By Alameda County Environmental Health at 2:34 pm, Sep 26, 2013

September 23, 2013

Mr. Jerry Wickham, PG Senior Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: 2013 Well Installation, Dispenser Excavation Completion, and Site Assessment Report

P&D 23rd Avenue Associates LLC (Formerly 23rd Avenue Partners) 1125 Miller Avenue Oakland, California Clearwater Project No. CB018H ACEH Fuel Case Leak No. RO0000294

Dear Mr. Wickham,

As the legally authorized representative of the above-referenced project location, I have reviewed the attached report prepared by my consultant of record, Clearwater Group. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

September 25, 2013

Mr. Jerry Wickham, P.G. Senior Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: 2013 Well Installation, Dispenser Excavation Completion, and Site Assessment Report

P&D 23rd Avenue Associates LLC (Formerly 23rd Avenue Partners) 1125 Miller Avenue Oakland, California Geotracker Global ID # T0600177455 Clearwater Group Project Number CB018H

Dear Mr. Wickham,

This report, prepared by Clearwater Group (Clearwater) on behalf of P&D 23rd Avenue Associates LLC, summarizes the results of well installation, dispenser excavation completion, and site assessment activities conducted in June, July, and August, 2013, at 1125 Miller Avenue in Oakland, Alameda County, California (*site*) [Figures 1 and 2]. This report responds to items #2 and #3 from the last directive, dated June 5, 2013, from Alameda County Environmental Health (ACEH), which is included in Attachment A.

A summary (which is periodically updated) of historic investigation work, remediation completed at the *site*, and details regarding groundwater-monitoring activities is included as **Attachment B**; a reference list is included at the end of the summary text. Well construction details for groundwater-monitoring wells MW-1 through MW-3 are included in **Table 1**. Field activities were performed in general accordance with Clearwater's field protocols, included as **Attachment C**.

PREPARATORY ACTIVITIES

Safety Plan

Clearwater updated the existing site health and safety plan for the *site* to reflect the hazards associated with the excavation completion, well installation and development, and anticipated groundwater monitoring events.

Well Permit

A Water Resources Well Permit from Alameda County Public Works Agency was acquired to install the five requested groundwater monitoring wells. A copy of the Water Resources Well Permit is included in **Attachment D**. (Note that two of these permitted wells have not yet been installed.)

Underground Service Alert

Underground Service Alert (USA) was notified of the subsurface exploration on June 11, 2013. USA notified those utility and service companies with underground utilities on or near the *site* to mark their utilities prior to the subsurface work, under utility locate ticket number 0220777. Pacific Gas and Electric Company identified an electrical line in Miller Place (previously unmarked and near previous boring S7).

Borehole Clearance and Concrete Coring

Pipe Pros, a ground penetrating radar firm, was engaged to clear all of the holes prior to concrete coring of each borehole.

Utility Clearance

There are several identified underground utilities close to the proposed well installation locations as well as subsurface obstacles known as a result of previous encounters (i.e. boring S6) during subsurface investigations at the *site*, which has a long history of significant reconstructions via property and street relocations. For this reason, on June 13, 2013, Clearwater subcontracted with Gregg Drilling and Testing, Inc. (Gregg), a C-57 licensed drilling contractor (license number 485165), to perform air-knife utility clearance at the proposed well locations. In the proposed location for MW-1, a cast iron pipe (main sewer lateral) was encountered at 17 inches below ground surface (bgs) so the proposed location was moved 2 feet away, cored and air-knifed again, and found to be clear of obstructions. The proposed location for MW-2 was found to be clear of obstructions during air-knife. A metal plate completely obscured the borehole at 8 feet bgs in the proposed location for MW-3 so an adjacent step-out location was tried. The second hole adjacent to the proposed well location for MW-3 was found to be clear of obstructions. The holes were covered with soil drums in preparation for the well installations the next day. Photographs of the air-knife clearance are included in **Attachment E**.

SOIL BORINGS

On June 14, 2013, a Clearwater professional geologist oversaw the drilling of three boreholes, S15 (MW-2), S16 (MW-3), and S17 (MW-1), which were later converted into groundwater monitoring wells by Gregg. Boreholes S15 and S17 were pushed using direct-push technology, and the soil cores were collected in acetate liners for stratigraphic logging and soil sampling. However, borehole S16 was located too close to the building for direct-push technology to be used, and therefore stratigraphic logging and soil sampling were completed using soil samples collected from the drill cuttings. The soil stratigraphy was logged by the Clearwater geologist, and photoionization detector (PID) readings were collected approximately every 4 feet in each of the borings. Soil samples were collected from locations of high PID readings, at ten feet bgs [per

the Low-Threat Closure Policy (LTCP) guidelines], and at the bottom of the borehole.

Laboratory Analyses

Soil samples were analyzed by Kiff Analytical, LLC (Kiff), a State of California Department of Health Services-certified analytical laboratory, located in Davis, California. The samples were analyzed for concentrations of benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX); five gasoline oxygenates [methyl tertiary butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), and tertiary butyl alcohol (TBA)]; total petroleum hydrocarbons as gasoline (TPH-g); and volatile organic compounds including tetrachloroethene and its breakdown products by United States Environmental Protection Agency (EPA) Method 8260B. The samples were also analyzed for total petroleum hydrocarbons as diesel (TPH-d) by EPA Method 8015M. The analytical report including chain-of-custody documentation (Kiff Report number 85145) is included in **Attachment F**.

Analytical Results

Various concentrations of the constituents of concern were detected in the soil samples collected from each of the soil borings. All soil sample analytical results for borings S16 (MW-3) and S17 (MW-1) were below the detection limits for all analytes except for TPH-d, which is not included as a standard in the LTCP guidelines. Both benzene and ethylbenzene were detected in soil samples collected from S15 (MW-2) in small concentrations; however, no detected concentrations exceeded LTCP guidelines. Analytical results are presented in **Table 2**; they are also shown in **Figure 3** which displays only the LTCP constituents of concern results plotted on the *site* plan.

GROUNDWATER MONITORING WELL INSTALLATION

Three groundwater monitoring wells were installed at the *site* for groundwater monitoring and testing. All three wells were drilled using a hollow-stem auger which was 8 inches in diameter. All wells are constructed with 2-inch diameter schedule 40 polyvinyl chloride casings screened from 9.0 feet bgs to 24.0 feet bgs with 0.02-inch slotting. A cement grout cap was placed from the ground surface to 7.0 feet bgs. The bentonite seal extended from 7.0 feet bgs to 8.0 feet bgs, and the filter pack (2/12 sand) extended from 8.0 feet bgs to 25.0 feet bgs. A locking plug was attached to the top of the well casing, and the well was completed with a steel, ground-level well vault set in concrete. The top of the well lid is about 1/8 to 1/4 inch above the ground surface so that water will drain away from the well box. Boring logs with well construction details for wells MW-1 through MW-3 are included as **Attachment G**.

ACTIVITIES CONDUCTED AFTER THE WELL INSTALLATION

Well Development

On June 20, 2013, National Exploration Wells and Pumps, Inc. (National) developed two of the three newly installed groundwater monitoring wells. Both of the new groundwater monitoring wells were developed by first bailing sediment from the well, then surging the well with a surge block along the screened interval, followed by bailing and pumping of the well, using an electric

submersible pump, to remove sediment. Ten well volumes of groundwater were removed from each well during development. **Attachment H** presents the Well Development Data Sheets from the well developments. MW-1 and MW-2 were developed; due to a miscommunication MW-3 was not developed.

Well Surveying

The well locations and top-of-casing elevations were surveyed on June 20, 2013 by Morrow Surveying, of West Sacramento, California, using a global positioning system (GPS) with submeter horizontal and vertical accuracy. Cumulative well construction data are provided in **Table 1**, and the well survey is included as **Attachment I**.

DISPOSAL OF INVESTIGATION-DERIVED WASTES

The soil generated during the well installations was temporarily stored on-site in 6 properly sealed and labeled drums. The results of composited soil disposal characterization samples collected during the drilling event (**Attachment F**) were submitted to Integrated Waste Management, Inc. (IWM) for disposal characterization. The soil drums were manifested and transported, for disposal, by IWM to Republic Services Vasco Road Landfill, located in Livermore, California, on July 26, 2013. The Certificate of Disposal for 6 drums of soil is included in **Attachment J**. The purge water generated during the well installation and development activities was temporarily stored on-site in properly sealed and labeled drums and transported by Confluence Environmental staff to Instrat, Inc. of Rio Vista, California for disposal on June 30, 2013. The Non-Hazardous Waste Manifest is included in **Attachment J**.

WELL COMPLETION RECORDS

Clearwater completed a California Department of Water Resources (DWR) Well Completion Record (Form 188) for each of the three new wells. An authorized representative for Gregg signed and returned the forms to Clearwater, and then Clearwater mailed the completed forms to DWR.

EXCAVATION COMPLETION

On June 11 and 12, 2013, Clearwater staff completed the excavation in the former dispenser room per the workplan. Clearwater staff first placed controlled density fill to just below slab surface. Then the vapor barrier was placed on top of the density fill. Rebar was installed into the exposed slab of the unfilled excavation by drilling into the concrete slab at the excavation sides. Once the vapor barrier and rebar were installed, the remaining slab was poured to match the existing concrete pad. Photographs of the excavation 'backfill' are included in **Attachment K**.

Lastly, the surface was prepared and sealed; on August 12 and 13, 2013, Clearwater staff installed the final vapor seal on the slab. On August 12, 2013, a grinder was used to sand the concrete, creating a surface for the vapor seal to adhere to. On August 13, 2013, Clearwater staff applied the "Aquafin Vaportight Coat" vapor seal to the entire surface of the excavation as

directed by the product instructions. Photographs of the vapor seal installation are included in **Attachment K**.

GEOTRACKER

Clearwater uploaded survey data spreadsheets known as GEO_X and GEO_Z and electronic laboratory reports (EDFs) to the State of California GeoTracker website (www.geotracker.swrcb.ca.gov) on August 7 and August 12, 2013, respectively. Confirmations of the submittal of these data electronically to the website are included in **Attachment L**. This report, upon its completion and certification, will be converted into a PDF file and uploaded to the GeoTracker website per the January 1, 2005, GEO_REPORT requirement.

REPORT LIMITATION

All work performed under this contract was directed by a licensed professional. The work was performed in accordance with generally accepted practices at the time the work was performed and completed in accordance with generally acceptable standards. In the course of normal business, recommendations by the in-house professional may include the use of equipment, services, or products in which the Company has an interest. Therefore, the Company is making full disclosure of potential or perceived conflicts of interest to all parties.

This report was prepared under the supervision of a State of California Professional Geologist, Engineer, or other licensed professional. Statements, conclusions, and recommendations made in this report are based on information provided to Clearwater, observations of existing site conditions, our general knowledge of the site, limited testing of selected soil and groundwater samples, and interpretations of a limited set of data. Clearwater cannot be held responsible for the accuracy of the analytical work performed by others.

Information and interpretation presented herein are for the use of the client. Third parties should rely upon the information and interpretation contained in this document at their own risk. No other warranties, certifications, or representations, either expressed or implied, are made about the information supplied in this report. The service performed by Clearwater has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site.

Sincerely, CLEARWATER GROUP

Gavin P. Fisco Geologist

GEO RO 88 CERTIFIED DROGEOLOGIS in CALIFORT James A. Jacobs, P.G. #4815, C.H.G. #88 Chief Hydrogeologist

Olivia Jacob, C.E.M #1465 Chief Executive Officer

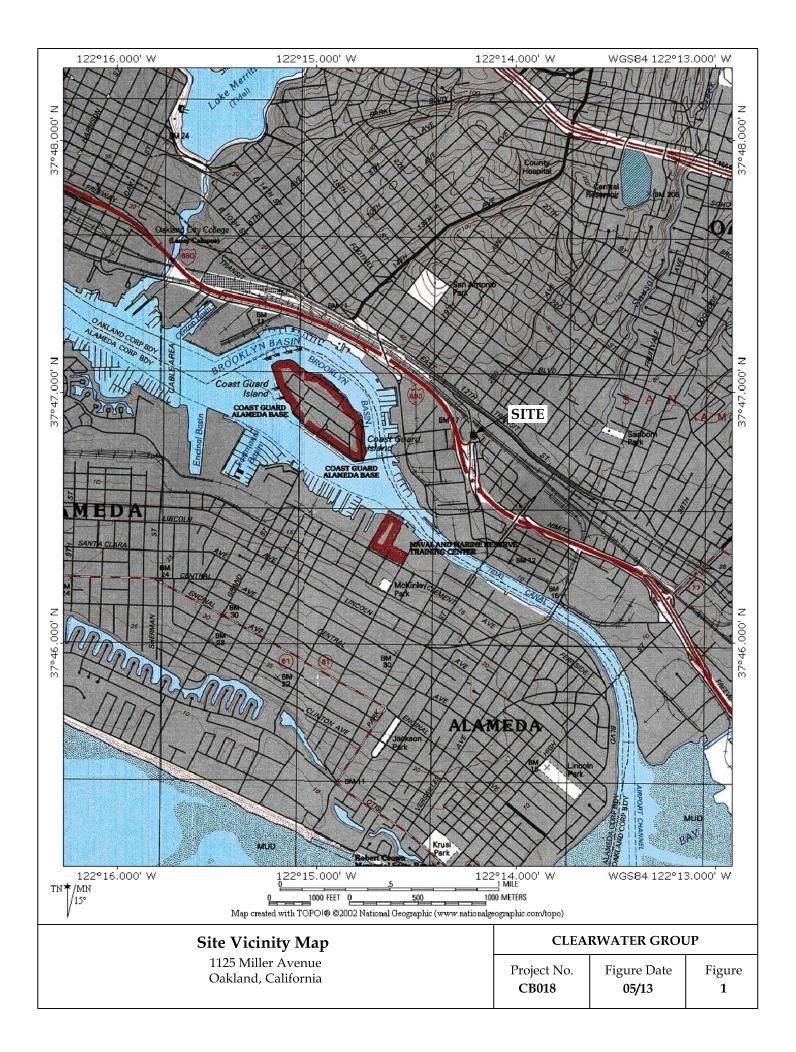
FIGURES

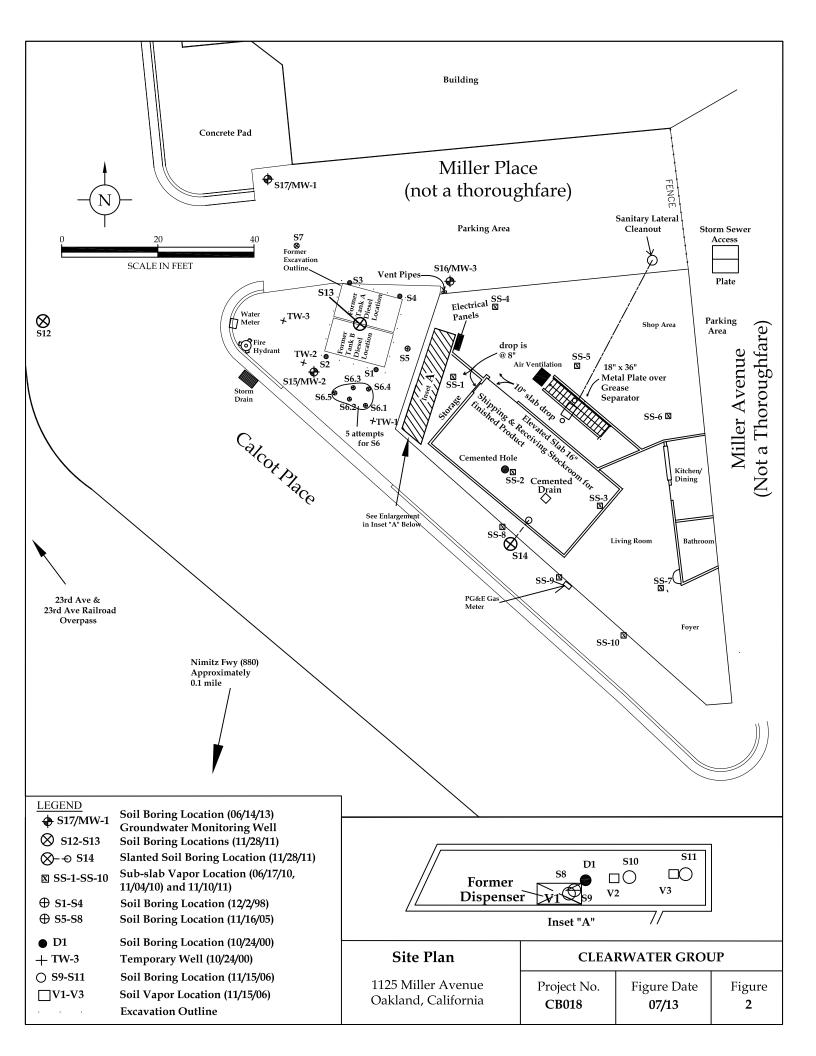
Figure 1:	Site Vicinity Map
Figure 2:	Site Plan
Figure 3:	Soil Sample Analytical Results

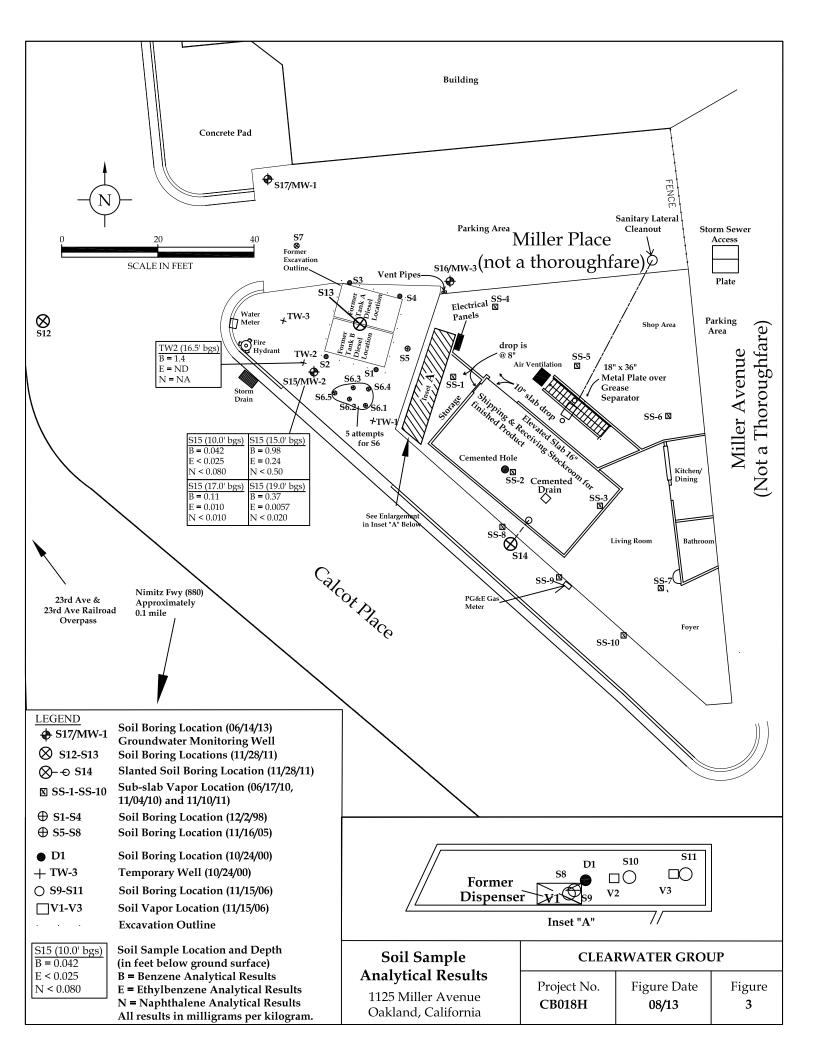
TABLES

Table 1:	Well Construction Data
Table 2A:	Cumulative Hydrocarbon Soil Sample Analytical Results
Table 2B:	Cumulative Volatile Organic Compound Soil Sample Analytical Results
Table 3:	Cumulative Groundwater Elevation and Analytical Results

ATTACHMENTS


Attachment A:	ACEH June 5, 2013 Conditional Work Plan Approval for Fuel Leak Case
	No. RO0000294 and GeoTracker Global ID T0600177455
Attachment B:	Summary of Site Investigation Activities and References List
Attachment C:	Clearwater Group Soil Sampling Procedures
	Clearwater Group Groundwater Monitoring Well Installation and
	Development Field Procedures
Attachment D:	Alameda County Public Works Agency – Water Resources Well Permit
Attachment E:	Photos from Air Knife Utility Clearance
Attachment F:	Kiff Analytical, LLC Report Number 85145
Attachment G:	Soil Boring Logs
Attachment H:	National EWP, Inc. Well Development Data Sheets
Attachment I:	Morrow Surveying Monitoring Well Exhibit
Attachment J:	IWM, Inc. Certificate of Disposal
	Non-Hazardous Waste Manifest
Attachment K:	Photos for Excavation Close-up
	Photos for Vapor Barrier Installation
Attachment L:	GeoTracker Upload Confirmation Pages


cc: Mr. John Protopappas Madison Park Financial 155 Grand Avenue, Suite 1025 Oakland, California 94612


> Mr. Leroy Griffin City of Oakland, Fire Department 250 Frank H. Ogawa Plaza, Suite 3341 Oakland, CA 94612-2032

Alameda County Environmental Health Services (Sent via electronic upload to the Geotracker website)

FIGURES

TABLES

TABLE 1Well Construction DataP & D 23rd Avenue Associates LLC1125 Miller AvenueOakland, CaliforniaClearwater Project No. CB018

				Concrete/								
Well	Date	Borehole	Depth of	Casing	Screened	Filter	Bentonite	Cement	TOC	Latitude	Longitude	
Number	Installed	Diameter	Borehole	Diameter	Interval	Pack	Seal	Seal	Elevation (feet	Decimal Degrees	Decimal Degrees	
		(inches)	(feet) *	(inches)	(feet) *	(feet) *	(feet) *	(feet) *	AMSL)			
MW-1	06/14/2013	6.0	25.0	2.0	9.0 - 24.0	8.0 - 25.0	7.0 - 8.0	0.0 - 7.0	21.42	37.7807930	-122.2368373	
MW-2	06/14/2013	6.0	25.0	2.0	9.0 - 24.0	8.0 - 25.0	7.0 - 8.0	0.0 - 7.0	21.57	37.7806835	-122.2368016	
MW-3	06/14/2013	6.0	25.0	2.0	9.0 - 24.0	8.0 - 25.0	7.0 - 8.0	0.0 - 7.0	23.40	37.7807367	-122.2367051	

Notes:

TOC Top-of-casing elevation in feet relative to mean sea level

AMSL Above mean sea level

(feet) * Feet below ground surface

Well construction details for MW-1 through MW-3 were obtained from boring logs prepared by Clearwater Group.

Monitoring well elevation and GPS survey event for wells MW-1 through MW-3 was conducted by Morrow Surveying in June 2013.

TABLE 2A Cumulative Hydrocarbon Soil Sample Analytical Results P & D 23rd Avenue Associates LLC 1125 Miller Avenue Oakland, California Clearwater Project No. CB018

oil Boring ID	Sample ID	Collection Depth (feet)	Sampling Date	TPH-d (mg/kg)	TPH-g (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBI (mg/kg
	Shallow Soil ESL ^I fo	r Commercial Use		500	500	0.044	2.9	3.3	2.3	0.023
	Deep Soil ESL ¹ for	Commercial Use		580	530	0.044	2.9	3.3	2.3	
	t Closure Thresholds -	0-5 feet	bgs			8.2		89		
Co	ommercial ^{A, B}	5-10 feet	t bgs			12		134		
<i>S1</i>	<i>S1-9</i>	9	12/01/1998	ND	NA	ND	ND	ND	ND	ND
S1 S2	S2-9	9	12/01/1998	1,800	NA	ND	ND	ND	0.51	ND
<i>S3</i>	\$3-9	9	12/01/1998	ND	NA	ND	ND	ND	ND	ND
<i>S4</i>	<i>S4-9</i>	9	12/01/1998	ND	NA	ND	ND	ND	ND	ND
TW2	TW2 -16.5	16.5	10/24/2000	4,200	NA	1.4	ND	ND	ND	ND
TW3	TW3-17	17	10/24/2000	2,700	NA	ND	ND	ND	ND	ND
D1	D1-3	3	10/24/2000	3,400	NA	ND	ND	ND	ND	ND
D1	D1-8	8	10/24/2000	34	NA	ND	ND	ND	ND	ND
S5	S5-5	5	11/16/2005	14^{F}	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA ^I
S5	S5-10	10	11/16/2005	610	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S5	S5-15	15	11/16/2005		NA	< 0.0050	<0.0050	< 0.0050	<0.0050	NAI
				620						NA NA ^I
S5	S5-20	20	11/16/2005	5.8	NA	< 0.0050	<0.0050	<0.0050	<0.0050	
S6	S6-6	6	11/16/2005	1,800 ^F	NA	NA ^C	NA ^C	NA ^C	NA ^C	NAI
S 7	S7-5	5	11/16/2005	150 ^F	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S 7	S7-10	10	11/16/2005	32 ^F	NA	< 0.0050	< 0.0050	< 0.0050	$<\!0.0050$	NAI
S 7	S7-15	15	11/16/2005	1,200	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S 7	S7-20	20	11/16/2005	300	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S 8	S8-4	4	11/16/2005	92	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA
S9	\$9.4.0	4	11/15/2006	7,500	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S10	S10.4.0	4	11/15/2006	930	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA
S11	S11.4.0	4	11/15/2006	21	NA	<0.0050	< 0.0050	<0.0050	< 0.0050	NAI
S12	B12-18	18	11/28/2011	8.6 ^E	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA ^I
										NA
S13	B13-11	11	11/28/2011	740	7.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S13	B13-14	14	11/28/2011	1,900	65	< 0.025	< 0.025	< 0.025	< 0.025	NAI
S13	B13-19	19	11/28/2011	4.4 ^E	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S13	B13-23.5	23.5	11/28/2011	<1.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
S14	B14-19	19	11/28/2011	1.0 ^E	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NAI
CS-1	CS-1	2.5	10/16/2012	730 ^F	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
CS-2	CS-2	2	10/16/2012	14,000 ^F	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
CS-3	CS-3	1	10/16/2012	7,600 ^F	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
CS-4	CS-4	0.5	10/16/2012	9,800 ^F	<1.0	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.00
CS-5	CS-5	0.5	10/16/2012	9,000 ^F	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	<0.00
CS-6	CS-6-Comp 3 Drums	0.5 0 ^G	10/16/2012	7,400 ^F	<1.0	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
015	615 0 01	0	0.6/14/2012	4 000 ^H	4 -	.0.0050	.0.0050	.0.0070	-0.0070	.0.00
S15	S15-8.0'	8	06/14/2013	4,000 ^H	4.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
S15	S15-10.0'	10	06/14/2013	3,400 ^H	76	0.042	0.034	< 0.025	0.090	< 0.02
S15	S15-15.0'	15	06/14/2013	10,000	600	0.98	0.11	0.24	0.73	< 0.05
S15	S15-17.0'	17	06/14/2013	5,800	21	0.11	0.0078	0.010	0.024	< 0.00
S15	S15-19.0'	19	06/14/2013	8,400 ^H	43	0.37	0.024	0.0057	0.083	< 0.00
S15	S15-24.5'	24.5	06/14/2013	8.4 ^H	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
S16	S16-7'grab hand auger	7	06/14/2013	7.7 ^H	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00
S16	S16-10'grab	10	06/14/2013	11	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00

TABLE 2A Cumulative Hydrocarbon Soil Sample Analytical Results P & D 23rd Avenue Associates LLC 1125 Miller Avenue Oakland, California Oakland, California Clearwater Project No. CB018

Soil Boring	Sample ID	Collection Depth	1 1 8		TPH-g	В	Т	Ε	X	MTBE
ID		(feet)	(feet) Date		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Shallow Soil ESL ^I fo	500	500	0.044	2.9	3.3	2.3	0.023		
	Deep Soil ESL ¹ for	580	530	0.044	2.9	3.3	2.3	0.023		
	Closure Thresholds -	0-5 feet	bgs			8.2		89		
Con	nmercial ^{A, B}	5-10 fee	t bgs			12		134		
S16	S16-15'grab	15	06/14/2013	5.5	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S16	S16-17'grab	17	06/14/2013	1.9 ^{E,H}	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S16	S16-20'grab	20	06/14/2013	3.0 ^H	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S16	S16-25'grab	25	06/14/2013	<1.0	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S17	S17-7.0'	7	06/14/2013	1.6 ^H	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S17	S17-10.0'	10	06/14/2013	<1.0	<1.0	< 0.0050	< 0.0050	$<\!0.0050$	< 0.0050	< 0.0050
S17	S17-17.0'	17	06/14/2013	$3.0^{E,H}$	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S17	\$17-21.0'	21	06/14/2013	5.9 ^{E,H}	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S17	S17-24.5'	24.5	06/14/2013	1.6 ^{E,H}	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050

Notes:

10003	
TPH-d	Total petroleum hydrocarbons as diesel using EPA Method 8015/8020 (modified)
TPH-g	Total petroleum hydrocarbons as gasoline using EPA Method 8260B
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes using EPA Method 8015/8020 (modified)
MTBE	Methyl tertiary-butyl ether using EPA Method 8260
mg/kg	Milligrams per kilogram (approximately equal to parts per million)
ND	Not detected above laboratory reporting limits
NA	Not analyzed
< 0.0050	Not detected in concentrations exceeding the indicated laboratory reporting limit
bgs	Below ground surface
bold	Contamination in the sample exceeded Low Threat Closure thresholds.
	Thresholds not listed in Low Threat Closure guidelines.
Footnote A	Low Threat Closure Thresholds are commercial values from Table 1 (page 8) of <i>Water Quality Control Policy for Low-Threat Underground Storage Tank Case Closure</i> , August 17, 2012.
Footnote B	In order to qualify for Low Threat Closure, a site must meet all of the following requirements: a. The unauthorized release is located within the service area of a public water system; b. The unauthorized release consists only of petroleum; c. The unauthorized ("primary") release from the UST system has been stopped; d. Free product has been removed to the maximum extent practicable; e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed; f. Secondary source has been removed to the extent practicable; g. Soil or groundwater has been tested for methyl tert-butyl ether (MTBE) and results reported in accordance with Health and Safety Code section 25296.15; and h. Nuisance as defined by Water Code section 13050 does not exist at the site.
Footnote C	Analysis not performed due to lack of sample volume.
Footnote D	Analysis of MTBE not required by ACEH.
Footnote E	Laboratory Notes: Discrete peaks in Diesel range, atypical for Diesel Fuel.
Footnote F	Laboratory Note: Concentration reported is atypical for diesel, these hydrocarbons have a higher boiling point
Footnote G	Composite sample collected from disposal materials.
Footnote H	Laboratory Note: Hydrocarbons are higher-boiling than typical Diesel Fuel.
Footnote I	Environmental Screening Levels (ESL), from Summary Tables A and C, available from
	http://www.waterboards.ca.gov/rwqcb2/water_issues/programs/ESL/Lookup_Tables_Summary_May_2013.pdf
Analytical result	ts reported in italics are from the December 31, 2001 Subsurface Exploration Report prepared by Environmental Bio-Systems.

TABLE 2B Cumulative Volatile Organic Compound Soil Sample Analytical Results P & D 23rd Avenue Associates LLC 1125 Miller Avenue Oakland, California Clearwater Project No. CB018

Soil Boring ID	Sample ID	Collection Depth (feet)	Sampling Date	PCE (mg/kg)	TCE (mg/kg)	1,2,4-TMB (mg/kg)	Naphthalene (mg/kg)	Isopropyl benzene (mg/kg)	n-Propylbenzene (mg/kg)	sec-Butylbenzene (mg/kg)	n-Butylbenzene (mg/kg)
	Soil ESL ^G for Co			0.7	0.46		1.2				
	Closure Thresholds -	0-5 feet	-				45				
Co	mmercial ^{A, B}	5-10 feet	bgs				45				
S1	S1-9	9 - grab	12/01/1998	NA	NA	NA	NA	NA	NA	NA	NA
<i>S</i> 2	S2-9	9 - grab	12/01/1998	NA	NA	NA	NA	NA	NA	NA	NA
S3	S3-9	9 - grab	12/01/1998	NA	NA	NA	NA	NA	NA	NA	NA
S4	S4-9	9 - grab	12/01/1998	NA	NA	NA	NA	NA	NA	NA	NA
TW2	TW2 -16.5	16.5 - grab	10/24/2000	NA	NA	NA	NA	NA	NA	NA	NA
TW3	TW3-17	17 - grab	10/24/2000	NA	NA	NA	NA	NA	NA	NA	NA
D1	D1-3	3 - grab	10/24/2000	NA	NA	NA	NA	NA	NA	NA	NA
D1	D1-8	8 - grab	10/24/2000	NA	NA	NA	NA	NA	NA	NA	NA
0.5	05.5	_	11/16/2005								
85 85	S5-5 S5-10	5 10	11/16/2005 11/16/2005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
S5	S5-10 S5-15	15	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S5	\$5-20	20	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S6	S6-6	6	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S7	S7-5	5	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S 7	S7-10	10	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S 7	S7-15	15	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S 7	S7-20	20	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S 8	S8-4	4	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA
S9	\$9.4.0	4	11/15/2006	NA	NA	NA	NA	NA	NA	NA	NA
S10	\$10.4.0	4	11/15/2006	NA	NA	NA	NA	NA	NA	NA	NA
S10	S11.4.0	4	11/15/2006	NA	NA	NA	NA	NA	NA	NA	NA
S12	B12-18	18	11/28/2011	NA	NA	NA	NA	NA	NA	NA	NA
S13	B13-11	11	11/28/2011	NA	NA	NA	NA	NA	NA	NA	NA
S13	B13-14	14	11/28/2011	NA	NA	NA	NA	NA	NA	NA	NA
S13	B13-19	19	11/28/2011	NA	NA	NA	NA	NA	NA	NA	NA
S13 S14	B13-23.5 B14-19	23.5 19	11/28/2011 11/28/2011	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
514	B14-19	19	11/20/2011	INA	NA	INA	INA	INA	INA	INA	INA
CS-1	CS-1	2.5	10/16/2012	< 0.0050	< 0.0050	0.015 ^D	0.072 ^C	NA	NA	NA	NA
CS-2	CS-2	2	10/16/2012	< 0.0050	< 0.0050	<0.0050 ^D	< 0.0050 ^C	NA	NA	NA	NA
CS-3	CS-3	1	10/16/2012	< 0.0050	< 0.0050	$0.0067 {}^{\rm D}$	0.042 ^C	NA	NA	NA	NA
CS-4	CS-4	0.5	10/16/2012	< 0.0050	< 0.0050	< 0.0050 ^D	< 0.0050 °C	NA	NA	NA	NA
CS-5	CS-5	0.5	10/16/2012	< 0.0050	< 0.0050	<0.0050 ^D	< 0.0050 ^C	NA	NA	NA	NA
CS-6	CS-6-Comp 3 Drums	0 ^E	10/16/2012	< 0.0050	< 0.0050	$<\!\!0.0050^{\ \mathrm{D}}$	$0.0074 \ ^{\rm C}$	NA	NA	NA	NA
S15	S15-8.0'	8	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0096	0.028	0.021	0.063
S15	\$15-10.0'	10	06/14/2013	< 0.025	< 0.025	<0.025	<0.080 ^F	0.33	1.3	0.30	0.94
S15	\$15-15.0 [']	15	06/14/2013	< 0.050	< 0.050	< 0.050	<0.50 F	3.0	11	1.8	5.8
S15	S15-17.0'	17	06/14/2013	< 0.0050	< 0.0050	< 0.0050	<0.010 F	0.12	0.37	0.052	0.15
S15	S15-19.0'	19	06/14/2013	< 0.0050	< 0.0050	0.0091	<0.020 F	0.089	0.20	0.090	0.24
S15	S15-24.5'	24.5	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S16	S16-7'grab hand auger	7	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S16	S16-10'grab	10	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S16	S16-15'grab	15	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	$<\!\!0.0050$	< 0.0050	< 0.0050	< 0.0050
S16	S16-17'grab	17	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	$<\!\!0.0050$	< 0.0050	< 0.0050	< 0.0050
S16	S16-20'grab	20	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	$<\!\!0.0050$	< 0.0050	< 0.0050	< 0.0050
S16	S16-25'grab	25	06/14/2013	< 0.0050	$<\!\!0.0050$	< 0.0050	< 0.0050	$<\!0.0050$	< 0.0050	< 0.0050	< 0.0050
S17	S17-7.0'	7	06/14/2013	< 0.0050	$<\!\!0.0050$	< 0.0050	< 0.0050	$<\!0.0050$	< 0.0050	< 0.0050	< 0.0050
S17	S17-10.0'	10	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S17	S17-17.0'	17	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S17 S17	S17-21.0'	21	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	S17-24.5'	24.5	06/14/2013	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050

TABLE 2B

Cumulative Volatile Organic Compound Soil Sample Analytical Results

P & D 23rd Avenue Associates LLC

1125 Miller Avenue Oakland, California

Clearwater Project No. CB018

Soil Boring	g Sample ID	Collection Depth	Sampling	PCE	TCE	1,2,4-TMB	Naphthalene	Isopropyl benzene		sec-Butylbenzene	n-Butylbenzene
ID		(feet)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Soil ESL ^G for Co	ommercial Use		0.7	0.46		1.2				
Low Threat Closure Thresholds - 0-5 feet bgs					45						
Commercial ^{A, B} 5-10 feet bgs			bgs				45				
Notes:											
PCE	Tetrachloroethene using EPA	Method 8260									
ГCE	Trichloroethene using EPA M	lethod 8260									
,2,4-TMB	1,2,4-Trimethylbenzene using	EPA Method 8260									
ng/kg	Milligrams per kilogram (app	roximately equal to parts p	er million								
NĂ	Not analyzed										
< 0.0050	Not detected in concentrations	s exceeding the indicated la	boratory reporting	lim							
ogs	Below ground surface										
old	Contamination in the sample of	exceeded Low Threat Closs	are thresholds								
-	Thresholds not listed in Low										
Footnote A	Low Threat Closure Threshold		om Table 1 (page	8) ofWater Oua	lity Control Pe	olicy for Low-Th	reat Underground	Storage Tank	Case Closure August	17 2012	

Low Threat Closure Thresholds are commercial values from Table 1 (page 8) of Water Quality Control Policy for Low-Threat Underground Storage Tank Case Closure, August 17, 2012. In order to qualify for Low Threat Closure, a site must meet all of the following requirements: a. The unauthorized release is located within the service area of a public water system; b. The unauthorized release consists only of Footnote B

petroleum; c. The unauthorized ("primary") release from the UST system has been stopped; d. Free product has been removed to the maximum extent practicable; e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed; f. Secondary source has been removed to the extent practicable; g. Soil or groundwater has been tested for methyl tert-butyl ether (MTBE) and results reported in accordance with Health and Safety Code section 25296.15; and h. Nuisance as defined by Water Code section 13050 does not exist at the site.

Footnote C Laboratory Note: Matrix Spike/Matrix Spike Duplicate results were affected by the analyte concentrations already present in the un-spiked sample

Footnote D Laboratory Note: Matrix Spike/Matrix Spike/Mat

Table 3 Cumulative Groundwater Elevation and Analytical Results P & D 23rd Avenue Associates LLC 1125 Miller Avenue

Oakland, California

Clearwater Project No. CB018R

Sample Point Location	Sample ID	Sampling Date	Depth (feet bgs)	TOC (feet)	DTW (feet)	GWE (feet)	TPH-d (µg/L)	TPH-g (µg/L)	B (µg/L)	Т (µg/L)	Е (µg/L)	Χ (μg/L)	MTBE (µg/L)	Chloroform (µg/L)	TCE (µg/L)
Environmental Sc	reening Levels	in μg/L ^F					100	100	1.0	40	30	20	5.0	70	5.0
Low Threat Clos	sure Threshold	А, В	Cri	terion 1 ⁽	2				No	o limits defii	ned in policy	for Criteri	on 1		
TW2	TW2	10/24/2000	16	-	-	-	660	-	65	2.4	<0.5	3.2	<2.5	-	
TW3	TW3	10/24/2000	17	-	-	-	800	-	0.9	<0.5	<0.5	<1.5	<2.5	-	-
S5	S5	11/16/2005	17	-	-	-	890	-	<0.50	< 0.50	< 0.50	< 0.50	-		-
S12	S-12	11/28/2011 11/28/2011	11-15	-	-	-	1,300 ^D	<50 200	<0.50	<0.50	<0.50	<0.50	-	-	-
S13	S-13		11-15	-	-	-	36,000		<0.50	< 0.50	< 0.50	<0.50	-	-	-
S14	S-14	11/28/2011	11-15	-	-	-	290 ^D	<50	<0.50	< 0.50	<0.50	< 0.50	-	-	-
MW-1	MW-1	06/26/2013 09/06/2013	-	21.42 21.42	9.64 10.29	11.78 11.13	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	0.93 1.4
MW-2	MW-2	06/26/2013	-	21.57	9.87	11.70	2,500	55	7.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.6
		09/06/2013	-	21.57	10.56	11.01	350	<50	3.8	< 0.50	< 0.50	< 0.50	< 0.50	0.54	2.6
MW-3	MW-3	06/26/2013	-	23.4	11.71	11.69	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.99	4.3
		09/06/2013	-	23.4	12.27	11.13	150 ^E	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	5.2

Notes:

TPH-d Total petroleum hydrocarbons as diesel using EPA Method 8015/8020 (modified)

TPH-g Total petroleum hydrocarbons as gasoline using EPA Method 8260B

B Benzene using EPA Method 8020/8260B

T Toluene using EPA Method 8020/8260B

E Ethylene using EPA Method 8020/8260B

XXylenes using EPA Method 8020/8260BMTBEMethyl tertiary-butyl ether using EPA Method 8260B

TCE Trichloroethene using EPA Method 8260B

Chloroform Chloroform using EPA Method 8260B

μg/L Micrograms per liter (approximately equal to parts per billion: ppb)

- Not analyzed, not available, or not applicable

<### Not detected in concentrations exceeding the indicated laboratory reporting limit

bgs Below Ground Surface

TOC Top-of-casing elevation surveyed by Morrow Surveying on June 20, 2013

DTW Depth-to-water measurement collected on northern side of the TOC

GWE Static groundwater elevation (TOC-DTW = GWE)

Footnote A Low Threat Closure Thresholds are from Water Quality Control Policy for Low-Threat Underground Storage Tank Case Closure, August 17, 2012.

Footnote B In order to qualify for Low Threat Closure, a site must meet all of the following General Critera: a. The unauthorized release is located within the service area of a public water system; b. The unauthorized release consists only of petroleum; c. The unauthorized ("primary") release from the UST system has been stopped; d. Free product has been removed to the maximum extent practicable; e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed; f. Secondary source has been removed to the extent practicable; g. Soil or groundwater has been tested for methyl tert-butyl ether (MTBE) and results reported in accordance with Health and Safety Code section 25296.15; and h. Nuisance as defined by Water Code section 13050 does not exist at the site.

Footnote C Low Threat Closure, Criterion 1: a) The contaminant plume that exceeds water quality objectives is less than 100 feet in length, b) There is no free product, c) The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.

Footnote D Laboratory note: Discrete peaks, higher boiling hydrocarbons present, atypical for Diesel Fuel.

Footnote E Laboratory note: Discrete peaks in Diesel range, atypical for Diesel Fuel.

Footnote F Environmental Screening Levels (ESL), from 2013 Tier 1 ESLs (screening levels resulting from default setting), available from http://www.waterboards.ca.gov/rwqcb2/water_issues/programs/ESL/Lookup_Tables_Summary_May_2013.pdf

Analytical results reported in *italics* are from the December 31, 2001 Subsurface Exploration Report prepared by Environmental Bio-Systems.

ATTACHMENTS

ATTACHMENT A

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 5, 2013

Mr. John Protopappas P&D 23rd Avenue Associates LLC P.O. Box 687 Oakland, CA 94604 (*Sent via E-mail to: John@MPFCorp.com*)

Subject: Conditional Work Plan Approval for Fuel Leak Case No. RO0000294 and GeoTracker Global ID T0600177455, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA 94601

Dear Mr. Protopappas:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the most recently submitted document entitled, "Workplan for Groundwater Investigation Monitoring Well Installation, Vapor Point Destruction, and Excavation Closure," dated May 23, 2013 (Work Plan). The Work Plan, which was prepared on your behalf by Clearwater Group, was submitted in response to technical comments in ACEH correspondence dated March 26, 2013.

The proposed scope of work is conditionally approved and may be implemented provided that the technical comments below are incorporated during implementation of the proposed investigation. Submittal of a revised Work Plan or Work Plan Addendum is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

- Destruction of Sub-Slab Vapor Points. We do not concur with the destruction of the subslab vapor points at this time. The analysis of groundwater samples for volatile organic compounds (VOCs) provides an additional line of evidence to evaluate the tetrachloroethene (PCE) detected in sub-slab vapors. Therefore, the sub-slab vapor probes should not be destroyed until the evaluation of PCE in soil vapor is completed.
- 2. **Residual Diesel Contamination in Dispenser Room.** The proposed scope of work to complete the excavation in the dispenser room is acceptable and may be implemented as proposed. Please present the results in the Site Assessment Report requested below.
- 3. **Monitoring Well Installation and Groundwater Sampling**. The proposed scope of work for well installation and soil and groundwater sampling is acceptable and may be implemented as proposed. Please present the results in the Site Assessment Report requested below.

Mr. John Protopappas RO000294 June 5, 2013 Page 2

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Jerry Wickham), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and file-naming convention:

• September 11, 2013 – Site Assessment Report File to be named: SWI_R_yyyy-mm-dd RO294

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Digitally signed by Jerry Wickham DN: cn=Jerry Wickham, o=Alameda County Environmental Health, ou, email=jerry.wickham@acgov.org, c=US Date: 2013.06.05 16:27:40 -07'00'

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachment: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 2032 (Sent via E-mail to: <u>lgriffin@oaklandnet.com</u>)

Olivia Jacobs, Clearwater Group, 229 Tewksbury Avenue, Pt. Richmond, CA 94801 (Sent via E-mail to: <u>ojacobs@clearwatergroup.com</u>)

James Jacobs, Clearwater Group, 229 Tewksbury Avenue, Pt. Richmond, CA 94801 (Sent via E-mail to: <u>geojimj@gmail.com</u>)

Donna Drogos, ACEH (Sent via E-mail to: <u>donna.drogos@acgov.org</u>) Jerry Wickham, ACEH (Sent via E-mail to: <u>jerry.wickham@acgov.org</u>)

GeoTracker, File

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website for more information on these requirements. (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/)

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SCP)	REVISION DATE: July 25, 2012					
	ISSUE DATE: July 5, 2005					
	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010					
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions					

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please <u>do not</u> submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection <u>will not</u> be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.

i) Send an e-mail to .loptoxic@acgov.org

b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.

2) Upload Files to the ftp Site

- a) Using Internet Explorer (IE4+), go to ://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
- b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
- c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
- d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>.loptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT B

SUMMARY OF SITE INVESTIGATION ACTIVITIES AND REFERENCES LIST

P&D 23rd Avenue Associates, LLC 1125 Miller Avenue Oakland, California ACEH Site Number RO#0000294 Clearwater Group Project Number CB018

Site Location

The P&D 23rd Avenue Associates, LLC property (*site*), an underground storage tank (UST) fuel release *site*, is located at 1125 Miller Avenue, in the City of Oakland, County of Alameda, California. The *site* is improved with a two-story structure constructed on a single slab on grade foundation, which is currently in use as a "work-live" building by a graphic artist who operates a t-shirt production workshop and lives in an apartment located adjacent to and above the work space. The United States Geological Survey Oakland East Quadrangle Map shows the *site* to be located in Section 6, Township 2 south, Range 3 west of the Mount Diablo Base and Meridian (USGS, 1980).

Miller Avenue bounds the *site* to the east, and Miller Place bounds the *site* to the north. Calcot Place defines the property to the southwest. A "work-live" apartment building is located across Miller Place to the northwest, north, and northeast, and a fenced parking and storage lot abuts the *site* to the northeast, east, and southeast. The main line of the Union Pacific Railroad is located to the north, beyond the "work-live" apartments and behind a chain-link fence. The 23rd Avenue railroad overcrossing ramp structure lies across Calcot Place to the west.

Site History

<u>1870 to 1998 – History before the UST removal</u>

Historical records for the *site* and neighboring properties as far back as the 1870's were obtained from local resources. Between 1870 and 1998 the *site* and neighboring properties have had many uses, including industrial, commercial, and most recently, residential. The former north and east parcel boundaries of the 1125 Miller Avenue *site* were established in 1903. In 1963, after part of the block was taken by the City of Oakland by "eminent domain," the current hypotenuse property boundary was formed and defined by Calcot Place.

- Between 1878 and 1903, the current property was part of 25th Avenue and a block defined by Park Avenue (now 23rd Avenue), East 10th Street, 26th Avenue, 25th Avenue, and the Central Pacific Railroad Company railroad bed. No information, except that about ownership, regarding specific use of the *site* is reasonably ascertainable from the locally available historical data record for this time period. Data were reported in the December 1, 2010 "Historical Property Uses" Report produced by Clearwater Group (Clearwater).
- Between 1924 and 1928 (after subdivision), the west half of the northern half of the current *site* (Parcels 1 and 2) was developed with a commercial/industrial structure.
- Between 1928 (first phone directory listing) and 1946, the *site* (Parcels 1 and 2) was used by Bay Cities Forge Company, for blacksmithing and general metal "forgings," as stated in the Polk's Telephone Directory (listing and advertisement). The interior work area of the Forge (west half of Parcels 1 and 2) aligns with five refusals at soil boring S6 as well as the refusal at TW1 shown in **Figure A**. The unimproved backyard (east half of Parcels

1 and 2) was improved, by 1950, with a brick incinerator (at the current location of the workshop and the kitchen and bathroom). In 1947, Parcel 3 was improved with a Residence fronting on 23rd Avenue, and in 1950 Parcel 4 was improved with a soda bottling works.

- The Sanborn map shows that, in the backyard of the Residence, a garage structure (structure labeled "auto") and a garden were present at the *site* (Parcel 3). The former location of the auto garage is approximately equivalent to the current position of part of the living room, bathroom, and kitchen.
- According to Mr. Ronald Dreisbach (a part owner of P&D 23rd Avenue Associates, LLC), the *site* (Parcel 1 and 2) was used for lumber storage, and the neighboring property to the north was used as a planing mill and a lumber yard as early as 1940; these uses are corroborated by Mr. Dreisbach's photo of his father at the property and by the Sanborn Maps. The incinerator that was at the *site* was built for the burning of sawdust and wood debris originating from the lumber planing operation. The incinerator was constructed in the current location of the kitchen/dining area and a large portion of the current printing workshop at the *site*. According to the telephone directories, the planing mill operation to the north ceased in approximately 1955 and was replaced by a box and lumber operation, which was replaced by a fruit sorting and packing operation.
- In 1952-1957, the *site* was used as a warehouse (except for the incinerator) for Parcels 1 and 2, a residence for Parcel 3, and a venetian blind factory for Parcel 4.
- In 1959, the *site* was used for the storage of firewood and old machinery as well as for a records storage warehouse; the incinerator was no longer in use on Parcels 1 and 2. Parcel 3 was razed, and Parcel 4 remained as a venetian blind factory.
- In 1960, Parcels 1 and 2 continued to be used for a records storage warehouse as well as for a woodworking shop. Parcel 3 was improved with a steel warehouse. Parcel 4 remained in use as a venetian blind factory.
- Between 1962 and 1963, the City of Oakland (City) took the *site* by eminent domain for construction of its 23rd Avenue railroad overcrossing ramp. After the City took the property, the *site* buildings were razed.
- After the block was razed, a new street, Calcot Place, was constructed across the block. The Dreisbachs, who had owned Parcels 1 and 2 of the block, became the owners of the new "triangle" property upon which they built a new building (Architect Plans are dated 1966), which is the current building.
- No records are present regarding the year that the two 5,000-gallon fuel tanks were installed. However, the architect's drawing dated 1966 for the *site* indicates the existence of plans for a canopy to be built over a concrete pad, which corresponds to the location of the tank pit. This suggests that the tanks were considered in the planning of the 1966 architectural design. Mr. Dreisbach reported the use of gas and diesel in the tanks since the 1970's.
- According to Sanborn maps, a printing company operated at the *site* between 1967 and 1969. Between 1970 and 1980, according to street directories, the *site* was used as a U.S. Department of Agriculture (USDA) meat inspection facility and warehouse. Two floor drains and a grease trap that drained to the sanitary sewer (see **Figure A**), were likely installed during this time for use with the meat inspection facility operations.
- Telephone directory records indicate that between 1980 and 1981 the USDA meat inspection facility ceased operations at the *site*.

- Between 1981 and 1990, the *site* was used as a mechanics shop for the rebuilding of Cummins diesel injectors. Hazardous materials were stored or used on *site* for this operation.
- In 1985 the fire department reported that two 5,000-gallon diesel tanks were in use. (Again, the date of tank installation is not reasonably ascertainable in the record.) Hazardous waste was reported to have been generated in the form of diesel, solvents, and sludge originating from the injectors. [Until recently (2010), two floor drains from the meat packing operation (the current t-shirt warehouse area) were open. They are now cemented closed.]
- In 1989, leakage was detected at the unions of the delivery lines on both fuel pumps, during a routine inspection.
- In March 1990, Heitz Trucking, Inc. began to use the site.
- In 1993, a routine inspection reported the generation of waste oil and solvents, which were being stored at the *site*.
- In 1995, the *site* was re-developed as an artist "work-live" space; however, the truck refueling facility remained in operation.
- In 1996, a routine inspection reported that fuel had spilled into the storm sewer system and that the UST vent pipes were broken.
- In 1998, a fuel spill from the fuel tank dispenser into the storm sewer was reported, and broken vent pipes were noted.
- In 1990, Mechanic Jim Brooks claimed that he had "worked with the tank system for 10 years."
- During December 1990, seepage of fuel at a vent pipe coupling located one foot above ground was reported, according to the Fire Department.

December 1998

Environmental Bio-Systems (EBS) excavated and removed two 5,000-gallon diesel USTs and the associated product piping from the tank pit at the *site*. A total of four soil samples were collected near the ends of each tank from approximately nine feet below ground surface (bgs). All four soil samples were subsequently analyzed for total petroleum hydrocarbons detected as diesel (TPH-d); benzene, toluene, ethylbenzene, and total xylenes (BTEX); and methyl tertiary butyl ether (MTBE). Samples were collected from the pit wall northeast and southeast of Tank A (the northern tank). No detections were reported above the method detection limit in the samples collected from the northeast and southeast ends of Tank A. Samples were collected from the pit wall northwest and southwest of Tank B (the southern tank); the northwest sample was found to contain 1,800 milligrams per kilogram (mg/kg) TPH-d and 0.051 mg/kg xylenes, and no detections were reported above the method detection limit in the southwest sample.

February 2000

The February 18, 2000 "Workplan: Subsurface Exploration" was produced by EBS.

October 2000

In October 2000, EBS drilled four soil borings (designated TW1, TW2, TW3, and D1). Soil borings TW1 through TW3 were drilled in the concrete-paved area surrounding the former UST excavation. Boring D1 was drilled in the building, adjacent to the former dispenser location, which had been housed within an enclosed room at the west end of the building.

EBS collected four soil samples from the borings and installed pre-packed temporary well points in two of the borings (TW2 and TW3). Soil sample TW2 was collected at 16.5 feet bgs, and soil sample TW3 was collected at 17 feet bgs; two soil samples were collected from D1. The drilling and sampling were performed by FAST-TEK Engineering Support Services of Point Richmond, California (C-57 Lic. #624461) using a Geoprobe 5400 direct push rig. Borings TW2 and TW3 were drilled to a total depth of 22 feet bgs. Boring D1 was drilled to a total depth of 8 feet bgs, and boring TW1 was abandoned at 3 feet bgs because of subsurface obstructions; neither the soil nor groundwater was sampled at this location. Groundwater was encountered between 16.5 feet and 17.0 feet bgs. EBS submitted four soil samples and two groundwater samples to Analytical Sciences, Inc. of Petaluma, California, a California Statecertified laboratory for TPH-d, BTEX, and MtBE analyses. The results were presented in the EBS "Subsurface Exploration Report" dated December 31, 2001.

Soil sample TW2-16.5' was found to contain 4,200 mg/kg TPH-d and 1.4 mg/kg benzene. Soil sample TW3-17' was found to contain 2,700 mg/kg TPH-d. Soil samples D1-3' and D1-8' were found to contain 3,400 and 34 mg/kg TPH-d, respectively. Groundwater sample TW2-H₂O was found to contain 660 micrograms per liter (μ g/L) TPH-d, 65 μ g/L benzene, 2.4 μ g/L toluene, and 3.2 μ g/L total xylenes. Groundwater sample TW3-H₂O was found to contain 800 μ g/L TPH-d and 0.9 μ g/L benzene.

April 2002

On April 15, 2002, Alameda County Environmental Health Department (ACEH) approved the work proposed in Clearwater's "Site Closure Workplan" (dated March 21, 2002). An October 3, 2002, "Site Closure Report" reported findings of the work that had been approved in the workplan. Sensitive receptors listed in the "Site Closure Report" included the residents of the building, and Clearwater recommended that migration pathways (via concrete cracks and other permeable features) be sealed. On the basis of information on groundwater flow available in reports on other local sites, the groundwater flow direction was found to be north at a gradient of 0.01. No drinking water wells were found to be present in the direct vicinity per the EDR report. However, subsequently, several wells per block have been identified on the Sanborn Maps. The only subsurface conduits identified were the utility trenches under and around the property.

November 2005

On November 16, 2005, Clearwater supervised the advancement of four soil borings (S5 through S8) at the *site*. One grab groundwater sample was collected from soil boring S5, which was located between the dispenser and the former tank pit. Boring logs indicated that the subsurface (to 20 feet) is composed of mostly clayey gravel (most likely this reflects backfill), and the laboratory results showed no detectable concentrations of BTEX. The concentrations of TPH-d in soil ranged from 5.8 mg/kg in S5-20' to 1,200 mg/kg in S7-15'. Analytical results of the groundwater sample at S5 indicated a TPH-d concentration of 890 μ g/L, and no other constituents of concern were reported. Evidence of previous forge use was observed in the drilling of soil boring S6 (5 refusals), consisting of metal slag, debris, and general fill materials. These results were reported in the February 23, 2006, Clearwater document titled "Subsurface Investigation Results."

June 2006

On the basis of approvals by ACEH on June 13, 2006, and August 4, 2006, Clearwater performed a soil investigation and soil vapor survey at the *site*. Soil samples were collected from S9 through S11 at 4 feet bgs. Soil vapor samples were collected at borings V1 through V3. TPH-d was reported at concentrations ranging between 21 mg/kg in S11 to 7,500 mg/kg in S9. No soil sample results showed concentrations of BTEX above the laboratory reporting limit of 0.0050 mg/kg. Two soil vapor samples were collected from each vapor boring at 4 feet bgs. Concentrations of TPH-d detected in vapor samples ranged from 180,000 micrograms per cubic-meter (μ g/m³) in V2.2 4L (V2 at 2 feet bgs using a 4 liter canister) to 7,300,000 μ g/m³ in V3.4 1L. Results were documented in the January 11, 2007, Clearwater report titled "Results of Soil Vapor and Soil Boring Sampling Investigation – Risk Based Corrective Analysis Report."

June 2010

On October 28, 2009, ACEH concurred with Clearwater's work plan titled "Work Plan for Sub-Slab Vapor Sampling" (dated September 9, 2008), and this work phase was begun on June 10, 2010. Soil vapor samples were collected from the soil vapor points on June 17, 2010. Samples were collected at installed soil vapor points SS-1 through SS-6. The constituent of concern, TPH-d, was not detected in any of the soil vapor samples. Toluene (T) was detected in SS-3 at 2,600 μ g/m³. Xylenes (X) were detected in SS-3 at 6,050 μ g/m³. Ethylbenzene (E) was detected in SS-3 at 2,000 μ g/m³. TPH-g was detected in SS-3 at 37,000 μ g/m³. No other constituents of concern were detected. The source for TPH-g and TEX was unknown. This information is documented in the Clearwater July 23, 2010, report titled "Results of Sub-Slab Soil Vapor Investigation Report." To rule out propane as the TPH-g source (SS-3 is close to a 3-inch diameter natural gas line servicing the building structure but not currently in use), both methane and PG&E's leak detection gas were tested for. The results for both were negative.

Because of the elevated reporting levels reported in the soil vapor samples collected June 17, 2010, ACEH requested re-sampling of the 6 soil vapor sample points, in a letter dated August 16, 2010. Re-sampling was performed on November 4, 2010. The re-sampling results indicated a TPH-d concentration of 5,800 μ g/m³ at vapor sampling point SS-3. No other detections of TPH-d were reported by the laboratory. Naphthalene was detected in SS-3 (8.0 μ g/m³) and in SS-6 (4.6 μ g/m³). Analytes 1-methylnaphthalene (24 μ g/m³) and 2-methylnaphthalene (36 μ g/m³) were both detected in SS-3. Analyte 2-methylnaphthalene was also detected in SS-6 (4.3 μ g/m³). Concentrations of TPH-g and TEX were detected above detection limits in SS-3 (TPH-g at 13,000 μ g/m³, toluene at 60 μ g/m³, ethylbenzene at 560 μ g/m³, and xylenes at 2,940 μ g/m³).

The focus of the investigation shifted to identifying the source that was contributing to the TPHg and TEX detections. The lack of benzene detections indicated that the detected fraction of TPH-g was likely a weathered fuel and thus the evidence of a relatively old release. Concurrently, Clearwater obtained data on historical uses for information on the possible source of such a release. The uses of interest include an auto garage, a truck parts repair company, an incinerator, a forgings (blacksmith), and the fueling facility. The utility infrastructure in the surrounding streets may provide a conduit. But no clear source was identified. The "Historical Uses" Report on the *site* was produced on December 1, 2010. The November 4, 2010, soil vapor sampling results were documented in the December 10, 2010, report titled "Results of Additional Sub-Slab Vapor Investigation." This investigation included a workplan.

Clearwater staff met with ACEH staff to review the workplan. Discussion during the meeting resulted in the following changes to the projected plan of work at the *site*: 1) the installation of an additional vapor sample point (SS-7) within the first floor living area; 2) a round of sampling of all existing vapor points (SS-1 through SS-7); 3) three soil borings for the collection of soil and groundwater data near the former tank pit, west of the former tank pit, and west of SS-3; and 4) the (limited) excavation of impacted soil and removal of the vent pipes and dispenser island. Clearwater produced a workplan addendum to address these changes.

February 2011

Per the February 1, 2011, ACEH approval of Clearwater's January 24, 2011, work plan addendum titled "Revised Workplan," soil vapor points SS-5R and SS-7 were installed on February 10, 2011. SS-5R replaced SS-5 because the original SS-5 had been crushed by a t-shirt printer. SS-7 was installed within the living room as a step-out from SS-3. On April 1, 2011, soil vapor probes SS-1 through SS-7 were sampled. TPH-g was detected in all the samples collected during the April 2011 event, at concentrations ranging from <160 μ g/m³ in several samples to 12,000 μ g/m³ in sample SS-3. In addition to naphthalene (8,200 μ g/m³) and TPH-g (12,000 μ g/m³), all the BTEX components were detected in sample SS-3. Only toluene was detected in samples SS-5 (8.2 μ g/m³) and SS-7 (5.9 μ g/m³). Naphthalene was also detected in SS-7 at a concentration of 10 μ g/m³. TPH-d was detected above the detection limit in SS-3 (8,200 μ g/m³) and SS-4 (9,500 μ g/m³). Because of inconclusive source information, Clearwater requested the installation of additional step-out soil vapor sampling points, which ACEH approved.

November 2011

Per concurrence from ACEH on June 6, 2011, Clearwater installed soil vapor points SS-8 through SS-10 on November 10, 2011.

A soil and groundwater investigation event took place on November 28, 2011. Soil samples were collected at various depths in soil borings S12 through S14. The highest TPH-d concentration in soil [(in the tank pit) 1,900 mg/kg] was detected in S13 at 14 feet bgs. TPH-g was detected at 65 mg/kg in S13 at 14 feet bgs. A total of three grab groundwater samples were collected during the November 28, 2011, investigation, at borings S-12, S-13, and S-14. The highest TPH-d concentration was detected in S-13 at 36,000 μ g/L (collected between 11 and 15 feet bgs). The highest TPH-g concentration was detected in S-13 at 200 μ g/L (collected between 11 and 15 feet bgs). (The PG&E field clearance technician advises Clearwater that there is a 4" gas main in Calcot Place, near the SB-12 location.)

On December 8, 2011, soil vapor samples were collected at sample points SS-1 through SS-10.

February 2012 On February 29, 2012, Clearwater produced *Sub-Slab Soil Vapor Sampling Report*, and *Soil and Groundwater Investigation Results*.

June 2012

Alameda County Health Care Services requested that the claimant submit a work plan by August 28, 2012, to address the technical comments, or meet with ACEH representatives to agree to a work scope, the surgical dig, and collection of soil vapor sampling samples and analysis for VOCs using the existing 10 soil vapor points. The meeting occurred on November 14, 2012.

Prior to excavating the Dispenser Room, Clearwater staff prepared an *Excavation and Filling Procedures* plan for the 6-foot-wide by 6-foot-deep by 3-foot-long excavation.

October 2012

As requested by ACEH, Clearwater requested from the laboratory that previously reported soil vapor analytical data be re-generated with the addition of chlorinated solvents detections. Air Toxics Ltd. Laboratory provided the laboratory report for the updated data collected on December 8, 2011. VOC detections included the following, which were added to the cumulative sol vapor tables: TPH-g, TPH-d, naphthalene, 1-methyl naphthalene, toluene, ethylbenzene, xylenes, 1, 3, 5-Trimethylbenzene, 1, 2, 4-Trimethylbenzene, Ethanol, tetrachloroethene, methyl chloride, hexane, cyclohexane, cumene, chloroform, Freon 11, Freon 12, Freon 113, 4-ethyltoluene, acetone, and tetrahydrofuran were detected. Some soil vapor points are located in the residential-use area and some are located in commercial-use area. All detections were at levels well below the CHHSLs for their respective use-area. The reporting of this data was provided in Clearwater's, *Update of the Soil Vapor Sample Analytical Report Presented in the Sub-Slab Soil Vapor Sampling Report*.

The dispenser vent pipes and the dispenser room concrete pad were removed. Visibly stained soil below the dispenser area was removed/excavated, and PID readings and samples were taken. Three drums of soil were generated from the excavation and disposed of under manifest. The analytical report from the waste disposal data was sent to Clearwater from Kiff Analytical, and the determination was made that this document does not need to be uploaded due to its status as a waste characterization report.

November 2012 - January 2013

The subslab excavation report, *Sub-Slab Excavation Report*, was produced. An agency meeting occurred at ACEH to review progress and re-set the future scope of work. Per ACEH directive to identify wells within 2,000 feet, a DWR Well Completion Report Request to the ACEH and an Alameda County Public Works Agency (ACPWA) well search request were prepared and submitted to those agencies. A Site area visit was conducted to check for any utility sumps or any obvious presence of wells within the 2,000 foot radius. An EDR Sanborn Map report to identify wells within a ¹/₂ mile radius around the site was requested and produced. This included a Sanborn Map report order of 14 Tiles.

February 2013

The 2,000-Foot-Radius Well Search Report was produced. From the DWR and the ACPWA sources, forty sites with wells were identified. Upwards of 138 historic well sites (evidenced by windmill and/or water tank on roof) were identified in the radius on the Sanborn Tiles.

May 2013

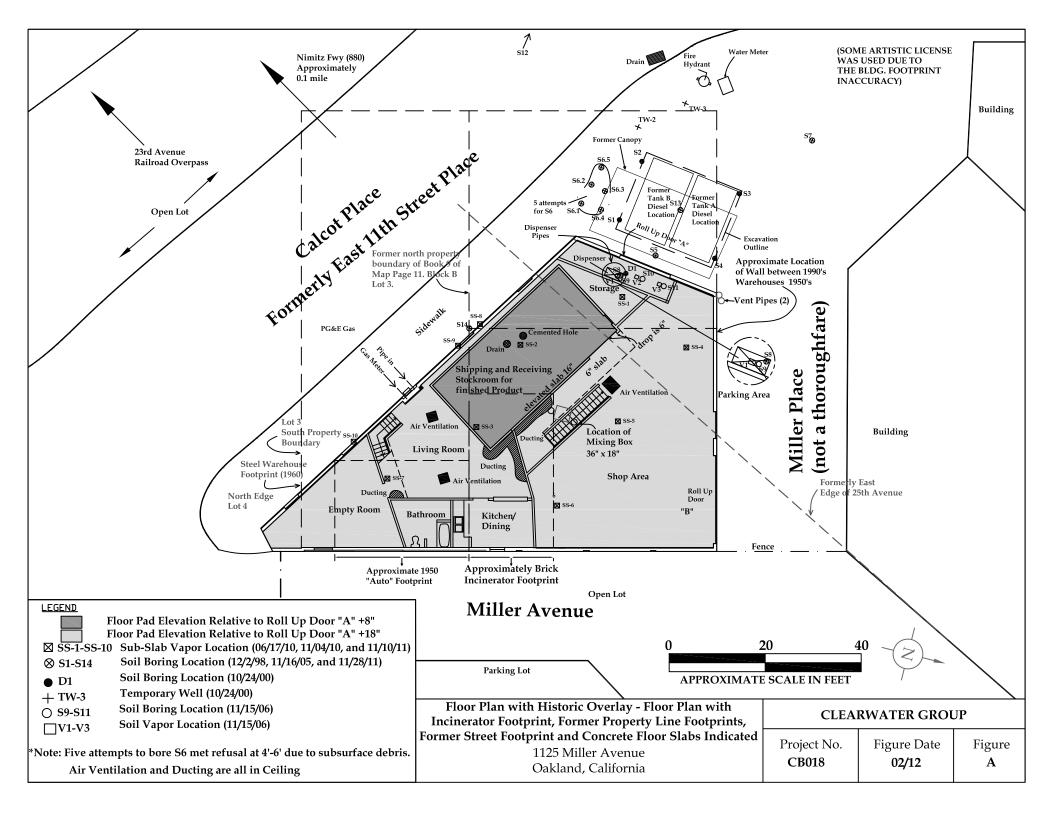
On May 6, notice of additional funding from the USTCF was received. On May 23, Clearwater staff produced the *Workplan for Groundwater Investigation Monitoring Well Installation, Vapor Point Destruction, and Excavation Closure.*

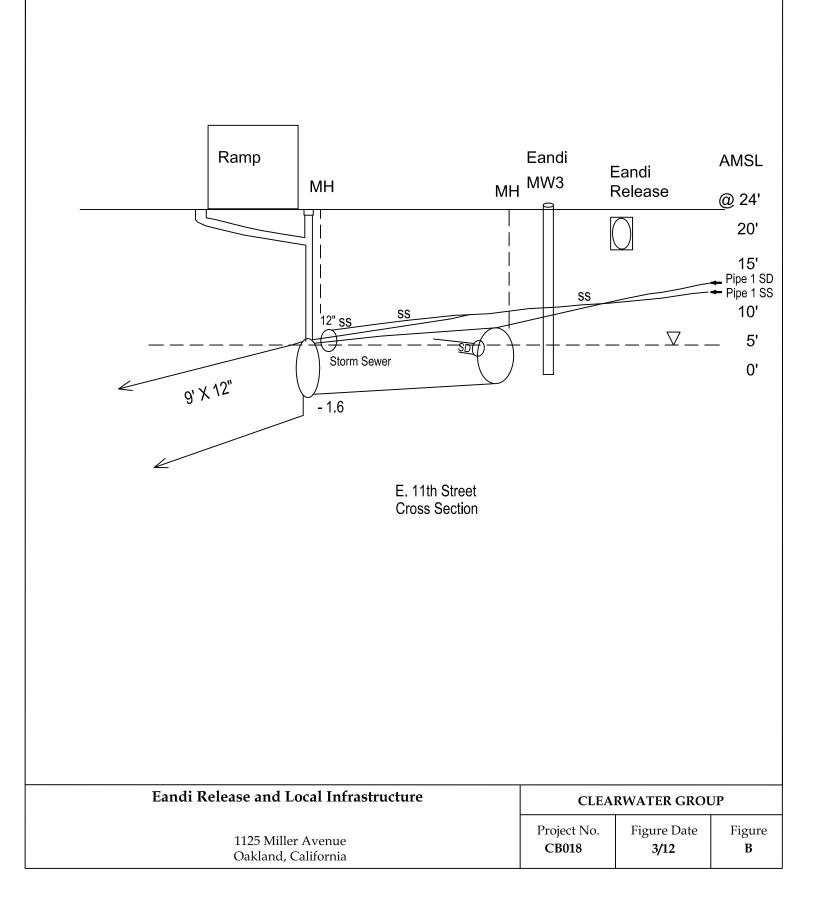
June 2013

Three wells (MW-1 through MW-3) were installed, developed, surveyed, and sampled. Control density fill, a vapor barrier, and a concrete pad were used to bring the excavation back up to grade level. On June 26, 2013, Clearwater staff performed the second quarter 2013 groundwater monitoring event.

August 2013

On August 1, 2013, Clearwater submitted the *Second Quarter 2013 – Groundwater Monitoring* Report to ACEH. On August 12 and 13, 2013, Clearwater staff installed the final vapor seal on the slab. On August 29, 2013, Clearwater submitted the *Evaluation of Sub-Slab Soil Vapor*, which detailed the re-reporting of the sub-slab soil vapor results, to ACEH.


September 2013


On September 6, 2013, Clearwater staff performed the third quarter 2013 groundwater monitoring event.

REFERENCES LIST

- U.S. Geological Survey (USGS), Oakland East, California Quadrangle Map, 7.5-Minute Series, Topographic, 1959, Photorevised 1980.
- Environmental Bio-Systems, Inc., April 21, 1999, UST Excavation, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA.
- Environmental Bio-Systems, Inc., February 18, 2000, <u>Workplan: Subsurface Exploration</u>, Project #079-541B, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA.
- Environmental Bio-Systems, Inc., December 31, 2001, <u>Subsurface Exploration</u>, Project #079-541A, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA.
- Environmental Bio-Systems, Inc., March 21, 2002, <u>Site Closure Workplan</u>, Project #590, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA.
- Environmental Data Resources, April 29, 2002, <u>The EDR Radius Map with GeoCheck</u>; Topographic Maps, Sanborn Insurance Maps, Historic Aerial Photographs; 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617; Inquiry Number: 770535.3S, Southport, Connecticut.
- Environmental Bio-Systems, Inc., October 3, 2002, <u>Site Closure Report</u>, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA 94617.
- Environmental Bio-Systems, Inc., January 26, 2004, <u>Work Plan: Groundwater Monitoring Well</u> <u>Installation</u>, 23rd Avenue Partners, 1125 Miller Avenue, Oakland, CA 94617.
- Clearwater Group, October 12, 2005, <u>Response to Agency Comments and Workplan Addendum</u>, 1125 Miller Avenue, Oakland, CA 94617.
- Clearwater Group, February 23, 2006, <u>Subsurface Investigation Results</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, January 11, 2007, <u>Results of Soil Vapor and Soil Boring Sampling</u> <u>Investigation – Risk Based Corrective Analysis Report</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, September 9, 2008, <u>Work Plan for Sub-Slab Vapor Sampling</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, July 23, 2010, <u>Results of Sub-Slab Soil Vapor Investigation Report</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, December 1, 2010, <u>Historical Property Uses</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.

- Clearwater Group, December 10, 2010, <u>Results of Additional Sub-Slab Vapor Investigation</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, January 24, 2011, <u>Revised Workplan</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, February 29, 2012, <u>Sub-Slab Soil Vapor Sampling Report</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, February 29, 2012, <u>Soil and Groundwater Investigation Results</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, October 9, 2012, <u>Update of the Soil Vapor Sample Analytical Report</u> <u>Presented in the SUB-SLAB SOIL VAPOR SAMPLING REPORT</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, November 8, 2012, <u>Sub-Slab Excavation Report</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, February 21, 2013, <u>2,000-Foot-Radius Well Search Report</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, May 23, 2013, <u>Workplan for Groundwater Investigation Monitoring Well</u> <u>Installation, Vapor Point Destruction, and Excavation Closure</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, August 1, 2013, <u>Second Quarter 2013 Groundwater Monitoring Report</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.
- Clearwater Group, August 29, 2013, <u>Evaluation of Sub-Slab Soil Vapor</u>, 23rd Avenue Partners, 1125 Miller Ave., Oakland, CA 94617.

ATTACHMENT C

CLEARWATER GROUP

Soil Sampling Procedures

Soil samples are typically collected in six-inch long, two-inch diameter brass or acetate tubes. If copper or zinc contamination is the subject of the investigation, acetate or stainless steel liners are used instead of brass. Soil sample locations are typically selected by field screening a portion of the soil for organic vapors using a calibrated organic vapor meter.

Once the sampling location has been determined, a small thickness of superficial soil is removed prior to collection, to prevent cross contamination. If the location being sampled has been exposed to the air for more than a few minutes, hand-tools will be used to dig at least 12 inches into the soil in order to collect as fresh a sample as possible. The sample is collected by pushing the tube into the soil by hand, or a rubber mallet may be used if the tube can not be driven by hand. If it is not possible to drive the tube into the soil, loose soil may be scraped from the freshly exposed surface and placed in the tube by hand.

Soil samples may also be collected using a hand auger and a slide hammer-driven sampler. The hand auger is advanced the desired depth into the soil, then withdrawn and replaced with the slide hammer sampler. The slide hammer sampler contains a 6-inch long by 2-inch diameter brass sample liner (or two 3-inch long liners) inserted inside the threaded core barrel, which is attached to the slide hammer by an extension rod. The core barrel is driven into the soil by the slide hammer, then withdrawn, unscrewed, and the sample liner removed.

Soil samples selected for laboratory analysis are immediately sealed on both ends with Teflon[®] lined plastic end caps, labeled, documented on a chain-of-custody form, and placed in a chilled cooler for transport to a state-certified laboratory.

To prevent cross-contamination of the samples, Clearwater personnel adhere to the following procedures in the field:

- A new, clean pair of latex or nitrile gloves are donned prior to collecting each sample.
- All hand-digging and sampling equipment is thoroughly decontaminated between each sample, by scrubbing equipment in a wash of Alconox® solution, followed by a double rinse in potable water. If required the second rinse will consist of distilled water.

CLEARWATER GROUP

Groundwater Monitoring Well Installation and Development Field Procedures

Drilling and Soil Sampling

Permits, Site Safety Plan, Utility Clearance

All required permits are obtained, unless otherwise contractually directed. A site specific Site Safety Plan is prepared detailing site hazards, site safety and control, decontamination procedures, and emergency response procedures to be employed throughout the work. At least 48 hours prior to drilling, Underground Service Alert (USA) or an equivalent agency is notified of the planned work. Clearwater attempts to locate all underground and aboveground utilities by site inspection in conjunction with its subcontractors and knowledgeable site managers (if available), and review of site as-built drawings. Clearwater may contract with a professional utility locator to refine the site utility inspection. All Clearwater drilling and sampling methods are consistent with ASTM Method D-1452-80, and local, state, and federal regulations.

Drilling Equipment

All well boreholes are drilled using a truck-mounted hollow-stem auger drill rig, unless site conditions warrant a different drilling method. All drilling equipment is inspected daily and maintained in safe working condition by the operator. All down-hole drilling equipment is steam cleaned prior to arriving on site. Working components of the drill rig near the borehole, as well as augers and drill rods, are thoroughly steam cleaned between each boring location.

Soil Sampling and Lithologic Description

Whenever possible, the first Clearwater boring to be drilled at a site is continuously cored to obtain a complete lithologic description. Subsurface conditions permitting, the first five feet of each boring are advanced using a hand-auger or post-hole digger. Otherwise, soil samples are typically collected every 5 feet to the total depth explored, using stainless steel tubes fitted in a California-modified split spoon sampler. Additional soil samples may be collected on the basis of significant changes in lithology or in areas of obvious soil contamination. During soil sample collection, the split spoon sampler is driven 18 to 24 inches past the lead auger by a 140-pound hammer falling 30 inches. The number of blows necessary to drive the sampler every 6 inches ("blow count") and the amount of soil recovered are recorded on the Field Exploratory Soil Boring Log. The type, diameter, and length of the sampler will be noted on the boring log. The soil sampler and liners are used whenever a soil sample may be retained for laboratory analysis.

Monitoring Well Installation

Well Casing, Screen and Filter Pack Construction

Groundwater monitoring wells are constructed with a threaded, schedule 40, polyvinyl chloride (PVC) casing unless site geochemistry or contamination necessitates an alternative material. Monitoring wells are typically constructed using a 2-inch or 4-inch diameter casing, with a factory-slotted screen and threaded end cap.

The well screen slot size is the maximum size capable of retaining 90% of the filter pack. Typically, 0.010-inch diameter slotted screen is used where the formation is predominantly clay and/or silt or fine sand and 0.020-inch screen is used where the formation is predominantly medium to coarse sand and/or gravel.

A sand filter pack is placed in the annular space across the screened interval and extended approximately two feet above the screen, as site conditions permit. The filter pack grade (mean grain size) is selected according to native sediment type as follows: a) for poorly graded fine sand or silt/clay - 4 times the 70% retained grain size of the

formation; b) for medium to coarse sand, gravel or well graded sediments - 6 times the 70% retained grain size. The retained grain size is determined by a particle size analysis, to determine a sieve screen opening size, where 70% of the soil particles are retained on the sieve screen and 30% of the soil particles pass through the sieve screen. Since results of particle size analysis are not always available, Clearwater often selects screen size and filter pack on the basis of the site lithology, usually the finest grained significantly thick layer of sediment to be screened. Commonly selected grades of filter pack sand are Lone $\text{Star}^{\text{(B)}}$ #3 or #2/12 with 0.020-inch slotted screen and Lone $\text{Star}^{\text{(B)}}$ #2/16 with 0.010-inch slotted screen.

Well Seal and Completion

A minimum two-foot thick seal of bentonite pellets is placed above the sand pack. The bentonite seal is hydrated by either formation water or potable water. Neat cement or a cement/bentonite grout mixture seals the remaining annular space to the surface. If bentonite is used in the grout mixture, it does not exceed 5% by weight. The grout is placed using a tremie pipe, if the top of the bentonite is more than 20 feet below grade, or if water is present in the boring above the bentonite seal. A watertight locking cap and protective traffic-rated vault box is installed on top of each well casing. A water-tight, traffic-rated, well box is installed, in concrete, over the top of the well to protect the well from weather and to prevent unauthorized entry into the well. The top of the box is set approximately 1/8-inch to ¼-inch above the surrounding surface to minimize surface water intrusion. Well construction details are presented on the Field Exploratory Soil Boring Log. Following completion of a well, Clearwater completes and submits, or ensures that the driller has sufficient information to complete and submit, California Department of Water Resources Well Completion Reports (DWR Form 188).

Well Development

Well development alters the characteristics of the aquifer near the well so that water will flow more freely to the well. Well development is confined mainly to a zone immediately adjacent to the well, where the soil has been disturbed by well construction procedures. The well is pumped, or bailed, of several well volumes to remove turbid water and to draw sediment that is finer than the slotted screen opening through the well screen. Then the well is swabbed with a surge block for approximately ten minutes to further remove loose sediment. Finally, the well is pumped, or bailed, to remove the turbid water and sediment from the well. Typically, greater than ten well volumes of groundwater will be removed from a well during development. Development is stopped once the purged water is largely free of sediment.

Soil Boring Abandonment

Soil borings not converted into monitoring wells are sealed to the ground surface using neat cement or sand-cement slurry in accordance with federal, state, and local regulations. Native soil may be used to fill the top two to three feet of the borehole, as permitted.

Investigation Derived Waste

Soil cuttings and well development water are typically stored separately, in 55-gallon, steel, Department of Transportation approved drums. The drums are labeled and secured, pending proper waste profiling, transportation and appropriate disposal at an approved disposal facility. The disposal facility provides Clearwater documentation of the waste's disposal.

Surveying

The newly installed wells are surveyed by a licensed surveyor. The top of casing elevations are surveyed to 1/100 of a foot and are referenced to mean sea level. If there are preexisting wells onsite, the survey will be tied into the survey of the preexisting wells.

ATTACHMENT D

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/11/2013 By jamesy

Permit Numbers: W2013-0425 to W2013-0429 Permits Valid from 06/14/2013 to 07/12/2013

Application Id: Site Location: Project Start Date: Assigned Inspector:	1370647521109 1125 Miller Ave 06/14/2013 Contact Steve Miller at (510) 670-55	City of Project Site:Oakland Completion Date:07/12/2013 17 or stevem@acpwa.org
Applicant:	Clearwater Group - Olivia Jacobs	Phone: 510-307-9943
Property Owner:	229 Tewksbury Ävenue, Point Richn John Protopappas 155 Grand Avenue, #1025, Oakland ** same as Property Owner **	Phone: 510-452-2944
Client: Contact:	** same as Property Owner ** Olivia Jacobs	Phone: 510-590-1099 Cell: 510-590-1099

	Total Due:	\$1985.00
Receipt Number: WR2013-0205	Total Amount Paid:	\$1985.00
Payer Name : Olivia Jacobs	Paid By: MC	PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 5 Wells Driller: Gregg Drilling - Lic #: 485165 - Method: auger

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2013- 0425	06/11/2013	09/12/2013	MW-1	8.00 in.	2.00 in.	7.00 ft	24.00 ft
W2013- 0426	06/11/2013	09/12/2013	MW-2	8.00 in.	2.00 in.	7.00 ft	24.00 ft
W2013- 0427	06/11/2013	09/12/2013	MW-3	8.00 in.	2.00 in.	7.00 ft	24.00 ft
W2013- 0428	06/11/2013	09/12/2013	MW-4	8.00 in.	2.00 in.	7.00 ft	24.00 ft
W2013- 0429	06/11/2013	09/12/2013	MW-5	8.00 in.	2.00 in.	7.00 ft	24.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required

Work Total: \$1985.00

Alameda County Public Works Agency - Water Resources Well Permit

and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

ATTACHMENT E

MW-1 silty clay all the way down. Cleared to 5 feet

1st attempt MW-3: Thick Metal plate across 7.5 inches of the 8 inch borehole

MW-1 encountered the Sewer lateral on the first Air Knife - step over 24 inches from the pipe

 2^{nd} attempt MW-3: pipe connects to the straight edged metal slab; 3^{rd} attempt no obstructions

ATTACHMENT F

Laboratory Results

Jim Jacobs Clearwater Group, Inc. 229 Tewksbury Avenue Point Richmond, CA 94801

Subject : 20 Soil Samples Project Name : P+D 23rd Ave Partners Project Number : CB018H

Dear Mr. Jacobs,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy D. Jurpen

Troy Turpen

Subject :20 Soil SamplesProject Name :P+D 23rd Ave PartnersProject Number :CB018H

Case Narrative

Page 1 of 3

A version of this report was previously issued on 06/24/2013. This revised version replaces that report. Results for samples S15 COMP, S16 COMP, and S17 COMP have been added. Narratives for raised Reporting Limits have been added.

All soil samples were reported on a total weight (wet weight) basis.

The Method Reporting Limit for Chloromethane has been increased due to the presence of an interfering compound for sample S15-19.0'.

The Method Reporting Limit for 1,1,2-Trichloroethane has been increased due to the presence of an interfering compound for samples S15-15.0', S15-17.0' and S15-19.0'.

The Method Reporting Limit for Dibromochloromethane has been increased due to the presence of an interfering compound for samples S15-15.0' and S15-19.0'.

The Method Reporting Limit for 1,1,2,2-Tetrachloroethane has been increased due to the presence of an interfering compound for samples S15-8.0', S15-10.0', S15-15.0', S15-17.0' and S15-19.0'.

The Method Reporting Limit for 1,2,3-Trichloropropane has been increased due to the presence of an interfering compound for samples S15-8.0', S15-10.0', S15-17.0' and S15-19.0'.

The Method Reporting Limit for Bromobenzene has been increased due to the presence of an interfering compound for sample S15-19.0'.

The Method Reporting Limit for 1,2,4-Trichlorobenzene has been increased due to the presence of an interfering compound for samples S15-10.0', S15-15.0', S15-17.0' and S15-19.0'.

The Method Reporting Limit for Naphthalene has been increased due to the presence of an interfering compound for samples S15-10.0', S15-15.0', S15-17.0' and S15-19.0'.

The Method Reporting Limit for 1,2,3-Trichlorobenzene has been increased due to the presence of an interfering compound for samples S15-8.0', S15-10.0', S15-15.0', S15-17.0' and S15-19.0'.

Matrix Spike/Matrix Spike Duplicate results associated with samples S15-24.5', S15-8.0',

Subject :20 Soil SamplesProject Name :P+D 23rd Ave PartnersProject Number :CB018H

Report Number : 85145 Date : 07/11/2013

Case Narrative

Page 2 of 3

S15-10.0', S15-15.0', S15-17.0', S15-19.0', S16-10'grab, S16-15'grab, S16-17'grab, S16-20'grab, S16-25'grab, S16-7'grab hand auger, S17-7.0', S17-10.0', S17-17.0', S17-21.0', and S17-24.5' for the analyte TPH as Diesel were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Matrix Spike/Matrix Spike Duplicate results associated with samples S15-24.5', S15-8.0', S15-10.0', S15-15.0', S15-17.0', S16-10'grab, S16-15'grab, S16-17'grab, S16-20'grab, S16-25'grab, S16-7'grab hand auger, S17-7.0', and S17-10.0' for the analytes 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,4-Trimethylbenzene, 1,2-Dichlorobenzene, 1,2-dibromo-3-chloropropane, 1,3,5-Trimethylbenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 2+4-Chlorotoluene, Bromobenzene, Isopropyl benzene, Naphthalene, n-butylbenzene, n-propylbenzene, p-isopropyltoluene, sec-butylbenzene, and tert-butylbenzene were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Matrix Spike/Matrix Spike Duplicate results associated with samples S15-24.5', S15-8.0', S15-17.0', S16-15'grab, S16-17'grab, S16-20'grab, S16-25'grab, S16-7'grab hand auger, S17-7.0', and S17-10.0' for the analyte Hexachlorobutadiene were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Matrix Spike/Matrix Spike Duplicate results associated with samples S17-17.0', S17-21.0', and S17-24.5' for the analyte Vinyl Chloride were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Matrix Spike/Matrix Spike Duplicate results associated with sample S15-19.0' for the analytes 1,1,1,2-Tetrachloroethane, 1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloropropene, 1,2,3-Trichlorobenzene, 1,2,3-Trichloropropane, 1,2,4-Trimethylbenzene, 1,2-Dibromoethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane, 1,2-Dichloropropane, 1,2-Dichloropropane, 1,3,5-Trimethylbenzene, 1,3-Dichloropropane, 1,3-Dichloropropane, 1,4-Dichlorobenzene, 2+4-Chlorotoluene, 2,2-Dichloropropane, Benzene, Bromobenzene, Chloroethane, Bromodichloromethane, Dibromoethane, Dibrom

Subject :20 Soil SamplesProject Name :P+D 23rd Ave PartnersProject Number :CB018H

Report Number : 85145 Date : 07/11/2013

Case Narrative

Page 3 of 3

Ethylbenzene, Hexachlorobutadiene, Isopropyl benzene, Methyl-t-butyl ether, Methylene Chloride, Naphthalene, O-Xylene, P + M Xylene, Styrene, Tert-Butanol, Tert-amyl-methyl ether, Tetrachloroethene, Toluene, Trichloroethene, Trichlorofluoromethane, Vinyl Chloride, c-1,3-Dichloropropene, cis-1,2-Dichloroethene, n-butylbenzene, n-propylbenzene, p-isopropyltoluene, sec-butylbenzene, t-1,2-Dichloroethene, t-1,3-Dichloropropene, and tert-butylbenzene were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Surrogate Recovery for sample S15-17.0' for test method Mod. EPA 8015 was outside of control limits. This may indicate a bias in the analysis due to the sample's matrix or an interference from compounds present in the sample.

Matrix Spike/Matrix Spike Duplicate results associated with samples S15 COMP, S16 COMP, and S17 COMP for the analytes Antimony and Barium were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Sample : S15-24.5'		Matrix : S	Soil	Lab Number : 85	145-01
Sample Date :06/14/2013	Measured	Method Reporting		Analysis	Date/Time
Parameter	Value	Limit	Units	Method	Analyzed
TPH as Diesel (Note: Hydrocarbons are higher-boiling th	8.4 an typical Diese	1.0 I Fuel.)	mg/Kg	M EPA 8015	06/19/13 14:03
Octacosane (Diesel Surrogate)	80.8		% Recovery	M EPA 8015	06/19/13 14:03
Sample : S15-8.0'		Matrix : S	Soil	Lab Number : 85	145-02
Sample Date :06/14/2013		Mathaad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel (Note: Hydrocarbons are higher-boiling th	4000 an typical Diese	200 I Fuel.)	mg/Kg	M EPA 8015	06/20/13 09:57
Octacosane (Diesel Surrogate)	Diluted Out		% Recovery	M EPA 8015	06/20/13 09:57
Sample : S15-10.0'		Matrix : S	Soil	Lab Number : 85	145-03
Sample Date :06/14/2013		Method		A 4 -	
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel (Note: Hydrocarbons are higher-boiling th	3400 an typical Diese	100 I Fuel.)	mg/Kg	M EPA 8015	06/20/13 08:58
Octacosane (Diesel Surrogate)	Diluted Out		% Recovery	M EPA 8015	06/20/13 08:58

Sample : S15-15.0'		Matrix : S	Soil	Lab Number : 85	145-04
Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	10000	200	mg/Kg	M EPA 8015	06/20/13 07:31
Octacosane (Diesel Surrogate)	Diluted Out		% Recovery	M EPA 8015	06/20/13 07:31
Sample : S15-17.0'		Matrix : S	Soil	Lab Number : 85	145-05
Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	5800	10	mg/Kg	M EPA 8015	06/20/13 09:28
Octacosane (Diesel Surrogate)	134		% Recovery	M EPA 8015	06/20/13 09:28
Sample : S15-19.0'		Matrix : S	Soil	Lab Number : 85	145-06
Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel (Note: Hydrocarbons are higher-boiling th	8400 an typical Diese	200 I Fuel.)	mg/Kg	M EPA 8015	06/20/13 08:00
Octacosane (Diesel Surrogate)	Diluted Out		% Recovery	M EPA 8015	06/20/13 08:00

Sample : S16-10'grab		Matrix : S	Soil	Lab Number : 85	145-07
Sample Date :06/14/2013 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	11	1.0	mg/Kg	M EPA 8015	06/19/13 23:38
Octacosane (Diesel Surrogate)	95.5		% Recovery	M EPA 8015	06/19/13 23:38
Sample : S16-15'grab		Matrix : S	Soil	Lab Number : 85	145-08
Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	5.5	1.0	mg/Kg	M EPA 8015	06/19/13 18:00
Octacosane (Diesel Surrogate)	96.0		% Recovery	M EPA 8015	06/19/13 18:00
Sample : S16-17'grab		Matrix : S	Soil	Lab Number : 85	145-09
Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel (Note: Discrete peaks, higher boiling hydr	1.9 rocarbons prese	1.0 nt, atypical fo	mg/Kg or Diesel Fuel.)	M EPA 8015)	06/19/13 18:29
Octacosane (Diesel Surrogate)	97.6		% Recovery	M EPA 8015	06/19/13 18:29

Sample : S16-20'grab		Matrix : S	Soil	Lab Number : 85145-10	
Sample Date :06/14/2013		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	3.0	1.0	mg/Kg	M EPA 8015	06/19/13 17:30
(Note: Hydrocarbons are higher-boiling th	an typical Diese	I Fuel.)			
Octacosane (Diesel Surrogate)	99.4		% Recovery	M EPA 8015	06/19/13 17:30
Complet S16 25'mmb		Matrix : S	Poil	Lab Number : 85	145 11
Sample : S16-25'grab		Maurix . S	5011		140-11
Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	< 1.0	1.0	mg/Kg	M EPA 8015	06/19/13 23:09
Octacosane (Diesel Surrogate)	88.0		% Recovery	M EPA 8015	06/19/13 23:09
Sample : S16-7'grab hand auger		Matrix : S	Soil	Lab Number : 85	145-12
Sample Date :06/13/2013		Method			
Parameter	Measured Value	Reporting	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel (Note: Hydrocarbons are higher-boiling th	7.7 an typical Diese	1.0 I Fuel.)	mg/Kg	M EPA 8015	06/19/13 16:23
		,			
Octacosane (Diesel Surrogate)	88.7		% Recovery	M EPA 8015	06/19/13 16:23

Sample : \$17-7.0'		Matrix : S	Soil	Lab Number : 85	145-13
Sample Date :06/14/2013		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	1.6	1.0	mg/Kg	M EPA 8015	06/19/13 15:05
(Note: Hydrocarbons are higher-boiling th	an typical Diese	l Fuel.)			
Octacosane (Diesel Surrogate)	97.5		% Recovery	M EPA 8015	06/19/13 15:05
Sample : S17-10.0'		Matrix : S	Soil	Lab Number : 85	145-14
Sample Date :06/14/2013					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel	< 1.0	1.0	mg/Kg	M EPA 8015	06/19/13 15:34
Octacosane (Diesel Surrogate)	92.5		% Recovery	M EPA 8015	06/19/13 15:34
Sample : S17-17.0'		Matrix : S	Soil	Lab Number : 85	145-15
Sample Date :06/14/2013		Mathad			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
TPH as Diesel (Note: Discrete peaks, higher boiling hydr	3.0 ocarbons prese	1.0 nt, atypical fo	mg/Kg or Diesel Fuel.)	M EPA 8015)	06/19/13 16:03
Octacosane (Diesel Surrogate)	93.2		% Recovery	M EPA 8015	06/19/13 16:03

Sample : S17-21.0'		Matrix : S	Soil	Lab Number :	85145-16	
Sample Date :06/14/2013 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed	
TPH as Diesel (Note: Discrete peaks, higher boiling hy	5.9 vdrocarbons pres	1.0 ent, atypical fo	mg/Kg or Diesel Fuel.	M EPA 8015)	06/19/13 16:32	
Octacosane (Diesel Surrogate)	93.8		% Recovery	M EPA 8015	06/19/13 16:32	
Sample : S17-24.5'		Matrix : S	Soil	Lab Number :	85145-17	
Sample Date :06/14/2013 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed	
TPH as Diesel1.61.0mg/KgM EPA 801506/19/13 17:02(Note: Discrete peaks, higher boiling hydrocarbons present, atypical for Diesel Fuel.)06/19/13 17:02						
Octacosane (Diesel Surrogate)	92.6		% Recovery	M EPA 8015	06/19/13 17:02	

Sample : S15-24.5'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-01

		Method		
Parameter	Measured Value	Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/20/13 21:41
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/20/13 21:41
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/20/13 21:41
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/20/13 21:41
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/20/13 21:41
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 03:37
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 03:37
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37

Sample : S15-24.5'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-01

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 21:41
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 03:37
1,2-Dichloroethane-d4 (Surr)	87.1		% Recovery	06/18/13 03:37
4-Bromofluorobenzene (Surr)	91.7		% Recovery	06/18/13 03:37
Toluene - d8 (Surr)	101		% Recovery	06/18/13 03:37

Sample : **S15-8.0'**

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-02

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
TPH as Gasoline	4.5	1.0	mg/Kg	06/18/13 14:59
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 14:59
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59

Sample : **S15-8.0'**

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-02

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Isopropyl benzene	0.0096	0.0050	mg/Kg	06/18/13 14:59
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,1,2,2-Tetrachloroethane	< 0.010	0.010	mg/Kg	06/18/13 14:59
1,2,3-Trichloropropane	< 0.020	0.020	mg/Kg	06/18/13 14:59
n-Propylbenzene	0.028	0.0050	mg/Kg	06/18/13 14:59
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
sec-Butylbenzene	0.021	0.0050	mg/Kg	06/18/13 14:59
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
n-Butylbenzene	0.063	0.0050	mg/Kg	06/18/13 14:59
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/21/13 02:21
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 14:59
1,2,3-Trichlorobenzene	< 0.0080	0.0080	mg/Kg	06/18/13 14:59
1,2-Dichloroethane-d4 (Surr)	94.2		% Recovery	06/18/13 14:59
4-Bromofluorobenzene (Surr)	94.3		% Recovery	06/18/13 14:59
Toluene - d8 (Surr)	99.8		% Recovery	06/18/13 14:59

Sample : S15-10.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-03

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Methyl-t-butyl ether (MTBE)	< 0.025	0.025	mg/Kg	06/18/13 16:43
Diisopropyl ether (DIPE)	< 0.025	0.025	mg/Kg	06/18/13 16:43
Ethyl-t-butyl ether (ETBE)	< 0.025	0.025	mg/Kg	06/18/13 16:43
Tert-amyl methyl ether (TAME)	< 0.025	0.025	mg/Kg	06/18/13 16:43
Tert-Butanol	< 0.15	0.15	mg/Kg	06/18/13 16:43
TPH as Gasoline	76	2.5	mg/Kg	06/18/13 16:43
Dichlorodifluoromethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Chloromethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Vinyl Chloride	< 0.025	0.025	mg/Kg	06/18/13 16:43
Bromomethane	< 0.50	0.50	mg/Kg	06/18/13 16:43
Chloroethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Trichlorofluoromethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,1-Dichloroethene	< 0.025	0.025	mg/Kg	06/18/13 16:43
Methylene Chloride	< 0.025	0.025	mg/Kg	06/18/13 16:43
trans-1,2-Dichloroethene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,1-Dichloroethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
2,2-Dichloropropane	< 0.025	0.025	mg/Kg	06/18/13 16:43
cis-1,2-Dichloroethene	< 0.025	0.025	mg/Kg	06/18/13 16:43
Chloroform	< 0.025	0.025	mg/Kg	06/18/13 16:43
Bromochloromethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,1,1-Trichloroethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,1-Dichloropropene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,2-Dichloroethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Carbon Tetrachloride	< 0.025	0.025	mg/Kg	06/18/13 16:43
Benzene	0.042	0.025	mg/Kg	06/18/13 16:43
Trichloroethene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,2-Dichloropropane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Bromodichloromethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Dibromomethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
cis-1,3-Dichloropropene	< 0.025	0.025	mg/Kg	06/18/13 16:43
Toluene	0.034	0.025	mg/Kg	06/18/13 16:43
trans-1,3-Dichloropropene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,1,2-Trichloroethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,3-Dichloropropane	< 0.025	0.025	mg/Kg	06/18/13 16:43

Sample : S15-10.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-03

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time Analyzed
Tetrachloroethene	< 0.025	0.025	mg/Kg	06/18/13 16:43
Dibromochloromethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,2-Dibromoethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Chlorobenzene	< 0.026	0.026	mg/Kg	06/18/13 16:43
1,1,1,2-Tetrachloroethane	< 0.025	0.025	mg/Kg	06/18/13 16:43
Ethylbenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
P,M-Xylene	0.090	0.025	mg/Kg	06/18/13 16:43
O-Xylene	< 0.025	0.025	mg/Kg	06/18/13 16:43
Styrene	< 0.025	0.025	mg/Kg	06/18/13 16:43
Isopropyl benzene	0.33	0.025	mg/Kg	06/18/13 16:43
Bromoform	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,1,2,2-Tetrachloroethane	< 0.10	0.10	mg/Kg	06/18/13 16:43
1,2,3-Trichloropropane	< 0.20	0.20	mg/Kg	06/18/13 16:43
n-Propylbenzene	1.3	0.025	mg/Kg	06/18/13 16:43
Bromobenzene	< 0.11	0.11	mg/Kg	06/18/13 16:43
1,3,5-Trimethylbenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
2+4-Chlorotoluene	< 0.050	0.050	mg/Kg	06/18/13 16:43
tert-Butylbenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,2,4-Trimethylbenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
sec-Butylbenzene	0.30	0.025	mg/Kg	06/18/13 16:43
p-lsopropyltoluene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,3-Dichlorobenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,4-Dichlorobenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
n-Butylbenzene	0.94	0.025	mg/Kg	06/18/13 16:43
1,2-Dichlorobenzene	< 0.025	0.025	mg/Kg	06/18/13 16:43
1,2-Dibromo-3-chloropropane	< 0.050	0.050	mg/Kg	06/18/13 16:43
1,2,4-Trichlorobenzene	< 0.080	0.080	mg/Kg	06/18/13 16:43
Hexachlorobutadiene	< 0.025	0.025	mg/Kg	06/21/13 06:53
Naphthalene	< 0.080	0.080	mg/Kg	06/18/13 16:43
1,2,3-Trichlorobenzene	< 0.080	0.080	mg/Kg	06/18/13 16:43
1,2-Dichloroethane-d4 (Surr)	93.2		% Recovery	06/18/13 16:43
4-Bromofluorobenzene (Surr)	97.1		% Recovery	06/18/13 16:43
Toluene - d8 (Surr)	99.7		% Recovery	06/18/13 16:43
2-Bromochlorobenzene (Surr)	95.0		% Recovery	06/18/13 16:43

Sample : S15-15.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-04

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Methyl-t-butyl ether (MTBE)	< 0.050	0.050	mg/Kg	06/18/13 17:18
Diisopropyl ether (DIPE)	< 0.050	0.050	mg/Kg	06/18/13 17:18
Ethyl-t-butyl ether (ETBE)	< 0.050	0.050	mg/Kg	06/18/13 17:18
Tert-amyl methyl ether (TAME)	< 0.050	0.050	mg/Kg	06/18/13 17:18
Tert-Butanol	< 0.25	0.25	mg/Kg	06/18/13 17:18
TPH as Gasoline	600	15	mg/Kg	06/21/13 10:20
Dichlorodifluoromethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
Chloromethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
Vinyl Chloride	< 0.050	0.050	mg/Kg	06/18/13 17:18
Bromomethane	< 1.0	1.0	mg/Kg	06/18/13 17:18
Chloroethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
Trichlorofluoromethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,1-Dichloroethene	< 0.050	0.050	mg/Kg	06/18/13 17:18
Methylene Chloride	< 0.050	0.050	mg/Kg	06/18/13 17:18
trans-1,2-Dichloroethene	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,1-Dichloroethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
2,2-Dichloropropane	< 0.050	0.050	mg/Kg	06/18/13 17:18
cis-1,2-Dichloroethene	< 0.050	0.050	mg/Kg	06/18/13 17:18
Chloroform	< 0.050	0.050	mg/Kg	06/18/13 17:18
Bromochloromethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,1,1-Trichloroethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,1-Dichloropropene	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,2-Dichloroethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
Carbon Tetrachloride	< 0.050	0.050	mg/Kg	06/18/13 17:18
Benzene	0.98	0.050	mg/Kg	06/18/13 17:18
Trichloroethene	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,2-Dichloropropane	< 0.050	0.050	mg/Kg	06/18/13 17:18
Bromodichloromethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
Dibromomethane	< 0.050	0.050	mg/Kg	06/18/13 17:18
cis-1,3-Dichloropropene	< 0.050	0.050	mg/Kg	06/18/13 17:18
Toluene	0.11	0.050	mg/Kg	06/18/13 17:18
trans-1,3-Dichloropropene	< 0.050	0.050	mg/Kg	06/18/13 17:18
1,1,2-Trichloroethane	< 0.50	0.50	mg/Kg	06/18/13 17:18
1,3-Dichloropropane	< 0.050	0.050	mg/Kg	06/18/13 17:18

Sample : S15-15.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-04

Tetrachloroethene < 0.050	alyzed (18/13 17:18 (18/13 17:18
1,2-Dibromoethane < 0.050	
Chlorobenzene < 0.050 0.050 mg/Kg 06/	
	/18/13 17:18
1.1.1.2-Tetrachloroethane < 0.050 0.050 mg/Kg $06/$	/18/13 17:18
	/18/13 17:18
Ethylbenzene 0.24 0.050 mg/Kg 06/	/18/13 17:18
P,M-Xylene 0.63 0.050 mg/Kg 06/	/18/13 17:18
	/18/13 17:18
Styrene < 0.050 0.050 mg/Kg 06/	/18/13 17:18
Isopropyl benzene 3.0 0.050 mg/Kg 06/	/18/13 17:18
Bromoform < 0.050 0.050 mg/Kg 06/	/18/13 17:18
1,1,2,2-Tetrachloroethane < 0.50 0.50 mg/Kg 06/	/18/13 17:18
1,2,3-Trichloropropane < 0.050 0.050 mg/Kg 06/	/18/13 17:18
n-Propylbenzene 11 0.050 mg/Kg 06/	/18/13 17:18
Bromobenzene < 0.22 0.22 mg/Kg 06/	/18/13 17:18
1,3,5-Trimethylbenzene < 0.050 0.050 mg/Kg 06/	/18/13 17:18
2+4-Chlorotoluene < 0.10 0.10 mg/Kg 06/	/18/13 17:18
tert-Butylbenzene < 0.050 0.050 mg/Kg 06/	/18/13 17:18
1,2,4-Trimethylbenzene < 0.050 0.050 mg/Kg 06/	/18/13 17:18
sec-Butylbenzene 1.8 0.050 mg/Kg 06/	/18/13 17:18
p-IsopropyItoluene 0.063 0.050 mg/Kg 06/	18/13 17:18
1,3-Dichlorobenzene < 0.050 0.050 mg/Kg 06/	18/13 17:18
1,4-Dichlorobenzene < 0.050 0.050 mg/Kg 06/	18/13 17:18
n-Butylbenzene 5.8 0.050 mg/Kg 06/	/18/13 17:18
	/18/13 17:18
1,2-Dibromo-3-chloropropane < 0.098 0.098 mg/Kg 06/	/18/13 17:18
1,2,4-Trichlorobenzene < 0.20 0.20 mg/Kg 06/	/18/13 17:18
Hexachlorobutadiene < 0.15 0.15 mg/Kg 06/2	21/13 10:20
Naphthalene < 0.50 0.50 mg/Kg 06/	18/13 17:18
1,2,3-Trichlorobenzene < 0.50 0.50 mg/Kg 06/	18/13 17:18
1,2-Dichloroethane-d4 (Surr) 80.5 % Recovery 06/	/18/13 17:18
4-Bromofluorobenzene (Surr) 93.3 % Recovery 06/	/18/13 17:18
Toluene - d8 (Surr) 87.9 % Recovery 06/	/18/13 17:18
2-Bromochlorobenzene (Surr) 88.1 % Recovery 06/	18/13 17:18

Sample : S15-17.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-05

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Tert-Butanol	< 0.015	0.015	mg/Kg	06/18/13 15:34
TPH as Gasoline	21	1.0	mg/Kg	06/18/13 15:34
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Bromomethane	< 0.050	0.050	mg/Kg	06/18/13 15:34
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Benzene	0.11	0.0050	mg/Kg	06/18/13 15:34
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Toluene	0.0078	0.0050	mg/Kg	06/18/13 15:34
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1,2-Trichloroethane	< 0.010	0.010	mg/Kg	06/18/13 15:34
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34

Sample : S15-17.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-05

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Ethylbenzene	0.010	0.0050	mg/Kg	06/18/13 15:34
P,M-Xylene	0.024	0.0050	mg/Kg	06/18/13 15:34
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
Isopropyl benzene	0.12	0.0050	mg/Kg	06/18/13 15:34
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,1,2,2-Tetrachloroethane	< 0.020	0.020	mg/Kg	06/18/13 15:34
1,2,3-Trichloropropane	< 0.050	0.050	mg/Kg	06/18/13 15:34
n-Propylbenzene	0.37	0.0050	mg/Kg	06/18/13 15:34
Bromobenzene	< 0.011	0.011	mg/Kg	06/18/13 15:34
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
sec-Butylbenzene	0.052	0.0050	mg/Kg	06/18/13 15:34
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
n-Butylbenzene	0.15	0.0050	mg/Kg	06/18/13 15:34
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 15:34
1,2,4-Trichlorobenzene	< 0.0080	0.0080	mg/Kg	06/18/13 15:34
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/21/13 02:58
Naphthalene	< 0.010	0.010	mg/Kg	06/18/13 15:34
1,2,3-Trichlorobenzene	< 0.020	0.020	mg/Kg	06/18/13 15:34
1,2-Dichloroethane-d4 (Surr)	80.5		% Recovery	06/18/13 15:34
4-Bromofluorobenzene (Surr)	96.2		% Recovery	06/18/13 15:34
Toluene - d8 (Surr)	83.6		% Recovery	06/18/13 15:34

Sample : S15-19.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-06

		Method		
Devenue	Measured	Reporting	L lucito	Date/Time
Parameter	Value < 0.0050	Limit 0.0050	Units mg/Kg	Analyzed 06/21/13 15:36
Methyl-t-butyl ether (MTBE)				06/21/13 15:36
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050 0.025	mg/Kg	06/21/13 15:36
Tert-Butanol	< 0.025	0.025	mg/Kg	06/21/13 15:36
TPH as Gasoline	43	1.0	mg/Kg	06/21/13 15:36
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Chloromethane	< 0.0080	0.0080	mg/Kg	06/21/13 15:36
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Bromomethane	< 0.10	0.10	mg/Kg	06/21/13 15:36
Chloroethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Chloroform	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Benzene	0.37	0.0050	mg/Kg	06/21/13 15:36
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Toluene	0.024	0.0050	mg/Kg	06/21/13 15:36
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,1,2-Trichloroethane	< 0.020	0.020	mg/Kg	06/21/13 15:36
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36

Sample : S15-19.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-06

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Dibromochloromethane	< 0.0080	0.0080	mg/Kg	06/21/13 15:36
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Chlorobenzene	< 0.0051	0.0051	mg/Kg	06/21/13 15:36
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Ethylbenzene	0.0057	0.0050	mg/Kg	06/21/13 15:36
P,M-Xylene	0.065	0.0050	mg/Kg	06/21/13 15:36
O-Xylene	0.018	0.0050	mg/Kg	06/21/13 15:36
Styrene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Isopropyl benzene	0.089	0.0050	mg/Kg	06/21/13 15:36
Bromoform	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,1,2,2-Tetrachloroethane	< 0.080	0.080	mg/Kg	06/21/13 15:36
1,2,3-Trichloropropane	< 0.080	0.080	mg/Kg	06/21/13 15:36
n-Propylbenzene	0.20	0.0050	mg/Kg	06/21/13 15:36
Bromobenzene	< 0.022	0.022	mg/Kg	06/21/13 15:36
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
2+4-Chlorotoluene	< 0.010	0.010	mg/Kg	06/21/13 15:36
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,2,4-Trimethylbenzene	0.0091	0.0050	mg/Kg	06/21/13 15:36
sec-Butylbenzene	0.090	0.0050	mg/Kg	06/21/13 15:36
p-lsopropyltoluene	0.019	0.0050	mg/Kg	06/21/13 15:36
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
n-Butylbenzene	0.24	0.0050	mg/Kg	06/21/13 15:36
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
1,2-Dibromo-3-chloropropane	< 0.010	0.010	mg/Kg	06/21/13 15:36
1,2,4-Trichlorobenzene	< 0.080	0.080	mg/Kg	06/21/13 15:36
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/21/13 15:36
Naphthalene	< 0.020	0.020	mg/Kg	06/21/13 15:36
1,2,3-Trichlorobenzene	< 0.050	0.050	mg/Kg	06/21/13 15:36
1,2-Dichloroethane-d4 (Surr)	84.1		% Recovery	06/21/13 15:36
4-Bromofluorobenzene (Surr)	97.3		% Recovery	06/21/13 15:36
Toluene - d8 (Surr)	84.3		% Recovery	06/21/13 15:36

Sample : S16-10'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-07

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/20/13 13:07
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/20/13 13:07
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/20/13 13:07
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/20/13 13:07
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/20/13 13:07
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 06:34
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 06:34
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34

Sample : S16-10'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-07

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
p-lsopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 13:07
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 06:34
1,2-Dichloroethane-d4 (Surr)	106		% Recovery	06/18/13 06:34
4-Bromofluorobenzene (Surr)	94.8		% Recovery	06/18/13 06:34
Toluene - d8 (Surr)	101		% Recovery	06/18/13 06:34

Sample : S16-15'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-08

		Method		
Parameter	Measured Value	Reporting	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 12:03
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Bromomethane	< 0.0000	0.0000	mg/Kg	06/18/13 12:03
Chloroethane	< 0.020	0.020	mg/Kg	06/18/13 12:03
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1-Dichloroethene	< 0.0050	0.0050	• •	06/18/13 12:03
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
cis-1,2-Dichloroethene		0.0050	mg/Kg	06/18/13 12:03
Chloroform	< 0.0050		mg/Kg	
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03

Sample : S16-15'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-08

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 16:21
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:03
1,2-Dichloroethane-d4 (Surr)	103		% Recovery	06/18/13 12:03
4-Bromofluorobenzene (Surr)	98.0		% Recovery	06/18/13 12:03
Toluene - d8 (Surr)	102		% Recovery	06/18/13 12:03

Sample : S16-17'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-09

		Method		
Parameter	Measured Value	Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 12:39
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 12:39
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39

Sample : S16-17'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-09

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	Analyzed 06/18/13 12:39
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/21/13 01:46
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 12:39
1,2-Dichloroethane-d4 (Surr)	106		% Recovery	06/18/13 12:39
4-Bromofluorobenzene (Surr)	97.8		% Recovery	06/18/13 12:39
Toluene - d8 (Surr)	101		% Recovery	06/18/13 12:39

Sample : S16-20'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-10

		Method		
Parameter	Measured Value	Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/20/13 22:15
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/20/13 22:15
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/20/13 22:15
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/20/13 22:15
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/20/13 22:15
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 13:14
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 13:14
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14

Sample : S16-20'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-10

Devenuelar	Measured	Method Reporting	11-9-	Date/Time
Parameter	Value < 0.0050	Limit 0.0050	Units	Analyzed 06/18/13 13:14
Tetrachloroethene			mg/Kg	
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 22:15
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:14
1,2-Dichloroethane-d4 (Surr)	102		% Recovery	06/18/13 13:14
4-Bromofluorobenzene (Surr)	97.0		% Recovery	06/18/13 13:14
Toluene - d8 (Surr)	101		% Recovery	06/18/13 13:14
			/01 (000 VOLY	

Sample : S16-25'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-11

		Method		
Parameter	Measured Value	Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 13:49
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 13:49
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49

Sample : S16-25'grab

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-11

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 22:49
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 13:49
1,2-Dichloroethane-d4 (Surr)	97.8		% Recovery	06/18/13 13:49
4-Bromofluorobenzene (Surr)	95.6		% Recovery	06/18/13 13:49
Toluene - d8 (Surr)	101		% Recovery	06/18/13 13:49

Sample : S16-7'grab hand auger

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/13/2013

Lab Number : 85145-12

Method Measured Reporting Parameter Value Limit		ate/Time nalyzed
Methyl-t-butyl ether (MTBE) < 0.0050 0.0050		6/18/13 14:24
Diisopropyl ether (DIPE) < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Ethyl-t-butyl ether (ETBE) < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Tert-amyl methyl ether (TAME) < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Tert-Butanol < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
TPH as Gasoline< 1.01.0	mg/Kg 06	6/18/13 14:24
Dichlorodifluoromethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Chloromethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Vinyl Chloride < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Bromomethane < 0.020 0.020	mg/Kg 06	6/18/13 14:24
Chloroethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Trichlorofluoromethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,1-Dichloroethene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Methylene Chloride < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
trans-1,2-Dichloroethene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,1-Dichloroethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
2,2-Dichloropropane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
cis-1,2-Dichloroethene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Chloroform < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Bromochloromethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,1,1-Trichloroethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,1-Dichloropropene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,2-Dichloroethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Carbon Tetrachloride < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Benzene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Trichloroethene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,2-Dichloropropane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Bromodichloromethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Dibromomethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
cis-1,3-Dichloropropene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
Toluene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
trans-1,3-Dichloropropene < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,1,2-Trichloroethane < 0.0050 0.0050	mg/Kg 06	6/18/13 14:24
1,3-Dichloropropane < 0.0050 0.0050		6/18/13 14:24

Sample : S16-7'grab hand auger Project Name : P+D 23rd Ave Partners

Project Number: CB018H

Matrix : Soil

Sample Date :06/13/2013

Lab Number : 85145-12

	Measured	Method Reporting		Date/Time
Parameter	Value	Limit	Units	Analyzed
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
p-lsopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 23:25
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 14:24
1,2-Dichloroethane-d4 (Surr)	104		% Recovery	06/18/13 14:24
4-Bromofluorobenzene (Surr)	96.6		% Recovery	06/18/13 14:24
Toluene - d8 (Surr)	101		% Recovery	06/18/13 14:24

Sample : **S17-7.0'**

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-13

Parameter Measured Value Reporting Limit Data Methyl-t-butyl ether (MTBE) < 0.0050			Method		
Methyl-t-butyl ether (MTBE) < 0.0050	Parameter		Reporting	Linits	
Disopropyl ether (DIPE) < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Ethyl-butyl ether (ETBE) < 0.0050					,
Ethyl-t-bulyl ether (ETBE) < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Tert-amyl methyl ether (TAME) < 0.0050					
Tert-amyl methyl ether (TAME) < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Tert-Butanol < 0.0050					
Tert-Butanol < 0.0050 0.0050 mg/Kg 06/18/13 10:53 TPH as Gasoline < 1.0					
Dichlorodifluoromethane < 0.0050 mg/Kg 06/18/13 10:53 Chloromethane < 0.0050					
Chloromethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Vinyl Chloride < 0.0050	TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 10:53
Vinyl Chloride < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Bromomethane < 0.020	Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Brommethane < 0.020 0.020 mg/Kg 06/18/13 10:53 Chloroethane < 0.0050	Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Chloroethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Trichlorofluoromethane < 0.0050	Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Trichlorofluoromethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1,1-Dichloroethene < 0.0050	Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 10:53
1,1-Dichloroethene < 0.0050	Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Methylene Chloride < 0.0050 mg/Kg 06/18/13 10:53 trans-1,2-Dichloroethene < 0.0050	Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
trans-1,2-Dichloroethene< 0.00500.0050mg/Kg06/18/1310:531,1-Dichloroethane< 0.0050	1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,1-Dichloroethane< 0.00500.0050mg/Kg06/18/1310:532,2-Dichloropropane< 0.0050	Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
2,2-Dichloropropane< 0.0050	trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
cis-1,2-Dichloroethene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Chloroform < 0.0050	1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Chloroform< 0.00500.0050mg/Kg06/18/13 10:53Bromochloromethane< 0.0050	2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Bromochloromethane< 0.00500.0050mg/Kg06/18/13 10:531,1,1-Trichloroethane< 0.0050	cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,1,1-Trichloroethane< 0.00500.0050mg/Kg06/18/13 10:531,1-Dichloropropene< 0.0050	Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,1-Dichloropropene< 0.00500.0050mg/Kg06/18/13 10:531,2-Dichloroethane< 0.0050	Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,2-Dichloroethane< 0.00500.0050mg/Kg06/18/13 10:53Carbon Tetrachloride< 0.0050	1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Carbon Tetrachloride< 0.00500.0050mg/Kg06/18/13 10:53Benzene< 0.0050	1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Benzene< 0.00500.0050mg/Kg06/18/13 10:53Trichloroethene< 0.0050	1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Trichloroethene< 0.00500.0050mg/Kg06/18/13 10:531,2-Dichloropropane< 0.0050	Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,2-Dichloropropane< 0.00500.0050mg/Kg06/18/13 10:53Bromodichloromethane< 0.0050	Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Bromodichloromethane< 0.00500.0050mg/Kg06/18/13 10:53Dibromomethane< 0.0050	Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Dibromomethane< 0.00500.0050mg/Kg06/18/1310:53cis-1,3-Dichloropropene< 0.0050	1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
cis-1,3-Dichloropropene< 0.00500.0050mg/Kg06/18/13 10:53Toluene< 0.0050	Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
Toluene< 0.00500.0050mg/Kg06/18/13 10:53trans-1,3-Dichloropropene< 0.0050	Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
trans-1,3-Dichloropropene< 0.00500.0050mg/Kg06/18/13 10:531,1,2-Trichloroethane< 0.0050	cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,1,2-Trichloroethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53	Toluene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,1,2-Trichloroethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53	trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
1,3-Dichloropropane < 0.0050 0.0050 mg/Kg 06/18/13 10:53		< 0.0050	0.0050	mg/Kg	06/18/13 10:53
	1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 10:53

Sample : **S17-7.0'**

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-13

Parameter Value Limit Units Analyzed Tetrachloroethene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Dibromochloromethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1.1.1.2-Tetrachloroethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1.1.1.2-Tetrachloroethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Ethylbenzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 C-Xylene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Styrene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Isopropyl benzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 I.2.2-Tetrachloroethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 I.2.3-Trichoropropane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 I.3.5-Timethylbenzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 I.3.5-Timethylbenzene < 0.0050 0.0050 mg/Kg 06/18/13 10:	Deremeter	Measured	Method Reporting	Linita	Date/Time
Dibromochloromethane < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1,2-Dibromoethane < 0.0050	Parameter		Limit	Units	Analyzed
1,2-Dibromoethane < 0.0050					
Chlorobenzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1,1,1,2-Tetrachloroethane < 0.0050					
1,1,1,2-Tetrachloroethane < 0.0050					
Ethylbenzene < 0.0050 mg/Kg 06/18/13 10:53 P,M-Xylene < 0.0050					
P.MXylene < 0.0050					
O-Xylene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Styrene < 0.0050					
Styrene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Isopropyl benzene < 0.0050	-				
Isopropyl benzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 Bromoform < 0.0050	-				
Bromoform < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1,1,2,2-Tetrachloroethane < 0.0050	-			• •	
1,1,2,2-Tetrachloroethane < 0.0050					
1,2,3-Trichloropropane < 0.0050				• •	
n-Propylbenzene < 0.0050					
Bromobenzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1,3,5-Trimethylbenzene < 0.0050					
1,3,5-Trimethylbenzene < 0.0050					
2+4-Chlorotoluene < 0.0050					
tert-Butylbenzene < 0.0050					
1,2,4-Trimethylbenzene< 0.00500.0050mg/Kg06/18/13 10:53sec-Butylbenzene< 0.0050					
sec-Butylbenzene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 p-Isopropyltoluene < 0.0050	-				
p-lsopropyltoluene< 0.00500.0050mg/Kg06/18/13 10:531,3-Dichlorobenzene< 0.0050	-				
1,3-Dichlorobenzene< 0.00500.0050mg/Kg06/18/13 10:531,4-Dichlorobenzene< 0.0050	-				
1,4-Dichlorobenzene< 0.00500.0050mg/Kg06/18/13 10:53n-Butylbenzene< 0.0050					
n-Butylbenzene< 0.00500.0050mg/Kg06/18/13 10:531,2-Dichlorobenzene< 0.0050					
1,2-Dichlorobenzene< 0.00500.0050mg/Kg06/18/13 10:531,2-Dibromo-3-chloropropane< 0.0050				• •	
1,2-Dibromo-3-chloropropane< 0.00500.0050mg/Kg06/18/13 10:531,2,4-Trichlorobenzene< 0.0050	-				
1,2,4-Trichlorobenzene< 0.00500.0050mg/Kg06/18/13 10:53Hexachlorobutadiene< 0.0050					
Hexachlorobutadiene < 0.0050 0.0050 mg/Kg 06/21/13 00:00 Naphthalene < 0.0050					
Naphthalene < 0.0050 0.0050 mg/Kg 06/18/13 10:53 1,2,3-Trichlorobenzene < 0.0050					
1,2,3-Trichlorobenzene< 0.00500.0050mg/Kg06/18/13 10:531,2-Dichloroethane-d4 (Surr)103% Recovery06/18/13 10:534-Bromofluorobenzene (Surr)96.9% Recovery06/18/13 10:53	Hexachlorobutadiene				
1,2-Dichloroethane-d4 (Surr) 103 % Recovery 06/18/13 10:53 4-Bromofluorobenzene (Surr) 96.9 % Recovery 06/18/13 10:53	-				
4-Bromofluorobenzene (Surr) 96.9 % Recovery 06/18/13 10:53	1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 10:53
	1,2-Dichloroethane-d4 (Surr)	103		% Recovery	06/18/13 10:53
Toluene - d8 (Surr) 101 % Recovery 06/18/13 10:53	4-Bromofluorobenzene (Surr)	96.9		% Recovery	06/18/13 10:53
	Toluene - d8 (Surr)	101		% Recovery	06/18/13 10:53

Sample : S17-10.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-14

		Method		
Parameter	Measured Value	Reporting	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/18/13 11:28
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Chloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Bromomethane	< 0.020	0.020	mg/Kg	06/18/13 11:28
Chloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Chloroform	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Benzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2-Dichloropropane Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
cis-1,3-Dichloropropene Toluene	< 0.0050	0.0050		06/18/13 11:28
	< 0.0050 < 0.0050	0.0050	mg/Kg mg/Kg	06/18/13 11:28
trans-1,3-Dichloropropene			mg/Kg mg/Kg	06/18/13 11:28
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28

Sample : S17-10.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-14

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	Analyzed 06/18/13 11:28
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
O-Xylene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Styrene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Bromoform	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/21/13 00:37
Naphthalene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/18/13 11:28
1,2-Dichloroethane-d4 (Surr)	103		% Recovery	06/18/13 11:28
4-Bromofluorobenzene (Surr)	98.2		% Recovery	06/18/13 11:28
Toluene - d8 (Surr)	101		% Recovery	06/18/13 11:28

Sample : S17-17.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-15

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/19/13 21:16
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Chloromethane	< 0.0050	0.0050	mg/Kg	06/19/13 04:27
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Bromomethane	< 0.020	0.020	mg/Kg	06/19/13 04:27
Chloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Chloroform	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Benzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Toluene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16

Sample : S17-17.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-15

Devenuelos	Measured	Method Reporting	11-24-	Date/Time
Parameter	Value < 0.0050	Limit 0.0050	Units	Analyzed 06/19/13 21:16
Tetrachloroethene		0.0050	mg/Kg	06/19/13 21:16
Dibromochloromethane	< 0.0050		mg/Kg	
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
O-Xylene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Styrene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Bromoform	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
Naphthalene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/19/13 21:16
1,2-Dichloroethane-d4 (Surr)	108		% Recovery	06/19/13 21:16
4-Bromofluorobenzene (Surr)	101		% Recovery	06/19/13 21:16
Toluene - d8 (Surr)	101		% Recovery	06/19/13 21:16

Sample : S17-21.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-16

		Method		
Parameter	Measured Value	Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/20/13 13:47
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Chloromethane	< 0.0050	0.0050	mg/Kg	06/19/13 05:02
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Bromomethane	< 0.020	0.020	mg/Kg	06/19/13 05:02
Chloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Chloroform	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Benzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Toluene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47

Sample : S17-21.0'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-16

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	Analyzed 06/20/13 13:47
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Chlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Ethylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
P,M-Xylene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
O-Xylene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Styrene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Bromoform	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
Naphthalene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 13:47
1,2-Dichloroethane-d4 (Surr)	109		% Recovery	06/20/13 13:47
4-Bromofluorobenzene (Surr)	102		% Recovery	06/20/13 13:47
Toluene - d8 (Surr)	101		% Recovery	06/20/13 13:47

Sample : S17-24.5'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil

Sample Date :06/14/2013

Lab Number : 85145-17

Parameter	Measured Value	Method Reporting Limit	Units	Date/Time Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Tert-Butanol	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
TPH as Gasoline	< 1.0	1.0	mg/Kg	06/20/13 14:27
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Chloromethane	< 0.0050	0.0050	mg/Kg	06/19/13 05:38
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Bromomethane	< 0.020	0.020	mg/Kg	06/19/13 05:38
Chloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Methylene Chloride	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Chloroform	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Bromochloromethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Benzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Trichloroethene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Dibromomethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
Toluene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27

Sample : S17-24.5'

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Matrix : Soil Sam

Sample Date :06/14/2013

Lab Number : 85145-17

Deremeter	Method Measured Reportin		Lipito	Date/Time	
Parameter Tetrachloroethene	Value < 0.0050	Limit 0.0050	Units mg/Kg	Analyzed 06/20/13 14:27	
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2-Dibromoethane	< 0.0050 < 0.0050	0.0050	mg/Kg	06/20/13 14:27	
	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
Ethylbenzene	< 0.0050	0.0050		06/20/13 14:27	
P,M-Xylene		0.0050	mg/Kg	06/20/13 14:27	
O-Xylene	< 0.0050		mg/Kg		
Styrene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
Bromoform	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
Bromobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
Naphthalene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	06/20/13 14:27	
1,2-Dichloroethane-d4 (Surr)	107		% Recovery	06/20/13 14:27	
4-Bromofluorobenzene (Surr)	101		% Recovery	06/20/13 14:27	
Toluene - d8 (Surr)	101		% Recovery	06/20/13 14:27	

Lab Number : 85145-18

Project Name : P+D 23rd Ave Partners Project Number : CB018H

Sample : S15 COMP

Sample Date :06/14/2013

Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Antimony	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:27
Arsenic	5.3	0.75	mg/Kg	EPA 6010B	07/11/13 13:27
Barium	160	0.50	mg/Kg	EPA 6010B	07/11/13 13:27
Beryllium	0.48	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Cadmium	< 0.50	0.50	mg/Kg	EPA 6010B	07/11/13 13:27
Chromium	64	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Cobalt	17	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Copper	22	0.50	mg/Kg	EPA 6010B	07/11/13 13:27
Lead	7.0	0.50	mg/Kg	EPA 6010B	07/11/13 13:27
Molybdenum	0.32	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Nickel	120	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Selenium	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:27
Silver	< 0.25	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Thallium	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:27
Vanadium	42	0.25	mg/Kg	EPA 6010B	07/11/13 13:27
Zinc	41	1.0	mg/Kg	EPA 6010B	07/11/13 13:27
Mercury	0.11	0.050	mg/Kg	EPA 7471A	07/09/13 15:55

Matrix : Soil

Lab Number : 85145-19

Project Name : P+D 23rd Ave Partners Project Number : CB018H

Sample : S16 COMP

Sample Date :06/14/2013

Sample Date :06/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Antimony	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:32
Arsenic	4.8	0.75	mg/Kg	EPA 6010B	07/11/13 13:32
Barium	130	0.50	mg/Kg	EPA 6010B	07/11/13 13:32
Beryllium	0.43	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Cadmium	< 0.50	0.50	mg/Kg	EPA 6010B	07/11/13 13:32
Chromium	56	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Cobalt	11	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Copper	71	0.50	mg/Kg	EPA 6010B	07/11/13 13:32
Lead	4.8	0.50	mg/Kg	EPA 6010B	07/11/13 13:32
Molybdenum	0.31	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Nickel	85	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Selenium	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:32
Silver	< 0.25	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Thallium	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:32
Vanadium	34	0.25	mg/Kg	EPA 6010B	07/11/13 13:32
Zinc	120	1.0	mg/Kg	EPA 6010B	07/11/13 13:32
Mercury	0.12	0.050	mg/Kg	EPA 7471A	07/09/13 15:56

Matrix : Soil

Lab Number : 85145-20

Project Name : P+D 23rd Ave Partners Project Number : CB018H

Sample : S17 COMP

Sample Date :06/14/2013

Sample Date 106/14/2013		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Antimony	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:36
Arsenic	3.6	0.75	mg/Kg	EPA 6010B	07/11/13 13:36
Barium	140	0.50	mg/Kg	EPA 6010B	07/11/13 13:36
Beryllium	0.44	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Cadmium	< 0.50	0.50	mg/Kg	EPA 6010B	07/11/13 13:36
Chromium	54	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Cobalt	8.6	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Copper	15	0.50	mg/Kg	EPA 6010B	07/11/13 13:36
Lead	5.0	0.50	mg/Kg	EPA 6010B	07/11/13 13:36
Molybdenum	< 0.25	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Nickel	80	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Selenium	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:36
Silver	< 0.25	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Thallium	< 0.75	0.75	mg/Kg	EPA 6010B	07/11/13 13:36
Vanadium	29	0.25	mg/Kg	EPA 6010B	07/11/13 13:36
Zinc	38	1.0	mg/Kg	EPA 6010B	07/11/13 13:36
Mercury	0.11	0.050	mg/Kg	EPA 7471A	07/09/13 15:58

Matrix : Soil

QC Report : Method Blank Data

Project Name : P+D 23rd Ave Partners

Project Number : CB018H

Description	Measured	Method Reportin	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Mercury	< 0.050	0.050	mg/Kg	EPA 7471A	07/09/2013
Antimony	< 0.75	0.75	mg/Kg	EPA 6010B	07/10/2013
Arsenic	< 0.75	0.75	mg/Kg	EPA 6010B	07/10/2013
Barium	< 0.50	0.50	mg/Kg	EPA 6010B	07/10/2013
Beryllium	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Cadmium	< 0.50	0.50	mg/Kg	EPA 6010B	07/10/2013
Chromium	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Cobalt	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Copper	< 0.50	0.50	mg/Kg	EPA 6010B	07/10/2013
Lead	< 0.50	0.50	mg/Kg	EPA 6010B	07/10/2013
Molybdenum	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Nickel	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Selenium	< 0.75	0.75	mg/Kg	EPA 6010B	07/10/2013
Silver	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Thallium	< 0.75	0.75	mg/Kg	EPA 6010B	07/10/2013
Vanadium	< 0.25	0.25	mg/Kg	EPA 6010B	07/10/2013
Zinc	< 1.0	1.0	mg/Kg	EPA 6010B	07/10/2013
TPH as Diesel	< 1.0	1.0	mg/Kg	M EPA 8015	06/19/2013
Octacosane (Diesel Surrogate)	75.3		%	M EPA 8015	06/19/2013

Report Number : 85145 Date : 07/11/2013

		Method	_	Arraharia	Data
Parameter	Measured Value	Reportin Limit	g Units	Analysis Method	Date Analyzed
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	06/17/2013
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Chloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Bromomethane	< 0.020	0.020	mg/Kg	EPA 8260B	06/17/2013
Chloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Methylene Chloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Chloroform	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Bromochloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Trichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Dibromomethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013

QC Report : Method Blank Data Project Name : P+D 23rd Ave Partners Project Number : CB018H

Parameter	Measured Value	Method Reportir Limit	ng Units	Analysis Method	Date Analyzed
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Chlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
P,M-Xylene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
O-Xylene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Styrene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Bromoform	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Bromobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
Naphthalene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/17/2013
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	06/17/2013
4-Bromofluorobenzene (Surr)	93.7		%	EPA 8260B	06/17/2013
Toluene - d8 (Surr)	101		%	EPA 8260B	06/17/2013

Report Number : 85145 Date : 07/11/2013

Parameter	Measured Value	Method Reportir Limit		Analysis Method	Date Analyzed
Chloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/18/2013
Bromomethane	< 0.020	0.020	mg/Kg	EPA 8260B	06/18/2013
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	06/19/2013
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Chloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Methylene Chloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Chloroform	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Bromochloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Trichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013

QC Report : Method Blank Data Project Name : P+D 23rd Ave Partners Project Number : CB018H

		Method			
	Measured	Reportin	0	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Dibromomethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Chlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
P,M-Xylene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
O-Xylene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Styrene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Bromoform	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Bromobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013

Parameter	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed
Naphthalene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/19/2013
1,2-Dichloroethane-d4 (Surr)	106		%	EPA 8260B	06/19/2013
4-Bromofluorobenzene (Surr)	101		%	EPA 8260B	06/19/2013
Toluene - d8 (Surr)	102		%	EPA 8260B	06/19/2013
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	06/20/2013
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/20/2013
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	06/21/2013
Dichlorodifluoromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Chloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Vinyl Chloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Bromomethane	< 0.020	0.020	mg/Kg	EPA 8260B	06/21/2013
Chloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Trichlorofluoromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Methylene Chloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
trans-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
2,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
cis-1,2-Dichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Chloroform	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Bromochloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1,1-Trichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Carbon Tetrachloride	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013

QC Report : Method Blank Data Project Name : P+D 23rd Ave Partners Project Number : CB018H

	Manager	Method		Arabusia	Data
Parameter	Measured Value	Reporting Limit	g Units	Analysis Method	Date Analyzed
Trichloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Bromodichloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Dibromomethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
cis-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
trans-1,3-Dichloropropene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1,2-Trichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,3-Dichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Tetrachloroethene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Dibromochloromethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Chlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1,1,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
P,M-Xylene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
O-Xylene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Styrene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Isopropyl benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Bromoform	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,1,2,2-Tetrachloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2,3-Trichloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
n-Propylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Bromobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,3,5-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
2+4-Chlorotoluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
tert-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2,4-Trimethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
sec-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
p-Isopropyltoluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,3-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,4-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
n-Butylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2-Dichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2-Dibromo-3-chloropropane	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013

Report Number : 85145 Date : 07/11/2013

Parameter	Measured Value	Method Reportir Limit	ng Units	Analysis Method	Date Analyzed
1,2,4-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Hexachlorobutadiene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
Naphthalene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2,3-Trichlorobenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	06/21/2013
1,2-Dichloroethane-d4 (Surr)	108		%	EPA 8260B	06/21/2013
4-Bromofluorobenzene (Surr)	98.0		%	EPA 8260B	06/21/2013
Toluene - d8 (Surr)	101		%	EPA 8260B	06/21/2013

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel														
	85145-01	8.4	19.6	19.9	22.2	45.4	mg/Kg	M EPA 8015	6/19/13	70.1	186	90.3	60-140	25
1,1,1,2-Tetrach	loroethane													
	85143-01	<0.0050	0.0392	0.0390	0.0346	0.0323	mg/Kg	EPA 8260B	6/17/13	88.3	82.8	6.51	70.0-130	25
1,1,1-Trichloroe	ethane													
	85143-01	<0.0050	0.0392	0.0390	0.0343	0.0325	mg/Kg	EPA 8260B	6/17/13	87.5	83.4	4.85	70.0-130	25
1,1,2,2-Tetrach	loroethane													
	85143-01	<0.0050	0.0392	0.0390	0.0383	0.0309	mg/Kg	EPA 8260B	6/17/13	97.8	79.4	20.8	70.0-130	25
1,1,2-Trichloroe	ethane													
	85143-01	<0.0050	0.0392	0.0390	0.0376	0.0342	mg/Kg	EPA 8260B	6/17/13	95.8	87.6	8.91	70.0-130	25
1,1-Dichloroeth	ane													
	85143-01	<0.0050	0.0392	0.0390	0.0366	0.0352	mg/Kg	EPA 8260B	6/17/13	93.2	90.4	3.11	70.0-130	25
1,1-Dichloroeth	ene													
	85143-01	<0.0050	0.0392	0.0390	0.0352	0.0339	mg/Kg	EPA 8260B	6/17/13	89.6	87.0	2.95	70.0-130	25
1,1-Dichloropro	pene													
	85143-01	<0.0050	0.0392	0.0390	0.0341	0.0320	mg/Kg	EPA 8260B	6/17/13	87.1	82.0	5.98	70.0-130	25
1,2,3-Trichloro	benzene													
	85143-01	<0.0050	0.0392	0.0390	0.0178	0.0151	mg/Kg	EPA 8260B	6/17/13	45.3	38.7	15.7	65.0-130	25

KIFF ANALYTICAL, LLC

Project Number : CB018H

1,2,3-Trichloropropane 85143-01 <0.0050 0.0392 0.0390 0.0348 0.0290 mg/Kg EPA 8260B 6/17/13 88.8 74.4 17.6 70.0-130 25 1,2,4-Trichlorobenzene 85143-01 <0.0050 0.0392 0.0390 0.0190 0.0147 mg/Kg EPA 8260B 6/17/13 48.5 37.7 25.0 70.0-130 25 1,2,4-Trimethylbenzene 25	Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.	-	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,2,4-Trichlorobenzene 85143-01 <0.0050 0.0392 0.0390 0.0190 0.0147 mg/Kg EPA 8260B 6/17/13 48.5 37.7 25.0 70.0-130 25	1,2,3-Trichlorop	oropane													
85143-01 <0.0050 0.0392 0.0390 0.0190 0.0147 mg/Kg EPA 8260B 6/17/13 48.5 37.7 25.0 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0348	0.0290	mg/Kg	EPA 8260B	6/17/13	88.8	74.4	17.6	70.0-130	25
	1,2,4-Trichlord	benzene						0 0							
1,2,4-Trimethylbenzene		85143-01	<0.0050	0.0392	0.0390	0.0190	0.0147	mg/Kg	EPA 8260B	6/17/13	48.5	37.7	25.0	70.0-130	25
	1,2,4-Trimethy	Ibenzene						0 0							
85143-01 <0.0050 0.0392 0.0390 0.0291 0.0237 mg/Kg EPA 8260B 6/17/13 74.3 60.8 20.1 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0291	0.0237	mg/Kg	EPA 8260B	6/17/13	74.3	60.8	20.1	70.0-130	25
1,2-Dibromoethane	1,2-Dibromoeth	nane						0 0							
85143-01 <0.0050 0.0393 0.0391 0.0375 0.0334 mg/Kg EPA 8260B 6/17/13 95.4 85.5 10.9 70.0-130 25		85143-01	<0.0050	0.0393	0.0391	0.0375	0.0334	mg/Kg	EPA 8260B	6/17/13	95.4	85.5	10.9	70.0-130	25
1,2-Dichlorobenzene	1,2-Dichlorobe	enzene													
85143-01 <0.0050 0.0392 0.0390 0.0277 0.0228 mg/Kg EPA 8260B 6/17/13 70.6 58.6 18.6 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0277	0.0228	mg/Kg	EPA 8260B	6/17/13	70.6	58.6	18.6	70.0-130	25
1,2-Dichloroethane	1,2-Dichloroeth	ane													
85143-01 <0.0050 0.0392 0.0390 0.0353 0.0327 mg/Kg EPA 8260B 6/17/13 90.1 83.9 7.08 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0353	0.0327	mg/Kg	EPA 8260B	6/17/13	90.1	83.9	7.08	70.0-130	25
1,2-Dichloropropane	1,2-Dichloropro	pane													
85143-01 <0.0050 0.0392 0.0390 0.0379 0.0361 mg/Kg EPA 8260B 6/17/13 96.8 92.6 4.38 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0379	0.0361	mg/Kg	EPA 8260B	6/17/13	96.8	92.6	4.38	70.0-130	25
1,2-dibromo-3-chloropropane	1,2-dibromo-3	-chloroprop	ane												
85143-01 <0.0050 0.0392 0.0390 0.0337 0.0269 mg/Kg EPA 8260B 6/17/13 85.8 69.1 21.6 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0337	0.0269	mg/Kg	EPA 8260B	6/17/13	85.8	69.1	21.6	70.0-130	25
1,3,5-Trimethylbenzene	1,3,5-Trimethy	Ibenzene													
85143-01 <0.0050 0.0392 0.0390 0.0295 0.0243 mg/Kg EPA 8260B 6/17/13 75.2 62.3 18.8 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0295	0.0243	mg/Kg	EPA 8260B	6/17/13	75.2	62.3	18.8	70.0-130	25
1,3-Dichlorobenzene	1,3-Dichlorobe	enzene						0							
85143-01 <0.0050 0.0392 0.0390 0.0276 0.0210 mg/Kg EPA 8260B 6/17/13 70.4 53.8 26.8 70.0-130 25		85143-01	<0.0050	0.0392	0.0390	0.0276	0.0210	mg/Kg	EPA 8260B	6/17/13	70.4	53.8	26.8	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,3-Dichloropro	pane													
	85143-01	<0.0050	0.0392	0.0390	0.0367	0.0335	mg/Kg	EPA 8260B	6/17/13	93.6	85.9	8.68	70.0-130	25
1,4-Dichlorob	enzene						0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0275	0.0232	mg/Kg	EPA 8260B	6/17/13	70.0	59.5	16.3	70.0-130	25
2+4-Chlorotol	uene						0 0							
	85143-01	<0.0050	0.0784	0.0780	0.0581	0.0488	mg/Kg	EPA 8260B	6/17/13	74.0	62.6	16.6	70.0-130	25
2,2-Dichloropro	pane						0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0328	0.0311	ma/Ka	EPA 8260B	6/17/13	83.6	79.7	4.75	70.0-130	25
Benzene							0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0359	0.0343	ma/Ka	EPA 8260B	6/17/13	91.5	87.9	3.97	70.0-130	25
Bromobenzen	e						5 5							-
	85143-01	<0.0050	0.0392	0.0390	0.0307	0.0265	ma/Ka	EPA 8260B	6/17/13	78.3	68.0	14.2	70.0-130	25
Bromochlorom	ethane						5 5							-
	85143-01	<0.0050	0.0392	0.0390	0.0377	0.0354	ma/Ka	EPA 8260B	6/17/13	96.0	90.9	5.48	70.0-130	25
Bromodichloro	nethane													
	85143-01	<0.0050	0.0392	0.0390	0.0380	0.0357	ma/Ka	EPA 8260B	6/17/13	96.9	91.5	5.79	70.0-130	25
Bromoform														
	85143-01	<0.0050	0.0392	0.0390	0.0360	0.0312	ma/Ka	EPA 8260B	6/17/13	91.8	79.9	13.8	70.0-140	25
Bromomethane														-*
	85143-01	<0.020	0.196	0.195	0.191	0.172	mg/Kg	EPA 8260B	6/17/13	97.5	88.4	9.76	55.0-130	25

Page 54 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Carbon Tetrach	nloride													
	85143-01	<0.0050	0.0392	0.0390	0.0337	0.0313	mg/Kg	EPA 8260B	6/17/13	85.8	80.3	6.66	70.0-130	25
Chlorobenzene	:													
	85143-01	<0.0050	0.0392	0.0390	0.0319	0.0294	mg/Kg	EPA 8260B	6/17/13	81.4	75.5	7.53	70.0-130	25
Chloroethane							0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0373	0.0359	mg/Kg	EPA 8260B	6/17/13	95.2	92.2	3.21	70.0-130	25
Chloroform							0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0357	0.0343	ma/Ka	EPA 8260B	6/17/13	91.0	87.9	3.55	70.0-130	25
Chloromethane	;						0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0365	0.0321	ma/Ka	EPA 8260B	6/17/13	93.0	82.3	12.3	60.0-130	25
Dibromochloro	methane						5 5							
	85143-01	<0.0050	0.0392	0.0390	0.0370	0.0336	ma/Ka	EPA 8260B	6/17/13	94.4	86.2	9.08	70.0-130	25
Dibromometha	ne									• • • •				
	85143-01	<0.0050	0.0392	0.0390	0.0366	0.0331	ma/Ka	EPA 8260B	6/17/13	93.4	84.8	9.58	70.0-130	25
Dichlorodifluor		0.0000	0.0002	0.0000	0.0000	0.0001			0,11,10	0011	0 110	0.00	1010 100	20
	85143-01	<0.0050	0.0392	0.0390	0.0309	0.0294	ma/Ka	EPA 8260B	6/17/13	78.9	75.3	4.67	40.0-135	25
Ethylbenzene		0.0000	0.0002	0.0000	0.0000	0.0201	ing/rtg		0,11,10	10.0	10.0	1.07	10.0 100	20
,	85143-01	<0.0050	0.0392	0.0390	0.0321	0.0293	ma/Ka	EPA 8260B	6/17/13	81 9	75.1	8.69	70.0-130	25
Isopropyl ben		0.0000	0.0002	0.0000	0.00E	0.0200		2. / 02000	0, 11, 10	01.0		0.00		
	85143-01	<0.0050	0.0392	0.0390	0.0301	0.0260	ma/Ka	EPA 8260B	6/17/13	76.7	66.8	13.8	70.0-130	25
	00140 01	0.0000	0.0002	0.0000	0.0001	0.0200			0, 11, 10		00.0	10.0	10.0 100	20

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.		Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Methylene Chlo	oride													
	85143-01	<0.0050	0.0392	0.0390	0.0374	0.0358	mg/Kg	EPA 8260B	6/17/13	95.4	91.8	3.83	70.0-130	25
Naphthalene														
	85143-01	<0.0050	0.0392	0.0390	0.0233	0.0191	mg/Kg	EPA 8260B	6/17/13	59.5	49.1	19.2	70.0-130	25
O-Xylene							0 0							
	85143-01	<0.0050	0.0392	0.0390	0.0332	0.0300	mg/Kg	EPA 8260B	6/17/13	84.6	76.9	9.57	70.0-130	25
P + M Xylene							0 0							
-	85143-01	<0.0050	0.0392	0.0390	0.0320	0.0288	ma/Ka	EPA 8260B	6/17/13	81.5	74.0	9.64	70.0-130	25
Styrene							5 5							
	85143-01	<0.0050	0.0392	0.0390	0.0329	0.0285	ma/Ka	EPA 8260B	6/17/13	84.0	73.1	13.8	70.0-130	25
Tetrachloroethe														
	85143-01	<0.0050	0.0392	0.0390	0.0306	0.0273	ma/Ka	EPA 8260B	6/17/13	78.1	70.0	10.9	70.0-130	25
Toluene			0.000-			0.02.0			•••••					
	85143-01	<0.0050	0.0392	0.0390	0.0349	0.0328	ma/Ka	EPA 8260B	6/17/13	88.9	84.0	5.65	70.0-130	25
Trichloroethene		0.0000	0.0002	0.0000	0.0010	0.0020	iiig/itg		0,11,10	0010	0110	0.00	10.0 100	20
	85143-01	<0.0050	0.0392	0.0390	0.0338	0.0318	ma/Ka	EPA 8260B	6/17/13	86.3	81.5	5.72	70.0-130	25
Trichlorofluoror		-0.0000	0.0002	0.0000	0.0000	0.0010	ing/rtg		0,11,10	00.0	01.0	0.72	10.0 100	20
	85143-01	<0.0050	0.0392	0.0390	0.0336	0.0324	ma/Ka	EPA 8260B	6/17/13	85.7	83.1	3.13	70.0-130	25
Vinyl Chloride	001-40-01	-0.0000	0.0002	0.0000	0.0000	0.0024	iiig/itg		0,11,10	00.7	00.1	0.10	10.0 100	20
	85143-01	<0.0050	0.0392	0.0390	0.0348	0.0334	ma/Ka	EPA 8260B	6/17/13	88.9	85.8	3.50	70.0-130	25
	00140-01	-0.0030	0.0092	0.0000	0.0040	0.0004	my/rxy		0/17/13	00.9	00.0	0.00	10.0-100	20

Page 56 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative		Relative Percent Diff. Limit
c-1,3-Dichlorop	ropene													
	85143-01	<0.0050	0.0392	0.0390	0.0374	0.0347	mg/Kg	EPA 8260B	6/17/13	95.4	89.1	6.82	70.0-130	25
cis-1,2-Dichloro	bethene													
	85143-01	<0.0050	0.0392	0.0390	0.0364	0.0348	mg/Kg	EPA 8260B	6/17/13	93.0	89.2	4.06	70.0-130	25
n-butylbenzen	е													
	85143-01	<0.0050	0.0392	0.0390	0.0229	0.0189	mg/Kg	EPA 8260B	6/17/13	58.4	48.4	18.7	70.0-130	25
n-propylbenze	ne													
	85143-01	<0.0050	0.0392	0.0390	0.0285	0.0240	mg/Kg	EPA 8260B	6/17/13	72.8	61.4	16.9	70.0-130	25
p-isopropyltol	uene													
	85143-01	<0.0050	0.0392	0.0390	0.0259	0.0198	mg/Kg	EPA 8260B	6/17/13	66.0	50.8	26.1	70.0-130	25
sec-butylbenz	ene													
	85143-01	<0.0050	0.0392	0.0390	0.0251	0.0197	mg/Kg	EPA 8260B	6/17/13	64.1	50.6	23.4	70.0-130	25
t-1,2-Dichloroet	hene													
	85143-01	<0.0050	0.0392	0.0390	0.0353	0.0340	mg/Kg	EPA 8260B	6/17/13	89.9	87.1	3.16	70.0-130	25
t-1,3-Dichloropr	ropene													
	85143-01	<0.0050	0.0392	0.0390	0.0373	0.0338	mg/Kg	EPA 8260B	6/17/13	95.2	86.8	9.22	70.0-130	25
tert-butylbenz	ene													
	85143-01	<0.0050	0.0392	0.0390	0.0273	0.0221	mg/Kg	EPA 8260B	6/17/13	69.7	56.6	20.7	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.		Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Bromomethane														
	85145-07	<0.020	0.195	0.199	0.133	0.148	mg/Kg	EPA 8260B	6/18/13	68.2	74.1	8.29	55.0-130	25
Chloromethane														
	85145-07	<0.0050	0.0391	0.0398	0.0244	0.0291	mg/Kg	EPA 8260B	6/18/13	62.6	73.1	15.5	60.0-130	25
Hexachlorobut	tadiene													
	85143-01	<0.0050	0.0398	0.0400	0.0144	0.0136	mg/Kg	EPA 8260B	6/20/13	36.2	34.1	6.02	70.0-130	25
1,1,1,2-Tetrachl	loroethane													
	85145-15	<0.0050	0.0396	0.0400	0.0385	0.0392	mg/Kg	EPA 8260B	6/19/13	97.3	98.0	0.747	70.0-130	25
1,1,1-Trichloroe	ethane						0 0							
	85145-15	<0.0050	0.0396	0.0400	0.0385	0.0385	mg/Kg	EPA 8260B	6/19/13	97.3	96.2	1.07	70.0-130	25
1,1,2,2-Tetrachl	loroethane													
	85145-15	<0.0050	0.0396	0.0400	0.0376	0.0415	mg/Kg	EPA 8260B	6/19/13	95.1	104	8.76	70.0-130	25
1,1,2-Trichloroe	thane													
	85145-15	<0.0050	0.0396	0.0400	0.0373	0.0393	mg/Kg	EPA 8260B	6/19/13	94.1	98.2	4.21	70.0-130	25
1,1-Dichloroetha	ane													
	85145-15	<0.0050	0.0396	0.0400	0.0356	0.0354	mg/Kg	EPA 8260B	6/19/13	90.0	88.4	1.78	70.0-130	25
1,1-Dichloroeth	ene													
	85145-15	<0.0050	0.0396	0.0400	0.0339	0.0335	mg/Kg	EPA 8260B	6/19/13	85.7	83.8	2.24	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.		Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,1-Dichloropro	pene													
	85145-15	<0.0050	0.0396	0.0400	0.0365	0.0362	mg/Kg	EPA 8260B	6/19/13	92.1	90.5	1.78	70.0-130	25
1,2,3-Trichlorol	oenzene													
	85145-15	<0.0050	0.0396	0.0400	0.0332	0.0344	mg/Kg	EPA 8260B	6/19/13	83.8	86.0	2.63	65.0-130	25
1,2,3-Trichloro	oropane													
	85145-15	<0.0050	0.0396	0.0400	0.0374	0.0433	mg/Kg	EPA 8260B	6/19/13	94.5	108	13.5	70.0-130	25
1,2,4-Trichlorol	penzene													
	85145-15	<0.0050	0.0396	0.0400	0.0362	0.0360	mg/Kg	EPA 8260B	6/19/13	91.4	89.9	1.65	70.0-130	25
1,2,4-Trimethyl	benzene													
	85145-15	<0.0050	0.0396	0.0400	0.0383	0.0382	mg/Kg	EPA 8260B	6/19/13	96.7	95.6	1.19	70.0-130	25
1,2-Dibromoeth	nane													
	85145-15	<0.0050	0.0397	0.0401	0.0373	0.0396	mg/Kg	EPA 8260B	6/19/13	94.1	98.8	4.93	70.0-130	25
1,2-Dichlorober	nzene													
	85145-15	<0.0050	0.0396	0.0400	0.0343	0.0341	mg/Kg	EPA 8260B	6/19/13	86.5	85.3	1.48	70.0-130	25
1,2-Dichloroeth	ane													
	85145-15	<0.0050	0.0396	0.0400	0.0382	0.0392	mg/Kg	EPA 8260B	6/19/13	96.5	98.0	1.54	70.0-130	25
1,2-Dichloropro	pane													
	85145-15	<0.0050	0.0396	0.0400	0.0357	0.0355	mg/Kg	EPA 8260B	6/19/13	90.2	88.8	1.45	70.0-130	25
1,2-dibromo-3-	chloropropar	ne												
	85145-15	<0.0050	0.0396	0.0400	0.0369	0.0448	mg/Kg	EPA 8260B	6/19/13	93.2	112	18.2	70.0-130	25

Page 59 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,3,5-Trimethyl	benzene													
	85145-15	<0.0050	0.0396	0.0400	0.0360	0.0357	mg/Kg	EPA 8260B	6/19/13	90.9	89.3	1.78	70.0-130	25
1,3-Dichlorober	nzene													
	85145-15	<0.0050	0.0396	0.0400	0.0393	0.0397	mg/Kg	EPA 8260B	6/19/13	99.1	99.3	0.207	70.0-130	25
1,3-Dichloropro	pane													
	85145-15	<0.0050	0.0396	0.0400	0.0374	0.0390	mg/Kg	EPA 8260B	6/19/13	94.6	97.5	3.07	70.0-130	25
1,4-Dichlorober	nzene													
	85145-15	<0.0050	0.0396	0.0400	0.0338	0.0336	mg/Kg	EPA 8260B	6/19/13	85.3	83.9	1.71	70.0-130	25
2+4-Chlorotolu	ene													
	85145-15	<0.0050	0.0792	0.0800	0.0709	0.0700	mg/Kg	EPA 8260B	6/19/13	89.5	87.5	2.26	70.0-130	25
2,2-Dichloropro	pane													
	85145-15	<0.0050	0.0396	0.0400	0.0373	0.0376	mg/Kg	EPA 8260B	6/19/13	94.3	94.0	0.318	70.0-130	25
Benzene														
	85145-15	<0.0050	0.0396	0.0400	0.0360	0.0357	mg/Kg	EPA 8260B	6/19/13	91.0	89.4	1.82	70.0-130	25
Bromobenzene	;													
	85145-15	<0.0050	0.0396	0.0400	0.0355	0.0358	mg/Kg	EPA 8260B	6/19/13	89.7	89.6	0.162	70.0-130	25
Bromochlorome	ethane													
	85145-15	<0.0050	0.0396	0.0400	0.0369	0.0370	mg/Kg	EPA 8260B	6/19/13	93.1	92.4	0.778	70.0-130	25
Bromodichloror	methane													
	85145-15	<0.0050	0.0396	0.0400	0.0388	0.0388	mg/Kg	EPA 8260B	6/19/13	97.9	96.9	1.03	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Bromoform														
	85145-15	<0.0050	0.0396	0.0400	0.0421	0.0455	mg/Kg	EPA 8260B	6/19/13	106	114	6.79	70.0-140	25
Carbon Tetrach	loride													
	85145-15	<0.0050	0.0396	0.0400	0.0394	0.0395	mg/Kg	EPA 8260B	6/19/13	99.6	98.8	0.838	70.0-130	25
Chlorobenzene														
	85145-15	<0.0050	0.0396	0.0400	0.0356	0.0353	mg/Kg	EPA 8260B	6/19/13	89.9	88.2	1.94	70.0-130	25
Chloroethane														
	85145-15	<0.0050	0.0396	0.0400	0.0323	0.0330	mg/Kg	EPA 8260B	6/19/13	81.5	82.6	1.30	70.0-130	25
Chloroform														
	85145-15	<0.0050	0.0396	0.0400	0.0372	0.0375	mg/Kg	EPA 8260B	6/19/13	93.9	93.8	0.171	70.0-130	25
Dibromochloror	nethane													
	85145-15	<0.0050	0.0396	0.0400	0.0402	0.0416	mg/Kg	EPA 8260B	6/19/13	102	104	2.28	70.0-130	25
Dibromomethar	ne													
	85145-15	<0.0050	0.0396	0.0400	0.0385	0.0396	mg/Kg	EPA 8260B	6/19/13	97.2	99.0	1.81	70.0-130	25
Dichlorodifluoro	omethane													
	85145-15	<0.0050	0.0396	0.0400	0.0279	0.0275	mg/Kg	EPA 8260B	6/19/13	70.5	68.7	2.51	40.0-135	25
Ethylbenzene														
	85145-15	<0.0050	0.0396	0.0400	0.0376	0.0373	mg/Kg	EPA 8260B	6/19/13	94.9	93.2	1.80	70.0-130	25
Hexachlorobuta	adiene													
	85145-15	<0.0050	0.0396	0.0400	0.0334	0.0311	mg/Kg	EPA 8260B	6/19/13	84.4	77.9	8.05	70.0-130	25

Page 61 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Isopropyl benz	ene													
	85145-15	<0.0050	0.0396	0.0400	0.0359	0.0355	mg/Kg	EPA 8260B	6/19/13	90.8	88.6	2.35	70.0-130	25
Methylene Chlo	oride													
	85145-15	<0.0050	0.0396	0.0400	0.0355	0.0351	mg/Kg	EPA 8260B	6/19/13	89.6	87.7	2.25	70.0-130	25
Naphthalene														
	85145-15	<0.0050	0.0396	0.0400	0.0380	0.0422	mg/Kg	EPA 8260B	6/19/13	95.8	106	9.67	70.0-130	25
O-Xylene														
	85145-15	<0.0050	0.0396	0.0400	0.0364	0.0363	mg/Kg	EPA 8260B	6/19/13	92.0	90.8	1.25	70.0-130	25
P + M Xylene														
	85145-15	<0.0050	0.0396	0.0400	0.0365	0.0361	mg/Kg	EPA 8260B	6/19/13	92.2	90.3	2.05	70.0-130	25
Styrene														
	85145-15	<0.0050	0.0396	0.0400	0.0371	0.0371	mg/Kg	EPA 8260B	6/19/13	93.6	92.8	0.779	70.0-130	25
Tetrachloroeth	ene													
	85145-15	<0.0050	0.0396	0.0400	0.0368	0.0364	mg/Kg	EPA 8260B	6/19/13	93.0	90.9	2.27	70.0-130	25
Toluene														
- · · · · · · · ·	85145-15	<0.0050	0.0396	0.0400	0.0371	0.0367	mg/Kg	EPA 8260B	6/19/13	93.6	91.8	2.02	70.0-130	25
Trichloroethene	-													
Trickless for several	85145-15	<0.0050	0.0396	0.0400	0.0352	0.0355	mg/Kg	EPA 8260B	6/19/13	88.9	88.8	0.194	70.0-130	25
Trichlorofluoro														
	85145-15	<0.0050	0.0396	0.0400	0.0350	0.0358	mg/Kg	EPA 8260B	6/19/13	88.4	89.5	1.17	70.0-130	25

Page 62 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Sample Percent	Duplicate Spiked Sample Percent Recov.		Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Vinyl Chloride														
	85145-15	<0.0050	0.0396	0.0400	0.0315	0.0186	mg/Kg	EPA 8260B	6/19/13	79.7	46.5	52.5	70.0-130	25
c-1,3-Dichlorop	ropene													
	85145-15	<0.0050	0.0396	0.0400	0.0374	0.0371	mg/Kg	EPA 8260B	6/19/13	94.5	92.7	1.97	70.0-130	25
cis-1,2-Dichloro	ethene													
	85145-15	<0.0050	0.0396	0.0400	0.0355	0.0354	mg/Kg	EPA 8260B	6/19/13	89.6	88.4	1.42	70.0-130	25
n-butylbenzene														
	85145-15	<0.0050	0.0396	0.0400	0.0335	0.0320	mg/Kg	EPA 8260B	6/19/13	84.7	79.9	5.83	70.0-130	25
n-propylbenzen	е													
	85145-15	<0.0050	0.0396	0.0400	0.0357	0.0353	mg/Kg	EPA 8260B	6/19/13	90.2	88.2	2.17	70.0-130	25
p-isopropyltolue	ene													
	85145-15	<0.0050	0.0396	0.0400	0.0395	0.0390	mg/Kg	EPA 8260B	6/19/13	99.8	97.4	2.46	70.0-130	25
sec-butylbenzer	ne													
	85145-15	<0.0050	0.0396	0.0400	0.0389	0.0385	mg/Kg	EPA 8260B	6/19/13	98.2	96.3	2.03	70.0-130	25
t-1,2-Dichloroet	hene													
	85145-15	<0.0050	0.0396	0.0400	0.0355	0.0349	mg/Kg	EPA 8260B	6/19/13	89.7	87.2	2.79	70.0-130	25
t-1,3-Dichloropr	opene													
	85145-15	<0.0050	0.0396	0.0400	0.0385	0.0390	mg/Kg	EPA 8260B	6/19/13	97.3	97.6	0.325	70.0-130	25
tert-butylbenzer	ne													
	85145-15	<0.0050	0.0396	0.0400	0.0376	0.0371	mg/Kg	EPA 8260B	6/19/13	95.0	92.8	2.25	70.0-130	25

Page 63 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value		Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	-	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Hexachlorobuta	idiene													
	85174-03	<0.0050	0.0385	0.0393	0.0346	0.0336	mg/Kg	EPA 8260B	6/20/13	89.9	85.5	5.06	70.0-130	25
1,1,1,2-Tetrach	loroethane													
	85174-01	<0.0050	0.0386	0.0388	0.0193	0.0210	mg/Kg	EPA 8260B	6/21/13	50.1	54.2	7.87	70.0-130	25
1,1,1-Trichloro	ethane													
	85174-01	<0.0050	0.0386	0.0388	0.0194	0.0202	mg/Kg	EPA 8260B	6/21/13	50.1	52.0	3.60	70.0-130	25
1,1,2,2-Tetrach	loroethane													
	85174-01	<0.0050	0.0386	0.0388	0.0164	0.0191	mg/Kg	EPA 8260B	6/21/13	42.5	49.1	14.4	70.0-130	25
1,1,2-Trichloro	ethane													
	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0228	mg/Kg	EPA 8260B	6/21/13	51.1	58.6	13.8	70.0-130	25
1,1-Dichloroetl	hane													
	85174-01	<0.0050	0.0386	0.0388	0.0194	0.0206	mg/Kg	EPA 8260B	6/21/13	50.3	53.0	5.14	70.0-130	25
1,1-Dichloroetl	hene						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0201	0.0205	mg/Kg	EPA 8260B	6/21/13	52.0	52.7	1.39	70.0-130	25
1,1-Dichloropr	opene						0 0							
-	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0204	mg/Ka	EPA 8260B	6/21/13	51.1	52.5	2.66	70.0-130	25
1,2,3-Trichloro	benzene						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0152	0.0184	mg/Kg	EPA 8260B	6/21/13	39.4	47.4	18.6	65.0-130	25

Page 64 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,2,3-Trichlor	opropane													
	85174-01	<0.0050	0.0386	0.0388	0.0201	0.0245	mg/Kg	EPA 8260B	6/21/13	52.0	63.1	19.2	70.0-130	25
1,2,4-Trichlor	obenzene													
	85174-01	<0.0050	0.0386	0.0388	0.0158	0.0181	mg/Kg	EPA 8260B	6/21/13	40.9	46.6	13.0	70.0-130	25
1,2,4-Trimethy	ylbenzene						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0191	0.0206	mg/Kg	EPA 8260B	6/21/13	49.6	53.0	6.77	70.0-130	25
1,2-Dibromoe	thane						0 0							
	85174-01	<0.0050	0.0387	0.0389	0.0199	0.0236	mg/Kg	EPA 8260B	6/21/13	51.5	60.7	16.4	70.0-130	25
1,2-Dichlorob	enzene						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0176	0.0194	mg/Kg	EPA 8260B	6/21/13	45.5	49.8	9.09	70.0-130	25
1,2-Dichloroe	thane						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0183	0.0210	ma/Ka	EPA 8260B	6/21/13	47.5	54.0	12.8	70.0-130	25
1,2-Dichlorop	ropane						5 5							
	85174-01	<0.0050	0.0386	0.0388	0.0199	0.0217	ma/Ka	EPA 8260B	6/21/13	51.6	55.9	7.90	70.0-130	25
1,2-dibromo-3	B-chloroprop						5 5							
	85174-01	<0.0050	0.0386	0.0388	0.0204	0.0254	ma/Ka	EPA 8260B	6/21/13	53.0	65.5	21.1	70.0-130	25
1,3,5-Trimethy	ylbenzene						5 5		-					-
	<i>.</i> 85174-01	<0.0050	0.0386	0.0388	0.0198	0.0212	ma/Ka	EPA 8260B	6/21/13	51.3	54.7	6.37	70.0-130	25
1,3-Dichlorob														-
	85174-01	<0.0050	0.0386	0.0388	0.0185	0.0202	ma/Ka	EPA 8260B	6/21/13	47.8	52.2	8.65	70.0-130	25
														-

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,3-Dichlorop	ropane													
	85174-01	<0.0050	0.0386	0.0388	0.0195	0.0226	mg/Kg	EPA 8260B	6/21/13	50.6	58.2	13.9	70.0-130	25
1,4-Dichlorobe	enzene													
	85174-01	<0.0050	0.0386	0.0388	0.0174	0.0188	mg/Kg	EPA 8260B	6/21/13	45.0	48.5	7.46	70.0-130	25
2+4-Chlorotol	uene													
	85174-01	<0.0050	0.0772	0.0777	0.0374	0.0402	mg/Kg	EPA 8260B	6/21/13	48.4	51.8	6.69	70.0-130	25
2,2-Dichlorop	ropane						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0181	0.0186	mg/Kg	EPA 8260B	6/21/13	46.9	48.0	2.35	70.0-130	25
Benzene							0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0198	0.0209	mg/Kg	EPA 8260B	6/21/13	51.2	53.9	5.00	70.0-130	25
Bromobenzen	е						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0186	0.0205	ma/Ka	EPA 8260B	6/21/13	48.1	52.8	9.19	70.0-130	25
Bromochloror	nethane						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0203	0.0228	ma/Ka	EPA 8260B	6/21/13	52.7	58.8	10.9	70.0-130	25
Bromodichlor	omethane													
	85174-01	<0.0050	0.0386	0.0388	0.0196	0.0219	ma/Ka	EPA 8260B	6/21/13	50.7	56.5	10.7	70.0-130	25
Bromoform						0.02.0			••=•••	••••				
	85174-01	<0.0050	0.0386	0.0388	0.0205	0.0246	ma/Ka	EPA 8260B	6/21/13	53.2	63.4	17.6	70.0-140	25
Bromomethane		0.0000	0.0000	0.0000	0.0200	0.0210			0,21,10					
	85174-01	<0.020	0.193	0.194	0.117	0.116	mg/Kg	EPA 8260B	6/21/13	60.8	59.9	1.57	55.0-130	25

Page 66 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Carbon Tetrac	hloride													
	85174-01	<0.0050	0.0386	0.0388	0.0196	0.0203	mg/Kg	EPA 8260B	6/21/13	50.8	52.2	2.81	70.0-130	25
Chlorobenzen	е													
	85174-01	<0.0050	0.0386	0.0388	0.0187	0.0202	mg/Kg	EPA 8260B	6/21/13	48.5	52.0	6.84	70.0-130	25
Chloroethane														
	85174-01	<0.0050	0.0386	0.0388	0.0206	0.0214	mg/Kg	EPA 8260B	6/21/13	53.3	55.1	3.26	70.0-130	25
Chloroform														
	85174-01	<0.0050	0.0386	0.0388	0.0193	0.0206	mg/Kg	EPA 8260B	6/21/13	49.9	53.0	6.00	70.0-130	25
Chloromethan	е													
	85174-01	<0.0050	0.0386	0.0388	0.0189	0.0199	mg/Kg	EPA 8260B	6/21/13	49.1	51.2	4.24	60.0-130	25
Dibromochlor	omethane						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0198	0.0231	mg/Kg	EPA 8260B	6/21/13	51.3	59.4	14.6	70.0-130	25
Dibromometha	ane						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0205	0.0236	ma/Ka	EPA 8260B	6/21/13	53.0	60.7	13.6	70.0-130	25
Dichlorodifluoro	omethane						5 5							-
	85174-01	<0.0050	0.0386	0.0388	0.0196	0.0199	ma/Ka	EPA 8260B	6/21/13	50.9	51.2	0.648	40.0-135	25
Ethylbenzene							-33						·····	-
-	85174-01	<0.0050	0.0386	0.0388	0.0192	0.0203	ma/Ka	EPA 8260B	6/21/13	49.7	52.2	4.92	70.0-130	25
Hexachlorobu						0.0200			0.2.110					
	85174-01	<0.0050	0.0386	0.0388	0.0166	0.0178	ma/Ka	EPA 8260B	6/21/13	42.9	45.8	6.56	70.0-130	25
		0.0000	0.0000	0.0000	0.0100	0.0110			0 1, 10			2.00		

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.		Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Isopropyl ben	zene													
	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0207	mg/Kg	EPA 8260B	6/21/13	50.9	53.2	4.46	70.0-130	25
Methylene Ch	oride													
	85174-01	<0.0050	0.0386	0.0388	0.0201	0.0218	mg/Kg	EPA 8260B	6/21/13	52.0	56.1	7.68	70.0-130	25
Naphthalene							0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0166	0.0213	ma/Ka	EPA 8260B	6/21/13	43.1	54.8	24.0	70.0-130	25
O-Xylene							5 5							
-	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0210	ma/Ka	EPA 8260B	6/21/13	50.9	54.1	6.06	70.0-130	25
P + M Xylene						0.02.0			••=		•			
,	85174-01	<0.0050	0.0386	0.0388	0.0193	0.0203	ma/Ka	EPA 8260B	6/21/13	50.1	52.4	4.56	70.0-130	25
Styrene	00174 01	-0.0000	0.0000	0.0000	0.0100	0.0200	ing/itg		0/21/10	00.1	02.4	4.00	10.0 100	20
	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0215	ma/Ka	EPA 8260B	6/21/13	51 0	55.3	8.03	70.0-130	25
Tetrachloroetl		-0.0000	0.0000	0.0000	0.0137	0.0215	iiig/itg		0/21/10	51.0	55.5	0.00	70.0-150	20
	85174-01	<0.0050	0.0386	0.0388	0.0200	0.0208	ma/Ka	EPA 8260B	6/21/13	E1 0	53.7	3.56	70.0-130	25
Toluene	001/4-01	<0.0050	0.0300	0.0300	0.0200	0.0206	my/ry	EFA 02000	0/21/13	51.0	55.7	3.50	70.0-130	20
loidene	05474.04	-0.0050	0 0000	0 0000	0.0000	0.0044			0/04/40	54.0	0	E 70	70.0.400	05
Trichlorootho	85174-01	<0.0050	0.0386	0.0388	0.0200	0.0214	mg/ĸg	EPA 8260B	6/21/13	51.9	55.0	5.70	70.0-130	25
Trichloroethe						/								
- a	85174-01	<0.0050	0.0386	0.0388	0.0232	0.0251	mg/Kg	EPA 8260B	6/21/13	60.2	64.6	6.99	70.0-130	25
Trichlorofluor														
	85174-01	<0.0050	0.0386	0.0388	0.0196	0.0198	mg/Kg	EPA 8260B	6/21/13	50.7	50.9	0.411	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	-	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Vinyl Chloride														
	85174-01	<0.0050	0.0386	0.0388	0.0198	0.0205	mg/Kg	EPA 8260B	6/21/13	51.2	52.8	2.94	70.0-130	25
c-1,3-Dichloro	propene						0 0							
	85174-01	<0.0050	0.0386	0.0388	0.0195	0.0217	ma/Ka	EPA 8260B	6/21/13	50.6	55.9	10.1	70.0-130	25
cis-1,2-Dichlor	oethene													
·	85174-01	<0.0050	0.0386	0.0388	0.0198	0.0216	ma/Ka	EPA 8260B	6/21/13	51.4	55.8	8.18	70.0-130	25
n-butylbenzen		0.0000	0.0000	0.0000	0.0100	0.02.0	ing/itg		0.2.1.10	•		0.10	10.0 100	
	85174-01	<0.0050	0.0386	0.0388	0.0182	0.0188	ma/Ka	EPA 8260B	6/21/13	47.0	48.6	3.16	70.0-130	25
n-propylbenze		0.0000	0.0000	0.0000	0.0102	0.0100	ing/itg		0.2.1.10			0.10	10.0 100	
1 17	85174-01	<0.0050	0.0386	0.0388	0.0193	0.0204	ma/Ka	EPA 8260B	6/21/13	49.9	52.5	5.06	70.0-130	25
p-isopropyltol		-0.0000	0.0000	0.0000	0.0100	0.0204	ing/itg		0/21/10	40.0	02.0	0.00	10.0-100	20
pp.iop	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0207	ma/Ka	EPA 8260B	6/21/13	51.0	53.4	4.62	70.0-130	25
sec-butylbenz		~0.0050	0.0300	0.0000	0.0197	0.0207	mg/ng		0/21/13	51.0	55.4	4.02	10.0-150	25
See SatyiSenz		<0.0050	0 0 2 9 6	0.0388	0.0105	0.0006	malka		6/01/10	E0 C	52.9	A E E	70 0 120	25
t-1,2-Dichloroe	85174-01	<0.0050	0.0386	0.0300	0.0195	0.0206	mg/Kg	EPA 8260B	6/21/13	50.6	52.9	4.55	70.0-130	25
(-1,2-Dicitior)		-0.0050	0.0000	0 0000	0.0004	0 0000			0/04/40		50.0	0.40	70 0 400	05
t 1 2 Diablara	85174-01	<0.0050	0.0386	0.0388	0.0201	0.0209	mg/Kg	EPA 8260B	6/21/13	52.0	53.8	3.49	70.0-130	25
t-1,3-Dichlorop	•													
	85174-01	<0.0050	0.0386	0.0388	0.0193	0.0220	mg/Kg	EPA 8260B	6/21/13	50.0	56.7	12.7	70.0-130	25
tert-butylbenz														
	85174-01	<0.0050	0.0386	0.0388	0.0197	0.0208	mg/Kg	EPA 8260B	6/21/13	51.1	53.6	4.86	70.0-130	25

Page 69 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Diisopropyl eth	or													
Disopropyreti	85143-01	<0.0050	0.0392	0.0390	0.0385	0.0367	ma/ka		6/17/13	98.2	94.2	4.13	70.0-130	25
Ethyl-tert-butyl		<0.0050	0.0392	0.0390	0.0365	0.0307	mg/r.g	EPA 8260B	0/17/13	90.2	94.2	4.13	70.0-130	20
	85143-01	<0.0050	0.0384	0.0381	0.0385	0.0362	ma/Ka	EPA 8260B	6/17/13	100	95.0	5.52	65.0-130	25
Methyl-t-butyl e		0.0000	0.0001	0.0001	0.0000	0.0002	ing/itg		0,11,10	100	00.0	0.02	00.0 100	20
	85143-01	<0.0050	0.0386	0.0384	0.0392	0.0356	mg/Kg	EPA 8260B	6/17/13	101	92.7	8.90	60.0-130	25
Tert-Butanol														
	85143-01	<0.0050	0.197	0.196	0.184	0.181	mg/Kg	EPA 8260B	6/17/13	93.4	92.6	0.896	70.0-130	25
Tert-amyl-meth	yl ether													
	85143-01	<0.0050	0.0385	0.0383	0.0387	0.0358	mg/Kg	EPA 8260B	6/17/13	100	93.6	7.11	70.0-130	25
Diisopropyl eth														
Ethyl tort butyl	85143-01	<0.0050	0.0398	0.0400	0.0351	0.0348	mg/Kg	EPA 8260B	6/20/13	88.3	87.2	1.26	70.0-130	25
Ethyl-tert-butyl			0.0200	0.0204	0.0252	0.0250			6/00/40	00.7	01.4	0 707	CE 0 120	05
Methyl-t-butyl e	85143-01	<0.0050	0.0390	0.0391	0.0353	0.0358	mg/ĸg	EPA 8260B	6/20/13	90.7	91.4	0.797	65.0-130	25
Wethyr t butyr c	85143-01	<0.0050	0.0393	0.0394	0.0359	0.0375	ma/Ka	EPA 8260B	6/20/13	91.5	95.2	3.99	60.0-130	25
Tert-Butanol	001-0-01	-0.0000	0.0000	0.0004	0.0000	0.0070	ing/ixg		5,20,15	01.0	00.2	0.00	00.0-100	20
	85143-01	<0.0050	0.200	0.201	0.172	0.165	mg/Kg	EPA 8260B	6/20/13	85.8	82.3	4.19	70.0-130	25

Page 70 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Tert-amyl-meth	yl ether													
	85143-01	<0.0050	0.0391	0.0393	0.0357	0.0363	mg/Kg	EPA 8260B	6/20/13	91.3	92.3	1.09	70.0-130	25
Diisopropyl ethe	er													
	85145-15	<0.0050	0.0396	0.0400	0.0328	0.0342	mg/Kg	EPA 8260B	6/19/13	82.9	85.6	3.27	70.0-130	25
Ethyl-tert-butyl	ether													
	85145-15	<0.0050	0.0387	0.0391	0.0323	0.0349	mg/Kg	EPA 8260B	6/19/13	83.3	89.2	6.81	65.0-130	25
Methyl-t-butyl e	ther						0 0							
	85145-15	<0.0050	0.0390	0.0394	0.0313	0.0356	ma/Ka	EPA 8260B	6/19/13	80.3	90.2	11.6	60.0-130	25
Tert-Butanol							5 5					-		-
	85145-15	<0.0050	0.199	0.201	0.173	0.164	ma/Ka	EPA 8260B	6/19/13	87.0	81.6	6.42	70.0-130	25
Tert-amyl-meth		0.0000	0.100	0.201	00	0.101	iiig/itg	217102008	0,10,10	01.0	0110	0.12	1010 100	20
	85145-15	<0.0050	0.0389	0.0393	0.0354	0.0370	ma/Ka	EPA 8260B	6/19/13	90.9	94.2	3.50	70.0-130	25
	00140-10	×0.0000	0.0003	0.0000	0.0004	0.0070	iiig/itg		0/13/13	30.3	37.2	5.50	10.0-100	20
Diisopropyl et	her													
	85174-01	<0.0050	0.0386	0.0388	0.0187	0.0203	mg/Kg	EPA 8260B	6/21/13	48.4	52.4	7.86	70.0-130	25
Ethyl-tert-buty	l ether						0 0							
	85174-01	<0.0050	0.0378	0.0380	0.0185	0.0203	mg/Ka	EPA 8260B	6/21/13	48.9	53.6	9.05	65.0-130	25
Methyl-t-butyl	ether	-	-	-	·	·	0 0		-				-	
	85174-01	<0.0050	0.0380	0.0383	0.0186	0.0210	mg/Kg	EPA 8260B	6/21/13	48.8	54.9	11.8	60.0-130	25

Page 71 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Tert-Butanol														
	85174-01	<0.0050	0.194	0.195	0.0523	0.0702	mg/Kg	EPA 8260B	6/21/13	27.0	36.0	28.6	70.0-130	25
Tert-amyl-met	hyl ether													
	85174-01	<0.0050	0.0379	0.0382	0.0185	0.0211	mg/Kg	EPA 8260B	6/21/13	48.8	55.4	12.6	70.0-130	25
Mercury														
	85349-01	< 0.050	0.100	0.100	0.0990	0.106	mg/Kg	EPA 7471A	7/9/13	94.4	101	6.70	75-125	20
Antimony														
Anumony	05040.04	. 0 75	45.0	45.0	10.0	0.40	····		7/40/40	04.0	<u></u>	F 74	75 405	00
Arsenic	85348-01	< 0.75	45.9	45.9	10.0	9.46	mg/Kg	EPA 6010B	7/10/13	21.3	20.0	5.74	75-125	20
Algenie	85348-01	1 0	45.9	45.9	40.0	40.2	ma/Ka	EPA 6010B	7/10/13	83.1	83.4	0.366	75-125	20
Barium	00040-01	1.9	45.9	45.9	40.0	40.2	mg/rty	EFA 0010B	1/10/13	05.1	03.4	0.500	75-125	20
24114111	85348-01	150	45.9	45.9	202	212	ma/Ka	EPA 6010B	7/10/13	116	140	5.30	75-125	20
Beryllium	000+0-01	100	40.0	40.0	202	212	ing/itg		1/10/10	110	140	0.00	10-120	20
	85348-01	< 0.25	45.9	45.9	40.5	38.3	ma/Ka	EPA 6010B	7/10/13	87.8	83.1	5.48	75-125	20
Cadmium		0.20								••••				
	85348-01	< 0.50	45.9	45.9	42.4	41.6	ma/Ka	EPA 6010B	7/10/13	92.1	90.4	1.94	75-125	20
Chromium						-	5 5				-	-		-
	85348-01	32	45.9	45.9	74.0	74.4	mg/Kg	EPA 6010B	7/10/13	90.7	91.5	0.495	75-125	20

Page 72 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.		Relative Percent Diff. Limit
Cobalt	F -												-	
Connor	85348-01	6.0	45.9	45.9	46.4	46.0	mg/Kg	EPA 6010B	7/10/13	88.1	87.2	0.893	75-125	20
Copper	85348-01	20	45.9	45.9	60.1	63.5	mg/Kg	EPA 6010B	7/10/13	86.8	94.1	5.42	75-125	20
Lead														
Molybdenum	85348-01	6.0	45.9	45.9	43.9	43.1	mg/Kg	EPA 6010B	7/10/13	82.5	80.8	1.78	75-125	20
	85348-01	0.38	45.9	45.9	35.5	35.1	mg/Kg	EPA 6010B	7/10/13	76.6	75.7	1.17	75-125	20
Nickel	85348-01	26	45.9	45.9	65.8	70.2	mg/Kg	EPA 6010B	7/10/13	86.2	95.9	6.54	75-125	20
Selenium	85348-01	< 0.75	45.9	45.9	39.7	38.9	ma/Ka		7/10/13	86.0	84.3	2.02	75-125	20
Silver	00040-01	< 0.75	40.9	45.9	39.7	30.9	my/ry	EPA 6010B	//10/13	00.0	04.3	2.02	75-125	20
	85348-01	1.3	22.9	22.9	20.8	20.8	mg/Kg	EPA 6010B	7/10/13	85.1	85.0	0.132	75-125	20
Thallium	85348-01	< 0.75	45.9	45.9	36.6	35.5	mg/Kg	EPA 6010B	7/10/13	79.9	77.3	3.28	75-125	20
Vanadium														
Zino	85348-01	45	45.9	45.9	85.6	91.9	mg/Kg	EPA 6010B	7/10/13	88.4	102	7.08	75-125	20
Zinc	85348-01	35	45.9	45.9	82.1	85.7	mg/Kg	EPA 6010B	7/10/13	102	110	4.32	75-125	20

Page 73 of 87

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Mercury	0.100	mg/Kg	EPA 7471A	7/9/13	102	85-115
Antimony	50.0	mg/Kg	EPA 6010B	7/10/13	96.3	85-115
Arsenic	50.0	mg/Kg	EPA 6010B	7/10/13	93.9	85-115
Barium	50.0	mg/Kg	EPA 6010B	7/10/13	97.8	85-115
Beryllium	50.0	mg/Kg	EPA 6010B	7/10/13	94.3	85-115
Cadmium	50.0	mg/Kg	EPA 6010B	7/10/13	95.1	85-115
Chromium	50.0	mg/Kg	EPA 6010B	7/10/13	96.4	85-115
Cobalt	50.0	mg/Kg	EPA 6010B	7/10/13	96.8	85-115
Copper	50.0	mg/Kg	EPA 6010B	7/10/13	95.0	85-115
Lead	50.0	mg/Kg	EPA 6010B	7/10/13	93.9	85-115
Molybdenum	50.0	mg/Kg	EPA 6010B	7/10/13	98.4	85-115
Nickel	50.0	mg/Kg	EPA 6010B	7/10/13	95.2	85-115
Selenium	50.0	mg/Kg	EPA 6010B	7/10/13	95.2	85-115
Silver	25.0	mg/Kg	EPA 6010B	7/10/13	93.0	85-115
Thallium	50.0	mg/Kg	EPA 6010B	7/10/13	96.9	85-115
Vanadium	50.0	mg/Kg	EPA 6010B	7/10/13	90.4	85-115
Zinc	50.0	mg/Kg	EPA 6010B	7/10/13	97.2	85-115
TPH as Diesel	20.0	mg/Kg	M EPA 8015	6/19/13	77.0	70-130
1,1,1,2-Tetrachloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	94.0	70.0-130

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
1,1,1-Trichloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	90.7	70.0-130	
1,1,2,2-Tetrachloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	106	70.0-130	
1,1,2-Trichloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	104	70.0-130	
1,1-Dichloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	95.8	70.0-130	
1,1-Dichloroethene	0.0394	mg/Kg	EPA 8260B	6/17/13	91.0	70.0-130	
1,1-Dichloropropene	0.0394	mg/Kg	EPA 8260B	6/17/13	92.4	70.0-130	
1,2,3-Trichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	79.2	65.0-130	
1,2,3-Trichloropropane	0.0394	mg/Kg	EPA 8260B	6/17/13	96.7	70.0-130	
1,2,4-Trichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	78.3	70.0-130	
1,2,4-Trimethylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	86.6	70.0-130	
1,2-Dibromoethane	0.0394	mg/Kg	EPA 8260B	6/17/13	104	70.0-130	
1,2-Dichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	86.8	70.0-130	
1,2-Dichloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	96.4	70.0-130	
1,2-Dichloropropane	0.0394	mg/Kg	EPA 8260B	6/17/13	102	70.0-130	
1,2-dibromo-3-chloropropane	0.0394	mg/Kg	EPA 8260B	6/17/13	98.2	70.0-130	
1,3,5-Trimethylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	88.9	70.0-130	
1,3-Dichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	84.7	70.0-130	
1,3-Dichloropropane	0.0394	mg/Kg	EPA 8260B	6/17/13	101	70.0-130	
1,4-Dichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	84.4	70.0-130	
2+4-Chlorotoluene	0.0787	mg/Kg	EPA 8260B	6/17/13	85.5	70.0-130	
2,2-Dichloropropane	0.0394	mg/Kg	EPA 8260B	6/17/13	85.8	70.0-130	
Benzene	0.0394	mg/Kg	EPA 8260B	6/17/13	95.4	70.0-130	
Bromobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	87.8	70.0-130	

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Bromochloromethane	0.0394	mg/Kg	EPA 8260B	6/17/13	101	70.0-130
Bromodichloromethane	0.0394	mg/Kg	EPA 8260B	6/17/13	102	70.0-130
Bromoform	0.0394	mg/Kg	EPA 8260B	6/17/13	99.9	70.0-140
Bromomethane	0.197	mg/Kg	EPA 8260B	6/17/13	97.3	55.0-130
Carbon Tetrachloride	0.0394	mg/Kg	EPA 8260B	6/17/13	90.0	70.0-130
Chlorobenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	88.4	70.0-130
Chloroethane	0.0394	mg/Kg	EPA 8260B	6/17/13	96.6	70.0-130
Chloroform	0.0394	mg/Kg	EPA 8260B	6/17/13	94.7	70.0-130
Chloromethane	0.0394	mg/Kg	EPA 8260B	6/17/13	93.7	60.0-130
Dibromochloromethane	0.0394	mg/Kg	EPA 8260B	6/17/13	102	70.0-130
Dibromomethane	0.0394	mg/Kg	EPA 8260B	6/17/13	101	70.0-130
Dichlorodifluoromethane	0.0394	mg/Kg	EPA 8260B	6/17/13	81.7	40.0-135
Ethylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	89.1	70.0-130
Isopropyl benzene	0.0394	mg/Kg	EPA 8260B	6/17/13	88.7	70.0-130
Methylene Chloride	0.0394	mg/Kg	EPA 8260B	6/17/13	98.1	70.0-130
Naphthalene	0.0394	mg/Kg	EPA 8260B	6/17/13	86.3	70.0-130
O-Xylene	0.0394	mg/Kg	EPA 8260B	6/17/13	92.2	70.0-130
P + M Xylene	0.0394	mg/Kg	EPA 8260B	6/17/13	89.5	70.0-130
Styrene	0.0394	mg/Kg	EPA 8260B	6/17/13	95.0	70.0-130
Tetrachloroethene	0.0394	mg/Kg	EPA 8260B	6/17/13	88.6	70.0-130
Toluene	0.0394	mg/Kg	EPA 8260B	6/17/13	95.0	70.0-130
Trichloroethene	0.0394	mg/Kg	EPA 8260B	6/17/13	90.3	70.0-130
Trichlorofluoromethane	0.0394	mg/Kg	EPA 8260B	6/17/13	87.1	70.0-130

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Vinyl Chloride	0.0394	mg/Kg	EPA 8260B	6/17/13	89.7	70.0-130
c-1,3-Dichloropropene	0.0394	mg/Kg	EPA 8260B	6/17/13	101	70.0-130
cis-1,2-Dichloroethene	0.0394	mg/Kg	EPA 8260B	6/17/13	96.9	70.0-130
n-butylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	81.0	70.0-130
n-propylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	85.6	70.0-130
p-isopropyltoluene	0.0394	mg/Kg	EPA 8260B	6/17/13	84.2	70.0-130
sec-butylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	83.9	70.0-130
t-1,2-Dichloroethene	0.0394	mg/Kg	EPA 8260B	6/17/13	93.5	70.0-130
t-1,3-Dichloropropene	0.0394	mg/Kg	EPA 8260B	6/17/13	101	70.0-130
tert-butylbenzene	0.0394	mg/Kg	EPA 8260B	6/17/13	85.2	70.0-130
Diisopropyl ether	0.0393	mg/Kg	EPA 8260B	6/17/13	100	70.0-130
Ethyl-tert-butyl ether	0.0385	mg/Kg	EPA 8260B	6/17/13	103	65.0-130
Methyl-t-butyl ether	0.0388	mg/Kg	EPA 8260B	6/17/13	104	60.0-130
Tert-Butanol	0.198	mg/Kg	EPA 8260B	6/17/13	91.2	70.0-130
Tert-amyl-methyl ether	0.0387	mg/Kg	EPA 8260B	6/17/13	104	70.0-130
Bromomethane	0.194	mg/Kg	EPA 8260B	6/18/13	96.0	55.0-130
Chloromethane	0.0389	mg/Kg	EPA 8260B	6/18/13	79.9	60.0-130
Hexachlorobutadiene	0.0396	mg/Kg	EPA 8260B	6/20/13	84.9	70.0-130
Diisopropyl ether	0.0396	mg/Kg	EPA 8260B	6/20/13	86.3	70.0-130
Ethyl-tert-butyl ether	0.0387	mg/Kg	EPA 8260B	6/20/13	88.2	65.0-130
Methyl-t-butyl ether	0.0390	mg/Kg	EPA 8260B	6/20/13	88.7	60.0-130

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Tert-Butanol	0.199	mg/Kg	EPA 8260B	6/20/13	84.1	70.0-130
Tert-amyl-methyl ether	0.0389	mg/Kg	EPA 8260B	6/20/13	89.1	70.0-130
1,1,1,2-Tetrachloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	102	70.0-130
1,1,1-Trichloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	99.8	70.0-130
1,1,2,2-Tetrachloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	103	70.0-130
1,1,2-Trichloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	100	70.0-130
1,1-Dichloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	92.4	70.0-130
1,1-Dichloroethene	0.0394	mg/Kg	EPA 8260B	6/19/13	86.8	70.0-130
1,1-Dichloropropene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.3	70.0-130
1,2,3-Trichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	86.5	65.0-130
1,2,3-Trichloropropane	0.0394	mg/Kg	EPA 8260B	6/19/13	104	70.0-130
1,2,4-Trichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	94.8	70.0-130
1,2,4-Trimethylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	97.6	70.0-130
1,2-Dibromoethane	0.0395	mg/Kg	EPA 8260B	6/19/13	100	70.0-130
1,2-Dichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	90.6	70.0-130
1,2-Dichloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	104	70.0-130
1,2-Dichloropropane	0.0394	mg/Kg	EPA 8260B	6/19/13	93.8	70.0-130
1,2-dibromo-3-chloropropane	0.0394	mg/Kg	EPA 8260B	6/19/13	101	70.0-130
1,3,5-Trimethylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	91.0	70.0-130
1,3-Dichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	103	70.0-130
1,3-Dichloropropane	0.0394	mg/Kg	EPA 8260B	6/19/13	100	70.0-130
1,4-Dichlorobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	88.1	70.0-130

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
2+4-Chlorotoluene	0.0789	mg/Kg	EPA 8260B	6/19/13	91.0	70.0-130	
2,2-Dichloropropane	0.0394	mg/Kg	EPA 8260B	6/19/13	99.6	70.0-130	
Benzene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.9	70.0-130	
Bromobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.3	70.0-130	
Bromochloromethane	0.0394	mg/Kg	EPA 8260B	6/19/13	97.9	70.0-130	
Bromodichloromethane	0.0394	mg/Kg	EPA 8260B	6/19/13	103	70.0-130	
Bromoform	0.0394	mg/Kg	EPA 8260B	6/19/13	112	70.0-140	
Carbon Tetrachloride	0.0394	mg/Kg	EPA 8260B	6/19/13	102	70.0-130	
Chlorobenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	92.1	70.0-130	
Chloroethane	0.0394	mg/Kg	EPA 8260B	6/19/13	85.0	70.0-130	
Chloroform	0.0394	mg/Kg	EPA 8260B	6/19/13	98.7	70.0-130	
Dibromochloromethane	0.0394	mg/Kg	EPA 8260B	6/19/13	107	70.0-130	
Dibromomethane	0.0394	mg/Kg	EPA 8260B	6/19/13	104	70.0-130	
Dichlorodifluoromethane	0.0394	mg/Kg	EPA 8260B	6/19/13	73.0	40.0-135	
Ethylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	96.8	70.0-130	
Hexachlorobutadiene	0.0394	mg/Kg	EPA 8260B	6/19/13	82.3	70.0-130	
Isopropyl benzene	0.0394	mg/Kg	EPA 8260B	6/19/13	90.6	70.0-130	
Methylene Chloride	0.0394	mg/Kg	EPA 8260B	6/19/13	92.5	70.0-130	
Naphthalene	0.0394	mg/Kg	EPA 8260B	6/19/13	102	70.0-130	
O-Xylene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.5	70.0-130	
P + M Xylene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.3	70.0-130	
Styrene	0.0394	mg/Kg	EPA 8260B	6/19/13	96.1	70.0-130	
Tetrachloroethene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.9	70.0-130	

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Toluene	0.0394	mg/Kg	EPA 8260B	6/19/13	95.0	70.0-130
Trichloroethene	0.0394	mg/Kg	EPA 8260B	6/19/13	90.7	70.0-130
Trichlorofluoromethane	0.0394	mg/Kg	EPA 8260B	6/19/13	90.8	70.0-130
Vinyl Chloride	0.0394	mg/Kg	EPA 8260B	6/19/13	82.9	70.0-130
c-1,3-Dichloropropene	0.0394	mg/Kg	EPA 8260B	6/19/13	99.5	70.0-130
cis-1,2-Dichloroethene	0.0394	mg/Kg	EPA 8260B	6/19/13	93.8	70.0-130
n-butylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	84.4	70.0-130
n-propylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	89.8	70.0-130
p-isopropyltoluene	0.0394	mg/Kg	EPA 8260B	6/19/13	99.7	70.0-130
sec-butylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	98.1	70.0-130
t-1,2-Dichloroethene	0.0394	mg/Kg	EPA 8260B	6/19/13	91.9	70.0-130
t-1,3-Dichloropropene	0.0394	mg/Kg	EPA 8260B	6/19/13	103	70.0-130
tert-butylbenzene	0.0394	mg/Kg	EPA 8260B	6/19/13	95.1	70.0-130
Diisopropyl ether	0.0394	mg/Kg	EPA 8260B	6/19/13	87.2	70.0-130
Ethyl-tert-butyl ether	0.0386	mg/Kg	EPA 8260B	6/19/13	92.0	65.0-130
Methyl-t-butyl ether	0.0389	mg/Kg	EPA 8260B	6/19/13	91.5	60.0-130
Tert-Butanol	0.198	mg/Kg	EPA 8260B	6/19/13	89.2	70.0-130
Tert-amyl-methyl ether	0.0388	mg/Kg	EPA 8260B	6/19/13	98.1	70.0-130
		5 5				
Hexachlorobutadiene	0.0400	mg/Kg	EPA 8260B	6/20/13	92.8	70.0-130
1,1,1,2-Tetrachloroethane	0.0387 0.0387	mg/Kg mg/Kg	EPA 8260B EPA 8260B	6/21/13 6/21/13	94.3 85.6	70.0-130 70.0-130
	0.0307	my/rxy		0/21/13	00.0	70.0-150

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
1,1,2,2-Tetrachloroethane	0.0387	mg/Kg	EPA 8260B	6/21/13	94.1	70.0-130
1,1,2-Trichloroethane	0.0387	mg/Kg	EPA 8260B	6/21/13	93.1	70.0-130
1,1-Dichloroethane	0.0387	mg/Kg	EPA 8260B	6/21/13	87.4	70.0-130
1,1-Dichloroethene	0.0387	mg/Kg	EPA 8260B	6/21/13	86.2	70.0-130
1,1-Dichloropropene	0.0387	mg/Kg	EPA 8260B	6/21/13	85.8	70.0-130
1,2,3-Trichlorobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	84.8	65.0-130
1,2,3-Trichloropropane	0.0387	mg/Kg	EPA 8260B	6/21/13	86.9	70.0-130
1,2,4-Trichlorobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	81.7	70.0-130
1,2,4-Trimethylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	89.6	70.0-130
1,2-Dibromoethane	0.0388	mg/Kg	EPA 8260B	6/21/13	91.2	70.0-130
1,2-Dichlorobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	86.1	70.0-130
1,2-Dichloroethane	0.0387	mg/Kg	EPA 8260B	6/21/13	85.1	70.0-130
1,2-Dichloropropane	0.0387	mg/Kg	EPA 8260B	6/21/13	93.3	70.0-130
1,2-dibromo-3-chloropropane	0.0387	mg/Kg	EPA 8260B	6/21/13	83.5	70.0-130
1,3,5-Trimethylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	91.6	70.0-130
1,3-Dichlorobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	86.8	70.0-130
1,3-Dichloropropane	0.0387	mg/Kg	EPA 8260B	6/21/13	90.7	70.0-130
1,4-Dichlorobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	85.5	70.0-130
2+4-Chlorotoluene	0.0774	mg/Kg	EPA 8260B	6/21/13	87.8	70.0-130
2,2-Dichloropropane	0.0387	mg/Kg	EPA 8260B	6/21/13	82.7	70.0-130
Benzene	0.0387	mg/Kg	EPA 8260B	6/21/13	89.4	70.0-130
Bromobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	88.8	70.0-130
Bromochloromethane	0.0387	mg/Kg	EPA 8260B	6/21/13	94.8	70.0-130

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Bromodichloromethane	0.0387	mg/Kg	EPA 8260B	6/21/13	94.5	70.0-130
Bromoform	0.0387	mg/Kg	EPA 8260B	6/21/13	94.2	70.0-140
Bromomethane	0.193	mg/Kg	EPA 8260B	6/21/13	93.0	55.0-130
Carbon Tetrachloride	0.0387	mg/Kg	EPA 8260B	6/21/13	86.3	70.0-130
Chlorobenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	88.5	70.0-130
Chloroethane	0.0387	mg/Kg	EPA 8260B	6/21/13	89.3	70.0-130
Chloroform	0.0387	mg/Kg	EPA 8260B	6/21/13	88.3	70.0-130
Chloromethane	0.0387	mg/Kg	EPA 8260B	6/21/13	78.9	60.0-130
Dibromochloromethane	0.0387	mg/Kg	EPA 8260B	6/21/13	94.4	70.0-130
Dibromomethane	0.0387	mg/Kg	EPA 8260B	6/21/13	93.0	70.0-130
Dichlorodifluoromethane	0.0387	mg/Kg	EPA 8260B	6/21/13	82.8	40.0-135
Ethylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	89.0	70.0-130
Hexachlorobutadiene	0.0387	mg/Kg	EPA 8260B	6/21/13	79.5	70.0-130
Isopropyl benzene	0.0387	mg/Kg	EPA 8260B	6/21/13	90.7	70.0-130
Methylene Chloride	0.0387	mg/Kg	EPA 8260B	6/21/13	91.1	70.0-130
Naphthalene	0.0387	mg/Kg	EPA 8260B	6/21/13	82.5	70.0-130
O-Xylene	0.0387	mg/Kg	EPA 8260B	6/21/13	93.2	70.0-130
P + M Xylene	0.0387	mg/Kg	EPA 8260B	6/21/13	90.2	70.0-130
Styrene	0.0387	mg/Kg	EPA 8260B	6/21/13	95.6	70.0-130
Tetrachloroethene	0.0387	mg/Kg	EPA 8260B	6/21/13	88.4	70.0-130
Toluene	0.0387	mg/Kg	EPA 8260B	6/21/13	91.2	70.0-130
Trichloroethene	0.0387	mg/Kg	EPA 8260B	6/21/13	88.2	70.0-130
Trichlorofluoromethane	0.0387	mg/Kg	EPA 8260B	6/21/13	82.5	70.0-130

KIFF ANALYTICAL, LLC

Project Number : CB018H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Vinyl Chloride	0.0387	mg/Kg	EPA 8260B	6/21/13	83.3	70.0-130
c-1,3-Dichloropropene	0.0387	mg/Kg	EPA 8260B	6/21/13	94.0	70.0-130
cis-1,2-Dichloroethene	0.0387	mg/Kg	EPA 8260B	6/21/13	92.0	70.0-130
n-butylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	84.8	70.0-130
n-propylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	89.8	70.0-130
p-isopropyltoluene	0.0387	mg/Kg	EPA 8260B	6/21/13	89.5	70.0-130
sec-butylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	87.9	70.0-130
t-1,2-Dichloroethene	0.0387	mg/Kg	EPA 8260B	6/21/13	88.3	70.0-130
t-1,3-Dichloropropene	0.0387	mg/Kg	EPA 8260B	6/21/13	93.1	70.0-130
tert-butylbenzene	0.0387	mg/Kg	EPA 8260B	6/21/13	89.0	70.0-130
Diisopropyl ether	0.0386	mg/Kg	EPA 8260B	6/21/13	90.2	70.0-130
Ethyl-tert-butyl ether	0.0378	mg/Kg	EPA 8260B	6/21/13	91.4	65.0-130
Methyl-t-butyl ether	0.0381	mg/Kg	EPA 8260B	6/21/13	87.8	60.0-130
Tert-Butanol	0.194	mg/Kg	EPA 8260B	6/21/13	85.7	70.0-130
Tert-amyl-methyl ether	0.0380	mg/Kg	EPA 8260B	6/21/13	92.2	70.0-130

KIFF ANALYTICAL, LLC

Analytical LLC Davis, CA Lab: 530. Fax: 530.	297.4800 .297.4802		SRG # / La	ab No.		851	45					S [S/ Page	Mil-	· 2 1 3
Project Contact (Hardcopy or PDF To): Saves Sauss Company / Address: Clear water Gp/ Hail	S California EDF	Report?	🗋 No			Chain-	of-Cu	stody F	Record	d and Ar	nalysis	Request		
Company/Address:	Eulob Sampling Com	npany Log Code:				· · · ·		Analys					TAT	
Phone Number: $510, 207, 0043$ 94	BCI Global ID: TO GO	00177455			(B)				PL	EASE CIRCL	E		12 hi	r
$\frac{\int_{1}^{1} (0 - 237 - 2823)}{\int_{1}^{1} (0 - 237 - 2823)}$ Project #:	EDF Deliverab	e To (Email Address):	up.cam		(EPA 826(\ 8260B) 50B)		ler)		6010)				کاد
CBOI8H NA	clear	water Grouf	2		TBA)	(EP/	B	g Wat		/ 2.00			24 hr	r Ō
Fax Number: 5(0-232-2823 Project #: CB018H Project Name: P+D 23rd Are Porther	Sampler Print Sampler Signa	DO177455 De To (Email Address): DOCLOMWATO JUD Water Grouf Name: Sunts		8260B)	TPH Gas (EPA 8260B) 5 Oxygenates (MTBE, DIPE, ETBE, TAME, TBA) (EPA 8260B)	7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B) Lead Scav. (1,2 DCA & 1,2 EDB) (EPA 8260B)	Volatile Halocarbons (EPA 8260B) Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water) TPH as Diesel (EPA 8015M)	15M) 7 / 6010)	5 Waste Oil Metals (Cd,Cr,Ni,Pb,Zn) (EPA 200.7 / 6010) Mercury (EPA 245.1 / 7470 / 7471)	() ()		□ 48hr	For Lab Use Only
Project Address:	ing Containe	Preservative	Matrix	⊃A 82	B) PE, E	+ Etd	(EP/	PA 52 8015	² A 80	Cr.Ni,P				-
Project Address: 1125 Miller Ave Sampli Ochland Californiu				5 ppb (El 8260B)	PA 8260 (MTBE, D	s (5 oxy (1,2 DCA	ocarbons anics Ful	anics (EF el (EPA	or Oil (EF als (EPA	etals (Cd,(A 245.1	(STLC)		72hr	
	amiL A0 ml VOA Sleeve Poly Glass	Tedlar HCI HNO ₃ None	Water Soil Air	MTBE @ 0.5 ppb (EPA BTEX (EPA 8260B)	TPH Gas (EPA 8260B) 5 Oxygenates (MTBE, DIPI	Oxygenate ad Scav.	Volatile Halocarbons (EPA 8260B) Volatile Organics Full List (EPA 820	Volatile Organics (EPA 524.2 TPH as Diesel (EPA 8015M)	TPH as Motor Oil (EPA 8015M) CAM 17 Metals (EPA 200.7 / 6010)	5 Waste Oil Metals (Cd.Cr.Ni,Pb.Zn) (EP Mercury (EPA 245.1 / 7471) 	W.E.T. Lead (STLC)		1 wk	
	Time ♀ ヵ थ ਹੋ 845 X /			⊻ ⊡ X	F S XX	~ <u> </u>	× ×	[≥] ⊭ ×	5 4	S Ž F				
	325 ×			X		·	$\overline{\mathbf{x}}$						_	0(
	330 X		X	X			X	ΗĴ						02 V3
515-15.0 "	835 X	X	X	X				\neg		┟╶┠╌┠╸	+-+			
	837 X	X	X		ĹУ		$\overline{\mathbf{X}}$	Ŕ			+++		-	04 05
	340 X		X	X			X	-5			╉╾╁		+	
							$+\gamma$							ae 1
				-									1	
A														
	ate Time 0/14/13 5 pm	Received by:	20		Remarks: SIS	-8.0	', io	. 0'	hei	se ho	tices	uble ca	10-	
Relinguished by Dr.	ate SINO/13 Time	Received by:			:		-							
		Received by Laboratory:	11-City - L	wheel				For Lab	Use Or	nly: Sam	le Rece	eipt		
6	110/13 10:30	Shand. Jun	-11:11 Hundi	Timon	Temp °(C Init	ials	Dat	e	1	Time	Therm. ID #	Coolant	
Distribution: White - Lab; Pink - Originator													Yes	/ Nc

Analytical LLC	297.4800			SRG # / L	ab No.	Ę	351	45	-	·····				Si	6 / M Page	N- Z 2 of	; f <u>3</u>
Project Contact (Hardcopy or PDF Tg):	Califorr	nia EDF Report?	res	□ No			Chair	1-of-(Custo	dy R	ecor	d ar	nd An	alysis	Request		
Project Contact (Hardcopy or PDF Td): Company/Address: Company/A	ALE Samplin 94% i C Global T EDF De	ID: ID: ID: ID: ID: ID: ID: ID:	Code:			3260B))B)		Ai	nalysis		LEASE		E		TAT	
Project #: Project #: Project Name: Pt D Z 3rd Ave Partner	Sample	er Print Name:	Grang	p. vom		TPH Gas (EPA 8260B) 5 Oxygenates (MTBE, DIPE, ETBE, TAME, TBA) (EPA 8260B)	7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B) Lead Scav. (1.2 DCA & 1.2 EDB) (EPA 8260B)	60B)	A 8260B) Drinking Water)		4) 5010)	ר) (EPA 200.7 / 6010)	(471)			24 hr	ab Use (
Project Address: 1125 Miller Are Outbund Guiltonic	Sample		Preservative	Matrix	0.5 ppb (EPA 8260B) PA 8260B)	A 8260B) MTBE, DIPE, ETBE	7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 826 Lead Scav. (1,2 DCA & 1,2 EDB) (EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B) Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	TPH as Motor Oil (EPA 8015M) CAM 17 Metals (EPA 200.7 / 6010)	5 Waste Oil Metals (Cd,Cr,Ni,Pb,Zn) (EPA	Mercury (EPA 245.1 / 7470 / 7471) Total Lead (EPA 200 7 / 6010)	(STLC)		72hr	
Sample Designation Date		Poly Glass Tedlar HCI	HNO ₃	Water Soil Air	MTBE @ 0.5 ppb (E BTEX (EPA 8260B)		7 Oxygenates Lead Scav. (1			+	CAM 17 Meta	5 Waste Oil Met	Mercury (EP/ Total Lead /F	W.E.T. Lead (STLC)		1 wk	
516-10grab 61413 516-1519rab 61413				X		x x 2 Y			א א	$\frac{\lambda}{\lambda}$	-						07 08
516-17'grob 6114/13	1100 X		X	X	X	XX			X	X							09
516-20'grab 6/14/13 516-25'grab 6/14/13	1105 X					$\frac{X}{\sqrt{Y}}$			$\frac{X}{X}$	X	_						10
516-25 grab 61413 516-7 grab byge 61313			X	X	+ A	H7	$\left \right $		$\overline{\lambda}$	Ĥ				++			12
	í.t. [Time Received b	\sim \wedge	jes		Remarks	5:										
Relinquished by: Oxinin prists	ate	Time Received b							Fa	or Lab	Use (Dnlv:	Sam	ole Rece	eipt		
	1.1-	10:30 June.	the star	- Kilf Ann Troy & Tu	WTian WTian	Temp	°C	Initials		Date				Time	Therm. ID #		nt Present / No

	Davis, C Lab: 53 Fax: 5	d Street, CA 95618 30.297.48 30.297.48	100 802									SRO	G # / L	.ab N	lo.		8	51	40	5			-					5	17 Page	3	μμ'- of	-/
Project Contact (Hardcopy or PDI	To):	2	Ca	liforn	ia ED	F Rep	ort?	-	X Ye	es		No	·					Cha	n-o	f-Cı	isto	dy F	Rec	orc	l an	d A	nal	lysis	s Rec	uest		
Company / Address:	122910	whishing	Sar	mplir	ng Coi	npany	Log	Code	e:							,					Ar	alys	sis R					1			TAT	1
Project Contact (Hardcopy or PDI Semes $JeCompany / Address:Company / Address:Phone Number:S(0-307.4944)Eax Number:$	<u>7 1712.0</u> 3	hm-cc2	Glo	48 Ibal I TO	0/ ID: 601)) 17	- We 74	<u>\$0</u> +S	5			<u> </u>					B)							PLI	MET		LE				□ 12 hr	-
Fax Number: 5i0-232-28 Project #: CB > 18H Project Name: T > 7 T > 18H Project Name: T > 7 T = 7	23		ED	F De	fisc fisc	ble To	(Ema	ail Ao	ddress)): 574-0	urp	. (Xo	m				(EPA 8260	A 8260B)			ter)				(6010)						24 hr	
CB-18H	NA				101	nn	nter	, (Ora	0 ~~/2	,						TBA)	(EP/	70 4	(B)	g Wa				200.7 /						2411	
Project Name: 7+D Z3d Ave	Parto	es			- dON	Name Mr ature:	x 1	To	coh.		2						TBE, TAME,	DH, MeOH)	8260B)	(EPA 8260	4.2 Drinkin	()	15M)	7 / 6010)	b,Zn) (EPA :) / 7471)	010)				□ 48hr	
Project Address:	Sar	npling		Δ	ON Contair		F	He:		ve	2 	Mat	trix	b (EPA 82	0B)	3260B)	BE, DIPE, E	oxy + EtC	hous (EPA	s Full List	s (EPA 52 [,]	EPA 8015	il (EPA 80	(EPA 200.	(Cd,Cr,Ni,F	45.1 / 747(200.7 / 6(TLC)			□ 72hr	
Project Address: UZS Miller Are Ochland, Caldom			40 ml VOA	eve	S	lar)3	ø		er			MTBE @ 0.5 ppb (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (MTBE, DIPE, ETBE, TAME, TBA) (EPA 8260B)	7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	TPH as Motor Oil (EPA 8015M)	CAM 17 Metals (EPA 200.7 / 6010)	5 Waste Oil Metals (Cd.Cr.Ni,Pb.Zn) (EPA 200.7 / 6010)	Mercury (EPA 245.1 / 7470 / 7471)	Total Lead (EPA 200.7 / 6010)	W.E.T. Lead (STLC)				
Sample Designation	Date	Time	40 n	Sleeve	Poly Glass	Tedlar	Ę	HNO3			Water	Soil	Air	MTB	BTE	ТРН	5 Oxy	×Õ ∠	Vola	Vola	Vola	ТРН	трн	CAM	5 Wa	Merc	Total	М. М			1 wk	
517-7.0'	6141	\$1305	ļ	X					X			X			X	17	X			X	'	X										
SI7-10,0'	<u> </u>	131		X					X			X			$ \lambda $	X	イ			٦	ł	λ										1
517-17.0'		1320		\star					X			X			+	+	Y			4		X										l
\$17-21.0		1330		X					X			X			X	X	X	•		$ \lambda $	1	$ \lambda $										1
517-24:5	V	1345		X					X	_		X			×	X	ヤ	1		X	1	X										ļ
							_	-				-								-												
~ ~ ~	,	<u> </u>					╋	+												+											1	┢
	7	Date	/13	1	Time 5 pn		ived b	•	fac	yst	ـــــــــــــــــــــــــــــــــــــ			1	1	Rem	arks:	<u> </u>		- I	.L	I				ł				<u></u>		<u> </u>
Relinquiched by: Owner friets		Date GIV	5/1	3	Time		ived b	y:						•																		
Relinquished by: U		Date	1.7	-	Time		ived b	y Lat	boratory	fi	-11:	H	An	lift	tail	Tei	mp °	с	Initi	als	Fo		b Us ate	e Or	nly:	Sar	mple Tirr	e Rec	· ·	m. ID #	Coolant	nt Pre
	-	10/16	113		. s.	[]Ji	nry	S.	1	m,	\sim	-7	vorl	Í.T.	in																Yes	1

SAMPLE RECEIPT CHECKLIST

SRG #: \$514	15	TAT: 🕅	Standa	rd]Rush	🗌 Split	[None			
Sample Receipt	nitials/Date:	The / 061	613	Sto	rage T	ime: W:45	Samp	le Logir	n Initials/	Date: MAS	Q81713	
Method of Receipt:	🗌 Courie	er 🚺 Over	-the-co	ounter	•] Shipped	Shippir	ng Custo	dy Seals	🔀 N/A 🛛 [] Intact	Broken
Temp °C 5.4	□N/A Th	erm ID IR-1	Tim	e lo	130	Coolant pre	sent	X Yes	s 🗌 Nc	o ☐ Water	r 🗌 Ten	np Excursion
Chain-of-Custody:			Yes	;	No	Documen	ted on	coc	Labels	C	Discrepancie	s:
Is COC present?			X			Sample ID		x	X			
Is COC signed by reli	nquisher?		X			Project ID		X	X			
Is COC dated by reline	quisher?		X			Sample Da	ate	\checkmark	\mathbf{x}			
Is the sampler's name	e on the CO	C?	X			Sample Ti	me	\times	\times	,		
Are there analyses or	hold for all	samples?	V			Does COC	match	project h	nistory?	X N/A	🗌 Yes	🗌 No
				1	T	Comment						
Samples:			N/A	Yes	No	Comment	.5.					
Are sample custody s	eals intact?		X									
Are sample containers	s intact?			\checkmark								
Is preservation docum	nented?			X								
In-house Analysis:			N/A	Yes	No							
Are preservatives acc	eptable?			X								
Are samples within ho	olding time?			X								
Are sample container	types correc	ct?		X								
Is there adequate sam	nple volume	?		X								
Receipt Details:												
Matrix	Containe	er Type	# of Co	ontain	ers							
											CS R	equired: 🗌
						Proceed W Client Com		•	YES 🗌	NO Init/D	oate:	

Leaders in Analytical Science and Service

Subcontract Laboratory Report Attachments

2795 Second Street, Suite 300 Davis, CA 95618 tel 530.297.4800 fax 530.297.4808 www.kiffanalytical.com

WORK ORDER NUMBER: 13-07-0966

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Kiff Analytical Client Project Name: P&D 23rd Ave. Partners Attention: Joel Kiff 2795 2nd Street, Suite 300 Davis, CA 95618-6505

Amande Porter

Approved for release on 07/19/2013 by: Amanda Porter Project Manager

ResultLink ▶

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

40 Lincoln Way, Garden Grove, CA 92841-1432 🔹 TEL: (714) 895-5494 🔹 FAX: (714) 894-7501 🔹 www.calscience.com

Client Project Name: P&D 23rd Ave. Partners Work Order Number: 13-07-0966

1	Work Order Narrative	3
2	Client Sample Data	4 4
3	Quality Control Sample Data. 3.1 MS/MSD. 3.2 LCS/LCSD.	5 5 6
4	Sample Analysis Summary	7
5	Glossary of Terms and Qualifiers.	8
6	Chain of Custody/Sample Receipt Form	9

Contents

Work Order: 13-07-0966

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 07/16/13. They were assigned to Work Order 13-07-0966.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with an immediate holding time (HT </= 15 minutes --40CFR-136.3 Table II footnote 4), is considered a "field" test and reported samples results are not flagged unless the analysis is performed beyond 24 hours of the time of collection.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Analytical Report

Kiff Analytical			Date Rec	eived [.]			07/16/13
2795 2nd Street, Suite 300			Work Ord				13-07-0966
Davis, CA 95618-6505			Preparatio	•••			T22.11.5. All
Davis, CA 30010-0000			Method:	511.			EPA 6010B
			Units:			_	mg/L
Project: P&D 23rd Ave. Partners						Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S15 COMP	13-07-0966-1-A	06/14/13 00:00	Soil	ICP 7300	07/16/13	07/18/13 17:26	130718LA1
Parameter		Result	ŀ	RL	DF	Qua	alifiers
Chromium		1.06	(0.100	1		
S16 COMP	13-07-0966-2-A	06/14/13 00:00	Soil	ICP 7300	07/16/13	07/18/13 17:27	130718LA1
Parameter	·	Result		RL	DF	Qua	alifiers
Chromium		0.188	(0.100	1		
S17 COMP	13-07-0966-3-A	06/14/13 00:00	Soil	ICP 7300	07/16/13	07/18/13 17:32	130718LA1
Parameter		Result	<u> </u>	<u>RL</u>	DF	Qua	alifiers
Chromium		0.220	(0.100	1		
Method Blank	097-05-006-6817	N/A	Aqueou	s ICP 7300	07/16/13	07/18/13 17:00	130718LA1
Parameter		Result	ŀ	RL	DF	Qua	alifiers
Chromium		ND	(0.100	1		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Quality Control - Spike/Spike Duplicate

Kiff Analytical	Date Received:	07/16/13
2795 2nd Street, Suite 300	Work Order:	13-07-0966
Davis, CA 95618-6505	Preparation:	T22.11.5. All
	Method:	EPA 6010B
Project: P&D 23rd Ave. Partners		Page 1 of 1

Quality Control Sample ID		Matrix		Instrument	Date P	repared	Date Analyzed	MS	/MSD Batch	Number
13-07-1091-1		Aqueou	JS	ICP 7300	07/18/	13	07/18/13 17:05	130	718SA1	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Chromium	ND	5.000	4.817	96	4.605	92	75-125	5	0-20	

Kiff Analytical	Date Received:	07/16/13
2795 2nd Street, Suite 300	Work Order:	13-07-0966
Davis, CA 95618-6505	Preparation:	T22.11.5. All
	Method:	EPA 6010B

Project: P&D 23rd Ave. Partners

Quality Control Sample ID	Matrix	Instrument	Date Ana	llyzed	LCS Batch Number
097-05-006-6817	Aqueous	ICP 7300	07/18/13	17:02	130718LA1
Parameter	Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec.</u>	CL Qualifiers
Chromium	5.000	4.891	98	80-120	

RPD: Relative Percent Difference. CL: Control Limits Page 1 of 1

469

Work Order: 13-07-0966

Method EPA 6010B **Extraction** T22.11.5. All Chemist ID ICP 7300

Instrument

Analytical Location 1

Page 1 of 1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Calscience nvironmental Laboratories, Inc.

Work Order: 13-07-0966

Page 1 of 1

ork Order:	13-07-0966	Page 1 of 1
<u>Qualifiers</u>	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample dat clarification.	ta was reported without furth
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank su in control and, therefore, the sample data was reported without further clarification.	rrogate spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matri associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clari	x interference. The fication.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, the reported without further clarification.	refore, the sample data was
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interfe batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarificat	rence effect. The associated
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
Е	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard were also present (or detected).	but heavier hydrocarbons
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard also present (or detected).	but lighter hydrocarbons we
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection li estimated.	imit. Reported value is
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.	
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample e concentration by a factor of four or greater.	exceeding the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	
Х	% Recovery and/or RPD out-of-range.	
Z	Analyte presence was not confirmed by second column or GC/MS analysis.	
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % more reported on a wet weight basis.	oisture. All QC results are

Glossary of Terms and Qualifiers

For any analysis identified as a "field" test with a holding time (HT) </= 15 minutes where the sample is received outside of HT, Calscience will adhere to its internal HT of 24 hours. In cases where sample analysis does not meet Calscience's internal HT, results will be appropriately qualified.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

KIFF Analytical LL	2795 Second Street, Suite 300 Davis, CA 95618 Lab: 530.297.4800 Fax: 530.297.4808					7440 Linc Garden Grove, (714-895-5					coln CA	oln Way 13-07-0966															
Project Contact (Hardco	py or PDF to):		ED	DF F	Rep	ort	?		YE	S			Ch	ain	of-(Cus	toc	ly F	lec	ord	l ar	nd /	4na	lys	is F	Redi	uest
Jennifer Worsley																		-						_			
Company/Address:			J				_		ete this s	ectior	n:														Dur	e Date	
Kiff Analytical			Sam	pling	g Con	npany	Log C	ode:	CN	/G(С					Ana	lysi	s Ro	equ	est					Due	Dau	1
Phone No.: 530-297-4800	FAX No.: 530-297-4808	3	Glo	bal ID):		T06	0017	7455	5																	
Project Number: CB018H	P.O. No.: 85145						ail Ado cal.co																		113		Only
Project Name:				Cont	ainer	·/Pre	serva	tive		Mat	rix	<u>۔</u>													201		9
P+D 23rd Ave Partners	Address											В С													25,		2
Project Address:	Samplir	ng I	ss None									6010 WET SUB (Cr)													July		For Lab Use
Sample			z. Glass									6010 V															
Designation	Date	Time	8 Oz.						Soil			СР															
S15 COMP	06/14/13		1						Х			Х													Х		/
S16 COMP	06/14/13		1						X			Х													Х		2
S17 COMP	06/14/13		1			$\left \right $			X			X					х. 				+	_	+		X	_	3
						$\left \right $															-		+				-
																					—		\square				
Relinquished by:	2 - In Juny unl \$7150					72 1700							Remarks:														
												Bill to: Accounts Payable															

Return to Contents

KIFF Analytical LL Project Contact (Hardcop		Davis, CA 95618 744 Lab: 530.297.4800 Garden G							Calscience 440 Lincoln Way Grove, CA 92841-1427 4-895-5494 COC No. 85145 Page 1 of 1 Chain-of-Custody Record and Analysis Request																		
Jennifer Worsley			 .			opt						0			ena				July		001		 uiai	, .	0.10	que	
Company/Address:			Reco	omme	nded	but no	t mano	datory	to com	plete ti	his sec	ction:															
Kiff Analytical			Sa	mpli	ng C	Comp	any	Log (Code:	- (CW	'GC)	1			A	naly	vsis	Req	uest				Due l	Date	
Phone No.: 530-297-4800	FAX No.: 530-297-480	8	Gle	obal	ID:			т06	500 ⁻	1774	455															\square	
Project Number:	P.O. No.:		De	liver	able	s to	(Ema	ail Ad	dress	s):																	
CB018H	85145)	inb	ox(<u> D</u> kif	fana	lytic	al.co	<u>om</u>																2013		Only
Project Name:	-			Container / Preservative							Matrix			Ĵ.													Use
P+D 23rd Ave Partners			e											IB (Cr)											18,		l de
Project Address:	Sampli	ng	s None											ET SUB											July		For Lab
Sample			z. Glass											ICP 6010 WET													Ę
Designation	Date	Time	8 Oz.								Soil			ICP													
S15 COMP	06/14/13		1								Х			Х											Х	\square	
S16 COMP	06/14/13		1								Х			Х											Х		
S17 COMP	06/14/13		1								Х			Х											Х		
											_														┢┷╋		
						_	+				_	-									$\left \right $	_				+	
																										\square	
Relinquished by: Date			e Time Received by:							لــــــــــــــــــــــــــــــــــــ																	
Relinquished by: Date			Time Received by:						Remarks:																		
Relinquished by: Date		te Time Received by Laboratory:						Bill to: Accounts Payable																			

Date Printed 7/15/2013

Shipped From: KIFF ANALYTICAL 2795 2ND STREET 300 DAVIS, CA 95618

Tracking#D10010595904719

Sent By: SAMPLE RECEIVINGX125 Phone#: (530)297-4800 wgt(lbs): 35 Reference: SUB 85145 Reference 2:

7440 LINCOLN WAY GARDEN GROVE, CA 92841	Service: S Sort Code: ORG Special Services: Signature Required
--	---

		Page	e 12 of 12
work order:	#: 13-0 '	7-09	66
SAMPLE RECEIPT FO		Cooler /	of /
CLIENT: CIFF		07 //4	
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not fro			
Temperature $\underline{\mathcal{A}} \cdot \underline{\mathcal{B}} \circ \mathbf{C} \cdot 0.2 \circ \mathbf{C}$ (CF) = $\underline{\mathcal{A}} \cdot \underline{6} \circ \mathbf{C}$	Blank	🗌 Samp	le
□ Sample(s) outside temperature criteria (PM/APM contacted by:)			
\Box Sample(s) outside temperature criteria but received on ice/chilled on sam	e day of samp	oling.	
□ Received at ambient temperature, placed on ice for transport by	Courier.		70
Ambient Temperature: 🗆 Air 🛛 Filter		Initia	al:
		en de la companya de	
CUSTODY SEALS INTACT:		· _	76
Cooler □ □ No (Not Intact) □ Not Prese			al: $\frac{f}{f}$
□ Sample □ □ No (Not Intact) ☑ Not Prese	nt	Initi	al: <u> </u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete	1		
□ Collection date/time, matrix, and/or # of containers logged in based on sample lab		_	_
□ No analysis requested. □ Not relinquished. □ No date/time relinquished.			
Sampler's name indicated on COC	🗆		
Sample container label(s) consistent with COC	/		
Sample container(s) intact and good condition	_		
Proper containers and sufficient volume for analyses requested	1		
Analyses received within holding time			
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hour			Ø
Proper preservation noted on COC or sample container	🗆		Z
Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	🗆		Z
Tedlar bag(s) free of condensation			ø
Solid: □4ozCGJ 18ozCGJ □16ozCGJ □Sleeve () □EnCc	ores [®] □Terra	aCores® 🗆	
Water: UVOA UVOAh UVOAna2 U125AGB U125AGBh U125AGB	Bp □1AGB	□1AGB na ₂	□1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CG	Bs □1PB	□1PB na	□500PB
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □]
Air: ☐ Tedlar [®] ☐ Canister Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2	Envelope	Reviewed by	y: <u></u>

Return to Contents

ATTACHMENT G

LOO	CATIO	N OF I	BORIN	IG/WI	ELL:								PROJECT: 1125 Miller Avenue Oakland, California TOTAL DEPTH: 25.0'						
			11			L		-			-				TOTAL DEPTH:	25.0'			
			6		-	¢ S17	/MW-	-1					JOB NO.: CB018H		LOGGED BY:	J. JACOBS, PG			
N.					-					Peel	ing Ar	Sa	PROJ. MGR.: J. JACOBS		EDITED BY:	G. FISCO			
A		1105				S7	ana a		12101				DRILLING CONTRACTOR	R: GREGG DRILLIN	G AND TESTING, INC	•			
11		1125	wine	r Ave	nue	challe		ess Ve	nt Piper	6/MW	-3		DRILL RIG TYPE: MARL R	HINO M5T					
					Water	+TW	ALS .	lin	7.54	Electi	ical SS	4	DRILLER'S NAME: LUIS M	IENJIVER/JESSE PA	ATTISON				
0	2				(Phieter		1	8	f h	(TV)	711 		SAMPLING METHODS: DI	IRECT PUSH/CON	TINUOUS CORE				
					iterre a	plani T			S5	WS.	$\langle \cdot \rangle$	Ale Yunilletter SS-5							
$ \lambda $				SI	5/MW	\gg	56.3	56.4	183	1581	2	To- Metal Groat	STARTED TIME: 1:00 PM	1	DATE: 06/14/2013	3			
				10002		/	\backslash	4TW		1	of the	Color Market	COMPLETED TIME: 1:47	PM	DATE: 06/14/2013	3			
										<u> </u>			BORING DEPTH	25.0'	LEGEND				
7													CASING DEPTH	24,0'	cc Continuous grab Brass Tube	Core Sleeve			
1 OLI					B								WATER DEPTH	21.0'	N No Odor F Faint Odor				
LCC CC	Ξ	m		z	VER		ш						TIME:	1:50 PM	M Moderate O	dor			
ATTR	EPT	LTY.		SIVE	Ő	z	RAT	TER		E	ì	DO DO	DATE:	06/14/2013	S Strong Odor				
WELL CONSTRUCTION	SAMPLE DEPTH	SAMPLER TYPE		INCHES DRIVEN	INCHES RECOVERED	SAMPLE CONDITION	DRILLING RATE (min/ft)	FIRST WATER		DEPTH (FFFT)		GRAPHIC LOG	LATITUDE: 37.7807930		LONGITUDE: -122				
ELL	MPI	MPI	ODOR	E	B	MM	tin/ft	RST '				Ιdν	TOP OF CASING ELEVATI		DATUM: NAVD 8	8			
Ň	SA	SA	IO	Z	Z	SS	Ë Ö	FI	GIA		i 	Ü	CONDITIONS: SUNNY, 80						
										1			No recovery from 0.0' to 5.0' Air Knife on 06/13/2013 by Gregg Drilling due to subsurface sanitary sewer pipeline.						
	_									2		NA	Total Depth of Soil Bo No water encountered first water noted at 21.	l in well at 1:45 P	M. After wood plu	(bgs) 1g is broken out,			
ľ.										4			Well Completion: 0.0' to 7.0' bgs - Neat C						
													7.0' to 8.0' bgs - Hydra 8.0' to 25.0' bgs - Filter						
				$ \wedge $	36	good			1.1	6			9.0' to 24.0' bgs - 0.02"	Schedule 40 PVC	Screen				
		сс		36	-			1		7	-		Clay (CL)						
or Hereit			N	50						8			Dark brown, moist	t, very stiff, trace	sand grains, no od	or.			
10		1		$ \downarrow $									00000000000000000000000000000000000000	, , ,	0				
				个					0.4	9	1								
		cc								10	-								
H.			N			good				11			Clay (CL)						
I.I.	7			48	46	good		-	0.3				Medium brown, me	oist, very stiff, oc	casional sand grain	ns, no odor.			
NH.										12		///////////////////////////////////////							
E	<u> </u>	-		$\overline{\mathbf{A}}$		<u> </u>				13			Clay (CL)						
H			N	<u> </u>					0.3	14		///////	Yellow-medium b		y stiff, occasional sa	and grains,			
H				48	48							///////	trace pebbles, no o	odor.					
	-		N	I						15		1111111	Clay (CL)						
	-		14			-				16	_		Yellow-brown, mo	oist, very stiff, no	odor.				
H				$ \downarrow\rangle$						17		10000	Sandy Clayey Gra			1			
H.		cc	N	$ \uparrow $					6.6				Dark brown, loose	e, moist.	$\wedge \ell$				
	1			48	48	-				18	-	11/1/11	Silty Clay (CL) Medium brown, r	noist.	Xmeby				
H	<u> </u>	-		48	40	<u> </u>				19	L_		occasional sand g		ANAL	GEO			
H			N						7.4				no odor.		1043	1.8			
I.								∇		20		00000000	Silty Gravel (GM) Yellowish-brown	loose	JAMES	Shan			
		сс	N	1						21	-		very moist, no od	lor.	4	Be S			
			IN	ļļ.					10.1	22		000000000000000000000000000000000000000	Silty Gravel (GM)					
0-2												0000000	Yellowish-brown very moist, occas						
H			N	48	48	good			8.0	23		00000000	pebble, no odor.		W/ WWWWWWWW	DEIST			
			<u> </u>	-10	10	-				24	-	97979791	Silty Clay (CL)		12	SE!			
		сс		$ \downarrow\rangle$					9.1	25	_	///////	Light olive brown, moist, stiff, no odor.						
		PID	Back	kgrou	nd =	0.3						Total Dank	h 25.0 feet below groun	deurface					
	26							26			11 20.0 reet below groun	u sunace							

LOC	ATIO	N OF B	ORIN	G/WE	LL:								PROJECT: 1125 Million	A	BORING NO.:	S15/MW-2					
			1	converen	nia	1					-		1125 Miller Oakland, C		TOTAL DEPTH:	25.0'					
			(l		0	S17/N	1W-1						JOB NO.: CB018H		LOGGED BY:	J. JACOBS, PG					
			6	_	31	5177	411-1					5.5	PROJ. MGR.: J. JACOBS		EDITED BY:	G. FISCO					
						57				Parking A	nta -	Sanitar Clear	DRILLING CONTRACTO	R: GREGG DRILLING	G AND TESTING, IN	IC.					
	11	25 Mi	iller A	Veni	ıe	Former Excavation		Vent Fi	S16/M	1W-3			DRILL RIG TYPE: MARL	RHINO M5T							
				1	A		12 13	19		iectrical S	5-4	/	DRILLER'S NAME: LUIS	MENJIVER/JESSE PA	TTISON						
3				(6	Water Meter	* ^{TW-3}	No	11		Anels)	/ .	SAMPLING METHODS: I								
12				6	Q Iler	* TW/2	111	17 5		2	drop i u ð	Vessibilities SS-5 /18" x 36"		,							
				Diatis		A CONTRACT	56.3	51 ⁰ .		in the	2	Metal Plate Grease	STARTED TIME: 1:00 P	M	DATE: 06/14/20	13					
				S15/N	∕1W-2	0.	6.5 Soral	56.1		12	-	Separator	COMPLETED TIME: 1:4		DATE: 06/14/20	13					
T	-						2	(6			2.2		BORING DEPTH	25.0'	LEGEND						
													CASING DEPTH	24.0'	cc Continuo grab Brass Tub	us Core Sleeve					
5					۵								WATER DEPTH	20'-21'	N No Odor						
				_	ERE								TIME:	1:47 PM	F Faint Odd M Moderate						
	HILd	ΥΡΕ		Æ	NO		ATE	ĸ		E		8	DATE:	06/14/2013	S Strong Od						
	DE	R T		DRI	REC	Į Į	GR	ATE		FEE		D C D	LATITUDE: 37.7806835		LONGITUDE: -1	22.2368016					
	SAMPLE DEPTH	SAMPLER TYPE	¥	INCHES DRIVEN	INCHES RECOVERED	SAMPLE CONDITION	DRILLING RATE (min/ft)	FIRST WATER		DEPTH (FEET)		HdV	TOP OF CASING ELEVA	FION: 21.57' AMSL	DATUM: NAVD	88					
	SAM	SAM	ODOR	NCI	DN N	SAN	DRI	FIRS	GIA	DEP		GR	CONDITIONS: SUNNY, 8	0° F							
			-									a series des	Air Knife on 06/13/2	013 by Gregg Dril	ling due to antici	pated subsurfac					
						<u> </u>				1			pipelines.			DID					
										2			Silty Sand (SM) Dark Total Depth of Soil B								
									NA	2			First water encounter	ed in well at 20'-2	1' bgs at 1:47 PM.	e (ogs)					
2					_	-	-			3	-		Well Completion:		0						
										4		4	0.0' to 7.0' bgs - Neat								
									NA				7.0' to 8.0' bgs - Hydrated Bentonite Chips 8.0' to 25.0' bgs - Filter Pack - 2/12 Sand								
9				\wedge		-				5	-	111111	9.0' to 24.0' bgs - 0.02								
				<u> </u>				-		6	-		Silty Clay (CL)								
			F	48	36	fair			15.4				Dark gray, moist, me	dium stiff, occasio	nal pebble, faint o	odor.					
HTTTE.										7			Silty Clay (CL)								
王	-	cc								8	-	\//////	Dark brown, moist, s Gravelly Clay (CL)	tiff, faint odor.							
-			F	\checkmark	_		l 		84.3	9			Dark brown, loose, sl	ight odor.							
1.			F	\wedge			1		9.7				Clay (CL)	- Colori ton Incorde							
Ľ,		сс						1		10		111111	Medium brown, moi Clay (CL)	st, faint hydrocarb	on odor.						
										11	_		Olive gray, moist, sti	ff, occasional pebb	le, faint odor at 1	1'.					
			F	48	48	good			10.9				Clay (CL)								
U				1				2	1	12			Olive gray, moist, st		l grain, trace pebl	oles,					
		-		\vee	-	-		-		13	-	///////	faint hydrocarbon o Clay (CL)	lor.							
			М	1					65.2	14		11/1/11	Dark brown, moist,	noderate hydroca	bon odor.						
1				48	48	good						Contractor of	Sandy Clayey Grave	l (GC)							
		сс		1		-	-		154	15		22422	Black-brown oily sta 14.5' to 15.5', strong	in on outside of co hydrocarbon odor	ore @ 14.8', loose,	moist from					
-			S						134	16			Silty Sand (SM)								
-				$ \downarrow\rangle$						6783			Gray to brown, moi	st, loose, sand grai	ns, occasional pe	obles,					
1		cc	м	\wedge					83.4	17			moderate hydrocark Silty Gravel with sa	nd (GM)	1						
13						-		-	-	18	-		Yellowish brown, v	ery moist, loose,)V					
ŀ				48	48	good				19		0000000	moderate hydrocar		meles	IN DOL					
1		сс	М						70.2	1 1908			Silty Graveľ (GM) Dark brown, wet, b	lack to brown 🛛 🚺	MESSION	TEOL					
	<u> </u>	-				1	1	1		20		0000000	oil staining outside	of sample tube 🁖	14	GEOLO					
-				1¥				V		21		boood do	(not in core sample)		1 SAM	ES ALAN					
			F	$ \uparrow $					2.6			poood	Sandy Gravel (GM) Light yellow-brown		12 NOJ	ACOBS					
				48	42	fair				2.2			sand with occasion	al pebbles, faint	CYAT	10. 68					
-	<u> </u>	-		40	14				-	23			hydrocarbon odor,	oil staining on	a land	OLOGIST					
ľ.	1		F						2.8			111111	core tubing not insi Silty Clay (CL)	de core.	O (WAR						
19. 1			F						0.7	24		//////	Light olive brown,	wet, stiff, faint	CATE	OF CALIFO					
19		cc Black		k brow	n oil	stainir	g on c	utside		25	-	111111	hydrocarbon odor,		E	OF CALL					
							ut soil			1	1		outside of tube.								

LOC	ATION	N OF B	ORIN	G/WE	ELL:		_		_				PROJECT:		BORING NO.:	S16/MW-3
		1				1							1125 Miller A Oakland, Ca		TOTAL DEPTH:	25.0'
		1	C		10	517/M	W-1						JOB NO.: CB018H		LOGGED BY:	J. JACOBS, PG
						67			17	ezkông Ar	KA.	Sanitary Cleano	PROJ. MGR.: J. JACOBS		EDITED BY:	G. FISCO
	112	5 Mill	ler A	venu	e l	S7 Unmer Jacavation			516/M	W-3		ş	DRILLING CONTRACTOR	R: GREGG DRILL	ING AND TESTING, IN	С.
				/	2	51	150	Vent l'ipe	-0		-		DRILL RIG TYPE: MARL R	HINO M5T		
8 512				6	Valey Antes 4	TW-3	No	17	Ele Pa	cuical SS	-	/	DRILLER'S NAME: LUIS M	(ENJIVER/JESSE	PATTISON	
512				Basis	a the second	Twa st	lill su ^{si}	55		K.	drop is 8 8" AUN	Matal Plate of Grase	SAMPLING METHODS: SO C	DIL COLLECTED ONTINUOUS CC	FROM AUGERS; INAD DRE TOOLING.	EQUATE FOR
			5	S15/M	w-2×	563	Somes	16.1	3 1	aning a	10	Separator	STARTED TIME: 10:31 A	M	DATE: 06/14/20	13
/				C	3.	/	A attemp	TW.	\$/	14	Carding Parts	S. W	COMPLETED TIME: 11:1	I5 AM	DATE: 06/14/20	13
													BORING DEPTH	25.0'	<u>LEGEND</u> cc Continuou	ts Core Sleeve
7													CASING DEPTH	24.0'	grab Brass Tube	
TION					ED								WATER DEPTH	17.0'	N No Odor F Faint Odor	r
SUC	H	ш		Z	VER		E					()	TIME;	12:00 PM	M Moderate S Strong Od	
ISTE	EPT	£		RIVI	B	Z	RA7	TER		L L		ΓO	DATE:	06/14/2013		
WELL CONSTRUCTION	SAMPLE DEPTH	SAMPLER TYPE		INCHES DRIVEN	INCHES RECOVERED	SAMPLE CONDITION	DRILLING RATE (min/ft)	FIRST WATER		DEPTH (REET)		GRAPHIC LOG	LATITUDE: 37.7807367		LONGITUDE: -12	
ELL	MM	MM	ODOR	CHI	CHI	MAR	RILL in/f	RST		1.Ldt	1	RAP	TOP OF CASING ELEVAT		DATUM: NAVD	88
W	SA	S≜	ō	Z	E	с v	<u>a</u> 7	E	PID	ĉ	1	<u></u>	CONDITIONS: SUNNY, 80			
										1			No recovery from 0.0' Air Knife on 06/13/20 and pipe.		Prilling due to subsu	rface metal plate
										2 3		NA	Total Depth of Soil Bo First water encountere	oring - 25 feet b ed in well at 17	elow ground surface '.0' bgs at 12:00 PM.	e (bgs)
										4 5 6			Well Completion: 0.0' to 7.0' bgs - Neat C 7.0' to 8.0' bgs - Hydra 8.0' to 25.0' bgs - Filter 9.0' to 24.0' bgs - 0.02"	ted Bentonite Pack - 2/12 Sa	and VC Screen	
4		grab	N						0.0	7	\vdash	///////////////////////////////////////	Sample S16-7' grab	hand auger	Note: All samples g collected from auge	er blades. Cores
			14						0.0	8 9			Clay (CL) Light brown, moist,	, stiff, no odor.	1125 Willer Avenue	to the building at
H.		grab								10	Ļ		Hand Auger 06/13,	/2013 from 5' t	to work. o 10' bgs; stop 06/13	/2013; 1:15 PM
		8.uc							0.6	11	_					
										12			Clay (CL)			
H			N							10			Light brown, moist	, stiff, occasior	al sand grains, no o	dor.
Ħ										13 14						
										15						
		grab	N						0.5				Clay (CL)	moist stiff	and and and	no odor
1										16		V//////	Light brown, very	moist, stiff, oc	casional sand grains	, 10 0001.
H.		grab	N						0.5	15	1	111111	Clay (CL)		\sim	an_
	_				-				0.0	18	3		Light brown, wet	, stiff,	XMEDINAL	As
-		_		-	-	-	-	-		19	<u> </u>	V//////	no odor.		1,9510	EEOLO
R				-				-		20	0-	VIIIII	Clay (CL)	,	14/1000	ALAN E
		grab	N						0.0	2	1-		Light to medium wet, stiff, occasio grains, no odor.	brown, mal sand	ALSSIONAL ALSSIONAL JAMES JAOK	85 7
										22			Silty Gravel (GM) Yellowish brown,)	Statistics of	1000
H												0000000	sand grains, no o		103	1º
			N	1	1				0.5	24	4		ł		ATE OF	CALIF
		grab PID		kgrou	 nd =	0.2	(0.5	2!		AVAVAVA	th 25.0 feet below groun	nd surface	UF	CALIFORN
										2	6					

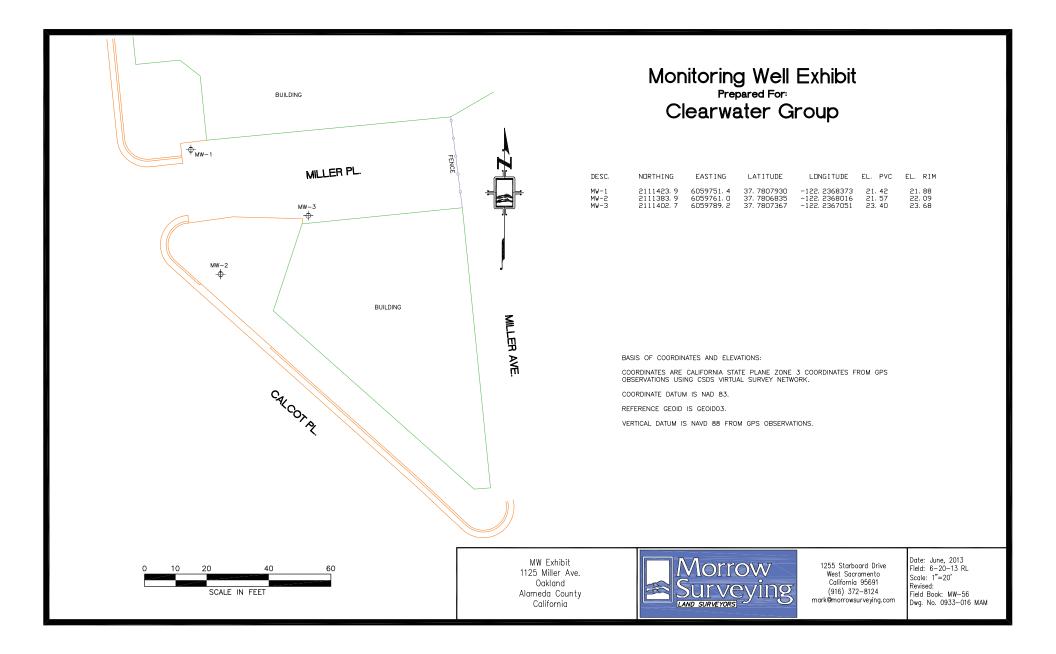
ATTACHMENT H

NATIONAL EWP, INC. WELL DEVELOPMENT DATA SHEET

WELL OR LOCATION MW-1-1080 Builde

PROJECT	С.	EVENT	SAMPLI	ER	DATE	6-20-13	
		Well type MW-1	A	CTION	TIME	PUMP RATE (gpm)	DTW
		(MW, EW, PZ, etc.)	Start Pu	mp / Begin		(9511)	
	→ d •		Bail		11:20	-	DR Dion
2 18		Diameter _2"	RUM		12:00	1 gpm	
Intake depth		-1)		8	0		
	14	<u>ຊ</u> ່ gal/ft. casi	ng			3	
0.0			0.5				
SWL <u>9-9</u>		=TOP			-		
(if above screen)	9.44	=TOP	Stop	0	1:00 pm		
			Sample	t k			
			Final IW				
SWL		=BOP	↓ .	.1	PURGE CALCUL		
(if in screen)		×	♥ <u> <i>O</i> · 165</u> gal/ft.	* 14.9 ft =	2.43	gals X 1 24	gals
0. 0			guint.	SWL to TD	one volume	purge volu	me - 3 casings
TD TD	-24	(as built)	2'' = 0.165 gal/ft.	4" = 0.65 gal/ft.	6'' = 1.47 gal/f		
	ampling Method / D		2 - 0.100 gam.		0.000 (0.00) (0.000 (0.00) (0.000 (0.00) (0.000 (0.00) (0.000 (0.00) (0.000 (0.00) (0.	9	
Bailers	ampling Method / D S PUW - 7730	9.		Actual gallons	s purged	45	
Deets	7730		X	Actual volume	es purged	20	
GCOPTOBE	7 (0			Well Yield 🕀	5		-
Gallons Purged *	Temp °C	PALEC	pН	Turbidity	/ Ot	her	
	÷	(us / cm)		(NTU)			1
	19.3	667	2.8	71. 1			
2. 5	20.7	700	8-3	69-6		£	
3. 5	21.6	601	7-12	#32			
4. 10 gc	19.7	476	6.85	568	3	* - A-	
5	19-5	476 5da	6.81	242	~	3	
5	20.6	449	7.04	90.	2		
	20.0	442	6-72	61.3		and the second	
·	19.8		6.47	37.0		Calles States	
all Garage		437	G)1	57.			
3. 15	11.0					(2) - C	
	1 [• 0						
).	11.0		a - residence - a		n - 6		e
). ().	1 [• 0		a reader in the				1
). (a). 10. 11.							6
9. @ 10. 11. 12.					0		
9. (b) 10. 11. 12. 13.					3 0		
0.					9		

69



NATIONAL EWP, INC. WELL DEVELOPMENT DATA SHEET

WELL OR LOCATION 11 25 Red Buildin

PROJECT	4 4	_ EVENT		SAMPLE	R	DATE	6-2	0-13	-
		Well type MW+	2	AC	TION	TIME		P RATE (pm)	DTW
10		(MW, EW, PZ, etc.)		Start Pun	np / Begin		1	gpm	Bras
	→ d ←	c ¹		PUMP	205 pm	2:40 9	ites Pum	2	
Intake depth		Diameter							
плаке deptn		$q^{\prime\prime}$ gal/ft. cas				· · · · · · · · · · · · · · · · · · ·			
		gal/ft. cas	sing	•					
- SWL 10.1		4	ŀ						
(if above screen)		=TOP	t t						
		L		Stop					
			1 1	Sampled					
			r	Final IWL					
(if in screen)		=BOP	+			PURGE CALC			
		-	0.165	gal/ft. *	18.6 ft.	= 2-43	gals. 🗙 3	24.3	gals
Measured 25.5	- 24	1- 6 =TD			SWL to TD	one volun	le	purge volume - 3	3 casings
TD		(as built)	2" = 0.165 gal/ft		4" = 0.65 gal/ft.	6'' = 1.47 g	al/ft.	4	
Equipment Used / Sa Bar Ners		scription of Event:			A stud wills	ne munued	40		
barners	Pump				Actual gallo	ns purgea			
					Actual volur	nes purged	20		· •
Oatlon	T- 100				Well Yield	€			
Gallons Purged *	Temp °C	EC	pH		Turbid	ity	04h e e		
	i cinp o	(us / cm)	pr		(NTU)	Other		
1. 5 gal	22-1	474	7.7	16	740			BRA	/
2. 5' gal	21-7	442	6.8	38	78	8		BRO	
3. 5'gal	19.8	440	6.1		57	7			
4. 5 gal	19-5	438	5.8		436	5			
5. 5 gal	19.5	436	5.8		314				
5-1	19-4					>			
6. Sgol		436	6.0		358		a - A		<u>6</u>
7	19.4	434	5.3		244				
8. 🛃	19.5	2/3 4	5.8	33	243	5	1. A. C.		
9.		6					-		4
10.									
11.		4							
12.			()					
13.	9					1			
14.									
15.	*								
*Take meas approximately volume p		imal W.L. drop <u>MY</u> - WL drop by re	- able to purge 3 educing pump rate	volumes dur e or cycling p	ing one sitting LY	Able to purge 3 volur	nes by returning day.	<u>VLY</u> - Minima unable to purg	
, ciamo ,									

ATTACHMENT I

ATTACHMENT J

IWM, Inc.

INTEGRATED WASTESTREAM MANAGEMENT, INC. 1945 CONCOURSE DRIVE, SAN JOSE, CA 95131 PHONE: 408.433.1990 FAX: 408.433.9521

CERTIFICATE OF DISPOSAL

Generator Name:	John Protopappas	Facility Name:	P&D 23 rd Avenue Associates
Address:	P.O. Box 687	Address:	1125 Milller Avenue
	Oakland, CA 94604		Oakland, CA
Contact:	John Protopappas	Facility Contact:	Olivia Jacobs, Clearwater Group
Phone:	510-452-2944	Phone:	510-307-9943 x223

IWM Job #:	100193-DS
Description of Waste:	6 Drum(s) of
	Non-Hazardous
	Soil
Removal Date:	7/26/13
Ticket #:	RSVRL260713

Transporter Information

Name:	IWM, Inc.
Address:	1945 Concourse Drive
	San Jose, CA 95131
Phone:	(408) 433-1990

Disposal Facility Information

Name:	Republic Services Vasco Road Landfill
Address:	4001 N. Vasco Road
	Livermore, CA 94550
Phone:	(925) 447-0491

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William 2. Qe For William T. DeLon

Authorized Representative (Print Name and Signature)

7/26/13 Date

NON-HAZARDOUS WASTE MANIFEST

Pleas	e print or type (Form designed for use on elite (1	2 pitch) typewriter)					
1	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.			Manifest Document No.		2. Page 1 of
	3. Generator's Name and Mailing Address Anc.	ler ho					
	3. Generator's Name and Mailing Address Mi	Her due all	0 - 1				
	112 3 101	VEF AVE, Oakl	and CA				
	4. Generator's Phone ()						
	5. Transporter 1 Company Name	6.	US EPA ID Number		A State Trans	partaria ID	
	5. Transporter i Company Name	0. I	03 EFAID Number		A. State Trans		- 200
					B. Transporter		3-7641
1	7. Transporter 2 Company Name	8.	US EPA ID Number		C. State Trans	sporter's ID	
					D. Transporter	r 2 Phone	6
	9. Designated Facility Name and Site Address	ISI 10.	US EPA ID Number		E. State Facilit	ty's ID	
/	1105 Arport	AS.					
	<u>A</u> ² · · · · · · · · · · · · · · · · · · ·				F. Facility's Ph		-
	Rio Vista	CA			175	7)774-38	54
	11. WÂSTE DESCRIPTION	1		12. Co	ntainers	13.	14.
				No.	Туре	Total Quantity	Unit Wt./Vol.
	a.				100	8	
1	NON. Ha	7 Puge	when	a sectored	Poly	112	Gal
G	b.						
GENER						12	N.
R	с.	· · · · · · · · · · · · · · · · · · ·				1. 1.	
A					E.		
A T O							
O R	d.						
H	u.					. Č	
	G. Additional Descriptions for Materials Listed Above				H. Handling C	odes for Wastes Listed Abov	e
and and							
	15. Special Handling Instructions and Additional Info	rmation	0				
		*					
				7			
		if that the contents of this shim	t are fully and accurately described	and are in			
	 GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials d 	escribed on this manifest are not su	bject to federal hazardous waste re	gulations.	an respects		-14 A
							-
			0	in the second			Date
	Printed/Typed Name		Signature			Mon	th Day Year
-							
R	17. Transporter 1 Acknowledgement of Receipt of M	aterials	Å				Date
A	Printed/Typed Name	in and .	Signature	2		Mon	th Day Year
S	noam to	ere-l	91 KS2	James		6	36 13
ò	18. Transporter 2 Acknowledgement of Receipt of M	aterials 🥳		Å			Date
Ŧ	Printed/Typed Name		Signature		Ap.	Mon	th Day Year
TRANSPORTER							
	19. Discrepancy Indication Space					- 18 - 18	
F	······································						
A C			e				
ĭ	20. Facility Owner or Operator; Certification of receip	ot of the waste materials covered by	this manifest, except as noted in ite	em 19.			
L			and the state of t				Date
1	Printed/Typed Name		Signature				
T Y	A .	×		Δ.	\cap	Mon	1 1
	MICHAEL WHITEHEAL	2	Nº 1	1 X	1	1	30 13

NON-HAZARDOUS WASTE

ATTACHMENT K

CB018 P&D 23rd Ave. Partners, Oakland – 06/11-12/13 photos for Excavation Close-up

ATTACHMENT L

GEOTRACKER ESI

UPLOADING A GEO_XY FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Report Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_XY MW-1 through MW-3 T0600177455 23RD AVENUE PARTNERS Geo_XY.zip Clearwater Group CLEARWATERGROUP 173.13.151.1 8/7/2013 10:27:01 AM 4298692226

VIEW GEO_XY SUBMITTAL DATA ON MAP

Copyright © 2013 State of California

GEOTRACKER ESI

UPLOADING A GEO_Z FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: Report Title: Facility Global ID: Facility Name: File Name: Organization Name: Username: IP Address: Submittal Date/Time: Confirmation Number: GEO_Z MW-1 through MW-3 T0600177455 23RD AVENUE PARTNERS Geo_Zzip Clearwater Group CLEARWATERGROUP 173.13.151.1 8/7/2013 11:02:11 AM 5579029142

Copyright © 2013 State of California

GEOTRACKER ESI

UPLOADING A EDF FILE

	SUCCESS			
-	is complete. No errors were found!			
Your file	has been successfully submitted!			
<u>Submittal Type:</u>	EDF			
<u>Report Title:</u>	2013 Well Installation and Investigation (8514			
<u>Report Type:</u>	Soil and Water Investigation Report			
Facility Global ID:	T0600177455			
Facility Name:	23RD AVENUE PARTNERS			
<u>File Name:</u>	EDF_PD23rdAvePartners_85145.ZIP			
Organization Name:	Clearwater Group			
<u>Username:</u>	CLEARWATERGROUP			
IP Address:	173.13.151.1			
Submittal Date/Time:	8/12/2013 1:57:22 PM			
Confirmation Number:	5033318698			
	VIEW QC REPORT			
V	IEW DETECTIONS REPORT			

Copyright © 2013 State of California