

Alameda-Contra Costa Transit District

January 17, 2008

RECEIVED

2:41 pm, Jan 24, 2008

Alameda County Environmental Health

Mr. Stephen Plunkett Alameda County Health Division Division of Environmental Protection Department of Environmental Health 1131 Harbor Bay Parkway, Second Floor Alameda, CA 94502

Dear Mr. Plunkett:

Subject: Groundwater Monitoring Report – November 2007 AC Transit, 1100 Seminary Ave., Oakland

AC Transit hereby submits the enclosed groundwater monitoring report for the AC Transit facility located at 1100 Seminary Avenue in Oakland. The report was prepared by our consultant, Esseltech, and contains the results of groundwater monitoring performed on November 10, 2007 from six on-site monitoring wells.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments regarding the enclosed report, please call me at (510) 577-8869.

Sincerely,

narine Suzanne Chaewsky **Environmental Engineer**

enclosure

GROUND-WATER MONITORING IN NOVEMBER 2007 ALAMEDA-CONTRA COSTA TRANSIT DISTRICT FACILITY 1100 SEMINARY AVENUE OAKLAND, CALIFORNIA 94621

Prepared for

Alameda-Contra Costa Transit District 10626 International Boulevard Oakland, California 94603

Prepared by

Essel Technology Services, Inc. 9778 Broadmoor Drive San Ramon, California 94583 (510) 206-0270

Project No. 07-69-01

December 2007

GROUND-WATER MONITORING IN NOVEMBER 2007 ALAMEDA-CONTRA COSTA TRANSIT DISTRICT FACILITY 1100 SEMINARY AVENUE OAKLAND, CALIFORNIA 94621

1.0 INTRODUCTION

The Alameda-Contra Costa Transit District (AC Transit) has contracted with Essel Technology Services, Inc. (Essel Tech) to perform ground-water monitoring and sampling at the AC Transit Division 4 facility in Oakland, California. This report presents the results of monitoring and sampling performed in November 2007.

1.1 Site Location and Description

The Division 4 facility is located at 1100 Seminary Avenue in Oakland, California and is on the southeastern corner of the intersection of San Leandro Street and Seminary Avenue, as shown on Plate 1. The Division 4 facility is used for storage and maintenance of AC Transit buses. The facility contains a primary maintenance building that is located near the southeastern corner of the site. Other facilities include a bus washing structure, a generator building, and a service building, which are located along the southwestern side of the property. A parking garage and transportation building are located at the northern end of the property. The site also contains underground storage tanks (USTs). The existing USTs are referred to as Tank Farm No. 1 and are located west of the present maintenance building. A second group of USTs, referred to as Tank Farm No. 2, was formerly located just north of the present maintenance building. These USTs were removed in March 2005. Another, earlier group of USTs was located east of former Tank Farm No. 2 at the eastern edge of the site. These USTs have also been removed.

Six ground-water-monitoring wells (MW-1, MW-2, MW-3, MW-9, MW-10, and MW-11) are presently located at the site. These wells were installed to monitor the ground water in the east-central portion of the site as a result of releases of fuel from the USTs formerly located at the eastern edge of the property. Well MW-1 was installed just east and upgradient of these former USTs and wells MW-2, MW-3, and MW-9 through MW-11 were installed at downgradient locations ranging from approximately 80 to 200 feet northwest to southwest of the former USTs. Plate 2 is a Site Plan that shows the relative locations of the AC Transit surface facilities, present and former USTs, and ground-water-monitoring wells.

2.0 FIELD AND LABORATORY WORK

2.1 Field Procedures

Essel Tech personnel visited the site on November 10, 2007, to measure the water level in wells MW-1 through MW-3 and MW-9 through MW-11, to measure the thickness of any free petroleum product in the wells, and to purge the wells for ground-water sampling. The depth to free-phase product and to the static ground-water surface in each well was measured to the nearest 0.01-foot using an electronic oil-water interface probe. Following water-level measurements, the six wells were purged of water using a submersible pump and discharge hose. A minimum of three casing volumes of water was pumped from the six wells during this latest monitoring event. Essel Tech has been pumping 20 casing volumes of water from well MW-2 on a monthly basis. Field measurements of temperature, pH, electrical conductivity, dissolved oxygen, oxygen reduction potential, and ferrous iron were monitored during pumping. Measurements were recorded on field well-development and sampling forms, which are included in Appendix A. Field forms documenting the monthly purging of well MW-2 are also included in Appendix A.

To minimize the potential for inadvertently introducing contaminants, wells were purged in order from least contaminated to most contaminated using the analytical results from the previous monitoring event. In addition, the purge pump and attached discharge hose were cleaned before use in each well by washing the equipment in a soap solution followed by rinsing twice with clean tap water. Discharge water from well purging was directed into 55-gallon drums, which were later emptied into the maintenance building steam bay.

Essel Tech personnel collected water samples from the six wells on November 10, 2007. A clean, disposable polyethylene bailer was lowered through the air-water interface in each well and retrieved to collect the samples. The retrieved water samples were then slowly transferred from the bailer to clean, 40-milliliter volatile organic analysis (VOA) glass vials containing hydrochloric acid as a preservative; to clean, 1-liter brown glass liter bottles containing sulfuric acid as a preservative; and to clean, 1-liter plastic bottles. The various containers were filled completely to eliminate air bubbles, sealed with caps, labeled, and placed in ice storage for transport to an analytical laboratory.

2.2 Laboratory Analyses

Essel Tech personnel prepared Chain-of-Custody forms for the ground-water samples collected and these forms accompanied the samples to the laboratory. Copies of the Chain-of-Custody forms are included in Appendix B. The water samples were delivered to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd) using Environmental Protection Agency (EPA) modified Method 8015C, for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) using EPA Method 8021B, and for nitrate (as nitrogen) and sulfate using EPA Method E300.1.

3.0 RESULTS OF MONITORING AND SAMPLING

3.1 Ground-Water Monitoring

The measured depths to the static ground-water surface in wells MW-1 through MW-3 and MW-9 through MW-11 ranged from 1.6 to 4.25 feet below the tops of the well casings on November 10, 2007. No measurable amount of free-phase petroleum product was found in the six wells; however, fuel odors were noted in wells MW-1 through MW-3, MW-9, and MW-11. Water-level measurements show the ground-water surface rose from 0.2- to 0.6-foot between the May and November monitoring events in wells MW-1, MW-2, and MW-11, and fell from 0.05-to 0.5-foot during this time in wells MW-3, MW-9, and MW-10. The ground-water surface in five of the six wells was 0.1- to 0.7-foot higher in November 2007 than in November 2006.

Essel Tech used wellhead elevation data and depth-to-water measurements made on November 10 to calculate the elevation of the ground-water surface in the wells. The elevation of the ground-water surface ranged from 1.45 to 2.95 feet above mean sea level in the six wells. Based on these elevations, ground water is estimated to flow toward the northwest at a gradient of 0.0055 (0.55-foot vertical distance per 100 feet horizontal distance). Table 1 presents data on product thickness, depth to ground water, and ground-water elevation for the six wells. Plate 3 is a contour map of the shallow ground-water surface interpreted from water-level data collected on November 10, 2007.

3.2 Laboratory Analyses

Results of laboratory analyses of water samples show high concentrations of TPHg (19,000 parts per billion [ppb]) and TPHd (14,000 ppb) in well MW-2, relative to other wells at the site. The concentration of TPHg in this well increased notably between May (6,900 ppb) and November (19,000 ppb) 2007 and the laboratory report indicates that within the gasoline-range hydrocarbons detected, unmodified or weakly modified gasoline is significant. The diesel-range hydrocarbons in well MW-2 declined just as significantly between May (45,000 ppb) and November (14,000 ppb) 2007; the laboratory report also indicates gasoline-range compounds are significant in the diesel hydrocarbons detected. The combined concentrations of TPHg and TPHd in November 2007; however, are lower than detected in every monitoring event, except one, since October 2005.

Detectable concentrations of gasoline-range hydrocarbons (i.e., TPHg) were also found during the latest monitoring event in samples from wells MW-3 (330 ppb) and MW-11 (110 ppb). The TPHg detected in well MW-11 is the first found in this well since Essel Tech began monitoring in October 2005. No TPHg was found in samples from wells MW-1, MW-9, or MW-10. The concentration of TPHg in well MW-1 has fluctuated notably during the last four monitoring events, where relatively elevated levels (1,900 and 1,400 ppb) were detected in May and no TPHg was detected in November.

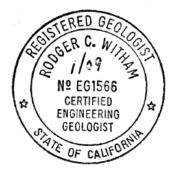
In addition to well MW-2, diesel-range hydrocarbons (i.e., TPHd) were also detected in the five other wells at concentrations ranging from 130 to 1,900 ppb. The concentration of TPHd declined between the May and November 2007 monitoring events in wells MW-1, MW-3, and MW-10 and rose between the two monitoring events in wells MW-9 and MW-11.

The aromatic hydrocarbons BTEX were found at relatively elevated levels (5,800, 79, 360, and 660 ppb, respectively) in well MW-2 in November 2007. The trends of BTEX levels in this well have steadily increased since November 2006 and are at levels equivalent to those detected in May 2006. Notably lower levels of BTEX (0.83- to 19 ppb) were detected in samples from wells MW-3 and MW-11 and no BTEX was found in samples from wells MW-1, MW-9, and MW-10 during the latest monitoring event. The levels of BTEX in well MW-1 have fluctuated in concert with the concentration of TPHg in this well during the last four monitoring events; that is, BTEX has been detected during the May monitoring events and has not been detected during the November monitoring events. The fuel oxygenate MTBE was not detected in any of the six wells sampled at detection limits ranging from 5.0 to 500 ppb. Table 2 presents the results of analyses of water samples from the six wells and Appendix B contains copies of the laboratory report of analyses.

4.0 RECOMMENDATION

Essel Tech recommends that ground-water monitoring and sampling continue on a semiannual basis with the same laboratory protocol as performed during the present sampling event. The next monitoring event should be scheduled for May 2008.

Please call if you have any questions.


Sincerely; Essel Technology Services, Inc.

Samhifa Lahiri Project Manager

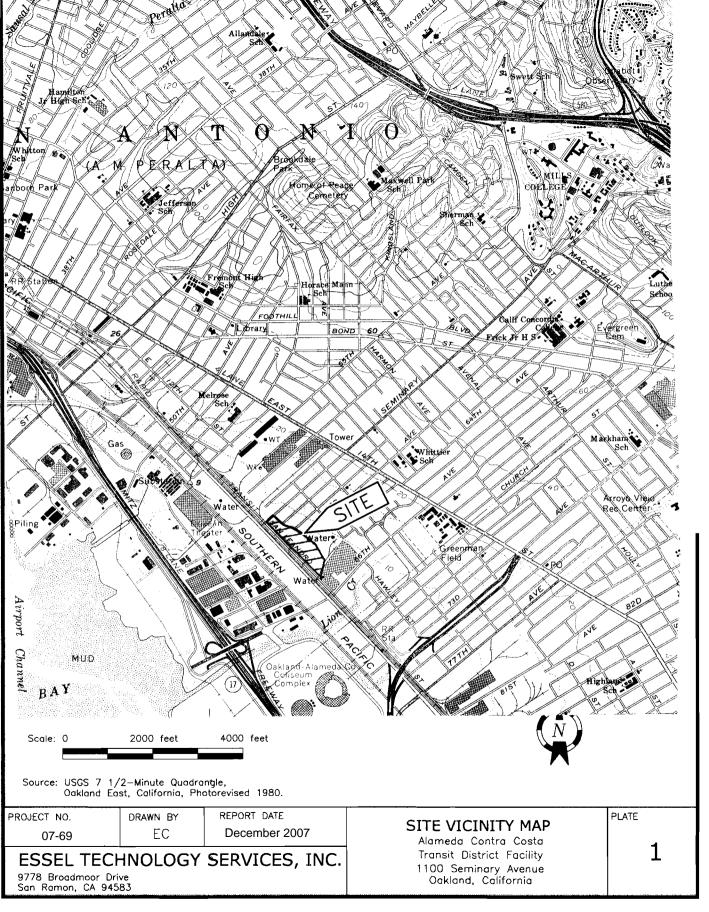
Rodger C. Witham, P.G., C.E.G Senior Hydrogeologist

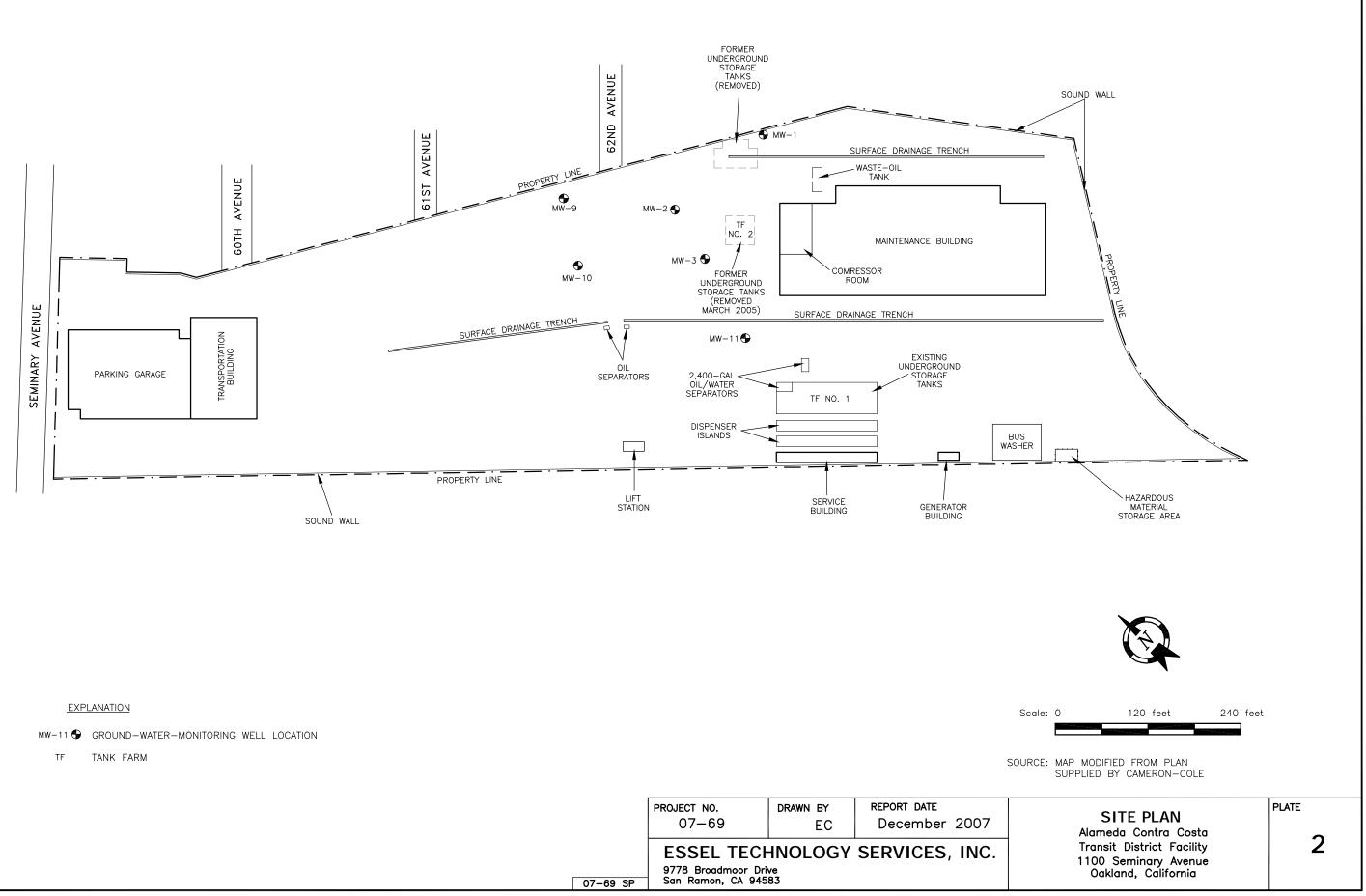
- Table 1: Well Monitoring Data
- Table 2: Results of Laboratory Analyses of Ground-Water Samples
- Plate 1: Site Vicinity Map
- Plate 2: Site Plan
- Plate 3: Ground-Water-Surface Map

Appendix A: Field Purging and Sampling Forms Appendix B: Chain-of-Custody Records and Laboratory Report

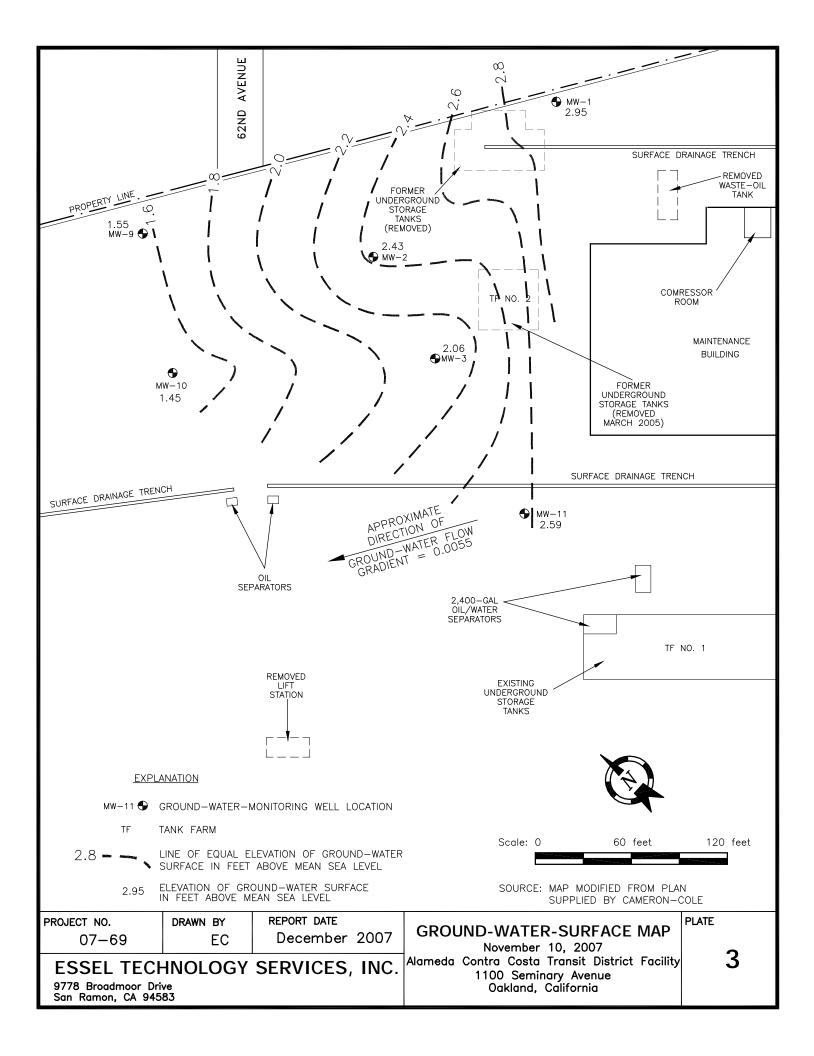
TABLE 1 Well Monitoring Data Alameda-Contra Costa Transit District Facility 1100 Seminary Avenue, Oakland, California

/05 6.2: /06 6.2: /07 6.2: /07 6.2: /07 6.2: /07 6.2: /07 6.2: /07 5.5: /06 5.5: /06 5.5: /07 5.5: /07 5.5: /06 4.7! /06 4.7! /06 4.7! /06 4.7! /07 4.7! /07 4.7!	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.75\\ 3.50\\ 4.00\\ 3.61\\ 3.3\\ 6.91\\ 3.45\\ 2.60\\ 3.30\\ 3.1\\ \end{array}$	1.50 2.75 2.25 2.64 2.95 -1.38 2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31 2.06	1.50 2.75 2.25 2.64 2.95 -1.31 2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31 2.06
/06 6.2: /06 6.2: /07 6.2: /07 6.2: /05 5.5: /06 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /06 4.7! /06 4.7! /06 4.7! /07 4.7!	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.50 4.00 3.61 3.3 6.91 3.45 2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.75 2.25 2.64 2.95 -1.38 2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31	2.75 2.25 2.64 2.95 -1.31 2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31
/06 6.2: /07 6.2: /07 6.2: /05 5.5: /06 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /06 4.7: /06 4.7: /06 4.7: /06 4.7: /07 4.7:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.00 3.61 3.3 6.91 3.45 2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.25 2.64 2.95 -1.38 2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31	2.25 2.64 2.95 -1.31 2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31
/07 6.2: /07 6.2: /05 5.5: /06 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /06 4.7: /06 4.7: /06 4.7: /07 4.7:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.61 3.3 6.91 3.45 2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.64 2.95 -1.38 2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31	2.64 2.95 -1.31 2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31
/07 6.2: /05 5.5: /06 5.5: /06 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /07 5.5: /06 4.7! /06 4.7! /06 4.7! /07 4.7!	$\begin{array}{cccc} 5 & 0.00 \\ 3 & 0.083 \\ 3 & 0.1 \\ 3 & 0.0 \\ 3 & 0.0 \\ 3 & 0.0 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \end{array}$	3.3 6.91 3.45 2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.95 -1.38 2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31	2.95 -1.31 2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31
/05 5.5 /06 5.5 /06 5.5 /07 5.5 /07 5.5 /07 5.5 /05 4.7 /06 4.7 /06 4.7 /06 4.7	$\begin{array}{cccc} 3 & 0.083 \\ 3 & 0.1 \\ 3 & 0.0 \\ 3 & 0.0 \\ 3 & 0.0 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \end{array}$	6.91 3.45 2.60 3.30 3.1 3.36 2.32 3.00 2.45	-1.38 2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31	-1.31 2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31
/06 5.5 /06 5.5 /07 5.5 /07 5.5 /07 5.5 /05 4.7 /06 4.7 /06 4.7 /06 4.7	$\begin{array}{cccc} 3 & 0.1 \\ 3 & 0.0 \\ 3 & 0.0 \\ 3 & 0.0 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ \end{array}$	3.45 2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.08 2.93 2.23 2.43 1.40 2.44 1.76 2.31	2.16 2.93 2.23 2.43 1.40 2.44 1.76 2.31
/06 5.5 /07 5.5 /07 5.5 /07 5.5 /05 4.7 /06 4.7 /06 4.7 /06 4.7	$\begin{array}{cccc} 3 & 0.0 \\ 3 & 0.0 \\ 3 & 0.0 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \end{array}$	2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.93 2.23 2.43 1.40 2.44 1.76 2.31	2.93 2.23 2.43 1.40 2.44 1.76 2.31
/06 5.53 /07 5.53 /07 5.53 /05 4.74 /06 4.74 /06 4.74 /06 4.74	$\begin{array}{cccc} 3 & 0.0 \\ 3 & 0.0 \\ 3 & 0.0 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \\ 6 & 0.00 \end{array}$	2.60 3.30 3.1 3.36 2.32 3.00 2.45	2.23 2.43 1.40 2.44 1.76 2.31	2.23 2.43 1.40 2.44 1.76 2.31
/07 5.5 /07 5.5 /05 4.7 /06 4.7 /06 4.7 /06 4.7	3 0.0 3 0.0 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00	3.30 3.1 3.36 2.32 3.00 2.45	2.23 2.43 1.40 2.44 1.76 2.31	2.23 2.43 1.40 2.44 1.76 2.31
/07 5.53 /05 4.70 /06 4.70 /06 4.70 /07 4.70	3 0.0 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00	3.1 3.36 2.32 3.00 2.45	2.43 1.40 2.44 1.76 2.31	2.43 1.40 2.44 1.76 2.31
/06 4.7 /06 4.7 /07 4.7	6 0.00 6 0.00 6 0.00	2.32 3.00 2.45	2.44 1.76 2.31	2.44 1.76 2.31
/06 4.7 /06 4.7 /07 4.7	6 0.00 6 0.00 6 0.00	2.32 3.00 2.45	2.44 1.76 2.31	2.44 1.76 2.31
/06 4.7 /07 4.7	6 0.00 6 0.00	3.00 2.45	1.76 2.31	1.76 2.31
/07 4.7	6 0.00	2.45	2.31	2.31
4.7	6 0.00	2.7	2.06	2.06
/05 5.8		4.45	1.35	1.35
/06 5.8		3.33	2.47	2.47
/06 5.8		4.35	1.45	1.45
/07 5.8	0 0.00	3.75	2.05	2.05
/07 5.8	0 0.00	4.25	1.55	1.55
/05 4.6	5 0.00	3.88	0.77	0.77
/06 4.6		2.78	1.87	1.87
				0.95
				1.50
				1.45
4.0	5 0.00	5.2	1.45	1.45
		3.04	1.15	1.15
				2.89
				1.89
				1.99
/07 4.1	9 0.00	1.6	2.59	2.59
	07 4.6 07 4.6 05 4.1 06 4.1 06 4.1 07 4.1 07 4.1	07 4.65 0.00 07 4.65 0.00 05 4.19 0.00 06 4.19 0.00 06 4.19 0.00 07 4.19 0.00 06 4.19 0.00 07 4.19 0.00 07 4.19 0.00 07 4.19 0.00 07 4.19 0.00	07 4.65 0.00 3.15 07 4.65 0.00 3.2 05 4.19 0.00 3.04 06 4.19 0.00 1.30 06 4.19 0.00 2.30 07 4.19 0.00 2.20 07 4.19 0.00 1.6 et above mean sea level.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


Depth to ground water in feet below the top of the well casing. Ground-water surface elevation in feet above mean sea level. #Multiply product thickness by specific gravity of 0.8 and add to ground-water surface elevation.


TABLE 2 RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES Alameda-Contra Costa Transit District Facility 1100 Seminary Avenue, Oakland, California

Well	Date				_		Ethyl	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-1	10/00/05	2 800	940	NIA	200	5.0	85	26	-5.0	-100	002.2	4.400	2 200
10100-1	10/09/05	2,800	840	NA	200	5.0		26	<5.0	<100	6,600	4,190	3,300
	5/29/06	1,900	580	NA	33	4.3	23	16	<5.0	<100	46,000	3,740	2,200
	11/13/06	<50	230	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	180	3,000	3,270	1,200
	5/27/07	1,400	4,700	NA	46	5.5	7.4	8.8	<15	<100	7,900	120	3,270
	11/10/07	<50	1,900	NA	<0.5	<0.5	<0.5	<0.5	<5.0	760	3,900	2,820	0.0
MW-2	10/09/05	42,000	12,000	NA	19,000	<250	1,300	1,800	<250	<100	170	3,610	2,670
	5/29/06	20,000	170,000	NA	5,900	88	190	660	<170	<100	730	4,230	2,600
	11/13/06	3,000	7,200	NA	560	13	46	140	<80	150	67,000	2,040	2,000
	5/27/07	6,900	45,000	NA	1,800	28	110	270	<130	<100	200	140	3,300
	11/10/07	19,000	14,000	NA	5,800	79	360	660	<500	<100	270	720	3,260
MW-3	10/09/05	8,400	1,400	NA	4,500	<100	330	<100	<100	<100	4,700	3,290	230
	5/29/06	340	330	NA	6.2	1.3	<0.5	1.1	<5.0	<100	9,500	1,970	300
	11/13/06	410	170	NA	2.7	2.1	1.2	1.0	<5.0	<100	18,000	3,310	670
	5/27/07	600	620	NA	15	<0.5	15	4.7	<10	<100	10,000	720	1,570
	11/10/07	330	600	NA	16	0.83	7.6	1.4	<5.0	<100	8,000	590	NM
MW-9	10/09/05	<50	87	NA	2.8	<0.5	<0.5	<0.5	1.2	<100	180,000	2,870	300
10100 0	5/29/06	<50	1,100	NA	<0.5	<0.5	<0.5	<0.5	<5.0	120	91,000	1,360	0.0
	11/13/06	<50	56	NA	<0.5	<0.5	<0.5	<0.5	<5.0	170	110,000	70	1,550
	5/27/07	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	110,000	1,570	1,570
	11/10/07	<50	1,300	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	14,000	970	1,260
MW-10	10/09/05	<50	<50	NA	0.92	<0.5	<0.5	<0.5	0.66	<100	120,000	3,850	870
	5/29/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	110,000	1,590	0.0
	11/13/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	97,000	490	1,040
	5/27/07	<50	550	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	100,000	230	1,160
	11/10/07	<50	130	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	97,000	1,050	20


TABLE 2 RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES Alameda-Contra Costa Transit District Facility 1100 Seminary Avenue, Oakland, California

Well	Date						Ethyl	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-11 10/09/05 <50 82 NA 3.0 <0.5 <0.5 0.57 0.83 <100 130,000 1,870 64											640		
	5/29/06 <50 150 NA 2.9 <0.5 <0.5 <0.5 <5.0 <100 120,000 3,730 310												310
	11/13/06 <50 150 NA <0.5 <0.5 <0.5 <5.0 <100 150,000 2,700 NM											NM	
	5/27/07 <50 330 NA 1.8 <0.5 <0.5 <0.5 <5.0 <100 130,000 1,420 3,000											3,000	
	11/10/07 110 890 NA 19 <0.5 2.5 4.0 <5.0 <100 160,000 3,150 60											60	
Results in mi	crograms per li	ter = parts pe	er billion; detecta	able results a	are shaded.								
TPHg = total	petroleum hydi	ocarbons as	gasoline										
TPHd = total	petroleum hydi	ocarbons as	diesel										
TPH = total p	etroleum hydro	carbons as n	notor oil or unkr	nown hydroc	arbon								
MTBE = met	hyl tertiary buty	l ether											
MCL = maxin	num contamina	nt level											
NA = not ana	lyzed; NM = nc	t measured											
< = less than	the laboratory	method deteo	ction limit										

	project no.	drawn by	report date
	07-69	EC	December 2007
07-69 SP	ESSEL TECH 9778 Broadmoor Dri San Ramon, CA 945	ve	SERVICES, INC.

APPENDIX A

PURGING AND SAMPLING FIELD FORMS

Job Name: Seminary

Well Number:

Job Number:07-69-01

Date: 11/10/07

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[]Swab []Surge []Other
Total Depth (TD) of casing in Feet	[] Bail Bailer Type: $D_1 \le p \le c \le c$
Depth to water (DTW) in Feet <u>3</u> 3 Purge Volume Calculation	[] Pump
Purge Volume Calculation $(\underline{14,4}) - (\underline{3,3}) \times \underline{3} \times \underline{11} = \underline{5,6}$ gallons	Pump type: [] Submersible [] Centrifuge [] Bladder [] Other
$(TD) - (DTW) \times V \times F =$ Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	16.53	145	7.98	5:11	326.4	3	0.0	(10 01 0)
	#7.6	166	7:05	591	310.1	2		
	18.02	1454	6.25	8-12	22412	3		
	19.02	1943	3:73	4.21	7451	4		
	19/10	06311156	2.95	6:46	1814	5		×
	19.55	1.208	2-82	0.52	1319	6		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)	1.
Dark Furhid	water
Smill of Fail	present
	//

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other_

Well Sampling Date:

Job Name: Seminary

Well Number: Mw - 2

Job Number:07-69-01

Date: 11/10/07

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet _23_3_	[] Bail Bailer Type: Disposasie
Depth to water (DTW) in Feet 3 Purge Volume Calculation	[] Pump
$(23.3) - (3.1) \times 3 \times = 10.3$ gallons	Pump type: [/] Submersible [] Centrifuge [] Bladder [] Other
$(TD) - (DTW) \times V \times F =$ Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	20.67	2.296	1004	6.20	166.2	1	3.26	
	20.32	2.023	0.69	6.36	50.0	3		
	20.67	2.194	57	6.19	- 6.3	5		
	20.98	2.333	.67	6.29	- 31-9	6		
	21.06	2.310	. 82	6:32	- 41.7	8		
	21.04	2.235	- 72	6.36	- 45.+	4		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

high purchidity small if gasoline

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other _____

Well Sampling Date:

Job Name: Seminary

Well Number: <u>MW-3</u>

Job Number:07-69-01

Date: 11/10/07

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 17.2	[] Bail Bailer Type: <u>Disposable</u>
Depth to water (DTW) in Feet Purge Volume Calculation	[] Pump
Purge Volume Calculation $(\underline{17.2}) - (\underline{2.7}) \times \underline{3} \times \underline{.17} = \underline{7.395}$ gallons	Pump type: [] Submersible [] Centrifuge [] Bladder [] Other
(TD) - (DTW) x V x F = Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	22.33	199	5.50	6.15	232.0	1		
	22.30	.191	4.44	6.34	227.6	2		
	22.64	-191	1.34	6.46	206.1	3		
	22.73	, 235	.93	6.57	184.9	4		
	52.79	1221	,71	6.61	161.1	5		
	22.90	0279	-68	6.50	1443	6		
	22.94	. 372	, 59	6-46	1384	7		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

Turtud Water; Fuel oder present

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other _____

Well Sampling Date:

Ø

Job Name: Seminary

Well Number: <u>MW9</u>

Job Number:07-69-01

Date: 11/10/07

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 8.85	[] Bail Bailer Type: Dispose Sie
Depth to water (DTW) in Feet 4.25	[] Pump
Purge Volume Calculation	
$(\underline{3.33}) - (\underline{4.25}) \times \underline{3} \times \underline{.77} = \underline{2.346}$ gallons	Pump type: [] Submersible [] Centrifuge [] Bladder [] Other
(TD) - (DTW) x V x F = Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature ℃	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	22.12	1048	3.95	641	151.1	1	1.26	
	22-36	565	1-22	6.67	231	2.0		
	22.74	-611	.97	6.94	-3:1	20		

Total gallons pumped:

Observations during	g purging	(well	condition,	turbidity,	color,	odor etc.))
- al		· _	. 1'				÷.,

Strong Odor) Turkety

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other

Well Sampling Date:

Job Name: Seminary

Well Number: MW - 10

Job Number:07-69-01

Date: 11/10/07

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet <u>11.35</u>	[] Bail Bailer Type: Disposasie
Depth to water (DTW) in Feet (1. 36 Purge Volume Calculation	[] Pump
[1.35 Purge Volume Calculation () - $(3.2) \times 3 \times 17 = 4.16$ gallons	Pump type: [Y Submersible [] Centrifuge
(TD) - (DTW) x V x F = Purge Volume	[] Bladder [] Other
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	arameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	23.56	2.993	Servo3-17	6.87	142.8	١	U.OZ	
	22.83	3.76	. 39	6.51	147.5	2		
	23.32	3.33	1.09	6.41	139.3	3		
	23.21	3.873	1.05	6.52	123.7	Y		
	· · · · · · · · · · · · · · · · · · ·							

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

jught turbulity, no final adar

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other _____

Well Sampling Date:

Job Name: Seminary

Well Number: $M\omega - 11$

Job Number:07-69-01

Date: 11/10/07

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 13.5	[] Bail Bailer Type: DISposable
Depth to water (DTW) in Feet 1.6 Purge Volume Calculation	[] Pump
$(13,5) - (1.6) \times 3 \times .17 = 6.07$ gallons	Pump type: [1] Submersible [] Centrifuge
$(TD) - (DTW) \times V \times F =$ Purge Volume	[]Bladder []Other
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume

F= gallon of water per foot of casing

			Field Pa	arameters	5			
Time AM PM	Temperature ℃	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Leve (TD-DTW)
	23.74	1.121	\$4.56	6.65	176.3	Ĩ	0.06	
	23.51	1.046	4.26	636	137.6	2		
	24.69	1.525	4.51	6.81	165.1	3		
	24.60	1.447	3-25	6.30	148.6	4		
	24.79	1.576	3.15	6.79	134.4	S		
				-				

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

7 slight Turbiclity, faint adar of gospline

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other _____

Well Sampling Date:

APPENDIX B

CHAIN-OF-CUSTODY RECORD AND LABORATORY REPORT

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #07-69-01; Gr. Water	Date Sampled: 11/10/07
9778 Broadmoore Drive	Samples	Date Received: 11/12/07
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Reported: 11/16/07
	Client P.O.:	Date Completed: 11/16/07

WorkOrder: 0711299

November 16, 2007

Dear Samhita:

Enclosed are:

- 1). the results of **6** analyzed samples from your **#07-69-01; Gr. Water Samples project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

		5	em	in	,es	n	/	8	1	te							C	71	12	29	9						P	rz	e,	1/:	2	Pa	230-\$1
We Tel	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: <u>www.mccampbell.com</u> Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269 port To: <u>Samhite Langui</u> Bill To: <u>Same</u> mpany: ESEL TECHNOLOGY BERMUES IN C																	OU	NI) T		E PD	F	RUS	SH Ex	[24 cce l		1	۲ 48 Wr	HR HR)RD [72] On (I 'J" fla	HR DW	5 DAY
Report To: Sam	o: Samhite dahisi Bill To: Same																A	nal	ysis	Ree	ques	it						(Other		Comments		
Company: ESSE	FLTECHA	VOLOG	Y SER	SNC	ES	I)	nc							-1		G					ers								1				Filter
9778 Br	admon	v Dr	8 1	Sar	R	er	mo	W	narr	2 . 44	472	0		U T 181		/B&					ngen									1			Samples
CA-94	583				I:ES									016		520 F					/Co						020)	(07		1,2			for Metals
Tele: () Project #: @7	-69-01		F	ax: ((74)) {	1007	9	77		Co	LI	- 00	Ing		415	(8.1)	DCs)	8021		clors		des)			As)	0/0	0 / 00		X	4		analysis;
Project #: 67 Project Location: Sampler Signatur	Sem	ina	ry_	rojec	t INAI	Name: Gr. Wate Samphy							Y I LUNG	Tas (002 / 3021 + 3015) / M1BE		ase (166	bons (41	21 (HVC	A 602/3	sticides)	LY; Aro	ides)	Herbici	(Cs)	0Cs)	Hs / PN/	0.8 / 601	.8/601	6020)	Ser			Yes
Sampler Signatur	·e: <u> </u>		PLING			Г	MA	TDI	v	N	MET	HOD	. (60)	s (002		& Gre	Irocar	0 / 80	Y (EP	(CI Pe	NO s,	Pestic	die Cl	50 (VO	V2) 07	0 (PA	7/20	7/200	6010 /	K			
		SAMI	PLING	SIS	iners	\vdash	MA	IKI	X	PF	ESE	RVE	D	as car	(8015)	n Oil	n Hyd	1 / 801	INO	8081	PCB	I (NP	1 (Aci	4/826	5/827	[/831	s (200	\$ (200.	00.8 / 0	10			
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	All	Other	ICE	HCL	HNO ₃	Other RTEV & TDH	DIEA & IFH	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Vitral			
M10-9-01	MWg	11/10	11.30	1	And	X				T	X		1	-	X													-		\square		T	
1 02	1	1	1	3	roA	1		-					×	\langle					/													T	
03				I	1	Π							X	K					/														
04				T	V	Π					1		N	L					/														
05	V		1	1	PIS	Ħ				\vdash	1		1																	X			
MW-10-01	Mw-10	1	12.10	1	IAM	Ħ		-		\vdash	1		+	,	X															1		+	
1 02	1		1	3	VOA	Π							+	4					/														
03				1	1	Π					T		Y						/														
04					V	Ħ					T		X	E					/														
1 05				1	PIS	Ħ		1				-	1	1					-											X		+	
MW-11-01	Mw-11		13'00	1	Ame	Ħ				F			+		×															-		+	
1 021	1			3	VOA			+	-	t	H		V		-				1			-							-			+	
03/04				T	L	H		+			1		X				-		7			-							-		+-+-	+	
105				1	PIS	1		+	-		4		14		+			. 0	1			-								X		+	
Relinquished By: Samtul	xa	Date:	Time:	Rece	ived B	y:	. [a					G	300	DD (DIT	ION BSE		2	/							CON	MMI	ENTS	š: .		
Relinquished By	1	Date:	Time: 1700		eived B BU	y:	. /	/						DEC	RO	ORI PRL	NATE	CON	IN L		s_	t	/	/									
Relinquished By:		Date:	Time:	and an advantage	ived B	and the second s	0						- P	RE	SEF	RVE	DIN	LAI															
													Р	RE	SEF	RVA'	по		AS	08		ME pH<		S	OTH	ER	1						

			Se	m	in	N	ny	5	11	te																			Page	2/2
McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: <u>www.mccampbell.com</u> Telephone: (877) 252-9262 Fax: (925) 252-9269 Report To: Sammite Lamin Bill To: Same Company: ESSEL TECHNOLOGY SERVICES INC. 9778 Broad moor Drewe																	101	UNI EDI	D T F√G		PD Ch	F	RUS In sa) SH Ex	24 ccel			48 F Wri	IR 72 i te On (HR 5 DAY DW)
Company: \mathcal{E} So 9778 Som R. Tele: $(5/0)$ 20 Project #: 076 Project Location: Sampler Signatur	EL TE Broad amon 06 -02 8-01 Semi	CHNOL MODO CA 70	LOQY Deer F F	SE Ve -Mai ax: rojec	RVI il: Es (9)/ ct Nan) 8 ne:	EL 33 Se	TEI	191	ER D M	-		602 / 8021 + 8015) / MTBE		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	carbons (418.1)	/ 8021 (HVOCs)			lors / Congeners				(SVOCs)	(PAHs / PNAs)	/ 200.8 / 6010 / 6020)	200.8 / 6010 / 6020)	10 / 6020)	i suelfall	Filter Samples for Metal analysis Yes No
SAMPLE ID	LOCATION/ Field Point Name	SAMI Date	Time	# Containers	Type Containers	er	Soil	Sludge		PRE	SE	HNO ₃ Other Other	TPH as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's (EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Netrale 1	
MW-01-01 02	MW-1	11/10	9.30	1	Am5 roAs	×				X	X		×	X				/												
03		01		2	Ţ	1	_			\$	1		X					/												
05	1			1	Plash				-	1								-											\times	
MW-2-01	1		10.15	1	Anis					1	-			7																
02				1	roAs					L			7					/												
04	L			1	PIS								×																X	
MW-3-01 02,03,04	1		10.45	1	Am6 VoAs	+	-		-	7	$\left \right $	-	X	×				/			_	_								
Mw-3-5		V		1	PIS.					1.	Y		*																X	
Relinquished By: Samuel Relinquished By: Such and Relinquished By:	1	Date: II P Date: VR(07 Date:	Time:	Rece	ived By ived By RA ived By		an				•		GC HI DF AF		CON SPAC LORI	NDÍI CE A INAI ATE	BSE FED CO	IN L		28_1		/	_			(COM	IME	NTS:	_

McCampbell Analytical, Inc.

	W
[J.C.
1	
	\sim

1534 Willow Pass Rd

MW-01-01

MW-2-01

MW-3-01

Water

Water

Water

11/10/2007

11/10/2007

11/10/2007

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	CA 94565-1701 9262					Work(Order	• 0711	299	С	lientI	D: ETS	R				
				EDF	v	Excel		Fax	5	🖌 Email		Hard	Сору	🗌 Thii	rdParty		
Report to: Samhita Lahiri		Email:	esseltekservi	ces@aol.com		I	Bill to: Sh	er Guh	а				Req	uested	TAT:	5 a	days
Essel Technolo 9778 Broadmoo San Ramon, C/	ore Drive	TEL: ProjectNo: PO:	(925) 833-7991 # 07-69-01; G	FAX: (925) 8 to. Water Samples		77	97	78 Broa	hnology admoore on, CA 9	e Drive	e			e Rece e Prin		11/12/2 11/12/2	
									Requ	uested	Tests	(See leg	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711299-001	MW-9-01		Water	11/10/2007		С	А	В									
0711299-002	MW-10-01		Water	11/10/2007		С	А	В									
0711299-003	MW-11-01		Water	11/10/2007		С	А	В									

С

С

С

А

А

А

В В

В

Test Legend:

0711299-004

0711299-005

0711299-006

1 300_1_W	2 G-MBTEX_W	3 TPH(D)_W	4	5	
6	7	8	9	10	
11	12				

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Essel Technolog	jy Service			Date a	and Time Received:	11/12/2007	7:37:47 PM
Project Name:	# 07-69-01; Go. \	Water Samples			Checl	klist completed and re	eviewed by:	Kimberly Burks
WorkOrder N°:	0711299	Matrix <u>Water</u>			Carrie	er:		
		Chain	of Cu	stody (C	OC) Informa	ation		
Chain of custody	/ present?		Yes		No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		Sa	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Preser	vatior	n and Ho	ld Time (HT) Information		
All samples rece	ived within holding tim	-	Yes	✓	No 🗌			
	-			r Temp:	5.9°C			
	Blank temperature				_		_	
	ls have zero headspa		Yes		No 🗆	No VOA vials submi		
Sample labels cl	hecked for correct pre	servation?	Yes	\checkmark	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analyt alitv Counts"	ical, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Essel Te	chnology Service		Client Project ID Samples): #07	7-69-01; Gr. Water	Sampled: 11/10/	mpled: 11/10/07						
9778 Bro	admoore Drive		~····F····	Date Received 11/12/07									
San Ram	on, CA 94583		Client Contact:	Samh	ita Lahiri	Date Extracted 11/12/07							
			Client P.O.: Date Analyze 11/12/07-11/13/07										
Extraction me	ethod E300.1		Inorganic Analytical meth		-		Work C	Order: 0	711299				
Lab ID	Client ID	Matrix	Nitrate as N	DF	Nitrate as NO3 ⁻	DF	% SS						
001C	MW-9-01	W	ND	1	ND	1	14	2	110				
002C	MW-10-01	W	ND	1	ND	1	97	50	102				
003C	MW-11-01	w	ND	1	ND	1	160	50	103				
004C	MW-01-01	W	0.76,h	1	3.3	1	3.9	1	104				
005C	MW-2-01	W	ND,h	1	ND	1	0.27	1	101				
006C	006C MW-3-01	w	ND	1	ND	1	8.0	1	106				
								_					
ND m	rting Limit for DF =1; eans not detected at or ve the reporting limit	W S	0.1 NA		0.45 NA		0.1 NA		mg/I mg/K				

* water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

* [Nitrate as NO3⁻] = 4.4286 x [Nitrate as N]

surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted/reporting limit raised due to high inorganic content/matrix interference; k) sample arrived with head space.

DHS ELAP Certification N° 1644

Angela Rydelius, Lab Manager

	McCampbell	Analy ality Counts		<u>.</u>	Web: www.m	ccampbell.com	ittsburg, CA 94565 E-mail: main@mcca 2 Fax: 925-252-9	mpbell.com							
Essel	Technology Service		Client Proj	ect ID: #0	7-69-01; Gr. Wa	ter Samples	Date Sampled: 11/10/07								
9778 1	Broadmoore Drive						Date Received: 11/12/07								
C. D	CA 04592		Client Con	tact: Samh	ita Lahiri		Date Extract	stracted: 11/13/07-11/16/07							
San K	amon, CA 94583		Client P.O.	Client P.O.: Date Analyzed 11/13/07-11/16/07											
Extracti	Gasolin on method SW5030B	e Range (-	arbons as Gaso SW8021B/8015Cm	line with BTH	X and MTBE	* Work Order	: 0711	299					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS					
001A	MW-9-01	w	ND	ND	ND	ND	ND	ND	1	113					
002A	MW-10-01	W	ND	ND	ND	ND	ND	ND	1	107					
003A	MW-11-01	w	110,a	ND	19	ND	2.5	4.0	1	108					
004A	MW-01-01	w	ND,h	ND	ND	ND	ND	ND	1	99					
005A	MW-2-01	W	19,000,a,h	ND<500	5800	79	360	660	100	91					
006A	MW-3-01	W	330,a	ND	16	0.83	7.6	1.4	1	109					
	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L					
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg					

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

<u>McC</u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 377-252-9262 Fax: 925-252-920	pbell.com					
Essel Technolog	y Service	Client Project ID: Samples	Client Project ID: #07-69-01; Gr. Water Samples Date Sampled: 11/10/ Date Received: 11/12/							
San Ramon, CA 9	94583	Client Contact: Sa Client P.O.:	Client Contact: Samhita LahiriDate Extracted: 11/12Client P.O.:Date Analyzed 11/13							
Extraction method SW3			ctable Hydrocarbons as nethods SW8015C	s Diesel* Work Or	der: 07	11299				
Lab ID	Client ID	Matrix	TPH(d))	DF	% SS				
0711299-001B	MW-9-01	W	1300,g,b	,n	1	104				
0711299-002B	MW-10-01	W	130,b		1	104				
0711299-003B	MW-11-01	W	890,b,g	3	1	105				
0711299-004B	MW-01-01	W	1900,g,a,h							
0711299-005B	MW-2-01	W	14,000,d,a,h							
0711299-006B	MW-3-01	w	600,g,d,	1	107					

Reporting Limit for DF =1;	W	50	µg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

NONE

McCampbell Analytical, Inc.

"When Quality Counts"

QC SUMMARY REPORT FOR E300.1

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0711299

QA/QC Officer

EPA Method: E300.1	Extrac		Bat	chID: 31	859	Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS		LCSD	LCS-LCSD	Acceptance Criteria (%)			
Analyte	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Nitrate as N	N/A	1	N/A	N/A	N/A	95.3	93.2	2.24	N/A	N/A	85 - 115	15
Nitrate as NO3 ⁻	N/A	4.4	N/A	N/A	N/A	95.3	93.2	2.24	N/A	N/A	85 - 115	15
Sulfate	N/A	1	N/A	N/A	N/A	99.7	104	4.15	N/A	N/A	85 - 115	15
%SS:	N/A	0.10	N/A	N/A	N/A	100	100	0	N/A	N/A	90 - 115	10
All target compounds in the Method	Blank of this extr	action bate	h were NI	D less thar	the method	l RL with	the follow	ing exception	s:		-	

BATCH 31859 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711299-001C	11/10/07 11:30 AM	11/12/07	11/12/07 10:33 PM	0711299-001C	11/10/07 11:30 AM	11/12/07	11/13/07 3:00 PM
0711299-002C	11/10/07 12:10 PM	11/12/07	11/12/07 11:00 PM	0711299-002C	11/10/07 12:10 PM	11/12/07	11/13/07 3:26 PM
0711299-003C	11/10/07 1:00 PM	11/12/07	11/12/07 11:26 PM	0711299-003C	11/10/07 1:00 PM	11/12/07	11/13/07 3:53 PM
0711299-004C	11/10/07 9:30 AM	11/12/07	11/12/07 11:53 PM	0711299-005C	11/10/07 10:15 AM	11/12/07	11/13/07 12:20 AM
0711299-006C	11/10/07 10:45 AM	11/12/07	11/13/07 12:47 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

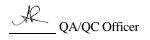
QC Matrix: Water

WorkOrder 0711299

EPA Method SW8021B/8015Cm	Extra	Extraction SW5030B BatchID: 31854 Spiked Sample ID							ole ID:	0711297-016A				
Analyte	Sample	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD							Acce	Acceptance Criteria (%)				
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex ^f	ND	60	79	80	1.27	78.4	89.1	12.8	70 - 130	30	70 - 130	30		
MTBE	ND	10	105	104	1.49	100	96.9	3.36	70 - 130	30	70 - 130	30		
Benzene	ND	10	102	101	0.605	103	96.5	6.92	70 - 130	30	70 - 130	30		
Toluene	ND	10	100	101	0.311	103	96	6.63	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	10	102	102	0	105	97.5	7.37	70 - 130	30	70 - 130	30		
Xylenes	ND	30	96.3	95.7	0.694	100	91.3	9.06	70 - 130	30	70 - 130	30		
%SS:	108	10	103	105	1.48	106	107	1.42	70 - 130	30	70 - 130	30		

BATCH 31854 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711299-001A	11/10/07 11:30 AM	11/15/07	11/15/07 12:02 AM	0711299-002A	11/10/07 12:10 PM	11/14/07	11/14/07 12:41 AM
0711299-003A	11/10/07 1:00 PM	11/15/07	11/15/07 2:04 AM	0711299-004A	11/10/07 9:30 AM	11/16/07	11/16/07 2:22 PM
0711299-005A	11/10/07 10:15 AM	11/13/07	11/13/07 10:02 PM	0711299-006A	11/10/07 10:45 AM	11/13/07	11/13/07 10:35 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

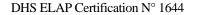
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0711299

ed MS	MSD	MS-MSD	LCS	LCSD					
				LOOD	LCS-LCSD	Acceptance Criteria (%)			
/L % Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
0 N/A	N/A	N/A	124	128	2.67	N/A	N/A	70 - 130	30
0 N/A	N/A	N/A	87	106	19.9	N/A	N/A	70 - 130	30
)	00 N/A	00 N/A N/A	00 N/A N/A N/A	00 N/A N/A N/A 87	00 N/A N/A N/A 87 106	00 N/A N/A N/A 87 106 19.9		00 N/A N/A N/A 87 106 19.9 N/A N/A	00 N/A N/A N/A 87 106 19.9 N/A N/A 70-130

BATCH 31783 SUMMARY Sample ID **Date Sampled** Date Extracted Date Analyzed Sample ID Date Sampled Date Extracted Date Analyzed 0711299-001B 11/10/07 11:30 AM 11/12/07 11/13/07 10:25 PM 0711299-002B 11/10/07 12:10 PM 11/12/07 11/13/07 11:33 PM 0711299-003B 11/14/07 12:42 AM 11/14/07 1:50 AM 11/10/07 1:00 PM 11/12/07 0711299-004B 11/10/07 9:30 AM 11/12/07 0711299-005B 11/10/07 10:15 AM 11/14/07 5:15 AM 0711299-006B 11/14/07 6:24 AM 11/12/07 11/10/07 10:45 AM 11/12/07


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer