RECEIVED

By dehloptoxic at 2:57 pm, Nov 02, 2006

76 Broadway Sacramento, California 95818

October 30, 2006

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Report Transmittal
Quarterly Report
Third Quarter – 2006
76 Service Station# 4625
3070 Fruitvale
Oakland, CA

Dear Mr. Hwang:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact

Shelby S. Lathrop (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818

Phone: 916-558-7609 Fax: 916-558-7639

Sincerely,

Thomas Kosel

Risk Management & Remediation

mar H. Koral

Attachment

October 30, 2006

TRC Project No. 42014510

Mr. Don Hwang Hazardous Materials Specialist Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Quarterly Status Report – Third Quarter 2006 and Notification of Intent to Proceed with Additional Site Assessment 76 Service Station #4625, 3070 Fruitvale Avenue, Oakland, California Alameda County

Dear Mr. Hwang:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the Third Quarter 2006 Status Report for the subject site. The site is currently an active service station located on the southeast corner of Fruitvale Avenue and School Street in Oakland, California.

In addition, since it has been more than 60 days since submittal of a proposal to conduct additional site assessment activities, in accordance with State of California law, to protect public health and provide for management of risk, TRC will proceed with scheduling proposed additional investigative work. A schedule will be submitted under separate cover once finalized, pending any agency comments/requests for modification to the proposed scope of work.

PREVIOUS ASSESSMENTS

April/May 1998: The gasoline underground storage tanks (USTs), product piping and dispensers were removed and replaced. Concentrations of total petroleum hydrocarbons as gasoline (TPH-g), benzene, and methyl tertiary butyl ether (MTBE) ranged from non-detect to moderate levels.

May 1998: A waste oil UST and associated piping was also removed. Concentrations of TPH-g, benzene, total petroleum hydrocarbons as diesel (TPH-d), total oil and grease (TOG), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals ranged from non-detect to moderate levels.

A total of approximately 1,166 tons of soil were over excavated and transported from the site to Allied Waste's Forward Landfill in Manteca, California. Additionally, 40,000 gallons of groundwater were pumped from the UST pit and transported to the Tosco Refinery in Rodeo, California for disposal. A conductor casing was installed in the backfill during installation of the replacement gasoline USTs. The waste oil tank was replaced with an aboveground tank.

April 2000: Four monitoring wells were installed at the site.

QSR – Third Quarter 2006 and Notification of Intent to Proceed with Additional Site Assessment 76 Service Station #4625, Oakland, California October 30, 2006
Page 2

May 2003: Two monitoring wells were installed to 25 feet below ground surface (bgs) and two exploratory borings were advanced to approximately 15 feet bgs. Soil samples contained low maximum levels of benzene, MTBE, and tertiary butyl alcohol (TBA), and moderate levels of TPH-g. Grab groundwater samples collected from the two soil borings were reported to contain elevated concentrations of petroleum hydrocarbons in both samples.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

February 27 – March 3, 2006: TRC conducted a hydropunch groundwater investigation at the site which involved the advancement of two onsite and five offsite hydropunch borings using a cone penetrometer testing (CPT) rig.

SENSITIVE RECEPTORS

An irrigation well is located 1,700 feet south-southeast of the site.

MONITORING AND SAMPLING

Currently, seven onsite wells are monitored and six of the seven wells are sampled quarterly. All seven wells were gauged and six wells sampled during the third quarter 2006. The groundwater flow is toward the west at a calculated hydraulic gradient of 0.015 feet per foot. A graph of historical groundwater flow directions is included in this report.

CHARACTERIZATION STATUS

The plume is not currently defined to the southwest and west. Total petroleum hydrocarbons as gasoline (TPH-g) were detected in three of the six wells sampled at a maximum concentration of 2,200 micrograms per liter (μ g/l) in well MW-5. Benzene was detected in three of the six wells sampled at a maximum concentration of 55 μ g/l in well MW-5. MTBE was detected in two of the six wells sampled at a concentration of 220 μ g/l in both wells MW-5 and MW-6.

REMEDIATION STATUS

May 1998: A total of approximately 1,166 tons of soil generated during replacement of Fuel and waste oil USTs were over excavated and transported from the site to Allied Waste's Forward Landfill in Manteca, California. Additionally, 40,000 gallons of groundwater were pumped from the UST pit and transported to the Tosco Refinery in Rodeo, California for disposal.

Remediation is not currently being conducted at the site.

RECENT CORRESPONDENCE

No correspondence this quarter.

QSR – Third Quarter 2006 and Notification of Intent to Proceed with Additional Site Assessment 76 Service Station #4625, Oakland, California October 30, 2006
Page 3

CURRENT QUARTER ACTIVITIES

September 27, 2006: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

CONCLUSIONS AND RECOMMENDATIONS

TRC recommends continuing quarterly monitoring and sampling to assess plume stability and concentration trends at key wells.

Based on the results of the recent hydropunch groundwater investigation, TRC recommended installation of one onsite monitoring well screened within the deeper water-bearing zone, to confirm the presence of groundwater impacts identified in hydropunch groundwater sample collected during the April 2006 investigation. In addition, TRC recommended installation of two offsite monitoring wells within the shallow water-bearing zone to provide future downgradient plume monitoring.

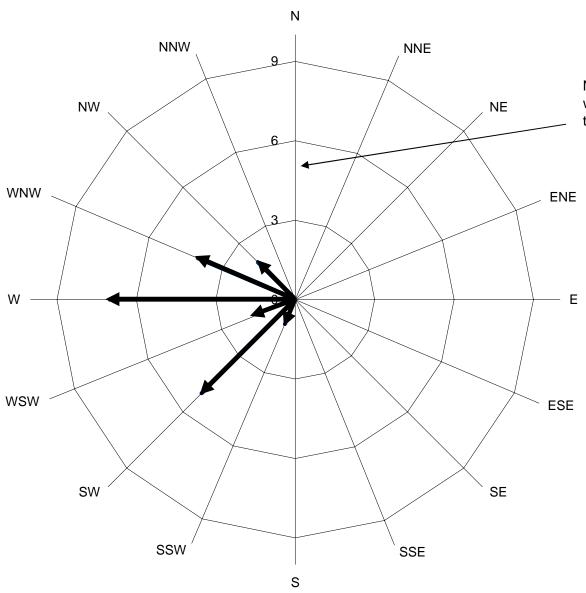
As more than 60 days have passed since submittal of the Hydropunch Groundwater Investigation Report wherein TRC recommended installation of additional onsite and offsite monitoring wells, in accordance with State of California law and in order to protect public health and provide for management of risk, TRC will proceed with scheduling the proposed scopes of work.

A schedule will be submitted under separate cover once finalized. In the interim a reply to the recommendations included in the report will be awaited.

If you have any questions regarding this report, please call me at (925) 688-2488.

Sincerely, TRC

Keith Woodburne, P.G. Senior Project Manager


Attachments:

Quarterly Monitoring Report – July through September 2006 (TRC, October 18, 2006) Historical Groundwater Flow Directions – July 2000 through September 2006

cc: Shelby Lathrop, ConocoPhillips (electronic upload)

Historical Groundwater Flow Directions for Tosco (76) Service Station No. 4625 July 2000 through September 2006

Number of monitoring events in which groundwater was reported to flow in a particular direction.

October 18, 2006

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN:

MRS. SHELBY LATHROP

SITE:

76 STATION 4625

3070 FRUITVALE AVENUE OAKLAND, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT

JULY THROUGH SEPTEMBER 2006

Dear Mrs. Lathrop:

Please find enclosed our Quarterly Monitoring Report for 76 Station 4625, located at 3070 Fruitvale Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan

QMS Operations Manager

CC: Mr. Keith Woodburne, TRC (2 copies)

QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2006

76 STATION 4625 3070 Fruitvale Avenue Oakland, California

Prepared For:

Ms. Shelby Lathrop CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

No. EG 1034

COFCALIFORNIA

COFCALIF

Senior Project Geologist, Irvine Operations October 18, 2006

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
,	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 1b: Additional Current Analytical Results
	Table 1c: Additional Current Analytical Results
	Table 1d: Additional Current Analytical Results
	Table 1e: Additional Current Analytical Results
	Table 1f: Additional Current Analytical Results
	Table 1g: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
	Table 2b: Additional Historic Analytical Results
	Table 2c: Additional Historic Analytical Results
	Table 2d: Additional Historic Analytical Results
	Table 2e: Additional Historic Analytical Results
	Table 2f: Additional Historic Analytical Results
	Table 2g: Additional Historic Analytical Results
	Table 2h: Additional Historic Analytical Results
	Table 2i: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	Benzene Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 09/27/06
	Groundwater Sampling Field Notes – 09/27/06
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
•	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities July 2006 through September 2006 76 Station 4625 3070 Fruitvale Avenue Oakland, CA

Project Coordinator: Shelby Lathrop

Telephone: **916-558-7609**

Water Sampling Contractor: TRC

Compiled by: Christina Carrillo

Date(s) of Gauging/Sampling Event: 09/27/06

Sample Points

Groundwater wells:

7 onsite,

O offsite

Wells gauged: 7

Wells sampled: 6

Purging method: Diaphragm pump

Purge water disposal: Onyx/Rodeo Unit 100

Wells with LPH: 0

Type: n/a

Other Sample Points: 0

Liquid Phase Hydrocarbons (LPH)

LPH removal frequency: n/a

Maximum thickness (feet): n/a

Method: n/a

Treatment or disposal of water/LPH:

Hydrogeologic Parameters

Depth to groundwater (below TOC):

Minimum: 7.52 feet

Maximum: 9.86 feet

Average groundwater elevation (relative to available local datum): 129.64 feet Average change in groundwater elevation since previous event: -1.14 feet

Interpreted groundwater gradient and flow direction:

Current event: **0.015 ft/ft, west**

Previous event: 0.02 ft/ft, northwest (06/12/06)

Selected Laboratory Results

Wells with detected Benzene:

Wells above MCL (1.0 µg/l): 2

3 Maximum reported benzene concentration: 55 µg/I (MW-5)

Wells with TPH-G by GC/MS

Maximum: 2,200 μg/l (MW-5)

Wells with MTBE

2

Maximum: 220 μg/l (MW-6, MW-5)

Notes:

USTW=Monitored Only,

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

not analyzed, measured, or collected

LPH liquid-phase hydrocarbons

Trace less than 0.01 foot of LPH in well

μg/I micrograms per liter (approx. equivalent to parts per billion, ppb) milligrams per liter (approx, equivalent to parts per million, ppm) mg/l

ND< not detected at or above laboratory detection limit

TOC top of casing (surveyed reference elevation)

ANALYTES

DIPE

BTEX benzene, toluene, ethylbenzene, and (total) xylenes

di-isopropyl ether ETBE ethyl tertiary butyl ether MTBE methyl tertiary butyl ether PCB polychlorinated biphenyls PCE tetrachloroethene TBA tertiary butyl alcohol

TCA trichloroethane TCE trichloroethene

TPH-G total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D total petroleum hydrocarbons with diesel distinction

TRPH total recoverable petroleum hydrocarbons

TAME tertiary amyl methyl ether 1,1-DCA 1.1-dichloroethane

1,2-DCA 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE 1,1-dichloroethene

1.2-DCE 1,2-dichloroethene (cis- and trans-)

NOTES

- Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: Surface Elevation Measured Depth to Water \pm (Dp x LPH Thickness), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 4625 in October 2004. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables Site: 76 Station 4625

Current E	vent							•				•				
Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments	
Table 1a	Well/ Date	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Bromo- dichloro- methane	Bromo- form	Bromo- methane	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane
Table 1b	Well/ Date	Chloroform	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	1,1-DCA	1,1-DCE	trans- 1,2- DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Methylene chloride	1,1,2,2- Tetrachloro - ethane	Tetrachioro - ethene (PCE)
Table 1c	Well/ Date	Trichloro- trifluoro- ethane	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,l]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid
Table 1d	Well/ Date	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ether	Bis(2- chloro- isopropyl)-	Bis(2-ethyl- hexyl) phthalate	4-Bromo- phenyl phe- nyl	Butyl benzyl phthalate	4-Chloro- 3- methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl	Chrysene	Dibenzo- [a,h]- anthracene	Dibenzo- furan
Table 1e	Well/ Date	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	3,3- Dichloro- benzidine	2,4- Dichloro- phenol	Diethyl phthalate	2,4- Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene	Di-n-octyl phthalate	Fluoran- thene	Fluorene
Table 1f	Well/ Date	Hexachioro - benzene	HCBD (svoc)	Hexachloro cyclopenta- diene	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- naphtha- lene	2-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol
Table 1g	Well/ Date	N- nitrosodi- n- propyl-	N-Nitro- sodiphenyl- amine	Pentachloro - phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)					
Historic D	ata											•				
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments	
Table 2a	Well/ Date	TPH-D	TBA:	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
Table 2b	Well/ Date	Bromo- methane	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl benzene	Carbon Disulfide	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane	2- Chloroethyl vinyl ether	Chloroform	Chloro- methane	2- Chloro- toluene	4-Chloro- toluene	1,2Dibrom- 3-chloro- propane	Dibromo- chloro- methane

Contents of Tables Site: 76 Station 4625

Table 2c	Well/ Date	Dibromo- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2- DCE	trans- 1,2- DCE	1,2- Dichloro- propane	1,3- Dichloro- propane	2,2- Dichloro- propane	1,1- Dichloro- propene	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene
Table 2d	Well/ Date	Hexa- chloro- butadiene	2- Hexanone	Isopropyl- benzene	p- Isopropyl- toluene	Methyl- ethyl Keytone	Methyl- isobytyl ketone	Methylene chloride	Naph- thalene	n-Propyl- benzene	Styrene	1,1,1,2- Tetrachloro - ethane	1,1,2,2- Tetrachloro - ethane	Tetrachloro - ethene (PCE)	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene
Table 2e	Well/ Date	1,2,3- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Vinyl- acetate	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene
Table 2f	Well/ Date	Benzo- [g,h,l]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ether	Bis(2- chloro- isopropyl)-	Bis(2-ethyl- hexyl) phthalate	4-Bromo- phenyl phe- nyl	Butyl benzyl phthalate	4-Chloro- 3- methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl
Table 2g	Well/ Date	Chrysene	Dibenzo- [a,h]- anthracene	Dibenzo- furan	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	3,3- Dichloro- benzidine	2,4- Dichloro- phenol	Diethyl phthalate	2,4- Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene
Table 2h	Well/ Date	Di-n-octyl phthalate	Fluoran- thene	Fluorene	Hexachloro - benzene	HCBD (svoc)	Hexachloro cyclopenta- diene	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- 4,6-dini- trophenol	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline
Table 2i	Well/ Date	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N- nitrosodi- n- propyl-	N-Nitro- sodiphenyl- amine	Pentachloro - phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 27, 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
<u>.</u>	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	
MW-1		(Screen I	nterval in fe	eet: 5.0-25	.0)									
09/27/06	6 137.57	7.85	0.00	129.72	-0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2	•	(Screen I	nterval in fe	eet: 5.0-25	.0)									
09/27/00	5 139.85	9.86	0.00	129.99	-1.14		55	0.55	ND<0.50	0.80	ND<0.50		ND<0.50	•
MW-3		(Screen I	nterval in fe	eet: 5.0-25	.0)							•		
09/27/06	5 138.89	8.87	0.00	130.02	-1.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
D 09/27/06	5 138.89	8.87	0.00	130.02	-1.17			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-4 09/27/00		(Screen I: 7.52	nterval in fe 0.00	eet: 5.0-25 130.29	•		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-5		(Screen I	nterval in fe	et: 5.0-25	.0)								,	
09/27/06	137.66	9.45	0.00	128.21	-0.77	·	2200	55	ND<0.50	85	170		220	
MW-6 09/27/06			nterval in fe 0.00	eet: 5.0-25 . 129.63	•		330	19	0.87	5.4	29		220	
USTW 09/27/06		(Screen In 9.21	nterval in fe 0.00	eet: DNA) 										Monitored Only

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Bromo- dichloro- methane	Bromo- form	Bromo- methane	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)
MW-1 09/27/06			ND<250								· 		, ,		
MW-2 09/27/06			ND<250	. 		 .					 `		***		. ·
4 MW-3 09/27/06	ND<50		ND<250		ND<0.50		D#		ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50
MW-4 09/27/06		an sa	ND<250											 .	· <u></u>
MW-5 09/27/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							30
MW-6 09/27/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							

Table 1 b
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Chloroform	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	1,1-DCA	1,1-DCE	trans- 1,2- DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Methylene chloride	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)
: !	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)
MW-3 09/27/06	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50

Table 1 c
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Trichloro- trifluoro- ethane	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,I]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)
MW-3 09/27/06	5 ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10

Table 1 d
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

	Date Sampled	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ethe	chloro-	hexyl)	4-Bromo- phenyl phe- nyl ether	Butyl benzyl phthalate	4-Chloro- 3 methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl ether	Chrysene	Dibenzo- [a,h]- anthracene	Dibenzo- furan	
_		(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
M	W-3 09/27/06	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<3.0	ND<2.0	

Table 1 e ADDITIONAL CURRENT ANALYTICAL RESULTS 76 Station 4625

Date Sampled	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	3,3- Dichloro- benzidine	2,4- Dichloro- phenol	Diethyl phthalate	2,4- Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4- Dinitro- phenol	2,4- Dinitro- toluene	2,6- Dinitro- toluene	Di-n-octyl phthalate	Fluoran- thene	Fluorene
	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)
MW-3 09/27/0	6 ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 1 f
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Hexachloro- benzene	HCBD (svoc)	Hexachlor cyclopenta diene		Indeno- [1,2,3-c,d] pyrene		e 2-Methyl- naphtha- lene	2-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol
	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)
MW-3 09/27/06	6 ND<2.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0

Table 1 g
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 4625

Date Sampled	N-nitrosodi- n-propyl- amine		Pentachloro phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)	,	t.
	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(svoc) (μg/l)	(µg/l)	(μg/l)	(μg/l)		
MW-3										,,		
09/27/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	15		

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	$(\mu g/l)$	(μg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)		
MW-1	(2)	Screen Int	erval in feet	t; 5.0-25.0)						•	•				
05/03/0	00 136.36	11.81	0.00	124.55		ND		ND	ND	ND	ND	11	14		
07/28/0	00 136.36	7.79	0.00	128.57	4.02	ND		ND	ND	ND	ND	21	19		
10/29/0	00 136.36	7.90	0.00	128.46	-0.11	62		ND	ND	ND	ND	6.5	3.9		•
02/09/0	136.36	7.95	0.00	128.41	-0.05	ND		ND	ND	ND	ND	9.0	9.0		
05/11/0	136.36	7.22	0.00	129.14	0.73	ND		ND	ND	ND	ND	12.7	16.3		
08/10/0	136.36	8.47	0.00	127.89	-1.25	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	17	19		
11/07/0	136.36	8.10	0.00	128.26	0.37	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	22	26		
02/06/0	2 136.36	6.84	0.00	129.52	1.26	ND<50	'	ND<0.50	ND<0.50	ND<0.50	ND<0.50	14	18		
05/08/0	136.36	7.29	0.00	129.07	-0.45	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	20	19		
08/09/0	2 136.36	8.20	0.00	128.16	-0.91		57	ND<0.50	ND<0.50	ND<0.50	ND<1.0		22		
11/26/0	136.36	7.78	0.00	128.58	0.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23		
02/14/0	3 137.57	6.90	0.00	130.67	2.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.8		
05/03/0	3 137.57	7.36	0.00	130.21	-0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.4		
08/01/0	3 137.57	7.48	0.00	130.09	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.7		
10/30/0	3 137.57	8.74	0.00	128.83	-1.26		300	35	41	21	71		8.5		
01/29/0	4 137.57	6.72	0.00	130.85	2.02		74	ND<0.50	4.3	ND<0.50	ND<1.0		12		•
05/27/0	4 137.57	7.98	0.00	129.59	-1.26		ND<50	ND<0.50	ND<0.50	ND<0.50	1.0		16		
08/31/0	4 137.57	8.42	0.00	129.15	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23		
11/18/0	4 137.57	6.91	0.00	130.66	1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	1.4		7.2	•	
03/25/0	5 137.57	6.23	0.00	131.34	0.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.2		
. 06/22/0	5 137.57	6.83	0.00	130.74	-0.60		ND<50	ND<0.50	0.23J	ND<0.50	ND<1.0		11		
09/26/0	5 137.57	7.97	0.00	129.60	-1.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6		•
12/20/0	5 137.57	6.73	0.00	130.84	1.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.2		

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	·Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
MW-1	continued													
03/29/0	6 137.57	6.41	0.00	131.16	0.32		79	1.3	ND<0.50	1.4	4.2		3.4	•
06/12/0	6 137.57	7.10	0.00	130.47	-0.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.0	
09/27/0	6 137.57	7.85	0.00	129.72	-0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2	(S	creen Inte	erval in feet	: 5.0-25.0)									•	
05/03/0	0 138.64	8.59	0.00	130.05		2400		53	ND	ND	240	ND	ND	
07/28/0	0 138.64	9.95	0.00	128.69	-1.36	2200		680	4.1	57	270	24	ND	
10/29/0	0 138.64	8.38	0.00	130.26	1.57	490		67	ND	23	22	ND		
02/09/0	1 138.64	8.41	0.00	130.23	-0.03	ND		3.1	ND	0.52	1.1	ND		
05/11/0	1 138.64	8.93	0.00	129.71	-0.52	ND		1.99	ND	ND	ND	ND		
08/10/0	1 138.64	10.68	0.00	127.96	-1.75	96		20	ND<0.50	2.1	9.4	ND<5.0		
11/07/0	1 138.64	10.01	0.00	128.63	0.67	480		110	ND<1.0	26	42	ND<10		
02/06/0	2 138.64	8.10	0.00	130.54	1.91	69		13	ND<0.50	0.84	4.4	ND<5.0		
05/08/0	2 138.64	9.16	0.00	129.48	-1.06	53		13	ND<0.50	1.2	1.5	ND<5.0		
08/09/0	2 138.64	10.39	0.00	128.25	-1.23		140	20	ND<0.50	10	11		ND<2.0	
11/26/0	2 138.64	9.81	0.00	128.83	0.58		340	87	ND<0.50	33	23		ND<2.0	
02/14/0	3 139.85	8.19	0.00	131.66	2.83		130	12	ND<0.50	7.4	5.4		ND<2.0	
05/03/0	3 139.85	6.77	0.00	133.08	1.42		ND<50	2.5	ND<0.50	1.7	ND<1.0		ND<2.0	
08/01/0	3 139.85	9.63	0.00	130.22	-2.86		270	55	ND<0.50	23	6.0		ND<2.0	
10/30/0	3 139.85	11.06	0.00	128.79	-1.43		180	17	4.8	6.1	13		ND<2.0	
01/29/0	4 139.85	8.35	0.00	131.50	2,71		98	4.3	ND<0.50	1.5	3.6		ND<2.0	
05/27/0	4 139.85	9.66	0.00	130.19	-1.31		58	1.2	ND<0.50	0.87	1.1		ND<0.50	
08/31/0	4 139.85	10.45	0.00	129.40	-0.79		99	2.7	ND<0.50	1.8	2.8		ND<0.50	
11/18/0	4 139.85	8.21	0.00	131.64	2.24	· ·	220	2.4	ND<0.50	2.1	1.7		ND<0.50	*.
03/25/0	5 139.85	5.85	0.00	134.00	2.36		240	3.5	ND<0.50	4.4	6.5		ND<0.50	•
4625					•			Page 2	2 of 8					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	
MW-2	continued													
06/22/0	5 139.85	8.21	0.00	131.64	-2.36		56	1.1	ND<0.50	1.3	1.5		ND<0.50	
09/26/0	5 139.85	9.98	0.00	129.87	-1.77		83	0.56	ND<0.50	0.86	ND<1.0		ND<0.50	
12/20/0	5 139.85	6.59	0.00	133.26	3.39		63	2.6	ND<0.50	2.4	3.7		ND<0.50	
03/29/0	6 139.85	5.79	0.00	134.06	0.80		94	2.0	ND<0.50	1.7	2.0		ND<0.50	
06/12/0	6 139.85	8.72	0.00	131.13	-2.93		140	1.1	ND<0.50	0.94	2.8		ND<0.50	
09/27/0	6 139.85	9.86	0.00	129.99	-1.14		55	0.55	ND<0.50	0.80	ND<0.50		ND<0.50	
MW-3	(\$	Screen Inte	erval in feet	t: 5.0-25.0)										
05/03/0	0 137.68	7.60	0.00	130.08		ND		ND	ND	ND	ND	ND	ND	
07/28/0	0 137.68	8.82	0.00	128.86	-1.22	ND		ND	ND	ND	ND	ND	ND	
10/29/0	0 137.68	7.33	0.00	130.35	1.49	ND		ND	ND	ND	ND	ND		
02/09/0	1 137.68	7.40	0.00	130.28	-0.07	ND		ND	ND	ND	ND	ND		
05/11/0		7.90	0.00	129.78	-0.50	ND		ND	ND	ND	ND	ND		
08/10/0	1 137.68	9.09	0.00	128.59	-1.19	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		•
11/07/0	1 137.68	9.03	0.00	128.65	0.06	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
02/06/0	2 137.68	7.16	0.00	130.52	1.87	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
05/08/0	2 137.68	8.04	0.00	129.64	-0.88	ND<50	<u></u>	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
08/09/0		9.27	0.00	128.41	-1.23	~~	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/26/0		8.79	0.00	128.89	0.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/14/0		7.18	0.00	131.71	2.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
05/03/0		5.88	0.00	133.01	1.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/01/0		8.52	0.00	130.37	-2.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/30/0			0.00	128.84	-1.53		ND<50	0.62	0.83	ND<0.50	ND<1.0		ND<5.0	
01/29/0			0.00	132.31	3.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	·	ND<2.0	•
05/27/0	4 138.89	8.51	0.00	130.38	-1.93		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
4625								Page 3	3 of 8					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	, Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
_		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
	MW-3	continued										******			
	08/31/0	4 138.89	9.72	0.00	129.17	-1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<5.0	
	11/18/0	4 138.89	7.20	0.00	131.69	2.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
Γ	11/18/0	4 138.89	7.20	0.00	131.69	2.52								ND<5.0	
	03/25/0	5 138.89	5.39	0.00	133.50	1.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.97	
-	06/22/0	5 138.89	7.31	0.00	131.58	-1.92		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	1
	09/26/0	5 138.89	8.99	0.00	129.90	-1.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D	09/26/0	5 138.89	8.99	0.00	129.90	-1.68	· <u>-</u>		ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
	12/20/0	5 138.89	8.03	0.00	130.86	0.96		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	03/29/0	6 138.89	8.55	0.00	130.34	-0.52		61	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.54	Duplicates obtained by EPA method 8240
Г	03/29/0	6 138.89	8.55	0.00	130.34	-0.52			ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.54	Duplicates obtained by EPA method 8240
	06/12/0	6 138.89	7.70	0.00	131.19	0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
D	06/12/0	6 138.89	7.70	0.00	131.19	0.85			ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	09/27/0	6 138.89	8.87	0.00	130.02	-1.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
D	09/27/0	6 138.89	8.87	0.00	130.02	-1.17			ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
M	IW-4	(5	Screen Inte	erval in feet	: 5.0-25.0)	·									
	05/03/0	0 136.60	6.48	0.00	130.12		ND		ND	ND	ND	ND	ND	ND	
	07/28/0	0 136.60	7.55	0.00	129.05	-1.07	ND		ND	ND	ND	ND	ND		
	10/29/0	0 136.60	6.12	0.00	130.48	1.43	ND		ND	ND	ND	ND	ND		
	02/09/0	1 136.60	6.14	0.00	130.46	-0.02	ND		ND	ND	ND	ND	ND		
	05/11/0	1 136.60	7.51	0.00	129.09	-1.37	ND		ND	ND	ND	ND	ND		•
	08/10/0	1 136.60	8.66	0.00	127.94	-1.15	ND<50	,	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
	11/07/0	1 136.60	7.92	0.00	128.68	0.74	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	
MW-4	continued													
02/06/0	2 136.60	7.18	0.00	129,42	0.74	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
. 05/08/0	2 136.60	6.86	0.00	129.74	0.32	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	. 	
08/09/0	2 136.60	7.67	0.00	128.93	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
11/26/0	2 136.60	8.08	0.00	128.52	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/14/0	3 137.81	7.43	0.00	130:38	1.86	-	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
05/03/0	3 137.81	6.05	0.00	131.76	1.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/01/0	3 137.81	8.21	0.00	129.60	-2.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/30/0	3 137.81	9.04	0.00	128.77	-0.83		ND<50	1.1	2.3	2.2	7.0		ND<2.0	
01/29/0	4 137.81	8.22	0.00	129.59	0.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	~~	ND<2.0	
05/27/0	4 137.81	7.43	0.00	130.38	0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/31/0	4 137.81	8.35	0.00	129.46	-0.92		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/18/0	4 137.81	8.26	0.00	129.55	0.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/25/0	5 137.81	4.40	0.00	133.41	3.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/22/0	5 137.81	8.44	0.00	129.37	-4.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/26/0	5 137.81	7.93	0.00	129.88	0.51		ND<50	0.51	ND<0.50	0.53	2.3		ND<0.50	
12/20/0	5 137.81	5.65	0.00	132.16	2.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/29/0	6 137.81	5.15	0.00	132.66	0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	6 137.81	5.68	0.00	132.13	-0.53		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0	6 137.81	7.52	0.00	130.29	-1.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-5	(S	creen Inte	rval in feet	: 5.0-25.0)										
11/26/0		9.89	0.00	´			2500	350	39	32	640		470	
02/14/0	3 137.66	8.65	0.00	129.01			6600	920	210	430	1300		960	
05/03/0	3 137.66	8.23	0.00	129.43	0.42		33000	2400	2200	2000	7600		1500	
08/01/0	3 137.66	9.63	0.00	128.03	-1.40		14000	880	130	630	2000		630	
4625								Page 5	5 of 8					

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 2000 Through September 2006 **76 Station 4625**

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	(μg/l)	
MW-5	continued											· ·		
10/30/0	3 137.66	10.58	0.00	127.08	-0.95		1400	75	43	39	140		330	
01/29/0		8.70	0.00	128.96	1.88		6300	750	56	400	1000		1100	
05/27/0		9.59	0.00	128.07	-0.89		4600	260	15	300	840		400	
08/31/0		10.05	0.00	127.61	-0.46		1500	53	ND<2.5	48	49		250	
11/18/0		8.54	0.00	129.12	1.51		22000	1300	900	1100	4600		1100	
03/25/0		7.12	0.00	130.54	1.42		53000	1400	660	1600	6400		1000	•
06/22/0		8.62	0.00	129.04	-1.50		5100	240	110	320	1100		420	
09/26/0		9.70	0.00	127.96	-1.08		2500	81	ND<0.50	85	200		180	
12/20/0			0.00	129.43	1.47		3800	220	42	240	620		300	
03/29/0		6.70	0.00	130.96	1.53		7100	520	150	470	1500		680	
06/12/0		8.68	0.00	128.98	-1.98		7500	290	97	500	1600		500	
09/27/0	6 137.66	9,45	0.00	128.21	-0.77		2200	55	ND<0.50	85	170		220	
MW-6		creen Inte	erval in feet	: 5.0-25.0)										
11/26/0		9.19	0.00				11000	1200	2000	400	2300		490	
02/14/0		7.76	0.00	131.12			13000	2300	1900	560	2300		360	
05/03/0	3 138.88	6.62	0.00	132.26	1.14	 .	4300	1000	640	260	990		300	
08/01/0		9.05	0.00	129.83	-2.43		16000	2600	2300	740	2900		660	
10/30/0	3 138.88	10.43	0.00	128.45	-1.38		2900	420	260	120	480		450	
01/29/0	4 138.88	7.81	0.00	131.07	2.62		400	58	21	14	65		62	
05/27/0	4 138.88	9.11	0.00	129.77	-1.30		580	58	14	20	69	w 16.	410	
08/31/0	4 138.88	9.76	0.00	129.12	-0.65		660	77	7.0	19	65		360	
11/18/0	4 138.88	7.68	0.00	131.20	2.08		660	92	19	20	80		130	
03/25/0	5 138.88	5.83	0.00	133.05	1.85		870	82	13	15	73		. 90	
06/22/0	5 138.88	7.83	0.00	131.05	-2.00		480	84	2.4	23	72		360	
4625		,						Page 6	5 of 8					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
· .	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/I)	(μg/l) ·	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	
MW-6	continued													
09/26/0		9.50	0.00	129.38	-1.67		440	72	0.65	12	52		160	
12/20/0			0.00	131.97	2.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/29/0		6.48	0.00	132.40	0.43		430	61	13	11	41		130	
06/12/0			0.00	130.78	-1.62		1000	190	8.0	28	130		310	
09/27/0	6 138.88	9.25	0.00	129.63	-1.15		330	19	0.87	5.4	29		220	
USTW		Screen Inte	erval in feet	:: DNA)										
05/03/0		8.00	0.00			7.5	· ·							
07/28/0		9.28	0.00											
10/29/0		7.75	0.00											
02/09/0		6.14	0.00		<u></u>									
05/11/0		7.96	0.00		·								70	
08/10/0		9.54	0.00											
11/07/0		9.33	0.00											
02/06/0		8.08	0.00											
05/08/0		8.51	0.00											
08/09/0		9.56	0.00						 '					
11/26/0		9.16	0.00									***		
05/03/0		6.25	0.00											
08/01/0		8.99	 .											
10/30/0		10.44	0.00	77		 .								Monitored Only
01/29/0		6.52	0.00	· 	 .									Monitored Only
05/27/0		8.98	0.00											Monitored Only
08/31/0		9.75	0.00											Monitored Only
11/18/0	4	7.39	0.00		 .									Monitored Only-UST well

Page 7 of 8

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 2000 Through September 2006
76 Station 4625

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
USTW	continued													
03/25/0)5	5.01	0.00	***								·		Monitor only
06/22/0)5	7.63	0.00										·	Monitored Only
09/26/0)5	9.45	0.00								~~	<u> </u>		Monitored Only
12/20/0)5	5.35	0.00											Monitored Only
03/29/0)6	4.83	0.00	nn.								- - -		Monitored Only
06/12/0)6	8.05	0.00											Monitored Only
09/27/0)6	9.21	0.00		·					M14				Monitored Only

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ЕТВЕ	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(mg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)
MW-1															
02/09/01		ND	ND	ND	ND	ND	· ND	ND							
05/11/01		ND	ND	ND	ND	ND	ND	ND							
08/10/01		ND<100	ND<1000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
11/07/01		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0							
02/06/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
05/08/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		~~					
08/09/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
11/26/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
02/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
05/03/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
08/01/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
10/30/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
01/29/04			ND<500												
05/27/04		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
08/31/04		ND<5.0	ND<50	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<0.5							
11/18/04		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
03/25/05			ND<50	~~				1_							
06/22/05			ND<1000												
09/26/05			ND<1000			'		-							
12/20/05		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/29/06			ND<250			 .									
06/12/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							•
09/27/06		,	ND<250												
MW-2										, , , , , , , , , , , , , , , , , , ,					
08/01/03			ND<500						<u></u>						
10/30/03			ND<500												
4625							Dage 1	of 5							

Page 1 of 5

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ЕТВЕ	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(μg/l)	(μg/l)	(μg/l)	_(μg/l)	(µg/l)	(μg/l)	(μg/l)	(mg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/I)
MW-2 c	continued														
01/29/04			ND<500						77						
05/27/04	·		ND<50					·							
08/31/04	'		ND<50								 ,				
11/18/04			ND<50										7=		
03/25/05			ND<50		, 										
06/22/05			ND<1000												
09/26/05			ND<1000												
12/20/05			ND<250	<u>.</u>	-										
03/29/06			ND<250												
06/12/06			ND<250	"											
09/27/06			ND<250												
MW-3															
05/03/00	93								ND						
07/28/00	ND	ND		ND	ND	ND	ND	ND	ND						
10/29/00	ND								7.0					==	
02/09/01	72								ND						
05/11/01	ND								ND	¬ 					
08/10/01	63								ND<5.0						
11/07/01	88								ND<5.0	=-					
02/06/02	ND<310								ND<5.0						
05/08/02	ND<53								ND<5.2	***					
08/09/02	ND<50								ND<1.0						
11/26/02	ND<50								ND<1.0						
02/14/03	ND<50				·				ND<1.0	· 					
05/03/03	ND<50								ND<1.0						
08/01/03	ND<50		ND<500						ND<4.0						
•															

Page 2 of 5

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	(µg/l)	(µg/l)
MW-3	continued		•				•								
10/30/0			ND<500	ND<0.50	ND<0.50			'	ND<1.0		ND<50	ND<1.0	ND<1.0	ND<1.0	ND<0.50
01/29/0			ND<500	ND<0.50	ND<0.50				ND<1.0	ND<2.7	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
05/27/0		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<4.0	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
08/31/0			ND<50	ND<0.50	ND<0.50				1.2	ND<2.0	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
11/18/0			ND<50	ND<0.50	ND<0.50				ND<5.0		ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
03/25/0			ND<50	ND<0.50	ND<0.50				ND<2.0	ND<2.0	ND<50	ND<1.0	ND<1.0	ND<0.50	ND<0.50
06/22/0			ND<1000	~-	ND<0.50				ND<5.0					ND<0.50	ND<0.50
	5 ND<200		ND<1000		ND<0.50				ND<5.0		•			ND<0.50	ND<0.50
	5 ND<200		ND<250		ND<0.50			~=	ND<5.0					ND<0.50	ND<0.50
	5 ND<200		ND<250		ND<0.50									ND<0.50	ND<0.50
	5 ND<200	7.7	ND<250		ND<0.50			<u></u>	ND<5.0					ND<0.50	ND<0.50
D 06/12/0			ND<250												
09/27/0	5 ND<50		ND<250		ND<0.50				ND<5.0					ND<0.50	ND<0.50
MW-4															
02/14/03	3	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
08/01/03	3		ND<500	ND<2.0	·						7-				
10/30/03	3		ND<500												
01/29/04			ND<500												
05/27/04			ND<50					7.0		-					
08/31/04			ND<50												
11/18/04			ND<50	·				-							
03/25/05	;		ND<50												1 1-1
06/22/05	·		ND<1000					·							
09/26/05		"	ND<1000												<u></u>
12/20/05			ND<250												
03/29/06	i	~	ND<250		'							-			

Page 3 of 5

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/I)$	(μg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)
MW-4 c	ontinued													<u> </u>	(1-8-7
06/12/06			ND<250												
09/27/06			ND<250												
MW-5					•										
11/26/02		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
02/14/03		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
05/03/03		ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200							
08/01/03		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
10/30/03		ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10							
01/29/04		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
05/27/04	'	ND<50	ND<500	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0							
08/31/04		ND<25	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5							
11/18/04		140	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10							
03/25/05		ND<250	ND<2500	ND<25	ND<25	ND<25	ND<25	ND<25							
06/22/05		16	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/26/05		ND<10	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/20/05		ND<500	ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			'				
03/29/06		ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0		,					
06/12/06		ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0							
09/27/06	-	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	·						
MW-6			•												,
11/26/02		ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40	<u></u> :						
02/14/03	-	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40							
05/03/03		ND<5000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100				Mar.			
08/01/03		ND<4000	ND<20000 .	ND<80	ND<80	ND<80	ND<80	ND<80							
10/30/03		ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20	. 						
01/29/04		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0							
4625							Page 4	of 5							

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Acenaph- thylene	Acetone	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(mg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-6	continued		.'''	F.,											
05/27/04		ND<25	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5							
08/31/04		ND<25	ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5							
11/18/04		8.1	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
03/25/05		45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		· 				T.D.	
06/22/05		ND<10	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/26/05		ND<10	ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					***		
12/20/05		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/29/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
06/12/06		ND<50	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5						. ==	
09/27/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
			•										_ _		

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Bromo- methane	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl benzene	Carbon Disulfide	Carbon Tertra- chloride	Chloro- benzene	Chloro- ethane	2- Chloroethyl vinyl ether	Chloroform	Chloro- methane	2- Chloro- toluene	4-Chloro- toluene	1,2Dibrom- 3-chloro- propane	Dibromo- chloro- methane
	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)
MW-3		. •													
10/30/03	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
01/29/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
05/27/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
08/31/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
11/18/04	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0		ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
03/25/05	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<5.0	ND<0.50	ND<0.50	ND<1.0		ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50
06/22/05	ND<1.0	 ,				ND<0.50	ND<0.50	ND<0.50		0.17J	ND<0.50				ND<0.50
09/26/05	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
12/20/05	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
03/29/06	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
06/12/06	ND<1.0					ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50
09/27/06	ND<1.0		. 		- 	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Dibromo- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2- DCE	trans- 1,2- DCE	1,2- Dichloro- propane	1,3- Dichloro- propane	2,2- Dichloro- propane	1,1- Dichloro- propene	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene
	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/I)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)
MW-3 05/08/02	<u></u>		7.5	4 -	 .			0.69					/		
10/30/03	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
01/29/04	ND<0.50	ND<0.50	ND<0.50	ND<2.7	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
05/27/04	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
08/31/04	ND<0.50	ND<2.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
11/18/04	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
03/25/05	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
06/22/05		ND<2.0	ND<2.0	ND<2.0		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
09/26/05		ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
12/20/05		ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
03/29/06		ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
06/12/06		ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50
09/27/06		ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50		ND<0.50	ND<0.50				ND<0.50	ND<0.50

Table 2 d
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Hexa- chloro- butadiene	2- Hexanone	Isopropyl- benzene	p- Isopropyl- toluene	Methyl- ethyl Keytone	Methyl- isobytyl ketone	Methylene chloride	Naph- thalene	n-Propyl- benzene	Styrene	1,1,1,2- Tetrachloro- ethane	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene
	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)
MW-3 07/28/00	. 												2,7	,	
05/08/02													0.56		
10/30/03	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<1.0
01/29/04	ND<2.7	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
05/27/04	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
08/31/04	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
11/18/04	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
03/25/05	ND<1.0	ND<50	ND<0.50	ND<1.0	ND<50	ND<50	ND<5.0	ND<1.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
06/22/05	ND<2.0			·			ND<1.0	ND<2.0				ND<0.50	ND<0.50	ND<0.50	ND<2.0
09/26/05	ND<2.0						ND<1.0					ND<0,50	ND<0.50	ND<0.50	77
12/20/05	ND<2.0	,					ND<1.0	ND<2.0				ND<0.50	ND<0.50	ND<0.50	ND<2.0
03/29/06							ND<1.0					ND<0.50	ND<0.50	ND<0.50	
06/12/06							ND<1.0					ND<0.50	ND<0.50	ND<0.50	
09/27/06				·			ND<1.0					ND<0.50	ND<0.50	ND<0.50	~~

Table 2 e ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 4625

Date Sampled	1,2,3- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Vinyl- acetate	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene
	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	$(\mu g/l)$	(μg/l)	(μg/l)
MW-3														•	
11/07/01	. <u></u>			0.55											
05/08/02	:		'	0.86											
10/30/03	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50						
01/29/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<2.7		ND<2.7	ND<2.7	ND<2.7	ND<2.7
05/27/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<4.0		ND<4.0	ND<4.0	ND<4.0	ND<4.0
08/31/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0
11/18/04	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50				·		
03/25/05	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<25	ND<0.50	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/22/05		ND<0.50	ND<0.50	0.25J	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/26/05		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/20/05		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/29/06		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/12/06		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/27/06		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 2 f
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Benzo- [g,h,I]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2- chloro- ethoxy)	Bis(2- chloro- ethyl) ether	Bis(2- chloro- isopropyl)- ether	Bis(2-ethyl- hexyl) phthalate	4-Bromo- phenyl phe- nyl ether	Butyl benzyl phthalate	4-Chloro- 3- methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl ether
	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	$(\mu g/l)$	(μg/l)
MW-3								•							
01/29/04	ND<2.7	ND<2.7						ND<14							
05/27/04	ND<4.0	ND<4.0						ND<20					_.		
08/31/04	ND<2.0	ND<2.0						ND<10							
03/25/05	ND<2.0	ND<2.0	ND<10	ND<5.0	ND<5.0	ND<2.0	ND<2.0	ND<10	ND<5.0	ND<5.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0
06/22/05	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<5.0	ND<2.0	ND<2.0	3.1	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/26/05	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/20/05	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/29/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/12/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/27/06	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 2 g
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

Date Sampled	Chrysene (μg/l)	Dibenzo- [a,h]- anthracene (µg/l)	Dibenzo- furan (µg/l)	1,2- Dichloro- benzene (svoc) (µg/l)	1,3- Dichloro- benzene (svoc) (µg/l)	1,4- Dichloro- benzene (syoc) (µg/l)	3,3- Dichloro- benzidine (µg/l)	2,4- Dichloro- phenol (µg/l)	Diethyl phthalate (µg/l)	2,4- Dimethyl- phenol (µg/l)	Dimethyl phthalate (µg/l)	Di-n-butyl phthalate (µg/l)	2,4- Dinitro- phenol (µg/l)	2,4- Dinitro- toluene	2,6- Dinitro- toluene
MW-3						407	407	(1-0-7	(1-6)	(1-6)	(48/1)	(PB/1)	(P5/1)	(μg/l)	(μg/l)
01/29/04	ND<2.7	ND<2.7													
05/27/04	ND<4.0	ND<4.0	B1-												
08/31/04	ND<2.0	ND<2.0													
03/25/05	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<5.0	ND<2.0	 ND5 0	*** **********************************			
06/22/05	NIX-0.0									ND~2.0	ND<5.0	ND<5.0	ND<10	ND<2.0	ND<5.0
00/22/03	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
09/26/05	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
12/20/05	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	' ND<2.0	ND<2.0
03/29/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
06/12/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2:0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0
09/27/06	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0 ND<2.0	ND<2.0 ND<2.0

Table 2 h
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 4625

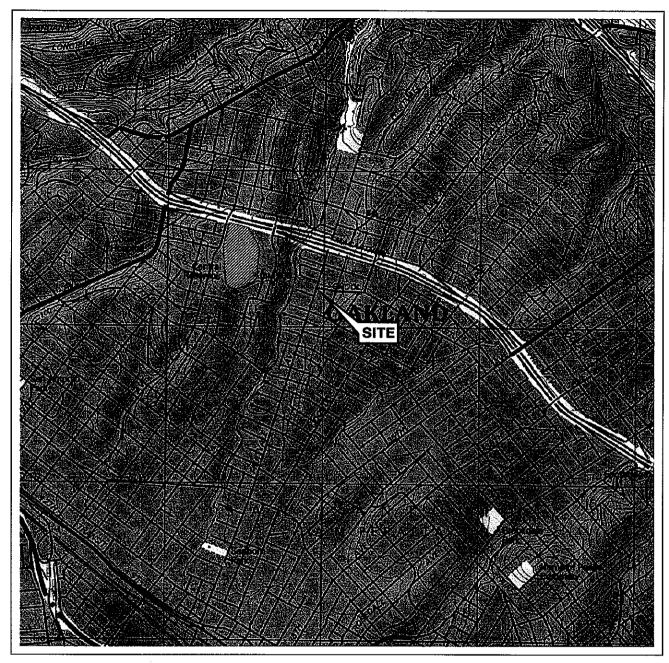
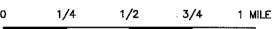

Date Sampled	Di-n-octyl phthalate	Fluoran- thene	Fluorene	e Hexachloro benzene	HCBD (svoc)	Hexachloro cyclopenta- diene		Indeno- [1,2,3-c,d] pyrene	Isophoron	2-Methyl- 4,6-dini- trophenol	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)
MW-3															
01/29/04		ND<2.7	ND<2.7					ND<2.7				ND<2.7	ND<2.7		
05/27/04		ND<4.0	ND<4.0		·			ND<4.0		 .	ND<4.0	ND<4.0	ND<4.0		
08/31/04		ND<2.0	ND<2.0					ND<2.0			ND<2.0	ND<2.0	ND<2.0		***
03/25/05	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10
06/22/05	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/26/05	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
12/20/05	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/29/06	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0		ND<2.0	ND<2.0
06/12/06	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND<2.0	ND<2.0		ND<2.0	ND<2.0
09/27/06	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND<2.0	ND<2.0		ND<2.0	ND<2.0

Table 2 i ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 4625

Date Sampled	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N-nitrosodi- n-propyl- amine		Pentachloro phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Chromium (total)
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$
MW-3									•					• • • • • • • • • • • • • • • • • • • •	
. 05/03/00															ND
07/28/00						·								~~	1800
10/29/00															ND
02/09/01															38
05/11/01								'							ND
08/10/01			·												ND<10
11/07/01															ND<10
02/06/02	'														110
05/08/02															37
08/09/02	·														700
11/26/02							- -						÷=		340
02/14/03					~~			•				70			74
05/03/03															480
08/01/03													7.7		280
10/30/03															130
01/29/04						· 			ND<2.7		ND<2.7				27
05/27/04						<u></u>	44		ND<4.0		ND<4.0				6.1
08/31/04									ND<2.0		ND<2.0				1000
11/18/04													-		ND<5.0
03/25/05	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0
06/22/05	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	24
09/26/05	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	170
12/20/05	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	ND<10
03/29/06	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	49
06/12/06	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	59
09/27/06	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	15

4625

FIGURES



= 1:1 L:\ VICINITY MAPS\4625vm.dwg Jul 07, 2006 - 10:15am lwinters

SOURCE:

United States Geological Survey 7.5 Minute Topographic Map: Oakland East Quadrangle

SCALE 1:24,000

VICINITY MAP

76 Station 4625 3070 Fruitvale Avenue Oakland, California

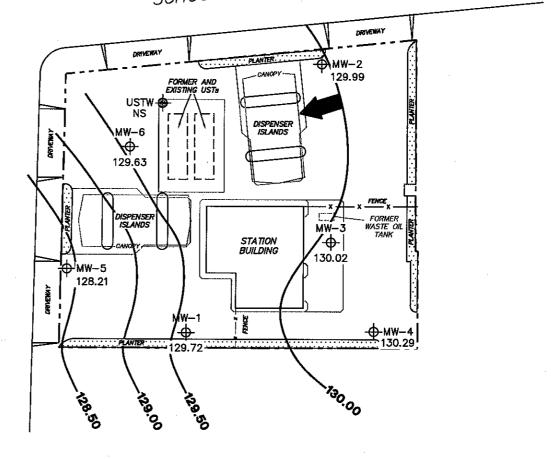
FIGURE 1

NOTES:

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. NS = not surveyed. UST = underground storage tank.

LEGEND

MW−6 → Monitoring Well with Groundwater Elevation (feet)


USTW + UST Observation Well

130.00 — Groundwater Elevation Contour

General Direction of Groundwater Flow

FRUITVALE AVENUE

SCHOOL STREET

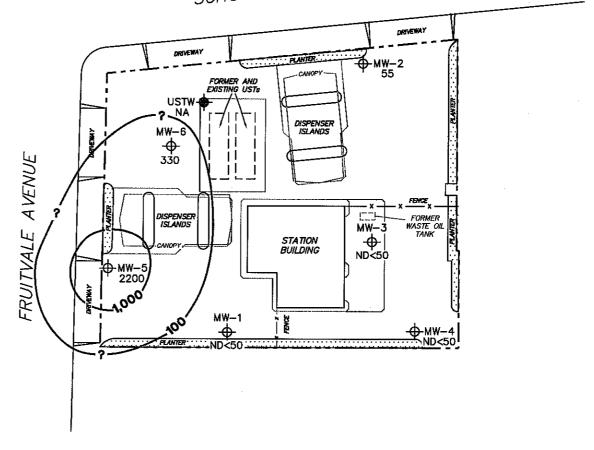
GROUNDWATER ELEVATION
CONTOUR MAP
September 27, 2006

76 Station 4625 3070 Fruitvale Avenue Oakland, California

FIGURE 2

TRC

SCALE (FEET)


NOTES:

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B. µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. NA = not analyzed, measured, or collected. UST = underground storage tank.

LEGEND

USTW - UST Observation Well

SCHOOL STREET

DISSOLVED-PHASE TPH-G (GC/MS) CONCENTRATION MAP September 27, 2006

76 Station 4625 3070 Fruitvale Avenue Oakland, California

TRC

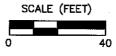


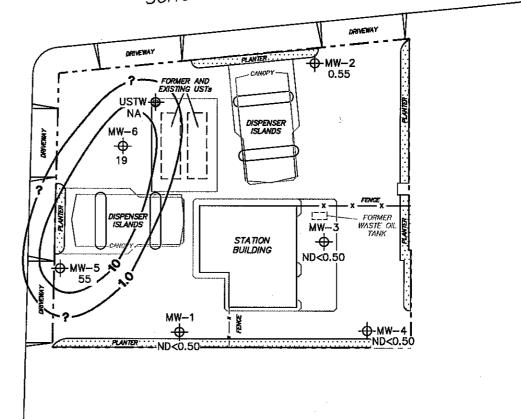
FIGURE 3

FRUITVALE AVENUE

NOTES:

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. $\mu g/l = \text{micrograms per liter.}$ ND = not detected at limit indicated on official laboratory report. NA = not analyzed, measured, or collected. UST = underground storage tank.

LEGEND


MW-6 → Monitoring Well with
Dissolved—Phase Benzene
Concentration (µg/l)

USTW - UST Observation Well

Dissolved—Phase Benzene Contour (µg/l)

TRC

SCHOOL STREET

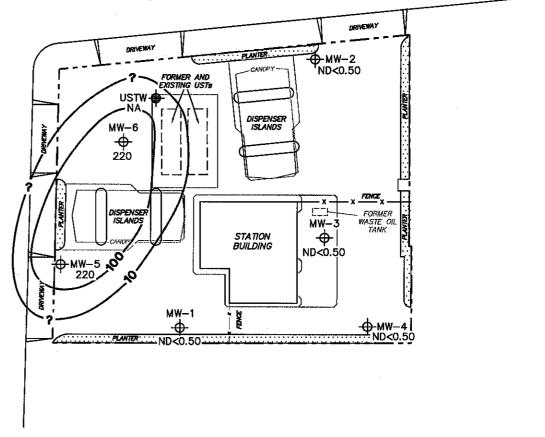
DISSOLVED-PHASE BENZENE CONCENTRATION MAP September 27, 2006

76 Station 4625 3070 Fruitvale Avenue Oakland, California

FIGURE 4

SCALE (FEET)

NOTES:

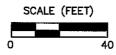

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether.
µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report.
NA = not analyzed, measured, or collected.
UST = underground storage tank. Results obtained using EPA Method 8260B.

LEGEND

USTW 🕁 UST Observation Well

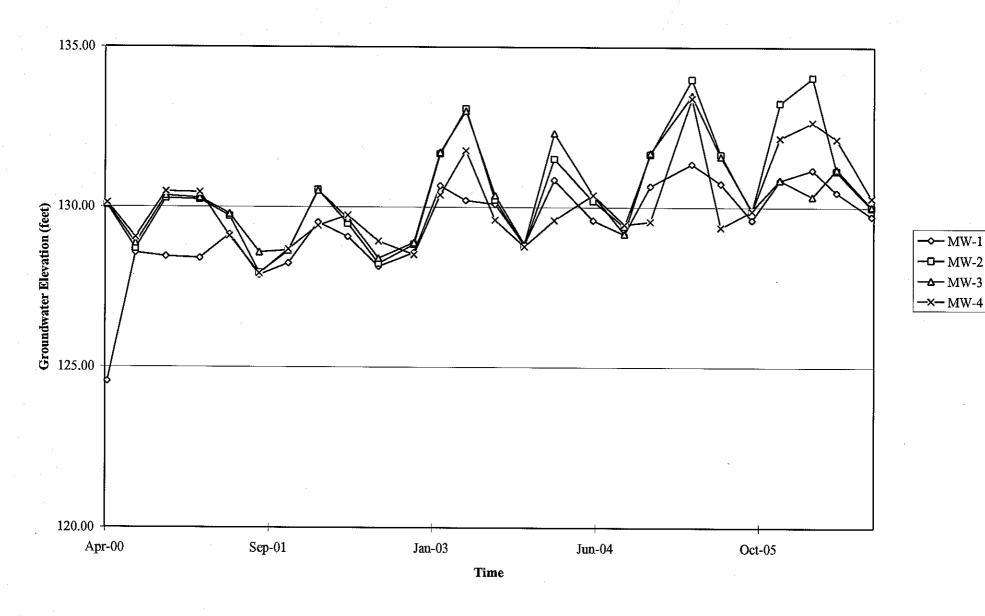
______ Dissolved—Phase MTBE Contour (µg/I) FRUITVALE AVENUE

SCHOOL STREET

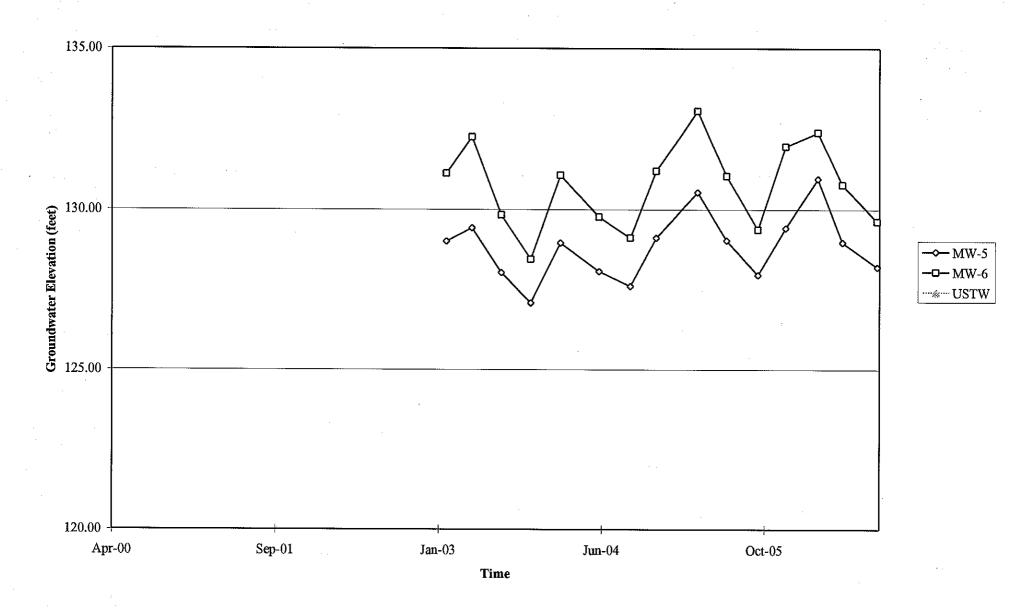


DISSOLVED-PHASE MTBE CONCENTRATION MAP September 27, 2006

76 Station 4625 3070 Fruitvale Avenue Oakland, California

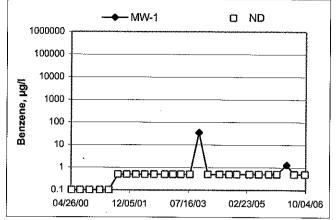

FIGURE 5

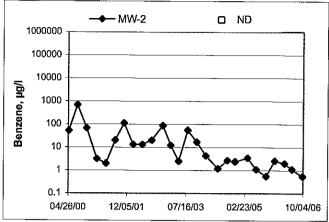
TRC

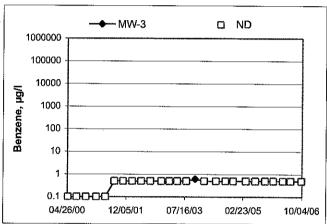


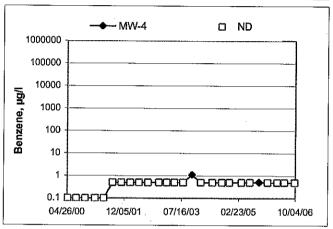
GRAPHS

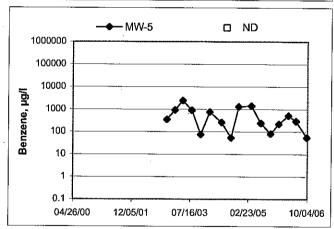
Groundwater Elevations vs. Time 76 Station 4625

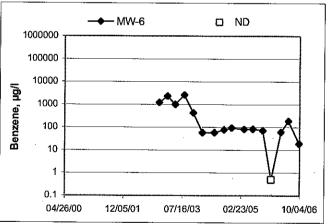



Elevations may have been corrected for apparent changes due to resurvey




Elevations may have been corrected for apparent changes due to resurvey


Benzene Concentrations vs Time 76 Station 4625



GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyo rs mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

Technician: Qiak R.	Job #/Task #: 41060001/FA20	Date: 9/27/06
Site # 41079	Project Manager K, WOODBURNE	Pageof

Well #	Time Gauged	тос	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
4w-3	0859		25.20	8,87			1100	9''
4W-4	1881			7.52			1200	2
MW-1	ogory	1	25.00	- ~ ~			1210	2"
MW-2	0908	/	-	9.86			1120	2"
MW-6	0914	1	23.42	9.25			1127	2"
MW-5		1		9.45			1135	.
ustu	0844	1	1	9.21			NS	6" monitor only
							<u> </u>	
· · · · · · · · · · · · · · · · · · ·			<u> </u>		1		-	
		-			<u> </u>	ļ	 	
		ļ	 	-		1	1	
			<u> </u>	-		· · · · · · · · · · · · · · · · · · ·		
		ļ	 	<u> </u>	 		1	
		 	 					
		-					-	
		 						
		-}		_				_
					-			
		-						
					_		-	
		-			<u> </u>			
		1	·					
EIELD DA	ATA COMF	I FTF	QA/Q)C	·co	<u></u> C	WELL BOX	CONDITION SHEETS
1000	177 OSAVII		Q/VC		·			
WTT CE	RTIFICATE		MANIF	EST	DRUM I	NVENTORY	TF	RAFFIC CONTROL

GROUNDWATER SAMPLING FIELD NOTES

Technician:

Rick e

Site: 4625 Project No.: 4106000)

Well No. MW-6 Purge Method: D1A

Depth to Water (feet): 9.25 Depth to Product (feet): 6

Total Depth (feet) 23.42 LPH & Water Recovered (gallons): 6

Water Column (feet): 14.17 Casing Diameter (Inches): 2*

80% Recharge Depth(feet): 12.08 1 Well Volume (gallons): 7

Comments	:	4 ,	1 '2		<u> </u>		1104	T	
-	7.28		i_				112		· · · · · · · · · · · · · · · · · · ·
Stati	ic at Time Sa	mpled	Tot	al Gallons Pur	ged		Sample	Time	L
	1027		6	445.9	21.1	6.79			
	1000		Ц	493.8	21.0	6.74			
1025			2	531,2	21.2	6.68			-
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F	pН	D.O.	ORP	Turbidit

Well No.
MW-5

Depth to Water (feet):
9,45

Depth to Product (feet):
Depth to Product (feet):

Total Depth (feet)
24,38

Water Column (feet):
14,93

Recharge Depth(feet):
12,44

1 Well Volume (gallons):

Purge Method:

Depth to Product (feet):

Casing Diameter (Inches):

1 Well Volume (gallons):

Depth to Product (feet):

Depth to Produc

Comments	•								
	10.6	9	6				113	5	
Stati	c at Time Sa	mpled	Tota	al Gallons Pur	ged		Sample	Time	
	1000		- O_	260.3	20.8	6.64			
	1036		<u> </u>	234.5	20.9	6.66			<u> </u>
1033			7	569.8		6.70			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F ど)	рН	D.O.	ORP	Turbidi

GROUNDWATER SAMPLING FIELD NOTES

		Tec	chnician:	Rick	<u>R.</u>			•	
Site: <u>46</u>	<u>25</u>	Proj	ject No.:	1110600	001		Date:	9/2	7/06
Well No	MW-	1		Purge Metho	od: DIF	+			
Depth to W	/ater (feet):	7.85		Depth to Pro	oduct (feet): <i>6</i>	0			
•		5.06			r Recovered (A A	_	
		7.21			neter (Inches):			_	
		et): 11.29			ne (gallons):	_			
	•	/	3	• • • • • • • • • • • • • • • • • • • •	(9				*
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature	e pH	D.O.	ORP	Turbidity
1005	,		3	7050	20.0	7.04			
			6	914.0	19.9	6.98			
	3010		9	930.3	19.9	3,07			
	1010		12	452.11	H.T.	7.09		<u> </u>	ļ
Stat	ic at Time Sar	mpled	Tot	al Gallons Pur	rned		Sample	Time	<u> </u>
	1.35		12	<u> </u>	950		Jample		
		ald	302	RECOUDA	RIN	7 H	101 125	<u></u>	
	·								
Well No.	Mw-a	<u>.</u>		Purge Method	od: DIF	Λ			
			· · ·	Puige Metro	d: 1/1 r	<u> </u>			
•	ater (feet):			Depth to Pror	duct (feet): <i>&</i>	<u>9</u>			
*	(feet) 2L			LPH & Water	r Recovered ((gallons):_E	→		•
Water Colu	mn (feet):	5.12			eter (Inches):_			_	
80% Recha	rge Depth(fee	et): <u> 12,8</u> 5	8	1 Well Volum	ne (gallons):	2			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature	е рн	D.O.	ORP	Turbidity
1016			2	426.6	20.3				
· · · ·	, , , ,		Ш	397.9	20.9	10.56			
	1019		6	403.2	21.1	6.49			
	-	· · · · · · · · · · · · · · · · · · ·		-					
Stati	c at Time Sar	moled	Tot	al Gallons Pur					
No. Section 1.	9 89	Tipieu	ا ما	31 Gallons Fur	jea		Sample		
Comments							112	<u> </u>	~ <u></u>
									

GROUNDWATER SAMPLING FIELD NOTES

Rick R Technician: Site: 4625 Project No.: 41060001 Date: 9/27/06 Well No. MW-3 DIA Purge Method: 8.87 Depth to Water (feet): Depth to Product (feet): Total Depth (feet) 25.20 LPH & Water Recovered (gallons): Water Column (feet): 16.33 Casing Diameter (Inches): 2 1 Well Volume (gallons): 3 80% Recharge Depth(feet): 12.14 Depth to Volume Conduc-Time Time Temperature Water Purged tivity Ηq D.O. ORP **Turbidity** Start Stop (F (C) (feet) (gallons) (uS/cm) 09L 629 9 20.4 6.43 6.53 0949 600.4 Static at Time Sampled **Total Gallons Purged** Sample Time 8.88 1100 Comments: MW-4 Welf No. Purge Method: DIA Depth to Water (feet): 7.52 Depth to Product (feet):________ Total Depth (feet) 24.25 LPH & Water Recovered (gallons): Water Column (feet): Casing Diameter (Inches): 2000 80% Recharge Depth(feet): 10,87 1 Well Volume (gallons): 3

Stop	Water (feet)	Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,O)	рН	D.O.	ORP	Turbidity
		3	673.1	19.0	7.07			
		6	682.6	19.3	7.27			
758		9	696.4	19.1	7.57			
	· · · · · · · · · · · · · · · · · · ·							
Time Sa	mpled	Tota	al Gallons Pur	ged	<u>-</u> 1	Sample	Time	1
177		9				* -		
	958	958 t Time Sampled	(feet) (gallons)	(reet) (gallons) (us/cm) 3 673.1 6 682.8 958 9 696.4	958 (gallons) (us/cm) (10/cm) (10/cm) (us/cm) (10/cm) (10/cm) (us/cm) (10/cm)	958 (gallons) (uS/cm)	(reet) (gallons) (uS/cm) (98/cm) (98/c	958 (gallons) (us/cm) (Us/cm) (Gallons) (us/cm) (Gallons) (us/cm) (Gallons) (us/cm) (Gallons) (Us/cm) (Gallons) (Us/cm) (Gallons) (Gallo

Date of Report: 10/13/2006

Anju Farfan

TRC Alton Geoscience

21 Technology Drive Irvine, CA 92618-2302

RE: 4625

BC Lab Number: 0610054

Enclosed are the results of analyses for samples received by the laboratory on 09/27/06 21:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker

Client Service Rep

Authorized Signature

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informa	tion			
0610054-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-1 MW-1 Rick Rodriguez of TRCI	Sampling Date: Sample Depth:	09/27/06 21:05 09/27/06 12:10 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0610054-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-2 MW-2 Rick Rodriguez of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/27/06 21:05 09/27/06 11:20 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0610054-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-3 MW-3 Rick Rodriguez of TRCI	Sampling Date: Sample Depth:	09/27/06 21:05 09/27/06 11:00 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0610054-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-4 MW-4 Rick Rodriguez of TRCI			Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0610054-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 4625 MW-5 MW-5 Rick Rodriguez of TRCI	Sampling Date: Sample Depth:	09/27/06 21:05 09/27/06 11:35 Water	Delivery Work Order: Global ID: T0600102156 Matrix: W Samle QC Type (SACode): CS Cooler ID:

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Laboratory / Client Sample Cross Reference

Client Sample Information

0610054-06

Laboratory

COC Number:

Project Number: Sampling Location: 4625 MW-6

Sampling Point:

MW-6

Sampled By:

Rick Rodriguez of TRCI

Receive Date:

09/27/06 21:05

Sampling Date: 09/27/06 11:27

Sample Depth: ---

Sample Matrix: Water

Delivery Work Order:

Global ID: T0600102156

Matrix: W

Samle QC Type (SACode): CS

Cooler ID:

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 061005	4-01	Client Samp	ole Name	: 4625, MW-1, I	VIVV-1, 9/27	/2006 12	2:10:00PM, Rid	k Rodrig	juez			·····	
Constituent		Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	u g/L	0.50	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND	
Ethylbenzene		ND .	ug/L	0.50	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND .	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND	
Toluene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND	
Ethanol		ND	ug/L	250	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND	····
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4 (Surrogate	e)	103	%	76 - 114 (LCL - UCL) EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate)		99.3	%	88 - 110 (LCL - UCL) EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	1	BPJ0127		
4-Bromofluorobenzene (Surrogat	e)	93.5	%	86 - 115 (LCL - UCL) EPA-8260	10/03/06	10/04/06 11:49	MGC	MS-V5	. 1	BPJ0127		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0610054-02	Client Samı	ole Name	: 4625, MW-2, I	/IW-2, 9/27	/2006 11	1:20:00AM, Rid	ck Rodrig	uez				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		0.55	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND	
Ethylbenzene		0.80	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND	·
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND -	
Toluene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes	•	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND	
Ethanol		ND	ug/L	250	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND	
Total Purgeable Petrole Hydrocarbons	eum	55	ug/L	50	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4	(Surrogate)	109	%	76 - 114 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate))	101	%	88 - 110 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127		•
4-Bromofluorobenzene	(Surrogate)	98.0	%	86 - 115 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 12:22	MGC	MS-V5	1	BPJ0127		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8240)

BCL Sample ID:	0610054-03	Client Sam	ple Name:	4625,	MW-3, N	1W-3, 9/27/	2006 11	:00:00AM, Ric	k Rodrig	uez				
		-					Prep	Run		Instru-		QC ·	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Bromodichloromethane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Bromoform		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	V11
Bromomethane		ND	ug/L	1.0		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Carbon tetrachloride		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Chlorobenzene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Chloroethane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Chloroform		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Chloromethane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Dibromochloromethane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichlorobenzene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,3-Dichlorobenzene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,4-Dichlorobenzene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,1-Dichloroethane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	·
1,1-Dichloroethene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
trans-1,2-Dichloroethen	e	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloropropane		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	•
cis-1,3-Dichloropropens	•	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
trans-1,3-Dichloroprope	ene	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Methylene chloride		ND	ug/L	1.0		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8240)

BCL Sample ID: 0610054-03	Client Sam	ple Nam	e: 4625, MW	/-3, N	IW-3, 9/27	/2006 11	:00:00AM, Ric	k Rodrig	uez				
						Prep	Run		instru-		QC	MB	Lab
Constituent	Result	Units	PQL N	/IDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Tetrachloroethene	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Toluene	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,1,1-Trichloroethane	ND	ug/L	0.50	•	EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,1,2-Trichloroethane	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Trichloroethene	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Trichlorofluoromethane	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ug/L	0.50		EPA-8240	10/03/06	. 10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Vinyl chloride	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
p- & m-Xylenes	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
o-Xylene	ND	ug/L	0.50		EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL -	UCL)	EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate)	99.5	%	88 - 110 (LCL -	UCL)	EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127		
4-Bromofluorobenzene (Surrogate)	94.5	%	86 - 115 (LCL -	UCL)	EPA-8240	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 06	310054-03	Client Sam	ole Name	: 4625, MW-3, M	IW-3, 9/27	/2006 11	:00:00AM, Ric	k Rodrig	uez				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	. 1	BPJ0127	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Toluene	:	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND .	
Ethanol		ND	ug/L	250	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
Total Purgeable Petroleum Hydrocarbons	1	ND	ug/L	50	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4 (Su	rrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate)		99.5	%	88 - 110 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127		
4-Bromofluorobenzene (Su	urrogate)	94.5	%	86 - 115 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 12:55	MGC	MS-V5	1	BPJ0127		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0610054-03	Client Sam	ole Name:	4625,	MW-3, N	IW-3, 9/27/2	2006 11	:00:00AM, Ric	k Rodrig	uez				
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Acenaphthylene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Anthracene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Benzo[a]anthracene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Benzo[b]fluoranthene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	V11
Benzo[k]fluoranthene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Benzo[a]pyrene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Benzo[g,h,i]perylene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	· · · · · · · · · · · · · · · · · · ·
Benzoic acid	ND	ug/L	10		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	•
Benzyl alcohol	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Benzyl butyl phthalate	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
bis(2-Chloroethoxy)methane	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
bis(2-Chloroethyl) ether	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
bis(2-Chloroisopropyl)ether	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
bis(2-Ethylhexyl)phthalate	ND	ug/L	4.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4-Bromophenyl phenyl ether	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4-Chloroaniline	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Chloronaphthalene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4-Chlorophenyl phenyl ether	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKÇ	MS-B2	1.05	BPJ0303	ND	V,11
Chrysene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Dibenzo[a,h]anthracene	ND	ug/L	3.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Dibenzofuran	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	M\$-B2	1.05	BPJ0303	ND	
1,2-Dichlorobenzene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0610054-0	3 Client Sam	ple Name:	4625,	MW-3, N	/IW-3, 9/27/	2006 11	:00:00AM, Rid	k Rodrig	uez				
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,3-Dichlorobenzene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	skċ	MS-B2	1.05	BPJ0303	ND	
1,4-Dichlorobenzene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
3,3-Dichlorobenzidine	ND	ug/L	10		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	V11
Diethyl phthalate	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Dimethyl phthalate	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Di-n-butyl phthalate	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,4-Dinitrotoluene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,6-Dinitrotoluene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Di-n-octyl phthalate	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKĊ	MS-B2	1.05	BPJ0303	ND	
Fluoranthene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Fluorene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05 ⁺	BPJ0303	ND	
Hexachlorobenzene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	V11
Hexachlorobutadiene	ND	ug/L	1.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Hexachlorocyclopentadiene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Hexachloroethane	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Indeno[1,2,3-cd]pyrene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	· · · · · ·
Isophorone	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Methylnaphthalene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Naphthalene	ND	ug/L	2.0	•••	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Nitroaniline	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
3-Nitroaniline	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4-Nitroaniline	ND	ug/L	5.0		EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Nitrobenzene	ND	ug/L	2.0		EPA-8270C	10/02/06	10/11/06 11:48	SKÇ	MS-B2	1.05	BPJ0303	ND	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0610054-03	Client Sam	ple Nam	e: 4625, MW-3,	MW-3, 9/27/	2006 11	:00:00AM, Ric	k Rodrig	uez				
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
N-Nitrosodi-N-propylamine	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
N-Nitrosodiphenylamine	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Phenanthrene	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Pyrene	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4-Chloro-3-methylphenol	ND	ug/L	5.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Chlorophenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,4-Dichlorophenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,4-Dimethylphenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4,6-Dinitro-2-methylphenol	ND	ug/L	10	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,4-Dinitrophenol	ND	ug/L	10	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Methylphenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
3- & 4-Methylphenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Nitrophenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
4-Nitrophenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	V11
Pentachlorophenol	ND	ug/L	10	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
Phenol	ND	ug/L	2.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,4,5-Trichlorophenol	ND	ug/L	5.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2,4,6-Trichlorophenol	ND	ug/L	5.0	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	ND	
2-Fluorophenol (Surrogate)	54.5	%	28 - 87 (LCL - UCL)	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303		
Phenol-d5 (Surrogate)	36.0	%	18 - 55 (LCL - UCL)	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303		
Nitrobenzene-d5 (Surrogate)	108	%	40 - 121 (LCL - UCL) EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303		
2-Fluorobiphenyl (Surrogate)	123	%	42 - 128 (LCL - UCL) EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303		

Page 10 of 40

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0610054-03	Client Sam	ple Nam	e: 4625, l	MW-3, M	W-3, 9/27/	2006 11	:00:00AM, Ric	k Rodrig	juez				
			,			Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL.	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
2,4,6-Tribromophenol (Surrogate)	111	%	44 - 137 (L	CL - UĊL)	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303	1	
p-Terphenyl-d14 (Surrogate)	88.4	%	43 - 154 (L	CL - UCL)	EPA-8270C	10/02/06	10/11/06 11:48	SKC	MS-B2	1.05	BPJ0303		•

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Total Petroleum Hydrocarbons

BCL Sample ID: 06100	054-03	Client Samp	ole Nam	e: 4625, N	/W-3, N	W-3, 9/27.	/2006 11	:00:00AM, Ric	k Rodrig	juez				
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Diesel Range Organics (C12 -	C24)	ND	ug/L	50		Luft/TPHd	10/04/06	10/09/06 19:10	VTR	GC-13A	1.02	BPJ0379	ND	
Tetracosane (Surrogate)		76.9	%	42 - 125 (LC	CL - UCL)	Luft/TPHd	10/04/06	10/09/06 19:10	VTR	GC-13A	1.02	BPJ0379		V11

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

EPA Method 1664

BCL Sample ID:	0610054-03	Client Sam	ple Name:	4625,	MW-3, N	1W-3, 9/27/2	2006 11	:00:00AM, Ric	k Rodrig	juez		:	•	
Constituent		Result	Units	PQL	MDL.	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch (D	MB Bias	Lab Quals
Oil and Grease		ND	mg/L	5.0			10/12/06	10/12/06 09:00	JAK	MAN-SV	1	BPJ0703	ND	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Water Analysis (Metals)

BCL Sample ID:	0610054-03	Client Sam	ple Name:	4625,	MW-3, N	1W-3, 9/27/2	2006 11	:00:00AM, Ric	k Rodrig	uez				
					, ,	:	Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Chromium		15	ug/L	10		EPA-6010B	10/02/06	10/03/06 14:02	EMC	PE-OP2	1	BPJ0042	ND	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 06100	54-04	Client Sam	ple Name	e: 4625, MW-4,	MW-4, 9/27	/2006 12	2:00:00PM, Ric	k Rodrig	juez				
Constituent		Result	Units	PQL MDI	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 13:28		MS-V5	1	BPJ0127	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	ND	
Methyl t-butyl ether	****	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	ND	
Toluene		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes		ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	ND	
Ethanol		ND	ug/L	250	EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	ND	· · · · · · · · · · · · · · · · · · ·
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4 (Surroga	ate)	105	%	76 - 114 (LCL - UC	_) EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate)		99.6	%	88 - 110 (LCL - UC	L) EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127	<u></u>	
4-Bromofluorobenzene (Surrog	jate)	92.7	%	86 - 115 (LCL - UC	.) EPA-8260	10/03/06	10/04/06 13:28	MGC	MS-V5	1	BPJ0127		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0610054-09	5 Client Sam	ole Nam	e: 4625, MW-5, N	/IVV-5, 9/27	/2006 11	:35:00AM, Rid	k Rodrig	uez				
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	55	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	***************************************
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
Ethylbenzene	85	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
Methyl t-butyl ether	220	ug/L	2.5	EPA-8260	10/03/06	10/05/06 18:01	MGC	MS-V5	5	BPJ0127	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes	170	ug/L	2.5	EPA-8260	10/03/06	10/05/06 18:01	MGC	MS-V5	5	BPJ0127	ND	A01
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
Ethanol	ND	ug/L	250	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total Purgeable Petroleum Hydrocarbons	2200	ug/L	50	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127		
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	10/03/06	10/05/06 18:01	MGC	MS-V5	5	BPJ0127		
Toluene-d8 (Surrogate)	99.9	%	88 - 110 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	10/03/06	10/05/06 18:01	MGC	MS-V5	5	BPJ0127		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260	10/03/06	10/04/06 14:34	MGC	MS-V5	1	BPJ0127		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	10/03/06	10/05/06 18:01	MGC	MS-V5	5	BPJ0127	•	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0610054-06	Client Sam	ple Name	e: 4625, N	W-6, N	1W-6, 9/27	/2006 11	:27:00AM, Rid	k Rodrig	uez				
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	19	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
Ethylbenzene	5.4	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
Methyl t-butyl ether	220	ug/L	2.5		EPA-8260	10/03/06	10/05/06 18:34	MGC	MS-V5	5	BPJ0127	ND	A01
Toluene	0.87	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
Total Xylenes	29	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
Diisopropyl ether	ND	ug/L	0.50	,	EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
Ethanol	ND	ug/L	250		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	,
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
Total Purgeable Petroleum Hydrocarbons	330	ug/L	50		EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127	ND	
1,2-Dichloroethane-d4 (Surrogate)	108	%	76 - 114 (LC	L - UCL)	EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127		
1,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LC	L - UCL)	EPA-8260	10/03/06	10/05/06 18:34	MGC	MS-V5	5	BPJ0127		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LC	L - UCL)	EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LC	L - UCL)	EPA-8260	10/03/06	10/05/06 18:34	MGC	MS-V5	5	BPJ0127		
4-Bromofluorobenzene (Surrogate)	95.1	%	86 - 115 (LC	L - UCL)	EPA-8260	10/03/06	10/05/06 18:34	MGC	MS-V5	5	BPJ0127		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LC	L - UCL)	EPA-8260	10/03/06	10/04/06 14:01	MGC	MS-V5	1	BPJ0127		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8240)

										Contr	ol Limits
			Source	Source		Spike		•	Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BPJ0127	Matrix Spike	0609993-01	ND	27.080	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	26.770	25.000	ug/L	0.930	107	20	70 - 130
Bromodichloromethane	BPJ0127	Matrix Spike	0609993-01	ND	27.220	25.000	ug/L		109		70 - 130 ·
		Matrix Spike Duplicate	0609993-01	ND	27.850	25.000	ug/L	1.82	111	20	70 - 130
Chlorobenzene	BPJ0127	Matrix Spike	0609993-01	ND	27.380	25.000	ug/L		110		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	27.440	25.000	ug/L	0.00	110	20	70 - 130
Chloroethane	BPJ0127	Matrix Spike	0609993-01	ND	26.190	25.000	ug/L		105		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	25.760	25.000	ug/L	1.92	103	20	70 - 130
1,4-Dichlorobenzene	BPJ0127	Matrix Spike	0609993-01	ND	27.040	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	27.210	25.000	ug/L	0.922	109	20	70 - 130
1,1-Dichloroethane	BPJ0127	Matrix Spike	0609993-01	0.13000	27.940	25.000	ug/L		111		70 - 130
		Matrix Spike Duplicate	0609993-01	0.13000	27.680	25.000	ug/L	0.905	110	20	70 - 130
1,1-Dichloroethene	BPJ0127	Matrix Spike	0609993-01	0.60000	28.620	25.000	ug/L		112		70 - 130
		Matrix Spike Duplicate	0609993-01	0.60000	28.460	25.000	ug/L	0.897	111	20	70 - 130
Toluene	BPJ0127	Matrix Spike	0609993-01	ND	27.070	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	27.640	25.000	ug/L	2.74	111	20	70 - 130
Trichloroethene	BPJ0127	Matrix Spike	0609993-01	ND	27.790	25.000	ug/L		111		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	27.990	25.000	ug/L	0.897	112	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BPJ0127	Matrix Spike	0609993-01	ND	10.030	10.000	ug/L		100		76 - 114
		Matrix Spike Duplicate	0609993-01	ND	9.9300	10.000	ug/L		99.3		76 - 114
Toluene-d8 (Surrogate)	BPJ0127	Matrix Spike	0609993-01	ND	9.9600	10.000	ug/L		99.6		88 - 110
		Matrix Spike Duplicate	0609993-01	ND	10.080	10.000	ug/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BPJ0127	Matrix Spike	0609993-01	ND	10.390	10.000	ug/L		104		86 - 115
		Matrix Spike Duplicate	0609993-01	ND	10.220	10.000	ug/L		102	•	86 - 115

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

										Contr	<u>ol Limits</u>
•			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BPJ0127	Matrix Spike	0609993-01	ND	27.080	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	26.770	25.000	ug/L	0.930	107	20	70 - 130
Toluene	BPJ0127	Matrix Spike	0609993-01	ND	27.070	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicate	0609993-01	ND	27.640	25.000	ug/L	2.74	111	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BPJ0127	Matrix Spike	0609993-01	ND	10.030	10.000	ug/L		100		76 - 114
·		Matrix Spike Duplicate	0609993-01	ND	9.9300	10.000	ug/L		99.3		76 - 114
Toluene-d8 (Surrogate)	BPJ0127	Matrix Spike	0609993-01	ND	9.9600	10.000	ug/L		99.6		88 - 110
	;	Matrix Spike Duplicate	0609993-01	ND	10.080	10.000	ug/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BPJ0127	Matrix Spike	0609993-01	ND	10.390	10.000	ug/L		104		86 - 115
		Matrix Spike Duplicate	0609993-01	ND	10.220	10.000	ug/L		102		86 - 115

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

						,				Contro	ol <u>Limits</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Acenaphthene	BPJ0303	Matrix Spike	0608879-80	ND	126.62	80.000	ug/L		158		39 - 121 Q03
		Matrix Spike Duplicate	0608879-80	ND	122.18	80.000	ug/L	3.22	153	22	39 - 121 Q03
1,4-Dichlorobenzene	BPJ0303	Matrix Spike	0608879-80	ND	102.52	80.000	ug/L		128		31 - 106 Q03
		Matrix Spike Duplicate	0608879-80	ND	97,506	80.000	ug/L	4.80	122	22	31 - 106 Q03
2,4-Dinitrotoluene	BPJ0303	Matrix Spike	0608879-80	ND	120.99	80.000	ug/L		151		20 - 129 Q03
		Matrix Spike Duplicate	0608879-80	ND	114.90	80.000	ug/L	4.75	144	21	20 - 129 Q03 /
Hexachlorobenzene	BPJ0303	Matrix Spike	0608879-80	ND	126.25	80.000	ug/L		158		45 - 117 Q03
		Matrix Spike Duplicate	0608879-80	ND	120.38	80.000	ug/L	5.19	150	21	45 - 117 Q03
Hexachlorobutadiene	BPJ0303	Matrix Spike	0608879-80	ND	85.234	80.000	ug/L		107		27 - 94 Q03
		Matrix Spike Duplicate	0608879-80	ND	76.577	80.000	ug/L	11.1	95.7	29	27 - 94 Q03
Hexachloroethane	BPJ0303	Matrix Spike	0608879-80	ND	96.008	80.000	ug/L		120		23 - 95 Q03
		Matrix Spike Duplicate	0608879-80	ND	89.782	80.000	ug/L	6.90	112	25	23 - 95 Q03
Nitrobenzene	BPJ0303	Matrix Spike	0608879-80	ND	104.07	80.000	ug/L		130		31 - 124 Q03
		Matrix Spike Duplicate	0608879-80	ND	96.433	80.000	ug/L	7.17	121	23	31 - 124
N-Nitrosodi-N-propylamine	BPJ0303	Matrix Spike	0608879-80	ND	83.401	80.000	ug/L		104		24 - 115
		Matrix Spike Duplicate	0608879-80	ND	84.166	80.000	ug/L	0.957	105	24	24 - 115
Pyrene	BPJ0303	Matrix Spike	0608879-80	ND	165.80	80.000	ug/L		207		48 - 139 Q03
		Matrix Spike Duplicate	0608879-80	ND	155.68	80.000	ug/L	5.97	195	24	48 - 139 Q03
1,2,4-Trichlorobenzene	BPJ0303	Matrix Spike	0608879-80	ND	100.03	80.000	ug/L	-	125		26 - 113 Q03
	•	Matrix Spike Duplicate	0608879-80	ND	92.099	80.000	ug/L	8.33	115	24	26 - 113 Q03
4-Chloro-3-methylphenol	BPJ0303	Matrix Spike	0608879-80	ND	92.347	80.000	ug/L		115		31 - 139
		Matrix Spike Duplicate	0608879-80	ND	85.398	80.000	ug/L	7.21	107	23	31 - 139
2-Chlorophenol	BPJ0303	Matrix Spike	0608879-80	ND	77.730	80.000	ug/L		97.2		30 - 105
		Matrix Spike Duplicate	0608879-80	ND	74.825	80.000	ug/L	3.88	93.5	22	30 - 105
2-Methylphenol	BPJ0303	Matrix Spike	0608879-80	ND	76.513	80.000	ug/L		95.6		31 - 93 Q03
		Matrix Spike Duplicate	0608879-80	ND	73.779	80.000	ug/L	3.62	92.2	17	31 - 93
							- -				

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C) Quality Control Report - Precision & Accuracy

										Contro	<u>ol Limits</u>	
			Source	Source		Spike		•	Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery La	b Quals
3- & 4-Methylphenol	BPJ0303	Matrix Spike	0608879-80	ND	130.17	80.000	ug/L		163		34 - 165	
		Matrix Spike Duplicate	0608879-80	ND	124.05	80.000	ug/L	5.03	155	22	34 - 165	
4-Nitrophenol	BPJ0303	Matrix Spike	0608879-80	ND	50.432	80.000	ug/L		63.0		12 - 75	
		Matrix Spike Duplicate	0608879-80	ND	49.540	80.000	ug/L	1.76	61.9	27	12 - 75	
Pentachlorophenol	BPJ0303	Matrix Spike	0608879-80	ND :	92,272	80.000	ug/L		115		22 - 123	
		Matrix Spike Duplicate	0608879-80	ND	89.077	80.000	ug/L	3.54	111	20	22 - 123	
Phenol	BPJ0303	Matrix Spike	0608879-80	ND	35.875	80.000	ug/L		44.8		18 - 44 Q0	3
		Matrix Spike Duplicate	0608879-80	ND	36.274	80.000	ug/L	1.11	45.3	22	18 - 44 Q0	3
2,4,6-Trichlorophenol	BPJ0303	Matrix Spike	0608879-80	ND	100.00	80.000	ug/L		125		32 - 128	
		Matrix Spike Duplicate	0608879-80	ND	95.936	80.000	ug/L	4.08	120	25	32 - 128	
2-Fluorophenol (Surrogate)	BPJ0303	Matrix Spike	0608879-80	ND	84.780	80.000	ug/L		106		28 - 87 S0	9
		Matrix Spike Duplicate	0608879-80	ND	81.800	80.000	ug/L		102		28 - 87 S0	9
Phenol-d5 (Surrogate)	BPJ0303	Matrix Spike	0608879-80	ND	49.670	80.000	ug/L		62.1		18 - 55 SO	9
		Matrix Spike Duplicate	0608879-80	ND	49.430	80.000	ug/L		61.8		18 - 55 S0	9
Nitrobenzene-d5 (Surrogate)	BPJ0303	Matrix Spike	0608879-80	ND	95.860	80.000	ug/L		120		40 - 121	
		Matrix Spike Duplicate	0608879-80	ND	91.150	80.000	ug/L		114		40 - 121	
2-Fluorobiphenyl (Surrogate)	BPJ0303	Matrix Spike	0608879-80	ND	115.17	80.000	ug/L		144		42 - 128 S0	9
		Matrix Spike Duplicate	0608879-80	ND	108.80	80.000	ug/L		136		42 - 128 S0	9
2,4,6-Tribromophenol (Surrogate)	BPJ0303	Matrix Spike	0608879-80	ND	137.46	80.000	ug/L		172		44 - 137 S0	9
		Matrix Spike Duplicate	0608879-80	ND	126.44	80.000	ug/L		158		44 - 137 SO	9
p-Terphenyl-d14 (Surrogate)	BPJ0303	Matrix Spike	0608879-80	ND	69.910	40.000	ug/L		175		43 - 154 S0	9
		Matrix Spike Duplicate	0608879-80	ND	66.060	40.000	ug/L		165		43 - 154 SO	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Total Petroleum Hydrocarbons

•										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BPJ0379	Matrix Spike	0608879-87	· ND	435.29	500.00	ug/L		87.1		41 - 139
		Matrix Spike Duplicate	0608879-87	ND	435.24	500.00	ug/L	0.115	87.0	30	41 - 139
Tetracosane (Surrogate)	BPJ0379	Matrix Spike	0608879-87	ND	19.604	20.000	ug/L		98.0		42 - 125
		Matrix Spike Duplicate	0608879-87	ND	20.208	20.000	ug/L		101		42 - 125

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

EPA Method 1664

										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Oil and Grease	BPJ0703	Duplicate	0610348-05	3.0000	2.5000		mg/L	18.2		18	Q01
		Matrix Spike	0608879-96	ND	32.850	40.800	mg/L		80.5		78 - 114
		Matrix Spike Duplicate	0608879-96	ND	35.200	40.800	mg/L	6.95	86.3	18	78 - 114

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Water Analysis (Metals)

•										Contro	ol Limits
Comptituent	5-4-5-15	000 1 7	Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Total Chromium	BPJ0042	Duplicate	0610131-04	4.6211	4.3135		ug/L	6.89		20	
		Matrix Spike	0610131-04	4.6211	194.42	200.00	ug/L		94.9		75 - 125
		Matrix Spike Duplicate	9 0610131-04	4.6211	198.53	200.00	ug/L	2.19	97.0	20	75 - 125

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8240)

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BPJ0127	BPJ0127-BS1	LCS	26.610	25.000	0.50	ug/L	106		70 - 130		
Bromodichloromethane	BPJ0127	BPJ0127-BS1	LCS	27.010	25.000	0.50	ug/L	108		70 - 130		
Chlorobenzene	BPJ0127	BPJ0127-BS1	LCS	25.810	25.000	0.50	ug/L	103		70 - 130		
Chloroethane	BPJ0127	BPJ0127-BS1	LCS	25.080	25.000	0.50	ug/L	100		70 - 130		
1,4-Dichlorobenzene	BPJ0127	BPJ0127-BS1	LCS	25.750	25.000	0.50	ug/L	103		70 - 130		
1,1-Dichloroethane	BPJ0127	BPJ0127-BS1	LCS	27.480	25.000	0.50	ug/L	110		70 - 130		
1,1-Dichloroethene	BPJ0127	BPJ0127-BS1	LCS	27.780	25.000	0.50	ug/L	111		70 - 130		
Toluene	BPJ0127	BPJ0127-BS1	LCS	26.970	25.000	0.50	ug/L	108		70 - 130		
Trichloroethene	BPJ0127	BPJ0127-BS1	LCS	31.990	25.000	0.50	ug/L	128		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BPJ0127	BPJ0127-BS1	LCS	10.240	10.000		ug/L	102		76 - 114		
Toluene-d8 (Surrogate)	BPJ0127	BPJ0127-BS1	LCS	10.040	10.000		ug/L	100		88 - 110		
4-Bromofluorobenzene (Surrogate)	BPJ0127	BPJ0127-BS1	LCS	9.7000	10.000		ug/L	97.0		86 - 115		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

Constituent		QC Sample ID			<u> </u>				Control		
	Batch ID		QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quais
Benzene	BPJ0127	BPJ0127-BS1	LCS	26.610	25.000	0.50	ug/L	106	70 - 130		
Toluene	BPJ0127	BPJ0127-BS1	LCS	26.970	25.000	0.50	ug/L	108	70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BPJ0127	BPJ0127-BS1	LCS	10.240	10.000		ug/L	102	76 - 114		
Toluene-d8 (Surrogate)	BPJ0127	BPJ0127-BS1	LCS	10.040	10.000		ug/L	100	88 - 110		
4-Bromofluorobenzene (Surrogate)	BPJ0127	BPJ0127-BS1	LCS	9.7000	10.000		ug/L	97.0	86 - 115		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

						-,		ampio	Control	Limits	
					Spike			Percent	Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD Recovery	RPD	Lab Quals
Acenaphthene	BPJ0303	BPJ0303-BS1	LCS	118.20	80.000	2.0	ug/L	148	47 - 121		L01
1,4-Dichlorobenzene	BPJ0303	BPJ0303-BS1	LCS	96.178	80.000	2.0	ug/L	120	36 - 109		L01
2,4-Dinitrotoluene	BPJ0303	BPJ0303-BS1	LCS	108.55	80.000	2.0	ug/L	136	36 - 120		L01
Hexachlorobenzene	BPJ0303	BPJ0303-BS1	LCS	118.31	80.000	2.0	ug/L	148	44 - 122		L01
Hexachlorobutadiene	BPJ0303	BPJ0303-BS1	LCS	82.929	80.000	1.0	ug/L	104	26 - 100		L01
Hexachloroethane	BPJ0303	BPJ0303-BS1	LCS	93.275	80.000	2.0	ug/L	117	28 - 96		L01
Nitrobenzene	BPJ0303	BPJ0303-BS1	LCS	97.321	80.000	2.0	ug/L	122	43 - 122		
N-Nitrosodi-N-propylamine	BPJ0303	BPJ0303-BS1	LCS	83.583	80.000	2.0	ug/L	104	37 - 111		
Pyrene	BPJ0303	BPJ0303-BS1	LCS	155.61	80.000	2.0	ug/L	195	51 - 140		L01
1,2,4-Trichlorobenzene	BPJ0303	BPJ0303-BS1	LCS	93.330	80.000	2.0	ug/L	117	33 - 116		L01
4-Chloro-3-methylphenol	BPJ0303	BPJ0303-BS1	LCS	85.868	80.000	5.0	ug/L	107	37 - 141		
2-Chlorophenol	BPJ0303	BPJ0303-BS1	LCS	75.313	80.000	2.0	ug/L	94.1	29 - 110		
2-Methylphenol	BPJ0303	BPJ0303-BS1	LCS	72.939	80.000	2.0	ug/L	91.2	27 - 100		
3- & 4-Methylphenol	BPJ0303	BPJ0303-BS1	LCS	125,24	80.000	2.0	ug/L	157	24 - 174		
4-Nitrophenol	BPJ0303	BPJ0303-BS1	LCS	46.401	80.000	2.0	ug/L	58.0	15 - 74		
Pentachlorophenol	BPJ0303	BPJ0303-BS1	LCS	88.321	80.000	10	ug/L	110	22 - 127		
Phenol	BPJ0303	BPJ0303-BS1	LCS	36.773	80.000	2.0	ug/L	46.0	18 - 46		
2,4,6-Trichlorophenol	BPJ0303	BPJ0303-BS1	LCS	100.14	80.000	5.0	ug/L	125	44 - 124		L01
2-Fluorophenol (Surrogate)	BPJ0303	BPJ0303-BS1	LCS	78.710	80.000		ug/L	98.4	28 - 87		S09
Phenol-d5 (Surrogate)	BPJ0303	BPJ0303-BS1	LCS	47.830	80.000		ug/L	59.8	18 - 55		S09
Nitrobenzene-d5 (Surrogate)	BPJ0303	BPJ0303-BS1	LCS	90.420	80.000		ug/L	113	40 - 121		
2-Fluorobiphenyl (Surrogate)	BPJ0303	BPJ0303-BS1	LCS	108.02	80.000		ug/L	135	42 - 128		S09
2,4,6-Tribromophenol (Surrogate)	BPJ0303	BPJ0303-BS1	LCS	128.82	80.000		ug/L	161	44 - 137		S09
p-Terphenyl-d14 (Surrogate)	BPJ0303	BPJ0303-BS1	LCS	62.750	40.000		ug/L	157	43 - 154		S09

TRC Alton Geoscience

Project: 4625

21 Technology Drive

Project Number: [none]

Irvine CA, 92618-2302

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Total Petroleum Hydrocarbons

									Control Limits						
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quais				
Diesel Range Organics (C12 - C24)	BPJ0379	BPJ0379-BS1	LCS	505.93	500.00	50	ug/L	101	62 - 101						
Tetracosane (Surrogate)	BPJ0379	BPJ0379-BS1	LCS	21.057	20.000		ug/L	105	42 - 125						

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

EPA Method 1664

									Control Limits	
Constituent	Batch ID Q	C Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery RPD	Lab Quals
Oil and Grease	BPJ0703 BI	PJ0703-BS1	LCS	33.100	40.800	5.0	mg/L	81.1	78 - 114	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Water Analysis (Metals)

						<u> </u>		······································	Control Limits						
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals			
Total Chromium	BPJ0042	BPJ0042-BS1	LCS	195.26	200.00	10	ug/L	97.6	. ,	85 - 115					

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8240)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.14	
Bromodichloromethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.11	· ·
Bromoform	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.22	
Bromomethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	1.0	0.31	
Carbon tetrachloride	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.14	
Chlorobenzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.12	
Chloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.12	
Chloroform	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.076	
Chloromethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.14	
Dibromochloromethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.12	
1,2-Dichlorobenzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.11	
1,3-Dichlorobenzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.073	
1,4-Dichlorobenzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.099	
1,1-Dichloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.10	
1,2-Dichloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.15	
1,1-Dichloroethene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.15	
trans-1,2-Dichloroethene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.18	
1,2-Dichloropropane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.069	
cis-1,3-Dichloropropene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.075	····
trans-1,3-Dichloropropene	BPJ0127	BPJ0127-BLK1	ND	. ug/L	0.50	0.15	
Ethylbenzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.094	
Methylene chloride	BPJ0127	BPJ0127-BLK1	ND	ug/L	1.0	0.16	
Methyl t-butyl ether	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.13	
1,1,2,2-Tetrachloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.14	
Tetrachloroethene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.18	

Project: 4625

Project Number: [none]
Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8240)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Toluene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.12	
1,1,1-Trichloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.27	
1,1,2-Trichloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.14	
Trichloroethene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.18	
Trichlorofluoromethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.13	
1,1,2-Trichloro-1,2,2-trifluoroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.11	
Vinyl chloride	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.16	
Total Xylenes	BPJ0127	BPJ0127-BLK1	ND	ug/L	1.0	0.31	•
p- & m-Xylenes	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.23	
o-Xylene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.096	
1,2-Dichloroethane-d4 (Surrogate)	BPJ0127	BPJ0127-BLK1	107	%	76 - 114 (1	LCL - UCL)	
Toluene-d8 (Surrogate)	BPJ0127	BPJ0127-BLK1	102	%	88 - 110 (l	LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BPJ0127	BPJ0127-BLK1	91.4	%	86 - 115 (l	LCL - UCL)	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Volatile Organic Analysis (EPA Method 8260)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.14	
1,2-Dibromoethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.22	
1,2-Dichloroethane	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.15	
Ethylbenzene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.094	
Methyl t-butyl ether	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.13	
Toluene	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.12	
Total Xylenes	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.31	:
t-Amyl Methyl ether	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.34	
t-Butyl alcohol	BPJ0127	BPJ0127-BLK1	ND	ug/L	10	9.3	· · · ·
Diisopropyl ether	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.34	
Ethanol	BPJ0127	BPJ0127-BLK1	ND	ug/L	250	85	
Ethyl t-butyl ether	BPJ0127	BPJ0127-BLK1	ND	ug/L	0.50	0.32	
Total Purgeable Petroleum Hydrocarbons	BPJ0127	BPJ0127-BLK1	ND	ug/L	50	16	
1,2-Dichloroethane-d4 (Surrogate)	BPJ0127	BPJ0127-BLK1	107	%	76 - 114 (L	.CL - UCL)	
Toluene-d8 (Surrogate)	BPJ0127	BPJ0127-BLK1	102	%	88 - 110 (L		
4-Bromofluorobenzene (Surrogate)	BPJ0127	BPJ0127-BLK1	91.4	%	86 - 115 (L		

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Acenaphthene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.35	
Acenaphthylene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.32	
Anthracene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.27	
Benzo[a]anthracene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.34	
Benzo[b]fluoranthene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.38	
Benzo[k]fluoranthene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.47	
Benzo[a]pyrene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.45	
Benzo[g,h,i]perylene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.56	
Benzoic acid	BPJ0303	BPJ0303-BLK1	ND	ug/L	10	0.61	
Benzyl alcohol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.44	
Benzyl butyl phthalate	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.32	
bis(2-Chloroethoxy)methane	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	1.6	
bis(2-Chloroethyl) ether	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.49	
bis(2-Chloroisopropyl)ether	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.57	
bis(2-Ethylhexyl)phthalate	BPJ0303	BPJ0303-BLK1	ND	ug/L	4.0	0.98	
4-Bromophenyl phenyl ether	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.40	
4-Chloroaniline	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.99	
2-Chloronaphthalene	BPJ0303	BPJ0303-BLK1	ND	ug/L,	2.0	0.41	
4-Chlorophenyl phenyl ether	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.33	
Chrysene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.30	
Dibenzo[a,h]anthracene	BPJ0303	BPJ0303-BLK1	ND	ug/L	3.0	0.48	
Dibenzofuran	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.37	
1,2-Dichlorobenzene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.35	
1,3-Dichlorobenzene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.35	
1,4-Dichlorobenzene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.25	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

		E					
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quais
3,3-Dichlorobenzidine	BPJ0303	BPJ0303-BLK1	ND	ug/L	10	1.5	
Diethyl phthalate	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.34	
Dimethyl phthalate	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.32	
Di-n-butyl phthalate	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.40	
2,4-Dinitrotoluene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.39	
2,6-Dinitrotoluene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.48	
Di-n-octyl phthalate	BPJ0303	BPJ0303-BLK1	ND	ug/L,	2.0	0.41	
Fluoranthene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.30	
Fluorene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.36	
Hexachlorobenzene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.35	
Hexachlorobutadiene	BPJ0303	BPJ0303-BLK1	ND	ug/L	1.0	0.40	
Hexachlorocyclopentadiene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.36	
Hexachloroethane	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.29	
Indeno[1,2,3-cd]pyrene	. BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.47	
Isophorone	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.31	
2-Methylnaphthalene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.27	
Naphthalene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.30	
2-Nitroaniline	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.82	
3-Nitroaniline	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	1.6	
4-Nitroaniline	BPJ0303	BPJ0303-BLK1	ND	ug/L	5.0	0.44	
Nitrobenzene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.37	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodi-N-propylamine	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.88	
N-Nitrosodiphenylamine	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.42	
Phenanthrene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.29	
Pyrene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.29	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quais
1,2,4-Trichlorobenzene	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.26	
4-Chloro-3-methylphenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	5.0	0.39	
2-Chlorophenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.39	
2,4-Dichlorophenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.37	
2,4-Dimethylphenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	1.5	
4,6-Dinitro-2-methylphenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	10	2.5	
2,4-Dinitrophenol	BPJ0303	BPJ0303-BLK1	ŅD	ug/L	10	0.35	
2-Methylphenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	1.3	
3- & 4-Methylphenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	1.4	
2-Nitrophenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.33	
4-Nitrophenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.35	
Pentachlorophenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	10	0.55	
Phenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	2.0	0.30	
2,4,5-Trichlorophenol	BPJ0303	BPJ0303-BLK1	ND	ug/L	5.0	0.37	
2,4,6-Trichlorophenol	BPJ0303	BPJ0303-BLK1	ND .	ug/L	5.0	0.47	
2-Fluorophenol (Surrogate)	BPJ0303	BPJ0303-BLK1	69.4	%	28 - 87 (_CL - UCL)	
Phenol-d5 (Surrogate)	BPJ0303	BPJ0303-BLK1	40.0	%		_CL - UCL)	
Nitrobenzene-d5 (Surrogate)	BPJ0303	BPJ0303-BLK1	78.7	%	40 - 121 (1	_CL - UCL)	
2-Fluorobiphenyl (Surrogate)	BPJ0303	BPJ0303-BLK1	92.0	%	42 - 128 (1	_CL - UCL)	
2,4,6-Tribromophenol (Surrogate)	BPJ0303	BPJ0303-BLK1	105	%	44 - 137 (CL - UCL)	
p-Terphenyl-d14 (Surrogate)	BPJ0303	BPJ0303-BLK1	115	%	43 - 154 (1	.CL - UCL)	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Total Petroleum Hydrocarbons

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BPJ0379	BPJ0379-BLK1	ND	ug/L	50	26	
Tetracosane (Surrogate)	BPJ0379	BPJ0379-BLK1	0.08	%	42 - 125 (LCL - UCL)		

TRC Alton Geoscience 21 Technology Drive

21 Technology Drive Irvine CA, 92618-2302 Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

EPA Method 1664

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Oil and Grease	BPJ0703	BPJ0703-BLK1	ND	mg/L	5.0	1.9	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Water Analysis (Metals)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Total Chromium	BPJ0042	BPJ0042-BLK1	ND	ug/L	10	1.7	

Project: 4625

Project Number: [none]

Project Manager: Anju Farfan

Reported: 10/13/06 12:52

Notes and Definitions

V11	The Continuing Calibration Verification (CCV) recovery is not within established control limits.
S09	The surrogate recovery on the sample for this compound was not within the control limits
Q03	Matrix spike recovery(s) is(are) not within the control limits.
Q01	Sample precision is not within the control limits.
L01	The Laboratory Control Sample Water (LCSW) recovery is not within laboratory established control limits.
J	Estimated value
J A01	Estimated value PQL's and MDL's are raised due to sample dilution.
A01	PQL's and MDL's are raised due to sample dilution.

BC LABORATORIES INC.		SAMPLE RECEIPT FORM				Rev. No.	10 01/2	21/04	Page / Of /							
Submission #: 06-1005	Ī	Project (Code:			ТВ	Batch #			s P No ne 9/27/00						
	PPING INFORMATION															
Federal Express □ UPS □	elivery 🗇		'	SHIPPING CONTAINER Ice Chest FT None Cl												
BC Lab Field Service D Other	fy)						-	-								
<u> </u>																
Refrigerant: Ice 🖾 Blue Ice I	□ Non	ie 🛭 💮	Other 🗆	Comm	ents:											
Custody Seals: Ice Chest □	Contain	ers 🗇	None					·								
Intect? Yes 🗆 No 🗅				E3 COMM	ents.											
All samples received? Yes & No 🗆	All sampi	es containe	rs intact?	Yes 🖫 N	o ()	Descrip	tion(s) mate	h COC?	Yes 🖳 No							
COC Received				7 W	Emi		0.98	Date/	Date/Time 927/06							
☐ ☑YES ☐ NO	į	Temp	erature: eter fD:	5:4°C	Con	tainer <u>(</u>	ta									
	T															
SAMPLE CONTAINERS	Other (Specify) Box Other (Specify) Blue Ice None Other Comments: Containers None Comments: No All samples containers intact? Yes No Description(s) match COC? Yes No Other Othe															
OT GENERAL MINERAL/ GENERAL PHYSICAL	İ		†	1	 	<u> </u>			1 9	1 10						
PT PE UNPRESERVED									 	1						
OT INORGANIC CHEMICAL METALS				1.					1	1						
PT INORGANIC CHEMICAL METALS			B						<u> </u>	 						
PT CYANIDE							- ''			 						
PT NITROGEN FORMS										 						
PT TOTAL SULFIDE										1						
20z, NITRATE / NITRITE										1 .						
100ml TOTAL ORGANIC CARBON									1	-						
QT TOX																
PT CHEMICAL OXYGEN DEMAND										 						
PLA PHENOLICS					-											
40ml VOA VIAL TRAVEL BLANK									<u> </u>							
40ml VOA VIAL	A (3)	D.3.	A.6	A 13	Piz	A.31	L J	((
OT EPA 413.1, 413.2, 418.1								-								
PT ODOR								-								
RADIOLOGICAL																
BACTERIOLOGICAL					_											
0 ml VOA VIAL- 504					•			· .								
OT EPA 508/608/8080				,												
T EPA 515.1/8150			· · · · · ·													
T EPA 525										·						
T EPA 525 TRAVEL BLANK																
Mml EPA 547																
0ml EPA 531.1																
T EPA 548																
Г ЕРА 549																
F EPA 632																
F EPA 8015M																
CAMPED				·····												
AMBER			DEF													
OZ JAR				-												
OZ. JAR																
IL SLEEVE B Vial																
ASTIC BAG																
RROUS IRON																
CORE				<u>·</u>												
ments:	MR	Date/Tir		1/2 2/6			 .									
~ · · · · · · · · · · · · · · · · · · ·	- XX	_ Pare/11	116.	11/8/0	<i>O</i> _	1/_										

BC LABORATORIES, INC.

4100 Atlas Court □ Bakersfield, CA 93308 (661) 327-4911 □ FAX (661) 327-1918

CHAIN OF CUSTODY

			# 26-16	480000000000000000000000000000000000000		Ar	Mana Seeum e e e	/sis						
	: Phillips 66 / Unocal	Consultant Firm: TF 21 Technology Driv Irvine, CA 92618-230 Attn: Anju Farfan	RC re	MATRIX (GW) Ground- water (S)					m					
City: Oakla	and	4-digit site#: 4625 Work Order# 1285TF	20502	Soil (WW) Waste-	8015	(0	8260B	60B	by 8260B					Turnaround Time Requested
State: CA	Zip:	Project #: 41060001/		water (SL)	L by	GC/MS	E BY	oy 82	EDC		40	8270	nium	Tim
COP Mana	ger: Shelby Lathrop		Pick Properais	i	DIESEL		BTEX/MTBE	NOL	OXYs/EDB/EDC		by 82	by	Chron	round
Lab#	Sample Description	Field Point Name	Date & Time Sampled		TPH	TPH-g by	ВТЕХ	ETHANOL by 8260B	OXYs	T0G	VOCs by 8240	SVOC's	Total Chromium	Turna
1 01116	BY DIŞTRIBUTION	MW-1 - (9/27/06-1210	GW		Х	Х	Х			-		-	ST
CHK	a MUXKKCK S	<u>M</u> - 2	1120	GW		Х	Х	Х		-				ST
	SUB-OUT	MW-3 -3	1100	GW	Х	X	X	Х		X	Х	Х	X	ST
	-		1200	GW		X	X	X	V					ST
		MAN C	1135	GW		^ X	^ Х	X	X					ST
		14144-0 - 9	V 1127	GW		^	^	^	X					ST
Comments: 2	Pun 8 oxys by 82 MTBE Hits"	Retinquished by:					eived :	by: 21 <i>61</i> 3	eata	שב שב		& Tim		1300
ilobal ID: T06	00102156	Relinquished by (Si	900	O. Sem	2	Rec	eived P	by: S <i>iefe</i>	04		Date 2	& Tim	e: 6 [400
≈ ANALYS		Relinquished by (Si	Kolivia	korg /27/06		Rece	ived I	by: / <u>ACAT</u>	6			& Time		755
- WNWIID	. (C) = C	ONTAINER Reliation	= PRESERVATIVE Nacafo 9/2	7/06 210	ً کا	Seg	how	13	3	-	1/2	7/6		2/0

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on Feb ruary 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R -149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid -phase hydrocarbons was accumulated separately in drums for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or R egistered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.