Quarterly Groundwater Monitoring Report—3rd Quarter 2008

German Autocraft 301 E. 14th Street San Leandro, California

Global ID No. T0600100639 AC LOP Case # 2783

Prepared For

Mr. Seung Lee German Autocraft San Leandro, CA 95070

Prepared By

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

Date of Report: September 22, 2008

RECEIVED

2:20 pm, Sep 26, 2008

Alameda County
Environmental Health

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

September 22, 2008

German Autocraft 301 E. 14th Street San Leandro, CA 94577

Attn: Mr. Seung Lee

Subject: Quarterly Groundwater Monitoring Report—3rd Quarter 2008

German Autocraft, AC LOP Case # 2783

Global ID No. T0600100639

Dear Mr. Lee:

GWC is pleased to attach the Third Quarter 2008, *Quarterly Groundwater Monitoring Report*, which includes the analytical results for groundwater samples collected in September of 2008. GWC plans to continue quarterly groundwater sampling in accordance with Alameda County Department of Environmental Health (DEH) requirements. We have not yet received DEH comments/approval on our February 2008 Work Plans, so those associated activities do not currently have an implementation schedule.

If you have any questions or require further information, please do not hesitate to call us at (415) 665-6181.

Sincerely,

Gierstand, P.E.,

State of California

State of Cal

Cc: Ms. Donna Dragos, DEH Mr. Steven Plunkett, DEH

Perjury Statement

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached proposal or report is true and correct, to the best of my knowledge.

Seung Lee, owner, German Autocraft

CONTENTS

1.0	SITE L	OCATION AND BACKGROUND]
1.1	Site Lo	ocation and Description.	1
1.2	Site Hy	/drogeologic Conditions]
1.3	Project	History—Site Investigation Background	
1.4		Activities—Current Reporting Period.	
2.0	GROU	NDWATER MONITORING RESULTS	2
2.1	Ground	dwater Elevation and Gradient Data	2
2.2	Ground	dwater Sample Collection and Analysis	2
2.3		dwater Sample Analytical Results	
3.0	CONC	LUSIONS AND RECOMMENDATIONS.	2
3.1	Conclu	sions	2
3.2	Recom	mendations	3
4.0	QUAL	ITY ASSURANCE AND PROFESSIONAL CERTIFICATION	3
4.1		Assurance	
4.2	Profess	sional Certification	3
		FIGURES	
Figure		Site Location Map	
Figure	2	Site Plan and Well Location Map	
Figure		Groundwater Elevation and Gradient	
Figure		TPH as Gasoline in Groundwater	
Figure	5	Benzene in Groundwater	
		TABLES	
Table 1	1	Summary of Well Construction Details	
Table 2	2	Current Quarter Groundwater Elevations	
Table 3	3	Cumulative Summary of Groundwater Elevation Data	
Table 4	4	Current Quarter Groundwater Analytical Data	
Table 5	5	Cumulative Summary of Groundwater Sample Analytical Results	
		APPENDICES	
Append Append		Groundwater Sample Collection Records Chain of Custody Records and Laboratory Analytical Reports	

1.0 Site Location and Background

1.1 Site Location and Description

The site is located at 301 E. 14th Street in San Leandro, CA, in a high-density, mixed-use neighborhood of residential and small commercial buildings. Figure 1 shows the site location. E. 14th Street is a busy thoroughfare, running approximately 25 degrees west of north-south. The site is approximately 90° x 120° with an area of about 10,800 square feet. The current site use is as an automobile repair facility.

1.2 Site Hydrogeologic Conditions

The site is situated on mixed sediments about two miles east of San Francisco Bay. Site elevation is 48-50 feet above mean sea level, and groundwater elevation varies from 23-32 feet above mean sea level. Groundwater flow direction is typically W to WNW at a gradient of about 0.002 feet/ft. Figure 2 shows the general site layout and the locations of monitoring wells, both on-site and off-site.

1.3 Project History

The fuel leak was discovered and the gasoline storage tank was removed in October of 1990. A site assessment, including installation of three initial monitoring wells, was performed in 1995, and further assessment work was done in July of 1998, including installation of seven additional monitoring wells. In 2001, three more monitoring wells were installed. To date, certain wells have been monitored quarterly and others monitored semi-annually or annually to maintain a record of groundwater conditions. No active remediation has taken place since removal of the gasoline storage tank. Table 1 summarizes well construction data known to GCI. We believe a follow-up file review will reveal more well information.

On December 5, 2007, a Corrective Action Plan was submitted to the ACEH website detailing how site cleanup might be accomplished, focusing on the core area of impacts. On February 22, 2008, Work Plans were submitted for a Soil Vapor Investigation and a Dual-phase, High-vacuum Soil Vapor Extraction with Air Sparging pilot test. As of the date of this report, ACEH has not given approval for proceeding with the various tasks associated with these Work Plans.

1.4 Recent Activities

All monitoring wells were monitored and sampled this quarter in accord with the DEH requirements.

2.0 Groundwater Monitoring Results

2.1 Groundwater Elevation and Gradient

Compared with historical results, the most recent groundwater elevation was on the lower side of the normal range for September. Historical September groundwater elevations average about 24 feet, but groundwater elevations this September were about 23 feet above mean sea level (see Table 3). The most recent flow direction, essentially due west, is shown on Figure 3; on-site wells as usual reflect a more complex local gradient. Table 2 presents groundwater elevation data for September 5, 2008, and Table 3 presents a cumulative summary of elevation data.

2.2 Groundwater Sample Collection and Analysis

This quarter's wells were monitored and sampled by experienced personnel in accord with standard practices. All samples were placed on ice and transported to a Statecertified analytical laboratory for analysis. Well purge water was stored on-site pending analysis and disposal. The Well Sampling Reports are attached as Appendix A.

2.3 Groundwater Sample Analytical Results

All the monitoring well samples tested positive for trace amounts of Petroleum Hydrocarbons as gasoline (TPHg) and the affiliated Volatile Organic Compounds (BTEX), with highest concentrations (100,000 μ g/L TPHg and 1,400 μ g/L benzene) at MW-1 and MW-4, respectively (see Figures 4 and 5). The distribution of contaminant values continues to correlate with the prevailing groundwater gradient. Table 4 presents groundwater analytical data for September 5, 2008, and Table 5 summarizes the historical groundwater analytical data.

3.0 Conclusions and Recommendations

3.1 Conclusions

All of the monitoring data are consistent with a historic release of gasoline from the subject site's former underground tank, and/or the associated fueling system. Concentrations of gasoline-related petroleum compounds are highest near the former tank location, demonstrated in historic testing, and directly down-gradient from that point. Concentrations drop off sharply with distance perpendicular from the prevailing groundwater flow direction (i.e., MW-6 and MW-14). The wells tested this quarter had typical contaminant concentrations compared with historical values, with most off-site wells slightly higher than September 2007 results.

In 20 years since the removal of the underground storage tank, there was some dissipation of the contaminants in the first few years, but there has been very little reduction in hydrocarbon concentrations in recent years at wells such as MW-1 and MW-4. GCI concludes that the contaminants have reached levels at which they are likely to remain for the foreseeable future in the absence of remedial action, though there will likely continue to be some seasonal fluctuations in contaminant levels.

3.2 Recommendations

Besides the DEH required monitoring of this case, GCI recommends a Dual-Phase Soil Vapor Extraction (DPE) test to assess the potential success of this proven technology as a remediation method for the core impact area at this site. Such a test may provide approximate cost data or may suggest the need to consider other technologies to remediate contaminants at the site. GCI submitted a Work Plan in February of 2008 for a five-day test but has yet to receive DEH approval to proceed. Off-site wells have significant access issues and would be unlikely to be viable for meaningful contaminant mass removal. However, if the pending soil vapor investigation finds an off-site concern, corresponding mitigation steps will be evaluated.

MW-12 was available this quarter, but it has frequently been difficult to access due to parked cars. We recommend that MW-1A be substituted for MW-12 when it is unavailable for sampling.

4.0 **Quality Assurance and Professional Certification**

4.1 **Quality Assurance**

All sampling was performed by a staff technician, skilled and experienced with groundwater monitoring well sampling procedures. Samples were stored on ice and sent promptly to a State-certified analytical laboratory. The laboratory is audited by the State certification program for maintaining quality control procedures and for record keeping. The chain-of-custody records and certified laboratory analytical reports are attached as Appendix B.

4.2 **Professional Certification**

We declare, under penalty of perjury, that to the best of our knowledge, everything presented in this report is true and correct.

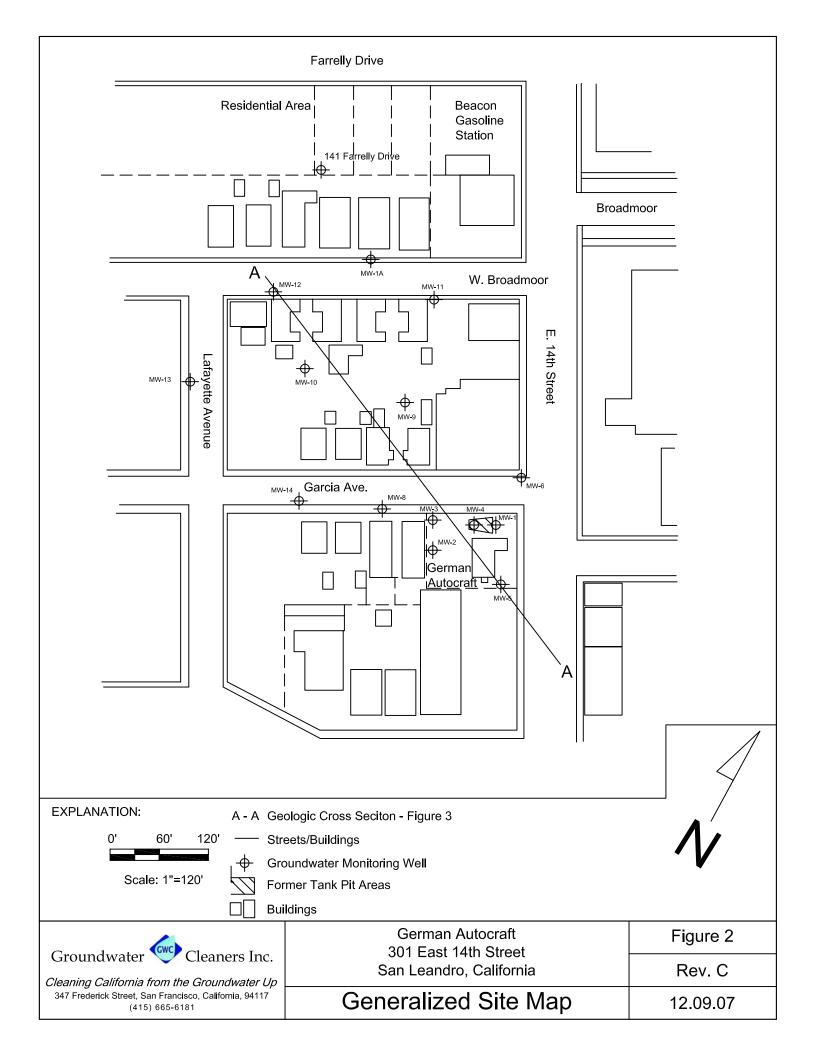
Should you have any questions or require supplemental information, please do not PROFESSION

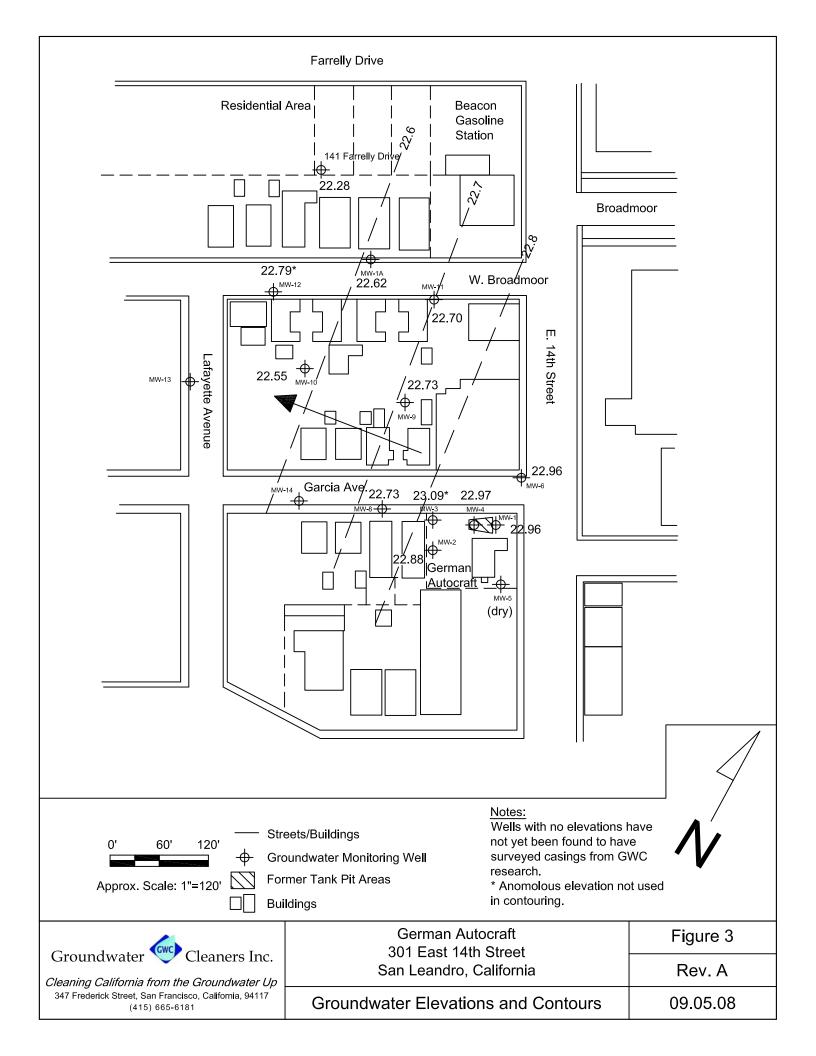
hesitate to contact us at (415) 665

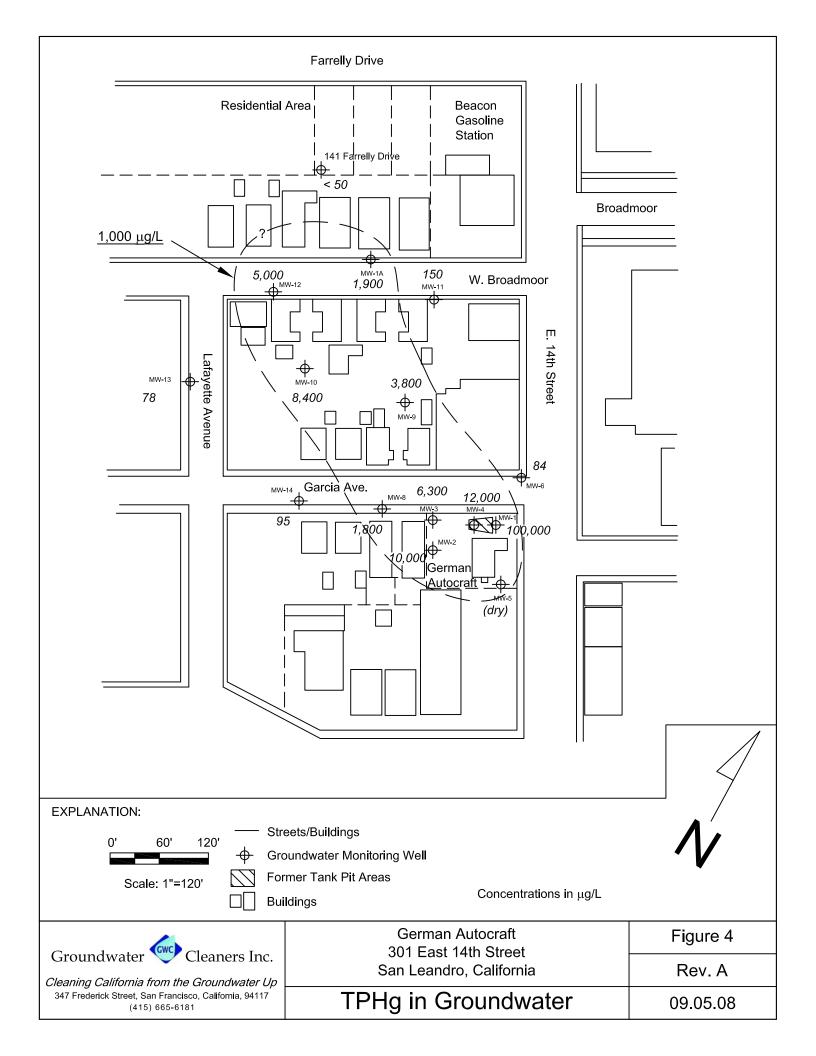
Project Manager,

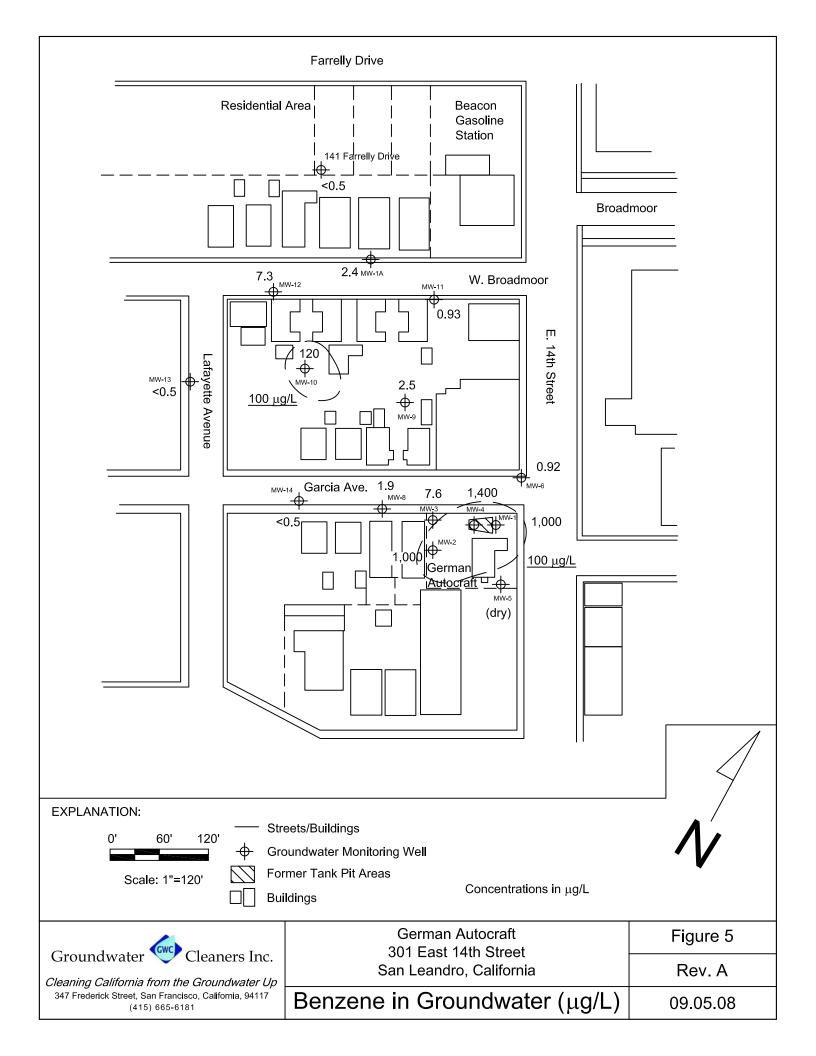
C.R. UU Eric R. Lautenbach,

V.P. Engineering


Figures




347 Frederick Street, San Francisco, California 94117 (415) 665-6181


Image from Google ©2006

Groundwater Cleaners Inc.	German Autocraft 301 East 14th Street	Figure 1
Groundwater Cleaners Inc. Cleaning California from the Groundwater Up	San Leandro, California	Rev. B
347 Frederick Street, San Francisco, California, 94117 (415) 665-6181	Site Area Map	10.01.06

Tables

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

Table 1 **Summary of Well Construction Details**German Autocraft, 301 E. 14th Street, San Leandro, California

Well	Date	Casing	Total	Screened	Relative	TOC
Number	Installed	Diameter	Depth	Interval	Location	Elevation
		(inches)	(feet)	(feet)		
MW-1	1/6/95	2	32.10	20-40 ft	Onsite	49.40
MW-2	1/6/95	2	33.05	unknown	Onsite	50.02
MW-3	1/6/95	2	34.80	unknown	Onsite	49.32
MW-4	12/30/98	2	34.30	unknown	Onsite	49.61
MW-5	12/30/98	2	21.15	conflict	Onsite	49.57
MW-6	12/30/98	2	33.10	20-35 ft	Off-site	48.06
MW-8	12/30/98	2	34.20	20-30 ft	Off-site	49.35
MW-9	12/30/98	2	33.70	20-35 ft	Off-site	48.77
MW-10	12/30/98	2	37.50	20-40 ft	Off-site	49.93
MW-11	12/30/98	2	36.90	20-35 ft	Off-site	47.93
MW-12	3/20/01	2	38.22	23-38 ft	Off-site	unknown
MW-13	3/20/01	2	37.47	23-38 ft	Off-site	unknown
MW-14	3/20/01	2	30.43	20-30 ft	Off-site	unknown
MW-1A	5/30/97	2	33.88	unknown	Off-site	48.24
141	4/6/96	10	33.88	25- 65 ft	Off-site	48.76
Farrelly						

Table 2 **Current Quarter Groundwater Elevations**German Autocraft, 301 E. 14th Street, San Leandro, California

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-1	9/5/08	26.44	49.40	22.96
MW-2	9/5/08	27.14	50.02	22.88
MW-3	9/5/08	26.23	49.32	23.09
MW-4	9/5/08	26.64	49.61	22.97
MW-6	9/5/08	25.10	48.06	22.96
MW-8	9/5/08	26.62	49.35	22.73
MW-9	9/5/08	26.04	48.77	22.73
MW-10	9/5/08	27.38	49.93	22.55
MW-11	9/5/08	25.23	47.93	22.70
MW-12	9/5/08	25.97	48.76	22.79
MW-13	9/5/08	27.29	unknown	Nc

MW-14	9/5/08	27.04	unknown	Nc
MW-1A	9/5/08	25.62	48.24	22.62
141 Farrelly	9/5/08	26.48	48.76	22.28

nc = not calculated as TOC elevation is unknown. Nm = not measured as well was unavailable for sampling.

Table 3
Cumulative Summary of Groundwater Elevations
German Autocraft, 301 E. 14th Street, San Leandro, California

Well	Date	Depth to Groundwater	TOC Elevation	Groundwater Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-1	12/21/90	30.25	49.40	19.15
	2/10/95	19.81	49.40	29.59
	7/7/95	22.77	49.40	26.63
	8/10/95	23.82	49.40	25.58
	9/11/95	24.72	49.40	24.68
	10/2/95	25.28	49.40	24.12
	11/7/95	26.04	49.40	23.36
	12/8/95	18.77	49.40	22.77
	1/12/96	25.05	49.40	24.35
	2/12/96	20.36	49.40	29.04
	3/12/96	17.65	49.40	31.75
	4/13/96	19.97	49.40	29.43
	5/14/96	21.51	49.40	27.89
	6/20/96	22.21	49.40	27.19
	7/26/96	23.45	49.40	25.95
	8/19/96	24.24	49.40	25.16
	9/17/96	24.96	49.40	24.44
	10/21/96	25.77	49.40	23.63
	11/27/96	25.12	49.40	24.28
	12/27/96	21.17	49.40	28.23
	1/28/97	16.38	49.40	33.02
	4/25/97	22.26	49.40	27.14
	7/17/97	24.85	49.40	24.55
	10/21/97	26.55	49.40	22.85
	3/10/98	15.05	49.40	34.35
	6/6/98	18.71	49.40	30.69

9/30/98	23.45	49.40	25.95
12/30/98	24.27	49.40	25.13
3/13/99	19.42	49.40	29.98
9/29/99	25.01	49.40	24.39
12/29/99	25.65	49.40	23.75
3/18/00	17.48	49.40	31.92
7/18/00	23.19	49.40	26.21
9/26/00	24.39	49.40	25.01
12/28/00	24.77	49.40	24.63
3/30/01	21.93	49.40	27.47
10/5/01	25.58	49.40	23.82
3/28/02	20.74	49.40	28.66
3/31/03	22.72	49.40	26.68
6/19/03	23.17	49.40	26.23
9/30/03	25.35	49.40	24.05
2/10/04	22.44	49.40	26.96
6/30/04	24.67	49.40	24.73
9/14/04	27.89	49.40	21.51
3/29/06	18.84	49.40	30.56
6/24/06	20.57	49.40	28.83
9/30/06	23.53	49.40	25.87
12/11/06	22.78	49.40	26.29
03/16/07	nm	49.40	nm
06/10/7	24.36	49.40	25.04
09/14/07	25.92	49.40	23.48
12/14/07	26.22	49.40	23.18
03/12/08	22.40	49.40	27.00
06/11/08	24.97	49.40	24.43
09/05/08	26.44	49.40	22.96

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-2	2/10/95		50.02	29.62
	7/7/95		50.02	26.47
	8/10/95		50.02	25.40
	9/11/95		50.02	24.49
	10/2/95		50.02	23.94
	11/7/95		50.02	23.13
	12/8/95		50.02	22.55
	1/12/96		50.02	24.20
	2/12/96		50.02	29.03
	3/12/96		50.02	31.60
	4/13/96		50.02	29.25
	5/14/96		50.02	27.68

6/20/96		50.02	26.97
7/26/96		50.02	25.74
8/19/96		50.02	24.97
9/17/96		50.02	24.22
10/21/96		50.02	23.43
11/27/96		50.02	24.09
12/27/96		50.02	28.03
1/28/97		50.02	32.71
4/25/97		50.02	26.88
7/17/97		50.02	24.31
10/21/97		50.02	22.69
3/10/98		50.02	34.20
6/6/98		50.02	30.41
9/30/98		50.02	25.68
12/30/98		50.02	24.93
3/13/99		50.02	29.80
9/29/99		50.02	24.12
12/29/99		50.02	23.52
3/18/00		50.02	31.87
7/18/00		50.02	26.01
9/26/00		50.02	24.69
12/28/00		50.02	24.39
3/30/01		50.02	27.31
10/5/01		50.02	23.64
3/28/02		50.02	28.43
9/30/02		50.02	24.18
3/31/03		50.02	26.39
6/19/03		50.02	26.04
9/30/03		50.02	23.83
2/10/04		50.02	26.75
6/30/04		50.02	24.57
9/14/04		50.02	23.32
3/29/06	19.61	50.02	30.41
6/24/06	21.41	50.02	28.61
9/30/06	24.37	50.02	25.65
12/11/06	23.92	50.02	26.10
03/16/07	22.78	50.02	27.24
06/10/07	25.12	50.02	24.90
09/14/07	26.63	50.02	23.39
12/14/07	26.58	50.02	23.44
03/12/08	23.10	50.02	26.92
06/11/08	25.71	50.02	24.31
09/05/08	27.14	50.02	22.88

	.	Depth to	TOC	Groundwater
Well	Date	Groundwater	Elevation	Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-3	2/10/95		49.32	29.57
	7/7/95		49.32	26.50
	8/10/95		49.32	25.44
	9/11/95		49.32	24.54
	10/2/95		49.32	24.00
	11/7/95		49.32	23.21
	12/8/95		49.32	22.62
	1/12/96		49.32	24.25
	2/12/96		49.32	29.00
	3/12/96		49.32	31.67
	4/13/96		49.32	29.26
	5/14/96		49.32	27.71
	6/20/96		49.32	27.00
	7/26/96		49.32	25.67
	8/19/96		49.32	25.01
	9/17/96		49.32	24.27
	10/21/96		49.32	23.48
	11/27/96		49.32	24.13
	12/27/96		49.32	28.11
	1/28/97		49.32	32.78
	4/25/97		49.32	26.94
	7/17/97		49.32	24.37
	10/21/97		49.32	22.73
	3/10/98		49.32	34.13
	6/6/98		49.32	30.47
	9/30/98		49.32	25.75
	12/30/98		49.32	24.99
	3/13/99		49.32	29.83
	9/29/99		49.32	24.20
	12/29/99		49.32	23.60
	3/18/00		49.32	31.82
	7/18/00		49.32	26.04
	9/26/00		49.32	24.80
	12/28/00		49.32	24.45
	3/30/01		49.32	27.39
	10/5/01		49.32	23.70
	3/28/02		49.32	28.49
	9/30/02		49.32	24.12
	3/31/03		49.32	26.50
	6/19/03		49.32	26.03

9/30/03		49.32	23.82
2/10/04		49.32	26.79
6/30/04		49.32	24.59
9/14/04		49.32	21.39
3/29/06	18.87	49.32	30.45
6/24/06	22.65	49.32	26.67
9/30/06	24.49	49.32	24.83
12/11/06	23.03	49.32	26.29
03/16/07	21.97	49.32	27.35
06/10/07	24.28	49.32	25.04
09/14/07	25.75	49.32	23.57
12/14/07	25.96	49.32	23.36
03/12/08	22.31	49.32	27.01
06/11/08	24.80	49.32	24.52
09/05/08	26.23	49.32	23.09

Well Number	Date Recorded	Depth to Groundwater	TOC Elevation	Groundwater Elevation
		(feet)	(feet)	(feet)
MW-4	12/30/98		49.61	25.05
	3/13/99		49.61	29.89
	9/29/99		49.61	24.27
	12/29/99		49.61	23.64
	3/18/00		49.61	31.85
	12/28/00		49.61	24.52
	3/30/01		49.61	27.40
	10/5/01		49.61	23.77
	3/28/02		49.61	28.58
	9/30/02		49.61	24.32
	3/31/03		49.61	26.59
	6/19/03		49.61	26.16
	9/30/03		49.61	23.96
	9/14/04		49.61	21.45
	3/29/06	19.87	49.61	29.74
	6/24/06	22.86	49.61	26.75
	9/30/06	23.94	49.61	25.67
	12/11/06	23.36	49.61	26.25
	03/16/07	22.26	49.61	27.35
	06/10/07	24.60	49.61	25.01
	09/14/07	26.11	49.61	23.50
	12/14/07	26.39	49.61	23.22
	03/12/08	22.62	49.61	26.99
	06/11/08	25.19	49.61	24.42
	09/05/08	26.64	49.61	22.97

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-5	12/30/98		49.57	25.06
	3/13/99		49.57	29.93
	9/29/99		49.57	24.26
	3/18/00		49.57	23.64
	3/28/02		49.57	31.94
	09/14/07	Dry	49.57	n/a
	12/14/07	Dry	49.57	n/a
	06/11/08	Dry	49.57	n/a
	09/05/08	Dry	49.57	n/a

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-6	12/30/98		48.06	25.14
	3/13/99		48.06	29.97
	9/29/99		48.06	24.38
	12/29/99		48.06	23.75
	3/18/00		48.06	31.86
	7/18/00		48.06	26.22
	9/26/00		48.06	24.95
	12/28/00		48.06	24.61
	3/30/01		48.06	27.41
	10/5/01		48.06	23.82
	3/28/02		48.06	28.65
	9/30/02		48.06	24.41
	9/30/06	22.33	48.06	25.73
	09/14/07	24.58	48.06	23.48
	12/14/07	24.88	48.06	23.18
	03/12/08	21.03	48.06	27.03
	06/11/08	23.62	48.06	24.44
	09/05/08	25.10	48.06	22.96

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-8	12/30/98		49.35	25.14
	3/13/99		49.35	
	9/29/99		49.35	
	12/29/99		49.35	
	3/18/00		49.35	
	7/18/00		49.35	
	9/26/00		49.35	
	12/28/00		49.35	
	3/30/01		49.35	
	10/5/01		49.35	
	3/28/02		49.35	
	9/30/06	24.07	49.35	25.28
	09/14/07	26.12	49.35	23.23
	12/14/07	26.35	49.35	23.00
	03/12/08	22.65	49.35	26.70
	06/11/08	25.23	49.35	24.12
	09/05/08	26.62	49.35	22.73

Well	Date	Depth to Groundwater	TOC Elevation	Groundwater Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-9	12/30/98		48.77	24.79
	3/13/99		48.77	29.58
	9/29/99		48.77	24.05
	12/29/99		48.77	23.45
	3/18/00		48.77	31.46
	7/18/00		48.77	25.83
	9/26/00		48.77	24.61
	12/28/00		48.77	24.29
	3/30/01		48.77	27.12
	10/5/01		48.77	23.54
	3/28/02		48.77	28.32
	9/30/02		48.77	24.11
	3/31/03		48.77	26.33
	6/19/03		48.77	25.90
	9/30/03		48.77	23.77
	2/10/04		48.77	26.64
	6/30/04		48.77	24.22
	9/14/04		48.77	23.08
	3/29/06	16.74	48.77	32.03
	6/24/06	22.43	48.77	26.34
	9/30/06	23.40	48.77	25.37

12/11/06	22.78	48.77	25.99
03/16/07	21.76	48.77	27.01
09/14/07	25.50	48.77	23.27
12/14/07	25.83	48.77	22.94
03/12/08	22.08	48.77	26.69
06/11/08	24.61	48.77	24.16
09/05/08	26.04	48.77	22.73

Well Number	Date Recorded	Depth to Groundwater	TOC Elevation	Groundwater Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-10	12/30/98		49.93	24.78
	3/13/99		49.93	29.31
	9/29/99		49.93	23.80
	12/29/99		49.93	23.23
	3/18/00		49.93	31.26
	7/18/00		49.93	25.55
	9/26/00		49.93	24.34
	12/28/00		49.93	24.03
	3/30/01		49.93	26.79
	10/5/01		49.93	23.33
	3/28/02		49.93	28.06
	9/30/02		49.93	23.88
	3/31/03		49.93	26.06
	6/19/03		49.93	25.65
	9/30/03		49.93	23.56
	2/10/04		49.93	26.39
	6/30/04		49.93	24.22
	9/14/04		49.93	23.08
	3/29/06	20.18	49.93	29.75
	6/24/06	23.87	49.93	26.06
	9/30/06	24.80	49.93	25.13
	03/16/07	23.09	49.93	26.84
	09/14/07	26.87	49.93	23.06
	12/14/07	27.14	49.93	22.79
	03/12/08	23.48	49.93	26.45
	06/11/08	25.98	49.93	23.95
	09/05/08	27.38	49.93	22.55

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-11	12/30/98		47.93	24.78
	3/13/99		47.93	29.56
	9/29/99		47.93	24.03

12/2	.9/99	47.93	23.43
3/18	8/00	47.93	31.38
7/13	8/00	47.93	25.81
9/20	6/00	47.93	24.58
12/2	28/00	47.93	24.26
3/30	0/01	47.93	27.03
10/:	5/01	47.93	23.52
3/28	8/02	47.93	28.31
9/30	0/02	47.93	24.09
9/30	0/06 22.58	47.93	25.35
09/1	4/07 24.72	2 47.93	25.21
12/1	4/07 25.00	47.93	22.93
06/1	1/08 23.81	47.93	24.12
09/0	05/08 25.23	47.93	22.70

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-12	12/30/98	(1661)	48.76	24.78
14144-12	3/13/99		48.76	29.56
	9/29/99		48.76	24.03
	12/29/99		48.76	23.43
	3/18/00		48.76	31.38
	7/18/00		48.76	25.81
	9/26/00		48.76	24.58
	12/28/00		48.76	24.26
	3/30/01		48.76	27.03
	10/5/01		48.76	23.52
	3/28/02		48.76	28.31
	9/30/02		48.76	24.09
	9/30/06	22.58	48.76	26.18
	12/11/06	23.88	48.76	24.88
	03/16/07	21.77	48.76	26.99
	06/10/07	24.06	48.76	24.70
	09/14/07	Not available	48.76	nc
	12/14/07	25.77	48.76	22.99
	03/12/08	Not available		
	06/11/08	24.60	48.76	24.16
	09/05/08	25.97	48.76	22.79

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-13	12/30/98		unknown	24.78
	3/13/99			29.56
	9/29/99			24.03
	12/29/99			23.43
	3/18/00			31.38
	7/18/00			25.81
	9/26/00			24.58
	12/28/00			24.26
	3/30/01			27.03
	10/5/01			23.52
	3/28/02			28.31
	9/30/02			24.09
	9/30/06	22.58		
	12/11/06	25.33		
	03/16/07	23.00		
	06/10/07	25.50		
	09/14/07	26.85	nm	nc
	12/14/07	27.11	unknown	nc
	03/12/08	23.50	nm	nc
	06/11/08	26.02	nm	nc
	09/05/08	27.29	nm	nc

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-14	12/30/98		unknown	24.78
	3/13/99			29.56
	9/29/99			24.03
	12/29/99			23.43
	3/18/00			31.38
	7/18/00			25.81
	9/26/00			24.58
	12/28/00			24.26
	3/30/01			27.03
	10/5/01			23.52
	3/28/02			28.31
	9/30/02			24.09
	9/30/06	22.58		
	12/11/06	24.90		
	03/16/07	22.67		
	06/10/07	25.11		
	09/14/07	26.56	nm	nc

12/14/07	26.80	unknown	nc
03/1/08	23.03	nm	nc
06/11/08	25.69	nm	nc
09/05/08	27.04	nm	nc

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-1A	12/30/98		48.24	24.64
	3/13/99		48.24	29.39
	9/29/99		48.24	23.89
	12/29/99		48.24	23.29
	3/18/00		48.24	31.25
	7/18/00		48.24	25.64
	9/26/00		48.24	24.48
	12/28/00		48.24	24.13
	3/30/01		48.24	27.02
	10/5/01		48.24	23.38
	3/28/02		48.24	28.14
	9/30/02		48.24	23.96
	9/30/06	23.03	48.24	25.21
	09/14/07	25.13	48.24	23.11
	12/14/07	25.43	48.24	22.81
	03/12/08	21.75	48.24	26.49
	06/11/08	24.24	48.24	24.00
	09/05/08	25.62	48.24	22.62

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
141 Farrelly	03/18/00	17.90	48.76	30.86
	09/26/00	24.66	48.76	24.10
	03/30/01	22.25	48.76	26.51
	09/30/02	25.34	48.76	23.42
	12/21/02	20.07	48.76	28.69
	06/19/03	23.55	48.76	25.21
	09/14/04	26.12	48.76	22.64
	03/16/07	22.28	48.76	26.48

09/14/07	25.98	48.76	22.78
3/12/08	Not available	48.76	Nm
06/11/08	Not Available	48.76	nm
09/05/08	26.48	48.76	22.28

Table 4 Current Quarter Groundwater Analytical Data September 5, 2008

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)	MtBE (µg/l)
MW-1	9/5/08	110,000	1,000	11,000	4,200	21,000	<250
MW-2	9/5/08	10,000	1,000	49	120	120	<100
MW-3	9/5/08	6,300	7.6	82	92	290	<5
MW-4	9/5/08	12,000	1,400	110	960	840	<300
MW-6	9/5/08	84	0.92	0.76	1.7	3.5	<5
MW-8	9/5/08	1,800	1.9	30	5.0	4.0	<25
MW-9	9/5/08	3,800	2.5	40	6.1	2.8	<100
MW-10	9/5/08	8,400	120	12	18	16	<250
MW-11	9/5/08	150	0.93	0.60	1.6	2.5	<5
MW-12	9/5/08	5,000	7.3	15	12	5.9	<25
MW-13	9/5/08	78	< 0.5	0.60	0.98	2.1	<5
MW-14	9/5/08	95	< 0.5	1.3	0.61	2.3	<5
MW-1A	9/5/08	1,900	2.4	14	10	5.4	<5
141Farrelly	9/5/08	ND<50	< 0.5	< 0.5	< 0.5	,0.5	<5

Table 5
Cumulative Summary of Groundwater Analytical Data

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-1	12/31/90	51,000	2,200	1,200	< 0.5	760
	1/6/95	110,000	13,000	15,000	4,800	13,000
	1/6/95	580,000	29,000	41,000	17,000	43,000
	7/6/95	49,000	8,000	17,000	1,900	9,700
	10/2/95	120,000	16,000	36,000	3,300	17,000
	10/2/95	160,000	20,000	47,000	5,000	23,000
	1/12/96	1,100,000	11,000	18,000	15,000	51,000

1/12/96	98,000	2,100	4,600	2,500	10,000
4/13/96	53,000	1,300	2,900	2,100	10,000
4/13/96	58,000	820	3,600	2,800	12,000
7/26/96	91,000	2,600	7,200	2,900	14,000
7/26/96	67,000	2,300	5,500	2,500	11,000
10/21/96	210,000	4,800	17,000	2,300	15,000
10/21/96	210,000	5,400	18,000	2,600	11,000
1/28/97	120,000	5,600	15,000	2,100	11,000
1/28/97	130,000	5,500	15,000	2,300	12,000
4/25/97	180,000	6,900	20,000	2,600	13,000
4/25/97	170,000	6,500	20,000	2,500	13,000
7/17/97	220,000	8,300	41,000	2,700	16,000
10/21/97	240,000	9,400	33,000	3,300	22,000
3/10/98	120,000	11,000	46,000	3,700	21,000
6/6/98	110,000	7,600	32,000	4,800	23,000
9/30/98	140,000	5,800	29,000	3,500	18,000
12/30/98	78,000	5,200	24,000	3,200	19,000
3/23/99	250,000	8,000	43,000	5,200	27,000
9/29/99	140,000	6,100	35,000	5,400	27,000
3/18/00	120,000	5,100	33,000	4,600	24,000
3/20/01	100,000	3,600	41,000	4,700	25,000
3/28/02	100,000	2,800	24,000	5,400	28,900
3/31/03	100,000	2,200	19,000	4,900	21,000
3/31/04	100,000	2,100	21,000	6,200	36,000
9/14/04	160,000	1,800	16,000	5,500	30,000
3/29/06	69,000	1,400	16,000	4,900	28,000
09/30/06	120,000	1,400	13,000	5,200	29,000
09/14/07	92,000	1,000	9,400	4,300	23,000
09/05/08	110,000	1,000	11,000	4,200	21,000

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-2	1/6/95	980,000	9,400	5,600	19,000	42,000
	7/6/95	71,000	5,300	1,800	6,100	9,000
	10/2/95	40,000	2,900	200	2,800	3,600
	1/12/96	260,000	2,600	2,200	6,300	7,800
	4/13/96	30,000	1,900	370	2,300	2,400
	7/26/96	180,000	1,400	640	2,100	5,000
	10/21/96	62,000	2,100	< 0.5	2,100	2,700

1/2	28/97	46,000	1,500	94	1,800	2,000
4/2	25/97	23,000	790	26	820	730
7/1	17/97	95,000	2,200	< 0.5	3,100	4,300
10/	21/97	31,000	2,000	< 0.5	2,100	1,900
3/1	10/98	19,000	730	44	820	1,000
6/	6/98	16,000	670	1,100	510	1,200
9/3	30/98	24,000	600	77	680	580
12/	30/98	9,300	510	96	450	480
3/2	23/99	5,700	580	9.4	400	280
9/2	29/99	17,000	880	240	830	1,000
12/	29/99	11,000	800	11	860	780
3/1	18/00	11,000	790	14	520	450
7/1	18/00	10,000	560	27	630	530
9/2	26/00	6,800	450	7.4	290	200
12/	28/00	12,000	540	30	420	330
3/2	20/01	3,500	230	<10	<10	<10
3/2	28/02	7,000	570	16	170	71
3/3	31/03	5,000	620	<12.5	71	<25
3/3	31/04	8,200	500	<12.5	65	<25
9/1	14/04	9,000	560	<13	57	<25
3/2	29/06	5,200	1,400	<20	52	<20
9/3	30/06	4,800	900	64	22	110
09/	14/07	11,000	2,200	53	72	150
09/	05/08	10,000	1,000	49	120	120

Well Number	Date Sampled	TPHg (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-3	1/6/95	740,000	11,000	2,300	8,300	28,000
	7/6/95	86,000	12,000	8,600	4,900	19,000
	10/2/95	100,000	15,000	11,000	6,000	20,000
	1/12/96	84,000	6,500	4,100	3,200	12,000
	4/13/96	48,000	7,600	3,600	2,800	9,400
	7/26/96	62,000	6,400	3,100	3,000	11,000
	10/21/96	110,000	5,400	2,400	2,500	9,800
	1/28/97	130,000	5,500	15,000	2,300	12,000
	4/25/97	180,000	6,900	20,000	2,600	13,000
	7/17/97	69,000	5,100	1,100	1,800	8,600
	10/21/97	58,000	4,300	1,300	2,100	8,000
	3/10/98	25,000	3,000	1,300	1,100	3,700
	6/6/98	52,000	4,400	1,900	2,300	6,900
	9/30/98	42,000	4,300	1,400	1,800	6,600
	12/30/98	34,000	4,200	770	2,300	9,000

3/23/99	44,000	3,500	1,000	1,700	5,200
9/29/99	39,000	6,000	840	2,400	8,100
12/29/99	39,000	4,600	790	2,400	8,100
3/18/00	21,000	3,100	550	1,400	4,100
7/18/00	30,000	5,000	950	2,000	5,700
9/26/00	36,000	5,300	640	2,400	9,900
12/28/00	33,000	4,700	450	2,100	6,400
3/20/01	21,000	2,000	260	570	3,000
3/31/03	25,000	3,200	280	1,600	4,200
3/31/04	11,000	1,000	940	550	1,900
9/14/04	42,000	3,600	190	2,200	4,800
3/29/06	7,200	180	17	460	680
9/30/06	7,100	130	94	500	820
09/14/07	6,700	16	44	200	400
09/05/08	6,300	7.6	82	92	290

Well Number	Date Sampled	TPHg (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-4	12/30/98	12,000	1,200	1,100	290	1,400
	3/23/99	89,000	5,900	8,700	2,000	9,200
	9/29/99	48,000	5,300	6,800	1,700	7,700
	3/18/00	44,000	4,500	7,500	2,200	11,000
	3/20/01	10,000	700	620	<10	1,900
	3/28/02	30,000	3,700	3,100	1,100	4,100
	3/31/03	25,000	2,000	2,100	820	2,900
	3/31/04	24,000	2,500	200	1,400	2,800
	9/14/04	14,000	760	550	430	1,600
	3/29/06	17,000	2,000	1,200	910	2,400
	9/30/06	4,000	440	120	240	360
	9/14/07	10,000	1,300	96	440	560
	9/05/08	12,000	1,400	110	960	840

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-5	12/30/98	170	1.1	< 0.5	< 0.5	4.8
	3/22/99	470	3.8	0.51	2.0	< 0.5
	9/29/99	1,200	13	4.2	2.7	4.2
	3/18/00	660	5.5	0.62	1.6	1.7
	3/29/06	190	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/06	Dry				

9/14/07	Dry	 	
9/05/08	Dry		

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-6	12/30/98	400	1.0	< 0.5	< 0.5	4.8
	3/22/99	390	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/99	330	1.8	1.4	1.5	< 0.5
	3/18/00	200	1.3	< 0.5	< 0.5	< 0.5
	9/26/00	240	1.5	< 0.5	< 0.5	< 0.5
	3/20/01	160	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	88	.89	< 0.5	< 0.5	< 0.5
	3/29/06	NS	NS	NS	NS	NS
	9/30/06	280	5.5	24	14	69
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/05/08	84	0.92	0.76	1.7	3.5

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-8	12/30/98	2,200	70	0.94	26	15
	3/23/99	2,300	34	1.1	15	13
	9/30/99	8,800	140	< 50	53	< 50
	12/29/99	1,900	64	1.0	22	23
	3/18/00	1,400	36	< 0.5	12	9.3
	7/18/00	3,000	67	9.8	38	38
	9/26/00	1,200	24	3.0	24	15
	12/28/00	1,200	47	3.7	17	18
	3/20/01	1,300	7.8	<2.5	< 2.5	14
	10/5/01	1,800	28	<2.5	20	23
	3/28/02	1,100	12	1.7	11	10.8
	9/30/02	1,400	15	24	32	22
	9/30/06	760	4.9	31	13	64
	03/16/07	370	< 0.5	8.1	0.52	0.94
	09/14/07	1,300	1.3	20	3.0	1.6
	03/12/08	520	1.4	11	3.9	5.6
	09/05/08	1,800	1.9	30	5.0	4.0

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-9	12/30/98	25,000	23	<10	180	620
	3/23/99	27,000	35	< 20	600	920
	9/30/99	42,000	140	130	1,000	1,700
	12/29/99	1,100,000	1,200	1,300	4,300	8,700
	3/18/00	17,000	89	46	10	600
	7/18/00	12,000	39	8.2	540	760
	9/26/00	11,000	19	<5	470	610
	12/28/00	22,000	100	<100	610	770
	3/20/01	8,200	40	<10	14	210
	10/5/01	77,000	<100	110	780	850
	3/28/02	11,000	34	6.1	220	180
	9/30/02	34,000	<125	140	240	370
	3/31/03	6,200	<12.5	<12.5	130	87
	9/30/03	9,700	52	<25	160	87
	9/14/04	9,500	48	<25	93	< 50
	3/29/06	6,200	< 0.5	< 0.5	57	11
	9/30/06	2,200	3.7	31	37	40
	3/16/07	3,200	2.2	37	18	2.9
	9/14/07	2,600	1.4	28	13	3.2
	03/12/08	2,800	2.3	32	12	5.3
	09/05/08	3,800	2.5	40	6.1	2.8

Well Number	Date Sampled	TPHg (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-10	12/30/98	6,900	130	19	140	210
	3/23/99	6,600	150	33	240	170
	9/30/99	9,300	60	38	280	150
	12/29/99	5,800	87	10	420	180
	3/18/00	3,800	180	11	220	120
	7/18/00	9,100	120	33	210	130
	9/26/00	4,500	22	8.8	1.3	18
	12/28/00	3,900	55	13	98	38
	3/20/01	4,500	48	6.0	<5	23
	10/5/01	5,200	70	28	41	30
	3/28/02	7,400	45	20	210	66
	9/30/02	670	54	5.9	76	23
	3/31/03	5,700	31	38	67	27
	9/30/03	7,400	61	< 50	< 50	<100
	9/14/04	9,100	47	<25	51	< 50

3/29/06	6,800	140	18	270	160
9/30/06	5,700	61	30	78	120
3/16/07	10,000	71	15	46	25
9/14/07	5,800	55	18	22	15
03/12/08	9,300	240	23	48	37
09/05/08	8,400	120	12	18	16

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-11	12/30/98	80	< 0.5	< 0.5	0.93	1.6
	3/23/99	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/99	94	< 0.5	< 0.5	< 0.5	< 0.5
	3/18/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	3/20/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	< 50	< 0.5	< 0.5	< 0.5	<1.5
	9/30/06	160	1.8	12	7.6	40
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	9/05/08	150	0.93	0.60	1.6	2.5

Well Number	Date Sampled	TPHg (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-12	3/20/01	4,100	28	6.2	<5	16
	6/29/01	4,200	26	25	19	29
	12/21/01	5,300	9.7	< 2.5	41	14
	3/28/02	4,900	20	< 2.5	69	23
	6/28/02	2,600	29	<12.5	30	<25
	9/30/02	700	16	4.9	19	9.8
	09/30/06	2,100	6.2	15	16	38
	12/11/06	5,500	13	24	16	23
	3/16/07	4,900	11	24	16	8.5
	6/10/07	2,600	<2.5	<2.5	13	9.5
	9/14/07	not	available			
	03/12/08	not	available			
	06/11/08	6,200	11	21	26	8.1
	09/05/08	5,000	7.3	15	12	5.9

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-13	3/20/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	6/29/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	10/5/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	12/21/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	< 50	< 0.5	< 0.5	< 0.5	<1.5
	6/28/02	< 50	< 0.5	< 0.5	< 0.5	<1.0
	9/30/02	< 50	< 0.5	< 0.5	< 0.5	<1.0
	12/21/02	< 50	< 0.5	< 0.5	< 0.5	<1.0
	09/30/06	170	2.1	13	8.1	43
	12/11/06	110	4.6	6.5	4.6	17
	3/16/07	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	6/10/07	54	0.80	0.84	1.3	5.4
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/14/07	ND<50	0.76	ND<0.5	2.3	2.6
	03/12/08	ND<50	ND<0.5	ND<0.5	0.66	2.2
	06/11/08	120	0.58	0.97	1.1	2.0
	09/05/08	78	ND<0.5	0.60	0.98	2.1

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-14	3/20/01	200	< 0.5	< 0.5	< 0.5	< 0.5
	6/29/01	660	< 0.5	< 0.5	< 0.5	4.6
	10/5/01	770	1.7	1.5	0.91	8.3
	12/21/01	1,500	3.1	13	1.9	22
	3/28/02	390	1.7	< 0.5	< 0.5	0.74
	6/28/02	120	< 0.5	< 0.5	< 0.5	<1
	9/30/02	210	< 0.5	1.7	< 0.5	1.1
	12/21/02	53	< 0.5	< 0.5	< 0.5	<1.0
	09/30/06	210	2.5	15	9.1	48
	12/11/06	190	6.7	9.9	5.4	19
	3/16/07	< 50	< 0.5	1.1	< 0.5	< 0.5
	6/10/07	73	1.1	1.3	1.8	7.2
	9/14/07	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	12/14/07	69	1.1	0.57	3.5	4.5
	03/12/08	110	0.61	1.2	1.2	3.6
	06/11/08	52	< 0.5	0.68	< 0.5	1.0
	09/05/08	95	ND<0.5	1.3	0.61	2.3

Well Number	Date Sampled	TPHg (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-1A	5/30/97	12,000	18	8.7	90	540
	12/30/98	51	< 0.5	< 0.5	< 0.5	< 0.5
	3/23/99	1,800	4.0	< 0.5	3.0	7.5
	3/23/99	2,200	10	0.52	3.1	7.1
	9/30/99	13,000	63	26	30	72
	3/8/00	6,100	36	<5	9.7	45
	9/26/00	11,000	14	<5	65	150
	3/20/01	4,800	30	6.0	<5	7.0
	10/5/01	15,000	76	41	36	140
	3/28/02	9,300	35	<12.5	17	32
	9/30/02	23,000	< 50	63	77	230
	9/30/06	2,500	4.1	25	22	49
	3/16/07	1,800	1.8	17	6.4	4.4
	9/14/07	1,500	1.1	15	2.8	1.8
	03/12/08	1,200	2.1	12	5.0	3.6
	09/05/08	1,900	2.4	14	10	5.4

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
141 Farrelly	4/6/96	<50	<0.5	< 0.5	< 0.5	< 0.5
	10/2/99	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	3/18/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	7/13/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	12/29/00	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	12/21/01	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/02	< 50	< 0.5	< 0.5	< 0.5	<1.0
	12/21/02	< 50	< 0.5	< 0.5	< 0.5	<1.0
	6/19/03	< 50	< 0.5	< 0.5	< 0.5	<1.0
	9/14/04	< 50	< 0.5	< 0.5	< 0.5	<1.0
	3/16/07	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	9/14/07	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	9/5/08	< 50	< 0.5	< 0.5	< 0.5	< 0.5

Well Sampling Reports

(415) 665-6181

WELL: MW-1

Well Purge Method: Submersible Pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 26.24

Notes: No obvious odor, DTW only, no sample

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	32.44	ft btoc
Depth to Water:	26.44	ft btoc
Height of Water:	6.00	ft
Three Well Volumes:	3.06	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	%	Depth [ft]
	0	Pre-Purge	nm	nm	nm	nm	nm	26.44		na
	1	Purging	nm	nm	6.78	nm	68.1	nm		na
	2	Purging	nm	nm	6.63	nm	66.8	nm		na
	3	Purging	nm	nm	6.63	nm	66.8	nm		na
	Total 3	Collect Sample	nm	nm	nm	nm	nm	26.24	99.69%	na

WELL: MW-2

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 27.16

Notes: Strong petroleum odor. No sample, DTW only

	I	
Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.25	ft btoc
Depth to Water:	27.14	ft btoc
Height of Water:	6.11	ft
Three Well Volumes:	3.12	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	%	Depth [ft]
	0	Pre-Purge	nm	nm	nm	nm	nm	27.14		na
	1	Purging	nm	nm	6.71	nm	66.7	nm		na
	2	Purging	nm	nm	6.73	nm	65.9	nm		na
	3	Purging	nm	nm	6.73	nm	65.9	nm		na
	Total 3.0	Collect Sample	nm	nm	nm	nm	nm	27.16	99.67%	na

WELL: MW-3

Well Purge Method: Disposable Bailer Sample Collection Method: Disposable Bailer Sample Collection Depth: 26.24

Note: Strong TPH odor present

No sample, DTW only

Three Well Volumes:	4.44	gal
Height of Water:	8.71	ft
Depth to Water:	26.23	ft btoc
Total Depth of Well:	34.94	ft btoc
Casing Diameter:	2	inches
Well Screen Interval:	-	ft bgs

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	%	Depth [ft]
	0	Pre-Purge	nm	nm	nm	nm	nm	26.23		na
	1	Purging	nm	nm	7.00	nm	67.6	nm		na
	2	Purging	nm	nm	7.00	nm	67.4	nm		na
	4	Purging	nm	nm	7.00	nm	67.4	nm		na
	Total 5.0	Collect Sample	nm	nm	nm	nm	nm	26.24	99.89%	na

WELL: MW-4

Well Purge Method: Disposable Bailer
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 26.66

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	34.53	ft btoc
Depth to Water:	26.64	ft btoc
Height of Water:	7.89	ft
Three Well Volumes:	4.02	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ppm	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
9/5/2008	0- Static	Pre-Purge	nm	nm	nm	nm	nm	26.64		na
	1	Purging	nm	nm	6.45	nm	66.7	nm		na
	2	Purging	nm	nm	6.55	nm	66.2	nm		na
	4	Purging	nm	nm	6.67	nm	66.0	nm		na
	Total 4.0	Collect Sample	nm	nm	nm	nm	nm	26.66	100.12%	na

WELL: MW-5

Well Purge Method: Disposable Bailer
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 0.00

Dry

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	21.62	ft btoc
Depth to Water:	Dry	ft btoc
Height of Water:	n/a	ft
Three Well Volumes:	0.00	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/5/2008	0- Static	Pre-Purge	nm	nm	nm	nm	nm	Dry		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
	nm	Collect Sample	nm	nm	nm	nm	nm		Dry	na

WELL: MW-6

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 25.12

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	31.29	ft btoc
Depth to Water:	25.10	ft btoc
Height of Water:	6.19	ft
Three Well Volumes:	3.16	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ppm	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0	nm	nm	nm	nm		nm	24.58		
	1	nm	nm	nm	6.78	nm	65.0	nm		
	2	nm	nm	nm	6.74	nm	65.4	nm		
	3	nm	nm	nm	6.75	nm	65.4	nm		
	Total 3.5	nm	nm	nm	nm	nm	nm	25.12	99.70%	

WELL: MW-8

Well Purge Method: Submersible Pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 26.64

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	29.69	ft btoc
Depth to Water:	26.62	ft btoc
Height of Water:	3.07	ft
Three Well Volumes:	1.57	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0	nm	nm	nm	nm	nm	nm	26.12	25	na
	1		nm	nm	6.66	nm	65.6	nm		na
	1		nm	nm	6.63	nm	65.8	nm		na
	2		nm	nm	6.67	nm	65.8	nm		na
	2.0		nm	nm	nm	nm	nm	26.64	99.44%	na

WELL: MW-9

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 26.06

Well Screen Interval:	1	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	32.97	ft btoc
Depth to Water:	26.04	ft btoc
Height of Water:	6.93	ft
Three Well Volumes:	3.53	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0	nm	nm	nm	nm	nm	nm	25.58		
	1	nm	nm	nm	6.91	nm	65.9	nm		
	2	nm	nm	nm	6.97	nm	66.0	nm		
	3	nm	nm	nm	6.96	nm	66.1	nm		
	Total 3.5	nm	nm	nm	nm	nm	nm	26.06	99.69%	

WELL: MW-10

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 27.37

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	37.87	ft btoc
Depth to Water:	27.38	ft btoc
Height of Water:	10.49	ft
Three Well Volumes:	5.35	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	27.38		na
	1	Purging	nm	nm	6.73	nm	65.2	nm		na
	3	Purging	nm	nm	6.71	nm	65.2	nm		na
•	5	Purging	nm	nm	6.70	nm	65.2	nm		na
	Total 5.5	Collect Sample	nm	nm	nm	nm	nm	27.37	100.06%	na

WELL: MW-11

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 25.24

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.70	ft btoc
Depth to Water:	25.23	ft btoc
Height of Water:	8.47	ft
Three Well Volumes:	4.32	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
9/5/2008	0- Static	Pre-Purge	nm	nm	nm	nm	nm	25.23		na
	1	Purging	nm	nm	6.67	nm	65.9	nm		na
	2	Purging	nm	nm	6.60	nm	65.4	nm		na
	4	Purging	nm	nm	6.58	nm	65.4	nm		na
	Total 4.5	Collect Sample	nm	nm	nm	nm	nm	25.24	100.00%	na

WELL: MW-12

Well Purge Method: Submersible pump Sample Collection Method: Disposable Bailer

Sample Collection Depth: na

Well Screen Interval:	1	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	38.10	ft btoc
Depth to Water:	25.97	ft btoc
Height of Water:	12.13	ft
Three Well Volumes:	6.19	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
9/5/2008	0- Static	Pre-Purge	nm	nm	nm	nm	nm	25.97		na
	2	Purging	nm	nm	6.79	nm	65.0	nm		na
	4	Purging	nm	nm	6.80	nm	65.0	nm		na
	6	Purging	nm	nm	6.80	nm	65.0	nm		na
<u> </u>	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	25.98	100.00%	na

WELL: 141 Farrelly Dr.

Well Purge Method: Disposable Bailer
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 26.48

Well Screen Interval:	-	ft bgs
Casing Diameter:	10	inches
Total Depth of Well:	65.00	ft btoc
Depth to Water:	26.48	ft btoc
Height of Water:	38.52	ft
Three Well Volumes:	176.80	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ppm	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0		nm	nm	nm	nm	nm	26.48		na
	1		nm	nm	7.10	nm	64.5			na
	2		nm	nm	7.11	nm	64.3			na
	3		nm	nm	7.09	nm	64.1			na
	Total 3.0		nm	nm	nm	nm	nm	26.48	100.00%	na

WELL: MW-13

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 27.28

Notes: No petroleum odor present.

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	37.47	ft btoc
Depth to Water:	27.29	ft btoc
Height of Water:	10.18	ft
Three Well Volumes:	5.19	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ppm	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
9/5/2008	0- Static	Pre-Purge	nm	nm	nm	nm	nm	27.29		na
	2	Purging	nm	nm	6.58	nm	65.4	nm		na
	4	Purging	nm	nm	6.59	nm	65.1	nm		na
	6	Purging	nm	nm	6.60	nm	65.0	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	27.28	100.37%	na

WELL: MW-14

Well Purge Method: Submersible pump Sample Collection Method: Disposable Bailer Sample Collection Depth: 27.04

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	30.43	ft btoc
Depth to Water:	27.04	ft btoc
Height of Water:	3.39	ft
Three Well Volumes:	1.73	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
9/5/2008	0- Static	Pre-Purge	nm	nm	nm	nm	nm	27.04		na
	1	Purging	nm	nm	6.66	nm	65.7	nm		na
	2	Purging	nm	nm	6.61	nm	65.7	nm		na
	3	Purging	nm	nm	6.61	nm	65.7	nm		na
<u> </u>	Total 3.0	Collect Sample	nm	nm	nm	nm	nm	27.04	100.00%	na

WELL: MW-1A

Well Purge Method: Submersible pump
Sample Collection Method: Disposable Bailer
Sample Collection Depth: 25.66

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.88	ft btoc
Depth to Water:	25.62	ft btoc
Height of Water:	8.26	ft
Three Well Volumes:	4.21	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	pН	Cond.	Temp	DTW	Recovery	Pump
09/05/08	Vol. [Gal]	Status	ррт	mV		uS	F	BTOC [ft]	Sample Depth	Depth [ft]
	0		nm	nm	nm	nm	nm	21.37		na
	2		nm	nm	6.81	nm	67.7			na
	4		nm	nm	6.76	nm	66.1			na
	5		nm	nm	6.76	nm	66.0			na
_	Total 5.0		nm	nm	nm	nm	nm	25.66	99.88%	na

Analytical Reports

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Groundwater Cleaners	Client Project ID: #301; German Autocraft	Date Sampled: 09/05/08
347 Frederick Street		Date Received: 09/05/08
San Francisco, CA 94117	Client Contact: Glenn Reierstad	Date Reported: 09/12/08
Suil Tunesco, Off 71117	Client P.O.:	Date Completed: 09/12/08

WorkOrder: 0809180

September 12, 2008

Dear	G	len	n	٠

Enclosed within are:

- 1) The results of the 14 analyzed samples from your project: #301; German Autocraft,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. 110 2*d AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (925) 798-1620 Fax: (925) 798-1622								UR OF R			OU	ND	TI	MI	Ε	F	RUS	Н	24) HR		EC 48 H	HR	2000) HR	5 DAY							
Report To: Glenn	STATE OF THE PARTY		В	ill To	Andrew Property	THE REAL PROPERTY.	122			-	-							-	A	nal	ysis	Rec	ues	t	Market Market Chris					C	ther	1	Comments
Company: Groun		ners																			2											T,	7114
347 F1	rederick Stre	et									8015)			E/B&F)				gene												Filter Samples			
San F	rancisco, CA	94117	I	E-Ma	iil: reierstad@msn.com						+			0 E/I				Com						(02	6					or Metals			
Tele: (415) 665-6	181				(415) 566-3556						8023	533		/ 552	0	(5)		1,510		9			12	760	/ 602				1 2	nalysis:			
Project #: 301			P	rojec	t Nar	ne:	G	EVW.	nan	A	who	CVV	£4	us Gas (602 / 8021	1.80		999	418	VO	80	rocl		picid			NA	0109	010				1	Yes / No
Project Location: 3015014th St. San Leandro, CA							+			9) 500	V 602	8015) asi	500	H)	ticid	, X.	des)	Hert	3	(SOC	48.7	187	187	6020								
Sampler Signatur	e:	our	stall		-			-						13 6	(EP)	15	Grea	carb	/ 802	1 Pes	ONI	estici	0	3	(SV	(PA	/ 200	7 200	/010				
		SAMI	PLING	100	ners	L	MA	TR	IX	P	RES	THO	ED	K TPH	ONLY (EPA 602 / 8021)	Motor	OH &	Hydro	/ 8010	081 (C	PCB's	(NP Pe	(Acidit	/ 8260	/ 8270	/8310	(200.7	(200.7	0.8 / 60				
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	HCI.	HNO	Other	MTBE/BTEX		TPH as Diesel / Motor Oil (8015)	Total Petroleum Oii & Grease (1664 / 5520	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 661 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aradors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidie Cl Herbieldes)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
MW-I		9/5		2	V	IX				1)	ZΧ	1		X																			
MW-2		1)	1	1					1			1																			
MW-3		1		17	17	11																											
Mw-4))	1	1)				1	17	T																					
MW-6		(1		1/					11	+		1		1	1		1	T		1					1		i	1	11	T	
mw-8				1	1	1	-		+	1			1	H	+-						1					T	T						
mw - 9		5		1	11	11				1	H	+	1	1	1				1	1	1	1	1		T		1	1		1			
mw-10		1		15	+	11	1			11	1	1	1	11		-			1		1	1					T						
mw - 11		1		1	1	†				-11	1	T	+	1/	1	-			1	1		T											
MW - 12				1	11	#	+			+	1	+	T	1	+-	1		-			1	1	1		1			1			TT		
Mw - 13)		1	1	#			-	+		1	+	1	1					1	T	T	1	1		T	Т					1	
mw-14		1	-	17	1	11	-		-	+	111	-		1	+		1		+	+	1		1		1		T	1		1		1	
MW-IA		 (1	1	+	-		-	+	$\langle + \rangle$	+	+	1	+	-	-	-	-	1	+	+	+	+	1	-	1	+	+	1			
-141 Forellay		11		15	1	11	-		7	-		1	+	V	,	+	-		+-	+	+	+	+	+	+	+	+		+	1		1	
Relinquished By:	rotal	Date:	Time:	Rec	eived i	By:			7	2		5		G	CE/t°	CO	NDI	TIO	N L	/		_					_	C	OMN	MEN	TS:		
Relinquished By:		Date: 9/5/ Daye:	Time:	14	eceived By: - Buy Vb eceived By:				DA	ECH PPR RES	LOF	IATI	TEI E CC N L	O IN ONT. AB_	LAB	ERS		MET	ALS		тн	ER				need t		port emailed?					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order:	: 08091	180	(Client(Code: G	CF				
			WriteOn	✓ EDF		Excel		Fax		✓ Email		Hard	Сору	Thir	dParty	☐ J-1	flag
Report to: Glenn Reierstad Email: Groundwater Cleaners cc: 347 Frederick Street PO: San Francisco, CA 94117 ProjectNo. 415-577-9383 FAX 415-566-3556			ierstad@ms 301; Germa			Gr 34	enn Rei oundwa 7 Frede ın Franc	ter Clorick St	reet		09/05/2	5 days /05/2008 /05/2008					
410 077 0000	7700 410 000 0000								Doc		Tanto	(See les	ط احمد	-law\			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	(See leg	8	9	10	11	12
0809180-001	MW-1		Water	9/5/2008		Α	Α										
0809180-002	MW-2		Water	9/5/2008		Α											1
0809180-003	MW-3		Water	9/5/2008		Α											
0809180-004	MW-4		Water	9/5/2008		Α											1
0809180-005	MW-6		Water	9/5/2008		Α											1
0809180-006	MW-8		Water	9/5/2008		Α											
0809180-007	MW-9		Water	9/5/2008		Α											1
0809180-008	MW-10		Water	9/5/2008		Α											1
0809180-009	MW-11		Water	9/5/2008		Α											1
0809180-010	MW-12		Water	9/5/2008		Α											1
0809180-011	MW-13		Water	9/5/2008		Α											<u> </u>
0809180-012	MW-14		Water	9/5/2008		Α											<u> </u>
0809180-013	MW-1A		Water	9/5/2008		Α											<u> </u>
0809180-014	141 Forellay		Water	9/5/2008		Α											
Test Legend:																	
1 G-MB1	TEX_W 2	PREDF REPO	ORT	3				4						5			
6	7			8				9						10			
11	12																
]	Prepai	red by:	Kimbe	rly Bur	ks

Comments:

Sample Receipt Checklist

Client Name:	Groundwater Cleaners	;			Date	e a	and Time Received:	9/5/2008 6	:52:39 PM
Project Name:	# 301; German Autocra	aft			Che	eck	list completed and re	eviewed by:	Kimberly Burks
WorkOrder N°:	0809180 Matrix	<u>Water</u>			Car	rrie	r: Rob Pringle (M	Al Courier)	
		Chain o	f Cu	stody (C	OC) Infor	ma	<u>ition</u>		
Chain of custody	present?	,	Yes	V	No 🗆				
Chain of custody	signed when relinquished ar	nd received?	Yes	V	No 🗆				
Chain of custody	agrees with sample labels?	,	Yes	✓	No 🗆				
Sample IDs noted	by Client on COC?	,	Yes	✓	No 🗆				
Date and Time of	collection noted by Client on C	COC?	Yes	✓	No 🗆				
Sampler's name r	noted on COC?	•	Yes	✓	No 🗆				
		San	nple	Receipt	Informati	ion	ļ		
Custody seals int	tact on shipping container/coo	oler?	Yes		No 🗆			NA 🔽	
Shipping containe	er/cooler in good condition?	,	Yes	V	No 🗆				
Samples in prope	er containers/bottles?	,	Yes	✓	No 🗆				
Sample containe	rs intact?	,	Yes	✓	No 🗆				
Sufficient sample	e volume for indicated test?	,	Yes	✓	No 🗆]			
	<u>s</u>	ample Preserv	atior	and Ho	old Time (F	HT)) Information		
All samples recei	ved within holding time?	,	Yes	✓	No 🗆]			
Container/Temp E	Blank temperature	(Coole	r Temp:	3.6°C			NA \square	
Water - VOA vial	ls have zero headspace / no	bubbles?	Yes	✓	No 🗆		No VOA vials subm	itted \square	
Sample labels ch	necked for correct preservation	on?	Yes	✓	No 🗌				
TTLC Metal - pH	acceptable upon receipt (pH<	2)?	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆				
		(Ice Type:	WE	TICE)				
* NOTE: If the "N	No" box is checked, see com	ments below.							
	=======		_==		=	_ =			======
Client contacted:		Date contacted	d:				Contacted	by:	
Comments:									

Groundwater Cleaners	Client Project ID: #301; German Autocraft	Date Sampled: 09/05/08
347 Frederick Street	Autocian	Date Received: 09/05/08
	Client Contact: Glenn Reierstad	Date Extracted: 09/09/08-09/10/08
San Francisco, CA 94117	Client P.O.:	Date Analyzed 09/09/08-09/10/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method SW5030B Analytical methods SW8021B/8015Cm Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS 001A MW-1 W 110,000,d1 ND<250 1000 11,000 4200 21,000 109 50 W 002A MW-210,000,d1 ND<100 1000 49 120 120 20 119 W 003A MW-3 6300,d1 ND 7.6 82 92 290 1 122 004A MW-4 W 12,000,d1 ND<300 1400 110 960 840 20 118 005A MW-6 W 84,d1 ND 0.92 0.76 1.7 3.5 1 105 006A MW-8 W 1800,d1 ND<25 1.9 30 5.0 4.0 1 124 007A MW-9 W 3800,d1 ND<100 2.5 1 112 40 6.1 2.8 008A MW-10 W 8400,d1 ND<250 120 12 18 16 10 116 MW-11 009A W 150,d1 ND 0.93 0.60 1.6 2.5 112 010A MW-12 5000,d1 ND<25 W 7.3 15 12 5.9 97 011A MW-13 W 78,d1 ND ND 0.60 0.98 2.1 102 ND 012A MW-14 W ND 1.3 0.61 1 102 95,d1 2.3 013A MW-1A W 1900,d1 ND 14 10 1 104 2.4 5.4 014A ND ND 141 Forellay ND ND ND ND Reporting Limit for DF = 1; W 50 5.0 0.5 0.5 0.5 0.5 μ g/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38037 WorkOrder: 0809180

EPA Method: SW8021B/8015Cm	Extrac	tion: SW	5030B						Spiked Sar	nple ID	: 0809145-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
7 thatyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	101	99.4	1.84	102	97.9	4.51	70 - 130	20	70 - 130	20
MTBE	ND	10	99.1	101	2.24	102	110	7.87	70 - 130	20	70 - 130	20
Benzene	ND	10	94.4	96.5	2.15	96.8	101	4.37	70 - 130	20	70 - 130	20
Toluene	ND	10	95.2	96.3	1.16	89.5	90.2	0.775	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	99.2	101	1.77	99.8	99.4	0.420	70 - 130	20	70 - 130	20
Xylenes	ND	30	109	110	1.00	99.4	93.5	6.07	70 - 130	20	70 - 130	20
%SS:	98	10	94	96	2.18	100	101	1.16	70 - 130	20	70 - 130	20

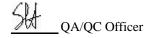
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38037 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0809180-014A	09/05/08	8 09/09/08	09/09/08 8:01 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Telepnone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38051 WorkOrder: 0809180

EPA Method: SW8021B/8015Cm	Extrac	ction: SW	5030B						Spiked Sar	nple ID	: 0809194-	005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	99.6	108	7.67	89.7	93.1	3.66	70 - 130	20	70 - 130	20
MTBE	ND	10	90.5	84.8	6.50	91.1	86	5.72	70 - 130	20	70 - 130	20
Benzene	ND	10	85.8	85.6	0.274	88.3	89	0.795	70 - 130	20	70 - 130	20
Toluene	ND	10	84.7	84.4	0.358	80.1	82.4	2.79	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	87	86.6	0.506	90.5	90.3	0.168	70 - 130	20	70 - 130	20
Xylenes	ND	30	86.7	85.1	1.87	86.7	88.1	1.64	70 - 130	20	70 - 130	20
%SS:	96	10	97	99	2.70	97	97	0	70 - 130	20	70 - 130	20

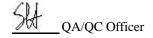
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38051 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809180-001A	09/05/08	3 09/09/08	09/09/08 6:43 AM	0809180-002A	09/05/08	09/09/08	09/09/08 7:50 AM
0809180-003A	09/05/08	3 09/09/08	09/09/08 2:31 AM	0809180-004A	09/05/08	09/09/08	09/09/08 8:56 AM
0809180-005A	09/05/08	3 09/10/08	09/10/08 4:40 AM	0809180-006A	09/05/08	09/09/08	09/09/08 10:34 AM
0809180-007A	09/05/08	3 09/09/08	09/09/08 6:01 AM	0809180-008A	09/05/08	09/09/08	09/09/08 8:31 AM
0809180-009A	09/05/08	3 09/09/08	09/09/08 6:31 AM	0809180-010A	09/05/08	09/10/08	09/10/08 12:14 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38063 WorkOrder: 0809180

EPA Method: SW8021B/8015Cm	Extrac	tion: SW	5030B						Spiked Sar	nple ID	: 0809209-	004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
7 thatyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	99.2	101	1.34	91.3	92.1	0.931	70 - 130	20	70 - 130	20
MTBE	ND	10	105	106	1.20	105	97.9	6.85	70 - 130	20	70 - 130	20
Benzene	ND	10	96.1	96.8	0.801	91.6	91.1	0.600	70 - 130	20	70 - 130	20
Toluene	ND	10	96.2	96.7	0.495	84.5	83.4	1.22	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	101	101	0	93.9	93.2	0.740	70 - 130	20	70 - 130	20
Xylenes	ND	30	112	113	0.350	89.7	91.3	1.76	70 - 130	20	70 - 130	20
%SS:	96	10	94	94	0	96	98	1.40	70 - 130	20	70 - 130	20

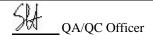
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38063 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809180-011A	09/05/08	3 09/09/08	09/09/08 7:01 AM	0809180-012A	09/05/08	09/09/08	09/09/08 7:31 AM
0809180-013A	09/05/08	3 09/09/08	09/09/08 1:41 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

