Quarterly Groundwater Monitoring Report-2nd Quarter 2009

German Autocraft 301 E. 14th Street San Leandro, California

Global ID No. T0600100639 AC LOP Case # 2783

Prepared For

Mr. Seung Lee German Autocraft San Leandro, CA 95070

Prepared By

Cleaning California from the Groundwater up

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

Date of Report: June 19, 2009

RECEIVED

2:15 pm, Jun 19, 2009

Alameda County Environmental Health

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

June 19, 2009

German Autocraft 301 E. 14th Street San Leandro, CA 94577

Attn: Mr. Seung Lee	
---------------------	--

Subject: <u>Quarterly Groundwater Monitoring Report—2nd Quarter 2009</u>

German Autocraft, AC LOP Case # 2783 Global ID No. T0600100639

Dear Mr. Lee:

GWC is pleased to attach the Second Quarter 2009, *Quarterly Groundwater Monitoring Report*, which includes the analytical results for groundwater samples collected in June of 2009. GWC plans to continue quarterly groundwater sampling in accordance with Alameda County Department of Environmental Health (DEH) requirements. A revised report of the Soil Vapor Intrusion Testing was submitted during the Second Quarter.

If you have any questions or require further information, please do not hesitate to call us at (415) 665-6181.

Sincerely,

Cc: Ms. Donna Dragos, DEH Mr. Steven Plunkett, DEH

Perjury Statement

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached proposal or report is true and correct, to the best of my knowledge.

Seung Lee, owner, German Autocraft

CONTENTS

1.0	SITE LOCATION AND BACKGROUND	1
1.1	Site Location and Description	1
1.2	Site Hydrogeologic Conditions	1
1.3	Project History—Site Investigation Background	1
1.4	Recent Activities—Current Reporting Period	2
2.0	GROUNDWATER MONITORING RESULTS	2
2.1	Groundwater Elevation and Gradient Data	2
2.2	Groundwater Sample Collection and Analysis	2
2.3	Groundwater Sample Analytical Results	2
3.0	CONCLUSIONS AND RECOMMENDATIONS	3
3.1	Conclusions	3
3.2	Recommendations	3
4.0	QUALITY ASSURANCE AND PROFESSIONAL CERTIFICATION	3
4.1	Quality Assurance	3
4.2	Professional Certification	4

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Well Location Map
Figure 3	Groundwater Elevation and Gradient
Figure 4	TPH as Gasoline in Groundwater

Figure 5 Benzene in Groundwater

TABLES

- Table 1Summary of Well Construction Details
- Table 2Current Quarter Groundwater Elevations
- Table 3Cumulative Summary of Groundwater Elevation Data
- Table 4Current Quarter Groundwater Analytical Data
- Table 5
 Cumulative Summary of Groundwater Sample Analytical Results

APPENDICES

Appendix A	Groundwater Sample Collection Records
Appendix B	Chain of Custody Records and Laboratory Analytical Reports

1.0 Site Location and Background

1.1 Site Location and Description

The site is located at 301 E. 14th Street in San Leandro, CA, in a high-density, mixed-use neighborhood of residential and small commercial buildings. Figure 1 shows the site location. E. 14th Street is a busy thoroughfare, running approximately 25 degrees west of north-south. The site is approximately 90' x 120' with an area of about 10,800 square feet. The current site use is as an automobile repair facility.

1.2 Site Hydrogeologic Conditions

The site is situated on mixed sediments about two miles east of San Francisco Bay. Site elevation is 48-50 feet above mean sea level, and groundwater elevation varies from 23-32 feet above mean sea level. Groundwater flow direction is typically W to WNW at a gradient of about 0.002 feet/ft. Figure 2 shows the general site layout and the locations of monitoring wells, both on-site and off-site.

1.3 Project History

The fuel leak was discovered and the gasoline storage tank was removed in October of 1990. A site assessment, including installation of three initial monitoring wells, was performed in 1995, and further assessment work was done in July of 1998, including installation of seven additional monitoring wells. In 2001, three more monitoring wells were installed. To date, certain wells have been monitored quarterly and others monitored semi-annually or annually to maintain a record of groundwater conditions. No active remediation has taken place since removal of the gasoline storage tank. Table 1 summarizes well construction data.

On December 5, 2007, a Corrective Action Plan was submitted to the ACEH website detailing how site cleanup might be accomplished, focusing on the core area of impacts. On February 22, 2008, Work Plans were submitted for a Soil Vapor Investigation and a Dual-phase, High-vacuum Soil Vapor Extraction with Air Sparging pilot test. Approval of those reports was received in December, 2008, and the work plans were implemented in the First Quarter, 2009.

Soil vapor tests concluded that the existing soil cover provides an effective barrier against intrusion of soil vapors into nearby dwellings, provided that the soil remains undisturbed. No continuous, permeable formations were identified that would likely serve as conduits for soil vapor transmission. Deeper soils were also found to be generally of low permeability, based on observation of soil cores from the eight soil borings performed in this investigation. See GCI's "Soil Vapor Investigation Report" dated February 27, 2009 for additional details. This report was corrected and resubmitted April 30, 2009 to

correct a laboratory error discovered by the laboratory during a Quality Assurance Review.

Dual-phase Extraction Tests performed in February, 2009, concluded that horizontal extraction wells placed just above groundwater elevation would provide the best opportunity to extract hydrocarbons for the soil and groundwater at this site. Existing monitoring wells were ineffective as sources for soil vapors, as groundwater is abundant and a flow of soil vapor could not be reliably induced from these wells. See GCI's "DPE Extraction Test Report", submitted March 31, 2009 for additional details.

1.4 Recent Activities

All monitoring wells on the schedule this quarter (MW-12, -13 and -14) were monitored in accord with the DEH requirements. The well at 141 Farrelly was unavailable during the First Quarter, 2009 and was monitored this quarter instead.

2.0 Groundwater Monitoring Results

2.1 Groundwater Elevation and Gradient

The most recent groundwater elevation was much lower than found in March of 2009, indicating a normal seasonal decline. Groundwater elevations in December, 2008 were about 22 feet above mean sea level while those in March, 2009 were all above 27 feet and those in June were generally between 24 and 25 feet (see Table 2). The most recent near-site flow direction, essentially due west at 0.002 ft/ft, is shown on Figure 3. Table 2 presents groundwater elevation data for June 3, 2009, and Table 3 presents a cumulative summary of elevation data.

2.2 Groundwater Sample Collection and Analysis

This quarter's wells (MW-12, MW-13, MW-14 and 141 Farrelly) were monitored and sampled by experienced personnel in accord with standard practices. All samples were placed on ice and transported to a State-certified analytical laboratory for analysis. Well purge water was stored on-site pending analysis and disposal. The Well Sampling Reports are attached as Appendix A.

2.3 Groundwater Sample Analytical Results

Two of the monitoring well samples tested positive for at least trace amounts of Petroleum Hydrocarbons as gasoline (TPHg) and the affiliated Volatile Organic Compounds (BTEX), with highest concentrations (6,400 μ g/L TPHg and 6.5 μ g/L benzene) at MW-12 (see Figures 4 and 5). The distribution of contaminant values continues to correlate with the prevailing groundwater gradient. Table 4 presents groundwater analytical data for June 3, 2009, and Table 5 summarizes the historical groundwater analytical data.

3.0 Conclusions and Recommendations

3.1 Conclusions

All of the monitoring data are consistent with a historic release of gasoline from the subject site's former underground tank, and/or the associated fueling system. Concentrations of gasoline-related petroleum compounds are highest near the former tank location, demonstrated in historic testing, and directly down-gradient from that point. Concentrations drop off sharply with distance perpendicular from the prevailing groundwater flow direction (i.e., MW-6 and MW-14). The wells tested this quarter had contaminant concentrations on the lower side, compared with historical values. The Farrelly well has never shown fuel impacts.

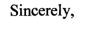
In 20 years since the removal of the underground storage tank, there was some dissipation of the contaminants in the first few years, but there has been very little reduction in hydrocarbon concentrations in recent years at wells such as MW-1 and MW-4. GCI concludes that the contaminants have reached levels at which they are likely to remain for the foreseeable future in the absence of remedial action, though there will likely continue to be some seasonal fluctuations in contaminant levels.

Although the soil vapor tests show there is little risk of soil vapors intruding into dwelling spaces, the continued high levels of hydrocarbons and BTEX compounds in the soil and groundwater of the core area present a barrier to possible future uses of both the land and the groundwater.

3.2 Recommendations

GCI recommends the construction of a single, horizontal vapor-extraction well (as described in the DPE Test Report) and a repeat of the DPE tests, utilizing the new well. Tests on the new well will assess the effectiveness of the design and provide design data for any future remedial action at this site.

4.0 Quality Assurance and Professional Certification


4.1 Quality Assurance

All sampling was performed by a staff technician, skilled and experienced with groundwater monitoring well sampling procedures. Samples were stored on ice and sent promptly to a State-certified analytical laboratory. The laboratory is audited by the State certification program for maintaining quality control procedures and for record keeping. The chain-of-custody records and certified laboratory analytical reports are attached as Appendix B.

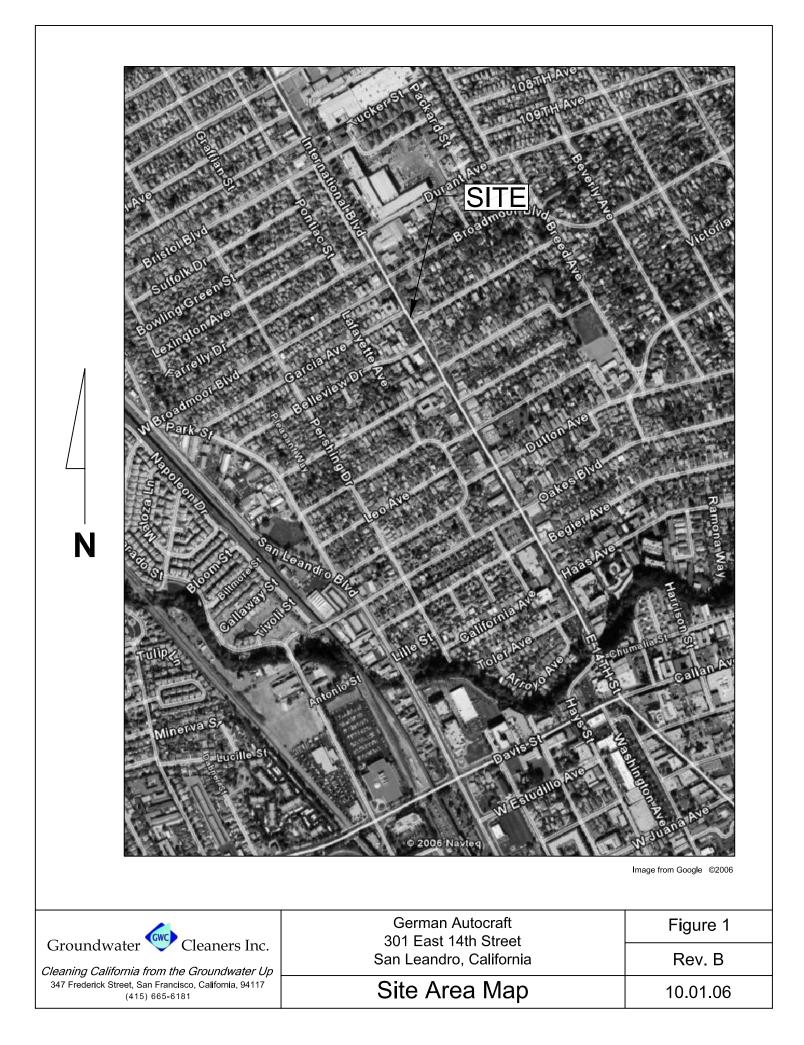
4.2 Professional Certification

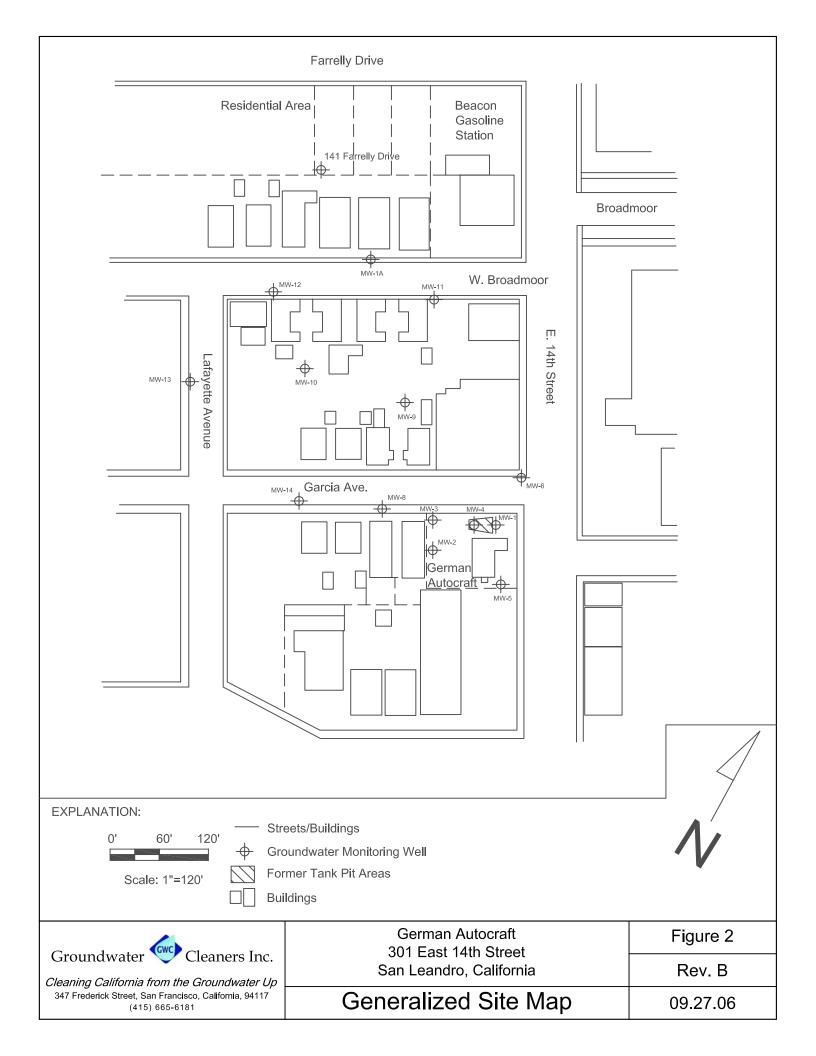
We declare, under penalty of perjury, that to the best of our knowledge, everything presented in this report is true and correct.

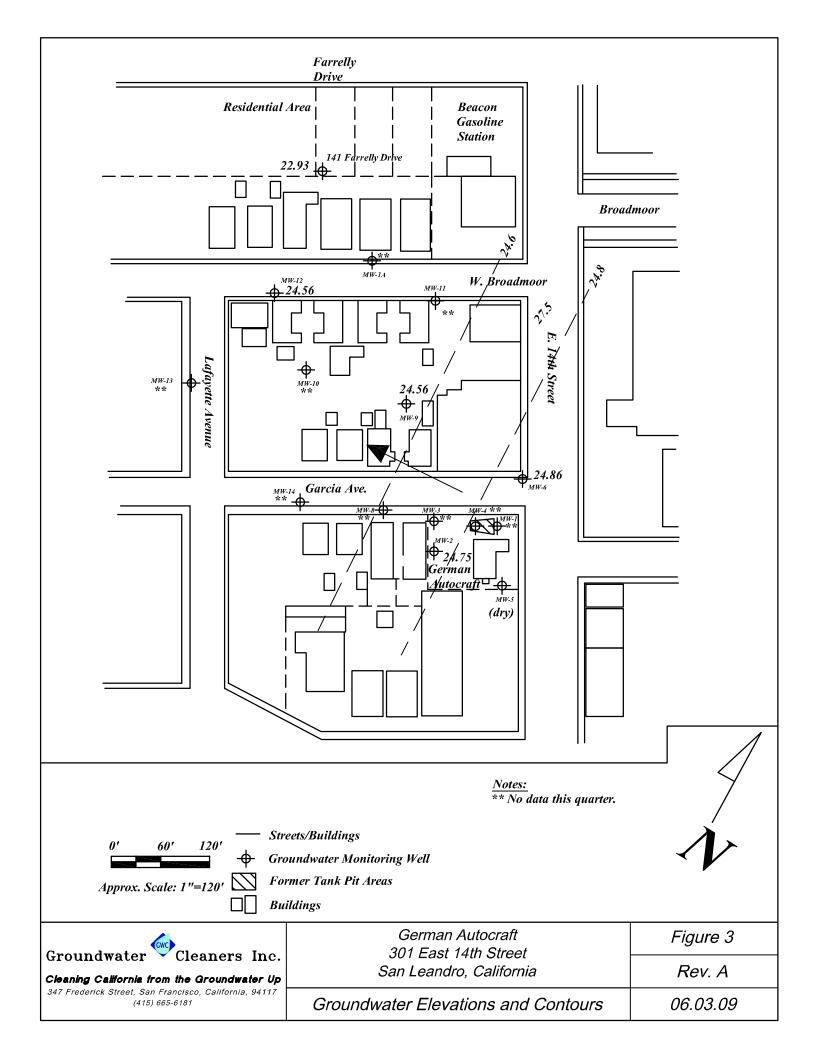
Should you have any questions or require supplemental information, please profess, hesitate to contact us at (415) 665-6181.

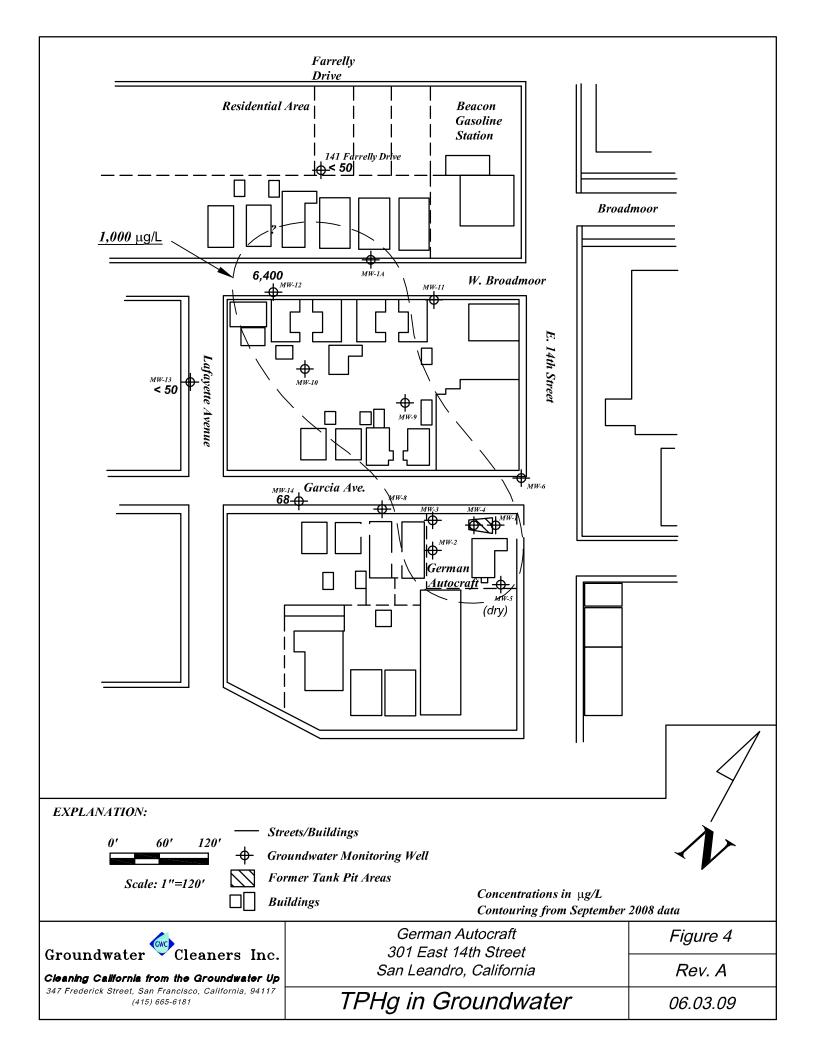
J

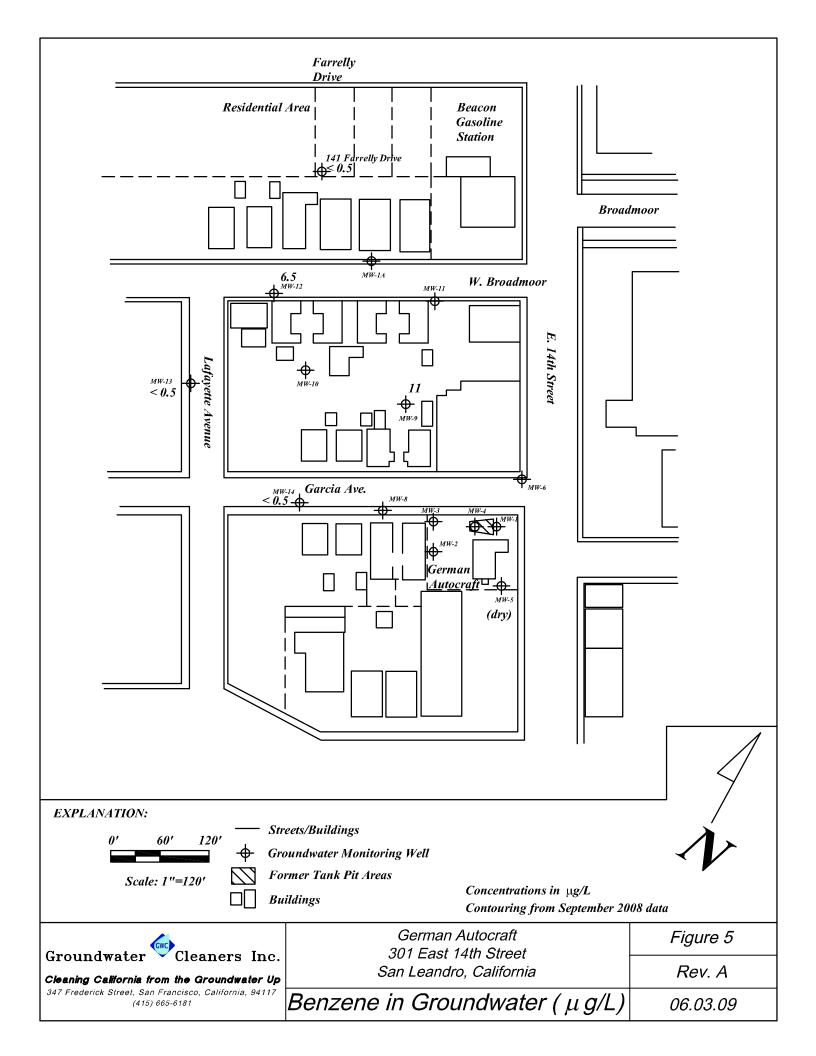
Glenn Reierstad, P.E. Project Manager, Groundwater Cleaners, Inc.




Si R. H


Eric R. Lautenbach, P.E. V.P. Engineering


Figures



Tables

Well	Date	Casing	Total	Screened	Relative	TOC
Number	Installed	Diameter	Depth	Interval	Location	Elevation
		(inches)	(feet)	(feet)		
MW-1	1/6/95	2	32.10	20-40 ft	Onsite	49.40
MW-2	1/6/95	2	33.05	10-35 ft	Onsite	50.02
MW-3	1/6/95	2	34.80	10-35 ft	Onsite	49.32
MW-4	12/30/98	2	34.30	10-35 ft	Onsite	49.61
MW-5	12/30/98	2	21.15	conflict	Onsite	49.57
MW-6	12/30/98	2	33.10	20-35 ft	Off-site	48.06
MW-8	12/30/98	2	34.20	20-30 ft	Off-site	49.35
MW-9	12/30/98	2	33.70	20-35 ft	Off-site	48.77
MW-10	12/30/98	2	37.50	20-40 ft	Off-site	49.93
MW-11	12/30/98	2	36.90	20-35 ft	Off-site	47.93
MW-12	3/20/01	2	38.22	23-38 ft	Off-site	unknown
MW-13	3/20/01	2	37.47	23-38 ft	Off-site	unknown
MW-14	3/20/01	2	30.43	20-30 ft	Off-site	unknown
MW-1A	5/30/97	2	33.88	unknown	Off-site	48.24
141	4/6/96	10	33.88	25- 65 ft	Off-site	48.76
Farrelly						

Table 1Summary of Well Construction DetailsGerman Autocraft, 301 E. 14th Street, San Leandro, California

Table 2
Current Quarter Groundwater Elevations
German Autocraft, 301 E. 14 th Street, San Leandro, California

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-1	06/03/09	nm	49.40	nm
MW-2	06/03/09	25.27	50.02	24.75
MW-6	06/03/09	23.20	48.06	24.86
MW-8	06/03/09	24.83	49.35	24.52
MW-9	06/03/09	24.21	48.77	24.56
MW-10	06/03/09	nm	49.93	nm
MW-12	06/03/09	24.20	48.76	24.56
MW-13	06/03/09	25.61	unknown	nc
MW-14	06/03/09	25.30	unknown	nc
141	06/03/09	25.83	48.76	22.93

nc = not calculated as TOC elevation is unknown. Nm = not measured as well was unavailable for sampling.

Table 3
Cumulative Summary of Groundwater Elevations
German Autocraft, 301 E. 14 th Street, San Leandro, California

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-1	12/21/90	30.25	49.40	19.15
	2/10/95	19.81	49.40	29.59
	7/7/95	22.77	49.40	26.63
	8/10/95	23.82	49.40	25.58
	9/11/95	24.72	49.40	24.68
	10/2/95	25.28	49.40	24.12
	11/7/95	26.04	49.40	23.36
	12/8/95	18.77	49.40	22.77
	1/12/96	25.05	49.40	24.35
	2/12/96	20.36	49.40	29.04
	3/12/96	17.65	49.40	31.75
	4/13/96	19.97	49.40	29.43
	5/14/96	21.51	49.40	27.89
	6/20/96	22.21	49.40	27.19
	7/26/96	23.45	49.40	25.95
	8/19/96	24.24	49.40	25.16
	9/17/96	24.96	49.40	24.44
	10/21/96	25.77	49.40	23.63
	11/27/96	25.12	49.40	24.28
	12/27/96	21.17	49.40	28.23
	1/28/97	16.38	49.40	33.02
	4/25/97	22.26	49.40	27.14
	7/17/97	24.85	49.40	24.55
	10/21/97	26.55	49.40	22.85
	3/10/98	15.05	49.40	34.35
	6/6/98	18.71	49.40	30.69
	9/30/98	23.45	49.40	25.95
	12/30/98	24.27	49.40	25.13
	3/13/99	19.42	49.40	29.98
	9/29/99	25.01	49.40	24.39
	12/29/99	25.65	49.40	23.75
	3/18/00	17.48	49.40	31.92

7/18/00	23.19	49.40	26.21
9/26/00	24.39	49.40	25.01
12/28/00	24.77	49.40	24.63
3/30/01	21.93	49.40	27.47
10/5/01	25.58	49.40	23.82
3/28/02	20.74	49.40	28.66
3/31/03	22.72	49.40	26.68
6/19/03	23.17	49.40	26.23
9/30/03	25.35	49.40	24.05
2/10/04	22.44	49.40	26.96
6/30/04	24.67	49.40	24.73
9/14/04	27.89	49.40	21.51
3/29/06	18.84	49.40	30.56
6/24/06	20.57	49.40	28.83
9/30/06	23.53	49.40	25.87
12/11/06	22.78	49.40	26.29
03/16/07	nm	49.40	nm
06/10/7	24.36	49.40	25.04
09/14/07	25.92	49.40	23.48
12/14/07	26.22	49.40	23.18
03/12/08	22.40	49.40	27.00
06/11/08	24.97	49.40	24.43
09/05/08	26.44	49.40	22.96
12/13/08	27.16	49.40	22.24
03/14/09	21.82	49.40	27.58

Well	Date	Depth to	ТОС	Groundwater
Number		Groundwater	Elevation	Elevation
Tumber	Recorded	(feet)	(feet)	(feet)
MW-2	2/10/95		50.02	29.62
	7/7/95		50.02	26.47
	8/10/95		50.02	25.40
	9/11/95		50.02	24.49
	10/2/95		50.02	23.94
	11/7/95		50.02	23.13
	12/8/95		50.02	22.55
	1/12/96		50.02	24.20
	2/12/96		50.02	29.03
	3/12/96		50.02	31.60
	4/13/96		50.02	29.25
	5/14/96		50.02	27.68
	6/20/96		50.02	26.97
	7/26/96		50.02	25.74
	8/19/96		50.02	24.97
	9/17/96		50.02	24.22

	10/21/96		50.02	23.43
	11/27/96		50.02	24.09
	12/27/96		50.02	28.03
	1/28/97		50.02	32.71
	4/25/97		50.02	26.88
	7/17/97		50.02	24.31
	10/21/97		50.02	22.69
	3/10/98		50.02	34.20
	6/6/98		50.02	30.41
	9/30/98		50.02	25.68
	12/30/98		50.02	24.93
	3/13/99		50.02	29.80
	9/29/99		50.02	24.12
	12/29/99		50.02	23.52
	3/18/00		50.02	31.87
	7/18/00		50.02	26.01
-	9/26/00		50.02	24.69
	12/28/00		50.02	24.39
	3/30/01		50.02	27.31
	10/5/01		50.02	23.64
	3/28/02		50.02	28.43
	9/30/02		50.02	24.18
	3/31/03		50.02	26.39
	6/19/03		50.02	26.04
	9/30/03		50.02	23.83
	2/10/04		50.02	26.75
	6/30/04		50.02	24.57
	9/14/04		50.02	23.32
	3/29/06	19.61	50.02	30.41
	6/24/06	21.41	50.02	28.61
	9/30/06	24.37	50.02	25.65
	12/11/06	23.92	50.02	26.10
	03/16/07	22.78	50.02	27.24
	06/10/07	25.12	50.02	24.90
	09/14/07	26.63	50.02	23.39
	12/14/07	26.58	50.02	23.44
	03/12/08	23.10	50.02	26.92
	06/11/08	25.71	50.02	24.31
	09/05/08	27.14	50.02	22.88
	12/13/08	27.83	50.02	22.19
	03/14/09	22.38	50.02	27.64
	06/03/09	25.27	50.02	24.75
	00,00,00	,	20.02	=

Well	Date	Depth to	TOC	Groundwater
Number	Recorded	Groundwater	Elevation	Elevation
TUIIIDEI	Recorded	(feet)	(feet)	(feet)
MW-3	2/10/95		49.32	29.57
	7/7/95		49.32	26.50
	8/10/95		49.32	25.44
	9/11/95		49.32	24.54
	10/2/95		49.32	24.00
	11/7/95		49.32	23.21
	12/8/95		49.32	22.62
	1/12/96		49.32	24.25
	2/12/96		49.32	29.00
	3/12/96		49.32	31.67
	4/13/96		49.32	29.26
	5/14/96		49.32	27.71
	6/20/96		49.32	27.00
	7/26/96		49.32	25.67
	8/19/96		49.32	25.01
	9/17/96		49.32	24.27
	10/21/96		49.32	23.48
	11/27/96		49.32	24.13
	12/27/96		49.32	28.11
	1/28/97		49.32	32.78
	4/25/97		49.32	26.94
	7/17/97		49.32	24.37
	10/21/97		49.32	22.73
	3/10/98		49.32	34.13
	6/6/98		49.32	30.47
	9/30/98		49.32	25.75
	12/30/98		49.32	24.99
	3/13/99		49.32	29.83
	9/29/99		49.32	24.20
	12/29/99		49.32	23.60
	3/18/00		49.32	31.82
	7/18/00		49.32	26.04
	9/26/00		49.32	24.80
	12/28/00		49.32	24.45
	3/30/01		49.32	27.39
	10/5/01		49.32	23.70
	3/28/02		49.32	28.49
	9/30/02		49.32	24.12
	3/31/03		49.32	26.50
	6/19/03		49.32	26.03
	9/30/03		49.32	23.82

2/10/04		49.32	26.79
6/30/04		49.32	24.59
9/14/04		49.32	21.39
3/29/06	18.87	49.32	30.45
6/24/06	22.65	49.32	26.67
9/30/06	24.49	49.32	24.83
12/11/06	23.03	49.32	26.29
03/16/07	21.97	49.32	27.35
06/10/07	24.28	49.32	25.04
09/14/07	25.75	49.32	23.57
12/14/07	25.96	49.32	23.36
03/12/08	22.31	49.32	27.01
06/11/08	24.80	49.32	24.52
09/05/08	26.23	49.32	23.09
12/13/08	26.93	49.32	22.39
03/14/09	21.65	49.32	27.67

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-4	12/30/98	(ieee)	49.61	25.05
101 00 -4	3/13/99		49.61	29.89
	9/29/99		49.61	24.27
	12/29/99		49.61	23.64
	3/18/00		49.61	31.85
	12/28/00		49.61	24.52
	3/30/01		49.61	27.40
	10/5/01		49.61	23.77
	3/28/02		49.61	28.58
	9/30/02		49.61	24.32
	3/31/03		49.61	26.59
	6/19/03		49.61	26.16
	9/30/03		49.61	23.96
	9/14/04		49.61	21.45
	3/29/06	19.87	49.61	29.74
	6/24/06	22.86	49.61	26.75
	9/30/06	23.94	49.61	25.67
	12/11/06	23.36	49.61	26.25
	03/16/07	22.26	49.61	27.35
	06/10/07	24.60	49.61	25.01
	09/14/07	26.11	49.61	23.50
	12/14/07	26.39	49.61	23.22
	03/12/08	22.62	49.61	26.99
	06/11/08	25.19	49.61	24.42

09/05/08	26.64	49.61	22.97
12/13/08	27.36	49.61	22.25
03/14/09	21.96	49.61	27.65

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-5	12/30/98		49.57	25.06
	3/13/99		49.57	29.93
	9/29/99		49.57	24.26
	3/18/00		49.57	23.64
	3/28/02		49.57	31.94
	09/14/07	Dry	49.57	n/a
	12/14/07	Dry	49.57	n/a
	06/11/08	Dry	49.57	n/a
	09/05/08	Dry	49.57	n/a
	12/13/08	Dry	49.57	n/a
	03/14/09	Dry	49.57	n/a

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-6	12/30/98		48.06	25.14
	3/13/99		48.06	29.97
	9/29/99		48.06	24.38
	12/29/99		48.06	23.75
	3/18/00		48.06	31.86
	7/18/00		48.06	26.22
	9/26/00		48.06	24.95
	12/28/00		48.06	24.61
	3/30/01		48.06	27.41
	10/5/01		48.06	23.82
	3/28/02		48.06	28.65
	9/30/02		48.06	24.41
	9/30/06	22.33	48.06	25.73
	09/14/07	24.58	48.06	23.48
	12/14/07	24.88	48.06	23.18
	03/12/08	21.03	48.06	27.03

06/11/08	23.62	48.06	24.44
09/05/08	25.10	48.06	22.96
12/13/08	25.81	48.06	22.25
06/03/09	23.20	48.06	24.86

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-8	12/30/98		49.35	25.14
	3/13/99		49.35	
	9/29/99		49.35	
	12/29/99		49.35	
	3/18/00		49.35	
	7/18/00		49.35	
	9/26/00		49.35	
	12/28/00		49.35	
	3/30/01		49.35	
	10/5/01		49.35	
	3/28/02		49.35	
	9/30/06	24.07	49.35	25.28
	09/14/07	26.12	49.35	23.23
	12/14/07	26.35	49.35	23.00
	03/12/08	22.65	49.35	26.70
	06/11/08	25.23	49.35	24.12
	09/05/08	26.62	49.35	22.73
	12/13/08	27.30	49.35	22.05
	03/14/09	21.80	49.35	27.55
	06/03/09	24.83	49.35	24.52

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-9	12/30/98		48.77	24.79
	3/13/99		48.77	29.58
	9/29/99		48.77	24.05
	12/29/99		48.77	23.45
	3/18/00		48.77	31.46
	7/18/00		48.77	25.83
	9/26/00		48.77	24.61
	12/28/00		48.77	24.29
	3/30/01		48.77	27.12
	10/5/01		48.77	23.54
	3/28/02		48.77	28.32

9/30/02		48.77	24.11
3/31/03		48.77	26.33
6/19/03		48.77	25.90
9/30/03		48.77	23.77
2/10/04		48.77	26.64
6/30/04		48.77	24.22
9/14/04		48.77	23.08
3/29/06	16.74	48.77	32.03
6/24/06	22.43	48.77	26.34
9/30/06	23.40	48.77	25.37
12/11/06	22.78	48.77	25.99
03/16/07	21.76	48.77	27.01
09/14/07	25.50	48.77	23.27
12/14/07	25.83	48.77	22.94
03/12/08	22.08	48.77	26.69
06/11/08	24.61	48.77	24.16
09/05/08	26.04	48.77	22.73
12/13/08	26.74	48.77	22.03
03/14/09	21.46	48.77	27.31
06/03/09	24.21	48.77	24.56

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-10	12/30/98		49.93	24.78
	3/13/99		49.93	29.31
	9/29/99		49.93	23.80
	12/29/99		49.93	23.23
	3/18/00		49.93	31.26
	7/18/00		49.93	25.55
	9/26/00		49.93	24.34
	12/28/00		49.93	24.03
	3/30/01		49.93	26.79
	10/5/01		49.93	23.33
	3/28/02		49.93	28.06
	9/30/02		49.93	23.88
	3/31/03		49.93	26.06
	6/19/03		49.93	25.65
	9/30/03		49.93	23.56
	2/10/04		49.93	26.39
	6/30/04		49.93	24.22
	9/14/04		49.93	23.08
	3/29/06	20.18	49.93	29.75
	6/24/06	23.87	49.93	26.06
	9/30/06	24.80	49.93	25.13

03/16/07	23.09	49.93	26.84
09/14/07	26.87	49.93	23.06
12/14/07	27.14	49.93	22.79
03/12/08	23.48	49.93	26.45
06/11/08	25.98	49.93	23.95
09/05/08	27.38	49.93	22.55
12/13/08	28.04	49.93	21.89
03/14/09	22.73	49.93	27.20

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-11	12/30/98	(leet)	47.93	24.78
	3/13/99		47.93	29.56
	9/29/99		47.93	24.03
	12/29/99		47.93	23.43
	3/18/00		47.93	31.38
	7/18/00		47.93	25.81
	9/26/00		47.93	24.58
	12/28/00		47.93	24.26
	3/30/01		47.93	27.03
	10/5/01		47.93	23.52
	3/28/02		47.93	28.31
	9/30/02		47.93	24.09
	9/30/06	22.58	47.93	25.35
	09/14/07	24.72	47.93	25.21
	12/14/07	25.00	47.93	22.93
	06/11/08	23.81	47.93	24.12
	09/05/08	25.23	47.93	22.70
	12/13/08	25.93	47.93	22.00

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-12	12/30/98		48.76	24.78
	3/13/99		48.76	29.56
	9/29/99		48.76	24.03
	12/29/99		48.76	23.43
	3/18/00		48.76	31.38
	7/18/00		48.76	25.81
	9/26/00		48.76	24.58
	12/28/00		48.76	24.26
	3/30/01		48.76	27.03
	10/5/01		48.76	23.52

3/28/02		48.76	28.31
9/30/02		48.76	24.09
9/30/06	22.58	48.76	26.18
12/11/06	23.88	48.76	24.88
03/16/07	21.77	48.76	26.99
06/10/07	24.06	48.76	24.70
09/14/07	Not available	48.76	nc
12/14/07	25.77	48.76	22.99
03/12/08	Not available		
06/11/08	24.60	48.76	24.16
09/05/08	25.97	48.76	22.79
12/13/08	26.66	48.76	22.10
03/14/09	21.36	48.76	27.40
06/03/09	24.20	48.76	24.56

Well	Date	Depth to Groundwater	TOC Elevation	Groundwater Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-13	12/30/98		unknown	24.78
	3/13/99			29.56
	9/29/99			24.03
	12/29/99			23.43
	3/18/00			31.38
	7/18/00			25.81
	9/26/00			24.58
	12/28/00			24.26
	3/30/01			27.03
	10/5/01			23.52
	3/28/02			28.31
	9/30/02			24.09
	9/30/06	22.58		
	12/11/06	25.33		
	03/16/07	23.00		
	06/10/07	25.50		
	09/14/07	26.85	nm	nc
	12/14/07	27.11	unknown	nc
	03/12/08	23.50	nm	nc
	06/11/08	26.02	nm	nc
	09/05/08	27.29	nm	nc
	12/13/08	27.96	nm	nc
	03/14/09	22.48	nm	nc

06/03/09	25.61	nm	nc
----------	-------	----	----

Well Number	Date Recorded	Depth to Groundwater	TOC Elevation	Groundwater Elevation
Tumber	Recorded	(feet)	(feet)	(feet)
MW-14	12/30/98		unknown	24.78
	3/13/99			29.56
	9/29/99			24.03
	12/29/99			23.43
	3/18/00			31.38
	7/18/00			25.81
	9/26/00			24.58
	12/28/00			24.26
	3/30/01			27.03
	10/5/01			23.52
	3/28/02			28.31
	9/30/02			24.09
	9/30/06	22.58		
	12/11/06	24.90		
	03/16/07	22.67		
	06/10/07	25.11		
	09/14/07	26.56	nm	nc
	12/14/07	26.80	unknown	nc
	03/1/08	23.03	nm	nc
	06/11/08	25.69	nm	nc
	09/05/08	27.04	nm	nc
	12/13/08	27.72	nm	nc
	03/14/09	22.22	nm	nc
	06/03/09	25.30	nm	nc

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-1A	12/30/98		48.24	24.64
	3/13/99		48.24	29.39
	9/29/99		48.24	23.89
	12/29/99		48.24	23.29
	3/18/00		48.24	31.25
	7/18/00		48.24	25.64
	9/26/00		48.24	24.48
	12/28/00		48.24	24.13

3/30/01		48.24	27.02
10/5/01		48.24	23.38
3/28/02		48.24	28.14
9/30/02		48.24	23.96
9/30/06	23.03	48.24	25.21
09/14/07	25.13	48.24	23.11
12/14/07	25.43	48.24	22.81
03/12/08	21.75	48.24	26.49
06/11/08	24.24	48.24	24.00
09/05/08	25.62	48.24	22.62
12/13/08	26.33	48.24	21.91
03/14/09	21.07	48.24	27.17

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
141 Farrelly	03/18/00	17.90	48.76	30.86
	09/26/00	24.66	48.76	24.10
	03/30/01	22.25	48.76	26.51
	09/30/02	25.34	48.76	23.42
	12/21/02	20.07	48.76	28.69
	06/19/03	23.55	48.76	25.21
	09/14/04	26.12	48.76	22.64
	03/16/07	22.28	48.76	26.48
	09/14/07	25.98	48.76	22.78
	3/12/08	Not available	48.76	Nm
	06/11/08	Not Available	48.76	nm
	09/05/08	26.48	48.76	22.28
	12/13/08	27.20	48.76	21.56
	03/14/09	Not Available		
	06/03/09	25.83	48.76	22.93

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)	MtBE (µg/l)
MW-12	06/03/09	6,400	6.5	24	25	6.1	<50
MW-13	06/03/09	<50	< 0.5	< 0.5	0.65	0.69	<5
MW-14	06/03/09	68	< 0.5	1.9	0.81	1.1	<5
141Farrelly	06/03/09	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5

Table 4Current Quarter Groundwater Analytical DataJune 3, 2009

Table 5Cumulative Summary of Groundwater Analytical Data

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-1	12/31/90	51,000	2,200	1,200	< 0.5	760
	1/6/95	110,000	13,000	15,000	4,800	13,000
	1/6/95	580,000	29,000	41,000	17,000	43,000
	7/6/95	49,000	8,000	17,000	1,900	9,700
	10/2/95	120,000	16,000	36,000	3,300	17,000
	10/2/95	160,000	20,000	47,000	5,000	23,000
	1/12/96	1,100,000	11,000	18,000	15,000	51,000
	1/12/96	98,000	2,100	4,600	2,500	10,000
	4/13/96	53,000	1,300	2,900	2,100	10,000
	4/13/96	58,000	820	3,600	2,800	12,000
	7/26/96	91,000	2,600	7,200	2,900	14,000
	7/26/96	67,000	2,300	5,500	2,500	11,000
	10/21/96	210,000	4,800	17,000	2,300	15,000
	10/21/96	210,000	5,400	18,000	2,600	11,000
	1/28/97	120,000	5,600	15,000	2,100	11,000
	1/28/97	130,000	5,500	15,000	2,300	12,000
	4/25/97	180,000	6,900	20,000	2,600	13,000

0					
4/25/97	170,000	6,500	20,000	2,500	13,000
7/17/97	220,000	8,300	41,000	2,700	16,000
10/21/97	240,000	9,400	33,000	3,300	22,000
3/10/98	120,000	11,000	46,000	3,700	21,000
6/6/98	110,000	7,600	32,000	4,800	23,000
9/30/98	140,000	5,800	29,000	3,500	18,000
12/30/98	78,000	5,200	24,000	3,200	19,000
3/23/99	250,000	8,000	43,000	5,200	27,000
9/29/99	140,000	6,100	35,000	5,400	27,000
3/18/00	120,000	5,100	33,000	4,600	24,000
3/20/01	100,000	3,600	41,000	4,700	25,000
3/28/02	100,000	2,800	24,000	5,400	28,900
3/31/03	100,000	2,200	19,000	4,900	21,000
3/31/04	100,000	2,100	21,000	6,200	36,000
9/14/04	160,000	1,800	16,000	5,500	30,000
3/29/06	69,000	1,400	16,000	4,900	28,000
09/30/06	120,000	1,400	13,000	5,200	29,000
09/14/07	92,000	1,000	9,400	4,300	23,000
09/05/08	110,000	1,000	11,000	4,200	21,000
03/14/09	110,000	1,000	14,000	3,700	21,000

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-2	1/6/95	980,000	9,400	5,600	19,000	42,000
	7/6/95	71,000	5,300	1,800	6,100	9,000
	10/2/95	40,000	2,900	200	2,800	3,600
	1/12/96	260,000	2,600	2,200	6,300	7,800
	4/13/96	30,000	1,900	370	2,300	2,400
	7/26/96	180,000	1,400	640	2,100	5,000
	10/21/96	62,000	2,100	< 0.5	2,100	2,700
	1/28/97	46,000	1,500	94	1,800	2,000
	4/25/97	23,000	790	26	820	730
	7/17/97	95,000	2,200	< 0.5	3,100	4,300
	10/21/97	31,000	2,000	< 0.5	2,100	1,900
	3/10/98	19,000	730	44	820	1,000
	6/6/98	16,000	670	1,100	510	1,200
	9/30/98	24,000	600	77	680	580
	12/30/98	9,300	510	96	450	480
	3/23/99	5,700	580	9.4	400	280

9/29/99	17,000	880	240	830	1,000
12/29/99	11,000	800	11	860	780
3/18/00	11,000	790	14	520	450
7/18/00	10,000	560	27	630	530
9/26/00	6,800	450	7.4	290	200
12/28/00	12,000	540	30	420	330
3/20/01	3,500	230	<10	<10	<10
3/28/02	7,000	570	16	170	71
3/31/03	5,000	620	<12.5	71	<25
3/31/04	8,200	500	<12.5	65	<25
9/14/04	9,000	560	<13	57	<25
3/29/06	5,200	1,400	<20	52	<20
9/30/06	4,800	900	64	22	110
09/14/07	11,000	2,200	53	72	150
09/05/08	10,000	1,000	49	120	120
03/14/09	9,800	270	28	210	110

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-3	1/6/95	740,000	11,000	2,300	8,300	28,000
	7/6/95	86,000	12,000	8,600	4,900	19,000
	10/2/95	100,000	15,000	11,000	6,000	20,000
	1/12/96	84,000	6,500	4,100	3,200	12,000
	4/13/96	48,000	7,600	3,600	2,800	9,400
	7/26/96	62,000	6,400	3,100	3,000	11,000
	10/21/96	110,000	5,400	2,400	2,500	9,800
	1/28/97	130,000	5,500	15,000	2,300	12,000
	4/25/97	180,000	6,900	20,000	2,600	13,000
	7/17/97	69,000	5,100	1,100	1,800	8,600
	10/21/97	58,000	4,300	1,300	2,100	8,000
	3/10/98	25,000	3,000	1,300	1,100	3,700
	6/6/98	52,000	4,400	1,900	2,300	6,900
	9/30/98	42,000	4,300	1,400	1,800	6,600
	12/30/98	34,000	4,200	770	2,300	9,000
	3/23/99	44,000	3,500	1,000	1,700	5,200
	9/29/99	39,000	6,000	840	2,400	8,100
	12/29/99	39,000	4,600	790	2,400	8,100
	3/18/00	21,000	3,100	550	1,400	4,100
	7/18/00	30,000	5,000	950	2,000	5,700
	9/26/00	36,000	5,300	640	2,400	9,900
	12/28/00	33,000	4,700	450	2,100	6,400
	3/20/01	21,000	2,000	260	570	3,000

3/31/03	25,000	3,200	280	1,600	4,200
3/31/04	11,000	1,000	940	550	1,900
9/14/04	42,000	3,600	190	2,200	4,800
3/29/06	7,200	180	17	460	680
9/30/06	7,100	130	94	500	820
09/14/07	6,700	16	44	200	400
09/05/08	6,300	7.6	82	92	290
03/14/09	3,300	13	17	56	140

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-4	12/30/98	12,000	1,200	1,100	290	1,400
	3/23/99	89,000	5,900	8,700	2,000	9,200
	9/29/99	48,000	5,300	6,800	1,700	7,700
	3/18/00	44,000	4,500	7,500	2,200	11,000
	3/20/01	10,000	700	620	<10	1,900
	3/28/02	30,000	3,700	3,100	1,100	4,100
	3/31/03	25,000	2,000	2,100	820	2,900
	3/31/04	24,000	2,500	200	1,400	2,800
	9/14/04	14,000	760	550	430	1,600
	3/29/06	17,000	2,000	1,200	910	2,400
	9/30/06	4,000	440	120	240	360
	9/14/07	10,000	1,300	96	440	560
	9/05/08	12,000	1,400	110	960	840
	03/14/09	44,000	1,700	1,000	2,600	6,700

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-5	12/30/98	170	1.1	< 0.5	< 0.5	4.8
	3/22/99	470	3.8	0.51	2.0	< 0.5
	9/29/99	1,200	13	4.2	2.7	4.2
	3/18/00	660	5.5	0.62	1.6	1.7
	3/29/06	190	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/06	Dry				
	9/14/07	Dry				
	9/05/08	Dry				
	03/14/09	Dry				

WellDateTPHgBenzeneTolueneEthyl-Total

Number	Sampled	(µg/l)	(µg/l)	(µg/l)	Benzene	Xylenes
					(µg/l)	(µg/l)
MW-6	12/30/98	400	1.0	< 0.5	< 0.5	4.8
	3/22/99	390	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/99	330	1.8	1.4	1.5	< 0.5
	3/18/00	200	1.3	< 0.5	< 0.5	< 0.5
	9/26/00	240	1.5	< 0.5	< 0.5	< 0.5
	3/20/01	160	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	88	.89	< 0.5	< 0.5	< 0.5
	3/29/06	NS	NS	NS	NS	NS
	9/30/06	280	5.5	24	14	69
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/05/08	84	0.92	0.76	1.7	3.5

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-8	12/30/98	2,200	70	0.94	26	15
	3/23/99	2,300	34	1.1	15	13
	9/30/99	8,800	140	<50	53	<50
	12/29/99	1,900	64	1.0	22	23
	3/18/00	1,400	36	< 0.5	12	9.3
	7/18/00	3,000	67	9.8	38	38
	9/26/00	1,200	24	3.0	24	15
	12/28/00	1,200	47	3.7	17	18
	3/20/01	1,300	7.8	<2.5	<2.5	14
	10/5/01	1,800	28	<2.5	20	23
	3/28/02	1,100	12	1.7	11	10.8
	9/30/02	1,400	15	24	32	22
	9/30/06	760	4.9	31	13	64
	03/16/07	370	< 0.5	8.1	0.52	0.94
	09/14/07	1,300	1.3	20	3.0	1.6
	03/12/08	520	1.4	11	3.9	5.6
	09/05/08	1,800	1.9	30	5.0	4.0
	03/14/09	950	3.1	42	36	180

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-9	12/30/98	25,000	23	<10	180	620

k						
	3/23/99	27,000	35	<20	600	920
	9/30/99	42,000	140	130	1,000	1,700
	12/29/99	1,100,000	1,200	1,300	4,300	8,700
	3/18/00	17,000	89	46	10	600
	7/18/00	12,000	39	8.2	540	760
	9/26/00	11,000	19	<5	470	610
	12/28/00	22,000	100	<100	610	770
	3/20/01	8,200	40	<10	14	210
	10/5/01	77,000	<100	110	780	850
	3/28/02	11,000	34	6.1	220	180
	9/30/02	34,000	<125	140	240	370
	3/31/03	6,200	<12.5	<12.5	130	87
	9/30/03	9,700	52	<25	160	87
	9/14/04	9,500	48	<25	93	<50
	3/29/06	6,200	< 0.5	< 0.5	57	11
	9/30/06	2,200	3.7	31	37	40
	3/16/07	3,200	2.2	37	18	2.9
	9/14/07	2,600	1.4	28	13	3.2
	03/12/08	2,800	2.3	32	12	5.3
	09/05/08	3,800	2.5	40	6.1	2.8
	03/14/09	7,100	11	63	50	120

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-10	12/30/98	6,900	130	19	140	210
	3/23/99	6,600	150	33	240	170
	9/30/99	9,300	60	38	280	150
	12/29/99	5,800	87	10	420	180
	3/18/00	3,800	180	11	220	120
	7/18/00	9,100	120	33	210	130
	9/26/00	4,500	22	8.8	1.3	18
	12/28/00	3,900	55	13	98	38
	3/20/01	4,500	48	6.0	<5	23
	10/5/01	5,200	70	28	41	30
	3/28/02	7,400	45	20	210	66
	9/30/02	670	54	5.9	76	23
	3/31/03	5,700	31	38	67	27
	9/30/03	7,400	61	<50	<50	<100
	9/14/04	9,100	47	<25	51	<50
	3/29/06	6,800	140	18	270	160
	9/30/06	5,700	61	30	78	120
	3/16/07	10,000	71	15	46	25

9/14/07	5,800	55	18	22	15
03/12/08	9,300	240	23	48	37
09/05/08	8,400	120	12	18	16
03/14/09	8,100	300	25	36	72

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-11	12/30/98	80	< 0.5	< 0.5	0.93	1.6
	3/23/99	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/99	94	< 0.5	< 0.5	< 0.5	< 0.5
	3/18/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/20/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	<50	< 0.5	< 0.5	< 0.5	<1.5
	9/30/06	160	1.8	12	7.6	40
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/05/08	150	0.93	0.60	1.6	2.5

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-12	3/20/01	4,100	28	6.2	<5	16
	6/29/01	4,200	26	25	19	29
	12/21/01	5,300	9.7	<2.5	41	14
	3/28/02	4,900	20	<2.5	69	23
	6/28/02	2,600	29	<12.5	30	<25
	9/30/02	700	16	4.9	19	9.8
	09/30/06	2,100	6.2	15	16	38
	12/11/06	5,500	13	24	16	23
	3/16/07	4,900	11	24	16	8.5
	6/10/07	2,600	<2.5	<2.5	13	9.5
	9/14/07	not	available			
	03/12/08	not	available			
	06/11/08	6,200	11	21	26	8.1
	09/05/08	5,000	7.3	15	12	5.9
	12/13/08	4,400	7.6	19	12	9.4
	03/14/09	6,800	16	19	20	60

MW-12	06/03/09	6,400	6.5	24	25	6.1

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-13	3/20/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	6/29/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	10/5/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/21/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	<50	< 0.5	< 0.5	< 0.5	<1.5
	6/28/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	9/30/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	12/21/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	09/30/06	170	2.1	13	8.1	43
	12/11/06	110	4.6	6.5	4.6	17
	3/16/07	<50	< 0.5	< 0.5	< 0.5	< 0.5
	6/10/07	54	0.80	0.84	1.3	5.4
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/14/07	ND<50	0.76	ND<0.5	2.3	2.6
	03/12/08	ND<50	ND<0.5	ND<0.5	0.66	2.2
	06/11/08	120	0.58	0.97	1.1	2.0
	09/05/08	78	ND<0.5	0.60	0.98	2.1
	12/13/08	59	0.93	< 0.5	2.5	3.8
	03/14/09	260	1.1	8.8	10	46
	06/03/09	<50	< 0.5	< 0.5	0.65	0.69

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-14	3/20/01	200	< 0.5	< 0.5	< 0.5	< 0.5
	6/29/01	660	< 0.5	< 0.5	< 0.5	4.6
	10/5/01	770	1.7	1.5	0.91	8.3
	12/21/01	1,500	3.1	13	1.9	22
	3/28/02	390	1.7	< 0.5	< 0.5	0.74
	6/28/02	120	< 0.5	< 0.5	< 0.5	<1
	9/30/02	210	< 0.5	1.7	< 0.5	1.1
	12/21/02	53	< 0.5	< 0.5	< 0.5	<1.0
	09/30/06	210	2.5	15	9.1	48
	12/11/06	190	6.7	9.9	5.4	19
	3/16/07	<50	< 0.5	1.1	< 0.5	< 0.5

6/10/07	73	1.1	1.3	1.8	7.2
9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
12/14/07	69	1.1	0.57	3.5	4.5
03/12/08	110	0.61	1.2	1.2	3.6
06/11/08	52	< 0.5	0.68	< 0.5	1.0
09/05/08	95	ND<0.5	1.3	0.61	2.3
12/13/08	220	1.5	4.3	3.2	5.1
03/14/09	360	1.4	12	13	61
06/03/09	68	< 0.5	1.9	0.81	1.1

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-1A	5/30/97	12,000	18	8.7	90	540
	12/30/98	51	< 0.5	< 0.5	< 0.5	< 0.5
	3/23/99	1,800	4.0	< 0.5	3.0	7.5
	3/23/99	2,200	10	0.52	3.1	7.1
	9/30/99	13,000	63	26	30	72
	3/8/00	6,100	36	<5	9.7	45
	9/26/00	11,000	14	<5	65	150
	3/20/01	4,800	30	6.0	<5	7.0
	10/5/01	15,000	76	41	36	140
	3/28/02	9,300	35	<12.5	17	32
	9/30/02	23,000	<50	63	77	230
	9/30/06	2,500	4.1	25	22	49
	3/16/07	1,800	1.8	17	6.4	4.4
	9/14/07	1,500	1.1	15	2.8	1.8
	03/12/08	1,200	2.1	12	5.0	3.6
	09/05/08	1,900	2.4	14	10	5.4
	03/14/09	1,700	2.5	13	11	32

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
141 Farrelly	4/6/96	<50	<0.5	<0.5	<0.5	<0.5
	10/2/99	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/18/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	7/13/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/29/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/21/01	<50	< 0.5	< 0.5	< 0.5	< 0.5

1						
	9/30/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	12/21/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	6/19/03	<50	< 0.5	< 0.5	< 0.5	<1.0
	9/14/04	<50	< 0.5	< 0.5	< 0.5	<1.0
	3/16/07	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/14/07	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/5/08	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/13/08	<50	< 0.5	< 0.5	< 0.5	< 0.5
	03/14/09	not	available			
	06/03/09	<50	< 0.5	< 0.5	< 0.5	< 0.5

Well Sampling Reports

Well Sampling Data (06/03/09) 301 E. 14th Street San Leandro, CA

WELL: MW-1

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible Pump Disposable Bailer 21.84

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	32.44	ft btoc
Depth to Water:	nm	ft btoc
Height of Water:	nm	ft
Three Well Volumes:	<mark>nm</mark>	gal

Date/Time	Purge	Purge	D.O.	0.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
06/03/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	%	Depth [ft]
	0	Pre-Purge	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Collect Sample	nm	nm	nm	nm		21.84	99.69%	na

WELL: MW-2

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 25.27

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.25	ft btoc
Depth to Water:	25.27	ft btoc
Height of Water:		ft
Three Well Volumes:		gal

No sample, DTW only

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
06/03/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	%	Depth [ft]
	0	Pre-Purge	nm	nm	nm	nm	nm	25.27		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Collect Sample	nm	nm	nm	nm	nm	25.27	#DIV/0!	na

WELL: MW-3

No sample

Well Purge Method:Disposable BailerSample Collection Method:Disposable BailerSample Collection Depth:21.65

Well Screen Interval: ft bgs Casing Diameter: inches 2 Total Depth of Well: 34.94 ft btoc Depth to Water: ft btoc nm Height of Water: ft nm Three Well Volumes: nm gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
03/14/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	%	Depth [ft]
	0	Pre-Purge	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Collect Sample	nm	nm	nm	nm	nm	21.65	#VALUE!	na

Well Sampling Data (06/03/09) 301 E. 14th Street San Leandro, CA

WELL: MW-4

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 21.98

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	34.53	ft btoc
Depth to Water:	nm	ft btoc
Height of Water:	nm	ft
Three Well Volumes:	<mark>nm</mark>	gal

Date/Time	Purge	Purge	D.O.	0.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
6/3/2009	0- Static	Pre-Purge	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Collect Sample	nm	nm	nm	nm	nm	21.98	99.92%	na

WELL: MW-5

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 0.00

Well Screen Interval:		-	ft bgs
Casing Diameter:		2	inches
Total Depth of Well:		21.62	ft btoc
Depth to Water:	Dry		ft btoc
Height of Water:	n/a		ft
Three Well Volumes:		0.00	gal

Dry

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
3/14/2009	0- Static	Pre-Purge	nm	nm	nm	nm	nm	Dry		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
	nm	Collect Sample	nm	nm	nm	nm	nm		Dry	na

WELL: MW-6

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 23.20

No sample, DTW only

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	31.29	ft btoc
Depth to Water:	23.20	ft btoc
Height of Water:		ft
Three Well Volumes:		gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
03/14/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
		nm	nm	nm	nm		nm	24.58		
		nm	nm	nm	nm	nm	nm	nm		
		nm	nm	nm	nm	nm	nm	nm		
		nm	nm	nm	nm	nm	nm	nm		
		nm	nm	nm	nm	nm	nm	23.20	99.70%	

Groundwater Cleaners, Inc.

Well Sampling Data (03/14/09) 301 E. 14th Street San Leandro, CA

WELL: MW-8

Well Purge Method: Sample Collection Method: Sample Collection Depth: sample, DTW only Submersible Pump Disposable Bailer 24.83

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	29.69	ft btoc
Depth to Water:	24.83	ft btoc
Height of Water:		ft
Three Well Volumes:		gal

Date/Time	Purge	Purge	D.O.	0.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
06/03/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0	nm	nm	nm	nm	nm	nm	26.12	25	na
			nm	nm		nm		nm		na
			nm	nm		nm		nm		na
			nm	nm		nm		nm		na
	Total 4.0		nm	nm	nm	nm	nm	24.83	99.44%	na

WELL: MW-9

Well Purge Method: Sample Collection Method: Sample Collection Depth: No sample Submersible pump Disposable Bailer 24.21

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	32.97	ft btoc
Depth to Water:	24.21	ft btoc
Height of Water:		ft
Three Well Volumes:		gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
06/03/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0	nm	nm	nm	nm	nm	nm	25.58		
		nm	nm	nm		nm		nm		
		nm	nm	nm		nm		nm		
		nm	nm	nm		nm		nm		
		nm	nm	nm	nm	nm	nm	24.21	99.69%	

WELL: MW-10

Well Purge Method: Sample Collection Method: Sample Collection Depth: No sample Submersible pump Disposable Bailer 22.75

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	37.87	ft btoc
Depth to Water:		ft btoc
Height of Water:		ft
Three Well Volumes:		gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
06/03/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	0.00		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Collect Sample	nm	nm	nm	nm	nm	22.75	99.91%	na

Groundwater Cleaners, Inc.

Well Sampling Data (06/03/09) 301 E. 14th Street San Leandro, CA

WELL: MW-11

Well Purge Method:						
Sample Collection Method:						
Sample Collection Depth:						

Submersible pump Disposable Bailer 25.93

Well Screen Interval:-ft bgsCasing Diameter:2inchesTotal Depth of Well:33.70ft btocDepth to Water:ft btocHeight of Water:ftThree Well Volumes:gal

Note: Well not scheduled for sampling

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
6/3/2009	0- Static	Pre-Purge	nm	nm	nm	nm	nm	0.00		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Collect Sample	nm	nm	nm	nm	nm	25.93	100.00%	na

WELL: MW-12

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer na

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	38.10	ft btoc
Depth to Water:	24.20	ft btoc
Height of Water:	13.90	ft
Three Well Volumes:	7.09	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
6/3/2009	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.20		na
	2	Purging	nm	nm	6.93	nm	63.9	nm		na
	4	Purging	nm	nm	6.89	nm	64.8	nm		na
	6	Purging	nm	nm	6.87	nm	65.0	nm		na
	Total 8 gal	Collect Sample	nm	nm	nm	nm	nm	24.20	100.00%	na

WELL: 141 Farrelly Dr.

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 25.83

Well Screen Interval:	-	ft bgs
Casing Diameter:	10	inches
Total Depth of Well:	33.88	ft btoc
Depth to Water:	25.83	ft btoc
Height of Water:	8.05	ft
Three Well Volumes:	102.64	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
06/03/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0		nm	nm	nm	nm	nm	21.37		na
	1		nm	nm	7.29	nm	63.3			na
	2		nm	nm	7.18	nm	63.7			na
	3		nm	nm	7.09	nm	63.8			na
			nm	nm	nm	nm	nm	25.83	100.00%	na

Well Sampling Data (03/14/09) 301 E. 14th Street San Leandro, CA

WELL: MW-13

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 25.66 Well Screen Interval: ft bgs inches Casing Diameter: 2 Total Depth of Well: 37.47 ft btoc ft btoc Depth to Water: 25.61 Height of Water: 11.86 ft Three Well Volumes: 6.05 gal

Notes:	No petroleum odor present.

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
6/3/2009	0- Static	Pre-Purge	nm	nm	nm	nm	nm	25.61		na
	2	Purging	nm	nm	6.64	nm	64.9	nm		na
	4	Purging	nm	nm	6.63	nm	65.2	nm		na
	6	Purging	nm	nm	6.65	nm	65.3	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	25.66	99.45%	na

WELL: MW-14

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 25.30

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	30.43	ft btoc
Depth to Water:	25.30	ft btoc
Height of Water:	5.13	ft
Three Well Volumes:	2.62	gal

Date/Time	Purge	Purge	D.O.	0.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
6/3/2009	0- Static	Pre-Purge	nm	nm	nm	nm	nm	25.30		na
	1	Purging	nm	nm	7.01	nm	63.9	nm		na
	2	Purging	nm	nm	6.84	nm	65.4	nm		na
	4	Purging	nm	nm	6.86	nm	65.5	nm		na
	Total 4.0	Collect Sample	nm	nm	nm	nm	nm	25.30	100.00%	na

WELL: MW-1A

No sample

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 21.08 Well Screen Interval:ft bgsCasing Diameter:2Total Depth of Well:33.88ft btocDepth to Water:ft btocHeight of Water:ftThree Well Volumes:gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
03/14/09	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0		nm	nm	nm	nm	nm	21.37		na
			nm	nm		nm				na
			nm	nm		nm				na
			nm	nm		nm				na
			nm	nm	nm	nm	nm	21.08	99.88%	na

Groundwater Cleaners, Inc.

Analytical Reports

McCampbell A		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Groundwater Cleaners	Client Project ID: #301; C	German Autocraft	Date Sampled:	06/03/09					
347 Frederick Street			Date Received:	06/08/09					
San Francisco, CA 94117	Client Contact: Glenn Re	ierstad	Date Reported:	06/12/09					
	Client P.O.:		06/10/09						

WorkOrder: 0906252

June 12, 2009

Dear Glenn:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#301; German Autocraft**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

													0	90	50	0.	20	50	7														
	Web	IcCAMP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 2 nd AV PACHEC campbell.	ENUE SO O, CA 945	UTH, 53-556	#D7 60 in@r	ncca	mpb	ell.co		622		~		Т	UR	N A	AR	C OU	NI) T	M		ł		H	Ę	HR		48 H	1	RD 72 H	IR 5 DAY
	Report To: Glenn	the second s		В	ill To		and the second data		-											A	nal	ysis	Req	ues	t	_					0	ther	Comments
	Company: Groun	the second se																6				E IS								Π			Filter
	second community processing and the second sec	rederick Stre	the local division of											_	8015)			/B&I				ngen											Samples
		rancisco, CA	94117		E-Ma				-	n.co	m			-	+			20 E				/C01						20)	50)				for Metals
	Tele: (415) 665-6	181		the second s	ax: (_					n	1		/ 8021	1021)		4/35	8.1)	3		clors		les)			(S)	0 / 60	/ 60				analysis:
	Project #: 301	2010 11	4 01	C	rojec	t Nai	ne:	G	eri	ma	n	HU	JOC	105	(602	02/8	(5	(166	s (41)	HVO	des)	Aroc		bick		()	PNA	601	6010	6			Yes / No
	Project Location: Sampler Signatur	e: ()	1h STr.	ali	ph	ese	6.40	, (_00						s Gas (602/1	PA 6	1 (801	rease	rbon	021 ()	estici	VLY;	cides	1 Her	OCs)	VOC	AHs /	00.8	0.8/	/ 602			
	oumpier organitur	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		LING					TRI		PR	AET	HOI	D ED	& TPH as	ONLY (E	Motor Oi	Oil & Gr	Hydroca	/ 8010 / 8	8081 (C1 P	PCB's OP	(NP Pesti	(Acidic C	/ 8260 (V	/ 8270 (S'	/ 8310 (P/	(200.7/2	(200.7 / 20	0.8 / 6010			
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCL	HNO ₃	Other	MTBE / BTEX	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA S07 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)			
-	MW-12		6/3		2	V	X		-	+	X	X			X								-										
F	MW -13		5))	1		-	-	11	1			1						1					-	-						
_	MW-14		1		f	17	11		+	+	Ħ	Ħ			5							-					-	-					
-	141		2		5	5	5		+	+	5	tt			D			-		-	-	-	-			-	-		-	\square			
					V	1×	Ť	+	+	-	P	0			v		-			-	-	-	-				-		-	\square			
					-		\vdash	-	+	+	+	-	H	-	-		-			-	-		-				-	-	-	\square			
					-				+	-	+	-			-		-		-	-	-	-	-					-	-				
					-			-	-	-	+	-			-	-	-		-	-	-	-	-	-		_	-	-	-				
									-	-										-		_	-			-			-	\square			
									_	_		-			_	_	-			-			_					-	-				
									-	_										_									-				
	\frown									-									-	-	C												
	Relinquished By:	instal	Date: 6/8 Date:	Time:	-	ived E	-		2		_			>	HF	AD 5	SPA	NDIT CE	ION	ENT	1	t.	A						CO	MM	ENT	S:	
-	Relinquished By:	16	Date:	Time: Time:	R	ived I	r		X	2	_)	_			RVE		V				M		LS	от	HER	Ł				eed this No _	report emailed

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	-9262					Work	Order	: 09062	252	С	lientC	ode: G	CF				
			WriteOn	D EDF		Excel		Fax	•	Email		Hard	Сору	🗌 Thir	rdParty	□ J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Glenn Reierst Groundwater (347 Frederick San Francisco 415-577-9383	Cleaners Street	Email: cc: PO: ProjectNo:	reierstad@ms #301; Germar				Gr 34	7 Frede	ater Clea ater Clea arick Stre cisco, CA	eet	7			e Rece e Prin		06/08/ 06/08/	
									Requ	ested 1	Fests ((See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0906252-001	MW-12		Water	6/3/2009		А											
0906252-002	MW-13		Water	6/3/2009		А											
0906252-003	MW-14		Water	6/3/2009		Α											

А

6/3/2009

Test Legend:

0906252-004

1	G-MBTEX_W	
6] [
11		1

2	
7	
12	

Water

141

3	
8	

4	
9	

5			
10			

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Groundwater Cle	eaners				Date	Date and Time Received: 06/08/09 6			:40:47 PM	
Project Name:	#301; German Au	utocraft				Che	cklist	completed and re	eviewed by:	Samantha Arbuckle	
WorkOrder N°:	0906252	Matrix <u>\</u>	Water			Carr	ier:	Rob Pringle (M	Al Courier)		
			<u>Chain</u>	of Cu	stody (C	OC) Inforn	natio	<u>n</u>			
Chain of custody	present?			Yes	✓	No 🗆					
Chain of custody	signed when relinqui	shed and	received?	Yes	✓	No 🗆					
Chain of custody	agrees with sample I	abels?		Yes	✓	No 🗌					
Sample IDs noted	by Client on COC?			Yes		No 🗆					
Date and Time of	collection noted by Cli	ent on CC	C?	Yes		No 🗆					
Sampler's name noted on COC?						No 🗆					
	Sample Receipt Information										
Custody seals intact on shipping container/cooler?						No 🗆			NA 🔽		
Shipping container/cooler in good condition?					✓	No 🗆					
Samples in prope	er containers/bottles?			Yes	✓	No 🗆					
Sample containe	rs intact?			Yes	✓	No 🗆					
Sufficient sample	volume for indicated	test?		Yes		No 🗌					
		<u>San</u>	nple Prese	rvation	and Ho	ld Time (H	<u>T) Inf</u>	formation			
All samples recei	ved within holding tim	e?		Yes	✓	No 🗌					
Container/Temp E	Blank temperature			Coole	r Temp:	5.2°C			NA 🗆		
Water - VOA vial	ls have zero headspa	ce / no bu	ıbbles?	Yes	✓	No 🗆	No	VOA vials submi	tted 🗌		
Sample labels checked for correct preservation?				Yes	✓	No 🗌					
TTLC Metal - pH acceptable upon receipt (pH<2)?				Yes		No 🗆			NA 🗹		
Samples Receive	ed on Ice?			Yes	✓	No 🗆					
			(Ісе Тур	e: WE	TICE)					
* NOTE: If the "N	lo" box is checked, se	ee comme	ents below.								

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell Ana en Ouality (<u>nc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Ground	lwater Cleaners			Project ID: #	#301; Germa	n	Date Sampled: 06/03/09					
347 Fre	derick Street		Autoc	raft			Date Receive	ed: 06/08	3/09			
547110	denek Succi	Client	enn Reiersta	d	Date Extract	ed: 06/10)/09					
San Fra	ncisco, CA 94117		Client	P.O.:			Date Analyz	ed: 06/10)/09			
	Ga	asoline R	ange (C6-C12	2) Volatile Hy	drocarbons	as Gasoline	e with BTEX a	nd MTBE	*			
Extraction	n method: SW5030B		-	tical methods:	SW8021B/8015	1		1		0906252		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-12	W	6400	ND<50	6.5	24	25	6.1	10	96	d1	
002A	MW-13	W	ND	ND	ND	ND	0.65	0.69	1	109		
003A	MW-14	W	68	ND	ND	1.9	0.81	1.1	1	97	d9	
004A	141	w	ND	ND	ND	ND	ND	ND	1	110		
Report	ing Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I		
ND mea	ans not detected at or the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/k		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant d9) no recognizable pattern

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		QC Matrix: Water					BatchID: 43732 Wo			WorkC	orkOrder: 0906252	
EPA Method SW8021B/8015Bm E		Extraction SW5030B					Spiked Sample ID: 0906245-001A					
Analyte	Sample Spiked MS MSD MS-MS			MS-MSD	LCS	LCSD	LCSD LCS-LCSD Acceptance Criteria (%)					
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	117	123	5.45	124	116	6.47	70 - 130	20	70 - 130	20
MTBE	ND	10	91.9	93.2	1.39	90.4	91	0.719	70 - 130	20	70 - 130	20
Benzene	ND	10	96.9	96.6	0.301	99.3	96.3	3.09	70 - 130	20	70 - 130	20
Toluene	ND	10	94.2	93.7	0.476	99.3	97	2.33	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	95.6	96.8	1.31	97.6	95.5	2.21	70 - 130	20	70 - 130	20
Xylenes	ND	30	97.5	97.4	0.0784	99.1	97.1	2.09	70 - 130	20	70 - 130	20
%SS:	106	10	101	100	0.879	102	100	1.81	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 43732 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0906252-001A	06/03/09	06/10/09	06/10/09 1:04 AM	0906252-002A	06/03/09	06/10/09	06/10/09 4:25 AM
0906252-003A	06/03/09	06/10/09	06/10/09 4:58 AM	0906252-004A	06/03/09	06/10/09	06/10/09 5:31 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

