RECEIVED

Hooshang Hadjian 2108 San Ramon Valley Blvd. San Ramon, CA 94583

1:29 pm, Jan 26, 2009

Alameda County Environmental Health

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Dublin Auto Wash 7240 Dublin Boulevard Dublin, California ACHCSA Case No. 304

Dear Mr.Chan:

I, Mr. Hooshang Hadjian, have retained Pangea Environmental Services, Inc. (Pangea) as the environmental consultant for the project referenced above. Pangea is submitting the attached report on my behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report is true and correct to the best of my knowledge.

Sincerely,

Mush M

Hooshang Hadjian

December 9, 2008

Mr. Paresh Khatri Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Interim Remediation Report and Corrective Action Plan Dublin Auto Wash 7240 Dublin Boulevard Dublin, California ACEH Case No. 304

Dear Mr. Khatri:

On behalf of Mr. Hooshang Hadjian, Pangea Environmental Services, Inc. has prepared this *Interim Remediation Report and Corrective Action Plan* (CAP) for the subject site. The feasibility testing/interim remediation and corrective action plan were requested in a November 9, 2007 letter from Alameda County Environmental Health (ACEH).

If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely, **Pangea Environmental Services, Inc.**

Bobgloddul

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Interim Remediation Report and Corrective Action Plan

cc: Mr. Hooshang Hadjian, 2108 San Ramon Valley Blvd, San Ramon, CA 94583

cc: Mr. Jim Lange, 6500 Dublin Blvd., Suite 202, Dublin, CA 94568

PANGEA Environmental Services, Inc.

1710 Franklin Street, Suite 200, Oakland, California 94612 Telephone 510.836.3700 Facsimile 510.836.3709 www.pangeaenv.com

INTERIM REMEDIATION REPORT AND CORRECTIVE ACTION PLAN

Dublin Auto Wash 7240 Dublin Boulevard Dublin, California ACHCSA Case No. 304

December 9, 2008

Prepared for:

Mr. Hooshang Hadjian 2108 San Ramon Valley Blvd San Ramon, CA 94583

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Brian Busch Senior Project Scientist

bgodlell

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

INTRODUCTION

On behalf of Mr. Hooshang Hadjian, Pangea Environmental Services, Inc. has prepared this *Feasibility Test Report and Corrective Action Plan* (CAP) for the subject site. The feasibility testing described herein was proposed in Pangea's *Site Investigation Report*, dated August 11, 2006, and approved in a November 9, 2007 letter from Alameda County Environmental Health (ACEH). The ACEH letter also requested that a corrective action plan be prepared for the site. The purpose of the feasibility testing was to evaluate potentially applicable remedial alternatives for remediating residual site contaminants and to provide additional source removal at the site. The purpose of the CAP is to provide a method to remediate impacted soil and groundwater beneath the site to the point where residual hydrocarbons can attenuate naturally. Presented below are the site background, feasibility testing methods and results, evaluated remedial alternatives, and the proposed corrective action plan.

SITE BACKGROUND

The Dublin Auto Wash is located at the southwest corner of Dublin Boulevard and Village Parkway in Dublin, California (Figure 1). The site elevation is approximately 321 feet above mean sea level (msl), with the topography sloping gently to the south from the central and western portions of the site, toward a flood control channel (identified by SOMA as San Ramon Creek). The natural topography slopes gently to the southeast on the eastern portion of the site. Onsite facilities consist of two dispenser islands (four dispensers), three 10,000-gallon underground storage tanks (USTs), and a station building with a car wash (Figure 2). Land use immediately surrounding the site is commercial, with Interstate 680 located southwest of the site, across the flood control channel.

Previous Environmental Work

Chevron Release - 1988 to 1996

The first environmental investigation at the site was performed in early 1988 when Chevron Products Company (Chevron), the previous owner/operator, hired EA Engineering, Science, and Technology, Inc. (EA), to conduct a soil vapor investigation at the site. The results of the soil gas survey indicated elevated levels of hydrocarbons beneath the site, especially around the southern pump island. Subsequently, groundwater monitoring wells were installed and quarterly groundwater monitoring began. In February 1989, one 5,000-gallon and two 10,000-gallon underground storage tanks (USTs) were excavated and removed from the site and replaced with three new USTs. A soil vapor extraction (SVE) system was operated between March 1992 and April 1996, removing approximately 15,000 pounds of hydrocarbons. Between 1994 and 1996, additional groundwater monitoring wells were installed and added to the quarterly monitoring program. A December 1996 Risk Based Corrective Action (RBCA) report concluded that the site is a "Low Risk" soil and groundwater petroleum release site, and ACEH subsequently approved SVE system shutdown.

New Release - February 1997

In February 1997, a leak in a stainless steel product line flex hose was discovered and reported to ACEH. The leak location was immediately south of the north-westernmost dispenser (dispenser No. 2). During June 1997 testing, the secondary piping failed a pressure test. Subsequently, a new product delivery system was installed to replace the existing lines. During the system modifications in July 1997, Parker Environmental Services collected soil samples via hand auger at locations B-1 through B-4. About 31 cubic yards of soil were removed from the release area to a depth of 8 feet bgs. The results of subsequent groundwater monitoring events in December 1998 and March 1999 indicated free product was present in well MW-3. The detection of free product in MW-3 (up to 0.1 feet thick) corresponds to the historically lowest groundwater elevation observed during site monitoring activities, when the depth to groundwater in well MW-3 was 12.92 feet in December 1998.

On February 6, 2003, due to the new release, the Chevron Product Company signed a *Liability Management Transfer Agreement* with Mr. Hooshang Hadjian, the UST operator at the time. Mr. Hadjian assumed responsibility for the new release and ongoing corrective action at the site.

Gettler-Ryan, Inc. (GRI), a subcontractor of Chevron, monitored the eight existing groundwater monitoring wells at the site until the first quarter of 2003. In 2003, SOMA began performing groundwater monitoring at the site on behalf of Mr. Hadjian. SOMA noted groundwater apparently flowed from offsite wells MW-4 and MW-5 toward the site in the approximate southeast direction, while groundwater at the eastern portion of the site apparently flowed in the northeast direction. SOMA believed the groundwater flow direction may have been affected by the 18" diameter vitrified clay pipe (VCP) sewer line running beneath the southern portion of Dublin Boulevard immediately north of the site. Information provided by Gettler-Ryan indicated that the top of the sanitary sewer line was approximately 16 feet below grade surface (bgs), while the depth to water in nearby wells MW-1 and MW-3 has ranged from approximately 11 to 13 ft bgs.

In 2003, SOMA also conducted further characterization and remediation activities at the site. SOMA advanced seven shallow soil borings using hand augers (B-1 through B-8), nine soil borings using a GeoprobeTM direct push rig, and one soil boring using a drill rig equipped with hollow stem augers. Initially, the Geoprobe borings were intended to be used for cone penetrometer testing (CPT) to log the borings; however, due to subsurface conditions the borings were logged using electric conductivity sensors. The direct push borings included collection of discrete depth groundwater samples to assess the vertical extent of contamination.

SOMA's investigation confirmed that contaminant concentrations were highest near the northern central portion of the site, and concluded that the 18" diameter sewer line located immediately north of the site is intercepting groundwater contamination. Fill material around the sewer line could be acting as a preferential pathway for the contamination conveyance to the east and then southeast, the sewer flow direction. SOMA

also found contamination in deeper groundwater. SOMA concluded that there are three relatively higher permeability zones on the site acting as water bearing zones – Shallow (10 - 15 to 19 - 23 feet bgs), Middle (19 - 23 to 32 - 36 feet bgs), and Deep (32 - 36 to 43 - 47 feet bgs) – with an Upper Shallow zone (at approximately 2 to 6 feet bgs) noted in a few of the borings. In several locations, an insufficient amount of water was present in the potential water bearing zones, so no groundwater samples were obtained by SOMA. Since wells EA-1, EA-2, EA-3, and MW-1 are screened across the various water bearing zones at the site, SOMA recommended that these wells be destroyed to prevent them from acting as vertical conduits for the migration of the contaminants. SOMA also recommended that wells be installed in the Shallow, Middle, and Deep zones at the site to determine the groundwater flow directions in the various zones.

In November 2004, Pangea Environmental Services, Inc. (Pangea) of Oakland, California, assumed the lead role as consultant for Mr. Hadjian. During first, second and fourth quarters of 2005 and the first quarter 2006 groundwater monitoring events free product was again observed in well MW-3.

In February 2005, Pangea prepared a soil and groundwater investigation workplan, which included an evaluation of local and regional geology and hydrogeology, a review of soil and groundwater sampling data from the site (including detailed cross sections), a conduit study, and a sensitive receptor survey to assess potential impacts to wells and surface water bodies. The closest water supply well was identified approximately 1,900 feet southwest of the site, and was not considered to be potentially impacted by site contamination. The adjacent flood control channel is the only nearby surface water body that could potentially be impacted by site contamination. The workplan recommended installing borings along the sanitary sewer line in Dublin Boulevard and destruction of select wells screened across multiple water-bearing zones. The workplan also recommended installation of new monitoring wells within the multiple water-bearing zones and implementation of interim remediation using vacuum extraction to remove groundwater and free product from selected site wells. During subsequent correspondence, ACEH requested installation of a soil boring (SB-2) downgradient of the 1997 release.

During workplan implementation in March through May 2006, Pangea installed fourteen monitoring wells (MW-3A, MW-6A, MW-6B, MW-7AA, MW-7A, MW-7B, MW-7C, MW-8A, MW-9A, MW-9C, MW-10A, MW-10C and MW-11C) to help define the vertical and lateral extent of groundwater contamination. Pangea abandoned wells EA-1, EA-2, EA-3 and MW-3 to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. Pangea drilled three soil borings (SB-1, SB-1A and SB-2) to help evaluate subsurface conditions downgradient of the 1997 release and north of the site, and the potential for contamination migration along the 18-inch sanitary sewer line in Dublin Boulevard. Soil borings SB-1 was located near the intersection of Dublin Boulevard and Village Parkway and boring SB-1A was located approximately 3 ft south of SB-1. Results are detailed in the August 11, 2006 *Site Investigation Report* prepared by Pangea.

In July 2006, Pangea conducted vacuum extraction from well MW-3A and MW-7AA using a vacuum truck. The vacuum extraction was conducted to provide cost-effective removal of source area material and additional information about subsurface conditions. The results of the vacuum extraction led Pangea to recommend conducting *short-term feasibility testing/source removal* on key site wells (MW-3A, MW-7AA, MW-7AA, MW-7AA, MW-6A) detailed in the August 11, 2006 *Site Investigation Report*. ACEH approved the proposed feasibility testing and requested a corrective action plan (CAP) in a letter dated November 9, 2007. The ACEH letter also approved discontinuance of groundwater monitoring of C-zone wells, because monitoring data suggested the C-zone was not impacted. Test results are described in this report.

Geology and Hydrogeology

Subsurface soil encountered at the site consists primarily of clay, silty clay and clayey sand. Groundwater has been encountered at depths of approximately 12 to 19 feet below grade surface (bgs) during well installation and soil boring activities, and subsequently rose to 8.8 to 12.9 ft bgs. These observations suggest that site groundwater is under confined to semi-confined conditions. Historically, the depth to groundwater in site monitoring wells has ranged from approximately 7.2 to 13.2 feet bgs.

Throughout much of the site, saturated-zone soil is primarily clay down to approximately 15 ft bgs, although sporadic thin seams of coarser material are also present. Generally, the piezometric surface for the deeper confined to semi-confined water-bearing units lies within this relatively low permeability unit, and the coarser materials within the unit often contain perched groundwater with piezometric surfaces that differ significantly from those of the deeper units. The shallowest groundwater monitoring wells and vapor monitoring wells (MW7AA, VW-1, VW-2 and VW-3) are screened within this unit, which is referred to herein as the upper shallow 'AA' zone. This nomenclature differs slight from prior reports by SOMA, which restricted their "upper shallow zone" to depths of 3 to 6 ft bgs. A water-bearing unit comprised of clayey sand and sandy clay is present at approximately 15 to 18 ft bgs and appears to be laterally persistent throughout most of the site. This is referred to in this report as the shallow 'A' zone. The shallow wells (MW-6A, MW-8A, MW-9A and MW-10A) were screened into this unit of higher permeability materials. The shallow source zone well MW-3A is screened across the 'A' zone but the screen was extended up above the 'A' zone piezometric surface to 9' bgs so as to intersect SPH that had been previously encountered in well MW-3 in the upper shallow 'AA' zone.

Beneath approximately 18 ft bgs, soil is primarily clay until a depth of approximately 26 ft bgs, where waterbearing units of sandy clay and clayey sand interbedded with layers of clay are present to a depth of approximately 30 ft bgs. The mid-level wells (MW-6B and MW-7B) were screened into this unit of higher permeability material ('B' zone). Beneath approximately 30 ft bgs soil is again primarily clay to approximately 34 ft bgs. At approximately 34 ft bgs clayey sand, sandy clay, and clay with sand is encountered interbedded with layers of clay to a total explored depth of approximately 45 ft bgs. The deeplevel wells (MW-6C, MW-7C, MW-9C, MW-10C and MW-11C) are screened in this zone ('C' zone). Soil contamination appears to be highest at depths between 10 and 15 ft bgs as shown on Table 1.

Groundwater Flow Direction and Gradient

Depth-to-water measurements collected during monitoring events indicate that the groundwater flow direction beneath the site has been fairly consistent. Groundwater in the shallow water-bearing units appears to flow generally southwards, although the gradient data suggests that westward to northwestward flow occurs in the vicinity of wells MW-3A and MW-6A (Figure 2). The groundwater flow direction in this area may be affected by the 18-inch diameter sanitary sewer line running beneath the south side of Dublin Boulevard and adjacent to these wells. Pangea measured the depth to the top of the sanitary sewer line to be approximately 14 ft bgs and the depth to water in boring SB-1A adjacent to this line was 11.2 feet. Although this boring was not surveyed relative to the other wells, this depth is apparently lower than water table elevations in the nearby monitoring wells, suggesting that the flow may be towards the sanitary sewer. Depth to water in wells MW-1, MW-3 and EA-3 near the sanitary sewer has historically ranged from approximately 9 to 13 ft bgs.

The groundwater gradient in the deeper water-bearing units appears to be northwestward. In addition, a comparison of groundwater elevations measured in wells screened in upper and lower water-bearing units indicate the presence of a slight upwards gradient.

Hydrocarbon Distribution in Groundwater

As shown on Figure 2, the highest concentrations of TPHg and benzene are generally found in upper shallowzone wells (MW-7AA, MW-3A, MW-6A, VW-1 and VW-3) in the vicinity of the northernmost dispenser island, immediately south of Dublin Boulevard. These wells have contained several thousand µg/L TPHg and several hundred µg/L benzene. Well MW-3A contained SPH in May 2006, and the well that it replaced (MW-3) contained SPH during quarterly monitoring events continuously from May 2003 until August 2005 (Table 2). Both of these wells are screened at very shallow depths across the piezometric surface. These observations are consistent with the location of the 1997 release from the flex hose between the dispensers, and the approximate location of previously excavated source soil. The 'A' zone wells screened in the more permeable shallow "A" zone water-bearing unit encountered at approximately 15 to 18 feet bgs appear to have considerably lower TPHg and benzene concentrations than the nearby shallower wells, indicating that downward migration of contamination from the shallow highly impacted SPH-bearing clays is not significant.

Considering that the vapor wells are screened from approximately 3 to 9 ft bgs, analytical results suggest that the primary zones of hydrocarbon contamination are in the upper shallow 'AA' and shallow A' water-bearing zones. Broadly, the lateral extent of petroleum hydrocarbon contamination in the shallow 'A' zone appears to be defined by wells MW-10A to the south and MW-9A to the east, while wells MW-1 (screened from

approximately 5 to 25 ft bgs) and MW-2 (screened from approximately 5 to 20 ft bgs) define the extent of hydrocarbon contamination to the west. However, it is not know how far west towards MW-1 and MW-2 the highly impacted groundwater in the upper shallow 'AA' and 'A' zones extends from the MW-7 well group.

No contaminants have been detected in the B-zone or C-zone wells, except for low concentrations during the first one or two monitoring events following well installation in June 2006. The November 9, 2007 ACEH letter approved discontinuance of groundwater monitoring of C-zone wells.

Fuel Oxygenate Distribution in Groundwater

The lateral distribution of MTBE in groundwater is similar to that of benzene and TPHg, except that relatively high MTBE concentrations were found in boring SB-1A drilled next to the Dublin Boulevard sewer line and were historically found in well MW-1, also located close to the sewer line (Figure 2). This data suggests that contaminated groundwater has migrated both westward and eastward through the backfill of the sanitary sewer line. The vertical extent of MTBE is also similar to the extent of benzene contamination, and has been delineated by the newly installed deep monitoring wells. The lateral extent of upper shallow 'AA' and 'A' zone MTBE contamination is well defined, except to the west in the vicinity of wells MW-1, MW-2 and well MW-7AA. It is possible that the 1997 release near the dispensers migrated west toward MW-1.

During second quarter 2006 monitoring, all groundwater samples that contained detectable concentrations of MTBE by EPA Method 8021B were analyzed for 5 oxygenates (MTBE, TAME, TBA, DIPE and ETBE) by EPA Method 8260B. No oxygenates other than MTBE were detected above reporting limits, with the exception of $12 \mu g/L$ TAME in vapor well VW-1. Third quarter 2008 monitoring results indicate that MTBE concentrations have been stable and/or declining, with dramatic concentration reductions in select site wells.

FEASIBILITY TEST PROCEDURES

Feasibility Test Overview

Between November 27 and December 1, 2007, Pangea performed approximately 90 hours of DPE feasibility testing from selected site wells to evaluate whether DPE could effectively remove residual hydrocarbons from beneath the site and to provide additional source removal. DPE testing also evaluated soil vapor extraction and groundwater extraction techniques. DPE was evaluated as a possible remedial alternative because previous assessments demonstrated that petroleum hydrocarbons are present at depths below the water table, and soil vapor extraction without water table depression would not be sufficient to remove these hydrocarbons. In addition, brief vacuum extraction performed in July 2006 using a vacuum truck suggested extraction could be effective.

Specific goals of the DPE pilot test were to determine:

- Groundwater extraction rates under vacuum and the extraction rate necessary for dewatering hydrocarbon-impacted soils beneath the water table;
- Soil vapor extraction vacuum and flow rates;
- The estimated radius of influence for the applied vacuum;
- Vapor-phase hydrocarbon concentrations and trends in extracted vapor; and
- Contaminant mass removal rates.

Pilot Test Equipment

For DPE testing, a 25-horsepower, trailer-mounted 400 cubic foot per minute (cfm) liquid-ring vacuum pump routed to a thermal/catalytic oxidizer was used to extract soil vapor and groundwater and treat extracted soil vapor from selected site extraction wells. The 25 horsepower (hp) liquid-ring vacuum pump was capable of achieving up to 28.5 inches of mercury vacuum ("Hg). Selected site wells were chosen for extraction due to the presence of elevated aqueous-phase hydrocarbon concentrations. Soil vapor and groundwater were extracted from the wells by applying vacuum to the well casings through a 1.5-inch diameter hose (stinger) inserted through a rubber coupling installed on top of each well head. The stinger was slowly lowered into the water table to the target depth. After extraction from the well, the soil vapor/groundwater process stream was passed through a vapor/liquid separator, where groundwater was separated out and soil vapor was routed to a thermal oxidizer for abatement. The blower was powered by electricity obtained from an onsite power source. The oxidizer was fueled by propane stored in a 499-gallon propane tank. Extracted groundwater was pumped from the vapor/liquid separator to a 6,500-gallon water storage tank and stored onsite for eventual

disposal.

Data Collection

DPE system operational data was collected periodically during testing. Data collected included DPE system hour meter readings, DPE system vapor flow, applied vacuum rates and groundwater production rates. Select site wells were monitored for vacuum influence and groundwater table drawdown before and during DPE testing. The DPE system groundwater extraction rates were monitored by recording the water accumulation in the vapor/liquid separator sight tube, and by a flow totalizer on the water discharge line of the vapor/liquid separator. Organic vapor concentrations were measured using a Thermo TVA-1000 flame ionization detector (FID). Vapor samples were collected in 1-liter Tedlar bags for laboratory analysis. McCampbell Analytical, Inc., of Pittsburg, California, analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) using EPA Method 8015M and benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE using EPA Method 8021B. Laboratory analytical reports are included in Appendix A.

FEASIBILITY TEST RESULTS

DPE testing was performed for a total of approximately 90 hours on site wells MW-7A, MW-3A, MW-6A and MW-7AA. The 'AA' well was constructed with a screened interval of 9 to 14 feet below grade surface (bgs) into the upper shallow water-bearing zone beneath the site. The 'A' wells were constructed with screened intervals from between 10 to 20 ft bgs into the shallow water-bearing zone. These test wells were selected due to elevated dissolved contaminant concentrations in groundwater. Testing was not performed in deeper wells due to little to low impact in deeper groundwater. DPE test data is summarized below in Table A and in attached Table 3. Soil vapor analytical data is presented in attached Table 4. Water level drawdown data is summarized on Table 5. To facilitate evaluation of test results, well construction details are included on Table 6, which also shows on the new proposed groundwater monitoring program.

During testing, applied vacuum rates ranged from 16 to 23 "Hg. Soil vapor extraction flow rates ranged from 40 cubic feet per minute (cfm) to 80 cfm. Groundwater extraction rates observed during testing ranged from below 1 gallon per minute (gpm) during extraction from wells MW-3A, MW-6A and MW-7AA to about 1.5 gpm during extraction from well MW-7A. In all cases, the observed groundwater extraction rates were achieved with the DPE extraction hose inserted to the bottom of each well casing. Based on laboratory analytical data and extraction flow rates, vapor-phase hydrocarbon mass removal rates during testing ranged from approximately 8 pounds per day (ppd) to 53.9 ppd in tested wells. A total of approximately 135 lbs of vapor-phase hydrocarbons were removed from the subsurface during DPE testing.

Table A	– DPE	Test	Data
---------	-------	------	------

Extraction Well	Test Duration (total hours)	Applied Vacuum Range ("Hg)	Vapor Flow Rate Range (cfm)	Avg. Water Flow Rate (gpm)	Maximum Vapor Conc. (ppmv TPHg)	Max. HC Vapor Removal Rate (lbs/day)
MW-7A	23.2	16-21	40-80	1.5	2,200	35.3
MW-3A	24.3	21-22	67-74	0.5	1,800	40.4
MW-6A	24.7	20-23	68-80	0.4	2,100	53.9
MW-7AA	14.3	19.5	70	0.2	1,500	33.7

Vapor-phase hydrocarbon removal rates and the cumulative vapor-phase hydrocarbon removal amounts are shown on the Figure A below.

Vacuum Radius of Influence Measurements

During DPE testing, Pangea collected vacuum radius of influence measurements from selected observation wells in the vicinity of the operating DPE wells. The effective radius of vacuum influence for DPE design purposes can be based on an observed vacuum of approximately 1% to 0.1% of the vacuum applied at the extraction well. Using 1% of the applied vacuum rate is a very conservative approach, especially for sites

with high applied vacuum using a liquid-ring vacuum pump. Our evaluation used 0.1% of the applied vacuum rate to define the extent at which DPE effectively captures soil vapor from the subsurface. An alternative approach to estimate effective vacuum influence relies on the measurement of *any* (e.g., >0.005 "H2O) vacuum in an observation well, since actual vacuum measurement indicates the subsurface location is under vacuum.

Select vacuum influence data is summarized below on Table B, which indicates that there is horizontal vacuum communication in the shallower units. Effective radius of influence rates based on 0.1% of the applied vacuum rate measured at the extraction well ranged from 8 feet to 50 feet during DPE testing. The radius of vacuum influence appears to be greatest (e.g., 50 ft) between A-zone wells MW-6A and MW-7A screened approximately 16-20 ft deep. Note that no vacuum influence was obtained between wells MW-3A and MW-6A by the end of the MW-3A test, and that influence observed in MW-3A during MW-6A testing could be residual vacuum. The estimated radius of influence was smaller (e.g., <20 ft) within the AA-zone wells (MW-7AA and VW wells) than in the A-zone wells. Extraction from the A-zone wells did influence the shallower AA-zone. We anticipate long-term DPE system operation will likely yield a larger radius of influence due to greater dewatering of the subsurface during long-term system operation.

Extraction Well(s)	Observation Well	Hours From Test Start	Distance to Observation Well (ft)	Applied Vacuum ("Hg)	Vacuum Influence ("H2O)	ROI based on 0.1% of Applied Vacuum (ft)	Estimated ROI based on Measurable Vacuum (ft)	Comments
	MW-7AA (9'-14')	26	8	15.5	0.22	8	25	Shallower observation well
MW-7A	MW-6A (16'-20')	26	57	15.5	0.10	48	50+	Influence at same depth as extraction
(16'-20')	MW-1 (5'-25')	21	65	14.5	0.02	49	50	Could be pre-test vacuum
	MW-2 (5'-20')	21	64	14.5	0.02	49	50	Could be pre-test vacuum
	VW-2 (3'-9')	16	21	17	0.01	14	15	Could be pre-test vacuum
MW 2A	VW-3 (3'-9')	21	20	18	0.01	13.5	15	Limited data
(10'-17')	MW-6A (16'-20')	16	39	17	0.03	29	20	No influence at test end
	MW-7B (26'-30')	21	52	18	0	unknown	unknown	0.09" pressure before test. Submerged screen
	VW-3 (3'-9')	22	10	19	0.06	8	30	Shallower observation well
MW-6A (16'-20')	VW-2 (3'-9')	22	42	19	0.03	32	40	Shallower observation well
	MW-3A (10'-17')	22	39	19	1.7	47	50+	Influence at same depth as

Table B – DPE Test Vacuum Influence Data

				extraction. Could
				be residual vac.

Water Table Drawdown

Prior to the start of DPE testing, Pangea measured water levels in site wells. Pre-test water level data was used to determine the extent of water table drawdown that could be achieved during DPE testing. The maximum drawdown observed in site wells during extraction from MW-7A was in wells MW-7B and MW-6C, located 5 and 68 ft away, respectively, where water levels decreased approximately 4.15 ft in MW-7B and 3.56 ft in MW-6C after about 22 hours of system operation. Approximately 1 hour after extracting from MW-7A, Pangea began performing DPE from well MW-3A. A water table drawdown ranging from 0.03 to 3.27 ft was observed in other site wells after 21 hours of extraction from MW-3A. After extracting from MW-3A, Pangea began extraction from MW-6A. After about 24 hours of extraction from MW-6A, water level drawdown in site observation wells ranged from 0.02 to 3.30 ft. After extracting from MW-7AA due to system shut down after the fuel source had been depleted. As with vacuum radius of influence, we anticipate full-scale DPE system operation from several site wells simultaneously will yield greater water table drawdown, and will allow for more effective vapor-phase hydrocarbon removal. DPE test water level drawdown data is presented in Table 5.

Feasibility Test Conclusions

Based on the above feasibility test results, Pangea offers the following conclusions:

- 1. DPE is an appropriate remedial technology for this site, based on the high vapor-phase hydrocarbon removal rates (up to 53.9 lbs/day observed during testing from well MW-6A). Observed vapor-phase hydrocarbon removal rates indicate there is a significant hydrocarbon mass in the subsurface accessible for removal via DPE.
- 2. The observed vacuum influence appears to be greatest (e.g., 50 ft) during extraction from A-zone wells MW-6A and MW-7A screened approximately 16 20 ft deep. Extraction from the A-zone wells did influence the shallower AA-zone. The estimated radius of influence was smaller (e.g., <20 ft) within the AA-zone wells (MW-7AA and VW wells). Due to lack of consistent vacuum influence and potential preferential pathways, Pangea estimates that vacuum influence is not uniform within the site subsurface. Long-term DPE system operation should lower the water table elevation and reduce soil moisture content to enhance vapor-phase hydrocarbon removal; these actions tend to increase the effective radius of influence but can also decrease the effective radius if short-circuiting occurs through newly established flow pathways. Pangea recommends performing DPE from multiple AA-zone and A-zone locations to best ensure remedial effectiveness.</p>

- 3. DPE is effective at dewatering subsurface soils as indicated by water drawdown measurements; observed groundwater extraction rates are low enough to perform successful site remediation via DPE without the need for supplemental groundwater extraction via submersible pumps.
- 4. DPE is an appropriate and effective remedial approach for this site. Pangea recommends consideration of DPE for site remediation.

REMEDIAL OBJECTIVES

This section presents proposed cleanup goals, cleanup levels, and remedial objectives. The cleanup *goal* is to reduce soil and groundwater contaminant concentrations to below applicable environmental screening levels (ESLs) established by the San Francisco Bay Region – Regional Water Quality Control Board within a reasonable timeframe. Since groundwater monitoring data indicates that contaminant concentrations are decreasing but remain elevated in select shallow wells, the remedial objective is to remove source area hydrocarbons with aggressive short-term remediation. Remediation can target the historical free product area near well MW-3/3A, and can reduce the potential for contaminant migration along the sanitary sewer line beneath Dublin Boulevard. The proposed cleanup *level* is to reduce dissolved contaminant concentrations to near or below ESLs for commercial site use where groundwater is considered a potential drinking water resource.

EVALUATION OF REMEDIAL ALTERNATIVES

The following subsections present an evaluation of the appropriateness and cost-effectiveness of several techniques for site remediation. This evaluation will facilitate the selection of the most cost-effective remedial technique, or a combination of techniques to appropriately address site-specific conditions. Pangea evaluates excavation, monitored natural attenuation, groundwater extraction, soil vapor extraction, dual phase extraction, air sparging, and ozone sparging.

Monitored Natural Attenuation

Monitored natural attenuation (MNA) is the stabilization and long-term shrinking of a contaminant plume by natural processes such as microbial degradation. This alternative is generally applicable only to dissolved groundwater plumes. In order to implement this alternative, the source of the contamination must first be removed, migration of the plume controlled, and the presence of natural degradation processes must be documented. Natural attenuation processes can be demonstrated through a variety of lines of evidence, including static or retreating chemical isoconcentration contours, changes in the ratios of parent to breakdown products, the presence of bacteria capable of degrading the COCs, and/or the presence of geochemical indicators of naturally occurring biodegradation.

MNA is retained as a remedial alternative where natural degradation can be currently documented. MNA is also retained as an option for future consideration at other locations after the source has been removed and monitoring data indicate that natural degradation is occurring. The major component of MNA as a remedial alternative would be a long-term monitoring program to provide continuing confirmation that the predicted biological activity occurs and remains effective. Risk and hazard management measures are in many cases required to protect human health and the environment during the short term until long-term effectiveness can be achieved.

Available characterization data indicate that contaminant concentrations are decreasing in select wells but remain elevated in select shallow AA-zone and A-zone wells. The historical (as recent as 2006) presence of free product in well MW-3/3A suggests that significant residual mass is present at the site. There is also a potential for contaminant migration along the sanitary sewer line beneath Dublin Boulevard. Monitored natural attenuation (MNA) is therefore eliminated from further consideration under current plume source area conditions. However, MNA may be a viable alternative once concentrations have been reduced to levels which are more conducive to natural attenuation processes.

Excavation

Excavation is a proven and effective technique for remediation of petroleum hydrocarbons. Excavation is most appropriate for shallow soil, and especially for low permeability soil where in-situ remedial techniques have very limited effectiveness. Excavation is also a cost-effective option for undeveloped sites, where the excavation area is accessible and not beneath site facilities. Excavation can remove unsaturated soil, capillary fringe soil, and saturated soil. Excavated soil is usually transported offsite for disposal, but soil can be treated and reused at the site in accordance with regulatory guidelines and approval. The contaminated material is primarily located beneath site paving and improvements. Therefore, excavation is not deemed appropriate or cost effective for this site for the following reasons: 1) excavation would severely disrupt the service station and car wash business, and 2) significant excavation of saturated-zone material would be required, involving expensive shoring and related costs for deeper excavation.

Groundwater Extraction

Groundwater extraction (GWE) is a common approach for remediating MTBE impacts to groundwater, especially where hydraulic control is required. GWE relies on submersible groundwater pumps to extract subsurface groundwater for aboveground, treatment and disposal, which can be costly. GWE was used extensively in the 1980's and early 1990's before being displaced by more cost-effective insitu treatment methods, such as soil vapor extraction (SVE), air sparging (AS), oxidation, and enhanced biodegradation. GWE regained popularity for remediation of MTBE, which is highly soluble in groundwater and is more

recalcitrant in the subsurface. MTBE generally does not remove or degrade as readily as BTEX and TPH compounds during SVE, AS or enhanced biodegradation.

GWE is also conducted in conjunction with SVE (sometimes called dual-phase extraction) to help dewater the hydrocarbon smear zone and expose hydrocarbons to vapor extraction. This approach requires a network of extraction and discharge piping and equipment to extract, treat and dispose of the extracted groundwater. Since vacuum truck extraction apparently reduced dissolved contaminant concentrations in 2006, GWE may be effective at the site. However, post-removal rebound of concentrations indicates that the long-term effectiveness of this method might not be viable, especially given the relatively high cost of a long-term GWE program. Since most groundwater monitoring wells recharge slowly or dewater during quarterly monitoring, GWE would likely have limited effectiveness. GWE would also not have a significant effect on the prevalent clayey soils impacted at the site. Therefore, Pangea does not recommend GWE for this site. GWE is always considered a contingency approach to provide hydraulic control, if necessary.

Soil Vapor Extraction

Soil vapor extraction is a common approach for remediating unsaturated soil. This approach uses an aboveground blower to extract vapor-phase hydrocarbons from the site subsurface. SVE also remediates hydrocarbons adsorbed to unsaturated soil that could pose a risk to groundwater quality. At sites with a fairly permeable capillary fringe and saturated zone, SVE can improve groundwater quality and can remove floating, separate-phase hydrocarbons. When saturated zone remediation is required, SVE is commonly combined with other technologies such as air sparging or groundwater extraction. Extracted vapors are typically treated aboveground with oxidizers or activated carbon.

Shallow site groundwater and the predominantly clayey valoes zone suggest that SVE alone would be ineffective due to anticipated water upwelling. Therefore, SVE is not considered a viable method for this site unless shallow soil can be effectively dewatered using other techniques.

Dual Phase Extraction

Dual-phase extraction (DPE) consists of the simultaneous extraction of groundwater and soil vapor, generally from the same wells. DPE can be implemented generally by one of three methods: 1) using submersible pumps to draw down the water table within the wells while using a vacuum pump system to extract soil vapor; 2) using a powerful vacuum pump system to extract both groundwater and vapor from the wellhead (generally used only on small diameter wells); 3) using a powerful vacuum pump and "stinger" (vacuum tube inserted below the water table) to both depress the water table and extract soil vapor from the vadose zone. Method 1 is generally used in relatively permeable environments, where groundwater extraction using pumps is feasible. However, shallow site soils are relatively impermeable, so methods 2 and 3 are more likely to be effective. A benefit of using either method 2 or 3 at sites where groundwater is confined or semi-confined is

that the pressure-drop produced in the well casing can often enhance the rate of extraction of groundwater from the water-bearing zone in comparison to use of submersible pumps, In addition, these methods can often recover SPH from site soils that are not recoverable by bailing and pumping.

DPE is a common technique for remediating sites impacted with elevated concentrations of petroleum hydrocarbons and MTBE and/or impacted with separate-phase hydrocarbons (free product). DPE feasibility test results confirm that DPE is effective at this site. The existing equipment compound and subsurface piping from prior remediation will help reduce DPE costs. Pangea recommends further consideration of DPE using a large aboveground vacuum pump for cost effective remediation of site soil and shallow groundwater.

Air Sparging

Air sparging (AS) is common technique for cost-effectively remediating petroleum hydrocarbons from saturated soil and groundwater. AS involves the injection of compressed air into the saturated zone to 'strip' hydrocarbons from saturated soil and groundwater for capture by SVE. AS also oxygenates groundwater and thereby stimulates hydrocarbon degradation. AS is routinely more cost effective than groundwater extraction because no large extraction and treatment equipment is required with AS, and operation and maintenance costs are low. AS wells are typically constructed with well screen starting approximately 10 feet or more below the water table, and well screen intervals are carefully selected to allow capture of hydrocarbon vapors created by sparging if low permeability units are present. For sites with deeper water-bearing units overlain by clayey soil, AS can be performed at low flow rates to allow groundwater oxygenation without causing lateral migration of hydrocarbons. Low flow AS is also a cost effective technique to stimulate hydrocarbon degradation that slowly diffuses out of the fine grained materials at a given site.

AS is not considered to be a preferred remedial method for this site. Given the very thin, clayey vadose zone, it would be unlikely that SVE could be employed to effectively capture vapors created due to AS. AS could cause lateral migration of contaminants within the thin water-bearing lenses at the site. AS could be performed in conjunction with DPE, but due to possible limited vapor capture by DPE, this method could also potentially result in increases to indoor air inhalation hazards at buildings on and adjacent to the site. Finally, the additional cost for AS does not appear to be merited since DPE can target the contaminant extent area effectively without AS.

Ozone Sparging

Ozone sparging is is similar to air sparging but includes the addition of ozone to air injected into the subsurface. Ozone sparging is used especially for remediation of petroleum hydrocarbon releases with methyl tertiary butyl ether (MTBE). Similar to air sparging, ozone sparging is often used in conjunction with SVE or dual phase extraction (DPE) to capture hydrocarbon vapors created by sparging (although ozone's oxidation

of volatile compounds makes vapor capture less important than with traditional air sparging). The ozone, however, acts as a biocide near the injection location and temporarily stops microbial degradation of hydrocarbons. Upon completion of ozone injection the microbial populations likely return rapidly in the presence of the elevated dissolved oxygen. Because ozone is a strong oxidizer, ozone injection within any areas impacted by free product should be carefully controlled and monitored. When a significant mass of petroleum hydrocarbons is present, ozone sparging takes considerably longer or requires much larger and more costly ozone generation equipment. Ozone can also pose a hazard at sites with operating subsurface fueling facilities, and can degrade subsurface facilities if conducted for more than a brief period. Given the significant hydrocarbon mass at this site, the potential to impact indoor air quality in nearby buildings, and the presence of subsurface fueling facilities at the site, ozone sparging is not considered appropriate for this site.

PROPOSED CORRECTIVE ACTION PLAN = SHORT-TERM DPE

Based on site feasibility testing and the evaluation of remedial alternatives presented above, Pangea proposes short-term dual phase extraction (DPE) as the most appropriate and cost-effective technique for site remediation. DPE is a common technique for remediating sites impacted with elevated concentrations of petroleum hydrocarbons and MTBE and/or impacted with separate-phase hydrocarbons (free product). Described below are the proposed DPE system design and the corrective action plan (CAP) implementation plan.

DPE Overview and System Design

To help provide cost-effective site remediation, Pangea proposes to perform DPE as follows:

- Short-term DPE lasting approximately 3 to 6 months.
- Using the existing underground and aboveground piping, equipment compound, and electrical service to extent practical. Temporary aboveground piping with traffic ramps will be used to the extent practical.
- Renting trailer-mounted equipment with an existing permit from the BAAQMD, if available. The equipment will include a 20 hp or larger liquid-ring vacuum pump and catalytic oxidizer.
- DPE from six (6) upper shallow AA-zone wells, including four (4) existing wells (MW-7AA, VW-1, VW-2 and VW-3) and two (2) new DPE wells (to be screened approximately 9 to 14 ft bgs). The new DPE wells will be installed in the planter to minimize business disruption and well head/piping cost.

• DPE from three (3) existing shallow A-zone wells, including wells MW-3A, MW-6A and MW-7A. Wells MW-3A is screened from 10 to 17 ft bgs, while wells MW-6A and MW-7A are screened from 16 to 20 ft bgs.

Figure 3 presents the proposed DPE well locations and estimated DPE influence area. The estimated DPE influence area shows a conservative DPE radius of influence of approximately 20 feet for AA-zone wells and 30 ft for A-zone wells. Figure 3 illustrates that the planned DPE will target the primary and secondary contaminant impact area.

If cost-effective, Pangea will conduct brief (e.g., 1 to 2 days) testing on vapor wells VW-1, VW-2 and VW-3 utilizing temporary extraction piping to determine if removal rates are high enough to merit permanent connection to the procured DPE system.

DPE will induce vapor and water flow primarily from the more permeable soil units, encouraging contaminant volatilization and diffusion from the surrounding fine-grained materials as the subsurface is dewatered. Based on the amount of water produced during feasibility testing, Pangea anticipates that a discharge permit will need to be obtained from the Dublin San Ramon Services District. DPE operation will be conducted on the shallowest wells first and then on the deeper wells once removal rates approach asymptotic levels in the shallower zones. Implementing DPE in this manner will help reduce the likelihood of shallow contamination being pulled into the deeper A-zone water-bearing zone. The two new DPE wells (DPE-1 and DPE-2) will be 4" diameter Schedule 40 PVC, and will be screened from approximately 9 to 14 ft bgs into the AA-zone where vacuum influence is more limited than in the A-zone. A schematic diagram of the DPE well design is shown in Figure 4. The screen intervals may be adjusted based on field conditions. Pangea's standard procedures for well installation are included in Appendix B.

To help control costs, Pangea proposes using moderately-sized DPE remediation equipment. The equipment will provide significant removal capacity and avoid the costly energy requirements associated with larger DPE equipment. Pangea anticipates using a thermal/catalytic oxidizer and extraction blower capable of achieving a minimum flow rate of 300 cubic feet per (cfm) minute and an applied vacuum up to 28.5 inches of mercury.

The remediation equipment compound will be located near well MW-2. Electrical services and a remediation compound are available at this location from the former SVE system (operated by Chevron for the prior release at the site). Extracted groundwater will be treated and discharged into sanitary sewer connection according to permit requirements.

PROPOSED SCOPE OF WORK FOR SHORT-TERM DPE

The scope of work to implement the proposed corrective action plan is described below.

Task 1 - Pre-Field Activities

Prior to initiating field activities, Pangea will conduct the following tasks:

- Obtain well installation permits from Alameda County Flood Control and Water Conservation District Zone 7 Water Agency (Zone 7);
- Pre-mark the well boring locations with white paint, notify Underground Service Alert (USA) of the drilling and sampling activities at least 72 hours before work begins, and conduct private line locating as merited;
- Prepare a site-specific health and safety plan to educate personnel and minimize their exposure to potential hazards related to site activities;
- Coordinate with installation contractor, equipment vendors, drilling subcontractor, laboratory subcontractor and involved parties. The installation contractor will contact the City of San Ramon Building Department regarding permitting requirements. Pangea will help procure AS and SVE equipment, and will obtain an air discharge permit from the Bay Area Air Quality District (BAAQMD) for the operation of the DPE system, if equipment with an existing BAAQMD is not readily available.

Task 2 - Remediation Well Installation

Pangea will coordinate installation of two DPE wells. Four existing monitoring wells and potentially three vapor wells will be converted for DPE by connecting to the top of the well casing above the bentonite seal (the precise method will be determined in the field).

The two new DPE wells will be constructed using 4-inch diameter, 0.010-inch slotted, polyvinyl chloride (PVC) casing screened from approximately 9-14 ft bgs. Pangea plans to install the well using a hollow-stem auger drill rig.

The new wells will be developed to remove silt and improve remediation effectiveness. To help establish preremediation conditions, the new wells will be sampled after well development. To control costs the wells will be sampled immediately following well development to avoid additional mobilization and purging cost.

Task 3 – Design and Permitting

Pangea will design the system and prepare construction drawings to obtain system installation bids from qualified contractors. The drawings will include system layout, trenching, piping, wellhead, equipment compound, and equipment anchoring details. Electrical single line and process and instrumentation diagrams will also be included. The treatment equipment will be located inside the existing equipment compound, if the equipment will fit inside the enclosure. The DPE remediation piping to each well will be manifolded near the treatment equipment, and will include valves, meters, gauges and/or sampling ports to facilitate flow control flow and parameter measurement for individual wells.

Pangea will conduct discharge permitting for the final remedial design. A groundwater discharge permit will be obtained from the Dublin/San Ramon Services District (DSRSD), the local sanitary sewer agency. Pangea will conduct air discharge permitting with the Bay Area Air Quality Management District (BAAQMD) as necessary. Limited permitting with BAAQMD will be required if we rent a blower/oxidizer system with a BAAQMD various location permit. Pangea anticipates that the remediation installation contractor will obtain permits from the City of Dublin Building Department as required.

Task 4 - Equipment Procurement

Pangea will coordinate or conduct procurement of remediation equipment for the remedial plans. Pangea currently plans to rent a thermal/catalytic oxidizer and extraction blower unit, although a used unit may be purchased if deemed cost effective. The equipment will include a 20-hp or larger liquid ring blower capable of providing 28.5 inches of mercury vacuum and 300 cfm air flow. The remediation piping to each well will be manifolded in the equipment enclosure, and will include valves, meters, gauges and/or sampling ports to facilitate flow and parameter measurement for individual wells.

Task 5 - Remediation System Installation

Upon completion of remediation well installation, Pangea will observe installation of the remediation system by a licensed contractor. The installation contractor will be retained to install the system in accordance with local building and use permit conditions. Electrical service will be provided to the equipment either from the existing electrical service at the site, or via a temporary service panel. A dedicated electrical grounding rod will be provided for the remediation equipment.

Pangea will use existing underground and aboveground piping from the former SVE system to the extent practical. The new remediation piping will be installed underground and/or aboveground as necessary to minimize cost and disruption to the site businesses. All aboveground piping will be painted to protect the piping from sunlight. Remediation plumbing will be plumbed from each well to a piping manifold in the equipment closure. Long-radius elbow piping will be used at 45- and 90-degree bends to reduce line loss in DPE piping. The piping will be tested prior to completion of installation activities. All conveyance piping will be tested at 10 psi for one hour, or in accordance with additional specifications or manufacturer requirements. The piping manifold will include valves, gauges and sampling ports to control and measure flow within each well. A telephone autodialer may be installed to alert Pangea technicians in the event of a shutdown.

Upon completion of system installation, Pangea will commence equipment testing and start up. The remediation system will be started and operated in accordance with BAAQMD air permit requirements and manufacturer recommendations. Pangea will monitor the applied vacuum, vapor extraction flow rates, hydrocarbon concentrations in extracted vapor for individual wells and system influent. Vapor samples will be periodically collected from each vapor extraction well and analyzed using a PID or organic vapor analyzer. Vapor samples will also be periodically collected for laboratory analysis to aid in calculating hydrocarbon mass removal rates and to comply with BAAQMD permit conditions.

Pangea plans to conduct operation and maintenance at least weekly during the first two months of operation. We will perform routine system maintenance, record system parameters and collect vapor samples to comply with permit conditions and evaluate system performance.

Task 6 – Reporting and System Evaluation

Pangea will prepare a remediation well installation report. Upon completion of start up, Pangea will incorporate system start up and operation information within quarterly reports. In each quarterly report, Pangea will evaluate DPE effect on dissolved contaminant concentrations. The reporting will describe the remedial activities, present tabulated data, and offer conclusions and recommendations for future site remediation. Pangea may recommend rebound testing of DPE to evaluate the effectiveness of the remedial efforts.

Task 7 - Geotracker Information and Surveying

Upon completion of wellhead modification, Pangea will retain a licensed surveyor to survey the modified elevations of site wells also used for groundwater monitoring to facilitate uploading to the state Geotracker database.

REFERENCES

California Regional Water Quality Control Board – San Francisco Bay Region (CRWQCB-SF), 2005, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, February.

Pangea, 2006, *Site Investigation Report*, Dublin Auto Wash, 7240 Dublin Boulevard, Dublin, California, August 11.

FIGURES

- Figure 1 Site Vicinity
- Figure 2 Groundwater Elevations and Hydrocarbon Concentration Map
- Figure 3 Estimated DPE Influence in the Upper Shallow AA-Zone
- Figure 4 Estimated DPE Influence in the Shallow A-Zone
- Figure 5 DPE Well Design

TABLES

- Table 1 Soil Analytical Results
- Table 2 Groundwater Elevation and Analytical Data
- Table 3 DPE Test Data
- Table 4 Soil Vapor Analytical Data
- Table 5 DPE Test Water Level Drawdown Data
- Table 6 Well Construction Details

APPENDICES

Appendix A – Laboratory Analytical Reports Appendix B – Pangea's Standard Operating Procedures for Monitoring Wells

Dublin Auto Wash 7240 Dublin Boulevard Dublin, California

Site Location Map

Dublin Auto Wash 7240 Dublin Boulevard Dublin, California

Groundwater Elevation Contour and Hydrocarbon Concentration Map May 21, 2008

Estimated DPE Influence in Upper Shallow AA-Zone

Dublin, California

Estimated DPE Influence in Shallow A-Zone

Figure 5. Typical Dual Phase Extraction Well Construction Details

Boring/Well	Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	Ethanol	Notes
		1	. ,	ـــــــــــــــــــــــــــــــــــــ			2	mg/kg				\longrightarrow	
Comm. ESL - In	ndoor Air Impact	ts		Use soil gas	Use soil gas	Use soil gas	Use soil gas	Use soil gas	Use soil gas		Use soil gas		
Comm. ESL - U	Jrban Ecotoxicity	/			25								
Comm. ESL - C	Ceiling Value			500	870	650	400	420	500		500		
Comm. ESL - D	Direct Exposure			450	0.27	210	5.0	100	65		320,000		
Comm. ESL - C	W Protection (L	eaching)		83	0.044	2.9	3.3	2.3	0.023		0.075		
Final ESL - Cor	nmercial, Drinki	ng Water Resource	e	83	0.044	2.9	3.3	2.3	0.023		0.075		
WELL INST	ALLATION &	& SOIL BORIN	IGS - 2006										
MW-3A-10	PANGEA	3/30/2006	10	1,500	2.4	5.2	19	83	<10 (0.54)	< 0.33	<3.3		
MW-3A-15	PANGEA	3/30/2006	15	140	2.3	2.6	2.4	16	2.7 (2.6)	< 0.10	<1.0		
MW-6C-5	PANGEA	3/30/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-6C-10	PANGEA	3/30/2006	10	50	0.024	0.072	0.13	1.5	< 0.05				
MW-6C-15	PANGEA	3/30/2006	15	130	0.61	0.29	1.4	9.3	<0.50 (0.050)	< 0.020	< 0.20		
									(,				
MW-7B-5	PANGEA	3/29/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	0.17 (0.11)	< 0.005	< 0.05		
MW-7B-11	PANGEA	3/29/2006	11	1,800	7.8	14	30	170	16 (13)	< 0.50	<5.0		
MW-8A-5	PANGEA	5/17/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-8A-10	PANGEA	5/17/2006	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-8A-15	PANGEA	5/17/2006	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-9A-5	PANGEA	4/3/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-9A-10	PANGEA	4/3/2006	10	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-9A-15	PANGEA	4/3/2006	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-10C-5	PANGEA	3/27/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-10C-10	PANGEA	3/27/2006	10	17	0.14	0.063	0.46	1.3	< 0.05				
MW-10C-15	PANGEA	3/27/2006	15	<1.0	< 0.005	< 0.005	0.0065	0.023	< 0.05				
MW-11C-5	PANGEA	3/28/2006	5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
MW-11C-11	PANGEA	3/28/2006	11	700	1.4	12	14	65	<10 (3.1)	< 0.33	<3.3		
MW-11C-15	PANGEA	3/28/2006	15	<1.0	< 0.005	0.023	0.014	0.073	1.0 (0.80)	< 0.033	0.41		
SB-1-7	PANGEA	5/18/2006	7	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
SB-1-11	PANGEA	5/18/2006	11	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				
SB-1-14	PANGEA	5/18/2006	14	<1.0	< 0.005	< 0.005	<0.005	< 0.005	< 0.05				
SB-1A-15	PANGEA	5/18/2006	15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05				

Boring/Well	Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	Ethanol	Notes
		1	. ,	<u>ب</u>			,					→	
Comm. ESL - I	ndoor Air Impac	ts		Use soil gas	Use soil gas	Use soil gas	Use soil gas	Use soil gas	Use soil gas		Use soil gas		
Comm. ESL - U	Urban Ecotoxicit	у			25								
Comm. ESL - 0	Ceiling Value			500	870	650	400	420	500		500		
Comm. ESL - I	Direct Exposure			450	0.27	210	5.0	100	65		320,000		
Comm. ESL - 0	GW Protection (I	.eaching)		83	0.044	2.9	3.3	2.3	0.023		0.075		
Final ESL - Co	mmercial, Drinki	ing Water Resource	e	83	0.044	2.9	3.3	2.3	0.023		0.075		
GD 4 5	DANCEA	5/19/2006	5	.1.0	-0.005	-0.005	-0.005	-0.005	-0.05				
SB-2-5	PANGEA	5/18/2006	5	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05				
SB-2-10	PANGEA	5/18/2006	10	790	<1.0	2.9	10	58	<10				
SD-2-15	PANGEA	5/18/2000	15	510	2.5 <0.005	<0.005	0.4	27 <0.005	< 3.0				
SB-2-20	PANGEA	5/18/2006	20	<1.0	<0.005	<0.005	<0.005	<0.005	<0.05				
WELL INST	ALLATION &	& SOIL BORIN	GS - HISTORIO	CAL									
EA-1	EA	10/17/1988	6.5 & 11.5	< 0.05	0.0019	0.0097	< 0.0005	0.0018					
			16	< 0.05	0.0007	0.0015	< 0.0005	0.0008					
			21	< 0.05	< 0.0005	< 0.0005	< 0.0005	< 0.0005					
EA-2	EA	10/20/1988	6	0.14	0.02	0.0013	0.0037	0.0018					
			11	0.11	0.0093	0.0034	0.0013	< 0.0005					
			16	< 0.05	< 0.0005	< 0.0005	< 0.0005	< 0.0005					
			21	0.14	0.02	0.0059	0.0045	0.0043					
EA-3	EA	10/21/1988	6	0.086	0.0054	0.0013	0.0049	0.0024					
			11	0.27	0.032	0.0043	0.0067	< 0.0005					
			16	< 0.05	0.0016	0.0037	< 0.0005	< 0.0005					
			21-36	< 0.05	< 0.0005	< 0.0005	< 0.0005	< 0.0005					
B-1	WGR	3/17/1989	3-4	< 0.5	0.24	< 0.5	< 0.5	< 0.5					
			4.5-5.5	< 0.5	0.43	< 0.5	< 0.5	< 0.5					
			6.5-7.5	<0.5	0.13	< 0.5	< 0.5	< 0.5					
			9.5-10.5	<0.5	0.09	< 0.5	< 0.5	< 0.5					
			14.5-15.5	1.8	<0.5	< 0.5	< 0.5	< 0.5					
B-2	WGR	3/17/1989	3.5-4.5	NA	NA	NA	NA	NA					
			5.5-6.5	<0.5	0.06	<0.5	<0.5	< 0.5					
			9.5-10.5	<0.5	<0.5	<0.5	<0.5	<0.5					
			14.5-15.5	<0.5	<0.5	<0.5	<0.5	<0.5					
B-3	WGR	3/17/1989	5.5-6.5	<0.5	<0.5	<0.5	<0.5	<0.5					
	WGD	3/18/1989	9.5-10.5	<0.5	<0.5	<0.5	<0.5	<0.5					
B-4	WGR	3/18/1989	3-4	< 0.5	0.06	<0.5	<0.5	<0.5					
			5.5-6.5	< 0.5	0.07	<0.5	<0.5	<0.5					
	****	0/10/1000	9.5-10.5	< 0.5	<0.5	<0.5	<0.5	<0.5					
B-5	WGR	3/18/1989	3-4	<0.5	<0.5	<0.5	<0.5	<0.5					
			5.5-6.5	<0.5	0.06	0.2	<0.5	0.1					
			9.5-10.5	<0.5	0.9	0.4	0.08	0.09					

D /IV . 11	Generalized	Dete	Course I. Double										
Boring/ well	Consultant	Date	Sample Depth		_								Notor
ID		Sampled	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	ТВА	Ethanol	INOLES
				•				mg/kg				\longrightarrow	
Comm. ESL - I	Indoor Air Impact	S		Use soil gas		Use soil gas							
Comm. ESL - U	Urban Ecotoxicity	7			25								
Comm. ESL - C	Ceiling Value			500	870	650	400	420	500		500		
Comm. ESL - I	Direct Exposure			450	0.27	210	5.0	100	65		320,000		
Comm. ESL - 0	GW Protection (L	eaching)		83	0.044	2.9	3.3	2.3	0.023		0.075		
Final ESL - Co	mmercial, Drinki	ng Water Resource	•	83	0.044	2.9	3.3	2.3	0.023		0.075		
MW-1	GTI	9/13/1994	10	ND	ND	0.0099	ND	ND					
			15	23	0.14	0.47	0.37	1.5					
MW-2	GTI	9/13/1994	10	980	2.7	19	15	78					
			15	ND	ND	ND	ND	ND					
MW-3	GTI	9/13/1994	10	2,500	0.8	4.8	5.1	120					
			15	37	0.21	0.48	0.32	1.5					
MW-4	GRI	2/22/1996	9.5	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.025				
MW-5	GRI	2/22/1996	9.5	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.025				
B-1	PES	7/14/1997	5	10	0.41	0.027	0.16	0.01	6				hand augered
			9	1,400	13	45	26	130	4.5				
B-2	PES	7/14/1997	5	1.8	0.006	0.007	0.013	0.033	0.33				hand augered
			10	1,100	11	35	18	91	20				
B-3	PES	7/15/1997	7	230	2.4	2	3.8	19	6				hand augered
			10	1,000	9.8	32	17	84	10				
B-4	PES	7/15/1997	7	33	0.11	0.034	0.39	0.87	1.5				hand augered
			10	1,900	2.2	14	19	170	<4.5				
B-1	SOMA	4/23/2003	3.5-4	< 0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0005	< 0.1	<1	hand augered
B-2	SOMA	4/23/2003	3.5-4	92,000	12	560	240	1,550	21	20	<100	<1,000	hand augered
B-3	SOMA	4/23/2003	3.5-4	< 0.19	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	0.086	0.86	hand augered
B-4	SOMA	4/23/2003	2.5-3	< 0.17	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	0.083	0.83	hand augered
B-5	SOMA	4/23/2003	3.5-4	< 0.19	< 0.0047	< 0.0047	< 0.0047	0.0079	< 0.0047	< 0.0047	0.094	0.94	hand augered
B-6	SOMA	4/23/2003	2.5-3	< 0.17	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	0.086	0.86	hand augered
B-7	SOMA	4/23/2003	3.5-4	8,700	7.7	270	170	920	7.1	<10	<140	<1,400	hand augered
B-8	SOMA	4/23/2003	4-5.75	9.9	0.0064	< 0.0044	0.033	0.2	0.047	0.012	0.088	0.88	hand augered
DPB-3	SOMA	4/17/2003	14-15	3,500	6.6	120	43	251	17				-
			18.5-19.5	< 0.16	< 0.0042	< 0.0042	< 0.0042	< 0.0042	1.4				
DPB-4	SOMA	4/17/2003	9-10	0.2	< 0.0039	< 0.0039	< 0.0039	< 0.0039	0.041				
DPB-5	SOMA	4/17/2003	11-12	< 0.17	< 0.0041	< 0.0041	< 0.0041	< 0.0041	0.0045				
DPB-6	SOMA	4/18/2003	18-18.75	< 0.15	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004				
DPB-7	SOMA	4/18/2003	15.5-16.5	< 0.2	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005				
DPB-S	SOMA	4/18/2003	15-16	1.2	< 0.13	< 0.13	< 0.13	0.36	3.5				

Boring/Well	Consultant	Date	Sample Depth										
ID		Sampled	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	Ethanol	Notes
				←				mg/kg				\longrightarrow	
Comm. ESL - In	ndoor Air Impacts			Use soil gas		Use soil gas							
Comm. ESL - U	rban Ecotoxicity				25								
Comm. ESL - Co	eiling Value			500	870	650	400	420	500		500		
Comm. ESL - D	irect Exposure			450	0.27	210	5.0	100	65		320,000		
Comm. ESL - G	W Protection (Lea	aching)		83	0.044	2.9	3.3	2.3	0.023		0.075		
Final ESL - Com	nmercial, Drinking	g Water Resource	2	83	0.044	2.9	3.3	2.3	0.023		0.075		

ABBREVIATIONS AND NOTES:

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015M.

MTBE = Methyl tert-butyl ether by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B)

TAME = Tert-amyl methyl ether by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B)

TBA = Tert-butyl alcohol by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B)

mg/kg = milligram per kilogram

EA = EA Engineering Science and Technology Inc.

WGR = Western Geologic Resources

GTI = Groundwater Technology

GRI = Gettler-Ryan Inc.

PES = Parker Environmental Services

SOMA = SOMA Environmental Engineering Inc.

ESL = Environmental Screening Levels for shallow soil with commercial/industrial land use where groundwater is a current or potential drinking water resource from Table A-2, established by the SFBRWQCB, Interim

Final - November 2007 (Revised May 2008).

< = Not detected at or above indicated detection limit

Bold = Analytical results at or above the final ESL

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Fley	Sampled	to Water	Elevation	TPHσ	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(ft)	Sampica	(ft)	(ft msl)	11 lig	Belizene	Tolucile		Aylenes	MIDE	mg/L	
017		(11)	(11, 11.51)	<u> </u>			μg/E		7	ing L	
Surface Water	(Flood Con	trol Chann	el)								
C-1	08/17/06	11.60	321.29								Gauge data - flood control channel
332.89	11/24/06	12.10	320.79								
	02/21/07	12.10	320.79								
	05/15/07	12.05	320.84								
	08/28/07	11.90	320.99								
	12/21/07	12.16	320.73								
	02/26/08	12.10	320.68								
	05/21/08	12.21	320.49								
	09/12/08	11.95	320.49								
	00/15/00	11.55	320.94								
Upper Shallow	(AA-Zone)	Wells									
MW-7AA	05/31/06	9.18	321.49	12,000	1,000	410	180	1,600	23,000 (21,000)	0.44	TAME, TBA, DIPE, ETBE=ND
330.67	07/07/06	9.15	321.52								
	08/17/06	8.75	321.92	25,000	2,200	210	780	1,400	36,000(42,000)	0.24	
	11/24/06	9.84	320.83	27,000	3,400	1,100	1,300	3,400	37,000	0.33	
	02/21/07	9.60	321.07	18,000	2,400	670	200	2,800	41,000	0.58	
	05/15/07	10.20	320.47	11,000	1,500	200	520	1,100	47,000	0.49	
	08/28/07	10.20	320.47	4,500	720	13	73	100	18,000	0.33	
	12/21/07	10.09	320.58	3,700	550	32	74	330	12,000	0.58	
	02/26/08	8.96	321.71	5,400	970	7.2	320	100	15,000	0.74	
	05/21/08	10.28	320.39	22,000	2,700	19	940	440	28,000	0.71	
	08/13/08	10.38	320.29	3,900	510	<5.0	150	42	15,000	0.77	
VW-1	02/21/06	7.95	322.48	860	120	1.4	32	4.4	390 (440)	1.97	
330.43	06/01/06	7.89	322.54	1,100	92	2.2	11	1.4	600 (550)	0.11	TAME=12µg/L, TBA,DIPE,ETBE=ND
	07/07/06	7.71	322.72								
	08/17/06	7.65	322.78							0.07	
	11/24/06	7.75	322.68			Insufficie	ent Water to Sample	e		0.48	
	02/21/07	7.81	322.62	620	52	4.3	<0.5	2.7	340	0.22	
	05/15/07	7.94	322.49	2,000	270	6.4	1.2	15	720	0.10	
	08/28/07	8.07	322.36	2,400	400	4.6	<0.5	23	610	0.27	
	12/21/07	8.20	322.23			Ins	sufficient Water to	Sample			
	02/26/08	8.20	322.23			Ins	sufficient Water to	Sample			
	05/21/08	8.21	322.22			Ins	sufficient Water to	Sample			
	08/13/08	8.27	322.16			Inst	ufficient Water to	Sample			

11/27/01

12.7

320.96

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Fley	Sampled	to Water	Flevation	TDUg	Banzana	Toluene	Ethylbenzene	Vylanac	MTRE	Oxygen	Notes
TOC Liev	Sampled		(fe1)	irng	Belizelle	Toluene		Aylelles	MIBE		
(ft)		(π)	(It, msi)	•			— μg/L-			mg/L	
VW 2	02/21/06	6.01	224.16	1 600	150	27	55	20	1 700 (1 600)	1.07	
220.17	02/21/06	6.01	324.10	1,600	130	2.7	33 24	20	1,700 (1,600)	0.20	TAME TRA DIDE ETRE-ND
550.17	07/07/06	7.02	324.00	1,500	140	5.5	24	19	1,000 (1,000)	0.29	TAME, TBA, DIFE, ETBE=ND
	07/07/06	7.02	323.13								
	11/24/06	5.55	322.94							0.14	
	02/21/07	5.55	324.02	<50	-0.5	<0.5	<0.5	<0.5	200 <5.0	0.20	
	02/21/07	0.22	323.95	<30	<0.5	<0.5	<0.5	<0.5	< 3.0	0.42	
	08/28/07	7.54	322.03	430	40	1.5	<0.5	20	470	0.28	
	12/21/07	1.62	322.33	1,200	170	-0.5	<0.5	20	100	0.33	
	02/26/08	4.44	325.75	<50	<0.5	<0.5	<0.5	<0.5	21	0.70	
	02/20/08	4.30	323.01	<30	<0.5	<0.5	<0.5	<0.5	21	0.73	
	03/21/08	7.03	322.32	300	28	1./	< 0.5	0.97	<43	0.71	
	08/13/08	7.92	322.25			Insufficier	it water to Samp	le		1.58	
VW_3	02/21/06	6 10	324 30	8 900	300	20	490	650	<50	2.28	
330.40	02/21/00	6.22	324.39	5,900	230	4.5	490	63	<35 (15)	0.21	TAME TRA DIDE ETRE-ND
550.49	07/07/06	0.22	324.27	5,900	230	4.5	270	05	<33 (13)	0.21	TAME, TBA, DILE, ETBE=ND
	08/17/06	4.44	326.09	4 200	120	1.7	30	30	~25	0.10	
	11/24/06	6.15	320.09	7,600	210	1.7	270	420	<50	0.10	
	02/21/07	6.87	324.34	7,000 8,800	310	5.9	120	420	<00	0.21	
	02/21/07	7.12	323.02	8,800 5,600	200	5.1	110	110	<90	0.29	
	08/28/07	7.13	323.30	10,000	270	5.0	110	140	<90 84	0.30	
	12/21/07	6.28	323.08	2 000	320	5.9	130	140	64 <50	0.39	
	12/21/07	6.28	324.21	5,900	140	1.9	54	29	<30	0.60	
	02/20/08	6.09	324.40	3,600	270	4.5	20	150	<90	0.09	
	03/21/08	0.40	324.05	5,800	210	3.0	52 97	4/	30	0.77	
	08/13/08	0.95	525.50	9,500	400	4.0	07	00	100	0.59	
Shallow (A-Z	one) Wells										
N/XX/ 1	10/04/04	12.8	320.76	2 100	150	170	61	220			
222.66	11/20/04	12.0	320.70	2,100	210	170	72	120			
555.00	02/02/05	12.30	321.10	2,600	210	-10	160	<10			
	06/07/05	12.00	320.08	2,000	160	<10	100	<10			
	00/07/95	12.56	320.98	1 100	140	<2.0	43	<2.0	<10		
	12/28/05	13.15	320.41	750	140	1.4	92	1.8	<3.0		
	02/20/06	13.09	320.47	250	90	2.5	18	0.81	37		
	02/29/90	12.17	220.61	230	17	<0.5	10	0.81	-10		
	00/27/96	12.95	320.01	710	12	<2.0	92	2.2	<10		
	02/21/07	13.11	320.33	200	25	<0.5	32	0.05	21		
	12/22/09	12.99	320.67	<200	4.1	<2.0	4.8	<2.0	640		
	12/23/98	13.8/	319.79	<50	<50	<0.5	< 0.5	<0.5	3200 5 200 (5 200)		
	03/25/99	12.01	321.65	<50	<0.5	<0.5	<0.5	<0.5	5,200 (5,200)		
	02/03/00	11.91	321.75	<500	<5.0	<5.0	<5.0	<5.0	3,180 (3,350)		
	01/23/01	12.57	321.09	<50.0	<0.5	<0.5	<0.5	<0.5	4,420		
	05/01/01	12.6	321.06	-50	-0.5	SAN	IPLED SEMI-ANI	NUALLY	4 000		
	08/28/01	12.74	320.92	<50	<0.5	<0.5	<0.5	<0.5	4,800		

Table 2. Groundwater Elevation and Analytical Data - Dublin Auto Wash, 7240 Dublin Boulevard, Dublin, CA

SAMPLED SEMI-ANNUALLY

Table 2. Groundwater Elevation and Analytical Data	- Dublin Auto Wash, 7240 Dublin Boulevard, Dublin, CA
--	---

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(ft)	•	(ft)	(ft, msl)	• •			— μg/L			mg/L	
MW-1 (cont'd)	02/28/02	12.7	320.96	<50	< 0.5	< 0.5	<0.5	<1.5	1,400		
	05/22/02	12.38	321.28			SAN	IPLED SEMI-AN	NUALLY			
	08/20/02	12.57	321.09	<50	<0.5	<0.5	<0.5	<1.5	1,400		
	11/11/02	11.31	322.35	SAMPLED SEMI-ANNUALLY							
	05/08/03	11.85	321.81	<50	<0.5	<0.5	<0.5	<0.5	1,300 (1,200)		
	12/15/04	12.80	320.86	<50	<0.5	<0.5	<0.5	<0.5	1,700 (1,900)		
	02/21/05	11.81	321.85	<100	<1.0	<1.0	<1.0	<1.0	3,000 (3,800)	0.82	
	05/17/05	12.51	321.15	<120	<1.2	<1.2	<1.2	<1.2	3,400 (4,400)	0.75	
	08/17/05	12.35	321.31	<170	<1.7	<1.7	<1.7	<1.7	4,500 (4,900)	0.77	
	11/27/05	13.18	320.48	<170	<1.7	<1.7	<1.7	<1.7	5,400 (4,400)	0.90	
	02/21/06	12.61	321.05	<170	<1.7	<1.7	<1.7	<1.7	5,000 (5,400)	0.29/0.71	
333.69	06/01/06	12.47	321.22	<250	<2.5	<2.5	<2.5	<2.5	6,400 (6,300)	0.46	TAME, TBA, DIPE, ETBE=ND
	07/07/06	12.60	321.09								
	08/17/06	11.93	321.76	<250	<2.5	<2.5	<2.5	<2.5	7,700 (9,100)	0.43	
	11/24/06	13.01	320.68	<250	<2.5	<2.5	<2.5	<2.5	8,400	0.29	
	02/21/07	12.91	320.78	<50	< 0.5	< 0.5	< 0.5	< 0.5	3,600	0.24	
	05/15/07	13.40	320.29	<50	< 0.5	< 0.5	< 0.5	< 0.5	2,500	0.29	
	08/28/07	13.40	320.29	<50	< 0.5	< 0.5	< 0.5	< 0.5	170	0.40	
	12/21/07	13.40	320.29	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.68	
	02/26/08	12.60	321.09	<50	< 0.5	< 0.5	< 0.5	< 0.5	7.0	0.86	
	05/21/08	13.45	320.24	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.94	
	08/13/08	13.37	320.32	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.91	
MW-2	10/04/94	8 56	320.62	2300	160	280	96	480			
329.29	11/30/94	8.33	320.85	1.600	170	16	110	120			
	03/02/95	8 35	320.83	1 200	220	5.6	140	36			
	06/07/95	8.62	320.56	160	25	<0.5	16	<0.5	240		
	09/26/95	8 71	320.47	150	15	<0.5	72	<0.5	120		
	12/28/95	8.78	320.4	400	34	1.3	26	5.1	170		
	02/29/96	7.82	321.36	120	29	<0.5	<0.5	<0.5	790		
	06/27/96	8 72	320.46	150	13	<0.5	7	<0.5	850		
	09/12/96	8.81	320.48	<1.000	18	<10	<10	<10	3 100		
	03/31/97	8 65	320.40	<500	<5.0	<5.0	<5.0	<5.0	1 400		
	12/23/98	8.32	320.04	<50	<0.5	<0.5	<0.5	<1.5	900		
	03/25/99	7.89	321.7	<50	26	<0.5	<0.5	<0.5	1 100 (670)		
	02/03/00	7.53	321.4	<125	<1.25	<1.25	<1.25	<1.25	1,100 (070)		
	01/23/01	8.18	321.70	<50.0	<0.5	<0.5	<0.5	<0.5	642		
	01/23/01	0.10 9.42	321.11	< 50.0	<0.5	<0.5	<0.5	<0.5	242		
	08/28/01	0.43 8 20	320.80	/0.8	<0.5	<0.5	<0.5	<0.5	520		
	11/27/01	0.37	320.9	< <u>50</u> 210	<0.5	<0.5	<0.5	<0.5	260		
	02/28/02	0.40	320.83	210 < 5 0	<0.5	<0.5	<0.5	<1.5	200		
	02/28/02	6.48 9.14	320.81	<50	< 0.5	< 0.5	< 0.5	<1.5	180		
	05/22/02	8.14	321.15	<50	< 0.5	<0.5	<0.5	<1.5	180		
	08/20/02	8.24	321.05	<50	<0.5	<0.5	<0.5	<1.5	160		
	11/11/02	8.06	321.23	<50	<0.5	<0.5	<0.5	<1.5	130		
	05/08/03	7.86	321.43	<50	<0.5	<0.5	<0.5	<0.5	180 (160)		
	12/15/04	8.60	320.69	<50	< 0.5	< 0.5	< 0.5	< 0.5	1,400 (1,600)		
Table 2. Groundwater Elevation and Analytical Data	- Dublin Auto Wash,	, 7240 Dublin Boulevard	, Dublin, CA								
--	---------------------	-------------------------	--------------								
--	---------------------	-------------------------	--------------								

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(ft)	1	(ft)	(ft, msl)	۔ ب			— μg/L			mg/L	
										Ŭ	
MW-2 (cont'd)	02/21/05	7.55	321.74	<50	< 0.5	< 0.5	<0.5	< 0.5	800 (1,100)	1.35	
	05/17/05	8.52	320.77	<50	< 0.5	< 0.5	< 0.5	< 0.5	160 (210)	1.06	
	08/17/05	8.16	321.13	<50	<0.5	< 0.5	< 0.5	< 0.5	190 (210)	0.90	
	11/27/05	9.00	320.29	<50	<0.5	< 0.5	<0.5	< 0.5	200 (210)	0.92	
	02/21/06	8.51	320.78	<50	< 0.5	< 0.5	<0.5	< 0.5	240 (270)	0.33/0.46	
329.48	06/01/06	8.50	320.98	<50	<0.5	< 0.5	<0.5	<0.5	120 (110)	0.38	TAME, TBA, DIPE, ETBE=ND
	07/07/06	8.57	320.91								, , , ,
	08/17/06	8 21	321.27	<50	<0.5	<0.5	<0.5	<0.5	230(230)	0.30	
	11/24/06	8.87	320.61	<50	<0.5	<0.5	<0.5	<0.5	760	0.30	
	11/24/00	0.07	320.01	<50	<0.5	<0.5	<0.5	<0.5	1 100	0.24	
	02/21/07	8.80	320.68	<50	<0.5	<0.5	<0.5	<0.5	1,100	0.21	
	05/15/07	8.94	320.54	<50	<0.5	<0.5	<0.5	<0.5	1,400	0.25	
	08/28/07	8.83	320.65	<50	<0.5	<0.5	<0.5	<0.5	1,800	0.33	
	12/21/07	8.93	320.55	<50	< 0.5	< 0.5	<0.5	<0.5	1,700	0.49	
	02/26/08	8.49	320.99	<50	< 0.5	< 0.5	<0.5	<0.5	590	0.51	
	05/21/08	9.06	320.42	<50	< 0.5	< 0.5	< 0.5	< 0.5	230	0.67	
	08/13/08	8.89	320.59	<50	<0.5	<0.5	<0.5	<0.5	190	0.77	
MW-3A	05/29/06	10.13	321.28								0.03 SPH
331.39	07/07/06	10.15	321.24	4,200	340	27	75	79	32,000		
	08/17/06	9.56	321.83	6,200	410	68	100	650	28,000(34,000)	0.19	
	11/24/06	10.73	320.66	2,100	190	11	72	220	7,900	0.10	
	02/21/07	10.52	320.87	7,100	890	28	440	470	8,400	0.17	
	05/15/07	11.46	319.93	1,800	210	11	96	88	3,500	0.25	
	08/28/07	11.62	319.77	1,900	260	6.9	110	74	3,400	0.28	
	12/21/07	11.33	320.06	4,700	570	160	120	970	2,800	0.54	
	02/26/08	10.25	321.14	7,200	550	32	440	690	1,800	0.49	
	05/21/08	11.52	319.87	1,600	130	2.9	40	94 56	/00	0.55	
	08/13/08	11.62	319.77	2,900	280	3.4	52	50	1,300	0.52	
MW-4	03/01/96	9.9	322.74	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5		
332.63	04/02/96	9.77	322.87								
	06/27/96	10	322.64	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5		
	09/12/96	11.67	320.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	3.5		
	03/31/97	10.59	322.04	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	12/23/98	10.37	322.26	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5		
	03/25/99	9.91	322.72	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	02/03/00	10.32	322.31	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5/<2.0 (3)		
	01/23/01	10.54	322.09	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0		
	05/01/01	10.32	322.31			5	SAMPLED ANNU	ALLY			
	08/28/01	10.57	322.06			5	SAMPLED ANNU	ALLY			
	11/27/01	10.29	322.34			5	SAMPLED ANNU	ALLY			
	02/28/02	10.3	322.33	<50	< 0.5	< 0.5	<0.5	<1.5	<2.5		
	05/22/02	10.12	322.51			S	SAMPLED ANNU	ALLY			
	08/20/02	10.43	322.2			5	SAMPLED ANNU	ALLY			

Well ID	Date	Depth	Groundwater							Dissolved		-
TOC Elev	Sampled	to Water	Elevation	TPHσ	Benzene	Toluene	Ethylbenzene	Xylenes	MTRF	Oxygen	Notes	
(ft)	Bunpied	(ft)	(ft msl)	4	Denzene	Tolucile		Tylenes		mg/L		
00		(11)	(11, 1131)	<u> </u>			μg/L		-	iiig/L		
MW-4 (cont'd)	11/11/02	9.89	322 74			s	AMPLED ANNU	ΔΗΥ				
<i>mm</i> -4 (com u)	05/08/03	9.79	322.84	<50	<0.5	<0.5	<0.5	<0.5	<2			
	12/15/04	10.56	322.07	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	02/21/05	9 50	323.13	<50	<0.5	<0.5	<0.5	<0.5	<50(<05)	1.60		
	05/17/05	10.20	322.43			SAMPI	ED ANNUALLY			1.29		
	08/17/05	10.50	322.13			SAMPI	ED ANNUALLY			1.10		
	11/27/05	11.07	321.56			SAMPL	ED ANNUALLY			1.01		
	02/21/06	10.53	322.10	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.14/0.90		
332.64	05/29/06	10.33	322.31			SAMPL	ED ANNUALLY					
	07/07/06	10.52	322.12									
	08/17/06	10.45	322.19									
	11/24/06	10.95	321.69							0.22		
	02/21/07	10.71	321.93	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.40		
	05/15/07	11.24	321.40									
	08/28/07	11.42	321.22							0.52		
	12/21/07	11.26	321.38							0.81		
	02/26/08	10.12	322.52	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	1.06		
	05/21/08	11.30	321.34							0.98		
	08/13/08	11.23	321.41							0.71		
MW-5	03/01/96	10.62	322.58	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
333.47	04/02/96	10.14	323.06									
	06/27/96	10.22	322.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
	09/12/96	10.85	322.19	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
	03/31/97	10.44	322.6	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5			
	12/23/98	10.21	322.83	<50	< 0.5	<0.5	<0.5	<1.5	<2.5			
	03/25/99	9.92	323.12	<50	< 0.5	<0.5	<0.5	< 0.5	<2.5			
	02/03/00	9.63	323.41	<50	< 0.5	<0.5	<0.5	< 0.5	<2.5/<2.03			
	01/23/01	10.35	322.69	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0			
	05/01/01	10.34	322.7			SAMPL	ED ANNUALLY					
	08/28/01	10.44	322.6			SAMPL	ED ANNUALLY					
	11/27/01	10.17	322.87			SAMPL	ED ANNUALLY					
	02/28/02	10.2	322.84	<50	<0.5	<0.5	< 0.5	<1.5	<2.5			
	05/22/02	10.38	322.66			SAMPL	ED ANNUALLY					
	08/20/02	10.36	322.68			SAMPL	ED ANNUALLY					
	11/11/02	10.03	323.01			SAMPL	ED ANNUALLY					
	05/08/03	9.56	323.48	<50	<0.5	<0.5	<0.5	<0.5	3.4/<0.5			
	12/15/04	10.08	322.96	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	02/21/05	9.90	323.14	<50	<0.5	<0.5	<0.5	<0.5	<5.0 (0.54)	1.62		
	05/17/05	10.33	322.71			SAMPL	ED ANNUALLY			1.47		
222.55	08/17/05	10.40	322.64			SAMPL	ED ANNUALLY			1.18		
333.13	11/27/05	10.43	322.61	- ~	~ -	SAMPL	ED ANNUALLY	o -		1.19		
	02/21/06	10.32	322.81	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0	0.48/0.76		
	05/29/06	10.41	322.72			SAMPL	ED ANNUALLY					
	07/07/06	10.46	322.67									

10.49

08/17/06

324.19

Page 5 of 14

TOC ElevSampledto WaterElevationTPHgBenzeneTolueneEthylbenzeneXylenesMTBEOxygenNotes(ft)(ft)(ft, msl) \checkmark $\mu g/L$ $\mu g/L$ mg/L mg/L MW-5 (cont'd)11/24/0610.92322.21 $$ $$ $$ $$ $$ 0.27 02/21/0710.90322.23<50<0.5<0.5<0.5<0.5<5.00.73	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
MW-5 (cont'd) 11/24/06 10.92 322.21 0.27 02/21/07 10.90 322.23 <50 <0.5 <0.5 <0.5 <5.0 0.73	
MW-5 (cont'd) 11/24/06 10.92 322.21 0.27 02/21/07 10.90 322.23 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
02/21/07 10.90 322.23 <50 <0.5 <0.5 <0.5 <0.5 <5.0 0.73	
05/15/07 10.97 322.16	
08/28/07 11.07 322.06 0.55	
12/21/07 10.80 322.33 0.97	
02/26/08 10.38 322.75 <50 <0.5 <0.5 <0.5 <0.5 <5.0 1.01	
05/21/08 10.97 322.16 0.95	
08/13/08 10.98 322.15 0.99	
MW-6A 06/01/06 10.38 321.43 620 20 <2.5 <2.5 43 5.700 (5.300) 0.73 TAME TRA DIPE FT	BF-ND
331.81 07/07/06 10.15 321.66 m m m m m m m m m m	BL-IND
08/17/06 9 69 322 12 860 55 31 31 41 5 300(6 200) 0 49	
1/2406 1110 32071 330 14 <25 11 34 5500 037	
02/21/07 10.72 321.09 360 13 1.8 16 34 4400 0.50	
5/15/07 11.69 $320.12 < 500$ 40 5.3 11 16 7.300 0.52	
08/28/07 11.98 319.83 <250 <25 <25 <25 <25 7.300 0.39	
12/21/07 11.31 320.50 4.400 200 45 50 550 3.500 0.45	
02/26/08 10.15 321.66 6.800 740 130 290 600 330 0.61	
05/21/08 11.60 320.21 1.900 150 8.1 44 100 88 0.63	
08/13/08 11.91 319.90 1,200 84 3.7 36 18 <75 0.42	
MW 7A 05/31/06 0.10 321.52 <50 1.3 <0.5 0.70 0.82 760 (770) 0.40 TAME TRA DIPE ET	BE-ND
$\mathbf{M} \mathbf{W} \mathbf{H} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} W$	BE-ND
530.71 070700 5.17 521.54 $ -$	
001700 6.06 322.05 00 1.1 0.5 0.5 1.1 $500(1,00)$ 0.29	
11/24/00 2.66 320.63 < 0.0 < 0.0 < 0.0 < 0.0 2.00 0.20 $= 0.20$	
0.22107 0.15 32056 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
0.7307 10.09 20.62 <50 <0.5 <0.5 <0.5 <0.5 45 0.40	
00/2007 10.09 J20.02 < 00 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.42	
0.26608 = 8.78 = 32193 = 1.300 = 150 = 180 = 410 = 670 = 0.0000 = 0.00000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.0000 = 0.000000 = 0.0000 = 0.	
05/21/08 10.16 320.55 200 18 <0.5 33 <0.5 30 0.75	
08/13/08 10.27 320.44 <50 <0.5 <0.5 <0.5 <0.5 24 0.81	

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(ft)		(ft)	(ft, msl)				— μg/L	•		mg/L	
MW-8A	05/29/06	9.55	321.64	<50	< 0.5	< 0.5	< 0.5	<0.5	20 (18)	0.39	TAME, TBA, DIPE, ETBE=ND
331.19	07/07/06	9.20	321.99								
	08/17/06	8.73	322.46	<50	< 0.5	< 0.5	< 0.5	< 0.5	19 (26)	0.26	
	11/24/06	9.80	321.39	<50	< 0.5	< 0.5	< 0.5	< 0.5	34	0.21	
	02/21/07	9.81	321.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	16	0.29	
	05/15/07	10.05	321.14	<50	< 0.5	< 0.5	< 0.5	< 0.5	13	0.33	
	08/28/07	9.83	321.36	<50	< 0.5	< 0.5	< 0.5	< 0.5	19	0.35	
	12/21/07	10.36	320.83	<50	< 0.5	< 0.5	< 0.5	< 0.5	16	0.61	
	02/26/08	8.33	322.86	<50	< 0.5	< 0.5	<0.5	< 0.5	38	0.77	
	05/21/08	9.99	321.20	<50	< 0.5	< 0.5	<0.5	< 0.5	13	0.81	
	08/13/08	10.49	320.70	<50	<0.5	<0.5	<0.5	<0.5	68	0.65	
MW-9A	05/29/06	10.13	321.04	<50	< 0.5	< 0.5	< 0.5	< 0.5	210 (210)	0.46	TAME, TBA, DIPE, ETBE=ND
331.17	07/07/06	9.96	321.21								
	08/17/06	9.40	321.77	150	< 0.5	1.3	< 0.5	< 0.5	79(100)	0.53	
	11/24/06	11.02	320.15	200	< 0.5	2.4	< 0.5	< 0.5	31	0.38	
	02/21/07	10.53	320.64	<50	< 0.5	< 0.5	< 0.5	< 0.5	21	0.33	
	05/15/07	10.81	320.36	86	< 0.5	< 0.5	< 0.5	< 0.5	31	0.45	
	08/28/07	11.11	320.06	95	< 0.5	1.4	< 0.5	< 0.5	10	0.38	
	12/21/07	10.76	320.41	120	< 0.5	2.9	< 0.5	0.51	9.5	0.50	
	02/26/08	9.71	321.46	120	< 0.5	1.2	< 0.5	< 0.5	9.5	0.86	
	05/21/08	10.75	320.42	86	< 0.5	< 0.5	< 0.5	< 0.5	6.3	0.84	
	08/13/08	11.31	319.86	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.76	
MW-10A	05/29/06	11.60	318.33	<50	< 0.5	<0.5	<0.5	0.67	5.3 (4.7)	0.68	TAME, TBA, DIPE, ETBE=ND
329.93	07/07/06	9.78	320.15								
	08/17/06	8.80	321.13	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.47	
	11/24/06	12.61	317.32	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.26	
	02/21/07	8.96	320.97	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0	0.25	
	05/15/07	9.22	320.71	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.30	
	08/28/07	8.44	321.49	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.35	
	12/21/07	8.81	321.12	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.47	
	02/26/08	7.34	322.59	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.70	
	05/21/08	9.22	320.71	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	0.64	
	08/13/08	9.25	320.68	~50	<0.5	<0.5	<05	<0.5	~5.0	0.61	

Well ID	Date	Denth	Groundwater							Dissolved	
TOC Flay	Sampled	to Water	Elevation	TDUg	Banzana	Toluene	Ethylbanzana	Vylanas	MTRE	Oxygen	Notes
(ft)	Sampled	(ft)	(ft mal)	1Fng	Belizelle	Toluelle	uq/I	Aylelles	MIBE	mg/I	
()()		(11)	(11, 11181)	•			— μg/L-		-	IIIg/L	
Intermediate-	Depth (B-zor	ne) Wells									
MW-6B	06/01/06	8.41	322.49	<50	<0.5	<0.5	< 0.5	< 0.5	18 (16)	0.34	TAME, TBA, DIPE, ETBE=ND
330.9	07/07/06	8.55	322.35								
	08/17/06	8.66	322.24	<50	< 0.5	< 0.5	< 0.5	< 0.5	8.5(9.6)	0.40	
	11/24/06	9.25	321.65	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.31	
	02/21/07	8.80	322.10	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.37	
	05/15/07	9.21	321.69	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.31	
	08/28/07	9.60	321.30	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.51	
	12/21/07	9.42	321.48	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.82	
	02/26/08	7.87	323.03	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.80	
	05/21/08	9.37	321.53	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.87	
	08/13/08	9.70	321.20	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.81	
MW-7B	05/31/06	9.05	321.64	<50	0.79	< 0.5	< 0.5	0.75	6.4 (6.6)	0.17	TAME, TBA, DIPE, ETBE=ND
330.69	07/07/06	9.03	321.66								
	08/17/06	8.62	322.07	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.22	
	11/24/06	9.75	320.94	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.27	
	02/21/07	9.44	321.25	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.29	
	02/21/07	9.44	321.25	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.29	
	05/15/07	9.97	320.72	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.33	
	08/28/07	9.96	320.73	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.51	
	12/21/07	9.87	320.82	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.53	
	02/26/08	8.64	322.05	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.59	
	05/21/08	10.05	320.64	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.56	
	08/13/08	10.17	320.52	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.51	
Deep (C-Zone	e) Wells										
MW-6C	06/01/06	8.21	322.67	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.29	TAME, TBA, DIPE, ETBE=ND
330.88	07/07/06	8.41	322.47								
	08/17/06	8.56	322.32	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.21	
	11/24/06	9.12	321.76	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.28	
	02/21/07	8.62	322.26	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.21	
MW-7C	05/31/06	8.65	322.09	<50	< 0.5	<0.5	< 0.5	<0.5	<5.0	0.12	TAME, TBA, DIPE, ETBE=ND
330.74	07/07/06	8.70	322.04								
	08/17/06	8.52	322.22	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.17	
	11/24/06	9.42	321.32	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.19	
	02/21/07	9.01	321.73	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.31	

Table 2. Groundwater Elevation and Analytical Data	- Dublin Auto Wash	, 7240 Dublin Boulevard	, Dublin, CA
--	--------------------	-------------------------	--------------

Wall ID	Data	Denth	Groundwater							Dissolved	
well ID	Date	Depui				— 1	5.1.11			Oxygen	Notes
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Totes
(ft)		(ft)	(ft, msl)	←			— μg/L		\longrightarrow	mg/L	
MW AC	05/20/06	16.50	214.80	-50	-0.5	-0.5	-0.5	-0.5	-5.0	0.29	TAME TO A DIDE ETDE ND
MW-9C	05/29/06	10.59	314.89	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.28	TAME, TBA, DIPE, ETBE=ND
551.40	07/07/06	0.00	322.03							0.21	
	11/24/06	9.20	322.28	<50	<0.5	<0.5	<0.5	<0.5	< 3.0	0.21	
	02/21/07	9.01	321.67	<50	<0.5	<0.5	<0.5	<0.5	< 3.0	0.55	
	02/21/07	8.94	322.34	<30	<0.5	<0.5	<0.5	<0.5	<3.0	0.40	
MW-10C	05/29/06	7.28	322.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.16	TAME, TBA, DIPE, ETBE=ND
329.66	07/07/06	7.28	322.38								
	08/17/06	7.29	322.37	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.22	
	11/24/06	10.75	318.91	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.33	
	02/21/07	7.69	321.97	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.39	
MW-11C	05/31/06	9.90	321.71	<50	< 0.5	< 0.5	< 0.5	< 0.5	11 (11)	0.29	TAME, TBA, DIPE, ETBE=ND
331.61	07/07/06	10.02	321.59								
	08/17/06	9.60	322.01	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.22	
	11/24/06	10.60	321.01	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.28	
	02/21/07	10.30	321.31	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0	0.43	
MW-3	10/04/94	12.06	320.67	6.300	610	750	68	670			
332.86	11/30/94	11 38	321.35	17	3 600	490	430	610			
	03/02/95	11.97	320.76	8.500	2,200	<50	240	<50	64.000		
	06/07/95	11.54	321.19	3.000	710	18	220	44	3,100		
	09/26/95	12.36	320.37	<10.000	230	<100	130	<100	64.000		
	12/28/95	12.07	320.66	<12,500	760	<125	<125	<125	100.000		
	02/29/96	11.01	321.72	1,600	380	<10	84	17	33,000		
	06/27/96	11.93	320.8	1,400	<2.5	4.3	130	4	96,000		
	09/12/96	12.26	320.6	<10,000	560	<100	110	<100	100,000		
	03/31/97	12.04	320.82	<25,000	1,200	370	<250	380	130,000		
	12/23/98	12.92	319.94								0.1' SPH; 0.079 gal SPH removed
	03/25/99	12.56	320.3								0.05' SPH; 0.05 gal SPH removed
	02/03/00	11.12	321.74	92,100	4,780	11,400	2,270	15,800	137,000 (162,000)		
	1/23/2001	11.78	321.08	60,600	4,810	7,500	1,870	11,000	148,000		Absorbent sock in well
	5/1/2001	10.66	322.2	56,000	3,760	5,640	<2,500	8,740	136,000		Absorbent sock in well
	8/28/2001	11.79	321.07	32,000	3,800	2,600	1,200	7,500	160,000		Absorbent sock in well
	11/27/2001	11.98	320.88	110,000	1,300	2,400	1,500	9,400	90,000		Absorbent sock removed
	02/28/02	11.81	321.05	24,000	1,900	820	520	3,100	90,000		
	05/22/02	11.6	321.26	110,000	4,000	3,200	2,800	18,000	140,000		
	08/20/02	11.81	321.05	37,000	2,600	1,500	890	4,800	110,000		
	11/11/02	11.63	321.23	81,000	2,900	2,100	2,100	14,000	110,000		
	05/08/03	10.91	321.95	5,700	770	69	130	365	76,000 (70,000)		
	12/15/04	11.97	320.89	33,000	1,700	430	1,300	7,000	70,000 (89,000)		
	02/21/05	10.81	322.06							1.29	0.01 SPH
	05/17/05	11.63	321.29							1.06	0.08 SPH

02/03/00

01/23/01

9.05

322.16

2,310

35.7

Dissolved Well ID Date Depth Groundwater Notes TOC Elev Oxygen MTBE Sampled to Water Elevation TPHg Benzene Toluene Ethylbenzene Xylenes (ft) μg/L-(ft) (ft, msl) -→ mg/L MW-3 (cont'd) 08/17/05 10.83 322.03 39,000 1,500 260 780 2,700 42,000 (47,000) 0.93 11/27/05 12.29 320.72 0.19 SPH ---------------------02/21/06 11.73 321.28 0.19 SPH ---------------------03/30/06 Well Abandoned Well Abandoned ------------------EA-1 10/17/88 ------< 50 < 0.5 $<\!0.5$ < 0.5 $<\!0.5$ ---331.21 10/24/88 10.64 322.77 ------------------11/02/88 10.69 322.72 ------------------12/20/88 10.51 322.9 < 50 < 0.5 < 0.5 < 0.5 < 0.5---9.87 < 0.5 < 0.5 03/28/89 323.54 <250 < 0.5 < 0.5 ---10.34 323.07 < 0.1< 0.1 < 0.108/02/89 < 50 < 0.1---11/06/89 10.65 322.76 <500 <3.0 < 5.0 < 5.0 < 5.0 ---01/25/90 10.6 322.81 < 50 < 0.5 < 0.5 < 0.5 < 0.5 ---04/23/90 10.58 322.83 71 2 5 3 8 ---10.88 322.53 300 86 21 10 33 08/01/90 ---10/24/91 11.12 322.29 280 69 13 11 16 ---01/31/91 11.16 322.25 460 160 11 17 17 ---08/21/91 10.8 322.61 2,400 400 220 44 120 ---08/21/91 10.8 322.61 2,300 390 210 42 120 ---Duplicate 10/07/91 10.79 322.62 ------------------10.79 322.62 3,600 110 310 01/28/92 320 360 ---01/28/92 10.79 322.62 3,000 290 320 99 270 Duplicate ---06/05/92 10.84 322.57 1,700 290 89 61 130 ---09/30/92 11.06 322.35 2,100 160 260 80 350 ---12/30/92 10.15 323.26 3,200 240 180 110 310 --03/29/93 9.42 323.99 23,000 700 3,000 610 3,000 ---06/25/93 10.42 322.99 2.7 130 590 130 590 ---10.66 322.75 3.9 410 830 220 09/16/93 890 ---12/20/93 10.6 322.81 27 1,200 2,600 1,100 4,200 ---03/29/94 10.41 323 6.3 250 700 200 830 ---71 460 06/22/94 10.4 323.01 4.1 240 110 <30 09/20/94 10.37 323.04 8,500 1.200 1.300 370 1.400 ---10/04/94 10.34 323.07 7,600 97 360 150 620 ---11/30/94 9.46 323.95 8,800 180 490 240 900 ---03/02/95 9.96 321.07 6.9 82 570 210 970 ---06/15/95 9.8 321.23 4.8 44 210 160 620 <25 09/26/95 10.48 320.55 13,000 150 620 370 1,400 <125 12/28/95 10.14 320.89 11,000 74 250 200 750 79 59 02/29/96 8.74 322.29 17,000 480 350 1,600 <125 22 06/27/96 10.21 320.82 3,600 130 130 49 46 10.49 320.72 2,000 20 18 44 <50 09/12/96 < 1003/31/97 10.19 321.02 17,000 87 230 330 1.200 310 20 0.88 <2.5 12/23/98 9.83 321.38 290 1.1 16 03/25/99 9.13 322.08 500 21 < 0.5 21 < 0.5 18

Table 2. Groundwater Elevation and Analytical Data - Dublin Auto Wash, 7240 Dublin Boulevard, Dublin, CA

21.8

147

1,280 (365)

Inaccessible

90

Table 2. Groundwater Elevation and A	nalytical Data - Dublin Auto Wash	n, 7240 Dublin Boulevard, Dublin, CA
--------------------------------------	-----------------------------------	--------------------------------------

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Flev	Sampled	to Water	Flevation	TPHa	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(ft)	Bampicu	(ft)	(ft msl)	11 lig	Delizene	Tolucile		Aylenes	MIBL	mg/I	
U+)		(11)	(11, 11151)	`			<u>нв/ш</u>		7	шg/L	
EA-1 (cont'd)	05/01/01	9.82	321.39	7.710	19.9	12.6	22.3	64	31.8		
(******)	08/28/01	10.04	321.17	4,800	69	<25	50	140	160		
	11/27/01	10.05	321.16	5,300	25	<5.0	30	120	<20		
	02/28/02										Inaccessible
	05/22/02	9.05	322.16	110	<1.0	< 0.50	1	<1.5	<2.5		
	08/20/02	9.21	322	410	2.6	< 0.50	8.5	29	<5.0		
	11/11/02	9.01	322.2	3,800	< 0.50	1.3	17	47	<5.0		
	05/08/03	8.23	322.98	1,700	11	0.97	63	161	<2.0		
	12/15/04										Inaccessible
	02/21/05										Inaccessible
	05/17/05										Inaccessible
	08/17/05										Inaccessible
	11/27/05										Inaccessible
	02/21/06										Inaccessible
	03/31/06					Well Abandor	ed				Well Abandoned
EA-2	10/17/88			<50	< 0.5	< 0.5	< 0.5	1.2			
330.41	10/24/88	9.7	322.89								
	11/02/88	10.03	322.56								
	12/20/88	9.98	322.61	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	03/28/89	8.8	323.79	<250	<2	< 0.5	< 0.5	< 0.5			
	08/02/89	9.44	323.15	<50	< 0.1	< 0.1	< 0.1	< 0.1			
	11/06/89	9.53	323.06	<500	<3.0	<5.0	<5.0	<5.0			
	01/25/90	9.27	323.32	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	04/23/90	9.35	323.24	<50	0.6	0.8	< 0.5	2			
	08/01/90	9.71	322.88	<50	< 0.5	< 0.5	< 0.5	<0.5			
	10/24/90	10.08	322.51	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	01/31/91	10.21	322.38	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	01/31/91	10.21	322.38	<50	< 0.5	< 0.5	< 0.5	< 0.5			Duplicate
	08/21/91	9.8	322.79	<50	< 0.5	< 0.5	< 0.5	< 0.5			-
	10/07/91	9.98	322.61								
	01/28/92	9.81	322.78	<50	0.8	< 0.5	< 0.5	< 0.5			
	06/05/92	9.86	322.73	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	09/30/92	10.6	321.99	66	1	3.2	1.3	7.4			
	12/30/92	9.11	323.48	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	03/29/93	7.73	324.86	<50	< 0.5	< 0.5	< 0.5	<1.5			
	06/25/93	9.22	323.37	<50	< 0.5	< 0.5	< 0.5	<1.5			
	09/16/93	10	322.59	<50	< 0.5	< 0.5	< 0.5	<1.5			
	12/20/93	9.38	323.21	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	03/29/94	9.3	323.29	<50	< 0.5	0.6	< 0.5	< 0.5			
	06/22/94	9.49	323.1	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	09/26/94	9.72	322.87	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	10/04/94	9.58	323.01	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	11/30/94	8.7	323.89	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	03/02/95	8.54	321.67	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	06/07/95	8.42	321.79	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5		

Table 2. Groundwater Elevation and Analytical Data	- Dublin Auto Wash,	, 7240 Dublin Boulevard	l, Dublin, CA
--	---------------------	-------------------------	---------------

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Flev	Sampled	to Water	Elevation	TDUg	Banzana	Toluana	Ethylbonzono	Yulanas	MTRE	Oxygen	Notes
(A)	Sampled	(fu)	(ft mal)	n ng	Belizene	Toluelle		Aylelles	MIDE		
()1)		(11)	(11, 11181)	-			- μg/L			nig/L	
$E\Delta_2(cont'd)$	09/26/95	9.34	320.87	540	6.8	<0.5	47	29	13		
EA-2 (com u)	12/28/95	8 84	321.37	<50	<0.5	<0.5	<05	<05	<25		
	02/29/96	7 44	322.37	<50	<0.5	<0.5	<0.5	1.5	<2.5		
	06/27/96	8 83	321.38	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	09/12/96	9.4	321.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	03/31/97	911	321.3	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	12/23/98	8.91	321.5	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	03/25/99	8.1	322.31	<50	< 0.5	<0.5	<0.5	<0.5	2.7		
	02/03/00	8.36	322.05	<50	< 0.5	<0.5	<0.5	<0.5	<2.5 (<2.0)		
	01/23/01	9.08	321.33	441 (1)	1.27	0.542	40.3	31	72.9		
	05/01/01	8.87	321.54			SAMPLE	ED ANNUALLY				
	08/28/01	9.45	320.96			SAMPLE	ED ANNUALLY				
	11/27/01	9.5	320.91			SAMPLE	ED ANNUALLY				
	02/28/02	9.05	321.36	<50	<0.50	< 0.50	< 0.5	<1.5	74		
	05/22/02	9.04	321.37			SAMPLE	ED ANNUALLY				
	08/20/02	9	321.41			SAMPLE	ED ANNUALLY				
	11/11/02	9.03	321.38			SAMPLE	ED ANNUALLY				
	05/08/03	7.26	323.15	<50	< 0.5	< 0.5	< 0.5	<0.5	2.2/0.9		
	12/15/04	8.96	321.45	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0		
	02/21/05	7.20	323.21	<50	< 0.5	< 0.5	< 0.5	<0.5	13 (11)	0.64	
	05/17/05	8.21	322.20			SAMPLE	ED ANNUALLY			0.77	
	08/17/05	7.97	322.44			SAMPLE	ED ANNUALLY			0.85	
	11/27/05	9.83	320.58			SAMPLE	ED ANNUALLY			0.84	
	02/21/06	8.78	321.63	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.51/0.68	
	03/28/06					Well Abandone	ed				Well Abandoned
EA-3	10/17/88			<50	1.8	< 0.5	< 0.5	3			
331.5	10/24/88	11.03	322.61								
	11/02/88	11.03	322.61								
	12/20/88	10.96	322.68	240	90	1.2	13	3.3			
	03/28/89	9.77	323.87	2,300	380	130	240	910			
	08/02/89	10.65	322.99	<50	< 0.1	< 0.1	< 0.1	< 0.1			
	11/06/89	10.78	322.86	<500	<3.0	<5.0	<5.0	<5.0			
	01/25/90	10.66	322.98	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	04/23/90	10.68	322.96	<50	0.8	< 0.5	0.9	< 0.5			
	08/01/90	11.03	322.61	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	10/24/90	11.35	322.29	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	01/31/91	11.52	322.12	<50	< 0.5	< 0.5	< 0.5	< 0.5			
	08/21/91										
	10/07/91	11.15	322.49	180	40	20	4.7	8.4			
	10/7/1991			200	43	17	4.1	6.7			Duplicate
	01/28/92	11.08	322.56	640	69	85	13	46			
	06/05/92	10.98	322.66	250	63	8.3	3	9.5			
	09/30/92	11.38	322.26	330	120	33	6.3	22			
	12/30/92	10.48	323.16	58	7.6	1.3	2.5	5.4			
	03/29/93	9.3	324.34	120	11	4.5	6.2	13			

Table 2. Groundwater Elevation and Analytical Data	- Dublin Auto Wash	, 7240 Dublin Boulevard,	Dublin, CA
--	--------------------	--------------------------	------------

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Flev	Sampled	to Water	Flevation	TPHα	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(G)	Sampled	to water	(ft mal)	11 lig	Benzene	Toluelle	Luryioenzene	Aylelles	WIIDE		
()()		(11)	(11, 11181)				— μg/L			IIIg/L	
EA = 3(cont'd)	06/25/03	10.46	373 18	<50	<0.5	<0.5	<0.5	<15			
EA-5 (com u)	09/16/93	10.40	322.18	85	3.9	<0.5 8 8	4 5	22			
	12/20/93	10.66	322.98	190	12	12	13	50			
	03/29/94	10.5	323.14	<50	<0.5	12	<0.5	0.9			
	06/22/94	10.64	323	<50	< 0.5	< 0.5	<0.5	<0.5	<3.0		
	09/26/94	10.72	322.92	<50	< 0.5	< 0.5	<0.5	<0.5			
	10/04/94	10.68	322.96	<50	< 0.5	<0.5	<0.5	0.7			
	11/30/94	9.66	323.98	170	6.1	3	6.5	28			
	03/02/95	9.92	321.38	<50	<0.5	<0.5	<0.5	<0.5			
	06/07/95	9.72	321.58	<50	<0.5	< 0.5	<0.5	<0.5	3.2		
	09/26/95	10.6	320.7	2,000	140	<5.0	<5.0	190	280		
	12/28/95	9.82	321.48	<50	< 0.5	< 0.5	< 0.5	<0.5	26		
	02/29/96	8.28	323.02	<50	2.1	< 0.5	2.5	6	31		
	06/27/96	9.91	321.39	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
	09/12/96	10.59	320.91	13,000	<20	<20	<20	<20	48		
	03/31/97										Inaccessible
	04/15/97	10.25	321.25	<125	2	<1.2	<1.2	<1.2	680		
	12/23/98										Inaccessible
	03/25/99										Inaccessible
	02/03/00										Inaccessible
	01/23/01	10.31	321.19	862 (1)	3.97	1.15	18.9	48.6	289		
	05/01/01	10.15	321.35			SAM	IPLED SEMI-AN	NUALLY			
	08/28/01	10.56	320.94	<50	< 0.5	< 0.5	< 0.5	< 0.5	37		
	11/27/01	10.65	320.85			SAM	IPLED SEMI-AN	NUALLY			
	02/28/02	10.37	321.13	<50	1.3	< 0.50	2	1.8	90		
	05/22/02	10.27	321.23			SAM	IPLED SEMI-AN	NUALLY			
	08/20/02	10.3	321.2	<50	< 0.50	< 0.50	< 0.50	<1.5	40		
	11/11/02	9.05	322.45			SAM	IPLED SEMI-ANI	NUALLY			
	05/08/03	8.83	322.67	<50	< 0.5	< 0.5	< 0.5	< 0.5	39/37		
	12/15/04	10.39	321.11	<50	< 0.5	< 0.5	<0.5	< 0.5	18 (17)		
	02/21/05	8.80	322.70	<50	< 0.5	< 0.5	2.3	1.4	180 (290)	0.69	
	05/17/05	9.57	321.93	140	0.68	< 0.5	6.6	0.94	250 (340)	0.86	
	08/17/05	9.23	322.27	3,800	11	3.7	110	24	200 (200)	0.99	
	11/27/05	11.05	320.45	150	< 0.5	1.8	2.4	0.56	88 (85)	0.81	
	02/21/06	10.10	321.40	83	< 0.5	0.72	1.7	< 0.5	40 (49)	0.38/0.65	
	04/03/06					Well Abandon	ed				Well Abandoned

Well ID	Date	Depth	Groundwater							Dissolved	
TOC Elev	Sampled	to Water	Elevation	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	Notes
(<i>ft</i>)		(ft)	(ft, msl)	←			— μg/L		\longrightarrow	mg/L	
Grab Ground	water Analyti	ical Data									
SB-1A-W	05/18/06	11.20	NA	170	1.5	1.5	1.2	5.9	570 (500)		TAME=90µg/L, TBA,DIPE,ETBE=ND
DPB-1	05/01/03	16-20	NA	12,000	25	440	440	2,180	8,100		
DPB-2	04/22/03	NA	NA	710	1.1	<1	18	74	540		
DPB-3	04/17/03	16-20	NA	48,000	400	5,800	1,500	9,500	8,900		
	04/17/03	27-31	NA	62,000	700	9,900	1,300	7,900	4,200		
	04/17/03	39-43	NA	27,000	210	3,200	640	4,100	7,700		
DPB-4	04/17/03	32-36	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DPB-5	04/30/03	7-11	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
	04/17/03	11-15	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
	04/30/03	26-30	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
	04/17/03	36-40	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DPB-6	04/18/03	15-19	NA	7,700	18	77	170	640	5.9		
	04/18/03	26-30	NA	4,700	21	76	160	650	6.2		
	04/18/03	35-39	NA	2,900	8.8	24	54	249	100		
DPB-7	04/18/03	15-19	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
	04/18/03	20-24	NA	7,000	42	640	190	990	300		
	04/18/03	35-39	NA	150	< 0.5	1.8	0.8	5.7	< 0.5		
DPB-8	05/01/03	NA	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DPB-S	04/18/03	14-18	NA	20,000	<170	<170	380	6,600	53,000		
	04/18/03	26-30	NA	1,500	7.1	<3.1	7.4	170	760		
	04/18/03	35-39	NA	4,300	<63	<63	<63	910	42,000		

ABBREVIATIONS AND NOTES:

SPH = Separate-phase hydrocarbons; calculated groundwater elevation corrected for SPH by the relation: Groundwater Elevation = Well Elevation - Depth to Water +(0.8xSPH Thickness)

Groundwater monitoring data and laboratory analytical results prior to December 14, 2004, were scanned from a report by SOMA.

(ft) = Feet

(msl) = Mean sea level

TOC Elev. (ft) = Top of casing elevation

 $\mu g/L$ = Micrograms per liter - approximately equal to parts per billion = ppb

mg/L = Milligrams per liter - approximately equal to parts per million = ppm

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020/8021.

MTBE = Methyl tertiary butyl ether by EPA Method 8020/8021. (Concentrations in parentheses are by EPA Method 8260B).

1,2-DCA = 1,2-Dichloroethane

TAME = Tertiary amyl methyl ether by EPA Method 8260B

TBA = Tertiary butyl alcohol by EPA Method 8260B

DIPE = Diispopropyl ether by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether by EPA Method 8260B

-- = Not Measured/Not Analyzed

1 Laboratory report indicates weathered gasoline C6-C12

Dissolved oxygen concentrations measured downhole pre-purge or pre-purge/post-purge

* = Cap loose, sprinkler runoff entering well

Table 3 - DPE Pilot Test Performance Data	- 7240 Dublin Boulevard, Dublin, CA
---	-------------------------------------

		Hour Meter	Flansed	Interval	Totalizer Reading	Groundwater	System Vapor	Stinger	Lah Sample	ТРНσ	Benzene	Influent	SVE TPHo	SVF Benzene	Cumulative SVE	Cumulative SVF
Date	Well	Reading	Time	Time	(GW)	Flow Rate	Flow Rate	Vacuum	ID	Lab Data	Lab Data	FID Reading	Removal Rate	Removal Rate	TPHg Removal	Benzene Removal
		(hours)	(minutes)	(minutes)	(GPM)	(GPM)	(cfm)	("Hg)		(ppmv)	(ppmv)	(ppm)	(lbs/day)	(lbs/day)	(lbs)	(lbs)
11/27/07	MW-7A	3.3	0	0	12,974	0.0						NM	0.0	0.00	0.0	0.00
11/27/07	MW-7A	3.6	18	18	12,974	0.0	40	17.5	MW-7A-1	2,200	31	3,500	28.2	0.36	0.4	0.00
11/27/07	MW-7A	4.6	78	60	13,039	1.1	50	16		2,200	31	3,050	35.3	0.45	1.8	0.02
11/27/07	MW-7A	5.2	114	36	13,039	0.0				2,200	31	NM	0.0	0.00	1.8	0.02
11/28/07	MW-7A	20	1002	888	14,500	1.6	78	20	MW-7A-2	1,200	15	3,400	30.0	0.34	20.3	0.23
11/28/07	MW-7A	21	1062	60	14,618	2.0	79	20		1,200	15	3,000	30.4	0.34	21.6	0.25
11/28/07	MW-7A	22	1122	60	14,618	0.0	75	21		1,200	15	3,866	28.9	0.33	22.8	0.26
11/28/07	MW-7A	23	1182	60	14,774	2.6	80	21		1,200	15	3,680	30.8	0.35	24.1	0.28
11/28/07	MW-7A	24	1242	60	14,774	0.0	80	21		1,200	15	3,670	30.8	0.35	25.4	0.29
11/28/07	MW-7A	25	1302	60	14,928	2.6	79	21		1,200	15	4,025	30.4	0.34	26.6	0.30
11/28/07	MW-/A	26.5	1392	90	15,081	1.7	11	20	MW-/A-3	1,100	14	2,900	27.2	0.31	28.3	0.32
11/20/07	1011 2 4	20	1400	00	15 001	0.0	7	22		1 000	24	10 500	20.7	0.47	20.0	0.25
11/28/07	MW-3A	28	1482	90	15,081	0.0	67	22	MW-3A-1	1,800	24	12,500	38.7	0.47	30.8	0.35
11/28/07	MW-3A	29	1542	00	15,081	0.0	0/ 72	22	MW 2A 2	1,800	24	7 500	38.7	0.47	52.4 57.2	0.37
11/29/07	MW 3A	44	2442	900 150	15,510	1.0	73	21	IVI VV-JA-2	1,700	23	7,300	39.8	0.49	57.5	0.08
11/29/07	MW-3A	40.5	2652	60	15,666	0.0	73	21		1,700	23	5 250	39.8	0.49	63.1	0.75
11/29/07	MW-3A	49	2742	90	15,666	0.0	74	21		1,700	23	7.690	40.4	0.50	65.6	0.78
11/29/07	MW-3A	49.5	2772	30	15,666	0.0	74	21		1,700	23	8,502	40.4	0.50	66.4	0.79
11/29/07	MW-3A	50.8	2850	78	15,834	2.2	73	21	MW-3A-3	1,500	24	6,702	35.1	0.51	68.3	0.82
11/29/07	MW-6A	52	2922	72	15,834	0.0	68	20	MW-6A-1	360	4.6	2,450	7.9	0.09	68.7	0.82
11/30/07	MW-6A	68	3882	960	16,421	0.6	72	22	MW-6A-2	2,100	17	8,350	48.5	0.36	101.1	1.06
11/30/07	MW-6A	70	4002	120	16,421	0.0	76	23		2,100	17	8,600	51.2	0.38	105.3	1.09
11/30/07	MW-6A	7/1	4062	60	16,576	2.6	74	22		2,100	17	9,700	49.9	0.37	107.4	1.11
11/30/07	MW-6A	72.2	4134	12	16,576	0.0	/5	22		2,100	17	/,300	50.5	0.37	109.9	1.13
11/30/07	MW-6A	75	4182	48	16,576	0.0	80 72	22	 MW 6A 2	2,100	17	4,500	53.9 24.6	0.40	111.7	1.14
11/30/07	MW 6A	74 75 5	4242	90	16,576	0.0	72	23	WIW-0A-5	1,500	13	4,000 NM	34.0	0.27	115.2	1.13
11/30/07	101 W -0A	15.5	4352	90	10,570	0.0	12	25		1,500	15		54.0	0.27	115.5	1.17
11/20/07		75.0	1250	10	14.714		=0	10.5		1 500	12	227	22.7	0.04	115.0	1.17
11/30/07	MW-/AA	15.8	4350	18	16,716	7.8	70	19.5		1,500	13	NM 8.500	35.7	0.26	115.8	1.17
11/30/07	WW-/AA	/0 77	4362	12	16,/16 NM	0.0	70	19.5		1,500	13	8,500 NM	35./ 22.7	0.26	116.0	1.1/
11/30/07	WW-/AA	11	4422	00	INIVI NIM		70	19.5	 MW 7 A A	1,500	15	INIVI	33.7	0.20	11/.4	1.18
12/01/07	MW_74A	70.J 89.8	5190	50 678	16 904	0.3	70	19.5	1v1 vv - / - AA	1,500	25	NM	33.7	0.51	135.4	1.22
12/01/07	IVI VY -/AA	09.0	5190	078	10,904	0.5	70	19.5		1,500	23	1 1 1 1 1	53.7	0.31	133.4	1.40

Notes:

NM = not measured

cfm = cubic feet per minute.

ppm = Parts per million ppmv = parts per million by volume

lbs = Pounds

"Hg = Inches of mercury

DPE = Dual-phase extraction

FID = Flame Ionization Detector.

Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991. Rate = lab concentration (ppmv) x system flowrate (scfm) x (1lb-mole/386 ft³) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

Extraction Well ID	Sample Date	TPHg	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes	Notes
		<		pp	mv —		\rightarrow	
MW 7A	11/27/07	2 200	ND~150	31	0.0	2	6.5	
IVI VV - / A	11/28/07	1,200	ND<130	15	9.9 7	59	0.5 24	
	11/28/07	1,100	ND<18	13	7.8	8.8	36	
MW-3A	11/28/07	1,800	ND<240	24	8.3	2.8	11	
	11/29/07	1,700	ND<20	23	15	2.6	10	
	11/29/07	1,500	ND<20	24	21	4.5	18	
MW-6A	11/29/07	360	ND<35	4.6	3.4	1.1	4.6	
	11/30/07	2,100	ND<6.8	17	15	3.6	14	
	11/30/07	1,500	ND<14	13	11	3.8	15	
MW-7AA	11/30/07	1,500	67	25	29	18	72	

Table 4 - Soil Vapor Analytical Data - 7240 Dublin Boulevard, Dublin, CA

ABBREVIATIONS AND NOTES

< = Not detected at or above indicated detection limit

ppmv = parts per million by volume

TPHg = Total Petroleum Hydrocarbons as Gasoline by modified EPA Method 8015C

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method 8021B

MTBE = Methyl tert-butyl ether by EPA Method 8021B

Pangea

Table 5. DPE Pilot Test - Water Level Drawdown Data. 7240 Dublin Boulevard, Dublin, CA

Date	Hour Meter Reading	Total Elapsed Hours	Extraction Well ID	MW-6A DTW (feet)	MW-6A drawdown (feet)	MW-1 DTW (feet)	MW-1 drawdown (feet)	MW-2 DTW (feet)	MW-2 drawdown (feet)	MW-10C DTW (feet)	MW-10C drawdown (feet)	MW-10A DTW (feet)	MW-10A drawdown (feet)	MW-6C DTW (feet)	MW-6C drawdown (feet)
11/27/07 2:45 PM	3.3	0		12.01	0.00	13.63	0.00	9.08	0.00	8.35	0.00	11.81	0.00	6.61	0.00
11/28/07 8:00 AM	20.5	17.2	MW-7A	12.61	0.60	14.32	0.69	9.41	0.33	8.87	0.52	9.71	-2.10	10.20	3.59
11/28/07 1:30 PM	25.5	22.2	MW-7A	12.73	0.72	14.38	0.75	9.48	0.40	8.94	0.59	9.44	-2.37	10.17	3.56
Distance from Extra	ction Well	MW-7A	:	57		62		72		69		69		68	
11/28/07 3:00 PM 11/29/07 8:05 AM 11/29/07 1:10 PM	27.5 44.6 49.6	24.2 41.3 49.6	MW-3A MW-3A MW-3A	12.45 13.15 13.15	0.44 1.14 1.14	14.40 14.12 14.06	0.77 0.49 0.43	9.49 9.30 9.26	0.41 0.22 0.18	8.94 8.60 8.50	0.59 0.25 0.15	9.78 9.70 9.62	-2.03 -2.11 -2.19	10.25 9.87 9.88	3.64 3.26 3.27
Distance from Extra	ction Well	MW-3A	:	27		69		107		109		109		38	
11/29/07 3:10 PM 11/30/07 10:45 AM 12/1/07 1:30 PM Distance from Extra	49.6 71.2 74.0 ction Well	46.3 67.9 70.7 MW-6A	MW-6A MW-6A MW-6A :	NM NM NM 0	NM NM NM	14.07 13.86 13.87 86	0.44 0.23 0.24	9.28 9.14 9.14 134	0.20 0.06 0.06	8.49 8.44 8.43 125	0.14 0.09 0.08	9.62 9.53 9.54 125	-2.19 -2.28 -2.27	9.87 9.90 9.91 9	3.26 3.29 3.30

Date	Hour Meter Reading	Total Elapsed Hours	Extraction Well ID	MW-11C DTW (feet)	MW-11C drawdown (feet)	MW-7AA DTW (feet)	MW-7AA drawdown (feet)	MW-7A DTW (feet)	MW-7A drawdown (feet)	MW-7B DTW (feet)	MW-7B drawdown (feet)	MW-7C DTW (feet)	MW-7C drawdown (feet)	MW-9A DTW (feet)	MW-9A drawdown (feet)
11/27/07 2:45 PM	3.3	0		11.15	0.00	10.49	0.00	10.49	0.00	10.27	0.00	9.71	0.00	10.96	0.00
11/28/07 8:00 AM	20.5	17.2	MW-7A	13.23	2.08	13.36	2.87	NM	NM	13.50	3.23	12.20	2.49	11.00	0.04
11/28/07 1:30 PM	25.5	22.2	MW-7A	13.27	2.12	13.38	2.89	NM	NM	14.42	4.15	12.30	2.59	11.01	0.05
Distance from Extra	ction Well	MW-7A	:			6				5		13		98	
11/28/07 3:00 PM 11/29/07 8:05 AM 11/29/07 1:10 PM	27.5 44.6 49.6	24.2 41.3 49.6	MW-3A MW-3A MW-3A	13.00 11.86 11.73	1.85 0.71 0.58	13.38 12.00 11.77	2.89 1.51 1.28	13.50 11.31 11.21	3.01 0.82 0.72	13.04 11.11 11.00	2.77 0.84 0.73	11.83 10.46 10.38	2.12 0.75 0.67	11.01 11.05 11.03	0.05 0.09 0.07
Distance from Extra	ction Well	MW-3A	:			34		40		45		51		62	
11/29/07 3:10 PM 11/30/07 10:45 AM 12/1/07 1:30 PM Distance from Extra	49.6 71.2 74.0 ction Well	46.3 67.9 70.7 MW-6A	MW-6A MW-6A MW-6A :	11.73 11.53 11.54	0.58 0.38 0.39	11.72 11.13 11.11 55	1.23 0.64 0.62	11.15 10.91 10.86 57	0.66 0.42 0.37	10.96 10.73 10.73 60	0.69 0.46 0.46	10.34 10.17 10.09 65	0.63 0.46 0.38	11.04 10.10 10.12 36	0.08 -0.86 -0.84

Pangea

Table 5. DPE Pilot Test - Water Level Drawdown Data. 7240 Dublin Boulevard, Dublin, CA

Date	Hour Meter Reading	Total Elapsed Hours	Extraction Well ID	VW-1 DTW (feet)	VW-1 drawdown (feet)	MW-8A DTW (feet)	MW-8A drawdown (feet)	VW-2 DTW (feet)	VW-2 drawdown (feet)	MW-3A DTW (feet)	MW-3A drawdown (feet)	MW-6B DTW (feet)	MW-6B drawdown (feet)	MW-9C DTW (feet)	MW-9C drawdown (feet)
11/27/07 2:45 PM	3.3	0		8.08	0.00	12.71	0.00	8.40	0.00	11.75	0.00	9.79	0.00	10.05	0.00
11/28/07 8:00 AM	20.5	17.2	MW-7A	8.10	0.02	10.01	-2.70	5.46	-2.94	12.85	1.10	10.45	0.66	10.20	0.15
11/28/07 1:30 PM	25.5	22.2	MW-7A	8.10	0.02	11.11	-1.60	5.48	-2.92	12.92	1.17	10.55	0.76	10.26	0.21
Distance from Extra	ction Well	MW-7A	:	21				26		41		60		95	
11/28/07 3:00 PM	27.5	24.2	MW-3A	8.10	0.02	11.11	-1.60	5.48	-2.92	NM	NM	10.52	0.73	10.23	0.18
11/29/07 8:05 AM	44.6	41.3	MW-3A	8.11	0.03	NM	NM	5.54	-2.86	NM	NM	10.09	0.30	10.15	0.10
11/29/07 1:10 PM	49.6	49.6	MW-3A	8.11	0.03	NM	NM	5.55	-2.85	NM	NM	10.08	2.00	10.15	0.10
Distance from Extra	ction Well	MW-3A	:	52				17				35		65	
11/29/07 3:10 PM	49.6	46.3	MW-6A	8.10	0.02	NM	NM	5.55	-2.85	14.25	2.50	10.09	0.30	10.15	0.10
11/30/07 10:45 AM	71.2	67.9	MW-6A	8.11	0.03	NM	NM	5.61	-2.79	12.76	1.01	10.19	0.40	10.10	0.05
12/1/07 1:30 PM	74.0	70.7	MW-6A	8.10	0.02	NM	NM	5.63	-2.77	12.84	1.09	10.19	0.40	10.19	0.14
Distance from Extra	ction Well	MW-6A	:	60				42		27		9		39	

Notes:

gpm = Gallons per minute DTW = Depth to water

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency ^{1, 2}
Surface Water		•				
C-1*	Gauging Point		W, Flood Control Channel		All	
Upper Shallow	AA-Zone Wells	-				
MW-7AA	Mon (Proposed DPE)	9-14	Source	4	All	All
VW-1	Mon+SVE (Proposed DPE)	3-9	Source	2	All	1st
VW-2	Mon+SVE (Proposed DPE)	3-9	Source	2	All	1st
VW-3	Mon+SVE (Proposed DPE)	3-9	Source	2	All	1st
Shallow A-Zon	e Wells					
MW-1	Mon	5-25	W, Adjacent SS	2	All	All
MW-2	Mon	5-20	W, Adjacent Flood Channel	2	All	All
MW-3A	Mon (Proposed DPE)	10-17	N Source, Adjacent SS	4	All	All
MW-4	Mon	8.5-20	NW Upgradient, Offsite	2	All	1st
MW-5	Mon	8.5-21	W Upgradient, Offsite	2	All	1st
MW-6A	Mon (Proposed DPE)	15-20	N Source, Adjacent SS	4	All	All
MW-7A	Mon (Proposed DPE)	16-20	Source	4	All	1st
MW-8A	Mon	15-20	S, Adjacent Building	2	All	All
MW-9A	Mon	15-20	NE Perimeter	2	All	1st
MW-10A	Mon	15-20	S Perimeter	2	All	1st
Intermediate D	epth B-Zone Wells	4				
MW-6B	Mon	26-30	N Source, Adjacent SS	2	All	1st
DW-7B	Mon	26-30	Source	2	All	1st
Deep C-Zone V	Vells	4				
MW-6C	Mon	34-44	N Source, Adjacent SS	2		
MW-7C	Mon	35-45	Source	2		
MW-9C	Mon	35-45	NE Perimeter	2		
MW-10C	Mon	35-45	S Perimeter	2		
MW-11C	Mon	33.5-43.5	W Intermediate	2		

Table 6. Groundwater Monitoring Program - 7240 Dublin Boulevard, Dublin, CA

Notes and Abbreviations:

1 = Summary: 6 wells sampled each quarter, 16 wells sampled 1st quarter. 5 C-zone wells not sampled.

2 = Sample Analytes: Total Petroleum Hydrocarbons as Gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8015Cm/8021B.

All = All four quarters. Typically B months (February, May, August, November)

Mon = Groundwater Monitoring Only

SVE = Soil Vapor Extraction

DPE = Dual Phase Extraction

N, S, W, E = Cardinal directions North, South, West, East and other directions (e.g., Northeast = NE)

SS = Sanitary Sewer beneath Dublin Blvd

* = Surface water level gauging point, not a well.

-- = Not gauged or sampled.

APPENDIX A

Laboratory Analytical Reports

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: Dublin Auto Wash	Date Sampled:	11/27/07-11/28/07
1710 Franklin Street, Ste. 200		Date Received:	11/28/07
Oakland, CA 94612	Client Contact: Greg Bentley	Date Reported:	11/30/07
oullund, 011 9 1012	Client P.O.:	Date Completed:	12/03/07

WorkOrder: 0711675

December 03, 2007

Dear Greg:

Enclosed are:

- 1). the results of **4** analyzed samples from your **Dublin Auto Wash project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

Web Telephor	ICCAMP site: <u>www.mc</u> ne: (925) 798	BELL 1534 WII PITTSBU campbell 3-1620	LANA LLOW PA URG, CA S Lcom Em	LY SS RC 4565-1	TIC DAD 1701 nain@	AL, mccar Fax: (npbel 925)	C.	1622				T	URI F Re	N A	RO red?	CH UNI Coe	AI DT	N C IMF)F	CU: RUS No	ST SH W	OD 24 H /rite (Y R R On (I	48 I DW)	CO HR No	RD 72 1	HR	5 DAY
Report To: Greg	Bentley		I	Bill T	o: Pa	ngea	/					7	0					Anal	vsis	Real	lest					0	ther	10	omment
Company: Pange	a Environmo	ental Teo	chnology	. Inc.								+	3						1 515			1					ther	+	omment
1710 F	ranklin Stre	et. Suite	200. 08	klan	d. CA	9461	2					┢	De																
			- moo, ot	-Ma	il: oh	ntlev	na	ngea	env	com			SIS																
Tele: (510) 409-89	80		Ī	av.	(510)	836-3	709	ngen	011 7 1 1	COIII			S																
Project #:				roie	t Nai	ne: b	.L.L	in A	Lu	NA	el	-!	Y																
Project Location:	1240			rojec		ne. y	060	nm	Л0 •	1 00	2	-1	20																
Sampler Signature	ampler Signature:										-	2																	
Sampler Signature	SAMPLING 2 MATRIX ME PRES												5X/1																
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containe	Water	Air	Sludge	ICE	HCL	HNO ₃	Uther P	TPH9 /BTU									-							
MI1-7A-1		11/2	1510	1	BAG		×		1		0	ZIV	X															+	
MULTAD		11/20	1010	1	1		1		-				1							-		-						-	
MW-FA-2		11/28	130	1	H_{ℓ}				-				+	-	-	-	-		-					_				-	
MW-74-3		11/28	1900	¥	V		V		-		1	V I	V	-				-		_	-			_					
MW-3A-1		1/28	1530	X	8		×	-			,		X											-			-	+	
	21												_																
												+																	
												-																	
Relinquished By: Relinquished By: Relinquished By:	A	Date: U/2B Date: U/207 Date:	Time: 1546 Time: 1700 Time:	Rece Rece K. V Rece	ived B ived B BU ived B	y: y: (108 y:							ICE/ GOC HEA DEC APP PRE	te DD Co DD SP CHLO ROPI SERV	ONA PACE DRINA RIAT VED I	ABS ATED E CC IN LA V ON	N ENT D IN L DNTA AB OAS	AB INER O&	S G 1	META	F	1 <i>еа</i>	SC ER	COI V C	MME	NTS:	- 11	n	ppmV

V)	A
2	
V	-
	w j

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					WorkO	rder:	0711	675	C	lientID	PEO					
				EDF		Excel	[Fax		🖊 Email		HardCo	ру	Third	lParty		
Report to:						B	Sill to:						Requ	uested 1	ΓΑΤ:	5 (days
Greg Bentley		Email:	gbentley@pa	ngeaenv.com			Во	b Clark	-Riddel	I							
Pangea Environn 1710 Franklin Str	mental Svcs., Inc. reet, Ste. 200	TEL: ProjectNo:	(510) 409-8980 Dublin Auto V) FAX: (510) 83 Vash	86-370	9	Pa 17	ngea Ei 10 Fran	nvironm Iklin Stre	ental S eet, Ste	vcs., In . 200	IC.	Date	e Recei	ved:	11/28/	2007
Oakland, CA 946	612	PO:					Oa	kland, (CA 946 ⁻	12			Date	e Printe	ed:	11/28/	2007
									Requ	uested ⁻	Tests (See legei	nd be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

0711675-001	MW-7A-1	Air	11/27/2007	А						
0711675-002	MW-7A-2	Air	11/28/2007	А						
0711675-003	MW-7A-3	Air	11/28/2007	А						
0711675-004	MW-3A-1	Air	11/28/2007	А						

Test Legend:

1 G-MBTEX_AIR	2
6	7
11	12

3	
8	

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Pangea Environ	nental Svcs., Inc.			Date and	d Time Received:	11/28/2007	7:08:08 PM
Project Name:	Dublin Auto Was	sh			Checklis	st completed and i	eviewed by:	Kimberly Burks
WorkOrder N°:	0711675	Matrix <u>Air</u>			Carrier:	Derik Cartan (MAI Courier)	
		<u>Chain</u>	of Cu	stody (COC	C) Informati	ion		
Chain of custody	y present?		Yes	\checkmark	No 🗆			
Chain of custody	y signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		Si	ample	Receipt In	formation			
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Preser	vatio	n and Hold	<u>Time (HT) I</u>	nformation		
All samples rece	ived within holding tim	ie?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	Is have zero headspa	ce / no bubbles?	Yes		No 🗆 N	No VOA vials subm	nitted 🗹	
Sample labels cl	hecked for correct pre	servation?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analyt uality Counts"	tical, Inc	<u>-</u>	1534 Web: www.m Telepl	illow Pass Road, F accampbell.com hone: 877-252-926	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	i-1701 mpbell.com 269		
Pange	a Environmental Svcs., I	nc.	Client Pro	ject ID: D	ublin Auto Wash	1	Date Sample	d: 11/27/07-	-11/28/	/07
1710 I	Franklin Street, Ste. 200						Date Receive	ed: 11/28/07		
Oaklay	nd CA 94612		Client Cor	ntact: Greg	g Bentley		Date Extract	ed: 11/29/07		
Uakia	III, CA 94012		Client P.O	.:			Date Analyz	ed 11/29/07		
Extracti	Gasolin on method SW5030B	e Range ((C 6-C12) Vola Anal	tile Hydro	carbons as Gaso SW8021B/8015Cm	line with BTI	EX and MTBE	* Work Order	: 0711	675
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-7A-1	А	7800,a	ND<500	99	38	8.8	29	20	90
002A	MW-7A-2	А	4300,a	ND<50	49	27	26	100	20	102
003A	MW-7A-3	А	4100,a	ND<65	46	30	39	160	2	89
004A	MW-3A-1	А	6400,a	ND<800	78	32	12	49	20	97
Rep	porting Limit for DF =1;	A	25	2.5	0.25	0.25	0.25	0.25	1	µg/L
ND ab	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	<u>McCam</u>	pbell "When O	Analyti	<u>cal, Inc.</u>	,	1534 Willow I Web: www.mccamp Telephone: 3	Pass Road, Pittsbur pbell.com E-mail: 877-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	l.com		
Pangea	1 Environmental	Svcs., I	nc.	Client Project ID	: Dublin A	uto Wash	Date Sample	d: 11/27/07			
1710 F	ranklin Street, St	te. 200				Date Received: 11/28/07					
Oaklan	d, CA 94612			Client Contact:	Greg Bentle	У	Date Extract	ed: 11/29/07			
				Client P.O.:			Date Analyz	ed 11/29/07			
	Gasolin	e Range	(C6-C12) V	olatile Hydrocarb	ons as Gaso	line with MTI	BE and BTEX	in ppmv*			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xvlenes	DF	% SS	
001A	MW-7A-1	A	2200,a	ND<150	31	9.9	2.0	6.5	20	90	
002A	MW-7A-2	А	1200,a	ND<14	15	7.0	5.9	24	20	102	
003A	MW-7A-3	А	1100,a	ND<18	14	7.8	8.8	36	2	89	
004A	MW-3A-1	А	1800,a	ND<240	24	8.3	2.8	11	20	97	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

	1								-
Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

WorkOrder: 0711675

EPA Method SW8021B/8015Cm	od SW8021B/8015Cm Extraction SW5030B BatchID: 32145 Spiked Sample ID: 071169										0711694-00	1 A	
Analyte	Sample	Sample Spiked MS I				LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
7 tildiyto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	60	99.9	103	2.84	96	97	1.10	70 - 130	30	70 - 130	30	
MTBE	ND	10	86.7	96.5	10.7	89	90.5	1.64	70 - 130	30	70 - 130	30	
Benzene	ND	10	91.8	92.6	0.888	90.3	91.9	1.78	70 - 130	30	70 - 130	30	
Toluene	ND	10	96.2	98.3	2.19	95	96.4	1.45	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	104	105	1.49	103	104	1.64	70 - 130	30	70 - 130	30	
Xylenes	ND	30	117	117	0	117	117	0	70 - 130	30	70 - 130	30	
%SS:	93	10	92	93	1.63	91	92	0.124	70 - 130	30	70 - 130	30	
All target compounds in the Method I NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:				

BATCH 32145 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711675-001A	11/27/07 3:10 PM	11/29/07	11/29/07 12:13 AM	0711675-002A	11/28/07 7:30 AM	11/29/07	11/29/07 1:12 AM
0711675-003A	11/28/07 2:00 PM	11/29/07	11/29/07 2:11 AM	0711675-004A	11/28/07 3:30 PM	11/29/07	11/29/07 2:41 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: Dublin Auto Wash	Date Sampled:	11/29/07
1710 Franklin Street, Ste. 200		Date Received:	11/29/07
Oakland, CA 94612	Client Contact: Bob Clark-Riddell	Date Reported:	12/04/07
	Client P.O.:	Date Completed:	12/04/07

WorkOrder: 0711712

December 04, 2007

Dear Bob:

Enclosed are:

- 1). the results of **2** analyzed samples from your **Dublin Auto Wash project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

N Web	IcCAMP	BELL 10 2 nd A PACHE campbell	ANA VENUE S CO, CA 94 .com Em	LY OUTH 553-55 ail: m	FIC , #D7 60 ain@i	AL	, IN	IC.	n					TUI	RN	AR	0	TH	AI) T	N (OF E	C C		ST H	0I [24	DY J HR	R	EC 48 H	COI I IR	RD 72		5 DAY
Telepho	ne: (925) 798	-1620			ł	ax:	(925)	798	162	2			E	DF	Req	uire	d? (Coel	t (M	Vorn	nal)	1	No	И	rite	e On	1 (D	W)	No)		
Company: Pange	a Faviroam	antal Sa	nuioce In	Bill To	o: Pa	ngea	Env	iron	nen	tal		-	\vdash	-	-			A	nal	ysis	Rec	lues	t			1			0	ther	+	Comments
1710	Franklin Str	ental Sel	e 200	ic.									-		-																	Filter
Oakla	and, CA 9461	2	E 200	-Mail	:			ana	nges	env		m	1BE		B&F	10									310							Samples
Tele:				ax: ((510)	836	-370)	B				SV/N		& El	418.									9/8							or Metals
Project #:			1	Projec	t Na	me:	Dit	lin	Avi	61	ha	sh	108		520 E	us (4		(0							827(Yes / No
Project Location: 7246 Dublin Blud.											020+		se (55	arbo		802		NTA					25/	020)	020)	=						
Sampler Signatur	e: /2			, t									02/8(reas	rocs	_	502 /		\$ 0			0		9 Y 6	0/6	1/60	2010		-		
		SAM	PLING		ers	I	MAT	RIX		MI	ETH	OD VED	Gas (6	8015)	NI & C	Hyd I	/ 802	EPA (PCB'	_	_	/ 826	8270	by Ef	(601	(6010	16.0				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	Containers	Type Containe	Vater	oil	ludge	Other	CE	ICL	Other	TEX & TPH as (PH as Diesel (8	otal Petroleum O	otal Petroleum	PA 601 / 8010	TEX ONLY (F	PA 608 / 8081	PA 608 / 8082	PA 8140 / 8141	PA 8150 / 8151	PA 524.2 / 624	PA 525 / 625 /	s'ANY's'HA's	AM-17 Metals	UFT 5 Metals	cad (200.8 / 20				
011121-2		11/201	120	#	-	-							-	-	-	-		-	Ξ		8	94		94) 94)	٩.	~	1	-	-+	-	+	
IVIW-SAT 2		427	730	+	614		- 12		+	-	-	~		-																	+	
MW-37-3		1/27	1915		BHC		X		+	-	+		X	-																	-	
						·	-		-		-		-	-																	-	
					L		_				-	-	-	-																		
												1				1																
																															T	
												1																				
											-	1		1																	+	
								+ +	+	+	+	-	1	1														-		-	+	
					-		-	+++	+	+	+	+		+					-												+	
							-	+-+	+	-	+	+	-	+												-					+	
				-	-				+	-	+													-							+	
				-				+ +	+			-		-													_				-	
							1	1											_													
Relinguished By:		Date: W291	1500	Rece	ived B	Y: A		4					IC Ge	E/t°_	CON	DIT	ION	~	_		PI	ion	40	,	P)	por	CON	IMEN	NTS:	PP	m	/
Relinquished By	1	Date:	Time: (735	Rece	ived B	y:	1	7	8				DI	EAD	ORI	NAT ATE	ED	IN LA	AB	IS 1	10	eu	30		1							
Relinquished By:		Date:	Time:	Rece	ived B	V:							PF	RESE	RVE	D IN	LAI	8	_													
													PF	RESE	RVA	TIO	VO N	AS	08	G	ME pH<	TAL 2	s	отн	ER							

	1	W.
[J	1
(C	ų	
1	1	٠

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262					WorkOrd	ler: 0711712	Client	ID: PEO		
				EDF	Excel	Fax	🗸 Email	HardCo	py ThirdParty	
Report to:					Bill	to:			Requested TAT:	5 days
Bob Clark-Riddell	Email:	bcr@pangeaenv.c	com			Bob Clark-Rid	dell			
Pangea Environmental Svcs., Inc.	TEL:	(510) 836-3700	FAX:	(510) 836-37	709	Pangea Enviro	nmental Svcs.	, Inc.		
1710 Franklin Street, Ste. 200	ProjectNo:	Dublin Auto Wash	1			1710 Franklin	Street, Ste. 20	0 4	Date Received:	11/29/2007
Oakland, CA 94612	PO:					Oakland, CA 9	4612		Date Printed:	11/29/2007

				[Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
							-				-		-			
0711712-001	MW-3A-2	Air	11/29/07 7:30:00		Α											
0711712-002	MW-3A-3	Air	11/29/07 2:15:00		А											

Test Legend:

1 G-MBTEX_AIR	2	3
6	7	8
11	12]

3	
8	

4
9

5		
10		

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Pangea Environ	mental Svcs., Inc.			Date ar	nd Time Received:	11/29/07 6	:41:04 PM
Project Name:	Dublin Auto Was	sh			Checkli	ist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0711712	Matrix <u>Air</u>			Carrier:	: Derik Cartan (I	MAI Courier)	
		<u>Chain</u>	of Cu	stody (COC	:) Informat	tion		
Chain of custody	y present?		Yes	\checkmark	No 🗆			
Chain of custody	y signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		Si	ample	Receipt Int	ormation			
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	vatio	n and Hold	Time (HT)	Information		
All samples rece	ived within holding tim	ne?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	lls have zero headspa	ace / no bubbles?	Yes		No 🗌	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pre	eservation?	Yes	\checkmark	No			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analyt	tical, Inc	•	1534 W Web: www.i Telep	/illow Pass Road, F nccampbell.com hone: 877-252-926	Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	5-1701 mpbell.com 9269				
Pange	a Environmental Svcs., I	nc.	Client Proj	ject ID: D	ublin Auto Was	h	Date Sample	ed: 11/29/07				
17101	Franklin Street, Ste. 200						Date Received: 11/29/07					
Oakla	ad CA 94612		Client Cor	ntact: Bob	Clark-Riddell		Date Extract	Date Extracted: 11/30/07				
Oakia	IU, CA 94012		Client P.O.	.:			Date Analyz	ed 11/30/07				
Extracti	Gasolin on method SW5030B	e Range (C 6-C12) Vola Analy	tile Hydro	carbons as Gase SW8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 0711	712		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-3A-2	А	6100,a	ND<60	75	57	12	43	6.7	97		
002A	MW-3A-3	А	5300,a	ND<60	79	79	20	81	10	103		
Rep	porting Limit for DF =1;	Α	25	2.5	0.25	0.25	0.25	0.25	1	µg/L		
ND at	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	<u>McCam</u>	pbell "When O	Analyti uality Counts"	cal, Inc.		1534 Willow Web: www.mccamp Telephone: 3	Pass Road, Pittsburg bbell.com E-mail: 877-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	l.com					
Pangea	Environmental	Svcs., I	nc.	Client Project ID:	Dublin A	uto Wash	Date Sample	d: 11/29/07						
1710 F	ranklin Street, S	te. 200					Date Receiv	ed: 11/29/07						
Oaklan	d. CA 94612			Client Contact: I	Bob Clark-F	Riddell	Date Extract	ed: 11/30/07						
				Client P.O.:		Date Analyzed 11/30/07								
	Gasolin	e Range	(C6-C12) V	olatile Hydrocarbo	ons as Gaso	line with MT	BE and BTEX	in ppmv*						
Extractio	Client ID	Motrix		Analytical met	Renzene	B/8015Cm	Ethylhongono	Work Order:	071	0/ SS				
Lab ID	Chent ID	Matrix	TPH(g)	MIBE	Benzene	Toluene	Etnylbenzene	Aylenes	DF	% 55				
001A	MW-3A-2	А	1700,a	ND<20	23	15	2.6	10	6.7	97				
002A	MW-3A-3	А	1500,a	ND<20	24	21	4.5	18	10	103				

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

WorkOrder: 0711712

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ва	tchID: 32	139	Sp	iked Sam	ple ID:	0711673-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	108	89.9	18.3	99	107	8.07	70 - 130	30	70 - 130	30
MTBE	ND	10	84.4	85.6	1.39	92.7	83.5	10.4	70 - 130	30	70 - 130	30
Benzene	ND	10	88.8	84.7	4.75	90.3	87.7	2.86	70 - 130	30	70 - 130	30
Toluene	ND	10	93.3	88.8	4.94	105	103	1.25	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	98.2	92.8	5.57	105	103	1.15	70 - 130	30	70 - 130	30
Xylenes	ND	30	91.7	87.3	4.84	113	113	0	70 - 130	30	70 - 130	30
%SS:	100	10	108	105	2.22	97	95	2.73	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 32139 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711712-001A	11/29/07 7:30 AM	11/30/07	11/30/07 4:51 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

WorkOrder: 0711712

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		Ва	tchID: 32	145	Sp	iked Sam	ole ID:	0711694-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	99.9	103	2.84	96	97	1.10	70 - 130	30	70 - 130	30
MTBE	ND	10	86.7	96.5	10.7	89	90.5	1.64	70 - 130	30	70 - 130	30
Benzene	ND	10	91.8	92.6	0.888	90.3	91.9	1.78	70 - 130	30	70 - 130	30
Toluene	ND	10	96.2	98.3	2.19	95	96.4	1.45	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	104	105	1.49	103	104	1.64	70 - 130	30	70 - 130	30
Xylenes	ND	30	117	117	0	117	117	0	70 - 130	30	70 - 130	30
%SS:	93	10	92	93	1.63	91	92	0.124	70 - 130	30	70 - 130	30
All target compounds in the Method E	lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			
NONE												

BATCH 32145 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711712-002A	11/29/07 2:15 PM	I 11/30/07	11/30/07 2:53 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: Dublin	Date Sampled:	11/24/07-11/30/07
1710 Franklin Street, Ste. 200		Date Received:	11/30/07
Oakland, CA 94612	Client Contact: Brian Busch	Date Reported:	12/06/07
	Client P.O.:	Date Completed:	12/06/07

WorkOrder: 0711768

December 06, 2007

Dear Brian:

Enclosed are:

- 1). the results of **3** analyzed samples from your **Dublin project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

TEO M		BELL 10 2 nd AV	ANAI VENUE SC	LY7 DUTH,	FIC. #D7	AL	, I I	NC	11	• G	2		Τ	т	UR	N	AR	C	H		N	OF E	r C	US	ST		DY	R	EC		RD	X
Web	site: www.mco	PACHEC campbell.	CO, CA 945	553-55 ail: ma	60 nin@r	ncca	((mpb	ell.co	Ц m	10) .			2	7)			NS.	3			1	RUS	н.,	24	HR		48 H	IR	72 H	R SDAY
Telephor	ne: (925) 798	-1620			F	ax:	(925	5) 79	8-16	22			-1(ED	OF H	equ	irea	1? 0	toel	t (r	orn	nal)		NO	N	vrite	e On	1 (D	w)	NO)	1.0
Report To: Br	ice Busil	1	B	Bill To	: Par	ngea	En	viro	ime	ntal				-					A	nal	ysis	Rec	ques	t						0	ther	Comments
Company: Pange	a Environmo	ental Ser	vices, In	c.									-																			Filter
17101	Franklin Stre	et, Suite	200	b.4 . 11	tob	2	10	0					-	LBE		(KE)	_									01						Samples
Uakla	nd, CA 9461	2	E-	Mail	510)	026	270		ange	aer	IV.CO	om	-	WV(& F/B	18.1									/ 83						for Metals
Project #:	0-5700		F	ax: (510)	030	1	hi	Δ.	e la	50		-	8015		20 E4	IS (4									\$270						Ves / No
Project Location:	MAN N	LE R	2 DA	al u	t Ital	nc.	12	Our	,-,-		21	1	-	+ 02		\$ (55)	rbor		8026		ILY					1218	120)	20)				1037110
Sampler Signatur	e: hG	24	a, w	000										02/800		rease	roca		02 /		s ON			0		A 62	9/0	/ 60	010			
		SAME	LING		s		MA	FRI	x	PR	IETI	HOD	D	3as (60	(015)	NI & C	Hydi	8021	CPA 6		PCB'	_		/ 826	8270	by EP	(601	(6010	9/6.0			
SAMPLE ID				ners	taine								-	H as (esel (8	eum O	oleum	8010	LY (I	8081	8082	/ 814]	/ 8151	/ 624	625 /	NA'S	Actals	etals	8/20			
(Field Point Name)	LOCATION	Date	Time	# Contai	Type Con	Water	Soil	Air	Other	ICE	HCL	HNO3	Other	BTEX & TP	TPH as Di	Total Petrok	Total Petro	EPA 601 /	BTEX ON	EPA 608 /	EPA 608 /	EPA 8140	EPA 8150	EPA 524.2	EPA 525 /	PAH's / PI	CAM-17 N	LUFT 5 M	Lead (200.			
MW-64-3	influent	1/2017	145	1	ben			X			-	,	X	X													-			\neg		remat
MUL-6A.2.	1	1120/07	6720	F	has			V			-			X																		Pasitain
Auto CA -1		11 14 1	1530		100-1			5			-	-	X.	X		-																DEMJ
MW OF	¥	njegor	1770		1007		+	P	+			+	4	-				-								1						- Churk
					<u> </u>				+		-	-	+	-												1						
									+		-+	-	+													+				+		
									+	-		-+	+													+				+		-
							-+			-			+																			
									-	-			+																			
				·			_		-			-	-																	$ \vdash $		
											_	_	_										-									
																																1
																					-											
0																1																
Relinquished By:	7	Date	Time:	Rece	ived B	ly:	1	-	1				+	ICE	E/t°	t f	DIT											CON	MME	NTS:		
In In	1	17207	170	The	dia	14	ern	an	X	~		2		HE	ADS	SPA(E A	BSE	NT													
Relinquished By:	6	Date: 11 30 07	Time: 1835	Rede	ived B	lý:	/	7	Q	_	/				CHL PRO	ORI PRIA	NATE D IN	CON	IN L NTAI B	AB_ INEF	RS		_									
Relinquished By:	0	Date:	Time:	Rece	Wed/B	ly:		C	/					DD	COL		TIO	VO	DAS	08	&G	ME	TAI	s	OTI	HER						

Γ		Å	W	5
K	_	3	1	1
		4		Ì
		1		

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	Order: 0711768	Clie	ntID: PEO		
			EDF	Excel	Fax	🖌 Email	HardCop	y ThirdParty	
Report to:				E	Bill to:		R	equested TAT:	5 days
Brian Busch	Email:	bbusch@pange	aenv.com		Bob Clark-Rid	ddell			
Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200	TEL: ProjectNo:	(510) 836-3700 Dublin	FAX: (510) 8	336-3709	Pangea Envir 1710 Franklin	onmental Svc Street, Ste. 2	s., Inc. 00	Date Received:	11/30/2007
Oakland, CA 94612	PO:				Oakland, CA	94612	Ľ	Date Printed:	11/30/2007

								Req	uested	Tests (See leg	gend be	elow)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711768-001	MW-6A-3	Air	11/30/07 1:45:00		А	А										
0711768-002	MW-6A-2	Air	11/30/07 7:30:00		А											
0711768-003	MW-6A-1	Air	11/24/07 3:30:00		А											

Test Legend:

1 G-MBTEX_AIR]	2 PREDF REPORT]	3	4
6]	7]	8	9
11		12]		

5	
10	

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Quality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Pange	a Environmental Svcs., I	Client Project ID: Dublin			Date Sampled: 11/24/07-11/30/07						
1710 Franklin Street, Ste. 200								Date Received: 11/30/07			
Oakland, CA 94612			Client Cor	Client Contact: Brian Busch				Date Extracted: 11/30/07-12/01/07			
			Client P.O.	Client P.O.:				Date Analyzed 11/30/07-12/01/07			
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0711768											
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	MW-6A-3	А	5300,a	ND<50	41	43	17	65	20	108	
002A	MW-6A-2	А	7700,a	ND<25	55	57	16	59	10	92	
003A	MW-6A-1	А	1300,a	ND<120	15	13	4.6	20	4	110	
Reporting Limit for DF =1; A 25 2.5 0.25 0.25 0.25 1 1107										µg/L	
ND ab	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	<u>McCam</u>	pbell "When O	Analyti	<u>cal, Inc.</u>	,	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	l.com	
Pangea	Environmental	Svcs., I	nc.	Client Project ID:	Dublin		Date Sample	d: 11/24/07		
1710 F	ranklin Street, St	te. 200					Date Receive	ed: 11/30/07		
Oaklan	d, CA 94612			Client Contact: 1	Brian Busch	1	Date Extract	ed: 11/30/07-	12/01	/07
				Client P.O.:			Date Analyz	ed 11/30/07-	12/01	/07
Extractio	Gasolin	e Range	(C6-C12) V	olatile Hydrocarbo	ons as Gaso	line with MTI	BE and BTEX	in ppmv*	0711	768
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-6A-3	А	1500,a	ND<14	13	11	3.8	15	20	108
002A	MW-6A-2	А	2100,a	ND<6.8	17	15	3.6	14	10	92
003A	MW-6A-1	А	360,a	ND<35	4.6	3.4	1.1	4.6	4	110

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for DF =1;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

WorkOrder: 0711768

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ва	tchID: 32	218	Sp	Spiked Sample ID: 0711765-001A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))			
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH(btex ^f)	ND	60	75.5	91.4	19.0	78.9	76.8	2.69	70 - 130	30	70 - 130	30			
MTBE	ND	10	80.4	81.7	1.63	82	84.6	3.18	70 - 130	30	70 - 130	30			
Benzene	ND	10	83.1	85.3	2.65	86	86.7	0.814	70 - 130	30	70 - 130	30			
Toluene	ND	10	87	90.3	3.64	89.5	90.8	1.37	70 - 130	30	70 - 130	30			
Ethylbenzene	ND	10	91	94.4	3.67	93.9	95.3	1.41	70 - 130	30	70 - 130	30			
Xylenes	ND	30	85.3	86.3	1.17	86.7	87	0.384	70 - 130	30	70 - 130	30			
%SS:	90	10	105	104	0.611	104	104	0	70 - 130	30	70 - 130	30			
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:						

BATCH 32218 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711768-001A	11/30/07 1:45 AM	11/30/07	11/30/07 11:50 PM	0711768-002A	11/30/07 7:30 AM	12/01/07	12/01/07 12:21 AM
0711768-003A	11/24/07 3:30 PM	12/01/07	12/01/07 1:22 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell An "When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 ain@mccampbell.com 925-252-9269
Pangea Environmental Svcs., Inc.	Client Project ID: #1001.0	001; Dublin Auto	Date Sampled:	11/30/07
1710 Franklin Street, Ste. 200	wasn		Date Received:	12/03/07
Oakland, CA 94612	Client Contact: Brian Bus	sch	Date Reported:	12/10/07
	Client P.O.:		Date Completed:	12/10/07

WorkOrder: 0712016

December 10, 2007

Dear Brian:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #1001.001; Dublin Auto Wash,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

N Wet Telephon	ICCAMPI osite: <u>www.mcc</u> ne: (877) 252-	BELL 1534 Wi Pittsburg ampbell.c 9262	ANAL illow Pass J , CA 94565 com Emai	AYT Road 5-1701 I: ma		AL,	npb (925	NC 0 ((ell.co 5) 25) m 52-92	.69		0		T G	UR eoT	N A	RC	C DU r E	HA ND DF	INTIGA		PDI Ch	CI F C		H Excamp	24 cel ble is	HR S eff	RI V luer	EC 48 H Vri nt a	IR te C	RD 72 72 0n (1 5J" fl		s DAY v)
Company: Por Company: Por 1710 Oak Tele: (50) S Project #: [00 Project Location: Sampler Signatur	0 Fresh CA 946 36-370 1.001 De51.3 re:	ranhal lie St de 2) (A) SAMP	E Fi 7940	-Mai ax: (rojec	: P 90 1: 500 t Nan 255		8. Du	تد اط در اط TRI	3- Aa	10	9 9 9 1ET	К		as (602 / 8021 + 8015) / MTBE	(6	l & Grease (1664 / 5520 E/B&F)	drocarbons (418.1)	110 / 8021 (HVOCs)	LY (EPA 602 / 8021)	I (CI Pesticides)	B's ONLY; Aroclors / Congeners	P Pesticides)	cidic CI Herbicides)	260 (VOCs)	270 (SVOCs)	(PAHs / PNAs)	0.7 / 200.8 / 6010 / 6020)	0.7 / 200.8 / 6010 / 6020)	/ 6010 / 6020)		ther		Filter Samples for Metals analysis: Yes / No
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containe	Water	Soil	Air	Studge	ICE	HCL	HNO3	Other	BTEX & TPH as G	TPH as Diesel (801:	Total Petroleum Oi	Total Petroleum Hy	EPA 502.2 / 601 / 80	MTBE / BTEX ON	EPA 505/ 608 / 808	EPA 608 / 8082 PC	EPA 507 / 8141 (N)	EPA 515/ 8151 (A	EPA 524.2 / 624 / 83	EPA 525.2 / 625 / 83	ÉPA 8270 SIM / 83	CAM 17 Metals (20	LUFT 5 Metals (20	Lead (200.7 / 200.8				
<u>7AA-1</u>		11/30/7	(800	1.	Engla			X						X																			
					~	-																											
																							· · · ·										
Relinquishen By: Relinquished By:	2	Date Date Date Date	Time: 230 Time: 330	Ree	eived	By:		8			F		2	IC G H D A P	EAD EAD ECH PPRORESI	CO SPA LOR OPR	NDI CE J INA IATI ED I	FION ABSI TED E CC	ENT ENT IN I DNTA	LAB	RS_	-lpt	g.	11	shi)r	*/	M	fb r	E S	JENT OUT	rs:	Ù	2
	/	V												PI	RESI	ERV.	ATIC	N N	OAS	6 C	&G	M pH	ETA	LS	го	ны	R				١	P	

McCampbell Analytical, Inc.

	AWA
[J.C.
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 071201	6 Clier	ntID: PEO		
			EDF	Excel	Fax	🖌 Email	HardCo	py ThirdParty	
Report to:				В	ill to:		I	Requested TAT:	5 days
Brian Busch	Email:	bbusch@pangea	aenv.com		Bob Clark-R	iddell			
Pangea Environmental Svcs., Inc.	TEL:	(510) 836-3700	FAX: (510) 83	36-3709	Pangea Envi	ironmental Svc	s., Inc.		
1710 Franklin Street, Ste. 200	ProjectNo	#1001.001; Dub	lin Auto Wash		1710 Frankli	n Street, Ste. 2	00	Date Received:	12/03/2007
Oakland, CA 94612	PO:				Oakland, CA	94612	1	Date Printed:	12/03/2007

				Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date Hol	1 1	2	3	4	5	6	7	8	9	10	11	12
			· · · · ·				1	1	1	1	1				
0712016-001	7AA-1	Air	11/30/07	Α											

Test Legend:

1 G-MBTEX_AIR	2	3
6	7	8
11	12	

4	
9	

5	
10	

The following SampID: 001A contains testgroup.

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

When Ouality Counts"						1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Pange	a Environmental Svcs., I	nc.	Client Proj	ject ID: #	¥1001	.001; Dublin	d: 11/30/07					
1710 I	Franklin Street, Ste. 200						Date Receive	ed: 12/03/07				
Oakla	nd CA 94612	Client Cor	ntact: Bri	an Bi	usch		Date Extracte	ed: 12/03/07				
Oakia	III, CA 94012	Client P.O	.:				Date Analyz	ed 12/03/07				
Extracti	Gasolir on method SW5030B	ne Range (O	C 6-C12) Vola Anal	tile Hydr	ocarl is SW	bons as Gaso 8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 0712	016	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	3	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	1A 7AA-1 A 5400,		5400,a	240		82	110	79	320	10	115	
Rep	porting Limit for DF =1;	А	25	2.5		0.25	0.25	0.25	0.25	1	ug/I.	
ND means not detected at or above the reporting limit			NA	NA		NA	NA	NA	NA	1	mg/Kg	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline range due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell Analytical, Inc. "When Ouality Counts"						1534 Willow I Web: www.mccamp Telephone: 3	Pass Road, Pittsburg bbell.com E-mail: 877-252-9262 Fa	g, CA 94565-1701 main@mccampbel x: 925-252-9269	l.com	
Pangea	Environmenta	l Svcs., I	nc.	Client Project ID:	#1001.001; Dublin Date Sampled: 11/30/07					
1710 F	ranklin Street, S	ste. 200					Date Receive	ed: 12/03/07		
Oaklan	d, CA 94612			Client Contact: B	Brian Busch	1	Date Extract	ed: 12/03/07		
				Client P.O.:			Date Analyz	ied 12/03/07		
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*										
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	7AA-1	А	1500,a	67	25	29	18	72	10	115

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.

Reporting Limit for $DF = 1$;	А	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Air

QC Matrix: Water

WorkOrder 0712016

EPA Method SW8021B/8015Cm Extraction SW5030B					BatchID: 32227				Spiked Sample ID: 0712008-001A			
Analyte	Sample	Sample Spiked MS MSD M		MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	80.6	77.5	3.97	85	78.4	8.06	70 - 130	30	70 - 130	30
MTBE	ND	10	79.4	83.5	5.06	86.2	74.2	15.0	70 - 130	30	70 - 130	30
Benzene	ND	10	84.1	88.5	5.10	86.3	85.7	0.743	70 - 130	30	70 - 130	30
Toluene	ND	10	89.1	95.5	6.92	92.4	93.1	0.756	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	93.5	101	7.67	97.9	95.1	2.92	70 - 130	30	70 - 130	30
Xylenes	ND	30	90.3	96	6.08	91.7	90	1.83	70 - 130	30	70 - 130	30
%SS:	115	10	101	103	1.59	101	108	6.64	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 32227 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712016-001A	11/30/07	12/03/07	12/03/07 11:50 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

APPENDIX B

Pangea's Standard Operating Procedures for Monitoring Wells

Pangea

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Pangea Environmental Services' standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. Wells may be surged prior to installation of the well seal to ensure that there are no voids in the sand pack. Development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.