

RECEIVED

By dehloptoxic at 9:17 am, Jan 16, 2007

409 Thirteenth St., 8th Floor Oakland, CA 9: 612

P.O. Box 687 Dakland, CA 9-604 510.452.2944 510.452.2973 'ax www.mpfcorp.com

Time - to Live

January 11, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Soil Vapor and Soil Boring Sampling Results RE:

> P&D 23rd Avenue Associates (Formerly 23rd Avenue Partners) 1125 Miller Avenue, Oakland, CA Clearwater Group Project No. CB018E Fuel Leak Case No. RO0000294

Dear Mr. Wickham,

As the legally authorized representative of the above-reference project location I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

Mrl DermolO'Dohert Director of Property Management Associates

Cc File

January 11, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re:

Results of Soil Vapor and Soil Boring Sampling Investigation – Risk Based Corrective Analysis Report

P&D 23rd Avenue Associates (Formerly 23rd Avenue Partners) 1125 Miller Avenue, Oakland, CA Clearwater Project No. CB018E Fuel Case Leak No. RO0000294

Dear Mr. Wickham,

Clearwater Group (Clearwater) on behalf of Mr. Dermot O'Doherty of P&D 23rd Avenue Associates (formerly 23rd Avenue Partners), is pleased to present the *Results of Soil Vapor and Soil Boring Investigation- Risk Based Corrective Analysis Report* prepared for the project site located at 1125 Miller Avenue, Oakland, Alameda County, California (Figure 1).

Purpose of Soil Vapor and Soil Sampling

The purpose of the investigation was to confirm the presence of shallow soil contamination in the vicinity of the former fuel dispenser and obtain additional vapor data to address concerns regarding vapor intrusion into the building sourcing from the residual hydrocarbons present in the soils near the former fuel dispenser location (**Figure 2**). Alameda County Environmental Health Department (ACEH) staff concurred in correspondence dated June 13, 2006 and August 4, 2006 with the recommendations for additional investigation, sampling methodology and completion of the Risk Based Corrective Analysis (RBCA) presented by Clearwater in its *Response to Agency Comments*

dated May 31, 2006 and Response to Agency Comments Addendum dated July 14, 2006 (Attachment A).

Investigation Activities – Event Preparation

Clearwater personnel submitted an online drilling permit application to the Alameda County Department of Public Works Department (ACDPW) on November 2, 2006. The permit application was approved and a permit was issued on November 6, 2006 (Attachment B). In preparation for the event, Clearwater personnel updated the site specific Health and Safety Plan to include the additional information regarding the collection of the soil vapor samples and emission controls for the truck mounted and internal combustion powered drill-rig. As required by Underground Service Alert (USA), Clearwater personnel marked the proposed boring locations in white marking paint and on November 10, 2006 contacted USA to request that all subsurface utilities leading to the project site be marked under USA drill ticket 411310.

<u>Investigation Activities – Drilling Event</u>

On November 15, 2006 under the supervision of Clearwater Geologist Mr. Rob Nelson P.G., Fast-Tek Engineering Support Services of Pt. Richmond, California (C-57 License No. 624461) advanced a total of six borings to approximately four feet below ground surface (bgs) for the collection of soil samples from borings S9 to S11 and soil vapor samples from borings V1 to V3 using a Geoprobe® 5400 Drill Rig outfitted with Direct Push Technology Macro-Core® Soil Sampler which is a single rod system used for soil sampling (Figure 2). Expandable vapor collection points were attached to the ends of the rods used to advance V1 thru V3 for soil vapor collection purposes.

Soil Samples

The soil samples were collected from S9 through S11 at 4 feet bgs by slicing a 6-inch section of soil from the 4-foot long, 2-inch diameter Macro-Core® Soil Sampler sleeve corresponding with the appropriate sample depth, labeled, documented on a chain of custody form and placed on ice for transport to Kiff Analytical LLC (Kiff) a California Department of Health Services certified laboratory located in Davis, California. The soil samples were submitted to Kiff for analysis of total

petroleum hydrocarbons as diesel (TPH-d) by EPA method 8015 and benzene, toluene, ethyl benzene and total xylenes (BTEX) by EPA method 8260. The samples collected for analysis of BTEX were prepared in the field according to EPA Method 5035. These samples were sealed in 5035 soil samplers and placed on dry ice for transport to the project laboratory. During the collection of the samples the soil core was screened with a photo-ionization detector (PID) and visual classification of the soil was made according to the Unified Soil Classification System. All field work was completed according to Clearwater Group Field Protocols included as **Attachment C**.

Soil Vapor Sampling Using TO-17 Multi-Bed Carbotrap 300 Tubes

To satisfy the distributive volume sampling requirement, soil vapor samples were collected with sample volumes equal to 1-liter (1L) and 4-liters (4L)using the TO-17 Multi-bed Carbotrap 300 tubes (TO-17 tubes) at each sampling point. The direct soil gas sampling system allows the driller (a C-57 licensed drilling contractor) to drive probe rods to the desired depth, connect the gas sampling cap to the top of the drive rod and pull up on the drive rod to expose the soil vapor screen located below ground. Once the desired sampling depth was reached and the soil vapor screen exposed the sample pump, a Gilair-5 Active Air PumpTM (provided by Clean Air Engineering, Palatine, Illinois) capable of flow rates ranging from 10 to 200 milliliters per minute (mL/min), was sleeved onto the nipple on the gas sampling cap. The flow rate was then calibrated for the collection of either a one liter sample volume with a flow rate of 66.7 milliliters per minute (mL/min) for 15 minutes or a four liter sample volume with a flow rate of 133.3 mL/min for 30 minutes. Calibrating the flow rate for each sample volume at each sample depth enabled the lines to be purged using source soil vapors. As a safety measure the ambient air was continuously monitored using a photo-ionization detector (PID) during the vapor sample collection process (see Clearwater Field Event Forms included as **Attachment D**).

The vapor samples were submitted for analysis of total petroleum hydrocarbons as diesel (TPH-d) and benzene, toluene, ethylbenzene and xylenes (BTEX) using modified EPA Method TO-17 by Air Toxics LTD located in Folsom, California. Each vapor sample was labeled according to the soil vapor boring location, corresponding sample depth and sample volume collected. For example, the one liter sample volume collected at four feet bgs in soil vapor boring location V1 was labeled as

V1.2 1L. The samples were then recorded on a chain of custody form supplied by Air-Toxics, placed in their respective shipping sleeves and placed on ice for transport to the project laboratory.

Confirmation Soil Vapor Sampling Using SUMA Canisters

Per the ACEH's request, confirmation soil vapor samples were collected using one Suma canister at each of the two soil vapor sample depths (2 feet and 4 feet) in soil vapor boring location V2. The confirmation samples were collected after each of the respective vapor samples had been collected using the TO-17 tubes. The Suma sampling system was assembled with a 6-liter canister connected to an air flow controller using Teflon tubing sleeved onto the Geoprobe® gas sampling cap. Since the sub-atmospheric pressure canister is an evacuated canister (final canister pressure is below atmospheric pressure), the soil vapor sample can be collected without the use of a sample pump (the air flow controller regulated the air flow to 200 mL/min for the recommended sample duration of approximately 30 minutes). The canisters were then labeled according to the sample depth and documented on a chain-of-custody form, packed in a shipping carton and transported to Air Toxics laboratory for analysis of BTEX and TPH-d using EPA Method TO-15.

Soil Sampling Results

Soil samples were collected from all three soil borings (S9-S11) at approximately four feet bgs. Prior to being analyzed, each soil sample was homogenized to ensure better representation of the contaminants present in the samples. The laboratory reported concentrations of TPH-d above the laboratory reporting limit of 50 mg/Kg in each soil sample submitted for analysis. The concentrations ranged in value from 7,500 milligram per kilogram (mg/Kg) in S9 at four feet bgs to 21 mg/Kg in S11 at four feet bgs (Figure 3). The soil sample results for S9.4 (7,500 mg/Kg) and S10.4 (940 mg/Kg) exceed the San Francisco Bay Regional Water Quality Control Board risk based screening level of 500 mg/Kg for middle distillates in soils less than 3 meters bgs for commercial and residential areas where groundwater is not a source of drinking water. All three soil samples submitted for analysis did not contain reportable concentrations of BTEX above the laboratory reporting limit of 0.0050 mg/Kg (Table 1). The soil cores were characterized as sandy clay (CL) and are illustrated in the boring logs included as Attachment E. The highest PID reading observed at 1,100 parts per million (ppm)

correlates with the soil sample collected from S9 in which the analytical results were 7,500 mg/Kg. Kiff report number 53371 is included as **Attachment F**.

Soil Vapor Sampling Results

Two soil vapor samples (1L and 4L) were collected from all three soil vapor borings (V1 to V3) at approximately four feet bgs. Two soil vapor samples (one liter and four liter) were collected from V2 at approximately two feet bgs. There were a total of eight TO-17 vapor samples; collection of vapor samples using the TO-17 tubes at the two foot depth interval in V1 and V3 was unsuccessful. The vapor collection point was set at the target depth however the sample pump could not generate a measurable flow. As previously stated, confirmation vapor samples were also collected at the two foot and four foot sampling depths in V2 using 6-liter summa canisters.

Air Toxics contacted Clearwater on December 4, 2006 regarding the analysis of the TO-17 tubes. The initial sample, V1.4 1L, analyzed using modified EPA method TO-17, as requested, saturated the mass spectrometer. According to Air Toxics saturation occurs when the detector is overwhelmed by the concentration introduced to the gas chromatograph (GC) and it is unable to accurately measure the mass. To provide an accurate concentration, samples are typically diluted and re-analyzed. However, the TO-17 analysis requires a thermal desorption step in which the entire contents of the tube are transferred to the GC inlet for analysis. Air Toxics provided Clearwater with two options for completing the analysis of the TO-17 tubes as follows.

The first option included desorbing the contents of the TO-17 tube into a tedlar bag and injecting a small volume back into the tube for a diluted analysis. However, since the constituents of concern were mainly TPH-d, dilution using the tedlar bag method was not feasible. Compounds in the low volatility range such as TPH-d do not effectively recover from a tedlar bag. The second option presented was to perform solvent desorption on the TO-17 tube using NIOSH 1550 methodology. The contents of the tube are transferred to a vial and extracted using carbon disulfide. Analysis of the samples is then completed using a gas chromatograph flame ionization detector (GC/FID) rather than a gas chromatograph mass spectrometer (GC/MS). The NIOSH 1550 methodology is less sensitive

than the modified EPA method TO-17 therefore decreasing the chance of reportable concentrations of BTEX above 1 microgram (µg). The GC/FID used in the NIOSH method is also non-specific and prone to interferences from compounds eluting at the same retention time as BTEX. Clearwater relayed the issues of analyzing the TO-17 tubes to ACEH via e-mail on December 4, 2006 followed up with a telephone conversation on December 5, 2006. It was determined that the NIOSH 1550 methodology would be used to analyze the TO-17 tubes mainly because BTEX compounds had not been reported above the laboratory reporting limit of 0.005 mg/Kg in the soil samples. The analytical results from the SUMA canisters had not been received at the time of discussion.

The laboratory reported concentrations of TPH-d above the laboratory reporting limit of 50 micrograms per cubic meter (μg/m³) in all of the TO-17 tubes submitted for analysis. Concentrations of TPH-d ranged in value from 7,300,000 μg/m³ in V3.4 1L to 180, 000 μg/m³ in V2.2 4L (**Figure 4**). The concentration of TPH-d reported for the sample collected from V1.4 1L (>150,000 μg/m³) is an estimate based on the saturation level of the mass spectrometer. The analytical results are summarized in **Table 2** and presented in full in Air Toxics' report numbers 0611361A and 0611361B included as **Attachment G**.

The laboratory reported detectable concentrations of benzene, toluene and xylenes above the laboratory reporting limits of 5.8, 6.9 and $7.9 \,\mu\text{g/m}^3$ (respectively) in the vapor sample collected using the Suma canister at two feet bgs in V2. The concentration of benzene (41 $\mu\text{g/m}^3$) reported in V2.2 Suma is below the Bay Area Air Quality Management District's toxic air contaminant trigger level of 60 $\mu\text{g/m}^3$ for chronic inhalation risk exposure levels. The laboratory did not report any detectable concentration of BTEX above the laboratory reporting limit in the vapor sample collected using the Suma canister at four feet bgs in sample location V2. The laboratory report narrative stated that the reporting limits for V2.4Suma were elevated due to the presence of high level non-target species. The analytical results are summarized in **Table 2** and presented in full in Air Toxics' report numbers 0611359 and 0611360 included as **Attachment G**.

Risk Based Corrective Analysis

A risk based corrective analysis was performed using the Risk Based Corrective Analysis (RBCA) Tool Kit for Chemical Releases, Version 1.3b (the most recent version) © Groundwater Service Incorporated, Houston, Texas. Site specific data coupled with certain assumptions and/or default parameters were used to complete the Tier 2 human health risk assessment evaluating baseline toxic effects for both residential and commercial exposure scenarios. The following is a summary of the site specific data, assumptions or default parameters used to complete the RBCA.

- The analytical results of the constituents of concern for soil borings S8 through S11 were used to complete the RBCA (see **Table 1**).
- The RBCA program does not classify total petroleum hydrocarbons as diesel as a single constituent but rather requires the user to evaluate the specific carbon chains which occur within the compound group. The carbon chains range from C10 through C21 and are classified as either aliphatic or aromatic. A discussion with the project laboratory indicated that the compound groups for diesel comprise of mainly aliphatic compounds. For the purpose of the RBCA it is assumed that the carbon chains found within the hydrocarbon plume beneath the site are all aliphatic.
- The concentrations of TPH-d in each of the soil samples were divided evenly amongst the three carbon chain groups C10 to C12, C12-C16 and C16 to C21 for that sample set.
- The RBCA default carcinogen level for aliphatic carbon chains C10 to C21 is a level D or Group 4 Carcinogen.
- The contaminant exposure pathways were limited to the following: 1) surface soil exposure, 2) air exposure through volatilization and particulates to outdoor air inhalation and 3) air exposure through volatilization to indoor air inhalation.
- Transport modeling for outdoor air volatilization factors included a combination of the standard transport model for surface soil and the Johnson and Ettinger model where the thickness of the surface soil was specified to be four feet.
- Transport modeling for indoor air volatilization factors was completed using the Johnson and Ettinger model only.

- The depth to the top of the affected soils is approximately 0.417 feet based on the soil boring logs included as **Attachment E**.
- The depth to the base of the affected soils, 4 feet, is based on the completed depth of the soil borings S8 through S11.
- The affected soil area is the calculated area inside the iso-contour line of 10 mg/kg as illustrated on Figure 3.
- Wind direction is assumed to be toward the west according to www.wunderground.com/us/ca/oakland.
- The length of affected soil parallel to the assumed wind direction is equal to the maximum diameter of the 10 mg/Kg iso-contour line (Figure 3).
- The predominant soil type observed is sandy clay. Default values for this soil type were used to calculate total porosity, volumetric water content, dry bulk density, vertical hydraulic conductivity, vapor permeability and capillary zone thickness.
- The default value of 0.01 for the fraction of organic carbon was used.
- Soil pH of 7.35 was determined using a composite soil sample from S9.4 S10.4 and S11.4 (see Kiff Analytical Report number 53371 included in **Attachment F**).
- Default values for the air mixing zone were used the outdoor air pathway.
- The building is a conversion from an industrial use to a commercial use during the late 1960s or early 1970s then to a mixed use (residential and commercial) in the late 1980s. The actual building specifications are not available or do not exist, therefore the default values for indoor air building parameters were used.
- The target risk of one-in-a million generally used for Class A/B and Class C carcinogens and a target hazard quotient of one were used.

Risk Based Corrective Analysis Results

Three exposure pathways were evaluated in both the residential and commercial exposure scenarios:

1) outdoor air exposure, 2) indoor air exposure and 3) soil exposure. The toxicity limits were exceeded for the indoor air exposure pathway and the soil exposure pathway in both scenarios. The

following tables summarize the results for both exposure scenarios. The complete RBCA data output set is included as **Attachment H**.

Table A

Total Pathway Exposure – Indoor Air

Sum of Average Exposure Concentrations in Milligrams per Cubic Meter

Constituent of Concern	Residential Scenario	Commercial Scenario
TPH Aliph C10-C12	1.2×10^{1}	3.5×10^{0}
TPH Aliph C12-C16	2.6 x 10 ⁰	7.5 x 10 ⁻¹
TPH Aliph C16-C21	1.9 x 10 ⁻¹	5.6 x 10 ⁻²

Table B

Total Pathway Exposure – Soil Exposure

Average Daily Intake Rate in Milligrams per Kilogram per Day

W	Constituent of Concern	Residential	Commercial	Construction
	TPH Aliph C10-C12	1.0×10^{-1}	7.2 x 10 ⁻²	7.3×10^{-2}
	TPH Aliph C12-C16	1.0 x 10 ⁻¹	7.2 x 10 ⁻²	7.3 x 10 ⁻²
	TPH Aliph C16-C21	1.3×10^{-2}	8.3 x 10 ⁻³	8.9 x 10 ⁻³

Conclusions

- The laboratory reported concentrations of TPH-d in all three soil samples submitted for analysis. The concentration of TPH-d ranged from 7,500 mg/Kg in S9.4 to 21 mg/Kg in S11.4.
- The laboratory did not report any detectable concentrations of BTEX above the standard laboratory reporting limit of 0.005 mg/Kg in the soil samples submitted for analysis.
- Eight soil vapor samples were collected using TO-17 Multi-Bed Carbotrap 300 tubes and two soil vapor samples were collected using 6-liter SUMA canisters.
- The laboratory was unable to analyze the TO-17 tubes using modified EPA method TO-17, instead the samples were analyzed using NIOSH 1550 methodology.

- The laboratory reported concentrations of TPH-d in all the TO-17 tube vapor samples submitted for analysis. The concentrations ranged in value from 180,000 μg/m³ (V2.2 4L) to 7,300,000 μg/m³ (V3.4 1L).
- The laboratory reported detectable concentrations of benzene (41 μg/m³), toluene (43 μg/m³) and xylenes (28.4 μg/m³ total) in vapor sample collected using the Suma canister at 2 feet bgs in V2.
- There were no reportable concentrations of BTEX above the elevated laboratory reporting limits for the vapor sample collected 4 feet bgs using the Suma canister in V2.
- The RBCA baseline toxicity levels modeled are exceeded for indoor air exposure and soil exposure in both the residential and commercial exposure scenarios.

Project Discussion

EPA method TO-17 states that the agreement between distributive pairs should not deviate more than 25% to demonstrate a valid sampling event. The analytical results from the TO-17 tubes do not meet the distributive pair requirement. The laboratory double checked the results, re-analyzed each extract and simulated sample collection parameters by spiking the TO-17 tube and collecting one liter and four liter samples of humid nitrogen which did not result in any specific trend or issue. The analytical results also do not follow a trend. If breakthrough occurred in the one liter samples collected, then one would expect to see a lower concentration in the four liter samples. However the four liter samples collected in V1.4 and V2.4 have higher concentrations than the one liter samples. The distributive pair deviation may reflect the variability of the TPH-d in the soil gas and the heterogeneous nature of the shallow soils. Because the vapor samples were collected sequentially it is possible that the four liter sample may have pulled vapor from a larger area with varying TPH-d contamination.

Recommendations

Due to the elevated soil vapors and sorbed hydrocarbon concentrations detected during the recent subsurface investigation event, Clearwater recommends that a workplan for additional investigation be prepared. The workplan would focus on delineating the horizontal extent of the hydrocarbon

plume using soil gas detection samplers such as Gore SorbersTM. In order to determine the level of impact the contamination poses to the residents it is important to determine the size of the hydrocarbon plume. The results of the Gore SorbersTM event will provide a foot print of the contamination and determine if the plume is isolated to the area illustrated in Figure 3, or if the plume has migrated with the direction of groundwater flow. The workplan would also include a discussion for ambient vapor sampling within the confines of the building. Multiple vapor samples collected in both the residential and commercial areas of the building would provide better data to calculate human exposure levels at the property and identify whether engineering controls or remediation is indicated in order to bring this site to closure. As part of the ambient air survey, Clearwater recommends that the building residents be interviewed to determine if they have experienced nuisance odors due to the location of the hydrocarbon plume.

CERTIFICATION

This report was prepared under the supervision of a Professional Geologist in the state of California. All statements, conclusions and recommendations are based solely upon published results from previous consultants, and field observations by Clearwater Group.

Information and interpretation presented herein are for the sole use of the client. A third party should not rely upon the information and interpretation contained in this document.

The service performed by Clearwater Group, has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions. No other warranty, expressed or implied, is made.

LICENSED PROFESSIONALS

In-house licensed professionals direct all projects. These professionals, including geologists or engineers, shall be guided by the highest standards of ethics, honesty, integrity, fairness, personal honor, and professional conduct. To the fullest extent possible, the licensed professional shall protect the public health and welfare and property in carrying out professional duties. In the course of normal business, recommendations by the in-house professional may include the use of equipment, services, or products in which the Company has an interest. Therefore, the Company is making full disclosure of potential or perceived conflicts of interest to all parties.

Sincerely, **CLEARWATER GROUP**

Jessica Moreno Project Manager James A. Jacobs, P. Chief Hydrogeolog JAMES ALAN OF STANDARD STANDAR

FIGURES:

Figure 1 : Site Location Map

Figure 2 : Site Plan

Figure 3 : TPH-d Iso-Contour Map (11/15/2006)

Figure 4 : TPH-d Analytical Results Soil/Vapor Samples (11/15/2006)

TABLES:

Table 1 : Soil Sampling Analytical Results

Table 2 : Soil Vapor Sampling Analytical Results

ATTACHMENTS:

Attachment A: Correspondence from Alameda County Health Care Services dated June 13, 2006

and August 4, 2006

Attachment B : Alameda County Boring Permit

Attachment C: Clearwater Field Protocols
Attachment D: Clearwater Field Event Forms

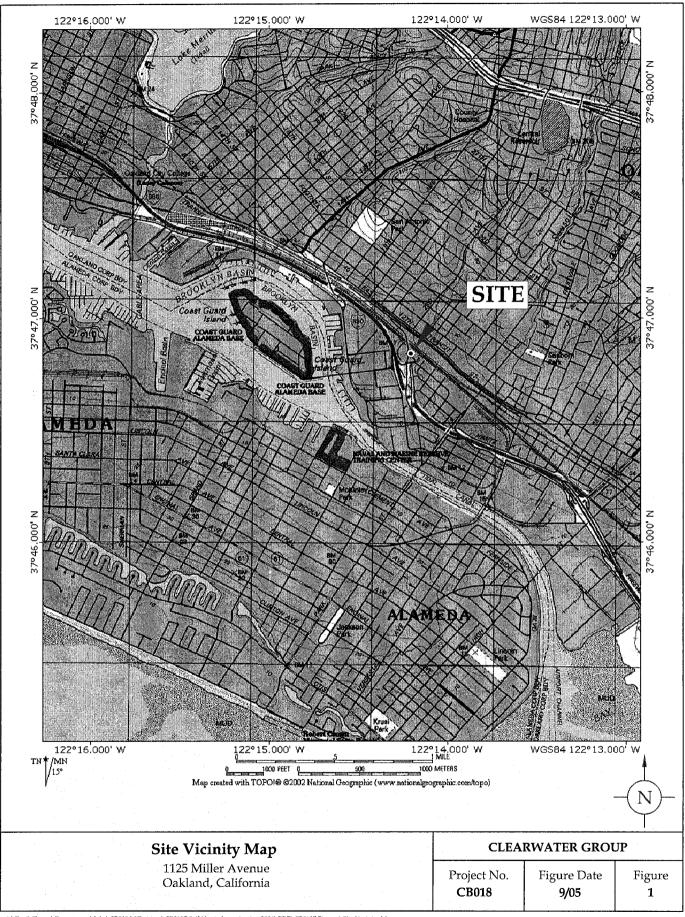
Attachment E : Soil Boring Logs

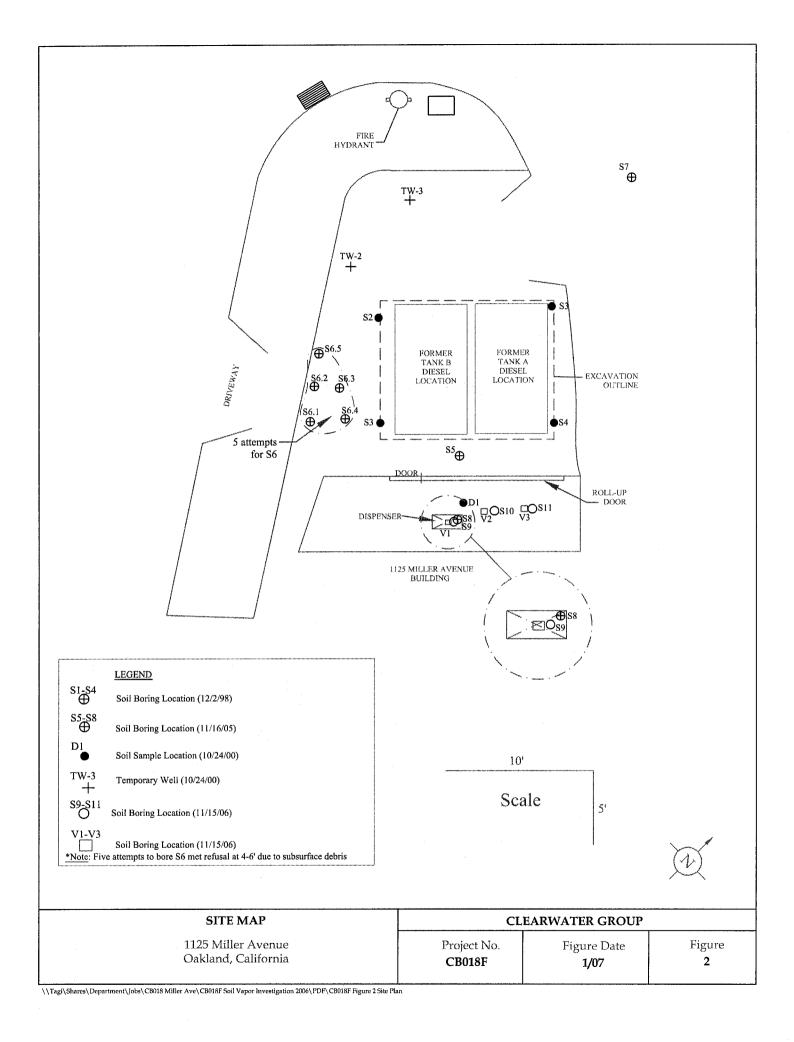
Attachment F: Kiff Analytical Report #53371

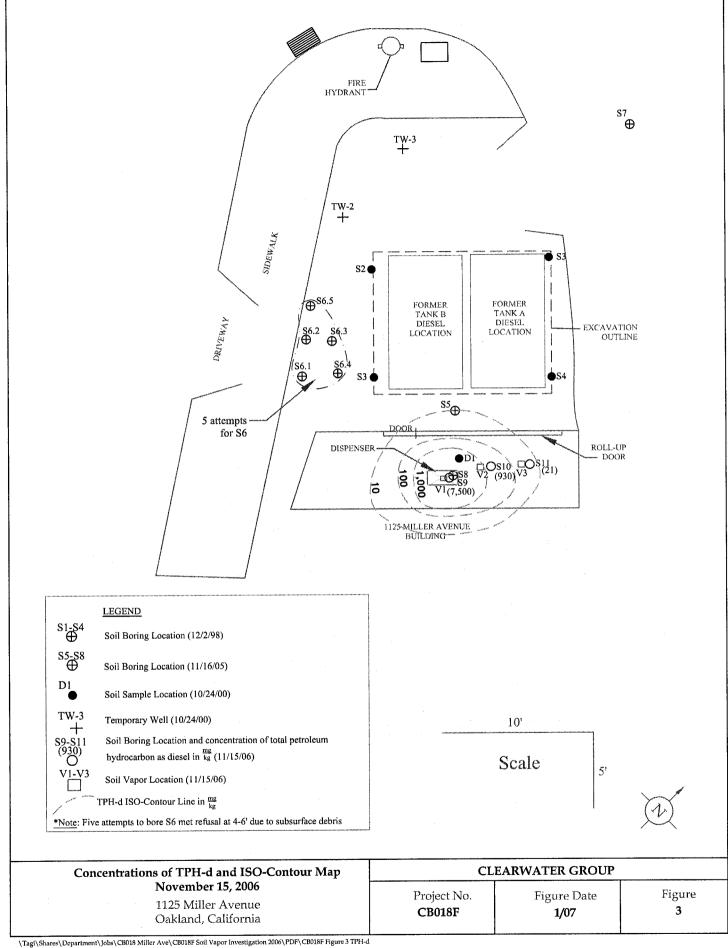
Attachment G: Air Toxics Analytical Report # 0611359, 0611360, 0611361A and 0611361B

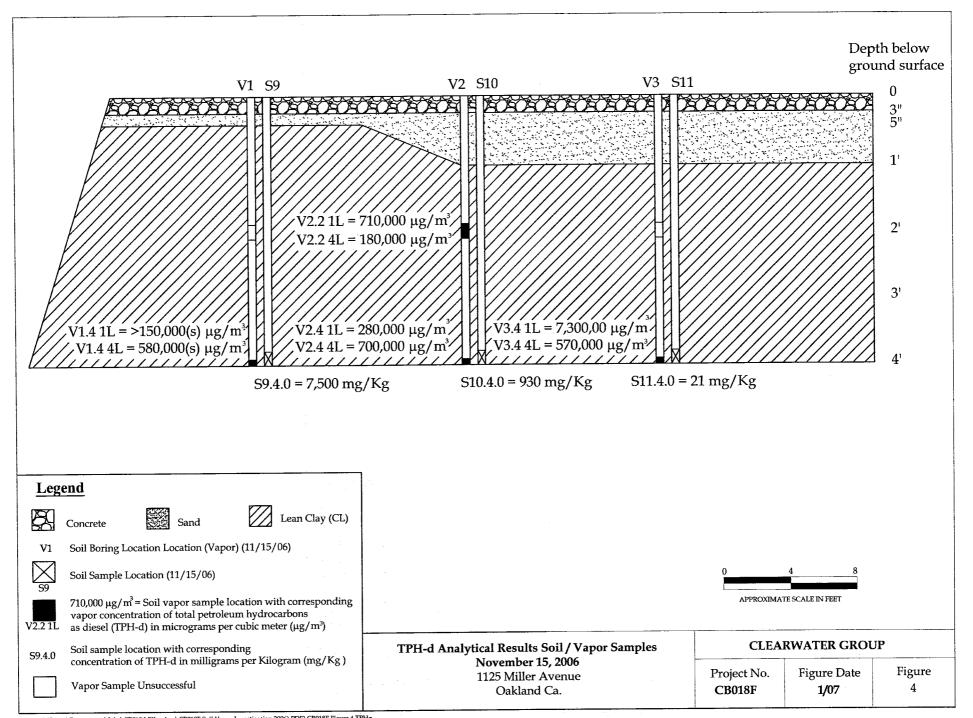
Attachment H: RBCA Data Output for Residential and Commercial Scenarios

cc: Mr. Dermot O'Doherty


P&D 23rd Avenue Associates


c/o: Madison Park Financial Corporation


P.O. Box 687


Oakland, CA 94604

FIGURES

TABLES

TABLE 1 SOIL SAMPLING ANALYTICAL RESULTS

23rd Avenue Partners

1125 Miller Avenue

Oakland, CA

Clearwater Project No. CB018

Sample (#)	Sampling Date	TPH-d (mg/Kg)	B (mg/Kg)	T (mg/Kg)	E (mg/Kg)	X (mg/Kg)	MTBE (mg/Kg)
RBSLs^^ (mg/Kg)		500	0.18	8.4	24	1	1
S1-9	Dec-98	ND	ND	ND	ND	ND	ND
S2-9	Dec-98	1,800	ND	ND	ND	0.51	ND
S3-9	Dec-98	ND	ND	ND	ND	ND	ND
S4-9	Dec-98	ND	ND	ND	ND	ND	ND
TW2 -16.5	24-Oct-00	4,200	1.4	ND	ND	ND	ND
TW3-17	24-Oct-00	2,700	ND	ND	ND	ND	ND
D1-3	24-Oct-00	3,400	ND	ND	ND	ND	ND
D1-8	24-Oct-00	34	ND	ND	ND	ND	ND
S5-5	16-Nov-05	14*1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S5-10	16-Nov-05	610	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S5-15	16-Nov-05	620	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S5-20	16-Nov-05	5.8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S7-5	16-Nov-05	150*1	< 0.0050	< 0.0050	< 0.0050	<0.0050	****
S6-6	16-Nov-05	1,800* ¹	NA*2	NA* ²	NA*2	NA* ²	****
S7-10	16-Nov-05	32* ¹	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S7-15	16-Nov-05	1,200	<0.0050	< 0.0050	< 0.0050	< 0.0050	****
S7-20	16-Nov-05	300	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
58-4	16-Nov-05	92	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S9.4.0	15-Nov-06	7,500	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S10.4.0	15-Nov-06	930	< 0.0050	< 0.0050	< 0.0050	< 0.0050	****
S11.4.0	15-Nov-06	21	<0.0050	< 0.0050	<0.0050	<0.0050	****
NOTES							
TPH-d	Total petroleur	n hydrocarbo	ns as diesel us	sing EPA Met	hod 8015/802	O(modified)	
}	Benzene using	EPA Method	8015/8020 (m	odified)			
7	Toluene using	EPA Method	8015/8020 (ma	odified)			
E	Ethyl benzene	using EPA Me	ethod 8015/80	20 (modified)			
(Xylenes using l	EPA Method 8	8015/8020 (mc	odified)			
MTBE	Methyl tertiary						
mg/Kg	Milligrams per	kilogram (ap	proximately e	equal to parts	per million)		
NA	Not analyzed						
ND	Not detected/b	elow laborato	ory reporting l	limits			
TW3-17	Temporary well number and depth sampled						
6 5-5	Soil boring and						
59.4.0	Soil boring and						
<0.0050	Not detected in	n concentratio	ns exceeding	the indicated	laboratory re	porting limit	
1	Concentration	reported is at	ypical for dies	sel, these hydi	rocarbons hav	ve a higher bo	iling point
;2	Concentration reported is atypical for diesel, these hydrocarbons have a higher boiling point Analysis not performed due to lack of sample volume.						
****			red by ACEH				

Analytical results reported in italics are from the December 31, 2001 Subsurface Exploration Report prepared by Environmental Bio-Systems.

San Francisco Bay Regional Water Quality Control Board (June 2001) Table B. Surface Soil ($\leq 3m$ bgs) Soil and

Groundwater Risk-Based Screening Levels (Groundwater is NOT a Current or Potential Source of Drinking Water).

RBSLs^^ (mg/Kg)

TABLE 2 SOIL VAPOR SAMPLING ANALYTICAL RESULTS

23rd Avenue Partners 1125 Miller Avenue Oakland, CA

Clearwater Project No. CB018

Sample (ID)	Sampling Date	Analytical Method	TPH-d (µg/m³)	B (µg/m³)	Τ (μg/m³)	E (µg/m³)	m,pXylene (µg/m³)	o-xylene (µg/m³)
CTLS^^ Chronic Inhilation REL in	µg/m³		No Data	60	300	2,000	700	700
V2.2 Suma (200mL/mn*30mn)	11/15/2006	TO-15	NA	41	43	<7.9	20	8.4
V2.4 Suma (200mL/mn*30mn)	11/15/2006	TO-15	NA	<21*	<28*	<24*	<28*	<28*
V1.4 1L	11/15/2006	TO-17	>150,000(S)	NA	NA	NA	NA	NA
V1.4 1L V1.4 4L	11/15/2006	NIOSH 1550	580,000	NA	NA	NA	NA	NA
V2.2 1L	11/15/2006	NIOSH 1550	710,000	, NA	NA	NA	NA	NA
V2.2 1L V2.2 4L	11/15/2006	NIOSH 1550	180,000	NA	NA	NA	NA	NA
V2.4 1L	11/15/2006	NIOSH 1550	280,000	NA	NA	NA	NA	NA
V2.4 4L	11/15/2006	NIOSH 1550	700,000	NA	NA	NA	NA	NA
V3.4 1L	11/15/2006	NIOSH 1550	7,300,000	NA	NA	NA	NA	NA
V3.4 4L	11/15/2006	NIOSH 1550	570,000	NA	NA	NA	NA	NA
Notes: CTLS^^		Bay Area Air Qualit	y Management Distric sure level (REL)	et (June 15, 200	05) Table 2-5	-1 Toxic Air C	contaminant Trigge	er Levels for chronic
V2.2 Suma (200mL/mn*30mn)		Vapor sample colle for 30 minutes.	cted at 2 feet below g	round surface	using 6 liter S	Suma canister	at a flow rate of 2	00 mL per minute
V2.4 Suma (200mL/mn*30mn)		Vapor sample colle for 30 minutes.	cted at 4 feet below g	round surface	using 6 liter S	Suma canister	at a flow rate of 2	00 mL per minute
V1.4 1L		Vapor sample colle minute for 15 minu	ected at 4 feet below g tes. Sample was anal	round surface yzed using mo	using TO-17 dified EPA m	Carbotrap 30 ethod TO-17.	0 tube at a flow ra	te of 66.7 mL per
V1.4 4L		Vapor sample colle minute for 30 minu	ected at 4 feet below g tes.	ground surface	using TO-17	Carbotrap 30	0 tube at a flow ra	te of 133.3mL per

TABLE 2

SOIL VAPOR SAMPLING ANALYTICAL RESULTS

23rd Avenue Partners 1125 Miller Avenue Oakland, CA

Clearwater Project No. CB018

Notes Continued

Samples analyzed using modified EPA method TO-15 for air collected in specially prepared canisters and analyzed by gas chromatography/mass spectromerty (GC/MS).
Samples analyzed using modified EPA method TO-17 for air samples collected using multi-bed sorbent tubes and analyzed by GC/MS.
Alternative analytical method used for saturated sorbent tubes using chemical extraction (carbon disulfide) and analyzed using gass chromotography/flame ionization detector (GC/FID).
Sample results are flagged as greater than saturated peak for analyte.
Sample flow rate equal to 66.7 mililiters a minute for 15 minutes.
Sample flow rate equal to 133.3 mililiters a minute for 30 minutes.
Micrograms per cubic meter
Micrograms
Total petroleum hydrocarbons detected within the diesel range of C10-C28
Benzene
Toluene
Ethylbenzene
Constituent not analyzed.

The samples were determined to be at slightly elevated at 12.5°C. According to Air Toxics in most cases elevated temperatures may cause volatile organic compounds to diffuse to the stronger sorbent in the multibed tube making it more difficult to thermally desorb. However since chemical extraction was used rather than thermal desoprtion and the constituent of concern was TPH-d the slightly elevated temperature is unlikely to result in any measurable loss.

ATTACHMENT A

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

August 4, 2006

Mr. Dermot O'Doherty P&D 23rd Avenue Associates P.O. Box 687 Oakland, CA 94604

Subject: Fuel Leak Case No. RO0000294, 1125 Miller Avenue, Oakland, CA - Work Plan Approval

Dear Mr. O'Doherty:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site and the document entitled, "Response to Agency Comments Addendum," dated July 14, 2006, prepared on your behalf by Clearwater Group. The "Response to Agency Comments Addendum," adequately addresses the technical comments regarding soil vapor sampling presented in ACEH's June 13, 2006 correspondence. Therefore, we request that you perform the proposed work and send us the reports described below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

December 4, 2006 – Soil Vapor and Soil Boring Sampling Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Effective **January 31, 2006**, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the

Mr. Dermot O'Doherty August 4, 2006 Page 2

SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Mr. Dermot O'Doherty August 4, 2006 Page 3

If you have any questions, please call me at (510) 567-6791.

Sincerely,

Jerry Wickham

Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Vessica Chiaro-Moreno
Clearwater Group
229 Tewksbury Avenue
Point Richmond, CA 94801

Donna Drogos, ACEH Jerry Wickham, ACEH File

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 13, 2006

Mr. Dermot O'Doherty P&D 23rd Avenue Associates P.O. Box 687 Oakland, CA 94604

Subject: Fuel Leak Case No. RO0000294, 1125 Miller Avenue, Oakland, CA

Dear Mr. Pelton:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site and the document entitled, "Response to Agency Comments," dated May 31, 2006, prepared on your behalf by Clearwater Group. The "Response to Agency Comments," addresses technical comments presented in ACEH's March 24, 2006 correspondence. ACEH's March 24, 2006 correspondence requested a proposal to conduct additional work that may be required to evaluate the potential for residual product in shallow soil to create nuisance odors inside the building or pose a potential human health risk due to indoor vapor intrusion. In response to this request, the "Response to Agency Comments," proposes soil vapor sampling at three locations and three shallow soil borings in the portion of the building adjacent to the former dispenser. We concur with the proposed scope of work but request that you submit a Work Plan Addendum describing the proposed soil vapor sampling methods in greater detail.

We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

1. Soil Vapor Sampling. Sampling onto sorbent tubes is proposed for the soil vapor samples. If sampling onto sorbent tubes is proposed for all samples, we request that duplicate soil vapor samples be collected in Suma canisters for the two soil vapor samples at proposed location V2.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

July 14, 2006 – Work Plan Addendum

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the

Mr. Dermot O'Doherty June 13, 2006 Page 2

responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

Mr. Dermot O'Doherty June 13, 2006 Page 3

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791.

Sincerely,

Jerry Wickfram

Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Vessica Chiaro-Moreno
Clearwater Group
229 Tewksbury Avenue
Point Richmond, CA 94801

Donna Drogos, ACEH Jerry Wickham, ACEH File

ATTACHMENT B

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/06/2006 By jamesy

Permit Numbers: W2006-0943

Permits Valid from 11/15/2006 to 11/16/2006

Application Id: Site Location:

1162514231251

1125 Miller Avenue, Oakland CA

City of Project Site: Oakland

Three 2-inch soil borings to 4 feet for soil and vapor sample collection. Boring location behind roll

up door in within building perimeter

Project Start Date:

11/15/2006

Completion Date: 11/16/2006

Applicant:

Clearwater Group - Olivia Jacobs

Phone: 510-590-1096

Property Owner:

229 Tewksbury Avenue, Pt. Richmond, CA 94801 Attn: Dermot O'Doherty P&D 23rd Avenue

Phone: 510-452-2944

Associates

P.O. Box 687, Oakland, CA 94612

Phone: 510-590-1096

Client: Contact:

same as Property Owner ** Jessica Moreno

Cell: -

Total Due:

\$200.00

Receipt Number: WR2006-0498

Total Amount Paid:

\$200.00

Paid By: VISA Payer Name : Olivia Jacobs

PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 6 Boreholes

Driller: Fast-Tek Engineering and Support Services - Lic #: 624461 - Method: DP

Work Total: \$200.00

Specifications

opooman					
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2006-	11/06/2006	02/13/2007	6	2.00 in.	4.00 ft
0943					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 5. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Alameda County Public Works Agency - Water Resources Well Permit

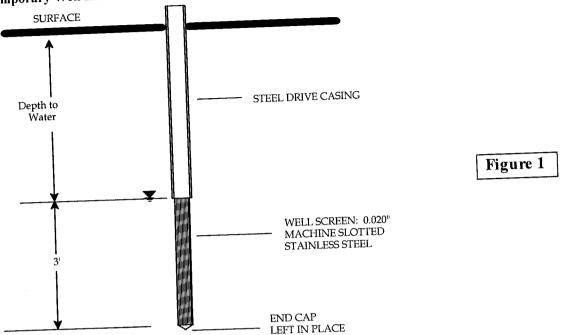
6. No Inspector Assigned to this site.
Applicant shall contact this office by email at wells@acpwa.org and certify in writing that work was completed and
according to County Standards within 5 working days after the completion of work.

ATTACHMENT C

CLEARWATER GROUP

Direct-Push Drilling Investigation Procedures

The direct push method of soil boring has several advantages over hollow-stem auger drill rigs. The direct push method produces no drill cuttings and is capable of 150 to 200 feet of boring or well installation per work day. Direct push can be used for soil gas surveys, soil sampling, groundwater sampling, installation of small-diameter monitoring wells, and components of remediation systems such as air sparge points. The equipment required to perform direct push work is varied ranging from a roto-hammer and operator to a pickup truck-mounted rig capable of substantial static downward force combined with percussive force. This method allows subsurface investigation work to be performed in areas inaccessible to conventional drill rigs such as in basements, beneath canopies, or below power lines. Direct push equipment is ideal at sites with unconsolidated soil or overburden, and for sampling depths of less than 30 feet. This method is not appropriate for boring through bedrock or gravelly soils.


Prior to direct push boring work, Clearwater Group will obtain all necessary permits and locate all underground and above ground utilities through Underground Service Alert (USA) and a thorough site inspection. All drilling equipment will be inspected daily and will be maintained in safe operating condition. All down-hole drilling equipment will be cleaned prior to arriving on-site. Working components of the rig near the borehole, as well as driven casing and sampling equipment will be thoroughly decontaminated between each boring location by either steam cleaning or washing with an Alconox® solution. All drilling and sampling methods will be consistent with ASTM Method D-1452-80 and county, state and federal regulations.

Boring Installation and Soil Sampling

Direct push uses a 1.5-inch outer barrel with an inner rod held in place during pushing. Soil samples are collected by penetrating to the desired depth, retracting the inner rod and attaching a spoon sampler. The sampler is then thrust beyond the outer barrel into native soil. Soil samples are recovered in brass or stainless containers lining the spoon.

Soil removed from the upper tube section is used for lithologic descriptions (according to the unified soil classification system) and for organic vapor field analysis. If organic vapors will be analyzed in the field, a portion of each soil sample will be placed in a plastic zip-lock bag. The bag will be sealed and warmed for approximately 10 minutes to allow vapors to be released from the soil sample and diffuse into the head space of the bag. The bag is then pierced with the probe of a calibrated organic vapor detector. The results of the field testing will be noted with the lithologic descriptions on the field exploratory soil boring log. Soil samples selected for laboratory analysis will be covered on both ends with Teflon™ tape and plastic end caps. The samples will then be labeled, documented on a chain-of-custody form and placed in a cooler for transport to a state certified analytical laboratory.

Temporary Well Installation and Groundwater Sampling

Groundwater samples are collected by removing the inner rod and attaching a 4-foot stainless steel screen with a drive point at the end (Figure 1). The screen and rod are then inserted in the outer barrel and driven to the desired depth where the outer rod is retracted to expose the screen. If enough water for sampling is not produced through the stainless well screen, a 1-inch PVC screen can be installed in the boring and the outer rod retracted to leave a temporary well point for collecting groundwater samples or water levels.

Monitoring Well Installation and Development

Permanent small-diameter monitoring wells are installed by driving the outer barrel and inner rod as described above. Upon reaching the desired depth the system is removed and 2-inch OD (1/2-inch ID) pre-packed PVC piping is installed. The well plug is created using granular bentonite. The well seal is constructed of cement and sealed at the surface with a conventional "Christy® Box" or similar vault. Monitoring wells are developed by surging the well with a small diameter bailer and removing 3 to 5 casing volumes of water until the produced water is clear.

Groundwater Sample Collection and Water Level Measurement

Prior to collecting groundwater from the wells the water levels are measured in all wells using an electronic water level gauge. Monitoring wells are prepared for sampling by purging three well bore volumes of water. Water is removed using small diameter bailers, a peristaltic pump, or manually using tubing with a check valve at the bottom. During removal of each volume, the temperature, pH and conductivity are measured and recorded on the field sampling form. Successive well volumes are removed until the parameters have stabilized or the well has gone dry. Prior to sampling, the well is allowed to recover to within 90% of the stabilized water levels.

Groundwater samples are collected using small diameter bailers. The samples are decanted into laboratory supplied containers, labeled, recorded on a chain-of-custody form and placed on ice for transport to a certified laboratory.

¹ Small diameter wells often produce small sample quantities and are appropriate for analysis of volatile and aromatic compounds and dissolved metals analysis using VOA vials. Obtaining liter-size samples can be difficult and time consuming. Monitoring wells installed by the direct push method are most effective at sites where the subsurface soils are more coarse than silt, gasoline components are the key contaminants of concern, and water levels are not more than 25 feet below ground surface.

CLEARWATER GROUP

Soil Sampling Procedures

Soil samples are typically collected in six-inch long, two-inch diameter brass tubes. If copper or zinc contamination is the subject of the investigation, stainless steel liners are used instead of brass. Soil sample locations are typically selected by field screening a portion of the soil for organic vapors using a calibrated organic vapor meter.

Once the sampling location has been determined, a small thickness of superficial soil is removed prior to collection, to prevent cross contamination. If the location being sampled has been exposed to the air for more than a few minutes, hand-tools will be used to dig at least 12 inches into the soil in order to collect as fresh a sample as possible. The sample is collected by pushing the tube into the soil by hand, or a rubber mallet may be used if the tube can not be driven by hand. If it is not possible to drive the tube into the soil, loose soil may be scraped from the freshly exposed surface and placed in the tube by hand.

Soil samples may also be collected using a hand auger and a slide hammer-driven sampler. The hand auger is advanced the desired depth into the soil, then withdrawn and replaced with the slide hammer sampler. The slide hammer sampler contains a 6-inch long by 2-inch diameter brass sample liner (or two 3-inch long liners) inserted inside the threaded core barrel, which is attached to the slide hammer by an extension rod. The core barrel is driven into the soil by the slide hammer, then withdrawn, unscrewed, and the sample liner removed.

Soil samples selected for laboratory analysis are immediately sealed on both ends with Teflon[®] lined plastic end caps, labeled, documented on a chain-of-custody form, and placed in a chilled cooler for transport to a state-certified laboratory.

To prevent cross-contamination of the samples, Clearwater personnel adhere to the following procedures in the field:

- A new, clean pair of latex or nitrile gloves are donned prior to collecting each sample.
- All hand-digging and sampling equipment is thoroughly decontaminated between each sample, by scrubbing
 equipment in a wash of Alconox® solution, followed by a double rinse in potable water. If required the second
 rinse will consist of distilled water.

ATTACHMENT D

Task Description		As Each Task is com	pleted enter the time.
Arrive Onsite			
		090- 0836	
Set Caution Tape Perimeter		0920 0830	
PID Ambient Air Inside Roll up Do	oor Reading:	0 0915	
Set Drill Rig on Vapor Location V		0915	
PID Ambient Air	Reading:	0/ 0915	
Set exhaust diverter			
PID Ambient Air	Reading:	·	
Use Roto Hammer/tile probe			,
Drill to 2 feet bgs	09	30	
Set vapor point	09	30	
Form ambient air barrier			
Attach pump one			0930 11
Purge line till flow rate steady at	66.7 mL/min 43	5 Start:	End: No flow
Attach V1.2 1L Sample	Start:	End:	disconnect pump one
Attach pump two	094	10	no flor
Purge line till flow rate steady at	133.3mL/min	Start: 69 40	End: 0945
Attach V1.2 4L Sample	Start:	End:	disconnect pump 2
Remove Ambient Air Barrier			
Drill to 4 feet bgs	950		

Task Description			As Eacl	h Task is com	pleted 6	enter the time.			
Set Vapor point		950							
PID Ambient Air		Reading:	2						
Form ambient air barrier		953		<u> </u>					
Attach pump one		955							
Purge line till flow rate steady a	t 66.7 mL/	min	Start:	955	End:	1002			
Attach V1.4 1L Sample	Start:	1003	End:	1618	Remov	re Sample Tube			
Return Sample to Glass House	, Insert Co	otton ends, La	abel end	time on Samp	le Label,	and Airtoxics CC	oc		
Attach pump two									
Purge line till flow rate steady a	it 133.3ml	_/min	Start:	1015	End:	108			
Attach V1.4 4L Sample	Start:	1018	End:	1048	Remo	ve Sample Tube	1048		
Return Sample to Glass House	, Insert Co	otton ends, La	abel end	time on Samp	ole Label	, and Airtoxics CC	oc		
Remove Ambient Air Barrier	,	050							
Remove vapor point		850							
Use Roto Hammer/tile probe	on S9 loca	ation							
,			Start:	1050	End:	1055			
Set Drill Rig on S9 drill continuous core to 4 ft Start: [CSE End: 7655] Cut Soil Core Into 6 inch Sections, PID each Section, Retain All for Laboratory Analysis									
Cut Soil Core Into 6 Inch Sections, PID each County, Notative and Sections S9.0.06, S9.1.0, S9.1.06, S9.2.0, S9.2.06, S9.3.0, S9.3.06, S9.4.0									
S9.0.06 through S9.3.6-Will be				Saplo	time	1100			
S9.4.0-Submit for analysis of									
35.4.0-3UDITIL IVI AHAIYSIS V		,,	•	•					

Task Description

As Each Task is completed enter the time.

Set Drill Rig on Vapor Location V	3		
PID Ambient Air		ng: <i>O</i>	
Set exhaust diverter			
PID Ambient Air	Read	ing: 🕖	
Use Roto Hammer/tile probe		1110	
Drill to 2 feet bgs		11 15	
Set vapor point		1116	
Form ambient air barrier		1116	
Attach pump one		1116	40
Purge line till flow rate steady at	66.7 mL/min	Start: 11 16	End: WB No flow
Attach V3.2 1L Sample	Start:	End:	disconnect pump one
Attach pump two			24
Purge line till flow rate steady at	133.3mL/min	Start: // 18	End: 11 20 No flow
Attach V3.2 4L Sample	Start:	End:	disconnect pump 2
Remove Ambient Air Barrier			
Drill to 4 feet bgs		1122	
Set Vapor point		1122	
PID Ambient Air	Rea	ading: O	

Task Description

As Each Task is completed enter the time.

Form ambient air barrier
1/23
Attach pump one
Purge line till flow rate steady at 66.7 mL/min Start: //23 End: //23
Attach V3.4 1L Sample Start: // ** II30 End: 1740/145 Remove Sample Tube //45
Return Sample to Glass House, Insert Cotton ends, Label end time on Sample Label, and Airtoxics COC
Attach pump two //46
Purge line till flow rate steady at 133.3mL/min ##6 Start: //46 End: //49
Attach V3.4 4L Sample Start: // 50 End: 1220 Remove Sample Tube
Return Sample to Glass House, Insert Cotton ends, Label end time on Sample Label, and Airtoxics COC
Return Sample to Glass House, Insert Cotton enus, Laber end time en sumpre
Remove Ambient Air Barrier
Remove vapor point
Use Roto Hammer/tile probe on S11 location
Set Drill Rig on S11 drill continuous core to 4 ft Start: 1228 End: 1230
Cut Soil Core Into 6 inch Sections, PID each Section, Retain All for Laboratory Analysis
Label Sections S11.0.06, S11.1.0, S11.1.06, S11.2.0, S11.2.06, S11.3.0, S11.3.06, S11.4.0
S11.0.06 through S11.3.6-Will be held at lab till further notice
S11.4.0-Submit for analysis of TPHd by 8015, and BTEX by 5035

NOTE: While Vapor samples are collected, please grout V1 and S9- No inspector assigned from ACPW

Task Description

As Each Task is completed enter the time.

Set Drill Rig on Vapor Location \	/2								
PID Ambient Air	Reading	: <i>O</i>							
Set exhaust diverter									
PID Ambient Air	Reading	: O	11.29		<u> </u>				
Use Roto Hammer/tile probe									
Drill to 2 feet bgs	1230								
Set vapor point	1235								
Form ambient air barrier	1235								
Attach pump one	1233								
Purge line till flow rate steady at	66.7 mL/min	Start:	1240	End: /245					
Attach V2.2 1L Sample	Start: 124	End:	1300	disconnect pump one	!				
Attach pump two	/300	9							
Purge line till flow rate steady a	t 133.3mL/min / 3	Start:	1334	End:					
Attach V2.2 4L Sample	Start: /305	End:	1335	disconnect pump 2	1335				
Attach V2.2 4L Sample State / Joseph Attach Air Flow valve and Suma Canister (V2.2) , set valve at 200mL/mn, collect for 30 min									
Attach All Flow valvo and our	Start: /354		1430	disconnect set up					
Remove Ambient Air Barrier									
Drill to 4 feet bgs									

Task Description

As Each Task is completed enter the time.

G-4 Vener point		1400 RN	1420			
Set Vapor point		Reading:				
PID Ambient Air		reading.				
Form ambient air barrier		1420				
Attach pump one		1425			<u></u>	-/
Purge line till flow rate steady at	66.7 mL/m	in 1425	Start:	1425	End:	1929
Attach V2.4 1L Sample	Start:	1430	End:	1445		ve Sample Tube
Return Sample to Glass House,	Insert Cotto	on ends, La	bel end	time on Samp	ole Label	, and Airtoxics COC
Attach pump two	1449				· · · · · · · · · · · · · · · · · · ·	
Purge line till flow rate steady a	t 133.3mL/r	nin	Start:	1446	End:	1450
Attach V2.4 4L Sample	Start:	1450	End:	1520	Remo	ve Sample Tube
Return Sample to Glass House	, Insert Cott	on ends, L	abel end	time on Sam	ple Labe	I, and Airtoxics COC
Attach Air Flow valve and Sum	a Canister ((V2.4) , set	valve at	200mL/mn, 0	collect for	r 30 min
Audonation	Start:	1525	End:	1555	disco	nnect set up
Remove Ambient Air Barrier	16	(0)				
Remove vapor point		<u> </u>				
Use Roto Hammer/tile probe	on S10 loca	tion /	601			
Set Drill Rig on S10 drill contin			Start		End:	1605
Cut Soil Core Into 6 inch Sect	ions, PID ea	ach Section	, Retain	All for Labora	tory Ana	ysis

<u>Task Description</u>
Label Sections S10.0.06, S10.1.0, S10.1.06, S10.2.0, S10.2.06, S10.3.0, S10.3.06, S10.4.0

S10.0.06 through S10.3.6-Will be held at lab till further notice

S10.4.0-Submit for analysis of TPHd by 8015, and BTEX by 5035

NOTE: While Vapor samples are collected, please grout V3 and S11- No inspector assigned from ACPW Upon collecting S10.4.0, grout V2 and S10.

Clean Up site, laod all equipment and samples, CALL PM

Departure time: 1645

NOTES

Task Description

As Each Task is completed enter the time.

NOTES

ATTACHMENT E

Sheet 1 of 1 CLEARWATER GROUP BORING/WELL NO.: PROJ. MANAGER: JOB NO#. CLIENT/LOCATION: FIELD LOCATION OF BORING: Rob Nelson CB018F 1125 Miller Oakland BORING DIAMETER: WELL DEPTH: DRILL RIG TYPE: DRILLING CONTRACTOR: NA GeoProbe Fast-Tek FILTER PACK: BORING DEPTH: WELL MATERIAL: DRILL RIG OPERATOR: 4.0 NA NA Eric Austin \searrow DRILLING DATE: 11-15-06 SAMPLING METHOD: GeoProbe INCHES RECOVERED SAMPLE CONDITION DRILLING RATE (min/ft) MONITORING INSTRUMENT: Photoionization Detector WELL CONSTRUCTION DETAIL INCHES DRIVEN GRAPHIC LOG SAMPLE DEPTH SAMPLE TYPE FIRST ENCOUNTERED WATER DEPTH: not encountered FINISH BLOWS/6" INTERVAL DEPTH (FREET) ODOR STATIC WATER DEPTH - DATE: not encountered 8 3" Concrete 2" Sand Sandy lean clay (CL), very dark grayish brown (2.5 y 3), Soft, Moist, trace of froots, trace of fire subrounded gravel, faint petroleum odor, 60% lean clay, 20% silt, 20% fine sand. G 1100 44 48 Total depth 4.0 DRILLING START: 16:45am 15 LOGGED BY: Rob Nelson 17 18 20 21 23 ROBERT L. NELSON No. 2087 CERTIFIED 25 ENGINEERING GEOLOGIST 26 27 APPROVED BY: 28

30

SOIL BORING AND WELL CONSTRUCTION LOG:

Project No. CB018F Sheet 1 of 1

FELD LOCATION OF BORING CLIENT FLOCATION CORRES CROSSES CONTROL CORRES CONTROL CONTRACTOR CRITCH CRIT	C	LEARWA	ATE	R GI	ROU	P									PROJ. MANAGER:	BORING/WELL NO.:	
TIZE MAINT CONTRACTOR DRILL RIG TYPE GeoProbe NA DRILL RIG TYPE GeoProbe NA DRILL NG DEPTH: NA DRI	Г	FIELD LOC	ATION	I OF B	ORIN	G:									ı	•	i
DRILING CONTRACTOR Generole Well MATERIAL: BOSING DEPTH: NA DRILING CONTRACTOR Eric Aussin NA AMPLING METHOD. Genèrole MANA MANTORING INSTRUMENT: Photolonization Detector FIRST ENCOUNTERED WATER DEPTH: not encountered STATIC WATER DEPTH: Dot encountered STATIC WATER DEPTH: Dot encountered STATIC WATER DEPTH: not encountered STATIC WATER DEPTH: Date: not enc								Į.							WELL DEPTH:	BORING DIAMETER:	
TORIL RIC OPERATOR: DRILLING DETAIN. NA A47 NA DRILLING DATE: 11-15-06 11-15-06			none				4	[1	ORILL	ING C	ONTE	RACTO	t:		•	2"	ĺ
Ber's Anselin For		/			# # # # # # #	, .	7	DOOR	CAST-1	DIC C	DED /	TOR		WELL MATERIAL:	BORING DEPTH:	1 1	
TI-15-06 SAMPLING METHOD: GeoProbe MONITORING INSTRUMENT: Photosionization Detector FIRST ENCOUNTERED WATER DEPTH: not encountered STATE VALUE OF THE PROPERTY OF THE PROP		\	18.439	×											4.0'		
HENDER OF THE STATE OF THE STAT			1125421	LI FR AVISS	UR			ŀ									
MONTIORING INSTRUMENT: Photologization Detector FIRST ENCOUNTERED WATER DEPTH: not encountered STATIC	-							ļ					_			11-10-00	
Sandy lean clay (CL), very dark gray-lah brown (2.5 y §). Soft, Molet, trace of most, trace of fine subrounded gravel, faint petroleum odor, 50% lean clay, 75% silt, 25% fine sand. Total depth 4.07 Total depth 4.07 Total depth 4.07 Total depth 4.07	1						а			П				SAMPLING METHOD:	GeoProbe		
Sandy lean clay (CL), very dark gray-lah brown (2.5 y §). Soft, Molet, trace of most, trace of fine subrounded gravel, faint petroleum odor, 50% lean clay, 75% silt, 25% fine sand. Total depth 4.07 Total depth 4.07 Total depth 4.07 Total depth 4.07		2				Z	VER		ا و	-			U	MONITORING INSTRU	MENI: Photoionizatio	on Detector	
Sandy lean clay (CL), very dark gray/sh brown (2.5 y §). Soft, Molet, trace of roots, trace of fine subrounded gravel, faint petroleum odor, 50% lean clay, 7.5% silt, 25% fine sand. Total depth 4.07 Total depth 4.07 Total depth 4.07 Total depth 4.07		Į į		FE		RIVE	8	Z	KA.				01:	i			
Sandy lean clay (CL), very dark gray-lah brown (2.5 y §). Soft, Molest, trace of roots, trace of fine subrounded gravel, faint petroleum odor, 50% lean clay, 25% site, 25% fine sand. Total depth 4.07 Total depth 4.07 Total depth 4.07	E	§_	ED	ŒΤ	S/6"	83	ES R	äĔ	ΞŒ	ي ا		Ec.	PIII				
Sandy lean clay (CL), very dark gray-lah brown (2.5 y §). Soft, Molest, trace of roots, trace of fine subrounded gravel, faint petroleum odor, 50% lean clay, 25% site, 25% fine sand. Total depth 4.07 Total depth 4.07 Total depth 4.07	E	T SET	E S	(MP	STER	Ę	Ð	AMO	min/	ΘĞ	Œ	E HE	8€	STATIC WATER DEPTI	I - DATE: not encour	ntered	
Sandy lean clay (CLI), very dark grayish brown (2.5 y 8). Soft, Molest, trace of roots, trace	Ì	488	33	'S	B (=	=	SO	10	Н				Cand			
10 10 10 10 10 10 10 10	١	1								_	_	1	77	Sandy lean clay (CL), ve	ry dark grayish brown	(2.5 y 1), Soft, Moist,	
48 40 G 30 30 4 Total depth 4.07 Total depth 4.07 Total depth 4.07 Total depth 4.07	l	ļ						L				L_2	V//	trace of roots, trace of fir	ne subrounded gravel, 25% fine sand.	rant peroxim ouz,	
48 40 G 30 4 Total depth 4.07					Π							l	V//	,			
Total depth 4.0' Total depth			-	├─	╁	10	40	6	T	1	30	 3	V//	1			
			<u> </u>	-	ļ	***	1	+	┼	一	╁	 	1	Total depth 4.0			П
								<u> </u>		 	┞	— 5					
	Za Z				1					<u> </u>		\perp_{ϵ}	Ì				Ш
	릙			T								1					
	ART		\vdash	+	╫	+-	╁	+	T	_	1	1 7					
	เรรา		_	 	-	┼	╀	┼	╀	┼─	╁	+-8					
	E						$oldsymbol{ol}}}}}}}}}}}}}}}}}$	_	 	_	ऻ	 - 9	1	1		•	Н
THE COCOCY TO TH	DEC							<u> </u>	<u></u>		_	<u> </u>	,[
12 ————————————————————————————————————					1	T	Τ		T			1					
13 ————————————————————————————————————			-	╫	╁	+	╁	十	T	+	1	T-1	1				
15 — 15 — 16 — 17 — 17 — 18 — 19 — 19			_	╀	+-	┼	╀	+-	╁	+	╁╌	+-1	2				
TOCOCOLUMN 15			L				_	_		-	┼	—1	3				
TOCOCOLUMN 15											\perp	1	4				$\ \cdot\ $
16 - 17 - 18 - 18 - 19 - 19 - 19 - 19 - 19 - 19				1	1		T	T				1	1	ļ			
	ç	4	-	+	十	+	十	十	\top	\top	1	T '	"				
	Ž		-	+	-	+-	+	+	+	+	+	1-1	.6	}			
	Rot						1	-	—	4	+		17				$\parallel \parallel$
	S. E.											;	18				
	E S			7	Т	T	T					1.					
	ב	§	+	十	十	十	十	1	十	T	\top	1					
			-	+	+	+	+	+	+	+	十	+	20				
21 22 23 24 24 ROBERT L. NELSON No. 2027			L				_		4	+	+	+	21				
2 QED GEO										$oldsymbol{\perp}$	\bot	4	22		AED GE		
II THE THE THE THE TABLE TO THE				十	T	\top	T	\top	T			- 1		/ /se		\sim	
			-	\dashv	十	十	\top	十	十	十	十	一	۵	1 /80	O. al MS	XO.)	
24			 	-	+	+	+	+	+	+	\dashv	+	24		MAN WILL	400 1	
25 C ROBERT L. NELSON -			L	$oldsymbol{\perp}$		\bot	\bot	_			_	+	25	/ C ROB	ERT L. NELSO	N/-1/	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Γ								$oldsymbol{\perp}$		26	1 1 . 1	NO. ZUOI	1.1	
			十	\top	十		\top	\top	T	T	T		1		NGINEERING	/*/	-
GEOLOGIST /s			H	+	+	十	\dashv	十	+	+	十	一	27			(s. /	
GEOLOGIST CALIFORNIA 29 29 29 29 29		<u> </u>	L		_	_	+	\dashv	+	+	+	-	28	19	- ORI		
THE OF CALIFORNIA 30		E I			$oldsymbol{\perp}$	\perp	\bot	\bot		\bot	4		29	1	UF CALIFU'	•	
ĕ		PPR	Γ	T									30		and the second second		
월 1 1 1 1 1 1 1 1 1		<	r	-		工	工		\Box	\Box		L_					

Sheet 1 of 1

C	LEARW	ATE	RG	ROL	JΡ										Sheet 1 of 1
Π	FIELD LOC	ATIO!	OF	BORIN	G:			CLIEN	-				JOB NO#. CB018F	PROJ. MANAGER: Rob Nelson	BORING/WELL NO.: 511
							1	1125 N					DRILL RIG TYPE:	WELL DEPTH:	BORING DIAMETER:
						١	1	DRILL Fast-T		ONT	RACTO	λ: -	GeoProbe	NA NA	2"
						↲	t		DRILL RIG OPERATOR:				WELL MATERIAL:	BORING DEPTH:	FILTER PACK:
	/ "	477444	-2	3 °	□O 61	' [Eric Austin					NA	4.0'	NA
	<i></i>						ŀ								DRILLING DATE: 11-15-06
		1125 X	OLER AVE	NLD										11-13-00	
						ŒD							SAMPLING METHOD:	GeoProbe	
	20	声	ш		Į.	INCHES RECOVERED	SAMPLE CONDITION	1	ļ			8	MONITORING INSTRU	MENT: Photoionization	n Detector
ž l	5	DED	7	F. F.	E E	REC	NO	5 R				nc n	FIRST ENCOUNTERED	WATER DEPTH: not	encountered
FINISH	J. ASTR	SAMPLE DEPTH	SAMPLE TYPE	BLOWS/6" INTERVAL	INCHES DRIVEN	HES	E CE	13€	ODOR		DEPTH (FEET)	GRAPHIC LOG	STATIC WATER DEPTI		
	WELL CONSTRUCTION DETAIL	SAN	SAN	경점	ŽĮ.	ĭ	80	E DE	8	GIA.	BE	ð		H-DATE: not encount	ELECT.
													3" Concrete Sand		
ŀ											l		Sandy lean clay (CL), ver trace of roots, trace of fin	ry dark grayish brown (2 1e subrounded gravel, fa	2.5 y 1), Soft, Moist, tint petroleum odor,
			-			\vdash					²		50% lean clay, 25% silt, 2	25% fine sand.	
ļ	Ì				10	-	G	_		40	3	///			
Ì				_	48	40	-				-4	///	Total depth 4.0'		
اء						_				<u> </u>	— 5				
45an			l								L.				
21 E	1	Г													
DRILLING START: 10:45am	l	\vdash	T								7				
S		-	├-	 		 	t^-	一		┢	★ 8				
		-	-	\vdash	-	-	╂─	\vdash	-	┢	 9				
7		<u></u>	_	<u> </u>		┞	↓_	_	┞	├-	10				ĺ
1										<u> </u>	├ 11				
l						l					12				
			1		Π	Π					1				
	1	-	t	1		1	1		Τ	T	13	1			
		-	╫	+	-	+	\dagger	十一	T	T	 14	•			ļ
81	İ	-	┼	╁	╄-	+-	╀	+-	╂	╫	15	;			Ì
LOCGED BY: Rob Nelson			┸	↓_	<u> </u>	╄	-	-	<u> </u>	╄	10	,			Ì
8								↓_	<u> </u>		<u> </u>	,			
DBY			T			1			_		<u> </u>				
GGB			\top			T					1				
3		-	十	+	╁	1	1	十	T	†	1 1	'			
		-	╫	+	+	十	+	+	+	+	1 2			- TO OS	
		<u> </u>	┷	┿	┼	\vdash	+-	-	╁	╁	 2	1	1 /5	RED GEO	
		L	丄			1		_	_	_	 	2	(5)	1. VI 100	S6/
											2	3	RO EL RO	Trans.	
	11	Г	T		T		T						/æ/ko	BERT L. NELSU	N/~
			\top	十	1	1	\top	1	1	7	 			No. 2087 CERTIFIED	1.1
		-	+-	+	十	+	+	+	十	+-	 2	5	*\	FNGINEERING	<i>]* </i>
		<u> </u>	+	+-	+-	+	+	+-	+	+		6	/m./	GEOLOGIST	12
			1		1	_	4	4_	+	+		7		GEOLOGIST FOF CALIFOR	2.
E B						\perp	\perp	\perp		\perp	1 2	8		S UF CAUT	
ÝED		Г			T							19			
APPROVED BY:			1	1	1		T		T			•			
¥				士	土	士	土	工	土	工		30			

ATTACHMENT F

Date: 11/22/2006

Jessica Moreno Clearwater Group, Inc. 229 Tewksbury Avenue Point Richmond, CA 94801

Subject: 3 Soil Samples

Project Name: P+D 23rd Ave Associates

Project Number: CB018F

Dear Ms. Moreno,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 11/22/2006

Subject:

3 Soil Samples

Project Name :

P+D 23rd Ave Associates

Project Number :

CB018F

Case Narrative

Matrix Spike/Matrix Spike Duplicate Results associated with samples S11.4.0, S10.4.0 and S9.4.0 for the analyte TPH as Diesel were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Approved By:

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Report Number: 53371 Date: 11/22/2006

Project Name: P+D 23rd Ave Associates

Project Number: CB018F

Sample: \$9.4.0

Matrix : Soil

Method

Lab Number: 53371-04

Sample Date :11/15/2006

Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	11/17/2006 11/17/2006 11/17/2006 11/17/2006
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	99.9 95.2		% Recovery % Recovery	EPA 8260B EPA 8260B	11/17/2006 11/17/2006
TPH as Diesel	7500	10	mg/Kg	M EPA 8015	11/22/2006
1-Chlorooctadecane (Diesel Surrogate)	113		% Recovery	M EPA 8015	11/22/2006

Sample: **S11.4.0**

Matrix : Soil

Lab Number: 53371-07

Sample Date :11/15/2006

Sample Date :11/15/2006		Method		A 1 - 1-	Date
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Analyzed
Benzene Toluene Ethylbenzene Total Xylenes	< 0.0050 < 0.0050 < 0.0050 < 0.0050	0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	11/16/2006 11/16/2006 11/16/2006 11/16/2006
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	97.9 105		% Recovery % Recovery	EPA 8260B EPA 8260B	11/16/2006 11/16/2006
TPH as Diesel	21	1.0	mg/Kg	M EPA 8015	11/21/2006
1-Chlorooctadecane (Diesel Surrogate)	111		% Recovery	M EPA 8015	11/21/2006

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Name : P+D 23rd Ave Associates

Project Number: CB018F

Lab Number: 53371-11

Report Number: 53371 Date: 11/22/2006

Sample Date :11/15/2006

Sample: \$10.4.0

Sample Date :11/15/2006	Measured	Method Reporting	11.9-	Analysis	Date Analyzed
Parameter	Value	Limit	Units	Method	
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	11/17/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	11/17/2006
	< 0.0050	0.0050	mg/Kg	EPA 8260B	11/17/2006
Ethylbenzene Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	11/17/2006
Talvana de (Surr)	102		% Recovery	EPA 8260B	11/17/2006
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	93.7		% Recovery	EPA 8260B	11/17/2006
TPH as Diesel	930	5.0	mg/Kg	M EPA 8015	11/21/2006
1-Chlorooctadecane (Diesel Surrogate)	105		% Recovery	M EPA 8015	11/21/2006

Matrix : Soil

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 11/22/2006

QC Report : Method Blank Data

Project Name: P+D 23rd Ave Associates

Project Number: CB018F

Parameter	Measured Value	Method Reportin Limit	g Units	Analysis Method	Date Analyzed
TPH as Diesel	< 1.0	1.0	mg/Kg	M EPA 8015	11/17/2006
1-Chlorooctadecane (Diesel Surrogate)	86.0		%	M EPA 8015	11/17/2006
Benzene Toluene	< 0.0050 < 0.0050	0.0050 0.0050	mg/Kg mg/Kg	EPA 8260B EPA 8260B	11/16/2006 11/16/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	11/16/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	11/16/2006
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	98.1 107		% %	EPA 8260B EPA 8260B	11/16/2006 11/16/2006

Method Measured Reporting <u>Units</u> Value Limit

Analysis Date Method_ Analyzed

<u>Parameter</u>

Date: 11/22/2006

Project Name: P+D 23rd Ave Associates

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number : CB018F

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed		Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel	53358-02	6.7	20.0	20.0	21.8	31.6	mg/Kg	M EPA 8015	11/17/06	81.8	118	36.5	60-140	25
Benzene Toluene Methyl-t-Butyl Ethe	53324-16 53324-16 er 53324-16	<0.0050 <0.0050 <0.0050	0.0398	0.0399 0.0399 0.0399	0.0364 0.0366 0.0296	0.0371 0.0374 0.0304	mg/Kg		11/16/06 11/16/06 11/16/06	91.9	93.0 93.8 76.2	1.64 2.02 2.21	70-130 70-130 70-130	25 25 25

Date: 11/22/2006

Project Name: P+D 23rd Ave Associates

QC Report : Laboratory Control Sample (LCS)

Project Number: CB018F

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	11/17/06	81.5	70-130	
Benzene Toluene Methyl-t-Butyl Ether	0.0400 0.0400 0.0400	mg/Kg mg/Kg mg/Kg	EPA 8260B EPA 8260B EPA 8260B	11/16/06 11/16/06 11/16/06	92.2 92.5 75.1	70-130 70-130 70-130	

Approved By:

loel Kiff

CALIFORNIA LABORATORY SERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

January 05, 2007

CLS Work Order #: CQA0092

COC #: 53371

Troy Turpen KIFF Analytical 2795 Second St. Suite 300 Davis, CA 95616

Project Name: P+D 23rd Ave Associates

Enclosed are the results of analyses for samples received by the laboratory on 01/04/07 09:18. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

CALIFORNIA LABORATORY SERVICES

Page 1 of 4

01/05/07 11:03

KIFF Analytical

2795 Second St. Suite 300

Davis, CA 95616

Project: P+D 23rd Ave Associates

Project Number: CB018F Project Manager: Troy Turpen

CLS Work Order #: CQA0092

COC #: 53371

Analytical LLC Reject Contact (Hardcopy or PDF to		0 U F	avis, C ab: 53 ex: 52	cond 9 A 936 0 297 0 297 Rep	/15 4800 4808	******			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ra	32 nch <u>tel</u>	49 I o Co - 70	a Lab S ltzgera ordova, 16) 638 Chain	ud R CA -730	d. 9574 11	COC		533 d and	WARRANCE CONTRACTOR		<u>re 1 ∈</u> Røque	
roy Turpen	uunuummaanaani			dec aux	sat mae		y na vád resemblis	spence Totalor				1	, described a servicio de la compansión de	***************************************	opposition (TOTAL)	ils Res	and the second s				due:	
Giff Analytical, LLC			Global	ID:	market (***		4,44,44														1	No.
Toject Number: P.O. N CB018F	53371			Averat		Erus	ii Adi	(ress): 	entra:										A	5, 2007	Lab Use Only
Project Name: P+D 23rd Ave Associates Project Address	**************************************		nbox(aukiro Oktio entaine	1alyti		IOTI esen	rativ		N	latrio						**************************************				January	rog Lab
-70900 Addess 1125 Miller Ave <u>Oakfard, CA</u> Sample	Sampling		2	l a						MATER	308	***************************************	14d								a a	i.i.
Designation Composite (\$9.4, \$11.4, \$10.4)	0 ate 11/15/06	Time				9	2 5	X	·*·····	S.	X		X								X	
managaman saman managaman managaman managaman managaman managaman managaman managaman managaman managaman manag									1						***************************************			.		.		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																-				
									ļ						,,,			<u> </u>				
and the second s									- -	-						-			-			
		Care		Rece						<u>.</u>				Tea	narks:		<u> </u>					
Section of the second section of the second		Zantey Data	0348	ě			*******************************	dans.	sromeyi	ioconene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Reinquished by: Reinquished by Del Reinquished by				Rec			20191-	rainne Ry:	e saja projevovi	and the second		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	930	ila: A	CCOU	nts P	ayabk				

CALIFORNIA LABORATORY SERVICES

Page 2 of 4

01/05/07 11:03

KIFF Analytical

2795 Second St. Suite 300

Davis, CA 95616

Project: P+D 23rd Ave Associates

Project Number: CB018F Project Manager: Troy Turpen CLS Work Order #: CQA0092

COC #: 53371

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Composite (S9.4, S11.4, S10.4) (CQA0	092-01) Soil Sar	npled: 11/15	5/06 00:00	Receive	d: 01/04/0'				
pH	7.35	1.00	pH Units	1	CQ00112	01/04/07	01/04/07	EPA 9045C	

California Laboratory Services

Page 3 of 4

01/05/07 11:03

KIFF Analytical

2795 Second St. Suite 300

Davis, CA 95616

Project: P+D 23rd Ave Associates

Project Number: CB018F Project Manager: Troy Turpen CLS Work Order #: CQA0092

COC #: 53371

RPD %REC Reporting Spike Source RPD Limit Notes %REC Limits Level Result Limit Units Result Analyte

California Laboratory Services

Page 4 of 4

01/05/07 11:03

KIFF Analytical

Davis, CA 95616

Project: P+D 23rd Ave Associates

2795 Second St. Suite 300

Project Number: CB018F Project Manager: Troy Turpen CLS Work Order #: CQA0092

COC #: 53371

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

KIFF C			2795 2n Davis, C Lab: 50	A 956 30.297	516 7.480	ю	300							s	SRG	#/l	Lab	No.			5 3	33	3 7	1				•				Pa	age	1	_	of -	3
Project Contact (Hardcopy or F	PDF T		Fax: 50	Calif	ornia	EDF					Y	es			No.		T		-	Cr	nair	1-0	f-C	ust	ody	/ R	eco	rd	anc	A k	nal	ysi	s R	lequ	est		
Jessica Moren Company/Address: Class	<u> </u>	1000		Som	nlina	Com	0201	1100	7.00	do:				-			╬										Requ									AT	
QQQ Ta. dichess: Vigeo	المام	Or p	(chance of	Sam	ping	COIN	pany	′ሯ	يال الم	16. 16.	\sim)					ŀ	٦	Т	-т	Т		_	<u> </u>	laiya	1	T	T	<u> </u>	Т	Т	Т	Т	\top	+-	\neg	
229 Tenksbury &	Fax	#10.4	comono	Glob	al ID			<u> </u>	<u></u>	<u>/ </u>							┨	ddd o	- 1		l			<u>~</u>	Ì		1 8		1			1	1			 2 hr	
510-590-1091	5	 10-232	-2823	el e	u. 10	TO	26	O	01	17	ጉነ	43	55					5.0		-	ı			8260B)	l	٦	×			1			1		1		⋛
Project #: CBO18F	P.O.	#:		EDF Sam	Deliv POP	rerable $\rho \omega$	le To	(Er	nail.	Add	ress	i):	200	ם,כ	ΌY	<u>n</u>		21 level						B-EPA 8	30B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)		 ⊋							☐ 4 hr	For Lab Use Only
DIO 13rd Dip. A	5 55	táx	es	Sam	pler :	Signa	ture:		Q.	~			•					EPA 8021	0.5 ppb			(B)	(B0)		Volatile Halocarbons (EPA 8260B)	ist (EP	524.2	(EPA 8015M)	TPH as Motor Oil (EPA 8015M)			2	2000		ſ		r Lab
Project Address:		Sam	pling		Co	ntaine	er e		Р	rese	ervat	tive			Mat	rix	7	ğ	9		9	826	826	1 NO	1 S	=	A A	8	ᇤ	1 5	<u> </u>		ŽΙ	j	4	8 hr	Ē
1125 miller Au	' [-						٧				l	ω		İ	ļ	١	8250B)	8	8	828	EPA	EPA	8	Ę	88	8		ᆡᅙ	۽ ا ڌ	Ě	; `	1		1,		
Project Address: 1125 miller Ate Ocaldand, CA				$ _{A} $				Somos	1	ł	ļ	ı	3	-		ı	١	A 82	MTBE (EPA 8260B)	BTEX (EPA 8260B)	EP.	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	Lead Scav. (1,2 DCA & 1,2	8	gani	, E	TPH as Diesel	į	Total Lead (EDA 8010)	WET Lead (STIC)		0 16X	₽¢.	4 7	 '2 hr	
			1	9				3			k	ø	コ		١	1	١	EP.	E E	Ē	as (gene	geneg	ğ	불	٥	Ö	Ö	Ž	3 8			씌	8/9//	#		
				40 ml VOA	ě <u>2</u>	ass	ga	5035	5	SNH SNH	None	H	되	Water	-	_	ı	MTBE (EPA	盟	ĕ	¥	Ö	Š	ğ	Sati	ati	Slatil	Ĭ	ᇤ	 				7	٤Į١	Y I wk	
Sample Designation		Date	Time	4	ळ व		F	S	푀	픠	_		4	<u>₹</u>	ĕ۱	₹	4	Σ	Σ	<u>-</u>	Ë	2	2	1 =	۱ž	¥∔	≥	 F	+=	+	= 3	+	4	-	+	_	
59.0.06		11/15	055		X							X		Ŀ	袓									L			丄	\downarrow	\bot	1	\perp	\bot	\perp	_}	4		01
59.1.0		1	1056		Π					1					$\ \ $					١				L						L					₫.		02
59.1,06			1057	11	#		П				1	1		1	П	\neg							Г		Т	Τ	T	Ī	I^{T}	1					거		03
592.0				# +	╫	+		H		1	-	H		+	╁	十	1					9	u	,			F P	,	1.	Ż.	T	1		丁	1		
			R		╫	-	\vdash			\dashv	+	H	-	\dashv	₩	+	4	-	_	Ten	ıp°	1	ど	2	The	n.	10#	#	es	+	}		स्रो	y it	士	\dashv	
59.2.00			- RA	1	11	_		Ш		_	_	41		4	41	4	_			Ini	Hei	Ĭ	w	+-	dat	↲	44	40	4	4	4	4	थ	4	7	-	-
59.3.0			K-41	4	Π							П			Ш					Tip	·L	2	<u> </u>	dol	aht	pre	Bent	: 6	J.	L	\perp				1		
59.3.06			RA		П							II													1			۲	7	۱	1	İ	١				
39.4.0		1	1100		才	十		3	\Box	ヿ	1	◁	X		扙							Г			T	T	T	1>	₹	T	T	Ī	X		T		O4
34.4.0		<u> </u>	1/00	╂╫	4	╁	-	P	\vdash	\dashv	\dashv	싀	\hookrightarrow	\dashv	+	\dashv	┨	H	,	\vdash		_	\vdash	+	╁	t	+	+	十	十	十	┪	4	-	十		
			 	igapha	\dashv	+	-	Н	Н	_	_			\dashv	-		\dashv			Н	_	_	├	╀	╀	╀	╀	+	+	+	+	+	\dashv	+	十	-	-
		<u> </u>						Ш	Ш													<u> </u>				1.	丄			丄		_	\perp		丄		<u> </u>
Relinquished by:			Date	5 <i>20</i> e	ا ع	ime	Hec	eive	d by:											Hen	arks	A -	20	ععج	ופי	05	ئے	Sc	++	7~	O(+	ج <u>ر</u>	-	p/	!
Foliath Nolon							-														عج	\	₹.	0	``	ند	44	4	0 6	4	₽	£	J.	$ \omega $	ìC	6	
Relinquished by:			Date		Ī	ime	Red	eive	d by:	:			_							(,				•							-				
							L													D:0 4	1/2	m	92	N	D.	Se	- p	<u> </u>	<u>59</u>	04	.0						
Dolinguished hu		<u>.</u>	Data		1	ime	IP.	odve	d by	Lob	arata					,	_			Bill t	υ: 		_		Ea-	1 05) le		nly:		mol		acai:				
Relinquished by:			Date		. 1	ime	Trie(~)°	d by						1		1	4		Ļ		•••	T	الإما		Lac		Date		_	Tim			em. IC	,#1	Coolant	Prese
			11116	606	Y	124	1/	\g	~	7~	ر 1	4	بو	_	A	ha	را	tic	را		emp		╀	Initi RL		+		_	_	-	<u>152</u>			2-5	_	Yes	
Distribution: White - Lab; Pink - Origin	ator						<u> </u>	_							-		_			جُــا	3. 0	ر اما				<u> </u>	\mathcal{L}^{\prime}	<i>اریا</i>	26				<u> (r</u>				
Rev: 051805	alu																			(ه و_	(4)	4	- (V	- (V	~ ~		-,		-						

KIFFE/2	795 2nd Street, Suite Davis, CA 95616 .ab: 530.297.4800	300	SRG # / Lat	b No	53371	Pa($ge \underline{2} of \underline{3}$
	ax: 530.297.4802	f Decords III				Analysia	Poguest
Project Contact (Hardcopy or PDF To):	California EDF		□No	i	Chain-of-Custody Re		
Company Address: Clac water Com	Sampling Con	npany Log Code:	~		Analysis Re	equest	TAT
229 Tenksbury Ave Pt. R	chrond	CWG	0	ad d			
Company / Address: Clear water Grange Company / Address: Clear water Grange Company Ave Pt. 12 Phone #: 510-590-1096 510-232- Project #: P.O. #:	2823 Global ID: T	06001774	55	6 5.0	8260B)	Volatile Organics (EPA 524.2 Drinking Water) TPH as Diesel (EPA 8015M) TPH as Motor Oil (EPA 8016M) Total Lead (EPA 6010) W.E.T. Lead (STLC)	12 hr
I CACHAE I	1-17041		groupcom	8021 leve	3TEX (EPA 82808) FPH Gas (EPA 82608) 5 Oxygenates (EPA 82608) Lead Scav. (1,2 DCA & 1,2 EDB-EPA 82608) Volatile Halocarbons (EPA 82608)	Drinkin SM)	24 hr 🖁
Project Name: P4D 23rd Ave Association Project Address: Samp	SamplerSign	ature: Z. Welson	· ·	4 5	(E B S ED B)	Volatile Organics (EPA 524.2 Drift TPH as Diesel (EPA 8015M) TPH as Motor Oil (EPA 8016M) Total Lead (EPA 8010) W.E.T. Lead (STLC)	3
LATID 93, ME HOROCION	xes Kuluy	ner Preservative	Matrix	1 - 1 - 1	3) 3260 3260 (EP (EP	(EPA 624.2 PA 8015M) (EPA 801 3010) -C)	2 48 hr ក្
Project Address: Samp	ling Contair	ner Preservative	Mallix		B P A 8 EU	E G A SO A SO A SO A SO A SO A SO A SO A	-1 1 1 1 1
Project Address: Samp 1125 Miller Ave Oakland, CA	1111			8260B) 8260B)	BTEX (EPA 8260B) TPH Gas (EPA 8260B) 5 Oxygenates (EPA 8260B) 7 Oxygenates (EPA 8260B) Lead Scav.(1,2 DCA & 1,2 E Volatile Halocarbons (EPA	Volatile Organics (EPA 524.2 TPH as Diesel (EPA 8015M) TPH as Motor Oil (EPA 801 Total Lead (EPA 6010) W.E.T. Lead (STLC)	
Oaklano, CA	VOA 8	[취]	ଆ	PA PA	s (Ef	olatile Organii PH as Diesel PH as Motor (Otal Lead (V.E.T. Lead (72 hr
	و ا ﴿ اِ	Tediar 5035 HCI HNO ₃ None	ااةاح	MTBE (EPA MTBE (EPA	A So So So So So So So So So So So So So		
Sample Designation Date	Lime 40 ml V	Tedlar Hol None	Soil Air	MTE	17PH 17PH 7 O; 7 O; 7 O; Volt	Ag HT TO TANK	
	1 1 1 1 1	M	X				X 05
511.0.06 11/15	/=1	┤┤┫┤╏	- - 	╂╌╂╌╂	-1-1-1-1-		× 06
511.1.0	1228			╂╌╂╾╂	- - - - - - - - - - 		+17-100
511.06	₽RI	 		╀┼┼			
31120	EN						┷╅┸╇╼╃
51206	>RN						
511.3.0	RN						
54200	RN						
511,00		3 X	XIN	1 1			X 07
311, 9, 0	1230 X			1 			
	├──╂ ┼┼┼	- - - - - -		++			
Relinquished by:	Date Time	Received by:			Remarks:		6 that ed
					Hoto Sample SH.3.06 H	2 211,010	Jorica
Robert, Nobor	1/-16-2016	Received by:			SH.3,06 #	n 70	
Relinquished by:	Date Time	neceived by.			- Homogorija so	mple 511.4.0	1
-					Bill to:		
Relinquished by:	Date Time	Received by Laboratory:	Ki	tt		Use Only: Sample Re	Therm. ID # Coolant Present
	111606 1/2	Received by Laboratory:	a All	X	Temp °C Initials	Date Time	Yes / No
		/ \	my	11621			
Distribution: White - Lab; Pink - Originator Rev: 051805							

	KIFF (2) Analytical LLC		2795 2nd Davis, C			ite 300)				-											— —	_	-								3	of .	一 へ
	Analytical цс	!	Lab: 53 Fax: 53	0.297.	.4800								S	RG	#/La	b No).		<u> </u>	<u>></u>	<u> </u>	(Page	, <u> </u>		of \	∠
İ	Project Contact (Hardcopy or PDF To			Califo	rnia E	DF Re	port'	?			es		□N	lo				С	hai	n-o	-Cı	usto	dy	Re	col	rd a	and	An	aly	sis F	Requ	Jes	t	
	Company / Address: Clarway	ler Gra	ا جادد	Samp	ling C	ompa	ny Lo	g Co	ode;	$\overline{}$	· ·	١ :	<u>~</u>									Ana	lysi	s R	equ	est							AT	
	Company / Address: Clearway 209 Tewksbury AVE	- PA. F	ichmon	<u> </u>					_(<u> </u>	<u>)(</u>	7(<u>)</u>			qdd)									
	Phone #: / Fax:	#:)-232:	2823	Globa		101	OC	0	19	4	4	5	5			6 5.0						8260B)		6	Water								2 hr	훋
	Project #: CBO18 F P.O.	#:			Delive PO	rable PD	الم الم	mail Log	Add	dress): e ∩	an	عد	<u></u>	m	21 level						EPA ((B)	A 8260	Orinking		Ş						24 hr	Ose
	PhD 2322 Ave A	SSOCIO	ules	Samp	oler Si	gnatur	e: ,	lan	_			7				EPA 80	0.5 ppb			(BOB)	(B09)	Lead Scav. (1,2 DCA & 1,2 EDB-EPA	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	(EPA 8015M)	<u> </u>		5035			□ 8 hr	For Lab Use Only
	Project Address:	Samp	oling		Cont	ainer	1		Pres	ervat	Т	╗	一	Matr	ix	8) B)	9	<u></u>	90B)	A 82	A 82	8	ons (길	(EP/	¥.	Ξ.	9010	9	13		ı	1	ĬĬ.
	Project Address: 1125 miller Lue Oakland, CA	1										8		Ì		MTBE (EPA 8260B) per	MTBE (EPA 8260B)	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	7 Oxygenates (EPA 8260B)	(1,2 D	locarb	ganics	ganics	1986	TPH as Motor Oil	Total Lead (EPA 6010)	W.E.T. Lead (STLC)	1. 1			□ 72 hr	'n
				40 ml VOA						-	الد	H		İ		(EPA	E G	(EPA	ias (F	jena	jena	Scav.	e Ha	ŏ	ō	S Di	N S	ead	٦	BTEX	[ठी	X	•
	.			E	Poly	Glass		달	ဋ	None	3	固	Water	╗	_	盟	置	Ě	Æ	Öxyl	Oxy	pae	olatii	lagi iga	olati	PH a	표	otal	Æ,	M	F	4	ロ 1 wk	
	Sample Designation	Date		4 0	ō aŭ	O F	-	Ĭ	픠	<u> </u>	7	7	<u> </u>	S V	<u> </u>	₽	┞	<u> </u>	E	5	4	-2	<u> </u>	>	>	┝	╁╴	片	5		-	V		08
•	510,0,06	11/15	100	1	<u> </u>	$\sqcup \bot$	1		Ш	_	$ar{1}$	4	4	4	┷	_	1	<u> </u>	_	_		-			-	╀	╁—	┞	╂—	\vdash	-	4		
•	510,1,0		16d								П	Ш		Ш		L	$oxed{oxed}$		L						L	<u> </u>	_	L	_	Ш	<u> </u>	丌		09
•	510,1,06		1603									П	١													L			_			扛		10
	SIADO		RLN								П	П		П																		'		l
	510 0 00	>	RLN				╁				11	Ħ	\top	П	\top	T			Π					Г					T		П			
	00010100				╁╌	\vdash	╁			\dashv	H	$\dagger \dagger$	十	H	+	╁╌	†	╁	一					1	t	T		T	T		一	1		
	5030		RLI	\mathbb{H}	\vdash		╄	╀	H	-1	╫	+	\dashv	H	+	╀	╁	╀	╁		-	├─		╁	┢	\vdash	╁	┢	+	\vdash	\vdash	┪		
	510.3.00	1	RM		Ц_	Ш		L			<u> </u>	4	4	1	_ _	╄	-	↓_	╀-	_	<u> </u>			<u> </u>	1	Ļ	,—	╀	+	.,	┟╌╁	-		
R	510,4,0	11/15	1605		XL.		<u> 3</u>				M	凶		X		L	\perp	_	L					<u> </u>	L	M	¥:	L	<u> </u>	X	 	_		11
		,																																
						II											Γ												L					
	Relinguished by:		Date		Tin	ne R	eceiv	ed by	/:	· —								Re	mark	3:		_						_		1	$\overline{}$	$\overline{\ \ }$	0	\mathcal{T}

Relinquished by:

11-15-2015

Time

Received by:

Time Received by Laboratory: Wiff
1124 Rozmisee Analytical

Date

Date

111606

Distribution: White - Lab; Pink - Originator Rev: 051805

Sample Receipt

For Lab Use Only:

Date

Initials

Temp °C

Time Therm. ID# Coolant Present

Yes / No

ATTACHMENT G

Analytical Report Index Sheet

Air Toxics Work Order	Report Date	Analyte	Sample ID
611359	12/4/2006	BTEX	V2.4 Suma
611360	12/4/2006	BTEX	V2.2 Suma
611361A	12/20/2006	TPH-d	V1.4 1L
611361B	12/14/2006	TPH-d	V1.4 4L
611361B	12/14/2006	TPH-d	V3.4 1L
611361B	12/14/2006	TPH-d	V3.4 4L
611361B	12/14/2006	TPH-d	V2.2 1L
611361B	12/14/2006	TPH-d	V2.2 4L
611361B	12/14/2006	TPH-d	V2.4 1L
611361B	12/14/2006	TPH-d	V2.4 4L

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- · Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

0611359 **WORK ORDER #:**

Work Order Summary

CLIENT:

Ms. Jessica Moreno

Clearwater Group, Inc.

229 Tewksbury Avenue

Point Richmond, CA 94801

PHONE:

510-590-1096

FAX:

11/16/2006

DATE RECEIVED: DATE COMPLETED:

12/04/2006

BILL TO: Ms. Jessica Moreno

Clearwater Group, Inc. 229 Tewksbury Avenue

Point Richmond, CA 94801

0667 P.O. #

PROJECT #

CB018F P&D 23rd Avenue Associates

CONTACT:

Kyle Vagadori

FRACTION # NAME 01A V2.4 Suma(200mL/mn*30mn) 02A Lab Blank 03A CCV 04A LCS	TEST Modified TO-15 Modified TO-15 Modified TO-15 Modified TO-15	RECEIPT VAC./PRES. 5.0 "Hg NA NA NA
--	--	-------------------------------------

CERTIFIED BY:

Linda d. Fruman

DATE: <u>12/04/06</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Clearwater Group, Inc. Workorder# 0611359

One 6 Liter Summa Canister sample was received on November 16, 2006. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</p
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for the sample did not match the entry on the sample tag with regard to sample identification. The discrepancy was noted in the Sample Receipt Confirmation email/fax and the information on the COC was used to process and report the sample.

Sample collection date was incomplete on the chain of custody for the sample. The sampling date was taken from the tag and the discrepancy was noted in the Sample Receipt Confirmation email/fax.

OR

The client was contacted and a date of <enter date> was provided. The discrepancy was noted in the Sample Receipt Confirmation email/fax and the analysis proceeded.

Analytical Notes

Dilution was performed on sample(s) V2.4 Suma(200mL/mn*30mn) due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction no performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit,
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: V2.4 Suma(200mL/mn*30mn)

Lab ID#: 0611359-01A

No Detections Were Found.

Client Sample ID: V2.4 Suma(200mL/mn*30mn)

Lab ID#: 0611359-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor;	f112708 12.9			Date of Collection: 11/15/06 Date of Analysis: 11/27/06 03:22 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Benzene	6.4	Not Detected	21	Not Detected	
Ethyl Benzene	6.4	Not Detected	28	Not Detected	
Toluene	6.4	Not Detected	24	Not Detected	
m,p-Xylene	6.4	Not Detected	28	Not Detected	
o-Xylene	6.4	Not Detected	28	Not Detected	

Container Type: 6 Liter Summa Canister

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank

Lab ID#: 0611359-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	f112705 1.00			Date of Collection: NA Date of Analysis: 11/27/06 12:37 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)		
Benzene	0.50	Not Detected	1.6	Not Detected		
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected		
Toluene	0.50	Not Detected	1.9	Not Detected		
m,p-Xylene	0.50	Not Detected	2.2	Not Detected		
o-Xvlene	0.50	Not Detected	2.2	Not Detected		

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	111	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: CCV Lab ID#: 0611359-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

	MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN	
File Name:	f112702	
Dil. Factor:	Date of Collection: NA	
78 - 120 mm 1 (124 - 201 M) (125 - 125 m)	7.00 Date of Analysis: 11/27/06 10:	26 AM
Compound		

Compound	
Benzene	%Recovery
Ethyl Benzene	101
Toluene	96
n,p-Xylene	104
o-Xylene	95
	98

burrogates	%Recovery	Method Limits
,2-Dichloroethane-d4	O.S.	Lillits
Toluene-d8	85	70-130
· · · · · · · · ·	103	70-130
-Bromofluorobenzene	95	
	50	70-130

Client Sample ID: LCS Lab ID#: 0611359-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: f112703 Date of Collection: NA	
File Name: f112703 Date of Collection: NA	
Dil. Factor: 1.00 Date of Analysis: 11/27/06 11:11 AM	

Compound	%Recovery
Benzene	98
Ethyl Benzene	100
Toluene	100
m,p-Xylene	91
o-Xylene	85

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	84	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	97	70-130

Chain-of-Custody Record

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local. State, Tederal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection handling or shipping of these samples. Relinquished signature also indicated agreement to hole harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (300) 467-4922.

AIR TOXICS LTD. 180 BLUE RAVINE RD, SUITE B FOLSOM, CA 95630-1020 916-985-1000 main. line 916-985-1020 fax line

Page 1 of 1

Contact Person Jessica Moreno Company Clearwater Group Address 229 Tewksbury Ave Zip 94801 Phone 510-590-1096 Collected By: (Signature)	City Pt. Ric FAX 510-232-23		Project Information: P.O. # 0667 Project # CB018F Project Name P&D 23** Avenue Associates	Turn Around Time Normal Rush Specify	Date: 164 10
sab Rg Field Sample I.D	j 1.D.	Date & Time	Analysis Requested	Canister Pres Initial Final	ssure/Vacuum Receipt Final (psi)
Reinquished By: (Signature) Doto/Time Reinquished By: (Signature) Doto/Time Reinquished By: (Signature) Doto/Time	Received By: (Sgr	refure) Date/Time 12/16/06 0 1 00 recurs) Date/Time	Notes:	*Hg "Hg "Hg "Hg "Hg "Hg "Hg "Hg "Hg "Hg "	
Shipper Name Lab Use Only	Air Bill # 7607 4327	Opened By Te	5°C and surpane		Work Order # 0611359

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- Results; and
- Chain of Custody (copy).

WORK ORDER #: 0611360

Work Order Summary

CLIENT:

Ms. Jessica Moreno

BILL TO: Ms. Jessica Moreno

Clearwater Group, Inc. 229 Tewksbury Avenue

Point Richmond, CA 94801

Clearwater Group, Inc. 229 Tewksbury Avenue Point Richmond, CA 94801

PHONE:

510-590-1096

0667 P.O. #

FAX:

PROJECT #

CB018F P&D 23rd Avenue Associates

DATE RECEIVED: DATE COMPLETED: 11/16/2006 12/04/2006

CONTACT: Kyle Vagadori

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
01A	V2.2 Suma(200mL/mn*30mn)	Modified TO-15	8.0 "Hg
01AA	V2.2 Suma(200mL/mn*30mn) Duplicate	Modified TO-15	8.0 "Hg
02A	Lab Blank	Modified TO-15	NA
03A	CCV	Modified TO-15	NA
04A	LCS	Modified TO-15	NA

CERTIFIED BY:

Sinda d. Truman

12/04/06 DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004

NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 of 9

LABORATORY NARRATIVE Modified TO-15 Clearwater Group, Inc. Workorder# 0611360

One 6 Liter Summa Canister sample was received on November 16, 2006. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</td
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample V2.2 Suma(200mL/mn*30mn) did not match the entry on the sample tag with regard to sample identification. The discrepancy was noted in the Sample Receipt Confirmation email/fax and the information on the COC was used to process and report the sample.

Sample collection date was incomplete on the chain of custody for sample V2.2 Suma(200mL/mn*30mn). The sampling date was taken from the tag and the discrepancy was noted in the Sample Receipt Confirmation email/fax.

OR

The client was contacted and a date of <enter date> was provided. The discrepancy was noted in the Sample Receipt Confirmation email/fax and the analysis proceeded.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction no performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: V2.2 Suma(200mL/mn*30mn)

Lab ID#: 0611360-01A

Lau ID#. 0011300-0111	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Compound			5.8	41
Benzene	1.8	13		
Toluene	1.8	11	6.9	43
	1.8	4.5	7.9	20
m,p-Xylene		1.9	7.9	8.4
o-Xylene	1.8	1.9	7.5	2

Client Sample ID: V2.2 Suma(200mL/mn*30mn) Duplicate

Lab ID#: 0611360-01AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
	1.8	13	5.8	42
Benzene	1.8	12	6.9	46
Toluene	1.8	4.7	7.9	20
m,p-Xylene o-Xylene	1.8	2.3	7.9	9.8

Client Sample ID: V2.2 Suma(200mL/mn*30mn)

Lab ID#: 0611360-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	f112706 3.66			Date of Collection: 11/15/06 Date of Analysis: 11/27/06 01:49 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Benzene	1.8	13	5.8	41	
Ethyl Benzene	1.8	Not Detected	7.9	Not Detected	
Toluene	1.8	11	6.9	43	
m,p-Xylene	1.8	4.5	7.9	20	
o-Xvlene	1.8	1.9	7.9	8.4	

Container Type: 6 Liter Summa Canister

		Metrion
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: V2.2 Suma(200mL/mn*30mn) Duplicate

Lab ID#: 0611360-01AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	f112707 3.66		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	1.8	13	5.8	42
Ethyl Benzene	1.8	Not Detected	7.9	Not Detected
Toluene	1.8	12	6.9	46
m,p-Xylene	1.8	4.7	7.9	20
o-Xylene	1.8	2.3	7.9	9.8

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	84	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: Lab Blank Lab ID#: 0611360-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name; DII. Factor:	f112705 1,00		Date of Collection: It	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
	0.50	Not Detected	1.6	Not Detected
Benzene	0.50	Not Detected	2.2	Not Detected
Ethyl Benzene	0.50	Not Detected	1.9	Not Detected
Toluene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene o-Xylene	0.50	Not Detected	2.2	Not Detected

Container Type: NA - Not Applicable		Method
Surrogates	%Recovery	Limits
	87	70-130
1,2-Dichloroethane-d4	111	70-130
Toluene-d8 4-Bromofluorobenzene	96	70-130

Client Sample ID: CCV Lab ID#: 0611360-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: NA
File Name: f112702 Date of Collection: NA
File Name: 1112/02 Date 31 Solidation III.
1 00 Date of Analysis: 11/27/06 10:26 AM
Dil Factor 1.00 Date of Analysis: 1 1/2//00 10:20 Am
Dil. Factor: 1.00 Date of Antilysis.

Compound	%Recovery
	101
Benzene	96
Ethyl Benzene	104
Toluene	95
m,p-Xylene o-Xylene	98
o-Xylene	

Container Type: NA - Not Applicable		Method
Surrogates	%Recovery	Limits
	85	70-130
1,2-Dichloroethane-d4	103	70-130
Toluene-d8 4-Bromofluorobenzene	95	70-130

Client Sample ID: LCS Lab ID#: 0611360-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

	Date of Collection: NA
File Name: f112703	
File Name: #112703	
Dil Factor: 1.00	Date of Analysis: 11/27/06 11:11 AM
Dil. Factor: 1:00	

Compound	%Recovery
Benzene	98
Ethyl Benzene	100
Toluene	100
m,p-Xylene	91
o-Xvlene	85

Container Type: 1171-11017-photonic		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	84	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	97	70-130

Receipt Vacuum VER 11/18/06

Chain-of-Custody Record

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection handling or shipping of these samples. Relinquished signature also indicated agreement to hold hamiless, defend, and indemnify Air Toxics Limited against any claim, demand, or action of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hotline (300) 467-4922.

AIR TOXICS LTD.

180 BLUE RAVINE RD, SUITE B
FOLSOM, CA 95630-1020
916-985-1000 main line
916-985-1020 fat line

Page 1 of 1

Compar Address Zip 948 Phone 3	01	City Pt. Rich 510-232-28		StateCA	Project information: P.O. # 0667 Project # CB018F Project Name P&D 23 rd Avenue Associates	Tum Arou Norma		Pressuriz by Date Press Ωa N2		
Let I Dic	Field Sample I.D.	Canister I.D.	Date	& Time	Analysis Requested	Cani: Initial	ster Pressu Final איל	re/Vacuun Receipt	n Final (psi)	
OA	V2.2 Suma(200mL/mn*30mn)	10988	11/15	1420	BTEX	<i>3</i> 0 € "Hg	340	904	252	osi.
70.00					BABW	"Hg	i			_
						"Hg				
						"Hg			* (*)	
					Į.	"Hg				
						"Hg				
						"Hg			7.97	ĺ
***	*					"Hg				
			i			"Hg				
						*Hg				
Relinquishe	d By: (Signature) Date/Time	teceived Dy: (Sign Roccived By: (Sign	TL W/16 nature) Date/1		Notes:		hêr	ode Ordon M		
Lab Use Only	Shipper Name Air i	3ill #	Opene دعی		1.20 (3) 1	istody Seal No (Nor		ork Order # 16113		

Air Toxics Ltd. Introduces the Electronic Report

Thank you for choosing Air Toxics Ltd. To better serve our customers, we are providing your report by e-mail. This document is provided in Portable Document Format which can be viewed with Acrobat Reader by Adobe.

This electronic report includes the following:

- Work order Summary;
- Laboratory Narrative;
- · Results; and
- Chain of Custody (copy).

0611361A **WORK ORDER #:**

Work Order Summary

CLIENT:

Ms. Jessica Moreno

Clearwater Group, Inc.

229 Tewksbury Avenue

Point Richmond, CA 94801

BILL TO: Ms. Jessica Moreno

Clearwater Group, Inc. 229 Tewksbury Avenue

Point Richmond, CA 94801

PHONE:

510-590-1096

0667 P.O. #

CB018F P&D 23rd Avenue Associates

FAX:

11/16/2006 DATE RECEIVED:

12/20/2006

PROJECT # CONTACT:

Kyle Vagadori

FRACTION#

DATE COMPLETED:

NAME

01A 02A V1.4 1L Lab Blank TEST

Modified TO-17

Modified TO-17

CERTIFIED BY:

Sinda d. Fruman

DATE:

12/20/06

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004

NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-17 Clearwater Group, Inc. Workorder# 0611361A

One TO-17 Tube sample was received on November 16, 2006. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 sorbent tubes are thermally desorbed at 240 degrees centigrade for ten minutes by UHP helium carrier gas. The gas stream is then bubbled through 5 mL of organic free water and trapped on the sorbent trap of the purge and trap system. The trap is thermally desorbed to elute the components into the GC/MS system for further separation. See the data sheets for the reporting limits for each compound.

Requirement	TO-17	ATL Modifications		
ICAL RRF %RSD Acceptance Criteria	+- 30 % RSD, with two compounds allowed out to 40% RSD	<= 30 % RSD for standard compounds, <= 40 % RSD for non-standard and polar compounds		
IS Recoveries	± 40 % of mean over ICAL for blanks, and ± 40 % of daily CCV for samples.	\pm 40 % of CCV recoveries for blank and samples.		
Daily CCV	+- 30 % D	Standard compounds: = 30 % D for at least 90 %;Non-standard and polar compounds: </= 40 % D for at least 80 %</td		
Batch Certification	Blanks from the same media as samples	Analysis of set of cartridges prior to onset of any project; Sampling media provided by the client is batch certified ahead of time, only if client provides blank cartridges.		
Method Blank	Cartridges from the same media batches as the samples. Do not dry purge Lab Blanks	Cartridges used for daily method blank may or may not be from the same batch or sampling media. Lab Blanks are dry purged to eliminate the possibility of sample anomaly attributed to Dry purge process.		
Sorbent Tube Storage	After conditioning of sorbent tubes, wrap the sealed tubes in uncoated aluminium foil and place the tubes in clean opaque container.	After conditioning of sorbent tubes, the sealed sorbent tubes are placed in clean air-tight glass culture tubes containing activated charcoal. Sorbent batch certification results confirm the sorbent integrity and storage process.		
Sample Desorption	Method involves primary and secondary desorption.	After primary desorption, the stream of effluent gas is passed through 5 mL of clean, purged D.I. water before the secondary desorption. D.I. water acts as a filter for excessive acidic moisture in the samples.		
Method Detection Limit	Follow 40CFR Pt.136 App. B	The Method Detection Limit study met all relevant requirements in 40CFR Pt. 136, Appendix B (including a statistically calculated MDL that is less than the Reporting Limit) with the exception that for some compounds the level of the analyte in the spiked		

Receiving Notes

A Temperature Blank was not included with the shipment. Temperature was measured on a representative

sample and was not within 4±2 °C. Coolant in the form of blue ice was present. The discrepancy was noted in the Sample Receipt Confirmation email/fax and the analysis proceeded.

Sample collection date was incomplete on the chain of custody for all samples. The year of collection was assumed to be 2006 and the discrepancy was noted in the Sample Receipt Confirmation email/fax.

Analytical Notes

Diesel was calibrated using a single point at 500 ng and external calibration technique.

Results reported for Diesel in sample V1.4 1L may be biased low due to extreme saturation.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED METHOD TO-17

Client Sample ID: V1.4 1L

Lab ID#: 0611361A-01A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(uG/m3)	(ng)	(uG/m3)
TPH (Diesel Range)	100	100	>150000 S	>150000 \$

Client Sample ID: V1.4 1L Lab ID#: 0611361A-01A MODIFIED METHOD TO-17

File Name: 1112906 Date of Collection: 11/15/06
Dil. Factor: 1.00 Date of Analysis: 11/29/06 08:49 PM
Date of Extraction: NA

 Compound
 Rpt. Limit (ng)
 Rpt. Limit (uG/m3)
 Amount (ng)
 Amount (uG/m3)

 TPH (Diesel Range)
 100
 100
 >150000 S
 >150000 S

S = Saturated peak; data reported as estimated.

Sample volume = 1L.

Container Type: TO-17 Tube

Client Sample ID: Lab Blank Lab ID#: 0611361A-02A MODIFIED METHOD TO-17

TPH (Diesel Range)	100	100	Not Detected	Not Detected
Compound	Rpt. Limit (ng)	Rpt. Limit (uG/m3)	Amount (ng)	Amount (uG/m3)
File Name: Dil. Factor:	1112905 1.00		Date of Collection: N Date of Analysis: 1' Date of Extraction: I	1/29/06 08:06 PM

Assume sample volume = 1L.

0611361B WORK ORDER #:

Work Order Summary

CLIENT:

Ms. Jessica Moreno

Clearwater Group, Inc.

229 Tewksbury Avenue Point Richmond, CA 94801

BILL TO:

Ms. Jessica Moreno

Clearwater Group, Inc. 229 Tewksbury Avenue Point Richmond, CA 94801

PHONE:

510-590-1096

P.O. # 0667

FAX:

DATE RECEIVED: DATE COMPLETED: 11/16/2006 12/14/2006 PROJECT#

CB018F P&D 23rd Avenue Associates

Kyle Vagadori **CONTACT:**

FRACTION#	<u>NAME</u>
02A	V1.4 4L
02AA	V1.4 4L Duplicate
03A	V3.4 1L
04A	V3.4 4L
05A	V2.2 1L
06A	V2.2 4L
07A	V2.4 1L
08A	V2.4 4L
09A	Lab Blank
10A	LCS

TEST Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550 Modified NIOSH 1550

Modified NIOSH 1550

CERTIFIED BY:

Sinda d. Fruman

DATE: 12/19/06

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified NIOSH 1550 Clearwater Group, Inc. Workorder# 0611361B

Seven TO-17 Tube samples were received on November 16, 2006. Due to the high concentrations of diesel in the samples, thermal desorption and analysis by GC/MS using Method TO-17 was not possible due to saturation of the analytes on the instrumentation. As an alternative, the laboratory performed the analysis via Modified NIOSH Method 1550. The method involves solvent desorption of the sample tubes using carbon disulfide, followed by separation and analysis using GC/FID.

Receiving Notes

A Temperature Blank was not included with the shipment. Temperature was measured on a representative sample and was not within 4±2 °C. Coolant in the form of blue ice was present. The discrepancy was noted in the Sample Receipt Confirmation email/fax and the analysis proceeded.

Sample collection date was incomplete on the chain of custody for all samples. The year of collection was assumed to be 2006 and the discrepancy was noted in the Sample Receipt Confirmation email/fax.

Analytical Notes

Sampling volume was supplied by the client. A sample volume of 1.0 L was assumed for all QC samples.

The distributive volume pairs of tubes taken in each sampling set did not meet the TO-17 performance criteria of 25% agreement. All sample extracts were re-analyzed to confirm the initial results, and additional tests were performed to validate laboratory procedures. Three TO-17 tubes were spiked with 250 ug of diesel and a volume of humidified nitrogen was collected on each spiked tube to simulate sample collection. Both 1L and 4L volumes were evaluated. Recoveries ranged from 68% to 81%.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED NIOSH 1550 GC/FID

Client Sample ID: V1.4 4L				
Lab ID#: 0611361B-02A		i		4
	Rpt. Limit	Rpt. Limit	Amount (ug)	Amount (uG/m3)
Compound	(ug)	(uG/m3)		580000
TPH ref. to Diesel	200	50000	2300	580000
Client Sample ID: V1.4 4L Duplicate				
Lab ID#: 0611361B-02AA				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
TPH ref. to Diesel	200	50000	2400	600000
Client Sample ID: V3.4 1L				
Lab ID#: 0611361B-03A				
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
TPH ref. to Diesel	200	200000	7300	7300000
Client Sample ID: V3.4 4L				
Lab ID#: 0611361B-04A				
Law Ibii. Willout	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
TPH ref. to Diesel	200	50000	2300	570000
Client Sample ID: V2.2 1L				
Lab ID#: 0611361B-05A				
THE TELLS CALLACTE AND	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
TPH ref. to Diesel	200	200000	710	710000
Client Sample ID: V2.2 4L				
Lab ID#: 0611361B-06A				
Lau 1977, VUITSVID-VVA	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(uG/m3)	(ug)	(uG/m3)
TPH ref. to Diesel	200	50000	710	180000
11 11 161. to Diesel	— 			

Summary of Detected Compounds MODIFIED NIOSH 1550 GC/FID

Client Sample ID: V2.4 1L

Lab ID#: 0611361B-07A

Company	Rot. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	(uG/m3)
Compound TDU ref. to Diesel	200	200000	280	280000

Client Sample ID: V2.4 4L

Lab ID#: 0611361B-08A

Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	(uG/m3)
TPH ref. to Diesel	200	50000	2800	700000

Client Sample ID: V1.4 4L Lab ID#: 0611361B-02A

MODIFIED NIOSH 1550 GC/FID

File Name: Dil. Factor:	x12071 6 1.00		Date of Collection: 12 Date of Analysis: 12 Date of Extraction:	2/8/06 01:46 AM
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
TPH ref. to Diesel	200	50000	2300	580000

Air Sample Volume(L): 4.00 Container Type: TO-17 Tube

Client Sample ID: V1.4 4L Duplicate

Lab ID#: 0611361B-02AA

MODIFIED NIOSH 1550 GC/FID

File Name: Dil. Factor:	x120717 1.00		Date of Collection: 11/15/06 Date of Analysis: 12/8/06 02:25 AM Date of Extraction: 12/7/06	
	Rpt. Limit	Rpt. Limit	Amount	Amount (uG/m3)
Compound	(ug)	(uG/m3)	(ug)	(uG/mo)
TPH ref. to Diesel	200	50000	2400	600000

Air Sample Volume(L): 4.00 Container Type: TO-17 Tube

Client Sample ID: V3.4 1L Lab ID#: 0611361B-03A

MODIFIED NIOSH 1550 GC/FID

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
File Name: Dil. Factor:	x120718 1.00		Date of Collection: 1 Date of Analysis: 12 Date of Extraction: 1	/8/06 02:48 AM

200

200000

7300

7300000

Air Sample Volume(L): 1.00 Container Type: TO-17 Tube

Client Sample ID: V3.4 4L Lab ID#: 0611361B-04A

MODIFIED NIOSH 1550 GC/FID

Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
ile Name: Dil. Factor:	x120719 1.00		Date of Collection: Date of Analysis: 12 Date of Extraction:	2/8/06 03:11 AM 12/7/06

200

50000

570000

2300

Air Sample Volume(L): 4.00 Container Type: TO-17 Tube

Client Sample ID: V2.2 1L Lab ID#: 0611361B-05A

MODIFIED NIOSH 1550 GC/FID

Dif, Factor: 1.00	Date of Collection: Date of Analysis: 12 Date of Extraction:	2/8/06 03:34 AM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug)	(uG/m3)	(ug)	(uG/m3)
TPH ref. to Diesel	200	200000	710	710000

Air Sample Volume(L): 1.00 Container Type: TO-17 Tube

Client Sample ID: V2.2 4L Lab ID#: 0611361B-06A

MODIFIED NIOSH 1550 GC/FID

TPH ref. to Diesel	200	50000	710	180000
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
File Name: Dil, Factor:	x120721 1.00		Date of Collection: 11/15/06 Date of Analysis: 12/8/06 03:57 AM Date of Extraction: 12/7/06	

Air Sample Volume(L): 4.00 Container Type: TO-17 Tube

Client Sample ID: V2.4 1L Lab ID#: 0611361B-07A

MODIFIED NIOSH 1550 GC/FID

File Name: Dil. Factor:	x120722 1.00		Date of Collection: Date of Analysis: 12 Date of Extraction:	2/8/06 04:21 AM
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
TPH ref. to Diesel	200	200000	280	280000

Air Sample Volume(L): 1.00 **Container Type: TO-17 Tube**

Client Sample ID: V2.4 4L Lab ID#: 0611361B-08A

MODIFIED NIOSH 1550 GC/FID

TPH ref. to Diesel	200	50000	2800	700000
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
File Name: Dil. Factor:	x120723 1.00		Date of Collection: 11/15/06 Date of Analysis: 12/8/06 04:44 AM Date of Extraction: 12/7/06	

Air Sample Volume(L): 4.00 Container Type: TO-17 Tube

Client Sample ID: Lab Blank Lab ID#: 0611361B-09A

MODIFIED NIOSH 1550 GC/FID

TPH ref. to Diesel	200	200000	Not Detected	Not Detected
Compound	Rpt. Limit (ug)	Rpt. Limit (uG/m3)	Amount (ug)	Amount (uG/m3)
File Name: Dil. Factor:	x120714 1.00		Date of Collection: NA Date of Analysis: 12/8/06 12:13 AM Date of Extraction: 12/7/06	

Air Sample Volume(L): 1.00

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: LCS Lab ID#: 0611361B-10A

MODIFIED NIOSH 1550 GC/FID

File Name: Dil. Factor: x120713

1.00

Date of Collection: NA

Date of Analysis: 12/7/06 11:50 PM

Date of Extraction: 12/7/06

Compound

%Recovery

TPH ref. to Diesel

90

Air Sample Volume(L): 1.00

Container Type: NA - Not Applicable

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and outlinances of early kind. Air Toxics Limited assumes no liability with respect to the collection handling or shipping of these samples. Relinquished signature also indicated agreement to hold harmless, defined, and indepently. Air Toxics Limited against any claim, demand, or action of any kind, released to the collection, handling, or shipping of samples. D.O.T. Hoffing (800) 467-4922.

AIR TOXICS LTD. 180 BLUE RAVINE RD, SUITE B FOLSOM, CA 95630-1020 916-985-1000 main line 916-985-1020 fax line

Page 1 of 3

Contact Person Jessica Moreno			Project Information:	Turn Around Time:	
Company Clearwater Group			•	N71 k1	
Address 229 Tewksbury Ave	City Pt. Rich	hmond StateCA	P.O. # 0667	Nonnal No	
Zip 94801			Project # CB018F	Rosh	
Phone 510-590-1096	FAX 510-232-28	23	Project Name P&D 23td	Specify	
1 '			Avenue Associates		
Collected By: (Signature)					
Field Sample LD.	Canister I.D.	Date & Time	Analysis Requested	Canister Press	Receipt Final
₩:21 L		11/15 - CRN	BTEXTPHd	*Hg	(psi)
(133.3mL/mn x 15 mn)				*Hg	
₹ .∀1. 24L		11/482 RV	BTEX/TPHd	THg	
(66.7 mL/ma x 30 ma)				*Hg	
VIA1L		11/15 10/3	BIEX/TPHG	1 *Hg	
(133.3mL/mn x 15 mn)	-			*Hg	
7 V1,44L		11/15 1998	BTEXTPHO	*Hg	
6 (66.7 mL/mn x 30 mn)				*Hg	
¥3.24L		14/15 - 3/4/6-01	PBTEX/TPHd	"Hg	
133.3mL/mm x 15 mm)		Rol		"Hg	
Refinitioned By: (Signature) Date/Time	Received By: (Sign Received By: (Sign Received By: (Sign	icture) Daty-Time + TL ft/t is (oG 0900 meture) Daty-Timpe	Notes:		
Stripper Name	Air Bill #	Opened By Te	emp@ Condition C	Custody Seals W	ork Order#
Use CLIEX 8581	647 4327	Tee /2	So C condiscres		0611361
Only		, , ,	, o la company la		BATTSOI

بخرج 17

TO R

Sample Transportation Notice

Relimptishing signature on this document indicates that sample is being stripped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any land. Air Toxics Limited assumes no liability with respect to the collection kindling or shipping of these samples. Relimpinshed signature also indicated agreement to hold hermites; defend, and indemnify Air Toxics Limited agricus any claim, demand, or action of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hothau (\$500) 467-4922.

AIR TOXICS LTO.
180 BLUE RAVINE RD, SUITE B
POLSOM, CA 95630-1620
916-985-1600 main fine
916-985-1620 fix line

Page 2 of 3

Compar Address Zip 948 Phone :	t Person Jessica Moreno ny Clearwater Group s 229 Tewksbury Ave 01 510-590-1096 ed By: (Signature)	City Pt. Rici FAX 510-232-28		StateCA	Project Information: P.O. # 0867 Project # CB018F Project Name P&D 23 rd Avenue Associates		ecity		
	Field Sample LO.	Cenister I.D.	Date	& Time	Analysis Requested	Canists Initial	er Pressu Final	re/Vacuur Receipt	m Final (psl)
	V3.24L		11/15	EN EN	BTEXTPHO	*Hg		Y	
	(86.7 miJmn x 30 mn)					°Hg			
	V3.4 1L		11/15	1145	BTEX/TPHI	"Hg			
	(133.3ml_/mn x 15 mn)					"Hg			
	V3.4 4L		11/15	1220	BLEXULHA	*Hg			
	(66.7 mL/mn x 30 mn)("Hg	ģ		
	V2.21L		11/15	[300)	BTEX/TPHd	"Hg	3		
	(133.SmL/mn x 15 mm)					*Hg	25		
	7244			-		"Hg i			
			<u></u>			*Hg			
Elect Resignation	et By: (Signature) Date/Time A Distributed Date/Time of By: (Signature) Date/Time	Received By: (Sign CL: George — 4A Received By: (Sign Praceived By: (Sign	77 W/6 s nature) Conto 7 nature) Conto 7	(66 0 7 00) inc inc	Notes:				
	Shipper Name	Air Bit#	Opene		amp © Condition	Custody Seals	Wor	rk Order#	ļ
ī.ab	Ced 65 5581	7607 4325		,	5°C te done		Z., V	6113	169
Use	14-CAL 60 DE	\ 444 A 2372	(2)				39 Y	4 7 4	, , ,

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and outinances of any kind. Air Toxica Limited assumes no liability with respect to the collection handling or shipping of these samples. Relinquished signature also indicated agreement to hold hamnless, defend, and indemnify Air Toxica Limited against any claim, demand, or action of any kind, related to the collection, bandling, or shipping of samples, D.O.T. Hotline (300) 487-4922.

AIR TOXECS LID. 180 BLUE RAVINE RD, SUITE 3: FOLSOM, CA96650-1020 916-985-1000 main line 916-985-1020 fax line

Page 3 of 3

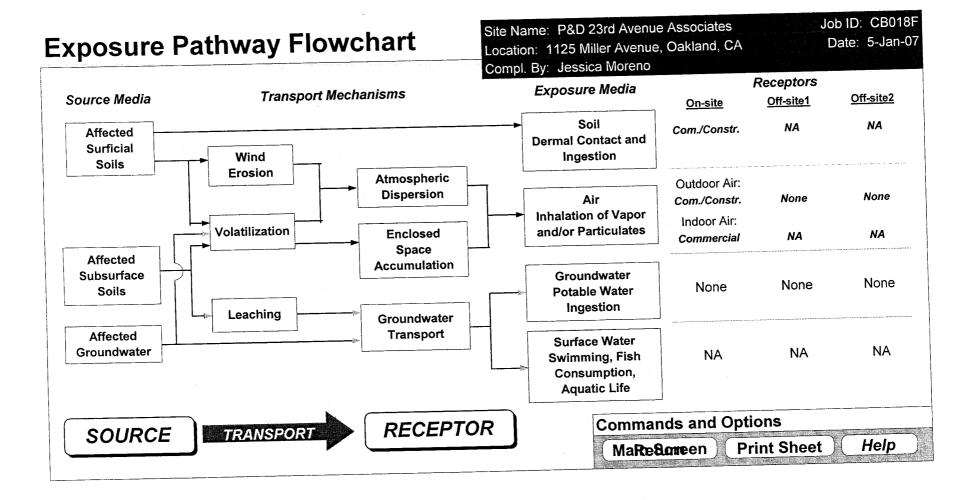
Contact Person Jessi Company Clearwater Address 229 Tewksh Zip 94801 Phone 510-590-1896 Collected By: (Signat	Group kirly Ave City Pt. R FAX 510-232-		Project Information: P.O. # 0667 Project # CB018F Project Name P&D 23 rd Avenue Associates	Turn Around Time: ☑ Normal ☐ Rush Specify	
Field	Sample i.D. Caniste	Date & Time	Analysis Requested	Carrister Press	sure/Vacuum Receipt Final (psl)
X Y2.24L		11/15 /335	BTEX/TPHd	*Hg	
(66.7 mL/mm	x 30 mn)			*Hg	
V2.4 1L		11/15 /425	BTEX/TPHd	*Hg	
(133.3mL/m	n x 15 min)			*Hg	
V2.44L		11/15 /520	ВТЕХ/ТРНЫ	"Hg	
(66.7 mL/ms	x 30 mm)			*Hg	
				"Hg	
				*Hg	
				"Hg	
Reimpulshed By (Signature) Date Reimpulshed By: (Signature) Date Reimpulshed By: (Signature) Date Reimpulshed By: (Signature) Date Reimpulshed By: (Signature) Date Reimpulshed By: (Signature) Date Reimpulshed By: (Signature)	Printe Reserved By: ()	ignoture) PaterTime		*Hg	·
Lab Use Conly			emp@ Condition (5'C Security Compa		Vork Order# 0611361

Sample Transportation Notice Reliance that suspic is being shipped in managinability signature on this document indicates that suspic is being shipped in managinate with all applicable local, State, Federal, national, and international laws, regulations and softingues of any kind. All Trains Limited assumes as Bailethy with respect to the collection handling or shipping of these samples. Refinquished Signature also indicated agreement to hold hundress, defend, and indumnity Air Torice Limited against any claim, demand, or action of any kind, exhibited to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4822.

AIR TORICS LID. 160 DEDICE RAVING RD, STATE B PCENCIAL CALASSES INC. 916-935-1008 main line 546-935-1020 for line

Page 1 of 3

2ip 94801	ity Pt_Pici 510-232-28		Project Information: P.O. # 0667 Project # CB018F Project Mame P&D 23 rd Avenue Associates	Term Around T Nomeal Rush Spec	
Field Sample I.D.	Canister I.D.	Date & Time	Analysis Requested		Pressure/Vacuum Rael Recelpt Fins Cod
VI2 IL		11215-	BIEXTPHA	"Fig.	
(133.3mL/mn x 15 mm)	. 0.			THg !	
	,	1171	RIEXILIA	filg	
166.7 mL/nm x 30 mm)				7 lg	
ANA IL NA		11/15 10/2	BIEVIPH	1 to	
	Ima x V			Tig	
Middle Same		11/15 /093	BTEXTOAL	119	
(4.5-W) mc 280-dm) 103-3 m	/nn x	30 mun		TO	
	544 · · · · · · · · · · · · · · · · · ·		BIEXTPHO	710	
(33 3m2/mn x 16 mn)				Tig	
Affinity Police 1/5/2000	Col.	refund Daly Tane A.C. M. Lief o.G. D. Teine refund Chin Time	EDF PLASE WAS Somple to g Child	GO 10600	tr-422
	3) # ()	Opened By::: T	emp.O Condition	Custody Seets	Work Order#
C.LEX 8881 7607			S'4 Judison		


Sample Transportation: Notice
Relinquishing algorithm on this document indicates that sample is being shipped in couplings with all applicable local, Start Federal, actional, and histonical laws, regulations and collisioners of any tind. Air Tenes is include assumes no liability with respect to the collision baptiling or shipping of these samples. Relinquished significate also indicated agreement to had included, defined, and indexedly his Tenes Lambed algebras my chairs, demand, or action of any kind, substat to the collection, heading, or shapping of samples. Dith S. Hodine (200) 467-4922.

AUR TODACSLED. 120 HE DESCRIPTION OF THE BEACH

Page 2 of 3

Carte	Person Jassica Morano					
	in Clearwater Group		•	Project information:	Turn Around Time:	
Addres Zip 948	s 729 Torkshipy Ave	CRyPt. Rici		P.O. #0667 Project #68018F	⊠ Nomisi ⊡ Rush	
	510-550-2056 F. ed By: (Stynature)	AX 510-232-28	23	Project Name PSD 23 th Avenue Associates	Specify	
	And workings.					
	Field Sample I.D.	Causater LD.	Date & Time	Analysis Reignested	Committee Press Indies Final	Receipt Final
	N6.24		HAS TO DN	BIEGIPHU	76	(088)
	(66.7 milion x 30 mm)				Tig	
	¥34 £ (30		11/15 //45	BTEXTEN	Rig	
	(1993-1994 (1994) (66)	Prom x	Smin		Ho	
	Acceptance Management	9]	1415 /220	BTEXTPHA	Hg	
		B OW/ma	x Drain		Ng	
			11/15 /300	BIEXTPE	Te	
=======================================	The state of the s	tal min	x long		140	
	Carlot San Carlot	* -			*10	
					T to	
istration (A STATE OF S	Personal Parking	LAVE-lot of et.	Number		
Allegian	Signature Countries	Hans and Sy, Clien	Mari Orbertsia			•
Lah	120	Bad	Opened By To	emp G Condition Co	istoidy Seedle Wo	k Order#
Use Only	CAGE SEEL 18	on 16293		Et se dans		511361

ATTACHMENT H

Input Parameter Summary

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07 1 OF 1

- No. 142 (1986)		7000 TO 1100	Residential	18. L	Commerci	al/Industria
:xposure	Parameters	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Construc
AT _c	Averaging time for carcinogens (yr)	70			25	1
AT,	Averaging time for non-carcinogens (yr)	30	45	35	70	•
3W	Body weight (kg)	70	15		25	4
ED	Exposure duration (yr)	30	6	16		1
τ.	Averaging time for vapor flux (yr)	30			25	180
EF	Exposure frequency (days/yr)	350			250	160
EF _D	Exposure frequency for dermal exposure	350			250	
IR.	Ingestion rate of water (L/day)	2			1	
IR _s	Ingestion rate of soil (mg/day)	100	200		50	100
SA	Skin surface area (dermal) (cm^2)	5800		2023	5800	5800
M	Soil to skin adherence factor	1			1	
ET _{swim}	Swimming exposure time (hr/event)	3				
EV _{swim}	Swimming event frequency (events/yr)	12	12	12		
IR _{swim}	Water ingestion while swimming (L/hr)	0.05	0.5			
	Skin surface area for swimming (cm^2)	23000		8100		
SA _{swim}	Ingestion rate of fish (kg/yr)	0.025				
IR _{fish} FI _{fish}	Contaminated fish fraction (unitless)	1				

Complete Exposure Pathways and Receptors	On-site	Off-site 1	Off-site 2
Groundwater: Groundwater Ingestion Soil Leaching to Groundwater Ingestion	None None	None None	None None
Applicable Surface Water Exposure Routes: Swimming Fish Consumption Aquatic Life Protection			NA NA NA
Soil: Direct Ingestion and Dermal Contact	Com./Constr.		
Outdoor Air: Particulates from Surface Soils Volatilization from Soils Volatilization from Groundwater	Com./Constr. Com./Constr. None	None None None	None None None
Indoor Air: Volatilization from Subsurface Soils Volatilization from Groundwater	Commercial None	NA NA	NA NA

Receptor Distance from Source Media	On-site	Off-site 1	Off-site 2	(Units)
	NA NA	NA	NA	(ft)
Groundwater receptor	NA	NA	NA	(ft)
Soil leaching to groundwater receptor Outdoor air inhalation receptor	187	NA	NA	(ft)

Target F	lealth Risk Values	Individual	Cumulative
TR _{eb}	Target Risk (class A&B carcinogens)	1.0E-6	1.0E-5
TR.	Target Risk (class C carcinogens)	1.0E-6	
THQ	Target Hazard Quotient (non-carcinogenic risk)	1.0E+0	1.0E+0

Modeling Options	
RBCA tier Outdoor air volatilization model Indoor air volatilization model Soil leaching model Use soil attenuation model (SAM) for leachate? Air dilution factor Groundwater dilution-attenuation factor	Tier 2 Surface & subsurface models Johnson & Ettinger model NA NA NA NA NA

NOTE: NA = Not applicable

Surface Parameters	General	Construction	
A Source zone area A Source zone area Length of source-zone area parallel to wind V _{gw} Length of source-zone area parallel to GW flow Ambient air velocity in mixing zone δ _{ar} Air mixing zone height Areal particulate emission rate Length (Studeness of affected surface soils	3.9E+1 9.0E+0 NA 7.4E+0 6.6E+0 6.9E-14 4.0E+0	0.0E+0 0.0E+0	(ft^2) (ft) (ft) (ft/s) (ft) (g/cm^2/s) (ft)

	e Soil Column Parameters	Value	100	17 P. 181.	(Units)
*******		NA			(ft)
h _{cap}	Capillary zone thickness	NA			(ft)
h,	Vadose zone thickness				(g/cm^3)
ρ	Soil bulk density	1.7E+0			(-)
foc	Fraction organic carbon	1.0E-2			
θτ	Soil total porosity	3.8E-1			(-)
	Vertical hydraulic conductivity	8.6E-2			(cm/d)
K _{vs}		1.1E-15			(ft^2)
k,	Vapor permeability	NA.			(ft)
Lgw	Depth to groundwater	4.2E-1			(ft)
L,	Depth to top of affected soils				(ft)
L _{base}	Depth to base of affected soils	4.0E+0			(ft)
L _{subs}	Thickness of affected soils	3.6E+0			
	Soil/groundwater pH	7.4E+0			(-)
pН	30//groundwater pri	capillary	vadose	foundation	
		0.342	0.31	0.12	(-)
θ,,	Volumetric water content	0.038	0.07	0.26	(-)
θ_a	Volumetric air content	0.000			

45.34.460		Residential Commercial	(Units)
	ng Parameters Building volume/area ratio	NA 9.84E+0	(ft)
Lb	-	NA 7.53E+2	(ft^2)
A _b	Foundation area	NA 1.12E+2	(ft)
X _{erk}	Foundation perimeter	NA 2.30E-4	(1/s)
ER	Building air exchange rate	NA 4,92E-1	(ft)
L _{crk}	Foundation thickness	NA 4.92E-1	(ft)
Z_{crk}	Depth to bottom of foundation slab	1 1111	(-)
η	Foundation crack fraction		(psi)
ďΡ	Indoor/outdoor differential pressure	NA 0.00E+0 NA 0.00E+0	(ft^3/s
Q,	Convective air flow through slab	NA 0.00E+0	(,, ,,,,

Groundwater Parameters	Value	(Units)
δ _{gw} Groundwater mixing zone depth I _f Net groundwater infiltration rate U _{gw} Groundwater Darcy velocity V _{gw} Groundwater seepage velocity K _s Saturated hydraulic conductivity i Groundwater gradient S _w Width of groundwater source zone Depth of groundwater source zone Effective porosity in water-bearing unit f _{ocstat} Fraction organic carbon in water-bearing pH _{stat} Groundwater pH Biodegradation considered?		(inlyr) (cm/d) (cm/d) (cm/d) (cm/d) (ti) (ft) (-) (-)

**************************************	ort Parameters	Off-site 1	Off-site 2	Off-site 1	Off-site 2	(Units)
		Groundwa	ter Ingestion	Soil Leac	ning to GW	
	Groundwater Transport	NA.	NA	NA	NA	(ft)
αx	Longitudinal dispersivity	NA NA	NA	NA	NA	(ft)
α_y	Transverse dispersivity	NA.	NA	NA	NA	(ft)
-	Vertical dispersivity	'''	door Air Inhal.	GW to Outd	oor Air Inhal.	
Lateral	Outdoor Air Transport	NA NA	NA	NA NA	NA	(ft)
σ_y	Transverse dispersion coefficient	NA NA	NA NA	NA.	NA	(ft)
σ_z	Vertical dispersion coefficient	1		NA.	NA	(-)
ADF	Air dispersion factor	NA	NA	INA		

Surface Water Parameters		Off-site 2	(Units)
Q _{sw} Surface water flowrate		NA	(ft^3/s) (ft)
W _{pi} Width of GW plume at SW disc δ _{pi} Thickness of GW plume at SW	harge	NA NA	(ft)
δ _{pi} Thickness of GW plume at SW DF _{sw} Groundwater-to-surface water to		NA	 (-)

Baseline Risk Summary-All Pathways

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07

1 of 1

	-	BASELINE	CARCINOG	ENIC RISK			BASELIN	IE TOXIC E	FECIS	
	Individual			e COC Risk	Risk		Quotient	Hazard Index Total Applicable		Toxicity Limit(s)
EXPOSURE	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Value	Limit	Exceeded?
	EXPOSURE P	ATHWAYS			·		T	4.05.0	1.0E+0	
Complete:	NC	1.0E-6	NC	1.0E-5		1.2E-3	1.0E+0	1.8E-3	1.0240	
NDOOR AIR E	XPOSURE PA	THWAYS				r		4.05.0	1.0E+0	
Complete:	NC	1.0E-6	NC	1.0E-5		3.5E+0	1.0E+0	4.3E+0	1.02+0	
SOIL EXPOSU	RE PATHWAY	S					T	4.55.0	1.0E+0	
Complete:	NC	1.0E-6	NC	1.0E-5		7.3E-1	1.0E+0	1.5E+0	1.02+0	<u> </u>
GROUNDWAT	ER EXPOSUR	E PATHWAYS	S			T			T NIA	
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
SURFACE WA	TER EXPOSU	RE PATHWA	YS					· · · · ·	T NA	
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
				rom Complet	e Pathways)			· · · · · · · · · · · · · · · · · · ·		
CRITICAL EXI	POSURE PATH	ł	NC	1.0E-5		3.5E+0	1.0E+0	4.3E+0	1.0E+0	
	NC	1.0E-6 oor Air		door Air	 	Ind	oor Air	Ind	oor Air	

1 OF 7

	HER Z	LAI OOOKL	CONCENTRA								
OUTDOOR AIR EXPOSURE PAT	HWAYS				(CHECKED IF	PATHWAY IS AC	TIVE)				
SURFACE SOILS (0.4 - 4 ft): VAPOR AND DUST INHALATION	1) Source Medium		2) NAF Value (m^3/kg)				3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)				
POR AND DUST INHALATION	On		Rece e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)		Off-site 1 (0 ft)	Off-site 2 (0 ft)		
	Soil Conc. (mg/kg)	Commercial	Construction Worker	None	None	Commercial	Construction Worker	None	None		
Constituents of Concern IPH - Aliph >C10-C12*	2.5E+3	1.4E+6	NA			1.7E-3					
TPH - Aliph >C10-C12 TPH - Aliph >C12-C16*	2.5E+3	3.1E+6	NA			8.1E-4 2.2E-4					
TPH - Aliph >C16-C21*	2.5E+3	1.1E+7	NA			2.24					

POE = Point of exposure NAF = Natural attenuation factor NOTE:

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

2 OF 7

OUTDOOR AIR EXPOSURE PATHW	/AYS								
SURFACE SOILS (0.4 - 4 ft): VAPOR AND DUST INHALATION (cont'd)		4) Exposure			5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)				
	(EFxED)/(ATx3/		Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	
	Commercial	Construction Worker	None	None	Commercial	Construction Worker	None	None	
Constituents of Concern	6.8E-1	4.9E-1			1.2E-3				
TPH - Aliph >C10-C12* TPH - Aliph >C12-C16*	6.8E-1	4.9E-1			5.5E-4				
TPH - Aliph >C12-C10 TPH - Aliph >C16-C21*	6.8E-1	4.9E-1			1.5E-4			L	

ED = Exposure duration (yr) EF = Exposure frequency (days/yr) NOTE: AT = Averaging time (days) Date Completed: 5-Jan-07

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

3 OF 7

TIER 2	EXPOSURE CO	NCENTRATIO	ON AND INT	KE CALCUL	ATION			
OUTDOOR AIR EXPOSURE PATHWAYS				(CHECKED IF	PATHWAY IS AC	TIVE)		
SUBSURFACE SOILS (4 - 4 ft): VAPOR INHALATION	1) Source Medium	2) N	2) NAF Value (m^3/kg) Receptor			3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1)/(2)		
	Soil Conc.	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	
	(mg/kg)	Commercial	None	None	Commercial	None	None	
Constituents of Concern TPH - Aliph >C10-C12*	2.5E+3							
TPH - Aliph >C10-C12 TPH - Aliph >C12-C16*	2.5E+3							
TPH - Aliph > C16-C21*	2.5E+3			<u> </u>	<u> </u>		<u> </u>	

POE = Point of exposure NAF = Natural attenuation factor NOTE: Date Completed: 5-Jan-07

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

4 OF 7

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION								
OUTDOOR AIR EXPOSURE PATHWAYS								
SUBSURFACE SOILS (4 - 4 ft): VAPOR INHALATION (cont'd)		Exposure Multiplier (EFxED)/(ATx365) (unitless)			5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)			
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)		
Constituents of Concern	Commercial	None	None	Commercial	None	None		
TPH - Aliph >C10-C12*								
TPH - Aliph >C12-C16*								
TPH - Aliph >C16-C21*								

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

5 OF 7

	2 EXPOSURE CO					TIVE)	
OUTDOOR AIR EXPOSURE PATHWAYS				(CHECKED IF I	PATHWAY IS AC	IIVE)	
GROUNDWATER: VAPOR INHALATION	Exposure Concentration 1) Source Medium	2) [NAF Value (m^3 Receptor	/L)	3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)		
	Groundwater	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
	Conc. (mg/L)	None	None	None	None	None	None
Constituents of Concern							
TPH - Aliph >C10-C12*							
TPH - Aliph >C12-C16*							1
TPH - Aliph >C16-C21*	_	i	<u></u>	<u> </u>			

POE = Point of exposure NAF = Natural attenuation factor NOTE: Date Completed: 5-Jan-07

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

6 OF 7

TIER 2 E	XPOSURE CON	CENTRATION	N AND INTAKI	E CALCULATION			
OUTDOOR AIR EXPOSURE PATHWAYS							
GROUNDWATER: VAPOR INHALATION (cont'd)	4) Exposure Multiplier (EFxED)(ATx365) (unitless)			5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)			
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	
Constituents of Concern	None	None	None	None	None	None	
TPH - Aliph >C10-C12*							
TPH - Aliph >C12-C16*							
TPH - Aliph >C16-C21*				14		1	

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr) Date Completed: 5-Jan-07

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

7 OF 7

TIER 2 EXPOSURE CONC	ENTRATION	AND INTAKE	CALCULATION	ON					
OUTDOOR AIR EXPOSURE PATHWAYS									
		OTAL PATHWAY EX							
(Sum average expsosure concentrations from soil and groundwater routes.)									
	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)					
Constituents of Concern	Commercial	Construction Worker	None	None					
TPH - Aliph >C10-C12*	1.2E-3								
TPH - Aliph >C12-C16*	5.5E-4								
TPH - Aliph >C16-C21*	1.5E-4								

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

1 OF 3

	TIER	2 EXPOSURE CONCENTE	RATION AND INTAKE CALCULAT	ON	
NDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)		
OILS (0.4 - 4 ft): VAPOR NTRUSION INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1)/(2) Commercial	Exposure Multiplier (EFxED)(ATx365) (unitless) Commercial	5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4) Commercial
onstituents of Concern PH - Aliph >C10-C12* PH - Aliph >C12-C16* PH - Aliph >C16-C21*	Soil Conc. (mg/kg) 2.5E+3 2.5E+3 2.5E+3	Commercial 4.9E+2 2.3E+3 3.1E+4	5.1E+0 1.1E+0 8.2E-2	6.8E-1 6.8E-1 6.8E-1	3.5E+0 7.5E-1 5.6E-2

* = Chemical with user-specified data	
	NAF = Natural attenuation factor POE = Point of exposure
NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (y	Date Completed: 5-Jan-07
Site Name: P&D 23rd Avenue Associates	Job ID: CB018F

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION ☐ (CHECKED IF PATHWAY IS ACTIVE) INDOOR AIR EXPOSURE PATHWAYS **Exposure Concentration** 5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4) GROUNDWATER: VAPOR INTRUSION 4) Exposure Multiplier 2) NAF Value (m^3/L) 3) Exposure Medium 1) Source Medium (EFxED)/(ATx365) (unitless) INTO ON-SITE BUILDINGS Indoor Air: POE Conc. (mg/m^3) (1)/(2) Receptor None None None None Groundwater Conc. (mg/L) Constituents of Concern TPH - Aliph >C10-C12* TPH - Aliph >C12-C16* TPH - Aliph >C16-C21*

NOTE: AT = Averaging time (days) EF = Exp	posure frequency (days/yr) ED = Exposure duration (yr)	NAF = Natural attenuation factor	POE = Point of exposure Date Completed: 5-Jan-07	
OU AL DOD COLD ALIEUTE Accordates				

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

TIER 2 EXPOSURE CONCENTR	ATION AND INTAKE CALCULATION
INDOOR AIR EXPOSURE PATHWAYS	
	TOTAL PATHWAY EXPOSURE (mg/m^3)
	(Sum average expsosure concentrations
	from soil and groundwater routes.)
Constituents of Concern	Commercial
TPH - Aliph >C10-C12*	3.5E+0
TPH - Aliph >C12-C16*	7.5E-1
TPH - Aliph >C16-C21*	5.6E-2

Site Name: P&D 23rd Avenue Associates
Site Location: 1125 Miller Avenue, Oakland, CA

Date Completed: 5-Jan-07
Job ID: CB018F

Completed By: Jessica Moreno

RBCA SITE ASSESSMENT 1 OF 1 Date Completed: 5-Jan-07 Site Location: 1125 Miller Avenue, Oaklan Completed By: Jessica Moreno Site Name: P&D 23rd Avenue Associates TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION ■ (CHECKED IF PATHWAY IS ACTIVE) SOIL EXPOSURE PATHWAY 3) Average Daily Intake Rate SURFACE SOILS OR SEDIMENTS: 2) Exposure Multiplier 1) Source/Exposure Medium (mg/kg/day) (1) x (2) ON-SITE INGESTION AND (IR+SAxMxRAF)xEFxED/(BWxAT) (kg/kg/day) Construction Worker DERMAL CONTACT Commercial Construction Worker Commercial Surface Soil Conc. (mg/kg) 7.3E-2 7.2E-2 Constituents of Concern 2.9E-5 2.9E-5 2.5E+3 7.3E-2 7.2E-2 TPH - Aliph >C10-C12* 2.9E-5 2.9E-5 2.5E+3 8.9E-3 TPH - Aliph >C12-C16* 8.3E-3 3.5E-6 3.3E-6 2.5E+3 TPH - Aliph >C16-C21*

		IR = Soil ingestion rate (mg/day)
NOTE: RAF = Relative absorption factor (-) M = Adherence factor (mg/cm^2)	ED = Exposure duration (yrs) EF = Exposure frequencey (days/yr) Date Completed: 5-J	SA = Skin exposure area (cm^2/day)

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

1 OF 10

			TIER 2 PAT	HWAY KIS	N CALCUL	ATION					
OUTDOOR AIR EXPOSURE PAT	HWAYS		· · · · · · · · · · · · · · · · · · ·		(CHECKED IF	PATHWAYS AR	E ACTIVE)				
001200111111111111111111111111111111111					CA	ARCINOGENIC R	SK				
	(1) EPA	(2) Total Carcinogenic Exposure (mg/m^3)			(3) Inhalation Unit Risk						
Carcinogeni Classificatio	Classification	On-site		Off-site 1 (0 ft)	Off-site 2 (0 ft)	Factor (µg/m^3)^-1	I I	On aita (0 ft)		Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern		Commercial	Construction Worker	None	None		Commercial	Construction Worker	None	None	
TPH - Aliph >C10-C12*	D										
TPH - Aliph >C12-C16*	D										
TPH - Aliph >C16-C21*	D				<u> </u>						

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07

2 OF 10

					ALCULATION				
JTDOOR AIR EXPOSURE PATH	WAYS				(CHECKED IF PATH	HWAYS ARE A	JIVE)		
JIDOOR AIR EXPOSORE I AII					TOXIC EFFECTS				
		(5) Total			(6) Inhalation Reference		(7) Individ Hazard Quo	ual COC tient (5) / (6)	
	On ait	0 = 12 (0 ft)		Off-site 2	Conc. (mg/m^3)	On-site (0 ft)		Off-site 1 (0 ft)	Off-site 2 (0 ft)
	Commercial	Construction	(0 ft) None	(0 ft) None		Commercial	Construction Worker	None	None
onstituents of Concern		Worker			1.0E+0	1.2E-3			
PH - Aliph >C10-C12*	1.2E-3				1.0E+0	5.5E-4			
ГРН - Aliph >С12-С16*	5.5E-4				1				
TPH - Aliph >C16-C21*				<u> </u>		<u></u>			

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07

3 OF 10

TIER 2 PATHWAY RISK CALCULATION									
INDOOR AIR EXPOSURE PATHWAYS ■ (CHECKED IF PATHWAYS ARE ACTIVE)									
INDOOR AIR EXPOSURE FATIVATO		CARCINOGENIC RISK							
Constituents of Concern	(1) EPA Carcinogenic Classification	(2) Total Carcinogenic Exposure (mg/m^3) Commercial	(3) Inhalation Unit Risk Factor (µg/m^3)^-1	(4) Individual COC Risk (2) x (3) x 1000 Commercial					
TPH - Aliph >C10-C12*	D								
TPH - Aliph >C12-C16*	D								
TPH - Aliph >C16-C21*	D								
		Total Pathwa	y Carcinogenic Risk =						

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

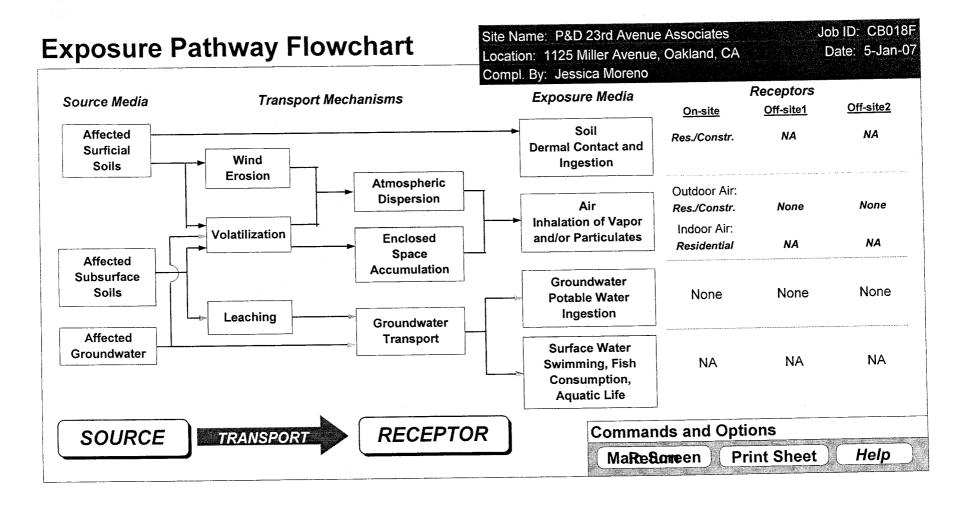
4 OF 10

TIER 2 PATHWAY RISK CALCULATION							
INDOOR AIR EXPOSURE PATHWAYS		(CHECKED IF PATHWAYS A	RE ACTIVE)				
INDOOR AIR DA	TOXIC EFFECTS						
[(5) Total Toxicant Exposure (mg/m^3)	(6) Inhalation Reference Concentration	(7) Individual COC Hazard Quotient (5) / (6)				
	Commercial	(mg/m^3)	Commercial				
Constituents of Concern	3.5E+0	1.0E+0	3.5E+0				
TPH - Aliph >C10-C12* TPH - Aliph >C12-C16*	7.5E-1	1.0E+0	7.5E-1				
TPH - Aliph >C16-C21*							
	Total F	athway Hazard Index =	4.3E+0				

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno


5 OF 10

		TIER 2 PATHWAY	RISK CALCU	LATION				
SOIL EXPOSURE PATHWAY				(CHECKED IF PATH	IWAY IS ACT	IVE)		
OOLE EXI OOSILE 17(1)			CARC	INOGENIC RISK				
	(1) EPA Carcinogenic Classification	(2) Total Carcinogenic (a) via Ingestion (b) via Dermal Contact Commercial	(c) via Ingestion	day) (d) via Dermal Contact stion Worker		oe Factor g/day)^-1 (b) Dermal	(4) Individua (2a)x(3a) + (2b)x(3b) Commercial	al COC Risk (2c)x(3a) + (2d)x(3b) Construction Worker
Constituents of Concern TPH - Aliph >C10-C12*	D							
TPH - Aliph >C12-C16* TPH - Aliph >C16-C21*	D D							
	* No dermal slope factor	availableoral slope factor used.		Total Pathwa	y Carcinog	enic Risk =		

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Input Parameter Summary

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07

ca More an-07	eno	Job ID: CB018F	1 OF 1
Surface	Parameters	General Construction	(Units)
	Source zone area	3.9E+1 0.0E+0	(ft^2)
	Length of source-zone area parallel to wind	9.0E+0 0.0E+0	(ft)
		NA	(ft)
W_{gw}	Length of source-zone area parallel to GW flow	7.4E+0	(ft/s)
Uair	Ambient air velocity in mixing zone	1 1111	(ft)
δ_{air}	Air mixing zone height	6.6E+0	(g/cm^2/s)
P.	Areal particulate emission rate	6.9E-14	
L.,	Thickness of affected surface soils	4.0E+0	(ft)

Job ID: CB018F

	e Soil Column Parameters	Value	81 . 377		(Units)
		NA NA			(ft)
h _{cap}	Capillary zone thickness	NA.			(ft)
h,	Vadose zone thickness	1.7E+0			(g/cm^3
ρ_s	Soil bulk density				(-)
foc	Fraction organic carbon	1.0E-2			(-)
θτ	Soil total porosity	3.8E-1			
K _{vs}	Vertical hydraulic conductivity	8.6E-2			(cm/d)
	Vapor permeability	1.1E-15			(ft^2)
k,		NA.			(ft)
Lgw	Depth to groundwater	4.2E-1			(ft)
Ls	Depth to top of affected soils	4.0E+0			(ft)
L _{base}	Depth to base of affected soils				(ft)
Lsubs	Thickness of affected soils	3.6E+0			
ρH	Soil/groundwater pH	8.0E+0			(-)
μ.,		capillary	vadose	<u>foundation</u>	
Λ	Volumetric water content	0.342	0.31	0.12	(-)
θ _w Θ _a	Volumetric air content	0.038	0.07	0.26	(-)

o. illalia	ng Parameters	Residential	Commercial	(Units)
•	Building volume/area ratio	6.56E+0	NA	(ft)
L _b	-	7.53E+2	NA	(ft^2)
Aь	Foundation area	1.12E+2	NA	(ft)
X _{crk}	Foundation perimeter	1.40E-4	NA	(1/s)
ER	Building air exchange rate	4.92E-1	NA	(ft)
L _{crk}	Foundation thickness	4.92E-1	NA .	(ft)
Z_{crk}	Depth to bottom of foundation slab	1.00E-2	NA.	(-)
η	Foundation crack fraction			(psi)
ďΡ	Indoor/outdoor differential pressure	0.00E+0	NA NA	(ft^3/s)
Q.	Convective air flow through slab	0.00E+0	IVA	1 (1. 0.0)

iround	water Parameters	Value	(ft)
Saw	Groundwater mixing zone depth	NA	(in/yr)
ı,	Net groundwater infiltration rate	NA NA	(cm/d)
Ugw	Groundwater Darcy velocity	NA NA	(cm/d)
V _{gw}	Groundwater seepage velocity	NA	, ,
K.	Saturated hydraulic conductivity	NA	(cm/d)
' 's :	Groundwater gradient	NA	(-)
S _w	Width of groundwater source zone	NA	(ft)
S _d Sd	Depth of groundwater source zone	NA	(ft)
Θ _{eff}	Effective porosity in water-bearing unit	NA	(-)
,	Fraction organic carbon in water-bearing unit	NA NA	(-)
Toc-sat		NA	(-)
pH_{sat}	Groundwater pH Biodegradation considered?	NA NA	

ransport Parameters	Off-site 1	Off-site 2	Off-site 1	Off-site 2	(Units
	Groundwa	ter Ingestion	Soil Leach	ning to GW	
Lateral Groundwater Transport Longitudinal dispersivity	NA	NA	NA	NA	(ft)
P	NA	NA	NA	NA	(ft)
α _y Transverse dispersivity	NA.	NA	NA	NA	(ft)
α _z Vertical dispersivity		door Air Inhal.	GW to Outd	oor Air Inhal.	
Lateral Outdoor Air Transport	NA NA	NA.	NA	NA	(ft)
σ _y Transverse dispersion coefficient	NA NA	NA.	NA	NA	(ft)
σ ₂ Vertical dispersion coefficient ADF Air dispersion factor	NA.	NA	NA	NA	(-)

Suifoon	Water Parameters	Off-site 2	(Units)
	Surface water flowrate	NA	(ft^3/s)
	Width of GW plume at SW discharge	NA NA	(ft)
W _{pi} δ _{ni}	Thickness of GW plume at SW discharge	NA	(ft)
	Groundwater-to-surface water dilution factor	NA	(-)
DF _{sw}	Groundwater-to-surface water dilettor factor		

	Parameters	altik tik ti	Residential	<u> PER PER B</u>	Commerci	al/Industrial
xposure	: Palameters	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Construc.
AT.	Averaging time for carcinogens (yr)	70				
AT,	Averaging time for non-carcinogens (yr)	30			25	1
BW	Body weight (kg)	70	15	35	70	
ED	Exposure duration (yr)	30	6	16	25	1
-	Averaging time for vapor flux (yr)	30			25	1
τ EF	Exposure frequency (days/yr)	350			250	180
EF _D	Exposure frequency for dermal exposure	350			250	
-	Ingestion rate of water (L/day)	2			1	
IR _w	Ingestion rate of water (Eday) Ingestion rate of soil (mg/day)	100	200		50	100
IR _s		5800		2023	5800	5800
SA	Skin surface area (dermal) (cm^2)	1				
M	Soil to skin adherence factor	3				
ET_{swim}	Swimming exposure time (hr/event)	12	12	12	1	
EV_{swim}	Swimming event frequency (events/yr)	0.05	0.5			
IR_{swim}	Water ingestion while swimming (L/hr)		0.5	8100		
SA _{swim}	Skin surface area for swimming (cm ²)	23000		8100		
IR_{fish}	Ingestion rate of fish (kg/yr)	0.025			1	
Flan	Contaminated fish fraction (unitless)	11				

Complete Exposure Pathways and Receptors	On-site	Off-site 1	Off-site 2
Groundwater: Groundwater Ingestion Soil Leaching to Groundwater Ingestion	None	None	None
	None	None	None
Applicable Surface Water Exposure Routes: Swimming Fish Consumption Aquatic Life Protection			NA NA NA
Soil: Direct Ingestion and Dermal Contact	Res./Constr.		
Outdoor Air: Particulates from Surface Soils Volatilization from Soils Volatilization from Groundwater	Res./Constr.	None	None
	Res./Constr.	None	None
	None	None	None
Indoor Air: Volatilization from Subsurface Soils Volatilization from Groundwater	Residential	NA	NA
	None	NA	NA

Receptor Distance from Source Media	5.0.7778	On-site	Off-site 1	Off-site 2	(Units)
Groundwater receptor		NA	NA	NA	(ft)
Soil leaching to groundwater receptor		NA	NA	NA	(ft)
Outdoor air inhalation receptor		0	NA	NA	(ft)

Target I	lealth Risk Values	Individual	Cumulative
TRah	Target Risk (class A&B carcinogens)	1.0E-6	1.0E-5
TR.	Target Risk (class C carcinogens)	1.0E-6	
THQ	Target Hazard Quotient (non-carcinogenic risk)	1.0E+0	1.0E+0

Modeling Options	- T- A
RBCA tier	Tier 2
Outdoor air volatilization model	Surface & subsurface models
Indoor air volatilization model	Johnson & Ettinger model
	NA
Soil leaching model	['= :
Use soil attenuation model (SAM) for leachate?	NA
Air dilution factor	NA NA
Groundwater dilution-attenuation factor	NA

NOTE: NA = Not applicable

Baseline Risk Summary-All Pathways

Site Name: P&D 23rd Avenue Associates
Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno Date Completed: 5-Jan-07

1 of 1

		BASELINE	CARCINOG	ENIC RISK			BASELIN	IE TOXIC E	FFECIS	
	Individual			e COC Risk	Risk	Hazard Quotient			d Index	Toxicity Limit(s)
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Exceeded
OUTDOOR AIR	EXPOSURE P	ATHWAYS					r		I	П
Complete:	NC	1.0E-6	NC	1.0E-5		1.5E-3	1.0E+0	2.2E-3	1.0E+0	
INDOOR AIR E	XPOSURE PA	THWAYS				, , , , , , , , , , , , , , , , , , ,	 -		1	
Complete:	NC	1.0E-6	NC	1.0E-5		1.2E+1	1.0E+0	1.5E+1	1.0E+0	
SOIL EXPOSU	RE PATHWAY	s				<u>, , , , , , , , , , , , , , , , , , , </u>	1		I	
Complete:	NC	1.0E-6	NC	1.0E-5		1.0E+0	1.0E+0	2.1E+0	1.0E+0	
GROUNDWAT	ER EXPOSURI	E PATHWAYS	3				1		T	T
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
SURFACE WA	TER EXPOSU	RE PATHWAY	rs .			·	1		1	Т
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
CRITICAL EXF	OCUPE DATE	MAY (Mayin	num Values F	rom Complete	e Pathways)					
CKITICAL EXP	NC NC	1.0E-6	NC NC	1.0E-5		1.2E+1	1.0E+0	1.5E+1	1.0E+0	
		oor Air		loor Air		Indoor Air		Indoor Air		<u></u>

OF 7

	TIER 2	EXPOSURE	CONCENTRA	TION AND I	NTAKE CAL	ULATION			
OUTDOOR AIR EXPOSURE PATI	HWAYS				(CHECKED IF	PATHWAY IS A	CTIVE)		
SURFACE SOILS (0.4 - 4 ft): YAPOR AND DUST INHALATION 1) Source Medium			2) NAF Value (m^3/kg) Receptor				3) Exposur		2)
	Soil Conc.	On-sit	On-site (0 ft)		Off-site 2 (0 ft)	On-site (0 ft) Off-site 1 (0 ft)		Off-site 2 (0 ft)	
Constituents of Concern	(mg/kg)	Residential	Construction Worker	(0 ft) None	None	Residential	Construction Worker	None	None
TPH - Aliph >C10-C12*	2.5E+3	1.6E+6	NA			1.6E-3			
TPH - Aliph >C12-C16*	2.5E+3	3.4E+6	NA			7.4E-4			
TPH - Aliph >C16-C21*	2.5E+3	1.2E+7	NA			2.0E-4			

NOTE: NAF = Natural attenuation factor POE = Point of exposure

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

2 OF 7

	TIER 2 EXF	OSURE CON	CENTRATIC	N AND INTA	KE CALCUL	ATION		
OUTDOOR AIR EXPOSURE PATHW	AYS							
SURFACE SOILS (0.4 - 4 ft): VAPOR AND DUST INHALATION (cont'd)		4) Exposur				5) Average Inhal Concentration (ation Exposure	
	On-sit	(EFxED)/(ATx3 ie (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-si	te (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	Construction Worker	None	None	Residential	Construction Worker	None	None
TPH - Aliph >C10-C12*	9.6E-1	4.9E-1			1.5E-3			
TPH - Aliph >C12-C16*	9.6E-1	4.9E-1			7.1E-4			
TPH - Aliph >C16-C21*	9.6E-1	4.9E-1			1.9E-4_			
* = Chemical with user-specified data								

EE = Exposure frequency (days/yr) ED = Exposure duration (yr)	
(V_{ij}) $= P_{ij} = P_{ij}$	
$\langle t_{1}, t_{2} \rangle = \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{$	
NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)	
NOTE: AT = Averaging time (days) EF = Exposure frequency (daysyr) EP = Exposure frequency	
NOTE: AT - Averaging time (day) 7	

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

3 OF 7

TIER	EXPOSURE CO	NCENTRATIO	ON AND INT	AKE CALCUI	_ATION		
OUTDOOR AIR EXPOSURE PATHWAYS				(CHECKED IF	PATHWAY IS AC	TIVE)	
SUBSURFACE SOILS (4 - 4 ft): VAPOR INHALATION	1) Source Medium	2) NAF Value (m^3/kg) Receptor			3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)		
	Soil Conc.	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	(mg/kg)	Residential	None	None	Residential	None	None
TPH - Aliph >C10-C12*	2.5E+3						
TPH - Aliph >C12-C16*	2.5E+3						
TPH - Aliph >C16-C21*	2.5E+3			<u> </u>	<u> </u>		<u> </u>

POE = Point of exposure NAF = Natural attenuation factor NOTE:

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

4 OF 7

TIER 2 E	XPOSURE CO	NCENTRATIO	N AND INTAK	E CALCULATIO	N		
OUTDOOR AIR EXPOSURE PATHWAYS	-						
SUBSURFACE SOILS (4 - 4 ft):							
VAPOR INHALATION (cont'd)	4) Exposure Multiplier (EFxED)/(ATx365) (unitless)			5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)			
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	
Constituents of Concern	Residential	None	None	Residential	None	None	
TPH - Aliph >C10-C12*							
TPH - Aliph >C12-C16*							
TPH - Aliph >C16-C21*							

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

5 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS	☐ (CHECKED IF PATHWAY IS ACTIVE)								
GROUNDWATER: VAPOR	Exposure Concentration					- 14 1			
INHALATION	1) Source Medium	2) NAF Value (m^3/L) Receptor			3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)				
	Groundwater	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)		
Constituents of Concern	Conc. (mg/L)	None	None	None	None	None	None		
TPH - Aliph >C10-C12*									
TPH - Aliph >C12-C16*									
TPH - Aliph >C16-C21*	*			<u> </u>	<u> </u>		L		

NOTE: NAF = Natural attenuation factor POE = Point of exposure

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

6 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS						
GROUNDWATER: VAPOR						
INHALATION (cont'd)	4) Exposure Multiplier (EFxED)/(ATx365) (unitless)			5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)		
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	None	None	None	None	None	None
TPH - Aliph >C10-C12*						
TPH - Aliph >C12-C16*						
TPH - Aliph >C16-C21*						<u> </u>

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

7 OF 7

TIER 2 EXPOSURE C	ONCENTRATION	AND INTAKE	CALCULAT	ON
OUTDOOR AIR EXPOSURE PATHW	AYS			
		OTAL PATHWAY EX Sum average expsos from soil and grou	ure concentrations	
	On-si	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	Construction Worker	None	None
TPH - Aliph >C10-C12*	1.5E-3			
TPH - Aliph >C12-C16*	7.1E-4			
TPH - Aliph >C16-C21*	1.9E-4			

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

1 OF 3

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)		
SOILS (0.4 - 4 ft): VAPOR					
INTRUSION INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1)/(2)	Exposure Multiplier (EFxED)(ATx365) (unitless)	5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)
Constituents of Concern	Soil Conc. (mg/kg)	Residential	Residential	Residential	Residential
TPH - Aliph >C10-C12*	2.5E+3	2.0E+2	1.3E+1	9.6E-1	1.2E+1
TPH - Aliph >C12-C16*	2.5E+3	9.3E+2	2.7E+0	9.6E-1	2.6E+0
TPH - Aliph >C16-C21*	2.5E+3	1.2E+4	2.0E-1	9.6E-1	1.9E-1

					NIAE NI I II II II II II I	DOE - Doint of exposure
- 1	NOTE:	AT = Averaging time (days)	FF = Exposure frequency (days/yr)	ED = Evaceure duration (vr)	NAF = Natural attenuation factor	POE = Point of exposure
1	NOIE.	A I ~ Averaging time (days)	Er - Exposure nequency (days/yr)	LD - Exposure duration (yr)	IVAL - IValuidi dilciidationi laotoi	I OL I OIII OI ONDOGGIO
		33				

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

	TIER 2	XPOSURE CONCENTRA	TION AND INTAKE CALCULATION		
INDOOR AIR EXPOSURE PATHWAYS			CHECKED IF PATHWAY IS ACTIVE)		
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration				
INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1)/(2)	 Exposure Multiplier (EFxED)(ATx365) (unitless) 	5) Average Inhalation Exposure Concentration (mg/m^3) (3) × (4)
Constituents of Concern	Groundwater Conc. (mg/L)	None	None	None	None
TPH - Aliph >C10-C12*					
TPH - Aliph >C12-C16*					
TPH - Aliph >C16-C21*					<u> </u>

NOTE: AT = Averaging time (days)	EF = Exposure frequency (days/yr)	ED = Exposure duration (yr)	NAF = Natural attenuation factor	POE = Point of exposure	
NOTE: AT = Averaging time (days)	Er - Exposure frequency (days/yr)	LD - Exposure duration (yr)	1474 Italaiaiaiaiaaa	D. I. O	

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

3 OF 3

TIER 2 EXPOSURE CONCE	NTRATION AND INTAKE CALCULATION
INDOOR AIR EXPOSURE PATHWAYS	
	TOTAL PATHWAY EXPOSURE (mg/m^3)
	(Sum average expsosure concentrations
	from soil and groundwater routes.)
Constituents of Concern	Residential
TPH - Aliph >C10-C12*	1.2E+1
TPH - Aliph >C12-C16*	2.6E+0
TPH - Aliph >C16-C21*	1.9E-1

Site Name: P&D 23rd Avenue Associates
Site Location: 1125 Miller Avenue, Oakland, CA
Date Completed: 5-Jan-07
Job ID: CB018F

Completed By: Jessica Moreno

RBCA SITE ASSESSMENT 1 OF 1 Date Completed: 5-Jan-07 Site Location: 1125 Miller Avenue, Oaklan Completed By: Jessica Moreno Site Name: P&D 23rd Avenue Associates TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION (CHECKED IF PATHWAY IS ACTIVE) SOIL EXPOSURE PATHWAY SURFACE SOILS OR SEDIMENTS: 3) Average Daily Intake Rate 2) Exposure Multiplier ON-SITE INGESTION AND 1) Source/Exposure Medium (mg/kg/day) (1) x (2) (IR+SAxMxRAF)xEFxED/(BWxAT) (kg/kg/day) DERMAL CONTACT Construction Worker Residential Construction Worker Surface Soil Conc. (mg/kg) Residential Constituents of Concern 2.9E-5 1.0E-1 7.3E-2 4.1E-5 2.5E+3 TPH - Aliph >C10-C12* 7.3E-2 2.9E-5 1.0E-1 2.5E+3 4.1E-5 TPH - Aliph >C12-C16* 8.9E-3 1.3E-2 3.5E-6 2.5E+3 5.3E-6 TPH - Aliph >C16-C21*

	NOTE: RAF = Relative absorption factor (-)	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Soil ingestion rate (mg/day)
- 1		BW = Body weight (kg)	FF = Exposure frequencey (days/yr)	SA = Skin exposure area (cm^2/day)
- 1	M = Adherence factor (mg/cm^2)	DVV - Dody weight (kg)	Er - Exposure frequences (days y)	

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

1 OF 10

OUTDOOR AIR EXPOSURE PAT	HWAYS				(CHECKED IF	PATHWAYS AR	E ACTIVE)	-			
					CA	RCINOGENIC RI	isk				
	(1) EPA Carcinogenic		(2) Total Ca Exposure			(3) Inhalation Unit Risk		(4) Individual ((2) x (3) x			
	Classification	On-sit		Off-site 1 (0 ft)	Off-site 2 (0 ft)	Factor (µg/m^3)^-1	On-s	te (0 ft)	Off-site 1 Off-site 2 (0 ft) (0 ft)		
Constituents of Concern		Residential	Construction Worker	None	None		Residential	Construction Worker	None	None	
TPH - Aliph >C10-C12*	D										
TPH - Aliph >C12-C16*	D										
TPH - Aliph >C16-C21*	D										

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07

2 OF 10

OUTDOOR AIR EXPOSURE PATH	IWAYS				(CHECKED IF PATH	WAYS ARE A	CTIVE)		
					TOXIC EFFECTS				
	(5) Total Toxicant Exposure (mg/m²3)				(6) Inhalation Reference	(7) Individual COC Hazard Quotient (5) / (6)			
	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	Conc. (mg/m^3)	On-sit	e (0 ft)	Off-site 1 Off-	
Constituents of Concern	Residential	Construction Worker	None	None		Residential	Construction Worker	None	None
TPH - Aliph >C10-C12*	1.5E-3				1.0E+0	1.5E-3			
TPH - Aliph >C12-C16*	7.1E-4				1.0E+0	7.1E-4			
TPH - Aliph >C16-C21*									

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno Date Completed: 5-Jan-07

3 OF 10

	TIER 2 PAT	HWAY RISK CALCUL	ATION	
NDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAYS	ARE ACTIVE)
			CARCINOGENIC RISK	
	(1) EPA Carcinogenic	(2) Total Carcinogenic Exposure (mg/m^3)	(3) Inhalation Unit Risk Factor	(4) Individual COC Risk (2) x (3) x 1000
Constituents of Concern	Classification	Residential	(µg/m^3)^-1	Residential
TPH - Aliph >C10-C12*	D			
TPH - Aliph >C12-C16*	D			
TPH - Aliph >C16-C21*	D			<u> </u>
TPH - Aliph >C16-C21*		Total Pathway	/ Carcinogenic Risk =	

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA Completed By: Jessica Moreno

4 OF 10

INDOOR AIR EXPOSURE PATHWAYS		(CHECKED IF PATHWAYS A	RE ACTIVE)
		TOXIC EFFECTS	
	(5) Total Toxicant Exposure (mg/m^3)	(6) Inhalation Reference Concentration	(7) Individual COC Hazard Quotient (5) / (6)
Constituents of Concern	Residential	(mg/m^3)	Residential
TPH - Aliph >C10-C12*	1.2E+1	1.0E+0	1.2E+1
TPH - Aliph >C12-C16*	2.6E+0	1.0E+0	2.6E+0
TPH - Aliph >C16-C21*			

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

5 OF 10

		TIER 2 PATHWAY	RISK CALCUI	_ATION				
SOIL EXPOSURE PATHWAY				(CHECKED IF PATH	IWAY IS AC	(IVE)		
Constituents of Concern			CARC	INOGENIC RISK				
	(1) EPA Carcinogenic	(2) Total Carcinogenic (a) via Ingestion (b) via Dermal Contact	ic Intake Rate (mg/kg/day) ct (c) via Ingestion (d) via Dermal Contact				(4) Individual COC Risk (2a)x(3a) + (2b)x(3b) (2c)x(3a) + (2d)x Constructio	
	Classification	Residential	Construc	tion Worker	(a) Oral (b) Dermal		Residential	Worker
TPH - Aliph >C10-C12*	D							
TPH - Aliph >C12-C16*	D							
TPH - Aliph >C16-C21*	D						1	

Total Pathway Carcinogenic Risk =

Date Completed: 5-Jan-07 Job ID: CB018F

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

6 OF 10

TIER 2 PATHWAY RISK CALCULATION									
SOIL EXPOSURE PATHWAY									
			· .	TOXIC EFFEC	TS				
		5) Total Toxicant Inta (b) via Dermal Contact		y) (d) via Dermal Contact	Reference Do	(6) Oral (7) Individual COC Hazard Coc bose (mg/kg-day) (5a)/(6a) + (5b)/(6b) (5c)/(6a) +			
	Resid	ential	Construct	ion Worker	(a) Oral (b) Derma		Residential	Construction Worker	
Constituents of Concern	3.4E-3	9.9E-2	1.8E-3	7.1E-2	1.0E-1	1.0E-1*	1.0E+0	7.3E-1	
TPH - Aliph >C10-C12*	3.4E-3	9.9E-2	1.8E-3	7.1E-2	1.0E-1	1.0E-1*	1.0E+0	7.3E-1	
TPH - Aliph >C12-C16* TPH - Aliph >C16-C21*	3.4E-3	9.9E-3	1.8E-3	7.1E-3	2.0E+0	2.0E+0*	6.7E-3	4.4E-3	

* No dermal reference dose available-oral reference dose used.

Total Pathway Hazard Index =

1.5E+0 2.1E+0

Site Name: P&D 23rd Avenue Associates Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

User-Specified COC Data

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

Representative COC Concentration

		Representa	ative COC Concentration		
CONSTITUENT	Gro	undwater	Soils	(0.4 - 4 ft)	
CONSTITUENT	value (mg/L)	note	value (mg/kg)	note	1
TDLL Allah > C40 C42*	Value (mg/L)		2.5E+3		
TPH - Aliph >C10-C12*			2.5E+3		
TPH - Aliph >C12-C16*			2.5E+3		J
TPH - Aliph >C16-C21*					

* = Chemical with user-specified data

Site Name: P&D 23rd Avenue Associates

Site Location: 1125 Miller Avenue, Oakland, CA

Completed By: Jessica Moreno

Date Completed: 5-Jan-07

Site Name: P&D 23rd Avenue Associates

Completed By: Jessica Moreno

Site Location: 1125 Miller Avenue, Oakland, CA Date Completed: 5-Jan-07

1 of 1

		TIER 2 SOIL CONCENTRATION DATA SUMMARY													
		Analytical Method			Detected Concentrations										
CONSTITUENTS DETECTED		Typical Detection	No. of	No. of	Maximum	Mean	UCL on Mean								
CAS No.	Name	Limit (mg/kg)	Samples	Detects	Conc. (mg/kg)	Conc. (mg/kg)	Conc. (mg/kg								
0-00-0	TPH - Aliph >C10-C12*	5.0E+01	4	4	2.5E+03	1.1E+02	2.4E+03								
0-00-0	TPH - Aliph > C12-C16*	5.0E+01	4	4	2.5E+03	1.1E+02	2.4E+03								
0-00-0	TPH - Aliph >C16-C21*	5.0E+01	4	4	2.5E+03	1.1E+02	2.4E+03								

^{* =} Chemical with user-specified data

CHEMICAL DATA FOR SELECTED COCS													Physic	al Pro	operty	Data					
			Molecul		in air		usion icients in water			og (Koc) or log(Kd) ⊋ 20 - 25 C)		•	: Law Constant 20 - 25 C)		Vapor Pressure (@ 20 - 25		Solubility (@ 20 - 25				
			Weigh		in air (cm2/s		(cm2/s)			log(L/kg)		(atm-m3)	,		(mm Hg)	(mg/L)		acid	base	
Constituent	CAS Number	type	(g/mole	<i>≇)</i> ref	Dair	ref	Dwat	ref		partition	ref	moi	(unitless)	ref		ref		ref	pKa	pKb	ref
	0-00-0	T 1	72	T	1.00E-01	Т	1.00E-05	Т	5.40	Koc	T	2.96E+00	1.22E+02	T	4.79E-01		3.40E-02				
TPH - Aliph >C10-C12*			200		1.00E-01	Ť	1.00E-05	Т	6.70	Koc	Τ.	1.26E+01	5.21E+02	T	3.65E-02	-	7.60E-04	Т_		-	
TPH - Aliph >C12-C16*	0-00-0				1.00E-01		1.00E-05	÷	8.80	Koc	T	1.19E+02	4.90E+03	Т	8.36E-04	-	2.50E-06	T	-		
TPH - Aliph >C16-C21*	0-00-0		270		1.00E-01		1.00L-03		0.00												
* = Chemical with user-specification: Name: P&D 23rd Avenue Site Location: 1125 Miller	er-specified data I Avenue Associates Completed By: Jessica Moreno											Job II	D: CB018F								

CHEMICAL DATA FOR SELECTED COCs

Toxicity Data

	F	Referen	ice Dose	Reference Con-		Reference Conc. Slope Factors						ctor		
· · · · · · · · · · · · · · · · · · ·		(mg/kg/day)		(mg/m3)			1/(mg/kg/day) 1/(mg/kg/day)				1/(µg/m3)		EPA Weight	ls
	Oral	į	(mg/kg/day) Dermal		Inhalation RfC inhal	ref	Oral SF oral	Dermal ref SF dermal		ref	Inhalation URF inhal	ref	of Evidence	Constituent Carcinogenic 3
Constituent	RfD_oral_	ref	RfD_dermal	ref		T	JI_UIAI	10,	-		-	- 1	D	FALSE
TPH - Aliph >C10-C12*	1.00E-01				1.00E+00								D	FALSE
TPH - Aliph >C12-C16*	1.00E-01	T	-	-	1.00E+00								D	FALSE
TPH - Aliph >C16-C21*	2.00E+00	T		-	-	T			<u> </u>		<u> </u>		U	INCOL
* = Chemical with user-specified														
Site Name: P&D 23rd Avenue A														

Site Location: 1125 Miller Ave

Miscellaneous Chemical Data

		ximum ninant Level	Time-Weig Average Wo Criteri	rkplace	Aquatic Li Prot. Crite	Biocon- centration Factor	
Constituent	MCL (mg/L)	ref	TWA (mg/m3)	ref	AQL (mg/L)	ref	(L-wat/kg-fish)
TPH - Aliph >C10-C12*	1.00E-01	-	-	-			1
TPH - Aliph >C12-C16*	1.00E-01	-	•	-			11
TPH - Aliph >C16-C21*	1,00E-01	-	-		_		11
* = Chemical with user-spec	cified						
Site Name: P&D 23rd Aven							
Site Location: 1125 Miller	· Ave						

			CHEMICA	L DATA F	Miscellaneous Chemical Data									
	Dermal		Wa		meability Data				Detection	Limite		Hatf Life		
	Relative	itive Dermal	Lag time for	Critical	Relative Contr of Derm	Water/Skin Derm Adsorp		Groundw		Soil		(First-Order Decay)		
	Absorp. Factor	Permeability Coeff.	Permeability Dermal Exposure Coeff. Exposure Time	•		Factor		(mg/L))	(mg/kg) ref	(d Saturated	ays) Unsaturated	ref
Constituent	(unitiess)	(cm/hr)	(hr)	(hr)	(unitless)	(cm/event)	ref	0.05	ref	50	- 101			
TPH - Aliph >C10-C12*	0.5	•	-					0.05	+	50				
TPH - Aliph >C12-C16*	0.5	-	-	-				0.05			_ <u>-</u> -		-	
TPH - Aliph >C16-C21*	0.05				-		-	0.05		50		<u> </u>		
* = Chemical with user-specified														
Site Name: P&D 23rd Avenue A														
Site Location: 1125 Miller Ave														