

Alameda-Contra Costa Transit District

August 2, 2007

Mr. Stephen Plunkett
Alameda County Health Division
Division of Environmental Protection
Department of Environmental Health
1131 Harbor Bay Parkway, Second Floor
Alameda, CA 94502

Dear Mr. Plunkett:

Subject: Groundwater Monitoring Report – May 2007

AC Transit, 1100 Seminary Ave., Oakland

AC Transit hereby submits the enclosed groundwater monitoring report for the AC Transit facility located at 1100 Seminary Avenue in Oakland. The report was prepared by our consultant, Esseltech, and contains the results of groundwater monitoring performed on May 27, 2007, from six on-site monitoring wells.

Gasoline-range hydrocarbons were detected in wells MW-1, MW-2, and MW-3 at concentrations of 1,400 ppb, 6,900 ppb, and 170 ppb, respectively. Diesel-range hydrocarbons were detected in all six wells at concentrations ranging from 45,000 ppb (MW-2) to 330 ppb (MW-11). BTEX compounds were detected to be highest in samples collected from MW-2 with concentrations at 1,800 ppb for benzene, 28 ppb for toluene, 110 ppb for ethyl benzene, and 270 ppb for total xylenes. The fuel oxygenate MTBE was not detected in any of the wells at detection limits ranging from 5.0 to 130 ppb.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments regarding the enclosed report, please call me at (510) 577-8869.

Sincerely,

Suzanhe Chaewsky, P.Ē Environmental Engineer

enclosure

RECEIVED

1:54 pm, Feb 23, 2009

Alameda County Environmental Health

GROUND-WATER MONITORING IN MAY 2007 ALAMEDA-CONTRA COSTA TRANSIT DISTRICT FACILITY 1100 SEMINARY AVENUE OAKLAND, CALIFORNIA 94621

Prepared for

Alameda-Contra Costa Transit District 10626 International Boulevard Oakland, California 94603

Prepared by

Essel Technology Services, Inc. 9778 Broadmoor Drive San Ramon, California 94583 (925) 833-7977

Project No. 0568

June 2007

GROUND-WATER MONITORING IN MAY 2007 ALAMEDA-CONTRA COSTA TRANSIT DISTRICT FACILITY 1100 SEMINARY AVENUE OAKLAND, CALIFORNIA 94621

1.0 INTRODUCTION

The Alameda-Contra Costa Transit District (AC Transit) has contracted with Essel Technology Services, Inc. (Essel Tech) to perform ground-water monitoring and sampling at the AC Transit Division 4 facility in Oakland, California. This report presents the results of monitoring and sampling performed in May 2007.

1.1 Site Location and Description

The Division 4 facility is located at 1100 Seminary Avenue in Oakland, California and is on the southeastern corner of the intersection of San Leandro Street and Seminary Avenue, as shown on Plate 1. The Division 4 facility is used for storage and maintenance of AC Transit buses. The facility contains a primary maintenance building that is located near the southeastern corner of the site. Other facilities include a bus washing structure, a generator building, a service building, and a lift station, which are located along the southwestern side of the property. A parking garage and transportation building are located at the northern end of the property. The site also contains underground storage tanks (USTs). The existing USTs are referred to as Tank Farm No. 1 and are located west of the present maintenance building. A second group of USTs, referred to as Tank Farm No. 2, was formerly located just north of the present maintenance building. These USTs were removed in March 2005. Another, earlier group of USTs was located east of former Tank Farm No. 2 at the eastern edge of the site. These USTs have also been removed.

Six ground-water-monitoring wells (MW-1, MW-2, MW-3, MW-9, MW-10, and MW-11) are presently located at the site. These wells were installed to monitor the ground water in the east-central portion of the site as a result of releases of fuel from the USTs formerly located at the eastern edge of the property. Well MW-1 was installed just east and upgradient of these former USTs and wells MW-2, MW-3, and MW-9 through MW-11 were installed at downgradient locations ranging from approximately 80 to 200 feet northwest to southwest of the former USTs. Plate 2 is a Site Plan that shows the relative locations of the AC Transit surface facilities, present and former USTs, and ground-water-monitoring wells.

2.0 FIELD AND LABORATORY WORK

2.1 Field Procedures

Essel Tech personnel visited the site on May 27, 2007 to measure the water level in wells MW-1 through MW-3 and MW-9 through MW-11, to measure the thickness of free petroleum product in the wells, and to purge the wells for ground-water sampling. The depth to free-phase product and to the static ground-water surface in each well was measured to the nearest 0.01-foot using an electronic oil-water interface probe. Following water-level measurements, the six wells were purged of water using a submersible pump and discharge hose. A minimum of three casing volumes of water was pumped from the six wells during this latest monitoring event. Essel Tech has been pumping 20 casing volumes of water from well MW-2 on a monthly basis. Field measurements of temperature, pH, electrical conductivity, dissolved oxygen, oxygen reduction potential, and ferrous iron were monitored during pumping. Measurements were recorded on field well-development and sampling forms, which are included in Appendix A. Field forms documenting the monthly purging of well MW-2 are also included in Appendix A.

To minimize the potential for inadvertently introducing contaminants, wells were purged in order from least contaminated to most contaminated using the analytical results from the previous monitoring event. In addition, the purge pump and attached discharge hose were cleaned before use in each well by washing the equipment in a soap solution followed by rinsing twice with clean tap water. Discharge water from well purging was directed into 55-gallon drums, which were later emptied into the maintenance building steam bay.

Essel Tech personnel collected water samples from the six wells on May 27, 2007. A clean, disposable polyethylene bailer was lowered through the air-water interface in each well and retrieved to collect the samples. The retrieved water samples were then slowly transferred from the bailer to clean, 40-milliliter volatile organic analysis (VOA) glass vials containing hydrochloric acid as a preservative; to clean, 1-liter brown glass liter bottles containing sulfuric acid as a preservative; and to clean, 1-liter plastic bottles. The various containers were filled completely to eliminate air bubbles, sealed with caps, labeled, and placed in ice storage for transport to an analytical laboratory.

2.2 Laboratory Analyses

Essel Tech personnel prepared Chain-of-Custody forms for the ground-water samples collected and these forms accompanied the samples to the laboratory. Copies of the Chain-of-Custody forms are included in Appendix B. The water samples were delivered to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd) using Environmental Protection Agency (EPA) modified Method 8015C, for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) using EPA Method 8021B, and for nitrate (as nitrogen) and sulfate using EPA Method E300.1.

Essel Technology Services, Inc.

3.0 RESULTS OF MONITORING AND SAMPLING

3.1 Ground-Water Monitoring

The measured depths to the static ground-water surface in wells MW-1 through MW-3 and MW-9 through MW-11 ranged from 2.20 to 3.75 feet below the tops of the well casings on May 27, 2007. No measurable amount of free-phase petroleum product was found in well MW-2; however, oily globules were observed in the water from the well. Essel Tech used wellhead elevation data and depth-to-water measurements made on May 27 to calculate the elevation of the ground-water surface in the wells. The elevation of the ground-water surface ranged from 1.50 to 2.64 feet above mean sea level in the six wells. Based on these elevations, ground water is estimated to flow toward the west at a gradient of 0.004 (0.4-foot vertical distance per 100 feet horizontal distance). Table 1 presents data on product thickness, depth to ground water, and ground-water elevation for the six wells. Plate 3 is a contour map of the shallow ground-water surface interpreted from water-level data collected on May 27, 2007.

3.2 Laboratory Analyses

Results of laboratory analyses of water samples show, in wells MW-1 through MW-3, concentrations of TPHg, TPHd, and BTEX were notably higher during the May 2007 sampling event than during the previous sampling event in November 2006. In May 2007, well MW-2 contained the highest concentrations of TPHg (6,900 parts per billion [ppb]) and TPHd (45,000 ppb). Concentrations of TPHg and TPHd were 1,400 ppb and 4,700 ppb, respectively in well MW-1 and were 600 ppb and 620 ppb, respectively in well MW-3. No TPHg was detected in water samples from wells MW-9 through MW-11; however, TPHd was detected in samples from all three wells. The levels of TPHd in MW-9 and MW-11 were modestly higher in May 2007 than in November 2006. A concentration of 550 ppb was detected in the water sample from well MW-10 in May 2007, whereas no TPHd was detected in this well during the three previous semiannual monitoring events.

The aromatic hydrocarbons BTEX were found at generally low concentrations (4.7 to 46 ppb) in the samples from wells MW-1 and MW-3 and were found at relatively elevated levels (1,800, 28, 110, and 270 ppb, respectively) in the sample from well MW-2. Except for 1.8 ppb benzene in well MW-11, the aromatic hydrocarbons were not detected in samples from wells MW-9 through MW-11. The fuel oxygenate MTBE was not detected in any of the six wells sampled at detection limits ranging from 5.0 to 130 ppb.

As in previous monitoring events, the laboratory analytical report for the TPHg analysis indicates a significant portion of the gasoline-range hydrocarbons are unmodified or weakly modified (unweathered). The laboratory analytical report for the TPHd analysis indicates gasoline-range hydrocarbons are significant in samples from wells MW-2 and MW-3 and oil-range hydrocarbons are significant in samples from every well except MW-2. Table 2 presents the results of analyses of water samples from the six wells and Appendix B contains copies of the laboratory reports of analyses.

4.0 RECOMMENDATION

Essel Tech recommends that ground-water monitoring and sampling continue on a semiannual basis with the same laboratory protocol as performed during the present sampling event. The next monitoring event should be scheduled for November 2007.

CERTIFIED ENGINEERING

Please call if you have any questions.

Sincerely;

Essel Technology Services, Inc.

Nambilidahimi

Samhita Lahiri Project Manager

Rodger C. Witham, P.G., C.E.G

Lodger C. Witham

Senior Hydrogeologist

Table 1: Well Monitoring Data

Table 2: Results of Laboratory Analyses of Ground-Water Samples

Plate 1: Site Vicinity Map

Plate 2: Site Plan

Plate 3: Ground-Water-Surface Map

Appendix A: Purging and sampling field forms

Appendix B: Chain-of-Custody Record and Laboratory Report

TABLE 1 **Well Monitoring Data Alameda-Contra Costa Transit District Facility** 1100 Seminary Avenue, Oakland, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
MW-1	10/09/05 05/28/06 11/13/06 05/27/07	6.25	0.00 0.00 0.00 0.00	4.75 3.50 4.00 3.61	1.50 2.75 2.25 2.64	1.50 2.75 2.25 2.64
MW-2	10/09/05 05/28/06 11/13/06 05/27/07	5.53	0.083 0.1 0.0 0.0	6.91 3.45 2.60 3.30	-1.38 2.08 2.93 2.23	-1.31 2.16 2.93 2.23
MW-3	10/09/05 05/28/06 11/13/06 05/27/07	4.76	0.00 0.00 0.00 0.00	3.36 2.32 3.00 2.45	1.40 2.44 1.76 2.31	1.40 2.44 1.76 2.31
MW-9	10/09/05 05/28/06 11/13/06 05/27/07	5.80	0.00 0.00 0.00 0.00	4.45 3.33 4.35 3.75	1.35 2.47 1.45 2.05	1.35 2.47 1.45 2.05
MW-10	10/09/05 05/28/06 11/13/06 05/27/07	4.65	0.00 0.00 0.00 0.00	3.88 2.78 3.70 3.15	0.77 1.87 0.95 1.50	0.77 1.87 0.95 1.50
MW-11	10/09/05 05/28/06 11/13/06 05/27/07	4.19	0.00 0.00 0.00 0.00	3.04 1.30 2.30 2.20	1.15 2.89 1.89 1.99	1.15 2.89 1.89 1.99

Top of casing in feet above mean sea level.
Product thickness in feet.
Depth to ground water in feet below the top of the well casing.
Ground-water surface elevation in feet above mean sea level.
#Multiply product thickness by specific gravity of 0.8 and add to ground-water surface elevation.

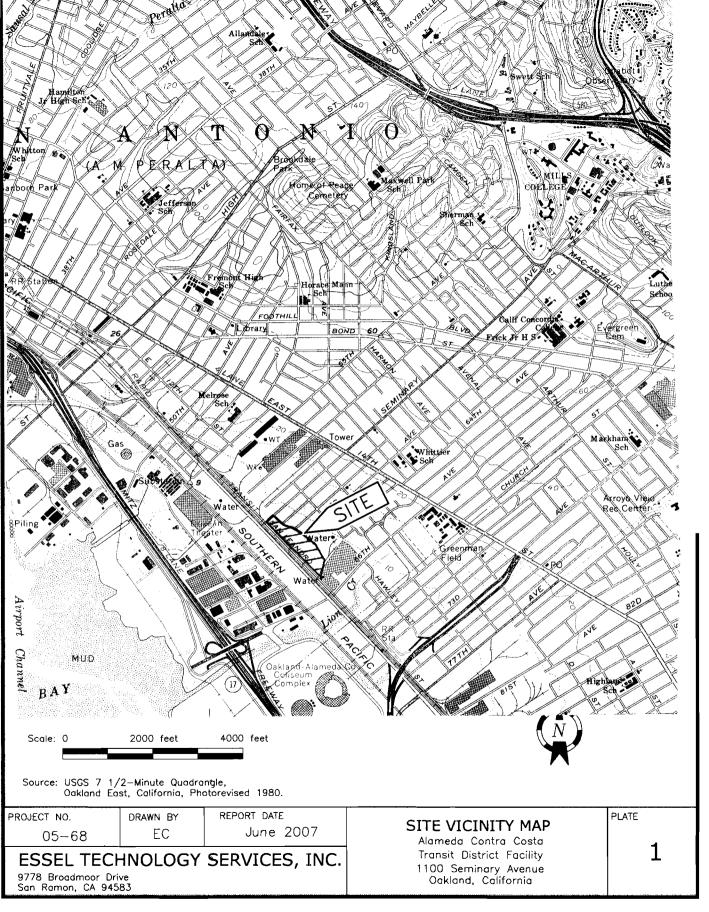
TABLE 2
RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES
Alameda-Contra Costa Transit District Facility
1100 Seminary Avenue, Oakland, California

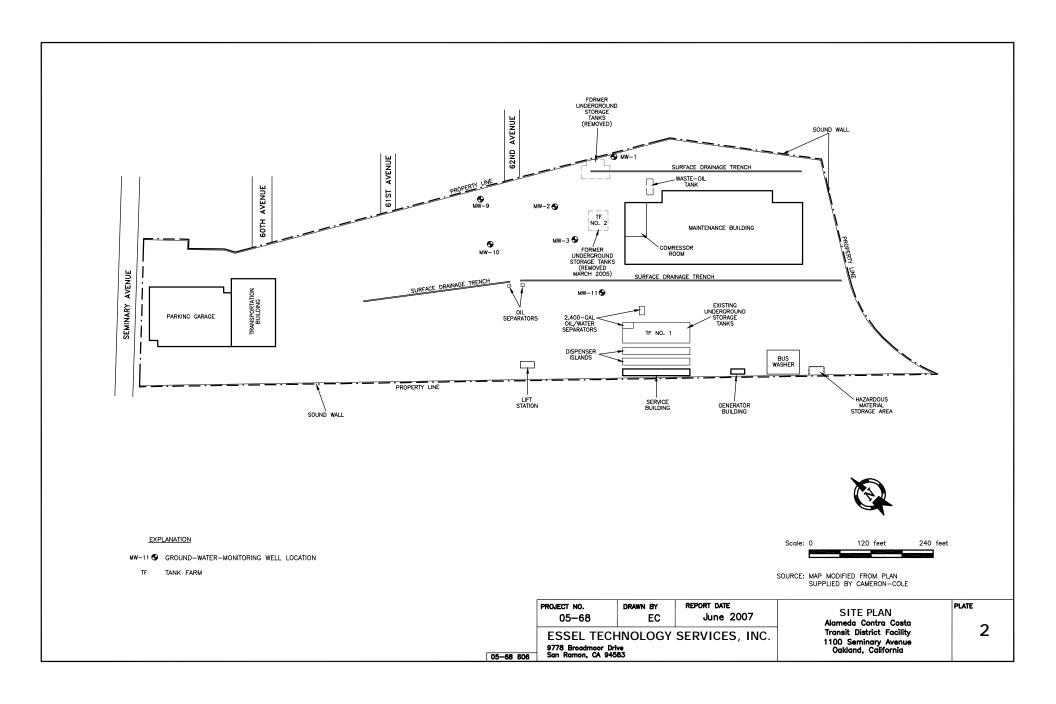
0/09/05 /29/06 1/13/06 /27/07 0/09/05 /29/06 1/13/06 /27/07	2,800 1,900 <50 1,400 42,000 20,000 3,000 6,900	840 580 230 4,700 12,000 170,000 7,200	NA NA NA NA NA	200 33 <0.5 46	5.0 4.3 <0.5 5.5	85 23 <0.5 7.4	26 16 <0.5 8.8	<5.0 <5.0 <5.0 <15	<100 <100 180 <100	6,600 46,000 3,000 7,900	4,190 3,740 3,270 120	3,300 2,200 1,200 3,270
/29/06 1/13/06 /27/07 0/09/05 /29/06 1/13/06	1,900 <50 1,400 42,000 20,000 3,000	580 230 4,700 12,000 170,000	NA NA NA	33 <0.5 46	4.3 <0.5 5.5	23 <0.5 7.4	16 <0.5	<5.0 <5.0	<100 180	46,000 3,000	3,740 3,270	2,200 1,200
/29/06 1/13/06 /27/07 0/09/05 /29/06 1/13/06	1,900 <50 1,400 42,000 20,000 3,000	580 230 4,700 12,000 170,000	NA NA NA	33 <0.5 46	4.3 <0.5 5.5	23 <0.5 7.4	16 <0.5	<5.0 <5.0	<100 180	46,000 3,000	3,740 3,270	2,200 1,200
1/13/06 //27/07 0/09/05 //29/06 1/13/06	<50 1,400 42,000 20,000 3,000	230 4,700 12,000 170,000	NA NA NA	<0.5 46 19,000	<0.5 5.5	<0.5 7.4	<0.5	<5.0	180	3,000	3,270	1,200
0/09/05 0/29/06 1/13/06	1,400 42,000 20,000 3,000	4,700 12,000 170,000	NA NA	46 19,000	5.5	7.4					· · · · · · · · · · · · · · · · · · ·	•
0/09/05 /29/06 1/13/06	42,000 20,000 3,000	12,000 170,000	NA	19,000			8.8	<15	<100	7,900	120	3.270
/29/06 1/13/06	20,000 3,000	170,000		•	<250							0,210
1/13/06	3,000	•	NA			1,300	1,800	<250	<100	170	3,610	2,670
	•	7,200		5,900	88	190	660	<170	<100	730	4,230	2,600
/27/07	6,900		NA	560	13	46	140	<80	150	67,000	2,040	2,000
	,	45,000	NA	1,800	28	110	270	<130	<100	200	140	3,300
0/09/05	8 400	1 400	NΔ	4 500	<100	330	<100	~ 100	<100	4 700	3 290	230
/29/06	*	•		•						•	•	300
1/13/06										-,	· · · · · · · · · · · · · · · · · · ·	670
/27/07	600	620	NA	15	<0.5	15	4.7	<10	<100	10,000	720	1,570
1/09/05	-5 0	97	NΑ	2.8	-0.5	-05	-0.5	1.2	-100	180 000	2 870	300
		-										0.0
1/13/06		•								•		1,550
/27/07	<50	170	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	110,000	1,570	1,570
											·	
0/09/05	<50	<50	NA	0.92	<0.5	<0.5	<0.5	0.66	<100	120,000	3,850	870
/29/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	110,000	1,590	0.0
1/13/06	<50	<50	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	<100	97,000	490	1,040
/27/07	<50	550	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	100,000	230	1,160
0/09/05	<50	82	NA	3.0	<0.5	<0.5	0.57	0.83	<100	130,000	1,870	640
/29/06	<50	150	NA	2.9	<0.5	<0.5	<0.5	<5.0	<100	120,000	3,730	310
1/13/06	<50	150	NA	<0.5	<0.5	<0.5	<0.5	<5.0	<100	150,000	2,700	NM
/27/07	<50	330	NA	1.8	<0.5	<0.5	<0.5	<5.0	<100	130,000	1,420	3,000
/2 1/1 /2 0/0 /2 1/1 /2 0/0 /2 1/1	29/06 13/06 27/07 09/05 29/06 13/06 27/07 09/05 29/06 13/06 27/07 09/05 29/06 13/06 27/07	29/06 340 13/06 410 27/07 600 09/05 <50 29/06 <50 13/06 <50 27/07 <50 09/05 <50 29/06 <50 13/06 <50 29/06 <50 13/06 <50 27/07 <50	29/06 340 330 13/06 410 170 27/07 600 620 09/05 <50	29/06 340 330 NA 13/06 410 170 NA 127/07 600 620 NA 09/05 <50	29/06 340 330 NA 6.2 13/06 410 170 NA 2.7 27/07 600 620 NA 15 09/05 <50	29/06 340 330 NA 6.2 1.3 13/06 410 170 NA 2.7 2.1 27/07 600 620 NA 15 <0.5	29/06 340 330 NA 6.2 1.3 <0.5	189/06 340 330 NA 6.2 1.3 <0.5	89/06 340 330 NA 6.2 1.3 <0.5			

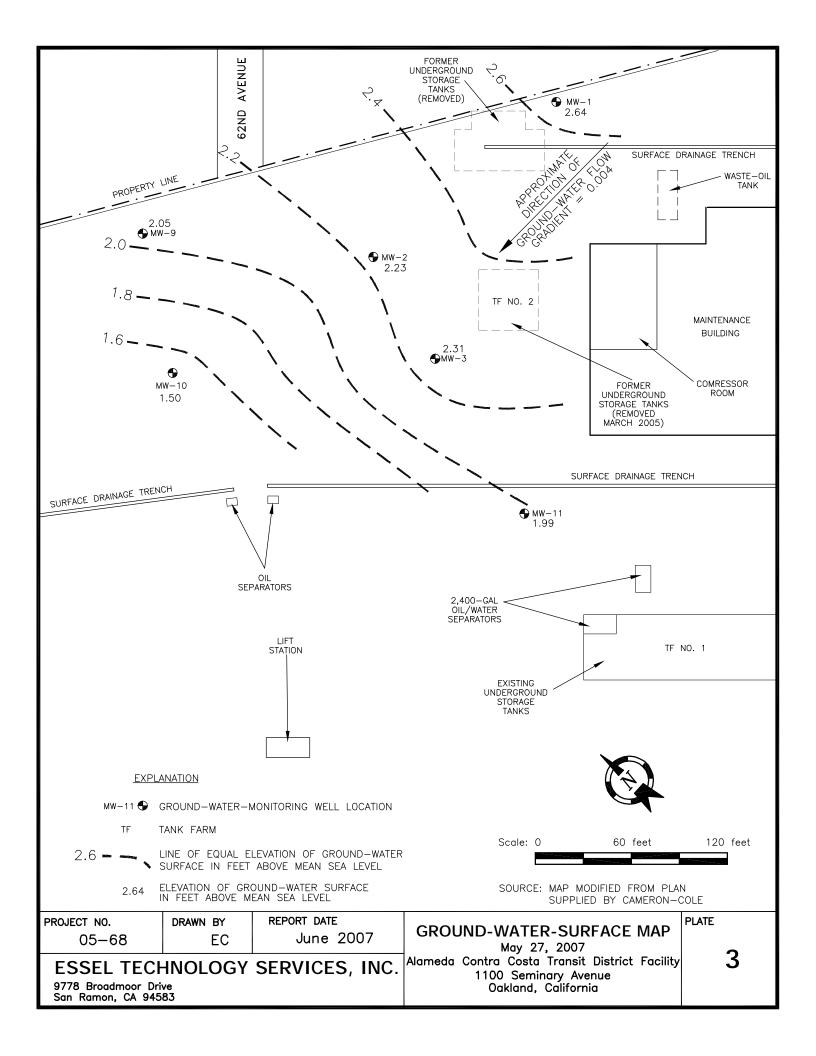
Results in micrograms per liter = parts per billion; detectable results are shaded.

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel


TPH = total petroleum hydrocarbons as motor oil or unknown hydrocarbon


MTBE = methyl tertiary butyl ether


MCL = maximum contaminant level

NA = not analyzed; NM = not measured

< = less than the laboratory method detection limit

APPENDIX A PURGING AND SAMPLING FIELD FORMS

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)					
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other					
Total Depth (TD) of casing in Feet 16.45	[] Bail Bailer Type: Disposable					
Depth to water (DTW) in Feet 3. 6/	[] Pump					
Purge Volume Calculation $(16.4)5 (3.61) \times 3 \times 17 = 6.54 \text{ gallons}$	Pump type: [x] Submersible [] Centrifuge					
(TD)-(DTW)x V x F = Purge Volume	[]Bladder []Other					
Expla	nation					
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing					

		Field Pa	rameters				
Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
19.30	997	2.99	6.95	-45.2			
19.05	1275	1.14	6.85	-70.3	3		
19.09	1292	0.24	6.37	-76.0	4.5		
19016	1291	0.16	6.88	-77.9	6. U	327	12.84P
19.19	1294	0.12	6.88	-78.6	6.5		
	19.30 19.05 19.09	°C µS/cm 19.30 997 19.05 1275 19.09 1292 19.16 1291	Temperature $_{\text{C}}^{\text{C}}$ Conductivity $_{\text{\mu S/cm}}^{\text{Cm}}$ DO (mg/L) $_{\text{L}}^{\text{C}}$	$^{\circ}$ C μS/cm 19.30 937 2.99 6.95 19.05 1275 1.14 6.85 19.09 1292 0.24 6.37 19.09 1291 0.16 6.88	Temperature $_{\text{C}}^{\text{C}}$ Conductivity $_{\text{\mu S/cm}}^{\text{Cm}}$ DO (mg/L) pH ORP $_{\text{C}}^{\text{P}}$ 19.30 937 2.99 6.95 -45.3 19.05 12.75 1.14 6.85 -70.3 19.09 12.92 0.24 6.87 -76.0 19.16 12.91 0.16 6.88 -77.9	Temperature $_{\text{vC}}^{\text{Conductivity}}$ $_{\text{µS/cm}}^{\text{Conductivity}}$ $_{\text{µS/cm}}^{\text{DO (mg/L)}}$ $_{\text{PUmped}}^{\text{pH}}$ $_{\text{ORP}}^{\text{Gallons}}$ $_{\text{Pumped}}^{\text{Pumped}}$ $_{\text{I}}^{\text{I}}$	Temperature ${}^{\circ}\text{C}$ ${}^{$

	19.19	1294	0.12	6.88	-78.6	6.5			
Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Semi-Clean water, No oder of Jan									
	e water disposa		sewer [] Sto	orm drain [] Drum [
Well San	npling Date: 5/		Time: 1930						

Job Name:

AC Transit – Seminary

Well Number:

MWO

Job Number:

0568-May 07

Date:

5/27/07

Sampled By:

S. Lahiri

Purge Volume	Development/Purge Method(s)						
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other						
Total Depth (TD) of casing in Feet 23.40	[] Bail Bailer Type: Disposable						
Depth to water (DTW) in Feet 3 30	[/] Pump						
Purge Volume Calculation $(23 - (3 - 3) \times 3 \times 11 = 10 - 2 \text{ gallons}$	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other						
(TD)-(DTW)x V x F = Purge Volume	[] Bladder [] Simer						
Explanation							
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing						

	Field Parameters										
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)			
	18.92	295	1.13	6.60	23.9						
	19.33	258	0.14	6.63	-27.2	2,5					
	19.00	521	0.11	6.82	-47.1	2.0					
****	18.96	676	0.07	6.20	-49.2	7.5	3,3	20.10/			
	19.02	761	0.13	6.22	-52.1	10.0					
	19.07	216	0.14	6.36	-45.3	10.5					

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

Africal Dark Color Smell of Gas

Well Sampling Date: 5/27/07

Time: 1/900

Job Name:

AC Transit – Seminary

Well Number:

Job Number: 0568-May 07

Date:

5/27/07

Sampled By:

S. Lahiri

Purge Volume	Development/Purge Method(s)					
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other					
Total Depth (TD) of casing in Feet 17.3	[] Bail Bailer Type: Disposable					
Depth to water (DTW) in Feet 2. 45/	[✓] Pump					
Purge Volume Calculation $(\frac{17.3}{17.3}) - (\frac{2.45}{17.5}) \times \frac{3}{17.5} \times \frac{17}{17.5} = \frac{7.57}{17.57} \text{ gallons}$	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other					
(TD)-(DTW)x V x F = Purge Volume	[] Bladder [] Other					
Expla	nation					
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing					

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	22.13	152	0.67	7.00	-27.5			
	20.91	228	0.25	7.19	77.9	-3		
	20.63	283	0.18	7-12	-7 S.7		·	'
	20.33	62 2	0.61	6.94	-55.6	7	1.57	
	20.26	1420	0.72	6.37	-52.4	8		

Total gallons po	umped: uring purging (らう かん	well condition	n, turbidi of	ty, color, c	odor etc.) Water	with	petroleum	prole
		Blac		color				_
Discharge water	er disposal: []	Sanitary sew	er[]Sto	orm drain [] Drum [/]	Other	tean Bay	-
Well Sampling							e: /850	

Job Name: AC

AC Transit – Seminary

Well Number: _____/

1W-9

Job Number:

0568-May 07

Date:

5/27/07

Sampled By:

S. Lahiri

Purge Volume	Development/Purge Method(s)				
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other				
Total Depth (TD) of casing in Feet 3.75	[] Bail Bailer Type: Disposable				
Depth to water (DTW) in Feet 3.75	[] Pump				
Purge Volume Calculation $(19.5) - (3.75) \times 3 \times 17 = 8.03$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other				
(TD)-(DTW)x V x F = Purge Volume	[]2.4440.				
Expla	nation				
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing				

	Field Parameters											
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)				
	21.99	392	0.28	7.43	-119.	1.0						
	21.52	422	0.15	7.43	-/10.2	3.0						
	20.22	967	0.19	7.44	-75.5	5.0						
	19.82	1162	0.83	7.37	-60.7	7.0	1.57	15.75fl				
	19.39	1214	157	7.32	-54.7	7.5						
	19.92	1212	11.57	7.33	-47.1							

Total	gallons	pumped:
LOUL	Samons	pumpou.

Observations during purging (well condition, turbidity, color, odor etc.)

Disty/Dask water		
Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other	Seam	Bong
Well Sampling Date: 5/27/07	Time: j8v0	1

Job Name: AC Transit – Seminary Well Number: MW 10

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 11.30	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet 3.15	Pump
Purge Volume Calculation	
Purge Volume Calculation $(11.3) - (3.15) \times 3 \times 17 = 4.15$ gallons	Pump type: [x] Submersible [] Centrifuge
(TD)-(DTW)x V x F = Purge Volume	[] Bladder [] Other
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
		_				1440		
	23,09	2298	2.13	6.98	130	130.01	Gal	
	21.94	3093	0.51	7.05	123.6	2		
	21.28	3127	0.22	7.10	118.0	3		
	20.96	3129	0.23	7.12	111.7	Li		
							1.16	8.15 ft
	1							,

	L	<u> </u>			1		
Total gal	lons pumped:						
Observat	ions during pur	ging (well cond	dition, turbidi	ty, color, o	dor etc.)		
	0 20	i-Dank	Cela	$\frac{1}{\sqrt{N}}$	0 105	~	
		V, 5	- W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7 0700		
Discharg	e water disposa	l: [] Sanitary	sewer [] Sto	orm drain [] Drum [/] Other	fear Bay
Well San	npling Date: 5/	27/07				Tit	ne: 13 5

Job Name:	AC Transit – Seminary	Well Number:	MWII	
	•	,		

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 13.45	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet 2-2 Purge Volume Calculation	[] Pump
Purge Volume Calculation $(\cancel{\cancel{3}},\cancel{\cancel{4}}\cancel{5}) - (\cancel{\cancel{2}}\cancel{1}\cancel{2}) \times \cancel{\cancel{3}} \times \cancel{\cancel{1}\cancel{7}} = \cancel{\cancel{5}}\cancel{7}\cancel{3} \text{ gallons}$	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
(TD)-(DTW)x V x F = Purge Volume	[] Diadei [] Other
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

			Field Pa	rameters			***************************************	
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	22.76	1023	2.53	7.09	88.0	1		
	22.94	1014	2.29	7.23	75.5	2		
	21.87	1066	1.50	7.22	63.4	3		
	21-52	1202	6.11	7.41	52.7	4.5	3.00	11.25 -71.
	21.30	1315	1.42	7.19	15.5	5.2		
		<u> </u>						

	- 10	(57) 543				<u>'''</u>	10			_ _		
												
Total gall	lons pumped:											
Observat	ions during purg	ging (well con-	dition,	turbidi	ity, c	olor, c	dor et	c.)				
Discharge	e water disposal	: [] Sanitary	sewer	[]Sto	orm o	drain [] Dru	m [/] Ot	her _	Steam	Bay
Well San	npling Date: 5/2	27/07								7	Γime: /8	30

APPENDIX B

CHAIN-OF-CUSTODY RECORD AND LABORATORY REPORT

Essel Technology Service	Client Project ID: #0568-May 07; Seminary	Date Sampled: 05/27/07
9778 Broadmoore Drive		Date Received: 05/29/07
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Reported: 06/05/07
	Client P.O.:	Date Completed: 06/05/07

WorkOrder: 0705694

June 05, 2007

Dear Samhita:

Enclosed are:

- 1). the results of 6 analyzed samples from your #0568-May 07; Seminary project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701									B 5/ 85/ 1 4 885 5/ 5/ 1 18/ B 5/ 4/6/									Ø															
	hsite: www.m			nail: e	nain@	mcc	amp	pbel	Il.co	m				-	GeoTracker EDF PDF Excel Write O								72 HI										
Te	lephone: (877	1) 252-92	62		Fax	(9,	45) /	252	-920	59					·									ple is effluent and "J" flag is									
	mhita			Bill T):	£7	5							I						A	nal		Red								Oth		Comments
Company: Es	sel Tech	nologo	1 Son	1100										_	643		(H					613									F-		Filter
			_			10.07		r		_		· ·			8015) / MTBE		/B&					agen									(300%)		Samples
Tele: (5/0) 20	0/2 0270			E-Mai								nci.	iov	~	(1)(5)		620			-		8/C						020)	020)				for Metals
Project #: 05				Projec			2	2	41	11				\forall	1 80		64/8	18.1)	0Cs)	8021		oclor		ides			(48)	9/01	9/01		3		analysis: Yes / No
Project Location:		nony													8021		9E (16	ons (4	(HIV	602 /	icides	Y; Ar	(Sa)	lerbic	3	3	s/PN	8 / 60	8/60	020)	7		1637110
Sampler Signatur	e: 5 Ca	niri				_				_			_		902 / 1		Grea	carb	8021	EPA	Pest	ONE	sticid	CH	NOC	SVO	PAH	200.	200.9	9 / 01	3		
		SAMI	PLING		ers		MA	TR	XIX			ETE			Gas (6	(51)	Oil &	Hydro	8010	NLY) 18	CB's (NP Pe	Acidic	8260	8270	8310 (200.7	7.000	8/60	-		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO,	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congener	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA \$25.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Morale		
mw9 - 1	MW9	5-27-07	6:26		500	\vdash				7			1	7		7																	
MW9 - Z	MW9		5:26		250	Г				7			\top	1																	/		
mw9-3	Mwg		1		40					1			1		/					/													
MW9 - 4	MW9				1					7			T	1	Í																		
MW9 -5	MW9		1		1					7																							
Mw3 - 1	Mw3		5:49		500										4	/																	
Mw3 - 2	MW3		1		250																												
MW3 -3	MW3				40										1					1													
mw3 -4	MW3)					\Box																							
MW3 -5	MW3		1		1															7													
MW10-1	MW 10		6:12		500											/																	
mw 10-2	MW10		1		250																										/		
MW10 - 3					40															i													
MW10 -4			1		40												,			4		/											
Relinquished By:	n Qu	Date:	Time:	Roet	Tood B		1/2	M	1	1	7	/	7	1	GO	OD AD	CON	DIT	ION BSE	NT	/			228					CON	MMI	ENTS:	18	
Relinquished By:		Date:	Time:	Rece	ived B	y:									DE/	CHI	ORI	NATE	CON	IN L		SL	/										
Relinquished By:	elinquished By: Date: Time: Received By:										PRESERVED IN LAB VOAS O&G METALS OTHER PRESERVATION (PH-2)																						

	McCAMPBELL ANALYTICAL, INC.										CHAIN OF CUSTODY RECORD																						
				RG, CA 9										-	T	UR	IN.	AR	OL	NI	T	IM	E					3					Ø.
	We We	ebsite: www.me	ccampbel	Leon En	nail: n	nain@	mec	amp	bell	.com				- 1							- 0	4			RUS			HR		48 1		72 H	
	Te	lephone: (877	7) 252-92	62		Fax:	(92	5) 2	52-	9269)			- 1	G	eo'	Γra	cke	er F	EDI	7 K												W) 🛄
	Report To: Sai	mhuta lahi	/1		Bill To			_	_	_	_	_	_	+	_	Analy								_	-	mp	ie is	em	luen	t ar	Ot		comments
	Company: E4	sel Techn	Name 6	- I	om re	0;								+						- 1	mai	VSIS	Rei	lues	1						01	ner	Comments
	company. 29,	vet recylin	0(099	201MC										\dashv	BE		&F)					raer									300.1		Filter
				F	-Mai	il:								\neg	8015) / MTBE		5520 E/B&F)					Suo									130		Samples
	Tele: (510) 2	06 02-	70) (33	3	79	77			\neg	(\$11		5520	-	0	2		13/						6020	6020		(EVA		for Metals analysis:
	Project #:			F	rojec	(925 et Nan	ne:	A	ch	an	sit	-			+		964	418.1	20/	/ 802	9	roclo		cides			NAs)	/010	10/				Yes / No
	Project Location:	Sem	unar	9											8021		1) as	oms (8	602	licide	Y; A	3	lerbi	8	3	s/P	8/6	8 / 60	020)	3		
	Sampler Signatur	re:						_			_			\Box	002 /		Grea	carb	802	EPA	Pest	ONL	sticie	GE	NOC	SVO	PAH	200	200.3	9/01	7		
			SAMI	PLING		2	1	MA	TR	IX			HOD		sas (e	(3)	Total Petroleum Oil & Grease (1664/	Total Petroleum Hydrocarb	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors	EPA 507 / 8141 (NP Pesticides)	515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	3		
		LOCATION/			1 5	j.jj					1			٦	I as	(8)		H H	01/8	X O	/ 806	Z PC	410	51 (A	24/8	25/8	M / 8	als (2	ds (2)	200.5	2		
	SAMPLE ID	Fleld Point			Containers	Containers									TPE	TPH as Diesel (8015)	trole	trole	2/6	BTE	809 /	1/800	/ 81	/ 81	12/6	3/16	70 SI	Met	Meta	0.77	0		
		Name	Date	Time	100	Type (Water	=		Sludge	12	HCL	0	Other	BTEX &	H as	al Pe	al Pe	5002	BE/	1 508	99	1 507	1.515	8	525	1 82	M 17	FTS	d (20	Nithale		
					#	F,	×	Soil	A	S C		Ħ	H	히	ВП	TP	Tot	Tot	EP/	MT	EP	EP.	EP.	EPA	EP/	EP	EPA	CA	120	Les	芝		
	MW10 - 5	MW10	5/27/0	6:12		40	П			T	Т			T	/					1													
1	MW11-1	MWII		6:30		500			Т					ď		/																	
)	MW11-2	Mw II		1		250					Г			1																	/		
1	MW11 -3	1				40								1	1					1													
	MW11 -4					1			T					1																			
	MW 11 -5					1									1					1													
(Mw1-1	MWI		6:58		500								1		/																	
	MW1 - 2	1		i		250								1																	/		
)	MW1 - 3					40								1	1					1											-		
	MW1 - 4					ì			\top					1																			
	MW1 - 5								T					1	1					1													
(MW 2 - 1	MWZ		7:15		500					T			1		1																	
7	MW2-32	1				250								1																			
(mw 2 - 3					40			T		\top			1	L					7													
	Relinquished By:	.01	Date:	Time:	Rece	lygd B	4				-		_		ICI					_									CON	1MI	NTS:		
	Dagare	Yol	5/29	1217	/	//	1	1	a	-	0	/	1	2	GO	OD AD	CON	DIT	ION BSF	NT	-											1838	
	Relinquished By:		Date:	Time:	Rece	ived B	y:							- 1	DE	CHL	ORI	NAT	ED	IN L		D.C.											
																	PRI.				INE	RS		-									
	Relinquished By:		Date:	Time:	Rece	eived B	y:										0.615				0	2.0	3.00	TAT	0	even	TE D						
										17,015		PRI	ESEI	RVA	TIO		MAG	CAG	N. C.Y	ME pH-		2	OIR	EK									

_ W	AcCAMP	BELL 1534 WB				AL	, II	NC					CHAIN OF CUSTODY RECORD TURN AROUND TIME																			
		PITTSBU	RG, CA 9	4565-1	701								- 1	1	UK	IN A	*K	UU	INL	, į	RIVE	IE.		-50	700	24			48 I	eso.	72 H	R 5 DAY
Te Te	ebsite: www.m	7) 252-92	62	nad: u	Fax	: (92	25) 2	52-9	269					G	eo'	Fra	cke	er E	EDF				F		E	xce!		1	Wr	ite O	n (D	W) 🗆
						_						_					_				-	_	_	_	amp	le is	eff	uen	t an			is required
Report To: Se	whita Lo	ahiri	1	Bill T	0:	E	TS	-									_		A	nal	ysis	Re	ques	t	_	_	_			Ot	her	Commen
Company: Eo	sel Tech	molog	ry S	ervi	ce	5							_	563		3					Ē									(1)		Filter
							1 .		1				\dashv	8015) / MTBE		SB&					100											Samples
Tolo: (5) (2)				E-Mai						2 7		_	\dashv	5) (3		520					00/						020)	(00)		300.1		for Metal
Tele: (5 0) 2 Project #: 056				rojec			33		+-1 -	+ +	_	-	\dashv	801		14/50	(8.1)	3	8021		clors		(sap			As5	9/0	09/0		0		analysis:
Project Location				rojec	F 1481	me.							\dashv	8021+		010	18 (41	HV	02 / 3	ides)	Are	0	rbici	_	8	PN.	109/	109	6	0		Yes / No
Sampler Signatu													\dashv	2 / 80		rease	rbon	021	PA 6	estic	ILY.	icide	1 He	000	V00	AHs	8.00	8.00	7 600	134		
Sample Signer			PLING	Т	T	Т	MA	rpi	v		MET			s (60)		8 6	droca	8/01	Y Œ	(C.F	08,	Pest	die	V 09	70 (5	(D) (P.	17/2	7/3	6010	Sulfalo		
		SAM	LING	2	ije	Н	TYREA.	1101	_	PF	RESE	RV	ED	as Gas	8015	0	"Hy	/ 80	ONI	8081	2	2	l (Ac	7 82	5/82	/83	000	(200	870	5		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	All	Other	ICE	HCL	HNO,	Other	BTEX & TPH	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / C	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 5242 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Motor		
MW2 - 4	mw2	5 27 67	7:15		40			+	+	$^{+}$			+	7					7												+	
MW2-5	MU2				40			\top					T	1					1													
1.02 5	14002				170				+	1			1																			
								+	+	+			\dashv																			
	-			-	\vdash			+	+	+			\dashv																			
					-		-		+	+			\dashv					-											\vdash		-	
			-		\vdash		-	+	+	\vdash			\dashv				-								-						+	
			_	-	-			+	+	⊢			\dashv			-		-													-	
				-	-			+	\perp	┡			_			_	-														+	
					_			4	-	┡			4																			
													\neg																			
									\top				\neg																			
Relinguished By:	1	Date:	Time:	Roet	Type B	1	-	-		-	7	_	7	ICI														CON	1ME	NTS:		
Son	-1	5/29	1218	1		11	10	A	//	1	1	-	1	GO	AD S	CON	DIT	ION	NT	_											323	
Relinquished By:		Date:	Time:	Rece	eived B	y:	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, whic					Ć	7	DE	CHL	ORI	NAT	ED	IN L			to other										
															PRO ESEI					INE	RS		-									
Relinquished By:		Date:	Time:	Rece	eived B	y:							\neg																			
														PR	ESEI	RVA	TIO		DAS	Od	&G	MH pH-		S	OTI	IER						

McCampbell Analytical, Inc.

Report to:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0705694 ClientID: ETSR

_		_		_	
	Bill t			Requested TAT:	5 days

Fax

Excel

Samhita Lahiri Email: esseltekservices@aol.com Sher Guha

Essel Technology Service TEL: (925) 833-799 FAX: (925) 833-797 Essel Tech

9778 Broadmoore Drive ProjectNo: #0568-May 07; Seminary

San Ramon, CA 94583 PO:

Essel Technology Service 9778 Broadmoore Drive San Ramon, CA 94523

✓ Email

Date Received 05/29/2007

ThirdParty

A 94523 Date Printed: 05/29/2007

HardCopy

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0705694-001	MW-9	Water	05/27/07		С	Α	Α	В								
0705694-002	MW-3	Water	05/27/07		С	Α		В								
0705694-003	MW-10	Water	05/27/07		С	Α		В								
0705694-004	MW-11	Water	05/27/07		С	Α		В								
0705694-005	MVV-1	Water	05/27/07		С	Α		В								
0705694-006	MW-2	Water	05/27/07		С	Α		В								

✓ EDF

Test Legend:

1	300_1_W	
6		
11		1

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	TPH(D)_W	
9		

5	
10	

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Essel Technolo	gy Service)			Date	and Time Received:	05/29/07 1	:49:34 PM			
Project Name:	#0568-May 07; \$	Seminary				Chec	klist completed and	reviewed by:	Maria Venegas			
WorkOrder N°:	0705694	Matrix Wa	<u>ater</u>			Carrie	er: <u>Client Drop-In</u>					
			<u>Chain o</u>	f Cu	stody (C	OC) Informa	ation					
Chain of custody	present?		,	Yes	V	No 🗆						
Chain of custody	signed when relinqu	uished and re	ceived?	⁄es	V	No 🗆						
Chain of custody	agrees with sample	labels?	`	Yes	✓	No 🗌						
Sample IDs noted	by Client on COC?		`	⁄es	V	No 🗆						
Date and Time of	collection noted by C	Client on COC	? `	⁄es	✓	No \square						
Sampler's name r	noted on COC?		`	Yes	✓	No \square						
			<u>San</u>	nple	Receipt	Information	<u>n</u>					
Custody seals in	tact on shippping co	ntainer/cooler	? `	Yes -		No 🗆		NA 🔽				
Shipping contain	er/cooler in good cor	ndition?	`	Yes	V	No 🗆						
Samples in prope	er containers/bottles	?	•	Yes	✓	No 🗆						
Sample containe	rs intact?		`	Yes	✓	No 🗆						
Sufficient sample	e volume for indicate	d test?	`	⁄es	✓	No 🗌						
	Sample Preservation and Hold Time (HT) Information											
All samples recei	ived within holding tir	me?	,	Yes	✓	No 🗌						
Container/Temp I	Blank temperature		(Coole	r Temp:	4.6°C		NA 🗆				
Water - VOA via	ls have zero headsp	ace / no bubl	oles?	⁄es	✓	No \square	No VOA vials subr	mitted \square				
Sample labels ch	necked for correct pr	eservation?	`	Yes	✓	No 🗌						
TTLC Metal - pH	acceptable upon rec	eipt (pH<2)?	`	Yes		No \square		NA 🗹				
=====		====	====		===		=====	=====		_		
Client contacted:		Da	ite contacted	i:			Contacte	d by:				
Comments:												

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #0568-May 07;	Date Sampled: 05/27/07
9778 Broadmoore Drive	Seminary	Date Received 05/29/07
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Extracted 05/29/07
2411 2411 241 251 251 251	Client P.O.:	Date Analyzed 05/29/07-05/30/07

Inorganic Anions by IC*

Extraction method: E300.1 Analytical methods: E300.1 Work Order: 0705694

Extraction me	ethod: E300.1		Analytical me	thods: E30	E300.1 Work Order:				
Lab ID	Client ID	Matrix	Nitrate as N	DF	Nitrate as NO3 ⁻	DF	Sulfate	DF	% SS
001C	MW-9	W	ND	1	ND	1	110	20	99
002C	MW-3	W	ND	1	ND	1	10	1	108
003C	MW-10	W	ND	1	ND	1	100	20	99
004C	MW-11	W	ND	1	ND	1	130	50	100
005C	MW-1	W	ND,h	1	ND	1	7.9	1	90
006C	MW-2	W	ND,h	1	ND	1	0.20	1	100
	rting Limit for DF =1;	W	0.1		0.45		0.1		mg/L
	reans not detected at or ve the reporting limit	S	NA		NA		NA		mg/Kg

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted/reporting limit raised due to high inorganic content/matrix interference; k) sample arrived with head space.

^{* [}Nitrate as $NO3^-$] = 4.4286 x [Nitrate as N]

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

Essel Technology Service	Client Project ID: #0568-May 07; Seminary	Date Sampled: 05/27/07
9778 Broadmoore Drive		Date Received: 05/29/07
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Extracted: 05/31/07-06/02/07
S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Client P.O.:	Date Analyzed 05/31/07-06/02/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extracti	Extraction method SW5030B Analytical methods SW8021B/8015Cm Work										
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001A	MW-9	W	ND	ND	ND	ND	ND	ND	1	101	
002A	MW-3	W	600,a	ND<10	15	ND	15	4.7	1	111	
003A	MW-10	W	ND	ND	ND	ND	ND	ND	1	100	
004A	MW-11	W	ND	ND	1.8	ND	ND	ND	1	95	
005A	5A MW-1 W 1400,a,h ND<15 46 5.5 7.4				8.8	1	94				
006A MW-2 W 6900,a,h ND<130 1800					28	110	270	10	100		
Ran	oorting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	/1	
ND	means not detected at or	S	50 NA	5.0 NA	0.5 NA	0.5 NA	0.5 NA	0.5 NA	1	μg/L mg/Kg	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #0568-May 07; Seminary	Date Sampled: 05/27/07
9778 Broadmoore Drive	Seminary	Date Received: 05/29/07
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Extracted: 05/29/07
24171411011, 0.17, 1000	Client P.O.:	Date Analyzed 05/31/07-06/02/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method: SW35	10C	Analytical meth	Analytical methods: SW8015C				
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS		
0705694-001B	MW-9	W	170,g,a	1	88		
0705694-002B	MW-3	W	620,g,d,b	1	116		
0705694-003B	MW-10	w	550,g,a/c	1	116		
0705694-004B	MW-11	W	330,g,b	1	116		
0705694-005B	MW-1	W	4700,a,d,g,h	2	88		
0705694-006B	MW-2	w	45,000,a,h	20	111		

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR E300.1

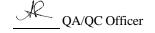
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0705694

EPA Method E300.1		Bat	tchID: 28	312	4.06 N/A N/A 85 - 115 1							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Criteria (
Analyte	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Nitrate as N	N/A	1	N/A	N/A	N/A	91.7	95.5	4.06	N/A	N/A	85 - 115	15
Nitrate as NO3 ⁻	N/A	4.4	N/A	N/A	N/A	91.7	95.5	4.06	N/A	N/A	85 - 115	15
Sulfate	N/A	1	N/A	N/A	N/A	110	108	1.21	N/A	N/A	85 - 115	15
%SS:	N/A	0.10	N/A	N/A	N/A	99	100	0.0905	N/A	N/A	90 - 115	10

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28312 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705694-001C	05/27/07	05/29/07	05/29/07 6:15 PM	0705694-001C	05/27/07	05/29/07	05/30/07 7:20 PM
0705694-002C	05/27/07	05/29/07	05/29/07 6:44 PM	0705694-003C	05/27/07	05/29/07	05/29/07 7:13 PM
0705694-003C	05/27/07	05/29/07	05/30/07 8:17 PM	0705694-004C	05/27/07	05/29/07	05/29/07 7:42 PM
0705694-004C	05/27/07	05/29/07	05/30/07 9:15 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0705694

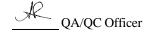
EPA Method SW8021B/8015Cm		Ba	tchID: 28	349	Sp	iked Samp	ole ID:	0705693-01	4A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	107	99.3	7.08	75.8	91.9	19.3	70 - 130	30	70 - 130	30
MTBE	ND	10	86	87.8	2.07	71.2	74.1	4.00	70 - 130	30	70 - 130	30
Benzene	ND	10	84.9	85.2	0.360	87.8	102	14.6	70 - 130	30	70 - 130	30
Toluene	ND	10	84.2	88.3	4.83	88.1	101	14.1	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	83.5	91.5	9.14	90.2	104	14.0	70 - 130	30	70 - 130	30
Xylenes	ND	30	82	85.7	4.37	103	117	12.1	70 - 130	30	70 - 130	30
%SS:	91	10	97	104	6.33	92	98	6.25	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 28349 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705694-001A	05/27/07	06/01/07	06/01/07 12:43 AM	0705694-002A	05/27/07	06/02/07	06/02/07 12:46 AM
0705694-003A	05/27/07	05/31/07	05/31/07 7:02 AM	0705694-004A	05/27/07	05/31/07	05/31/07 7:35 AM
0705694-005A	05/27/07	05/31/07	05/31/07 8:07 AM	0705694-006A	05/27/07	05/31/07	05/31/07 3:13 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR E300.1

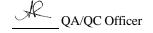
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0705694

EPA Method E300.1		Bat	tchID: 28	351	Sp	iked Samp						
Analyte	Sample	Spiked	MS	MSD	MSD MS-MSD LCS LCSD LCS-LCSD Acceptance C					Criteria (%)		
Allalyte	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Nitrate as N	N/A	1	N/A	N/A	N/A	89.1	92.1	3.24	N/A	N/A	85 - 115	15
Nitrate as NO3 ⁻	N/A	4.4	N/A	N/A	N/A	89.1	92.1	3.24	N/A	N/A	85 - 115	15
Sulfate	N/A	1	N/A	N/A	N/A	99	106	7.16	N/A	N/A	85 - 115	15
%SS:	N/A	0.10	N/A	N/A	N/A	100	102	1.24	N/A	N/A	90 - 115	10

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28351 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705694-005C	05/27/07	05/29/07	05/30/07 10:49 AM	0705694-005C	05/27/07	05/29/07	05/30/07 9:43 PM
0705694-006C	05/27/07	05/29/07	05/30/07 10:20 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

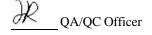
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0705694

EPA Method SW8015C Extraction SW3510C						tchID: 28	350	Sp	iked Samı	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	104	105	0.994	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	89	90	1.37	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28350 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705694-001B	05/27/07	05/29/07	05/31/07 8:21 PM	0705694-002B	05/27/07	05/29/07	05/31/07 6:00 AM
0705694-003B	05/27/07	05/29/07	06/01/07 2:16 AM	0705694-004B	05/27/07	05/29/07	05/31/07 10:33 AM
0705694-005B	05/27/07	05/29/07	06/02/07 8:22 AM	0705694-006B	05/27/07	05/29/07	05/31/07 10:07 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

