## RECEIVED

8:17 am, Apr 10, 2007

Alameda County Environmental Health

Quarterly Groundwater Monitoring Report-1st Quarter 2007

German Autocraft 301 E. 14<sup>th</sup> Street San Leandro, California

Global ID No. T0600100639 AC LOP Case # 2783

Prepared For

Mr. Seung Lee German Autocraft San Leandro, CA 95070

Prepared By



347 Frederick Street, San Francisco, California 94117 (415) 665-6181

Date of Report: April 3, 2007



347 Frederick Street, San Francisco, California 94117 (415) 665-6181

April 3, 2007

German Autocraft 301 E. 14<sup>th</sup> Street San Leandro, CA 94577

Attn: Mr. Seung Lee

Subject: <u>Quarterly Groundwater Monitoring Report—1<sup>st</sup> Quarter 2007</u>

German Autocraft, AC LOP Case # 2783 Global ID No. T0600100639

Dear Mr. Lee:

GWC is pleased to attach the First Quarter 2007, *Quarterly Groundwater Monitoring Report*, which includes the analytical results for groundwater samples collected in March of 2007. GWC plans to continue quarterly groundwater sampling in accordance with Alameda County Department of Environmental Health (DEH) requirements.

If you have any questions or require further information, please do not hesitate to call us at (415) 665-6181.

Sincerely,

Glenn Reierstad Project Manager

Cc: Ms. Donna Dragos, DEH Mr. Steven Plunkett, DEH

## CONTENTS

| 1.0 | SITE LOCATION AND BACKGROUND                     | 1   |
|-----|--------------------------------------------------|-----|
| 1.1 | Site Location and Description                    | 1   |
| 1.2 | Site Hydrogeologic Conditions                    |     |
| 1.3 | Project History—Site Investigation Background    | 1   |
| 1.4 | Field Activities—Current Reporting Period        |     |
| 2.0 | GROUNDWATER MONITORING RESULTS                   | 1   |
| 2.1 | Groundwater Elevation and Gradient Data          | 1   |
| 2.2 | Groundwater Sample Collection and Analysis       | 2   |
| 2.3 | Groundwater Sample Analytical Results            | 2   |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                  | . 2 |
| 3.1 | Conclusions                                      | 2   |
| 3.2 | Recommendations                                  | 3   |
| 4.0 | QUALITY ASSURANCE AND PROFESSIONAL CERTIFICATION |     |
| 4.1 | Quality Assurance                                |     |
| 4.2 | Professional Certification                       | . 3 |

## FIGURES

| Figure 1 | Site Location Map                       |
|----------|-----------------------------------------|
| Figure 2 | Site Plan and Well Location Map         |
| Figure 3 | Groundwater Elevation and Gradient      |
| Figure 4 | TPH as Gasoline Contours in Groundwater |
| Figure 5 | Benzene Contours in Groundwater         |

## TABLES

- Table 1Summary of Well Construction Details
- Table 2Current Quarter Groundwater Elevations
- Table 3Cumulative Summary of Groundwater Elevation Data
- Table 4Current Quarter Groundwater Analytical Data
- Table 5
   Cumulative Summary of Groundwater Sample Analytical Results

## APPENDICES

| Appendix A     | Groundwater Sample Collection Records           |
|----------------|-------------------------------------------------|
| A man and in D | Chain of Custody Decends and Laboratomy Analyti |

Appendix B Chain of Custody Records and Laboratory Analytical Reports

## 1.0 Site Location and Background

## 1.1 Site Location and Description

The site is located at 301 E. 14<sup>th</sup> Street in San Leandro, CA, in a high-density, mixed-use neighborhood of residential and small commercial buildings. Figure 1 shows the site location. E. 14<sup>th</sup> Street is a busy thoroughfare, running approximately 25 degrees west of north-south. The site is approximately 90' x 120' with an area of about 10,800 square feet. The current site use is as an automobile repair facility.

## 1.2 Site Hydrogeologic Conditions

The site is situated on mixed sediments about two miles east of San Francisco Bay. Site elevation is 48-50 feet above mean sea level, and groundwater elevation varies from 23-32 feet above mean sea level. Groundwater flow direction is typically W to WNW at a gradient of about 0.002 feet/ft. Figure 2 shows the general site layout and the locations of monitoring wells, both on-site and off-site.

## 1.3 Project History

The fuel leak was discovered and the gasoline storage tank was removed in October of 1990. A site assessment, including installation of three initial monitoring wells, was performed in 1995, and further assessment work was done in July of 1998, including installation of seven additional monitoring wells. In 2001, three more monitoring wells were installed. To date, certain wells have been monitored quarterly and others monitored annually to maintain a record of groundwater conditions. No active remediation has taken place since removal of the gasoline storage tank. Table 1 summarizes available well construction data.

## 1.4 Field Activities

Only wells MW-8, MW-9, MW-10, MW-12, MW-13, MW-14, MW-1A and 141 Farrelly were scheduled for sampling this quarter. Additional wells MW-2, MW-3 and MW-4 were sounded for Depth to Groundwater in order to provide a meaningful indication of groundwater flow direction.

## 2.0 Groundwater Monitoring Results

## 2.1 Groundwater Elevation and Gradient

Consistent with historical results, groundwater elevation was 26.48 to 27.35 feet above mean sea level, and the gradient was 0.002 ft/ft WNW. All monitored wells contained

water and recharged rapidly after purging. The site wells close to the former tank location (MW-2, -3 and -4) had noticeable hydrocarbon odors, but the off-site wells, except MW-9 and MW-10, were generally odor free. Table 2 presents groundwater elevation data for March 16, 2007, and Table 3 presents a cumulative summary of elevation data.

## 2.2 Groundwater Sample Collection and Analysis

This quarter's wells were monitored and sampled by experienced personnel in accord with standard practices. All samples were placed on ice and transported to a Statecertified analytical laboratory for analysis. Well purge water was stored on-site pending analysis and disposal. The Well Sampling Reports are attached as Appendix A.

## 2.3 Groundwater Sample Analytical Results

Five monitoring well samples tested positive for Petroleum Hydrocarbons as gasoline (TPHg) and Volatile Organic Compounds (BTEX), with a highest concentration of 10,000  $\mu$ g/L TPHg and 71  $\mu$ g/L Benzene at MW-10. The distribution of contaminant values generally confirmed the measured groundwater gradient. Table 4 presents groundwater analytical data for March 16, 2007, and Table 5 summarizes the historical groundwater analytical data.

## 3.0 Conclusions and Recommendations

## 3.1 Conclusions

All of the monitoring data are consistent with release of gasoline from a structurally unsound underground tank, and/or the associated fueling system. Concentrations of gasoline-related petroleum compounds are highest near the former tank location and directly down-gradient from that point. Concentrations drop off sharply with distance to the side from the prevailing groundwater flow direction. Significant concentrations of hydrocarbons have been carried off-site, directly down-gradient from the release point. The wells tested this quarter had somewhat mixed contaminant concentrations compared with historical values; MW-8, -9, -14 and -1A were on the low side; MW-10 and -12 were middle to high; and MW-13 and 141 Farrelly were clean like historic.

In 16 years since the removal of the underground storage tank, there has been some dissipation of the contaminants in the first few years, but there has been very little reduction in hydrocarbon concentrations in recent years at wells such as MW-1 and MW-4. GCI concludes that the contaminants have reached levels at which they are likely to remain for the foreseeable future in the absence of remedial action, though there will likely continue to be seasonal fluctuations in contaminant levels.

#### **3.2** Recommendations

Besides the DEH required monitoring of this case, GCI recommends a dual-phase Soil Vapor Extraction (SVE) test to assess the potential success of SVE as a remediation method for the core impact area at this site. Such a test may provide approximate cost data or may suggest the need to consider other technologies to remediate contaminants at the site. A five-day test is standard for such an assessment. GCI could provide a Work Plan for such a test, or for a more extensive test, that would likely reduce the persisting contaminants at the site. Off-site wells have significant access issues and would be unlikely to be useful for contaminant mass removal.

#### 4.0 Quality Assurance and Professional Certification

#### 4.1 Quality Assurance

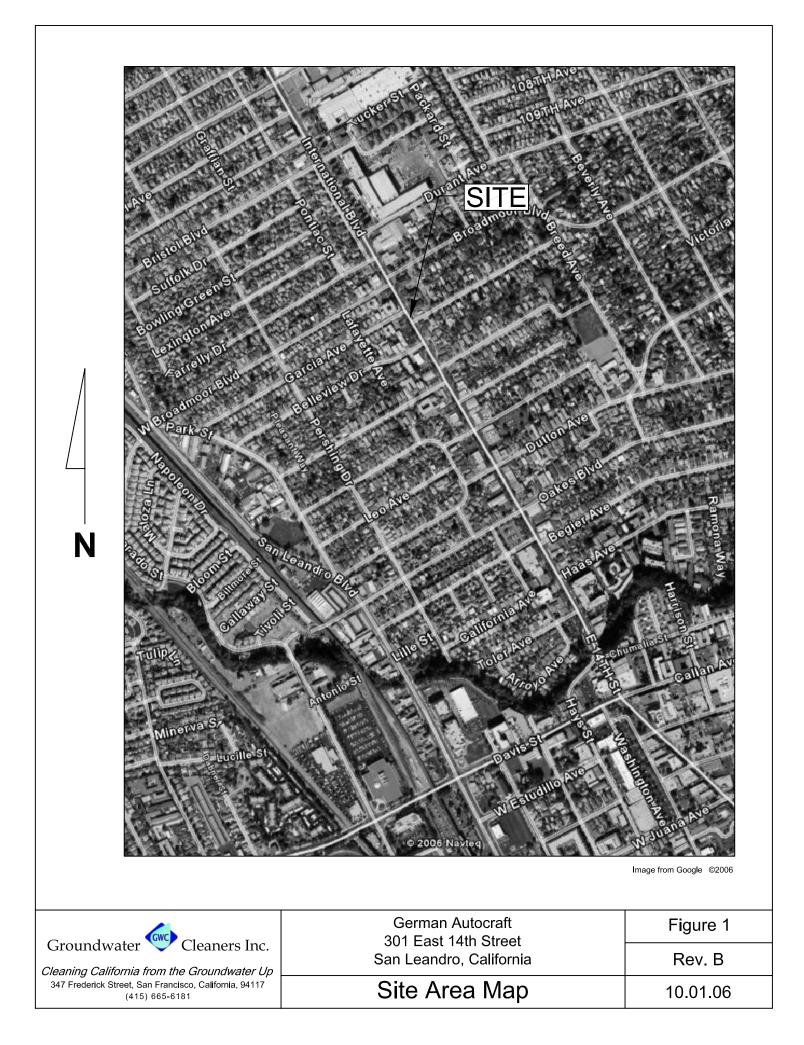
All sampling was performed by a staff technician, skilled and experienced with groundwater monitoring well sampling procedures. Samples were stored on ice and sent promptly to a State-certified analytical laboratory. The laboratory is audited by the State certification program for maintaining quality control procedures and for record keeping. The chain-of-custody records and certified laboratory analytical reports are attached as Appendix B.

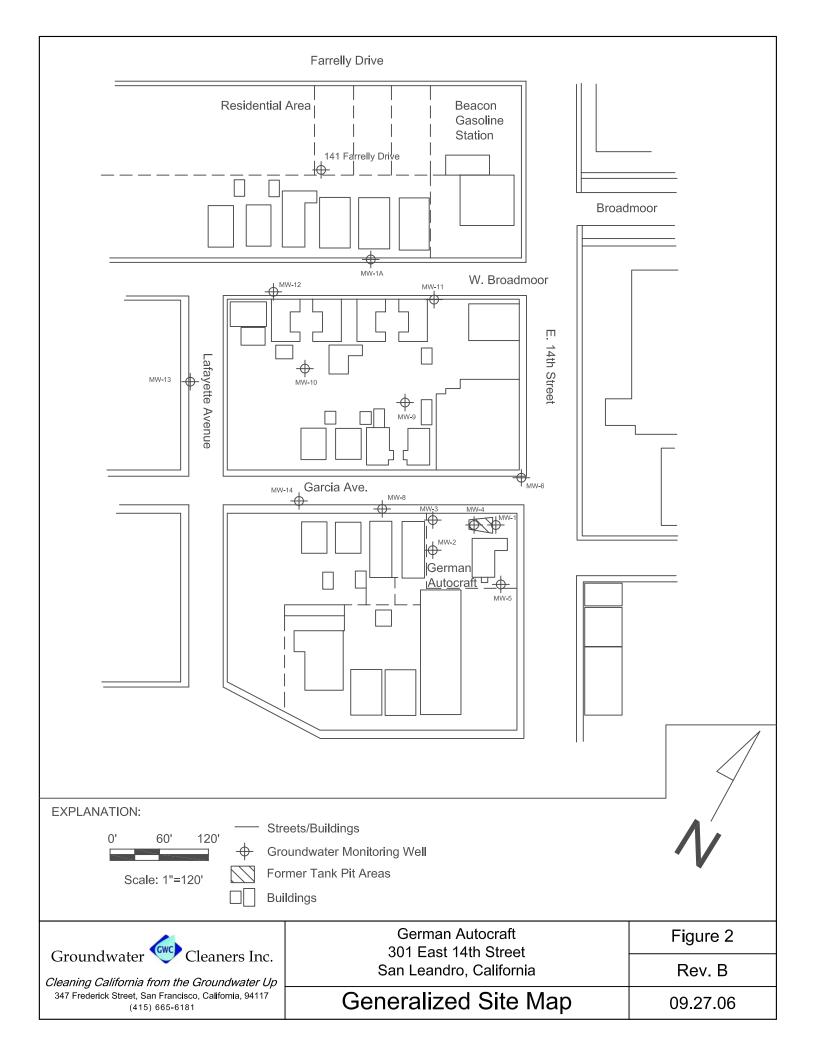
#### 4.2 **Professional Certification**

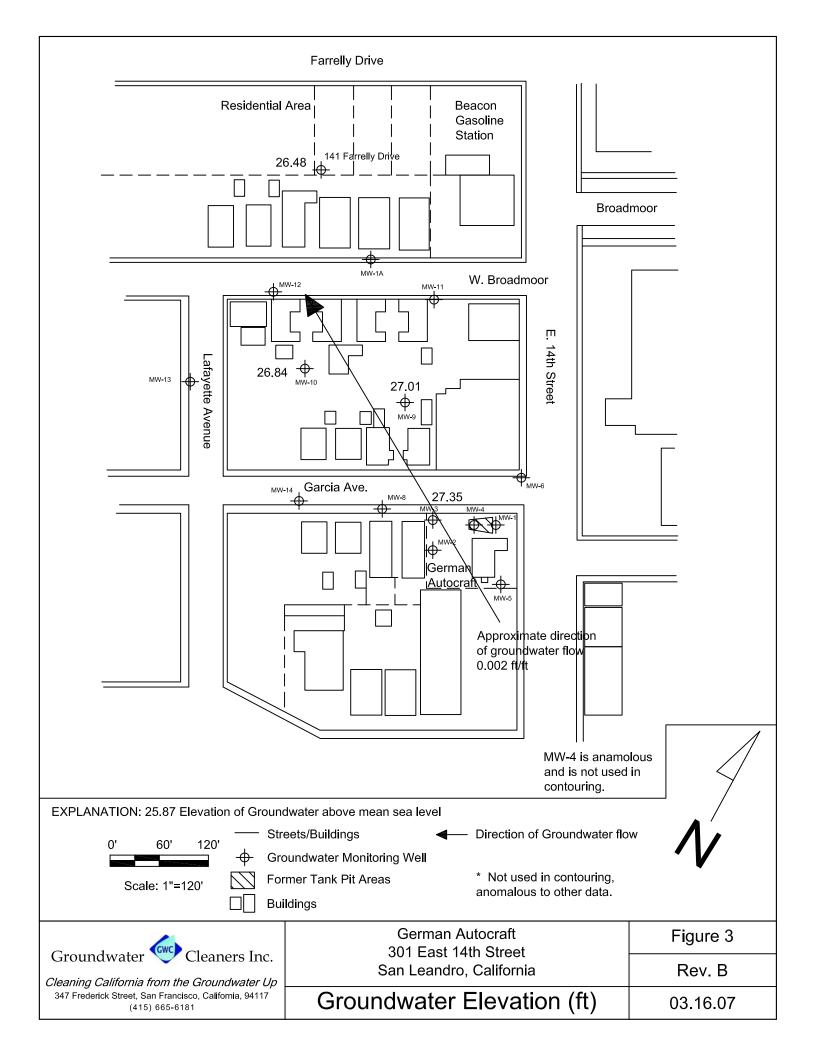
We declare, under penalty of perjury, that to the best of our knowledge, everything presented in this report is true and correct.

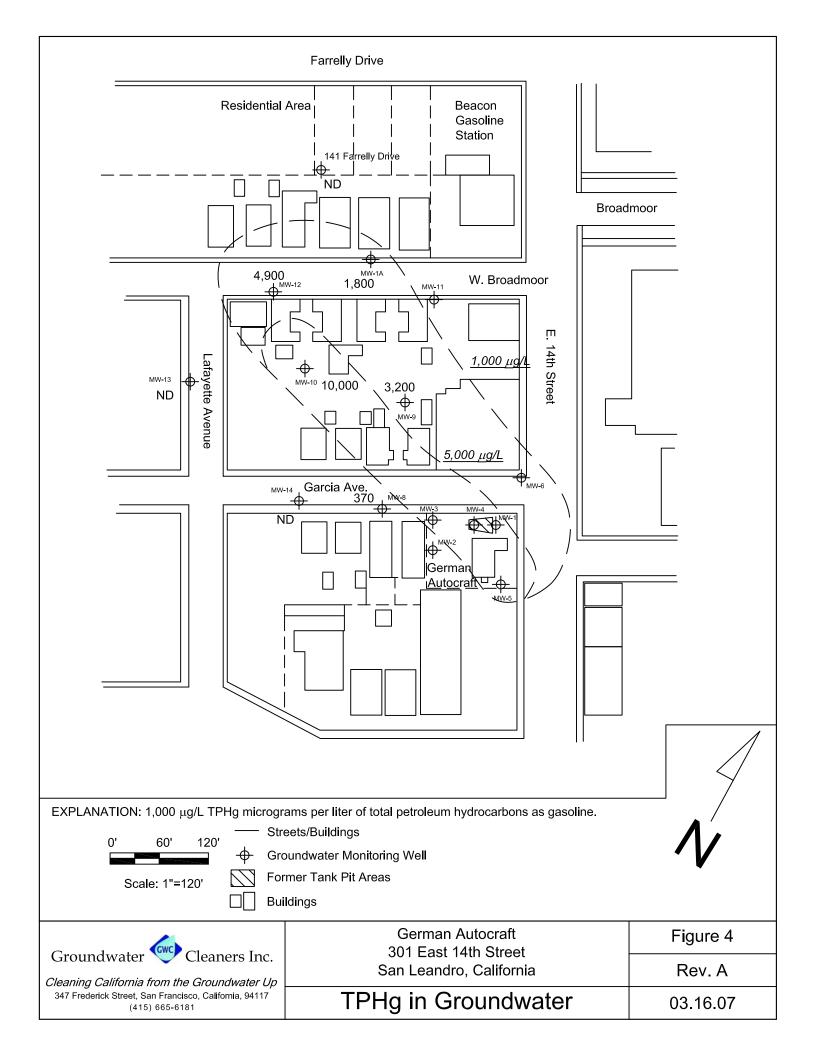
Should you have any questions or require supplemental information, please do not hesitate to contact us at (415) 665-6181.

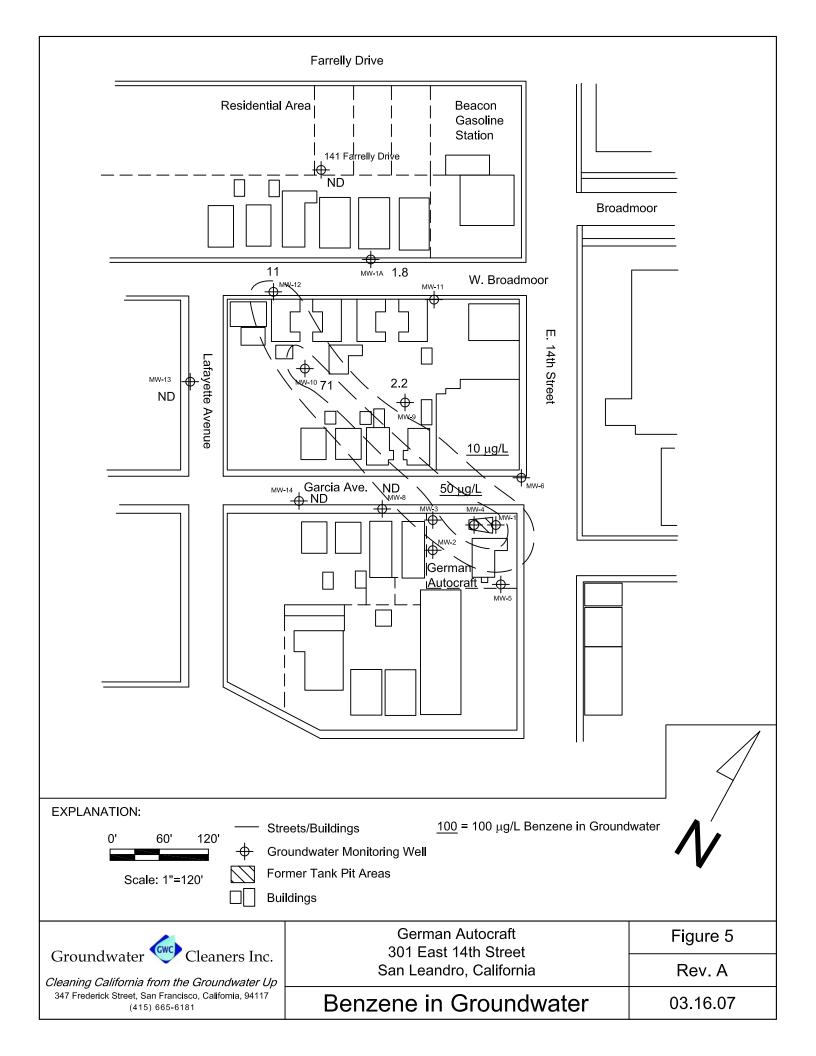



Glenn Reierstad, P.E. Project Manager, Groundwater Cleaners, Inc.





Eric R. Lautenbach, P.E. V.P. Engineering


Figures














Tables



| Well     | Date      | Casing   | Total   | Screened | Relative | TOC       |
|----------|-----------|----------|---------|----------|----------|-----------|
| Number   | Installed | Diameter | Depth   | Interval | Location | Elevation |
|          |           | (inches) | (feet)  | (feet)   |          |           |
| MW-1     | 1/6/95    | 2        | 32.10   | unknown  | Onsite   | 49.40     |
| MW-2     | 1/6/95    | 2        | 33.05   | unknown  | Onsite   | 50.02     |
| MW-3     | 1/6/95    | 2        | 34.80   | unknown  | Onsite   | 49.32     |
| MW-4     | 12/30/98  | 2        | 34.30   | unknown  | Onsite   | 49.61     |
| MW-5     | 12/30/98  | 2        | 21.15   | unknown  | Onsite   | unknown   |
| MW-6     | 12/30/98  | 2        | 33.10   | unknown  | Off-site | unknown   |
| MW-8     | 12/30/98  | 2        | 34.20   | unknown  | Off-site | unknown   |
| MW-9     | 12/30/98  | 2        | 33.70   | unknown  | Off-site | 48.77     |
| MW-10    | 12/30/98  | 2        | 37.50   | unknown  | Off-site | 49.93     |
| MW-11    | 12/30/98  | 2        | 36.90   | unknown  | Off-site | unknown   |
| MW-12    | 3/20/01   | 2        | 38.22   | unknown  | Off-site | unknown   |
| MW-13    | 3/20/01   | 2        | 37.47   | unknown  | Off-site | unknown   |
| MW-14    | 3/20/01   | 2        | 30.43   | unknown  | Off-site | unknown   |
| MW-1A    | 5/30/97   | 2        | 33.88   | unknown  | Off-site | unknown   |
| 141      | 4/6/96    | 2        | unknown | unknown  | Off-site | 48.76     |
| Farrelly |           |          |         |          |          |           |

Table 1Summary of Well Construction DetailsGerman Autocraft, 301 E. 14<sup>th</sup> Street, San Leandro, California

Table 2Current Quarter Groundwater Elevations

| Well<br>Number   | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) | Change Since<br>Last<br>Measurement<br>(feet) |
|------------------|------------------|-----------------------------------|----------------------------|------------------------------------|-----------------------------------------------|
| MW-1             | 03/16/07         | nm                                | 49.40                      | nm                                 | nm                                            |
| MW-2             | 03/16/07         | 22.78                             | 50.02                      | 27.24                              | +1.14                                         |
| MW-3             | 03/16/07         | 21.97                             | 49.32                      | 27.35                              | +1.06                                         |
| <b>MW-4</b>      | 03/16/07         | 22.26                             | 49.61                      | 27.35                              | +1.10                                         |
| MW-9             | 03/16/07         | 21.76                             | 48.77                      | 27.01                              | +1.02                                         |
| <b>MW-10</b>     | 03/16/07         | 23.09                             | 49.93                      | 26.84                              | na                                            |
| 141<br>Farralley | 03/16/07         | 22.28                             | 48.76                      | 26.48                              | na                                            |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| MW-1           | 12/21/90         | 30.25                             | 49.40                      | 19.15                              |
|                | 2/10/95          |                                   | 49.40                      | 29.59                              |
|                | 7/7/95           |                                   | 49.40                      | 26.63                              |
|                | 8/10/95          |                                   | 49.40                      | 25.58                              |
|                | 9/11/95          |                                   | 49.40                      | 24.68                              |
|                | 10/2/95          |                                   | 49.40                      | 24.12                              |
|                | 11/7/95          |                                   | 49.40                      | 23.36                              |
|                | 12/8/95          |                                   | 49.40                      | 22.77                              |
|                | 1/12/96          |                                   | 49.40                      | 24.35                              |
|                | 2/12/96          |                                   | 49.40                      | 29.04                              |
|                | 3/12/96          |                                   | 49.40                      | 31.75                              |
|                | 4/13/96          |                                   | 49.40                      | 29.43                              |
|                | 5/14/96          |                                   | 49.40                      | 27.89                              |
|                | 6/20/96          |                                   | 49.40                      | 27.19                              |
|                | 7/26/96          |                                   | 49.40                      | 25.95                              |
|                | 8/19/96          |                                   | 49.40                      | 25.16                              |
|                | 9/17/96          |                                   | 49.40                      | 24.44                              |
|                | 10/21/96         |                                   | 49.40                      | 23.63                              |
|                | 11/27/96         |                                   | 49.40                      | 24.28                              |
|                | 12/27/96         |                                   | 49.40                      | 28.23                              |
|                | 1/28/97          |                                   | 49.40                      | 33.02                              |
|                | 4/25/97          |                                   | 49.40                      | 27.14                              |
|                | 7/17/97          |                                   | 49.40                      | 24.55                              |
|                | 10/21/97         |                                   | 49.40                      | 22.85                              |
|                | 3/10/98          |                                   | 49.40                      | 34.35                              |
|                | 6/6/98           |                                   | 49.40                      | 30.69                              |
|                | 9/30/98          |                                   | 49.40                      | 25.95                              |
|                | 12/30/98         |                                   | 49.40                      | 25.13                              |
|                | 3/13/99          |                                   | 49.40                      | 29.98                              |
|                | 9/29/99          |                                   | 49.40                      | 24.39                              |
|                | 12/29/99         |                                   | 49.40                      | 23.75                              |
|                | 3/18/00          |                                   | 49.40                      | 31.92                              |
|                | 7/18/00          |                                   | 49.40                      | 26.21                              |
|                | 9/26/00          |                                   | 49.40                      | 25.01                              |
|                | 12/28/00         |                                   | 49.40                      | 24.63                              |

Table 3Cumulative Summary of Groundwater Elevations

| ·        |       |       |       |
|----------|-------|-------|-------|
| 3/30/01  |       | 49.40 | 27.47 |
| 10/5/01  |       | 49.40 | 23.82 |
| 3/28/02  |       | 49.40 | 28.66 |
| 3/31/03  |       | 49.40 | 26.68 |
| 6/19/03  |       | 49.40 | 26.23 |
| 9/30/03  |       | 49.40 | 24.05 |
| 2/10/04  |       | 49.40 | 26.96 |
| 6/30/04  |       | 49.40 | 24.73 |
| 9/14/04  |       | 49.40 | 21.51 |
| 3/29/06  | 18.84 | 49.40 | 30.56 |
| 6/24/06  | 20.57 | 49.40 | 28.83 |
| 9/30/06  | 23.53 | 49.40 | 25.87 |
| 12/11/06 | 22.78 | 49.40 | 26.29 |
| 03/16/07 | nm    | 49.40 | nm    |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater | TOC<br>Elevation | Groundwater<br>Elevation |
|----------------|------------------|-------------------------|------------------|--------------------------|
| Tumber         |                  | (feet)                  | (feet)           | (feet)                   |
| <b>MW-2</b>    | 2/10/95          |                         | 50.02            | 29.62                    |
|                | 7/7/95           |                         | 50.02            | 26.47                    |
|                | 8/10/95          |                         | 50.02            | 25.40                    |
|                | 9/11/95          |                         | 50.02            | 24.49                    |
|                | 10/2/95          |                         | 50.02            | 23.94                    |
|                | 11/7/95          |                         | 50.02            | 23.13                    |
|                | 12/8/95          |                         | 50.02            | 22.55                    |
|                | 1/12/96          |                         | 50.02            | 24.20                    |
|                | 2/12/96          |                         | 50.02            | 29.03                    |
|                | 3/12/96          |                         | 50.02            | 31.60                    |
|                | 4/13/96          |                         | 50.02            | 29.25                    |
|                | 5/14/96          |                         | 50.02            | 27.68                    |
|                | 6/20/96          |                         | 50.02            | 26.97                    |
|                | 7/26/96          |                         | 50.02            | 25.74                    |
|                | 8/19/96          |                         | 50.02            | 24.97                    |
|                | 9/17/96          |                         | 50.02            | 24.22                    |
|                | 10/21/96         |                         | 50.02            | 23.43                    |
|                | 11/27/96         |                         | 50.02            | 24.09                    |
|                | 12/27/96         |                         | 50.02            | 28.03                    |
|                | 1/28/97          |                         | 50.02            | 32.71                    |
|                | 4/25/97          |                         | 50.02            | 26.88                    |
|                | 7/17/97          |                         | 50.02            | 24.31                    |
|                | 10/21/97         |                         | 50.02            | 22.69                    |
|                | 3/10/98          |                         | 50.02            | 34.20                    |
|                | 6/6/98           |                         | 50.02            | 30.41                    |
|                | 9/30/98          |                         | 50.02            | 25.68                    |
|                | 12/30/98         |                         | 50.02            | 24.93                    |

| 3/13/99  |       | 50.02 | 29.80 |
|----------|-------|-------|-------|
| 9/29/99  |       | 50.02 | 24.12 |
| 12/29/99 |       | 50.02 | 23.52 |
| 3/18/00  |       | 50.02 | 31.87 |
| 7/18/00  |       | 50.02 | 26.01 |
| 9/26/00  |       | 50.02 | 24.69 |
| 12/28/00 |       | 50.02 | 24.39 |
| 3/30/01  |       | 50.02 | 27.31 |
| 10/5/01  |       | 50.02 | 23.64 |
| 3/28/02  |       | 50.02 | 28.43 |
| 9/30/02  |       | 50.02 | 24.18 |
| 3/31/03  |       | 50.02 | 26.39 |
| 6/19/03  |       | 50.02 | 26.04 |
| 9/30/03  |       | 50.02 | 23.83 |
| 2/10/04  |       | 50.02 | 26.75 |
| 6/30/04  |       | 50.02 | 24.57 |
| 9/14/04  |       | 50.02 | 23.32 |
| 3/29/06  | 19.61 | 50.02 | 30.41 |
| 6/24/06  | 21.41 | 50.02 | 28.61 |
| 9/30/06  | 24.37 | 50.02 | 25.65 |
| 12/11/06 | 23.92 | 50.02 | 26.10 |
| 03/16/07 | 22.78 | 50.02 | 27.24 |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| MW-3           | 2/10/95          |                                   | 49.32                      | 29.57                              |
|                | 7/7/95           |                                   | 49.32                      | 26.50                              |
|                | 8/10/95          |                                   | 49.32                      | 25.44                              |
|                | 9/11/95          |                                   | 49.32                      | 24.54                              |
|                | 10/2/95          |                                   | 49.32                      | 24.00                              |
|                | 11/7/95          |                                   | 49.32                      | 23.21                              |
|                | 12/8/95          |                                   | 49.32                      | 22.62                              |
|                | 1/12/96          |                                   | 49.32                      | 24.25                              |
|                | 2/12/96          |                                   | 49.32                      | 29.00                              |
|                | 3/12/96          |                                   | 49.32                      | 31.67                              |
|                | 4/13/96          |                                   | 49.32                      | 29.26                              |
|                | 5/14/96          |                                   | 49.32                      | 27.71                              |
|                | 6/20/96          |                                   | 49.32                      | 27.00                              |
|                | 7/26/96          |                                   | 49.32                      | 25.67                              |
|                | 8/19/96          |                                   | 49.32                      | 25.01                              |
|                | 9/17/96          |                                   | 49.32                      | 24.27                              |
|                | 10/21/96         |                                   | 49.32                      | 23.48                              |
|                | 11/27/96         |                                   | 49.32                      | 24.13                              |

| 12/27/96     |       | 49.32 | 28.11 |
|--------------|-------|-------|-------|
| 1/28/97      |       | 49.32 | 32.78 |
| 4/25/97      |       | 49.32 | 26.94 |
| 7/17/97      |       | 49.32 | 24.37 |
| 10/21/97     |       | 49.32 | 22.73 |
| 3/10/98      |       | 49.32 | 34.13 |
| 6/6/98       |       | 49.32 | 30.47 |
| 9/30/98      |       | 49.32 | 25.75 |
| 12/30/98     |       | 49.32 | 24.99 |
| 3/13/99      |       | 49.32 | 29.83 |
| 9/29/99      |       | 49.32 | 24.20 |
| 12/29/99     |       | 49.32 | 23.60 |
| 3/18/00      |       | 49.32 | 31.82 |
| 7/18/00      |       | 49.32 | 26.04 |
| 9/26/00      |       | 49.32 | 24.80 |
| 12/28/00     |       | 49.32 | 24.45 |
| 3/30/01      |       | 49.32 | 27.39 |
| 10/5/01      |       | 49.32 | 23.70 |
| 3/28/02      |       | 49.32 | 28.49 |
| 9/30/02      |       | 49.32 | 24.12 |
| 3/31/03      |       | 49.32 | 26.50 |
| 6/19/03      |       | 49.32 | 26.03 |
| 9/30/03      |       | 49.32 | 23.82 |
| 2/10/04      |       | 49.32 | 26.79 |
| 6/30/04      |       | 49.32 | 24.59 |
| 9/14/04      |       | 49.32 | 21.39 |
| 3/29/06      | 18.87 | 49.32 | 30.45 |
| 6/24/06      | 22.65 | 49.32 | 26.67 |
| 9/30/06      | 24.49 | 49.32 | 24.83 |
| 12/11/06     | 23.03 | 49.32 | 26.29 |
| <br>03/16/07 | 21.97 | 49.32 | 27.35 |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-4</b>    | 12/30/98         |                                   | 49.61                      | 25.05                              |
|                | 3/13/99          |                                   | 49.61                      | 29.89                              |
|                | 9/29/99          |                                   | 49.61                      | 24.27                              |
|                | 12/29/99         |                                   | 49.61                      | 23.64                              |
|                | 3/18/00          |                                   | 49.61                      | 31.85                              |
|                | 12/28/00         |                                   | 49.61                      | 24.52                              |
|                | 3/30/01          |                                   | 49.61                      | 27.40                              |
|                | 10/5/01          |                                   | 49.61                      | 23.77                              |
|                | 3/28/02          |                                   | 49.61                      | 28.58                              |

| 9/30/02  |       | 49.61 | 24.32 |
|----------|-------|-------|-------|
| 3/31/03  |       | 49.61 | 26.59 |
| 6/19/03  |       | 49.61 | 26.16 |
| 9/30/03  |       | 49.61 | 23.96 |
| 9/14/04  |       | 49.61 | 21.45 |
| 3/29/06  | 19.87 | 49.61 | 29.74 |
| 6/24/06  | 22.86 | 49.61 | 26.75 |
| 9/30/06  | 23.94 | 49.61 | 25.67 |
| 12/11/06 | 23.36 | 49.61 | 26.25 |
| 03/16/07 | 22.26 | 49.61 | 27.35 |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-5</b>    | 12/30/98         |                                   | unknown                    | 25.06                              |
|                | 3/13/99          |                                   |                            | 29.93                              |
|                | 9/29/99          |                                   |                            | 24.26                              |
|                | 3/18/00          |                                   |                            | 23.64                              |
|                | 3/28/02          |                                   |                            | 31.94                              |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-6</b>    | 12/30/98         |                                   | unknown                    | 25.14                              |
|                | 3/13/99          |                                   |                            | 29.97                              |
|                | 9/29/99          |                                   |                            | 24.38                              |
|                | 12/29/99         |                                   |                            | 23.75                              |
|                | 3/18/00          |                                   |                            | 31.86                              |
|                | 7/18/00          |                                   |                            | 26.22                              |
|                | 9/26/00          |                                   |                            | 24.95                              |
|                | 12/28/00         |                                   |                            | 24.61                              |
|                | 3/30/01          |                                   |                            | 27.41                              |
|                | 10/5/01          |                                   |                            | 23.82                              |
|                | 3/28/02          |                                   |                            | 28.65                              |
|                | 9/30/02          |                                   |                            | 24.41                              |
|                | 9/30/06          | 22.33                             |                            |                                    |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-8</b>    | 12/30/98         |                                   | unknown                    | 25.14                              |
|                | 3/13/99          |                                   |                            |                                    |

| 9/29 | 9/99       |  |
|------|------------|--|
| 12/2 | .9/99      |  |
| 3/18 | 8/00       |  |
| 7/18 | 8/00       |  |
| 9/20 | 6/00       |  |
| 12/2 |            |  |
| 3/30 | 0/01       |  |
| 10/  | 5/01       |  |
| 3/28 | 8/02       |  |
| 9/30 | 0/06 24.07 |  |

| Well        | Date     | Depth to    | TOC       | Groundwater |
|-------------|----------|-------------|-----------|-------------|
| Number      | Recorded | Groundwater | Elevation | Elevation   |
| 1 (41115)01 |          | (feet)      | (feet)    | (feet)      |
| <b>MW-9</b> | 12/30/98 |             | 48.77     | 24.79       |
|             | 3/13/99  |             | 48.77     | 29.58       |
|             | 9/29/99  |             | 48.77     | 24.05       |
|             | 12/29/99 |             | 48.77     | 23.45       |
|             | 3/18/00  |             | 48.77     | 31.46       |
|             | 7/18/00  |             | 48.77     | 25.83       |
|             | 9/26/00  |             | 48.77     | 24.61       |
|             | 12/28/00 |             | 48.77     | 24.29       |
|             | 3/30/01  |             | 48.77     | 27.12       |
|             | 10/5/01  |             | 48.77     | 23.54       |
|             | 3/28/02  |             | 48.77     | 28.32       |
|             | 9/30/02  |             | 48.77     | 24.11       |
|             | 3/31/03  |             | 48.77     | 26.33       |
|             | 6/19/03  |             | 48.77     | 25.90       |
|             | 9/30/03  |             | 48.77     | 23.77       |
|             | 2/10/04  |             | 48.77     | 26.64       |
|             | 6/30/04  |             | 48.77     | 24.22       |
|             | 9/14/04  |             | 48.77     | 23.08       |
|             | 3/29/06  | 16.74       | 48.77     | 32.03       |
|             | 6/24/06  | 22.43       | 48.77     | 26.34       |
|             | 9/30/06  | 23.40       | 48.77     | 25.37       |
|             | 12/11/06 | 22.78       | 48.77     | 25.99       |
|             | 03/16/07 | 21.76       | 48.77     | 27.01       |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-10</b>   | 12/30/98         |                                   | 49.93                      | 24.78                              |
|                | 3/13/99          |                                   | 49.93                      | 29.31                              |
|                | 9/29/99          |                                   | 49.93                      | 23.80                              |
|                | 12/29/99         |                                   | 49.93                      | 23.23                              |

| 3/18/00  |       | 49.93 | 31.26 |
|----------|-------|-------|-------|
| 7/18/00  |       | 49.93 | 25.55 |
| 9/26/00  |       | 49.93 | 24.34 |
| 12/28/00 |       | 49.93 | 24.03 |
| 3/30/01  |       | 49.93 | 26.79 |
| 10/5/01  |       | 49.93 | 23.33 |
| 3/28/02  |       | 49.93 | 28.06 |
| 9/30/02  |       | 49.93 | 23.88 |
| 3/31/03  |       | 49.93 | 26.06 |
| 6/19/03  |       | 49.93 | 25.65 |
| 9/30/03  |       | 49.93 | 23.56 |
| 2/10/04  |       | 49.93 | 26.39 |
| 6/30/04  |       | 49.93 | 24.22 |
| 9/14/04  |       | 49.93 | 23.08 |
| 3/29/06  | 20.18 | 49.93 | 29.75 |
| 6/24/06  | 23.87 | 49.93 | 26.06 |
| 9/30/06  | 24.80 | 49.93 | 25.13 |
| 03/16/07 | 23.09 | 49.93 | 26.84 |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-11</b>   | 12/30/98         |                                   | unknown                    | 24.78                              |
|                | 3/13/99          |                                   |                            | 29.56                              |
|                | 9/29/99          |                                   |                            | 24.03                              |
|                | 12/29/99         |                                   |                            | 23.43                              |
|                | 3/18/00          |                                   |                            | 31.38                              |
|                | 7/18/00          |                                   |                            | 25.81                              |
|                | 9/26/00          |                                   |                            | 24.58                              |
|                | 12/28/00         |                                   |                            | 24.26                              |
|                | 3/30/01          |                                   |                            | 27.03                              |
|                | 10/5/01          |                                   |                            | 23.52                              |
|                | 3/28/02          |                                   |                            | 28.31                              |
|                | 9/30/02          |                                   |                            | 24.09                              |
|                | 9/30/06          | 22.58                             |                            |                                    |
|                |                  |                                   |                            |                                    |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-12</b>   | 12/30/98         |                                   | unknown                    | 24.78                              |
|                | 3/13/99          |                                   |                            | 29.56                              |
|                | 9/29/99          |                                   |                            | 24.03                              |
|                | 12/29/99         |                                   |                            | 23.43                              |

| 3/18/00  |       | <br>31.38 |
|----------|-------|-----------|
| 7/18/00  |       | <br>25.81 |
| 9/26/00  |       | <br>24.58 |
| 12/28/00 |       | <br>24.26 |
| 3/30/01  |       | <br>27.03 |
| 10/5/01  |       | <br>23.52 |
| 3/28/02  |       | <br>28.31 |
| 9/30/02  |       | <br>24.09 |
| 9/30/06  | 22.58 | <br>      |
| 12/11/06 | 23.88 | <br>      |
| 03/16/07 | 21.77 | <br>      |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-13</b>   | 12/30/98         |                                   | unknown                    | 24.78                              |
|                | 3/13/99          |                                   |                            | 29.56                              |
|                | 9/29/99          |                                   |                            | 24.03                              |
|                | 12/29/99         |                                   |                            | 23.43                              |
|                | 3/18/00          |                                   |                            | 31.38                              |
|                | 7/18/00          |                                   |                            | 25.81                              |
|                | 9/26/00          |                                   |                            | 24.58                              |
|                | 12/28/00         |                                   |                            | 24.26                              |
|                | 3/30/01          |                                   |                            | 27.03                              |
|                | 10/5/01          |                                   |                            | 23.52                              |
|                | 3/28/02          |                                   |                            | 28.31                              |
|                | 9/30/02          |                                   |                            | 24.09                              |
|                | 9/30/06          | 22.58                             |                            |                                    |
|                | 12/11/06         | 25.33                             |                            |                                    |
|                | 03/16/07         | 23.00                             |                            |                                    |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
| <b>MW-14</b>   | 12/30/98         |                                   | unknown                    | 24.78                              |
|                | 3/13/99          |                                   |                            | 29.56                              |
|                | 9/29/99          |                                   |                            | 24.03                              |
|                | 12/29/99         |                                   |                            | 23.43                              |
|                | 3/18/00          |                                   |                            | 31.38                              |
|                | 7/18/00          |                                   |                            | 25.81                              |
|                | 9/26/00          |                                   |                            | 24.58                              |
|                | 12/28/00         |                                   |                            | 24.26                              |
|                | 3/30/01          |                                   |                            | 27.03                              |
|                | 10/5/01          |                                   |                            | 23.52                              |
|                | 3/28/02          |                                   |                            | 28.31                              |

| 9/30/02  |       | <br>24.09 |
|----------|-------|-----------|
| 9/30/06  | 22.58 | <br>      |
| 12/11/06 | 24.90 | <br>      |
| 03/16/07 | 22.67 | <br>      |

| Well<br>Number | Date<br>Recorded | Depth to<br>Groundwater<br>(feet) | TOC<br>Elevation<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|------------------|-----------------------------------|----------------------------|------------------------------------|
|                |                  |                                   |                            |                                    |
| MW-1A          | 12/30/98         |                                   | unknown                    | 24.64                              |
|                | 3/13/99          |                                   |                            | 29.39                              |
|                | 9/29/99          |                                   |                            | 23.89                              |
|                | 12/29/99         |                                   |                            | 23.29                              |
|                | 3/18/00          |                                   |                            | 31.25                              |
|                | 7/18/00          |                                   |                            | 25.64                              |
|                | 9/26/00          |                                   |                            | 24.48                              |
|                | 12/28/00         |                                   |                            | 24.13                              |
|                | 3/30/01          |                                   |                            | 27.02                              |
|                | 10/5/01          |                                   |                            | 23.38                              |
|                | 3/28/02          |                                   |                            | 28.14                              |
|                | 9/30/02          |                                   |                            | 23.96                              |
|                | 9/30/06          | 23.03                             |                            |                                    |

| Table 4                                     |
|---------------------------------------------|
| Current Quarter Groundwater Analytical Data |
| March 16, 2007                              |

| Well<br>Number  | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) | MtBE<br>(µg/l) |
|-----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|----------------|
| <b>MW-8</b>     | 03/16/07        | 370            | ND<0.5            | 8.1               | 0.52                        | 0.94                       | ND<5           |
| <b>MW-9</b>     | 03/16/07        | 3,200          | 2.2               | 37                | 18                          | 2.9                        | ND<5           |
| <b>MW-10</b>    | 03/16/07        | 10,000         | 71                | 15                | 46                          | 25                         | ND<50          |
| <b>MW-12</b>    | 03/16/07        | 4,900          | 11                | 24                | 16                          | 8.5                        | ND<50          |
| <b>MW-13</b>    | 03/16/07        | ND<50          | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<5           |
| <b>MW-14</b>    | 03/16/07        | ND<50          | ND<0.5            | 1.1               | ND<0.5                      | ND<0.5                     | ND<5           |
| MW-1A           | 03/16/07        | 1,800          | 1.8               | 17                | 6.4                         | 4.4                        | ND<5           |
| 141<br>Farrelly | 03/16/07        | ND<50          | ND<0.5            | ND<0.5            | ND<0.5                      | ND<0.5                     | ND<5           |

 Table 5

 Cumulative Summary of Groundwater Analytical Data

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| MW-1           | 12/31/90        | 51,000         | 2,200             | 1,200             | < 0.5                       | 760                        |
|                | 1/6/95          | 110,000        | 13,000            | 15,000            | 4,800                       | 13,000                     |
|                | 1/6/95          | 580,000        | 29,000            | 41,000            | 17,000                      | 43,000                     |
|                | 7/6/95          | 49,000         | 8,000             | 17,000            | 1,900                       | 9,700                      |
|                | 10/2/95         | 120,000        | 16,000            | 36,000            | 3,300                       | 17,000                     |
|                | 10/2/95         | 160,000        | 20,000            | 47,000            | 5,000                       | 23,000                     |
|                | 1/12/96         | 1,100,000      | 11,000            | 18,000            | 15,000                      | 51,000                     |
|                | 1/12/96         | 98,000         | 2,100             | 4,600             | 2,500                       | 10,000                     |
|                | 4/13/96         | 53,000         | 1,300             | 2,900             | 2,100                       | 10,000                     |
|                | 4/13/96         | 58,000         | 820               | 3,600             | 2,800                       | 12,000                     |
|                | 7/26/96         | 91,000         | 2,600             | 7,200             | 2,900                       | 14,000                     |
|                | 7/26/96         | 67,000         | 2,300             | 5,500             | 2,500                       | 11,000                     |
|                | 10/21/96        | 210,000        | 4,800             | 17,000            | 2,300                       | 15,000                     |
|                | 10/21/96        | 210,000        | 5,400             | 18,000            | 2,600                       | 11,000                     |
|                | 1/28/97         | 120,000        | 5,600             | 15,000            | 2,100                       | 11,000                     |
|                | 1/28/97         | 130,000        | 5,500             | 15,000            | 2,300                       | 12,000                     |
|                | 4/25/97         | 180,000        | 6,900             | 20,000            | 2,600                       | 13,000                     |
|                | 4/25/97         | 170,000        | 6,500             | 20,000            | 2,500                       | 13,000                     |
|                | 7/17/97         | 220,000        | 8,300             | 41,000            | 2,700                       | 16,000                     |
|                | 10/21/97        | 240,000        | 9,400             | 33,000            | 3,300                       | 22,000                     |
|                | 3/10/98         | 120,000        | 11,000            | 46,000            | 3,700                       | 21,000                     |
|                | 6/6/98          | 110,000        | 7,600             | 32,000            | 4,800                       | 23,000                     |
|                | 9/30/98         | 140,000        | 5,800             | 29,000            | 3,500                       | 18,000                     |
|                | 12/30/98        | 78,000         | 5,200             | 24,000            | 3,200                       | 19,000                     |
|                | 3/23/99         | 250,000        | 8,000             | 43,000            | 5,200                       | 27,000                     |
|                | 9/29/99         | 140,000        | 6,100             | 35,000            | 5,400                       | 27,000                     |
|                | 3/18/00         | 120,000        | 5,100             | 33,000            | 4,600                       | 24,000                     |
|                | 3/20/01         | 100,000        | 3,600             | 41,000            | 4,700                       | 25,000                     |
|                | 3/28/02         | 100,000        | 2,800             | 24,000            | 5,400                       | 28,900                     |
|                | 3/31/03         | 100,000        | 2,200             | 19,000            | 4,900                       | 21,000                     |
|                | 3/31/04         | 100,000        | 2,100             | 21,000            | 6,200                       | 36,000                     |
|                | 9/14/04         | 160,000        | 1,800             | 16,000            | 5,500                       | 30,000                     |
|                | 3/29/06         | 69,000         | 1,400             | 16,000            | 4,900                       | 28,000                     |
|                | 09/30/06        | 120,000        | 1,400             | 13,000            | 5,200                       | 29,000                     |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-2</b>    | 1/6/95          | 980,000        | 9,400             | 5,600             | 19,000                      | 42,000                     |

| 7/6/95   | 71,000  | 5,300 | 1,800 | 6,100 | 9,000 |
|----------|---------|-------|-------|-------|-------|
| 10/2/95  | 40,000  | 2,900 | 200   | 2,800 | 3,600 |
| 1/12/96  | 260,000 | 2,600 | 2,200 | 6,300 | 7,800 |
| 4/13/96  | 30,000  | 1,900 | 370   | 2,300 | 2,400 |
| 7/26/96  | 180,000 | 1,400 | 640   | 2,100 | 5,000 |
| 10/21/96 | 62,000  | 2,100 | < 0.5 | 2,100 | 2,700 |
| 1/28/97  | 46,000  | 1,500 | 94    | 1,800 | 2,000 |
| 4/25/97  | 23,000  | 790   | 26    | 820   | 730   |
| 7/17/97  | 95,000  | 2,200 | < 0.5 | 3,100 | 4,300 |
| 10/21/97 | 31,000  | 2,000 | < 0.5 | 2,100 | 1,900 |
| 3/10/98  | 19,000  | 730   | 44    | 820   | 1,000 |
| 6/6/98   | 16,000  | 670   | 1,100 | 510   | 1,200 |
| 9/30/98  | 24,000  | 600   | 77    | 680   | 580   |
| 12/30/98 | 9,300   | 510   | 96    | 450   | 480   |
| 3/23/99  | 5,700   | 580   | 9.4   | 400   | 280   |
| 9/29/99  | 17,000  | 880   | 240   | 830   | 1,000 |
| 12/29/99 | 11,000  | 800   | 11    | 860   | 780   |
| 3/18/00  | 11,000  | 790   | 14    | 520   | 450   |
| 7/18/00  | 10,000  | 560   | 27    | 630   | 530   |
| 9/26/00  | 6,800   | 450   | 7.4   | 290   | 200   |
| 12/28/00 | 12,000  | 540   | 30    | 420   | 330   |
| 3/20/01  | 3,500   | 230   | <10   | <10   | <10   |
| 3/28/02  | 7,000   | 570   | 16    | 170   | 71    |
| 3/31/03  | 5,000   | 620   | <12.5 | 71    | <25   |
| 3/31/04  | 8,200   | 500   | <12.5 | 65    | <25   |
| 9/14/04  | 9,000   | 560   | <13   | 57    | <25   |
| 3/29/06  | 5,200   | 1,400 | <20   | 52    | <20   |
| 9/30/06  | 4,800   | 900   | 64    | 22    | 110   |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-3</b>    | 1/6/95          | 740,000        | 11,000            | 2,300             | 8,300                       | 28,000                     |
|                | 7/6/95          | 86,000         | 12,000            | 8,600             | 4,900                       | 19,000                     |
|                | 10/2/95         | 100,000        | 15,000            | 11,000            | 6,000                       | 20,000                     |
|                | 1/12/96         | 84,000         | 6,500             | 4,100             | 3,200                       | 12,000                     |
|                | 4/13/96         | 48,000         | 7,600             | 3,600             | 2,800                       | 9,400                      |
|                | 7/26/96         | 62,000         | 6,400             | 3,100             | 3,000                       | 11,000                     |
|                | 10/21/96        | 110,000        | 5,400             | 2,400             | 2,500                       | 9,800                      |
|                | 1/28/97         | 130,000        | 5,500             | 15,000            | 2,300                       | 12,000                     |
|                | 4/25/97         | 180,000        | 6,900             | 20,000            | 2,600                       | 13,000                     |
|                | 7/17/97         | 69,000         | 5,100             | 1,100             | 1,800                       | 8,600                      |
|                | 10/21/97        | 58,000         | 4,300             | 1,300             | 2,100                       | 8,000                      |

| 3/10/98  | 25,000 | 3,000 | 1,300 | 1,100 | 3,700 |
|----------|--------|-------|-------|-------|-------|
| 6/6/98   | 52,000 | 4,400 | 1,900 | 2,300 | 6,900 |
| 9/30/98  | 42,000 | 4,300 | 1,400 | 1,800 | 6,600 |
| 12/30/98 | 34,000 | 4,200 | 770   | 2,300 | 9,000 |
| 3/23/99  | 44,000 | 3,500 | 1,000 | 1,700 | 5,200 |
| 9/29/99  | 39,000 | 6,000 | 840   | 2,400 | 8,100 |
| 12/29/99 | 39,000 | 4,600 | 790   | 2,400 | 8,100 |
| 3/18/00  | 21,000 | 3,100 | 550   | 1,400 | 4,100 |
| 7/18/00  | 30,000 | 5,000 | 950   | 2,000 | 5,700 |
| 9/26/00  | 36,000 | 5,300 | 640   | 2,400 | 9,900 |
| 12/28/00 | 33,000 | 4,700 | 450   | 2,100 | 6,400 |
| 3/20/01  | 21,000 | 2,000 | 260   | 570   | 3,000 |
| 3/31/03  | 25,000 | 3,200 | 280   | 1,600 | 4,200 |
| 3/31/04  | 11,000 | 1,000 | 940   | 550   | 1,900 |
| 9/14/04  | 42,000 | 3,600 | 190   | 2,200 | 4,800 |
| 3/29/06  | 7,200  | 180   | 17    | 460   | 680   |
| 9/30/06  | 7,100  | 130   | 94    | 500   | 820   |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-4</b>    | 12/30/98        | 12,000         | 1,200             | 1,100             | 290                         | 1,400                      |
|                | 3/23/99         | 89,000         | 5,900             | 8,700             | 2,000                       | 9,200                      |
|                | 9/29/99         | 48,000         | 5,300             | 6,800             | 1,700                       | 7,700                      |
|                | 3/18/00         | 44,000         | 4,500             | 7,500             | 2,200                       | 11,000                     |
|                | 3/20/01         | 10,000         | 700               | 620               | <10                         | 1,900                      |
|                | 3/28/02         | 30,000         | 3,700             | 3,100             | 1,100                       | 4,100                      |
|                | 3/31/03         | 25,000         | 2,000             | 2,100             | 820                         | 2,900                      |
|                | 3/31/04         | 24,000         | 2,500             | 200               | 1,400                       | 2,800                      |
|                | 9/14/04         | 14,000         | 760               | 550               | 430                         | 1,600                      |
|                | 3/29/06         | 17,000         | 2,000             | 1,200             | 910                         | 2,400                      |
|                | 9/30/06         | 4,000          | 440               | 120               | 240                         | 360                        |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| MW-5           | 12/30/98        | 170            | 1.1               | < 0.5             | < 0.5                       | 4.8                        |
|                | 3/22/99         | 470            | 3.8               | 0.51              | 2.0                         | < 0.5                      |
|                | 9/29/99         | 1,200          | 13                | 4.2               | 2.7                         | 4.2                        |
|                | 3/18/00         | 660            | 5.5               | 0.62              | 1.6                         | 1.7                        |
|                | 3/29/06         | 190            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 9/30/06         | Dry            |                   |                   |                             |                            |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-6</b>    | 12/30/98        | 400            | 1.0               | < 0.5             | < 0.5                       | 4.8                        |
|                | 3/22/99         | 390            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 9/30/99         | 330            | 1.8               | 1.4               | 1.5                         | < 0.5                      |
|                | 3/18/00         | 200            | 1.3               | < 0.5             | < 0.5                       | < 0.5                      |
|                | 9/26/00         | 240            | 1.5               | < 0.5             | < 0.5                       | < 0.5                      |
|                | 3/20/01         | 160            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 3/28/02         | 88             | .89               | < 0.5             | < 0.5                       | < 0.5                      |
|                | 3/29/06         | NS             | NS                | NS                | NS                          | NS                         |
|                | 9/30/06         | 280            | 5.5               | 24                | 14                          | 69                         |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-8</b>    | 12/30/98        | 2,200          | 70                | 0.94              | 26                          | 15                         |
|                | 3/23/99         | 2,300          | 34                | 1.1               | 15                          | 13                         |
|                | 9/30/99         | 8,800          | 140               | <50               | 53                          | <50                        |
|                | 12/29/99        | 1,900          | 64                | 1.0               | 22                          | 23                         |
|                | 3/18/00         | 1,400          | 36                | < 0.5             | 12                          | 9.3                        |
|                | 7/18/00         | 3,000          | 67                | 9.8               | 38                          | 38                         |
|                | 9/26/00         | 1,200          | 24                | 3.0               | 24                          | 15                         |
|                | 12/28/00        | 1,200          | 47                | 3.7               | 17                          | 18                         |
|                | 3/20/01         | 1,300          | 7.8               | <2.5              | <2.5                        | 14                         |
|                | 10/5/01         | 1,800          | 28                | <2.5              | 20                          | 23                         |
|                | 3/28/02         | 1,100          | 12                | 1.7               | 11                          | 10.8                       |
|                | 9/30/02         | 1,400          | 15                | 24                | 32                          | 22                         |
|                | 9/30/06         | 760            | 4.9               | 31                | 13                          | 64                         |
|                | 03/16/07        | 370            | < 0.5             | 8.1               | 0.52                        | 0.94                       |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-9</b>    | 12/30/98        | 25,000         | 23                | <10               | 180                         | 620                        |
|                | 3/23/99         | 27,000         | 35                | <20               | 600                         | 920                        |
|                | 9/30/99         | 42,000         | 140               | 130               | 1,000                       | 1,700                      |
|                | 12/29/99        | 1,100,000      | 1,200             | 1,300             | 4,300                       | 8,700                      |
|                | 3/18/00         | 17,000         | 89                | 46                | 10                          | 600                        |

| 1 |          |        |       |       |     |     |
|---|----------|--------|-------|-------|-----|-----|
|   | 7/18/00  | 12,000 | 39    | 8.2   | 540 | 760 |
|   | 9/26/00  | 11,000 | 19    | <5    | 470 | 610 |
|   | 12/28/00 | 22,000 | 100   | <100  | 610 | 770 |
|   | 3/20/01  | 8,200  | 40    | <10   | 14  | 210 |
|   | 10/5/01  | 77,000 | <100  | 110   | 780 | 850 |
|   | 3/28/02  | 11,000 | 34    | 6.1   | 220 | 180 |
|   | 9/30/02  | 34,000 | <125  | 140   | 240 | 370 |
|   | 3/31/03  | 6,200  | <12.5 | <12.5 | 130 | 87  |
|   | 9/30/03  | 9,700  | 52    | <25   | 160 | 87  |
|   | 9/14/04  | 9,500  | 48    | <25   | 93  | <50 |
|   | 3/29/06  | 6,200  | < 0.5 | < 0.5 | 57  | 11  |
|   | 9/30/06  | 2,200  | 3.7   | 31    | 37  | 40  |
|   | 3/16/07  | 3,200  | 2.2   | 37    | 18  | 2.9 |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| MW-10          | 12/30/98        | 6,900          | 130               | 19                | 140                         | 210                        |
|                | 3/23/99         | 6,600          | 150               | 33                | 240                         | 170                        |
|                | 9/30/99         | 9,300          | 60                | 38                | 280                         | 150                        |
|                | 12/29/99        | 5,800          | 87                | 10                | 420                         | 180                        |
|                | 3/18/00         | 3,800          | 180               | 11                | 220                         | 120                        |
|                | 7/18/00         | 9,100          | 120               | 33                | 210                         | 130                        |
|                | 9/26/00         | 4,500          | 22                | 8.8               | 1.3                         | 18                         |
|                | 12/28/00        | 3,900          | 55                | 13                | 98                          | 38                         |
|                | 3/20/01         | 4,500          | 48                | 6.0               | <5                          | 23                         |
|                | 10/5/01         | 5,200          | 70                | 28                | 41                          | 30                         |
|                | 3/28/02         | 7,400          | 45                | 20                | 210                         | 66                         |
|                | 9/30/02         | 670            | 54                | 5.9               | 76                          | 23                         |
|                | 3/31/03         | 5,700          | 31                | 38                | 67                          | 27                         |
|                | 9/30/03         | 7,400          | 61                | <50               | <50                         | <100                       |
|                | 9/14/04         | 9,100          | 47                | <25               | 51                          | <50                        |
|                | 3/29/06         | 6,800          | 140               | 18                | 270                         | 160                        |
|                | 9/30/06         | 5,700          | 61                | 30                | 78                          | 120                        |
|                | 3/16/07         | 10,000         | 71                | 15                | 46                          | 25                         |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-11</b>   | 12/30/98        | 80             | < 0.5             | < 0.5             | 0.93                        | 1.6                        |
|                | 3/23/99         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 9/30/99         | 94             | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |

| 3/18/00     | <50 | < 0.5 | < 0.5 | < 0.5 | < 0.5 |
|-------------|-----|-------|-------|-------|-------|
| 9/26/00     | <50 | < 0.5 | < 0.5 | < 0.5 | < 0.5 |
| 3/20/01     | <50 | < 0.5 | < 0.5 | < 0.5 | < 0.5 |
| 3/28/02     | <50 | < 0.5 | < 0.5 | < 0.5 | <1.5  |
| <br>9/30/06 | 160 | 1.8   | 12    | 7.6   | 40    |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| MW-12          | 3/20/01         | 4,100          | 28                | 6.2               | <5                          | 16                         |
|                | 6/29/01         | 4,200          | 26                | 25                | 19                          | 29                         |
|                | 12/21/01        | 5,300          | 9.7               | <2.5              | 41                          | 14                         |
|                | 3/28/02         | 4,900          | 20                | <2.5              | 69                          | 23                         |
|                | 6/28/02         | 2,600          | 29                | <12.5             | 30                          | <25                        |
|                | 9/30/02         | 700            | 16                | 4.9               | 19                          | 9.8                        |
|                | 09/30/06        | 2,100          | 6.2               | 15                | 16                          | 38                         |
|                | 12/11/06        | 5,500          | 13                | 24                | 16                          | 23                         |
|                | 3/16/07         | 4,900          | 11                | 24                | 16                          | 8.5                        |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| MW-13          | 3/20/01         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 6/29/01         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 10/5/01         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 12/21/01        | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 3/28/02         | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.5                       |
|                | 6/28/02         | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                | 9/30/02         | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                | 12/21/02        | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                | 09/30/06        | 170            | 2.1               | 13                | 8.1                         | 43                         |
|                | 12/11/06        | 110            | 4.6               | 6.5               | 4.6                         | 17                         |
|                | 3/16/07         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| <b>MW-14</b>   | 3/20/01         | 200            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 6/29/01         | 660            | < 0.5             | < 0.5             | < 0.5                       | 4.6                        |
|                | 10/5/01         | 770            | 1.7               | 1.5               | 0.91                        | 8.3                        |
|                | 12/21/01        | 1,500          | 3.1               | 13                | 1.9                         | 22                         |

| 3/28/02  | 390 | 1.7   | < 0.5 | < 0.5 | 0.74  |
|----------|-----|-------|-------|-------|-------|
| 6/28/02  | 120 | < 0.5 | < 0.5 | < 0.5 | <1    |
| 9/30/02  | 210 | < 0.5 | 1.7   | < 0.5 | 1.1   |
| 12/21/02 | 53  | < 0.5 | < 0.5 | < 0.5 | <1.0  |
| 09/30/06 | 210 | 2.5   | 15    | 9.1   | 48    |
| 12/11/06 | 190 | 6.7   | 9.9   | 5.4   | 19    |
| 3/16/07  | <50 | < 0.5 | 1.1   | < 0.5 | < 0.5 |

| Well<br>Number | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| MW-1A          | 5/30/97         | 12,000         | 18                | 8.7               | 90                          | 540                        |
|                | 12/30/98        | 51             | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                | 3/23/99         | 1,800          | 4.0               | < 0.5             | 3.0                         | 7.5                        |
|                | 3/23/99         | 2,200          | 10                | 0.52              | 3.1                         | 7.1                        |
|                | 9/30/99         | 13,000         | 63                | 26                | 30                          | 72                         |
|                | 3/8/00          | 6,100          | 36                | <5                | 9.7                         | 45                         |
|                | 9/26/00         | 11,000         | 14                | <5                | 65                          | 150                        |
|                | 3/20/01         | 4,800          | 30                | 6.0               | <5                          | 7.0                        |
|                | 10/5/01         | 15,000         | 76                | 41                | 36                          | 140                        |
|                | 3/28/02         | 9,300          | 35                | <12.5             | 17                          | 32                         |
|                | 9/30/02         | 23,000         | <50               | 63                | 77                          | 230                        |
|                | 9/30/06         | 2,500          | 4.1               | 25                | 22                          | 49                         |
|                | 3/16/07         | 1,800          | 1.8               | 17                | 6.4                         | 4.4                        |

| Well<br>Number  | Date<br>Sampled | TPHg<br>(µg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>Benzene<br>(µg/l) | Total<br>Xylenes<br>(µg/l) |
|-----------------|-----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------|
| 141<br>Farrelly | 4/6/96          | <50            | <0.5              | <0.5              | <0.5                        | <0.5                       |
|                 | 10/2/99         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                 | 3/18/00         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                 | 7/13/00         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                 | 9/26/00         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                 | 12/29/00        | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                 | 12/21/01        | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |
|                 | 9/30/02         | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                 | 12/21/02        | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                 | 6/19/03         | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                 | 9/14/04         | <50            | < 0.5             | < 0.5             | < 0.5                       | <1.0                       |
|                 | 3/16/07         | <50            | < 0.5             | < 0.5             | < 0.5                       | < 0.5                      |

Well Sampling Reports



## Well Sampling Data (03/17/07) 301 E. 14th Street San Leandro, CA

#### WELL: MW-1

| Well Purge Method:        |
|---------------------------|
| Sample Collection Method: |
| Sample Collection Depth:  |

Submersible Pump **Disposable Bailer** 23.49

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 32.44 | ft btoc |
| Depth to Water:       | nm    | ft btoc |
| Height of Water:      |       | ft      |
| Three Well Volumes:   |       | gal     |

### Notes: Definite petroleum odor

Depth-to-water Only

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|----------|------------|
| 03/17/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | С    | BTOC [ft] | %        | Depth [ft] |
|           |            | Pre-Purge      | nm   | nm     | 7.27 | nm    | 18.1 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | 6.90 | nm    | 18.5 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | 6.64 | nm    | 18.7 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | nm   | nm    | 18.7 | nm        |          | na         |
|           |            | Collect Sample | nm   | nm     | nm   | nm    | nm   | 23.49     |          | na         |

#### WELL: MW-2

Well Purge Method: Submersible pump Sample Collection Method: Sample Collection Depth:

## **Disposable Bailer** 24.52

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 33.25 | ft btoc |
| Depth to Water:       | 22.78 | ft btoc |
| Height of Water:      |       | ft      |
| Three Well Volumes:   |       | gal     |

ft bgs

inches

ft btoc

ft btoc

ft

gal

2

34.94

21.97

Well Screen Interval:

Total Depth of Well:

Three Well Volumes:

Casing Diameter:

Depth to Water:

Height of Water:

Notes: Slight petroleum odor Depth-to-water Only

| Date/Time | Purge      | Purge          | D.O. | 0.R.P. | рН   | Cond. | Temp | DTW       | Recovery | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|----------|------------|
| 03/17/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | С    | BTOC [ft] | %        | Depth [ft] |
|           |            | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 22.78     |          | na         |
|           |            | Purging        | nm   | nm     | 6.46 | nm    | 18.5 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | 6.46 | nm    | 18.6 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | 6.45 | nm    | 18.7 | nm        |          | na         |
|           |            | Collect Sample | nm   | nm     | nm   |       | nm   | 24.52     | #DIV/0!  | na         |

#### WELL: MW-3

| Well Purge Method:        | Disposable Bailer |
|---------------------------|-------------------|
| Sample Collection Method: | Disposable Bailer |
| Sample Collection Depth:  | 24.60             |

#### Note: Strong TPH odor present

Depth-to-water Only

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|----------|------------|
| 03/17/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | С    | BTOC [ft] | %        | Depth [ft] |
|           |            | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 21.97     |          | na         |
|           |            | Purging        | nm   | nm     | 7.53 | nm    | 17.8 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | 7.20 | nm    | 18.4 | nm        |          | na         |
|           |            | Purging        | nm   | nm     | 7.01 | nm    | 18.6 | nm        |          | na         |
|           |            | Collect Sample | nm   | nm     | nm   | nm    | nm   | 24.60     | #DIV/0!  | na         |

## Well Sampling Data (03/17/06) 301 E. 14th Street San Leandro, CA

#### WELL: MW-4

| Well Purge Method:        |  |
|---------------------------|--|
| Sample Collection Method: |  |
| Sample Collection Depth:  |  |

Disposable Bailer Disposable Bailer 24.03

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 34.53 | ft btoc |
| Depth to Water:       | 22.26 | ft btoc |
| Height of Water:      |       | ft      |
| Three Well Volumes:   |       | gal     |

**Notes:** No petroleum odor present. Depth-to-water Only

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | pН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|--------------|------------|
|           | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | C    | BTOC [ft] | Sample Depth | Depth [ft] |
| 3/17/2007 | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 22.26     |              | na         |
|           |            | Purging        | nm   | nm     | 6.65 | nm    | 18.8 | nm        |              | na         |
|           |            | Purging        | nm   | nm     | 6.59 | nm    | 18.8 | nm        |              | na         |
|           |            | Purging        | nm   | nm     | 6.54 | nm    | 18.8 | nm        |              | na         |
|           | nm         | Collect Sample | nm   | nm     | nm   | nm    | nm   | 24.03     |              | na         |

#### WELL: MW-5

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 0.00

| Well Screen Interval: |     | -     | ft bgs  |
|-----------------------|-----|-------|---------|
| Casing Diameter:      |     | 2     | inches  |
| Total Depth of Well:  |     | 21.62 | ft btoc |
| Depth to Water:       | Dry |       | ft btoc |
| Height of Water:      | n/a |       | ft      |
| Three Well Volumes:   |     | 0.00  | gal     |

Dry

| Date/Time | Purge      | Purge          | D.O. | 0.R.P. | рН | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|----------------|------|--------|----|-------|------|-----------|--------------|------------|
|           | Vol. [Gal] | Status         | ррт  | mV     |    | uS    | C    | BTOC [ft] | Sample Depth | Depth [ft] |
| 3/17/2007 | 0- Static  | Pre-Purge      | nm   | nm     | nm | nm    | nm   | Dry       |              | na         |
|           |            | Purging        | nm   | nm     | nm | nm    | nm   | nm        |              | na         |
|           |            | Purging        | nm   | nm     | nm | nm    | nm   | nm        |              | na         |
|           |            | Purging        | nm   | nm     | nm | nm    | nm   | nm        |              | na         |
|           | nm         | Collect Sample | nm   | nm     | nm | nm    | nm   |           | Dry          | na         |

#### WELL: MW-6

Well Purge Method:SubmSample Collection Method:DispoSample Collection Depth:Sample Collection Depth

Submersible pump Disposable Bailer 22.34

#### Notes: Slight petroleum odor

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 31.29 | ft btoc |
| Depth to Water:       | 22.33 | ft btoc |
| Height of Water:      | 8.96  | ft      |
| Three Well Volumes:   | 4.57  | gal     |

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|--------------|------------|
| 03/17/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | С    | BTOC [ft] | Sample Depth | Depth [ft] |
|           | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 22.33     |              | na         |
|           | 2          | Purging        | nm   | nm     | 6.58 | nm    | 18.7 | nm        |              | na         |
|           | 4          | Purging        | nm   | nm     | 6.56 | nm    | 18.6 | nm        |              | na         |
|           | 6          | Purging        | nm   | nm     | 6.57 | nm    | 18.7 | nm        |              | na         |
|           | Total 6.0  | Collect Sample | nm   | nm     | nm   | nm    | nm   | 22.34     |              | na         |

## Well Sampling Data (03/12/07) 599 North Fourth Street, San Jose, CA

#### WELL: MW-8

| Well Purge Method:        | Submersible pump  |
|---------------------------|-------------------|
| Sample Collection Method: | Disposable Bailer |
| Sample Collection Depth:  | 10.33             |

| Well Screen Interval: | 10' - 15' | ft bgs  |
|-----------------------|-----------|---------|
| Casing Diameter:      | 2         | inches  |
| Total Depth of Well:  | 13.53     | ft btoc |
| Depth to Water:       | 10.32     | ft btoc |
| Height of Water:      | 3.21      | ft      |
| Three Well Volumes:   | 1.64      | gal     |

Notes: Olive color. Odor present. slow recharge

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|----------|------------|
| 03/12/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | F    | BTOC [ft] | %        | Depth [ft] |
|           | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 10.32     |          | na         |
|           | 1          | Purging        | nm   | nm     | 6.79 | nm    | 69.9 | nm        |          | na         |
|           | 2          | Purging        | nm   | nm     | 6.79 | nm    | 68.5 | nm        |          | na         |
|           | 3          | Purging        | nm   | nm     | 6.78 | nm    | 68.0 | nm        |          | na         |
|           | Total 3    | Collect Sample | nm   | nm     | nm   | nm    | nm   | 10.33     | 99.69%   | na         |

#### WELL: MW-9

| Well Purge Method:        |
|---------------------------|
| Sample Collection Method: |
| Sample Collection Depth:  |

Submersible pump Disposable Bailer 10.10

|                       | 10' - 15' | fthan   |
|-----------------------|-----------|---------|
| Well Screen Interval: | 10 - 15   | ft bgs  |
| Casing Diameter:      | 2         | inches  |
| Total Depth of Well:  | 14.80     | ft btoc |
| Depth to Water:       | 10.06     | ft btoc |
| Height of Water:      | 4.74      | ft      |
| Three Well Volumes:   | 2.42      | gal     |

Notes: Olive color. Odor present.

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|----------|------------|
| 03/12/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | F    | BTOC [ft] | %        | Depth [ft] |
|           | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 10.06     |          | na         |
|           | 1.0        | Purging        | nm   | nm     | 6.79 | nm    | 69.4 | nm        |          | na         |
|           | 2          | Purging        | nm   | nm     | 6.79 | nm    | 67.2 | nm        |          | na         |
|           | 3          | Purging        | nm   | nm     | 6.79 | nm    | 70.5 | nm        |          | na         |
|           | Total 3    | Collect Sample | nm   | nm     | nm   | nm    | nm   | 10.10     | 99.16%   | na         |

#### WELL: RW-10

Well Purge Method: Sample Collection Method: Sample Collection Depth:

Submersible pump **Disposable Bailer** 10.24

Notes: Odor present. Gray color.

| Well Screen Interval: | 10' - 20' | ft bgs  |
|-----------------------|-----------|---------|
| Casing Diameter:      | 2         | inches  |
| Total Depth of Well:  | 19.51     | ft btoc |
| Depth to Water:       | 10.22     | ft btoc |
| Height of Water:      | 9.29      | ft      |
| Three Well Volumes:   | 4.74      | gal     |

| Date/Time | Purge      | Purge          | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|----------|------------|
| 03/12/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | F    | BTOC [ft] | %        | Depth [ft] |
|           | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 10.22     |          | na         |
|           | 1          | Purging        | nm   | nm     | 6.79 | nm    | 70.8 | nm        |          | na         |
|           | 2          | Purging        | nm   | nm     | 6.80 | nm    | 68.8 | nm        |          | na         |
|           | 5          | Purging        | nm   | nm     | 6.79 | nm    | 67.6 | nm        |          | na         |
|           | Total 5    | Collect Sample | nm   | nm     | nm   | nm    | nm   | 10.24     | 99.78%   | na         |

Groundwater Cleaners, Inc.

## Well Sampling Data (03/17/07) 301 E. 14th Street San Leandro, CA

#### WELL: MW-10

| Well Purge Method:        | Dispo |
|---------------------------|-------|
| Sample Collection Method: | Dispo |
| Sample Collection Depth:  |       |

Notes: Strong petroleum odor

Disposable Bailer Disposable Bailer 23.12

#### Well Screen Interval: ft bgs inches Casing Diameter: 2 Total Depth of Well: 37.46 ft btoc ft btoc Depth to Water: 23.09 Height of Water: 14.37 ft Three Well Volumes: 7.33 gal

| Date/Time | Purge       | Purge  | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|-------------|--------|------|--------|------|-------|------|-----------|--------------|------------|
| 03/17/07  | Vol. [Gal]  | Status | ррт  | mV     |      | uS    | F    | BTOC [ft] | Sample Depth | Depth [ft] |
|           | 0           | nm     | nm   | nm     | 6.82 | nm    | 64.4 | 23.09     | 25           | na         |
|           | 1           |        | nm   | nm     | nm   | nm    | nm   |           |              | na         |
|           | 3           |        | nm   | nm     | 6.83 | nm    | 64.9 |           |              | na         |
|           | 5           |        | nm   | nm     | 6.83 | nm    | 65.1 |           |              | na         |
|           | Total 7 gal |        | nm   | nm     | nm   | nm    | nm   | 23.12     |              | na         |

#### WELL: MW-11

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 0.00

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 34.56 | ft btoc |
| Depth to Water:       | nm    | ft btoc |
| Height of Water:      | nm    | ft      |
| Three Well Volumes:   | 6.12  | gal     |

Notes: No odor present.

| Date/Time | Purge      | Purge  | D.O. | O.R.P. | рН | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|--------|------|--------|----|-------|------|-----------|--------------|------------|
| 03/17/07  | Vol. [Gal] | Status | ррт  | mV     |    | uS    | С    | BTOC [ft] | Sample Depth | Depth [ft] |
|           | nm         |        |      |        |    |       |      |           |              |            |
|           |            |        |      |        |    |       |      |           |              |            |
|           |            |        |      |        |    |       |      |           |              |            |
|           |            |        |      |        |    |       |      |           |              |            |
|           |            |        |      |        |    |       |      |           |              |            |

#### WELL: MW-12

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 21.80

Notes: No odor present.

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 32.98 | ft btoc |
| Depth to Water:       | 21.77 | ft btoc |
| Height of Water:      | 11.21 | ft      |
| Three Well Volumes:   | 5.72  | gal     |

| Date/Time | Purge      | Purge          | D.O. | 0.R.P. | рН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|--------------|------------|
| 03/17/07  | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | F    | BTOC [ft] | Sample Depth | Depth [ft] |
|           | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 21.77     |              | na         |
|           | 2          | Purging        | nm   | nm     | 6.81 | nm    | 64.1 | nm        |              | na         |
|           | 4          | Purging        | nm   | nm     | 6.82 | nm    | 64.5 | nm        |              | na         |
|           | 6          | Purging        | nm   | nm     | 6.82 | nm    | 64.7 | nm        |              | na         |
|           | Total 6.0  | Collect Sample | nm   | nm     | 6.82 | nm    | 64.7 | 21.80     |              | na         |

Groundwater Cleaners, Inc.

## Well Sampling Data (03/17/07) 301 E. 14th Street San Leandro, CA

#### WELL: MW-13

| Well Purge Method:        |
|---------------------------|
| Sample Collection Method: |
| Sample Collection Depth:  |

Disposable Bailer Disposable Bailer 23.00

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 37.47 | ft btoc |
| Depth to Water:       | 23.00 | ft btoc |
| Height of Water:      | 14.47 | ft      |
| Three Well Volumes:   | 7.38  | gal     |

Notes: No petroleum odor present.

| Date/Time | Purge      | Purge          | D.O. | 0.R.P. | рН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|--------------|------------|
|           | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | F    | BTOC [ft] | Sample Depth | Depth [ft] |
| 3/17/2007 | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 23.00     |              | na         |
|           | 3          | Purging        | nm   | nm     | 6.81 | nm    | 66.5 | nm        |              | na         |
|           | 6          | Purging        | nm   | nm     | 6.82 | nm    | 66.0 | nm        |              | na         |
|           | 9          | Purging        | nm   | nm     | 6.82 | nm    | 66.0 | nm        |              | na         |
|           | Total 9.0  | Collect Sample | nm   | nm     | 6.82 | nm    | 66   | 23.00     |              | na         |

#### WELL: MW-14

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 22.70

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 30.43 | ft btoc |
| Depth to Water:       | 22.67 | ft btoc |
| Height of Water:      | 7.76  | ft      |
| Three Well Volumes:   | 3.96  | gal     |

Notes: No odor present.

| Date/Time | Purge      | Purge          | D.O. | 0.R.P. | рН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|----------------|------|--------|------|-------|------|-----------|--------------|------------|
|           | Vol. [Gal] | Status         | ррт  | mV     |      | uS    | F    | BTOC [ft] | Sample Depth | Depth [ft] |
| 3/17/2007 | 0- Static  | Pre-Purge      | nm   | nm     | nm   | nm    | nm   | 22.67     |              | na         |
|           | 2          | Purging        | nm   | nm     | 6.82 | nm    | 67.1 | nm        |              | na         |
|           | 4          | Purging        | nm   | nm     | 6.82 | nm    | 66.5 | nm        |              | na         |
|           | 6          | Purging        | nm   | nm     | 6.82 | nm    | 66.5 | nm        |              | na         |
|           | Total 6.0  | Collect Sample | nm   | nm     | nm   | nm    | nm   | 22.70     |              | na         |

#### WELL: MW-1A

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 21.40

Notes: No odor present.

| Well Screen Interval: | -     | ft bgs  |
|-----------------------|-------|---------|
| Casing Diameter:      | 2     | inches  |
| Total Depth of Well:  | 33.88 | ft btoc |
| Depth to Water:       | 21.37 | ft btoc |
| Height of Water:      | 12.51 | ft      |
| Three Well Volumes:   | 6.38  | gal     |

| Date/Time | Purge      | Purge  | D.O. | O.R.P. | рН   | Cond. | Temp | DTW       | Recovery     | Pump       |
|-----------|------------|--------|------|--------|------|-------|------|-----------|--------------|------------|
| 09/30/06  | Vol. [Gal] | Status | ррт  | mV     |      | uS    | F    | BTOC [ft] | Sample Depth | Depth [ft] |
|           | 0          |        | nm   | nm     | nm   | nm    | nm   | 21.37     |              | na         |
|           | 2          |        | nm   | nm     | 6.83 | nm    | 67.4 |           |              | na         |
|           | 4          |        | nm   | nm     | 6.83 | nm    | 66.5 |           |              | na         |
|           | 6          |        | nm   | nm     | 6.81 | nm    | 66.3 |           |              | na         |
|           | Total 6.0  |        | nm   | nm     | nm   | nm    | nm   | 21.40     |              | na         |

Groundwater Cleaners, Inc.

**Analytical Reports** 





## **McCampbell Analytical, Inc.**

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Groundwater Cleaners    | Client Project ID: #301; German Autocraft | Date Sampled: 03/16/07   |
|-------------------------|-------------------------------------------|--------------------------|
| 347 Frederick Street    |                                           | Date Received: 03/19/07  |
| San Francisco, CA 94117 | Client Contact: Glenn Reierstad           | Date Reported: 03/26/07  |
|                         | Client P.O.:                              | Date Completed: 03/26/07 |

#### WorkOrder: 0703431

March 26, 2007

#### Dear Glenn:

Enclosed are:

- 1). the results of **8** analyzed samples from your **#301; German Autocraft project,**
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

|                                                                     |                                            | gcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               |                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70          | 34     | -3           | )    |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|---------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------------|------|------------------|-------------|-----------------------------------|----------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------------------|--------------------------------|--------------------------------------|-------------------------------|--------------------------------|-----------------------------------|---------------------------------------------|----------------------------------------|------------------------------------|----------------------|----------------|-----------------------|
|                                                                     | 0 2 <sup>nd</sup> AV<br>PACHEC<br>ampbell. | VENUE SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OUTH,<br>553-55 | , #D7<br>60<br>ain@n | iccam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pbel        |        | 622          | •    |                  |             |                                   | RN<br>Req                        |                                           | ou                                   | ND                                    | T                                   | [MH                                             | 5                              | F                                    |                               | H<br>H                         | ۲<br>24                           |                                             |                                        | 48 H                               | COF<br>I<br>IR<br>No | 72 H           | R 5 DAY               |
| Report To: Glenn Reierstad                                          | 1020                                       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | till To         | : Sa                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123)        | 790-1  | 044          |      |                  | +           |                                   |                                  |                                           |                                      |                                       |                                     | vsis                                            | 1                              |                                      |                               |                                |                                   |                                             | (                                      |                                    |                      | her            | Commen                |
| Company: Groundwater Clean                                          | ners                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 7. Ua                | inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |              |      | 1                | +           |                                   | 1                                |                                           |                                      |                                       | nai                                 |                                                 | Rey                            | uesi                                 |                               |                                |                                   |                                             |                                        |                                    |                      | ner            | Commen                |
| 347 Frederick Stree                                                 |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |      |                  | 8015)       | 6                                 |                                  | E/B&F)                                    |                                      |                                       |                                     | eners                                           |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                | Filter                |
| San Francisco, CA                                                   |                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E-Ma            | il: rei              | ersta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d@r         | nsn.co | m            |      |                  | - 8         | 8                                 |                                  | E/B                                       |                                      |                                       |                                     | ong                                             |                                |                                      |                               |                                |                                   | _                                           |                                        |                                    |                      |                | Samples               |
| Tele: (415) 665-6181                                                |                                            | and the second se |                 | (415)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |      |                  | 8021-       |                                   |                                  | 5520                                      |                                      |                                       |                                     | s/C                                             |                                |                                      |                               |                                |                                   | 020                                         | 020)                                   |                                    |                      |                | for Metal             |
| Project #: _ <b>3</b> 0 (                                           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | t Nar                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Les    | A            | ito  | c vat            |             | 802                               |                                  | 64/                                       | 18.1)                                | OCs                                   | _                                   | oclor                                           |                                | ides)                                |                               |                                | As)                               | 0/01                                        | 0/6                                    |                                    |                      |                | analysis:<br>Yes / No |
| Project Location: ZOLE 14                                           | H St                                       | veet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S               | Le                   | ier d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NE          | CA     |              |      | Circle           | Gas (602 /  | 502 /                             | 15)                              | : (16                                     | 1s (4                                | (HV                                   | ides                                | Ar                                              | s)                             | rbic                                 |                               | (S)                            | / PN                              | / 60                                        | 601                                    | (07                                |                      |                | 105/140               |
| Project Location: $30 ( \in . ! )$<br>Sampler Signature: $\sqrt{2}$ | 21020                                      | lad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>N</i> 0, | 01     |              | •    |                  | Gas         | PA                                | 1 (80                            | rease                                     | rbor                                 | 021                                   | estic                               | NLY                                             | icide                          | 1 He                                 | OCs                           | VOC                            | AHS                               | 00.8                                        | 90.8                                   | / 60                               |                      |                |                       |
|                                                                     | SAMP                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IATI        |        |              | MET  | HOD              | TPH as      | MTBE / BTEX ONLY (EPA 602 / 8021) | TPH as Diesel / Motor Oil (8015) | Total Petroleum Oil & Grease (1664 / 5520 | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | EPA 505/ 608 / 8081 (Cl Pesticides) | EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners | EPA 507 / 8141 (NP Pesticides) | EPA 515/ 8151 (Acidic Cl Herbicides) | EPA 524.2 / 624 / 8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOCs) | EPA 8270 SIM / 8310 (PAHs / PNAs) | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | 5 Metals (200.7 / 200.8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) |                      |                |                       |
|                                                                     | SAMP                                       | LING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s               | ner                  | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IATI        | uл     | P            | RESE | RVE              |             | INC                               | Moto                             | Oil                                       | Hyd                                  | / 801                                 | 081                                 | CB                                              | (NP                            | (Aci                                 | / 826                         | 827                            | 831                               | (200                                        | 200.                                   | 8.                                 |                      |                |                       |
| SAMPLE ID                                                           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Containers      | Type Containers      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |      |                  |             | EX                                | sel / la                         | eum                                       | eum                                  | 601                                   | 8/8                                 | 082 ]                                           | 141                            | 151                                  | 624                           | 625                            | WI                                | tals                                        | tals (                                 | / 200                              |                      |                |                       |
| (Field Point Name) LOCATION                                         | Date                                       | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıtai            | Cor                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | e.     |              |      |                  | MTBE / BTEX | / BT                              | Dies                             | etrol                                     | etrol                                | 2.2/                                  | 5/ 60                               | 8/8                                             | 218                            | 2/8                                  | 4.2 /                         | 5.2 /                          | 270 S                             | 7 Me                                        | Me                                     | 00.7                               |                      |                |                       |
|                                                                     | Date                                       | Inne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COL             | pe                   | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = -         | Sludge | ICE          | HCL  | HNO <sub>3</sub> | MTBE /      | BE                                | H as                             | al P                                      | al P                                 | A 50                                  | A 50                                | A 60                                            | A 50                           | 4 5I                                 | A 52                          | 4 52                           | A 82                              | M I                                         | FT 5                                   | d (2                               |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #               | Ty                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Air         | IS     | 519          | H    | H                | 5 5         | LW                                | TP                               | Tot                                       | Tot                                  | EP.                                   | EP.                                 | EP.                                             | EP                             | EP                                   | EP                            | EP                             | EP                                | CA                                          | LUFT                                   | Lea                                |                      |                |                       |
| MW-8                                                                | 03/16                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2               | 11                   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        | V            | Υ X  |                  | X           | /                                 | 1                                |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| a                                                                   | 110                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1               | 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 15           | 17   |                  | K           | -                                 |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\vdash$        | A                    | $\parallel \mid$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        | $\mathbb{H}$ |      |                  | ++          |                                   | -                                |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| 10                                                                  | $\langle  $                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\vdash$        | M                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 11           |      |                  |             | _                                 |                                  |                                           |                                      |                                       |                                     |                                                 | -                              |                                      | _                             |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| 12                                                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| 13                                                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 1/                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| 14                                                                  | $\zeta$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T               | $\prod$              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        | Π            |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| 11                                                                  | /                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\uparrow$      | $\square$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 11           |      |                  |             |                                   | 1                                |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     | 1/                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | đ               | 1/                   | 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |              | 1/   |                  | 1           | 1                                 |                                  |                                           |                                      |                                       |                                     |                                                 |                                | -+                                   |                               | -                              |                                   |                                             |                                        |                                    |                      |                |                       |
| -14/                                                                | V                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V               | V.                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        | 11           | V    |                  | 11          |                                   | -                                |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |        | 1            |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 | _                              |                                      |                               | _                              |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | Τ            |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | $\top$       |      |                  |             |                                   |                                  |                                           |                                      |                                       |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | +            |      |                  | +           | -                                 | -                                |                                           |                                      |                                       |                                     | -                                               | -                              | -                                    | -                             |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |        | +            |      |                  | +           |                                   |                                  |                                           |                                      |                                       |                                     |                                                 | -                              | -                                    | -                             |                                |                                   |                                             |                                        |                                    |                      |                |                       |
|                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |        | L            |      | DL               | +           | OPUS                              |                                  | 0                                         |                                      | _                                     |                                     |                                                 |                                |                                      |                               |                                |                                   |                                             | 0.0                                    |                                    | 2 D I I I I I        |                |                       |
| Lassad a                                                            | Date:<br>3/19/<br>Date:/                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               | eived B              | and the second s |             | S      | 6            | 7    |                  | G<br>H<br>D | OOD<br>EAD<br>ECH                 | 7.<br>CON<br>SPA                 | NDIT<br>CE A<br>INAT                      | ION<br>BSE<br>TED                    | NT_IN L                               | AB                                  |                                                 | /                              |                                      |                               |                                |                                   |                                             | CO                                     | MMI                                | ENTS:                |                |                       |
|                                                                     | 19/07                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | M                    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | pa     | X            |      |                  |             |                                   | OPRI                             |                                           |                                      |                                       | NER                                 | s_                                              | /                              | _                                    |                               |                                |                                   |                                             |                                        |                                    |                      |                |                       |
| Relinquished By:                                                    | Date:                                      | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rece            | eived B              | y:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | -      |              |      |                  | - P         |                                   | ERVE                             | D IN                                      |                                      | B<br>DAŞ                              | 08                                  | &G                                              | ME                             | TAL                                  | s                             | отн                            | IER                               |                                             |                                        |                                    |                      | d this r<br>No | eport emailed?        |

## McCampbell Analytical, Inc.



1534 Willow Pass Rd

MW-12

MW-13

MW-14

MW-1A

MW-141

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Pittsburg, CA<br>(925) 252-92                                              | A 94565-1701<br>262                   |        | EDF                    |                                                                                           | Work |         | : 07034 | 431<br>✓ Email | -      | lientID: 0<br>□Hard0                                  |        | [     | Third  | Party  |    |      |
|----------------------------------------------------------------------------|---------------------------------------|--------|------------------------|-------------------------------------------------------------------------------------------|------|---------|---------|----------------|--------|-------------------------------------------------------|--------|-------|--------|--------|----|------|
| Report to:                                                                 |                                       |        |                        |                                                                                           |      | Bill to |         |                |        |                                                       |        | Req   | uesteo | d TAT: | 5  | days |
| Glenn Reierstad<br>Groundwater Cle<br>347 Frederick St<br>San Francisco, C | sn.com<br>3 FAX: 415-5<br>n Autocraft | 66-35  | 56                     | Glenn Reirstad<br>Groundwater Cleaners<br>347 Frederick Street<br>San Francisco, CA 94117 |      |         |         |                |        | Date Received: 03/19/2007<br>Date Printed: 03/19/2007 |        |       |        |        |    |      |
|                                                                            |                                       |        |                        |                                                                                           |      |         |         | Req            | uested | Tests (See                                            | e lege | nd be | elow)  |        |    |      |
| Sample ID                                                                  | ClientSampID                          | Matrix | <b>Collection Date</b> | Hold                                                                                      | 1    | 2       | 3       | 4              | 5      | 6 7                                                   | 7      | 8     | 9      | 10     | 11 | 12   |
| 0703431-001                                                                | MW-8                                  | Water  | 03/16/07               |                                                                                           | A    | А       |         |                |        |                                                       |        |       |        |        |    |      |
| 0703431-002                                                                | MW-9                                  | Water  | 03/16/07               |                                                                                           | Α    |         |         |                |        |                                                       |        |       |        |        |    |      |
| 0703431-003                                                                | MW-10                                 | Water  | 03/16/07               |                                                                                           | Α    |         |         |                |        |                                                       |        |       |        |        |    |      |

 $\square$ 

 $\square$ 

А

А

А

А

А

03/16/07

03/16/07

03/16/07

03/16/07

03/16/07

Water

Water

Water

Water

Water

**Test Legend:** 

0703431-004

0703431-005

0703431-006

0703431-007

0703431-008

| 1  | G-MBTEX_W | 2 PREDF REPORT | 3 | ] | 4 | 5  |
|----|-----------|----------------|---|---|---|----|
| 6  |           | 7              | 8 |   | 9 | 10 |
| 11 |           | 12             |   |   |   |    |

#### Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

|            | McCampbell                                          | Analy<br>ality Counts |             | 2           | Web: www.m                        |                         | Pittsburg, CA 94565<br>E-mail: main@mcca<br>52 Fax: 925-252-9 | mpbell.com      |        |          |  |  |  |
|------------|-----------------------------------------------------|-----------------------|-------------|-------------|-----------------------------------|-------------------------|---------------------------------------------------------------|-----------------|--------|----------|--|--|--|
| Groun      | dwater Cleaners                                     |                       | Client Proj | ect ID: #30 | 1; German Auto                    | ocraft                  | Date Sampled: 03/16/07                                        |                 |        |          |  |  |  |
| 347 Fr     | ederick Street                                      |                       |             |             |                                   | Date Received: 03/19/07 |                                                               |                 |        |          |  |  |  |
| <b>a b</b> |                                                     |                       | Client Con  | tact: Glenn | Reierstad                         | Date Extract            | Date Extracted: 03/21/07-03/23/07                             |                 |        |          |  |  |  |
| San Fr     | ancisco, CA 94117                                   |                       | Client P.O. | :           |                                   |                         | Date Analyz                                                   | ed 03/21/07     | -03/23 | 3/07     |  |  |  |
| Extracti   | Gasolin<br>on method SW5030B                        | e Range (             |             | •           | arbons as Gasol<br>SW8021B/8015Cm | line with BTH           | EX and MTBE                                                   | *<br>Work Order | : 070  | 3431     |  |  |  |
| Lab ID     | Client ID                                           | Matrix                | TPH(g)      | MTBE        | Benzene                           | Toluene                 | Ethylbenzene                                                  | Xylenes         | DF     | % SS     |  |  |  |
| 001A       | MW-8                                                | w                     | 370,m       | ND          | ND                                | 8.1                     | 0.52                                                          | 0.94            | 1      | 110      |  |  |  |
| 002A       | MW-9                                                | W                     | 3200,a,m    | ND          | 2.2                               | 37                      | 18                                                            | 2.9             | 1      | 119      |  |  |  |
| 003A       | MW-10                                               | w                     | 10,000,a,m  | ND<50       | 71                                | 15                      | 46                                                            | 25              | 10     | 98       |  |  |  |
| 004A       | MW-12                                               | W                     | 4900,a      | ND<50       | 11                                | 24                      | 16                                                            | 8.5             | 10     | 108      |  |  |  |
| 005A       | MW-13                                               | w                     | ND          | ND          | ND                                | ND                      | ND                                                            | ND              | 1      | 95       |  |  |  |
| 006A       | MW-14                                               | w                     | ND          | ND          | ND                                | 1.1                     | ND                                                            | ND              | 1      | 105      |  |  |  |
| 007A       | MW-1A                                               | W                     | 1800,a,m    | ND          | 1.8                               | 17                      | 6.4                                                           | 4.4             | 1      | 108      |  |  |  |
| 008A       | MW-141                                              | w                     | ND          | ND          | ND                                | ND                      | ND                                                            | ND              | 1      | 91       |  |  |  |
|            |                                                     |                       |             |             |                                   |                         |                                                               |                 |        |          |  |  |  |
|            |                                                     |                       |             |             |                                   |                         |                                                               |                 |        |          |  |  |  |
|            |                                                     |                       |             |             |                                   |                         |                                                               |                 |        |          |  |  |  |
|            |                                                     |                       |             |             |                                   |                         |                                                               |                 |        |          |  |  |  |
|            |                                                     |                       |             |             |                                   |                         |                                                               |                 |        | <u> </u> |  |  |  |
|            |                                                     |                       |             |             |                                   |                         |                                                               |                 |        | <u> </u> |  |  |  |
|            | porting Limit for DF =1;                            | W                     | 50          | 5.0         | 0.5                               | 0.5                     | 0.5                                                           | 0.5             | 1      | µg/L     |  |  |  |
|            | means not detected at or<br>ove the reporting limit | S                     | NA          | NA          | NA                                | NA                      | NA                                                            | NA              | 1      | mg/Kg    |  |  |  |

\* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.





NONE

"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0703431

| EPA Method SW8021B/8015Cm | Extra  | ction SW | 5030B  |        | Ba     | tchID: 26 | 895    | Spiked Sample ID: 0703430-003A |                             |     |          |     |  |  |
|---------------------------|--------|----------|--------|--------|--------|-----------|--------|--------------------------------|-----------------------------|-----|----------|-----|--|--|
| Analyte                   | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS       | LCSD   | LCS-LCSD                       | CS-LCSD Acceptance Criteria |     |          |     |  |  |
| Analyte                   | µg/L   | µg/L     | % Rec. | % Rec. | % RPD  | % Rec.    | % Rec. | % RPD                          | MS / MSD                    | RPD | LCS/LCSD | RPD |  |  |
| TPH(btex) <sup>£</sup>    | ND     | 60       | 98.7   | 86.5   | 13.2   | 91.2      | 90.5   | 0.872                          | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |
| MTBE                      | ND     | 10       | 99.5   | 95.3   | 4.27   | 105       | 110    | 4.95                           | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |
| Benzene                   | ND     | 10       | 103    | 90.1   | 13.0   | 96.2      | 97.5   | 1.25                           | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |
| Toluene                   | ND     | 10       | 100    | 90.4   | 10.4   | 89.1      | 90.8   | 1.84                           | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |
| Ethylbenzene              | ND     | 10       | 97.2   | 93.5   | 3.86   | 94.9      | 99.3   | 4.54                           | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |
| Xylenes                   | ND     | 30       | 90.3   | 85.7   | 5.30   | 95.7      | 96.3   | 0.694                          | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |
| %SS:                      | 93     | 10       | 119    | 108    | 9.68   | 93        | 93     | 0                              | 70 - 130                    | 30  | 70 - 130 | 30  |  |  |

#### BATCH 26895 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled | Date Extracted | Date Analyzed    |
|--------------|--------------|----------------|-------------------|--------------|--------------|----------------|------------------|
| 0703431-001A | 03/16/07     | 03/23/07       | 03/23/07 1:57 AM  | 0703431-002A | 03/16/07     | 03/21/07       | 03/21/07 5:09 PM |
| 0703431-003A | 03/16/07     | 03/22/07       | 03/22/07 12:50 AM | 0703431-004A | 03/16/07     | 03/22/07       | 03/22/07 8:47 AM |
| 0703431-005A | 03/16/07     | 03/22/07       | 03/22/07 9:19 AM  |              |              |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.





"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0703431

| EPA Method SW8021B/8015Cm | Extra  | ction SW | 5030B  |        | BatchID: 26906 Spiked Sample ID: 070 |        |        |          |          |         |              |     |  |  |
|---------------------------|--------|----------|--------|--------|--------------------------------------|--------|--------|----------|----------|---------|--------------|-----|--|--|
| Analyte                   | Sample | Spiked   | MS     | MSD    | MS-MSD                               | LCS    | LCSD   | LCS-LCSD | Acce     | eptance | Criteria (%) |     |  |  |
| , individ                 | µg/L   | µg/L     | % Rec. | % Rec. | % RPD                                | % Rec. | % Rec. | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |  |  |
| TPH(btex) <sup>£</sup>    | ND     | 60       | 79.7   | 88.8   | 10.9                                 | 92.2   | 87.9   | 4.81     | 70 - 130 | 30      | 70 - 130     | 30  |  |  |
| MTBE                      | ND     | 10       | 95.1   | 103    | 8.04                                 | 106    | 107    | 0.447    | 70 - 130 | 30      | 70 - 130     | 30  |  |  |
| Benzene                   | ND     | 10       | 95.3   | 99.6   | 4.41                                 | 97     | 94.3   | 2.79     | 70 - 130 | 30      | 70 - 130     | 30  |  |  |
| Toluene                   | ND     | 10       | 96.2   | 101    | 5.07                                 | 87.3   | 87.8   | 0.537    | 70 - 130 | 30      | 70 - 130     | 30  |  |  |
| Ethylbenzene              | ND     | 10       | 95.4   | 93.7   | 1.86                                 | 89.6   | 94.5   | 5.28     | 70 - 130 | 30      | 70 - 130     | 30  |  |  |
| Xylenes                   | ND     | 30       | 90.7   | 86.7   | 4.51                                 | 96.7   | 88.3   | 9.01     | 70 - 130 | 30      | 70 - 130     | 30  |  |  |
| %SS:                      | 91     | 10       | 104    | 107    | 2.68                                 | 88     | 91     | 4.08     | 70 - 130 | 30      | 70 - 130     | 30  |  |  |

#### BATCH 26906 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled | Date Extracted | Date Analyzed     |
|--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------|
| 0703431-006A | 03/16/07     | 03/22/07       | 03/22/07 9:52 AM  | 0703431-007A | 03/16/07     | 03/22/07       | 03/22/07 10:24 AM |
| 0703431-008A | 03/16/07     | 03/22/07       | 03/22/07 10:57 AM |              |              |                |                   |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 $\pounds$  TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.



