Quarterly Groundwater Monitoring Report-3rd Quarter 2006

German Autocraft 301 E. 14th Street San Leandro, California

Global ID No. T0600100639 AC LOP Case # 2783

Prepared For

Mr. Seung Lee German Autocraft San Leandro, CA 95070

Prepared By

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

Date of Report: October 23, 2006

Groundwater Cleaners Inc. Cleaning California from the Groundwater up

347 Frederick Street, San Francisco, California 94117 (415) 665-6181

October 23, 2006

German Autocraft 301 E. 14th Street San Leandro, CA 94577

 Attn:
 Mr. Seung Lee

 Subject:
 Quarterly Groundwater Monitoring Report—3rd Quarter 2006

German Autocraft, AC LOP Case # 2783 Global ID No. T0600100639; UST Cleanup Fund Claim No.

Dear Mr. Lee:

GWC is pleased to attach the Third Quarter 2006, *Quarterly Groundwater Monitoring Report*, which includes the analytical results for groundwater samples collected in September of 2006. GWC plans to continue quarterly groundwater sampling in accordance with Alameda County Department of Environmental Health (DEH) requirements.

If you have any questions or require further information, please do not hesitate to call us at (415) 665-6181.

Sincerely,

Glenn Reierstad Project Manager

Cc: Ms. Donna Dragos, DEH

CONTENTS

1.0	SITE LOCATION AND BACKGROUND	1
1.1	Site Location and Description	1
1.2	Site Hydrogeologic Conditions	
1.3	Project History—Site Investigation Background	1
1.4	Field Activities—Current Reporting Period	
2.0	GROUNDWATER MONITORING RESULTS	1
2.1	Groundwater Elevation and Gradient Data	1
2.2	Groundwater Sample Collection and Analysis	2
2.3	Groundwater Sample Analytical Results	. 2
3.0	CONCLUSIONS AND RECOMMENDATIONS	. 2
3.1	Conclusions	2
3.2	Planned Activities	. 2
4.0	QUALITY ASSURANCE AND PROFESSIONAL CERTIFICATION	. 3
4.1	Quality Assurance	. 3
4.2	Professional Certification.	. 3

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Well Location Map
Figure 3	Groundwater Elevation Contours
Figure 4	TPH as Gasoline Contours in Groundwater
Figure 5	Benzene Contours in Groundwater

TABLES

- Table 1Summary of Well Construction Details
- Table 2Current Quarter Groundwater Elevations
- Table 3Cumulative Summary of Groundwater Elevation Data
- Table 4Current Quarter Groundwater Analytical Data
- Table 5
 Cumulative Summary of Groundwater Sample Analytical Results

APPENDICES

Appendix A	Groundwater Sample Collection Records
Appendix B	Chain of Custody Records and Laboratory Analytical Reports

1.0 Site Location and Background

1.1 Site Location and Description

The site is located at 301 E. 14th Street in San Leandro, CA, in a high-density, mixed-use neighborhood of residential and small commercial buildings. Figure 1 shows the site location. E. 14th Street is a busy thoroughfare, running approximately 25 degrees west of north-south. The site is approximately 90' x 120' with an area of about 10,800 square feet. The current site use is as an automobile repair facility.

1.2 Site Hydrogeologic Conditions

The site is situated on mixed sediments about two miles east of San Francisco Bay. Site elevation is 48-50 feet above mean sea level, and groundwater elevation varies from 23-32 feet above mean sea level. Groundwater flow direction is typically W to WNW at a gradient of about 0.002 feet/ft. Figure 2 shows the general site layout and the locations of monitoring wells, both on-site and off-site.

1.3 Project History

The fuel leak was discovered and the gasoline storage tank was removed in October of 1990. A site assessment, including installation of three initial monitoring wells, was performed in 1995, and further assessment work was done in July of 1998, including installation of seven additional monitoring wells. In 2001, three more monitoring wells were installed. To date, certain wells have been monitored quarterly and others monitored annually to maintain a record of groundwater conditions. No active remediation has taken place since removal of the gasoline storage tank. Table 1 summarizes available well construction data.

1.4 Field Activities

This is the first quarterly monitoring event for Groundwater Cleaners, Inc. (GCI) at this site, so all the monitoring wells were sampled except for 141 Farralley, which was not located.

2.0 Groundwater Monitoring Results

2.1 Groundwater Elevation and Gradient

Consistent with historical results, groundwater elevation was 25.13 to 25.87 feet above mean sea level, and the gradient was 0.002 ft/ft WNW. Well MW-5 was dry, but all other monitoring wells contained water and recharged rapidly after purging. The site

wells close to the former tank location (MW-1, -2, -3 and -4) had noticeable hydrocarbon odors, but the off-site wells were generally odor free. Table 2 presents groundwater elevation data for September 30, 2006, and Table 3 presents a cumulative summary of elevation data.

2.2 Groundwater Sample Collection and Analysis

All wells were monitored and sampled by experienced personnel in accord with standard practices. All samples were placed on ice and transported to a State-certified analytical laboratory for analysis. Well purge water was stored on-site pending analysis and disposal. The Well Sampling Reports are attached as Appendix A.

2.3 Groundwater Sample Analytical Results

Consistent with historical values, monitoring well samples all tested positive for Petroleum Hydrocarbons as gasoline (TPHg) and Volatile Organic Compounds (BTEX), ranging from a high value of 120,000 μ g/L TPHg and 1,400 μ g/L Benzene at MW-1 to a low value of 160 μ g/L TPHg and 1.8 μ g/L Benzene at MW-11. The distribution of contaminant values generally confirmed the measured groundwater gradient. Table 4 presents groundwater analytical data for September 30, 2006, and Table 5 summarizes the historical groundwater analytical data.

3.0 Conclusions and Recommendations

3.1 Conclusions

All of the monitoring data are consistent with release of gasoline from a structurally unsound underground tank, and/or the associated fueling system. Concentrations of gasoline-related petroleum compounds are highest near the former tank location and directly down-gradient from that point. Concentrations drop off sharply with distance from the release point and with distance to the side from the prevailing groundwater flow direction. Significant concentrations of hydrocarbons have been carried off-site, directly down-gradient from the release point.

In 16 years since the removal of the underground storage tank, there has been some dissipation of the contaminants in the first few years, but there has been very little reduction in hydrocarbon concentrations in recent years at wells such as MW-1 and MW-4. GCI concludes that the contaminants have reached levels at which they are likely to remain for the foreseeable future in the absence of remedial action, though there will likely continue to be seasonal fluctuations in contaminant levels.

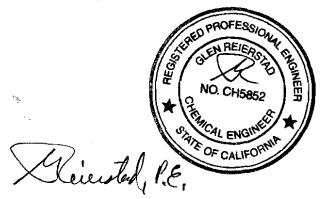
3.2 Recommendations

Besides the DEH required monitoring of this case, GCI recommends a dual-phase Soil Vapor Extraction (SVE) test to assess the potential success of SVE as a remediation

method for the core impact area at this site. Such a test may provide approximate cost data or may suggest the application of other technologies to remediate contaminants at the site. A five-day test is standard for such an assessment. GCI could provide a Work Plan for such a test, or for a more extensive test, that would likely reduce the persisting contaminants at the site. Off-site wells have significant access issues and would be unlikely to be useful for contaminant removal.

4.0 Quality Assurance and Professional Certification

4.1 Quality Assurance


All sampling was performed by a staff technician, skilled and experienced with groundwater monitoring well sampling procedures. Samples were stored on ice and sent promptly to a State-certified analytical laboratory. The laboratory is audited by the State certification program for maintaining quality control procedures and for record keeping. The chain-of-custody records and certified laboratory analytical reports are attached as Appendix B.

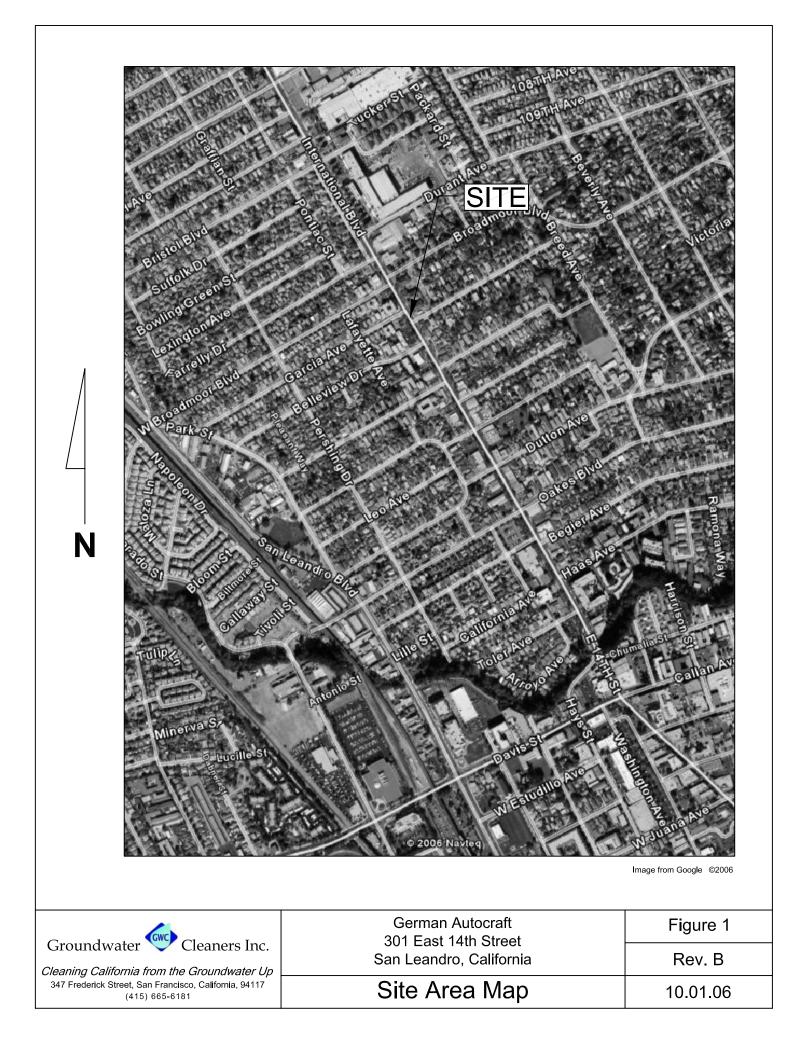
4.2 **Professional Certification**

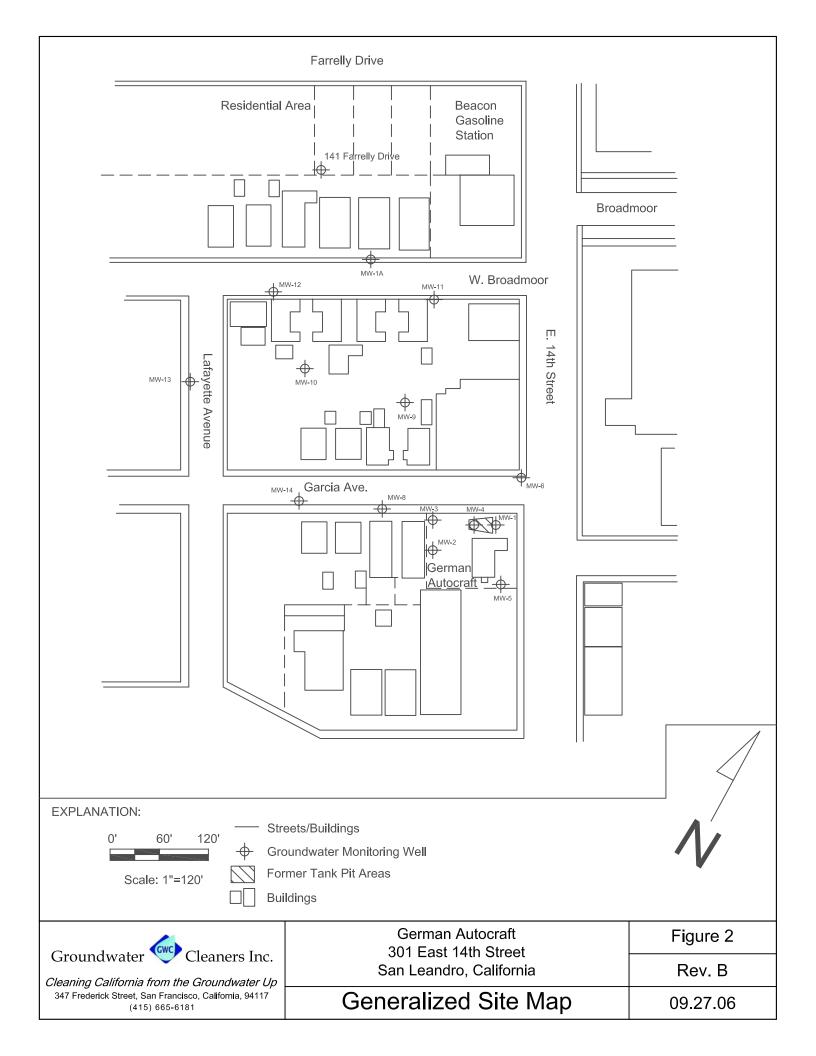
We declare, under penalty of perjury, that to the best of our knowledge, everything presented in this report is true and correct.

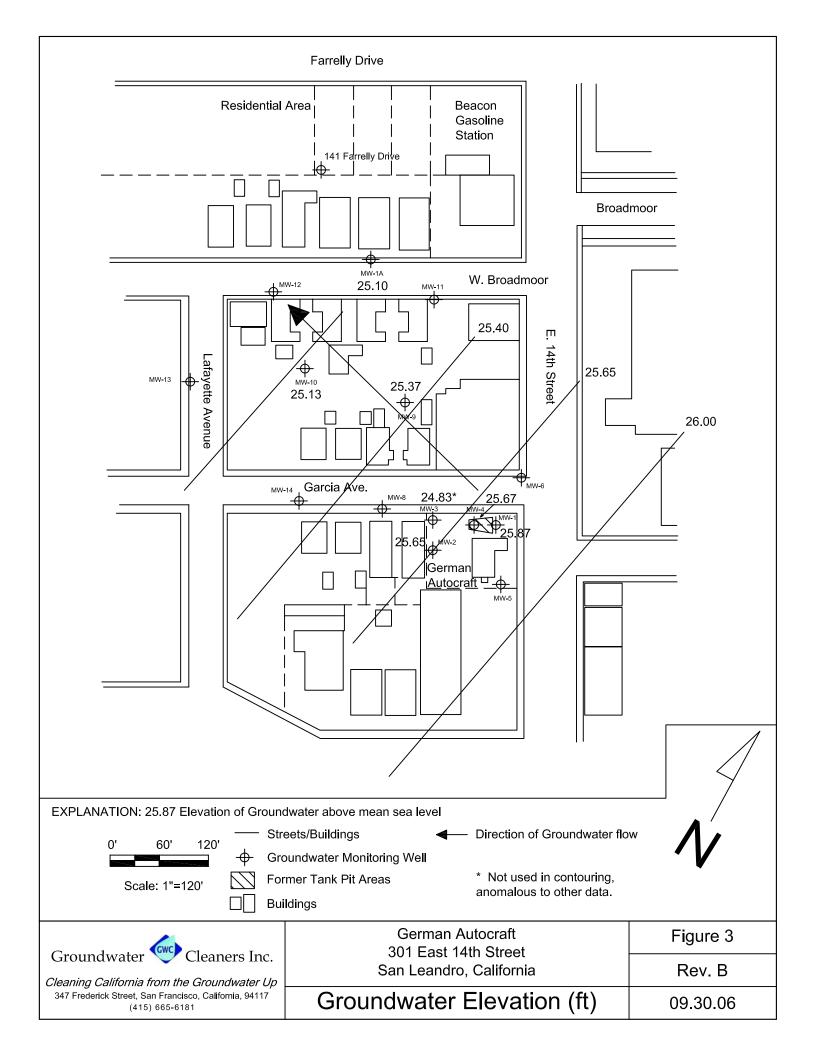
Should you have any questions or require supplemental information, please do not hesitate to contact us at (415) 665-6181.

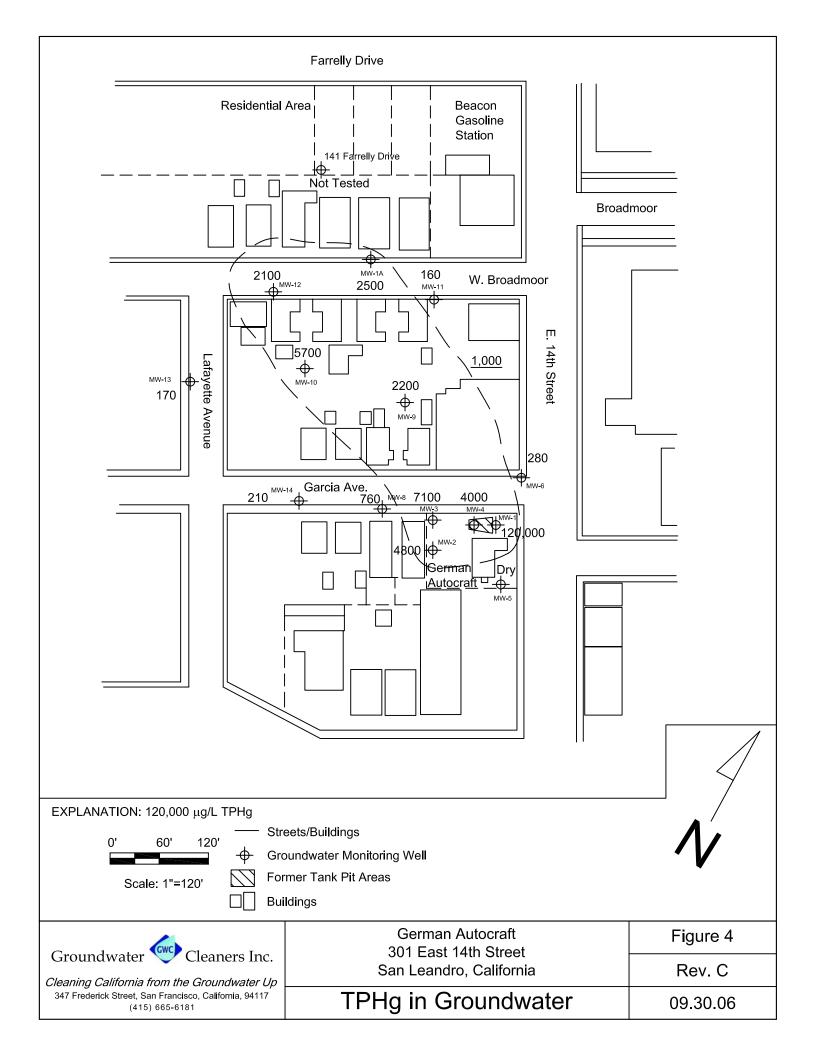
Sincerely,

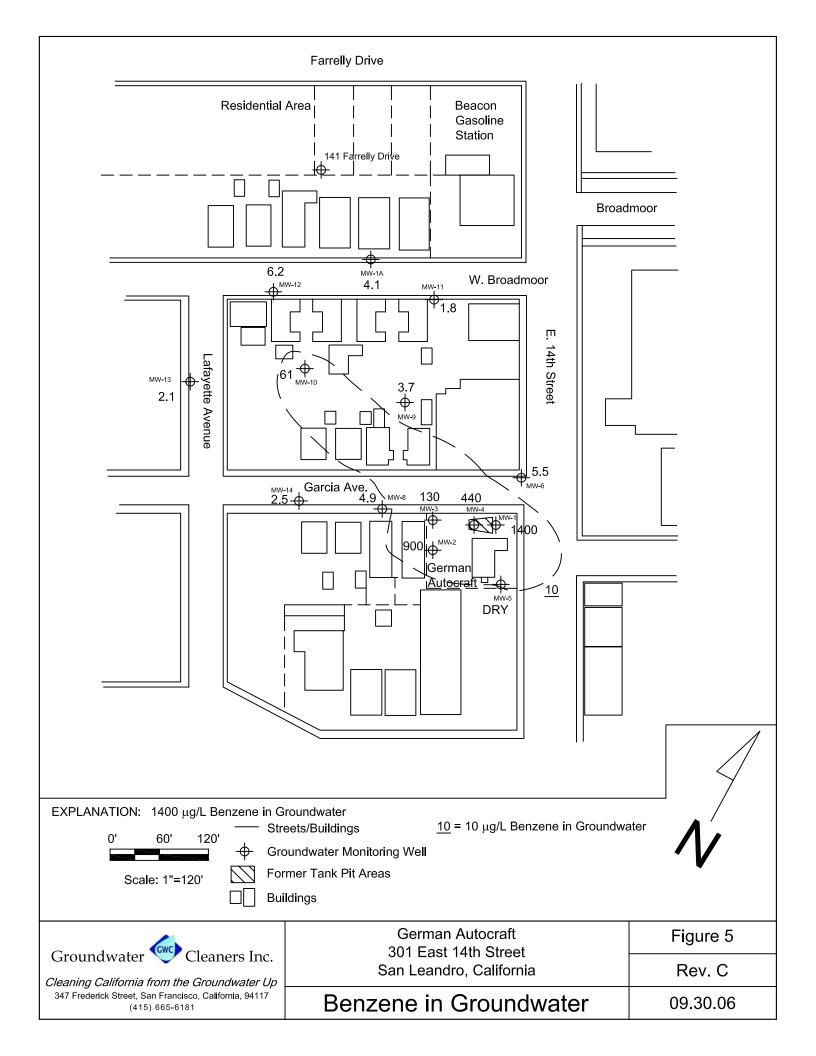
Glenn Reierstad, P.E. Project Manager, Groundwater Cleaners, Inc.




SaG


Eric R. Lautenbach, P.E. V.P. Engineering


Figures



Tables

Well	Date	Casing	Total	Screened	Relative	TOC
Number	Installed	Diameter	Depth	Interval	Location	Elevation
		(inches)	(feet)	(feet)		
MW-1	1/6/95	2	32.10	unknown	Onsite	49.40
MW-2	1/6/95	2	33.05	unknown	Onsite	50.02
MW-3	1/6/95	2	34.80	unknown	Onsite	49.32
MW-4	12/30/98	2	34.30	unknown	Onsite	49.61
MW-5	12/30/98	2	21.15	unknown	Onsite	unknown
MW-6	12/30/98	2	33.10	unknown	Off-site	unknown
MW-8	12/30/98	2	34.20	unknown	Off-site	unknown
MW-9	12/30/98	2	33.70	unknown	Off-site	48.77
MW-10	12/30/98	2	37.50	unknown	Off-site	49.93
MW-11	12/30/98	2	36.90	unknown	Off-site	unknown
MW-12	3/20/01	2	32.98	unknown	Off-site	unknown
MW-13	3/20/01	2	34.07	unknown	Off-site	unknown
MW-14	3/20/01	2	36.97	unknown	Off-site	unknown
MW-1A	5/30/97	2	33.88	unknown	Off-site	unknown
141	4/6/96	2	unknown	unknown	Off-site	48.76
Farrelly						

Table 1Summary of Well Construction DetailsGerman Autocraft, 301 E. 14th Street, San Leandro, California

Table 2Current Quarter Groundwater Elevations

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)	Change Since Last Measurement (feet)
MW-1	09/30/06	23.53	49.40	25.87	-2.96
MW-2	09/30/06	24.37	50.02	25.65	-2.96
MW-3	09/30/06	24.49	49.32	24.83	-1.84
MW-4	09/30/06	23.94	49.61	25.67	-1.08
MW-9	09/30/06	23.40	48.77	25.37	-0.97
MW-10	09/30/06	24.80	49.93	25.13	-1.43

XX 7.11	Data	Depth to	ТОС	Groundwater
Well	Date	Groundwater	Elevation	Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-1	12/21/90	30.25	49.40	19.15
	2/10/95		49.40	29.59
	7/7/95		49.40	26.63
	8/10/95		49.40	25.58
	9/11/95		49.40	24.68
	10/2/95		49.40	24.12
	11/7/95		49.40	23.36
	12/8/95		49.40	22.77
	1/12/96		49.40	24.35
	2/12/96		49.40	29.04
	3/12/96		49.40	31.75
	4/13/96		49.40	29.43
	5/14/96		49.40	27.89
	6/20/96		49.40	27.19
	7/26/96		49.40	25.95
	8/19/96		49.40	25.16
	9/17/96		49.40	24.44
	10/21/96		49.40	23.63
	11/27/96		49.40	24.28
	12/27/96		49.40	28.23
	1/28/97		49.40	33.02
	4/25/97		49.40	27.14
	7/17/97		49.40	24.55
	10/21/97		49.40	22.85
	3/10/98		49.40	34.35
	6/6/98		49.40	30.69
	9/30/98		49.40	25.95
	12/30/98		49.40	25.13
	3/13/99		49.40	29.98
	9/29/99		49.40	24.39
	12/29/99		49.40	23.75
	3/18/00		49.40	31.92
	7/18/00		49.40	26.21
	9/26/00		49.40	25.01
	12/28/00		49.40	24.63
	3/30/01		49.40	27.47
	10/5/01		49.40	23.82
	3/28/02		49.40	28.66
	3/31/03		49.40	26.68

Table 3Cumulative Summary of Groundwater Elevations

MW-1	6/19/03		49.40	26.23
continued	9/30/03		49.40	24.05
	2/10/04		49.40	26.96
	6/30/04		49.40	24.73
	9/14/04		49.40	21.51
	3/29/06	18.84	49.40	30.56
	6/24/06	20.57	49.40	28.83
	9/30/06	23.53	49.40	25.87

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-2	2/10/95		50.02	29.62
	7/7/95		50.02	26.47
	8/10/95		50.02	25.40
	9/11/95		50.02	24.49
	10/2/95		50.02	23.94
	11/7/95		50.02	23.13
	12/8/95		50.02	22.55
	1/12/96		50.02	24.20
	2/12/96		50.02	29.03
	3/12/96		50.02	31.60
	4/13/96		50.02	29.25
	5/14/96		50.02	27.68
	6/20/96		50.02	26.97
	7/26/96		50.02	25.74
	8/19/96		50.02	24.97
	9/17/96		50.02	24.22
	10/21/96		50.02	23.43
	11/27/96		50.02	24.09
	12/27/96		50.02	28.03
	1/28/97		50.02	32.71
	4/25/97		50.02	26.88
	7/17/97		50.02	24.31
	10/21/97		50.02	22.69
	3/10/98		50.02	34.20
	6/6/98		50.02	30.41
	9/30/98		50.02	25.68
	12/30/98		50.02	24.93
	3/13/99		50.02	29.80
	9/29/99		50.02	24.12
	12/29/99		50.02	23.52
	3/18/00		50.02	31.87
	7/18/00		50.02	26.01
	9/26/00		50.02	24.69

MW-2	12/28/00		50.02	24.39
continued	3/30/01		50.02	27.31
	10/5/01		50.02	23.64
	3/28/02		50.02	28.43
	9/30/02		50.02	24.18
	3/31/03		50.02	26.39
	6/19/03		50.02	26.04
	9/30/03		50.02	23.83
	2/10/04		50.02	26.75
	6/30/04		50.02	24.57
	9/14/04		50.02	23.32
	3/29/06	19.61	50.02	30.41
	6/24/06	21.41	50.02	28.61
	9/30/06	24.37	50.02	25.65

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-3	2/10/95		49.32	29.57
	7/7/95		49.32	26.50
	8/10/95		49.32	25.44
	9/11/95		49.32	24.54
	10/2/95		49.32	24.00
	11/7/95		49.32	23.21
	12/8/95		49.32	22.62
	1/12/96		49.32	24.25
	2/12/96		49.32	29.00
	3/12/96		49.32	31.67
	4/13/96		49.32	29.26
	5/14/96		49.32	27.71
	6/20/96		49.32	27.00
	7/26/96		49.32	25.67
	8/19/96		49.32	25.01
	9/17/96		49.32	24.27
	10/21/96		49.32	23.48
	11/27/96		49.32	24.13
	12/27/96		49.32	28.11
	1/28/97		49.32	32.78
	4/25/97		49.32	26.94
	7/17/97		49.32	24.37
	10/21/97		49.32	22.73
	3/10/98		49.32	34.13
	6/6/98		49.32	30.47
	9/30/98		49.32	25.75

MW-3	12/30/98		49.32	24.99
-				
continued	3/13/99		49.32	29.83
	9/29/99		49.32	24.20
	12/29/99		49.32	23.60
	3/18/00		49.32	31.82
	7/18/00		49.32	26.04
	9/26/00		49.32	24.80
	12/28/00		49.32	24.45
	3/30/01		49.32	27.39
	10/5/01		49.32	23.70
	3/28/02		49.32	28.49
	9/30/02		49.32	24.12
	3/31/03		49.32	26.50
	6/19/03		49.32	26.03
	9/30/03		49.32	23.82
	2/10/04		49.32	26.79
	6/30/04		49.32	24.59
	9/14/04		49.32	21.39
	3/29/06	18.87	49.32	30.45
	6/24/06	22.65	49.32	26.67
	9/30/06	24.49	49.32	24.83

Well	Date	Depth to	ТОС	Groundwater
Number	Recorded	Groundwater	Elevation	Elevation
1 (unio ci	Recorded	(feet)	(feet)	(feet)
MW-4	12/30/98		49.61	25.05
	3/13/99		49.61	29.89
	9/29/99		49.61	24.27
	12/29/99		49.61	23.64
	3/18/00		49.61	31.85
	12/28/00		49.61	24.52
	3/30/01		49.61	27.40
	10/5/01		49.61	23.77
	3/28/02		49.61	28.58
	9/30/02		49.61	24.32
	3/31/03		49.61	26.59
	6/19/03		49.61	26.16
	9/30/03		49.61	23.96
	9/14/04		49.61	21.45
	3/29/06	19.87	49.61	29.74
	6/24/06	22.86	49.61	26.75
	9/30/06	23.94	49.61	25.67

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-5	12/30/98		unknown	25.06
	3/13/99			29.93
	9/29/99			24.26
	3/18/00			23.64
	3/28/02			31.94

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-6	12/30/98		unknown	25.14
	3/13/99			29.97
	9/29/99			24.38
	12/29/99			23.75
	3/18/00			31.86
	7/18/00			26.22
	9/26/00			24.95
	12/28/00			24.61
	3/30/01			27.41
	10/5/01			23.82
	3/28/02			28.65
	9/30/02			24.41
	9/30/06	22.33		

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-8	12/30/98		unknown	24.75
	3/13/99			29.58
	9/29/99			23.93
	12/29/99			23.36
	3/18/00			31.66
	7/18/00			25.76
	9/26/00			24.50
	12/28/00			24.21
	3/30/01			27.14
	10/5/01			23.47
	3/28/02			28.15
	9/30/02			23.97
	9/30/06	24.07		

Well Number	Date Recorded	Depth to Groundwater	TOC Elevation	Groundwater Elevation
1 (41115)01	Incontaca	(feet)	(feet)	(feet)
MW-9	12/30/98		48.77	24.79
	3/13/99		48.77	29.58
	9/29/99		48.77	24.05
	12/29/99		48.77	23.45
	3/18/00		48.77	31.46
	7/18/00		48.77	25.83
	9/26/00		48.77	24.61
	12/28/00		48.77	24.29
	3/30/01		48.77	27.12
	10/5/01		48.77	23.54
	3/28/02		48.77	28.32
	9/30/02		48.77	24.11
	3/31/03		48.77	26.33
	6/19/03		48.77	25.90
	9/30/03		48.77	23.77
	2/10/04		48.77	26.64
	6/30/04		48.77	24.22
	9/14/04		40.77	
	3/29/06	16.74	48.77	32.03
	6/24/06	22.43	48.77	26.34
	9/30/06	23.40	48.77	25.37

Well	Date	Depth to Groundwater	TOC Elevation	Groundwater Elevation
Number	Recorded	(feet)	(feet)	(feet)
MW-10	12/30/98		49.93	24.78
	3/13/99		49.93	29.31
	9/29/99		49.93	23.80
	12/29/99		49.93	23.23
	3/18/00		49.93	31.26
	7/18/00		49.93	25.55
	9/26/00		49.93	24.34
	12/28/00		49.93	24.03
	3/30/01		49.93	26.79
	10/5/01		49.93	23.33
	3/28/02		49.93	28.06
	9/30/02		49.93	23.88
	3/31/03		49.93	26.06
	6/19/03		49.93	25.65
	9/30/03		49.93	23.56
	2/10/04		49.93	26.39

MW-10	6/30/04		49.93	24.22
continued	9/14/04		49.93	23.08
	3/29/06	20.18	49.93	29.75
	6/24/06	23.87	49.93	26.06
	9/30/06	24.80	49.93	25.13

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-11	12/30/98		unknown	24.78
	3/13/99			29.56
	9/29/99			24.03
	12/29/99			23.43
	3/18/00			31.38
	7/18/00			25.81
	9/26/00			24.58
	12/28/00			24.26
	3/30/01			27.03
	10/5/01			23.52
	3/28/02			28.31
	9/30/02			24.09
	9/30/06	22.58		

Well Number	Date Recorded	Depth to Groundwater (feet)	TOC Elevation (feet)	Groundwater Elevation (feet)
MW-1A	12/30/98		unknown	24.64
	3/13/99			29.39
	9/29/99			23.89
	12/29/99			23.29
	3/18/00			31.25
	7/18/00			25.64
	9/26/00			24.48
	12/28/00			24.13
	3/30/01			27.02
	10/5/01			23.38
	3/28/02			28.14
	9/30/02			23.96
	9/30/06	23.03		

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)	MtBE (µg/l)
MW-1	09/30/06	120,000	1,400	13,000	5,200	29,000	<500
MW-2	09/30/06	4,800	900	64	22	110	<50
MW-3	09/30/06	7,100	130	94	500	820	<50
MW-4	09/30/06	4,000	440	120	240	360	<50
MW-5	Dry	Dry	Dry	Dry	Dry	Dry	Dry
MW-6	09/30/06	280	5.5	24	14	69	<5
MW-8	09/30/06	760	4.9	31	13	64	<5
MW-9	09/30/06	2,200	3.7	31	37	40	<17
MW-10	09/30/06	5,700	61	30	78	120	<100
MW-11	09/30/06	160	1.8	12	7.6	40	<5
MW-12	09/30/06	2,100	6.2	15	16	38	<10
MW-13	09/30/06	170	2.1	13	8.1	43	<5
MW-14	09/30/06	210	2.5	15	9.1	48	<5
MW-1A	09/30/06	2,500	4.1	25	22	49	<5

Table 4 Current Quarter Groundwater Analytical Data September 30, 2006

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-1	12/31/90	51,000	2,200	1,200	< 0.5	760
	1/6/95	110,000	13,000	15,000	4,800	13,000
	1/6/95	580,000	29,000	41,000	17,000	43,000
	7/6/95	49,000	8,000	17,000	1,900	9,700
	10/2/95	120,000	16,000	36,000	3,300	17,000
	10/2/95	160,000	20,000	47,000	5,000	23,000
	1/12/96	1,100,000	11,000	18,000	15,000	51,000
	1/12/96	98,000	2,100	4,600	2,500	10,000
	4/13/96	53,000	1,300	2,900	2,100	10,000
	4/13/96	58,000	820	3,600	2,800	12,000
	7/26/96	91,000	2,600	7,200	2,900	14,000
	7/26/96	67,000	2,300	5,500	2,500	11,000
	10/21/96	210,000	4,800	17,000	2,300	15,000
	10/21/96	210,000	5,400	18,000	2,600	11,000
	1/28/97	120,000	5,600	15,000	2,100	11,000
	1/28/97	130,000	5,500	15,000	2,300	12,000
	4/25/97	180,000	6,900	20,000	2,600	13,000
	4/25/97	170,000	6,500	20,000	2,500	13,000
	7/17/97	220,000	8,300	41,000	2,700	16,000
	10/21/97	240,000	9,400	33,000	3,300	22,000
	3/10/98	120,000	11,000	46,000	3,700	21,000
	6/6/98	110,000	7,600	32,000	4,800	23,000
	9/30/98	140,000	5,800	29,000	3,500	18,000
	12/30/98	78,000	5,200	24,000	3,200	19,000
	3/23/99	250,000	8,000	43,000	5,200	27,000
	9/29/99	140,000	6,100	35,000	5,400	27,000
	3/18/00	120,000	5,100	33,000	4,600	24,000
	3/20/01	100,000	3,600	41,000	4,700	25,000
	3/28/02	100,000	2,800	24,000	5,400	28,900
	3/31/03	100,000	2,200	19,000	4,900	21,000
	3/31/04	100,000	2,100	21,000	6,200	36,000
	9/14/04	160,000	1,800	16,000	5,500	30,000
	3/29/06	69,000	1,400	16,000	4,900	28,000
	09/30/06	120,000	1,400	13,000	5,200	29,000

Table 5Cumulative Summary of Groundwater Analytical Data

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-2	1/6/95	980,000	9,400	5,600	19,000	42,000
	7/6/95	71,000	5,300	1,800	6,100	9,000
	10/2/95	40,000	2,900	200	2,800	3,600
	1/12/96	260,000	2,600	2,200	6,300	7,800
	4/13/96	30,000	1,900	370	2,300	2,400
	7/26/96	180,000	1,400	640	2,100	5,000
	10/21/96	62,000	2,100	< 0.5	2,100	2,700
	1/28/97	46,000	1,500	94	1,800	2,000
	4/25/97	23,000	790	26	820	730
	7/17/97	95,000	2,200	< 0.5	3,100	4,300
	10/21/97	31,000	2,000	< 0.5	2,100	1,900
	3/10/98	19,000	730	44	820	1,000
	6/6/98	16,000	670	1,100	510	1,200
	9/30/98	24,000	600	77	680	580
	12/30/98	9,300	510	96	450	480
	3/23/99	5,700	580	9.4	400	280
	9/29/99	17,000	880	240	830	1,000
	12/29/99	11,000	800	11	860	780
	3/18/00	11,000	790	14	520	450
	7/18/00	10,000	560	27	630	530
	9/26/00	6,800	450	7.4	290	200
	12/28/00	12,000	540	30	420	330
	3/20/01	3,500	230	<10	<10	<10
	3/28/02	7,000	570	16	170	71
	3/31/03	5,000	620	<12.5	71	<25
	3/31/04	8,200	500	<12.5	65	<25
	9/14/04	9,000	560	<13	57	<25
	3/29/06	5,200	1,400	<20	52	<20
	9/30/06	4,800	900	64	22	110

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-3	1/6/95	740,000	11,000	2,300	8,300	28,000
	7/6/95	86,000	12,000	8,600	4,900	19,000
	10/2/95	100,000	15,000	11,000	6,000	20,000
	1/12/96	84,000	6,500	4,100	3,200	12,000
	4/13/96	48,000	7,600	3,600	2,800	9,400
	7/26/96	62,000	6,400	3,100	3,000	11,000
	10/21/96	110,000	5,400	2,400	2,500	9,800

MW-3	1/28/97	130,000	5,500	15,000	2,300	12,000
continued	4/25/97	180,000	6,900	20,000	2,600	13,000
continueu	7/17/97	69,000	5,100	1,100	1,800	8,600
	10/21/97	58,000	4,300	1,300	2,100	8,000
	3/10/98	25,000	3,000	1,300	1,100	3,700
	6/6/98	52,000	4,400	1,900	2,300	6,900
	9/30/98	42,000	4,300	1,400	1,800	6,600
	12/30/98	34,000	4,200	770	2,300	9,000
	3/23/99	44,000	3,500	1,000	1,700	5,200
	9/29/99	39,000	6,000	840	2,400	8,100
	12/29/99	39,000	4,600	790	2,400	8,100
	3/18/00	21,000	3,100	550	1,400	4,100
	7/18/00	30,000	5,000	950	2,000	5,700
	9/26/00	36,000	5,300	640	2,400	9,900
	12/28/00	33,000	4,700	450	2,100	6,400
	3/20/01	21,000	2,000	260	570	3,000
	3/31/03	25,000	3,200	280	1,600	4,200
	3/31/04	11,000	1,000	940	550	1,900
	9/14/04	42,000	3,600	190	2,200	4,800
	3/29/06	7,200	180	17	460	680
	9/30/06	7,100	130	94	500	820

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-4	12/30/98	12,000	1,200	1,100	290	1,400
	3/23/99	89,000	5,900	8,700	2,000	9,200
	9/29/99	48,000	5,300	6,800	1,700	7,700
	3/18/00	44,000	4,500	7,500	2,200	11,000
	3/20/01	10,000	700	620	<10	1,900
	3/28/02	30,000	3,700	3,100	1,100	4,100
	3/31/03	25,000	2,000	2,100	820	2,900
	3/31/04	24,000	2,500	200	1,400	2,800
	9/14/04	14,000	760	550	430	1,600
	3/29/06	17,000	2,000	1,200	910	2,400
	9/30/06	4,000	440	120	240	360

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-5	12/30/98	170	1.1	< 0.5	< 0.5	4.8
	3/22/99	470	3.8	0.51	2.0	< 0.5

MW-5	9/29/99	1,200	13	4.2	2.7	4.2
continued	3/18/00	660	5.5	0.62	1.6	1.7
	3/29/06	190	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/06	Dry				

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-6	12/30/98	400	1.0	< 0.5	< 0.5	4.8
	3/22/99	390	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/99	330	1.8	1.4	1.5	< 0.5
	3/18/00	200	1.3	< 0.5	< 0.5	< 0.5
	9/26/00	240	1.5	< 0.5	< 0.5	< 0.5
	3/20/01	160	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	88	.89	< 0.5	< 0.5	< 0.5
	3/29/06	NS	NS	NS	NS	NS
	9/30/06	280	5.5	24	14	69

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-8	12/30/98	2,200	70	0.94	26	15
	3/23/99	2,300	34	1.1	15	13
	9/30/99	8,800	140	<50	53	<50
	12/29/99	1,900	64	1.0	22	23
	3/18/00	1,400	36	< 0.5	12	9.3
	7/18/00	3,000	67	9.8	38	38
	9/26/00	1,200	24	3.0	24	15
	12/28/00	1,200	47	3.7	17	18
	3/20/01	1,300	7.8	<2.5	<2.5	14
	10/5/01	1,800	28	<2.5	20	23
	3/28/02	1,100	12	1.7	11	10.8
	9/30/02	1,400	15	24	32	22
	9/30/06	760	4.9	31	13	64

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-9	12/30/98	25,000	23	<10	180	620
	3/23/99	27,000	35	<20	600	920
	9/30/99	42,000	140	130	1,000	1,700

MW-9	12/29/99	1,100,000	1,200	1,300	4,300	8,700
continued	3/18/00	17,000	89	46	10	600
	7/18/00	12,000	39	8.2	540	760
	9/26/00	11,000	19	<5	470	610
	12/28/00	22,000	100	<100	610	770
	3/20/01	8,200	40	<10	14	210
	10/5/01	77,000	<100	110	780	850
	3/28/02	11,000	34	6.1	220	180
	9/30/02	34,000	<125	140	240	370
	3/31/03	6,200	<12.5	<12.5	130	87
	9/30/03	9,700	52	<25	160	87
	9/14/04	9,500	48	<25	93	<50
	3/29/06	6,200	< 0.5	< 0.5	57	11
	9/30/06	2,200	3.7	31	37	40

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-10	12/30/98	6,900	130	19	140	210
	3/23/99	6,600	150	33	240	170
	9/30/99	9,300	60	38	280	150
	12/29/99	5,800	87	10	420	180
	3/18/00	3,800	180	11	220	120
	7/18/00	9,100	120	33	210	130
	9/26/00	4,500	22	8.8	1.3	18
	12/28/00	3,900	55	13	98	38
	3/20/01	4,500	48	6.0	<5	23
	10/5/01	5,200	70	28	41	30
	3/28/02	7,400	45	20	210	66
	9/30/02	670	54	5.9	76	23
	3/31/03	5,700	31	38	67	27
	9/30/03	7,400	61	<50	<50	<100
	9/14/04	9,100	47	<25	51	<50
	3/29/06	6,800	140	18	270	160
	9/30/06	5,700	61	30	78	120

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-11	12/30/98	80	< 0.5	< 0.5	0.93	1.6
	3/23/99	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/99	94	< 0.5	< 0.5	< 0.5	< 0.5

MW-11	3/18/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
continued	9/26/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/20/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	<50	< 0.5	< 0.5	< 0.5	<1.5
	9/30/06	160	1.8	12	7.6	40

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-12	3/20/01	4,100	28	6.2	<5	16
	6/29/01	4,200	26	25	19	29
	12/21/01	5,300	9.7	<2.5	41	14
	3/28/02	4,900	20	<2.5	69	23
	6/28/02	2,600	29	<12.5	30	<25
	9/30/02	700	16	4.9	19	9.8
	09/30/06	2,100	6.2	15	16	38

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-13	3/20/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	6/29/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	10/5/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/21/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/28/02	<50	< 0.5	< 0.5	< 0.5	<1.5
	6/28/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	9/30/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	12/21/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	09/30/06	170	2.1	13	8.1	43

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-14	3/20/01	200	< 0.5	< 0.5	< 0.5	< 0.5
	6/29/01	660	< 0.5	< 0.5	< 0.5	4.6
	10/5/01	770	1.7	1.5	0.91	8.3
	12/21/01	1,500	3.1	13	1.9	22
	3/28/02	390	1.7	< 0.5	< 0.5	0.74
	6/28/02	120	< 0.5	< 0.5	< 0.5	<1
	9/30/02	210	< 0.5	1.7	< 0.5	1.1
	12/21/02	53	< 0.5	< 0.5	< 0.5	<1.0

09/30/06 210 2.5 15 9.1 48							
		100/20/06	210	2.5	15	9.1	48

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
MW-1A	5/30/97	12,000	18	8.7	90	540
	12/30/98	51	< 0.5	< 0.5	< 0.5	< 0.5
	3/23/99	1,800	4.0	< 0.5	3.0	7.5
	3/23/99	2,200	10	0.52	3.1	7.1
	9/30/99	13,000	63	26	30	72
	3/8/00	6,100	36	<5	9.7	45
	9/26/00	11,000	14	<5	65	150
	3/20/01	4,800	30	6.0	<5	7.0
	10/5/01	15,000	76	41	36	140
	3/28/02	9,300	35	<12.5	17	32
	9/30/02	23,000	<50	63	77	230
	9/30/06	2,500	4.1	25	22	49

Well Number	Date Sampled	TPHg (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- Benzene (µg/l)	Total Xylenes (µg/l)
141 Farrelly	4/6/96	<50	<0.5	<0.5	<0.5	<0.5
	10/2/99	<50	< 0.5	< 0.5	< 0.5	< 0.5
	3/18/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	7/13/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/26/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/29/00	<50	< 0.5	< 0.5	< 0.5	< 0.5
	12/21/01	<50	< 0.5	< 0.5	< 0.5	< 0.5
	9/30/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	12/21/02	<50	< 0.5	< 0.5	< 0.5	<1.0
	6/19/03	<50	< 0.5	< 0.5	< 0.5	<1.0
	9/14/04	<50	< 0.5	< 0.5	< 0.5	<1.0

Well Sampling Reports

WELL: MW-1

Well Purge Method:	
Sample Collection Method:	
Sample Collection Depth:	

Notes: Definite petroleum odor

Submersible Pump Disposable Bailer 23.49

Well Screen Interval: ft bgs inches Casing Diameter: 2 Total Depth of Well: 32.44 ft btoc ft btoc Depth to Water: 23.53 Height of Water: 7.91 ft Three Well Volumes: 4.03 gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/30/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	%	Depth [ft]
	0- Static	Pre-Purge	nm	nm	7.27	nm	18.1	23.53		na
	1	Purging	nm	nm	6.90	nm	18.5	nm		na
	2	Purging	nm	nm	6.64	nm	18.7	nm		na
	4	Purging	nm	nm	nm	nm	18.7	nm		na
	Total 4.5 gal	Collect Sample	nm	nm	nm	nm	nm	23.49		na

WELL: MW-2

Well Purge Method:	Sub
Sample Collection Method:	Disp
Sample Collection Depth:	

ubmersible pump isposable Bailer 24.52

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.25	ft btoc
Depth to Water:	24.37	ft btoc
Height of Water:	8.88	ft
Three Well Volumes:	4.53	gal

Notes: Slight petroleum odor

Date/Time	Purge	Purge	D.O.	0.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/30/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	%	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.37		na
	2	Purging	nm	nm	6.46	nm	18.5	nm		na
	3	Purging	nm	nm	6.46	nm	18.6	nm		na
	5	Purging	nm	nm	6.45	nm	18.7	nm		na
	Total 5.0	Collect Sample	nm	nm	nm		nm	24.52	98.31%	na

WELL: MW-3

Well Purge Method:	Disposable Bailer
Sample Collection Method:	Disposable Bailer
Sample Collection Depth:	24.60

Note: Strong TPH odor present

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	34.94	ft btoc
Depth to Water:	24.49	ft btoc
Height of Water:	10.45	ft
Three Well Volumes:	5.33	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/16/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	%	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.49		na
	1	Purging	nm	nm	7.53	nm	17.8	nm		na
	3	Purging	nm	nm	7.20	nm	18.4	nm		na
	5	Purging	nm	nm	7.01	nm	18.6	nm		na
	Total 5.0	Collect Sample	nm	nm	nm	nm	nm	24.60	98.95%	na

WELL: MW-4

Well Purge Method:						
Sample Collection Method:						
Sample Collection Depth:						

Disposable Bailer Disposable Bailer 24.03

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	34.53	ft btoc
Depth to Water:	23.94	ft btoc
Height of Water:	10.59	ft
Three Well Volumes:	5.40	gal

Notes: No petroleum odor present.

Date/Time	Purge	Purge	D.O.	0.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	23.94		na
	1	Purging	nm	nm	6.65	nm	18.8	nm		na
	3	Purging	nm	nm	6.59	nm	18.8	nm		na
	5	Purging	nm	nm	6.54	nm	18.8	nm		na
	Total 5.0	Collect Sample	nm	nm	nm	nm	nm	24.03		na

WELL: MW-5

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 0.00

Well Screen Interval:		-	ft bgs
Casing Diameter:		2	inches
Total Depth of Well:		21.62	ft btoc
Depth to Water:	Dry		ft btoc
Height of Water:	n/a		ft
Three Well Volumes:		0.00	gal

Dry

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	C	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	Dry		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
		Purging	nm	nm	nm	nm	nm	nm		na
	Dry	Collect Sample	nm	nm	nm	nm	nm		Dry	na

WELL: MW-6

Well Purge Method:SubmSample Collection Method:DisponsionSample Collection Depth:Sample Collection Depth

Submersible pump Disposable Bailer 22.34

Notes: Slight petroleum odor

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	31.29	ft btoc
Depth to Water:	22.33	ft btoc
Height of Water:	8.96	ft
Three Well Volumes:	4.57	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/30/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	22.33		na
	2	Purging	nm	nm	6.58	nm	18.7	nm		na
	4	Purging	nm	nm	6.56	nm	18.6	nm		na
	6	Purging	nm	nm	6.57	nm	18.7	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	22.34		na

WELL: 141

Well Purge Method: Sample Collection Method: Sample Collection Depth:

Well not found

Disposable Bailer Disposable Bailer 0.00

 Well Screen Interval:
 ft bgs

 Casing Diameter:
 2
 inches

 Total Depth of Well:
 ft btoc

 Depth to Water:
 ft btoc

 Height of Water:
 ft

 Three Well Volumes:
 gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	C	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	0.00		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Purging	nm	nm		nm		nm		na
		Collect Sample	nm	nm	nm	nm	nm			na

WELL: MW-8

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 24.23

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.98	ft btoc
Depth to Water:	24.07	ft btoc
Height of Water:	9.91	ft
Three Well Volumes:	5.05	gal

Notes: No odor present.

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.07		na
	2	Purging	nm	nm	6.32	nm	18.7	nm		na
	4	Purging	nm	nm	6.29	nm	18.7	nm		na
	6	Purging	nm	nm	6.35	nm	18.7	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	24.23		na

WELL: MW-9

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 23.50

Notes: No odor present.

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	31.82	ft btoc
Depth to Water:	23.40	ft btoc
Height of Water:	8.42	ft
Three Well Volumes:	4.29	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рΗ	Cond.	Temp	DTW	Recovery	Pump
09/30/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	23.40		na
	2	Purging	nm	nm	6.98	nm		nm		na
	4	Purging	nm	nm	6.80	nm		nm		na
	6	Purging	nm	nm	6.73	nm		nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	23.50		na

WELL: MW-10

Well Purge Method:						
Sample Collection Method:						
Sample Collection Depth:						

Disposable Bailer Disposable Bailer 24.88

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	37.46	ft btoc
Depth to Water:	24.80	ft btoc
Height of Water:	8.66	ft
Three Well Volumes:	6.46	gal

Notes: Strong petroleum odor

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.80		na
	2	Purging	nm	nm	6.77	nm	19.0	nm		na
	4	Purging	nm	nm	6.60	nm	18.9	nm		na
	6	Purging	nm	nm	6.56	nm	18.9	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	24.88		na

WELL: MW-11

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 22.60

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	34.56	ft btoc
Depth to Water:	22.58	ft btoc
Height of Water:	11.98	ft
Three Well Volumes:	6.12	gal

Notes: No odor present.

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	22.58		na
	2	Purging	nm	nm	6.58	nm	18.5	nm		na
	4	Purging	nm	nm	6.55	nm	18.6	nm		na
	6	Purging	nm	nm	6.55	nm	18.5	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	22.60		na

WELL: MW-12

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 23.55

Notes: No odor present.

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	32.98	ft btoc
Depth to Water:	23.47	ft btoc
Height of Water:	9.51	ft
Three Well Volumes:	4.85	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/30/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	23.47		na
	2	Purging	nm	nm	6.45	nm	18.5	nm		na
	4	Purging	nm	nm	6.54	nm	18.6	nm		na
	6	Purging	nm	nm	6.57	nm	18.5	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	23.55		na

WELL: MW-13

Well Purge Method:					
Sample Collection Method:					
Sample Collection Depth:					

Disposable Bailer Disposable Bailer 24.90

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	34.07	ft btoc
Depth to Water:	24.88	ft btoc
Height of Water:	9.19	ft
Three Well Volumes:	4.69	gal

Notes: No petroleum odor present.

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.88		na
	1	Purging	nm	nm	6.54	nm	18.5	nm		na
	3	Purging	nm	nm	6.49	nm	18.4	nm		na
	5	Purging	nm	nm	6.50	nm	18.1	nm		na
	Total 5.0	Collect Sample	nm	nm	nm	nm	nm	24.90		na

WELL: MW-14

Well Purge Method: Sample Collection Method: Sample Collection Depth: Disposable Bailer Disposable Bailer 24.54

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	36.97	ft btoc
Depth to Water:	24.52	ft btoc
Height of Water:	12.45	ft
Three Well Volumes:	6.35	gal

Notes: No odor present.

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
9/30/2006	0- Static	Pre-Purge	nm	nm	nm	nm	nm	24.52		na
	2	Purging	nm	nm	6.69	nm	17.9	nm		na
	4	Purging	nm	nm	6.47	nm	18.4	nm		na
	6	Purging	nm	nm	6.49	nm	18.8	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	24.54		na

WELL: MW-1A

Well Purge Method: Sample Collection Method: Sample Collection Depth: Submersible pump Disposable Bailer 23.10

Notes: No odor present.

Well Screen Interval:	-	ft bgs
Casing Diameter:	2	inches
Total Depth of Well:	33.88	ft btoc
Depth to Water:	23.03	ft btoc
Height of Water:	10.85	ft
Three Well Volumes:	5.53	gal

Date/Time	Purge	Purge	D.O.	O.R.P.	рН	Cond.	Temp	DTW	Recovery	Pump
09/30/06	Vol. [Gal]	Status	ррт	mV		uS	С	BTOC [ft]	Sample Depth	Depth [ft]
	0- Static	Pre-Purge	nm	nm	nm	nm	nm	23.03		na
	2	Purging	nm	nm	6.42	nm	18.8	nm		na
	4	Purging	nm	nm	6.45	nm	18.5	nm		na
	6	Purging	nm	nm	6.51	nm	18.5	nm		na
	Total 6.0	Collect Sample	nm	nm	nm	nm	nm	23.10		na

Analytical Reports

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Groundwater Cleaners	Client Project ID: German Auto	Date Sampled: 09/30/06
347 Frederick Street		Date Received: 10/02/06
San Francisco, CA 94117	Client Contact: Glenn Reierstad	Date Reported: 10/09/06
	Client P.O.:	Date Completed: 10/09/06

WorkOrder: 0610020

October 09, 2006

Dear Glenn:

Enclosed are:

- 1). the results of 13 analyzed samples from your German Auto project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	#	2610000)																															*
	M	c CAMPI	BELL 10 2 nd AV PACHEC campbell.	/ENUE SO XO, CA 945	UTH, 53-55	#D7 60 ain@n	ncca	mpb		om	622	4						AR	ou ⁄	NE	T	Μ				H	OE 24 /rite] HR		48 F).] HR	5 DAY
ſ	Report To: Glenn	Reierstad		В	ill To	o: Sa	me													A	nal	ysis	Rec	lues	t		penetronen				0	ther	(Comments
	Company: Groun		iners															G				ers												Filter
	347 Fi	rederick Stre	eet												8015)			E/B&F)	14			ngen												Samples
	San Fi	rancisco, CA	94117			il: re	and the second second			n.co	m				+					1		/ C01						20)	(0)					or Metals
	Tele: (415) 665-61	181		F	ax: ((415)	566	-355	67			A		_	802	021)		/ 55	Ē	Cs)		lors		es)			s)	/ 60	/ 602					nalysis:
	Project #:		1111	P	rojec	t Nai	ne:	6	en 1	hin	~1	tu	to	_	Gas (602 / 8021	2/8	(1664	(418	0AI	les)	Aroc		bicid		-	PNA	6010	6010					Yes / No
	Project Location:		1410	St	Sa	L	20	nd	no	, C	A			_	Gas (A 60	\$108	ase (suoq	21 (F	sticic	N.	ides)	Her	(Cs)	OCs	Hs /	0.8 /	.8/(602(
	Sampler Signatur	e:	1			T	Т				—	(FT	HOD		l as ((EP	0il	Gre	ocarl	/ 80	1 Pe	NO	estic	c CI	(V0	(SV	(PA	/ 20	/ 200	10/				
			SAMP	PLING	s	ners		MA	TRI	X			HOD		& TPH as	ONLY (EPA 602 / 8021)	Motor	Oil &	Hydr	/ 8010	081 (C	PCB's	(NP P	8151 (Acidic Cl Herbicides)	/ 8260	/ 8270	/ 8310	(200.7	(200.7	0.8 / 6(• •			
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge Other	ICE	HCL	HNO ₃	Other	MTBE / BTEN &	MTBE / BTEX	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	-			
-	mw-1		09/30		2	Ko.	X				X	X		T	Х								14											
	MW-2		1		1	A	1				17	1			1													ŝ						
+	MW-3	ny mang ang ang ang ang ang ang ang ang ang				4	Π				Π																							
	MW-4		(11				\square	17)							-												
+	MW-5		$\uparrow \uparrow$				$\uparrow \uparrow$				\mathbf{H}			1	$\left(\right)$																			
• +	MW-6				\vdash	++					++	++-		-											1								+	
╊					-/	+	++					+		-	$\left(+ \right)$,	+	
┢			(+							-+	\rightarrow																		+	
Y	. mw -9								~		++	$\left \right $			-(a. 1					11.81									
}	MW-10		<u> </u>				14-				-			_			4			E/t°	CON	DITI	ON				PPR	OPR	ATE					
₽	MW - 10						11				\square	1							HI	AD	SPAC	EA	BSEN ED R		R		ONT	AIN	ERS_	N LA	B		_	
+	MW-12		- A								1												V	AS	08		MET							
+	MW-13										$\left(\right)$								PI	ESI	RV	TIO	N								4			
-	MW-14				1																-				· ·			and the second						
	MW-1A		TV -		V	V	10				V	V			V																			
Γ	Relinquished By:		Date:	Time:	Rec	eived I	By:						1	+	ICI	E/t°	-			1			1	1	1						ENT			
		eistel	10/02		40	7.1	21		\sim						GO	DOD	CON	NDIT CE A	ION			-					A	111	1-5		SG	mp	le	is
	Relinquished By:		Date:	Time:		eived 1									DE	CHI	OR	INA'	FED	IN I	AB								nt		U =1			
4	M. P. Ian		10/2	8:5														ATE D IN			INE	RS_	-				PA	050	rit	1				
1	Relinquished By:		Date:	Time:	Rec	eived l	By:								I IN	anon,	37 V E	ar ai			1		1		1									ort emailed?
0.0															PR	ESE	RVA	TIO		OAS	10	&G	M pH		LS	OT	HER			Yes		No		
	L		1	1	L					-	E State			-									and a second	town of Hills	and the second sec	CALIFIC CALIFORN	And a state of the	Constanting					Printer JOS M Law	ang pada dina kelarakaka sati dinanan yang pana

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1 (925) 252-9262	/01					Work	Order	: 0610	020	С	lientIE	: GCF					
				∠ EDF		F	ax		Emai	I	ПН	ardCopy	ſ	Third	Party		
Report to:							Bill to:						Req	uested	TAT:	5	days
Glenn Reierstad		Email:					Gle	enn Rei	rstad								
Groundwater Cleaners		TEL:	415-577-9383	FAX: 415-5	66-355	56	Gro	oundwa	ter Cle	aners			_	_			
347 Frederick Street		-	German Auto				347	7 Frede	rick Str	eet			Dat	e Recei	ived:	10/02	/2006
San Francisco, CA 941	17	PO:					Sa	n Franc	cisco, C	A 9411	7		Dat	e Print	ed:	10/02	/2006
									Re	quested	l Tests (See lege	nd bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0610020-001	MW-1		Water	9/30/06		Α	А										
0610020-002	MW-2		Water	9/30/06		А											
0610020-003	MW-3		Water	9/30/06		А											
0610020-004	MW-4		Water	9/30/06		Α											
0610020-005	MW-5		Water	9/30/06		А											
0610020-006	MW-6		Water	9/30/06		Α											
0610020-007	MW-8		Water	9/30/06		Α											
0610020-008	MW-9		Water	9/30/06		Α											
0610020-009	MW-10		Water	9/30/06		Α											
0610020-010	MW-11		Water	9/30/06		Α											
0610020-011	MW-12		Water	9/30/06		Α											
0610020-012	MW-13		Water	9/30/06		Α											
0610020-013	MW-14		Water	9/30/06		А							-				
0610020-014	MW-1A		Water	9/30/06		Α											

Test Legend:

1	G-MBTEX_W
6	
11	

2	PREDF REPORT
7	
12	

3	
8	

4	
9	

5	
10	

Prepared by: Mark Robinson

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell A	Analy ality Counts		•	Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com				
Groundy	water Cleaners		Client Proj	ect ID: Gern	nan Auto		Date Sample	ed: 09/30/06				
347 Free	lerick Street						Date Received: 10/02/06					
а Б			Client Cor	tact: Glenn	Reierstad		Date Extract	ed: 10/04/06	-10/06	5/06		
San Frar	ncisco, CA 94117		Client P.O.	:			Date Analyz	ed 10/04/06	-10/06	5/06		
Extraction	Gasoline method SW5030B	Range (,	tile Hydroca		line with BTH	EX and MTBE	* Work Order	: 061	0020		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-1	W	120,000,a	ND<500	1400	13,000	5200	29,000	100	103		
002A	MW-2	W	4800,a	ND<50	900	64	22	110	10	117		
003A	MW-3	W	7100,a	ND<50	130	94	500	820	10	111		
004A	MW-4	W	4000,a	ND<50	440	120	240	360	10	110		
006A	MW-6	W	280,a	280,a ND		24	14	69	1	105		
007A	MW-8	W	760,a	ND	4.9	31	13	64	1	110		
008A	MW-9	W	2200,a	ND<17	3.7	31	37	40	3.3	115		
009A	MW-10	W	5700,a	ND<100	61	30	78	120	20	112		
010A	MW-11	W	160,a	ND	1.8	12	7.6	40	1	104		
011A	MW-12	W	2100,a	ND<10	6.2	15	16	38	2	118		
012A	MW-13	W	170,a	ND	2.1	13	8.1	43	1	98		
013A	MW-14	W	210,a	ND	2.5	15	9.1	48	1	97		
014A	MW-1A	W	2500,a	ND	4.1	25	22	49	1	112		
-	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L		
	neans not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

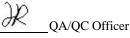
QC Matrix: Water

WorkOrder: 0610020

EPA Method: SW8021B/8015Cm Extraction: SW5030B					BatchID: 24050 Spiked Sample ID: 06100				: 0610023-0	01A		
Analyte	Sample	Sample Spiked MS MSD			MS-MSD	LCS LCSD LCS-LCSI			D Acceptance Criteria (%)			
, individ	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	96.2	97.2	1.12	103	98.3	4.98	70 - 130	30	70 - 130	30
MTBE	ND	10	91.9	93.2	1.33	106	102	4.37	70 - 130	30	70 - 130	30
Benzene	ND	10	90.3	94	3.98	112	103	8.80	70 - 130	30	70 - 130	30
Toluene	ND	10	80.5	85.8	6.35	99.4	94.5	4.99	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	93.2	96.4	3.39	102	86.3	16.7	70 - 130	30	70 - 130	30
Xylenes	ND	30	86	91	5.65	91.3	95	3.94	70 - 130	30	70 - 130	30
%SS:	98	10	103	101	1.45	110	100	9.67	70 - 130	30	70 - 130	30

NONE

BATCH 24050 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0610020-001	9/30/06	10/04/06	0/04/06 11:40 PM	0610020-002	9/30/06	10/05/06)/05/06 12:11 AM
0610020-003	9/30/06	10/05/06)/05/06 12:43 AM	0610020-004	9/30/06	10/04/06	10/04/06 4:11 PM
0610020-006	9/30/06	10/04/06	10/04/06 4:44 PM	0610020-007	9/30/06	10/04/06	10/04/06 5:16 PM
0610020-008	9/30/06	10/05/06	10/05/06 9:02 PM	0610020-009	9/30/06	10/05/06	10/05/06 1:46 AM
0610020-010	9/30/06	10/04/06	10/04/06 6:22 PM	0610020-011	9/30/06	10/06/06	0/06/06 10:22 PM
0610020-012	9/30/06	10/04/06	10/04/06 6:54 PM	0610020-013	9/30/06	10/04/06	10/04/06 7:26 PM
0610020-014	9/30/06	10/04/06	10/04/06 7:58 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

