RECEIVED

9:09 am, Mar 22, 2010

Alameda County Environmental Health

> Groundwater Monitoring Report Fall 2009 Semiannual Sampling Event Municipal Service Center 7101 Edgewater Drive Oakland, California

> > March 15, 2010 LC010060.0006

Prepared for: City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California

LC010060.0006

March 15, 2010

Mr. Gopal Nair City of Oakland, Public Works Department Environmental Sciences Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

Subject: Groundwater Monitoring Report, Fall 2009 Semiannual Sampling Event, Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Dear Mr. Nair:

LFR Inc. an ARCADIS company (now known as ARCADIS) is pleased to present this report summarizing data collected during the Fall 2009 semiannual groundwater monitoring event at the Municipal Service Center, located at 7101 Edgewater Drive in Oakland, California ("the Site"). These activities were performed in a manner consistent with previous sampling events conducted at the Site.

If you have any questions regarding this report, please call me at (650) 469-7224.

Sincerely,

maden Auchuit

Charles H. Pardini, P.G. (6444) Principal Geologist Operations Manager – Los Altos

Attachment

650.469.7230 m 650.469.7235 f

www.lfr.com

CERTIFICATION

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist.*

Findin

Charles H. Pardini Principal Geologist California Professional Geologist (6444)

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

CONTENTS

CER	TIFICATION III
1.0	INTRODUCTION
2.0	SITE BACKGROUND AND CORRECTIVE ACTION MEASURES1
3.0	FALL 2009 SEMIANNUAL MONITORING ACTIVITIES
	3.1 Field Activities
	3.2 Sample Analyses
4.0	MONITORING RESULTS
	4.1 Shallow Groundwater Topography
	4.2 Occurrence of Separate-Phase Hydrocarbons
	4.3 Contaminant Distribution in Groundwater
	4.3.1 Screening Criteria
	4.3.2 Benzene
	4.3.3 Toluene
	4.3.4 Ethylbenzene7
	4.3.5 Total Xylenes
	4.3.6 MTBE
	4.3.7 TPHg
	4.3.8 TPHd
	4.3.9 TPHmo
	4.3.10TPHk9
	4.4 Laboratory Analysis9
5.0	LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL
	5.1 Method Holding Times
	5.2 Blanks
	5.3 Laboratory Control Samples 10
	5.4 Surrogates
	5.5 False-Positive Petroleum Hydrocarbon Identification
6.0	CONCLUSIONS AND RECOMMENDATIONS 10
7.0	LIMITATIONS

8.0	SELECTED	REFERENCES	12	
	-			

TABLE

1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons

FIGURES

- 1 Site Vicinity Map
- 2 Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater, October 2009
- 3 Detail Plume Map, October 2009

APPENDICES

- A City of Oakland MSC Schedule and Protocol
- B Groundwater Sampling Field Data Sheets
- C Laboratory Results and Chain-of-Custody Documentation
- D Historical Tables

1.0 INTRODUCTION

This report presents the results of the Fall 2009 semiannual groundwater monitoring event conducted on October 29 and 30, 2009 ("the current monitoring event") at the Municipal Service Center (MSC), located at 7101 Edgewater Drive in Oakland, California ("the Site"; Figure 1). LFR Inc. an ARCADIS company (now known as ARCADIS) conducted monitoring activities at the Site in accordance with Assignment No. G08-LFR-08.

This report summarizes the monitoring activities conducted during the current monitoring event as well as the analytical results, distribution of contaminants in groundwater, conclusions, and recommendations. Also discussed are the anticipated semiannual monitoring activities to be performed in March/April 2010.

2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES

Eighteen 2-inch-diameter groundwater monitoring wells (MW-1 through MW-18) were installed on and off site to depths ranging from 13 feet below ground surface (bgs) to 20 feet bgs, at various times from 1989 to 2003. These wells have been monitored regularly since their installation. MW-3 and MW-4 were abandoned and sealed in 1999 (Ninyo & Moore 2004). In addition, six 6-inch-diameter wells (TBW-1 through TBW-6) were installed during backfilling of the excavation of former fuel hydrant lines in the early 1990s. TBW-1 through TBW-4 were abandoned and sealed in June 2007 by Baseline Environmental Consulting ("Baseline").

Eighteen 4-inch-diameter remediation wells and four 2-inch-diameter test/observation wells were installed on site to depths ranging from 13 feet bgs to 17 feet bgs, in December 2001 and January 2002 by others, according to Uribe & Associates' ("Uribe's") "Test/Observation Well Installation Report, U & A Project 291-03," dated April 2, 2002 (Uribe 2002). Seven of the wells (RW-Al, RW-A2, OB-A1, RW-B1, RW-B2, RW-B3, and RW-B4) were installed in the vicinity of Plumes A and B. Fifteen of the wells (RW-C1, RW-C2, RW-C3, RW-C4, RW-C5, RW-C6, RW-C7, OB-C1, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, OB-D1, and OB-D2) were installed in the vicinity of Plumes C and D. Each well, except OB-A1, was surveyed subsequent to the installation event. Six additional extraction wells (RW-D6 through RW-D11) were installed within the Plume D area in March 2007 by URS Corporation. These six wells are 6 inches in diameter and installed to an approximate depth of 20 feet bgs. The well locations are shown on Figures 2 and 3. The plume locations are shown on Figure 3.

According to the "Second Quarter 2003 Monitoring Report" (Uribe 2003), approximately 10,000 gallons of a groundwater/free product mixture were removed from on-site wells RW-B3 and RW-B4 (Plume B) in September and October 2002, using a trailer-mounted, dual-phase extraction (DPE) unit with a 10-horsepower vacuum pump. Additionally, approximately 10,000 gallons of liquid were removed from wells RW-C3, RW-C4, RW-C5, and RW-C7 (Plume C) through five daily extractions over a two-month period. The liquid was pumped into a 21,000-gallon aboveground storage tank to allow separation of oil from water and drained through three 2,000-pound granular-activated carbon filters (in series). After filtration, the wastewater was discharged into a local storm drain. A National Pollutant Discharge Elimination System (NPDES) permit was issued prior to discharge.

Within the same time period, hydrogen peroxide, followed by water, was injected periodically into wells OB-A1, RW-A1, RW-A2, TBW-3, and TBW-4 (Plume A); MW-16 and MW-17 (Plume B); and MW-5 (active tank area), to promote in situ bioremediation. Hydrogen peroxide was also injected periodically into wells in the Plume C area from July 2004 through January 2009.

Construction of an extraction system to remove separate-phase hydrocarbons (SPH) within the vicinity of Plume D began in March 2006. Seven existing wells (RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1) were converted to extraction wells by URS Corporation. The extraction system was completed in April 2006, and the system began operation in mid-May 2006. Groundwater extracted from the seven wells was treated through an oil/water separator, followed by three 2,000-pound liquid-phase activated carbon units in series, and was discharged into the local storm drain via an NPDES permit. Extracted soil vapor was treated through a thermal oxidizer and discharged into the atmosphere via a permit issued by the Bay Area Air Quality Management District. Six additional wells were installed within the vicinity of Plume D in March 2007 (RW-D6, RW-D7, RW-D8, RW-D9, RW-D10, and RW-D11) and were connected to the extraction system on June 11, 2007. In addition, six existing wells in the Plume C area (RW-C2, RW-C4 through RW-C7, and OB-C1) were connected to the DPE system in May 2009 and extraction from these wells commenced on May 26, 2009.

The extraction remediation system was shutdown on December 23, 2009. It may be restarted if free phase product is again detected or significant rebound of dissolved concentration of petroleum hydrocarbons is determined in subsequent groundwater monitoring events. Quarterly remediation system performance reports were submitted separately from this monitoring report to Alameda County Environmental Health (ACEH) and to the Regional Water Quality Control Board – San Francisco Bay Region (RWQCB).

3.0 FALL 2009 SEMIANNUAL MONITORING ACTIVITIES

3.1 Field Activities

The field activities, which included depth-to-groundwater/product measurement and well sampling, were conducted in accordance with the City of Oakland MSC Schedule and Protocol Table presented in Appendix A.

On October 29, 2009, ARCADIS personnel measured depth to water and depth to SPH using an electric oil/water interface probe in the following wells: MW-1, MW-2,

MW-5 through MW-17, TBW-5, RW-1, RW-A1, RW-A2, OB-A1, RW-B1 through RW-B4, RW-C1 through RW-C4, RW-C7OB-D1, and OB-D2. A number of monitoring wells have been eliminated from the monitoring program. Monitoring wells MW-3 and MW-4 have been abandoned and sealed (Ninyo & Moore 2004). Wells TBW-1, TBW-2, TBW-3, and TBW-4 were abandoned and sealed by Baseline in June 2007. Wells RW-D1 through RW-D11 were converted to extraction wells and could not be accessed for depth-to-groundwater measurements. These wells were accessed by OTG EnviroEngineering Solutions, Inc. (OTG) to confirm no SPH was present.

ARCADIS was unable to access TBW-6 in October 2009 due to a vehicle parked on top of it. Since SPH was detected in this well in April 2009, OTG visited the Site on December 16, 2009 to collect a depth-to-SPH measurement. SPH was not detected in TBW-6 at that time.

RW-C5, RW-C6, and OB-C1 were not accessible because of damage to the surface well boxes due to site activities. The heavy equipment utilized at the site bent the well lids and bolts preventing their removal. It does not appear the well casing has been compromised. These well boxes will be replaced prior to the next semiannual monitoring event.

The oil/water interface probe was decontaminated with liquinox and distilled water before use in each well to avoid potential cross contamination. Current and historical product thickness measurements, depth-to-groundwater measurements, and groundwater elevations calculated from groundwater measurements are presented in Table 1. Monitoring and remediation well locations are shown on Figures 2 and 3.

On October 29 and 30, 2009, ARCADIS personnel collected groundwater samples from monitoring wells MW-1, MW-5, MW-6, MW-8 through MW-10, and MW-12 through MW-17.

Prior to sampling, a clean, disposable, polyvinyl chloride (PVC) sampling bailer was used to purge a minimum of three well-casing volumes of groundwater from each of the 12 monitoring wells sampled during the current monitoring event. The wells were allowed to recover to at least 80 percent of their original static groundwater levels before sampling. Dissolved oxygen, temperature, pH, conductivity, and turbidity were measured for each well volume purged. Additionally, characteristics of the water (color, turbidity, odor, sheen) were noted on the field data sheets, which are included in Appendix B.

After the wells were purged, samples were collected using the disposable, PVC, bottom-discharging bailer that was used to purge the well. The samples were transferred from the bailer to the appropriate sample containers, labeled, and placed in a "wet chilled" cooler containing ice, under chain-of-custody protocol. The samples were secured in the cooler and transferred to Curtis & Tompkins, Ltd., Analytical Laboratories (C&T), a California Department of Health Services–certified environmental laboratory located in Berkeley, California. Purged and decontamination water generated during sampling activities was transferred into an on-site storage tank

that was part of the on-site extraction and treatment system maintained by the City of Oakland.

3.2 Sample Analyses

The groundwater samples were analyzed by C&T for the following parameters:

- total petroleum hydrocarbons (TPH) as gasoline (TPHg) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B
- TPH as kerosene (TPHk), TPH as diesel (TPHd), and TPH as motor oil (TPHmo) using U.S. EPA Method 8015B, with a silica-gel cleanup
- the aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary-butyl ether (MTBE) using U.S. EPA Method 8260B

4.0 MONITORING RESULTS

4.1 Shallow Groundwater Topography

Depth to groundwater was measured on October 29, 2009, using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater elevations were determined using well survey data from the "Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center" (Uribe 2003).

Groundwater elevations in the monitoring wells ranged from 5.53 feet mean sea level (msl) at MW-1 to 0.59 foot msl at MW-2 (Figure 2). Groundwater flow direction, measured between wells MW-1 and MW-10, is toward the northwest in the northern section of the Site at approximately 0.012 foot/foot (ft/ft), and toward the southwest (measured between wells MW-11 and MW-15) at approximately 0.011 ft/ft in the southern portion of the Site. A groundwater high (groundwater elevation of 9.85 feet msl) is observed in the vicinity of remediation well RW-B4, located in the vicinity of Plume B in the southern portion of the Site (Figure 3). This observed groundwater high may be due to the presence of coarse-grained backfill in the area. The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface or preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). The groundwater flow direction for this sampling period was similar to that reported by Ninyo & Moore in its July 14, 2004 Spring Semiannual Groundwater Monitoring Report for the Site, and in more recent ARCADIS monitoring reports.

4.2 Occurrence of Separate-Phase Hydrocarbons

Floating SPH was not observed in any wells where depth-to-water and depth-to-SPH were measured during this monitoring event. The results of the SPH assessment are presented in Table 1. Plumes B, C, and D showed a significant decrease in lateral extent of SPH compared to the April 2004 monitoring event. The monitoring wells in the Plume A area continue to not contain measurable amounts of SPH. A sheen was observed in wells RW-A1 and RW-A2. SPH was detected in the vicinity of RW-C7 in Plume C in April 2009 but was not detected during the current reporting period (Table 1; Figure 3). Historically, well OB-C1 has contained measureable amounts of SPH. This well could not be accessed during the current monitoring event because of damage to the well box. Remediation wells RW-D1 through RW-D11 in the Plume D area could not be accessed for SPH measurements because of the extraction system piping.

4.3 Contaminant Distribution in Groundwater

The analytical data from this groundwater monitoring event are presented in Table 1, along with historical analytical results. Laboratory analytical data reports are included in Appendix C. Historical data for volatile organic compounds, semivolatile organic compounds, leaking underground fuel tank metals, and other metals are provided in Appendix D (Tables D-1, D-2, D-3, and D-4, respectively).

For quality assurance/quality control (QA/QC), ARCADIS collected a duplicate sample from well MW-5 and analyzed it for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. Analytical results for the duplicate sample were consistent with those for the primary samples collected from well MW-5.

4.3.1 Screening Criteria

In the previous semiannual monitoring report, ARCADIS recommended that groundwater quality results be compared to the RWQCB Environmental Screening Levels (ESLs) for Groundwater Screening Levels (groundwater is not a current or potential drinking water resource; RWQCB 2008; Table F-1b) because they are the most applicable screening criteria for the current site conditions. The groundwater quality results had previously been compared to the San Francisco Airport Ecological Protection Zone (SFAEPZ) Tier I Standard and the RWQCB ESL for Surface Water Screening Levels Marine Habitats. These standards/screening levels both relate to the quality of the water in San Francisco Bay but not groundwater.

A comparison of the previous screening criteria and the recommended screening criteria is included in the table below. The groundwater quality results will be compared to the recommended screening criteria in this semiannual monitoring report.

Analyte	Previous Scr	Recommended Screening Criteria				
, unaryte	SFAEPZ Tier 1 Standard (µg/)	ESL Groundwater (Table F-1b) (µg/)				
Benzene	71	71	46			
Toluene	NA	40	130			
Ethylbenzene	29,000	30	43			
Total Xylenes	NA	100	100			
MTBE	NA	180	1800			
TPH gasoline	3700	210	210			
TPH diesel	640	210	210			
TPH motor oil	640	210	210			
TPH kerosene	NA	NA	210			

Notes:

 $\mu g/l = micrograms per liter$

NA = screening criteria not previously applied to analyte

4.3.2 Benzene

Benzene concentrations detected above laboratory analytical detection limits (LADLs) were reported in groundwater samples collected from four of the 12 monitoring wells sampled during the current monitoring event. The maximum benzene concentration was detected in well MW-6 at 98 micrograms per liter (μ g/l).

Benzene was also reported in groundwater samples collected from wells MW-1 (59 μ g/l), MW-5 (5.2 μ g/l; 5.3 μ g/l in the duplicate sample), and MW-16 (59 μ g/l).

The benzene concentrations detected during the October 2009 sampling event were generally consistent with historical concentrations for most monitoring wells.

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for benzene is 46 μ g/l (RWQCB 2008; Table F-1b). Benzene concentrations were above the RWQCB ESL for benzene (46 μ g/l) in samples collected from three monitoring wells (MW-1, MW-6, and MW-16).

MW-16 is the only well bounding the Site and San Leandro Bay ("the Bay") that exceeded regulatory standards. The benzene concentration measured in this well increased from the benzene concentration measured in April 2009 (below laboratory detection limit of 0.5 μ g/l), but was similar to that measured in October 2007 and November 2008 (31 μ g/l and 21 μ g/l, respectively).

4.3.3 Toluene

Toluene was reported in groundwater samples collected from three of the 12 monitoring wells sampled during the current monitoring event. The maximum toluene concentration was detected in MW-1 at 9.4 μ g/l.

Toluene was also reported in groundwater samples collected from wells MW-6 (4.1 μ g/l) and MW-16 (3.5 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene is 130 μ g/l (RWQCB 2008; Table F-1b). Concentrations of toluene above the ESL of 130 μ g/l were not detected in samples collected from the monitoring wells during the October 2009 sampling event.

4.3.4 Ethylbenzene

Ethylbenzene was reported in groundwater samples collected from four of the 12 monitoring wells sampled during the current monitoring event. The maximum ethylbenzene concentration was detected in MW-5 (200 μ g/l; 210 μ g/l in the duplicate sample). Ethylbenzene was also reported in groundwater samples collected from wells MW-1 (3.5 μ g/l), MW-6 (3.0 μ g/l), and MW-16 (3.1 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for ethylbenzene is 43 μ g/l (RWQCB 2008; Table F-1b). Ethylbenzene was detected in a sample collected from one monitoring well (MW-5) above the ESL of 43 μ g/l during the October 2009 sampling event.

4.3.5 Total Xylenes

Total xylenes were reported in groundwater samples collected from six of the 12 monitoring wells sampled during the current monitoring event. The maximum total xylenes concentration was detected in MW-1 at 10.7 μ g/l.

Total xylenes were also reported in samples collected from wells MW-5 (8.1 μ g/l; 8.7 μ g/l in the duplicate sample), MW-6 (4.76 μ g/l), MW-9 (0.61 μ g/l), MW-15 (2.41 μ g/l), and MW-16 (3.03 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for total xylenes is 100 μ g/l (RWQCB 2008; Table F-1b). Concentrations of total xylenes were not detected above the ESL of 100 μ g/l in samples collected from the monitoring wells during the October 2009 sampling event.

smr-MSC-gw-Mar10-LC010060.doc

4.3.6 MTBE

MTBE was reported in groundwater samples collected from two of the 12 monitoring wells sampled during the current monitoring event. The maximum MTBE concentration was detected in MW-5 (23 μ g/l; 20 μ g/l in the duplicate sample). MTBE was also reported in samples collected from well MW-6 at 5.0 μ g/l.

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE is 1,800 μ g/l (RWQCB 2008; Table F-1b). Concentrations of MTBE were not detected above the ESL of 1,800 μ g/l in samples collected from the monitoring wells during the October 2009 sampling event.

4.3.7 TPHg

TPHg was reported in groundwater samples collected from six of the 12 monitoring wells sampled during the current monitoring event. The maximum TPHg concentration was detected in MW-5 (3,100 μ g/l; 3,300 μ g/l in the duplicate sample). TPHg was also detected in wells MW-1 (1,800 μ g/l), MW-6 (560 μ g/l), MW-12 (160 μ g/l), MW-15 (81 μ g/l), and MW-16 (590 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg is 210 μ g/l (RWQCB 2008; Table F-1b). TPHg was detected above the ESL of 210 μ g/l in samples collected from four monitoring wells (MW-1, MW-5, MW-6, and MW-16).

TPHg was only detected above the ESL in one monitoring well (MW-16) bounding the Site and the Bay.

4.3.8 TPHd

TPHd was reported in groundwater samples collected from eight of the 12 monitoring wells sampled during the current monitoring event. The maximum TPHd concentration was detected in MW-16 at 5,600 μ g/l. TPHd was also detected in wells MW-1 (810 μ g/l), MW-5 (1,100 μ g/l; 600 μ g/l in duplicate sample), MW-6 (1,200 μ g/l), MW-9 (220 μ g/l), MW-12 (280 μ g/l), MW-13 (81 μ g/l), and MW-15 (110 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). TPHd concentrations were above the ESL of 210 μ g/l in samples collected from six monitoring wells (MW-1, MW-5, MW-6, MW-9, MW-12, and MW-16).

Wells MW-9 and MW-16 are located along the southwestern perimeter of the Site, between the Site and the Bay. The concentration of TPHd measured in MW-9 was consistent with concentrations detected historically. The concentration of TPHd measured in MW-16 decreased significantly since it was last sampled in November 2008 (52,000 μ g/l).

4.3.9 TPHmo

TPHmo was reported in groundwater samples collected from two of the 12 monitoring wells sampled during the current monitoring event. The maximum TPHmo concentration was detected in MW-16 at 12,000 μ g/l. TPHmo was also detected in well MW-13 at 650 μ g/l.

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHmo (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). TPHmo concentrations were above the ESL of 210 μ g/l in samples collected from two monitoring wells (MW-13 and MW-16).

The TPHmo concentration measured in MW-13 was consistent with the concentration detected in April 2009 (610 μ g/l). The TPHmo concentration measured in MW-16 decreased significantly since it was last sampled 1 in November 2008 (110,000 μ g/).

4.3.10TPHk

TPHk was reported in groundwater samples collected from six of the 12 monitoring wells sampled during the current monitoring event. The maximum TPHk concentration was detected in MW-16 at 4,100 μ g/l. TPHk was also detected in wells MW-1 (820 μ g/l), MW-5 (1,100 μ g/l; 620 μ g/l in duplicate sample), MW-6 (1,000 μ g/l), MW-9 (130 μ g/l), and MW-12 (220 μ g/l).

The RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-1b). TPHk concentrations were above the ESL of 210 μ g/l in samples collected from five monitoring wells (MW-1, MW-5, MW-6, MW-12, and MW-16).

4.4 Laboratory Analysis

Current laboratory analytical results and historical results are presented in Table 1. Copies of laboratory data sheets and chain-of-custody documents are included in Appendix C.

5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

A laboratory QA/QC review was performed on the laboratory analytical data to evaluate the quality and usability of the analytical results. The following sections summarize the QA/QC review.

5.1 Method Holding Times

The procedures used to extract and analyze the collected samples were reviewed by ARCADIS personnel and were found to be within the appropriate holding times for all samples.

5.2 Blanks

One field blank (MW-8-FB) was collected along with the corresponding groundwater sample and was analyzed for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. Additionally, laboratory method blank results were reviewed for detection of target analytes. No target analytes were detected in the field blank. These results indicate that sample collection methods were effective, and that transportation and laboratory procedures were not a source of contamination.

5.3 Laboratory Control Samples

Laboratory quality control samples were conducted by C&T for TPHg, TPHd, TPHk, TPHmo, and BTEX. All samples were within the percentage recovery range required by the laboratory.

5.4 Surrogates

All surrogates, including hexacosane, bromofluorobenzene, and trifluorotoluene for TPHg, TPHd, TPHk, and TPHmo, and bromofluorobenzene, 1,2-dichloroethane-d4, and toluene-d8 for BTEX, were used for laboratory QA/QC analysis. All of the surrogates were within the acceptable laboratory recovery limits.

5.5 False-Positive Petroleum Hydrocarbon Identification

Qualifiers were reported in the laboratory analytical reports and noted in Table 1 and on Figure 2.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the data collected during the Fall 2009 sampling event and presents the recommendations for the Spring 2010 monitoring period.

- Groundwater elevations in the monitoring wells ranged from 5.53 feet msl at MW-1 to 0.59 foot msl at MW-2. The direction of shallow groundwater flow is toward the northwest in the northern section of the Site at a 0.012 ft/ft gradient and toward the southwest in the southern portion of the Site at 0.011 ft/ft. A groundwater high was observed in the vicinity of well RW-B4 (Plume B) in the southern portion of the Site. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill.
- SPH was not observed in any wells where depth-to-SPH was measured during this monitoring event.
- Benzene was detected above LADL in four of the 12 wells sampled. The maximum concentration of benzene detected in shallow groundwater was 98 μg/l in well MW-6. Concentrations of benzene are above the RWQCB ESL Groundwater Screening

Level (groundwater is not a current or potential drinking water resource) for benzene of 46 μ g/l in three of the wells sampled.

- Toluene was detected above LADL in three of the 12 wells sampled. The maximum concentration of toluene detected in shallow groundwater was 9.4 μg/l in well MW-1. No concentrations of toluene exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for toluene of 130 μg/l during the October 2009 event.
- Ethylbenzene was detected above LADL in four of the 12 wells sampled. The maximum concentration of ethylbenzene was detected in shallow groundwater at 200 μ g/l in well MW-5. The concentration of ethylbenzene is above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for ethylbenzene of 43 μ g/l in one well sampled.
- Total xylenes were detected above LADL in six of the 12 wells sampled. The maximum concentration of xylenes detected in shallow groundwater was $10.7\mu g/l$ in well MW-1. No concentrations of total xylenes exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for ethylbenzene of $100 \mu g/l$ during the October 2009 event.
- MTBE was detected above LADL in two of the 12 wells sampled. The maximum concentration of MTBE detected in shallow groundwater was 23 µg/l in well MW-5. No concentrations of MTBE exceeded the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for MTBE of 1,800 µg/l during the October 2009 event.
- TPHg was detected in six of the 12 wells sampled. The maximum concentration of TPHg detected in shallow groundwater was 3,100 μg/l in well MW-5. TPHg concentrations were above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHg of 210 μg/l in four of the wells sampled.
- TPHd was detected above LADL in eight of the 12 wells sampled. The maximum concentration detected was present in well MW-16 at a concentration of 5,600 μ g/l. TPHd concentrations were above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) of 210 μ g/l in six of the wells sampled.
- TPHmo was detected in two of the 12 wells sampled and had a maximum concentration of 12,000 μ g/l in well MW-16. TPHmo concentrations were above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHd (middle distillates) of 210 μ g/l in two wells sampled.
- TPHk was detected above laboratory analytical limits in six of the 12 wells sampled. The maximum concentration of TPHk detected was present in well MW-16 (4,100 μ g/l). TPHk concentrations were above the RWQCB ESL Groundwater Screening Level (groundwater is not a current or potential drinking water resource) for TPHk (middle distillates) of 210 μ g/l in five wells sampled.

Based on the results of the Fall 2009 groundwater monitoring event, ARCADIS makes the following recommendations:

- Continue semiannual groundwater monitoring on site due to the elevated concentrations of TPHg, TPHd, TPHmo, and benzene reported during the current monitoring event.
- Continue monitoring SPH.
- Continue in situ remediation using hydrogen peroxide and continue groundwater extraction until the end of 2009.
- Repair the damaged well boxes in the Plume C area.
- Submit a Human Health Risk Assessment during the first quarter of 2010.

7.0 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard of care exercised by environmental consultants performing similar work in the project area. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. Please note this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions and the referenced literature. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which ARCADIS has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. ARCADIS should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.

8.0 SELECTED REFERENCES

- Baseline Environmental Consulting (Baseline). 2001. Site History and Characterization. January.
- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2002. Authorization to Discharge Treated Groundwater Under the Requirements of Order No. 01-100, NPDES Permit No. CAG 912002. April 23.

- 2007. Notice of General Permit Coverage for Discharge from the City of Oakland Municipal Service Center located at 7101 Edgewater Drive, Oakland, Alameda County, CA 94621, under the Requirements of Order No. R2-2006-0075, NPDES Permit No. CAG912002 (Fuel General Permit), March 12.
- 2008. Screening for Environmental Concerned Sites with Contaminated Soil and Groundwater. Interim Final – November 2007 (Revised May 2008). May.
- LFR Inc. (LFR). 2009. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center 7101 Edgewater Drive, Oakland, California. June 12.
- Ninyo & Moore. 2004. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center, 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. July 14.
- OTG Enviroengineering Solutions, Inc. 2006. Startup Report, Groundwater Remediation at City of Oakland Municipal Services Center. June.
- Uribe & Associates (Uribe). 2002. Test/Observation Well Installation Report, U & A Project 291-03. April 2.

———. 2003. Final Report, Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center. May.

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgowator Drive Oakland California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
MW-1														
10/4/89	10.20			8020					540	65	26	14	22	
10/4/89	10.20			8240						120	46	43	78	
4/27/93	10.20			8020					<1,000	< 1.0	< 1.0	<1.0	< 1.0	
4/19/95	10.20			8020					3,200	880	15	23	21	
7/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6	
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.1	4.6	
2/21/96	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16	
5/13/96	10.20	4.33	5.87	8020					7,300	2,000	30	42	38	
8/27/96	10.20	5.25	4.95	8020					380	61	2.4	< 0.5	4.2	
2/23/98	10.20	1.75	8.45	8020		< 50	< 500	< 50	820	160	4.9	3	9.7	
8/19/98	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.1	0.84	8.5	< 5.0
11/11/98	10.20	5.64	4.56											
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	< 50	1,100	190	5	3	12	< 5.0
5/27/99	10.20	3.96	6.24											
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	< 50	370	37	0.9	< 0.5	1.9	< 5.0
11/22/99	10.20	5.46	4.74											
1/18/00	10.05	5.41	4.64											
1/19/00	10.05			8020	SGC	50	<200	< 50	660	43	2.3	1.1	6	< 5.0
5/11/00	10.05	4.63	5.42											
8/24/00	10.05	5.07	4.98											
8/25/00	10.05			8020	SGC	340	<250	290	480	53	1.4	< 0.5	2.9	< 5.0
11/28/00	10.05	5.60	4.45											
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	<250	<61	1,500	110	6.3	<1.5	9.9	<15
5/17/01	10.05	4.00	6.05											
8/16/01	10.05	4.17	5.88		Filtered+SGC	280	<200B	<100	4,000	640	9.7	5.7	13	< 5.0
12/15/01	10.05	5.52	4.53											
4/9/02	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	<5
6/21/02	10.05	4.92	5.13											
9/13/02	10.05	5.52	4.53	8021	SGC	88 b,c	< 300	88	260	9.6	< 0.5	< 0.5	1.0	<2
4/22/03	10.05	4.41	5.64	8021B	SGC	570 L Y	< 300	660	1,900 Z	400.0	9.6	5.4	8.1	<2.0
4/28/04	10.05	3.95	6.10	8260B	SGC	<100	<400	<100	154	20	<1.0	< 1.0	2.3	<1.0
10/29/04	10.05	5.68	4.37	8260B	SGC	230 L Y	< 300	240	340 H Z	6.4	0.6	< 0.5	1.4	< 0.5
9/2/05 (1)	10.05	4.35	5.70	8260B	SGC	140 L Y	< 300	170	350	6.6	1.0	< 0.5	2.3	< 0.5
4/4/2006 (3)	10.05	2.24	7.81	8260B	SGC	830 L Y	< 300	1,100 L Y	3,700	470	13	7.8	6.3	< 3.6
9/6/06	10.05	4.98	5.07	8260B	SGC	3,400 H L	400 L	3,100 H	480	4.2	1.0	< 0.5	1.9	< 0.5
4/5/07	10.05	3.56	6.49	8260B	SGC	500 L Y	< 300	490 L Y	1,500 Y	170	7.2	3.6	5.7	<1.3
10/2/07	10.05	5.59	4.46	8260B	SGC	600 Y	< 300	710 Y	460 Y	6.1	1.1	< 0.5	1.2	< 0.5
3/20/08 (8)	10.05	3.53	6.52	8260B	SGC	1,000 Y	< 300	960	1,600 Y	53	4.1	1.2	6.3	< 0.5

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgowator Drive Oakland California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
11/21/08 (10)	10.05	5.48	4.57	8260B	SGC	110 Y	< 300	87 Y	210 Y	2.4	0.52	< 0.50	1.3	< 0.50
4/1/09	10.05	3.30	6.75	8260B	SGC	480 Y	< 300	540	1,300 Y	79	6.40	2.9	5.1	< 0.50
10/30/09	10.05	4.52	5.53	8260B	SGC	810Y	< 300	820Y	1,800Y	59	9.40	3.5	10.7	< 0.50
10/20/07	10.05	1.52	5.55	02001	500	0101	2500	0201	1,0001	57	2.10	5.5	10.7	\$0.50
MW-2														
10/4/89	10.47			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	10.47			8240						2	< 2.0	< 2.0	< 2.0	
4/27/93	10.47			8020					<1,000	< 1.0	< 1.0	<1.0	< 1.0	
4/19/95	10.47			8020					< 50	1.8	< 0.5	< 0.5	< 0.5	
7/27/95	10.47	6.22	4.25	8020					< 50	2.3	< 0.5	< 0.5	< 0.5	
11/20/95	10.47	7.49	2.98	8020					< 50	2.2	< 0.5	< 0.5	< 0.5	
2/12/96	10.47	6.68	3.79	8020					< 50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	< 0.5	< 0.5	
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		< 50	< 500	< 50		1.6	< 0.5	< 0.5	< 0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330			< 50	4.1	3.4	0.8	2.6	< 5.0
11/11/98	10.47	7.37	3.10											
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	< 50	< 50	3.5	0.6	0.6	1.2	< 5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	< 50	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	10.47	7.58	2.89											
1/18/00	10.47	7.41	3.06	8020	SGC	60 a	660	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.47	6.43	4.04											
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	< 59	<240	< 59	< 50	3.6	< 0.5	< 0.5	< 0.5	<5
5/17/01	10.47	6.90	3.57											
8/16/01	10.47	6.95	3.52		Filtered+SGC	< 50	200B	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/15/01	10.47	7.21	3.26											
4/5/02	10.47	6.02	4.45	8021	SGC	200	400		< 50	2.9	< 0.5	< 0.5	< 0.5	<5
6/21/02	10.47	8.07	2.40											
9/17/02	10.47	7.12	3.35	8021	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	<2
4/23/03	10.47	6.36	4.11	8021B	SGC	< 50	< 300	< 50	< 50	1.6	<.50	<.50	<.50	<2.0
4/28/04	10.47	5.99	4.48	8260B	SGC	<100	<400	<100	<100	< 0.5	<1.0	<1.0	1.3	<1.0
9/1/05 (1)	10.47	6.08	4.39	8260B	SGC	< 50	< 300	< 50	< 50	2.8	< 0.5	< 0.5	< 0.5	0.8
4/4/2006 (3)	10.47	4.96	5.51	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	0.5	0.5
9/6/06	10.47	9.31	1.16											
4/5/07	10.47	9.21	1.26	8260B	SGC	< 50	< 300	< 50	< 50	1.6	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.47	10.81	-0.34											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
3/20/08 (8)	10.47	12.36	-1.89	8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
11/18/08	10.47	11.07	-0.60	8260B										
4/1/09	10.47	10.80	-0.33	8260B	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 0.5
4/1/09 dup				8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
10/29/09	10.47	9.88	0.59											
MW-3														
10/4/89				8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89				8240						< 2.0	< 2.0	<2.0	< 2.0	
2/23/98						< 50	< 500	< 50						
11/11/98		5.83												
2/23/99					Submerged									
5/27/99		1.68												
8/24/99		4.76												
11/22/99		6.46												
11/22/99					Destroyed									
MW-4														
10/4/89	7.89			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						< 2.0	< 2.0	<2.0	< 2.0	
11/11/98	7.89	6.25	1.64											
2/23/99	7.89	3.10	4.79											
5/27/99	7.89	4.03	3.86											
8/24/99	7.89	5.07	2.82											
11/22/99	7.89	6.32	1.57											
11/22/99					Destroyed									
MW-5														
12/13/91	11.15			8020		1,900			13,000	1,500	190	970	2,500	
12/13/91	11.15			8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240	*					1,800	<250	1,000	3,800	
12/13/91	11.15			8240	Dup					1,600	<250	980	3,500	
4/27/93	11.15			8240	•	12,000			35,000	2,100	< 1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
11/20/95	11.15	6.98	4.17	8020		< 50	< 50	< 50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	< 50	< 50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	< 50	< 50	5,900	430	26	580	760	
5/13/96	11.15			8020	Dup	< 50	< 50	< 50	7,300	360	22	49	640	

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
8/27/96	11.15	6.40	4.75	8020		2,000	<51	<51	6,600	430	27	600	650	
8/27/96	11.15			8020	Dup	6,600	< 51	< 51	6,300	410	25	580	620	
2/23/98	11.15	4.22	6.93	8020		< 50	< 500	< 50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	< 250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01	8260	SGC									6,700
11/11/98	11.15	6.51	4.64											
2/23/99	11.15	3.59	7.56	8020	SGC	2,000	700	< 50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44											
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 e	190 e	5.5	340 e	78	380 e
11/22/99	11.15	6.16	4.99											
1/18/00	11.15	6.60	4.55											
1/19/00	11.15			8020	SGC	100	320	< 50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/00	11.15	6.47	4.68											
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	<250	<61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	< 200	< 50	7,500	140	7	580	101	170
8/16/01	11.15	4.87	6.28		Filtered+SGC	320	500B	<100	2,300	46	<5	110	24	850
12/15/01	11.15	5.50	5.65											
4/9/02	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53.9	166
6/21/02	11.15	6.01	5.14	8021	SGC	200 a,b,c	< 300	190	4,600	130	33	380	56	440
9/12/02	11.15	6.40	4.75	8021	SGC	620 b,c	< 300	650	4,000 J	120	< 0.5	260	16	580
4/22/03	11.15	4.69	6.46	8021B	SGC	1600 L Y	< 300	1800	6000	91	<1.0	870	59.4	150 C
4/28/04	11.15	5.70	5.45	8260B	SGC	<650	< 400	< 810	4780	34	<1.0	560	44	47
10/29/04	11.15	5.73	5.42	8260B	SGC	840 L Y	< 300	940	3000	18	2.1	280	16.1	94
9/2/05 (1)	11.15	6.08	5.07	8260B	SGC	510 L Y	< 300	640	1600	13	1.4	55	8.6	92
4/5/06 (3)	11.15	3.64	7.51	8260B	SGC	840 L Y	< 300	850 H	3,400	14	2.1	280	13	31
9/6/06	11.15	6.21	4.94	8260B	SGC	340 Y	< 300	400 Y	2000	8.3	1.1	8.2	6.8	50
4/5/07	11.15	5.31	5.84	8260B	SGC	340 L Y	< 300	310 L Y	3,100 Y	9.3	<2.0	230	13	38
10/2/07	11.15	6.51	4.64	8260B	SGC	400 Y	< 300	440	3,000 Y	11	1.4	100	6.8	46
3/20/08 (8)	11.15	5.37	5.78	8260B	SGC	1,400 Y	< 300	1,400	4,100 Y	8.4	1.7	270	12	23
11/21/08 (10)	11.15	6.51	4.64	8260B	SGC	660 Y	< 300	690 Y	2,600	11	1.7	240	6.5	20
4/2/09 (12)	11.15	4.89	6.26	8260B	SGC	730 Y	< 300	840	4,800 Y	8.8	2.5	380	13.3	15
10/30/09	11.15	5.86	5.29	8260B	SGC	1,100Y	< 300	1,100Y	3,100	5.2	<1.7	200	8.1	23
10/30/09dup				8260B	Dup	600Y	< 300	620Y	3,300	5.3	<1.7	210	8.7	20
MW-6														
12/13/91	10.98			8020		520			780	110	2.7	<2.5	5.5	

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
12/13/91	10.98			8240						95	5	<5	<5	
4/27/93	10.98			8020		<1,000			<1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	< 0.8	3.9	29	
4/19/95	10.98			8020	Dup	3,700			3,000	310	3.1	2.7	100	
7/27/95	10.98	7.09	3.89	8020		3,900			6,100	430	15	200	600	
7/27/95	10.98			8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020		850			6,800	160	4.6	8	240	
11/20/95	10.98			8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700			2,800	230	2.8	3.8	44	
2/21/96	10.98			8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020		400	< 50	< 50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
8/19/98	10.98				SPH: 0.125 ft.									
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft.									
2/23/99	10.98	7.31	3.67		SPH: NM									
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft.									
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft.									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft.									
1/18/00	10.98	8.08	3.05		SPH: 0.19 ft.									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft.									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft.									
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft.									
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft., f	820	<240	< 60	6,100	181	<5	14.2	<5	< 50
2/26/01	10.98			8260B						270	3	9	3	(19)
5/17/01	10.98	7.57	3.66		SPH: 0.32 ft.									
8/16/01	10.98	7.75	3.49		SPH: 0.32 ft., f	740	200B	< 100	4,200	360	4.6	13	12	14
12/15/01	10.98	7.58	3.40		SPH: 0.07 ft.									
4/3/02	10.98	6.92	4.06		SPH: 0.11 ft.									
6/21/02	10.98	7.05	3.93		SPH: 0.19 ft.									
9/12/02	10.98	7.22	4.02		SPH: 0.33 ft.									
4/22/03	10.98	4.71	6.27		SPH: 0.16 ft.									
4/28/04	10.98	5.09	5.89		SPH: 0.23 ft.									
10/27/04	10.98	6.12	4.86		SPH: product on probe									
8/31/05	10.98	6.11	4.87		SPH: 0.95 ft.									
3/27/06	10.98	4.11			SPH: 0.57 ft.									
9/6/06	10.98	5.42	5.56	8260B	SPH: 0.01 ft.	180 Y	< 300	200 Y	1,300	330	3.9	<1.7	3.7	4.8
9/6/06	10.98			8260B	Dup	2,400 H L	< 300	2,300 H	1,200	350	3.6	<1.3	3.4	4.7

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center Table 1

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	МТВЕ (µg/l)
4/4/07	10.98	4.37	6.61	8260B	SGC	3,300	< 300	3,000 H	1,400 H Y	520	<4.2	<4.2	<4.2	4.5
10/2/07	10.98	7.25	3.73	8260B	SGC	2,400	340 Y	2000	890 Y	270	3.8	5.5	3	7.8
					SPH: Residual Product									
(8)					noted while bailing/									
3/20/08 (8)	10.98	6.59	4.39	8260B	SGC	7,200	820	5,900	1,100 Y	500	3.5	5.9	3.1	7.7
					SPH: Residual Product									
11/21/08 (10)	10.09	6.06	4.02	9 2 (0 D	noted while bailing/	1 500 V	< 200	1 200 V	450 N	06	1.0	< 0.50	1.2	57
4/1/09	10.98 10.98	6.06	4.92	8260B	SGC SPH: 0.03 ft.	1,500 Y	< 300	1,200 Y	450 Y	96	1.9	< 0.50	1.2	5.7
10/30/09	10.98	4.48 6.97	6.50 4.01	8260B	SFIL 0.05 IL	1,200Y	< 300	1,000Y	 560Y	 98	4.1	3.0	 4.76	5.0
10/30/09	10.98	0.97	4.01	8200B	300	1,2001	< 500	1,0001	5001	20	4.1	5.0	4.70	5.0
MW-7														
12/13/91	11.51			8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/13/91	11.51			8240						<5	< 5	<5	<5	
4/27/93	11.51			8240		<1,000			<1,000	< 1.0	< 1.0	<1.0	< 1.0	
4/19/95	11.51			8240		< 50	<1,000		< 50	<2.0	<2.0	<2.0	< 2.0	
7/27/95	11.51	6.87	4.64	8240		< 50	<1,000		< 50	<2.0	<2.0	<2.0	<2.0	
11/20/95	11.51	8.48	3.03	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	1.5	
2/21/96	11.51	6.29	5.22	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	< 0.5	< 0.5	
8/27/96	11.51	6.80	4.71	8020						< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	11.51	6.88	4.63											
11/11/98	11.51	7.40	4.11											
2/23/99	11.51	5.57	5.94	8020		< 50	<200	< 50	80	< 0.5	< 0.5	< 0.5	1	< 5.0
5/27/99	11.51	6.56	4.95		SGC		< 200							
8/24/99	11.51	6.29	5.22	8020	SGC	< 50	<200	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5
11/22/99	11.51	6.80	4.71											
1/18/00	11.51	7.31	4.20											
1/19/00	11.51			8020	SGC	< 50	< 200	< 50	54	1.5	1.5	2.4	3.8	< 5.0
5/11/00	11.51	6.41	5.10											
8/24/00	11.51	7.11	4.40	8020		< 50	<250	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.51	7.30	4.21											
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
5/17/01	11.51	6.65	4.86											
8/16/01	11.51	5.97	5.54		Filtered+SGC	< 50	600B	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/15/01	11.51	6.43	5.08											
4/8/02	11.51	6.17	5.34	8021	SGC	80	< 200		< 50	< 0.5	0.5	0.6	< 0.5	<5
6/21/02	11.51	6.75	4.76	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3

Table 1											
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons											
Municipal Service Center											

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
9/12/02	11.51	7.05	4.46	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
4/22/03	11.51	6.24	5.27	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4 C
4/28/04	11.51	6.61	4.90	8260B	SGC	<100	<400	< 100	< 100	1.6	< 1.0	< 1.0	<1.0	<1.0
9/2/05 (1)	11.51	6.56	4.95	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
4/5/06 (3)	11.51	4.58	6.93	8260B	SGC	< 50	< 300	< 50	< 50	2.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.51	6.67	4.84											
4/5/07	11.51	6.13	5.38	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
10/2/07	11.51	7.07	4.44											
3/20/08 (8)	11.51	6.24	5.27	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
3/20/08 dup				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
11/18/08	11.51	7.40	4.11											
4/2/09 (12)	11.51	6.95	4.56	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.3
10/29/09	11.51	6.60	4.91	8260B	SGC									
MW-8														
11/20/96	12.22			8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/97	12.22	9.59	2.63	8020		200			< 50	< 0.5	< 0.5	< 0.5	< 0.5	2
2/24/98	12.22	8.42	3.80	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	12.22	9.49	2.73	8020	SGC	< 50	<250	< 50	< 50	1.6	3.4	1	2.8	< 5.0
11/11/98	12.22	9.64	2.58	8020	SGC	< 50	<200	< 50	< 50	0.9	0.8	0.6	2.3	< 5.0
2/23/99	12.22	11.53	0.69	8020		700	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
1/18/00	12.22	8.31	3.91	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	12.22	9.69	2.53	8020	SGC	< 50	<200	< 50	< 50	< 0.5	1.3	< 0.5	2.1	< 5.0
8/24/00	12.22	9.40	2.82		000									
8/25/00	12.22			8020	SGC	85	<250	< 50	< 50	<0.5	10.5	10.5	-0.5	- 5 0
11/28/00	12.22	9.40	2.83	8020	SGC	< 50	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01 5/17/01	12.22 12.22	9.50	2.72 2.51	8020	Filtered+SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/18/01	12.22	9.71	2.51	8020	Filtered+SGC	< 50	<200	 <50	 < 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
3/18/01	12.22			8020	rillereu+SGC	< 50	< 200	< 50	< 50	<0.5	<0.5	< 0.5	<0.5	< 5.0
8/16/01	12.22	9.80	2.42		Filtered+SGC	< 50	< 200	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/15/01	12.22	9.28	2.94	8021	SGC	390	1,300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/8/02	12.22	9.55	2.67	8021	SGC	440	800		< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02	12.22	9.71	2.51											
9/18/02	12.22	9.86	2.36	8021	SGC	< 50	< 300	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center

(feet)(feet)(feet)(feet)(feet)(feet) $4/22/03$ 12.229.542.688021BSGC <50 <300 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 $<0.$	(µg/l)	$(\mu\sigma/h)$	۹ ،
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	(µg/l)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5 < 0.5	< 0.5	<2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 0.5	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 0.5	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 0.5	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 0.5	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 0.5	< 0.5
4/2/09 12.22 9.54 2.68 8260B SGC <50		< 0.50	< 0.50
10/30/09 12.22 9.67 2.55 8260B SGC <50 <300 <50 <50 <0.50 <0 MW-9 11/20/96 10.77 8020 1,900 240 21 0.3 11/20/97 10.77 7.91 2.86 8020 300 20 <0		< 0.50	< 0.50
MW-9 11/20/96 10.77 8020 1,900 240 21 0.8 11/20/97 10.77 7.91 2.86 8020 300 20 <0		<0.50 <0.50	< 0.50 < 0.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 \0.50	×0.50	~ 0.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
11/20/9710.777.912.86802030020<02/24/9810.776.114.668020<50	1 1.8	2.2	
2/24/98 10.77 6.11 4.66 8020 <50 <50 2,200 540 5.		1.8	<1.0
·		4.9	
		5.3	
8/19/98 10.77 7.88 2.89 8020 SGC 190 <250 160 740 370 8.		7.3	< 5.0
11/11/98 10.77 8.23 2.54 8020 SGC <50 230 <50 700 130 4.		3.9	< 5.0
2/23/99 10.77 6.65 4.12 8020 1,100 3,700 <50 1,100 620 9.		7.7	< 5.0
5/27/99 10.77 7.70 3.07 8020 SGC 70 300 <50 950 470 1	1.5	9.2	< 5.0
8/24/99 10.77 8.12 2.65 8020 SGC 890 1,700 <50 290 45 2.	3 < 0.5	3	< 5.0
11/22/99 10.77 8.33 2.44 8020 SGC 1,000 6,000 <50 170 12 1.	3 < 0.5	2	< 5.0
1/18/00 10.77 8.63 2.14 8020 SGC 200 a 2,300 <50 160 5.7 1.	9 0.6	4.2	< 5.0
5/11/00 10.77 7.70 3.07 8020 SGC 180 a 980 <100 1,050 280 7.	< 2.5	5.9	<25
8/24/00 10.77 8.31 2.46			
8/25/00 10.77 8020 SGC 580 2,200 170 180 23 2.		2.7	< 5.0
11/28/00 10.77 8.45 2.32 8020 SGC 200 1,600 <50 130 1.9 <0	.5 < 0.5	< 0.5	< 5.0
11/28/00 10.77 8.45 2.32 Filtered+SGC <50 <200 <50			
2/26/01 10.77 6.40 4.37 8020 Filtered+SGC 120 <200 <50 142 33 1.	8 < 0.5	< 0.5	< 5.0
5/17/01 10.77 9.88 0.89			
5/18/01 10.77 8020 Filtered+SGC <50 <200 <50 74 4.6 <0		< 0.5	< 5.0
8/16/01 10.77 8.05 2.72 Filtered+SGC <50 <200 <100 70 0.62 <00		< 0.5	<5
12/16/01 10.77 7.75 3.02 8021 SGC 1,400 4,100 <50 210 15 1.		2.2	<5
4/5/02 10.77 7.50 3.27 8021 SGC 870 1,000 1,498 367 1		7.8	<5
6/20/02 10.77 8.27 2.50 8021 SGC <50 <300 <50 430 180 5.		4.15	<2
9/18/02 10.77 8.25 2.52 8021 SGC 63 b,c < 300 60 250 49 5.	8 < 0.5	3.1	<2
4/22/03 10.77 7.25 3.52 8021B SGC <50 <300 <50 69 4.1 C <0	_		
4/28/04 10.77		0.9	<2

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Education Drive, Orbitand, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/27/04	10.77	NM ⁽⁴⁾												
9/6/06	10.77	8.44	2.33	8260B	SGC	210 Y	< 300	150 Y	240	58	5.3	< 0.5	5.68	< 0.5
4/3/07	10.77	8.28	2.49	8260B	SGC	180 H Y	< 300	140 H	240 Z	27	4.2	< 0.5	5.32	< 0.5
4/3/07	10.77			8260B	Dup	190 H Y	< 300	160 H	260 Z	28	4.5	< 0.5	5.87	< 0.5
10/3/07	10.77	8.58	2.19	8260B	SGC	110 Y	< 300	110 Y Z	240 Y	1	2.4	< 0.5	3.53	< 0.5
3/20/08 (8)	10.77	8.46	2.31	8260B	SGC	170 Y	< 300	150 Y	230	65	4.2	< 0.5	5.13	< 0.5
3/20/08 dup				8260B	SGC	190 Y	< 300	180 Y	250	66	4.4	< 0.5	5.5	< 0.5
$11/21/08^{(10)}$	10.77	8.63	2.14	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	10.77	8.08	2.69	8260B	SGC	130 Y	380	53 Y	70 Y	82	1.4	< 0.50	1.0	< 0.50
10/30/09	10.77	8.08	1.86	8260B	SGC	130 T 220Y	< 300	130Y	< 50	< 0.50	< 0.50	< 0.50	0.61	< 0.50
10/30/09	10.77	0.91	1.80	8200B	500	2201	< 500	1501	< 50	< 0.50	< 0.50	< 0.50	0.01	< 0.50
MW-10														
11/20/96	10.59			8020		940			< 50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	
2/24/98	10.59	4.39	6.20	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	< 500	< 50	< 50	7.3	< 0.5	< 0.5	< 0.5	
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/11/98	10.59	7.57	3.02	8020	SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/23/99	10.59	5.51	5.08	8020	500	170	1,200	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	10.59	6.72	3.87	8020	SGC	< 50	<200	< 50	350	170	1.5	0.5	2.3	< 5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	< 50	380	160 e	< 0.5	< 0.5	2.6	< 5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	< 50	110	5.1	< 0.5	< 0.5	0.72	< 5.0
1/18/00	10.59	7.77	2.82											
1/19/00	10.59			8020	SGC	120 a,b	1,200	< 50	100	< 0.5	< 0.5	0.8	< 0.5	< 5.0
5/11/00	10.59	7.00	3.59	8020	SGC	110 a	990	< 50	145	1.62	0.5	0.5	0.9	< 5.0
8/24/00	10.59	7.31	3.28											
8/25/00	10.59			8020	SGC	430	1,300	110	< 50	1.0	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	85	<230	< 57	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.59	6.27	4.32											
5/18/01	10.59			8020	Filtered+SGC	< 50	< 200	< 50	< 50	0.7	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.59	8.75	1.84		Filtered+SGC	< 50	< 200	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/16/01	10.59	6.97	3.62	8021	SGC	410	2,100	< 50	< 50	2.4	< 0.5	< 0.5	< 0.5	<5
4/8/02	10.59	6.51	4.08	8021	SGC	220	300		< 50	1.1	< 0.5	< 0.5	< 0.5	<5
6/20/02	10.59	8.10	2.49	8021	SGC	1,100 a,c	6,200	< 50	120	34	< 0.5	< 0.5	< 0.5	<2
9/17/02	10.59	7.66	2.93	8021	SGC	150 a,c	880	< 50	130 a,c,j	32	< 0.5	2.3	< 0.5	<2
4/22/03	10.59	6.81	3.78	8021B	SGC	< 50	< 300	< 50	51	1.0 C	<.50	1.2	<.50	<2
4/28/04	10.59	6.70	3.89	8260B	SGC	<100	<400	< 100	114	14	<1.0	6.9	5.2	3.5

Table 1											
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons											
Municipal Service Center											

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/28/04	10.59	6.98	3.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.59	6.76	3.83	8260B	SGC	< 50	< 300	< 50	110	2.4	< 0.5	< 0.5	0.7	< 0.5
4/5/06 (3)	10.59	4.86	5.73	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.59	9.01	1.58	8260B	SGC	98 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.59	8.99	1.60	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.59	9.78	0.81	8260B	SGC	< 50	< 300	< 50	< 50	30	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	10.59	10.20	0.39	8260B	SGC	< 50	< 300	< 50	< 50	3.9	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	10.59	9.55	1.04	8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
11/19/08 dup				8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	10.59	7.52	3.07	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	10.59	8.80	1.79	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00	11.60			8020	SGC	< 50	500	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	11.60	5.95	5.65	8020	SGC	< 50	430	< 50	600	23	2.1	18	15	< 5.0
8/24/00	11.60	6.58	5.02	8020		< 50	<250	< 50	110	5.9	< 0.5	0.73	0.64	< 5.0
11/28/00	11.60	6.91	4.69	8020	SGC	< 50	< 200	< 50	180	4	< 0.5	1.9	< 0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	<240	< 60	720	29	5.2	38	36	< 5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	< 50	<200	< 50	720	36	3.4	15	18	9.7
8/16/01	11.60	6.01	5.59		Filtered+SGC	< 50	500B	<100	110	4.8	< 0.5	1.4	< 0.5	<5
12/15/01	11.60	6.26	5.34	8021	SGC	200	300	< 50	170	1.7	0.6	2.4	1.8	<2
4/5/02	11.60	5.47	6.13	8021	SGC	160	< 200		330	8.9	2.0	6.9	8.7	<5
6/21/02	11.60	6.17	5.43	8021	SGC	< 50	< 300	< 50	280	16	1.8	8.7	9.6	3.6
9/12/02	11.60	6.60	5.00	8021	SGC	< 50	< 300	< 50	93	< 0.5	< 0.5	1.1	< 0.5	2.1
4/24/03	11.60	5.71	5.89	8021B	SGC	< 50	< 300	< 50	320	21	2.1	12	6.13	8.9
4/28/04	11.60	5.92	5.68	8260B	SGC	<100	<400	<100	360	18	<1.0	6.5	4.5	4
10/27/04	11.60	6.59	5.01	8260B	SGC									
9/2/05 (1)	11.60	6.22	5.38	8260B	SGC	< 50	< 300	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	4.5
4/4/06 (3)	11.60	4.17	7.43	8260B	SGC	71 L Y	< 300	75 L Y	230	5.7	0.9	14	7.0	6.5
4/4/06	11.60			8260B	dup	< 50	< 300	55 L Y	220	6.5	1.0	15	7.3	7.4
9/6/06	11.60	6.46	5.14											
4/5/07	11.60	5.60	6.00	8260B	SGC	66 Y	< 300	55 Y	270 Y	9.6	0.7	7.3	2.4	11
10/2/07	11.60	6.83	4.77											
3/20/08 (8)	11.60	6.83	4.77	8260B	SGC	< 50	< 300	< 50	160	3.5	< 0.5	5.4	0.92	13
11/18/08	11.60	7.00	4.60											
4/2/09 (12)	11.60	5.24	6.36	8260B	SGC	< 50	< 300	< 50	94 Y	0.98	< 0.50	2.9	< 0.50	13
10/29/09	11.60	6.33	5.27	8260B	SGC									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
MW-12	10.42	0.11	2.22											
1/18/00	10.43	8.11	2.32		800									
1/19/00 5/11/00	10.43	6.78	3.65	8020 8020	SGC SGC	1,800 a 2,400 a	11,000	< 50	200 370	< 0.5	3.4	1.5	8.4 0.9	< 5.0
8/24/00	10.43				360	2,400 a	4,900	<100		< 0.5	< 0.5	< 0.5		< 5.0
8/24/00 8/25/00	10.43 10.43	7.56	2.87	8020	SGC	3,500	5,000	3,700	 170	< 0.5	< 0.5	< 0.5	<0.5	<5.0
11/28/00	10.43	8.13	2.30	8020 8020	SGC	2,100	3,000 14,000	<50	290	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30		Filtered+SGC	2,100 50	<200	< 50	290	< 0.5	< 0.5	< 0.5 	<0.5	< 3.0
2/27/01	10.43	6.00	4.43	8020	Filtered+SGC	320	<200 <250	< 50 66	110	1.4	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.43	7.01	3.42	8020	Filtered+SGC	< 50	<230 <200	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.43	8.47	1.96	8020	Filtered+SGC	200	< 200 300B	< 100	160	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/8/02	10.43	6.65	3.78	8021	SGC	500	500D		180	< 0.5	< 0.5	0.7	<1.5	<5
6/21/02	10.43	7.10	3.33	8021	SGC	1,100 a,b,c	3,000 h	640	180	< 0.5	< 0.5	0.63	1.62	<2
9/17/02	10.43	7.75	2.68	8021	SGC	220 a,b,c	360 n	190	130	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	10.43	6.60	3.83	8021B	SGC	140 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	10.43	6.60	3.83	8260B	SGC	< 550	1,020	<100	<100	< 0.5	<1.0	<1.0	<1.0	<1.0
10/29/04	10.43	7.87	2.56	8260B	SGC	240 H L Y	460	180	170 H	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	< 50	< 300	< 50	170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 ⁽¹⁾	10.43	7.04	3.39	8260B	SGC	110 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/06 ⁽³⁾					SGC									
9/6/06	10.43	4.49 7.43	5.94	8260B 8260B	SGC	110 Y 230 Y	<300 <300	110 Y 200 Y	110 120	< 0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
4/5/07	10.43	6.58	3.00	8260B 8260B	SGC	230 H 340 H Y			120 160 Y	< 0.5			<0.3 <0.5	
10/2/07	10.43 10.43	8.14	3.85 2.29	8260B 8260B	SGC	290 Y	360 H L < 300	230 H Y 230	160 T 160 Y	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	< 0.5	<0.5 <0.5
3/19/08	10.43	6.45	3.98	8260B 8260B	SGC	620 Y	< 300 340	230 430	100 T 130 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$11/21/08^{(10)}$														
4/1/09	10.43	8.27 6.30	2.16	8260B 8260B	SGC SGC	170 Y 330 Y	<300 <300	120 Y 300	59 Y 100 Y	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50
10/29/09	10.43 10.43	7.73	4.13 2.70	8260B 8260b	SGC	280Y	< 300	220Y	160 Y	< 0.50	< 0.30 < 0.50	< 0.30 < 0.50	< 0.50	< 0.50
10/29/09	10.45	1.15	2.70	82000	300	2801	< 300	2201	1001	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-13														
1/18/00	11.34	9.63	1.71	8020	SGC	8,800 a	120,000	< 50	< 50	< 0.5	0.8	< 0.5	< 0.5	< 5.0
5/11/00	11.34	10.12	1.22	8020	SGC	11,000 a	110,000	< 500	70	1.6	5.4	1.2	7.6	< 5.0
8/24/00	11.34	10.22	1.12											
8/25/00	11.34			8020	SGC	3,100	13,000	1,200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84	8020	SGC	2,400	36,000	<1300	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84		Filtered+SGC	280	1,100	< 50						
2/26/01	11.34	9.60	1.74	8020	Filtered+SGC	100	<260	<64	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	11.34	10.10	1.24											
5/18/01	11.34			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

Table 1											
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons											
Municipal Service Center											

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
8/16/01	11.34	10.50	0.84		Filtered+SGC	< 50	300B	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/16/01	11.34	9.43	1.91	8021	SGC	1,900	18,000	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/8/02	11.34	10.24	1.10	8021	SGC	440	900	~250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/20/02	11.34	10.24	0.59	8021	SGC	270 a,c	1,500 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	11.34	10.60	0.74	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	11.34	10.46	0.88	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
4/28/04	11.34	10.22	1.12	8260B	SGC	<100	799	<100	<100	< 0.5	<1.0	<1.0	<1.0	<1.0
10/28/04	11.34	9.50	1.84	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	11.34	9.56	1.78	8260B	SGC	< 50	320	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 ⁽³⁾	11.34	7.86	3.48	8260B	SGC	180 H Y	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/00 9/6/06	11.34	10.53	0.81	8260B	SGC	150 H Y	730	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/0/00 4/4/07	11.34	9.73	1.61	8260B	SGC	58 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	11.34	10.18	1.16	8260B	SGC	120 Y	460	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 ⁽⁸⁾	11.34	9.54	1.10	8260B	SGC	53 Y			< 50	< 0.5			< 0.5	< 0.5
3/20/08							< 300	< 50			< 0.5	< 0.5		
11/21/08 ⁽¹⁰⁾	11.34	10.41	0.93	8260B	SGC	120 Y	630	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	11.34	10.41	0.93	8260B	SGC	110 Y	610	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	11.34	9.65	1.69	8260B	SGC	81Y	650	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-14														
1/18/00	10.05	7.37	2.68	8020	SGC	1,700 a	22,000	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.05	6.73	3.32	8020	SGC	360 a	4,300	<100	120	< 0.5	< 0.5	< 0.5	0.5	< 5.0
8/24/00	10.05	7.30	2.75											
8/25/00	10.05			8020	SGC	1,000	3,100	460	90	6.3	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65	8020	SGC	380	6,400	<250	140	7.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.05	6.20	3.85	8020	Filtered+SGC	150	<230	< 58	73	2.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.05	7.74	2.31											
5/18/01	10.05			8020	Filtered+SGC	120	< 200	< 50	100	11	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.05	7.85	2.20		Filtered+SGC	< 50	< 200	< 100	60	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/16/01	10.05	6.60	3.45	8021	SGC	1,110	3,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/9/02	10.05	6.58	3.47	8021	SGC	870	1,100		250	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/20/02	10.05	7.52	2.53	8021	SGC	< 50	310 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	10.05	7.55	2.50	8021	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	0.80	< 0.5	<2
4/22/03	10.05	6.71	3.34	8021B	SGC	< 50	< 300	< 50	61	4.2	< 0.5	1.0	< 0.5	12.0
4/28/04	10.05	6.81	3.24	8260B	SGC	<230	<400	< 100	241	1.4	<1.0	< 1.0	<1.0	<1.0
10/28/04	10.05	6.99	3.06	8260B	SGC	< 50	< 300	< 50	56	3.5	< 0.5	< 0.5	< 0.5	0.5
10/28/04	10.05			8260B	dup	< 50	< 300	< 50	53	1.9	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.05	7.60	2.45	8260B	SGC	< 50	< 300	< 50	79	6.7	< 0.5	< 0.5	< 0.5	0.7

Table 1												
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons												
Municipal Service Center												

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
4/5/06 (3)	10.05	5.91	4.14	8260B	SGC	50 Y	< 300	< 50	< 50	1.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.05	7.70	2.35	8260B	SGC	140 H Y	< 300	79 H Y	60	< 0.5	< 0.5	< 0.5	< 0.5	0.51
4/4/07	10.05	7.52	2.53	8260B	SGC	100 H Y	< 300	50 H Y	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.05			8260B	Dup	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.05	8.45	1.60	8260B	SGC	61 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	10.05	7.80	2.25	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 ⁽¹⁰⁾	10.05	8.45	1.60	8260B	SGC	150 Y	660	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 ⁽¹²⁾														
	10.05	7.20	2.85	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	10.05	9.11	0.94	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-15														
1/18/00	12.36	10.56	1.80	8020	SGC	12,000 a	89,000	< 50	110	3.8	2.1	1	4.6	< 5.0
5/11/00	12.36	10.03	2.33	8020	SGC	120 a	590	< 50	90	0.9	0.9	< 0.5	3.3	< 5.0
8/24/00	12.36	10.22	2.14											
8/25/00	12.36			8020	SGC	1,900	8,600	1,000	< 50	1.9	< 0.5	< 0.5	1.5	< 5.0
11/28/00	12.36	10.30	2.06	8020	SGC	2,500	36,000	<1300	80	1.7	< 0.5	< 0.5	1.6	< 5.0
11/28/00	12.36	10.30	2.06		Filtered+SGC	73	<200	< 50						
2/26/01	12.36	9.30	3.06	8020	Filtered+SGC	190	<240	< 60	55	0.6	< 0.5	< 0.5	0.5	< 5.0
5/17/01	12.36	10.09	2.27											
5/18/01	12.36			8020	Filtered+SGC	210	<230	< 57	66	1.5	< 0.5	< 0.5	2.1	< 5.0
8/16/01	12.36	10.20	2.16		Filtered+SGC	< 50	B500	< 100	< 50	< 0.5	< 0.5	< 0.5	2.4	<5
12/16/01	12.36	9.80	2.56	8021	SGC	3,800	15,000	< 250	< 50	< 0.5	< 0.5	< 0.5	2	<5
4/5/02	12.36	9.58	2.78	8021	SGC	1,000	1,400		< 50	< 0.5	< 0.5	< 0.5	2.3	<5
6/20/02	12.36	10.24	2.12	8021	SGC	670 a,c	2,700 h	95 c,i	< 50	0.83	< 0.5	< 0.5	2.20	<2
9/18/02	12.36	9.89	2.47	8021	SGC	70 a,c	< 300	< 50	< 50	< 0.5	< 0.5	1.5	1.71	<2
4/22/03	12.36	9.55	2.81	8021B	SGC	< 50	< 300	< 50	<50	1 C	<.50	1.4	1.9	<2
4/28/04	12.30	9.68	2.68	8260B	SGC	<250	< 300 567	<100	<100	< 0.5	<1.0	<1.0	<1.0	2.8
10/28/04	12.36	9.58	2.78	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.2	< 0.5
9/1/05 ⁽¹⁾	12.36	9.56	2.80	8260B	SGC	420 Y	< 300	120 H Y	55	< 0.5	< 0.5	< 0.5	2.0	< 0.5
4/5/06 ⁽³⁾	12.30			8260B	SGC	420 I 300 H Y	< 300 760	87 H Y						
		8.76	3.60						< 50	< 0.5	< 0.5	< 0.5	2.4	< 0.5
9/6/06 4/3/07	12.36 12.36	9.98 10.05	2.38 2.31	8260B 8260B	SGC SGC	220 H Y 130 H Y	400 < 300	80 H Y 63 H Y	<50 <50	<0.5 <0.5	< 0.5	<0.5 <0.5	2.06 2.38	<0.5 <0.5
					SGC						< 0.5			
10/3/07	12.36	10.16	2.20	8260B		150 Y	550	< 50	55 Y	< 0.5	< 0.5	< 0.5	1.96	< 0.5
3/20/08 ⁽⁸⁾	12.36	10.08	2.28	8260B	SGC	88 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.02	< 0.5
11/19/08 ⁽¹⁰⁾	12.36	10.28	2.08	8260B	SGC	110 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	1.78	< 0.50
4/2/09 (12)	12.36	9.91	2.45	8260B	SGC	85 Y	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	0.82	< 0.50
10/30/09	12.36	10.24	2.12	8260B	SGC	110Y	< 300	< 50	81Y	< 0.50	< 0.50	< 0.50	2.41	< 0.50

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Wall ID/	TOC	Donth to	Crowndwator	ρτεν	Natas			TPH-k		Donzono	Toluono	Ethyl	Total	MTDE
Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	трн-к (µg/l)	ТРН-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
Date	(feet)	(feet)	(feet)	Methou		(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/l)	(µg/l)	(µrg/1)
	(1000)	(1000)	(1000)								-	V~ 8' - /	V-0-1	
MW-16														
1/18/00	13.57	10.22	3.43		SPH: 0.1 ft.									
5/11/00	13.57	13.31	0.27		SPH: 0.01 ft.									
8/24/00	13.57	8.91	4.66		SPH: NM									
11/28/00	13.57	13.05	0.86		SPH: 0.42 ft.									
2/26/01	13.57	13.10	0.79		SPH: 0.40 ft.									
5/17/01	13.57	12.62G			SPH: NM									
8/16/01	13.57	11.94G			SPH: NM									
12/15/01	13.57	NM			SPH: NM									
4/3/02	13.57	12.88	0.69											
6/21/02	12.22	NM			SPH: NM									
4/22/03	12.22				Well cap stuck		1000		• • • • •					
4/28/04	12.22	12.48	-0.26	8260B	SGC	<230	1030	< 260	2000	150	<1.0	46	<1.0	< 1.0
10/28/04	12.22	11.97	0.25	8260B	SGC	450 L Y	< 300	480	1100	18	1.7	29	1.7	< 0.5
8/31/05	12.22	12.09	0.13		SPH: None									
4/5/06 (3)	12.22	3.80	8.42	8260B	SGC	95 H Y	420	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22				Dry									
4/4/07 (5)	12.22	10.72	1.5	8260B	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	10.92	1.3	8260B	SGC	2,300 Y	4300	1700	480 Y	31	1.7	4.5	1.6	< 0.5
3/19/08 (9)	12.22	10.72	1.5											
11/19/08 (10)	12.22	12.33	-0.11	8260B	SGC	52,000 Y	110,000	31,000	150 Y	21	1.7	2.7	1.1	< 0.50
4/2/09 (12)	12.22	11.25	0.97	8260B	SGC				59 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/30/09	12.22	11.37	0.85	8260B	SGC	5,600Y	12,000	4,100Y	590	59	3.5	3.1	3.03	< 0.50
MW-17														
1/18/00	9.86	5.35	4.51	8020	SGC	850 a	21,000	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.86	9.85	0.01	8020	SGC	150 a	2,900	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/00	9.86	8.59	1.27											
8/25/00	9.86			8020	SGC	190	610	71	< 50	0.58	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	8020	SGC	<250	2,400	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61		Filtered+SGC	< 50	<200	< 50						
2/26/01	9.86	9.40	0.46	8020	Filtered+SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.86	8.32	1.54											
5/18/01	9.86			8020	Filtered+SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	9.86	10.35	-0.49		Filtered+SGC	< 50	400B	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01	9.86	8.01	1.85	8021	SGC	940	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/9/02	9.86	9.76	0.10	8021	SGC	590	880		60	< 0.5	< 0.5	1.6	< 0.5	< 5.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
	(leel)	(leel)	(ieet)									(µg/I)	(µg/1)	
6/21/02	9.86	9.79	0.07	8021	SGC	99 a,c	650 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	9.86	8.25	1.61	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03	9.86	9.75	0.11	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	9.86	8.90	0.96	8260B	SGC	<100	<400	<100	<100	< 0.5	<1.0	2.4	<1.0	<1.0
10/28/04	9.86	8.32	1.54		SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	9.86	8.38	1.48	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 (3)	9.86	6.86	3.00	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	9.86	9.85	0.01	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	9.86	7.67	2.19	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	9.86	7.97	1.89	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07 dupe				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	9.86	6.70	3.16	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	9.86	9.53	0.33	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/2/09 (12)	9.86	9.56	0.30	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	9.86	9.30 7.21	2.65	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09	9.00	7.21	2.05	8200 D	500	< 50	< 500	N 30	< 50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW-18														
4/24/03		6.49		8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	2.4	< 0.5	<2
		0115			Developed to monitor a		1200	100		40.0	4010		1010	
					utility trench, not									
4/28/04					sampled									
8/31/05														
3/27/06														
9/6/06														
TBW-1														
2/23/99		6.25			SPH: 0.10 ft.									
5/27/99		5.29			SPH: 0.01 ft.									
8/24/99		6.99			SPH: 0.18 ft.									
11/22/99					Inaccessible									
1/18/00					Inaccessible									
5/11/00		6.90			SPH: 0.10 ft.									
8/24/00		7.12			SPH: NM									
11/28/00		7.75			SPH: 0.36 ft.									
2/27/01		9.06			SPH: 0.51 ft.									
5/17/01		6.98			SPH: 0.28 ft.									
8/16/01		6.62			SPH: 0.66 ft., f	1,100	700B	<100	17,000	2,100	75	730	850	<1
12/15/01		6.86			SPH 0.35 ft.									
4/3/02		6.14			SPH: None									

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Ockland, California

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
9/12/02		7.52			SPH: None									
4/22/03		6.41			SPH: None									
4/28/04		6.33			SPH: None									
10/28/04		NM												
8/31/05		6.50			Well cap smashed 6"									
3/27/06		5.20			SPH: None									
9/6/06		NM			SPH: None									
4/4/07		8.26												
10/2/07		NM			Abandoned									
TBW-2														
6/21/02		8.28												
4/22/03		6.70			SPH globules									
4/28/04		6.61			SPH: None									
10/28/04		7.31			SPH: None									
8/31/05		NM												
3/27/06		NM ⁽⁴⁾												
9/6/06		NM ⁽⁴⁾			SPH: None									
		NM ⁽⁴⁾												
4/4/07 10/2/07		NM			 A h									
10/2/07		INIM			Abandoned									
TBW-3														
8/19/98		2.67		8020	SGC	810,000			920	3.2	< 0.5	< 0.5	0.77	< 10
8/19/98		2.67		8020 8260	300				920	5.2	< 0.5	< 0.5 	0.77	< 5.0
2/23/98		1.25		8020		3,800	3,000	< 50	110	1.6	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99					DTW: NM			< 50			< 0.5 	< 0.5 	< 0.5	
8/24/99		3.25			SPH globules									
11/22/99		3.68			SI II globules									
1/18/00	9.92	3.73	6.19		SPH globules									
5/11/00	9.92	2.07	7.85		SI II globules									
8/24/00	9.92	2.82	7.10		SPH: sheen	44,000	13,000	34,000	570	4.7	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.92				SI II. sheen									
2/27/01	9.92	1.29	8.63	8020	Filtered+SGC	560	<230	< 57	120	1.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.92	2.47	7.45		I mored + 500		<250			1.5	< 0.5	< 0.J	< 0.5 	
8/16/01	9.92	1.81	8.11		Filtered+SGC	1,500	400B	<100	180	< 0.5	< 0.5	< 0.5	< 0.5	<1
12/15/01	9.92	2.52			SPH: 0.02 ft.		400D	< 100		< 0.5	< 0.5	< 0.J	< 0.5 	
4/3/02	9.92	1.50			SPH: None									
6/21/02	9.92	2.37	7.55		SPH: None									
9/12/02	9.92	3.48	6.44		SPH: None									
7/12/02	7.94	5.40	0.44		SETT. NONC									

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method	notes	(µg/l)	(µg/l)	тен-к (µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	μg/l)
Dute	(feet)	(feet)	(feet)	meanou		V= 8/ -/	V= 8/ -/	V=8/-/	V~- 3/ -/	V= 8/ -/	V-8/-/	(µg/l)	(µg/l)	V= 8/ ·/
4/22/03	9.92	1.45	8.47		Sheen									
4/28/04	9.92	2.26	7.66		SPH: None									
10/28/04	9.92	3.42	6.50		Sheen									
8/31/05	9.92	2.99	6.93		SPH: None									
3/27/06	9.92	0.49	9.43		SPH: None									
9/6/06	9.92	3.42	6.50		SPH:0.01 ft.									
4/4/07	9.92	1.93	7.99											
10/2/07		NM			Abandoned									
TBW-4														
2/27/01		1.35		8020	Filtered+SGC	410	<230	< 57	250	1.9	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01		2.52												
8/16/01		1.88			Filtered+SGC	2,600	700B	<100	390	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02		2.32												
4/22/03		1.41			Sheen									
4/28/04		2.21												
10/27/04		3.37			Sheen									
8/31/05		2.92												
3/27/06		0.49			SPH: None									
9/6/06		3.37			SPH:0.01 ft.									
4/4/07		1.88												
10/2/07		NM			Abandoned									
TBW-5														
2/23/99		9.72			SPH: 1.45 ft.									
5/27/99		7.03			SPH: 1.13 ft.									
8/24/99		6.52			SPH: 1.33 ft.									
11/22/99		8.31			SPH: 1.29 ft.									
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft.									
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft.									
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft.									
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft.									
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft.									
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft.									
8/16/01	10.22	8.32	2.51	8020	SPH: 0.76 ft., f	550	400B	<100	30,000	2,900	100	1,500	5,100	<1
12/15/01 4/3/02 ⁽⁶⁾	10.22	9.09	1.13		SPH: 0.36 ft.									
6/21/02	10.22	7.87	2.35		SPH: 0.03 ft.									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive Oakland California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
9/12/01	10.22	7.26	2.97		SPH: 0.01 ft.									
4/22/03	10.22	6.22	4.00		SPH: 0.06 ft.									
4/28/04	10.22	6.26	3.96		SPH: 0.21 ft.									
10/27/04	10.22	3.62	6.60		SPH: None									
8/31/05	10.22	6.41			SPH: 0.30 ft.									
3/27/06	10.22	NM ⁽²⁾												
9/6/06	10.22	NM ⁽²⁾												
4/4/07	10.22	NM ⁽²⁾												
10/2/07		NM			SPH: viscous residual									
3/19/08		NM			SPH: None									
11/18/08	10.22	9.32	0.9											
4/1/09		NM			NA									
10/29/09	10.22	8.50	1.72											
10/25/05	10.22	0.00	=											
TBW-6														
2/23/99		2.09		8020		160	600	< 50	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99		3.31												
8/24/99		7.29		8020	SGC	180	400	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99		4.37												
1/18/00	9.49	3.83	5.66											
1/19/00	9.49			8020	SGC	55 C	<200	< 50	170	0.6	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.49	2.51	6.98											
8/24/00	9.49	4.34	5.15											
8/25/00	9.49			8020	SGC	320	<250	200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.49	4.74	4.75											
2/27/01	9.49	2.30	7.19	8020	Filtered+SGC	< 57	<230	< 57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.49	3.35	6.14											
8/16/01	9.49	3.85	5.64		Filtered+SGC	< 50	< 200	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/15/01	9.49	3.96	5.53											
4/3/02	9.49	2.51	6.98											
6/21/02	9.49	3.58	5.91											
9/12/02	9.49	6.07	4.56		SPH: 1.42 ft.									
4/23/03	9.49	2.42	7.07											
4/28/04	9.49	3.21	6.28											
10/27/04	9.49	4.49	5.00		SPH: None									
8/31/05	9.49	4.43			SPH: 0.52 ft.									
3/27/06	9.49	1.90	7.59		SPH: None									
9/6/06	9.49	4.33	5.16		SPH:0.01 ft.									
4/4/07	9.49	3.08	6.41											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive Oakland California

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/2/07	9.49	4.98	4.51		SPH: None									
3/19/08	9.49	3.16	6.33		SPH: None									
11/18/08	9.49	5.32	4.17		SPH: None									
4/1/09	9.49	2.87	6.62		SPH: sheen									
10/29/09					No Access									
RW-A1														
4/22/03		1.81												
4/28/04	10.09	2.52	7.57											
10/27/04	10.09	3.03	7.06		SPH: None									
8/31/05	10.09	3.31	6.78		SPH: None									
3/27/06	10.09	0.62	9.47		SPH: None									
9/6/06	10.09	3.52	6.57		SPH: None									
4/3/07	10.09	2.93	7.16											
10/2/07	10.09	NM ⁽⁷⁾												
3/19/08	10.09	3.16	6.93		SPH: None									
11/20/08 (10)	10.09	4.49	5.60	8260B	SGC	56 Y	< 300	< 50	< 50	8.8	< 0.50	< 0.50	< 0.50	4.5
4/1/09	10.09	2.48	7.61		SPH: None									
10/29/09	10.09	3.49	6.60											
RW-A2														
4/22/03		1.22			Sheen									
4/28/04	9.67	2.01	7.66											
10/27/04	9.67	3.20	6.47		SPH: None									
8/31/05	9.67	2.75	6.92		SPH: None									
3/27/06	9.67	0.30	9.37		SPH: None									
9/6/06	9.67	3.19	6.48		SPH: 0.01 ft.									
4/4/07	9.67	1.70	7.97	8260B	SGC	200 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	9.67	3.81	5.86		SPH: None									
3/19/08	9.67	1.71	7.96		SPH: None									
11/20/08 (10)	9.67	3.96	5.71	8260B	SGC	590 Y	< 300	160 Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09	9.67	1.58	8.09		SPH: None									
10/29/09	9.67	2.89	6.78											
OB-A1														
4/22/03		2.24			SPH: .01 ft.									
4/28/04		3.01			SPH: None SPH: None (strong									
10/27/04		5.11			odor)									

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Ockland, California

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
8/31/05		4.10			SPH: None									
3/27/06		1.25			SPH: None									
9/7/06		4.49												
4/4/07		2.72												
10/2/07		5.34												
3/19/08		2.73			SPH: None									
11/18/08		5.31												
4/1/09		2.61												
10/29/09		4.68												
RW-B1														
4/22/03		7.26			Sheen									
4/28/04	11.22	7.20	4.02											
10/27/04	11.22	7.80	3.42		SPH: None									
8/31/05	11.22	7.14	4.08		SPH: None									
3/27/06	11.22	6.10	5.12		SPH: None									
9/6/06	11.22	7.39	3.83		SPH:0.01 ft.									
4/4/07	11.22	7.06	4.16	8260B	SGC	130 L	< 300	100 H	220	410	23	9.4	16	6.3
10/2/07	11.22	7.70	3.52		SPH: None									
3/19/08	11.22	7.06	4.16		SPH: None									
11/18/08	11.22	7.90	3.32		SPH: None									
4/1/09	11.22	7.15	4.07		SPH: None									
10/29/09	11.22	7.76	3.46											
RW-B2														
4/22/03		7.29			Sheen, Odor									
4/28/04	11.23	7.20	4.03											
10/27/04	11.23	7.81	3.42		SPH: None									
8/31/05	11.23	7.14	4.09		SPH: None									
3/27/06	11.23	6.09	5.14		SPH: None									
9/6/06	11.23	7.39	3.84		SPH: None									
4/4/07	11.23	9.84	1.39	8260B	SGC	500 L Y	< 300	500 L	11000	3400	2700	190	1100	<10
10/2/07	11.23	7.71	3.52		SPH: None SPH: None (strong									
3/19/08	11.23	7.07	4.16		odor)									
11/20/08 ⁽¹⁰⁾	11.23	7.92	3.31	8260B	SGC	190 Y	< 300	150 Y	7,900 Y	3,200	2,100	140	720	<25
4/1/09	11.23	7.16	4.07	8200B	SPH: None	190 1	< 300	150 1	7,900 1	5,200	2,100	140	720	< 23
4/1/09	11.23	7.78	3.45		SFR. None									
10/27/09	11.23	1.10	5.45											

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Oakland, California

	700			DIEV	•• •		7011	70111				- -1		
Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
		1				1								
RW-B3														
4/22/03		9.90			visible Product									
4/28/04	11.14	13.20	-2.06		SPH: 3.09									
10/27/04	11.14	9.33	1.81		SPH: None									
8/31/05	11.14	9.60	1.54		SPH: 0.01									
3/27/06	11.14	9.08	2.06		SPH: None									
9/6/06	11.14	9.61	1.53		SPH: None									
4/4/07	11.14	9.84	1.30	8260B	SGC	3,600 L Y	880	4,000 L	7900	4300	130	520	357	<31
10/2/07	11.14	9.56	1.58		SPH: None									
3/19/08		NM ⁽⁷⁾			NM									
11/18/08	11.14	9.57	1.57											
4/1/09	11.14	9.80	1.37											
10/29/09	11.14	9.61	1.54											
10/29/09	11.14	9.01	1.55											
RW-B4														
4/22/03		10.55			SPH: .55 ft.									
4/28/04	11.29	10.22	1.07		SPH: None									
10/27/04	11.29	9.55	1.74		SPH: None									
8/31/05	11.29	9.70	1.59		SPH: None									
3/27/06	11.29	9.23	2.06		SPH: None									
9/6/06	11.29	9.69	1.60		SPH: None									
4/4/07	11.29	10.04	1.25	8260B	SGC	3,500 Y	360	4,000 L	16000	3200	150	460	1430	< 8.3
10/2/07	11.29	9.72	1.57		SPH: None									
3/19/08	11.29	9.87	1.42		SPH: None (odor)									
11/20/08 (10)	11.29	9.75	1.54	8260B	SGC	3,100 Y	2,900	930	6,000 Y	3,100	100	270	679	<25
4/1/09	11.29	9.87	1.42		SPH: None		2,900							
10/29/09	11.29	9.85	1.42											
10/29/09	11.29	2.05	1.77											
RW-C1														
4/24/03		8.34												
4/28/04	10.44	8.00	2.44											
10/27/04	10.44	7.59	2.85		SPH: None									
8/31/05	10.44	5.81	4.63		SPH: None									
3/27/06	10.44	1.94	8.50		SPH: None									
9/6/06	10.44	6.71	3.73		SPH: 0.01 ft.									
4/5/07	10.44	6.66	3.78	8260B		220 H Y	1300	63 H Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/2/07	10.44	8.48	1.96		SPH: 0.01 ft.									
3/19/08	10.44	8.56	1.88		SPH: None									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
11/20/08 (10)	10.44	8.29	2.15	8260B	SGC	290 Y	1,200	76 Y	< 50	6.4	< 0.50	< 0.50	0.51	< 0.50
4/1/09	10.44	8.16	2.13	8200B	SPH: None	290 1	1,200		< 30	0.4	< 0.50	< 0.50		< 0.50
10/29/09	10.44	8.64	1.80											
10/29/09	10.44	0.04	1.00											
RW-C2														
4/24/03		6.22			SPH: .03 ft.									
4/28/04	10.58	6.19	4.39		SPH: 0.06 ft									
10/27/04	10.58	7.00	3.58		SPH: Present									
8/31/05	10.58	6.30	4.28		SPH: 0.01 ft.									
3/27/06	10.58	5.10	5.48		SPH: None									
9/6/06	10.58	8.19	2.39		SPH: 0.12 ft.									
4/4/07	10.58	8.28	2.30											
10/2/07	10.58	9.75	0.83		SPH: 0.015 ft.									
10/3/07	10.58	9.39	1.19		SPH: None									
11/18/08	10.58	9.38	1.20											
4/1/09	10.58	7.64	2.94											
10/29/09	10.58	8.90	1.68											
RW-C3														
4/24/03		6.36												
4/28/04	10.71	6.25	4.46											
10/27/04	10.71	7.10	3.61		SPH: None									
8/31/05	10.71	6.39	4.32		SPH: None									
3/27/06	10.71	5.30	5.41		SPH: None									
9/6/06	10.71	8.10	2.61		SPH: 0.01 ft.									
4/5/07	10.71	7.97	2.74	8260B	SPH: None	540 H L Y	360 H L	430 H L Y	520	13	14	32	54	< 0.5
10/2/07	10.71	8.59	2.12		SPH: 0.01 ft.									
3/19/08	10.71	8.38	2.33		SPH: None									
11/20/08 (10)	10.71	8.61	2.10	8260B	SGC	720 Y $^{(11)}$	1600 (11)	170 Y $^{(11)}$	< 50	1.1	< 0.50	0.67	< 0.50	< 0.50
4/1/09	10.71	6.98	3.73		SPH: None									
10/29/09	10.71	8.56	2.15											
RW-C4														
4/22/03		7.15			Strong odor									
4/28/04	11.32	6.95	4.37		SPH: 0.01 ft									
10/27/04	11.32	7.45	3.87		SPH: None									
8/31/05	11.32	6.71	4.61		SPH: None									
3/27/06	11.32	6.47	4.85		SPH: None									
9/6/06	11.32	8.16	3.16		SPH: 0.01 ft.									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/4/07	11.32	8.50	2.82											
10/2/07	11.32	8.62	2.70		SPH: None									
3/19/08	11.32	9.13	2.19		SPH: None									
11/18/08	11.32	8.99	2.33											
4/1/09	11.32	8.52	2.80											
10/29/09	11.32	8.53	2.79											
RW-C5														
4/22/03		6.46												
4/28/04	10.79	6.39	4.40											
10/27/04	10.79	7.21	3.58		SPH: Present									
8/31/05	10.79	6.51	4.28		SPH: None									
3/27/06	10.79	5.33	5.46		SPH: None									
9/6/06	10.79	8.03	2.76		SPH: 0.01 ft.									
4/4/07	10.79	8.27	2.52	8260B	SGC	3,800 Y	310	4,100 L	12000	3400	170	520	1300	<25
10/2/07	10.79	8.95	1.84		SPH: None									
3/19/08	10.79	8.82	1.97		SPH: 0.01 ft.									
11/20/08 (10)	10.79	8.92	1.87	8260B	SPH: None/ SGC	3,700 Y	430	3,300	5,800 Y	2,900	91	120	437	< 20
11/20/08 dup				8260B	SGC: Oder	3,400 Y	< 300	3,100	3,900 Y	2,700	78	91	358	<25
4/1/09	10.79	7.88	2.91		SPH: None									
10/29/09					No Access									
RW-C6														
4/22/03		6.05			SPH: 0.07 ft.									
4/28/04	10.31	6.30	4.01		SPH: 0.05 ft.									
10/27/04	10.31	6.85			SPH: 0.15 ft.									
8/31/05	10.31	6.81			SPH: 0.93 ft.									
3/27/06	10.31	5.66			SPH: 0.96 ft.									
9/6/06	10.31	7.96	2.35		SPH: 0.18ft.									
4/4/07	10.31	NM ⁽⁴⁾												
10/2/07	10.31	8.45	1.86		SPH: residual									
3/19/08	10.31	8.32	1.99		SPH: None									
11/18/08	10.31	8.42	1.89		SPH: Oder									
4/1/09	10.31	7.36	2.95		SPH: None									
10/29/09					No Access									
RW-C7														
4/22/03		6.51			visible Product									
4/28/04	10.12	6.60	3.52		SPH: 0.02 ft.									

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edmundter Drive, Opkland, California

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/27/04	10.12	NM												
8/31/05	10.12	NM												
3/27/06	10.12	NM ⁽⁴⁾												
9/6/06	10.12	8.34	1.78		SPH: 0.01 ft.									
4/4/07	10.12	NM ⁽⁴⁾												
10/2/07	10.12	9.01	1.11		SPH: None									
3/19/08	10.12	8.85	1.27		SPH: None									
11/18/08	10.12	8.97	1.15											
4/1/09	10.12	7.89	2.23		SPH: 0.01 ft.									
10/29/09		9.23												
OB-C1														
4/22/03		6.26												
4/28/04	10.39	7.39	3.00		SPH: 1.27 ft.									
10/27/04	10.39	8.06	2.33		SPH: 1.08 ft.									
8/31/05	10.39	7.84			SPH: 1.55 ft.									
3/27/06	10.39	6.15			SPH: 1.05 ft.									
9/6/06		NM ⁽⁴⁾			Buried									
4/4/07	10.39	7.78	2.61											
10/2/07	10.39	8.67	1.72		SPH: 0.02 ft.									
3/19/08	10.39	8.49	1.90		SPH: 0.29 ft.									
11/18/08	10.39	8.57	1.82		SPH: 0.03 ft.									
4/1/09	10.39	7.96	2.43		SPH: 0.64 ft.									
10/29/09					No Access									
RW-D1														
4/22/03		6.97												
4/28/04	10.18	5.62	4.56											
10/27/04	10.18	6.67	3.51		SPH: Present									
8/31/05	10.18	5.75			SPH: 0.02 ft.									
3/27/06	10.18	NM ⁽²⁾												
9/6/06	10.18	NM ⁽²⁾			No Access									
4/4/07	10.18	NM ⁽²⁾												
10/2/07	10.18	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/19/08	10.18	11.29	-1.11	6260B	SGC	11,000 Y	4,900	9,400	5,100 Y	270	85	150	710	<2.0
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Oakland, California

	TOC			DTEV		TRUL	TRU	TRUL	TRU		T 1	- F(1 - 1	T (1	
Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
Dute	(feet)	(feet)	(feet)	method		V ² 5/1/	V= 8/1/	V*8/1/	V~8/1/	V-8/1/	V*8/1/	(µg/l)	(µg/l)	V ⁴¹ 5/1/
	I	1		1		1	I							
RW-D2														
4/22/03		7.15			SPH 1.25 ft.									
4/28/04	10.33	7.45	2.88		SPH: 0.1 ft.									
10/27/04	10.33	6.41	3.92		SPH: Present									
8/31/05	10.33	8.44			SPH: 3.12 ft.									
3/27/06	10.33	NM ⁽²⁾												
9/6/06	10.33	NM ⁽²⁾			No Access									
4/4/07	10.33	NM ⁽²⁾												
10/2/07	10.33	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08	10.33	10.95	-0.62											
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D3														
4/22/03		6.89			SPH: 1.58 ft.									
4/28/04	10.07	8.18	1.89		SPH: 3.25 ft.									
10/27/04	10.07	6.37	3.70		SPH: Present									
8/31/05	10.07	7.72			SPH: 2.46									
3/27/06	10.07	NM ⁽²⁾												
9/6/06	10.07	NM ⁽²⁾			No Access									
4/4/07	10.07	NM ⁽²⁾												
10/2/07	10.07	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08	10.07	10.10	-0.03											
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
DIV D4														
RW-D4 4/22/03		8.11			SPH: 1.98 ft.									
4/22/03 4/28/04	10.22	8.11 7.99	2.23		SPH: 1.98 ft. SPH: 2.09 ft.									
4/28/04 10/27/04	10.22	6.49	3.73		SPH: 2.09 ft. SPH: Present									
8/31/05	10.22	8.09	5.75		SPH: 2.12 ft.									
3/27/06	10.22	NM ⁽²⁾												
9/6/06	10.22	NM ⁽²⁾												
		NM ⁽²⁾			No Access									
4/4/07	10.22	NM												

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/2/07	10.22	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/19/08 (10)	10.22	9.10	1.12	8260B	SGC	55,000	9,700	46,000	7,600 Y	210	17	270	280	<1.7
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D5														
4/22/03		6.04			SPH: 0.07 ft.									
4/28/04	9.99	5.96	4.03		SPH: None									
10/27/04	9.99	6.48	3.51		SPH: Present									
8/31/05	9.99	7.02*			SPH: 1.01 ft.									
3/27/06	9.99	NM ⁽²⁾												
9/6/06	9.99	NM ⁽²⁾			No Access									
4/4/07	9.99	NM ⁽²⁾												
10/2/07	9.99	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08	9.99	9.45	0.54											
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D6														
11/18/08		11.10												
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D7														
11/19/08 (10)		9.62		8260B	SGC	54,000 Y	59,000	43,000	3,400	100	54	13	830	< 3.1
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D8														
11/18/08		8.48												
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D9														
11/18/08		9.70												

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons **Municipal Service Center** 7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
	(leel)	(ieet)	(leet)									(µg/1)	(µg/1)	
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D10														
11/18/08		8.84		8260B	SGC	1,000 Y	650	760	640 Y	2.7	0.69	5.6	17.71	< 0.50
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
RW-D11														
11/18/08		8.66												
4/1/09		NM ⁽²⁾												
10/29/09		NM ⁽²⁾			SPH: None									
00.04														
OB-D1		5 41												
4/22/03		5.41			Strong Odor									
4/28/04	9.46	5.31	4.15		Strong Odor									
10/27/04	9.46	5.89	3.57		CDU. Norre									
8/31/05	9.46	5.42			SPH: None									
3/27/06	9.46	3.09	6.37		SPH: None									
9/6/06 4/4/07	9.46	8.31 7.77	1.15 1.69		SPH: 0.01 ft.									
	9.46	8.66			SPH: None									
10/2/07 3/19/08	9.46 9.46	8.90	0.80 0.56		SPH: None									
11/18/08	9.46	8.41	1.05											
4/1/09	9.46	8.50	0.96		SPH: sheen									
10/29/09	9.46	7.65	1.81		SPH: None									
10/2//0/	9.40	1.05	1.01		SI II. IVOIC									
OB-D2														
4/22/03		5.14												
4/28/04	9.95	5.25	4.70											
10/27/04	9.95	6.42	3.53		SPH: None									
8/31/05	9.95	5.71			SPH: 0.01 ft.									
3/27/06	9.95	2.32	7.63		SPH: None									
9/6/06	9.95	8.39	1.56		SPH: 0.01 ft.									
4/4/07	9.95	7.94	2.01											
10/2/07	9.95	9.07	0.88		SPH: None									
3/19/08	9.95	8.64	1.31		SPH: None									
11/18/08	9.95	8.94	1.01											
4/1/09	9.95	7.00	2.95		SPH: None									

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Ockland, California

7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/29/09	9.95	8.24	1.71		SPH: None									
RW-1														
4/22/03		6.43												
4/28/04		5.73												
10/27/04		6.34			SPH: None									
8/31/05		5.83			SPH: None									
3/27/06		NM ⁽²⁾												
9/6/06		NM ⁽²⁾			No Access									
4/4/07		NM ⁽²⁾												
10/2/07		NM ⁽²⁾												
		NM ⁽²⁾												
3/19/08		8.81												
11/18/08														
4/1/09		NM ⁽²⁾												
10/29/09		8.17												
Field Blank														
10/28/04				8260B					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05				8260B					< 50					
4/4/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/7/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.54	< 0.5	< 0.5	< 0.5
10/2/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.5	< 0.5	< 0.5	< 0.5
3/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/21/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
4/1/09				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/30/09				8260B	SGC	< 50	< 300	<50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Trip Blank														
8/19/98				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01				8020	Filtered+SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01				8020	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01				8021					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/5/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter ($\mu g/l$)

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/5/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
9/12/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/13/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03				8021B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04				8260B	Trip Blank 1				<100	< 0.5	< 1.0	<1.0	< 1.0	<1.0
10/29/04				8260B	Trip Blank 2				< 50					
4/3/07				8260B	Trip Blank 1					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07				8260B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Groundwater elevations corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

- (1) = Depth to groundwater measured on August 31, 2005.
- (2) = Converted to an extraction well, and access port is too small for the oil/water probe.
- (3) = Depth to groundwater measured on March 27, 2006.
- (4) = Could not locate well.
- (5) = Well dewatered, field staff unable to collect all samples.
- (6) = Well has active remediation unit/recovery.
- (7) = Well was covered by car or heavy equipment.
- (8) = Depth to groundwater measured on March 19, 2008.
- (9) = Well dewatered, field staff unable to collect samples.
- (10) = Depth to groundwater measured on 11/18/2008.
- (11) = Low surrogate recovery was observed for hexacosane. The sample was re extracted, but was outside the EPA recommended hold time.
- (12) = Depth to groundwater measured on 4/1/2009

--- = Not measured/analyzed

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8240/8260

- DTW = Depth to water
- Dup = Duplicate sample

Filtered = Groundwater samples were filtered through a 0.45-micron glass membrane filter.

ID = Identification

MTBE = Methyl tertiary-butyl ether by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.

NM = Not measured. Well obstructed or could not be located.

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPH-d, TPH-k, or TPH-mo analysis, following California Regional Water Quality Control Board February 16, 1999 memorandum

TBW = Tank backfill well

TOC = Top of casing

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Γ	Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
	Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
		(feet)	(feet)	(feet)									(µg/l)	(µg/l)	

TPH-d = Total petroleum hydrocarbons quantitated as diesel - analyzed by EPA Method 8015B

TPH-g = Total petroleum hydrocarbons quantitated as gasoline - analyzed by EPA Method 8015B

TPH-k = Total petroleum hydrocarbons quantitated as kerosene - analyzed by EPA Method 8015B

TPH-mo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by EPA Method 8015B

a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble heavier fuels at the front end of the motor oil pattern.

b = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble lighter fuels; the response looks like lower carbon chain compounds close to the gasoline range.

c = The analytical laboratory reviewed the data and noted that the sample exhibits a fuel pattern that does not resemble the standard.

e = Results are estimated due to concentrations exceeding the calibration range

f= Filtration with 0.45-micron glass membrane filter and silica gel treatment

h = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the front end of the kerosene oil pattern.

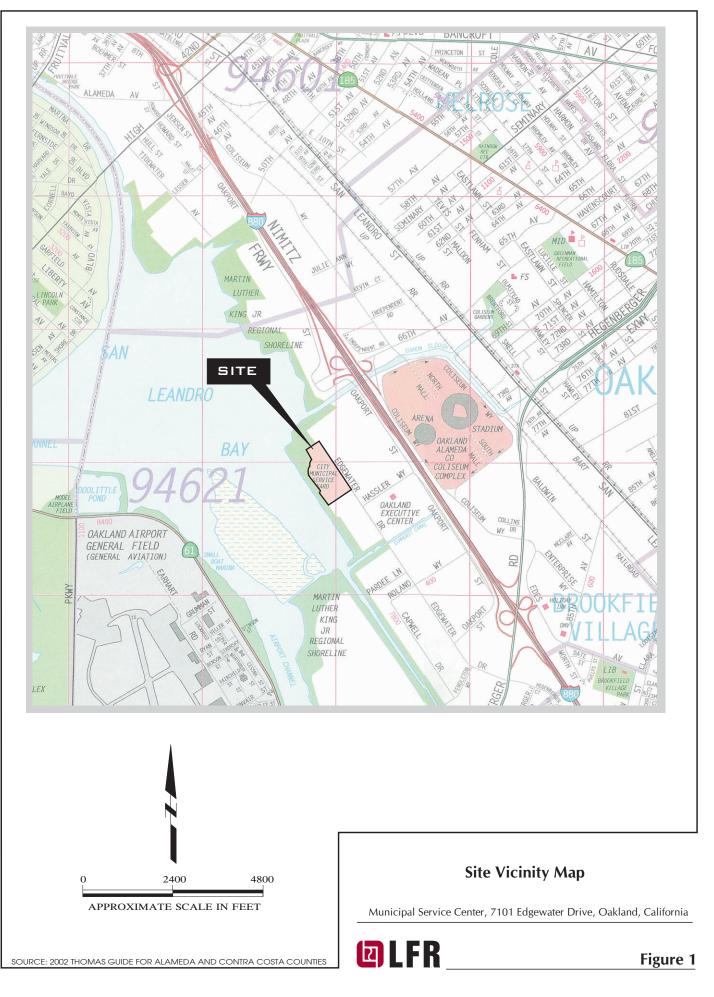
i = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the back end of the kerosene oil pattern.

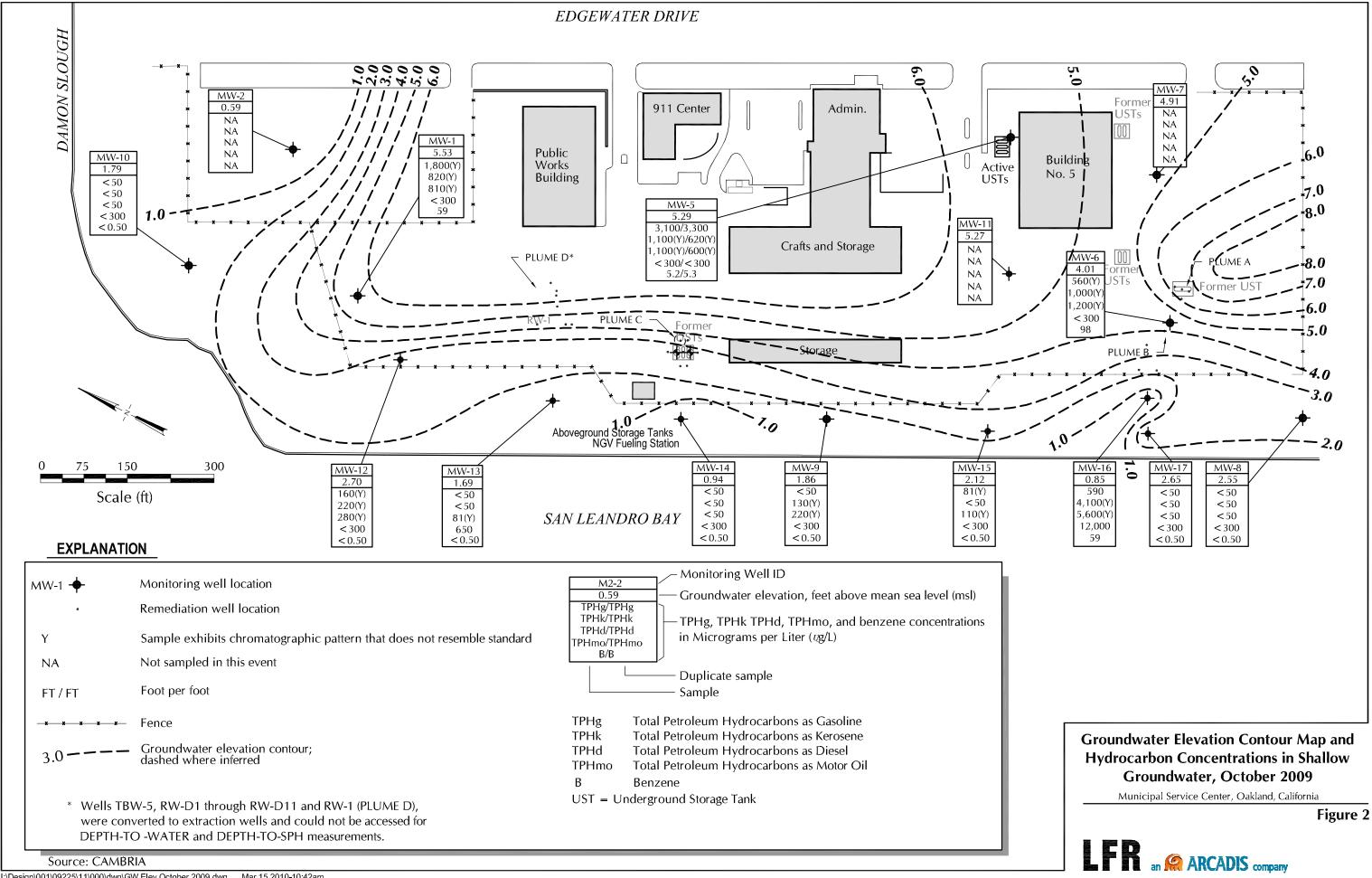
j= The analytical laboratory reviewed the data and noted that the sample exhibited an unknown peak or peaks.

B = Results flagged with "B" indicate motor oil was detected in the method blank.

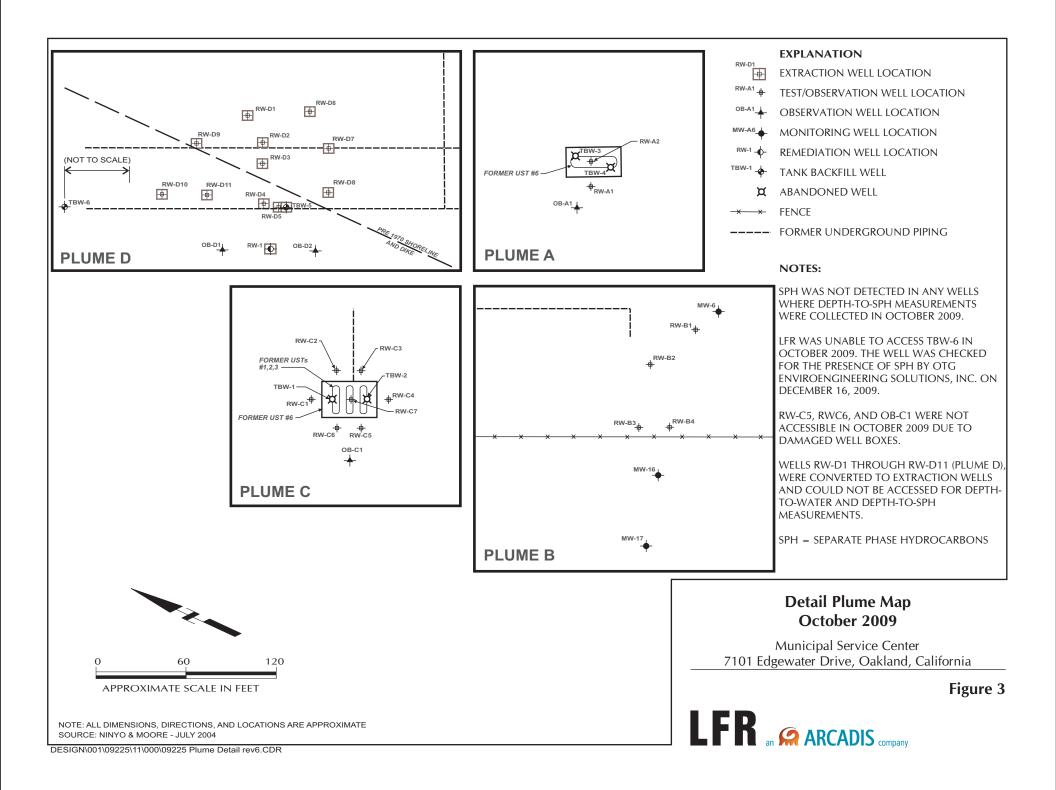
C = Footnote assigned by Ninyo and Moore, not defined in their historical tables.

E= Footnote assigned by Ninyo and Moore, not defined in their historical tables.


H= Heavier hydrocarbons contributed to the quantitation.


J = Value qualified as "estimated"

L= Lighter hydrocarbons contributed to the quantitation.


Y = Sample exhibits chromatographic pattern that does not resemble standard.

Z = Sample exhibits unknown single peak or peaks

I \Design\001\09225\11\000\dwg\GW Elev October 2009.dwg Mar 15,2010-10 42am

APPENDIX A

City of Oakland MSC Schedule and Protocol

Table A:	Revised Well Sampling Schedule and Protocol
	City of Oakland Municipal Service Center

March September [Elevation] PH Dissolved Temperature Specific IPH-das IPH-das WW-1 X <td< th=""><th>Well ID</th><th>Monitoring</th><th></th><th></th><th></th><th></th><th>Paramete</th><th>ers to Be Mo</th><th>nitored</th><th></th><th>1</th></td<>	Well ID	Monitoring					Paramete	ers to Be Mo	nitored		1
Indian Opposition Product Oxygen Conductivity (PTEX & d/k/mo WW-1 X		the second s	Sentember	Flevation	Floating	PH	Dissolved	Temperature	Specific	TPH-gas	TPH
Image: Second									Conductivity		d/k/mo
WW-1 X							- 78			MTBE	
MW-2 X				Y		X	X	X	X	X	
WH-2 Characterized X										Х	X
WW-4 Closed/Destroyed X					^	<u> </u>					1
WW-5 X											1
NW-6 X					Y	X	X	X	X	X	X
NW-0 X										Х	X
WW-3 X										X	
MW-9 X				- Ŷ						Х	
MW-30 X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td>									X		
Am-10 A A A X <td></td>											
Amy -11 X Y X<								X		Х	X
Imital X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td>X</td> <td>Х</td> <td></td>						X			X	Х	
MW-13 X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td>									Х		
Image of the second s								X	X		
Iminizion X								Х			
Number X <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					X						
WW-18 gauge only gauge only X X IBW-1 gauge only gauge only X X				X				X	X	X	X
BW-1 gauge only gauge only X X BW-2 gauge only gauge only X X BW-3 gauge only gauge only X X BW-3 gauge only gauge only X X BW-4 gauge only gauge only X X BW-5 gauge only gauge only X X BW-6 gauge only gauge only X X BW-1 gauge only gauge only X X BW-4 gauge only gauge only X X BH-41 gauge only gauge only X X BH-41 gauge only gauge only X X BW-53 gauge only gauge only X X BW-54 gauge only gauge only X X BW-54 gauge only gauge only X X BW-54 gauge only gauge only X X BW-55 gauge on											
BW-2 gauge only		gauge only	gauge only								ļ
BW-3 gauge only											
BW-4 gauge only X X BW-5 gauge only gauge only X X FBW-6 gauge only gauge only X X FBW-7 gauge only gauge only X X FBW-7 gauge only gauge only X X FBW-8 gauge only gauge only X X FBW-81 gauge only gauge only X X FW-81 gauge only gauge only X X FW-84 gauge only gauge only X X FW-61 gauge only gauge only X X FW-C2 gauge		gauge only	gauge only	X							
FBW-5 gauge only gauge only X X X FBW-6 gauge only gauge only X X X RW-1 gauge only gauge only X X X RW-1 gauge only gauge only X X X RW-12 gauge only gauge only X X X RW-22 gauge only gauge only X X X RW-31 gauge only gauge only X X X RW-42 gauge only gauge only X X X RW-31 gauge only gauge only X X X X RW-43 gauge only gauge only X X X X X RW-44 gauge only gauge only X <td< td=""><td></td><td>gauge only</td><td>gauge only</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		gauge only	gauge only	X							
FBW-6 gauge only gauge only X X RW-1 gauge only gauge only X X RW-22 gauge only gauge only X X DB-A1 gauge only gauge only X X RW-1 gauge only gauge only X X RW-24 gauge only gauge only X X RW-25 gauge only gauge only X X RW-26 gauge	TBW-5	gauge only	gauge only								<u> </u>
W-A1 gauge only gauge only X X W-A2 gauge only gauge only X X W-A2 gauge only gauge only X X W-A1 gauge only gauge only X X W-B1 gauge only gauge only X X W-B1 gauge only gauge only X X W-B2 gauge only gauge only X X W-B4 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X DB-D1 </td <td>TBW-6</td> <td></td>	TBW-6										
RW-A2 gauge only gauge only X X DB-A1 gauge only gauge only X X DB-A1 gauge only gauge only X X RW-B1 gauge only gauge only X X RW-B1 gauge only gauge only X X RW-B2 gauge only gauge only X X RW-B3 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D3	RW-1	gauge only	gauge only		Χ						
With the second seco	RW-A1										
W-B1 gauge only X X W-B2 gauge only gauge only X X W-B3 gauge only gauge only X X W-B3 gauge only gauge only X X W-B3 gauge only gauge only X X W-B4 gauge only gauge only X X W-C1 gauge only gauge only X X W-C2 gauge only gauge only X X W-C2 gauge only gauge only X X W-C4 gauge only gauge only X X W-C5 gauge only gauge only X X W-C6 gauge only gauge only X X W-C7 gauge only gauge only X X W-D1 gauge only gauge only X X RW-D2 gauge only X X X RW-D3 gauge only X X X X RW-D4 gauge only	RW-A2										
RW-B2 gauge only gauge only X X RW-B3 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X OB-D1	OB-A1	gauge only	gauge only								<u> </u>
RW-B3 gauge only gauge only X X RW-B4 gauge only gauge only X X Image: Strain Stra	RW-B1										
RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X OB-D1 gauge only gauge only X X <td< td=""><td>RW-B2</td><td></td><td></td><td></td><td></td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td></td<>	RW-B2						· · ·				
RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X QB-C1 gauge only gauge only X X QW-D1 gauge only gauge only X X QW-D1 gauge only gauge only X X QB-C1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X QB-D4 gauge only gauge only X X <td< td=""><td>RW-B3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RW-B3										
Wich gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-C7 gauge only gauge only X X OB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D3 gauge only X X Image: Constraint on the state on the									·		
RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-C7 gauge only gauge only X X DB-C1 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X OB-D2 gauge only gauge only X X <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:	RW-C2						<u> </u>				1
RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:					× V		<u> </u>				1
RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X OB-C1 gauge only gauge only X X OB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:		gauge only	gauge only					<u> </u>			
RW-00 gauge only gauge only X X DB-C1 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:				X			<u> </u>				1
OB-C1 gauge only gauge only X X CW-D1 gauge only gauge only X X CW-D2 gauge only gauge only X X CW-D3 gauge only gauge only X X CW-D3 gauge only gauge only X X CW-D4 gauge only gauge only X X CW-D5 gauge only gauge only X X CW-D5 gauge only gauge only X X CB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes: Dauge only = measure groundwater elevation and floating product thickness only							<u> </u>	<u> </u>	 		
RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:											<u> </u>
RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:		gauge only	gauge only			ļ		<u> </u>	<u> </u>	<u> </u>	1
RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:					× ×		<u> </u>				1
RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:							+	+	<u> </u>		·
RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:							<u> </u>			<u> </u>	
OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:						 		<u> </u>	<u> </u>		+
OB-D2 gauge only gauge only X X Notes:									<u> </u>		+
Notes: nauge only = measure groundwater elevation and floating product thickness only	OB-D1	gauge only	gauge only				<u> '</u>		 	<u> </u>	+
pauge only = measure groundwater elevation and floating product thickness only	OB-D2	gauge only	gauge only	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	l	L	
auge only = measure groundwater elevation and floating product thickness only [PH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup	Notes:					,					
TPH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup	gauge only	y = measure	e groundwate	er elevation	n and floatir	ng pro	duct thickne	ess only			
	TPH d/k/m	o = total pet	roleum hydro	ocarbons a	is diesel, ke	eroser	ne, and mot	or oil after sili	ca gel cleanu	p	

APPENDIX B

Groundwater Sampling Field Data Sheets

		n an	WA	TER	-LEV	EL ME	ASUF	REMEN	ITS I	LOG
Project No	028-10060-06-***	· · · · · · · · · · · · · · · · · · ·	Date		Octobe	r 29, 2009		Pa	je	of
Project Name	Oakland MSC		Day:	Sun	□ Mon	□ Tues	□ Weds	A Thurs	🗆 Fri	□ Sat
Field Personnel	Michael Sulliv	an and Andrea Valdivia							2	
General Observa	ations				e				5 ⁻ -	

an an a star a star the first sector of the star and the st The star as a star as

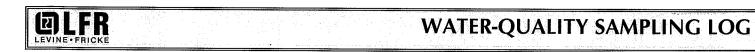
Berther say in gr.

MSC_frm-Water-Levels_Oct2009.doc: A; 10/09; FORM FRONT

ik ye nati

				· · · · · · · · · · · · · · · · · · ·	Time Messu	wed			
Depth	WELL	Time		O WATER	WATER	WELL SE		REMARKS	
bottom	NO.	Opened	Products		ELEVATION.	Y	⁻ N	(UNITS = FEET)	
	MW-10	0740		8.80/8.80		X	- <u>-</u>		
	MW-13	0747	ļ!	9.65/9.65			X	No boits	
1.65	MW-H			9.11/9.11	1037	X		Missing I bolt, No seal	
14.47	MW-9	0756		8.92 / 8.91	1045	X		I working bott	
20.24	MW-15	08,00		1024/10.24			Í	1 bott stripped - no botts work	-
13.47	MW-16	08:02		11.31/11.31'	1057	· .	X	No bolto - needs new cap	
	MW-17	0804		7.25/7.21	1101	ļ	X	No boltos	
15.90	MW-8	8030		4.61/9.61	1106	\times	-	Nosal	
14.74	MW-Z	0823		9.88/49.88	1125		X	Nolock	
15:00	MW-1	0832		452/452		X			
1445'	MW-12	(838	******	7.73/4.73	1137	X			
	RW-1	085A		8:21/6:24	1123	X		I bolt missing	
	0B-D2	0857		8.24/8,24'		X			
-	TBW-5	0904		8.50/850	· · ·	X		Missing 1 bolt	
<u>~</u>	RW-D5		Cannot	get wat		×		Missing Ibolt, just pipping, can't 11 11 Semple ga	
	RW-DA			oct wat				11 11 Semple ga	'ær
	RW-D3							Brked on @ 0915	
	RW-D8		Cannot	getwite	er level	X		Just piping, con't gauge	
	RW-D7			yet wat		×		11, Missing 1 bolt	
~	RW-D6	I		oct wat				11 11	
	RW-B3			9.61/9.61	1239		X	No lock - J plug - odorens	
	RW-BA			7,55/9.85			X_	No lock - J plug - smell	
	RW-B7	0946		7.18/1.78	1		×_	Nolock-Jping lasse -shalld	6
	RW-BI	0948		7.76/7.76			X	No lock - Jplug repla	æ
14.23'	1. S.			6.971/6.91	A		X	Nober No boilds No lock, J-plug 0	xlc
and the second division of the second divisio	CB-A1			41.8/2.68'		\times			
- 25.	THINK S	0957		2,891/289		X		Irridescents stren	
	RW-AI	_		3,49/3,49'		X		Noticed irridescent sheen@surfice	
·		1003		101.0/6.10		X	×		
14.32	MW-5	1008		5.86/5.86		X			
	MW-11	1011		6.33/673		X			
	OB-DI	1154		7.65/1.6		X		Odorous	
				1,011 1,001		<u> </u>	<u> </u>		

. .


	Tim - 0- 1			Time Megared			
WELL	Time Opened	DEPTH T	O WATER	WATER - ELEVATION	WELL SI		REMARKS
NO.	ELEVATION	Product	Waber 3.90/8.90	AZOA	Ŷ	N	(UNITS = FEET)
RW-C2	~0915)	1.11/1.11	1453	X		
RW-C3	~0915	· · · · · ·	8.56/8.96	1201	\succ		
RW-C4	~0915		8.53/8.55	1205	X		
TBN-2	~0915		9.23/9.23	1207	X		
RW-CI	1220		3.64 /8.6A	1221	<i>,</i>	X	No pressure
<u></u>	10-0		0.0170.01	100.			
	·. · ·						
				**			
				فر	et.		
4. ¹		· .					
				л,			
				· · · · · · · · · · · ·			
					-		· · · · · · · · · · · · · · · · · · ·
н							
					-		
					ę.		
					· .		
	· · ·	1.1			1		
		· ·					
		· · ·					
					an a		
						- C	1
						· .	
					· · · · ·		
						120	
						the states of th	· · · · · · · · · · · · · · · · · · ·
						;	

2011 June

and the second second

ļ

Ĵ

Project No.	028-	10060-06-***			Date:	10/2	9/09	\	Page 1 of	
Project Name	e <u>: MSC Oa</u>	akland Edgev	vater		Samp	ling Locatio	on: <u>7101</u>	Edgewater	Drive, Oakland, Ca	
Sampler's Na	ame: <u>11</u> 5	Sultivar	$\sqrt{A.Va}$	divid			Samp	le No.:	D F	В
Sampling Pla	an By:	DCR			Dated:	10/27/09		C.O.C. N	No.: DUP	
Purge Metho	od: 🛛 Cent	rifugal Pump	Disposable	Bailer 🗆 H	and Bail 🗆 Si	ubmersible	Pump 🗆 T	eflon Bailer	□ Other	
Purge Water	Storage Cor	tainer Type:	55 gallon d	rum	Sto	rage Locat	ion:	<u>On-site</u>		
Date Purge V	Water Dispos	ed:			Wh	ere Dispos	ed: <u>On-site</u>	<u> </u>		
	Analyses R	equested		No.	and Type of Bot	tles Used				
TPHg / BT	EX/MTBE	<u>by 8260</u>	· · · · · · · · · · · · · · · · · · ·	3 VOA	s with HCI pre	servative				
<u>TPHd / TPHn</u>	no / TPHk by	8010 with si	lica gel clean-ι	<u>ıp</u>	1 Liter Amber					
Lab Name: _	Curtis	s and Tompk	ins							
Delivery By	Courier _		X	Hand						
Well No.	NW-1	2	De	epth of Wat	er 7.73	, [′]				
Well Diamete					14.45					
□ 2" (0.16	gal/feet)	□ 5" (1.02 g		-	n Height					
□ 4" (0.65	gal/feet)	□ 6" (1.47 g			1.08			80% [DTW 9.07	
	Inlat	Donth	Volume	DO	Temperature					
	Inlet	Depth	voume	1 110						1
Time	Depth	to Water	Purged (gal)	(mg/L)	(C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks	
Time	Depth	to Water		-		(SU) 7,32	F			
	Depth	to Water		(mg/L)	(C°)	(SU) ·	(uS/cm C)	(mV)	••••••••••••••••••••••••••••••••••••••	
1631	Depth	to Water	Purged (gal) 1:25 2.5	(mg/L) 0.91	(c°) 19.82	(SU) 7,32	(uS/cm C)	(mV) -143.8		
1631	Depth	to Water	Purged (gal) 1:25 2.5	(mg/L) 0.91 0.90	(°) 19.82 19.78	(SU) 7.32 7.32 7.32	(uS/cm C)	(mV) -143.8 -149.0		
1631 1633 1635	Depth		Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		
1631 1633 1635			Purged (gal) 1.25 2.5 3.0	(mg/L) 0.91 0.90 0.89	(c) 19.82 19.78 19.78	(SU) 7.32 7.32 7.32	(us/cm C) 3/678 4396 4544	(mV) -143.8 -149.0 -190,3		

1600 13.52 6 0.44 21.58 6.83 16432 -13.2 1605 7 0.55 21.47 6.86 15891 -1326 1611 8 0.79 21.17 6.85 2603 -132.2 Purged dry	Project No.	028-	10060-06-***			Date:	10/2	9/09		Page 1 of
Sampling Plan By: DCR Dated: 10/27/09 C.O.C. No: DDV Purge Method: Centrifugal Pump (Disposable Bailer C) Hand Bail C) Submersible Pump C) Tefton Bailer C) Other DVV Purge Water Storage Container Type: 55 gallon drum Storage Location: On-site Date Purge Water Disposed: Where Disposed: On-site Analyses Requested No. and Type of Bottles Used TPHd / TPHmo / TPHk by 8010 with silica gel clean-up 1 Liter Amber Lab Name: Curtis and Tompkins Depth of Water 4.52' Well No. MW-1 Depth of Water 4.52' Well No. MW-1 Depth of Water 1.325 B22' (0.16 gal/feet) C is '(1.02 gal/feet) Well Colume 1.32 gal Time Inlet Depth Volume 1.32 gal Time Inlet Depth Volume 1.32 gal Time Inlet Depth Volume 0.78 gal.71 (0.198 - 36.6 Time Inlet Depth Volume 1.32 gal 5/4/f Time Inlet Depth Volume 0.78 gal.71 (0.198 - 35.6 5/4/f <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Sampling Plan By: DCR Dated: $10/27/09$ C.O.C. No.: DDP Purge Method: Centrifugal Pump [\Disposable Bailer] Hand Bail] Submersible Pump] Tethon Bailer] Other	Sampler's Na	ame: <u>M</u> .5	<u>Sulliva</u>	m/A.V	ivible	ia		Sampl	e No.:	FB
Purge Water Storage Container Type:S gallon drum Storage Location:On-site Date Purge Water Disposed: Where Disposed: On-site Analyses Requested No. and Type of Bottles Used On-site TPHg / BTEX / MTBE by 8260 3 VOAs with HC1 preservative				•						
Where Disposed:On-site Analyses Requested No. and Type of Bottles Used	Purge Metho	d: 🛛 Centi	rifugal Pump	X Disposable I	Bailer 🗆 Ha	and Bail 🗆 Su	Ibmersible	Pump 🗆 Te	eflon Bailer	Other
Analyses Requested No. and Type of Bottles Used	Purge Water	Storage Con	ntainer Type:	55 gallon dr	<u>um</u>	Sto	rage Locati	on:	On-site	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Purge V	Vater Dispos	ed:			Wh	ere Dispos	ed: <u>On-site</u>	<u> </u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u></u>	Analyses R	equested		No.	and Type of Bott	les Used	·		:
Lab Name: Curtis and Tompkins Delivery By Courier Well No. MN-1 Depth of Water 4.52' Well Diameter: 2" Well Diameter: 2" Well Of gal/feet) 5" (1.02 gal/feet) Well Courier 0" Well Of gal/feet) 6" (1.47 gal/feet) Well Volume 1.82 ggl Time Depth Inlet Depth Depth to Water Purged (gal) 00 (C?) (SU) (usicen C) (mV) Remarks 5H4rft 1540 0.78 1550 0.78 2.57 1 0.78 22.01 6.90 11198 3550 2 2 0.78 2.55 4 0.56 23.88 6.80 10.686 15.55 4 0.56 21.71 16.60 7 0.55 21.41 0.685 16.42 <	TPHg / BT	EX/MTBE	<u>by 8260</u>		3 VOA	s with HCl pre	servative			
Delivery By Courier M Hand Well No. $MW - I$ Depth of Water $4.52'$ Well Diameter: $2''$ Well Depth $15.87'$ $BS2'$ (0.16 gal/feet) $5''$ (1.02 gal/feet) Water Column Height 11.355 $4''$ (0.65 gal/feet) $6''$ (1.47 gal/feet) Well Volume $1.82 gal$ 80% DTW $6.79'$ Time Inlet Depth $0''$ (mg/L) Temperature PH Cond ORP 1540 1 0.58 21.773 6.90 11.198 -36.6 1547 1 0.58 21.773 6.90 11.198 -36.6 1550 2 0.79 22.01 6.88 1763 73.56 1553 3 3 0.780 23.89 6.80 1.686 -133.7 1555 $4''$ 0.556 21.911 6.83 12432 -13.2 1600 13.53 6 0.444 21.58 6.83 16432 -13.26	<u>TPHd / TPHr</u>	no / TPHk by	<u>v 8010 with si</u>	lica gel clean-u	р	1 Liter Amber				
Well No. $\underline{MW-1}$ Depth of Water $\underline{4.52'}$ Well Diameter: $\underline{2''}$ Well Depth $\underline{15.87'}$ Bow DTW $\underline{6.79'}$ $\beta S2' (0.16 gal/feet)$ $5'' (1.02 gal/feet)$ Water Column Height $\underline{11.35}$ $80\% DTW \underline{6.79'}$ $\beta S2'' (0.16 gal/feet)$ $0'' (1.47 gal/feet)$ Water Column Height $\underline{11.35}$ $80\% DTW \underline{6.79'}$ $\beta S2'' (0.16 gal/feet)$ $0'' (1.47 gal/feet)$ Well Volume $\underline{1.82 gal}$ $80\% DTW \underline{6.79'}$ $1'' (0.65 gal/feet)$ $0'' (1.47 gal/feet)$ Well Volume $\underline{1.82 gal}$ $80\% DTW \underline{6.79'}$ $Time$ Inlet Depth Volume $1.82 gal$ $80\% DTW \underline{6.79'}$ 1550 $0'' 0 0 00$ Temperature (G'') (G') (Uslom C) (my) Remarks 1540 $1'' 0.58 al.773 6.90$ $11198 - 36.60$ 514.61 1550 $1'' 0.58 al.773 6.90$ $11198 - 36.60$ 514.61 1555 $2'' 0.80 al.858 6.80$ $1.826 - 133.7$ 1555 $1'' 0.556 al.91 16.683 118645 - 133.7$ 1555 $4'' 0.556 al.91 16.833 18845 - 133.5$ 1600 13.53 $5'' 0.944 al.58 6.83 16.433 14.32 - 13.2$ 1605 $7'' 0.955 21.41 6.86 15.4432 - 13.2$ 13.2 <td>Lab Name: _</td> <td>Curtis</td> <td>s and Tompk</td> <td>ins</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lab Name: _	Curtis	s and Tompk	ins						
Well Diameter: $2''$ Well Depth $15.87'$ $DX2''(0.16 gal/feet)$ $\Box 5''(1.02 gal/feet)$ Water Column Height 11.35 $\Box 4''(0.65 gal/feet)$ $\Box 6''(1.47 gal/feet)$ Well Volume $1.82 g_2\lambda$ $80\% DTW$ $6.79'$ Time Inlet Depth Volume $1.82 g_2\lambda$ $80\% DTW$ $6.79'$ Time Depth to Water Purged (gal) (C°) (SU) (us/cm c) ORP 1540 0.780 21.73 6.90 11.190 -36.6 1550 10.780 21.73 6.90 11.190 -36.6 1555 2.0160 6.88 11763 735.16 1555 40.780 22.850 6.80 11.686 -133.7 1555 410.556 21.911 6.83 12845 -132.5 1600 13.5λ 6 0.444 21.58 6.83 16432 -13.26 1605 7 0.555 21.471 6.86 15247 -13.26	Delivery By	Courier _		X	Hand		·			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Well No. 📐	1W-1		De	pth of Wat	er <u>4.5</u>	2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Well Diamete	er: <u>2"</u>		We	ell Depth _	15.87	/			
Life (0.05 gal/reel) Life (1.47 gal/reel) Weil Volume (gal) DO (mg/L) Temperature (C°) PH (SU) Cond (us/cm C) ORP (mV) Remarks 1540 1 0.58 21.773 6.90 11198 -36.6 514.1 1547 1 0.78 21.773 6.90 11198 -36.6 1550 λ 0.78 21.773 6.90 11198 -36.6 1550 λ 0.78 22.01 6.88 11763 -135.6 1553 32.01 6.88 11763 -135.7 -135.7 1555 4 0.56 21.91 6.83 12845 -132.5 1600 13.5 λ 6 0.444 21.58 6.83 16432 -13.2 1605 7 0.55 21.41 6.86 15841 -1326	JX 2" (0.16	6 gal/feet)	□ 5" (1.02 g	al/feet) Wa	ater Colum	n Height	1.35			
TimeDepthto WaterPurged (gal)(mg/L)(C°)(SU)(us/cm C)(mV)Remarks 1540 1 9.58 21.73 6.90 11.198 -36.6 1547 1 9.58 21.73 6.90 11.198 -36.6 1550 2 20.78 22.01 6.88 11763 -135.6 1553 3 0.78 22.88 6.89 11.686 -133.7 1555 4 0.56 21.91 6.83 12845 -132.5 1600 13.52 6 0.444 21.58 6.83 16432 -13.2 1605 7 0.55 21.471 6.86 15841 -152.6	□ 4" (0.65	gal/feet)	□ 6" (1.47 g	al/feet) We	ell Volume	1.820	pal		80% C	TW <u>6.13</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time		•							Remarks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1540 -									start
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1545			١	0,58	21.73	6,90	11198	-36.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1550				n.70	10.66	1.28	11763	-135.6	
1600 13.52 6 0.44 21.58 6.83 16432 -13.2 1605 7 0.55 21.47 6.86 1589 -1326				À.	-					
1605 7 0.55 21.47 6.86 15899-1326	1553				0,80	95.38				
1605 7 0.55 21.47 6.86 1589 -1326 1611 8 0.79 21.17 6.85 2603 -132.2 Purged dry 1830/69 7.35 S144 7 Sauffle MAR	1553			3	0,80	21.91	6.83 6.83	17686 12845	-133.7 -132.5	· · · ·
1611 8 0.79 21.17 6.85 2603 -132.2 Purged dry 1320/07 7:35 S144 7 Smifle	1553 1555 1600		13.52	3 4	0,80 0,56 0,44	22.88 21.91 21.58	6.83 6.83	17686 12845	-133.7 -132.5	
130/69 735 SI44 - 7 Saufle	1553 1555 1600		13.52	3 4 6	0,80 0,56 0,44	22.88 21.91 21.58	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	
	1553 1555 1600		13.52	3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Puroped dry
	1553 1555 1600 1605 1611	735		3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Purged dry Sauffl
	1553 1555 1600 1605	735		3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Purged dry Sauffle
	1553 1555 1600 1605 1611	735		3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Purged dry Saufle
	1553 1555 1600 1605 1611	735		3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Purged dry Sauffle
	1553 1555 1600 1605 1611	735		3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Purged dry Saufle
	1553 1555 1600 1605 1611	735		3 4 6 7	0,80 0,56 0,44 0, 5 5	22.38 21.91 21.58 21.41	6,83 6,83 6,83 6,83	12845 12845 16432 15899	-132,7 -132,5 -132,5 -132,6	Purged dry Saufle

Continue remarks on reverse, if needed.

Project No028-10060-06-*** Date:0 28-10060-06-***	Page 1 of
Project Name: MSC Oakland EdgewaterSampling Location:Sampling Location:	gewater Drive, Oakland, Ca
Sampler's Name: MUS / AAV Sample I	No.: <u>MW-6</u> □ FB
Sampling Plan By: DCR Dated: 10/27/09	C.O.C. No.: DUP
Purge Method: 🛛 Centrifugal Pump 🛛 Disposable Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗆 Teflo	on Bailer 🗆 Other
Purge Water Storage Container Type: <u>55 gallon drum</u> Storage Location: <u>On</u>	-site
Date Purge Water Disposed: Where Disposed:On-site	
Analyses Requested No. and Type of Bottles Used	
TPHg / BTEX / MTBE by 8260 3 VOAs with HCl preservative	
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up 1 Liter Amber	
Lab Name: Curtis and Tompkins	
Delivery By Courier X Hand	
Well No Depth of Water	
Well Diameter: Well Depth14,23	
図2" (0.16 gal/feet) ロ 5" (1.02 gal/feet) Water Column Height フェスム	0 21
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume	80% DTW _8,7
Inlet Depth Volume DO Temperature PH Cond Time Depth to Water Purged (gal) (mg/L) (C°) (SU) (uS/cm C)	ORP (mV) Remarks
0801 Start Porge >	Need to recalibrate 1/5I
0825 Stor	Start purge
08.29 61.25 1.17 20.59 7.59 3505-1	158.4
0832 2.50 1.16 20.55 7.62 3572-1	49.8
0832 2.50 1.16 20.55 7.62 3572 -1 0834 8,15 3.75 1.16 20.57 7.61 3596 - 0835	149.5
0835	- Sampled
	· · · · · · · · · · · · · · · · · · ·

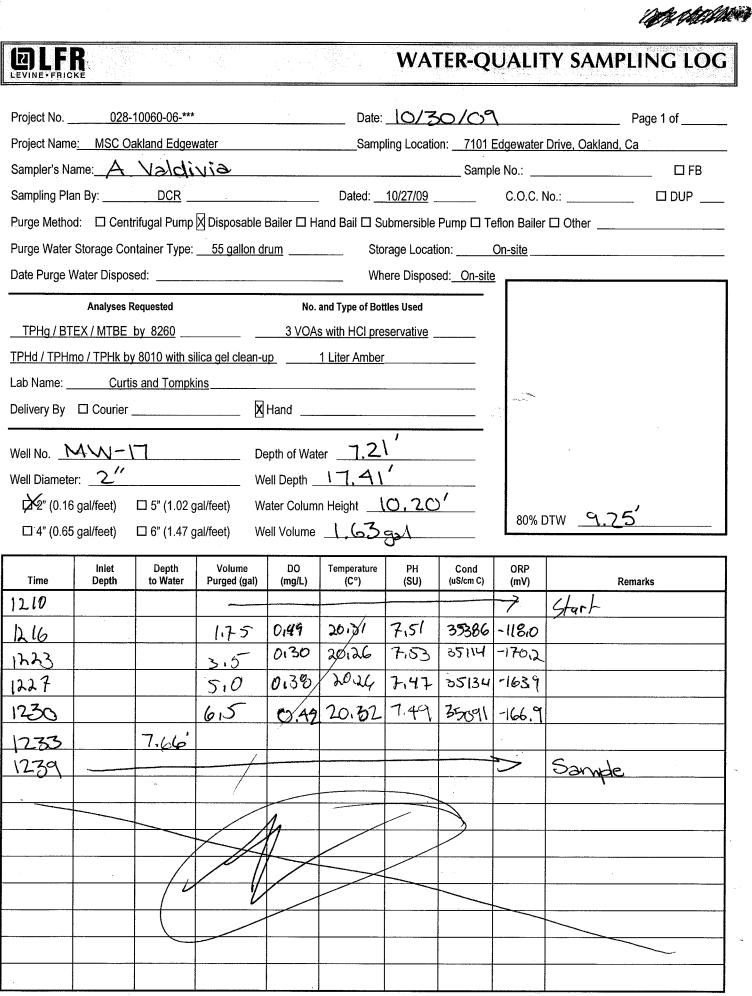
Continue remarks on reverse, if needed.

Project No	028-	10060-06-***	-		Date:	10/3	0/09			Page 1 of
Project Name	: MSC Oa	akland Edgew	vater		Samp	ling Locatio	on: <u>7101 l</u>	Edgewater	Drive, Oakland, (Ca
Sampler's Na	me:						Samp	e No.: 📐	16-5	🗆 FB
Sampling Pla	n By:	DCR			Dated:	10/27/09		C.O.C. N	lo.:	
Purge Metho	d: 🗆 Centi	rifugal Pump	X Disposable I	Bailer □ H	and Bail 🗆 Si	ubmersible	Pump 🗆 Te	eflon Bailer	Other	
Purge Water	Storage Cor	ntainer Type:	55 gallon dr	<u>um</u>	Sto	rage Locati	on:	On-site		
Date Purge V	/ater Dispos	ed:			Wh	ere Dispos	ed: <u>On-site</u>	² г		
	Analyses R	equested	- A	No.	and Type of Bot	tles Used				
TPHg / BT	EX / MTBE	by 8260		3 VOA	s with HCI pre	<u>servative</u>				
<u>TPHd / TPHn</u>	<u>no / TPHk by</u>	v 8010 with si	lica gel clean-u	<u>p</u>	1 Liter Amber		······			
Lab Name: _	Curti	s and Tompki	ns							
Delivery By	Courier _		X	Hand						
Well No.	W-5-		De	oth of Wat	er <u>5</u> ,84	e l	· .			
Well No. <u>M</u> Well Diamete	r: 2″		We		14,32					
•		□ 5" (1.02 g		•	n Height					1
•		□ 6" (1.47 g						80% E	DTW 1.55	>
	J,				· · · · · · · · · · · · · · · · · · ·	1				
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Re	marks
9		5.87							Sharl	-
0926			1.5	8.28	21,18	7.24	2399	-67.5		
0928			2.75	8.28	21.28	7.19	2156	-65.3		
0931			4.00	2.82	21.13	7:09	2247	-59.2	-	
0934			4.50	1.12	21.18	7.14				
0936			5,00	1.12	2123	7.03	2117	- 51,0		
0939		5.88	·				$ \rightarrow $	•	Sample	
0953		-						%	Sample Duplic	ate
, U									`	
			\sim		1	·//				
				\rightarrow	the					
					ΛD	>		\sum		
	· ·			100	07		>	\leq		
e.										
19 - A.									Continue remai	ks on reverse, if needed.

						WAT	ER-QI	JALIT	Y SAMPLIN	g log
Project No	028-1	10060-06-***		<u></u> 41	Date:	10/	30/0	9	Page 2	l of
Project Name	: <u>MSC Oa</u>	kland Edgew	ater		Sampl	ing Locatio	n [.] 7101 F	doewater l	Drive, Oakland, Ca	
Sampler's Na	ime:		-	,			Sample	e No.: _/]w-8	<i>№-8</i> ғр ХТРВ
Sampling Pla	n By:	DCR			Dated:	10/27/09		C.O.C. N	lo.: C	1 DUP
Purge Method	d: 🛛 Centr	ifugal Pump [Disposable E	Bailer 🗆 Ha	and Bail 🗖 Su	Ibmersible I	Pump 🗆 Te	flon Bailer	Other	
Purge Water	Storage Con	tainer Type:	55 gallon dr	um	Stor	rage Locatio	on:(<u> On-site</u>	e	
Date Purge V	Vater Dispose	ed:			Whe	ere Dispose	ed: <u>On-site</u>			
	Analyses R	equested		No. a	and Type of Bot	iles Used				
TPHg / BT	EX/MTBE I	by 8260		3 VOAs	with HCI pre	servative				
<u>TPHd / TPHn</u>	<u>10 / TPHk by</u>	8010 with sil	ica gel clean-u	p <u>2</u>	1 Liter Amber					
Lab Name: _	Curtis	s and Tompki	<u>ns</u>							
Delivery By	Courier _		X	Hand		• •				
Well No	1/11-	Q	_		0.63	 }_	<u> </u>			
Well No	7 11	0	De	pth of Wate	er <u>9,67</u> 15,40	\mathbf{b}				
			VVe		n Height		4 ** 4 5		100	
1		□ 5" (1.02 g □ 6" (1.47 g			• Height			80% C	отw <u>67</u> 38	
LI 4 (0.00	ganeet)	цо (1.47 g							·	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks	
Goll								7	MU-8-FB	
1135		9,63	·					7	start	
1140			1	0.76	20131	7,40	33642	-11.3		
1145			2	0.84	20120	7-139	334.45	-197		
1150			3	0195	17,88	7.36	398913 34533	-8.7		
1155			4	0.90	20,04	7,33	34404	-7.		
1200			র্চ	6,95	20,06	7,30	35694	-610		
1202		11.5	515	0:94	20102	7.32	35916	-6.9	Wait for re Sample	charge
1305		11.5-						\rightarrow	Saupli	
		2		\leq	11.		\sum			
······································			- /		HA	KI			j.	
				γL	VVV		K			
						\square				,
•										
									Continue remarks on re	everse, if needed.

÷.

· · . · .


Ę Z

.

in the second second

7

٠

Continue remarks on reverse, if needed.

WATER-QUALITY SAMPLING LOG Date: 10/30/09 Page 1 of _____ Project No. _____028-10060-06-***

Project Name: MSC Oakland Edgewater Sampling Location: 7101 Edgewater Drive, Oakland, Ca	
Sampler's Name: A. Valdivia Sample No.:	FB
Sampling Plan By: DCR Dated: 10/27/09 C.O.C. No.:	
Purge Method: 🛛 Centrifugal Pump 🛛 Disposable Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗅 Teflon Bailer 🗅 Other	
Purge Water Storage Container Type: <u>55 gallon drum</u> Storage Location: <u>On-site</u>	
Date Purge Water Disposed: Where Disposed: _On-site	
Analyses Requested No. and Type of Bottles Used	
TPHg / BTEX / MTBE by 8260 3 VOAs with HCl preservative	
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up 1 Liter Amber	
Lab Name: Curtis and Tompkins	
Delivery By	
Well No. MW-16 Depth of Water 11.37' Well Diameter: 2'' Well Depth 13.47'	
2101	
\square 4" (0.65 gal/feet) \square 6" (1.47 gal/feet)Water Column Height 2.10 80% DTW $11.79'$ \square 4" (0.65 gal/feet) \square 6" (1.47 gal/feet)Well Volume 0.34 \square \square 0.34 \square	
Inlet Depth Volume DO Temperature PH Cond ORP Time Depth to Water Purged (gal) (mg/L) (C°) (SU) (uS/cm C) (mV) Rema	irks
1129 Start F	rge
1135 0.25 After 0.7	25 cpl
-extrac	
5-6'.	of black
sitty .	uster moxic
1156 0.50 0.44 21.04 736 14276-809 1203 12.56 0.44 21.04 736 14276-809	
1203 12.56	
1230 Sample	
	on reverse, if needed.

						WAT	ER-Q	UALIT	Y SAMP	LING LOC
Project No	028-1	0060-06-***			Date:	10/3	0/0°	۱		Page 1 of
Project Name	: MSC Oa	kland Edgew	vater		Samp	ling Locatio	n: <u>7101 E</u>	Edgewater	Drive, Oakland, (Ca
Sampler's Na	me: / //	NS/A	AV_				Sampl	e No.:		🗆 FB
Sampling Pla	n By:				Dated:	10/27/09		C.O.C. N	0.:	
Purge Method	d: 🗆 Centr	ifugal Pump	X Disposable I	Bailer 🗆 Ha	and Bail 🗖 Su	ubmersible l	Pump 🗖 Te	eflon Bailer	Other	
Purge Water	Storage Con	tainer Type:	55 gallon dr	<u>um</u>	Sto	rage Locati	on:(On-site		
Date Purge W	ater Dispos	ed:			Wh	ere Dispose	ed: <u>On-site</u>			
······	Analyses R	equested		No.	and Type of Bot	tles Used				
TPHg / BTI	EX/MTBE I	by 8260		3 VOA	s with HCl pre	servative				
<u>TPHd / TPHm</u>	no / TPHk by	8010 with sil	lica gel clean-u	<u>р</u>	1 Liter Amber					
Lab Name:	Curtis	s and Tompki	ns							
Delivery By	Courier _		X	Hand						
,			al/feet) Wa al/feet) Wa	ell Volume	1.60	gal			TW 12.24	/
Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Re	emarks
1553								\rightarrow	Starte	zirge
1558					20,41					
1602				1	20,3A					
1604		(0.37'	4,50	0.79	20.28	7.24	11943			
1606									Somple	2
/										
							\sum			
			\searrow	[/	1		1			
			/	>	4/					
				K ,	$\langle \rangle$					
				t	[
					-				<u> </u>	

ų.

Project No.	028-1	10060-06-***			Date:	10/3	50/09	7	Page 1 of
Project Name	: MSC Oa	kland Edgew	ater		Sampl	ing Locatio	n: <u>7101 E</u>	Edgewater I	Drive, Oakland, Ca
Sampler's Na	me:_M\	NS/A	AN				Sampl	e No.:	D FB
Sampling Pla	n By:	DCR			Dated:	10/27/09		C.O.C. N	o.: DUP
Purge Method	d: 🗆 Centr	ifugal Pump	Disposable E	Bailer 🗆 Ha	and Bail 🗆 Su	bmersible l	Pump 🗆 Te	eflon Bailer	Other
Purge Water	Storage Con	tainer Type:	55 gallon dr	<u>um</u>	Stor	age Locatio	on:(<u>On-site</u>	
Date Purge W	Vater Dispos	ed:	·····		Whe	ere Dispose	ed: <u>On-site</u>		
	Analyses R	equested		No. a	and Type of Bott	les Used			
TPHg / BTI	EX / MTBE	by 8260		3 VOAs	with HCI pres	servative _			
<u>TPHd / TPHm</u>	<u>no / TPHk by</u>	8010 with sil	ica gel clean-u	p	1 Liter Amber				
Lab Name:	Curtis	s and Tompki	ns						
Delivery By			X	Hand					
Well No. 👖	111-9			onth of Wat	er 8,91	1			
	•		De		,				
				-	n Height <u>5</u>	,			
1		□ 5" (1.02 g						80% E	TW 10.02'
山 4 (0.65	gaineet)	□ 6" (1.47 g	al/leet) vv			gan			
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
Time 1528									
					(C°)	(SU)	(uS/cm C)	(mV)	Start purge
1528			Purged (gal)	(mg/L)		(SU) 7.06		(mV) >> -82,7	Start purge
1528 1531			Purged (gal)	(mg/L) G,81	(C) 21.31 20,75	(SU) 7.06 7.06	(us/cm C) 1611E 20197	(mV) >> -82.7 -86.9	Start purge
1528 1531 1534		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge
1528 1531 1534 1535 1537		to Water	Purged (gal)	(mg/L) G,81 O,84 O,86	(C) 21.31 20,75 20,43	(SU) 7.06 7.05 7.07	(uS/cm C) 1611E 20197 197209	(mV) → -82,7 -86.9 -88,8	Start purge

MSC_frm-Water-Quality_Oct2009.doc: A; 10/09; FORM FRONT

έ.

	R					WA1	ER-Q	UALIT	Y SAMPLING LOG
Project No	028-1	10060-06-***			Date:	101	30/0	29	Page 1 of
Project Name	e: MSC Oa	kland Edgev	vater		Sampl	ing Locatio	n: <u>7101 E</u>	Edgewater	Drive, Oakland, Ca
Sampler's Na	ame: <u>M</u>	NS/A	AV				Sampl	e No.:	🗆 FB
		-							lo.: □ DUP
Purge Metho	d: 🗆 Centr	rifugal Pump	X Disposable I	Bailer 🗆 Ha	and Bail 🗖 Su	bmersible	Pump 🗆 Te	eflon Bailer	□ Other
			55 gallon dr						
Date Purge V	Vater Dispos	ed:					ed: <u>On-site</u>		
	Analyses R	equested		No.	and Type of Bott	les Used	<u> </u>		
TPHg / BT	EX/MTBE	<u>by 8260</u>		3 VOAs	s with HCI pres	servative			
<u>TPHd / TPHn</u>	no / TPHk by	<u>8010 with si</u>	lica gel clean-u	<u>p</u>	<u>1 Liter Amber</u>				
Lab Name:	Curtis	s and Tompk	ins						
Delivery By	Courier _		. 🛛 🛛	Hand			~		
	A \ N _ \4	<u>م</u>			GI	,			
Well No	•		De						
					14:65 n Height _5				
r		□ 5" (1.02 g □ 6" (1.47 g			0,89			80% D	DTW 2010.22'
Li + (0.00	gaineer					Jan			
Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1502								V	Start purge
1504			1.0	687	21.22	7.03	17134	-88,4	Odurous ->anoxic
1507	-		2.0	0.99					
1509			3.0	0,91	2035	7,17	15693	-\00,8	0
1512			4.0	1.05	20.40	7.17	15476	-1017	
1514		9,83	4.5	1.06	20,48	7.20	15061	-99.0	
1515	-							S	mpled
							•		
/			Same and the second	A					
			$\langle \rangle$	\square	1		\mathcal{A}		
					$T \rightarrow$		/		
				10	ИA	\rightarrow	$\langle - \rangle$		
			/						
						\bigcirc			
									Continue remarks on reverse if needed

MSC_frm-Water-Quality_Oct2009.doc: A; 10/09; FORM FRONT

. .

. . .

Project No.	028-1	10060-06-***			Date: _	10/7	<u>30/c</u>	9	Page 1 of	_
Project Name	: MSC Oa	kland Edgew	ater		Sampl	ing Locatio	n: <u>7101 E</u>	dgewater I	Drive, Oakland, Ca	_
Sampler's Na	me:_ <u>M</u> \	NS/A	AV				Sample	e No.:	🗆 FB	
Sampling Pla	n By:	DCR			Dated:	<u>10/27/09</u>		C.O.C. N	o.: DUP	_
Purge Method	d: 🗆 Centr	ifugal Pump	🛛 Disposable E	Bailer 🗆 Ha	nd Bail 🗖 Su	bmersible f	Pump 🗆 Te	flon Bailer	Other	_
Purge Water	Storage Con	tainer Type:	55 gallon dr	<u>um</u>	Stor	age Locatio	on:(<u>On-site</u>		
Date Purge W	/ater Dispos	ed:			Whe	ere Dispose	ed: <u>On-site</u>		Construction of the second	٦
· · · · · ·	Analyses R	equested		No. a	nd Type of Bott	les Used				
TPHg / BTI	EX / MTBE I	by 8260		3 VOAs	with HCI pres	servative				
TPHd / TPHm	<u>no / TPHk by</u>	8010 with sil	ica gel clean-u	<u>p1</u>	Liter Amber				,	
Lab Name:	Curtis	s and Tompki	<u>ns</u>							
Delivery By	Courier _		XI	Hand						
	A \ \ \ \	Z			a (5	/				
			De We							
• .			VVe	ell Deptn	Height _	811			1	
•		□ 5" (1.02 g	al/feet) vva	ater Column	Height -1	*		80% D	TW 11.62	
□ 4 (0.65	gai/feet)	□ 6" (1.47 g	al/feet) vve	ell volume	1.58	931				
Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks	
1929								\sim	Starts purge	
1427			1.5	1.15	20.22	6.91	13140	-74	De-watering	
1430			3.0	0.98	20.07	6.90	14308	-72,0		
1433			4.5	0.85	19.92	6.90	5028	-68.7		
1436			5.0	0.91	19.78	6.92	15491	-632	-	
1438			5,5	6,90	19181	6.93	15298	-65.9		
1445		9.92'						\rightarrow	Sample	
									-1	
										1
										1
										1
· · · · · · · · · · · · · · · · · · ·										1
¢										1
									Continue remarks on reverse, if needs	 ∌d
			1					. MSC_frm-Wa	ter-Quality_Oct2009.doc: A; 10/09; FORM FRO	TV

a. 20

Project No. 028-10080-06-** Data:]D / 3 0/6 ? Page 1 of				n Aquin an an angun a			WAT	ER-Q	UALIT	Y SAMPLING LOC
Sampler's Name: M. Sullized Sample No. Miv 10 D FB Sampling Plan By: DCR Dated: 102709 C.O.C. No.: D DUP Purge Method: Contribugal Pump (D) Disposable Bailer II Hand Bail II Submersible Pump II Tetlon Bailer II Other D DUP Purge Water Disposable More Disposable Bailer II Hand Bail II Submersible Pump II Tetlon Bailer II Other D DUP Purge Water Disposable No. and Type of Bettee Used D nsible D nsible The Dress Requested No. and Type of Bettee Used D nsible D nsible Dated:	Project No	028-1	10060-06-***		<u> </u>	Date:	10/	30/0'	1	Page 1 of
Sampling Plan By: DCR Dated: 19/27/09 C.O.C. No: DUP Purge Method: Contritugal Pump & Disposable Baller Hand Ball II Submersible Pump II Tefton Baller II Other Dup Purge Water Disposed:	Project Name	: MSC Oa	kland Edgew	ater		Sampl	ling Locatio	n: <u>7101 E</u>	Edgewater	Drive, Oakland, Ca
Sampling Plan By: DCR Dated: 19/27/09 C.O.C. No: DUP Purge Method: Contritugal Pump & Disposable Baller Hand Ball II Submersible Pump II Tefton Baller II Other Dup Purge Water Disposed:	Sampler's Na	me: <u>М</u> .	Sulliva	1				Sampl	_{e No.:} <u>/</u> /	W-D □FB
Purge Water Storage Container Type: 55 galon drum Storage Location: On-site Date Purge Water Disposed:	Sampling Pla	n By:	DCR			Dated:	<u> 10/27/09</u>		C.O.C. N	lo.: DUP
Date Purge Water Disposed:	Purge Method	d: □ Centr	ifugal Pump	Disposable E	Bailer 🗆 Ha	and Bail 🗆 Su	Ibmersible	Pump 🗆 Te	eflon Bailer	Other
Audyses Requested No. and Type of Bottles Used TPHq / BTEX / MTBE by 8260 3 VOAs with HCI preservative TPHd / TPHko / TPHk by 8010 with silica gel clean-up 1 Lifer Amber Lab Name: Curiis and Tompkins Delivery By Courier R Hand Well No. Mitubello Delivery By Courier R Hand Well Diameter: 2.11 Well No. Metry expression Metry Diagnifeet) 6° (1.47 gal/feet) Well Volume M Time Degth Purget (gal DO 13:551 \$.7-0 Incomentation PH Codd 14:01 1.02 1.05 20.81 687 2877 42.6 14:03 2.0 1.05 20.71 6.78 2801 -8.0 14:05 3.02 1.03 20.7	Purge Water	Storage Con	tainer Type:	55 gallon dr	<u>um</u>	Sto	rage Locati	on:	<u>On-site</u>	
TPHg/ISTEX/MTBE_by 8260 3 VOAs with HCI preservative TPHd/TPHmo/TPHk by 8010 with silica get clean-up 1 Liter Amber Lab Name: Curtis and Tompkins Delivery By Courier Ø Hand Well No. M(U)=10 Depth of Water 8.80 U'ul preservative 15/17 D'cl ût gal/feet) 5' (1.02 gal/feet) Well Column Height 6.31* Time Infet Depth 15/17 80% DTW 7/14/ 13:51 5' (1.02 gal/feet) Well Volume 1 80% DTW 7/14/ 13:51 5' (1.02 gal/feet) Well Volume 1 80% DTW 7/14/ 13:51 5' (1.02 gal/feet) Well Volume 1 80% DTW 7/14/ 13:51 5' (1.02 gal/feet) Well Volume 1 1 80% DTW 7/14/ 14:01 1.02 1.05 20.81 687 287 7/2.60 1 14:03 2.01 1.02 2.057 6.81 35/6 7/4.8 1 14:05 3.02 1.03 20.12 6.84 3.06 1	Date Purge V	/ater Dispos	ed:			Wh	ere Dispose	ed: <u>On-site</u>		
TPHd/TPHno/TPHk by 8010 with silica gel dean-up 1 Liter Amber Lab Name: Curtis and Tompkins Delivery By Courier 2' (0.16 gal/feet) D 5' (1.02 gal/feet) Well No. A(U)[O 2' (0.16 gal/feet) D 5' (1.02 gal/feet) Well Obs gal/feet) D 5' (1.02 gal/feet) Well No. G (1.47 gal/feet) 0 5' (1.02 gal/feet) Well Volume 1' D 6' (1.47 gal/feet) 1' Name 1' Notation 1' D 1 (.C) 1' Notation		Analyses R	equested	*****	No. a	and Type of Bot	lles Used			
Lab Name:	TPHg / BT	EX / MTBE	by 8260		3 VOAs	with HCI pre	servative _			
Delivery By □ Courier Ø Hand Well No. Multiplo Depth of Water €.80 12" (0.16 gal/feet) □ 5" (1.02 gal/feet) Well Depth 1/5" / 7 □ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Well Volume Mell Depth 0.5" / 7 □ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume Mell Volume	<u>TPHd / TPHn</u>	<u>io / TPHk by</u>	8010 with sil	ica gel clean-u	<u>p</u>	1 Liter Amber				
Well No. \underline{M} Depth of Water \underline{B} . & Well Diameter: $\underline{\lambda}$. ¹ Well Depth $\underline{I5}$, $\underline{I7}$ \Box 2° (0.16 gal/feet) \Box 5' (1.02 gal/feet) Water Column Height $\underline{b.3}$ $\underline{B0\%}$ DTW $\underline{7}$, $\underline{b\%}$ \Box 4° (0.65 gal/feet) \Box 6' (1.47 gal/feet) Well Volume $\underline{\frown}$ $\underline{B0\%}$ DTW $\underline{7}$, $\underline{b\%}$ \Box 4° (0.65 gal/feet) \Box 6' (1.47 gal/feet) Well Volume $\underline{\frown}$ $\underline{B0\%}$ $\underline{B0\%}$ DTW $\underline{7}$, $\underline{b\%}$ \Box 4° (0.65 gal/feet) \Box 6' (1.47 gal/feet) Well Volume $\underline{\frown}$ $\underline{B0\%}$ $\underline{B0\%}$ DTW $\underline{7}$, $\underline{b\%}$ \Box 4° (0.65 gal/feet) \Box 6' (1.47 gal/feet) Well Volume $\underline{\frown}$ $\underline{B0\%}$ $\underline{B0\%}$ DTW $\underline{7}$, $\underline{b\%}$ 13551 $\overline{\$}$, $\overline{7}$, D $D0$ Temperature \underline{PH} \underline{Cond} $\underline{OB\%}$ DTW $\underline{7}$, $\underline{b\%}$ $14O3$ 2.0 1.05 20.81 $\underline{687}$ $\underline{2851}$ $\underline{-68.0}$ $\underline{-78.6}$	Lab Name:	Curtis	s and Tompki	ns						,
Well Diameter: $2!$ Well Depth $15; 17$ $2''(0.16 gal/feet)$ $5'(1.02 gal/feet)$ $Vater Column Height 6.37 4''(0.65 gal/feet) 6''(1.47 gal/feet) Well Volume M 4''(0.65 gal/feet) 16''(1.47 gal/feet) Well Volume M 13571 0''(1.47 gal/feet) Volume M M 13571 0''(1.47 gal/feet) Volume M M 14''(0.65 gal/feet) 0''(1.47 gal/feet) M''(gal) M''(Gon) M''(Gon) M''(Gon) 13571 0''(1.47 gal/feet) Volume M''(Gon) M''(Gon) M''(Gon) M'''(Gon) 14'O1 1.0' 1.0''(5') 20.51 6.5''(5') 28''(5') 6.5''(5') <$	Delivery By	Courier _			Hand					
Well Diameter: $2!$ Well Depth $15_1 17$ $2''(0.16 gal/feet)$ $5'(1.02 gal/feet)$ $Water Column Height 6.37 80\% DTW 7.64' 4''(0.65 gal/feet) G''(1.47 gal/feet) Well Volume M' M' 80\% DTW 7.64' Time Depth to Water Purget (gal) G'' M' M' M' 13551 0.7 D M' M' M' M' 14 O I 1.C 1.C 1.C 1.C 2.0.7 6.78 28051 68.0 14O3 2.0 1.02 2.0.751 6.78 28051 68.0 14O3 2.0 1.02 2.0.51 6.78 28051 68.0 14O3 2.0 1.03 20.12 6.94 30.66 78.6 14O8 4.0 1.03 20.12 6.94 30.66 78.6 5.66 14O3 1.0 1.0 1.0 1.0 1.0 1.0 <$	u	1					<i>ъ</i>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				De	pth of Wate	$r = \frac{0.0}{15.1}$	7			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• .						~			
L14*(0.65 gal/reet) User the second seco									80% E	DTW 7164
Time Depth to Water Purged (gal) (mg/L) (c°) (sU) ($sSon$ C) (mV) Remarks 13571 $\$$, 70 1.0 1.05 20.81 681 2879 -62.6 1401 2.0 1.08 20.61 6.78 2801 -68.0 1405 3.0 1.01 20.51 6.88 3556 -78.6 1408 3.00 1.03 20.12 6.84 3066 -78.6 1405 3.00 1.03 20.12 6.84 3066 -78.6 1408 4.0 1.03 20.12 6.84 3066 -78.6 1415 - - - - - - - 1415 - - - - - - - - 1415 - - - - - - - - 1415 - - - - - -<	□ 4" (0.65	gal/feet)	LJ 6" (1.47 g	al/feet) We	ell Volume					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time		to Water					1		Remarks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1357		8.70							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1401			1.0	1.65	20.81	687	2879	-62.6	
1408 4.0 1.03 20.72 6.84 30.86 -78.60 1415	1403			2.0	1.08	20.67	6.98	2801	-68.0	•••••••••
1415 Sample 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1405			3.0	1.01	2057	6.81	3156	-74.8	
Image:	1408			4.0	1.03	20.72	6.84	3086	-78.6	
Image:	1415								\rightarrow	Sample
Continue remarks on reverse, if needed.										\
Continue remarks on reverse, if needed.										
Continue remarks on reverse, if needed.										
Continue remarks on reverse, if needed.										
Continue remarks on reverse, if needed.										
										1
	-									
						<i>.</i>				
						1			MCC for MI	

د. در ایندهونون و زیرد در

WATER-QUALITY SAMPLING LOG

Project No	028-	10060-06-***			Date:				Page 1 of
Project Name	e <u>: MSC Oa</u>	akland Edgev	vater		Sampl	ing Locatio	on: <u>7101 E</u>	Edgewater	Drive, Oakland, Ca
Sampler's Na	ame:		·····				Sampl	e No.:	FB
Sampling Pla	ın By:	DCR			Dated:	10/27/09		C.O.C. I	No.: DUP
Purge Metho	d: 🛛 Centi	rifugal Pump	X Disposable E	Bailer 🗆 H	and Bail 🗆 Su	bmersible	Pump 🗖 Te	eflon Bailer	□ Other
Purge Water	Storage Cor	itainer Type:	55 gallon dr	<u>um</u>	Stor	age Locat	lion:	<u>On-site</u>	
Date Purge V	Vater Dispos	ed:			Whe	ere Dispos	ed: <u>On-site</u>	·	
## ###################################	Analyses R	equested		No.	and Type of Bott	les Used			
TPHg / BT	EX/MTBE	by 8260		3 VOA	s with HCI pres	servative			
<u>TPHd / TPHn</u>	no / TPHk by	8010 with si	lica gel clean-u	<u>p</u>	1 Liter Amber				
Lab Name: _	Curtis	s and Tompki	ins						
Delivery By	Courier _		XI	Hand					
Well No.			De	pth of Wat	er				
Well Diamete	r:								
	- ,	□ 5" (1.02 g		ater Colum	n Height			80% [DTW
□ 4" (0.65	gal/feet)	□ 6" (1.47 g	al/feet) We	ell Volume	<u></u>	<u></u>			
Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks
Time									Remarks

Continue remarks on reverse, if needed.

Project No.	028-2	10060-06-***			Date: _				Page 1 of
Project Name	: MSC Oa	kland Edgew	vater		Sampli	ng Locatio	n: <u>7101 E</u>	dgewater	Drive, Oakland, Ca
Sampler's Na	me:						Sample	e No.:	□ FB
Sampling Pla	n By:	DCR			Dated:	0/27/09		C.O.C. N	lo.: DUP
Purge Method	d: 🗆 Centi	rifugal Pump	X Disposable E	Bailer 🗆 Ha	and Bail 🗆 Sul	bmersible l	Pump 🗆 Te	flon Bailer	Other
Purge Water	Storage Con	tainer Type:	55 gallon dr	<u>um</u>	Stor	age Locatio	on: (Dn-site	
Date Purge W	/ater Dispos	ed:			Whe	ere Dispose	ed: <u>On-site</u>		
	Analyses R	equested		No.	and Type of Bottl	es Used			
TPHg / BTI	EX / MTBE	by 8260		3 VOA	s with HCI pres	ervative			
TPHd / TPHm	no / TPHk by	v 8010 with sil	lica gel clean-u	<u>p</u>	1 Liter Amber				
Lab Name:	Curti	s and Tompki	<u>ns</u>						
Delivery By									
Well No.			De	pth of Wat	er				
Well Diamete	r:		We	ell Depth _					
□ 2" (0.16	gal/feet)	🗆 5" (1.02 g	al/feet) Wa	ater Colum	n Height			80% [
□ 4" (0.65	gal/feet)	□ 6" (1.47 g	al/feet) We	ell Volume				00 /01	
Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
Time									Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks
Time		to Water							Remarks

,

Continue remarks on reverse, in needed.

]

MSC_frm-Water-Quality_Oct2009.doc: A; 10/09; FORM FRONT

.

Project No.	028-1	0060-06-***			Date: _				Page 1 of
Project Name	: MSC Oa	kland Edgew	ater		Sampli	ng Locatio	n: <u>7101 E</u>	dgewater	Drive, Oakland, Ca
Sampler's Na	me:		·····				Sample	e No.:	D FB
Sampling Plan	n By:	DCR			Dated:	0/27/09		C.O.C. N	No.: DUP
Purge Method	i: 🗆 Centr	ifugal Pump	X Disposable E	Bailer 🗆 Ha	and Bail 🗆 Su	bmersible l	Pump 🗆 Te	flon Bailer	□ Other
Purge Water	Storage Con	tainer Type:	55 gallon dr	<u>um</u>	Stor	age Locati	on:(<u> On-site</u>	
Date Purge W	/ater Dispos	ed:			Whe	re Dispose	ed: <u>On-site</u>		
	Analyses R	equested		No.	and Type of Bott	es Used			
TPHg / BTE	EX / MTBE	by 8260		3 VOA	s with HCI pres	ervative			
<u>TPHd / TPHm</u>	<u>io / TPHk by</u>	8010 with si	lica gel clean-u	p	1 Liter Amber				
Lab Name:	Curtis	s and Tompki	ns				<u>.</u> _		
Delivery By	Courier _		XI	Hand					
Well No.			De	pth of Wat	er				
Well Diamete	r:		We	ell Depth _			<u> </u>		
□ 2" (0.16	gal/feet)	□ 5" (1.02 g	al/feet) Wa	ater Colum	n Height			0.00/ 1	
□ 4" (0.65	gal/feet)	🗆 6" (1.47 g	al/feet) We	ell Volume				80%1	
Time	inlet	Depth	Volume	DO	Temperature	PH	Cond	ORP	
	Depth	to Water	Purged (gal)	(mg/L)	(C°)	(SU)	(uS/cm C)	(mV)	Remarks
	υερτη	to Water	Purged (gal)	(mg/L)	(C°)	(SU)			Remarks
	Deptn	to Water	Purged (gal)	(mg/L)	(C°)	(SU)			Remarks
		to Water	Purged (gal)	(mg/L)	(C°)	(SU)			Remarks
		to Water	Purged (gal)	(mg/L)	(C°)	(SU)			Remarks
		to Water	Purged (gal)	(mg/L)	(C°)	(SU)			Remarks
		to Water	Purged (gal)	(mg/L)	(C°)	(SU)			Remarks
		to Water	Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks
		to Water	Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks
			Purged (gal)	(mg/L)		(SU)			Remarks

.

Continue remarks on reverse, if needed.

APPENDIX C

Laboratory Results and Chain-of-Custody Documentation

and setting to the

H

Laboratory Job Number 216169 ANALYTICAL REPORT

LFR Levine Fricke	Project : 028-10060-06
1900 Powell Street	Location : Oakland MSC
Emeryville, CA 94608	Level : II

<u>Sample ID</u> TB102909 MW-12	<u>Lab ID</u> 216169-001 216169-002
MW-1	216169-003
MW-6	216169-004
MW-5	216169-005
MW-8-FB	216169-006
MW-8	216169-007
MW-17	216169-008
MW-16	216169-009
MW-15	216169-010
MW-9	216169-011
MW-14	216169-012
MW-13	216169-013
MW-10	216169-014
MW-5-D	216169-015

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

The Barn

Signature:

Project Manager

Date: <u>11/10/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 216169 LFR Levine Fricke 028-10060-06 Oakland MSC 11/02/09 10/30/09

This data package contains sample and QC results for thirteen water samples, requested for the above referenced project on 11/02/09. The samples were received cold and intact. All data were e-mailed to Daren Roth on 11/10/09.

TPH-Extractables by GC (EPA 8015B):

MW-16 (lab # 216169-009) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

1	is & Tompkins, Ltd. tical Laboratory Since 1878		Cŀ		٨IN	OF CU	S	T	OE	Y		F	Page]	0'	f
	2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax		C & T	LOC	3IN #:	216169						Analys	is		
			Sample	er:	M.Su	Iliveri / .t. 12 en Roth R	<u>Idiv</u>	11a			5360				
Project	No .: 026-10060-06		Report	: To :	Pain	en Roth					Bol5				
Project	Name: MSC		Compa	any:	ĹŦ	K					See 1				
Project	• • • • • • • • • • • • • • • • • • •		Teleph								(1)				
	ound Time: Standard		·		•						N/ J		-		
Turnaru			Fax:								BTEX				
[]					Matrix		P	rese	ervati	ve	9 9 1 9				
Lab No.	Sample ID.	Samplir Tir	ng Date ne	Soil	Water Waste	# of Containers	HCL	H₂SO₄	ŐNH U		TPH				
		10/29/09			γ	2	2				HOLD				
	,411-12	1	1645		X	5	3			2	* *				
	111-1	10/30/04	0725		Y	5	Ś			ろ	x y				
	,111-6 MW-5		6835	<u> </u>	7	5	3			2	Y X X				
	MW-8-FB		0939		X		3			2	X Y HOLD				
	MW-8		1305			5	3			22					
	μw~ 17		1239	<u> </u>	$\overline{\mathbf{X}}$	<u>Б</u> 5	<u>フ</u> ろ			2	XX			_	
	MWIG		1230		X	5	3			2	XX XX				
	MW-15		1606		$\widehat{\mathbf{X}}$	5	-			2	XX				
	MW-9		1542	1	$\overline{\mathbf{X}}$	5	33			222	XX				
	Mw-14		1515		$ \hat{\chi} $	5	3			2	XX				
	MW-13	10/20/	19 1995		X	5	3			2					
Notes:	silica Gel Cleanus	SAMPLE	RECEIPT			SHED BY:					RECEIVED BY:		11		
on T	PHO /TPH ww/TPHK		Ambient	1		I SIUU		9/3		<i>194</i> 0 E / TIMI		dik	11	-2-0 DATE	୩/ି 13 = / TIME
Prof	to Analysis	Preservativ	ve Correct?						DAT	E / TIM	E			DATI	E / TIME
									DAT	E / TIM	E			DATI	E / TIME

Curtis	&	Tompkins,	Ltd.
--------	---	-----------	------

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax

CHAIN OF CUSTODY

Page 2 of 2

Analysis

(510) 486-0900 Phone (510) 486-0532 Fax	С&ТІ	.OG	iIN i	#:	21	6169																				
	No.: こみを-いこの		To:	٢	Da		ve. 1/A. Vei	14:	119				r (c)/ -		8013												
Project	······································	Teleph											140	1100													
Turnaro	ound Time: Stander	Fax:																									
				Ma	atrix]		Pres	erv	ativ	e		DICX.	dme/K												
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste		# of Containers	HCL	H₂SO₄	ŐNH	ICE			7	TPH 0												
	MW-10	10/30/09 1415		A			5	3				2			4												
	MW-S-D	10/30/090953		Y			5	3				2	Z	* /	>	_						\perp			\perp	_	
													-	+	+	_			-	-	-	+		+	+.	-	_
														+	+				-	-			+	+	+	+	-
		AI				-		1													+	+		+		+-	\neg
					1																+	1	+		+	+	
					\leq																						
			\geq	\square		<u> </u>													ļ		_		_		\perp	\perp	
			ļ	ļ				<u> </u>	\square										ļ					\perp	\perp	\perp	
						-					\geq		-								+			\perp	\perp	_	_
Notoo		SAMPLE RECEIPT		I									-														_
Notes.	Silica bil chan up		RE	ELIN	IQU	ISH	ED BY:							EC	EIV	'ED	B	Y:									
01 -	TOHO TPH me and	On Ice Ambient	1	M	Ű			10/3		` <i>D</i>	ATE	/ TIN	IE 4	j.	w	T		nti	k.			I L-	-2·	-0 DA	<u>ף / ג דב /</u>	о 9] ′ ТІМ	30 1E
TPH	K prior to availysis	Preservative Correct?								D	ATE	/ TIM	IE											DA	TE /	TIM	1E
										D	ATE	/ TIM	E											DA	TE /	ТІМ	IE
	SIGNATURE																						1				

COOLER RECEIPT CHECKLIST

ct	Curtis & Tompkins, Ltd.
----	-------------------------

Login #	216169		Date Rece	ived 10-	30	_ Number of	cooler	s 2	
Client					WET	MSC			
Date Op Date Log	ened <u>10-3</u> gged in <u>11-2</u>		orint) <u>El.</u> ç orint)	<u>s</u> . T.	(sign) (sign)	Cline Th	ndik		
1. Did co		vith a shipp						NC)
	e custody sea Iow many						S	Ø.N	10
 2B. Wer Were Were S. Is the 	e custody sea custody pape custody pape	als intact up ers dry and ers filled ou tifiable fro	pon arrival? intact when at properly (in m custody p	received? ink, signe apers? (If	d, etc)?		YES	NO NO NO)
	Bubble Wra Cloth mater erature docur	ial 🗌		· - ·] Bags] Styrofoam	□N XP	one aper tov	vels	
Т	ype of ice us	sed: 🕅 W	et □Bl	ue/Gel	🗌 None	Temp(°C)			
X	Q Samples R	eceived on	ice & cold	without a	temperature	blank			
] Samples re	eceived on	ice directly i	from the f	ield. Cooling	g process had	begun		
I	Method 503 f YES, what l bottles arriv	time were	they transfer	red to fre			Y	YES (NO
10. Are	samples in th ample labels	ne appropri	ate containe	rs for indi				De la	NO NO
13. Was	ne sample lab sufficient an	nount of sam	mple sent for	r tests req	uested?			ES	NQ NO
	he samples a pubbles > 6m	~ ~ ~	* 1				TES 1 TES 1		N/A
16. Was	the client con	ntacted con	cerning this	sample d	elivery?		Y	ES	NO
If	YES, Who	was called	?]	Зу	I	Date:		
COMME Fea	ENTS	n ant	4 . L	Que la					
	-CIVER .		<u>- Crpr</u>	, March 102					
					· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·				

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

		Total H	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	216169 LFR Levine F 028-10060-06			Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B
Matrix: Units:	Water ug/L			Received:	10/30/09
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-12 SAMPLE 216169-002 1.000 156815			Sampled: Prepared: Analyzed: Cleanup Method:	10/29/09 11/03/09 11/04/09 EPA 3630C
An Kerosene C10-	alyte		Result 220 Y	RL 50	
Diesel C10-C2 Motor Oil C24	4	ND	280 Y	50 50 300	
Sur	rogate	%REC	Limits		
o-Terphenyl	- 3	86	39-150		
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-1 SAMPLE 216169-003 1.000 156815			Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/04/09 EPA 3630C
	alyte		Result	RL	
Kerosene C10- Diesel C10-C2 Motor Oil C24	4	ND	820 Y 810 Y	50 50 300	
Sur	rogate	%REC	Limits		
o-Terphenyl		91	39-150		
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-6 SAMPLE 216169-004 1.000 156815			Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/04/09 EPA 3630C
	alyte		Result	RL	
Kerosene C10- Diesel C10-C2 Motor Oil C24	4		1,000 Y 1,200 Y	50 50 300	
Sur o-Terphenyl	rogate	%REC 78	Limits 39-150		

		Total Extrac	table Hydrocarbo	ons	
Lab #: Client: Project#:	216169 LFR Levine F 028-10060-06		Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B	
Matrix: Units:	Water ug/L		Received:	10/30/09	
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-5 SAMPLE 216169-005 1.000 156815		Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/05/09 EPA 3630C	
Ana Kerosene C10-C	lyte 16	<u>Result</u> 1,100			
Diesel C10-C24 Motor Oil C24-	L	1,100 ND			
Surr	rogate	%REC Limit	S		
o-Terphenyl		91 39-15	0		
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-8 SAMPLE 216169-007 1.000 156815		Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/05/09 EPA 3630C	
Ana Kerosene C10-C	lyte 16	Result ND	<u>RL</u> 50		
Diesel C10-C24 Motor Oil C24-		ND ND	50 300		
	rogate	%REC Limit			
o-Terphenyl		97 39-15	0		
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-17 SAMPLE 216169-008 1.000 156815		Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/05/09 EPA 3630C	
	lyte	Result			
Kerosene C10-C Diesel C10-C24 Motor Oil C24-	L	ND ND ND	50 50 300		
	rogate	%REC Limit			
o-Terphenyl		87 39-15	U		

		Total Extra	ctable Hydrocarb	ons	
Lab #: Client: Project#:	216169 LFR Levine F 028-10060-06		Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B	
Matrix: Units:	Water ug/L		Received:	10/30/09	
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-16 SAMPLE 216169-009 10.00 156815		Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/04/09 EPA 3630C	
Ana Kerosene C10-C Diesel C10-C24 Motor Oil C24-	1	Result 4,100 5,600 12,000	Y 500)	
	rogate	%REC Limit			
	MW-15 SAMPLE 216169-010 1.000 156815	DO 39-15	Sampled: Prepared: Analyzed: Cleanup Method: t RL		
Kerosene C10-C Diesel C10-C24 Motor Oil C24-	1	ND 110 ND	Y 50 300)	
Sur: o-Terphenyl	rogate	%REC Limit 80 39-15			
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-9 SAMPLE 216169-011 1.000 156877		Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/04/09 11/06/09 EPA 3630C	
Ana Kerosene C10-C Diesel C10-C24		Result 130 220	Y 50		
Motor Oil C24-		ND	300		
Suri o-Terphenyl	rogate	%REC Limit 107 39-15			

Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 3 of 6

		Total H	Extracta	able Hydrocarbo	ns
Lab #: Client: Project#:	216169 LFR Levine F 028-10060-06			Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B
Matrix: Units:	Water ug/L			Received:	10/30/09
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-14 SAMPLE 216169-012 1.000 156816			Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/04/09 EPA 3630C
Ana Kerosene C10-0	alyte	NE	Result	<u>RL</u> 50	
Diesel C10-C2 Motor Oil C24	4	NL ND ND	1	50 50 300	
Sur	rogate	%REC	Limits		
o-Terphenyl		85	39-150		
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-13 SAMPLE 216169-013 1.000 156816 alyte		Result	Sampled: Prepared: Analyzed: Cleanup Method: RL	10/30/09 11/03/09 11/04/09 EPA 3630C
Kerosene C10-C Diesel C10-C2 Motor Oil C24	C16 4	ND		50 50 300	
		%REC	Limits	500	
o-Terphenyl	rogate	72	<u>39-150</u>		
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-10 SAMPLE 216169-014 1.000 156816			Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/04/09 EPA 3630C
	alyte		Result	RL	
Kerosene C10-C Diesel C10-C2 Motor Oil C24	4	ND ND ND	1	50 50 300	
Sur: o-Terphenyl	rogate	%REC 93	Limits 39-150		

Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 4 of 6

	Т	otal Ext	ractal	ble Hydrocarbo	ns	
Lab #: Client: Project#:	216169 LFR Levine Fr 028-10060-06	icke		Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B	
Matrix: Units:	Water ug/L			Received:	10/30/09	
Field ID: Type: Lab ID: Diln Fac: Batch#:	MW-5-D SAMPLE 216169-015 1.000 156816			Sampled: Prepared: Analyzed: Cleanup Method:	10/30/09 11/03/09 11/04/09 EPA 3630C	
Anal Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C	6		ult 20 Y 00 Y	RL 50 50 300		
Surro	gate	%REC Lin	mits			
o-Terphenyl	gate		-150			
Type: Lab ID: Diln Fac: Batch#:	BLANK QC519746 1.000 156815	Res		Prepared: Analyzed: Cleanup Method: RL	11/03/09 11/04/09 EPA 3630C	
Anal Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C	6	ND ND ND ND	uit	50 50 300		
Surro o-Terphenyl	gate		mits -150			
Type: Lab ID: Diln Fac: Batch#:	BLANK QC519750 1.000 156816			Prepared: Analyzed: Cleanup Method:	11/03/09 11/04/09 EPA 3630C	
Anal Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C	6	Res ND ND ND	ult	RL 50 50 300		
Surro o-Terphenyl	gate		mits -150			

Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 5 of 6

		Total Extract	able Hydrocarbo	ns	
Lab #: Client:	216169 LFR Levine B	Fricke	Location: Prep:	Oakland MSC EPA 3520C	
Project#:	028-10060-06	5	Analysis:	EPA 8015B	
Matrix: Units:	Water ug/L		Received:	10/30/09	
Type: Lab ID: Diln Fac: Batch#:	BLANK QC519993 1.000 156877		Prepared: Analyzed: Cleanup Method:	11/04/09 11/06/09 EPA 3630C	
Ana	alyte	Result	RL		
Kerosene C10-0	216	ND	50		
Diesel C10-C24	4	ND	50		
Motor Oil C24-	-C36	ND	300		
	rogate	%REC Limits			
o-Terphenyl		89 39-150			

Total Extractable Hydrocarbons						
Lab #:	216169	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 3520C			
Project#:	028-10060-06	Analysis:	EPA 8015B			
Туре:	LCS	Diln Fac:	1.000			
Lab ID:	QC519747	Batch#:	156815			
Matrix:	Water	Prepared:	11/03/09			
Units:	ug/L	Analyzed:	11/04/09			

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	2,040	82	34-144
Surrogate	%REC	Limits			
o-Terphenyl	96	39-150			

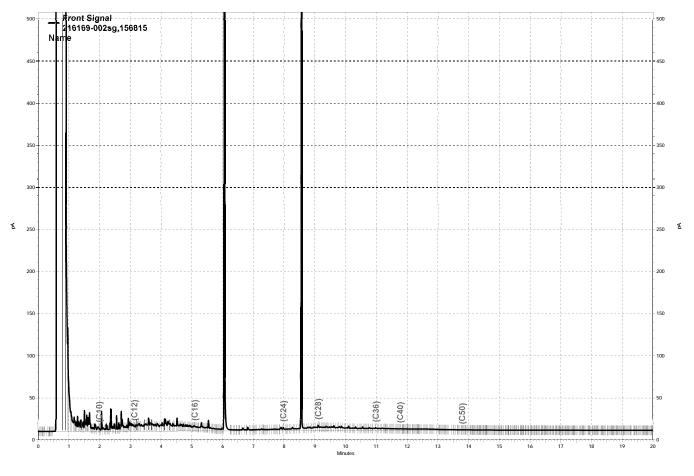
		Total 1	Extracta	ble Hydrocarbo	ns			
Lab #:	216169			Location:	Oakland MSC			
Client:	LFR Levine F	'ricke		Prep:	EPA 3520C			
Project#:	028-10060-06			Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ			Batch#:	156815			
MSS Lab ID:	216163-004			Sampled:	10/29/09			
Matrix:	Water			Received:	10/30/09			
Units:	ug/L			Prepared:	11/03/09			
Diln Fac:	1.000			Analyzed:	11/05/09			
Type: Lab ID:	MS QC519748			Cleanup Method:	EPA 3630C			
Analyt	e	MSS Res		Spiked	Result	%REC	Limi	
Diesel C10-C24		16	5.05	2,500	2,326	92	21-1	60
Surro	ogate	%REC	Limits					
o-Terphenyl		108	39-150					
Type: Lab ID:	MSD QC519749			Cleanup Method:	EPA 3630C			
	QC519749		Spiked	Cleanup Method: Result		Limits	RPD	Lim
Lab ID:	QC519749		Spiked 2,500			Limits 21-160	RPD 9	Lim 58
Lab ID:	QC519749	%REC	_	Result	%REC			

	:	Iotal 1	Extracta	ble Hydrocarbo	ns			
Lab #:	216169			Location:	Oakland MSC			
Client:	LFR Levine Fr	ricke		Prep:	EPA 3520C			
Project#:	028-10060-06			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	156816			
Units:	ug/L			Prepared:	11/03/09			
Diln Fac:	1.000			Analyzed:	11/04/09			
Type: Lab ID:	BS QC519751			Cleanup Method:	EPA 3630C			
Ana	alyte		Spiked	Result	%REC	Limits		
Diesel C10-C2	4		2,500	2,056	82	34-144		
Sur	rogate	%REC	Limits					
o-Terphenyl		93	39-150					
Type: Lab ID:	BSD QC519752			Cleanup Method:	EPA 3630C			
Ana	alyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C2	4		2,500	2,361	94	34-144	14	48
Sur	rogate	%REC	Limits					
o-Terphenyl		108	39-150					

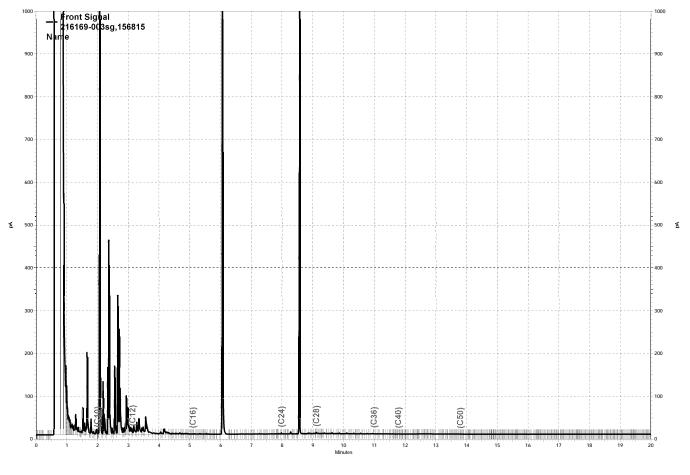
Total Extractable Hydrocarbons						
Lab #:	216169	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 3520C			
Project#:	028-10060-06	Analysis:	EPA 8015B			
Туре:	LCS	Diln Fac:	1.000			
Lab ID:	QC519994	Batch#:	156877			
Matrix:	Water	Prepared:	11/04/09			
Units:	ug/L	Analyzed:	11/06/09			

Cleanup Method: EPA 3630C

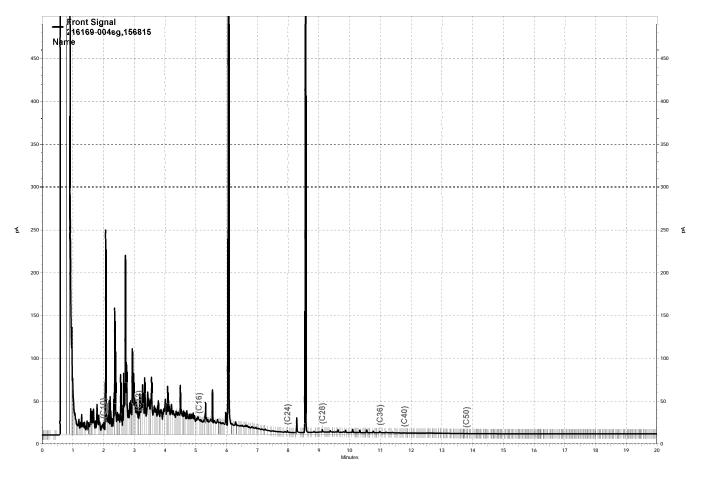
Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	2,453	98	34-144
Surrogate	%REC	Limits			
o-Terphenyl	109	39-150			

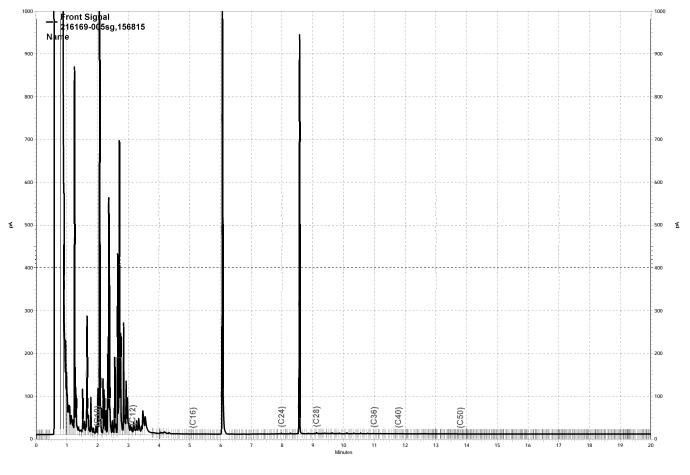


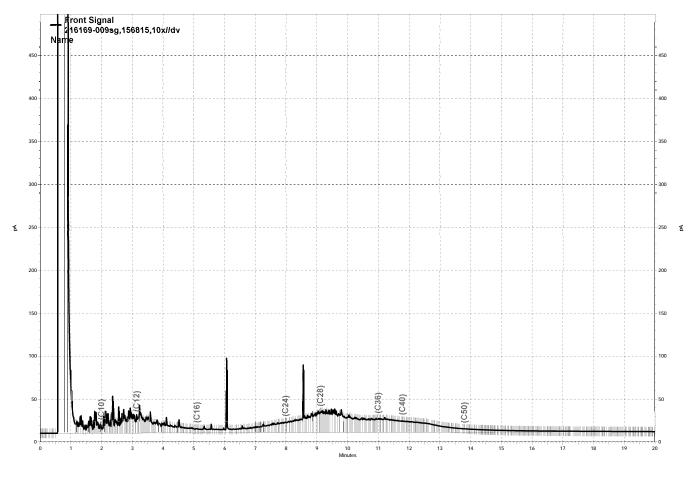
o-Terphenyl

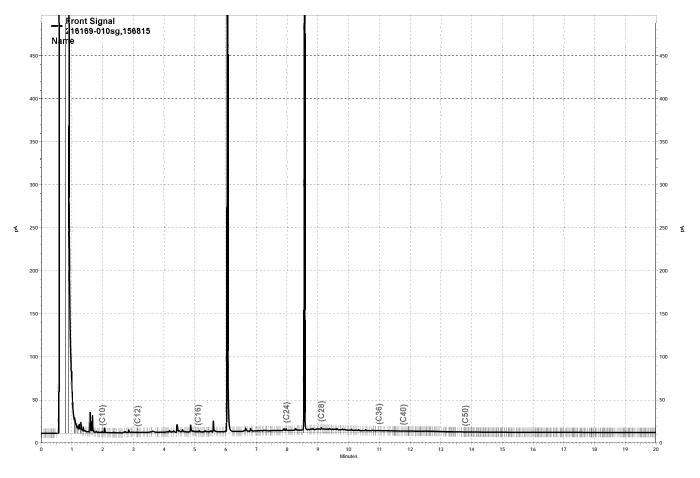

		Total H	Extracta	able Hydrocarbo	ns			
Lab #:	216169			Location:	Oakland MSC			
Client:	LFR Levine F	'ricke		Prep:	EPA 3520C			
Project#:	028-10060-06	5		Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ			Batch#:	156877			
MSS Lab ID:	216170-003			Sampled:	10/29/09			
Matrix:	Water			Received:	10/30/09			
Units:	ug/L			Prepared:	11/04/09			
Diln Fac:	1.000			Analyzed:	11/06/09			
Type: Lab ID: Analy	MS QC519995	MSS Res	ult	Cleanup Method: Spiked	EPA 3630C	%REC	Limi	ts
Diesel C10-C24		185		2,500	2,344	86	21-1	
	-	100		2,000	2,011			
Surr	rogate	%REC	Limits					
o-Terphenyl		105	39-150					
Type: Lab ID:	MSD QC519996			Cleanup Method:	EPA 3630C			
Ana	alyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24			2,500	2,516	93	21-160	7	58
Surr	rogate	%REC	Limits					

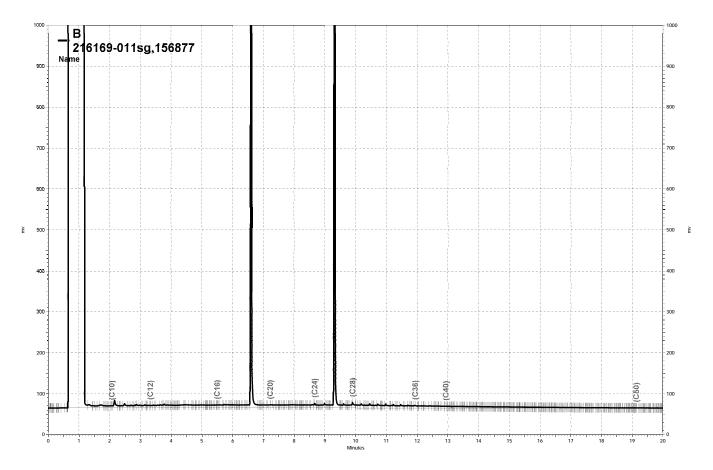
115

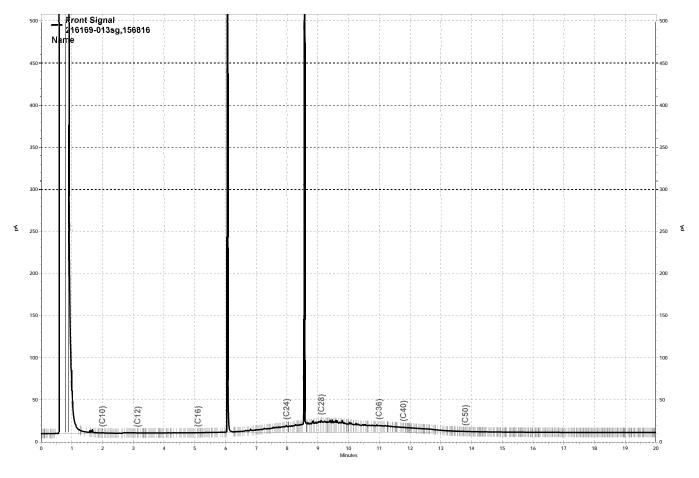

39-150

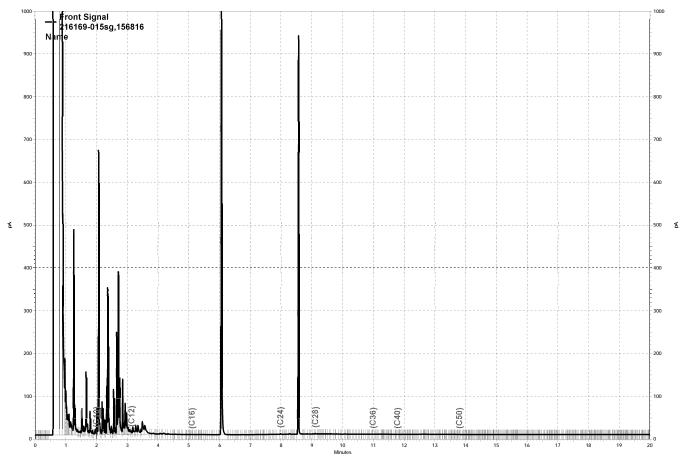

- G:\ezchrom\Projects\GC27\Data\308a026.dat, Front Signal

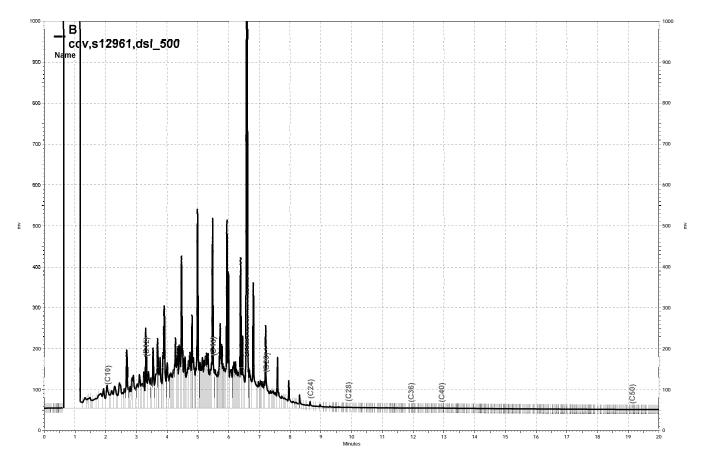

G:\ezchrom\Projects\GC27\Data\308a027.dat, Front Signal

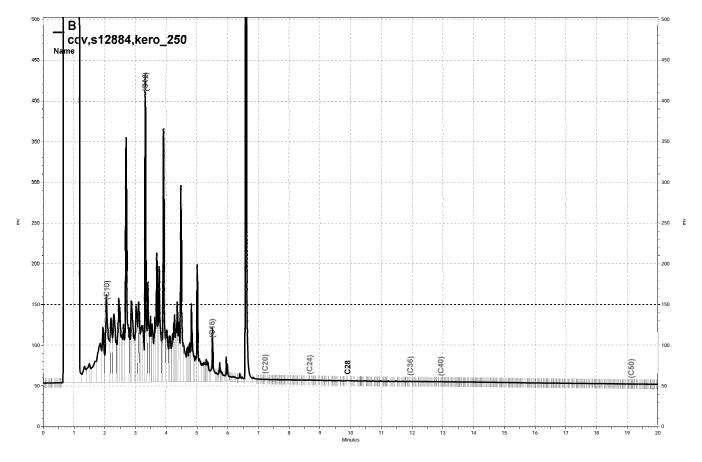

G:\ezchrom\Projects\GC27\Data\308a028.dat, Front Signal

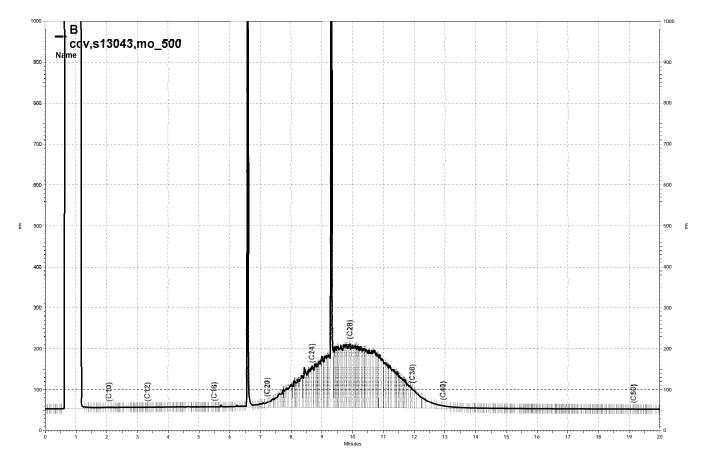

G:\ezchrom\Projects\GC27\Data\308a036.dat, Front Signal


- G:\ezchrom\Projects\GC27\Data\308a024.dat, Front Signal


- G:\ezchrom\Projects\GC27\Data\308a039.dat, Front Signal


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\310b029, B


G:\ezchrom\Projects\GC27\Data\308a019.dat, Front Signal


G:\ezchrom\Projects\GC27\Data\308a021.dat, Front Signal

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\308b004, B

- \\Lims\gdrive\ezchrom\Projects\GC15B\Data\308b006, B

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\308b005, B

		C	Gasoline	by GC/MS		
Lab #: Client: Project#:	216169 LFR Levine Fri 028-10060-06	lcke		Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Matrix: Units:	Water ug/L			Received:	10/30/09	
	M. 10				150000	
Field ID: Type: Lab ID: Diln Fac:	MW-12 SAMPLE 216169-002 1.000			Batch#: Sampled: Analyzed:	156896 10/29/09 11/05/09	
	lyte		Result		RL	
Gasoline C7-C1 MTBE Benzene	2	NI NI			50 0.50 0.50	
Toluene Ethylbenzene		NI NI			0.50 0.50	
m,p-Xylenes o-Xylene		NI NI			0.50 0.50	
	ogate	%REC				
Dibromofluorom 1,2-Dichloroet Toluene-d8 Bromofluoroben	hane-d4	89 92 100 99	81-124 73-140 88-113 80-127			
Field ID: Type:	MW-1 SAMPLE			Batch#: Sampled:	156896 10/30/09	
Lab ID: Diln Fac:	216169-003 1.000			Analyzed:	11/05/09	
Ana	lyte		Result		RL	
Gasoline C7-C1	2	NT	1,800 Y		50	
MTBE Benzene		NI	59		0.50 0.50	
Toluene			9.4		0.50	
Ethylbenzene			3.5		0.50	
m,p-Xylenes o-Xylene			8.5 2.2		0.50 0.50	
Surr	ogate	%REC	Limits			
Dibromofluorom	ethane	90	81-124			
1,2-Dichloroet	hane-d4	86	73-140			
Toluene-d8 Bromofluoroben	zene	99 96	88-113 80-127			

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 9

		G	asoline	by GC/MS	3		
Lab #:	216169			Location:		land MSC	
Client: Project#:	LFR Levine Fr 028-10060-06	ıcke		Prep: Analysis:		5030B 8260B	
Matrix:	Water			Received:		30/09	
Units:	ug/L			neeerveu	207.		
Field ID: Type: Lab ID: Diln Fac:	MW-6 SAMPLE 216169-004 1.000			Batch#: Sampled: Analyzed:		396 30/09 35/09	
Anal	vte		Result		RL		
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene			560 Y 5.0 98 4.1 3.0 4.2 0.56		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		
Surro	gato	%REC	Limits				
Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	ethane nane-d4	90 80 99 98	81-124 73-140 88-113 80-127				
Field ID: Type: Lab ID:	MW-5 SAMPLE 216169-005			Sampled: Analyzed:		30/09 07/09	
Anal			Result		RL	Diln Fac	Batch#
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND	3,100 23 5.2 200 8.1		200 1.7 1.7 1.7 1.7 1.7 1.7	4.000 3.333 3.333 3.333 3.333 3.333 3.333 3.333 3.333	156964 156988 156988 156988 156988 156988 156988 156988
Surro		%REC		Diln Fac	Batch#		
Dibromofluorome		108	81-124	3.333	156988		
1,2-Dichloroeth Toluene-d8	lane-d4	135 100	73-140 88-113	3.333 3.333	156988 156988		
Bromofluorobenz	zene	100 99	80-113	3.333	156988		
21011011001000112			50 <u>1</u> 0/		200700		

			Gasoline	by GC/MS		
Lab #:	216169			Location:	Oakland MSC	
Client: Project#:	LFR Levine Fr 028-10060-06	пске		Prep: Analysis:	EPA 5030B EPA 8260B	
Matrix:	Water			Received:	10/30/09	
Units:	ug/L					
Field ID:	MW-8			Batch#:	156896	
Type: Lab ID:	SAMPLE 216169-007			Sampled: Analyzed:	10/30/09 11/06/09	
Diln Fac:	1.000			Analyzeu	11/00/09	
Ana Gasoline C7-C1	2 2	N	Result		RL 50	
MTBE	<u>ــــــــــــــــــــــــــــــــــــ</u>	N			0.50	
Benzene		N			0.50	
Toluene Ethylbenzene		NI NI			0.50 0.50	
m,p-Xylenes		N			0.50	
o-Xylene		N	D		0.50	
Surr	ogate	%REC	Limits			
Dibromofluorom	lethane	89	81-124			
1,2-Dichloroet	hane-d4	93	73-140			
Toluene-d8 Bromofluoroben	zene	99 100	88-113 80-127			
Diomorradionen		100	00 127			
Field ID:	MW-17			Batch#:	156896	
Type:	SAMPLE			Sampled:	10/30/09	
Lab ID:	216169-008			Analyzed:	11/06/09	
Diln Fac:	1.000					
	lyte		Result		RL	
Gasoline C7-C1 MTBE	2	NI NI			50 0.50	
Benzene		N			0.50	
Toluene		N	D		0.50	
Ethylbenzene		N			0.50	
m,p-Xylenes o-Xylene		NI NI			0.50 0.50	
					· · · · ·	
Surr Dibromofluorom	ogate	%REC 91	Limits 81-124			
1,2-Dichloroet		91 93	81-124 73-140			
	nane-d4					
Toluene-d8		99	88-113			

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 9

		Gasoline	by GC/MS		
Lab #: Client:	216169 LFR Levine Frick	e	Location: Prep:	Oakland MSC EPA 5030B	
Project#: Matrix:	028-10060-06 Water		Analysis: Received:	EPA 8260B 10/30/09	
Units:	ug/L				
Field ID:	MW-16		Batch#:	156896	
Type: Lab ID:	SAMPLE 216169-009		Sampled: Analyzed:	10/30/09 11/06/09	
Diln Fac:	1.000		mary 2ca	11,00,00	
Ana	lyte	Result		RL	
Gasoline C7-C1 MTBE	2	590 ND		50 0.50	
Benzene		59		0.50	
Toluene Ethylbenzene		3.5 3.1		0.50 0.50	
m,p-Xylenes		2.5		0.50	
o-Xylene		0.53		0.50	
		REC Limits			
Dibromofluorom 1,2-Dichloroet					
Toluene-d8	10	0 88-113			
Bromofluoroben	zene 99	80-127			
	MT-7 1 F			150000	
Field ID: Type:	MW-15 SAMPLE		Batch#: Sampled:	156896 10/30/09	
Lab ID:	216169-010		Analyzed:	11/06/09	
Diln Fac:	1.000				
Ana	lyte	Result		RL	
Gasoline C7-C1	2	81 Y ND		50 0.50	
Benzene		ND		0.50	
Toluene		ND		0.50	
Ethylbenzene m,p-Xylenes		ND 1.6		0.50 0.50	
o-Xylene		0.81		0.50	
Surr	ogate %	REC Limits			
Dibromofluorom	ethane 92	81-124			
1,2-Dichloroet Toluene-d8	hane-d4 94 98	73-140 88-113			
Bromofluoroben		80-127			

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 4 of 9

		Gasoline	by GC/MS		
Client: L	16169 FR Levine Fricke 28-10060-06		Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Matrix: Wa	ater g/L		Received:	10/30/09	
Field ID: MW			Batch#:	156964	
Lab ID: 21	MPLE 6169-011 000		Sampled: Analyzed:	10/30/09 11/06/09	
Analyte		Result		RL	
Gasoline C7-C12 MTBE		ND ND		50 0.50	
Benzene Toluene Ethylbenzene		ND ND ND		0.50 0.50 0.50	
m,p-Xylenes o-Xylene		ND 0.61		0.50 0.50 0.50	
	e %RE	C Limits			
Surrogate Dibromofluorometha 1,2-Dichloroethane Toluene-d8 Bromofluorobenzene	ne 100	81-124 73-140 88-113 80-127			
Type: SA Lab ID: 21	-14 MPLE 6169-012 000		Batch#: Sampled: Analyzed:	156964 10/30/09 11/06/09	
Analyte		Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene		ND ND ND ND		50 0.50 0.50 0.50 0.50	
Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND		0.50 0.50 0.50	
Surrogat		C Limits			
Dibromofluorometha 1,2-Dichloroethane Toluene-d8 Bromofluorobenzene		81-124 73-140 88-113 80-127			

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 5 of 9

		G	asoline	by GC/MS		
Lab #: Client:	216169 LFR Levine Fric	cke		Location: Prep:	Oakland MSC EPA 5030B	
Project#: Matrix: Units:	028-10060-06 Water ug/L			Analysis: Received:	EPA 8260B 10/30/09	
	2					
Field ID: Type: Lab ID: Diln Fac:	MW-13 SAMPLE 216169-013 1.000			Batch#: Sampled: Analyzed:	156964 10/30/09 11/06/09	
Ana			Result		RL	
Gasoline C7-C1: MTBE Benzene	2	ND ND ND			50 0.50 0.50	
Toluene Ethylbenzene		ND ND			0.50 0.50	
m,p-Xylenes o-Xylene		ND ND			0.50 0.50	
Surre	ogate	%REC	Limits			
Dibromofluorome 1,2-Dichloroet Toluene-d8 Bromofluoroben:	nane-d4 1	97 105 99 109	81-124 73-140 88-113 80-127			
Field ID: Type: Lab ID: Diln Fac:	MW-10 SAMPLE 216169-014 1.000			Batch#: Sampled: Analyzed:	156964 10/30/09 11/06/09	
Ana.	lyte		Result		RL	
Gasoline C7-C12 MTBE	2	ND ND			50 0.50	
Benzene		ND			0.50	
Toluene		ND			0.50	
Ethylbenzene m,p-Xylenes		ND ND			0.50 0.50	
o-Xylene		ND ND			0.50	
Curr	ogate	%REC	Limits			
Dibromofluorom	ethane 1	<u>8REC</u>	81-124			
1,2-Dichloroet	nane-d4 1	106	73-140			
Toluene-d8 Bromofluoroben:		L00 L05	88-113 80-127			
DI OIIIOI I UOI ODEIII		105	00-121			

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 6 of 9

		G	Sasoline	e by GC/MS	5			
Lab #: Client: Project#: Matrix:	216169 LFR Levine Fr 028-10060-06 Water	ricke		Location: Prep: Analysis: Received:	EP EP	kland MSC A 5030B A 8260B /30/09		
Units:	ug/L			Received:	10			
Field ID: Type: Lab ID:	MW-5-D SAMPLE 216169-015			Sampled: Analyzed:		/30/09 /07/09		
	lyte		Result		RL	Diln Fac		
Gasoline C7-C1	2		3,300		830	16.67	156964	
MTBE			20		1.7	3.333	156988	
Benzene			5.3		1.7	3.333	156988	
Toluene		ND			1.7	3.333	156988	
Ethylbenzene			210		1.7	3.333	156988	
m,p-Xylenes		NID	8.7		1.7	3.333	156988	
o-Xylene		ND			1.7	3.333	156988	
Surr	ogate	%REC	Limits	Diln Fac	Batch#			
Dibromofluorom		105	81-124	3.333	156988			
1,2-Dichloroet		125	73-140	3.333	156988			
Toluene-d8		99	88-113	3.333	156988			
Bromofluoroben	zene	98	80-127	3.333	156988			
Bromofluoroben: Type: Lab ID: Diln Fac:	BLANK QC520078 1.000	98		3.333 Batch#: Analyzed:	156988 15 11	6896 /05/09		
Bromofluoroben: Type: Lab ID: Diln Fac: Ana	BLANK QC520078 1.000 lyte	98	Result	3.333 Batch#:	156988 15 11 RL			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1	BLANK QC520078 1.000 lyte	98 	Result	3.333 Batch#:	156988 15 11 RL 50			
Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE	BLANK QC520078 1.000 lyte	98 	Result	3.333 Batch#:	156988 15 11 RL 50 0.50			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene	BLANK QC520078 1.000 lyte	98 ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1: MTBE Benzene Toluene	BLANK QC520078 1.000 lyte	98 ND ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1: MTBE Benzene Toluene Ethylbenzene	BLANK QC520078 1.000 lyte	98 ND ND ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50			
Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes	BLANK QC520078 1.000 lyte	98 ND ND ND ND ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50 0.50			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1: MTBE Benzene Toluene Ethylbenzene	BLANK QC520078 1.000 lyte	98 ND ND ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50			
Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	BLANK QC520078 1.000 lyte 2	98 ND ND ND ND ND ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50 0.50			
Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surre	BLANK QC520078 1.000 Lyte 2	98 ND ND ND ND ND ND ND	Result	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50 0.50			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surre Dibromofluorom	BLANK QC520078 1.000 Lyte 2 2 Dgate ethane	98 ND ND ND ND ND ND ND ND ND ND ND	Result Limits 81-124	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50 0.50			
Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Dibromofluorom 1,2-Dichloroet	BLANK QC520078 1.000 Lyte 2 2 Dgate ethane	98 ND ND ND ND ND ND ND ND ND ND ND ND ND	Result Limits 81-124 73-140	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50 0.50			
Bromofluoroben: Type: Lab ID: Diln Fac: Gasoline C7-C1 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surre Dibromofluorom	BLANK QC520078 1.000 Lyte 2 Dgate ethane hane-d4	98 ND ND ND ND ND ND ND ND ND ND ND	Result Limits 81-124	3.333 Batch#:	156988 15 11 RL 50 0.50 0.50 0.50 0.50 0.50 0.50			

Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 7 of 9

	C	Sasoline	by GC/MS	
Lab #: 216169 Client: LFR Levine F Project#: 028-10060-06 Matrix: Water Units: uq/L	ricke		Location: Prep: Analysis: Received:	Oakland MSC EPA 5030B EPA 8260B 10/30/09
Type: BLANK Lab ID: QC520359 Diln Fac: 1.000			Batch#: Analyzed:	156964 11/06/09
Analyte		Result		RL
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene	ND NA NA NA NA)		50
m,p-Xylenes o-Xylene	NA NA			
Surrogate	%REC	Limits		
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	95 98 99 102	81-124 73-140 88-113 80-127		
Type: BLANK Lab ID: QC520392 Diln Fac: 1.000			Batch#: Analyzed:	156964 11/06/09
Analyte		Result		RL
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	NE NE NE NE NE)))		50 0.50 0.50 0.50 0.50 0.50 0.50
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	%REC 98 101 100 102	Limits 81-124 73-140 88-113 80-127		

Gasoline by GC/MS							
Lab #: Client: Project#:	216169 LFR Levine Fricke 028-10060-06	Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B				
Matrix: Units:	Water ug/L	Received:	10/30/09				

Type: Lab ID: Diln Fac:	BLANK QC520437 1.000			Batch#: Analyzed:		156988 11/07/09	
Ana	lyte]	Result		RL		
Gasoline C7-C12	2	NA					
MTBE		ND			0.5	50	
Benzene		ND			0.5	50	
Toluene		ND			0.5	50	
Ethylbenzene		ND			0.5	50	
m,p-Xylenes		ND			0.5	50	
o-Xylene		ND			0.5	50	
	ogate	%REC	Limits				
Dibromofluorome		109	81-124				
1,2-Dichloroeth	nane-d4	130	73-140				
Toluene-d8		99	88-113				
Bromofluorobenz	zene	100	80-127				

	Gasc	oline by GC/MS		
Lab #:	216169	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	156896	
Units:	ug/L	Analyzed:	11/05/09	
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC520079

Analyte	Spiked	Result	%REC	Limits
MTBE	21.25	20.60	97	61-123
Benzene	21.25	22.52	106	81-122
Toluene	21.25	22.03	104	82-122
Ethylbenzene	21.25	23.62	111	86-125
m,p-Xylenes	42.50	48.27	114	83-127
o-Xylene	21.25	23.07	109	81-122

Surrogate	%REC	Limits	
Dibromofluoromethane	101	81-124	
1,2-Dichloroethane-d4	99	73-140	
Toluene-d8	100	88-113	
Bromofluorobenzene	101	80-127	

Type: BSD	Lab	ID: QC520	080			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	21.25	20.43	96	61-123	1	11
Benzene	21.25	22.20	104	81-122	1	12
Toluene	21.25	22.56	106	82-122	2	12
Ethylbenzene	21.25	23.46	110	86-125	1	12
m,p-Xylenes	42.50	48.57	114	83-127	1	13
o-Xylene	21.25	22.67	107	81-122	2	12
Surrogate	%REC Limits					
Dibromofluoromethane	101 81-124					
1,2-Dichloroethane-d4	99 73-140					

101

102

88-113

80-127

Toluene-d8

Bromofluorobenzene

	Gasc	line by GC/MS		
Lab #:	216169	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	156896	
Units:	ug/L	Analyzed:	11/05/09	
Diln Fac:	1.000			

Type:

BS

Lab ID: QC520081

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	850.0	787.5	93	74-124

Surrogate	%REC	Limits
Dibromofluoromethane	101	81-124
1,2-Dichloroethane-d4	103	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	100	80-127

Type: BS	D			Lab ID:		QC520082				
Analyte	l	Sp	iked		Result	%I	EC	Limits	RPD	Lim
Gasoline C7-C12		1	350.0		764.	2 90		74-124	3	13
Surrogat	e %I	EC L	imits							
Dibromofluorometha	.ne 97	8	1-124							
1,2-Dichloroethane	e-d4 98	7	3-140							
Toluene-d8	99	88	3-113							
Bromofluorobenzene	101	. 80	0-127							

	Gasc	line by GC/MS		
Lab #:	216169	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	156964	
Units:	ug/L	Analyzed:	11/06/09	
Diln Fac:	1.000			

Type:

_ ~	
DC	

Lab ID:

QC520360

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	800.0	769.2	96	74-124

Surrogate	%REC	Limits
Dibromofluoromethane	93	81-124
1,2-Dichloroethane-d4	94	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	99	80-127

Type:	BSD			Lab ID:		QC520361			
An	alyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C	212		800.0		778.2	97	74-124	1	13
Gur	rogate	%REC	Limits						
Dibromofluoro	-	92	81-124						
1,2-Dichloroe		94	73-140						
Toluene-d8		98	88-113						
Bromofluorobe	enzene	97	80-127						

	Gase	oline by GC/MS		
Lab #:	216169	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	156964	
Units:	ug/L	Analyzed:	11/06/09	
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC520390

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	18.45	92	61-123
Benzene	20.00	20.45	102	81-122
Toluene	20.00	21.14	106	82-122
Ethylbenzene	20.00	22.06	110	86-125
m,p-Xylenes	40.00	45.38	113	83-127
o-Xylene	20.00	21.72	109	81-122

Surrogate	%REC	Limits	
Dibromofluoromethane	96	81-124	
1,2-Dichloroethane-d4	92	73-140	
Toluene-d8	99	88-113	
Bromofluorobenzene	98	80-127	

Type: BSD	Lab ID:	QC52	QC520391			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	18.58	93	61-123	1	11
Benzene	20.00	20.81	104	81-122	2	12
Toluene	20.00	21.66	108	82-122	2	12
Ethylbenzene	20.00	22.11	111	86-125	0	12
m,p-Xylenes	40.00	46.52	116	83-127	2	13
o-Xylene	20.00	21.70	109	81-122	0	12

Surrogate	%REC	Limits	
Dibromofluoromethane	96	81-124	
1,2-Dichloroethane-d4	93	73-140	ľ
Toluene-d8	100	88-113	ľ
Bromofluorobenzene	100	80-127	

	Gas	oline by GC/MS		
Lab #:	216169	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	156988	
Units:	ug/L	Analyzed:	11/07/09	
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC520438

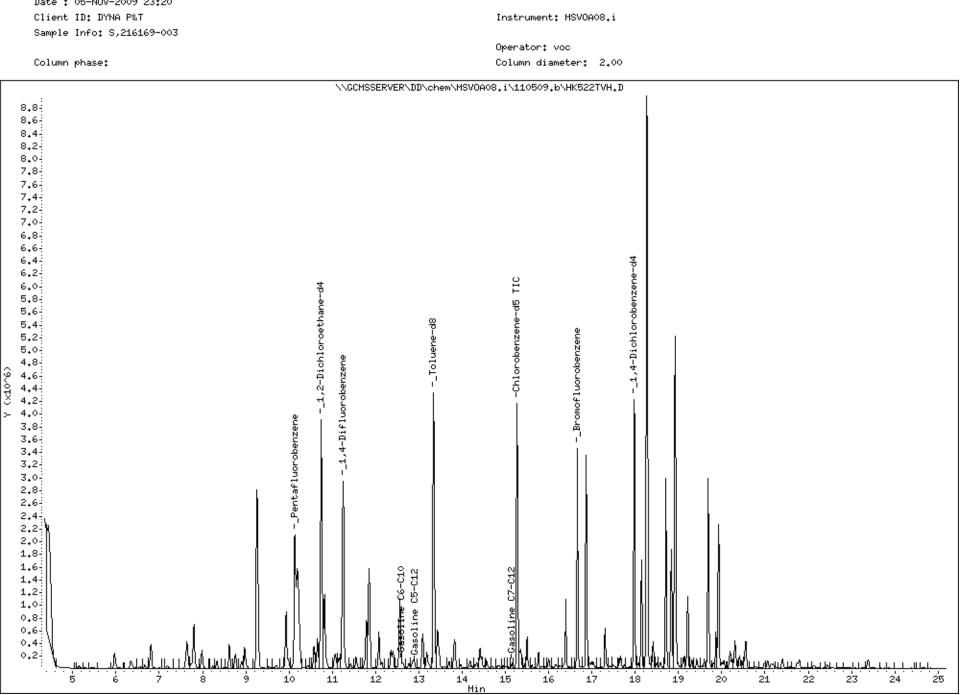
Analyte	Spiked	Result	%REC	Limits
MTBE	17.50	16.26	93	61-123
Benzene	17.50	16.88	96	81-122
Toluene	17.50	16.18	92	82-122
Ethylbenzene	17.50	17.62	101	86-125
m,p-Xylenes	35.00	34.50	99	83-127
o-Xylene	17.50	16.50	94	81-122

Surrogate	%REC	Limits	
Dibromofluoromethane	110	81-124	
1,2-Dichloroethane-d4	133	73-140	
Toluene-d8	99	88-113	
Bromofluorobenzene	97	80-127	

Type: BSD		L	ab ID:	QC52	20439			
Analyte	2	Spiked		Result	%REC	Limits	RPD	Lim
MTBE		17.50		15.65	89	61-123	4	11
Benzene		17.50		16.96	97	81-122	0	12
Toluene		17.50		16.36	94	82-122	1	12
Ethylbenzene		17.50		17.91	102	86-125	2	12
m,p-Xylenes		35.00		34.91	100	83-127	1	13
o-Xylene		17.50		16.82	96	81-122	2	12
Surrogate	%REC	Limits						
Dibromofluoromethane	108	81-124						
1 2-Dighloroothano-d/	120	72-140						

	1.0.0		
Dibromofluoromethane	108	81-124	
1,2-Dichloroethane-d4	130	73-140	
•			
Toluene-d8	99	88-113	
Bromofluorobenzene	98	80-127	
2101011001020110	20		

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\110509.b\HK521TVH.D
Date : 05-NOV-2009 22:43
Client ID: DYNA P&T
Sample Info: \$,216169-002


Column phase:

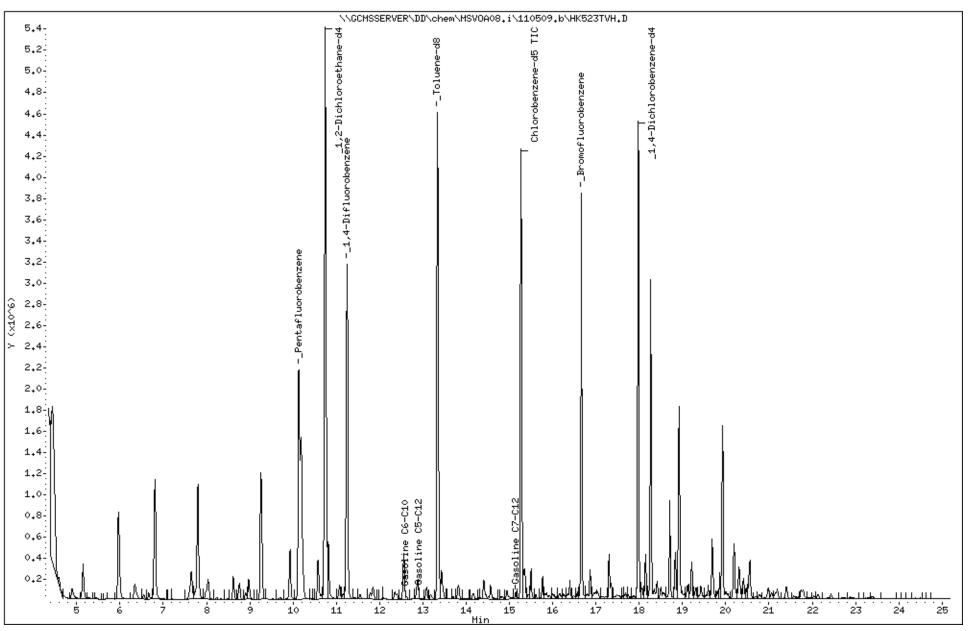
Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00

VVCICISSERVER.JD/chew VEVGA006,1/120092,JVVE221/W,D 4.44 4.33 4.44 4.34 4.44 4.43 4.44 4.44 4.22 4.44
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Min

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\110509.b\HK522TVH.D Date : 05-NOV-2009 23:20

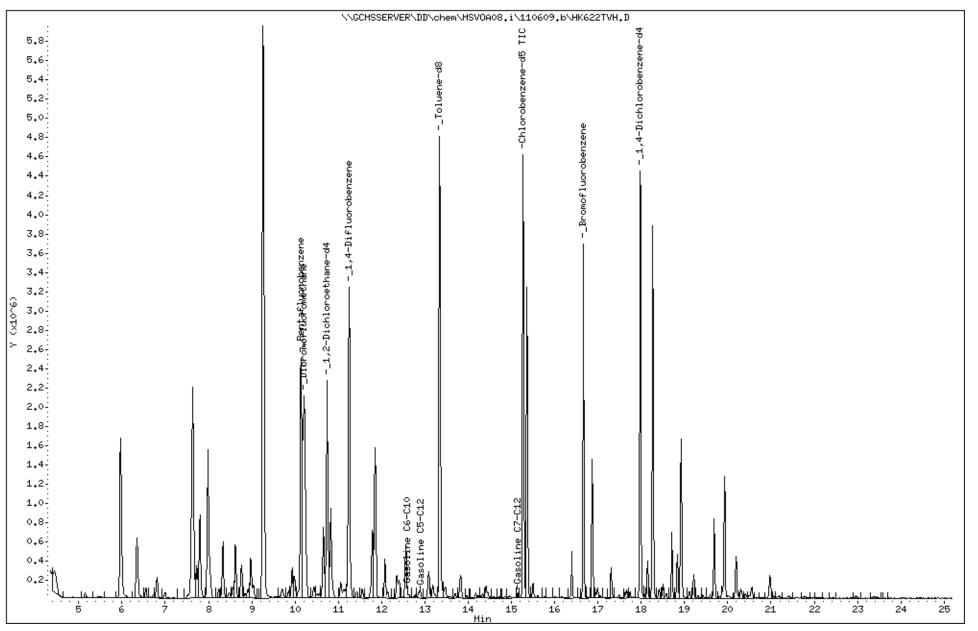

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\110509.b\HK523TVH.D
Date : 05-NOV-2009 23:56
Client ID: DYNA P&T
Sample Info: \$,216169-004

Column phase:

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00



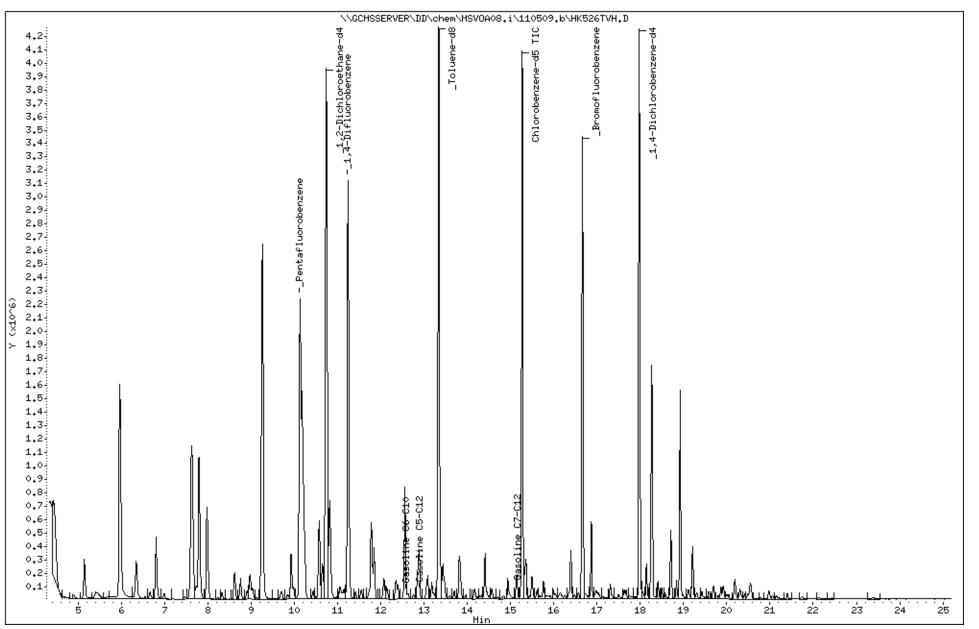
Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\110609.b\HK622TVH.D
Date : 07-NOV-2009 00:48
Client ID: DYNA P&T
Sample Info: \$,216169-005

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

46 of 50

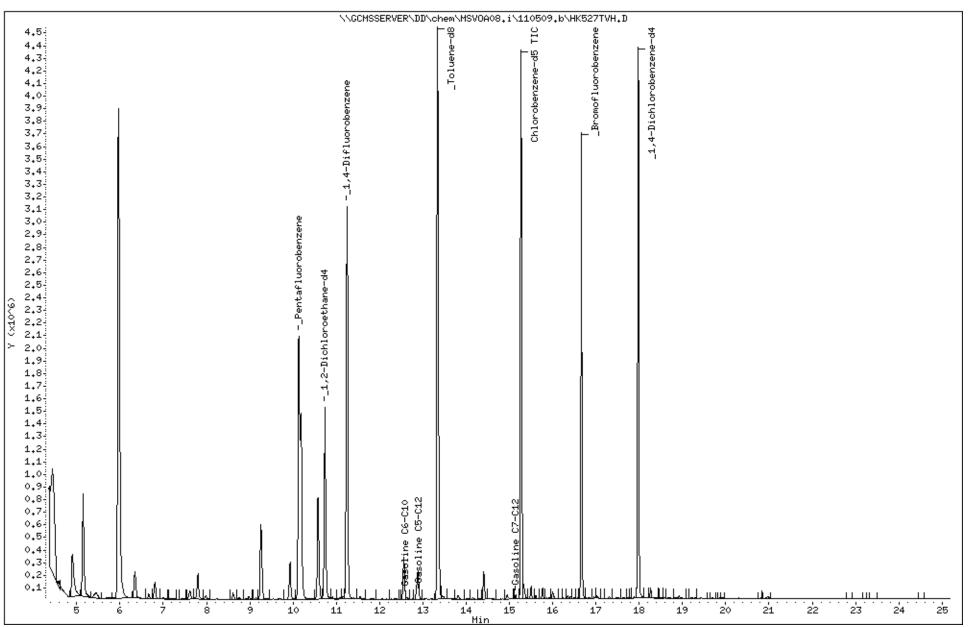

Column phase:

Column phase:

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00



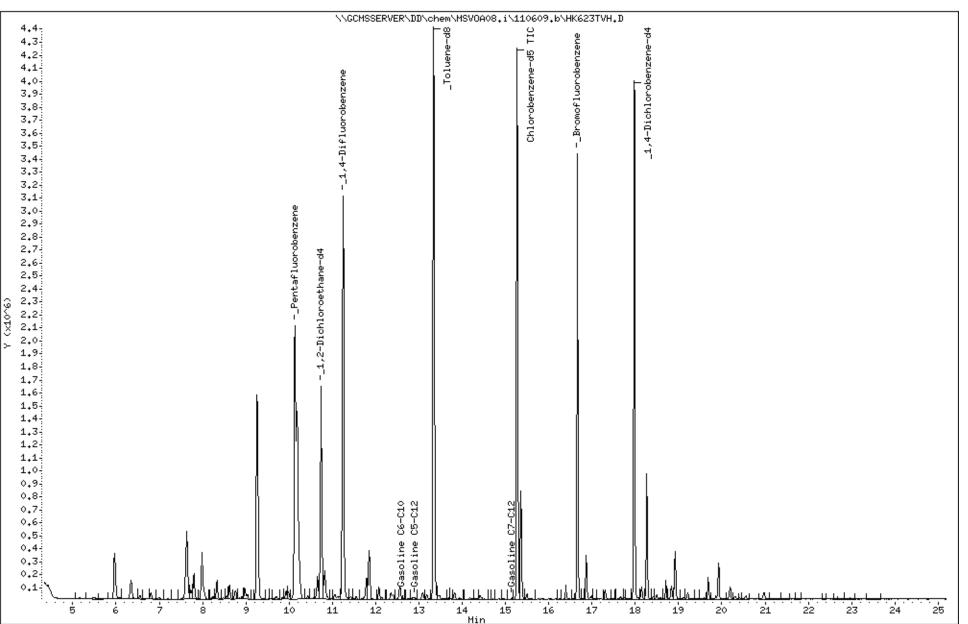
Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\110509.b\HK527TVH.D
Date : 06-NOV-2009 02:23
Client ID: DYNA P&T
Sample Info: \$,216169-010

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

48 of 50


Column phase:

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\110609.b\HK623TVH.D
Date : 07-NOV-2009 01:25
Client ID: DYNA P&T
Sample Info: \$,216169-015

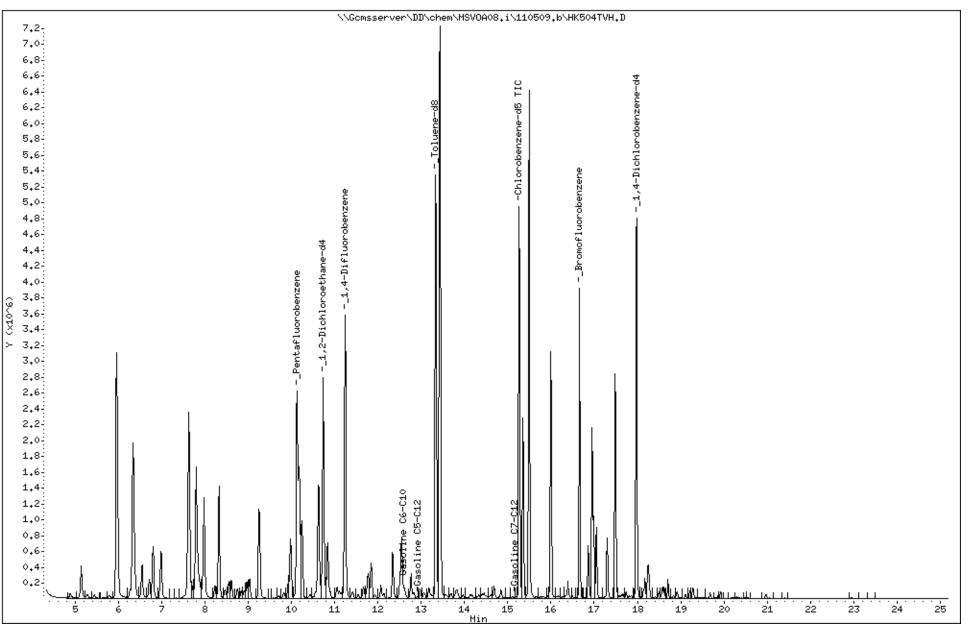
Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

49 of 50

Column phase:


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\110509.b\HK504TVH.D
Date : 05-NOV-2009 12:10
Client ID: DYNA P&T
Sample Info: CCV,S12207,.015/100

Column phase:

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00

50 of 50

Instrumen

and setting to the

H

Laboratory Job Number 216323 ANALYTICAL REPORT

LFR Levine Fricke 1900 Powell Street Emeryville, CA 94608 Project : 028-10060-06 Location : Oakland MSC Level : II

<u>Sample ID</u> MW-8-FB

<u>Lab ID</u> 216323-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

The Barn

Signature:

Project Manager

Date: <u>11/13/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 216323 LFR Levine Fricke 028-10060-06 Oakland MSC 11/06/09 10/30/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 11/06/09. The sample was received cold and intact. All data were e-mailed to Daren Roth on 11/13/09.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Tracy Babjar

17# 21632

From:"Roth, Daren" <Daren.Roth@lfr.com>To:"Tracy Babjar" <tracy.babjar@ctberk.com>Sent:Thursday, November 05, 2009 6:29 PMSubject:RE: 028-10060-06 - C&T Login Summary (216169)

Tracy,

Can you please analyze LFR sample MW-8-FB for TPHg/BTEX/MTBE (8260) and TPHd/k/mo (8015) with silica gel cleanup. Thanks.

Daren

Daren Roth | Project Geologist | daren.roth@lfr.com LFR, an ARCADIS company | 1900 Powell Street, Suite 1200 | Emeryville, CA, 94608 T. 510.596.9558 | M. 510.409.1393 | F. 510.652.2246 www.arcadis-us.com

From: Tracy Babjar [mailto:tracy.babjar@ctberk.com]
Sent: Monday, November 02, 2009 12:09 PM
To: Roth, Daren; Sullivan, Michael
Subject: 028-10060-06 - C&T Login Summary (216169)

C&T Login Summary for 216169

Project: 028-10060-06	Report To: LFR Levine Fricke	Bill To: LFR Levine Fricke
Site: Oakland MSC	1900 Powell Street	1900 Powell Street
Lab Login #: 216169	12th Floor	12th Floor
Report Due: 11/09/09	Emeryville, CA 94608	Emeryville, CA 94608
PO#: 028-10060-06	ATTN: Daren Roth	ATTN: Accounts Payable
C&T Proj Mgr: Tracy Babjar	(510) 652-4500	(510) 652-4500

Client ID	Lab ID	Sampled	Received	Matrix	Analyses	COC #	Comments
TB102909	001	10/29	10/30				
				Water	HOLD		
MW-12	002	10/29	10/30				
				Water	MSTVH		TVH/BTXE/MTBE
				Water	SILICA GEL		
				Water	ТЕНМ		Silica Gel; Desel, motor oil, and
MW-1	003	10/30	10/30				

	is & Tompkins, Ltd. ical Laboratory Since 1878		CH	łA	IN	OF CU	JS	T	OI	DY							Page	<u> </u>	0	ر ۲	<u>\</u>
(2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax		С&Т	LOGII	N #:	216169									An	naly	sis				
			Sample	er: /	1. Sul	hverifite 10. n Roth	<u>ldin</u>	Na			5360										
Project	No .: 026-10060-06		Report	: To: '	Pare	n Roth					2	8015									
Project	Name: MSC		Compa		LF	R					1	B O									
Project			·····			- - -					22.										
			Teleph	one:							17		,								
lurnaro	und Time: Standail		Fax:								RTFY /MT	2	-								
					Aatrix			Prese		tive	Ë	d huch									
				1	· · · · ·		-	Г													
Lab No.	Sample ID.		oling Date Time	Soil	water Waste	# of Containers	보	H₂SQ₄	О́Н	<u>⊔</u>	TPHO	TPH									
	TB102409	10/24/	pe;	<u></u>	y	2	2		+			101	Ъ		-				+	$\left \right $	┥
	.410-12		1645		×	5	3			2	*										٦
		10/30/0			Y	5	نز			3	X	4									
	116-6	┼──╂─	6835		¥	5	3			2	Y										
	MW-S MW-8-FB		0939		¥	5	3			2	X		-				1		_		
	<u></u>	+	1100		×	5	3		-+	2		101	D.	_¥	Ħ	na	ſД	78	_		
	μω-17	+	1305	$\left \right ^{2}$		5	3			12	X								_		
	MWIG	┼──╂─	1239			5	23			- 4	Ý	X							_		<u> </u>
	HW-15		1606	2		5	3	\vdash	+	222222	X	× ×	<u> </u>		+	+			+	┼╌┼╴	
	MW-9	<u> </u>	1542	F K	21-1	5	3		+	5	Ŕ		-+		+	+			-		4
	Mw-14		1515		2	5	3		+	2	X	X	-+		+-				+		
	MW-13	10/30	0/09 1995		<u> </u>	5	3		- -	222	Ń	X	·								-
lotes:	silica Gel Cleanup	SAMP			INQUIS	HED BY:			L			ECEI	VED	BY:		A	ł			<u>я</u> І 	
N T	PHO /TPH ww/TPHK		e 🔲 Ambient	14	Ull	SIM	l	0/3	DA	7 / 540 TE / TIM	E 4	ila	- 1	TJa	ار آن ار آن	6		11-	2-0		13 15
pror	to Anonysis		ative Correct?			~ <i>v</i> ~						<u>v - + v</u>			000	<u> </u>				E / TIN	
										TE / TIM	E									E / TIN	

	is & Tompkins, Ltd. tical Laboratory Since 1878	(СН		11/		OF CU	IS	T	0	D	Y						F	Dage .	3	_of_	2	
	2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax	С	& T L(OG	IN #	:_2	16169										Ana	alys	is 				
		Sa	ample	r:	jule.	sill	ive. A. Va	11:	Y (9	1			فكلاه										
Project	No.: cos-leese-de	Re	eport '	To:	D	GIE	u Roty						2	0									
Project	Name: usc		ompai			-FI							35	Seis									
Project	t P.O.:	Те	elepho	ne:	}								1tbE	Ĵ									
Turnar	ound Time: Standard	Fa	ax:				-																
			ſ		Mat	rix	7		Pres	serv	ative	•	BTEX	bhue /									
Lab No.	Sample ID.	Sampling Da Time	ate	Soil	Water	Waste	# of Containers	НСГ	H₂SO₄	ŐNH	ы		TPU + /	TOH &									
	MW-10_	10/30/04 14			*		5	5			╞─┤	2	Y	¥						┼┤	-+	+	
	MW-S-D	10/30/0909	153		<u></u>		5			ļ		2	X	2	_								
				-		.							$\left - \right $								_		
				7	=	\Rightarrow										+				┼─┤	-+		
		\longrightarrow	1			\succ									_					+		+	
			\square	\prec	\triangleleft																		ł
·····			4		\rightarrow	\rightarrow		ļ															
				-	\rightarrow	4	\rightarrow																
			\rightarrow	9			+>	┝-		-									-				
								1		\frown	\square					-							
												3										-	1
Notes:	Silien bil chan up	SAMPLE RECEI		RE	LINC	QUISI	HED BY						RE	CEI	ED E	BY:			•				1
A	TUHA TDH us and	On Ice Am		1	M	W	SIII	1/3	19	100		/ TIME	G	ر م	T.		1	•	11-	2-4	<u>) ^/</u>	093	þ
TOH	K prior to availysis	Preservative Corre					WAN / '		707	<u>/ U</u>	AIE			m		-0/11	ve.			L	JAIE	/ TIME	ł
חינ	k place	Yes No								D	ATE	/ TIME	: 							0	DATE	/ TIME	
	·									D	ATE	/ TIME								г	ATF	/ TIME	
	SIGNATURE												•			·							,

COOLER RECEIPT CHECKLIST	Fompkins, Ltd.
Login # <u>216169</u> Date Received <u>10-30</u> Number of cooler Client <u>LFP</u> Project <u>Her</u> MSC	s_2
Date Opened <u>10-30</u> By (print) <u>Elso</u> (sign) <u>Cline</u> <u>Tandik</u> Date Logged in <u>11-2</u> By (print) (sign)	
1. Did cooler come with a shipping slip (airbill, etc)YES Shipping infoYES	NO
2A. Were custody seals present? □ YES (circle) on cooler on samples How many Name Date	Ø.NO
2B. Were custody seals intact upon arrival? YES 3. Were custody papers dry and intact when received? YES 4. Were custody papers filled out properly (ink, signed, etc)? YES 5. Is the project identifiable from custody papers? (If so fill out top of form) YES 6. Indicate the packing in cooler: (if other, describe) YES	NO NO NO NO
☐ Bubble Wrap ☐ Cloth material 7. Temperature documentation: ☐ Bubble Wrap ☐ Styrofoam ☐ Styrofoam ☐ Styrofoam ☐ Styrofoam	wels
Type of ice used: ☑ Wet □ Blue/Gel □ None Temp(°C)	
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling process had begun	
If YES, what time were they transferred to freezer?	TES (NO TES NO TES NO
11. Are sample labels present, in good condition and complete?	ES NO

12. Do the sample labels agree with custody papers?	YES	NQ
13. Was sufficient amount of sample sent for tests requested?		NO
14. Are the samples appropriately preserved?	YES NO	N/A
15. Are bubbles > 6mm absent in VOA samples?		N/A
16. Was the client contacted concerning this sample delivery?	YES	NO
If YES, Who was called?By	Date:	

COMMENTS

extra Emphiliantes Feceived 2

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

		Total 1	Extracta	ble Hydrocarbo	ns	
Lab #:	216323			Location:	Oakland MSC	
Client:	LFR Levine H	ricke		Prep:	EPA 3520C	
Project#:	028-10060-06	-)		Analysis:	EPA 8015B	
Field ID:	MW-8-FB			Sampled:	10/30/09	
Matrix:	Water			Received:	10/30/09	
Units:	ug/L			Prepared:	11/08/09	
Diln Fac:	1.000			Analyzed:	11/09/09	
Batch#:	157000				,,.	
Type: Lab ID:	SAMPLE 216323-001			Cleanup Method:	EPA 3630C	
	alyte		Result	RL		
Kerosene C10-C		NI	-	50		
Diesel C10-C24	-	NI)	50		
Motor Oil C24-	-C36	NI)	300		
		NI %REC	Limits	300		
	-C36 rogate		-	300		
Suri		%REC	Limits	300 Cleanup Method:	EPA 3630C	
Suri o-Terphenyl Type: Lab ID: Ana	BLANK QC520482	%REC	Limits	Cleanup Method: RL	EPA 3630C	
Suri o-Terphenyl Type: Lab ID: Mna Kerosene C10-0	BLANK QC520482	%REC 99	Limits 39-150 Result	Cleanup Method: RL 50	EPA 3630C	
Surr o-Terphenyl Type: Lab ID: Mna Kerosene C10-C Diesel C10-C24	BLANK QC520482 Alyte C16 4	%REC 99	Limits 39-150 Result	Cleanup Method: RL 50 50	EPA 3630C	
Suri o-Terphenyl Type: Lab ID: Mna Kerosene C10-0	BLANK QC520482 Alyte C16 4	%REC 99	Limits 39-150 Result	Cleanup Method: RL 50	EPA 3630C	
Surr o-Terphenyl Type: Lab ID: Merosene C10-C Diesel C10-C24 Motor Oil C24-	BLANK QC520482 Alyte C16 4	%REC 99 NI NI	Limits 39-150 Result	Cleanup Method: RL 50 50	EPA 3630C	

	Total Extractable Hydrocarbons										
Lab #:	216323	Location:	Oakland MSC								
Client:	LFR Levine Fricke	Prep:	EPA 3520C								
Project#:	028-10060-06	Analysis:	EPA 8015B								
Туре:	LCS	Diln Fac:	1.000								
Lab ID:	QC520483	Batch#:	157000								
Matrix:	Water	Prepared:	11/08/09								
Units:	ug/L	Analyzed:	11/09/09								

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	2,133	85	34-144
Surrogate	%REC	Limits			
o-Terphenyl	95	39-150			

		Total 1	Extracta	ble Hydrocarbo	ns			
Lab #:	216323			Location:	Oakland MSC			
Client:	LFR Levine F	ricke		Prep:	EPA 3520C			
Project#:	028-10060-06	5		Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZZ			Batch#:	157000			
MSS Lab ID:	216322-003			Sampled:	11/04/09			
Matrix:	Water			Received:	11/05/09			
Units:	ug/L			Prepared:	11/08/09			
Diln Fac:	1.000			Analyzed:	11/09/09			
Type: Lab ID:	MS QC520484			Cleanup Method:				
Analyt	e	MSS Res		Spiked	Result	%REC	Limi	
Diesel C10-C24		41	L.83	2,500	1,847	72	21-1	60
Surro	ogate	%REC	Limits					
o-Terphenyl		79	39-150					
Type: Lab ID:	MSD QC520485			Cleanup Method:	EPA 3630C			
	QC520485		Spiked	Cleanup Method: Result		Limits	RPD	Lim
Lab ID:	QC520485		Spiked 2,500	-		Limits 21-160	RPD 18	Lim 58
Lab ID: Ana Diesel C10-C24	QC520485	%REC	-	Result	%REC			

	Gaso	oline by GC/MS		
Lab #:	216323	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Field ID:	MW-8-FB	Batch#:	157058	
Matrix:	Water	Sampled:	10/30/09	
Units:	ug/L	Received:	10/30/09	
Diln Fac:	1.000			

Type:	SAMPLE	Analyzed:	11/11/09
Lab ID:	216323-001		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	115	81-124
1,2-Dichloroethane-d4	131	73-140
Toluene-d8	106	88-113
Bromofluorobenzene	117	80-127

Type: Lab ID: BLANK QC520756 Analyzed: 11/10/09

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	112	81-124	
1,2-Dichloroethane-d4	127	73-140	
Toluene-d8	104	88-113	
Bromofluorobenzene	113	80-127	

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Gasc	oline by GC/MS		
Lab #:	216323	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	157058	
Units:	ug/L	Analyzed:	11/10/09	
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC520757

Analyte	Spiked	Result	%REC	Limits
MTBE	21.25	21.07	99	61-123
Benzene	21.25	22.40	105	81-122
Toluene	21.25	21.00	99	82-122
Ethylbenzene	21.25	22.51	106	86-125
m,p-Xylenes	42.50	45.79	108	83-127
o-Xylene	21.25	21.77	102	81-122

Surrogate	%REC	limits	
Dibromofluoromethane	107	31-124	
1,2-Dichloroethane-d4	111	73-140	
Toluene-d8	101	38-113	
Bromofluorobenzene	105	30-127	

Type: BSD	Lab I	D: QC52	0758			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	21.25	21.27	100	61-123	1	11
Benzene	21.25	22.57	106	81-122	1	12
Toluene	21.25	20.98	99	82-122	0	12
Ethylbenzene	21.25	22.29	105	86-125	1	12
m,p-Xylenes	42.50	46.13	109	83-127	1	13
o-Xylene	21.25	21.03	99	81-122	3	12
Surrogate	%REC Limits					
Dibromofluoromethane	109 81-124					
1,2-Dichloroethane-d4	115 73-140					

103

104

88-113

80-127

Toluene-d8

Bromofluorobenzene

	Gasc	line by GC/MS		
Lab #:	216323	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-06	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	157058	
Units:	ug/L	Analyzed:	11/10/09	
Diln Fac:	1.000			

Type:

BS

Lab ID: QC520759

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	800.0	722.7	90	74-124

Surrogate	%REC	Limits
Dibromofluoromethane	107	81-124
1,2-Dichloroethane-d4	117	73-140
Toluene-d8	100	88-113
Bromofluorobenzene	106	80-127

Туре:	BSD			Lab ID:		QC520760				
	Analyte		Spiked		Result	%R	EC	Limits	RPD	Lim
Gasoline	C7-C12		800.0		704.5	5 88		74-124	3	13
	Surrogate	%REC	Limits							
		01(110	O							
Dibromofl	uoromethane	105	81-124							
	-									
	uoromethane oroethane-d4	105	81-124							

APPENDIX D

Historical Tables

Table D-1Summary of Groundwater Analytical Data, VOCsMunicipal Service Center, 7101 Edgewater Drive, Oakland, California

											-		0,							
Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)	Chloro- form (µg/l)	Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2- DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-lsopropyl- toluene (µg/l)	MTBE (µg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)		1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6																				
2/27/01	270	11	3	ND	<1	ND	ND	7	ND	<1	9	6.0	1.0	19.0	62	21	3	1	<1	3
8/20/01	E280	14	<1	<1	<1	3	2	<1	<1	<1	11	4.0	<1	14.0	E82	14	4	<1	<1	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100

Concentrations expressed in micrograms per liter (µg/l)

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = Estimated concentration.

MTBE = methyl tertiary-butyl ether

ND = Not detected.

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table D-2

Summary of Groundwater Analytical Data, SVOCs Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
MW-6			
2/27/01	19	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	<5	< 5	5
TBW-5			
8/20/01	220	<5	73

Concentrations expressed in micrograms per liter ($\mu g/l$)

Notes:

SVOCs = Semivolatile organic compounds by EPA Method 8270. ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table D-3Summary of Groundwater Analytical Data, LUFT MetalsMunicipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2 8/19/98			<100			а
8/19/98			< 100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1*
0,10,01	101001	0.017	0.0.12		0.10	
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	

Concentrations expressed in milligrams per liter (mg/l)

Notes:

--- = Not measured/analyzed.

* = Note was indicated but not defined in historical data tables.

a = Analyzed for organic lead.

LUFT = Leaking Underground Fuel Tank

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

Table D-4 Summary of Groundwater Analytical Data, Additional Metals Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Sample ID/ Date	Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
MW-6							
8/16/01	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
TBW-1							
8/16/01	< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
TBW-3							
	< 0.01	0.000	< 0.001	0.009	< 0.01	< 0.002	< 0.01
8/16/01	< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
TBW-5							
8/16/01	< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01

Notes:

Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.