RECEIVED

Revised Soil Vapor Investigation Report

German Autocraft Fuel Leak 301 E. 14th Street San Leandro, California

Global ID No. T0600100639 AC LOP Case # 2783

Prepared For

Mr. Seung Lee German Autocraft San Leandro, CA 95070

Prepared By

Cleaning California from the Groundwater up

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

Date of Report: April 30 2009

12:52 pm, May 12, 2009

Alameda County Environmental Health

CONTENTS

1.0	INTI	RODUCTION	1
	1.1	Objectives of Soil Vapor Investigation	1
	1.2	Local Hydrogeology Clarifications	1
2.0	SCO	PPE OF WORK	3
3.0	WOI	RK SCHEDULE	3
4.0	FINI	DINGS OF INVESTIGATION	4
	4.1	Subsurface Soils	4
	4.2	Grab Groundwater Samples	4
	4.3	Soil Vapor Samples	
	4.4	Comparison of Soil Vapor Results to ESLs	5
5.0	REC	COMMENDATIONS	
6.0	PRO	FESSIONAL CERTIFICATION	7
7.0		ERENCES	

TABLES

Table 1	Groundwater Analytical Results	
---------	--------------------------------	--

Table 2Soil Vapor Analytical Data and Measurements

FIGURES

- Figure 1 Site Location Map
- Figure 2 Fuel Leak Impact Area Plan (showing wells & soil vapor sampling points)
- Figure 3 Hydrocarbons in Groundwater
- Figure 4 Benzene in Groundwater
- Figure 5 TPH-g in Soil Vapor
- Figure 6 Benzene in Soil Vapor

APPENDICES

- Appendix A Updated Geologic Cross-Section and Supplemental Information (including boring/well logs, certified analytical reports including chain of custody information)
- Appendix B Temporary Soil Vapor Well Installation and Sampling Procedures
- Appendix C Soil Vapor and Groundwater Analytical Data Evaluation

1.0 INTRODUCTION

Groundwater Cleaners, Inc.(GCI) recently prepared a Corrective Action Plan (CAP) for this San Leandro fuel leak (see Figures 1 and 2) that, subject to results of pending feasibility/pilot testing work, proposes to reduce lingering high concentrations of subsurface petroleum hydrocarbons using a process known as dual-phase extraction and air sparging [DPE/AS (GCI November 28, 2007)]. The Alameda County Environmental Health (ACEH) letter dated December 28, 2008 agreed with the choice of DPE/AS for a pilot test feasibility study; however due to the data gap related to potential risk associated with the vapor intrusion pathway, the ACEH requested that further site characterization be performed; specifically, a soil vapor investigation. An investigation was completed in January, 2009 and reported in February, but a laboratory error was recently discovered, resulting in this revised report.

This investigation obtained subsurface information from four (4) on-site and four (4) off-site down-gradient locations. At each location, a grab groundwater sample was obtained for laboratory analysis and in an adjacent boring, a temporary dual-completion vapor well was installed, subsequently sampled and destroyed. The corresponding findings are presented herein and used to evaluate the potential risk of vapor intrusion from subsurface contaminants emanating from the site to businesses or residences that lie above the contaminant plume.

1.1 Objectives of Soil Vapor Investigation

The subject soil vapor investigation had the following primary objectives; (a) to quantify petroleum hydrocarbon constituent concentrations in soil vapor both on-site and off-site from discrete depth intervals within the vadose zone; (b) to evaluate the potential risk to both the on-site, commercial use situation and the off-site residential setting; (c) to obtain coincident sets of grab groundwater and depth discrete soil vapor concentrations to facilitate the calculation of vertical attenuation rates and thus allow the back-calculation of groundwater values protective of vapor intrusion concerns; and finally; (d) to utilize the findings to focus the corrective action specifics as warranted.

1.2 Local Hydrogeology Clarifications

Section 2.1 of the CAP discusses the general hydrogeologic conditions within the San Leandro Sub-Area of the East Bay Plain Groundwater Basin as presented in the cited references. The groundwater flow tendencies are described on the basis of the four principle compass directions (i.e., east to west) and not more refined directions. Both the preponderance of numerous groundwater contour plots and subject plume's principle axis orientation suggest that the local prevailing groundwater flow direction is WNW as we mention in CAP Section 2.2. If this is generalized to just the four compass directions, it would be considered an east to west flow. Further, the references mention topographic

influences, but the subject site is situated well west of the basin's hilly area and this aspect does not apply.

Most, if not all, of this fuel leak case's offsite impact definition was directed and field logged by a Registered or Professional Geologist who documented that the dissolved phase fuel had migrated via the more permeable unit between 25-35 feet below grade (bg). This unit is also where first groundwater is encountered, which is where lighter-than-water fuel impacts tend to accumulate. During the current investigation to obtain grab groundwater samples, the eight holes (SV-1 through SV-8) were advanced to between 30 and 35 feet bg. Continuous cores were recovered and logged by a geologist from four of the borings to 30 feet bg and four borings to 35 feet bg. Only one boring (SV-3) was observed to contain significant clean sand from 28 to 30 feet bgs and SV-7 was terminated within clayey sand at 30 feet bgs. The remainder of the borings logged encountered predominantly clay, and sandy clay.

Groundwater was generally encountered between 26.5 to 29 feet bg. Groundwater recharge varied between locations suggestive of differing permeability; groundwater was first encountered in boring SV-3 within the sand at 28 feet bgs and immediately rose within the temporarily inserted PVC casing to 18 feet bgs. Conversely, the temporarily cased locations SV-1, SV-2 and the hydropunch screen driven and retracted from 35 feet bgs for SV-8 required 48 hours or more for groundwater to recharge, indicating the saturated zone to be outside the transmissive, sandy layers associated with the transport of contaminants.

It remains GCI's opinion that the 25-35 feet bg permeable unit has been the pathway of *historic* dissolved fuel migration as covered in Section 2.5 of the CAP. However, ongoing monitoring of groundwater at the down-gradient plume perimeter wells (Wells MW-1A, MW-12 and MW-13) indicates that there has been no appreciable increase in concentration or spreading of dissolved petroleum hydrocarbons for many years, but rather stable or decreasing concentrations have been observed. In the future, it is unlikely for significant migration to start-up under a natural progression of conditions. Recognizing this permeable unit's importance, it is the main target for cleanup proposed in GCI's CAP.

The case's network of groundwater wells are screened from approximately 20 to between 30 and 40 feet bgs, are not submerged, and screen current static groundwater levels; therefore are suitable for pilot testing. GCI has proposed the installation of two air sparge points to enhance recovery of dissolved phase hydrocarbons. Further, due to the lateral continuity of the approximate 1-foot thick permeable zone encountered in the SV-1 through SV-8 locations at between approximately 11 and 14 feet bg; shallow, horizontal vapor extraction wells may be included in any remedial action to target this horizon.

2.0 SCOPE OF WORK

Petroleum hydrocarbons emanating from the site have migrated down-gradient in groundwater within the relatively more permeable (increased sand) zones at approximately 25 feet bg. Overlying vadose zone soil is of lower permeable clay and silty clay. Therefore, significant attenuation of soil vapor upwards is anticipated and the following scope of work quantitatively demonstrated this attenuation.

- Acquired an encroachment agreement with the City of San Leandro for the four off-site boring locations and acquired necessary permits from the Alameda County Public Works Agency for the eight locations.
- Marked the sampling locations, notified Underground Services Alert and utilized a private geophysical locator service to clear the boring locations for subsurface utilities.
- Advanced eight hydraulic-push borings (shown on Figure 2) into first encountered groundwater and obtained a grab sample from each boring (approximate total depth of 30 to 35 feet bgs).
- Advanced eight (adjacent) shallow hydraulic-push borings to a depth of approximately 12 to 15 feet to facilitate the construction of a dual-completion temporary vapor well in each. The vapor sampling intervals at each location were set at approximately 13-feet and 5-feet bg with completions based on the observation of higher permeable material if present.
- Upon allowing sufficient time for equilibration (minimum 48-hours), sampled soil vapor from each of the discrete intervals.
- Submitted the groundwater samples for laboratory analysis of TPHg, BTEX compounds and MtBE by EPA Method 8015/8020. Submitted the soil vapor samples for laboratory analysis of TPHg, BTEX compounds, MtBE and the leak check compound 2-propanol by EPA Method TO15.

In concert with ACEH input, the sampling locations were based on the expected configuration of the contaminant plume and the need to address both on-site and off-site conditions above different concentrations of contaminants and proximity to possible sensitive receptors. Additionally, the on-site locations were selected to allow comparison of grab groundwater sample analytical results to groundwater monitoring well results. Figure 2 presents the temporary soil vapor well locations. The boring/well logs and certified analytical results are presented in Appendix A. Detailed field installation and sampling procedures are presented in Appendix B.

3.0 WORK SCHEDULE

The starting schedule for this investigation was delayed somewhat by the difficulty of obtaining access permission and the encroachment permit (requiring traffic and pedestrian control plans) from the City of San Leandro.

4.0 FINDINGS OF THE INVESTIGATION

The data from the four on-site locations provides a picture of what the core area soil vapor concentrations are stemming from a combination of residual impacts to vadose zone soil and the most heavily contaminated groundwater. The four locations along the north side of Garcia Avenue yield soil vapor data concerning the degree of upward volatilization that is occurring from the down-gradient groundwater plume itself.

4.1 Subsurface Soils

Detailed logs of the eight boring locations are included in Appendix A. Soils encountered in these borings consisted predominantly of low permeability clay to their total explored depth (maximum 35 feet bgs). Between approximately 11 and 14 feet bgs an approximate 1-foot thick sand, clay with sand, clayey gravel or gravelly clay was often encountered which was the target of the lower soil vapor sample completion depth. Only in one boring (SV-3) was a significant sand layer observed in the saturated zone from 28 to 30 feet bg. The previously installed groundwater monitoring wells encountered significant high permeability sands within the saturated zone, however they were completed to deeper depths in the range of 35 to 40 feet bgs. Updated geologic cross-sections are provided in Appendix A. Groundwater was generally first encountered at 26.5 to 29 feet bg. The transport of fuel contaminants is likely associated with the more permeable sandy lenses and may therefore differ significantly from what one might expect with more uniform subsurface strata.

4.2 Grab Groundwater Samples

Grab groundwater analytical results are presented on Table 1. Petroleum hydrocarbons and benzene in grab groundwater concentrations are presented on Figures 3 and 4, respectively. Grab groundwater sample data were generally in accord with historic monitoring well data.

As expected, the highest concentrations of petroleum hydrocarbons (TPH-g, and BTEX compounds) were reported from samples located on the site. The maximum concentrations of TPH-g (82,000 μ g/L), toluene (3,000 μ g/L), ethylbenzene (4,600 μ g/L) and xylenes (24,000 μ g/L) in groundwater were reported from location SV-2 located immediately east of the UST excavation. The maximum concentration of benzene reported in grab groundwater (1,600 μ g/L) was from location SV-1 located along the western boundary of the site. These elevated grab groundwater analytical results compare favorably to their nearby, respective groundwater monitoring results of September 5, 2008 (SV-1 is proximal to MW-2 and SV-2 is proximal to MW-1; see Figure 2). Similar to the results at SV-2; MW-1 contained the maximum concentration of petroleum hydrocarbons within a monitoring well (TPH-g 110,000 μ g/L; toluene 11,000 μ g/L; ethylbenzene 4,200 μ g/L and xylenes 21,000 μ g/L). Both Well MW-1 and MW-2 reported elevated concentrations of benzene at 1,000 μ g/L.

4.3 Soil Vapor Samples

Adjacent to each grab groundwater sample, two depth-discrete soil vapor samples were collected within the vadose zone. A shroud was placed over the borehole and entire sampling train including all connections during the collection of each sample. Detailed soil vapor sampling procedures are presented in Appendix B. The results of the datalogged shroud atmosphere are presented on Table 2 and indicate concentrations of 10,000 to 130,000 microgram per cubic meter ($\mu g/m^3$) 2-propanol (the leak detection compound) within the shroud. In addition, two samples of the shroud atmosphere were analyzed by the laboratory and confirmed the elevated PID readings present there. No 2-propanol was detected [at less than (<) 110 or 120 $\mu g/m^3$] in any soil vapor sample analyzed, therefore all sampling trains are deemed to be tight and samples collected representative of field in-situ conditions at the specified depths.

Soil vapor analytical data and measurements are presented on Table 2. TPH-g and benzene concentrations in shallow and deep soil vapor are presented on Figures 5 and 6, respectively. In general, the deeper soil vapor sample reported a higher concentration of petroleum hydrocarbons (if detected) than the upper (approximate 5-foot depth) sample, though this was not always the case. The maximum concentration of TPH-g (660,000 μ g/m³) was reported in the deeper soil vapor zone sampled (an approximate 1-foot thick sand layer) from SV-7 at 12.5 feet bgs (adjacent to Well MW-3). However, the shallow interval sampled at SV-7 contained only 2,400 μ g/m³ TPH-g at 5.5 feet bgs. These results suggest significant attenuation is occurring due to the low permeability clays and the greater distance to the petroleum hydrocarbons present in groundwater.

The maximum concentration of benzene in soil vapor was reported in the shallow soil vapor sample collected from SV-2 at 5.5 feet bgs. This $270 \,\mu g/m^3$ concentration of benzene is likely at least partially due to shallow source area soils proximal to the UST excavation in combination with the underlying petroleum hydrocarbons volatilizing from groundwater.

4.4 Comparison of Soil Vapor Results to ESLs

Table 2 presents a comparison of the two depth-discrete soil vapor data sets to the most current Environmental Screening Levels (ESLs) protective of vapor intrusion concerns under a commercial land use (for the on-site auto repair business) and residential (for the predominant offsite land use), respectively (RWQCB-SF, 2008). With only one exception, the 5-foot depth TPHg concentrations do not exceed their respective ESLs, which are derived from fairly conservative, generic assumptions. The one exception is at location SV-8 at 5 feet bg which reported 17,000 μ g/m³ TPHg in the south corner of the site. Additionally, only one 5-foot depth benzene soil vapor concentration, located on-site and adjacent to the former UST complex exceeds the residential ESL (84 μ g/m³) at 270 μ g/m³ (SV-2 at 5.5 feet bgs). Furthermore, only two of the deeper depth-discrete

soil vapor samples exceeded the residential ESL and only for TPH-g (SV-7 at 12.5 feet bgs contained 660,000 μ g/m³ and SV-8 at 13.5 feet bgs contained 35,000 μ g/m³).

Given the predominance of clay in the subsurface soils, the depth to first encountered groundwater (approximately 26.5 to 29 feet bgs) and the relatively low concentrations of petroleum hydrocarbons in the shallow soil vapor there is a clear confirmation that significant vertical attenuation is occurring. With the exception of the shallow on-site location SV-8 containing 17,000 μ g/m³ TPHg (above the residential ESL of 10,000 μ g/m³ TPHg) in the south corner of the site, the shallow soil vapor sampling results below applicable ESLs indicate that vapor intrusion concerns are unlikely based on commercial on-site use and downgradient off-site residential uses.

Utilizing the grab groundwater and depth discrete soil vapor data; estimates of volatility coefficients of petroleum hydrocarbons volatilizing from groundwater to shallow soil vapor may be calculated. Then, based on these coefficients and the shallow soil vapor ESLs, back-calculation of groundwater values protective of vapor intrusion concerns may be performed. The table presenting these calculations is presented in Appendix C. Due to possible on-site shallow source area soil impact (i.e., SV-2), only the four downgradient off-site borings were statistically analyzed to present the volatility factors.

Based on the arithmetic mean of the ratio of the grab groundwater concentration to the 5-foot depth soil vapor samples at the off-site locations, the calculations indicate that $45,300 \ \mu g/L$ TPH-g and $128 \ \mu g/L$ benzene in groundwater are protective of residential vapor intrusion concerns. Utilizing a conservative 95% confidence interval suggests that $18,300 \ \mu g/L$ TPH-g and $52 \ \mu g/L$ benzene are protective of residential vapor intrusion concerns. In comparison, the RWQCB ESL for benzene in groundwater protective of vapor intrusion concerns is $540 \ \mu g/L$. This indicates that the back-calculated concentrations are very conservative, likely due to the small data set and utilizing $\frac{1}{2}$ the detection limit when the constituent was not detected. The groundwater ESLs protective of vapor intrusion concerns (at the bottom of the table included in Appendix C) are therefore proposed to be utilized as a screening tool however, care must be taken as can be seen when possible shallow source area soils contribute to shallow soil vapor impact such as at location SV-2.

5.0 **RECOMMENDATIONS**

Based on the shallow depth-discrete soil vapor analytical results all being below their applicable ESLs (except TPHg in SV-8d5 in the southeast corner of the site), GCI concludes that there is minimal risk to inhabitants of the dwellings above the contaminated downgradient groundwater plume. Given the predominance of clay in the subsurface soils, the depth to first encountered groundwater (approximately 26.5 to 29 feet bgs) and the relatively low concentrations of petroleum hydrocarbons in the shallow soil vapor suggest significant vertical attenuation is occurring. No further soil vapor sampling is proposed at this time. However, the contaminants continue to present in shallow soil vapor on-site above residential ESLs at two locations and constitute a barrier

to beneficial use of the groundwater near the location of the plume. In particular, there is an irrigation well located at 141 Farrelly Drive that has been out of service for some years, resulting from the proximity of subsurface contaminants. Therefore, remedial pilot testing proposed in the CAP will be performed, followed by a technical report of DPE/AS. Future on-site soil vapor sampling will be utilized as a tool to determine the effectiveness and completion of remedial activities.

6.0 PROFESSIONAL CERTIFICATION

We declare, under penalty of perjury, that to the best of our knowledge, everything presented in this Report is true and correct.

Should you have any questions or require supplemental information, please do not hesitate to contact us at (415) 665-6181.

Sincerely,

'09 NO. CH5852 Glenn Reierstad, P.E. Project Manager, Groundwa

S. R. ttl

Eric R. Lautenbach, P.E. V.P. Engineering

Ross W. Tinline, PG Project Geologist

7.0 **REFERENCES**

Alameda County Environmental Health (ACEH, 2007), Letter to Seung Lee, LOP Case No, RO0000302 (global ID# T0600100639), German Autocraft, 301 E 14th Street, San Leandro, CA, December 28, 2007; unpublished regulatory letter.

California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB-SF, 2007), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, November 2007.

Groundwater Cleaners, Inc. (GCI, 2007), Corrective Action Plan for Core Area of Fuel Impacts, German Autocraft, 301 E 14th Street, San Leandro, California, Global ID No. T0600100639 (GeoTracker), AC LOP Case #2783, ..., November 28, 2007; unpublished consultant's report. Tables

Sample	TPHg µg/L	Benzene	Toluene	Ethylbenzene	Xylenes
Number		μg/L	μg/L	μg/L	μg/L
SV-1	15,000	1,600	23	890	680
SV-2	82,000	490	3,000	4,600	24,000
SV-3	15,000	24	77	54	28
SV-4	3,900	550	49	140	83
SV-5	44,000	480	470	1,700	7,100
SV-6	4,200	11	24	31	19
SV-7	700	1.5	9.3	1.1	4.2
SV-8	860	0.58	15	5.6	18

Table 1. Groundwater Analytical Data, January 6, 2009German Autocraft, 301 E. 14th Street, San Leandro, CA

Table 2 Soil Vapor Analytical Data and Measurements

German Autocraft 301 East 14th Street, San Leandro, CA by Modified EPA Method TO-15 using GC/MS in full scan mode

Average Measured 2-Propanol

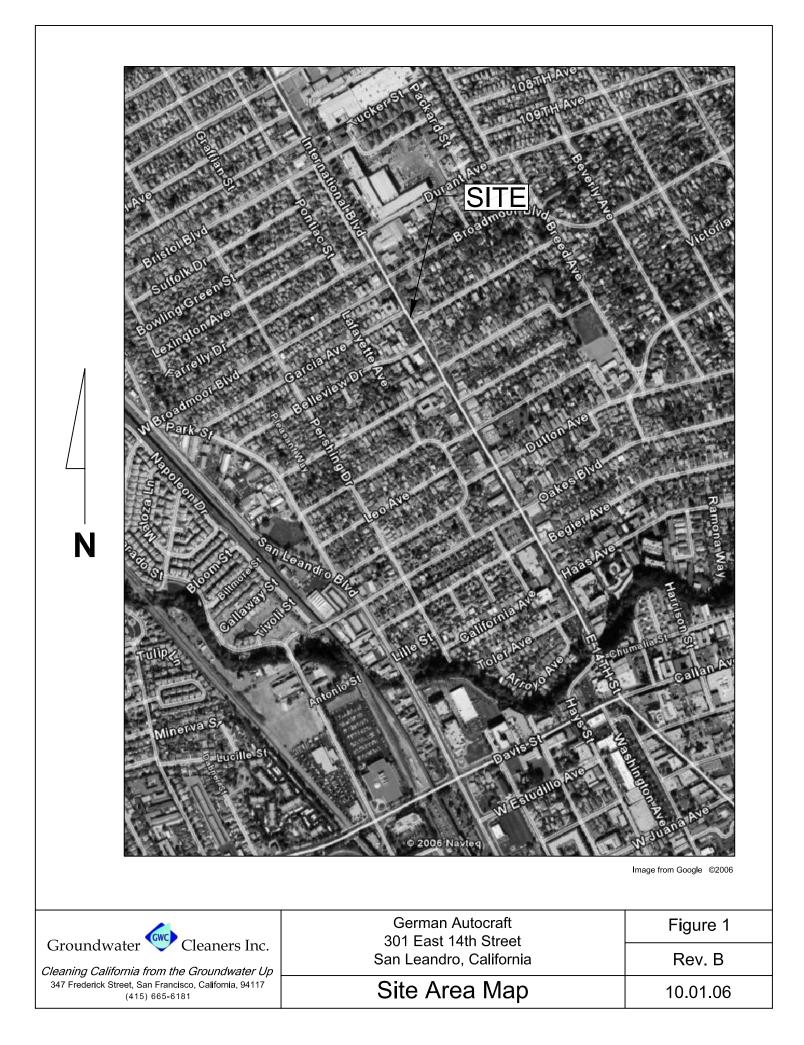
Dropo of

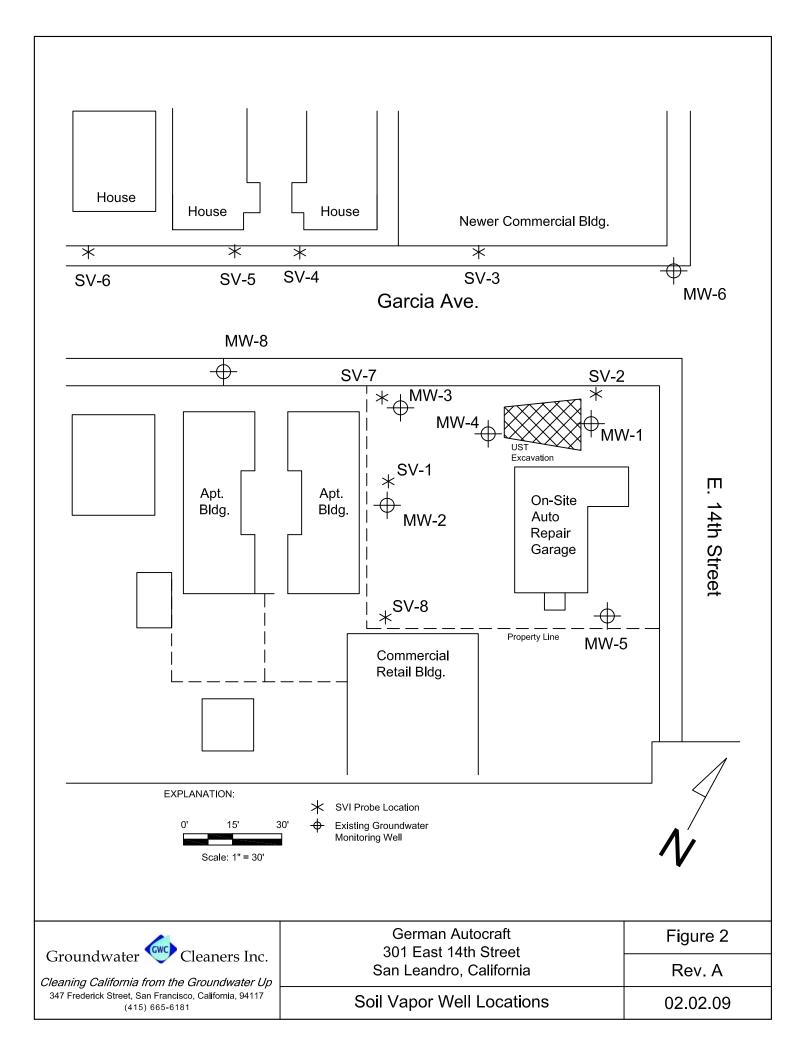
											Shroud Concentration PID using	Drops o Isoprop Alcohol i
Sample Number	Date	TPH-g	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	MtBE	2-Propanol	2-Propanol	CF=6	Shrou
depth (d) in feet	Sampled	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)	(µg/m ³)	(drops				
				Sub-Slab	Soil Vapor					Shroud Atn	nosphere	
			La	aboratory Rep	orted Analytical Res	sults						
SV-1d5.5	01/13/09	7,600	<37	78	230	490	400	<42	<110		19,170	20
SV-1d13	01/13/09	<950	<37	<44	<50	<50	<50	<42	<110		33,916	20
SV-2d5.5	01/13/09	7,600	270	50	<50	<50	<50	<42	<110		33,916	2
SV-2d12.5	01/13/09	8,300	<37	<44	<50	<50	<50	<42	<110		53,086	20
SV-3d5	01/14/09	9,500	<37	<44	<50	<50	<50	<42	<110		126,816	1(
SV-3d13	01/14/09	<950	40	67	<50	60	<50	<42	<110		131,240	10
QCSV-3d13	01/14/09									110,000	131,240	1(
SV-4d5	01/14/09	<970	<38	<45	<52	<52	<52	<43	<120		42,763	1
SV-4d14	01/14/09	<950	<37	<44	<50	<50	<50	<42	<110		91,425	1:
SV-5d5	01/14/09	<970	<38	<45	<52	<52	<52	<43	<120		30,967	1
SV-5d13	01/14/09	<970	76	120	<52	75	<52	<43	<120		33,916	10
SV-6d5	01/14/09	<990	<39	63	<52	85	<52	<44	<120		131,240	2
SV-6d11.5	01/14/09	3,900	44	130	<52	83	<52	<44	<120		106,171	1(
QCSV-6d11.5	01/14/09									79,000	106,171	10
SV-7d5.5	01/13/09	2,400	<36	280	270	810	140	<41	<110		22,119	2
SV-7d12.5	01/13/09	660,000	67	170	440	1,200	240	<42	<110		70,781	2
SV-8d5	01/13/09	17,000	<36	340	530	1,800	290	<41	<110		10,322	1(
SV-8d5(dup)	01/13/09	19,000	<36	320	500	1,600	270	<41	<110		10,322	1
SV-8d13.5	01/13/09	35,000	<37	<44	<50	280	250	<42	<110		23,594	1
invironmental Screening Residential - Soil Gas	J Level (ESL)	10,000	0.4	63,000	980	21,000	21,000	9,400				
Commercial - Soil Gas		29.000	84 280	180,000	3,300	58,000	21,000	9,400 31,000				

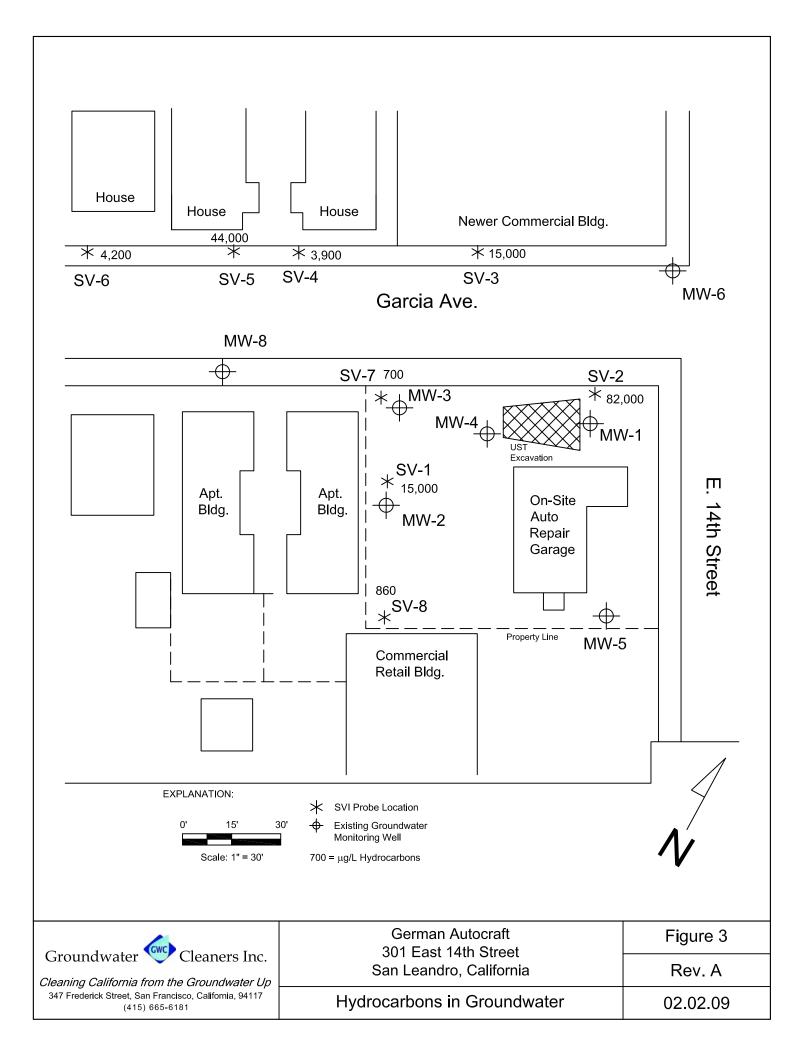
µg/m³ = Micrograms per cubic meter

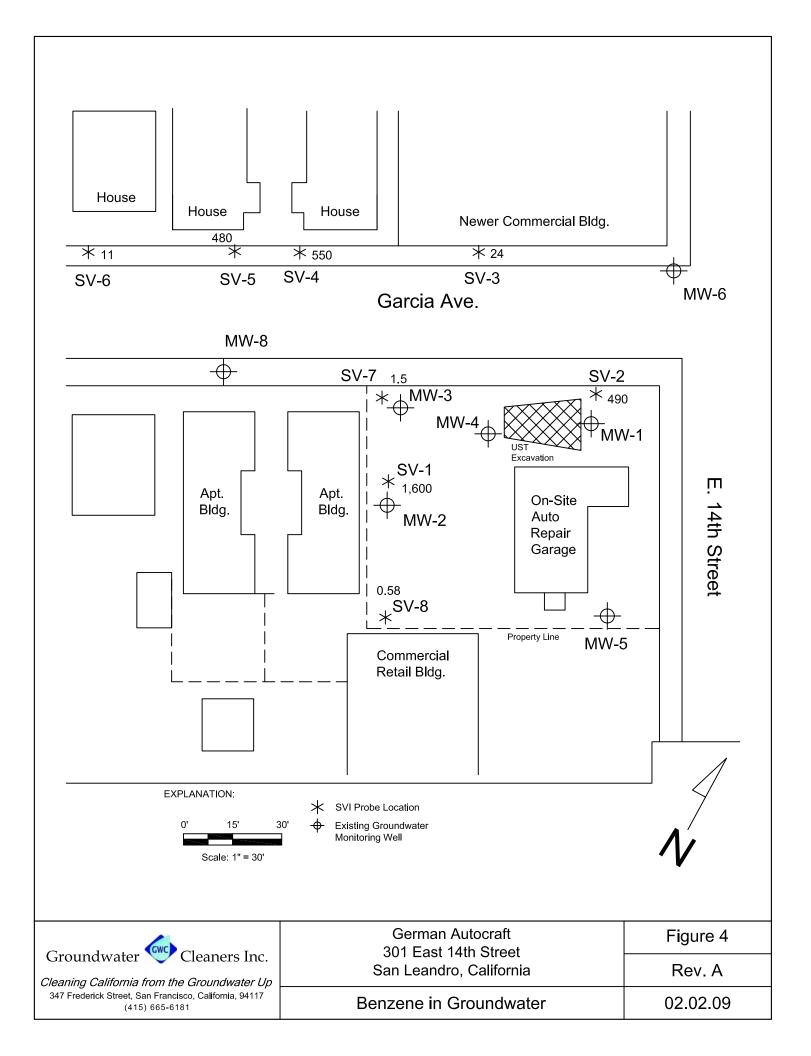
= Not Detected, less than laboratory reporting limit
 ESL = SFRWQCB ESL (November 2007) for shallow soil gas screening level for evaluation of vapor intrusion concerns.

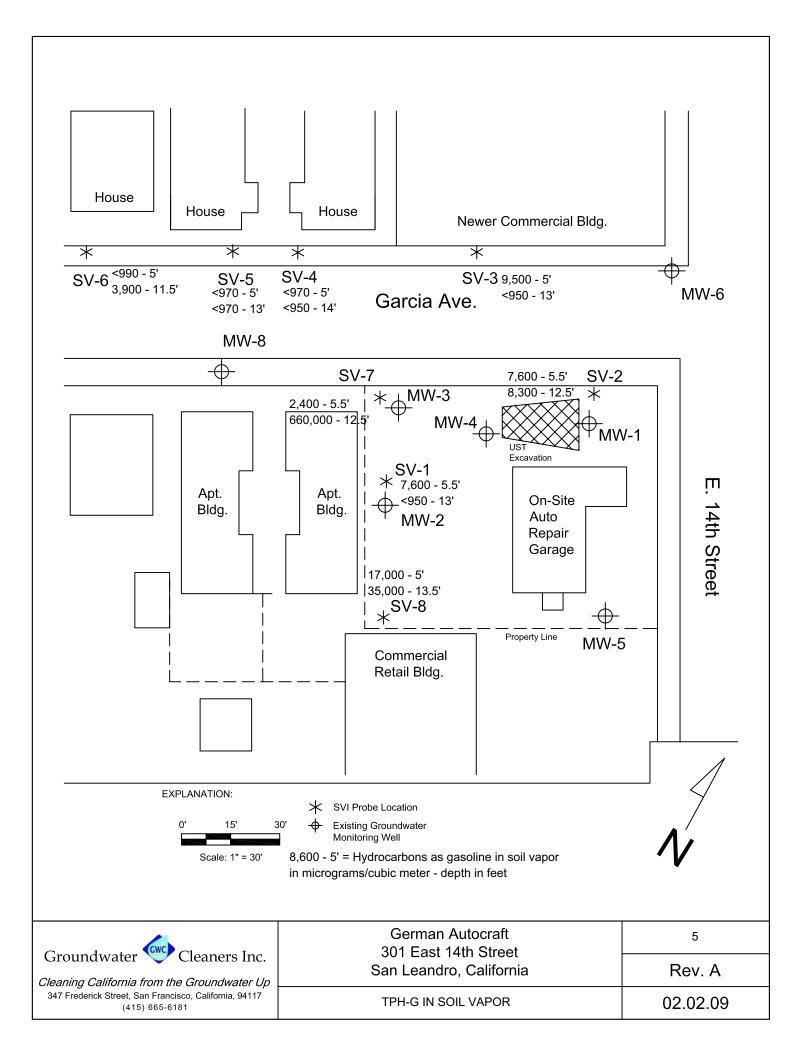
CF = Correction Factor for 2-propanol from isobutylene detected by PID (Literature Value = 6)

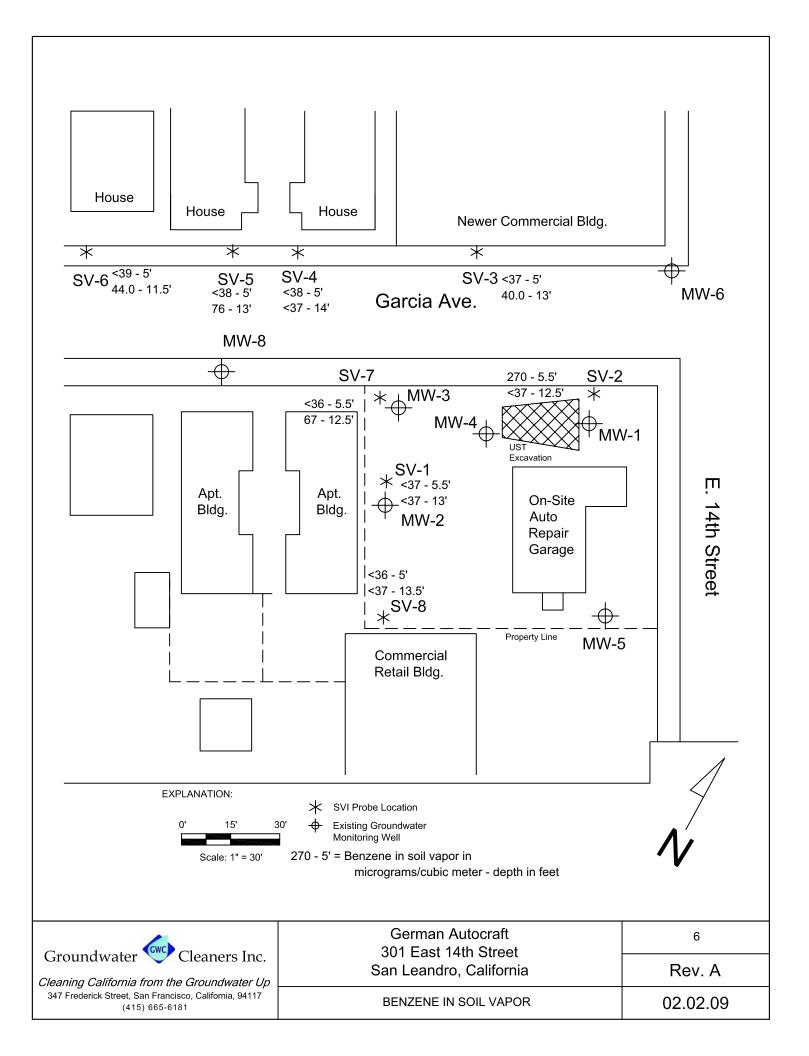

 Bold
 Concentration above Residential Soil Gas ESL

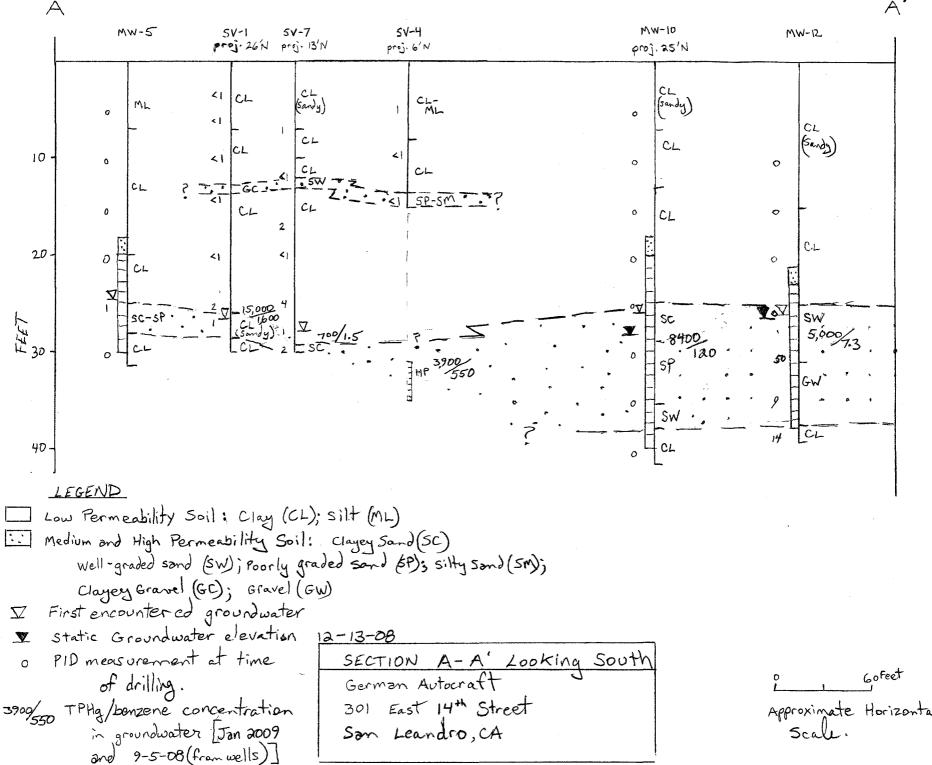

 Bold
 Concentration above Residential and Commercial Soil Gas ESL

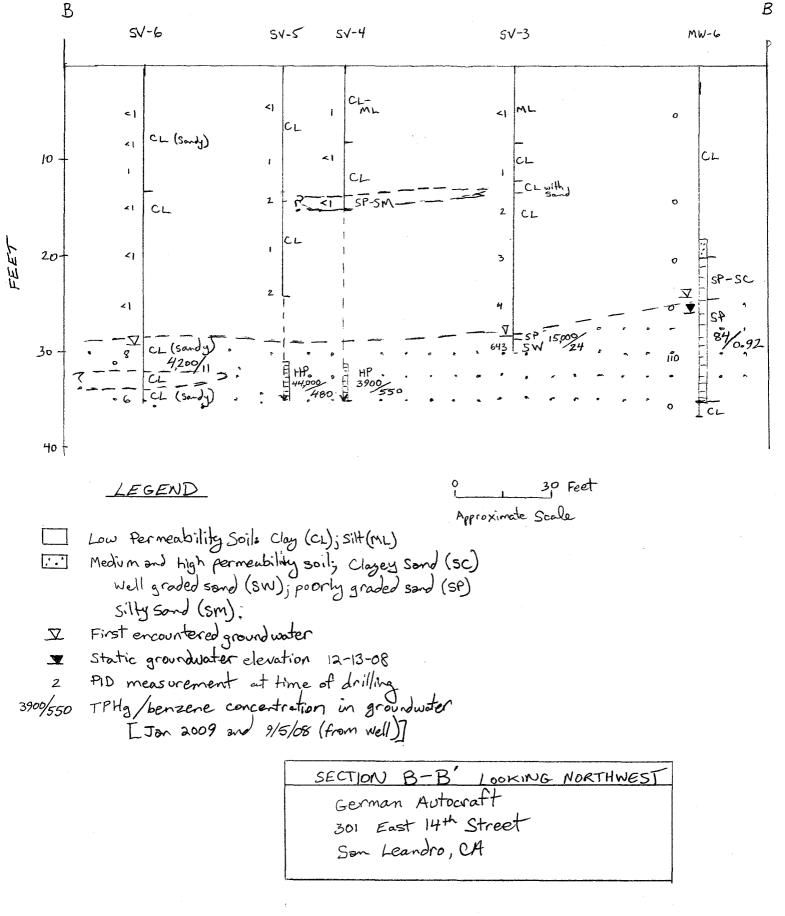

 Dup
 Laboratory Duplicate Sample

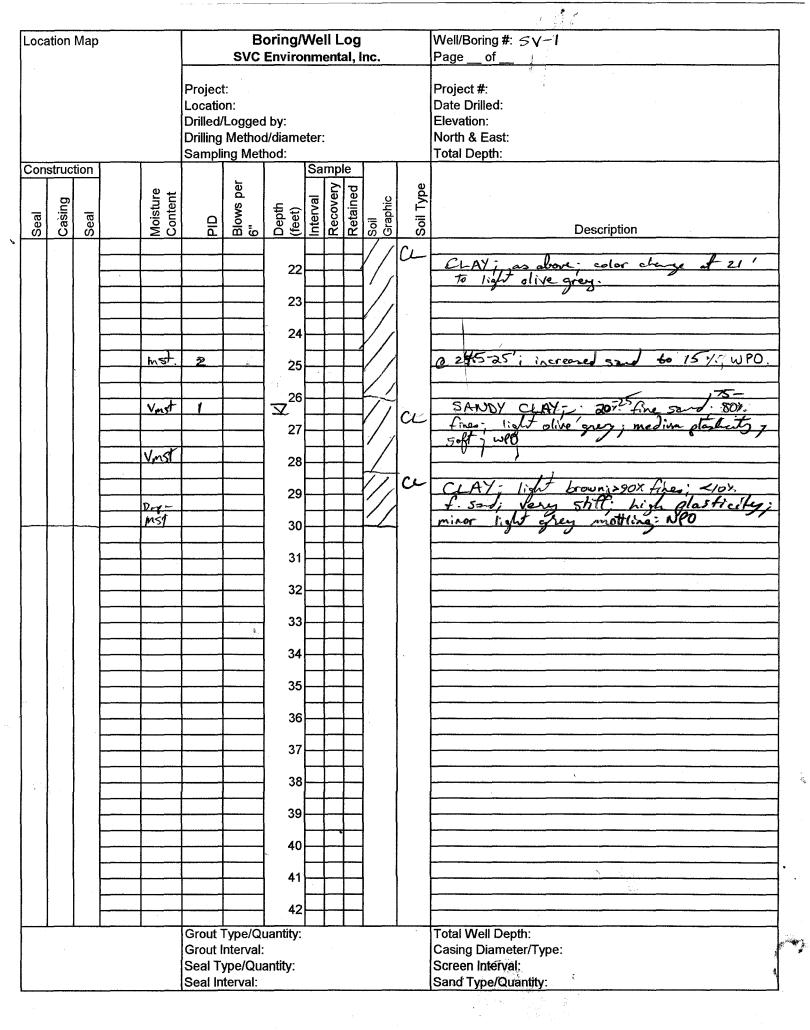

Figures





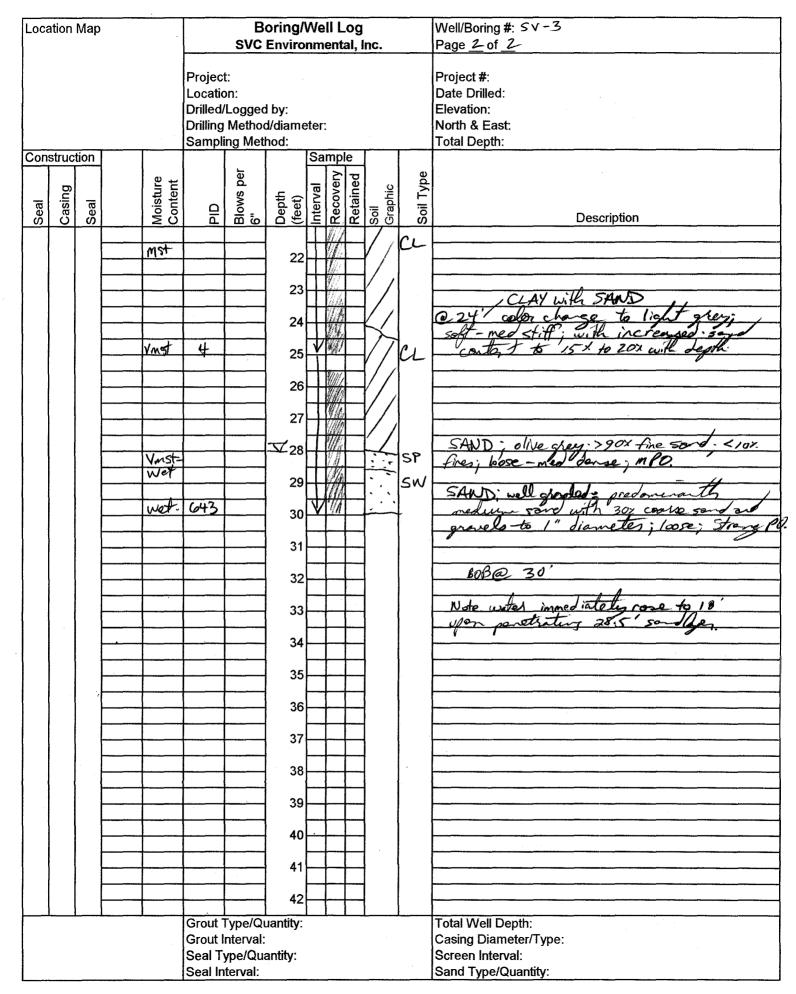





Appendix A

Geologic Cross-Section and Supplemental Information

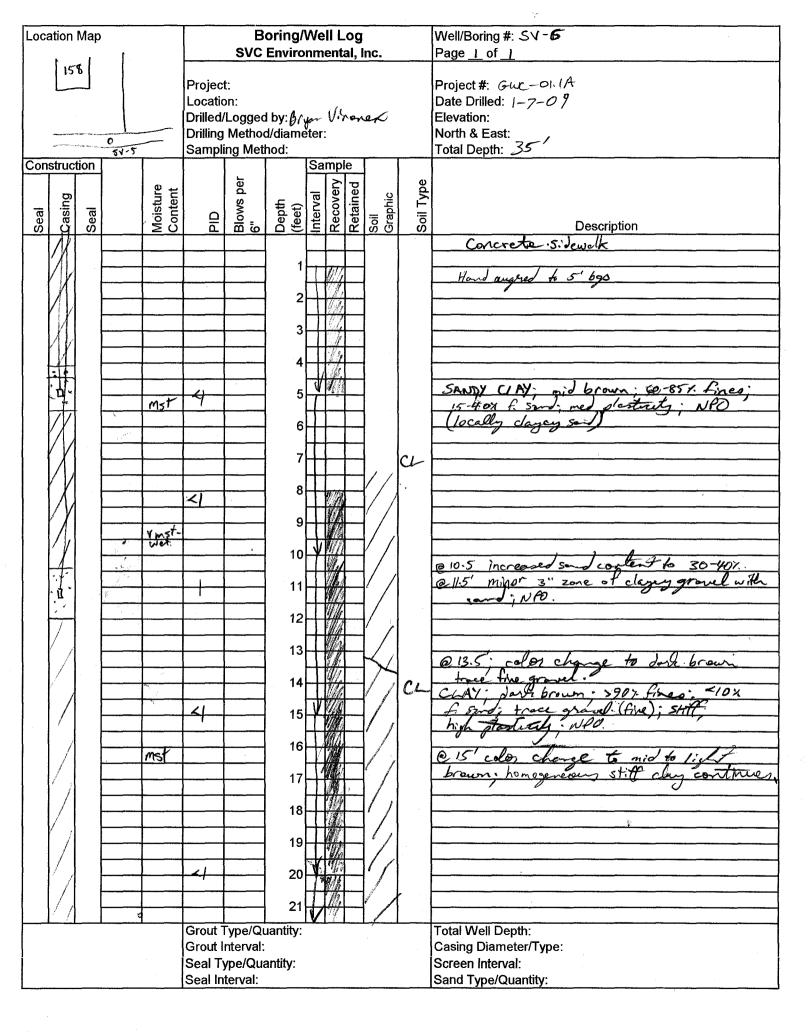
	· ••••••••••••••••••••••••••••••••••••	
Location Map		Well/Boring #: S∨∽I
	SVC Environmental, Inc.	Page [of 2
	and at	
	Project: German Autocraft	Project #: Gwc~0.1A
	Location: 301 E 14th St., Son Leardo Drilled/Logged by: Ross T. Lill Drilling Method/diameter: 2 Hydraulia Sampling Method: Contractor	Date Drilled: 1-6-08
	Drilling Method/diameter: 2" H day his	North & East
	Sampling Method: Continuous cone.	Total Depth: $\frac{14}{30}$
Construction	Sample Geoplete 66	<i>w</i>
Seal Casing Seal Moisture Content	PID Blows per 6" Depth (feet) Interval Recovery Retained Soil Graphic Soil Type	
Seal Casing Seal Moisture Content	PID Blows 6" Cepth (feet) Interva Recov Recov Soil Craphic	Develoption
		Asphalt and Raseroel
	╪ ╴╴╞┉╴ ┥ ╹ <mark>┝╶╊╼╌</mark> ┥┥╱╽ ╽	
	2	CLAY; don't dive greg; >90%. fines; <10%.
		f. send: ned plasticity i silty texture;
		NPO,
		<u>1</u>
		@ 4' color phane to light to med brown.
		increased sand content; silly terdare
Drys	5	predominant; Tow plasticity NPO
	┼──┼──┤ _╺ ╎┨┞╢╢─┤ _╸ ╱╶│ │	
mst		CLAY. doils grey to alive gue them
		to Kalet brain. >90% clay, his Christiants.
		Vory stiff: NPD
Dmp		
		······································
		CLAYEY GRAVEL; Vight brown; 754. angulon
	13 13 GC	provels to K" diameter with high plastic charge
		up to 25%. Note adjacent GW boring hosted SWL
v mst-	at 14 Ja	CLAY; light brown >90% clay with silt
wet.		and ~10). f. sand medium stiff to stiff
Mist		high plasticity.
·[</td <td>┼──┼──┤ ┝╅┟╢┥┤╱╷│ │</td> <td></td>	┼──┼──┤ ┝╅┟╢┥┤╱╷│ │	
	┼──┼──┥╶ <u></u> ┝╫╬┼┤╱╱╽╴╟	· · · · · · · · · · · · · · · · · · ·
		······································
Dmp-		
mst		· · · · · · · · · · · · · · · · · · ·
	19	
		e 20' million gray mottling.
mst		
	Grout Type/Quantity:	Total Well Depth:
		Casing Diameter/Type:
		Screen Interval:
	1 2 2 1	Sand Type/Quantity:
	· · · · · · · · · · · · · · · · · · ·	



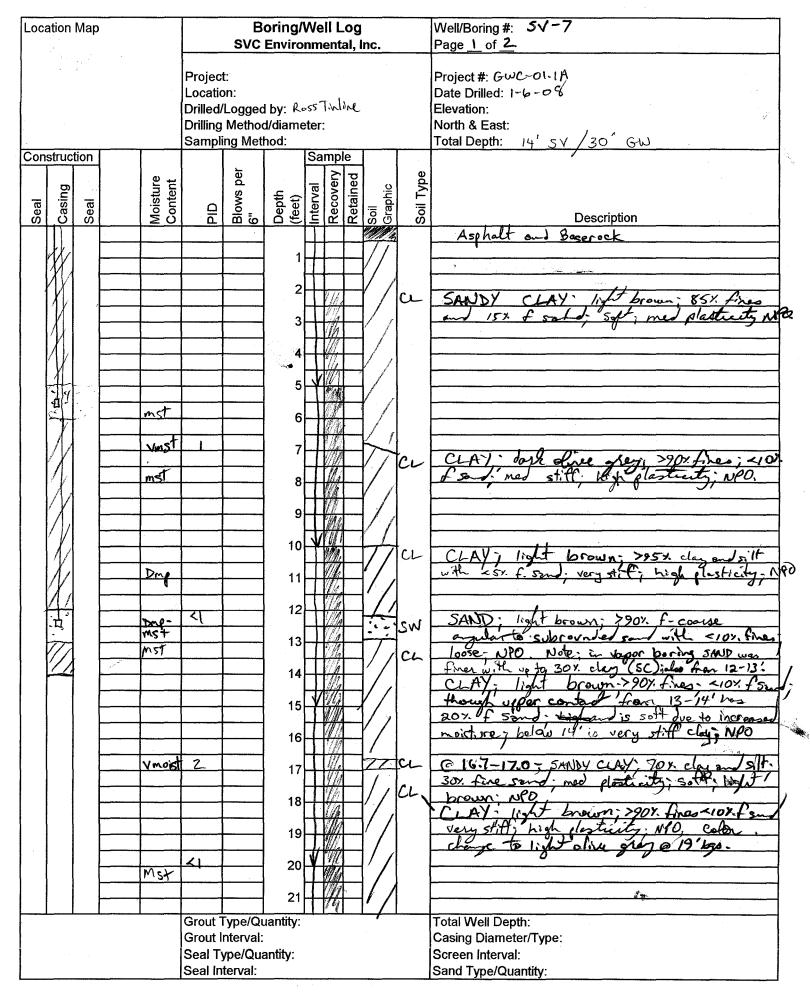
Location Map	Boring/Well Log	Well/Boring #: SV-2_			
	SVC Environmental, Inc.	Page <u>1</u> of <u>2</u>			
	Project: German Autocraft	Project #: GW C-01-1A			
	Project: German Astocraft Location: 301 E 14th St. 52-Learlie Drilled/Logged by: Ros Inline	Date Drilled: 1-6-09			
	Drilled/Logged by: Ross Tinline	Elevation:			
	Drilling Method/diameter: Hydraulic Push Sampling Method: Cont Core	Total Depth: $a0'/30'$			
Construction	Sampling Method. Control Control	Total Deptil. all 7 30			
tent a	Typ in the spectrum of the spe				
Seal Casing Seal Moisture Content	PID Blows per 6" Depth (feet) Interval Recovery Recovery Recovery Caphic Soil Type	Description			
		Asphalt and Baserock			
		SILT Light brown >90% fines			
		«10% fine sond' no dastricts; minor secondary vertical porosity;			
Dmpa		minor secondary vertical porosity; trace fine root/8ts: NPO			
		······································			
		· · · · · · · · · · · · · · · · · · ·			
Drip Drip					
5	8 8 / / CL	CLAY- olive grey: >95x clas with silt			
Dag.		CLAY - ofive grey: >95x clay with silt of <5%. Fing some very still high plasticity: minor 2" or porosity NPO			
1 11	9	- Man plasticity, made a sporestry 1010			
1 41					
		@ 10; color change to light brown; very stiff clan contraved. NO.			
		very stiff clay continues. NPO.			
Dre Dre	a 12 12 5W	SAND; >90% five to coarse angular and			
		subrounded sand with <10x free; loose;			
		NPO. trace gravel b/2"p.			
		CLAY: light brown; >90% day & silt			
		KIDY & sand high plasticity; very still;			
Dmg-		Uppet contact to B.S' has increased			
mst		(send content to 10-15+; NPO.			
slow)					
	301 20	@ 20'; clart as above but nottled light m			
MST	20 20	boom my mid aren: still to vory still!			
	21	M-SPO,			
		20'; Bottom of soil vasor probe hole backfilled			
	Grout Type/Quantity: /	Total Well Depth: to 13' with hydrated Casing Diameter/Type: bentonite.			
	Seal Type/Quantity:	Screen Interval:			
	Seal Interval:	Screen Interval: Sand Type/Quantity:			

											Well/Boring #: SV-2-		
		-					Enviro						Page <u>2</u> of <u>2</u>
Location: Drilled/Logged by: Drilling Method/diameter:													Project #: Date Drilled: Elevation: North & East: Total Depth:
Con	struc	tion			Sampi			Sa	mpl	е	I	<u> </u>	
	Casing			Moisture Content		vs per	ŧ÷				Soil Graphic	Soil Type	
Seal	Cas	Seal		C Moi	DIG	Blows 6"	Depth (feet)	Inte	Rec	Ret	Soil Gra	Soi	Description
				V mois	5		22 23 24 25 26 27 28 29 30 31 32 33 34 35					CL	@ 225' Clay as above; dive grey; very stiff: w?o @ 23.9'; increased sand contant within clay to 23.46'; color change to light brown; then back to
							36	<u> </u>					
							37						
							38	<u> </u>					
							39						
							40				•		
							4	┝─			1		
							41]		
							42				-		
	Grout Type/Quantity: Grout Interval: Seal Type/Quantity:												Total Well Depth: Casing Diameter/Type: Screen Interval: Sand Type/Quantity:

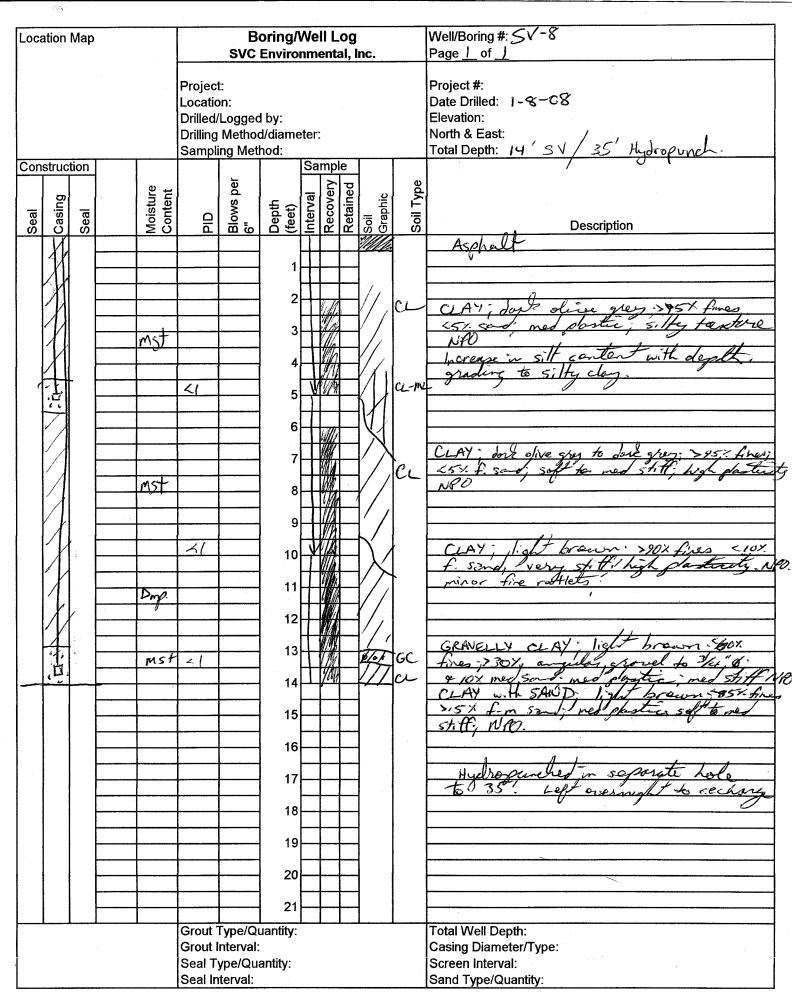
Well/Boring #: SV-3**Boring/Well Log** Location Map Page 1 of 2 SVC Environmental, Inc. Project #: Project: Date Drilled: 1~8-08 Location: Drilled/Logged by: Elevation: Q Drilling Method/diameter: North & East: Total Depth: SV3 to 13.5 GW to 30' Sampling Method: Construction Sample Blows per 6" Retained Soil Graphic Moisture Content Recovery Soil Type Interval Casing Depth (feet) Seal Seal Ы Description Concrete Sidernals M_ fines own < 10%. sty te stare; no po color large to light bream to tan. Dmp. APCD <1 SILTY CLAY; >95X for olive gren; suff silty es; 25%. texture: NRO. g Frenny >90%. Fines < NOXE. Se ĊL 10 11 12 CLAY with SAND; light brown: 80-85% fines Dmp. CL 15-20% f. ·silty testare; low 13 NPO. minor to Ky dastri CL 14 2 15 mil to dark dive area 16 homogenees tigh · NPO 17 Davo 18 19 3 20 21 Grout Type/Quantity: Total Well Depth: Grout Interval: Casing Diameter/Type: Screen Interval: Seal Type/Quantity: Seal Interval: Sand Type/Quantity:


100

ું ક્ર Well/Boring #: SV~4 **Boring/Well Log** Location Map SVC Environmental, Inc. Page ___ of ___ Project #: GWC - German Acto oraft. Date Drilled: 1-8-09 Project: Location: 301 E 14th St. Drilled/Logged by: Elevation: Drilling Method/diameter: 2" North & East: Total Depth: 14.5' 51/35' Hydropunch Sampling Method: Construction Sample Recovery -Retained Soil Graphic per Soil Type Moisture Content Casing Interval Blows p 6" Depth (feet) Seal Seal E Description Concrete Sidewalk 1 2 SILTY CLAY 795x fines : <5% f. sources light to mid brown bow to med glaticity sitty texture: NPO CL-ML 3 mst-Sener C 4 5 6 5-10' no recovery. 7 8 9 MST-DmP. 10 Very still high des CL 11 12 13 with SILT SAND: >85% y. fine grand sond <15% silt: light brown; med dense;* Dry-MSE SP-SM 14 21 15 16 cent to SV-4 0 4' to 31' to 17 los sol scrle. 18 19 20 21 Grout Type/Quantity: Total Well Depth: Grout Interval: Casing Diameter/Type: Seal Type/Quantity: Screen Interval: Seal Interval: Sand Type/Quantity:


Location Map	Boring/Well Log	Well/Boring #: 5V-5			
	SVC Environmental, Inc.	Page _/_ of			
	Project: German Autocaft Location: 301 E 14th San Leandy Drilled/Logged by: Ross Tinhine Drilling Method/diameter: 2" Geographe	Project #: Date Drilled: 1~7-09 Elevation: North & East:			
Construction	Sampling Method: Hy raulic took/Hydrym Sample	total Depth: Soil vopon 24' Hydrogunch to 35'			
Moisture Content Content					
		Concrete Sickwalk.			
mst		CLAY; dive grey; >907. fines; <107. F. Sond; medium plasticity; soft-med still			
	6				
		5-10' no receivery.			
Dond- MSt	9 10 11 11 11 11 11 11 11 11 11	CLAY : light brown; 0095% Fine: 75 %-10 F. sand; high plasticity; v. stiff; NPO.			
		@ 13' minor angular and extra role gravel within stiff clary matrix with 2 light increase is			
Dmp- Mst		sand to, 10 on 15%. @14' light brown homsenedus, tight stiff, high plactucky clary continues as always			
mst					
	20				
	Grout Type/Quantity: Grout Interval:	Total Well Depth: Casing Diameter/Type:			
	Seal Type/Quantity:	Screen Interval:			
	Seal Interval:	Sand Type/Quantity:			

Location	Мар					oring/ Enviro				10		Well/Boring #: $SV = S$ Page 2 of Z					
					000	LIIVIIO	11/11	cinc	<u>ai, ii</u>	10.							
		2		Projec								Project #:					
				Locatio		* thui						Date Drilled: Elevation:					
		۰		Drilling	Logged Metho	i Dy. d/diame	ter					North & East:					
					ing Met							Total Depth:					
Construc	tion					<u> </u>	Sa	mpl	e								
			e t		ber			Σ	ß		be						
ing –			ten t		Ns I	f to to	Zal	No No	E	hic		· ·					
Seal Casing	Seal		Moisture Content	DI DI	Blows p 6"	Depth (feet)	Interval	Sec	let.	Soil Graphic	Soil Type	Description					
1	- "			<u> </u>			T	1	-	77		CIAN; and allowe					
						22		Ŵ,		[]	Ci						
								11.									
				ļ		23	Ш	14									
			MST					44	\rightarrow								
		<u> </u>	MSI	ス		24	A A	8 IA	-+			BOBQ 24'					
				┣	<u> </u>												
				<u> </u>		25				1		, 25					
						26						moved over and hydropunched to the					
												then pulled up 4 to collect gw somple					
				ļ		27			_	i							
			· · · ·	<u> </u>					_								
		·				28											
									-1								
						-29											
			1	·		30											
			(<u> </u>													
			· · ·			31											
						32			-1								
			·			33											
				<u> </u>			L										
				┠────		34											
				 													
				<u> </u>		35		i i	-								
						36											
				<u> </u>		37	\vdash	┝──┦		i							
				<u> </u>				┝──┤									
				<u> </u>		38		-									
						39											
						39											
		L				40											
		<u> </u>	 	<u> </u>	 		┣──┤	┝──┦									
		•				41		┝──┨									
								┝─┤									
						42											
[Type/Q							Total Well Depth:					
					Interval:							Casing Diameter/Type:					
				Seal I	ype/Qu	antity:						Screen Interval:					
L				Sear	iterval:							Sand Type/Quantity:					



.

L	oca	tion	Map					oring/ Enviro						Well/Boring #: $5\sqrt{-6}$
							300	Enviro		enu	ai, i	nc.	·····	Page <u>2 of 2</u>
							on: ′Loggeo	d/diame	Project #: Date Drilled: Elevation: North & East: Total Depth:					
С	ons	struc	tion			Gampi		I	Sa	mpl	е			
	Seal	Casing	Seal		Moisture Content	DIA	Blows per 6"	Depth (feet)	Interval	Recovery	Retained	Soil Graphic	Soil Type	Description
								-		Ø <u> </u>		[] [
	ĺ							22	╟	44		/ 1	CL	CLAY; as above.
	ľ							23	I			V /		
		()			pust				╟╋	111 1 101		/ /		
					10151			24	┢╋╴	tara Ulta		//		
	ľ					~		25	\downarrow	¥1/		86		
													Kent	
								26	Ц.	Ulk.	o ^g	Ι.	4.	
	ľ	/						27	╟	475 1771		\langle / \rangle		
							mil	• 28		1. 1/1		V /		
					VA +		Ji	L L 29	H			11	ci	SANDY CLAY- light brown: 85% fines;
	ļ				V-mst- wet		ŝ.	<u>-</u> 29	H					15% v. five 'send; med plantic'; soft to med still; color change to light gress
		1			vnst	8		30	V			/ /:	¥	@ 29'; w-mpo
									╟					
								31	廿	1		1		
		1			-		•	32	\parallel				ci	CLAY: nid aren; 795 fires: 45% f sent
						-		33		011		\langle / \rangle		CLAY; mid glen; 795 fires: <5% f sent v stif; high plasticity; NPO.
									\square	11		1/		
	4	/						34	╟╋	101 7 11,		4-	ci	SANDY CLAY: 11ft brown; 85% Ames.
		\square		-		6		35	$\overline{\mathbf{V}}$	ŴĮ			C	15% f. Send: mod-hich elasticity - self-ned
								ļ	<u> </u>					SHIE NO
								36						
								37	 					
								38						Not adjacent boring attempted
								30						but not completed due to stilities.
								39	⊢					Backfilled GW boring to create SV will
								40						
									<u> </u>	\vdash				
								41						
								42	-				49. 19	
\vdash			L	L	I			L uantity:	L	I	L	L	L	Total Well Depth:
ļ					1	Grout I	nterval:	•						Casing Diameter/Type:
						Seal T Seal In		antity:						Screen Interval: Sand Type/Quantity:
						Loour III							· · · · · · ·	

	Loca	ition	Мар	<u></u>	<u></u>			oring/ Enviro				с.		Well/Boring #: $S\sqrt{-7}$ Page <u>2</u> of <u>2</u>
						Drilling	t: on: ′Loggeo	d by: d/diame						Project #: Date Drilled: Elevation: North & East: Total Depth:
ł	Cons	struc	tion			Sampi	ing met		Sa	mple	εT			
	Seal	Casing			Moisture Content	DID	Blows per 6"	Depth (feet)	a	2		Soil Graphic	Soil Type	Description
Γ									4	W//		d4	CL	Olive grey very stiff: high & lasticity
					Mst			22	╟╋	Ma	\dashv'	/ .	LL.	clay continues;
								23	Г		\exists	/ /		
									╟	1117 1 A U		/ /		· · · · · · · · · · · · · · · · · · ·
					Mst			24		(Ø	\exists'			
						4		25	ľ		_/	//		@ 25' 3" zone of increased sond to 25% within the wish plastic clay: wpo
								26				/		Clay-olive gray continues with 10-15x F. sent within high glastic clay; med still wPO
									H					
								27	H_	nner. 1119		/		toward lower cater.
					Vimois			Y 28	╟		-	[]		
					Vmst- Wet			29		11:7 8 17:7	\exists'	[7		
		ji. A			wet.	7			$\mathbf{H}_{\mathbf{r}}$	U.A.		1.7	sc	CLAYEY SAND; 701. f-med sand 30%.
ł		- <u></u>	<u> </u>		Weli	<u> </u>		30	¥.	<i>qp</i> p				CLAYEY SAND; 701. f-med sand. 30%. fines; low plastic. light olive gray; wto.
								31	<u> </u>	\vdash	_			
								32						
											_	1		BoRa 30'
ł								33						
								34						
								35						
									┣					
								36						
							·	37		┝─┼				· · · · · · · · · · · · · · · · · · ·
								38						
								-	┣—	┟─┼				
								39						
								40		┠┈┼				·
								41						
								}		$\left - \right $	-			
								42						
	Grout Type/Quantity: Grout Interval:													Total Well Depth: Casing Diameter/Type:
	Seal Type/Quantity:												Screen Interval:	
L						Seal In	terval:							Sand Type/Quantity:

17

Sample Transportation Notice

al apalicable coal, State, Federal, national, and international laws, nagriations and ordinances of FOLSOM, CA 95630-4719 any kind. As Tonos Lenned assumes no liability with respect to the collection, reindling or shipping of these samples. Relincu shing, signature also indicates agreement to no dihemilass, defend, and indemnity Air loxits Limited against any daint, demand, or ablich, of any kind, related to ill e collection, installing, or shipping of samples, D.O.T. Hotling (800) 467 4822

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page 1 of 2 Project Manager Gene Religen tad- Groundwater Cleaners. slah Mae Chiy Turn Around Project Info: Time: Pressurized by: Collected by: (Print and Skr) _ Ross Tinking P.D. **≢** Normal Company StC Environment/ (GW Clementer rossta svcenv.ce Dale: Project # G-CJC+OLIA 🗋 Rush Pressurization Gas: Accress 11 Kanton Ave. ____Oily Serve Cerkly State C/F Zip 29070 Project Name Germon Autoeral (*hone <u>650 5314/46</u> Fax 450 5907350 Ng., H∎ specify Canister Pressure/Vacuum Date Time Field Sample I.D. (Location) Eab LD: Can # of Collection of Collection Analyses Requested 70-# Initial Final Receipt Final 1157-1117 Ô۱À SV-8 25 3798 1-13-09 30.14 4.54 1760 IPH. BTEX MHB 1242 -5V-8 2 135 ;-13-09 ≈થ્4 ં 62A asy 4.99 ЗSZ 30 ।३२५− (३५) бЗA SV-165.5 كحاج 514 1-13-09 5,20 30.17 4.90 hy. TO(5 414-1420 93108 éYA 758 SV-0 3 1-13-09 36-09:477 1452-1500 1524-306 бSA 5-5 -13-62 446 S٧ 30.16 4.55 đ 3200 147 66A Sγ 78 12.5 1~18-09 15 31 30-13 4.80 1607676 ٥٦A sv-2d 5.9 149 24403 1~13-09 33.12 4.80 1444,453 08A 2.5 ಚಿಷ Sv-പെപ് 1-13-09 30.12 4.90 736 100 - HOT 5V-625 3298% 14-09 44 į ስግA 30.12 5507 11 S E 10 A 9054-62 115 ほが返り Proprincel 1-14-29 30 8.5 R Only 841 Dale/Time Received by Notes: Relinguished by, (signature). (signature) Date:Time EDF Registred the here Greazen AT 1-15-09 i lo<u>nica</u> ý Clobal 10 75600100639 iiA/A Lande GCSF Granditation Cleaner 347 Frederick St. Relinquished by: (signature) Date/Time Heceived by: (signature) - Date/ (inuc 1/16/29. 1195 Relinquished by: (signature) Date/Time Received by: (signature) Date/Time Son Francisco, A. 94117 Shipper Name Concator . Custody Seals Intaci? Work Order# .-Lab Ъse 52463>210679956 Fed Ex мk <u>60%</u> Yes No None 0901284 Only

Fc: 11253 (ev.11

Sample Transportation Notice

Belinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.C.T. Holline (800) 487-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page 2_ of 2-

	(*·····································		* (***) *** **==			
Project Manager <u>Glenn Rejenstool</u>	Giv, clea	mezzo, Inc.	Project Info):	Turn Around Time:	Lap Use Only Reconversed his	
Collected by: (Part and Sign) Ress Tin line	for 7	1	P.C.# ·		-	Presaurized by	
Company SVC Environmental (GW Email	rosst@ 5	NCENV. CEN	ト		Mormal	Date:	·
Address 11 Kenth Ave Gity Son Cat	State CA	Zin <u>94070</u>	Project # G	WC-01-1A	🖵 Rush	Pressurization	Gas: .
	590 7350		Project Name	German Autocraft	specify	N ₂ II	e
		Date	Time		Canis	ter Pressure/Vac	cuum
Lab I.D. Field Sample I.D. (Location)	Can #	of Collection	of Collection	Analyses Requested	Initial	Final ¹ Receipt	Final F(
11A 5V-6211.5	36489	1-14-09	1158- 1204	2 TPHg. BTEX, MtB	<u>= a9.61</u>	4.93	Final (psi) F (# 3/4
12A 5V-505	14511	1-14-09	1307 1307	2nd lead scheck		470	60.
13A SV-50 13	34610	1-14-09	1347-	2-proposed by	29.48	4.82	8Z
14A 5V-415	36477	1-14-09	1433- 14941	TOIS (5920)	29.66		85
15A SV-42 14	2210	1-14-09	1513- 1520 1520		29.64		79
16A SV-30 \$5	20772	1-14-09	1602 1609		29.68	I I .	97.
17A SV-303	2173	1-14-09	101.10		29.65		67
18A QCS V-3313	12027	1-14-09	1644- 1653	2 propand only	.30	45	4 4
Relinquished by: (signature) Date/Time Feder/Received by: (signature) Date/Time Notes: EDF req vired Ion 1-15-09 II Am MOMICA Meggen ATL 1600 Global D -robooi00639 Relinquished by: (signature) Date/Time 1105 1105 Leg asde GCSF							
Relinquished by: (signature) Date/Time	Received t	y: (signature)	Date/Time	347 Fred	ter Clearer Jerick St. auco, CA 9		
Lab Shipper Name. Air B	 #		°C) (0°	Custody S	eals Intact?	Wark Order #	
Use Ted En BOUL033210	079556	, MA	- Eool	Yes N	o None	090128	4
Only Control C					<u> </u>		_
						5	- 000 mile

4/10/2009 Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave

San Carlos CA 94070

Project Name: German Autocraft Project #: GWC-01.1A Workorder #: 0901284R1

Dear Mr. Ross Tinline

The following report includes the data for the above referenced project for sample(s) received on 1/16/2009 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 (5&20 ppbv) are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for you air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

15A

16A

SV-4d 14

SV-3d 5

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0901284R1

Work Order Summary

CLIENT:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070	S	Mr. Ross Tinline SVC Environmen 11 Kenton Ave San Carlos, CA 9		
PHONE:	650.551.0116	P.O. #			
FAX:		PROJECT # (GWC-01.1A Ger	man Autocraft	
DATE RECEIVED: DATE COMPLETED	01/16/2009 • 01/28/2009		Kyle Vagadori		
DATE REISSUED:	04/10/2009				
				RECEIPT	FINAL
FRACTION #	NAME	TEST		VAC./PRES.	PRESSURE
01A	SV-8d 5	Modified TO-15 ((5&20 ppbv)	3.5 "Hg	15 psi
01AA	SV-8d 5 Lab Duplicate	Modified TO-15 ((5&20 ppbv)	3.5 "Hg	15 psi
02A	SV-8d 13.5	Modified TO-15 ((5&20 ppbv)	4.0 "Hg	15 psi
03A	SV-1d 5.5	Modified TO-15 ((5&20 ppbv)	4.0 "Hg	15 psi
04A	SV-1d 13	Modified TO-15 ((5&20 ppbv)	4.0 "Hg	15 psi
05A	SV-7d 5.5	Modified TO-15 ((5&20 ppbv)	3.5 "Hg	15 psi
06A	SV-7d 12.5	Modified TO-15 ((5&20 ppbv)	4.0 "Hg	15 psi
07A	SV-2d 5.5	Modified TO-15 ((5&20 ppbv)	4.0 "Hg	15 psi
08A	SV-2d 12.5	Modified TO-15 ((5&20 ppbv)	4.0 "Hg	15 psi
09A	SV-6d 5	Modified TO-15 ((5&20 ppbv)	5.0 "Hg	15 psi
10A	QCSV-6d 11.5	Modified TO-15 ((5&20 ppbv)	7.0 "Hg	15 psi
11A	SV-6d 11.5	Modified TO-15 ((5&20 ppbv)	5.0 "Hg	15 psi
12A	SV-5d 5	Modified TO-15 ((5&20 ppbv)	4.5 "Hg	15 psi
13A	SV-5d 13	Modified TO-15 ((5&20 ppbv)	4.5 "Hg	15 psi
14A	SV-4d 5	Modified TO-15 ((5&20 ppbv)	4.5 "Hg	15 psi

Continued on next page

4.0 "Hg

4.0 "Hg

15 psi

15 psi

Modified TO-15 (5&20 ppbv)

Modified TO-15 (5&20 ppbv)

WORK ORDER #: 0901284R1

Work Order Summary

CLIENT:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070	BILL TO:	Mr. Ross Tinlin SVC Environme 11 Kenton Ave San Carlos, CA	ental, Inc.	
PHONE:	650.551.0116	P.O. #			
FAX:		PROJECT #	GWC-01.1A Ge	rman Autocraft	
DATE RECEIVED:	01/16/2009	CONTACT:	Kyle Vagadori		
DATE COMPLETED	D: 01/28/2009	contact.	Kyle Vagadoll		
DATE REISSUED:	04/10/2009				
				RECEIPT	FINAL
FRACTION #	NAME	TEST		VAC./PRES.	PRESSURE
17A	SV-3d 13	Modified TO-1	5 (5&20 ppbv)	4.0 "Hg	15 psi
18A	QCSV-3d 13	Modified TO-1	5 (5&20 ppbv)	2.5 "Hg	15 psi
19A	Lab Blank	Modified TO-1	5 (5&20 ppbv)	NA	NA
20A	CCV	Modified TO-1	5 (5&20 ppbv)	NA	NA
21A	LCS	Modified TO-1	5 (5&20 ppbv)	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>04/10/09</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 3 of 31

LABORATORY NARRATIVE Modified TO-15 Soil Gas SVC Environmental, Inc. Workorder# 0901284R1

Eighteen 1 Liter Summa Canister samples were received on January 16, 2009. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 50 mLs of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.;<br flag and narrate outliers
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Analytical discrepancies of samples are notated by data qualifying flags. Definitions for each data qualifying flag can be found on associated sample result summary pages.

DUE TO LABORATORY ERROR, THE WORKORDER WAS REISSUED ON 04/10/09 TO REPORT THE CORRECT RESULTS FOR TPH GASOLINE RANGE ORGANICS FOR SAMPLES SV-8d 5, SV-8d 5 Lab Duplicate, SV-8d 13.5, SV-1d 5.5, SV-7d 5.5, SV-7d 12.5, SV-2d 5.5, SV-2d 12.5, SV-6d 11.5, SV-3d 5.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

Client Sample ID: SV-8d 5

Lab ID#: 0901284R1-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	11	90	43	340
Ethyl Benzene	11	120	50	530
m,p-Xylene	11	410	50	1800
o-Xylene	11	68	50	290
TPH ref. to Gasoline (MW=100)	230	4300	940	17000

Client Sample ID: SV-8d 5 Lab Duplicate

Lab ID#: 0901284R1-01AA

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Toluene	11	85	43	320
Ethyl Benzene	11	110	50	500
m,p-Xylene	11	370	50	1600
o-Xylene	11	63	50	270
TPH ref. to Gasoline (MW=100)	230	4600	940	19000

Client Sample ID: SV-8d 13.5

Lab ID#: 0901284R1-02A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
m,p-Xylene	12	65	50	280
o-Xylene	12	58	50	250
TPH ref. to Gasoline (MW=100)	230	8500	950	35000

Client Sample ID: SV-1d 5.5

Lab ID#: 0901284R1-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Toluene	12	21	44	78
Ethyl Benzene	12	52	50	230
m,p-Xylene	12	110	50	490
o-Xylene	12	92	50	400
TPH ref. to Gasoline (MW=100)	230	1800	950	7600

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

Client Sample ID: SV-1d 13

Lab ID#: 0901284R1-04A

No Detections Were Found.

Client Sample ID: SV-7d 5.5

Lab ID#: 0901284R1-05A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Toluene	11	73	43	280
Ethyl Benzene	11	63	50	270
m,p-Xylene	11	180	50	810
o-Xylene	11	33	50	140
TPH ref. to Gasoline (MW=100)	230	580	940	2400

Client Sample ID: SV-7d 12.5

Lab ID#: 0901284R1-06A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	12	21	37	67
Toluene	12	46	44	170
Ethyl Benzene	12	100	50	440
m,p-Xylene	12	270	50	1200
o-Xylene	12	56	50	240
TPH ref. to Gasoline (MW=100)	230	160000	950	660000

Client Sample ID: SV-2d 5.5

Lab ID#: 0901284R1-07A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	12	84	37	270
Toluene	12	13	44	50
TPH ref. to Gasoline (MW=100)	230	1800	950	7600

Client Sample ID: SV-2d 12.5

Lab ID#: 0901284R1-08A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
TPH ref. to Gasoline (MW=100)	230	2000	950	8300

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

Client Sample ID: SV-6d 5

Lab ID#: 0901284R1-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	12	17	46	63
m,p-Xylene	12	20	52	85

Client Sample ID: QCSV-6d 11.5

Lab ID#: 0901284R1-10A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	53	32000 E	130	79000 E

Client Sample ID: SV-6d 11.5

Lab ID#: 0901284R1-11A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	12	14	39	44
Toluene	12	34	46	130
m,p-Xylene	12	19	52	83
TPH ref. to Gasoline (MW=100)	240	960	990	3900

Client Sample ID: SV-5d 5

Lab ID#: 0901284R1-12A

No Detections Were Found.

Client Sample ID: SV-5d 13

Lab ID#: 0901284R1-13A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	12	24	38	76
Toluene	12	32	45	120
m,p-Xylene	12	17	52	75

Client Sample ID: SV-4d 5

Lab ID#: 0901284R1-14A

No Detections Were Found.

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS

Client Sample ID: SV-4d 14

Lab ID#: 0901284R1-15A

No Detections Were Found.

Client Sample ID: SV-3d 5

Lab ID#: 0901284R1-16A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
TPH ref. to Gasoline (MW=100)	230	2300	950	9500	

Client Sample ID: SV-3d 13

Lab ID#: 0901284R1-17A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	12	12	37	40
Toluene	12	18	44	67
m,p-Xylene	12	14	50	60

Client Sample ID: QCSV-3d 13

Lab ID#: 0901284R1-18A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	44	44000 E	110	110000 E

Client Sample ID: SV-8d 5

Lab ID#: 0901284R1-01A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012236 2.29		Date of Collection: 1/13/09 11:17:00 AM Date of Analysis: 1/22/09 10:26 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
2-Propanol	46	Not Detected	110	Not Detected	
Methyl tert-butyl ether	11	Not Detected	41	Not Detected	
Benzene	11	Not Detected	36	Not Detected	
Toluene	11	90	43	340	
Ethyl Benzene	11	120	50	530	
m,p-Xylene	11	410	50	1800	
o-Xylene	11	68	50	290	
TPH ref. to Gasoline (MW=100)	230	4300	940	17000	

······································		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SV-8d 5 Lab Duplicate

Lab ID#: 0901284R1-01AA

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012237 2.29	Date of Collection: 1/13/09 11:17:00 AM Date of Analysis: 1/22/09 10:45 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	46	Not Detected	110	Not Detected
Methyl tert-butyl ether	11	Not Detected	41	Not Detected
Benzene	11	Not Detected	36	Not Detected
Toluene	11	85	43	320
Ethyl Benzene	11	110	50	500
m,p-Xylene	11	370	50	1600
o-Xylene	11	63	50	270
TPH ref. to Gasoline (MW=100)	230	4600	940	19000

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	88	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SV-8d 13.5

Lab ID#: 0901284R1-02A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: w012238 Dil. Factor: 2.33				
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	Not Detected	37	Not Detected
Toluene	12	Not Detected	44	Not Detected
Ethyl Benzene	12	Not Detected	50	Not Detected
m,p-Xylene	12	65	50	280
o-Xylene	12	58	50	250
TPH ref. to Gasoline (MW=100)	230	8500	950	35000

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: SV-1d 5.5

Lab ID#: 0901284R1-03A

MODIFIED EPA METHOD TO-15 GC/MS

e Name: w012239 . Factor: 2.33		Date of Collection: 1/13/09 1:41:00 PM Date of Analysis: 1/22/09 11:35 PM		
Compound	Rɒt. Limit Amount (ppbv) (ppbv)		Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	Not Detected	37	Not Detected
Toluene	12	21	44	78
Ethyl Benzene	12	52	50	230
m,p-Xylene	12	110	50	490
o-Xylene	12	92	50	400
TPH ref. to Gasoline (MW=100)	230	1800	950	7600

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SV-1d 13

Lab ID#: 0901284R1-04A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:				ion: 1/13/09 2:20:00 PM is: 1/22/09 11:59 PM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
2-Propanol	47	Not Detected	110	Not Detected	
Methyl tert-butyl ether	12	Not Detected	42	Not Detected	
Benzene	12	Not Detected	37	Not Detected	
Toluene	12	Not Detected	44	Not Detected	
Ethyl Benzene	12	Not Detected	50	Not Detected	
m,p-Xylene	12	Not Detected	50	Not Detected	
o-Xylene	12	Not Detected	50	Not Detected	
TPH ref. to Gasoline (MW=100)	230	Not Detected	950	Not Detected	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: SV-7d 5.5

Lab ID#: 0901284R1-05A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	Factor: 2.29 Date Rpt. Limit Amount		Date of Collection: 1/13/09 3:00:00 PM Date of Analysis: 1/23/09 12:21 AM	
Compound			Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	46	Not Detected	110	Not Detected
Methyl tert-butyl ether	11	Not Detected	41	Not Detected
Benzene	11	Not Detected	36	Not Detected
Toluene	11	73	43	280
Ethyl Benzene	11	63	50	270
m,p-Xylene	11	180	50	810
o-Xylene	11	33	50	140
TPH ref. to Gasoline (MW=100)	230	580	940	2400

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SV-7d 12.5

Lab ID#: 0901284R1-06A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	2.33 Date of Ana Rpt. Limit Amount R				
Compound			Rpt. Limit (ug/m3)	Amount (ug/m3)	
2-Propanol	47	Not Detected	110	Not Detected	
Methyl tert-butyl ether	12	Not Detected	42	Not Detected	
Benzene	12	21	37	67	
Toluene	12	46	44	170	
Ethyl Benzene	12	100	50	440	
m,p-Xylene	12	270	50	1200	
o-Xylene	12	56	50	240	
TPH ref. to Gasoline (MW=100)	230	160000	950	660000	

······································		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: SV-2d 5.5

Lab ID#: 0901284R1-07A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:					
Compound			Rpt. Limit (ug/m3)	Amount (ug/m3)	
2-Propanol	47	Not Detected	110	Not Detected	
Methyl tert-butyl ether	12	Not Detected	42	Not Detected	
Benzene	12	84	37	270	
Toluene	12	13	44	50	
Ethyl Benzene	12	Not Detected	50	Not Detected	
m,p-Xylene	12	Not Detected	50	Not Detected	
o-Xylene	12	Not Detected	50	Not Detected	
TPH ref. to Gasoline (MW=100)	230	1800	950	7600	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SV-2d 12.5

Lab ID#: 0901284R1-08A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012244 Date of Collection: 1/13/09 2:53 2.33 Date of Analysis: 1/23/09 01:40			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	Not Detected	37	Not Detected
Toluene	12	Not Detected	44	Not Detected
Ethyl Benzene	12	Not Detected	50	Not Detected
m,p-Xylene	12	Not Detected	50	Not Detected
o-Xylene	12	Not Detected	50	Not Detected
TPH ref. to Gasoline (MW=100)	230	2000	950	8300

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SV-6d 5

Lab ID#: 0901284R1-09A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012245 Date of Collect 2.42 Date of Analy			/09 11:07:00 AM 09 01:59 AM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	48	Not Detected	120	Not Detected
Methyl tert-butyl ether	12	Not Detected	44	Not Detected
Benzene	12	Not Detected	39	Not Detected
Toluene	12	17	46	63
Ethyl Benzene	12	Not Detected	52	Not Detected
m,p-Xylene	12	20	52	85
o-Xylene	12	Not Detected	52	Not Detected
TPH ref. to Gasoline (MW=100)	240	Not Detected	990	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: QCSV-6d 11.5

Lab ID#: 0901284R1-10A

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w012246	Date of Collection: 1/14/09 12:04:00 PM		
Dil. Factor:	2.64	Date of Analysis: 1/23/09 05:50 AM		
Compound	Rot. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	53	32000 E	130	79000 E

E = Exceeds instrument calibration range.

Г

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: SV-6d 11.5

Lab ID#: 0901284R1-11A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012247 Date of Collection: 1/14/09 12 2.42 Date of Analysis: 1/23/09 06:			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	48	Not Detected	120	Not Detected
Methyl tert-butyl ether	12	Not Detected	44	Not Detected
Benzene	12	14	39	44
Toluene	12	34	46	130
Ethyl Benzene	12	Not Detected	52	Not Detected
m,p-Xylene	12	19	52	83
o-Xylene	12	Not Detected	52	Not Detected
TPH ref. to Gasoline (MW=100)	240	960	990	3900

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SV-5d 5

Lab ID#: 0901284R1-12A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012248 Date of Collection: 1/14/09 2.38 Date of Analysis: 1/23/09 0			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	48	Not Detected	120	Not Detected
Methyl tert-butyl ether	12	Not Detected	43	Not Detected
Benzene	12	Not Detected	38	Not Detected
Toluene	12	Not Detected	45	Not Detected
Ethyl Benzene	12	Not Detected	52	Not Detected
m,p-Xylene	12	Not Detected	52	Not Detected
o-Xylene	12	Not Detected	52	Not Detected
TPH ref. to Gasoline (MW=100)	240	Not Detected	970	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SV-5d 13

Lab ID#: 0901284R1-13A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012249 Date of Collection: 1/ 2.38 Date of Analysis: 1/23			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	48	Not Detected	120	Not Detected
Methyl tert-butyl ether	12	Not Detected	43	Not Detected
Benzene	12	24	38	76
Toluene	12	32	45	120
Ethyl Benzene	12	Not Detected	52	Not Detected
m,p-Xylene	12	17	52	75
o-Xylene	12	Not Detected	52	Not Detected
TPH ref. to Gasoline (MW=100)	240	Not Detected	970	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: SV-4d 5

Lab ID#: 0901284R1-14A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012250 Date of Collection: 1/14/09 2:41 2.38 Date of Analysis: 1/23/09 07:19			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	48	Not Detected	120	Not Detected
Methyl tert-butyl ether	12	Not Detected	43	Not Detected
Benzene	12	Not Detected	38	Not Detected
Toluene	12	Not Detected	45	Not Detected
Ethyl Benzene	12	Not Detected	52	Not Detected
m,p-Xylene	12	Not Detected	52	Not Detected
o-Xylene	12	Not Detected	52	Not Detected
TPH ref. to Gasoline (MW=100)	240	Not Detected	970	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SV-4d 14

Lab ID#: 0901284R1-15A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012251 2.33		of Collection: 1/14 of Analysis: 1/23/	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	Not Detected	37	Not Detected
Toluene	12	Not Detected	44	Not Detected
Ethyl Benzene	12	Not Detected	50	Not Detected
m,p-Xylene	12	Not Detected	50	Not Detected
o-Xylene	12	Not Detected	50	Not Detected
TPH ref. to Gasoline (MW=100)	230	Not Detected	950	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SV-3d 5

Lab ID#: 0901284R1-16A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012252 2.33		of Collection: 1/14 of Analysis: 1/23/	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	Not Detected	37	Not Detected
Toluene	12	Not Detected	44	Not Detected
Ethyl Benzene	12	Not Detected	50	Not Detected
m,p-Xylene	12	Not Detected	50	Not Detected
o-Xylene	12	Not Detected	50	Not Detected
TPH ref. to Gasoline (MW=100)	230	2300	950	9500

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: SV-3d 13

Lab ID#: 0901284R1-17A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012253 2.33		of Collection: 1/14 of Analysis: 1/23/	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	47	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	42	Not Detected
Benzene	12	12	37	40
Toluene	12	18	44	67
Ethyl Benzene	12	Not Detected	50	Not Detected
m,p-Xylene	12	14	50	60
o-Xylene	12	Not Detected	50	Not Detected
TPH ref. to Gasoline (MW=100)	230	Not Detected	950	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: QCSV-3d 13

Lab ID#: 0901284R1-18A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012254 2.20		e of Collection: 1/14 e of Analysis: 1/23/0	
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	44	44000 E	110	110000 E

E = Exceeds instrument calibration range.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: Lab Blank

Lab ID#: 0901284R1-19A

MODIFIED EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	w012234 1.00		of Collection: NA of Analysis: 1/22/	09 09:35 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	20	Not Detected	49	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
TPH ref. to Gasoline (MW=100)	100	Not Detected	410	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: CCV

Lab ID#: 0901284R1-20A

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w012231	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/22/09 08:15 PM

Compound	%Recovery
2-Propanol	96
Methyl tert-butyl ether	73
Benzene	94
Toluene	97
Ethyl Benzene	96
m,p-Xylene	96
o-Xylene	96
TPH ref. to Gasoline (MW=100)	Not Spiked

Container Type: NA - Not Applicable

Γ

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS

Lab ID#: 0901284R1-21A

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w012233	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/22/09 09:11 PM

Compound	%Recovery
2-Propanol	90
Methyl tert-butyl ether	60
Benzene	84
Toluene	88
Ethyl Benzene	92
m,p-Xylene	91
o-Xylene	92
TPH ref. to Gasoline (MW=100)	Not Spiked

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	84	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	102	70-130

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
Groundwater Cleaners	Client Project ID: German	n Autocraft	Date Sampled:	01/06/09-01/12/09
347 Frederick Street			Date Received:	01/12/09
San Francisco, CA 94117	Client Contact: Glenn Rei	ierstad	Date Reported:	01/15/09
	Client P.O.:		Date Completed:	01/14/09

WorkOrder: 0901160

January 15, 2009

Dear Glenn:

Enclosed within are:

- 1) The results of the **8** analyzed samples from your project: German Autocraft,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Web Telephon	site: <u>www.mc</u> 1e: (925) 798-	10 2 nd AV PACHEC campbell.	VENUE SO CO, CA 948 .com Ema	OUTH, 553-55 ail: ma	#D7 60 ain@n F	ax:	mpb		m	622						N A		OU	ND) T]	[M]	E nal)	I N	RUS	H H	[24	HR		48 I W)	HR	RD 72 1		SDAY
Report To: Glenn	NAMES AND ADDRESS OF TAXABLE PARTY.		E	Bill To	: Sa	me													A	nal	ysis	Rec	ues	t						0	ther	C	omments
Company: Groun 347 Fr	dwater Clea rederick Stre												-	8015)			(4%)				mers												ilter
the second s	rancisco, CA		1	E-Ma	il: rei	ersi	tada	dms	n.co	m				+ 80			E/B				onge												amples
Tele: (415) 665-61					(415)									- 1	=		5520				10/2		_				6020	020)					or Metals nalysis:
Project #:					t Nan						_			12/8	802		64/	18.1	S		ocloi		ides			(As)	10/	10/6					es / No
Project Location:	German	Autocr	alt.		E		hs	+ s	Sar	1	een	nds	a	Gas (602 /	602	015)	e ()6	ns (4	H	cide	Ar	es)	erbio	(s	3	/ b	8 / 60	/ 60	120)				
Project Location: Sampler Signatur	e: 5) eu	stat											as G	EPA	011 (8	reas	arbo	8021	Pest	NL	ticid	CIH	VOC	SVO	AHs	200.	200.8	0/6				
			PLING		ers		MA	TRI	x			HOD		TPH	NLY (lotor C	Dil & C	Hydroc	8010 /	81 (CI	CB's C	NP Pes	Acidic	8260 (8270 (3	8310 (F	200.7 /	00.7 / :	8 / 601				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCL	HNO ₃	Other	MTBE / BTEX &	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)			1	
SV-7		1/6/09	1510	4	VOA	X		1	+	X	X		t	X												1		1	Η			+	·
5V-6		1/7/08	10:50	3	VOA	X				1	1		ľ													1		1	\square			T	
5V-5	1	1/7/09		3	VOA	X			1	Ħ	1		1)													1	1	\square				
5v-4		1/8/08		3	VOA	X		+	1	17	1	\square	+	11					-							1	1	1	\vdash		-	+	·
SV-2		1110	1015	3	VAL	K			1	1	1	H	+	†												1	1	1	\square			-	
SV-3		1.1.1	1145	3	Una	K		+	+	(\uparrow)	1	1	1	+				-	-	1				-	-	1	-		-			+	Construct
SV-8			0735	-	V	12	-	+	+	H	+	+	-K	-	-	-	-		-	-			-		-	+	+	-	\vdash			+	
50-1		V 1407	0135		11	X		+	+-	+	5	++	-	+	-	-	-		-						-	-	-	+	+	-		+	
20-2		11409	0742	3		X		+		0				V	_														-			+	
								+					1																			+	
					-			-	-	-	-		+	-	-	_	-	-	_				-	-			-	-	\square			+	
Relinquished By:	roted	Date: 12,09 - Date: 2,09	Time:	-	eived B	_			a	20	e	4	-	GO HE DE API	OD (AD S CHL PRO	CON SPAC	DIT CE A NAT	ION BSE ED CON			RS	\checkmark						co	MM	IENT	S:		
Relinquished By:	- 11	Date:	Time:	Rece	eived B	y:	_	V						PRE	ESEI	RVE	D IN	VO		_	&G	MI	ETA	LS	от	HEF	ł				eed this No_		ort emailed? _

0901160

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order	: 0901	160	(Client(Code: G	CF				
			WriteOr	n EDF	Ľ	Excel		Fax		🖌 Email		Hard	Сору	Thir	dParty	□ J-	-flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Glenn Reier Groundwate 347 Frederic	er Cleaners	Email: cc: PO:	reierstad@m	sn.com			Gr	enn Re oundw 7 Frede	ater Cle				Dat	e Rece	ived:	01/12/	/2009
San Francis 415-577-9383	co, CA 94117 3 FAX 415-566-3556	ProjectNo:	German Auto	craft			Sa	in Fran	cisco, (CA 9411	17		Dat	e Prin	ted:	01/12/	/2009
									Rec	uested	Tests	(See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0901160-001	SV-7		Water	1/6/2009 15:10		А											
0901160-002	SV-6		Water	1/7/2009 10:50		Α											
0901160-003	SV-5		Water	1/7/2009 15:00		Α											
0901160-004	SV-4		Water	1/8/2009 9:35		Α											
0901160-005	SV-2		Water	1/8/2009 10:15		Α											
0901160-006	SV-3		Water	1/8/2009 11:45		Α											
0901160-007	SV-8		Water	1/12/2009 7:35		Α											
0901160-008	SV-1		Water	1/12/2009 7:42		А											1

Test Legend:

1	G-MBTEX_W	2
6		7
11		12

	3
	8
-	

3	
8	

4	
9	

5	
10	

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Groundwater Cle	eaners					Date a	and Time Received:	1/12/09 1:	50:20 PM
Project Name:	German Autocra	ft					Check	klist completed and	reviewed by:	Melissa Valles
WorkOrder N°:	0901160	Matrix	Water				Carrie	er: <u>Rob Pringle (N</u>	/AI Courier)	
			Chain	ofCu	stody (C	:OC) Ir	nforma	ation		
Chain of custody	present?			Yes	✓	N	o 🗆			
Chain of custody	signed when relinqui	shed and	d received?	Yes	✓	N	o 🗆			
Chain of custody	agrees with sample I	abels?		Yes	✓	N	o 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	N	o 🗆			
Date and Time of	collection noted by Cli	ient on C	OC?	Yes	✓	N	o 🗆			
Sampler's name n	noted on COC?			Yes		N	o 🗆			
			<u>s</u>	ample	Receipt	Inforr	nation	<u>1</u>		
Custody seals int	tact on shipping conta	iner/cool	er?	Yes		N	o 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	lition?		Yes	✓	N	o 🗆			
Samples in prope	er containers/bottles?			Yes	✓	N	o 🗆			
Sample container	rs intact?			Yes	\checkmark	N	o 🗆			
Sufficient sample	volume for indicated	test?		Yes		N	lo 🗌			
		<u>Sa</u>	mple Prese	rvation	and Ho	old Tim	ne (HT)) Information		
All samples recei	ved within holding tim	e?		Yes		N	o 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	6.8°C	;		NA 🗆	
Water - VOA vial	s have zero headspa	ce / no b	ubbles?	Yes		N	o 🗆	No VOA vials subm	nitted 🗆	
Sample labels ch	ecked for correct pres	servation	1?	Yes	✓	N	o 🗌			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2)?	Yes		N	o 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	N	o 🗆			
			(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	ee comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

		ell An en Ouality (alytical, Inc. Counts"		Web: www.mcca	ampbell.com	Pittsburg, CA 9456 E-mail: main@mcc 52 Fax: 925-252-	ampbell.com		
Groundy	water Cleaners		Client Project ID:	German	Autocraft	Date Sa	ampled: 01/0)6/09-01/12	/09	
347 Erad	lerick Street					Date R	eceived: 01/1	12/09		
5471100	ictick Succi		Client Contact:	Glenn Reie	rstad	Date E	xtracted: 01/1	13/09		
San Fran	ncisco, CA 94117		Client P.O.:			Date A	nalyzed 01/1	13/09		
Extraction m	Gas ethod: SW5030B	oline Ra	nge (C6-C12) Volatile Hy Analytic:		15 as Gasolin W8021B/8015Cn		EX and MTBI		der: 090	1160
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	SV-7	w	700,d1,b1	ND	1.5	9.3	1.1	4.2	1	106
002A	SV-6	w	4200,d1,b1	ND	11	24	31	19	1	104
003A	SV-5	w	44,000,d1,b6,b1	ND<500	480	470	1700	7100	100	116
004A	SV-4	w	3900,d1,b1	ND<120	550	49	140	83	10	120
005A	SV-2	w	82,000,d1,b6,b1	ND<1000	490	3000	4600	24,000	200	121
006A	SV-3	w	15,000,d1,b6,b1	ND<500	24	77	54	28	20	108
007A	SV-8	W	860,d1	ND	0.58	15	5.6	18	1	98
008A	SV-1	W	15,000,d1	ND<90	1600	23	890	680	10	119
										<u> </u>
	ng Limit for DF =1; ns not detected at or	W	50	5	0.5	0.5	0.5	0.5		g/L
	the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 40738	WorkOrder: 0901160					
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					S	Spiked Sample ID: 0901149-001B					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria				
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex ^f)	ND	60	95.3	90.3	5.47	109	94.1	14.7	70 - 130	20	70 - 130	20		
MTBE	ND	10	106	110	3.80	95.3	89.5	6.25	70 - 130	20	70 - 130	20		
Benzene	ND	10	95.7	98	2.40	89.7	82	9.00	70 - 130	20	70 - 130	20		
Toluene	ND	10	87.9	89.2	1.45	94.5	87.2	8.05	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	97.5	99	1.54	92	80	14.0	70 - 130	20	70 - 130	20		
Xylenes	ND	30	94	94.9	0.932	105	93.3	12.1	70 - 130	20	70 - 130	20		
%SS:	96	10	99	101	2.71	107	98	8.30	70 - 130	20	70 - 130	20		
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 40738 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0901160-001A	01/06/09 3:10 PM	01/13/09	01/13/09 8:32 AM	0901160-002A	01/07/09 10:50 AM	01/13/09	01/13/09 6:09 PM
0901160-003A	01/07/09 3:00 PM	01/13/09	01/13/09 5:07 AM	0901160-004A	01/08/09 9:35 AM	01/13/09	01/13/09 6:39 PM
0901160-005A	01/08/09 10:15 AM	01/13/09	01/13/09 6:07 AM	0901160-006A	01/08/09 11:45 AM	01/13/09	01/13/09 7:10 PM
0901160-007A	01/12/09 7:35 AM	01/13/09	01/13/09 2:35 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water	Matrix: Water						BatchID: 40743			WorkOrder: 0901160		
EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0901155-00										01A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	101	93.4	7.53	97.7	95.9	1.86	70 - 130	20	70 - 130	20
MTBE	ND	10	98	87.8	11.0	95.6	92	3.84	70 - 130	20	70 - 130	20
Benzene	ND	10	89.9	85.6	4.86	90.9	87.4	3.99	70 - 130	20	70 - 130	20
Toluene	ND	10	90.1	85.5	5.20	90.2	86.8	3.88	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	93.4	89.3	4.56	93.7	90.5	3.40	70 - 130	20	70 - 130	20
Xylenes	ND	30	103	98.6	4.60	104	99.7	3.79	70 - 130	20	70 - 130	20
%SS:	98	10	93	92	0.904	92	92	0	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE											

			BATCH 40743 SL	JMMARY				
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0901160-008A	01/12/09 7:42 AM	01/13/09	01/13/09 2:04 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

APPENDIX B

Temporary Soil Vapor Well Installation and Sampling Procedures

Temporary Multi-Completion Well Installation

A California Professional Geologist (PG) supervised the drilling of the soil borings. The eight borings were completed utilizing hydraulic push (Geoprobe®) equipment with continuous soil sampling capabilities at the locations on Figure 2. The Geoprobe® equipment set-up uses a 2.25-inch diameter Macrocore® sampler to recover continuous cores. The core sampler was driven into the soil to beneath first encountered groundwater to a depth of approximately 30 to 35 feet bgs. Soil cores recovered from the sampler were inspected and field screened with a photoionization detector (PID).

To collect grab groundwater samples, polyvinyl chloride (PVC) well casing of approximately 0.75-inch diameter was inserted in the boreholes with 0.010-inch slotted screens extending above static groundwater (or alternatively a stainless steel screened hydropunch was driven to approximately 35 feet bgs and retracted 4-feet). Grab groundwater samples were collected immediately after drilling and casing installation using dedicated polyethylene tubing and a check valve. However, some locations required up to 48 hours before sufficient groundwater was present for sampling. The laboratory provided containers were labeled and placed in a cooler and submitted to the designated laboratory under chain of custody. Upon completion of the grab groundwater sampling activities, the temporary PVC casing was removed and borehole backfilled by tremie with neat cement grout.

The temporary dual-completion soil vapor wells were installed in a second adjacent with the push boring advanced same direct equipment as follows: The vapor points were installed by placing approximately 2 inches of sand via tremie pipe then; utilizing a tremie, place the stainless steel expendable vapor tip affixed to Teflon[™] tubing on the sand. Additional sand was then placed via tremie to create approximately a 1-foot sand pack interval around the vapor tip as the tremie hosting the Teflon[™] tubing is withdrawn. The two vapor points were installed within each boring utilizing these methods (at approximately 13 feet bgs and 5 feet bgs) with the interval between and the surface seal of tremied hydrated granular bentonite. The Teflon[™] tubing was labeled with depth of placement and capped utilizing a Swagelok valve. Typical well completion details are presented on the enclosed figure of this Appendix. The off-site wells were protected from tampering during equilibration by the installation of surface-mount 6-inch diameter vault boxes within the sidewalk.

Vapor Sampling Procedure

The enclosed diagram shows the sample train for soil vapor sample collection. The soil vapor sampling will be completed as follows:

The tubing emanating from the vapor points were affixed to a sample shut-off valve in the off position during the time needed to reach equilibrium (48 hours). A 167 millilitersper-minute flow regulator inclusive of particulate filter was then fitted to the shut-off valve and the other end to a "T" fitting. One end of the "T" was connected to the sampling summa canister. The other end of the "T" was affixed to a digital vacuum gauge and a 1-liter summa canister utilized for purging. A sketch of the setup is presented as Figure 4. A ten (10)-minute minimum vacuum tightness test was performed on the manifold and connections by opening and closing the 1-liter purge canister valve and applying and monitoring a vacuum on the vacuum gauge. The sample shut-off valve on the downhole side of the sampling manifold remained in the closed position. When gauge vacuum was maintained for ten (10) minutes without any noticeable decrease (less than 0.1 inches of mercury (Hg) for properly connected fittings) and the time to reach equilibrium has elapsed (at 48-hours for temporary wells) since the boring was sealed, then purging began. The down-hole shut off valve was opened and three pore volumes removed utilizing the purging summa. Purge volumes of vapor were removed and verified by the calculated pressure drop in the 1-liter summa canister utilized for purging.

Isopropyl alcohol was utilized as a leak detection compound during sampling by applying between 10 and 20 drops to cotton gauze and placing near the bore-hole. Sampling began by opening the summa canister valve. Immediately upon opening the sampling valve, a shroud was placed over and enclose the atmosphere of the borehole and entire sampling train including all connections. Sampling continued until the vacuum gauge indicated approximately five (5) inches of Hg remaining (approximately five [5] minutes for a 1-liter canister equipped with a 167 milliliter-per-minute flow regulator). A flow controller was utilized in the sample train to control the flow of soil gas into the Summa canisters for sample collection. Limiting the purging and sampling rate to between 100 and 200 milliliters per minute limits stripping and aids in preventing ambient air from diluting the soil gas samples. During sampling, a datalogging photoionization detector (PID) was utilized to monitor the atmosphere inside the shroud through a bulk-head fitting. The logged data (at minimum thirty [30] second intervals) was corrected to parts per million by volume isopropyl alcohol concentrations and utilized to evaluate the integrity of the sampling train.

Two confirmation samples (at minimum 20% of the total number of samples collected) were collected of the shroud atmosphere by utilizing a summa and flow controller within the shroud allowing the collection of the shroud atmosphere sample at the same time of collection as the sample itself (at SV-3d13 and SV-6d11.5). All field data, including equilibrium time, purge volume calculations and leak check measurements are included herein.

Laboratory Analysis

The soil vapor samples were shipped under chain-of-custody to Air Toxics Ltd. in Folsom, California. The soil vapor samples were analyzed by EPA Method TO15 for VOCs including BTEX compounds MtBE and TPHg. Sampling train effectiveness (short-circuiting) was evaluated by including the leak check gas in the analysis (TO-15 for isopropyl alcohol). The grab groundwater samples were analyzed for TPH-g, BTEX and MTBE by EPA Method 8260B.

Appendix C Soil Vapor and Groundwater Analytical Data Evaluation

German Autocraft 301 East 14th Street, San Leandro, CA by Modified EPA Method TO-15 using GC/MS in full scan mode

Sample Number depth (d) in feet Sa	Date	TPH-g (μg/m ³) (μg/L)	Benzene (µg/m ³) (µg/L)	Toluene (µg/m ³) (µg/L)	Ethylbenzene (µg/m ³) (µg/L)	m,p-Xylene (µg/m ³) (µg/L)	o-Xylene (µg/m³) (µg/L)
Onsite Locations							
	/13/09 /13/09	7,600 475	19 19	78 22	230 25	490 25	400 25
	/06/09	15,000	1,600	23	890	680	680
SV(13-5)		16.00	1.00	3.55	9.20	19.60	16.00
GW to 5.5 GW to 13		0.51 0.03	0.01 0.01	3.39 0.96	0.26 0.03	0.72 0.04	0.59 0.04
	40/00						
	/13/09 /13/09	7,600 8,300	270 19	50 22	25 25	25 25	25 25
	/06/09	82,000	490	3,000	4,600	24,000	24,000
SV(12.5-5.5) GW to 5.5		0.92 0.09	14.59 0.55	2.27 0.02	1.00 0.01	1.00 0.00	1.00 0.00
GW to 12.5		0.10	0.04	0.01	0.01	0.00	0.00
SV-7d5.5 01	/13/09	2,400	18.0	280	270	810	140
SV-7d12.5 01	/13/09	660,000	67	170	440	1,200	240
	/06/09	700	1.5	9.3	1.1	4.2	4.2
SV(12.5-5.5) GW to 5.5		0.004 3.43	0.27 12.00	1.65 30.11	0.61 245.45	0.68 192.86	0.58 33.33
GW to 12.5		942.86	44.67	18.28	400.00	285.71	57.14
	/13/09	17,000	18.0	340	530	1,800	290
	/13/09 /13/09	19,000 35,000	18.0 18.5	320 22	500 25	1,600 280	270 250
	/06/09	860	0.58	15.0	5.6	18.0	250 18.0
SV(13.5-5)		0.54	0.97	14.55	20.00	5.71	1.08
GW to 5		22.09	31.03	21.33	89.29	88.89	15.00
GW to 13.5		40.70	31.90	1.47	4.46	15.56	13.89
Average Onsite Volatility Factor SV(13-5)		4.37	4.21	5.50	7.70	6.75	4.67
GW to 5 GW to 13		6.53 245.92	10.90 19.15	13.71 5.18	83.75 101.12	70.62 75.33	12.23 17.77
		240.32	13.15	5.10	101.12	13.33	11.11
Offsite Locations SV-3d5 01	/14/09	9,500	18.5	22	25	25	25
	/14/09	475	40.0	67	25	60	25
SV-3 01/ SV(13-5)	/06/09	15,000 20.00	24 0.46	77 0.33	54 1.00	28 0.42	28 1.00
GW to 5		0.63	0.40	0.33	0.46	0.42	0.89
GW to 13		0.03	1.67	0.87	0.46	2.14	0.89
	/14/09	485	19.0	23	26	26	26
	/14/09 /06/09	475 3,900	18.5 550	22 49	25 140	25 83	25 83
SV(14-5)	/00/03	1.02	1.03	1.02	1.04	1.04	1.04
GW to 5		0.12	0.03	0.46	0.19	0.31	0.31
GW to 14		0.12	0.03	0.45	0.18	0.30	0.30
	/14/09	485	19.0	23	26	26	26
	/14/09 /06/09	485 44,000	76 480	120 470	26 1,700	75 7,100	26 7,100
SV(13-5)		1.00	0.25	0.19	1.00	0.35	1.00
GW to 5		0.01	0.04	0.05	0.02	0.00	0.00
GW to 13		0.01	0.16	0.26	0.02	0.01	0.00
	/14/09 /14/09	495 3,900	19.5 44.0	63 130	26 26	85 83	26 26
SV-6 01/	/06/09	4,200	11	24	31	19	19
SV(11.5-5)		0.13	0.44	0.48	1.00	1.02	1.00
GW to 5 GW to 11.5		0.12 0.93	1.77 4.00	2.63 5.42	0.84 0.84	4.47 4.37	1.37 1.37
Average Offsite Volatility Factors							
SV(13-5)		5.54	0.55	0.51	1.01	0.71	1.01
GW to 5 GW to 13		0.22 0.27	0.65 1.46	0.85 1.75	0.38 0.37	1.42 1.71	0.64 0.64
Statistical Analysis of Offsite Grab Groundwater to 5' de	epth vola	tility facto					
SV-3 GW to 5		0.63 0.12	0.77	0.29	0.46	0.89	0.89
SV-4 GW to 5 SV-5 GW to 5		0.12	0.03 0.04	0.46 0.05	0.19 0.02	0.31 0.004	0.31 0.004
SV-6 GW to 5		0.12	1.77	2.63	0.84	4.47	1.37
Number of Samples (n):		4	4	4	4	4	4
Arithmetic Mean: Standard Deviation:		0.22	0.65	0.85	0.38	1.42	0.64
t-Factor (from Quantiles of the t-Distribution		0.28 2.353	0.82 2.353	1.19 2.353	0.36 2.353	2.07 2.353	0.61 2.353
95% Upper Confidence Limit of the Mean		0.55	1.62	2.26	0.80	3.85	1.36
Residential - Shallow Soil Gas ESL Back-calculated Groundwater Concentration (based on 95%)		10,000 18 264	84 52	63,000 27,910	980	21,000	21,000
Back-calculated Groundwater Concentration (based on 95%		18,264		27,910	1,227	5,449	15,453
Back-calculated Groundwater Concentration (based on aver	rage	45,288	128	73,732	2,609	14,780	32,581

Note: 1/2 the detection limit utilized for the calculations if value non-detec µg/m³ = Micrograms per cubic meter µg/L = Micrograms per liter ESL = SFRWQCB ESL (November 2007) for shallow soil gas screening level for evaluation of vapor intrusion concern