

RECEIVED

10:19 am, Nov 03, 2008

Alameda County Environmental Health

April 29, 2007

Ms. Donna Drogos Supervising Hazardous Materials Specialist Alameda Clara Health Care Services 1131 Harbor bay Parkway Alameda, CA 94502-6577

Re: Quarterly Report Transmittal First Quarter – 2007 76 Service Station #4625 3070 Fruitvale Avenue Oakland, Alameda County, CA

Dear Ms. Drogos:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7604.

Sincerely,

Z-A-

Eric G. Hetrick Site Manager Risk Management & Remediation

1590 Solano Way #A Concord, CA 94520

925.688.1200 PHONE 925.688.0388 FAX

www.TRCsolutions.com

April 29, 2007

TRC Project No. 42014512

Ms. Donna Drogos Supervising Hazardous Materials Specialist Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Quarterly Status Report – First Quarter 2007 76 Service Station #4625, 3070 Fruitvale Avenue Oakland, California Alameda County

Dear Ms. Drogos:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the First Quarter 2007 Status Report for the subject site. The site is currently an active service station located on the southeast corner of Fruitvale Avenue and School Street in Oakland, California.

PREVIOUS ASSESSMENTS

April/May 1998: The gasoline underground storage tanks (USTs), product piping and dispensers were removed and replaced. Concentrations of total petroleum hydrocarbons as gasoline (TPH-g), benzene, and methyl tertiary butyl ether (MTBE) ranged from non-detect to moderate levels.

May 1998: A waste oil UST and associated piping was also removed. Concentrations of TPH-g, benzene, total petroleum hydrocarbons as diesel (TPH-d), total oil and grease (TOG), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals ranged from non-detect to moderate levels.

A total of approximately 1,166 tons of soil were over excavated and transported from the site to Allied Waste's Forward Landfill in Manteca, California. Additionally, 40,000 gallons of groundwater were pumped from the UST pit and transported to the Tosco Refinery in Rodeo, California for disposal. A conductor casing was installed in the backfill during installation of the replacement gasoline USTs. The waste oil tank was replaced with an aboveground tank.

April 2000: Four monitoring wells were installed at the site.

QSR – First Quarter 2007 76 Service Station #4625, Oakland, California April 29, 2007 Page 2

May 2003: Two monitoring wells were installed to 25 feet below ground surface (bgs) and two exploratory borings were advanced to approximately 15 feet bgs. Soil samples contained low maximum levels of benzene, MTBE, and tertiary butyl alcohol (TBA), and moderate levels of TPH-g. Grab groundwater samples collected from the two soil borings were reported to contain elevated concentrations of petroleum hydrocarbons in both samples.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

February 27 – March 3, 2006: TRC conducted a hydropunch groundwater investigation at the site which involved the advancement of two onsite and five offsite hydropunch borings using a cone penetrometer testing (CPT) rig.

SENSITIVE RECEPTORS

A well survey was conducted by Gettler Ryan as part of an August 2000 Limited Subsurface Investigation. The well survey identified only one irrigation well located approximately 1,700 feet south-southeast of the site. The only surface water body identified was Sausal Creek, located approximately 500 feet west of the site.

MONITORING AND SAMPLING

Currently, seven onsite wells are monitored and six of the seven wells are sampled quarterly. All seven wells were gauged and six wells sampled during the first quarter 2007. The groundwater flow is towards the west at a calculated hydraulic gradient of 0.02 feet per foot. A graph of historical groundwater flow directions is included in this report.

CHARACTERIZATION STATUS

During the first quarter 2007, total petroleum hydrocarbons as gasoline (TPH-g) were detected in three of the six wells sampled at a maximum concentration of 8,000 micrograms per liter (μ g/l) in well MW-5. Benzene was detected in two of the six wells sampled at a maximum concentration of 340 μ g/l in well MW-5. MTBE was detected in two of the six wells sampled at a concentration of 480 μ g/l in well MW-5. TBA was detected in well MW-5 at a concentration of 45 μ g/l.

Based on the groundwater data obtained during the recent hydropunch groundwater investigation, the downgradient extent of the dissolved-phase hydrocarbon plume has not migrated offsite as far as the east side of Fruitvale Avenue. However, to provide future downgradient monitoring within the shallow water-bearing zone, two offsite monitoring wells will be installed along the sidewalk on the east side of Fruitvale Avenue.

REMEDIATION STATUS

May 1998: A total of approximately 1,166 tons of soil generated during replacement of Fuel and waste oil USTs were over excavated and transported from the site to Allied Waste's Forward Landfill in Manteca, California. Additionally, 40,000 gallons of groundwater were pumped from the UST pit and transported to the Tosco Refinery in Rodeo, California for disposal.

Remediation is not currently being conducted at the site.

RECENT CORRESPONDENCE

TRC has been working with the property owner and the City of Oakland in order to obtain encroachment permits for the installation of the two offsite monitoring wells on the east side of Fruitvale Avenue.

No agency correspondence this quarter.

CURRENT QUARTER ACTIVITIES

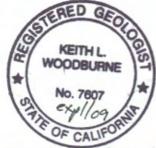
March 16, 2007: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

CONCLUSIONS AND RECOMMENDATIONS

In the April 14, 2006 Hydropunch Groundwater Investigation Report, TRC recommended installation of one onsite monitoring well screened within the deeper water-bearing zone, to confirm the presence of groundwater impacts identified during the hydropunch groundwater investigation. In addition, TRC recommended installation of two offsite monitoring wells within the shallow water-bearing zone to provide future downgradient plume monitoring.

No comments have been received from Alameda County Health Services Agency following submittal of the April 14, 2006 Hydropunch Groundwater Investigation Report for the subject site. In accordance with the 60-day rule (CCR Title 23, Division 3, Chapter 16, Article 11, Section 2722, 2e), TRC on behalf of ConocoPhillips will proceed with the recommended well installations. The well installations will be completed during the second quarter 2007, pending receipt of encroachment permits from the City of Oakland.

TRC recommends continuing quarterly monitoring and sampling to assess plume stability and concentration trends at key wells. TRC will also complete an updated sensitive receptor survey for the site.


If you have any questions regarding this report, please call me at (925) 688-2488.

Sincerely,

Keith Woodburne, P.G. Senior Project Manager

Attachments: Quarterly Monitoring Report, January through March 2007 (TRC, April 13 2007) Historical Groundwater Flow Directions – July 2000 through March 2007

cc: Eric Hetrick, ConocoPhillips (electronic upload)

21 Technology Drive Irvine, CA 92618 949.727.9336 PHONE

949.727.7399 FAX

www.TRCsolutions.com

- DATE: April 13, 2007
- TO: ConocoPhillips Company 76 Broadway Sacramento, CA 95818
- ATTN: MR. ERIC HETRICK
- SITE: 76 STATION 4625 3070 FRUITVALE AVENUE OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2007

Dear Mr. Hetrick:

Please find enclosed our Quarterly Monitoring Report for 76 Station 4625, located at 3070 Fruitvale Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

- Anju Farfan Groundwater Program Operations Manager
- CC: Mr. Keith Woodburne, TRC (2 copies)

Enclosures 20-0400/4625R15.QMS

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2007

76 STATION 4625 3070 Fruitvale Avenue Oakland, California

Prepared For:

Mr. Eric Hetrick CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By: No. PG353 misz

Senior Project Geologist, Irvine Operations April 13, 2007

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
1 40103	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 1b: Additional Current Analytical Results
	Table 1c: Additional Current Analytical Results
	Table 1d: Additional Current Analytical Results
	Table 1e: Additional Current Analytical Results
	Table 1f: Additional Current Analytical Results
	Table 1g: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
	Table 2b: Additional Historic Analytical Results
	Table 2c: Additional Historic Analytical Results
	Table 2d: Additional Historic Analytical Results
	Table 2e: Additional Historic Analytical Results
	Table 2f: Additional Historic Analytical Results
	Table 2g: Additional Historic Analytical Results
	Table 2h: Additional Historic Analytical Results
	Table 2i: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	Benzene Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 03/16/07
	Groundwater Sampling Field Notes - 03/16/07
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities January 2007 through March 2007 76 Station 4625 3070 Fruitvale Avenue Oakland, CA

Project Coordinator: Eric Hetrick Telephone: 916-558-7604	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 03/16/07	
Sample Points	
Groundwater wells:7 onsite,0 offsitePurging method:Diaphragm pumpPurge water disposal:Onyx/Rodeo Unit 100Other Sample Points:0Type:n/a	Wells gauged: 7 Wells sampled: 6
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet): LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	n/a Method: n/a
Hydrogeologic Parameters	
 Depth to groundwater (below TOC): Minimum: Average groundwater elevation (relative to available Average change in groundwater elevation since previous Interpreted groundwater gradient and flow direction Current event: 0.02 ft/ft, west Previous event: 0.013 ft/ft, southwest (12/ 	e local datum): 130.89 feet vious event: -0.49 feet ::
Selected Laboratory Results	
	Vells above MCL (1.0 μg/l): 2 D μg/l (MW-5)
· · · · ·	1aximum: 8,000 μg/l (MW-5) 1aximum: 480 μg/l (MW-5)

Notes:

USTW=Monitored Only,

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

STANDARD	A	<u>BREVIATIONS</u>
	=	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons
Trace	=	less than 0.01 foot of LPH in well
μg/1	=	micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l	=	milligrams per liter (approx. equivalent to parts per million, ppm)
ND<	=	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)
ANALYTES		
BTEX		= benzene, toluene, ethylbenzene, and (total) xylenes
DIPE		= di-isopropyl ether
ETBE		= ethyl tertiary butyl ether
MTBE		= methyl tertiary butyl ether
PCB		= polychlorinated biphenyls
PCE		= tetrachloroethene
TBA		= tertiary butyl alcohol
TCA		= trichloroethane
TCE		= trichloroethene
TPH-G		= total petroleum hydrocarbons with gasoline distinction
TPH-G (GC/N	AS)	= total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
TPH-D		= total petroleum hydrocarbons with diesel distinction
TRPH		= total recoverable petroleum hydrocarbons
TAME		= tertiary amyl methyl ether
1,1-DCA		= 1,1-dichloroethane
1,2-DCA		= 1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		= 1,1-dichloroethene
1,2-DCE		= 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water</u> + (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 4625 in October 2004. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 4625

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments	
Table 1a	Well/ Date	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Bromo- dichloro- methane	Bromo- form	Bromo- methane	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane
Table 1b	Well/ Date	Chloroform	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	1,1-DCA	1,1-DCE	trans- 1,2- DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Methylene chloride	1,1,2,2- Tetrachloro - ethane	Tetrachloro - ethene (PCE)
Table 1c	Well/ Date	Trichloro- trifluoro- ethane	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,l]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid
Table 1d	Well/ Date	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ether	Bis(2- chloro- isopropyl)-	Bis(2- ethyl- hexyl)	4-Bromo- phenyl phe- nyl	Butyl benzyl phthalate	4-Chloro- 3-methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl	Chrysene	Dibenzo- [a,h]- anthracene	Dibenzo- furan
Table 1e	Well/ Date	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	3,3- Dichloro- benzidine	2,4- Dichloro- phenol	Diethyl phthalate	2,4- Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene	Di-n-octyl phthalate	Fluoran- thene	Fluorene
Table 1f	Well/ Date	Hexachloro - benzene	HCBD (svoc)	Hexachloro cyclopenta-		Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- 4,6-dini- trophenol	2-Methyl- naphtha- lene	2-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol
Table 1g	Well/ Date	4-Nitro- phenol	N- nitrosodi- n-propyl-	N-Nitro- sodiphenyl- amine	Pentachlor o- phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)				
Historic Da	ata															
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments	
Table 2a	Well/ Date	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
Table 2b	Well/ Date	Bromo- methane	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl benzene	Carbon Disulfide	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane	2- Chloroethyl vinyl ether	Chloroform	Chioro- methane	2- Chloro- toluene	4-Chloro- toluene	1,2Dibrom- 3-chloro- propane	Dibromo- chloro- methane

Contents of Tables 1 and 2 Site: 76 Station 4625

Table 2c	Well/ Date	Dibromo- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2- DCE	trans- 1,2- DCE	1,2- Dichloro- propane	1,3- Dichloro- propane	2,2- Dichloro- propane	1,1- Dichloro- propene	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene
Table 2d	Well/ Date	Hexa- chloro- butadiene	2- Hexanone	lsopropyl- benzene	p- Isopropyl- toluene	Methyl- ethyl Keytone	Methyl- isobytyl ketone	Methylene chloride	Naph- thalene	n-Propyl- benzene	Styrene	1,1,1,2- Tetrachloro - ethane	1,1,2,2- Tetrachloro - ethane	Tetrachloro - ethene (PCE)	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene
Table 2e	Weil/ Date	1,2,3- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Vinyl- acetate	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene
Table 2f	Well/ Date	Benzo- [g,h,l]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ether	Bis(2- chloro- isopropyl)-	Bis(2- ethyl- hexyl)	4-Bromo- phenyl phe- nyl	Butyl benzyl phthalate	4-Chloro- 3-methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl
Table 2g	Well/ Date	Chrysene	Dibenzo- [a,h]- anthracene	Dibenzo- furan	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	3,3- Dichloro- benzidine	2,4- Dichloro- phenol	Diethyl phthalate	2,4- Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene
Table 2h	Well/ Date	Di-n-octyl phthalate	Fluoran- thene	Fluorene	Hexachloro - benzene	HCBD (svoc)	Hexachloro cyclopenta-	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- 4,6-dini- trophenol	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline
Table 2i	Well/ Date	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N- nitrosodi- n-propyl-	N-Nitro- sodiphenyl- amine	Pentachlor o- phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 16, 2007 76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1		(Screen I	nterval in fe	eet: 5.0-25	.0)									
03/16/0	7 137.57	7.07	0.00	130.50	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2		(Screen I	nterval in fe	eet: 5.0-25	.0)									
03/16/0	7 139.85	8.10	0.00	131.75	-1.12		62	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-3		(Screen I	nterval in fe	et: 5.0-25	.0)									
03/16/0	7 138.89	7.14	0.00	131.75	-1.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D 03/16/0	7 138.89	7.14	0.00	131.75	-1.04			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-4		•	nterval in fe											
03/16/0	7 137.81	7.20	0.00	130.61	-0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-5		•	nterval in fe		,									
03/16/0	7 137.66	8.10	0.00	129.56	-0.53		8000	340	62	400	700		480	
MW-6		•	nterval in fe	eet: 5.0-25	.0)									
03/16/0	7 138.88	7.73	0.00	131.15	-0.85	~~	160	22	8.7	3.5	12		82	
USTW		•	nterval in fe	et: DNA)										
03/16/0	7	7.43	0.00											Monitored Only

Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Bromo- dichloro- methane	Bromo- form	Bromo- methane	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1 03/16/07			ND<250												
MW-2 03/16/07			ND<250												
MW-3 03/16/07	ND<50		ND<250		ND<0.50				ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50
MW-4 03/16/07			ND<250												
MW-5 03/16/07		45	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
MW-6 03/16/07		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							

Table 1 aADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 4625

							70 Stand	011 4025							
Date Sampled	Chloroform	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	1,1-DCA	1,1-DCE	trans- 1,2- DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Methylene chloride	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 03/16/01	7 ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50

Table 1 bADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 4625

							10 5141								
Date Sampled	Trichloro- trifluoro- ethane	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,I]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 03/16/07	7 ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10

Table 1 c
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

4625

							70 Stat	1011 4025							
Date Sampled	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ethe	chloro- 1 isopropyl)	.,	4-Bromo- phenyl phe- nyl ether	Butyl benzyl phthalate	4-Chloro- 3 methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl ether	Chrysene	Dibenzo- [a,h]- anthracene	Dibenzo- furan
	(µg/l)	methane (µg/l)	(µg/l)	ether (µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 03/16/07	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<3.0	ND<2.0

Table 1 dADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 4625

	76 Station 4625														
Date Sampled	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	3,3- Dichloro- benzidine	2,4- Dichloro- phenol	Diethyl phthalate	2,4- Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4- Dinitro- phenol	2,4- Dinitro- toluene	2,6- Dinitro- toluene	Di-n-octyl phthalate	Fluoran- thene	Fluorene
	(svoc) (µg/l)	(svoc) (µg/l)	(svoc) $(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 03/16/07	7 ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 1 eADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 4625

-18-

-

							70 Stati	011 4025							
Date Sampled H	lexachloro- benzene	HCBD (svoc)	Hexachlord cyclopenta diene		Indeno- [1,2,3-c,d] pyrene	1	e 2-Methyl- 4,6-dini- trophenol	2-Methyl- naphtha- lene	2-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 03/16/07	ND<2.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0

Table 1 fADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 4625

							76 Stati	on 4625					
Date Sampled	4-Nitro- phenol	N-nitrosodi n-propyl- amine		- Pentachloro phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	 	
MW-3 03/16/07	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	50		

Table 1 gADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 4625

- 12 12

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 2000 Through March 2007

76 Station 4625

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	(5	Screen Int	erval in fee	t: 5.0-25.0)										
05/03/0	0 136.36	11.81	0.00	124.55		ND		ND	ND	ND	ND	11	14	
07/28/0	0 136.36	7.79	0.00	128.57	4.02	ND		ND	ND	ND	ND	21	19	
10/29/0	0 136.36	7.90	0.00	128.46	-0.11	62		ND	ND	ND	ND	6.5	3.9	
02/09/0	1 136.36	7.95	0.00	128.41	-0.05	ND		ND	ND	ND	ND	9.0	9.0	
05/11/0	1 136.36	7.22	0.00	129.14	0.73	ND		ND	ND	ND	ND	12.7	16.3	
08/10/0	1 136.36	8.47	0.00	127.89	-1.25	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	17	19	
11/07/0	1 136.36	8.10	0.00	128.26	0.37	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	22	26	
02/06/0	2 136.36	6.84	0.00	129.52	1.26	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	14	18	
05/08/0	2 136.36	7.29	0.00	129.07	-0.45	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	20	19	
08/09/0	2 136.36	8.20	0.00	128.16	-0.91		57	ND<0.50	ND<0.50	ND<0.50	ND<1.0		22	
11/26/0	2 136.36	7.78	0.00	128.58	0.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23	
02/14/0	3 137.57	6.90	0.00	130.67	2.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.8	
05/03/0	3 137.57	7.36	0.00	130.21	-0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.4	
08/01/0	3 137.57	7.48	0.00	130.09	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.7	
10/30/0	3 137.57	8.74	0.00	128.83	-1.26		300	35	41	21	71		8.5	
01/29/0	4 137.57	6.72	0.00	130.85	2.02		74	ND<0.50	4.3	ND<0.50	ND<1.0		12	
05/27/0	4 137.57	7.98	0.00	129.59	-1.26		ND<50	ND<0.50	ND<0.50	ND<0.50	1.0		16	
08/31/0	4 137.57	8.42	0.00	129.15	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23	
11/18/0	4 137.57	6.91	0.00	130.66	1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	1.4		7.2	
03/25/0	5 137.57	6.23	0.00	131.34	0.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.2	
06/22/0	5 137.57	6.83	0.00	130.74	-0.60		ND<50	ND<0.50	0.23J	ND<0.50	ND<1.0		11	
09/26/0	5 137.57	7.97	0.00	129.60	-1.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
12/20/0	5 137.57	6.73	0.00	130.84	1.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.2	

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 2000 Through March 2007

76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	continued													
03/29/0	6 137.57	6.41	0.00	131.16	0.32		79	1.3	ND<0.50	1.4	4.2		3.4	
06/12/0	6 137.57	7.10	0.00	130.47	-0.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.0	
09/27/0	6 137.57	7.85	0.00	129.72	-0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	6 137.57	6.90	0.00	130.67	0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/16/0	7 137.57	7.07	0.00	130.50	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2	(9	Screen Inte	erval in fee	t: 5.0-25.0)										
05/03/0	0 138.64	8.59	0.00	130.05		2400		53	ND	ND	240	ND	ND	
07/28/0	0 138.64	9.95	0.00	128.69	-1.36	2200		680	4.1	57	270	24	ND	
10/29/0	0 138.64	8.38	0.00	130.26	1.57	490		67	ND	23	22	ND		
02/09/0	1 138.64	8.41	0.00	130.23	-0.03	ND		3.1	ND	0.52	1.1	ND		
05/11/0	1 138.64	8.93	0.00	129.71	-0.52	ND		1.99	ND	ND	ND	ND		
08/10/0	1 138.64	10.68	0.00	127.96	-1.75	96		20	ND<0.50	2.1	9.4	ND<5.0		
11/07/0	1 138.64	10.01	0.00	128.63	0.67	480		110	ND<1.0	26	42	ND<10		
02/06/0	2 138.64	8.10	0.00	130.54	1.91	69		13	ND<0.50	0.84	4.4	ND<5.0		
05/08/0	2 138.64	9.16	0.00	129.48	-1.06	53		13	ND<0.50	1.2	1.5	ND<5.0		
08/09/0	2 138.64	10.39	0.00	128.25	-1.23		140	20	ND<0.50	10	11		ND<2.0	
11/26/0	2 138.64	9.81	0.00	128.83	0.58		340	87	ND<0.50	33	23		ND<2.0	
02/14/0	3 139.85	8.19	0.00	131.66	2.83		130	12	ND<0.50	7.4	5.4		ND<2.0	
05/03/0	3 139.85	6.77	0.00	133.08	1.42		ND<50	2.5	ND<0.50	1.7	ND<1.0		ND<2.0	
08/01/0	3 139.85	9.63	0.00	130.22	-2.86		270	55	ND<0.50	23	6.0		ND<2.0	
10/30/0	3 139.85	11.06	0.00	128.79	-1.43		180	17	4.8	6.1	13		ND<2.0	
01/29/0	4 139.85	8.35	0.00	131.50	2.71		98	4.3	ND<0.50	1.5	3.6		ND<2.0	
05/27/0	4 139.85	9.66	0.00	130.19	-1.31		58	1.2	ND<0.50	0.87	1.1		ND<0.50	
08/31/0	4 139.85	10.45	0.00	129.40	-0.79		99	2.7	ND<0.50	1.8	2.8		ND<0.50	
								Daga	1 . f 0					

Page 2 of 8

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 2000 Through March 2007

76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2	continued													
11/18/0	4 139.85	8.21	0.00	131.64	2.24		220	2.4	ND<0.50	2.1	1.7		ND<0.50	
03/25/0	5 139.85	5.85	0.00	134.00	2.36		240	3.5	ND<0.50	4.4	6.5		ND<0.50	
06/22/0	5 139.85	8.21	0.00	131.64	-2.36		56	1.1	ND<0.50	1.3	1.5		ND<0.50	
09/26/0	5 139.85	9.98	0.00	129.87	-1.77		83	0.56	ND<0.50	0.86	ND<1.0		ND<0.50	
12/20/0	5 139.85	6.59	0.00	133.26	3.39		63	2.6	ND<0.50	2.4	3.7		ND<0.50	
03/29/0	6 139.85	5.79	0.00	134.06	0.80		94	2.0	ND<0.50	1.7	2.0		ND<0.50	
06/12/0	6 139.85	8.72	0.00	131.13	-2.93		140	1.1	ND<0.50	0.94	2.8		ND<0.50	
09/27/0	6 139.85	9.86	0.00	129.99	-1.14		55	0.55	ND<0.50	0.80	ND<0.50		ND<0.50	
12/27/0	6 139.85	6.98	0.00	132.87	2.88		72	0.61	ND<0.50	0.52	ND<0.50		ND<0.50	
03/16/0	7 139.85	8.10	0.00	131.75	-1.12		62	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-3	(5	Screen Int	erval in feet	t: 5.0-25.0)										
05/03/0	0 137.68	7.60	0.00	130.08		ND		ND	ND	ND	ND	ND	ND	
07/28/0	0 137.68	8.82	0.00	128.86	-1.22	ND		ND	ND	ND	ND	ND	ND	
10/29/0	0 137.68	7.33	0.00	130.35	1.49	ND		ND	ND	ND	ND	ND		
02/09/0	1 137.68	7.40	0.00	130.28	-0.07	ND		ND	ND	ND	ND	ND		
05/11/0	1 137.68	7.90	0.00	129.78	-0.50	ND		ND	ND	ND	ND	ND		
08/10/0	1 137.68	9.09	0.00	128.59	-1.19	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
11/07/0	1 137.68	9.03	0.00	128.65	0.06	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
02/06/0	2 137.68	7.16	0.00	130.52	1.87	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
05/08/0	2 137.68	8.04	0.00	129.64	-0.88	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
08/09/0	2 137.68	9.27	0.00	128.41	-1.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/26/0	2 137.68	8.79	0.00	128.89	0.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/14/0	3 138.89	7.18	0.00	131.71	2.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
05/03/0	3 138.89	5.88	0.00	133.01	1.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
100-								Dogo '	2 of 9					

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 2000 Through March 2007

76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3	continued													
08/01/	03 138.89	8.52	0.00	130.37	-2.64		ND<50	ND<0.50		ND<0.50	ND<1.0		ND<2.0	
10/30/	03 138.89	10.05	0.00	128.84	-1.53		ND<50	0.62	0.83	ND<0.50	ND<1.0		ND<5.0	
01/29/	04 138.89	6.58	0.00	132.31	3.47		ND<50		ND<0.50	ND<0.50	ND<1.0		ND<2.0	
05/27/	04 138.89	8.51	0.00	130.38	-1.93		ND<50				ND<1.0		ND<0.50	
08/31/	04 138.89	9.72	0.00	129.17	-1.21		ND<50		ND<0.50	ND<0.50	ND<1.0		ND<5.0	
11/18/		7.20	0.00	131.69	2.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D 11/18/	04 138.89	7.20	0.00	131.69	2.52								ND<5.0	
03/25/	05 138.89	5.39	0.00	133.50	1.81		ND<50		ND<0.50	ND<0.50	ND<1.0		0.97	
06/22/	05 138.89	7.31	0.00	131.58	-1.92		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/26/	05 138.89	8.99	0.00	129.90	-1.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D 09/26/	05 138.89	8.99	0.00	129.90	-1.68			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/20/	05 138.89	8.03	0.00	130.86	0.96		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/29/	06 138.89	8.55	0.00	130.34	-0.52		61	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.54	Duplicates obtained by EPA method 8240
D 03/29/	06 138.89	8.55	0.00	130.34	-0.52			ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.54	Duplicates obtained by EPA method 8240
06/12/	06 138.89	7.70	0.00	131.19	0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D 06/12/	06 138.89	7.70	0.00	131.19	0.85			ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/	06 138.89	8.87	0.00	130.02	-1.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
D 09/27/	06 138.89	8.87	0.00	130.02	-1.17			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/	06 138.89	6.10	0.00	132.79	2.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D 12/27/	06 138.89	6.10	0.00	132.79	2.77			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/16/	07 138.89	7.14	0.00	131.75	-1.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D 03/16/	07 138.89	7.14	0.00	131.75	-1.04			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 2000 Through March 2007

76 Station 4625

(fest)(fest)(fest)(fest)(µg/l)(µg/l)(µg/l)(µg/l)(µg/l)(µg/l)(µg/l)(µg/l)(µg/l)(µg/l)MV4(Serrer Interval Retr. 5d-25.0)(10.2) $-$ NDNDNDNDNDNDND05.0%136.607.550.00120.25-1.07NDNDNDNDNDNDND102.9%0136.606.120.00130.46-0.02NDNDNDNDNDNDND0511101136.606.140.00120.90-1.37NDNDNDNDNDNDND0511101136.607.510.00127.94-1.15ND<50ND<0.50ND<0.50ND<50ND<50020602136.607.180.00129.420.74NDND<0.50ND<0.50ND<50ND<50020602136.607.770.00128.52-0.41ND<50ND<0.50ND<0.50ND<50ND<50020602136.607.770.00128.52-0.41ND<50ND<0.50ND<0.50ND<0.50ND<0.50ND<0.50020602136.607.740.00128.52-0.41ND<50ND<0.50ND<0.50ND<0.50ND<0.50ND<0.50020603137.816.350.0013.846.6-NND<50 </th <th>Date Sampled</th> <th>TOC Elevation</th> <th>Depth to Water</th> <th>LPH Thickness</th> <th>Ground- water Elevation</th> <th>Change in Elevation</th> <th>TPH-G (8015M)</th> <th>TPH-G (GC/MS)</th> <th>Benzene</th> <th>Toluene</th> <th>Ethyl- benzene</th> <th>Total Xylenes</th> <th>MTBE (8021B)</th> <th>MTBE (8260B)</th> <th>Comments</th>	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
05/03/00 13.6.0 6.48 0.00 13.0.2 - ND ND <th></th> <th>(feet)</th> <th>(feet)</th> <th>(feet)</th> <th>(feet)</th> <th>(feet)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th>(µg/l)</th> <th></th>		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
0728/00 136.60 7.55 0.00 129.05 -1.07 ND ND<	MW-4	(\$	Screen Int	erval in fee	t: 5.0-25.0)										
102900136.606.120.00130.481.43NDNDNDNDNDNDNDNDNDND05(1)01136.606.140.00130.46-0.02NDNDNDNDNDNDNDND05(1)01136.607.510.00129.99-1.37NDNDNDNDNDNDND10/0101136.607.620.00129.49-1.15ND<50	05/03/0	0 136.60	6.48	0.00	130.12		ND		ND	ND	ND	ND	ND	ND	
02/09/10 136.60 6.14 0.00 130.40 0.02 ND ND<	07/28/0	0 136.60) 7.55	0.00	129.05	-1.07	ND		ND	ND	ND	ND	ND		
08/11/01136.607.510.00129.99-1.37NDNDNDNDNDNDNDNDNDND08/10/01136.608.660.00127.94-1.15ND<50	10/29/0	0 136.60	6.12	0.00	130.48	1.43	ND		ND	ND	ND	ND	ND		
08/1001 136.0 8.66 0.00 127.94 -1.15 ND<40 ND<40.50	02/09/0	1 136.60	6.14	0.00	130.46	-0.02	ND		ND	ND	ND	ND	ND		
11/07.01 136.00 7.92 0.00 128.68 0.74 ND<50 - ND<0.50	05/11/0	1 136.60) 7.51	0.00	129.09	-1.37	ND		ND	ND	ND	ND	ND		
02/06/02 136.60 7.18 0.00 129.42 0.74 ND ND<	08/10/0	1 136.60	8.66	0.00	127.94	-1.15	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
05/08/02 136.60 6.86 0.00 129.74 0.32 ND<50 - ND<0.50	11/07/0	1 136.60) 7.92	0.00	128.68	0.74	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
08/09/02 136.60 7.67 0.00 128.93 -0.81 ND<50 ND<0.50	02/06/0	136.60	7.18	0.00	129.42	0.74	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
11/26/02 136.60 8.08 0.00 128.52 -0.41 ND<0	05/08/0	136.60	6.86	0.00	129.74	0.32	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
02/14/03 137.81 7.43 0.00 130.38 1.86 ND<50	08/09/0	136.60) 7.67	0.00	128.93	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
05/03/03 137.81 6.05 0.00 131.76 1.38 ND<50	11/26/0	136.60	8.08	0.00	128.52	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02/14/0	137.81	7.43	0.00	130.38	1.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/30/03 137.81 9.04 0.00 128.77 -0.83 ND<50	05/03/0	137.81	6.05	0.00	131.76	1.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/29/04137.818.220.00129.590.82ND<50ND<0.50ND<0.50ND<1.0ND<2.005/27/04137.817.430.00130.380.79ND<50	08/01/0	137.81	8.21	0.00	129.60	-2.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
05/27/04 137.81 7.43 0.00 130.38 0.79 ND<50	10/30/0	3 137.81	9.04	0.00	128.77	-0.83		ND<50	1.1	2.3	2.2	7.0		ND<2.0	
08/31/04 137.81 8.35 0.00 129.46 -0.92 ND<50	01/29/0	137.81	8.22	0.00	129.59	0.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/18/04 137.81 8.26 0.00 129.55 0.09 ND<50	05/27/0	137.81	7.43	0.00	130.38	0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/25/05 137.81 4.40 0.00 133.41 3.86 ND<50	08/31/0	137.81	8.35	0.00	129.46	-0.92		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/22/05 137.81 8.44 0.00 129.37 -4.04 ND<50	11/18/0	137.81	8.26	0.00	129.55	0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/26/05 137.81 7.93 0.00 129.88 0.51 ND<50	03/25/0	137.81	4.40	0.00	133.41	3.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/05 137.81 5.65 0.00 132.16 2.28 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 03/29/06 137.81 5.15 0.00 132.66 0.50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50	06/22/0)5 137.81	8.44	0.00	129.37	-4.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/29/06 137.81 5.15 0.00 132.66 0.50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50	09/26/0)5 137.81	7.93	0.00	129.88	0.51		ND<50	0.51	ND<0.50	0.53	2.3		ND<0.50	
	12/20/0	137.81	5.65	0.00	132.16	2.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	03/29/0	6 137.81	5.15	0.00	132.66	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 2000 Through March 2007

76 Station 4625

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued													
06/12/0	6 137.81	5.68	0.00	132.13	-0.53		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0	6 137.81	7.52	0.00	130.29	-1.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	6 137.81	6.95	0.00	130.86	0.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/16/0	7 137.81	7.20	0.00	130.61	-0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-5	(\$	Screen Inte	erval in feet	t: 5.0-25.0)										
11/26/0	2	9.89	0.00				2500	350	39	32	640		470	
02/14/0	3 137.66	8.65	0.00	129.01			6600	920	210	430	1300		960	
05/03/0	3 137.66	8.23	0.00	129.43	0.42		33000	2400	2200	2000	7600		1500	
08/01/0	3 137.66	9.63	0.00	128.03	-1.40		14000	880	130	630	2000		630	
10/30/0	3 137.66	10.58	0.00	127.08	-0.95		1400	75	43	39	140		330	
01/29/0	4 137.66	8.70	0.00	128.96	1.88		6300	750	56	400	1000		1100	
05/27/0	4 137.66	9.59	0.00	128.07	-0.89		4600	260	15	300	840		400	
08/31/0	4 137.66	10.05	0.00	127.61	-0.46		1500	53	ND<2.5	48	49		250	
11/18/0	4 137.66	8.54	0.00	129.12	1.51		22000	1300	900	1100	4600		1100	
03/25/0	5 137.66	7.12	0.00	130.54	1.42		53000	1400	660	1600	6400		1000	
06/22/0	5 137.66	8.62	0.00	129.04	-1.50		5100	240	110	320	1100		420	
09/26/0	5 137.66	9.70	0.00	127.96	-1.08		2500	81	ND<0.50	85	200		180	
12/20/0	5 137.66	8.23	0.00	129.43	1.47		3800	220	42	240	620		300	
03/29/0	6 137.66	6.70	0.00	130.96	1.53		7100	520	150	470	1500		680	
06/12/0	6 137.66	8.68	0.00	128.98	-1.98		7500	290	97	500	1600		500	
09/27/0	6 137.66	9.45	0.00	128.21	-0.77		2200	55	ND<0.50	85	170		220	
12/27/0	6 137.66	7.57	0.00	130.09	1.88		13000	560	160	750	1900		580	
03/16/0	137.66	8.10	0.00	129.56	-0.53		8000	340	62	400	700		480	

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 2000 Through March 200776 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-6	()	Screen Int	erval in fee	t: 5.0-25.0))									
11/26/0)2	9.19	0.00				11000	1200	2000	400	2300		490	
02/14/0	3 138.88	3 7.76	0.00	131.12			13000	2300	1900	560	2300		360	
05/03/0	3 138.88	6.62	0.00	132.26	1.14		4300	1000	640	260	990		300	
08/01/0	3 138.88	9.05	0.00	129.83	-2.43		16000	2600	2300	740	2900		660	
10/30/0)3 138.88	3 10.43	0.00	128.45	-1.38		2900	420	260	120	480		450	
01/29/0	138.88	7.81	0.00	131.07	2.62		400	58	21	14	65		62	
05/27/0	138.88	9.11	0.00	129.77	-1.30	-	580	58	14	20	69		410	
08/31/0	138.88	9.76	0.00	129.12	-0.65		660	77	7.0	19	65		360	
11/18/0)4 138.88	8 7.68	0.00	131.20	2.08		660	92	19	20	80		130	
03/25/0	138.88	5.83	0.00	133.05	1.85		870	82	13	15	73		90	
06/22/0)5 138.88	3 7.83	0.00	131.05	-2.00		480	84	2.4	23	72		360	
09/26/0)5 138.88	9.50	0.00	129.38	-1.67		440	72	0.65	12	52		160	
12/20/0)5 138.88	6.91	0.00	131.97	2.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/29/0	6 138.88	6.48	0.00	132.40	0.43		430	61	13	11	41		130	
06/12/0	6 138.88	8 8.10	0.00	130.78	-1.62		1000	190	8.0	28	130		310	
09/27/0	6 138.88	9.25	0.00	129.63	-1.15		330	19	0.87	5.4	29		220	
12/27/0	6 138.88	6.88	0.00	132.00	2.37		220	13	2.4	3.8	9.6		75	
03/16/0	07 138.88	3 7.73	0.00	131.15	-0.85		160	22	8.7	3.5	12		82	
USTW	6	Screen Int	terval in fee	t: DNA)										
05/03/0)0	8.00	0.00											
07/28/0	00	9.28	0.00											
10/29/0	00	7.75	0.00											
02/09/()1	6.14	0.00											

Page 7 of 8

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 2000 Through March 200776 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
USTW	continued	l												
05/11/0)1	7.96	0.00											
08/10/0)1	9.54	0.00											
11/07/0)1	9.33	0.00											
02/06/0)2	8.08	0.00											
05/08/0)2	8.51	0.00											
08/09/0)2	9.56	0.00											
11/26/0)2	9.16	0.00											
05/03/0)3	6.25	0.00											
08/01/0)3	8.99												
10/30/0)3	10.44	0.00											Monitored Only
01/29/0)4	6.52	0.00			-								Monitored Only
05/27/0)4	8.98	0.00											Monitored Only
08/31/0)4	9.75	0.00											Monitored Only
11/18/0)4	7.39	0.00											Monitored Only-UST well
03/25/0)5	5.01	0.00											Monitor only
06/22/0)5	7.63	0.00											Monitored Only
09/26/0)5	9.45	0.00											Monitored Only
12/20/0)5	5.35	0.00											Monitored Only
03/29/0)6	4.83	0.00											Monitored Only
06/12/0)6	8.05	0.00											Monitored Only
09/27/0)6	9.21	0.00											Monitored Only
12/27/0)6	6.37	0.00											Monitored Only
03/16/0)7	7.43	0.00											Monitored Only

							76 Stati	on 4625							
Date Sampled	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1 02/09/01		ND	ND	ND	ND	ND	ND	ND			-				
05/11/01		ND	ND	ND	ND	ND	ND	ND							
08/10/01		ND<100	ND<1000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
11/07/01		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0							
02/06/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
05/08/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
08/09/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
11/26/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
02/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
05/03/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
08/01/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
10/30/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
01/29/04			ND<500												
05/27/04		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
08/31/04		ND<5.0	ND<50	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<0.5							
11/18/04		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
03/25/05			ND<50												
06/22/05			ND<1000												
09/26/05			ND<1000												
12/20/05		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/29/06			ND<250												
06/12/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/27/06			ND<250												
12/27/06			ND<250												
03/16/07			ND<250												

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625

MW-2 4625

							70 Statio	11 4025							
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-2 0															
08/01/03			ND<500										~ ~		
10/30/03			ND<500												
01/29/04			ND<500												
05/27/04			ND<50												
08/31/04			ND<50												
11/18/04			ND<50												
03/25/05			ND<50												
06/22/05			ND<1000												
09/26/05			ND<1000												
12/20/05			ND<250												
03/29/06			ND<250												
06/12/06			ND<250												
09/27/06			ND<250												
12/27/06			ND<250												
03/16/07			ND<250												
MW-3															
05/03/00	93								ND						
07/28/00	ND	ND		ND	ND	ND	ND	ND	ND						
10/29/00	ND								7.0						
02/09/01	72								ND						
05/11/01	ND								ND						
08/10/01	63								ND<5.0						
11/07/01	88								ND<5.0						
02/06/02	ND<310								ND<5.0						
05/08/02	ND<53								ND<5.2						
08/09/02	ND<50								ND<1.0						

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 4625

128.1

							76 Stati	on 4625							
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3	continued														
11/26/02	ND<50								ND<1.0						
02/14/03	ND<50								ND<1.0						
05/03/03	ND<50								ND<1.0						
08/01/03	ND<50		ND<500						ND<4.0						
10/30/03	ND<50		ND<500	ND<0.50	ND<0.50				ND<1.0		ND<50	ND<1.0	ND<1.0	ND<1.0	ND<0.50
01/29/04	ND<50		ND<500	ND<0.50	ND<0.50				ND<1.0	ND<2.7	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
05/27/04		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<4.0	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
08/31/04	ND<50		ND<50	ND<0.50	ND<0.50				1.2	ND<2.0	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
11/18/04	ND<50		ND<50	ND<0.50	ND<0.50				ND<5.0		ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
03/25/05	ND<50		ND<50	ND<0.50	ND<0.50				ND<2.0	ND<2.0	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
06/22/05		~-	ND<1000		ND<0.50				ND<5.0					ND<0.50	ND<0.50
09/26/05	ND<200		ND<1000		ND<0.50				ND<5.0					ND<0.50	ND<0.50
12/20/05	ND<200		ND<250		ND<0.50				ND<5.0					ND<0.50	ND<0.50
03/29/06	ND<200		ND<250		ND<0.50									ND<0.50	ND<0.50
D 06/12/06			ND<250												
06/12/06	ND<200		ND<250	·	ND<0.50				ND<5.0					ND<0.50	ND<0.50
09/27/06	ND<50		ND<250		ND<0.50				ND<5.0					ND<0.50	ND<0.50
12/27/06	55		ND<250		ND<0.50				ND<5.0					ND<0.50	ND<0.50
03/16/07	ND<50		ND<250		ND<0.50				ND<5.0					ND<0.50	ND<0.50
MW-4															
02/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
08/01/03			ND<500	ND<2.0											
10/30/03			ND<500												
01/29/04			ND<500												
05/27/04	. 		ND<50												
08/31/04			ND<50												

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

76 Station 4625															
Date Sampled	ТРН-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)		DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
<u></u>	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-4	continued														
11/18/04			ND<50												
03/25/05	; <u></u>		ND<50												
06/22/05	i		ND<1000												
09/26/05			ND<1000												
12/20/05	i		ND<250												
03/29/06	,		ND<250												
06/12/06)		ND<250												
09/27/06)		ND<250												
12/27/06)		ND<250												
03/16/07			ND<250												
MW-5															
11/26/02		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
02/14/03		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20						610 PA	
05/03/03		ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200							
08/01/03		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
10/30/03		ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10							
01/29/04		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
05/27/04	·	ND<50	ND<500	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0							
08/31/04		ND<25	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5							
11/18/04		140	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10							
03/25/05	;	ND<250	ND<2500	ND<25	ND<25	ND<25	ND<25	ND<25							
06/22/05		16	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/26/05	;	ND<10	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/20/05	i	ND<500	ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25							
03/29/06	j	ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0							
06/12/06	,	ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0							

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 4625

76 Shadim AGE															
76 Station 4625															
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)		DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-5	continued														
09/27/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/27/06		93	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/16/07		45	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
MW-6															
11/26/02		ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40							
02/14/03		ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40							
05/03/03		ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100							
08/01/03		ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80							
10/30/03		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
01/29/04		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
05/27/04		ND<25	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5							
08/31/04		ND<25	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5							
11/18/04		8.1	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
03/25/05		45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
06/22/05		ND<10	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/26/05		ND<10	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/20/05		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/29/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
06/12/06		ND<50	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5							
09/27/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/27/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/16/07		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS

Table 2b	
ADDITIONAL HISTORIC ANALYTICAL RESULTS	
76 Station 4625	

Date Sampled	Bromo- methane	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl benzene	Carbon Disulfide	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane	2- Chloroethyl vinyl ether		Chloro- methane	2- Chloro- toluene	4-Chloro- toluene	1,2Dibrom- 3-chloro- propane	Dibromo- chloro- methane
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3															
10/30/03	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
01/29/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
05/27/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
08/31/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
11/18/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0		ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
03/25/05	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0		ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
06/22/05	ND<1.0					ND<0.50	ND<0.50	ND<0.50		0.17J	ND<0.50				ND<0.50
09/26/05	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
12/20/05	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
03/29/06	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
06/12/06	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
09/27/06	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
12/27/06	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
03/16/07	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50

Date Sampled	Dibromo- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2- DCE	trans- 1,2- DCE	1,2- Dichloro- propane	1,3- Dichloro- propane	2,2- Dichloro- propane	1,1- Dichloro- propene	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3															
05/08/02	2							0.69							
10/30/03	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/29/04	ND<0.50	ND<0.50	ND<0.50	ND<2.7	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
05/27/04	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
08/31/04	ND<0.50	ND<2.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
11/18/04	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
03/25/05	5 ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
06/22/05	5	ND<2.0	ND<2.0	ND<2.0		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
09/26/05	5	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
12/20/05	5	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
03/29/06	ó	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
06/12/06	5	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
09/27/06	5	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
12/27/06	j	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
03/16/07		ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50

Table 2 c ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 4625

	70 Station 7025														
Date Sampled	Hexa- chloro- butadiene	2- Hexanone	Isopropyl- benzene	p- Isopropyl- toluene	Methyl- ethyl Keytone	Methyl- isobytyl ketone	Methylene chloride	Naph- thalene	n-Propyl- benzene	Styrene	1,1,1,2- Tetrachloro ethane	1,1,2,2- - Tetrachloro- ethane	Tetrachloro- ethene (PCE)	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 07/28/00													2.7		
05/08/02													0.56		
10/30/03	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
01/29/04	ND<2.7	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
05/27/04	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
08/31/04	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
11/18/04	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
03/25/05	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
06/22/05	ND<2.0						ND<1.0	ND<2.0				ND<0.50	ND<0.50	ND<0.50	ND<2.0
09/26/05	ND<2.0						ND<1.0					ND<0.50	ND<0.50	ND<0.50	
12/20/05	ND<2.0						ND<1.0	ND<2.0				ND<0.50	ND<0.50	ND<0.50	ND<2.0
03/29/06							ND<1.0					ND<0.50	ND<0.50	ND<0.50	
06/12/06							ND<1.0					ND<0.50	ND<0.50	ND<0.50	
09/27/06							ND<1.0					ND<0.50	ND<0.50	ND<0.50	
12/27/06							ND<1.0					ND<0.50	ND<0.50	ND<0.50	
03/16/07							ND<1.0					ND<0.50	ND<0.50	ND<0.50	

Table 2 dADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625

1912

Date Sampled	1,2,3- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Vinyl- acetate	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3															
11/07/01				0.55											
05/08/02				0.86											
10/30/03	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50						
01/29/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<2.7		ND<2.7	ND<2.7	ND<2.7	ND<2.7
05/27/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<4.0		ND<4.0	ND<4.0	ND<4.0	ND<4.0
08/31/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0
11/18/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50						
03/25/05	5 ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/22/05	;	ND<0.50	ND<0.50	0.25J	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/26/05	;	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/20/05	;	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/29/06	5	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/12/06	<u>,</u>	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/27/06)	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/27/06)	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/16/07		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 2 eADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625

Table 2 fADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625

Date Sampled	Benzo- [g,h,I]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2- chloro- ethoxy) methane	Bis(2- chloro- ethyl) ether	Bis(2- chloro- isopropyl)- ether	• •	4-Bromo- phenyl phe- nyl ether	Butyl benzyl phthalate	4-Chloro- 3- methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl ether
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3															
01/29/04	ND<2.7	ND<2.7						ND<14							
05/27/04	ND<4.0	ND<4.0						ND<20							
08/31/04	ND<2.0	ND<2.0						ND<10							
03/25/05	ND<2.0	ND<2.0	ND<10	ND<5.0	ND<5.0	ND<2.0	ND<2.0	ND<10	ND<5.0	ND<5.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0
06/22/05	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<5.0	ND<2.0	ND<2.0	3.1	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/26/05	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/20/05	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/29/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/12/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/27/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/27/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/16/07	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Date Sampled	Chrysene (µg/l)	Dibenzo- [a,h]- anthracene (µg/l)	Dibenzo- furan (µg/l)	1,2- Dichloro- benzene (svoc) (µg/l)	1,3- Dichloro- benzene (svoc) (µg/l)	1,4- Dichloro- benzene (svoc) (µg/l)	3,3- Dichloro- benzidine (µg/l)	2,4- Dichloro- phenol (µg/l)	Diethyl phthalate (µg/l)	2,4- Dimethyl- phenol (µg/l)	Dimethyl phthalate (µg/l)	Di-n-butyl phthalate (µg/l)	2,4- Dinitro- phenol (µg/l)	2,4- Dinitro- toluene (µg/l)	2,6- Dinitro- toluene (µg/l)
MW-3															
01/29/04	ND<2.7	ND<2.7													
05/27/04	ND<4.0	ND<4.0													
08/31/04	ND<2.0	ND<2.0													
03/25/05	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<5.0	ND<2.0	ND<5.0	ND<5.0	ND<10	ND<2.0	ND<5.0
06/22/05	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
09/26/05	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
12/20/05	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
03/29/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
06/12/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
09/27/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
12/27/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2,0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
03/16/07	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0

Table 2 gADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625

							70 Stati	011 4025							
Date Sampled	Di-n-octyl phthalate	Fluoran- thene	Fluorene	e Hexachlorc benzene	HCBD (svoc)	Hexachloro cyclopenta- diene		Indeno- [1,2,3-c,d] pyrene	Isophoron	2-Methyl- 4,6-dini- trophenol	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3															
01/29/04	·	ND<2.7	ND<2.7					ND<2.7				ND<2.7	ND<2.7		
05/27/04		ND<4.0	ND<4.0					ND<4.0			ND<4.0	ND<4.0	ND<4.0		
08/31/04	·	ND<2.0	ND<2.0					ND<2.0			ND<2.0	ND<2.0	ND<2.0		
03/25/05	5 ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10
06/22/05	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/26/05	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/20/05	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/29/06	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0		ND<2.0	ND<2.0
06/12/06	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0		ND<2.0	ND<2.0
09/27/06	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0		ND<2.0	ND<2.0
12/27/06	5 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0		ND<2.0	ND<2.0
03/16/07	7 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0		ND<2.0	ND<2.0

Table 2 hADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625

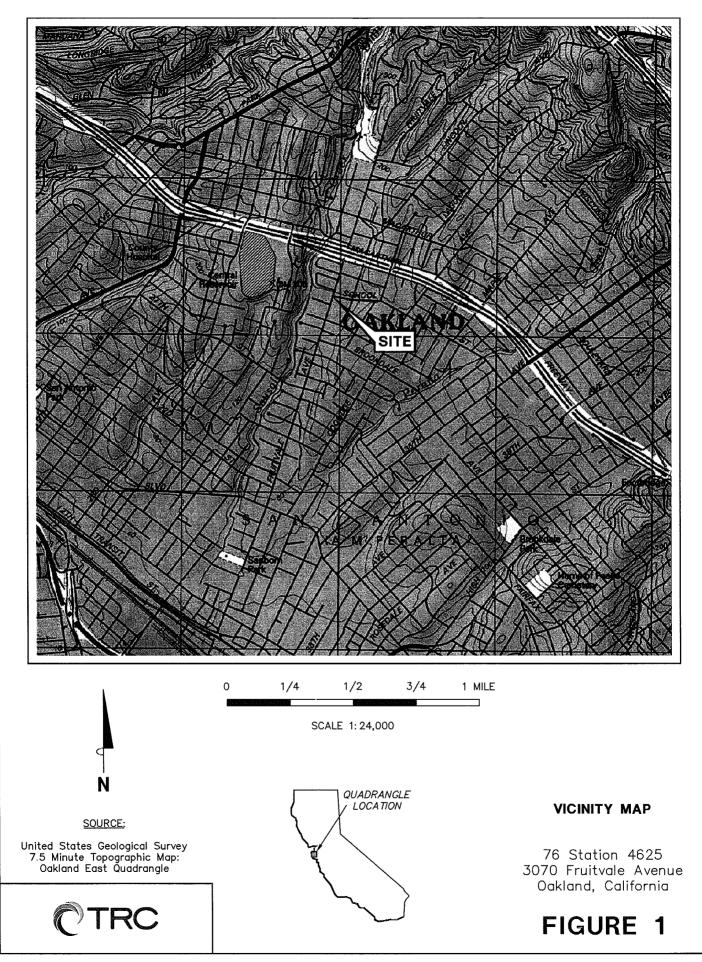
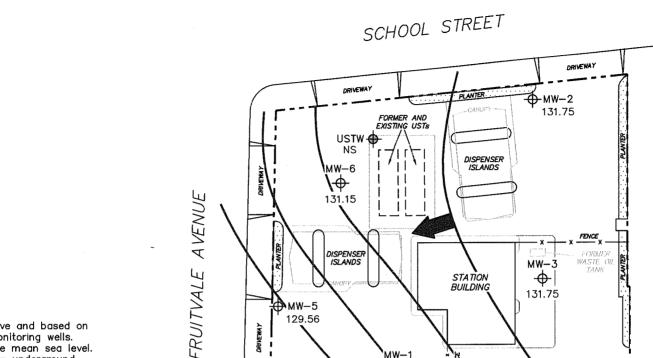
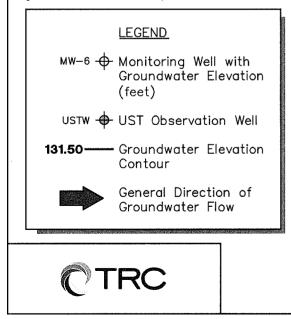

							76 Stati	on 4625							
Date Sampled	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N-nitrosodi- n-propyl- amine		Pentachloro phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3															
05/03/00															ND
07/28/00															1800
10/29/00															ND
02/09/01															38
05/11/01															ND
08/10/01															ND<10
11/07/01		、				 ·									ND<10
02/06/02															110
05/08/02															37
08/09/02															700
11/26/02															340
02/14/03															74
05/03/03															480
08/01/03															280
10/30/03															130
01/29/04									ND<2.7		ND<2.7				27
05/27/04		:							ND<4.0		ND<4.0				6.1
08/31/04									ND<2.0		ND<2.0				1000
11/18/04															ND<5.0
03/25/05	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0
06/22/05	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	24
09/26/05	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	170
12/20/05	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	ND<10
03/29/06	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	49
06/12/06	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	59
09/27/06	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	15

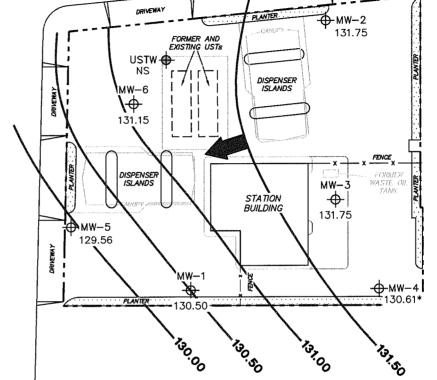
Table 2 iADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 4625


Table 2 i
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N-nitrosodi- n-propyl- amine		Pentachloro phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene (svoc)	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 12/27/06	continued ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	37
03/16/07	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	50

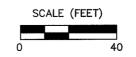
FIGURES

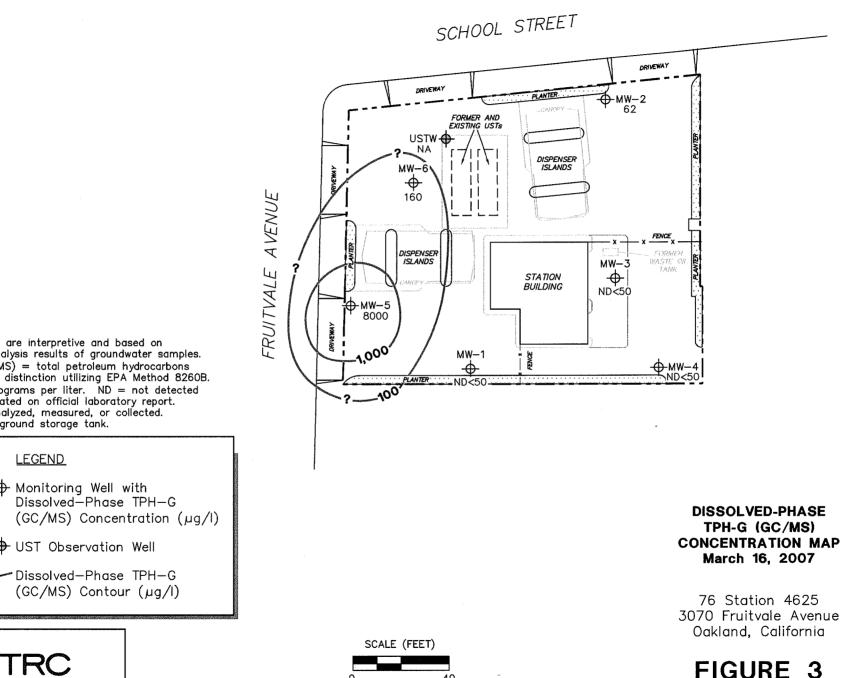



PS=1:14625-003 L: @Graphics@ProjectsByNumber@20-xxxx@20-0400(UnocalQMS)@x-4000@4625+@4625-QMS.DWG Apr 12, 2007 - 8:40am bschmidt

NOTES:

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. NS = not surveyed. UST = underground storage tank. * = not included in groundwater contour interpretation.




GROUNDWATER ELEVATION CONTOUR MAP March 16, 2007

76 Station 4625 3070 Fruitvale Avenue Oakland, California

PS=1:14625-003 L: Graphics ProjectsByNumber 20-xxxx 20-0400(UnocalQMS) x-4000 4625+ 4625-QMS.DWG Apr 11, 2007 - 3:43pm bschmidt

40

FIGURE 3

NOTES:

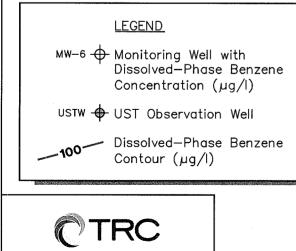
Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B. $\mu g/l = micrograms$ per liter. ND = not detected at limit indicated on official laboratory report. NA = not analyzed, measured, or collected. UST = underground storage tank.

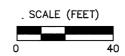
LEGEND

MW-6 \oplus Monitoring Well with Dissolved-Phase TPH-G (GC/MS) Concentration $(\mu q/l)$ USTW - UST Observation Well -1,000 Dissolved-Phase TPH-G (GC/MS) Contour (µg/l)

PS=1:14625-003 L: Graphics ProjectsByNumber 20-xxxx 20-0400(UnocalQMS) x-4000 4625+ 4625-QMS,DWG Apr 11, 2007 - 3:52pm bschmidt

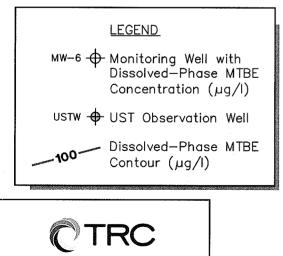
SCHOOL STREET DRIVEWAY DRIVEWAY PLANTER -MW-2 ND<0.50 FORMER AND EXISTING USTs USTW 🕁 NA DISPENSER ISLANDS MW-6 -22 AVENUE FENCE DISPENSER ISLANDS WASTE OIL MW-3 100 TAME FRUITVALE STATION BUILDING \oplus ND<0.50 ⊕-м₩-5 340 MŴ-1 ENCE ′⊕ ND<0.50 PLANTER ND<0.50

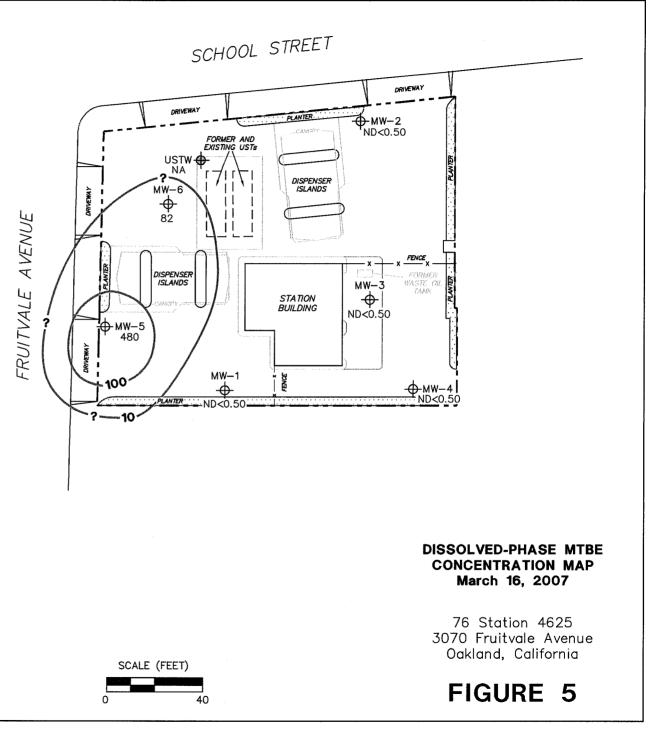

DISSOLVED-PHASE BENZENE CONCENTRATION MAP March 16, 2007


76 Station 4625 3070 Fruitvale Avenue Oakland, California

NOTES:

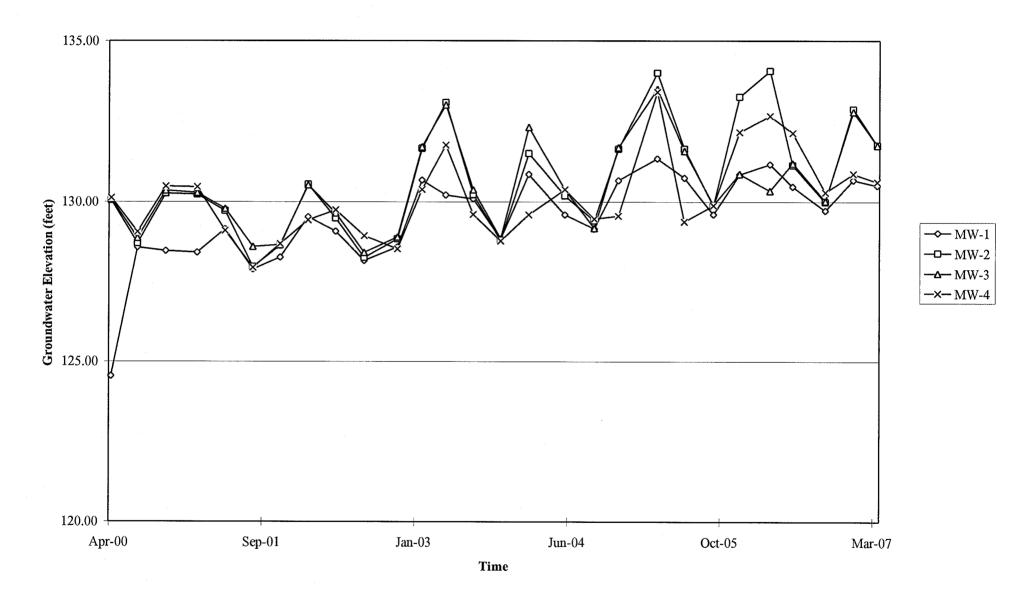
Contour lines are interpretive and based on laboratory analysis results of groundwater samples. $\mu g/l = micrograms$ per liter. ND = not detected at limit indicated on official laboratory report. NA = not analyzed, measured, or collected. UST = underground storage tank.

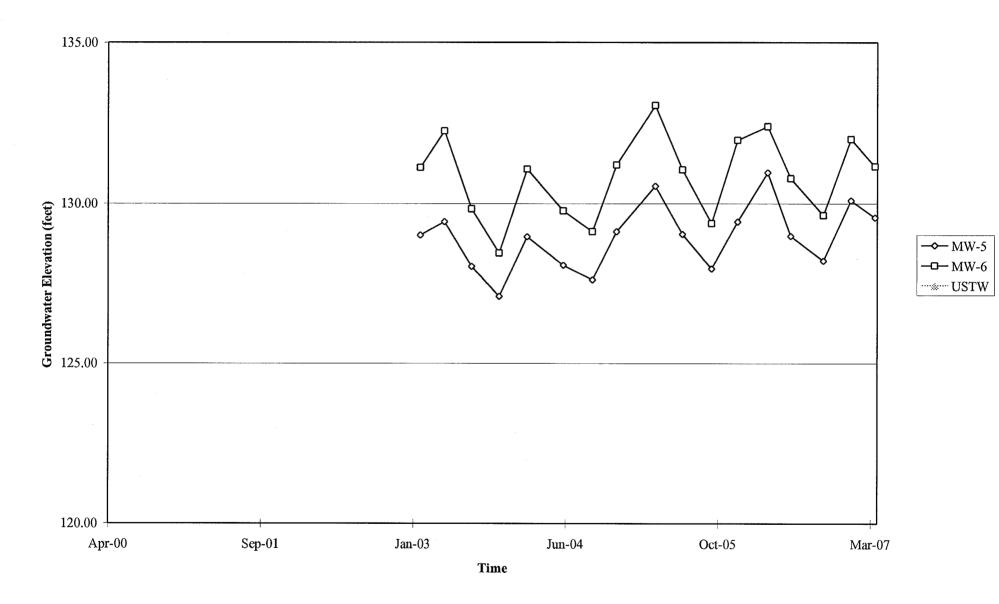




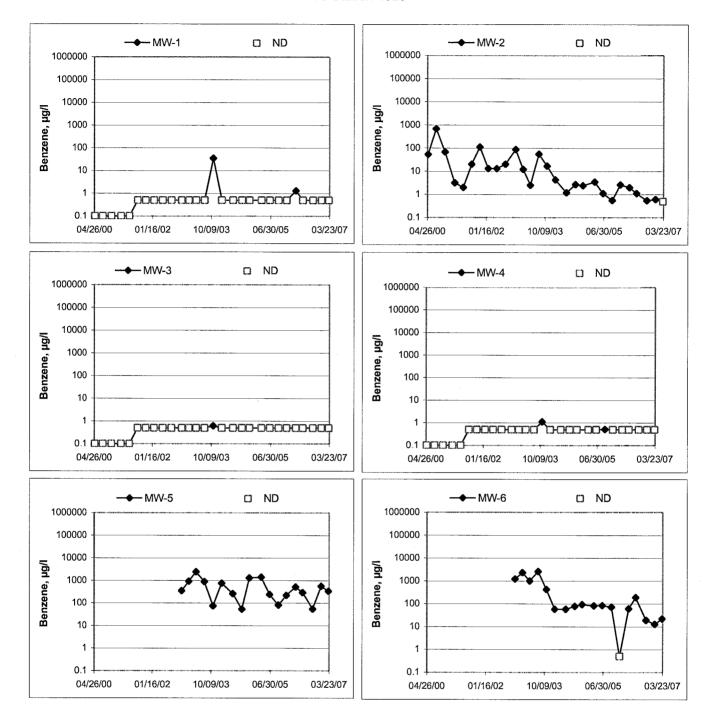
PS=1:14625-003 L: Graphics ProjectsByNumber 20-xxxx 20-0400(UnocalQMS) 1x-4000 4625+ 4625-QMS.DWG Apr 11, 2007 - 3:56pm bschmidt

NOTES:


Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether. $\mu g/l$ = micrograms per liter. ND = not detected at limit indicated on official laboratory report. NA = not analyzed, measured, or collected. UST = underground storage tank. Results obtained using EPA Method 8260B.


GRAPHS

Groundwater Elevations vs. Time 76 Station 4625


Elevations may have been corrected for apparent changes due to resurvey

Groundwater Elevations vs. Time 76 Station 4625

Elevations may have been corrected for apparent changes due to resurvey

Benzene Concentrations vs Time 76 Station 4625

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyo rs mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

~ 	FIELD MONITORING DATA SHEE	T
Technician: <u>JoE</u>	Job #/Task #: 4/06000/ FA20	Date: 03-16-07
Site # <u>4625</u>	Project Manager A - Collins	Page of /
F	Depth Depth Product	

	Time		Total	to	to	Thickness	Time	Misc. Well Notes
Well #	Gauged		Depth	Water	Product	(feet)	Sampled	21' pressure
	1000	X	1	7.14			1144	2" Pressure
mw-4	1011	X		7.20		[1335	2"
nw-1.	1020	X	25.03				1324	2" fressur
MW-2	1025	X	24.95				1220	
Much	1029	X	23.40	7.73			1242	11
MULG MW-3	1036	X	24.37	3.10			1328	2"
USTW	1040	X	15.17	7.43			NS	6" Monitor Only
		1						
		1						
		+						
		-						
								X
			 QA/g		CØ	c ·	WELL BOX	CONDITION SHEETS
					<u> </u>			
WTTCE	 RTIFICAT	E	MANIF	EST	DRUM	INVENTORY	TF	RAFFIC CONTROL
				,		/		an - San a sa a sa ka

GROUNDWATER SAMPLING FIELD NOTES

Technician: JOE

Site: <u>462</u>	5	Proj	ect No.: 47	06000,	/	T A	Date:	03-1	6-07
Well No Depth to Wa Total Depth Water Colur	ater (feet): (feet)2 mn (feet):]	7.14 5.18 8.04		Depth to Pro	nd:DI/ nduct (feet): r Recovered (g neter (Inches): ne (gallons):	allons):		· · · · · · · · · · · · · · · · ·	
80% Recha	rge Depth(fe	eet): <u>/0.74</u>	Y		ne (gallons):	3			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gaflons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.O.	ORP	Turbidity

	. 1	heer	j (ganons)		_	1	4	4	1
1131			3	332	20.1	6.97		1	1
			6	215	19.4	6,82		1	
	1133		9	323	19.4	6.34		1	
								1	1
		<u></u>		L					T
Stat	tic at Time Sa	mpled	Tota	al Gallons Pu	ged		Sample	Time	
	7.37		19				1199	1	
omments	s:		,					······································	

Well No. MW-4

Purge Method: DIA

Depth to Water (feet): 7.20 Total Depth (feet) 24.22 Water Column (feet): 17.02 80% Recharge Depth(feet): 10.60

Depth to Product (feet):______ LPH & Water Recovered (gallons):_____ Casing Diameter (Inches):_____ 1 Well Volume (gallons):_____3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.0.	ORP	Turbidity
1200			3	559	19.0	7.30			
······	·		6	603	18.7	7.39			1
······································	1202		9	625	19.0	7.53			
Stat	ic at Time Sa	ampled	Tota	l al Gallons Pu	rged]	Sample	Time	
			9				<u> </u>		
Comments	;	-	·		l				
				A					

GROUNDWATER SAMPLING FIELD NOTES

TOE

Technician:

Site: 4625

Project No.: 4/06000/

Date: 03-16-07

,

Well No. MW-6

Purge Method ______

Depth to Water (feet): 7.73Total Depth (feet): 23.40Water Column (feet): 15.6780% Recharge Depth(feet): 10.36 Depth to Product (feet):

LPH & Water Recovered (gallons):_____

Casing Diameter (Inches): 2["] 1 Well Volume (gallons): ³

	1	Depth to	Volume	Conduc-	1		r	1	r
Time	Time	Water	Purged	tivity	Temperature	_ 1 1	0.0		
Start	Stop	(feet)	(gallons)	(uS/cm)	Temperature (F	pН	D.O.	ORP	Turbidity
1235		()	3	563	19.2	7.06			
	+	·····-			11:2				
			6	506	18.9	7.06			
	1237		9	508	19.1	7.06			
						* ²			
Ctat									
Stat	ic at Time Sa	impied	Tota	I Gallons Pu	ged		Sample	Time	
	8,48		9				124		
Comments	:						1 - /		

Well No. <u>MW-5</u> Depth to Water (feet): <u>8.10</u> Total Depth (feet) <u>24.37</u> Water Column (feet) <u>16.27</u> 80% Recharge Depth(feet): <u>11.35</u>

Purge Method: DIA

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	рН	D.O.	ORP	Turbidity
1252			3	803	20.3	6.30			<u> </u>
	·		6	814		6.75			<u> </u>
	1254		9	812	20.8	6.97			
Stati	c at Time Sa		Tota	al Gallons Pur	ged		Sample	Time	·
	10.86	•	7			1328	-+32		2
Comments	•					220			
					······································				

GROUNDWATER SAMPLING FIELD NOTES

Technician: JOLE

Site: 46 a	25_	Proj	ject No.: 4	106000	/	1	Date:	03-1	6-07
Depth to W Total Depth Water Colu	MW- ater (feet): (feet)2 mn (feet): _/ urge Depth(fe	7.07	······································	Casing Diam		alions):			
Time Start	Time Stop	Depth to Water	Volume Purged	Conduc- tivity	Temperature (F/C)	pН	D.0.	ORP	Turbidity

Start	Stop	(feet)	(gallons)	(uS/cm)	(FC)	рН	D.0.	ORP	Turbidity
1120			3	660	19.1	6.98			
·····			6	715	19.7	7.18			
· · · · · · · · · · · · · · · · · · ·	1121		9	720	19.3	7.55			
! 									
Stat	ic at Time Sa	ampled	Tota	al Gallons Pur	aed		Sample	Time	
	15.29	6	9			13:	24		
Comments	Did 1	VOT Re	charge	In	2 Hours			** ******	
			_					•••••	

Well No. <u>Mw-2</u> Depth to Water (feet): <u>3.10</u> Total Depth (feet) <u>24.95</u> Water Column (feet): <u>16.95</u> 80% Recharge Depth(feet): <u>11.47</u>

Purge Method: _______

Depth to Product (feet):_____ LPH & Water Recovered (gallons):_____ Casing Diameter (Inches):_____ 1 Well Volume (gallons):____3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.O.	ORP	Turbidity
1213			3	383	21,5	6.78			
			9	360	21.2	6.64			
	1214		9	362	21.3	6.68			
Stati	ic at Time Sa	Impled	Tota	I Gallons Pur	hen		Sample	Time	
4	8.43		9		geu		220	Time	
Comments	•			a de la companya		<i>L</i>			
L									

Date of Report: 04/02/2007

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

RE: 4625 BC Work Order: 0703275

Enclosed are the results of analyses for samples received by the laboratory on 03/19/2007 21:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker Client Service Rep

Authorized Signature

RC Alton Geo 1 Technology rvine, CA 9261	Drive		Reported: 04/02/2007 16:4									
	Laboratory / Client Sample Cross Reference											
Laboratory	Client Sample Informat	tion										
0703275-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-3 MW-3 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/19/2007 21:20 03/16/2007 11:44 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:							
0703275-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-4 MW-4 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/19/2007 21:20 03/16/2007 13:35 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:							
0703275-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-1 MW-1 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/19/2007 21:20 03/16/2007 13:24 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:							
0703275-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-2 MW-2 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/19/2007 21:20 03/16/2007 12:20 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:							
0703275-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-6 MW-6 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	03/19/2007 21:20 03/16/2007 12:42 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geo 21 Technology rvine, CA 9261	Drive		Project: 4625 Project Number: [none] Project Manager: Anju Farfan		Reported: 04/02/2007 16:4
		Lab	oratory / Client Sample Cross H	eference	
Laboratory	Client Sample Informat	tion			
0703275-06	COC Number:		Receive Date	: 03/19/2007 21:20	Delivery Work Order:
	Project Number:	4625	Sampling Da	e: 03/16/2007 13:28	Global ID: T0600102156
	Sampling Location:	MW-5	Sample Dept	n:	Matrix: W
	Sampling Point:	MW-5	Sample Matr	x: Water	Samle QC Type (SACode): CS
	Sampled By:	Joe of TRCI			Cooler ID:

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302		Project: 4625 Project Number: [none] Project Manager: Anju Farfan									Repo	orted: 04/0	02/2007 16:40
	Vo	latile	Orga	nic A	Analys	sis (E	PA Met	hod	8240))			72449444
BCL Sample ID: 0703275-01	Client Sam	ple Name:	4625, M	W-3, MW-	-3, 3/16/200	7 11:44:0	0AM, Joe						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Bromodichloromethane	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Bromoform	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Bromomethane	ND	ug/L	1.0		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Carbon tetrachloride	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Chlorobenzene	ND	uo/l	0.50		EDA 9240	02/22/07	02/22/07 04:52	C) ///	NO 1/4	4	0004074		

Bromomethane	ND	ug/L	1.0	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Carbon tetrachloride	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Chlorobenzene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Chloroethane	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Chloroform	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Chloromethane	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Dibromochloromethane	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,2-Dichlorobenzene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,3-Dichlorobenzene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,4-Dichlorobenzene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,1-Dichloroethane	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,1-Dichloroethene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
trans-1,2-Dichloroethene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
1,2-Dichloropropane	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
cis-1,3-Dichloropropene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
trans-1,3-Dichloropropene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Ethylbenzene	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Methylene chloride	ND	ug/L	1.0	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302					Project ect Number ct Manager	[none]	rfan				Repo	orted: 04/0	02/2007 16:4
	Vol	atile	Organ	nic A	nalys	sis (E	PA Met	hod	8240))			
BCL Sample ID: 0703275-01	Client Sam	ple Name	: 4625, MV	/-3, MW-	3, 3/16/200	7 11:44:0	0AM, Joe			0 4 A.			
Constituent	Result	Units	PQL	MDL	Method	Prep	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	INDL	EPA-8240	Date 03/22/07	03/23/07 01:53	Analyst SVM	MS-V4	1	BQC1274	ND	Quais
Tetrachloroethene	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Toluene	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
1,1,1-Trichloroethane	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
1,1,2-Trichloroethane	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Trichloroethene	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Trichlorofluoromethane	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Vinyl chloride	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
p- & m-Xylenes	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
o-Xylene	ND	ug/L	0.50		EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LC	L - UCL)	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274		
Toluene-d8 (Surrogate)	89.6	%	88 - 110 (LC	L - UCL)	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274		
4-Bromofluorobenzene (Surrogate)	96.4	%	86 - 115 (LC	L - UCL)	EPA-8240	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 4 of 41

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302		Project: 4625 Project Number: [none] Project Manager: Anju Farfan								Repo	orted: 04/0	02/2007 16:40
	Vol	atile	Organic A	nalys	sis (E	EPA Met	hod	8260))			
BCL Sample ID: 0703275-0	1 Client Sam	ple Name	: 4625, MW-3, MW	-3, 3/16/200	7 11:44:0	0AM, Joe	······································					
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Toluene	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274	ND	
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274		
Toluene-d8 (Surrogate)	89.6	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 01:53	SVM	MS-V4	1	BQC1274		

86 - 115 (LCL - UCL) EPA-8260 03/22/07 03/23/07 01:53

4-Bromofluorobenzene (Surrogate)

96.4

%

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

SVM

MS-V4

1

BQC1274

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0703275-01	Client Sam	ple Name:	4625, M	W-3, MW-	3, 3/16/2007	11:44:0	0AM, Joe						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time		ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Acenaphthylene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Anthracene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzo[a]anthracene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzo[b]fluoranthene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzo[k]fluoranthene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzo[a]pyrene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzo[g,h,i]perylene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzoic acid	ND	ug/L	10		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzyl alcohol	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Benzyl butyl phthalate	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
bis(2-Chloroethoxy)methane	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
bis(2-Chloroethyl) ether	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
bis(2-Chloroisopropyl)ether	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
bis(2-Ethylhexyl)phthalate	ND	ug/L	4.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
4-Bromophenyl phenyl ether	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
4-Chloroaniline	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Chloronaphthalene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
4-Chlorophenyl phenyl ether	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Chrysene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Dibenzo[a,h]anthracene	ND	ug/L	3.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Dibenzofuran	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
1,2-Dichlorobenzene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)								
Irvine, CA 92618-2302	Project Manager: Anju Farfan							
21 Technology Drive	Project Number: [none]							
TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40						

BCL Sample ID: 0703275-07	1 Client Sam	ple Name:	4625, M	W-3, MW-	3, 3/16/2007	<u>/ 11:44:0</u>	0AM, Joe						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,3-Dichlorobenzene	ND	ug/L	2.0		EPA-8270C		03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	Quals
1,4-Dichlorobenzene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
3,3-Dichlorobenzidine	ND	ug/L	10		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Diethyl phthalate	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Dimethyl phthalate	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Di-n-butyl phthalate	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2,4-Dinitrotoluene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	V11
2,6-Dinitrotoluene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Di-n-octyl phthalate	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Fluoranthene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Fluorene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Hexachlorobenzene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Hexachlorobutadiene	ND	ug/L	1.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Hexachlorocyclopentadiene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	V11
Hexachloroethane	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Indeno[1,2,3-cd]pyrene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Isophorone	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Methylnaphthalene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Naphthalene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Nitroaniline	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
3-Nitroaniline	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	V11
4-Nitroaniline	ND	ug/L	5.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	V11
Nitrobenzene	ND	ug/L	2.0		EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0703275-01	Client Samp	le Name	: 4625, MW-3, MW	-3, 3/16/2007	11:44:0	0AM, Joe						
0	D				Prep	Run		Instru-		QC	∕ MB	Lab
Constituent N-Nitrosodi-N-propylamine	Result	Units ug/L	PQL MDL 2.0	Method EPA-8270C	Date	Date/Time 03/26/07 01:53	Analyst SKC	ment ID MS-B1	Dilution 1	Batch ID BQC1491	Bias ND	Quals
	ND											
N-Nitrosodiphenylamine		ug/L	2.0	EPA-8270C		03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Phenanthrene	ND	ug/L	2.0	EPA-8270C		03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Pyrene	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
4-Chloro-3-methylphenol	ND	ug/L	5.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Chlorophenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	- 1	BQC1491	ND	
2,4-Dichlorophenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2,4-Dimethylphenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
4,6-Dinitro-2-methylphenol	ND	ug/L	10	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	V11
2,4-Dinitrophenol	ND	ug/L	10	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Methylphenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
3- & 4-Methylphenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Nitrophenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
4-Nitrophenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Pentachlorophenol	ND	ug/L	10	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
Phenol	ND	ug/L	2.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2,4,5-Trichlorophenol	ND	ug/L	5.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2,4,6-Trichlorophenol	ND	ug/L	5.0	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491	ND	
2-Fluorophenol (Surrogate)	46.8	%	31 - 116 (LCL - UCL)	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491		
Phenol-d5 (Surrogate)	37.7	%	24 - 77 (LCL - UCL)	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491		
Nitrobenzene-d5 (Surrogate)	102	%	38 - 148 (LCL - UCL)	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491		
2-Fluorobiphenyl (Surrogate)	97.9	%	39 - 149 (LCL - UCL)	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0703275-0	1 Client Sam	ple Name	e: 4625, N	1W-3, MW-	3, 3/16/2007	7 11:44:0	0AM, Joe						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
2,4,6-Tribromophenol (Surrogate)	93.7	%	49 - 187 (LCL - UCL)	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491		
p-Terphenyl-d14 (Surrogate)	97.0	%	35 - 192 (LCL - UCL)	EPA-8270C	03/22/07	03/26/07 01:53	SKC	MS-B1	1	BQC1491		

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farf	an
	, , , , , , , , , , , , , , , , , , ,	

Total Petroleum Hydrocarbons

BCL Sample ID: 0703275-0	1 Client Sam	ple Name	e: 4625, MV	V-3, MW-	3, 3/16/200	7 11:44:0	0AM, Joe						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	50		Luft/TPHd	03/21/07	03/28/07 21:39	MRW	GC-5	1	BQC1648	ND	
Tetracosane (Surrogate)	43.3	%	42 - 125 (LC	CL - UCL)	Luft/TPHd	03/21/07	03/28/07 21:39	MRW	GC-5	1	BQC1648		

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 4625 Project Number: [none] Project Manager: Anju Farfan	Reported: 04/02/2007 16:40
	EPA Method 1664	
BCL Sample ID: 0703275	-01 Client Sample Name: 4625, MW-3, MW-3, 3/16/2007, 11:44:00AM, Joe	

BCE Sample ID.	0703273-01	Cilent Sam	pie Name.	4020, 101	/v-3, ivivv-	3, 3/10/2007	11.44.0							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Oil and Grease		ND	mg/L	5.0		EPA-1664H	03/27/07	03/27/07 13:00	JAK	MAN-SV	1	BQC1614	ND	

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 4625 Project Number: _[none] Project Manager: Anju Farfan	Reported: 04/02/2007 16:40						
L	Water Analysis (Metals)							

BCL Sample ID:	0703275-01	Client Sam	ple Name:	4625, MW-3, MW-3, 3/16/2007 11:44:00AM, Joe										
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Chromium		50	ug/L	10		EPA-6010B	03/21/07	03/22/07 10:18	ARD	PE-OP1	1	BQC1247	ND	

97.9

96.4

%

%

88 - 110 (LCL - UCL)

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302		Project: 4625 Project Number: [none] Project Manager: Anju Farfan									Reported: 04/02/2007 16:40			
	Vol	atile	Organ	ic A	nalys	sis (E	EPA Met	thod	8260))			******	
BCL Sample ID: 0703275-02	Client Sam	4625, MW-4, MW-4, 3/16/2007			7 1:35:00)PM, Joe		-						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals	
Benzene	ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
Ethylbenzene	ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
Methyl t-butyl ether	ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
Toluene	ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
Total Xylenes	ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
Ethanol	ND	ug/L	250		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274	ND		
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL	- UCL)	EPA-8260	03/22/07	03/23/07 18:31	SVM	MS-V4	1	BQC1274			

EPA-8260

86 - 115 (LCL - UCL) EPA-8260 03/22/07 03/23/07 18:31

Toluene-d8 (Surrogate)

4-Bromofluorobenzene (Surrogate)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratorics, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 13 of 41

03/22/07 03/23/07 18:31

SVM

SVM

MS-V4

MS-V4

1

1

BQC1274

BQC1274

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	
	Valatile Organic Analysis (EDA Mathed 0200)	

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 070327	5-03	Client Sam	ple Name	: 4625, MW-1, MV	7 1:24:00	OPM, Joe							
					, ,,	Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
Toluene		ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
Total Xylenes		ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
Ethanol		ND	ug/L	250	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274	ND	
1,2-Dichloroethane-d4 (Surrogat	te)	104	%	76 - 114 (LCL - UCL) EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274		
Toluene-d8 (Surrogate)		98.7	%	88 - 110 (LCL - UCL) EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274		
4-Bromofluorobenzene (Surroga	ite)	96.5	%	86 - 115 (LCL - UCL) EPA-8260	03/22/07	03/23/07 18:59	SVM	MS-V4	1	BQC1274		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 14 of 41 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscier 21 Technology Driv Irvine, CA 92618-23	ve Project Number: [none]									Repo	orted: 04/(02/2007 16:4		
		Vol	atile (Orga	nic A	nalys	sis (E	EPA Met	hod	8260))			
BCL Sample ID:	0703275-04	Client Sam	ple Name:	4625, M	W-2, MW-	-2, 3/16/200	7 12:20:0	0PM, Joe						
Constituent		Result	Units	POI	MIDI	Mathad	Prep	Run		Instru-	D 11 (1	QC	MB	Lab
Benzene		ND	ug/L	<u>PQL</u> 0.50	MDL	EPA-8260	Date 03/22/07	Date/Time 03/23/07 19:28	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Denzene			uy/L	0.50		EFA-0200	03/22/07	03/23/07 19:26	SVM	MS-V4	1	BQC1274	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 19:28	SVM	MS-V4	1	BQC1274	ND	
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 19:28	SVM	MS-V4	1	BQC1274	ND	
Toluene		ND	ug/L	0.50		EPA-8260	03/22/07	03/23/07 19:28	SVM	MS-V4	1	BQC1274	ND	
Total Xylenes		ND	ua/l	0.50		EDA 8260	03/00/07	03/23/07 10:29	S\/M	MEVA	4	BO04074		

		- 3. –		2	00, 22, 0,	00/20/01	10.20	0.111	1010 14		0001214	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07	19:28	SVM	MS-V4	1	BQC1274	ND
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07	19:28	SVM	MS-V4	1	BQC1274	ND
Toluene	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07	19:28	SVM	MS-V4	1	BQC1274	ND
Total Xylenes	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07	19:28	SVM	MS-V4	1	BQC1274	ND
Ethanol	ND	ug/L	250	EPA-8260	03/22/07	03/23/07	19:28	SVM	MS-V4	1	BQC1274	ND
Total Purgeable Petroleum Hydrocarbons	62	ug/L	50	EPA-8260	03/22/07	03/23/07	19:28	SVM	MS-V4	1	BQC1274	ND
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 1	19:28	SVM	MS-V4	1	BQC1274	
Toluene-d8 (Surrogate)	97.5	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 1	19:28	SVM	MS-V4	1	BQC1274	
4-Bromofluorobenzene (Surrogate)	96.5	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 1	19:28	SVM	MS-V4	1	BQC1274	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 15 of 41 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

	Volatile Organic Analysis (EPA Method 8260)	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	
TRC Alton Geoscience 21 Technology Drive	Project: 4625 Project Number: [none]	Reported: 04/02/2007 16:40

					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	22	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Ethylbenzene	3.5	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Methyl t-butyl ether	82	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Toluene	8.7	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Total Xylenes	12	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
Total Purgeable Petroleum Hydrocarbons	160	ug/L	50	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274	ND	
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274		
Toluene-d8 (Surrogate)	99.2	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274		
4-Bromofluorobenzene (Surrogate)	97.1	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 19:56	SVM	MS-V4	1	BQC1274		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302				Project ject Number ect Manager		rfan				Repo	orted: 04/0	02/2007 16:4
	Vol	atile	Organic A				hod	826	D)			
BCL Sample ID: 0703275-06	Client Sam	ple Name	e: 4625, MW-5, MW	-5, 3/16/200	7 1:28:00)PM, Joe			·····			
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	340	ug/L	25	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274	ND	A01
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
Ethylbenzene	400	ug/L	25	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274	ND	A01
Methyl t-butyl ether	480	ug/L	25	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274	ND	A01
Toluene	62	ug/L	0.50	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
Total Xylenes	700	ug/L	25	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274	ND	A01
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
t-Butyl alcohol	45	ug/L	10	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
Ethanol	ND	ug/L	250	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274	ND	
Total Purgeable Petroleum Hydrocarbons	8000	ug/L	2500	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	94.8	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274		
1,2-Dichloroethane-d4 (Surrogate)	100	%	76 - 114 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274		
Toluene-d8 (Surrogate)	98.1	%	88 - 110 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274		
4-Bromofluorobenzene (Surrogate)	98.0	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 21:21	SVM	MS-V4	50	BQC1274		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260	03/22/07	03/23/07 20:53	SVM	MS-V4	1	BQC1274		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project:	4625	Reported: 04/02/2007	16:40
	oject Number:			
Pro	oject Manager:	Anju Farfan		

Volatile Organic Analysis (EPA Method 8240)

Quality Control Report - Precision & Accuracy

								Control Limits			
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BQC1274	Matrix Spike	0703275-01	0	24.940	25.000	ug/L		99.8		70 - 130
		Matrix Spike Duplicate	e0703275-01	0	25.370	25.000	ug/L	1.2	101	20	70 - 130
Bromodichloromethane	BQC1274	Matrix Spike	0703275-01	0	23.360	25.000	ug/L		93.4		70 - 130
		Matrix Spike Duplicate	€0703275-01	0	23.440	25.000	ug/L	0.4	93.8	20	70 - 130
Chlorobenzene	BQC1274	Matrix Spike	0703275-01	0	24.580	25.000	ug/L		98.3		70 - 130
		Matrix Spike Duplicate	e0703275-01	0	24.890	25.000	ug/L	1.3	99.6	20	70 - 130
Chloroethane	BQC1274	Matrix Spike	0703275-01	0	25.050	25.000	ug/L		100		70 - 130
		Matrix Spike Duplicate	e0703275-01	0	25.890	25.000	ug/L	3.9	104	20	70 - 130
1,4-Dichlorobenzene	BQC1274	Matrix Spike	0703275-01	0	24.740	25.000	ug/L		99.0		70 - 130
		Matrix Spike Duplicate	e0703275-01	0	24.440	25.000	ug/L	1.2	97.8	20	70 - 130
1,1-Dichloroethane	BQC1274	Matrix Spike	0703275-01	0	25.500	25.000	ug/L		102		70 - 130
		Matrix Spike Duplicate	€0703275-01	0	25.530	25.000	ug/L	0	102	20	70 - 130
1,1-Dichloroethene	BQC1274	Matrix Spike	0703275-01	0	23.710	25.000	ug/L		94.8		70 - 130
		Matrix Spike Duplicate	€0703275-01	0	24.160	25.000	ug/L	1.9	96.6	20	70 - 130
Toluene	BQC1274	Matrix Spike	0703275-01	0	22.300	25.000	ug/L		89.2		70 - 130
		Matrix Spike Duplicate	€0703275-01	0	22.290	25.000	ug/L	0	89.2	20	70 - 130
Trichloroethene	BQC1274	Matrix Spike	0703275-01	0.19000	24.660	25.000	ug/L		97.9		70 - 130
		Matrix Spike Duplicate	e0703275-01	0.19000	24.390	25.000	ug/L	1.1	96.8	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQC1274	Matrix Spike	0703275-01	ND	10.060	10.000	ug/L		101		76 - 114
		Matrix Spike Duplicate	€0703275-01	ND	10.260	10.000	ug/L		103		76 - 114
Toluene-d8 (Surrogate)	BQC1274	Matrix Spike	0703275-01	ND	9.5700	10.000	ug/L		95.7		88 - 110
		Matrix Spike Duplicate	€0703275-01	ND	9.5500	10.000	ug/L		95.5		88 - 110
4-Bromofluorobenzene (Surrogate)	BQC1274	Matrix Spike	0703275-01	ND	10.230	10.000	ug/L		102		86 - 115
		Matrix Spike Duplicate	€0703275-01	ND	10.190	10.000	ug/L		102		86 - 115

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									<u>Contr</u>	<u>ol Limits</u>
Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery Lab Quals
BQC1274	Matrix Spike	0703275-01	0	24.940	25.000	ug/L		99.8		70 - 130
	Matrix Spike Duplicat	e0703275-01	0	25.370	25.000	ug/L	1.2	101	20	70 - 130
BQC1274	Matrix Spike	0703275-01	0	22.300	25.000	ug/L		89.2		70 - 130
	Matrix Spike Duplicat	e0703275-01	0	22.290	25.000	ug/L	0	89.2	20	70 - 130
BQC1274	Matrix Spike	0703275-01	ND	10.060	10.000	ug/L		101		76 - 114
	Matrix Spike Duplicat	e0703275-01	ND	10.260	10.000	ug/L		103		76 - 114
BQC1274	Matrix Spike	0703275-01	ND	9.5700	10.000	ug/L		95.7		88 - 110
	Matrix Spike Duplicat	e0703275-01	ND	9.5500	10.000	ug/L		95.5		88 - 110
BQC1274	Matrix Spike	0703275-01	ND	10.230	10.000	ug/L		102		86 - 115
	Matrix Spike Duplicat	e0703275-01	ND	10.190	10.000	ug/L		102		86 - 115
	BQC1274 BQC1274 BQC1274 BQC1274	Matrix Spike Duplicat BQC1274 Matrix Spike Matrix Spike Duplicat BQC1274 Matrix Spike Matrix Spike Matrix Spike BQC1274 Matrix Spike Duplicat BQC1274 Matrix Spike Duplicat BQC1274 Matrix Spike BQC1274 Matrix Spike BQC1274 Matrix Spike BQC1274 Matrix Spike	Batch IDQC Sample TypeSample IDBQC1274Matrix Spike0703275-01Matrix Spike Duplicate 0703275-01Matrix Spike Duplicate 0703275-01BQC1274Matrix Spike Duplicate 0703275-01BQC1274Matrix Spike Duplicate 0703275-01BQC1274Matrix Spike Duplicate 0703275-01BQC1274Matrix Spike Duplicate 0703275-01Matrix Spike Duplicate 0703275-01Matrix Spike Duplicate 0703275-01	Batch IDQC Sample TypeSample IDResultBQC1274Matrix Spike0703275-010Matrix Spike Duplicate 0703275-0100BQC1274Matrix Spike Duplicate 0703275-010BQC1274Matrix Spike Duplicate 0703275-010BQC1274Matrix Spike Duplicate 0703275-01NDBQC1274Matrix Spike Duplicate 0703275-01ND	Batch ID QC Sample Type Sample ID Result BQC1274 Matrix Spike 0703275-01 0 24.940 Matrix Spike 0703275-01 0 25.370 BQC1274 Matrix Spike 0703275-01 0 22.300 BQC1274 Matrix Spike 0703275-01 0 22.290 BQC1274 Matrix Spike 0703275-01 ND 10.060 Matrix Spike 0703275-01 ND 10.260 BQC1274 Matrix Spike 0703275-01 ND 10.260 BQC1274 Matrix Spike 0703275-01 ND 9.5700 BQC1274 Matrix Spike 0703275-01 ND 9.5700 BQC1274 Matrix Spike 0703275-01 ND 9.5500 BQC1274 Matrix Spike 0703275-01 ND 9.5500	Batch ID QC Sample Type Sample ID Result Result Added BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 BQC1274 Matrix Spike 0703275-01 0 22.300 25.000 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.290 25.000 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 Matrix Spike Duplicate 0703275-01 ND 10.260 10.000 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5500 10.000 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5500 10.000 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.230 10.000	Batch ID QC Sample Type Sample ID Result Result Added Units BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L BQC1274 Matrix Spike 0703275-01 0 25.370 25.000 ug/L BQC1274 Matrix Spike 0703275-01 0 22.300 25.000 ug/L BQC1274 Matrix Spike 0703275-01 0 22.290 25.000 ug/L BQC1274 Matrix Spike 0703275-01 0 22.290 25.000 ug/L BQC1274 Matrix Spike 0703275-01 ND 10.060 10.000 ug/L BQC1274 Matrix Spike 0703275-01 ND 10.260 10.000 ug/L BQC1274 Matrix Spike 0703275-01 ND 9.5700 10.000 ug/L BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000 ug/L BQC1274 Matrix Spike 0703275-01 ND <td< td=""><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 1.2 BQC1274 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.300 25.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.290 25.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.260 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5500 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5500 10.000 ug/L <td< td=""><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.300 25.000 ug/L 0 89.2 Matrix Spike Duplicate 0703275-01 0 22.290 25.000 ug/L 0 89.2 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 0 89.2 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 101 Matrix Spike Duplicate 0703275-01 ND 10.260 10.000 ug/L 103 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000<td>Batch ID QC Sample Type Source Sample ID Source Result Spike Result Units RPD Percent Recovery RPD BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 BQC1274 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 20 BQC1274 Matrix Spike 0703275-01 0 22.300 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 0 22.290 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.060 10.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.260 10.000 ug/L 101 103 BQC1274 Matrix Spike 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000 ug/L 95.5 </td></td></td<></td></td<>	Batch ID QC Sample Type Sample ID Result Result Added Units RPD BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 1.2 BQC1274 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.300 25.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.290 25.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.260 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5500 10.000 ug/L 0 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5500 10.000 ug/L <td< td=""><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.300 25.000 ug/L 0 89.2 Matrix Spike Duplicate 0703275-01 0 22.290 25.000 ug/L 0 89.2 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 0 89.2 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 101 Matrix Spike Duplicate 0703275-01 ND 10.260 10.000 ug/L 103 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000<td>Batch ID QC Sample Type Source Sample ID Source Result Spike Result Units RPD Percent Recovery RPD BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 BQC1274 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 20 BQC1274 Matrix Spike 0703275-01 0 22.300 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 0 22.290 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.060 10.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.260 10.000 ug/L 101 103 BQC1274 Matrix Spike 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000 ug/L 95.5 </td></td></td<>	Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 BQC1274 Matrix Spike Duplicate 0703275-01 0 22.300 25.000 ug/L 0 89.2 Matrix Spike Duplicate 0703275-01 0 22.290 25.000 ug/L 0 89.2 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 0 89.2 BQC1274 Matrix Spike Duplicate 0703275-01 ND 10.060 10.000 ug/L 101 Matrix Spike Duplicate 0703275-01 ND 10.260 10.000 ug/L 103 BQC1274 Matrix Spike Duplicate 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000 <td>Batch ID QC Sample Type Source Sample ID Source Result Spike Result Units RPD Percent Recovery RPD BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 BQC1274 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 20 BQC1274 Matrix Spike 0703275-01 0 22.300 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 0 22.290 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.060 10.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.260 10.000 ug/L 101 103 BQC1274 Matrix Spike 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000 ug/L 95.5 </td>	Batch ID QC Sample Type Source Sample ID Source Result Spike Result Units RPD Percent Recovery RPD BQC1274 Matrix Spike 0703275-01 0 24.940 25.000 ug/L 99.8 BQC1274 Matrix Spike Duplicate 0703275-01 0 25.370 25.000 ug/L 1.2 101 20 BQC1274 Matrix Spike 0703275-01 0 22.300 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 0 22.290 25.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.060 10.000 ug/L 0 89.2 20 BQC1274 Matrix Spike 0703275-01 ND 10.260 10.000 ug/L 101 103 BQC1274 Matrix Spike 0703275-01 ND 9.5700 10.000 ug/L 95.7 BQC1274 Matrix Spike 0703275-01 ND 9.5500 10.000 ug/L 95.5

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience	Project:	4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number:	[none]	
Irvine, CA 92618-2302	Project Manager:	Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Precision & Accuracy

										Contro	<u>ol Limits</u>	
			Source	Source		Spike			Percent		Percen	t
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recover	y Lab Quals
Acenaphthene	BQC1491	Matrix Spike	0701337-99	0	89.748	80.000	ug/L		112		38 - 147	
		Matrix Spike Duplicat	e0701337-99	0	84.155	80.000	ug/L	6.5	105	19	38 - 147	
1,4-Dichlorobenzene	BQC1491	Matrix Spike	0701337-99	0	77.906	80.000	ug/L		97.4		40 - 129	
		Matrix Spike Duplicat	e0701337-99	0	76.249	80.000	ug/L	2.2	95.3	22	40 - 129	
2,4-Dinitrotoluene	BQC1491	Matrix Spike	0701337-99	0	86.877	80.000	ug/L		109		45 - 141	V11
		Matrix Spike Duplicat	e0701337-99	0	85.034	80.000	ug/L	2.8	106	24	45 - 141	V11
Hexachlorobenzene	BQC1491	Matrix Spike	0701337-99	0	90.937	80.000	ug/L		114		57 - 149	
		Matrix Spike Duplicat	e0701337-99	0	87.361	80.000	ug/L	4.5	109	19	57 - 149	
Hexachlorobutadiene	BQC1491	Matrix Spike	0701337-99	0	70.058	80.000	ug/L		87.6		37 - 113	
		Matrix Spike Duplicat	e0701337-99	0	68.057	80.000	ug/L	2.9	85.1	24	37 - 113	
Hexachloroethane	BQC1491	Matrix Spike	0701337-99	0	81.987	80.000	ug/L		102		31 - 127	
		Matrix Spike Duplicat	e0701337-99	0	80.001	80.000	ug/L	2.0	100	23	31 - 127	
Nitrobenzene	BQC1491	Matrix Spike	0701337-99	0	84.034	80.000	ug/L		105		33 - 147	
		Matrix Spike Duplicat	e0701337-99	0	82.040	80.000	ug/L	1.9	103	25	33 - 147	
N-Nitrosodi-N-propylamine	BQC1491	Matrix Spike	0701337-99	0	79.612	80.000	ug/L		99.5		33 - 132	
		Matrix Spike Duplicat	e0701337-99	0	74.130	80.000	ug/L	7.1	92.7	24	33 - 132	
Pyrene	BQC1491	Matrix Spike	0701337-99	0	86.924	80.000	ug/L		109		44 - 169	
		Matrix Spike Duplicat	e0701337-99	0	82.461	80.000	ug/L	5.7	103	19	44 - 169	
1,2,4-Trichlorobenzene	BQC1491	Matrix Spike	0701337-99	0	75.631	80.000	ug/L		94.5		44 - 128	
		Matrix Spike Duplicat	e0701337-99	0	73.574	80.000	ug/L	2.7	92.0	22	44 - 128	
4-Chloro-3-methylphenol	BQC1491	Matrix Spike	0701337-99	0	91.811	80.000	ug/L		115		44 - 140	5
		Matrix Spike Duplicat	e0701337-99	0	88.991	80.000	ug/L	3.5	111	21	44 - 140	
2-Chlorophenol	BQC1491	Matrix Spike	0701337-99	0	75.533	80.000	ug/L		94.4		33 - 114	
		Matrix Spike Duplicate	e0701337-99	0	73.706	80.000	ug/L	2.5	92.1	22	33 - 114	
2-Methylphenol	BQC1491	Matrix Spike	0701337-99	0	79.533	80.000	ug/L		99.4		37 - 110	
		Matrix Spike Duplicat	e0701337-99	0	75.126	80.000	ug/L	5.7	93.9	21	37 - 110	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
3- & 4-Methylphenol	BQC1491	Matrix Spike	0701337-99	0	145.25	80.000	ug/L		182		67 - 182
		Matrix Spike Duplicat	e 0701337-99	0	141.01	80.000	ug/L	3.4	176	21	67 - 182
4-Nitrophenol	BQC1491	Matrix Spike	0701337-99	0	51.575	80.000	ug/L		64.5		22 - 72
		Matrix Spike Duplicat	te 0701337-99	0	51.194	80.000	ug/L	0.8	64.0	30	22 - 72
Pentachlorophenol	BQC1491	Matrix Spike	0701337-99	0	107.67	80.000	ug/L		135		30 - 154
		Matrix Spike Duplicat	e 0701337-99	0	107.15	80.000	ug/L	0.7	134	28	30 - 154
Phenol	BQC1491	Matrix Spike	0701337-99	0	41.835	80.000	ug/L		52.3		6 - 71
		Matrix Spike Duplicat	e 0701337-99	0	40.883	80.000	ug/L	2.3	51.1	19	6 - 71
2,4,6-Trichlorophenol	BQC1491	Matrix Spike	0701337-99	0	84.213	80.000	ug/L	N. 1. 10	105		36 - 131
		Matrix Spike Duplicat	e 0701337-99	0	81.254	80.000	ug/L	2.9	102	24	36 - 131
2-Fluorophenol (Surrogate)	BQC1491	Matrix Spike	0701337-99	ND	68.952	80.000	ug/L		86.2		31 - 116
		Matrix Spike Duplicat	e 0701337-99	ND	67.804	80.000	ug/L		84.8		31 - 116
Phenol-d5 (Surrogate)	BQC1491	Matrix Spike	0701337-99	ND	46.711	80.000	ug/L		58.4		24 - 77
		Matrix Spike Duplicat	e 0701337-99	ND	45.290	80.000	ug/L		56.6		24 - 77
Nitrobenzene-d5 (Surrogate)	BQC1491	Matrix Spike	0701337-99	ND	91.079	80.000	ug/L		114		38 - 148
		Matrix Spike Duplicat	e0701337-99	ND	87.301	80.000	ug/L		109		38 - 148
2-Fluorobiphenyl (Surrogate)	BQC1491	Matrix Spike	0701337-99	ND	79.313	80.000	ug/L		99.1		39 - 149
		Matrix Spike Duplicat	e 0701337-99	ND	77.145	80.000	ug/L		96.4		39 - 149
2,4,6-Tribromophenol (Surrogate)	BQC1491	Matrix Spike	0701337-99	ND	103.32	80.000	ug/L		129		49 - 187
		Matrix Spike Duplicat	e0701337-99	ND	97.896	80.000	ug/L		122		49 - 187
p-Terphenyl-d14 (Surrogate)	BQC1491	Matrix Spike	0701337-99	ND	40.780	40.000	ug/L		102		35 - 192
		Matrix Spike Duplicat	e 0701337-99	ND	38.387	40.000	ug/L		96.0		35 - 192

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project:	4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number:	[none]	
Irvine, CA 92618-2302	Project Manager:	Anju Farfan	

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										<u>Contro</u>	<u>ol Limits</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BQC1648	Matrix Spike	0610676-93	36.452	404.78	500.00	ug/L		73.7		41 - 139
		Matrix Spike Duplicat	e0610676-93	36.452	578.44	500.00	ug/L	37.8	108	30	41 - 139 Q02
Tetracosane (Surrogate)	BQC1648	Matrix Spike	0610676-93	ND	10.151	20.000	ug/L		50.8		42 - 125
		Matrix Spike Duplicat	e0610676-93	ND	14.333	20.000	ug/L		71.7		42 - 125

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	•
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

EPA Method 1664

Quality Control Report - Precision & Accuracy

										<u>Contre</u>	<u>ol Limits</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Qual
Oil and Grease	BQC1614	Duplicate	0703452-02	2.4500	ND		mg/L		······································	18	· · · · · · · · · · · · · · · · · · ·
		Matrix Spike	0703452-02	2.4500	30.050	38.300	mg/L		72.1		78 - 114 Q03
		Matrix Spike Duplicat	e0703452-02	2.4500	33.850	38.300	mg/L	12.8	82.0	18	78 - 114

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Water Analysis (Metals)

Quality Control Report - Precision & Accuracy

Contral Line ite

										Contre	<u>DI LIMITS</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Total Chromium	BQC1247	Duplicate	0703181-04	0.31432	ND		ug/L			20	
		Matrix Spike	0703181-04	0.31432	201.54	200.00	ug/L		101		75 - 125
		Matrix Spike Duplicat	e0703181-04	0.31432	203.83	200.00	ug/L	1.0	102	20	75 - 125

TRC Alton Geoscience	Project:	4625	Reported: 04/02/2007 1	16:40
21 Technology Drive	Project Number:	[none]		
Irvine, CA 92618-2302	Project Manager:	Anju Farfan		

Volatile Organic Analysis (EPA Method 8240)

Quality Control Report - Laboratory Control Sample

										Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BQC1274	BQC1274-BS1	LCS	26.010	25.000	0.50	ug/L	104		70 - 130		
Bromodichloromethane	BQC1274	BQC1274-BS1	LCS	26.350	25.000	0.50	ug/L	105		70 - 130		
Chlorobenzene	BQC1274	BQC1274-BS1	LCS	26.010	25.000	0.50	ug/L	104		70 - 130		
Chloroethane	BQC1274	BQC1274-BS1	LCS	26.780	25.000	0.50	ug/L	107		70 - 130		
1,4-Dichlorobenzene	BQC1274	BQC1274-BS1	LCS	26.510	25.000	0.50	ug/L	106		70 - 130		
1,1-Dichloroethane	BQC1274	BQC1274-BS1	LCS	26.260	25.000	0.50	ug/L	105		70 - 130		
1,1-Dichloroethene	BQC1274	BQC1274-BS1	LCS	26.850	25.000	0.50	ug/L	107		70 - 130		
Toluene	BQC1274	BQC1274-BS1	LCS	26.400	25.000	0.50	ug/L	106		70 - 130		
Trichloroethene	BQC1274	BQC1274-BS1	LCS	29.760	25.000	0.50	ug/L	119		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQC1274	BQC1274-BS1	LCS	9.9500	10.000		ug/L	99.5		76 - 114		
Toluene-d8 (Surrogate)	BQC1274	BQC1274-BS1	LCS	10.040	10.000		ug/L	100		88 - 110		
4-Bromofluorobenzene (Surrogate)	BQC1274	BQC1274-BS1	LCS	10.300	10.000		ug/L	103	a a su a	86 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report alteration, separation, detachment or third party interpretation. Page 25 of 41 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Volatile Organic Analysis (EPA Method 8260)

									<u>Control</u>	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals
Benzene	BQC1274	BQC1274-BS1	LCS	26.010	25.000	0.50	ug/L	104	70 - 130		
Toluene	BQC1274	BQC1274-BS1	LCS	26.400	25.000	0.50	ug/L	106	70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQC1274	BQC1274-BS1	LCS	9.9500	10.000		ug/L	99.5	76 - 114		
Toluene-d8 (Surrogate)	BQC1274	BQC1274-BS1	LCS	10.040	10.000		ug/L	100	88 - 110		
4-Bromofluorobenzene (Surrogate)	BQC1274	BQC1274-BS1	LCS	10.300	10.000		ug/L	103	86 - 115		

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Laboratory Control Sample

										Control Limits				
Constituent	Ratch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent	000	Percent	000			
Acenaphthene		BQC1491-BS1		93.385	80.000	2.0	ug/L	Recovery	RPD	Recovery 38 - 146	RPD	Lab Quals		
1,4-Dichlorobenzene		BQC1491-BS1	LCS	78.113	80.000	2.0	ug/L	97.6		34 - 137	·			
2,4-Dinitrotoluene	BQC1491	BQC1491-BS1	LCS	93.961	80.000	2.0	ug/L	117		43 - 149				
Hexachlorobenzene	BQC1491	BQC1491-BS1	LCS	87.856	80.000	2.0	ug/L	110		51 - 155				
Hexachlorobutadiene	BQC1491	BQC1491-BS1	LCS	68.171	80.000	1.0	ug/L	85.2		31 - 121				
Hexachloroethane	BQC1491	BQC1491-BS1	LCS	80.535	80.000	2.0	ug/L	101		32 - 129				
Nitrobenzene	BQC1491	BQC1491-BS1	LCS	82.656	80.000	2.0	ug/L	103		32 - 143				
N-Nitrosodi-N-propylamine	BQC1491	BQC1491-BS1	LCS	73.911	80.000	2.0	ug/L	92.4		33 - 132				
Pyrene	BQC1491	BQC1491-BS1	LCS	76.418	80.000	2.0	ug/L	95.5		46 - 157				
1,2,4-Trichlorobenzene	BQC1491	BQC1491-BS1	LCS	74.185	80.000	2.0	ug/L	92.7		36 - 137				
4-Chloro-3-methylphenol	BQC1491	BQC1491-BS1	LCS	88.252	80.000	5.0	ug/L	110		43 - 133				
2-Chlorophenol	BQC1491	BQC1491-BS1	LCS	71.609	80.000	2.0	ug/L	89.5		39 - 113				
2-Methylphenol	BQC1491	BQC1491-BS1	LCS	71.530	80.000	2.0	ug/L	89.4		38 - 112				
3- & 4-Methylphenol	BQC1491	BQC1491-BS1	LCS	128.35	80.000	2.0	ug/L	160		65 - 185				
4-Nitrophenol	BQC1491	BQC1491-BS1	LCS	51.595	80.000	2.0	ug/L	64.5		26 - 68				
Pentachlorophenol	BQC1491	BQC1491-BS1	LCS	105.24	80.000	10	ug/L	132		32 - 156				
Phenol	BQC1491	BQC1491-BS1	LCS	37.942	80.000	2.0	ug/L	47.4		12 - 62				
2,4,6-Trichlorophenol	BQC1491	BQC1491-BS1	LCS	89.184	80.000	5.0	ug/L	111		37 - 135				
2-Fluorophenol (Surrogate)	BQC1491	BQC1491-BS1	LCS	62.941	80.000		ug/L	78.7		31 - 116				
Phenol-d5 (Surrogate)	BQC1491	BQC1491-BS1	LCS	40.158	80.000		ug/L	50.2		24 - 77	_			
Nitrobenzene-d5 (Surrogate)	BQC1491	BQC1491-BS1	LCS	85.897	80.000		ug/L	107		38 - 148				
2-Fluorobiphenyl (Surrogate)	BQC1491	BQC1491-BS1	LCS	86.617	80.000		ug/L	108		39 - 149				
2,4,6-Tribromophenol (Surrogate)	BQC1491	BQC1491-BS1	LCS	97.814	80.000		ug/L	122		49 - 187				

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

										<u>Control</u>	<u>Limits</u>	
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
p-Terphenyl-d14 (Surrogate)	BQC1491	BQC1491-BS1	LCS	39.475	40.000		ug/L	98.7		35 - 192		

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	
,		

Total Petroleum Hydrocarbons

									Control	<u>Limits</u>	
Constituent	Batch ID QC Sample II	D QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BQC1648 BQC1648-BS1	LCS	472.55	500.00	50	ug/L	94.5		62 - 101		
Tetracosane (Surrogate)	BQC1648 BQC1648-BS1	LCS	15.052	20.000	and the second se	ug/L	75.3		42 - 125		

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

EPA Method 1664

										<u>Control</u>	<u>Limits</u>		
					Spike			Percent		Percent			
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals	
Oil and Grease	BQC1614	BQC1614-BS1	LCS	31.000	38.300	5.0	mg/L	80.9		78 - 114			_

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive	Project Number: [none]	
Irvine, CA 92618-2302	Project Manager: Anju Farfan	

Water Analysis (Metals)

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	<u>Limits</u>		
					Spike			Percent		Percent			
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals	
Total Chromium	BQC1247	BQC1247-BS1	LCS	196.04	200.00	10	ug/L	98.0		85 - 115			

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Proj	Project: 4625 ject Number: [none] ect Manager: Anju Farfa	n			Reported: 04	/02/2007 16:40
	Volatile Organic			d 8240)			
	Quality Control I	Report - Method	I Blank Anal	ysis			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		······
Bromodichloromethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50	K.Y.	
Bromoform	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Bromomethane	BQC1274	BQC1274-BLK1	ND	ug/L	1.0		
Carbon tetrachloride	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Chlorobenzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Chloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Chloroform	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Chloromethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Dibromochloromethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,2-Dichlorobenzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,3-Dichlorobenzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,4-Dichlorobenzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,1-Dichloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,1-Dichloroethene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
trans-1,2-Dichloroethene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,2-Dichloropropane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
cis-1,3-Dichloropropene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
trans-1,3-Dichloropropene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Ethylbenzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Methylene chloride	BQC1274	BQC1274-BLK1	ND	ug/L	1.0		
Methyl t-butyl ether	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,1,2,2-Tetrachloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 32 of 41

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 4625 Project Number: [none] Project Manager: Anju Farfan						/02/2007 16:40
	/olatile Organic	Analysis (El	PA Metho	d 8240))		
	Quality Control I			-			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Tetrachloroethene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Toluene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,1,1-Trichloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,1,2-Trichloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Trichloroethene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Trichlorofluoromethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,1,2-Trichloro-1,2,2-trifluoroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Vinyl chloride	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		****
Total Xylenes	BQC1274	BQC1274-BLK1	ND	ug/L	1.0		
p- & m-Xylenes	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
o-Xylene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BQC1274	BQC1274-BLK1	102	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BQC1274	BQC1274-BLK1	100	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BQC1274	BQC1274-BLK1	97.0	%	86 - 115 (LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Pro Proj	Project: 4625 ject Number: [none] ect Manager: Anju Farfa	n		I	Reported: 04	/02/2007 16:40
Vo	latile Organic	Analysis (E	PA Metho	od 8260)		
	Quality Control I	Report - Method	I Blank Anal	lysis			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		*********
1,2-Dibromoethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Ethylbenzene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Toluene	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Total Xylenes	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
t-Amyl Methyl ether	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BQC1274	BQC1274-BLK1	ND	ug/L	10		
Diisopropyl ether	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Ethanol	BQC1274	BQC1274-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BQC1274	BQC1274-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BQC1274	BQC1274-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BQC1274	BQC1274-BLK1	102	%	76 - 114	(LCL - UCL)	·
Toluene-d8 (Surrogate)	BQC1274	BQC1274-BLK1	100	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BQC1274	BQC1274-BLK1	97.0	%	86 - 115	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Proje Proje	Project: 4625 ject Number: [none] ect Manager: Anju Farfa	n		I	Reported: 04	/02/2007 16:40
Base Neutral a	nd Acid Extractal		_	-	Method	82700	C)
	Quality Control F	Report - Method	Blank Anal	ysis			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Acenaphthene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Acenaphthylene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Anthracene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Benzo[a]anthracene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Benzo[b]fluoranthene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Benzo[k]fluoranthene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0	W. (1	
Benzo[a]pyrene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Benzo[g,h,i]perylene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Benzoic acid	BQC1491	BQC1491-BLK1	ND	ug/L	10		
Benzyl alcohol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Benzyl butyl phthalate	BQC1491	BQC1491-BLK1	ND	ug/L	2.0	·····	
bis(2-Chloroethoxy)methane	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
bis(2-Chloroethyl) ether	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		·
bis(2-Chloroisopropyl)ether	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
bis(2-Ethylhexyl)phthalate	BQC1491	BQC1491-BLK1	ND	ug/L	4.0	A. 76, 25 (Marcine 1 - 1 - 1	
4-Bromophenyl phenyl ether	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
4-Chloroaniline	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2-Chloronaphthalene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
4-Chlorophenyl phenyl ether	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		, , ,
Chrysene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0	APT 1.11 4	
Dibenzo[a,h]anthracene	BQC1491	BQC1491-BLK1	ND	ug/L	3.0	·····	
Dibenzofuran	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		·····
1,2-Dichlorobenzene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
1,3-Dichlorobenzene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 4625 Project Number: [none] Project Manager: Anju Farfan				I	Reported: 04	/02/2007 16:40
Base Neutral a	nd Acid Extracta	bles Organie	c Analysis	s (EPA	Method	82700	C)
	Quality Control I	Report - Method	l Blank Anal	ysis			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
1,4-Dichlorobenzene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
3,3-Dichlorobenzidine	BQC1491	BQC1491-BLK1	ND	ug/L	10		
Diethyl phthalate	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Dimethyl phthalate	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Di-n-butyl phthalate	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2,4-Dinitrotoluene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2,6-Dinitrotoluene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Di-n-octyl phthalate	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		·····
Fluoranthene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Fluorene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Hexachlorobenzene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Hexachlorobutadiene	BQC1491	BQC1491-BLK1	ND	ug/L	1.0		
Hexachlorocyclopentadiene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Hexachloroethane	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Indeno[1,2,3-cd]pyrene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Isophorone	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2-Methylnaphthalene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Naphthalene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2-Nitroaniline	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
3-Nitroaniline	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
4-Nitroaniline	BQC1491	BQC1491-BLK1	ND	ug/L	5.0		
Nitrobenzene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
N-Nitrosodi-N-propylamine	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
N-Nitrosodiphenylamine	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 4625 Project Number: [none] Project Manager: Anju Farfan				I	Reported: 04	16:40
Base Neutral an	d Acid Extracta	bles Organie	c Analysis	s (EPA	Method	82700	C)
	Quality Control F	Report - Method	l Blank Anal	ysis			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Phenanthrene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Pyrene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
1,2,4-Trichlorobenzene	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
4-Chloro-3-methylphenol	BQC1491	BQC1491-BLK1	ND	ug/L	5.0		
2-Chlorophenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2,4-Dichlorophenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2,4-Dimethylphenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
4,6-Dinitro-2-methylphenol	BQC1491	BQC1491-BLK1	ND	ug/L	10		
2,4-Dinitrophenol	BQC1491	BQC1491-BLK1	ND	ug/L	10		
2-Methylphenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
3- & 4-Methylphenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2-Nitrophenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0	11. · · · · · · · · · · · · · · · · · ·	
4-Nitrophenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
Pentachlorophenol	BQC1491	BQC1491-BLK1	ND	ug/L	10		
Phenol	BQC1491	BQC1491-BLK1	ND	ug/L	2.0		
2,4,5-Trichlorophenol	BQC1491	BQC1491-BLK1	ND	ug/L	5.0		
2,4,6-Trichlorophenol	BQC1491	BQC1491-BLK1	ND	ug/L	5.0		
2-Fluorophenol (Surrogate)	BQC1491	BQC1491-BLK1	68.3	%	31 - 116	(LCL - UCL)	
Phenol-d5 (Surrogate)	BQC1491	BQC1491-BLK1	45.5	%	24 - 77	(LCL - UCL)	
Nitrobenzene-d5 (Surrogate)	BQC1491	BQC1491-BLK1	97.6	%	38 - 148	(LCL - UCL)	
2-Fluorobiphenyl (Surrogate)	BQC1491	BQC1491-BLK1	96.2	%	39 - 149	(LCL - UCL)	
2,4,6-Tribromophenol (Surrogate)	BQC1491	BQC1491-BLK1	114	%	49 - 187	(LCL - UCL)	
p-Terphenyl-d14 (Surrogate)	BQC1491	BQC1491-BLK1	92.3	%	35 - 192	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40
21 Technology Drive Irvine, CA 92618-2302	Project Number: [none] Project Manager: Anju Farfan	

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BQC1648	BQC1648-BLK1	ND	ug/L	50		M02
Tetracosane (Surrogate)	BQC1648	BQC1648-BLK1	69.2	%	42 - 125 (. ,	

Irvine, CA 92618-2302	Project Manager: Anju Farfan EPA Method 1664	
21 Technology Drive	Project Number: [none]	
TRC Alton Geoscience	Project: 4625	Reported: 04/02/2007 16:40

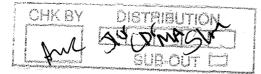
Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Oil and Grease	BQC1614	BQC1614-BLK1	ND	mg/L	5.0		

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 4625 Project Number: [none] Project Manager: Anju Farfan	Reported: 04/02/2007 16:40
	Water Analysis (Metals)	

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Total Chromium	BQC1247	BQC1247-BLK1	ND	ug/L	10		



	n Geoscience	Project: 4625	Reported: 04/02/2007 16:40
	nology Drive	Project Number: [none]	
Irvine, C/	A 92618-2302	Project Manager: Anju Farfan	
Notes A	and Definitions		
MDL	Method Detection Limit		
ND	Analyte Not Detected at or above the reportin	g limit	
PQL	Practical Quantitation Limit		
RPD	Relative Percent Difference		
A01	PQL's and MDL's are raised due to sample di	lution.	
M02	Analyte detected in the Method Blank at a lev	el between the PQL and 1/2 the PQL.	
Q02	Matrix spike precision is not within the control	limits.	
Q03	Matrix spike recovery(s) is(are) not within the	control limits.	
V11	The Continuing Calibration Verification (CCV)	recovery is not within established control limits.	

BC LABORATORIES INC. SAMPLE RECEIPT FORM Rev. No. 10 01/21/04 Page Of													
Submission #: 0)-0227	15 F	Project C	ode:		•	ТВ	Batch #						
Federal Express UPS	livery □		SHIPPING CONTAINER										
BC Lab Field Service D Other	γ)		Box D Other D (Specify)										
Refrigerant: Ice 🛛 Blue Ice 🗆] Non	e 🗆 🛛 🖸	ther 🛛	Comm	ents:								
Custody Seals: Ice Chest Containers None Comments:													
All samples received? Yes 🗹 No 🗆 All samples containers intact? Yes 🗹 No 🗆 Description(s) match COC? Yes 😭 No 🗆													
COC Received		Ice Chest ID $\underline{\beta}/\omega$ Emissivity $\underline{0.95}$					0.95	Date/Time <u>3/19/7</u>					
PYES DNO		Temperature: <u>4.9</u> °C Container <u>V06</u> Thermometer ID: 48				00		st Init Ar					
	1	THEFTHUTT		<u> 70</u>									
SAMPLE CONTAINERS	L	<u>r </u>	í	1	1	NUMBERS	r T						
OT GENERAL MINERAL/ GENERAL PHYSICAL	<u> </u>	2	3	4	5	6		8	9	10			
PT PE UNPRESERVED	 			<u> </u>	1		<u> </u>		+				
OT INORGANIC CHEMICAL METALS	1	1		1	1		<u> </u>		1	+			
PT INORGANIC CHEMICAL METALS	3			†	1	1	╏┉╶╧─┤		1	+			
PT CYANIDE	ACTIVITIES AND A			1	1			······	1	1			
PT NITROGEN FORMS				1						+			
PT TOTAL SULFIDE	· · · · · ·		·	1	1	<u> </u>			1	+			
202, NITRATE / NITRITE					1	<u> </u>		··········	1	1			
100ml TOTAL ORGANIC CARBON						<u> </u>			1	1			
от тох									1	1			
PT CHEMICAL OXYGEN DEMAND				†	İ				1	1			
PtA PHENOLICS									1	1			
40mi VOA VIAL TRAVEL BLANK								<u>.</u>					
40ml VOA VIAL	A G	AB	AIZ	A3	AB	AR	6 3	(1	(1 1			
<u>OT EPA 413.1, 413.2, 418.1</u>	B												
PT ODOR													
RADIOLOGICAL													
BACTERIOLOGICAL				•									
40 ml VOA VIAL- 504						2							
QT EPA 508/608/8080				*					÷				
QT EPA 515.1/8150				·					200 				
QT EPA 525													
<u>QT EPA 525 TRAVEL BLANK</u>										<u> </u>			
<u>100mi EPA 547</u>													
100ml EPA 531.1								<u> </u>					
<u>QT EPA 548</u>	<u> </u>									 			
OT EPA 549				-									
OT EPA 632													
QT EPA 8015M													
	Cat					i				╂			
<u>QT AMBER</u> 8 OZ. JAR	GD.8								i	 			
<u>8 02. jar</u> 32 02. jar										 			
SOIL SLEEVE	ł·									<u> </u>			
										 			
PCB VIAL						·	ł-		·	 			
PLASTIC BAG FERROUS IRON	<u>-</u>									<u> </u>			
ENCORE										<u> </u>			
										 			
	L			l			<u> </u>	<u> </u>		L			

Comments:______ Comments:______Completed By:___

OTO

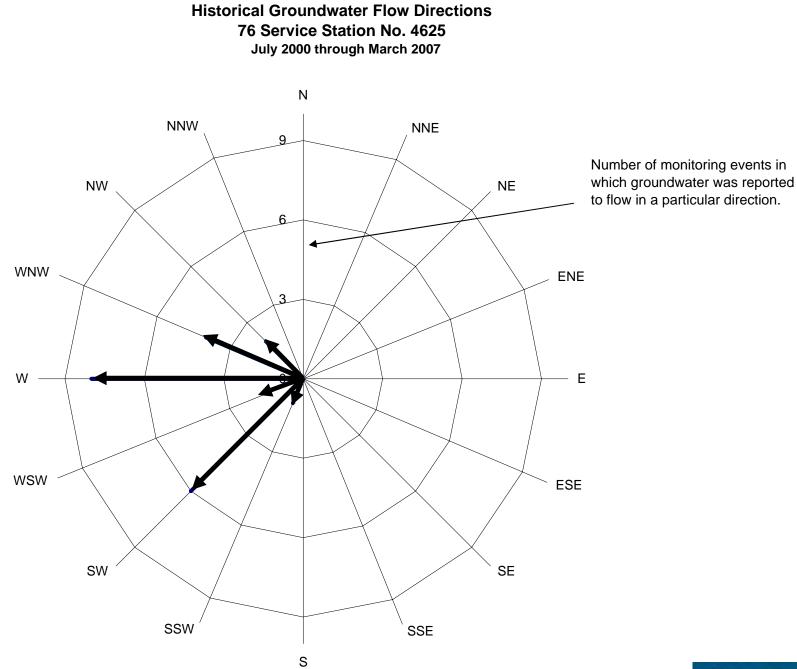
67-03275

BC LABORATORIES, INC.

4100 Atlas Court D Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

							Analysis Requested								
	anoco Phillips/TRC 3070 FrwitVal Ave.	e 21 Techology Drive	Consultant Firm: TRC 21 Techology Drive Irvine, CA 92618-2302 Attn: Anju Farfan				ates	8260B	200000		0C's by 8270;			Requested	
City: 00	akland	4-digit site#: 4(Workorder # ₀₁₂ %	Soil (WW) Waste- water	32601 by-8021B,	8015M	8260 full list w/ oxygenates	BTEX/MTBE/OXYS BY {	ETHANOL by 8260B		824	82608		Time Requ		
State: CA	Zip:	Project #: 41060		(SL)				ВЩ М	- by	by G	Pro Arc				
Conoco P	hillips Mgr: Shelby Lan	$_{va}$ Sampler Name: \mathcal{J}	OE LEWIS	Sludge	NAT	GAS by		JMT	NO	р О		EU		irou	
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE	Hd	8260	BTEX	ETHA		ToG. 1	E 0B/		Tumaround	
	-1	Mw-3	03-16-07 1144	GW	\mathbf{X}		\langle		Х	\ge	\mathbf{X}		4	STD	
	-2	MW-4	1335		\ge				\boxtimes	\ge					
	-3	mw-1	1324		\mid	1			\ge	\times					
	4	MW-2	1220		Х				\bowtie	\bowtie					
	-5	MW-6	1242					\mathbf{X}	\ge	\boxtimes		Х			
a	-6	Mw-5	V 1328					\times	\succ	\times		X		V	
		· · · · · · · · · · · · · · · · · · ·													
Comments: Run 8 OXYS by 82.60 Relinquished by (STR on all 8260 MTBE hits!			e D. Leuis			Received by: refrigerator				Date & Time 03-16-07 /430					
GLOBAL ID: TOGOOIO7156		Relinquished by:	Isned by (Signature) De Secure			Received by:				Date & Time 3/19/07 (345-					
			Relinquished by: (Signature)				3/19/07 Received by: Date & Date & B-1G-0				& Tir	Time			
A) = ANALY	SIS (C) = CONTAINER	(P) = PRESE		072120	~	Te	mil	16	. 6.	- 2	2/10	10-	7.6	21-24	


STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.

