.4 100 4.61 96.8 95.3 1.58 70 - 130	70 - 130
	70 - 130
Ethylbenzene ND 0.10 96.2 99.4 3.24 97.6 96.1 1.55 70 - 130	70 - 130
Xylenes ND 0.30 94 94.3 0.354 94.3 90 4.70 70 - 130	70 - 130
%SS: 92 0.10 102 106 3.33 103 102 1.11 70 - 130	70 - 130

BATCH 21767 SUMMARY Sample ID Date Sampled Date Extracted Date Analyzed Sample ID Date Sampled Date Extracted Date Analyzed 5/19/06 0605414-001A 5/17/06 7:05 PM 5/20/06 1:21 AM 0605414-002A 5/17/06 7:15 AM 5/19/06 5/20/06 4:06 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

W.O. Sample Matrix: Soil				QC Mat	rix: Soil				WorkOrder:	0605414
EPA Method: SW8021B/8	015Cm E	xtraction	SW5030	в	Batc	hID: 21795	;	Spiked San	nple ID: 060	5414-011A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	0.60	107	105	1.79	103	100	3.12	70 - 130	70 - 130
МТВЕ	ND	0.10	93.9	109	15.1	105	105	0	70 - 130	70 - 130
Benzene	ND	0.10	93.3	98.3	5.21	96.6	102	5.70	70 - 130	70 - 130
Toluene	ND	0.10	94.6	99.1	4.61	96.1	94.7	1.47	70 - 130	70 - 130
Ethylbenzene	ND	0.10	97.2	99.8	2.72	97.3	95.5	1.91	70 - 130	70 - 130
Xylenes	ND	0.30	94.7	94.7	0	94.3	90.3	4.33	70 - 130	70 - 130
%SS:	104	0.10	98	103	4.43	101	102	1.05	70 - 130	70 - 130
All target compounds in the M	ethod Blank of th	is extraction	batch wer	e ND less th	an the method	RL with the	e following	g exceptions:		
NONE										

			<u></u>				
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0605414-003A	5/17/06 7:25 AM	5/19/06	5/20/06 5:12 AM	0605414-004A	5/18/06 7:55 AM	5/19/06	5/20/06 5:45 AM
0605414-005A	5/18/06 8:00 AM	5/19/06	5/19/06 9:54 PM	0605414-006A	5/18/06 8:05 AM	5/19/06	5/20/06 8:20 PM
0605414-007A	5/18/06 12:40 PM	5/19/06	5/20/06 10:00 PM	0605414-008A	5/18/06 9:10 AM	5/19/06	5/20/06 11:07 PM
0605414-009A	5/18/06 9:15 AM	5/19/06	5/20/06 11:40 PM	0605414-010A	5/18/06 9:20 AM	5/19/06	5/27/06 12:56 AM
0605414-011A	5/18/06 9:55 AM	5/19/06	5/20/06 9:38 AM				
0605414-011A	5/18/06 9:55 AM	5/19/06	5/20/06 9:38 AM	· ·			I

BATCH 21795 SUMMARY

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or % RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

W.O. Sample Matrix: Water				QC Mat	WorkOrder: 0605414								
EPA Method: SW8021B/801	5Cm E	Extraction	: SW5030	в	Batc	hID: 21789)	Spiked Sample ID: 0605413-010A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD			
TPH(btex) [£]	ND	60	104	112	8.01	114	116	1.00	70 - 130	70 - 130			
МТВЕ	ND	10	105	112	6.79	104	105	0.764	70 - 130	70 - 130			
Benzene	ND	10	102	111	8.26	111	109	1.67	70 - 130	70 - 130			
Toluene	ND	10	95.9	104	7.85	102	100	1.11	70 - 130	70 - 130			
Ethylbenzene	ND	10	99.8	109	8.51	107	106	1.03	70 - 130	70 - 130			
Xylenes	ND	30	94.7	100	5.48	96.7	100	3.39	70 - 130	70 - 130			
%SS:	105	10	103	105	2.07	102	100	2.28	70 - 130	70 - 130			
All target compounds in the Meth	od Blank of th	is extraction	n batch wer	e ND less th	an the method	RL with th	e following	exceptions:					
NONE													

BATCH 21789 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled Da	te Extracted	Date Analyzed
0605414-012A	5/18/06 10:50 AM	5/20/06	5/20/06 8:00 AM	0605414-012A	5/18/06 10:50 AM	5/21/06	5/21/06 12:26 AM

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0605414

EPA Method: SW8260B	E	Extraction	SW5030B	Batc	hID: 21916	Spiked Sample ID: 0605584-005B				
Analyte	Sample	Spiked	MS MSD	MS-MSD	LCS LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec. % Rec.	% RPD	% Rec. % Rec.	% RPD	MS/MSD LCS/LCS			
Methyl-t-butyl ether (MTBE)	ND	10	109 112	2.79	107 110	2.87	70 - 130 70 - 130			
%\$\$1:	97	10	106 104	2.07	108 104	4.18	70 - 130 70 - 130			

BATCH 21916 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0605414-012A	5/18/06 10:50 AM		5/30/06 11:31 PM								

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate.

MS = Matrix Spike. MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification No 1644

_QA/QC Officer

McCampbell Analytical, Inc.

E

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-1	1620			Woi	·kOrd	ler: 00	505	414			Clien	tID:	PEO			ED	F: N	10					
Report to:							Bill									Re	quest	ted Tr	AT:		5 days		
Morgan Gillies			(510) 836-37						Clar					1									
1710 Franklin	onmental Svcs., Inc. Street, Ste. 200		(510) 836-37 #1001.001; E	09 Dublin Auto Wash	Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612					Date Received: Date Printed:				05/19/2006 05/30/2006									
Oakland, CA	94012	FU.						Uak	lano,	, CA	940	2					ite Pi	rinte	a:	05/3	0/2006		
											Re	queste	d Test	s (See	e lec	iend b	elow)	ł					
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	•	2	3		4	5	6	Ì	7	8		9	10	11	12		
0605414-001	MW-8A-5		Soil	5/17/06 7:05:00 PM		А				j.				t İ						:			
0605414-002	MW-8A-10		Soil	5/17/06 7:15:00 AM		Α																	
0605414-003	MW-8A-15		Soil	5/17/06 7:25:00 AN		А																	
0605414-004	SB-2-5		Soil	5/18/06 7:55:00 AM		Α	· •	ţ					l	ļ		!	•	:					
0605414-005	SB-2-10	1 .1 H.	Soil	5/18/06 8:00:00 AM		Α	• •								1.7.mm & 1.787						1		
0605414-006	SB-2-15		Soil	5/18/06 8:05:00 AM		Α						······································				1	a.—a						
0605414-007	SB-2-20		Soil	5/18/06 12:40:00		Α	1			1											÷		
0605414-008	SB-1-7		Soil	5/18/06 9:10:00 AM		Α										1	1			1			
0605414-009	SB-1-11		Soil	5/18/06 9:15:00 AM		Α	 ;					, <u> </u>	1	1		1	1		1				
0605414-010	SB-1-14		Soil	5/18/06 9:20:00 AM		Α	• • • • - •]			-	1	:		:				
0605414-011	SB-1A-15		Soil	5/18/06 9:55:00 AM		A				1													
0605414-012	SB-1A-W		Water	5/18/06 10:50:00				A	Α														

Test Legend:

1 G-MBTEX_S	2	G-MBTEX_W	3 MTBE_W	4		5
6	7		8	9	.)	10
11	12	· · · ·				

Prepared by: Rosa Venegas

Comments: 012 MTBE by 8260 5/30/06

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCAMP Website: <u>www.mc</u> Telephone: (925) 798	10 2 ^{*d} AV PACHEC campbell.	VENUE SC CO, CA 94:	OUTH, 553-556	#D7 50 1 in@n	ccamp		677			1				DU	HA ND '	FIN	1E			H	۲ 24		4	Ц Н 81		TA S DAY
Report To: Morgan Gillies	-1020	E	Bill To			5/ 190-1	022			┼──								que							Other	Comment
Company: Pangea Environm 1710 Franklin Street, Suite 20		rvices, In and, CA	c. 94612			pangeae	nv.c	om		8015)/MTBE		B&F)	â								310					Filter Samples
Tele: (510) 836-3702					36-37	and the second				NS I		&F/	418.				İ				625 / 8270 / 8310				6	for Metal analysis:
Project #: 1001.001				Name: Dublin Auto Wash				- ŝ		520 E	·) su		() ()		Ì				827(S I	Yes / No		
Project Location: 7240 Dublin	Blvd., I	Dublin, C	A							ģ		se (5;	arbo		803						25 /	020)	50)		2	
Sampler Signature:		-ce-	<u>مت</u>							02/8(Leas	100	_	02 /		5					9 / 6	/ 60	6010)		
T	SAMI	PLING	0	ers	MA	TRIX		METI RESE	HOD RVED	Gas (602/8020	8015)	011 & 0	n Hyd	/ 8021	EPA 6	,aJa	3 -		1 / 826	8270	by EP	(601	(6010	200.9 / 6	ret	
SAMPLE ID (Field Point Name)	Date	Time	# Containers	Type Containers	Water Soil	Air Sludge	ICE	HCL	HNO ₃ Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EFA 000 / 0001 EPA 608 / 8083 DCP's CNI V	FPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 20	12 2 2 0 0	
MW-8A-5	5/17	705	$\overline{1}$	a eta liner	\overline{x}		$\frac{1}{2}$	+		tx		ļ							<u> </u>						X	
MW-SA-10 MW-SA-15		715	$\frac{1}{7}$	1120	x		X	┝╾┝		K	}		┥╾╍╼╌┤													
Mar - 15	<u> </u>	725	<u>†</u>				$\frac{1}{\sqrt{2}}$	┼╌┼		檺			• · · · • •					+				- ~ -			\bigcirc	
5B-2-5	E/18	755		$\left\{ \cdot \right\}$	$-\epsilon$		Ê	+		Ю				···							···· -					
SB-2-10	110	800	1		X		$\hat{\mathbf{x}}$	╄═╌┼		R		ļ	+									├				
	<u> </u>		<u>↓</u> {	$\left - \right $			13	╆╌┤		Ю	1									ł				· · · • }		
<u>58-2-15</u>		805	₩	-			17	╡		(- 1		
SB-2-20	}	1240	1				Ŕ	1			ĺ		- +						.						X	
>D-1- /	ļ	910	L <u>/</u>				X	$\left \right $		\geq) }	ļ]	\times	
>15-1-11		915	/				X			$ \times$														_	\times	
B-1-14		920	1		X	_	X			\succ														Ĩ	\times	
B-1A-15		955	1	V	$\mid \times$		K			\times						1									XL	130tu
B-IA-W		1050	3	itch wis	X		Ŕ	X		X				- 1					1					1	∇	5/30/0
B-1A-5		950	1	icetor liver	X)	X			ľ	+			- +				1	1					4	2	ONHOL
							1			T									1							x <i>J-</i> 7 71
Relinquished By:	Date: 5/10	Time: 10:44	Rece	ived B	Ö.	Jac	Ŋ	,		G	E/C DOD	CON	V NDITI CE AI	ION		<u> </u>	<u> </u>		- (*	<u></u> 4		(COM	IME	NTS:	***
Relinquished By:	Date:	Time:	~~	ived ¹ B						D	ECHI	OR	INAT	ED I	NE IN LA ITAIN	B ERS	V	/								
Retinguished By:	Date:	Time:	Rece	ived B	v•					- Pi	RESE	RVE	D IN	LA	J	-										
• • • • • • • •					, •					1				vo	AS	0&6	: N	ETA	LS	отн	IER					
	I I	1	t							[pr	ESE	RV A	TION	4			-1	1<2								

I

McCampbell An	alytical, Inc.	Telephone	ue South, #D7, Pacheco, C. : 925-798-1620 Fax : 92: :ampbell.com E-mail: mair	5-798-1622	com	
Pangea Environmental Svcs., Inc.	-	#1001.001; Dublin	Date Sampled:	05/18/06		
1710 Franklin Street, Ste. 200	Auto Wash		Date Received:	05/19/06		
Oakland, CA 94612	Client Contact: M	organ Gillies	Date Extracted:	: 05/30/06		
	Client P.O.:		Date Analyzed:	05/30/06		
Extraction Method: SW5030B	Dxygenated Volatile Orga Analytical Metho		/MS*	Work Ord	er: 0605414	
Lab ID	0605414-012A					
Client ID	SB-1A-W			Reporting		
Matrix	W			DF	=1	
DF	20			S	w	
Compound		Concentration	inn 1999 - Shaniyi ya Yinan iyan 19	ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	90			NA	0.5	
t-Butyl alcohol (TBA)	ND<100		· · · · · · · · · · · · · · · · · · ·	NA	5.0	
Diisopropyl ether (DIPE)	ND<10		· · · · · · · · · · · · · · · · · · ·	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND<10			NA	0.5	
Methyl-t-butyl ether (MTBE)	500		1 - 4	NA	0.5	
	Surrogate Rec	overies (%)				
%SS1:	107			1		
Comments	na na kitu waka ni wakiti shinitiki kawa kata kitu kata kata k		in an an an an an an an ar an ar an ar an ar an ar an ar an ar an ar an ar an ar an ar an ar an ar an ar an ar			
* water and vapor samples are reported in μg extracts are reported in mg/L, wipe samples i		ng/kg, product/oil/non-aqueo	ous liquid samples and	all TCLP & S	PLP	
ND means not detected above the reporting I	imit; N/A means analyte not appl	icable to this analysis.				
# surrogate diluted out of range or surrogate	coelutes with another peak.					
h) lighter than water immiscible sheen/produ organic content/matrix interference; k) report reporting limit raised due to insufficient sam	ting limit near, but not identical t	o our standard reporting limit	it due to variable Encor			

reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

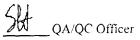
W.O. Sample Matrix: Water				QC Mat		WorkOrder: 0605414				
EPA Method: SW8260B	E	xtraction	: SW5030	В	Batch	nID: 21916	5	Spiked San	nple ID: 060	5584-005B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
tert-Amyl methyl ether (TAME)	ND	10	98.7	103	4.22	98.1	99.4	1.33	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	50	116	107	7.77	105	104	0.336	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	10	115	118	2.30	118	119	0.827	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	98.7	102	3.26	99.6	102	2.33	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	109	112	2.79	107	110	2.87	70 - 130	70 - 130
%SS1:	97	10	106	104	2.07	108	104	4.18	70 - 130	70 - 130
All target compounds in the Metho	d Blank of thi	s extractior	h batch wer	e ND less th	an the method	RL with the	e following	g exceptions:		
NONE										

BATCH 21916 SUMMARY

Sample ID	E
0605414-012A	5/

Date Sampled 5/18/06 10:50 AM Date Extracted Date Analyzed Sample ID 5/30/06 5/30/06 11:31 PM Date Sampled Date Extracted Date Analyzed

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

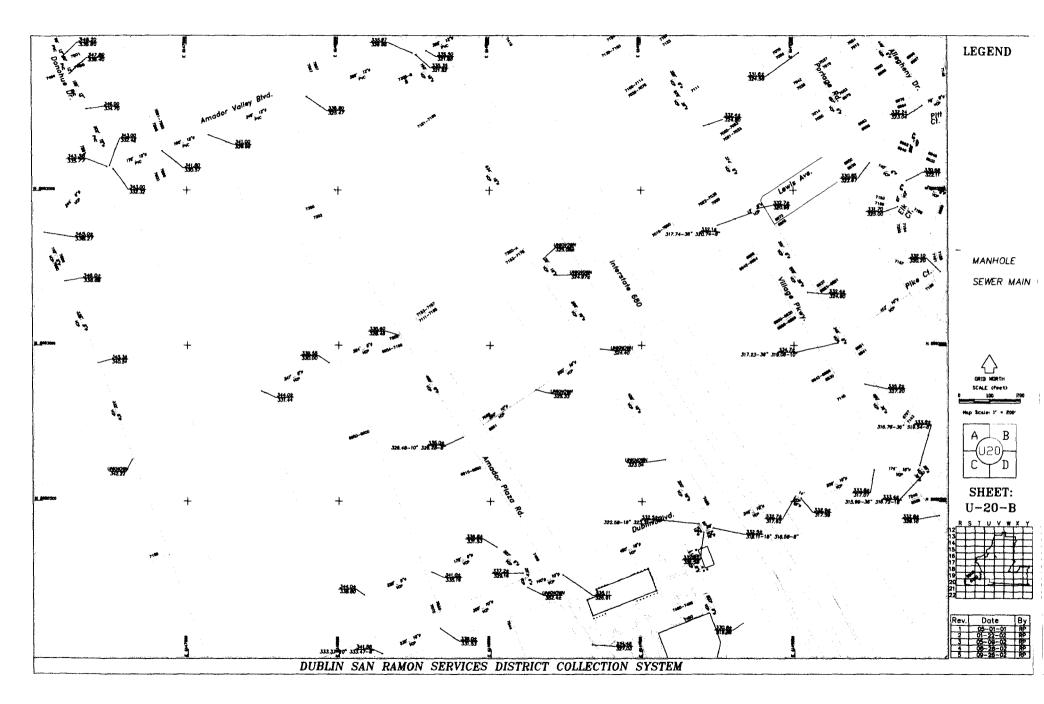

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

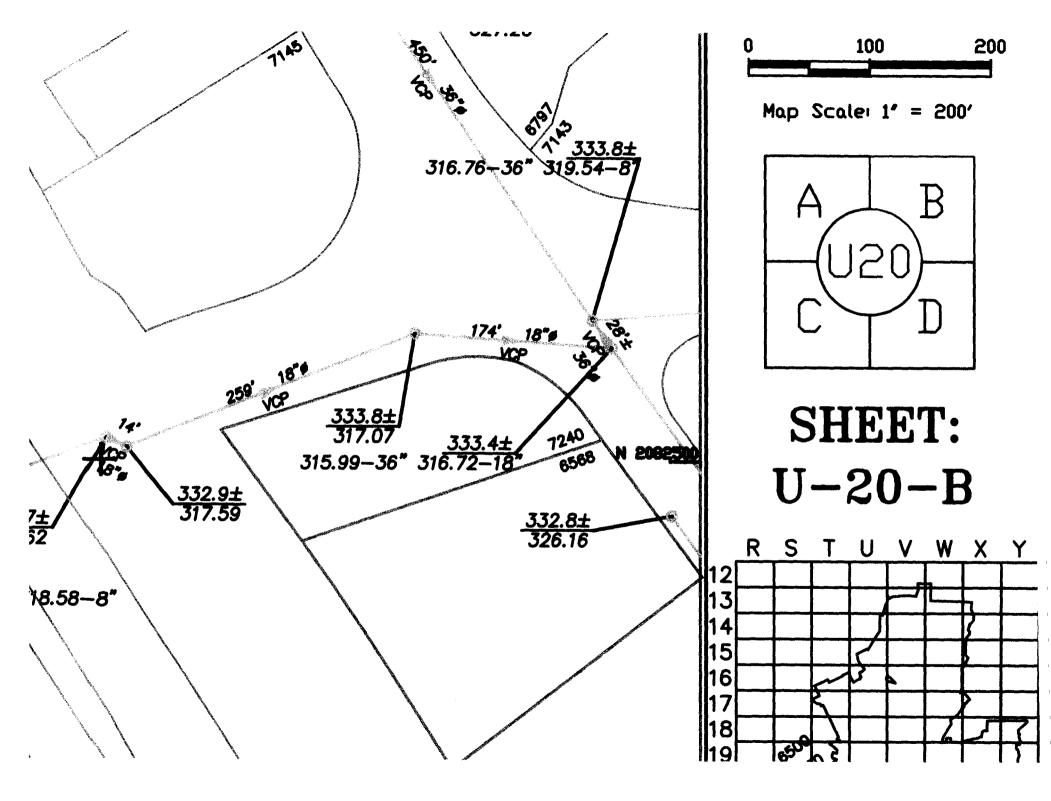
MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.


DHS ELAP Certification N° 1644


a na an an an an an an an an an an an an							Ŗ	QO	i	0	60	15	41	4														с.	×., 1944.,			
We	NcCAMP 1 bsite: <u>www.mc</u> one: (925) 798	10 2 nd AV PACHEC campbell.('ENUE SO XO, CA 945	UTH. 53-556	#D7 :0 in@n	nccar	npbel			2					IN A		OU	ND) TI	MI		R		ł	DD 24 H rite) IR	4	لیا اا 8		RD 72 1		* 5 DAN
Report To: Mor				ill To	: Pa	ngea												Α	nal	ysis	Req	ues	t						0	ther	1	Comments
Company: Pang 1710 Franklin S			nd, CA 9			illies	@pa	ngea	env.	.com	1		8015)/MTBE		(5520 E&F/B&F)	(I.									8310				בר ולוו ש		15	Filter Samples For Metals
Tele: (510) 836-				ax: (015)/		E&F	(418											1		Š			nalysis:
Project #: 1001.	and the second sec			rojec	t Nar	ne: I	Jubli	n Au	ito V	Vasl	1		+		5520	Suoc		8020)		X					/ 8270	6						Yes / No
Project Location							<u></u>		<u> </u>		<u> </u>		8020		ase (carb		5 / 80		ONL					625/	6020)	6020		à.			
Sampler Signati	ire:	T	APLING 2 MATRIX METHO						тно	<u>, , , , , , , , , , , , , , , , , , , </u>	Gas (602/8020	ŝ	5	Hydrocarbons (418.1)	8021	A 603		PCB's ONLY			260	20	EPA	010	10/	9	ğ					
		SAMI	PLING	2	ners					PRES			IS Gas	(801S)	i Oil		8/01	(EP.	=	82 PC	[41	151	24 / 8	5 / 82	s by	als (6	ls (6	200.9 /	de restant			
SAMPLE ID (Field Point Name)	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	ICE HCI	HNO	Other	BTEX & TPH a	TPH as Diesel	Total Petroleum Oil &	Total Petroleum	EPA 601 / 8010 /	BTEX ONLY (EPA 602/	EPA 608 / 8081	EPA 608 / 8082	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's/PNA's by	CAM-17 Metals (6010 /	LUFT 5 Metals (6010 / 6020)	Lead (200.8 /	0, 8260			
Miw-8A-65		5/17	705		get. live		$\frac{1}{x}$	+	<u> </u>	$\overline{\mathbf{v}}^{+}$	+	+	X																X		┽	
MUSK-IN		F1/1-	715	$\frac{1}{7}$	100		$\frac{\alpha}{x}$	+-+		X	-		$\mathbf{\hat{\mathbf{x}}}$		+		1		 										$\mathbf{\hat{\mathbf{v}}}$			
Min-8A-5 Min-8A-10 Min-8A-15			725	17-	╏┤─	┨─┤		+		X			$\mathbf{\hat{X}}$.		-						· . ·				$\langle \mathbf{Z} \rangle$		-	
5B-2-5		5/18	755	7	┨╌┼─╴	╉╌┤	\leftarrow		-6	×	+		$\mathbf{\hat{\times}}$		<u> </u>													· ľ	$\mathbf{\mathbf{x}}$		-	
SB-2-10		P110	800	$\frac{1}{i}$			X			$\frac{1}{\chi}$			Ŕ		+			↓ 	÷					• • • •				Ĭ	$\widehat{\mathbf{X}}$			
SR-2-15			BOG	<u>†</u> ;─	┫╌┨╌╸		X	-		À-	-	+	\times		+		+											;; †	X		-	
53-2-20	,		1240	17		-	$\overline{\mathbf{v}}$	+	-,	Z	+		$\overline{\mathbf{x}}$						<u> </u>										$\mathbf{\mathbf{x}}$			
RB-1-7			910	17			Ŷ		í	Z			\bigcirc	-		ļ			+ - ·										\mathbf{i}			
KB-1-11		+	915	17		+	$\widehat{\mathbf{x}}$	-		X	+		$\widehat{\times}$.				+			ļ							, 	$\hat{\mathbf{X}}$	·		
5B-1-14			920	- <u>'</u>	1-1		X	-	,	X	+	┼╌┨	X								↓							─-ľ	$\mathbf{\hat{\mathbf{A}}}$			
13-14-15		1	155	$\frac{1}{r}$	\forall		$\overline{\mathbf{x}}$	╌┼╌┥	ť)-	+		\mathbf{X}						-	ļ		i						┌──ऻ	$\widehat{\mathbf{X}}$	(F	Sotul
B-IA-W			1050	3	itch		\rightarrow	┽╴┦	-K	$\frac{1}{2}$		+	$\mathbf{\hat{x}}$	-	· • · · ·					<u> </u>	ļ		ļ					1		17	7	5/2010/0
B-14-5		· [950	1	tield		2	+-+	-K	X X X	`	+		 	+	·						· ·	·					T Y	\mathfrak{S}		-	5/30/06 WITCL
- 11			1.v	+∕	1/1 W		4	++	⊢–ľ			+						<u> </u>	4	+						·	· · · · ·				M	V IICer
Relinquished By:	1.ar	Date: 5/19	Time: 10:244	Rece	ived I	By:		/ X	Ø	\mathcal{O}^{\perp}			GC	E/t°_ DOD	CO					└ /	L		i			d	CON	IME	NTS	:		
Relinquished By:		Date:	Time:		eived I								DE AP	CH PRO	SPA LOR DPRI ERVI	INA Ate	TED E CO	IN Î NTA	INE	RS_	-/	-										
Relinquished By:		Date:	Time:	Rece	eived I	By:									ERVA		v			&G	MF pH-		LS	OTH	IER							

i.

APPENDIX F

Dublin San Ramon Services District Sanitary Sewer Maps

APPENDIX G

Pangea's Standard Operating Procedures for Monitoring Wells

Pangea

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Pangea Environmental Services' standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

APPENDIX H

Well Development Field Data Sheets

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	NE Fanger C	7240 Dublin	Bud	PROJECT NUN	IBER 060522	-WE-1_	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Mayron L Ultransfer	617803	5/22/06 CO530	40,7.0,10.0 AH 3900115	4,13,7.16,9.98ph 35173 15	4.0,7.0,10 c n H 36100 ls	656	ue
Huch Hoap 7. rob Juneter	0410000 37749	11	7,60, 470 NTU	7161, 473 NTU	ok	BS'F	ase
ellouber	617803	5123106 00540	44, 201100 pH 3400 15	3.99,7.07,9.97,07 3911,45	۲. ۵, ۵, ۵, ۵, ۵, ۲. ۲. 350 منابع	63'F	we
viter L	617803	5127106 C 0545	4.0, 3.0, 10, 0, 01 3400 16	3.96, 7.09, 10.04p 3926,19	42,20,00,0 H 3900 MG	66°F	
myron i vilbrame bre	617803	5135106 Q.0600	3400 AS	4.03, 7.16, 10.11ph 3907 ds	4.2, 20,00,00 pH	61°F	6
							_

WELL GAUGING DATA

Project # 060522-WC1 Date 05/23/06 Client Pansen Site 7240 Dullin Blud.

	Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TQB or TOC	Rinal OTB=
1	MW-7C	2			1		7.02	42.95		44.45
	MW-3A		no sph	detroted b sheen	en Ai	erface pithe	100-1	16.64		16.64
	MW-62						10,57	18.50		19.14
v	MW-6B	2					8.65	29.69		29.71
ý	Mw-6C	2					8.13	43.20		44.10
Ċ	MW-7A	44					8-87	1386		13.80
J	MW-7A	4				he	913	M.43		19,43
V	NW-7B	2					8.96	28.01		2=3-39
•	(SE)	2								
	MW-8A	2					947	18,96		18,96
	MW -9,A	2					9,85	19.60		19.62
1	MW-90	2					10.05	36.73		44.13
\checkmark	MW -10A	\mathcal{F}					6.77	19.45		19.417
√	MW-10C	2					6.94	39,58		44.53
\checkmark	MW-11C	3					9.73	36,70		412.95

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #: 060522-000-1 Client: oraca Date Developed: 5/25/06 Developer: WC/AM Well I.D. MIN. Well Diameter: (circle one) 3(4) 62 Total Well Depth: Depth to Water: After 16.6L Before 0.04 After Before 16 64 Reason not developed: If Free Product, thickness: 10min w/ 4" surge black Additional Notations: Surger los دسوال prior to purge Volume Conversion Factor (VCF) VCF Well dia. {12 x (d²/4) x π} /231 0.16 2" 3" 0.37 where 12 = in / foot 4" 0.65 d = diameter (in.) 6" 1.47 $\pi = 3.1416$ 10" 4.08 12" 6.87 231 = in 3/gal 3 4 25 may/ lessing or durchered Х 107.5 Specified Volumes 1 Case Volume gallons = D Bailer Electric Submersible Purging Device: □ Suction Pump Positive Air Displacement Type of Installed Pump Other equipment used 4" surge black Cond. TURBIDITY VOLUME N7W2 (mS or uS) TEMP (F) (NTUs) **REMOVED:** TIME pН NOTATIONS: bottom/Dark & silly 4.3 12.22 4,4 1506 >1000 66.3 323 8.6 A: He alt. 65.8 1520 13.71 330 G.O 22725 869 1456 1695 12-9 340 C.C. G, De Pump Not ouch How NO EN 05 m Cr wherea 1340 ewa ered 3 زى CAG ٩, echer ナう E-2 @ Time DIW = 1041 ow ~ 4.53 a 7 me 14.05 Ð 1042 A 14.41 1046 1043 *C* or 14.33 ウ 1044 14.22 1045 14.141 2 Gallons Actually Evacuated: Did Well Dewater? \ \mathcal{X} If yes, note above.

Well I.D. MW- 3A	PAGE 2 OF 2
Project #: 060522-126-1	Client: Paraea

					\sim	
TIME	TEMP (F)	рН	Cond. (mS or µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
AD1412	7.5	TW=	the second second second second second second second second second second second second second second second s	7		
-		· \				
C.	raed	we	1 for	10 a	Storal	min prio to purce
<u> </u>				·		Prove Porst
1448	65.7	7.5	1997	71000	17.3	gray, some honvys. It/ clocrity
1456	66-4	7.7	1886	392	21.6	clearing, fint our / list gray
1512	65.2	7.7	1904	51	25.9	Clear, very faint allar
1512	well	Dewa	Reved	a	26 90	long and puge
					\sim	
						·
<u> </u>						

Project #:	01.05	122-100	1	Client: Pf	NGGA		
Developer		10m	- 1	Date Devel)	24 (06	-
Well I.D.		N-GA		Well Diamo			
Total Wel				Depth to W			1
Before \9	-	After 19.	14	Before 10	~~	r seevextpage	
Reason no			·	If Free Proc	·····		
		s: Surged	Well P	1 5	$\frac{1}{10}$ w/2	. surgeblock prior	
Voluine Convi	ersion Factor (VCF) 1 ² /4) x π} /231		Well dia. VC 2" = 0.1	F		to purye	1
where 12 = m /			3" - 0.3 4" - 0.6	7	.43		
	neter (in.)			7			
231 = in 3	/gal		12" = 6.8		vater 4		
1.3	>	x ?	is may/c	lears or di	ι,, Γ	32.5	
1 Case V	/olume		Specified	d Volumes		gallons]
Purging Dev	vice:	Q	Bailer		Q	Electric Submersible	
			Suction Pum	р	<u>ب</u> کر	Positive Air Displacement	
		Type of Insta	· 7	J;		1	
		Other equipm			inge blac	K	-
TIME	TEMP (F)	рН	Cond. (mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	07W=
1310	74.1	1170	2534	2001	1.3	HARD BOJTOM	15.36
		11.19	1854		2.6		1
1313	72.0	11.18		7/000	^	VARK, LASS OF SILT	15,88
1315	71.0	<u>6,54</u>	1600	71000	3.9	Wery dark ul heavy eith	to pump top
230	10.8	4,56	1600	71000	5.2	Very douck will sitt	4
13:23	10.8	9.97	1520	71000	6.5	Shit lighter grey	1 \
1326	70.5	8.54	7008	71000	7.8	HEAVY SLLT Jor K	
1323	70.3	7.69	2251	555	9.1	cloaving/slow upkeep	
1337	70.6	7.36	2266	229	0.4	more clear less site	
1340	74.1	7.30	1247	362	11,7	Attle silt/clear	1
1346	70.4	7.75	22 37	614	130	cloudy	1
1346	well	1	fered	Q I	3,90	lons	1
		ext oag	\neg	rection	ce in	RO]
			-		2]
Did Well Dew	vater? Vpc	If yes, note abo	ve.	Gallons Actuall	y Evacuated:	13]
	7		· <u>····································</u>				

Well I.D. MW-6A	PAGE 2 OF 2
Project #: 060522-LDC-1	Client: Paraca

	TIME	TEMP (F)	pH	Cond. (mS or μS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
	1. 20		Zecho		(IN 105)		
3	etm-e	DTW	=	-C			
	13418		17.32				
	; 3 0		16:93				
	1349		16.64				
	ንር		16.35				
	1350		16.10				
) 3 C		15.77				
	35		15.56				
	: 30		15.23				
	1352		15.05				
	• 32		14.86				
	1353		4.70				
	13¢		14.53				
	1354		14.18				
	<u>ن</u> ،		13.76				
	1355		13.47				
			1315				
Ļ							
Ļ							
Ļ							
L							

Project #: 060.522-10C-1	Client: Pa	rcra]	
Developer: Le / D M	Date Develo	Date Developed: 5/24/06			
Well I.D. mw-GB	Well Diamet	ter: (circle	one) 🗭 3 4 6		
Total Well Depth:	Depth to Wa				
Before 29.69 After 29.71	Before 8.6	<u>S Afte</u>	er		
Reason not developed:	If Free Produ	uct, thickn	ess:		
Additional Notations: Surged Well dia. Volume Conversion Factor (VCP): Well dia. VC $\{12 \times (d^3/4) \times \pi\}/231$ 2" = 0.1 where 3" = 0.1 $12 = in / foot$ 4" = 0.1 $d = diameter (in.)$ 6" = 1.4 $231 = in 3/gal$ 10" = 4.1	6 17 55 17 18	10 mi	prior to prize]	
3.4 X 25 mux/clewi	ns ar devictor		- 80.0]	
I Case Volume Specifie	d Volumes	=	gallons		
Purging Device: 📮 Bailer			Electric Submersible		
Suction Pum	р	X	Positive Air Displacement		
Type of Installed Pump Other equipment used	2" Surge	block			
Cond.	TURBIDITY	VOLUME]~	
TIME TEMP (F) pH (mS or μ S)	┟┉╍┅╧┉╼╍╌┟╍	REMOVED:	NOTATIONS: here bottom actual fork strey	Das	
1001 704 73 2443	<u> </u>	3.4	(Micks, IF	13.63	
1005 70.2 7.4 2366		6.8	lighter/grey of happy silt	1.5,42	
1008 69.9 7.4 2335	21000	10.2	GRET W SILT	16.60	
1013 17-5417 7.3 2304	21000	13-6	LIGHTER GREY W SILT	11.46	
1017 69.7 7.3 2300	21000	17.0	HARD BOTTOM Del GREY (1	\$8.0	
1020 702 7.3 2291	71000	20.4	More silf& denker grey when sugged w/ pump	18.30	
1024 69.8 7.4 2268	21000	23.8	GREY LIGHTER SILT	18.13	
1027 70.6 7.3 2274	21000	27.2	GREY W LIGHTER SIUT	19.18	
1031697732269	71000	30.4	LIGHTER CREY SILT	1	
1035 70.1 7.3 2264	71100	33.8	GREY W/ silt	19.9	
1030 101 73 2268		37.2	LIGHTER GREY VISIT	7	
1042 70.0 7.3 2762	7/000	40.6	LIGHTOK GRET WISHT	1 -	
1041 70.0 7.3 22.60	21000	43.8	LIGHTER GREY WISILT	21.1	
Did Well Dewater? 10 If yes, note above.	Gallons Actually		35	1	

Well I.D.	Milest -	GR		PAGE 2 O	F 2		1
		522-0	-x-1		ange	9	1
			Cond.	TURBIDITY	VOLUME]
TIME	TEMP (F)	pH	$(mS \text{ or } \mu S)$	(NTUs)	REMOVED:	LIGHSER GREY WSILF	
1950	69.3	7.3	2257	71000	472		JJ)/
1227	69.6	-1.3	7723	71000	50.6	UGHTER GREY WSNUT	21.2
1055	69.5	7.3	2247	71200	540	enged up pump	21.4
10/	69.8	1.3	2742	71000	57.4	LIGHTER GREY WISILY	215
1106	70.1	7.3	3234	71000	60.3	LIGHTER GREY W/SILT	21.6
dili	60.9	7.3	2236	21000	64.7	GREY NSILT	21.8
1//14	69.7	7.4	9930	71120	67.6	Becoming less dark when	$\lambda^{1,q}$
1118	69.5	7.3	2231	71000	71.0	GREV MILLIT	22.2
1123	69,6	7.3	1228	71000	74.4	some heavy will mostly susper	22.0
1127	70,1	1.2	2235	71000	787.8	grey, because clarker when surged by pump / some with	27.4
1132	70,4	7.3	2239	5/000	\$1.2	grey/weith	23.0
1)36	69.8	7.4	1233	7/000	860	11 7	22.14
					t-)		1
Rec	have	e info	. •				
1139.		18.05	D.1				
1140		17.48					
1141	D	16.7%		···· ··			1
1142		16.61					
1142	1.	16.48					
11-1-2-		10,10					ł
					·	·	
							l
					· · · · · · · · · · · · · · · · · · ·		
					<u></u>]

3

Project #:	0605	522-W	$\langle \cdot $	Client: PA	NGGA		
Developer	: LJC/	DM_		Date Devel	• • • •	25/06	
Well I.D.	MW-	61.		Well Diame	eter: (circle	one) (2) 3 4 6	
Total Wel	l Depth:			Depth to W	ater:		
Before <i>l</i> .	13.20	After 44	,10	Before \mathcal{G} .	13 Afte	r seepage 2	
Reason no	ot develop	ed:		If Free Proc	luct, thickn	ess:	
Additiona	I Notation	<u></u>	Well dia. VC	SULAR Pla	ck. for 1	I in porce to page	
{12 x (c where 12 = in /	s ² /4) x π} /231 foot neter (in.) 416		Well dia. VC $2"$ \sim 0.1 $3"$ $=$ 0.3 $4"$ $ 0.6$ $6"$ $ 1.4$ $10"$ $ 4.0$ $12"$ $ 6.8$	6 5 7 5 7 8 7			
5.6		Х	JS MAX	1 cleaning or	Contace 9.6.	140.0	
1 Case V	Volume		Specified	l Volumes	=	gallons]
Purging De	vice:		Bailer Suction Pum	р	¢ D	Electric Submersible Positive Air Displacement	
		Type of Insta Other equipn	· •	11 Sunge	hlock		
			Cond.	TURBIDITY	VOLUME		D7W:
TIME	TEMP (F)	pH	$(mS \text{ or } \mu S)$	(NTUs)	REMOVED:	NOTATIONS:	14.62
6130	67.2	· 7 3	2436	>000	······	PARK GREY VEST SILFY	1.
$\frac{00138}{00138}$	63.2		Q40	02/15	$\frac{1}{1}$	Forter dank gray ser silty	1 ,
	12.12	1.5	2543	2/000	168		16.6 17.5i
<u>(1955</u>	$\sqrt{2}$	1.5	24.20	71000	<u>)), 11</u>	Sterlister	18.85
100.	$\mathcal{G}(\mathcal{L},\mathcal{L})$	·7.5	2133	2/000	280	second darter when	1.
1013	$\left(\begin{array}{c} c \\ c \end{array}\right)$	1.5	2595	2/000	33.6	suger in prop (dark daily inputer dark grey Silty hor	1960
1.231	(0, 0, 1)	$\frac{1}{2}$	1383	1010	39.5	1 lescheryy	20 c
1018	(9.)).5	2349	2/000	44.8	sume in romp (Sill-multi cagious	
1036	689	7.5	2560	× 1095	50.11	1855 5.14 Lighter grey	20 (5
1244	69.4	1.5	2310	·21000	56.0	prop/ 5 thy gray	
1051	(0,1)	1.5	2.576	.7 (200	61.6	GNEY/less silt	12.17
1059	GG	1.5	2342	7/000	6.1.2	mestly suppred in Hat	25.13
1107	63.7	75	2356	959	12.8	Lighter grey less site	1231
Did Well Dew	ater?	If yes, note abo	ve	Gallons Actuall	y Evacuated:	140]

•

Well I.D. MW- EC	PAGE 2 OF 2
Project #: 060522. WC-1	Client: Para 6 6 6
	~.)

			Cond.	TURBIDITY	VOLUME]
TIME	TEMP (F)	pH	(mS or μ S)	(NTUs)	REMOVED:	NOTATIONS:	5765 -
1115	690	7.4	23410	71200	18,4	Light your some sitt	23.55
1123	623	7.4	2335	71000	84	No visible induse when surged by pump / light giver visit	23.70
1120	69.0	7.5	2304	:>1000	89.6	grey w/ silt	7.4.15
1138	0.10	7.5	2335	7/000	45.2	gren sitt in chand	25.65
1145	68.7	7.5	2319	>1000	100 3	small amounts of heavy city	25,86
1151	68.7	7.4	2575	549	1064	lighter grey some silt	35.45
1200	68.8	7.5	2321	180	112	More clear your since	25.99
1208	69.0	7.4	2325	74	117.6	Cleaning will pump net	26.46
12114	68.7	7.6	2316	71000	123.2	WE a surged in punc is sitte	26.95
1222	68,5	7.6	3318	71000	128.8	Flearer W grig Some	26.91
1230.	68.7	7.5	2322	942	134.4	well clears if pump is not]
1237	69.6	7.4	2303	177	1400	surged in well,	27.70
•							
Da	NO P	Mae	22	Scase	Volun	he max.	
		\bigcirc]
		Δ					1
Rech	NG.C.	MRO	- -				1
Dine		DTW=		@ Ime		DTW=	
1240.5 -	P	24.45		1243 -		14,08] <u></u>
1241		22-70		1243.5 -		17.24	
1241.5 .		21.15		1247 .		16.55	
1242 -	b	2005		1244.5		15-90	
1242.5-	Þ>	18.90		1245 .	b	15.37	1
				1245.5		141.85]
							1
						,	1
							-

Project #: 060522-wc-1	Client: Parsea
Developer: we list	Date Developed: 5/24/06
Well I.D. MUS - 7AA	Well Diameter: (circle one) 2/ 3 (4) 6
Total Well Depth:	Depth to Water:
Before 13, 8 DAfter 13, 80	Before 8 32 After
Reason not developed:	If Free Product, thickness:
Additional Notations: Sweech well f	or 10 min w/ 4" surge black prior to pueso
Volume Conversion Factor (VCF):VWell dia. $\{12 \times (d^{1}/4) \times n\}/231$ 2" =	<u>VC</u> F 0.16
where $3^{\prime\prime} = 12^{\prime}$ in / foot $4^{\prime\prime} = 12^{\prime}$	0.37 0.65
d = diameter (in.) 6" = $\pi = 3.1416$ 10" =	1.47 4.08
231 = in 3/gal 12" -	6.87
I Case Volume X 25 mus / cless	$\frac{4}{32.5}$ ied Volumes = gallons
Purging Device: Bailer Suction Pu	Imp Electric Submersible Positive Air Displacement
Type of Installed Pump	
Other equipment used	4" surge Block
Cond.	TURBIDITY VOLUME IN A Q HOUSE
TIME TEMP (F) pH (mS or	
0730 640 6.8 2604	
0735 64.1 7.3 2047	
0739 64.0 7.6 7424	1 276 9.9 Cleaning lowery little alt 11.9
0747 hell dematerra	10 ril gallanes
well sechage info:	
Qine Diwe	letime DTW=
0748	0753 12.46
0749 12.56	0754 12.44
0750 - > 12.50	0755 12.41
0751 - 0 12,489	0755 12.38
0752 12.48	07.56 12:36
D Surbed well again	
0920 -> (
Did Well Dewater? If yes, note above.	Gailons Actually Evacuated:

Well I.D. MW - 7AIL	PAGE 2 QF 2
Project #: 060522-wc.1	Client: Janapa

			Cond.	TURBIDITY	VOLUME	
TIME	TEMP (F)	pН	(mS or µS)	(NTUs)	REMOVED:	NOTATIONS:
0738	V V	7W =	5.11	<u> </u>	125/0	6
					143	
0145	63.8	7.1	2228	68	13.33	Clear (turned Down punp) corbible in line
0751	63.7	7.7	2279	43	els. t. 17.6	clear clear long
0758		7.9	2321	58	20.9	clear
0758	hell	deworke	sed @	~ 7	1 gal	long
	1					

Project #:	C((1 +)	2-1001		Client: P	nge G]
					oped: 5/2	4106	1
				Well Diameter: (circle one) 2 3 (4 6			
				Depth to W			1
		After 19.	43		17 Afte	er 1	
Reason no					duct, thickn		1
Additiona	l Notation	15: Surged	well for la	Durihu 103	proter	o suise]
Volume Conv	ersion Factor (VCF) d²/4) x π} /231):	Well dia. VC 2" = 0.1	F			_
where $12 = in /$	fout		3" = 0.3 4" - 0.6				
d = dia: π = 3.1-	meter (m.) 416		6" - 1.4 10" = 4.0				
231 = in 3	/gal		12" - 6.8	7			-
6.	7	X L		wey a Dew.	lurs	67.5	
l Case V	Volume		Specified	d Volumes		gallons]
Purging De	vice:		Bailer			Electric Submersible	
			Suction Pum	р	Ţ)=	Positive Air Displacement	
		Type of Insta	· · · · · · · · · · · · · · · · · · ·				
		Other equipn	ient used	r" suge 1	slock.		
			Cond.	TURBIDITY	VOLUME		07
TIME	TEMP (F)	pH	$(mS \text{ or } \mu S)$	(NTUs)	REMOVED:	Hard Botton / Dark gray / silly	101
0816	65.1	7.2	2431	\$1000	6.7		4
0823	65.4	7.D	2410	21000	13(Darle grey of heavy silt	11.8
0630	65.6	7.1	2435	21000	20.1	lighter Dark grey w/ less silt	A1.8
0837	65.9	7.0	2423	812	26.8	cleaning, grey is a gift	12.
0844	¢5.5	6.9	2391	536	33.5	Cleaning/Light gray/arry little	ه, 21
(SUI	tchec	f to	3" Gr	undfos.	ESP	Omp	
0849	(a)	6.8	2274	71000	40.2	Dark Brewn/gray/ Silly	16.
9651	66.4	6.9	2:339	71000	46.9	the is a w	17.
0851 (1 . 1	dewa	reird	@ 4°	7 gal	lor s,]
<u>0853</u>	DIW		5/0	0854	0710=	14.48 / @ 0856 0	1032
C85 \$	66.6	6.9	2403	177	53.7	Cleaning / good recharge]/6.1
0859	67.0	6.9	2418	875	60.4	well dewaters & recharge as guice kly Clears Hand de ale	
0854	ue-li	dena	beined C	E 60.4	gallon	, good recharge	
		If yes, note abo		Galions Actual	ly Evacuated:	950	
(w/	ES puty)						

Well I.D. mc 7A	PAGE 2 OF 2
Project #: 060522-00-1	Client: Parajen

ļ		r	r · · · · · · · · · · · · · · · · · ·	Cal	F	I	1
	TIME	TEMP (F)	pН	Cond. (mS or µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
	0905	66.8	6.9	2404	317	67.1	Clear-trig
ł	0905	well	dew	e vered	C I	5213	allow, good rechange
		Dre	cheva	e 1'	ser-nzz	5 seco	
	0909	66.7	6.9	2348	157	73.8	clear
が好	6909 0	Le.ll	Reine	bered	e.	74 90	Mores (good recharge
	09154	echis	1 8 9				
	0913	66.7	69	2375	294	30.7	
E	rivell	dew	atesed	->> 10	it re	cherge	to 15 & itsume purse
	091E	67.0	6.9	2404	96	87.3	clear
Ì	Doneil de	water	l-Dre.	eine	purge	when k	713= 151
	0919	66.7	6.9	24:341		95.0	CLEC.
-	>an	7 0	Mae		clear	wate	
Ī							
Ī							
ľ							
ľ							
ł							
ł							
ł							
ł							
ł							
ł							
$\left \right $							
ł							
$\left \right $							
L		I		l			

Project #:	06052	3-WCI		Client: F	angen		
Developer	r: WC/	SC		Date Devel	oped: 05	123/06	
Well I.D.	mu -	· Д		Well Diameter: (circle one) (2) 3 4 6			
Total Wel				Depth to W	ater:		
Before J.	8.01	After 23	.39	Before Sr	96 Afte	rsee proved	
Reason no	ot develop	ed:		If Free Pro	duct, thickn	ess:]
Additiona	l Notation	is: Well Su	rys1 for 10	min. w/ 2'	Surse block	kpris-topurging.	
	version Factor (VCF $d^2/4$) x π } /231):	Well dia. VC 2" = 0.1	F			-
where 2 = in /	foot		3" = 0,3 4" = 0.6				
d = dia π = 3.1	meter (in.) 416		6" = 1.4 10" = 4.0				
231 - in 3			12" <u>~</u> 6.8	37			
31		X		- clearing devi	teri-y	77.>	l
1 Case	Volume		Specifie	d Volumes	=	gallons	ļ
Purging De	vice:		Bailer			Electric Submersible	
			Suction Pum	р	X	Positive Air Displacement	
		Type of Insta					
		Other equipr		" suge b	loch(D
	Τ		Cond.	TURBIDITY	VOLUME] —
TIME	TEMP (F)	pH - 너	$(mS or (\mu S))$	(NTUs)	REMOVED:	NOTATIONS:	13
0648	66.7	<u>til</u>	1975	71200	3,1	greycolo-/ heavy silt]
0652	65.6	8.6	3119	>1000	6.2		17
0657	65.3	9.3	7019	>1000	9.3	Hard Sutton left withing surged. grey color / heavy 5.1t	18
0704	65.0	7.3	2358	>1000	12.4	checkici pff 1/7 10 stad. 1 11 vc. 11 sc (c 10	17
0711	65.2	7.8	2411	71000	15,5	durkgrey /heavy silt.	17
0718	65.4	7.7	2438	71000	18.6	it it it it it glittle] 8
0723	64.8	7.9	2481	71000	21.7	Not getting cloudies when suged w/pump , 6 Etting somewhat lighte	19
0728	64.6	77	2496	745	24.8	greycolo-/ters silt.	18
0735	65.2	7.5	2517	599	27.9	11 11/11/1	19
0743	64.5	7.6	2537	178	31.0	almost strange less site head	1
0750	65.1	75	2545	515	34.1	y et clandiar/siltier when surged	1
0757	65.3	7.5	2560	543	37.2		1
6802	65.0	7.4	25.77	312	40.3	light srey/slightly cloudy	1
	water? NC	If yes, note abo	ove.	Gallons Actual	ly Evacuated:	50]

Well I.D. MW - 7B	PAGE 2 OF 2
Project #: 060522 - WC 1	Client: Pangea
	· · · · · · · · · · · · · · · · · · ·

	<u>r</u>	1		r	·····	r
THE			Cond.	TURBIDITY	VOLUME	NOTATIONS
TIME	TEMP (F)	pH	(mS or µS)		REMOVED:	NOTATIONS:
0808	65.5	7.4	2572	250	43.4	light grey/slight silt /
0813	65.2	7.4	2580	46_	46.5	CLEWINS, VERY THE SIT
096195	65.5	7.4	2593	26	49.6	clear 1
0820	1 7	purce	Q	50 00	llons/	emana clear when
		1-0			Ś	usced w/ pumps,
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
						
	~~~~~	·		~		
Well	Kec	having	info:	OTO hal	th every	30 900)
eiline		0700=		C	1	
0021		192.12				
		18.35				
0000		15.45				
0877		14.65		······································		
AG 21						
0823		13.75				
		13.10				······································
0824		12.55				
		12.08				
0825		11.74				
		11-44				
		••••••••••••••••••••••••••••••••••••••				

#### Client: Parceg Project #: 0605 22-62-1 Date Developed: 5/22/06 Developer: w//sc Well I.D. mu · 7C Well Diameter: (circle one) ② 3 4 6 Total Well Depth: Depth to Water: Before 412, 95 After 441.415 Before 7 Cz After See Acse 2 If Free Product, thickness: Reason not developed: (er Additional Notations: 10 ... w/ 2" sover block Surcel Volume Conversion Factor (VCF): Well dia VCF $\{12 \times (d^2/4) \times \pi\}/231$ 0.16 2" 3" where 0.37 12 = in / foot 4" 0.65 d = diameter (in.) 6" 1 47 $\pi = 3.1416$ 10" 4.08 231 - in 3/gal 12" 6.87 clearing/drunks (MX25) 5.7 N12.5 Х UNKI gallons Specified Volumes 1 Case Volume **D** Bailer **Purging Device:** Electric Submersible □ Suction Pump Positive Air Displacement Type of Installed Pump 7" surge block Other equipment used Cond. TURBIDITY VOLUME $(mS or \mu S)$ (NTUs) TIME TEMP (F) pН **REMOVED:** NOTATIONS: Greyish winlot ofsilt. 5 6.7 0807 66 793 71000 5.7 DTW. Greyisning alot of sil 7.1 27.83 663 11.4 0809 1687 71000 0812 5 7.7 UTWN27 741 1000 17.1 Hard bottom . 13thtor grey/fine with 3 22.8 0825 7. 66.9 1761 71000 3:14 >1000 28,5 053 ׳כ. בי grey 083 1771 151 7.3 66.9 0837 71000 34.2 282 ٩, ١ 15 ( 7 37 3 0845 39.1 11 66.7 71000 •• 15 45,6 " (reportioned had 0853 2 ١, 836 21000 10 ·+. 66.2 U 513 0904 54 00015 11 ١٢ ĸ 7. 57.0 0910 71000 11 11 11 LOUKS lighter- gray less sediment 7.5 850 71000 09 6 7.5 854 65,8 00015 (( ( 68.4 10 1890 14 Looks lighter colored of less salinent. 7.6 1837 :74 I 0975 6.0 21000 42.5 Gallons Actually Evacuated: If yes, note above. Did Well Dewater?

Well I.D. Mw - 7c	PAGE 2 OF 2
Project #: 060523-WC	Client: Pange 9

[·····	r	<u> </u>	Cond			
TIME	TEMP (F)	рН	(mS or (µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
6933	65.5	7.3	1957	71000	79.8	light giny cloudy need Sediment
0939	65.9	7.3	1871	71000	85.5	ien in ie ti
0943	66.3	7.3	1895	71000	91.2	lightgray; heavy selt,
0947	66.4	7.3	1883	0001	96.9	it is fire it
0954	66.1	7.3	1853	71000	102,8	Clearing Surged w/Pump very silty.
1001	66.1	7.3	1882	71000	108.3	
1011	65.5	7.3	1893	21000	117.0	Well churing became very sitty of pung
1018	66.1	7.3	1844	21000	119.7	
1025	66.0	7.3	1719	71000	125.4	where we well
103	66.0	7.3	1828	21000	131.1	At the fight of the
1037	66.5	7.3	1894	71000	136.8	Non to to real
1044	66.1	7.3	1837	927	142.5	When surgers DTW=2240 (W/ DUASP When surgers DTW=2240 (W/ DUASP W/ pump. Would's > 1000 NTU again
					, 	Mpump. Warlibe > 1000 NTU again
well	rec	have	info?			
Othe	1045	DTW=	21.52			
	1046	•	19.69			
	1046		18.35			
	1047		16.94			
	1047		15.87			
	1048		15.15			
	1048		14.29			
	1049		13.76			
	1049		13.17			
	1050		12.80			
	IOS P		12.47			

							-
				Client: Parcea			
Developer: Wr/OM				Date Developed: 5/25/04			
Well I.D. MW-8A				Well Diameter: (circle one) (2) 3 4 6			
Total Well Depth:				Depth to W	ater:		
Before 17	5.96	After 8,4	26	Before 9,	47 Afte	r	
Reason no	ot develop	ed:	· · · · · · · · · · · · · · · · · · ·	If Free Proc	duct, thickn	ess:	
Additiona	l Notatior	15: Sward	well u	<u>)/ a" s</u>	urge ble	to purge	
Volume Conv	ersion Factor (VCF d ² /4) x π} /231	):	Well dia. VC 2" = 0.1		$\bigcirc$	to purge	
where 12 = in /	foot		3" = 0.3 4" = 0.6	5			
d = dia π = 3.1-	meter (in.) 416		6" = 1.4 10" = 4.0				
231 = in 3	/ga1		12" = 6.8				٦
<u> </u>	>	X Q	Smix/clean	ing or dein		37.5	
1 Case	Volume		Specifie	d Volumes	=	gallons	
Purging De	vice:		Bailer		~ ~	Electric Submersible	
			Suction Pum	р	pa.	Positive Air Displacement	
		Type of Insta			-;		
·	<u></u>	Other equipm	Cond.	· surge ble	·····		-
TIME	TEMP (F)	pН	(mS or $\mu$ S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	DTW:
0832	61.8	7.6	3141	:>1000	1.5		14.18
09.56	67.4	·7 ·2	3074	21002	3.0	HARD BITTOM Dotected	15.30
	630	7.4	30.56	71000	4.5	dark grey of silt	- Report
0840			1	~		a 11	-
0010	Wel	deise	<u>itesed</u>	$(\mathcal{O})$	19.00	Ballons	-{
1 11 0	 	A					-
Well R	echore		<u>D'e</u>				4
@ Tine		DZW=		Q7.M.d.		D7W=	1
0841,5	>	17.85		0844 5		17.56	
0842	\$	17.77		୦୫୳ଽ		17.53	
0842.5		17.73		0875-5	<u> </u>	17.49	]
0843		17.68		5846 -	>	17,45	
0843.5		17.63	•	08465	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17.42	
0844	<u></u>	17.60		0847 -	\$>	17.38	
Did Well Dew	vater? Y=S	If yes, note abov	ve.	Gallons Actuall	y Evacuated:	9	
	•						

Well I.D. MW-8A		PAGE 2 O	F 2		]
Project #: 060522-600-	Client: Pa	ngeg		]	
			$\sim$	r	-
TIME TEMP (F) pH	Cond. (mS or µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	
1310 D7W = 90	95				1
1355.07W = 9.1	50,				
-DCONTINUE PUBE		SUNAMO	b well	or additional Owin.	
		~			
					DTW:
1412 665 7.4	<u>d501</u>	>1000	60		15.8
1415 66.0 7.4 1420 665 7.9	2434	7000	7.5	Biof Stated still (Now Just	יינים יינים שי
	2510	>1000	90	Clark Silly	
1420 well dente	resed		9 ga	1 (Qu >	
<u>├</u>					

Project #: 060522-wc-1 Client: Pangea							
Developer: we/sc	Date Developed: 5123/06						
Well I.D. MW - 9A	Well Diameter: (circle one) (2 3 4 6						
Total Well Depth:	Depth to Water:						
Before 19.60 After 19.62	Before After 9.85						
Reason not developed:	If Free Product, thickness:						
	12' suge black prior to purge for 10min						
$\{12 \times (d^2/4) \times \pi\}/231$ $2^{44} = 0.$	<u>VC</u> F 0.16						
12 = in / foot 4" - 0,0	0.37 0.65						
	1.47 4.08						
231 = in 3/gal 12" - 6.	6.87						
X 25(mass/clear:							
I Case Volume Specifie	ied Volumes = gallons						
Purging Device: Dealer	Electric Submersible						
Suction Pum	mp Desitive Air Displacement						
Type of Installed Pump							
Other equipment used 2 Cond.	2'swyc block						
TIME TEMP (F) pH (mS o( $\mu$ S)	(NTUS) REMOVED: NOTATIONS:	w					
1224 715 7.1 5625	71000 1.6 hard Bottom, Very darba, very sthe 14	w~ 1.58`					
1227 70.1 7.1 5212	71000 3.2 darkgrey; VerySitty 15	451					
1230 69.4 7.3 4710	71000 4.8 10 10 10 11	-					
1231 well deputered & 6gall	lleas						
, , , , , , , , , , , , , , , , , , ,							
Well recharge into:							
@ fine DTW=	Cilme Olw-						
1231	1236 - > +4.52-15.08						
1232-7 16:34	1237 - 3 14.78						
1233 D 1.5.94	1238 -> 14.57						
1234 17 15.61	1239 - 13.88						
1235 - 15,34	1240-13.25						
4	13.30 \$ 10.15						
Did Well Dewater? OS If yes, note above.	Gallons Actually Evacuated:						
1	16 gal.						

Well I.D. MW-9A	PAGE 2 OF 2
Project #: 060522-wc-1	Client: Paraca

<u> </u>			Τ	Cond.	<b>I</b>		ſ	ר
	TIME	TEMP (F)	pH	$(mS \text{ or } \mu S)$	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	OTW
	1330		ned u	ell fai	10 min		"Swale block	
F	DCarl	ine R	max e	1330				1
	1346	72,6	7.1	3447	71000	7.6	Very Darle w/ hear sit	19.85'
	1349	71.3	7.2	3322	>1000	9.2		11221
	1351	74.0	7,1	3260	21000	10.8	durkgrey / heavy silt	16.32
	1352	Well C	watered		1/075	1 1256	C7W= 15,45	ta pump tap
						C 1406	D7W =10,90	
	DContri	nue Pu	Me C	1555	1428			
	130	70.4	7.7	29996	71000	12.4	grey/w/sitt	14.67
1.	133	70.1	7.5	2932	21000	14.0	Brey/ 11 5:11 (slightly)	15.75'
1-	136	70.6	7.3	2912	71000	15.6	11 11 11	16.22 to purp top
12	137 0	vell	dewal	eved e	<u>p 16</u>	gallo	res	L+op/
10	1483	OTU	) ~ 14.	79				-
								-
					· · · · · · · · · · · · · · · · · · ·			
								-
								-
ļ								
								4
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
							,	ļ

Project #: 0605,22-wc-1 Client: Carrier							]	
				Date Developed: 5/23/04				1
Well I.D. MUS. 9C				<u> </u>	eter: (circle		4 6	1
Total Wel				Depth to W				1
Before 3	6.73	After 441	13	Before 10.		r		
Reason no				If Free Pro		ess:	······································	1
Additiona	l Notation	IS: SUICED	well fur 10	Omin w/ 2	2' surge blo	icle prier he	) BHRE	1
Additional Notations: Sussed well firs 10 mm w/ 2 suge block price to puge         Volume Conversion Factor (VCF):         Well dia.       VCF         (12 x (d'4) x $\pi$ ) /231       2" = 0.16         where       0.37         12 = in / foot       4" = 0.65         d = diameter (in.)       6" - 1.47 $\pi = 3.1416$ 10" - 4.08         231 = in J/gal       12" = 6.87							-	
4. 7 1 Case V	S /olume	X 4		aring/Jourt d Volumes	er =	gallons	2-	
Purging Dev	vice:		Bailer Suction Pum	р	_	Electric Submer Positive Air Dis		-
		Type of Insta Other equipn		L' surge !	Juck			
			Cond.	TURBIDITY	VOLUME	· · · · · · · · · · · · · · · · · · ·		]~
TIME	TEMP (F)	pH	(mS or KS)	(NTUs)	REMOVED:		ATIONS:	Orwin
:120	68.3	7.4	6332	>1000	4.3	Have bottom/	bork grey w/ heavy silt	32.32
1126	68.8	7.3	6916	>1000	8.6	Darkgrey /	henry Silt.	37.32
1134	69.9	7.2	7421	71000	12,9	10 10	(( ((	38.42
1146	71.7	7.4	8462	21000	17.2	K 11/1	( 11 pumpty	to proved at
1146 c	rell d	everter	ed @	17.2	callo	res	. ,	
					7			]
well	red	wy SK	info:					]
atime		07W =		@ Time		DZW=		
1148 -		4243'		1153 -	P	41.49		
1149 -		42.00'		1154 -	1>	411.39		
1150 -	$\rightarrow$	41.85		1159 -	1>	41-32		
1151 .	$\neg \neg \rangle$	41.73		1156 -		41.26		1
1152 -		411.62		1157-		41.14		1
Did Well Dew	ater? $\sqrt{e_{>}}$	If yes, note abo	ve.	Gallons Actuall	y Evacuated:	30-1 glb-	·	

Well I.D. MW-96	PAGE 2 OF 2	
Project #: 060522-wc-1	Client: Parceg	

TIME	TEMP (F)	рН	Cond. (mS or μS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	OTW
1330		DTW	= 30	47/=	JUNGE	d well for 2	
	10 2	instra	- w/	24	surge	block.	
	Pan Pu	rge.	0.007				35:981
1407	67.7	7.1	9587	21000	21.5	darkgrey / heavy silt.	201
1413	69. F	7.2	9494	>1000	25.8		38.52
1421	70.41	7.4	9123	71000	20.1	derk grey / heavy Silt (thick)	
1421	rell	de Wa	esed (	<u>e_30</u>	P. GR	llor 5	
							•
				) 		······································	-
				·			
						ļ.	
						/*	

	VV ELI		JEIVIEINI	DATASI		
Project #: 0605	22-WCI		Client:	ang ea		]
Developer: WC	'sc		Date Devel	oped: 05/	22/06	
Well I.D. MW.	-10.4		Well Diam	eter: (circle	one) (2) 3 4 6	
Total Well Depth	•		Depth to W			
Before 19.45	After $[4]$ .	47	Before 6.			_
Reason not devel			If Free Pro	duct, thickn	ess:	_
Additional Notati				K for 1	Omintes	
$\{12 \times (d^2/4) \times \pi\} / 231$ where 12 = in / foot d = diameter (in.) $\pi = 3.1416$ 231 = in 3/gal	v.(r).	Well dia.         V         VC $2^{"}$ =         0.1 $3^{"}$ ~         0.3 $4^{"}$ -         0.6 $6^{"}$ =         1.4 $10^{"}$ -         4.0 $12^{"}$ -         6.8	6 17 15 17 18 18			_
1 Case Volume	X	Specified	or until clea d Volumes	==	gallons	
Purging Device:			р	ں هر	Electric Submersible Positive Air Displacement	
	Type of Insta Other equipn		" surje ble	ι.V.		_ DTW
TIME TEMP (	2)	Cond. (mS ou µS))	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	
ТІМЕ ТЕМР (1 1400 66.3	⁻⁾ pH 7.3	7167	71000	J,D	Head bottom detected .	14.75
1404 66.9	7.6	15105	71000	4.0	Greycolor heart silt.	
		3012	71000	6.0	Greycolor verysilty	16.05
1407 66.8	<u>T.</u> T	3062	71000	8.0	slightly lighter are y for sitt.	-
14/18 68.4 14/18 mell	Dewatere	111		allar s		-
	10:		-3			_
Othe	piw-		@ Time		のていマ	
H19-1	> 18.37		1424.	>	17.65	
1420-5	> 18.22		1425.	>	17.53	
1421	> 18.08		1426.	>	17.43	]
1422	74749.97	F/	14.27 .		17.30	
1423	> 17.90		1428 .		17.20	
DSurged	vell for	addition	5-m	v/ 2°.	Burge block	_
Did Well Dewater?	S If yes, note abo	ove.	Gallons Actual	y Evacuated:	112	
l						

Well I.D. MUN-IOA	PAGE 2 OF 2
Project #: OGOG29-WC-1	Client: lanara

	·······	<u> </u>	T	Cond.	TURBIDITY	VOLUME	
	TIME	TEMP (F)	рН	(mS or µS)	(NTUs)	REMOVED:	NOTATIONS:
	1436	<b>b</b>	DTW	= 6	.73/	contin	e purse.
	1440	72.3	7.9	2895	71000	10.0	der he avery w/ heavy silt
	1440	mell	dewat	red	an	10.30	allones
Ŋ	5123	106 -	DQ	1015	OTIN	= 12.4	42
2	Swige		Il For	10 .mm			ntimie suge
		66.5	7.5	2920	21000	12-gul	grey & silly
		rell	densa	h	@ tota	14. 11	0
		Lell	checou	Nerech	a rela	1 Degalio	is purged
$\left  \right $				·····			
$\left  \right $							
-							
ł							
ļ							
}							
							· · · · · · · · · · · · · · · · · · ·
ſ							
ſ							
T							
ľ							
ł		·					
F							
$\left  \right $							
$\left  \right $							
L							

WELL DEVEL	$\mathcal{O}^{PMENI} \mathcal{O}^{PMENI} \mathcal{O}^{PMENI}$
Project #: 060527-661	Client: Pangea
Developer: WL, SC	Date Developed: 05/23/06
Well I.D. MW-10 C	Well Diameter: (circle one) (2) 3 4 6
Total Well Depth:	Depth to Water:
Before 39.58 After 44.53	Before 6.94 After
Reason not developed:	If Free Product, thickness:
Additional Notations: Surjed well for ~	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CF 16 37 65 47 08 87
5.2 x 25 vol. max o	muntil clear stelewiters 130
1 Case Volume Specifie	d Volumes = gallons
Purging Device: 🔲 Bailer	Electric Submersible
Suction Pum	p Positive Air Displacement
Type of Installed Pump Other equipment used	2" Suge black
TIMETEMP (F)pHCond.TIMETEMP (F)pH $(mS o \mu S)$	TURBIDITY VOLUME (NTUs) REMOVED: NOTATIONS: OTい:=
0846- 64.7 9.0 1760	>1000 5.2 Durk grey /verysilly 28.50
0852 64:7 9.5 1437	>1000 10.4 Ourk grey/very sitty (furned land) 37.00
0902 65.1 8.6 1545	71000 15.6 Dort Brey/very silly 39,54
09122 65.1 8.0 1743	>1000 20.8 hard botton detected 41.10
0924 65.4 7.8 1738	71000 26.0 Dark grey/sity (140)
0924 well dewatered	
	ent throughout above case volumes
well recharge mfo:	
@T.ne 0926 DTW= 42.35	@ Cmc 0931 DTW= 39.56
0927 41.71	0932 39.06
0928 41.15	0935 38.60
0929 40.68	0436 38.11
09:30 40:0%	09:37 37.63
Did Well Dewater?	Gallons Actually Evacuated: 46.6 gallary

Well I.D. MW. ICC	PAGE 2 OF 2
Project #: 060522-62-1	Client: Paraca

	TIME	TEMP (F)	pH	Cond. (mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	071.10
	0940	SW3	ed we	1	" suge	block	for 10 min & continue	build.
	0955	66:2	8.0	1639	>1000	31.2	Very faint sheen still ment Der & Brey / Very silly NO shee W/Durk Brey & Silly	37.7
5)	1003	66.3	8.0	1700	71000	36.4	no shee h/Durk grey &silly	40.8
i	1005	ivel	dew	atereo	0 3	37 G	allons	
	1043	66.3	7.7	1601	71000	41,5	no sheen, lighter greyes:	4
i	1050	66.0	7.8	1745			derker gray/silly	
	1050	cell	Deivat	cred	0 4	6.6.9.	illones 1	
			•					
	_							
[								
ſ								
Ţ								
ľ								
ŀ								
ł								
ł								
L	l		l		1			

Well I.D. MW-11C	PAGE 2 OF 2
Project #: 060577-WC1	Client: Pangea

			y			······	DTI
TIME	TEMP (F)	рН	Cond. (mS of $\mu$ S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	
1230	66.5	7.4	1545	21000	60.2	darkgay/very silty	
1239	66.1	7.4	1526	21000	64.5	nt k le le	
1246	66.7	7.4	1529	71000	68.8	clearsupsome then very sitty when singed v1 pump.	
1251	66.1	7.1	1512	71000	73.1	dark grey Nerysilty	
1255	66.5	7.4	1528	>1000	77.4	grey/very silly	31.61
1259	66.5	7.3.	1511	>1000	81.7	channy but quickly becan	ther y
1303	66.9	7.4	1526	71000	85.0	11 11 11 11 11	rumpits
1307	66,3	7.6	1498	7000	90.3	darkgray /very silty	
13/1	66.1	7.4	1529	71000	94.6	kulla 11	
1315	65.7	7.4	1530	71000	98,9	unif un	
1319	65.9	74	1526	>1000	103.2	Clearing, but becomes dark asing when surged by Anna	か
1323	66-0	2.4	1531	>1000	107.5	durkey 1/11 (w/ pump) 07W.	- 32.44
Well 1	Lecture	sc Inf	or lev	ery 30 .	sec.)		
atime		D7W =		/			
1324		23.60					
,5		26.75					
1325		24.90					
.5		23.60					
1326		22.18					
.5		20,96					
1327		19.61					
.5		18.73					
1328		18.15					
.5		17.51					

## **APPENDIX I**

Waste Manifest for Extracted Groundwater





#### **ENVIRONMENTAL MANAGEMENT, INC.**

#### **REMIT TO:**

P.O. Box 2407 UNION CITY, CA 94587-2407 (800) 499-3676 FAX (510) 476-1786 CAR 000 007 013

P.O. Box 349 SILVER SPRINGS, NV 89429-0349 (775) 577-9001 FAX (775) 577-9199 NVD 982 358 483 (800) 471-2105

Bill of Lading	
Invoice # 1444()	1

Date 7-7-06

BILLING INFORMATION		JOB S	ITE					
NAME		NAME	······································		······		PO#	CASH CHECK
PANGEA ESI								
ADDRESS		ADDRE			······································		CUSTOME	ER EPA ID #
TIO FRANKLIN ST. #200		7240	$D_{L}$	BLIN	BLVD STATE			
CITY STATE	ZIP	CITY			STATE	ZIP	PROFILE #	ŧ
DAKLAND CA 9	4612	DUT	ZLIN	(	A			
PHONE NO.		PHONE	NO.				CUSTOME	RID#
1510, 836 3702		(	)					
PRODUCT PROPER	WASTE	MANI	EST N	UMBER	QUANTITY	UNITS	PRICE	AMOUNT
SHIPPING DESCRIPTION	CODE					Į .		
Used Oil, Non-RCRA Hazardous	1					1		
Waste, Liquid	221							
Used Automotive Antifreeze, Non-RCRA				······		1		1
Hazardous Waste, Liquid	134							
Oily Water Non-RCRA Hazardous								
Waste, Liquid								
Non RCRA Hazardous Waste Solid								
Oil Contaminated Debris / Soil		 				1		
Waste Combustible Liquid nos 3 UN1993, PG III								
Non Hazardous Waste Liquid	~	NH	290	<u> </u>	$\Box$	G		
Non Hazardous Waste Solid		<u>  • • ₹ +- ₂</u>						
Transportation Charges	×		· · · · · · · · · · · · · · · · · · ·		14	1		
Washout Charges						K		
Drained Used Oil Filters								
Empty Drums								
Additional Labor					· · · · · · · · · · · · · · · · · · ·			
Pressure Washer								
Other:								
DISPOSAL/RECYCLING FACILITY:	Collection St	ation	Industrial	Agriculture	Government Marine	ТО	TAL	
Alviso Independent Oil 5002 Archer Street: Alviso, CA CAL 000 161 743; 95002 (510) 476-1740	Cleanwater En 2430 Almond Silver Springs NVD 982 358 (775) 577-900	Dr. , NV 89429 483	Mgmt. Inc.		D/K Environmental 3650 E. 26th Street; N CAT 080 033 681; 9 (323) 268-5056			NET 10 DAYS
Onyx Environmental Services 1125 Hensley Street; Richmond, CA CAT 080 014 079; 94801 (510) 233-8001	Seaport Enviro 675 Seaport E CAR 000 140 (650) 364-815	llvd; Redwo 624: 9406			Commercial Filter Rec 33210 Western Ave; L (510) 487-9227; 945	Inion City, CA		
DeMenno Kerdoon 2000 N. Alameda Bivd; Compton, CA CAT 080 013 352; 90222 (310) 537-7100	Evergreen Oil 6880 Smith Av CAD 980 887 (510) 795-440	re; Newark, 418: 9456						
hereby certify that all information submitted in this and all attache	doumooto o		nd accurate		the waste All minut		ardino knows -	
							-	suspecieu naraius
associated with the wastes has been disclosed. I certify that we have	ave an establish	ned program				economically p	Macticable.	
			(	JENERAT SIGNATUF	OR RE	میں میں ایک مصبح میں ایک میں میں میں ایک میں میں میں میں میں میں میں میں میں میں	ÈÈ	

NON-HAZARDOUS	1. Generator's US EPA	ID No.	2. Page 1	3. D	cument	t Number	
WASTE MANIFEST			of	1	2	905	
A Generator's Name and Mailing Address	a the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	Hing in the Add					
Generator's Phone Configuration of States Configuration of States Company Name	6.	US EPA ID Number	7. Transpo	rter Phone	,		
CLEARWATER ENVIRONMENTAL	l	CAR000007013		(510) 4	76-17	40	
8. Designated Facility Name and Site Address	9.	US EPA ID Number	10. Facility				
ALVISO INDEPENDENT OIL 5002 ARCHER STREET ALVISO, CA 95002	1	CAL000161743		(510) 47	'6-174	10	
G ALVISO, CA 95002 E 11. Waste Shipping Name and Description				. Containe		13. Total	14. Unit Wt/Vol
E R 8. A Non Versida usata liquid	<u></u>			<u>No. T</u>	Ype	Quantity	WivVol
Non-Hazardous waste, liquid	<u> </u>			001	<u>n  </u>	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	G
b.							
15. Special Handling Instructions and Additional Int	formation	<u></u>	Handling C	odes for M		isted Above	
			i man coming c		142162		
Wear PPE			-	1a.		11b.	
Emergency Contact (510) 476-1740			-				
Emergency Contact			-				
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r				<u>1a.</u>		116.	
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r Printed/Typed Name		this manifest are not subject to state or Signature		<u>1a.</u>		11b. disposal of Hazan	
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r Printed/Typed Name	naterials described above on t			<u>1a.</u>		11b. disposal of Hazan	Jous Waste.
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r Printed/Typed Name 17. Transporter Acknowledgement of Receipt of Ma Printed/Typed Name	naterials described above on t aterials	Signature		<u>1a.</u>		11b. disposal of Hazan	Jous Waste.
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r Printed/Typed Name	naterials described above on t aterials	Signature		<u>1a.</u>		11b. disposal of Hazan	Jous Waste.
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r Printed/Typed Name 17. Transporter Acknowledgement of Receipt of Ma Printed/Typed Name 18. Discrepancy Indication Space	naterials described above on t aterials	Signature		<u>1a.</u>		11b. disposal of Hazan	Jous Waste.
Emergency Contact (510) 476-1740 Attn: Kirk Hayward 16. GENERATOR'S CERTIFICATION: 1 certify the r Printed/Typed Name 17. Transporter Acknowledgement of Receipt of Ma Printed/Typed Name 18. Discrepancy Indication Space	naterials described above on f aterials	Signature	federal regulations	<u>1a.</u>		11b. disposal of Hazan	Jous Waste.