RECEIVED

10:44 am, Feb 13, 2009

Alameda County Environmental Health

Groundwater Monitoring Report Fall 2008 Semiannual Sampling Event Municipal Service Center 7101 Edgewater Drive Oakland, California

> February 4, 2009 028-10060-00

Prepared for: City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California

028-10060-00

February 4, 2009

Mr. Gopal Nair City of Oakland, Public Works Department Environmental Sciences Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

Subject: Groundwater Monitoring Report, Fall 2008 Semiannual Sampling Event, Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Dear Mr. Nair:

LFR Inc. is pleased to present this report summarizing data collected during the Fall 2008 semiannual groundwater monitoring event at the Municipal Service Center, located at 7101 Edgewater Drive in Oakland, California ("the Site"). These activities were performed in a manner consistent with previous sampling events conducted at the Site.

If you have any questions regarding this report, please call me at (650) 469-7224.

Sincerely,

Charles H. Pardini, P.G. #6444 Principal Geologist Operations Manager – Los Altos

Attachment

650.469.7230 m 650.469.7235 f

5150 El Camino Real, Suite D-21 Los Altos, California 94022 Offices Nationwide www.lfr.com

CONTENTS

CERTIFICATION
1.0 INTRODUCTION
2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES1
3.0 FALL 2008 SEMIANNUAL MONITORING ACTIVITIES
3.1 Field Activities
3.2 Sample Analyses
4.0 MONITORING RESULTS
4.1 Shallow Groundwater Topography4
4.2 Occurrence of Separate-Phase Hydrocarbons4
4.3 Contaminant Distribution in Groundwater5
4.3.1 Benzene
4.3.2 Toluene
4.3.3 Ethylbenzene
4.3.4 Total Xylenes7
4.3.5 MTBE7
4.3.6 TPHg7
4.3.7 TPHd8
4.3.8 TPHmo9
4.3.9 TPHk9
4.4 Laboratory Analysis9
5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL 10
5.1 Method Holding Times
5.2 Blanks
5.3 Laboratory Control Samples
5.4 Surrogates
5.5 False-Positive Petroleum Hydrocarbon Identification

6.0	CONCLUSIONS AND RECOMMENDATIONS	11
7.0	LIMITATIONS	13
8.0	SELECTED REFERENCES	13

TABLE

1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons

FIGURES

- 1 Site Vicinity Map
- 2 Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater, November 2008
- 3 Detail Plume Map with Hydrocarbon Concentrations, November 2008

APPENDICES

- A City of Oakland MSC Schedule and Protocol
- B Groundwater Sampling Field Data Sheets
- C Laboratory Results and Chain-of-Custody Documentation
- D Historical Tables

CERTIFICATION

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an LFR Inc. California Professional Geologist.*

Charles H. Pardini Principal Geologist California Professional Geologist (6444)

12.50 2 Date

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

1.0 INTRODUCTION

This report presents the results of the Fall 2008 semiannual groundwater monitoring event conducted from November 18 through November 21, 2008 ("the current monitoring event") at the Municipal Service Center (MSC), located at 7101 Edgewater Drive in Oakland, California ("the Site"; Figure 1). LFR Inc. (LFR) conducted monitoring activities at the Site in accordance with Assignment No. G08-LFR-01.

This report summarizes the monitoring activities conducted during the current monitoring event as well as the analytical results, distribution of contaminants in groundwater, conclusions, and recommendations. Also discussed are the anticipated semiannual monitoring activities to be performed in March/April 2009.

2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES

Eighteen 4-inch-diameter and four 2-inch-diameter test/observation wells were installed on site to depths ranging from 13 feet below ground surface (bgs) to 17 feet bgs, in December 2001 and January 2002 by others, according to Uribe & Associates' (Uribe's) "Test/Observation Well Installation Report, U & A Project 291-03," dated April 2, 2002 (Uribe 2002). Seven of the wells (RW-Al, RW-A2, OB-A1, RW-B1, RW-B2, RW-B3, and RW-B4) were installed in the vicinity of Plumes A and B. Fifteen of the wells (RW-C1, RW-C2, RW-C3, RW-C4, RW-C5, RW-C6, RW-C7, OB-C1, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, OB-D1, and OB-D2) were installed in the vicinity of Plumes C and D. Every well, except OB-A1, was surveyed subsequent to the installation event. Six additional extraction wells (RW-D6 through RW-D11) were installed within the Plume D area in March 2007 by URS Corporation. These six wells are 6 inches in diameter and installed to an approximate depth of 20 feet bgs. The well locations are shown on Figures 2 and 3. The plume locations are shown on Figure 3.

According to the "Second Quarter 2003 Monitoring Report" (Uribe 2003), approximately 10,000 gallons of a groundwater/free product mixture were removed from on-site wells RW-B3 and RW-B4 (Plume B) in September and October 2002, using a trailer-mounted, dual-phase extraction unit with a 10-horsepower vacuum pump. Additionally, approximately 10,000 gallons of liquid were removed from wells RW-C3, RW-C4, RW-C5, and RW-C7 (Plume C) through five daily extractions over a two-month period. The liquid was pumped into a 21,000-gallon aboveground storage tank to allow separation of oil from water and drained through three 2,000-pound granular-activated carbon filters (in series). After filtration, the wastewater was discharged into a local storm drain. A National Pollutant Discharge Elimination System (NPDES) permit was issued prior to discharge.

Within the same time period, hydrogen peroxide, followed by water, was injected periodically into wells OB-Al, RW-Al, RW-A2, TBW-3, and TBW-4 (Plume A);

MW-16 and MW-17 (Plume B); and MW-5 (active tank area), to promote in situ bioremediation. Hydrogen peroxide has also been injected periodically into wells in the Plume C area since July 2004.

In addition, construction of an extraction system to remove separate-phase hydrocarbons (SPH) within the vicinity of Plume D began in March 2006. Seven existing wells (RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1) were converted to extraction wells by URS Corporation. The extraction system was completed in April 2006, and the system began operation in mid-May 2006. Groundwater extracted from the seven wells was treated through an oil/water separator, followed by three 2,000-pound liquid-phase activated carbon units in series, and was discharged into the local storm drain via an NPDES permit. Extracted soil vapor was treated through a thermal oxidizer and discharged into the atmosphere via a permit issued by the Bay Area Air Quality Management District. Six additional wells were installed within the vicinity of Plume D in March 2007 (RW-D6, RW-D7, RW-D8, RW-D9, RW-D10, and RW-D11) and were connected to the extraction system on June 11, 2007. Quarterly remediation system performance reports were submitted separately from this monitoring report to the Alameda County Environmental Health Department and to the Regional Water Quality Control Board - San Francisco Bay Region (RWQCB).

3.0 FALL 2008 SEMIANNUAL MONITORING ACTIVITIES

3.1 Field Activities

The field activities, which included depth-to-groundwater/product measurement and well sampling, were conducted in accordance with the City of Oakland MSC Schedule and Protocol Table presented in Appendix A. In addition, the City of Oakland requested that 11 remediation wells be sampled during the Fall 2008 sampling event to evaluate the effectiveness of the remedial activities conducted at the Site. The additional wells sampled in November 2008 were RW-A1, RW-A2, RW-B2, RW-B4, RW-C1, RW-C3, RW-C5, RW-D1, and RW-D4.

On November 18, 2008, LFR personnel measured depth to water and depth to SPH using an electric oil/water interface probe in the following wells: MW-1, MW-2, MW-5 through MW-17, TBW-5, TBW-6, RW-A1, RW-A2, OB-A1, RW-B1 through RW-B4, RW-C1 through RW-C7, OB-C1, RW-D-1 through RW-D11, OB-D1, and OB-D2. A number of monitoring wells have been eliminated from the monitoring program. Monitoring wells MW-3 and MW-4 have been abandoned and sealed (Ninyo & Moore 2004). Wells TBW-1, TBW-2, TBW-3, and TBW-4 were abandoned and sealed by Baseline in June 2007. Wells TBW-5, RW-D1 through RW-D11, and RW-1 were converted to extraction wells.

The pumps from the active extraction wells were temporarily removed by OTG EnviroEngineering Solutions, Inc. (OTG) on November 17 and 18, 2008 so that depth-to-groundwater, depth-to-SPH, and groundwater sampling activities could be conducted. The oil/water interface probe was decontaminated with liquinox and distilled water before use in each well to avoid potential cross contamination. Current and historical product thickness measurements, depth-to-groundwater measurements, and groundwater elevations calculated from groundwater measurements are presented in Table 1. Monitoring and remediation well locations are shown on Figures 2 and 3.

On November 18 through 21, 2008, LFR personnel collected groundwater samples from 12 monitoring wells (MW-1, MW-5, MW-6, MW-8 through MW-10, and MW-12 through MW-17) and 11 remediation wells (RW-A1, RW-A2, RW-B2, RW-B4, RW-C1, RW-C3, RW-C5, RW-D1, RW-D4, RW-D7, and RW-D10). Prior to sampling, a clean, disposable, polyvinyl chloride (PVC) sampling bailer was used to purge a minimum of three well-casing volumes of groundwater from all but five monitoring wells. Due to the large well-casing volumes, the remaining five wells were purged using clean, 2-inch-diameter submersible pumps. A minimum of one wellcasing volume of water was purged from each of the active extraction wells (plume D wells) because these wells were continuously pumping groundwater until November 17 or 18. The wells were allowed to recover to at least 80 percent of their original static groundwater levels before sampling. Dissolved oxygen, temperature, pH, conductivity, and turbidity were measured for each well volume purged. Additionally, characteristics of the water (color, turbidity, odor, sheen) were noted on the field data sheets, which are included in Appendix B.

After the wells were purged, samples were collected using the disposable, PVC, bottom-discharging bailer that was used to purge the well. The samples were transferred from the bailer to the appropriate sample containers, labeled, and placed in a "wet chilled" cooler containing ice, under chain-of-custody protocol. The samples were secured in the cooler and transferred to Curtis & Tompkins, Ltd., Analytical Laboratories (C&T), a California Department of Health Services-certified environmental laboratory located in Berkeley, California. Purged and decontamination water generated during sampling activities was transferred into an on-site storage tank that was part of the on-site extraction and treatment system maintained by the City of Oakland.

3.2 Sample Analyses

The groundwater samples were analyzed by C&T for the following parameters:

- total petroleum hydrocarbons (TPH) as gasoline (TPHg) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B
- TPH as kerosene (TPHk), TPH as diesel (TPHd), and TPH as motor oil (TPHmo) using U.S. EPA Method 8015B, with a silica-gel cleanup

• the aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary-butyl ether (MTBE) using U.S. EPA Method 8260B

4.0 MONITORING RESULTS

4.1 Shallow Groundwater Topography

Depth to groundwater was measured on November 18, 2008, using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater elevations were determined using well survey data from the "Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center" (Uribe 2003).

Groundwater elevations in the monitoring wells ranged from 4.92 feet mean sea level (msl) at MW-6 to -0.60 foot msl at MW-2 (Figure 2). Groundwater flow direction, measured between wells MW-1 and MW-10, is toward the northwest in the northern section of the Site at approximately 0.012 foot/foot (ft/ft), and toward the southwest (measured between wells MW-11 and MW-15) at approximately 0.009 ft/ft in the southern portion of the Site. A groundwater high (groundwater elevation of 5.71 feet msl) is observed in the vicinity of remediation well RW-A2 (Plume A), located in the southern portion of the Site. This observed groundwater high may be due to the presence of coarse-grained backfill in the area. The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface, preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). In addition, a depression in the groundwater surface was observed in vicinity of the plume D remediation wells. The groundwater flow direction for this sampling period was similar to that reported by Ninyo & Moore in its July 14, 2004 Spring Semiannual Groundwater Monitoring Report for the Site, and in more recent LFR monitoring reports.

4.2 Occurrence of Separate-Phase Hydrocarbons

Floating SPH was observed in well OB-C1 (approximately 0.03 foot) during this monitoring event. Globules of product were also noted during bailing of MW-6. The results of the SPH assessment are presented in Table 1. Plumes B, C, and D showed a significant decrease in lateral extent of SPH compared to the April 2004 monitoring event. The monitoring wells in the Plume A area continue to not contain measurable amounts of SPH. The pumps were removed from the Plume D extraction wells so that the wells would be accessible during the current monitoring event. These wells did not contain measurable amounts of SPH. Similarly, the four monitoring wells that comprise Plume B did not contain measurable amounts of SPH during the current monitoring event. The lateral extent of plume C is depicted on Figure 3 in the vicinity of OB-C1.

4.3 Contaminant Distribution in Groundwater

The analytical data from this groundwater monitoring event are presented in Table 1 along with historical analytical results. Laboratory analytical data reports are included in Appendix C. Historical data for volatile organic compounds, semivolatile organic compounds, Leaking Underground Fuel Tank metals, and other metals are provided in Appendix D (Tables D-1, D-2, D-3, and D-4, respectively).

For quality assurance/quality control (QA/QC), LFR collected a duplicate sample from wells MW-10 and RW-C5 and analyzed for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. Analytical results for the duplicate samples were the same as those for the primary samples collected from well MW-10 and consistent with those for the primary samples collected from well RW-C5.

4.3.1 Benzene

Benzene concentrations detected above laboratory analytical detection limits (LADL) were reported in groundwater samples collected from 5 of the 12 monitoring wells and 10 of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum benzene concentration in November 2008 was detected in well MW-6 at 96 micrograms per liter (μ g/l). In the remediation wells, the maximum benzene concentration wells, the maximum benzene concentration wells, the maximum benzene concentration wells.

Benzene was also reported in groundwater samples collected from wells MW-1 (2.4 μ g/l), MW-5 (11 μ g/l), MW-10 (11 μ g/l in the primary and duplicate samples), MW-16 (21 μ g/l), RW-A1 (8.8 μ g/l), RW-B4 (3,100 μ g/l), RW-C1 (6.4 μ g/l), RW-C3 (1.1 μ g/l), RW-C5 (2,900 μ g/l; 2,700 μ g/l in the duplicate sample), RW-D1 (270 μ g/l), RW-D4 (210 μ g/l), RW-D7 (100 μ g/l), and RW-D10 (2.7 μ g/l).

The benzene concentrations detected during the November 2008 sampling event were generally consistent with historical concentrations for most monitoring and remediation wells with the exception of MW-6, which displayed a significant decrease from 500 μ g/l in May 2008 to 96 μ g/l in November 2008. Remediation wells RW-A1, RW-D1, RW-D4, RW-D7, and RW-D10 were sampled for the first time during the November 2008 sampling event; therefore, a trend has not yet been established.

In its July 2004 monitoring report, Ninyo & Moore (2004) cited the following regulatory standards for benzene: the acceptable risk threshold for the San Francisco Airport Ecological Protection Zone (SFAEPZ) Tier I Standard was 71 μ g/l; the City of Oakland Tier I Carcinogenic Risk-Based Standard Level (RBSL) was also 71 μ g/l. However, LFR has not included City of Oakland RBSLs in this report because they were promulgated in 1999 and are considered out of date. The RWQCB Environmental Screening Level (ESL) for Surface Water Screening Levels Marine Habitats for benzene is 71 μ g/l (RWQCB 2008; Table F-2b).

Benzene concentrations were above the SFAEPZ Tier I Standard for benzene and RWQCB ESL for benzene (71 μ g/l for both regulatory limits) in one monitoring well (MW-6) and six remediation wells (RW-B2, RW-B4, RW-C5, RW-D1, RW-D4 and RW-D7). Benzene was not detected above the ESL in any monitoring wells bounding the Site and San Leandro Bay ("the Bay"), indicating that elevated benzene concentrations are not migrating off site to the Bay.

4.3.2 Toluene

Toluene was reported in groundwater samples collected from four of the 12 monitoring wells and seven of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum toluene concentration in November 2008 was detected in MW-6 at 1.9 μ g/l. In the remediation wells, the maximum toluene concentration was detected in RW-B2 at 2,100 μ g/l.

Toluene was also reported in groundwater samples collected from wells MW-1 (0.52 μ g/l), MW-5 (1.7 μ g/l), MW-16 (1.7 μ g/l), RW-B4 (100 μ g/l), RW-C5 (91 μ g/l; 78 μ g/l in the duplicate sample), RW-D1 (85 μ g/l), RW-D4 (17 μ g/l), RW-D7 (54 μ g/l), and RW-D10 (0.69 μ g/l).

The RWQCB ESL for Surface Water Screening Levels Marine Habitats for toluene is 40 μ g/l (RWQCB 2008; Table F-2b). No concentrations of toluene were detected in monitoring wells above the ESL of 40 μ g/l during the November 2008 sampling event. Toluene was detected above the ESL in remediation wells RW-B2, RW-B4, RW-C5, RW-D1, and RW-D7.

4.3.3 Ethylbenzene

Ethylbenzene was reported in groundwater samples collected from two of the 12 monitoring wells and eight of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum ethylbenzene concentration in November 2008 was detected in MW-5 at 240 μ g/l. In the remediation wells, the maximum ethylbenzene concentration was detected in RW-B4 and RW-D4 at 270 μ g/l.

Ethylbenzene was also reported in groundwater samples collected from wells MW-16 (2.7 μ g/l), RW-B2 (140 μ g/l), RW-C3 (0.67 μ g/l), RW-C5 (120 μ g/l; 91 μ g/l in the duplicate sample), RW-D1 (150 μ g/l), RW-D7 (13 μ g/l), and MW-D10 (5.6 μ g/l).

The SFAEPZ Tier I Standard for ethylbenzene is 29,000 μ g/l, and the RWQCB ESL for Surface Water Screening Levels Marine Habitats for ethylbenzene is 30 μ g/l (RWQCB 2008; Table F-2b). No concentrations of ethylbenzene were detected in monitoring or remediation wells above the SFAEPZ Tier I Standard for ethylbenzene of 29,000 μ g/l during the November 2008 sampling event. Also, no concentrations of ethylbenzene were detected in monitoring wells above the ESL of 30 μ g/l during the

November 2008 sampling event. Ethylbenzene was detected above the ESL in remediation wells RW-B2, RW-B4, RW-C5, RW-D1, and RW-D4.

4.3.4 Total Xylenes

Total xylenes were reported in groundwater samples collected from five of the 12 monitoring wells and eight of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum total xylenes concentration in November 2008 was detected in MW-5 at 6.5 μ g/l. In the remediation wells, the maximum total xylenes concentration was detected in RW-D7 at 830 μ g/l.

Total xylenes were also reported in samples collected from wells MW-1 (1.3 μ g/l), MW-6 (1.2 μ g/l), MW-15 (1.78 μ g/l), MW-16 (1.1 μ g/l), RW-B2 (720 μ g/l), RW-B4 (679 μ g/l), RW-C1 (0.51 μ g/l), RW-C5 (437 μ g/l; 358 μ g/l in the duplicate sample), RW-D1 (710 μ g/l), RW-D4 (280 μ g/l), and RW-D10 (17.71 μ g/l).

The RWQCB ESL for Surface Water Screening Levels Marine Habitats for total xylenes is 100 μ g/l (RWQCB 2008; Table F-2b). No concentrations of total xylenes were detected in monitoring wells above the ESL of 100 μ g/l during the November 2008 sampling event. Total xylenes were detected above the ESL in remediation wells RW-B2, RW-B4, RW-C5, RW-D1, RW-D4, and RW-D7.

4.3.5 MTBE

MTBE was reported in groundwater samples collected from two of the 12 monitoring wells and one of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum MTBE concentration in November 2008 was detected in MW-5 at 20 μ g/l. In the remediation wells, the maximum MTBE concentration was detected in RW-A1 at 4.5 μ g/l.

MTBE was also reported in a sample collected from well MW-6 at 5.7 μ g/l.

The RWQCB ESL for Surface Water Screening Levels Marine Habitats for MTBE is 180 μ g/l (RWQCB 2008; Table F-2b). No concentrations of MTBE were detected in monitoring or remediation wells above the ESL of 180 μ g/l during the November 2008 sampling event.

4.3.6 TPHg

TPHg was reported in groundwater samples collected from five of the 12 monitoring wells and seven of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum TPHg concentration in November 2008 was detected in MW-5 at 2,600 μ g/l. In the remediation wells, the maximum TPHg concentration was detected in RW-B2 at 7,900 μ g/l.

TPHg was also detected in wells MW-1 (210 μ g/l), MW-6 (450 μ g/l), MW-12 (59 μ g/l), MW-16 (150 μ g/l), RW-B4 (6,000 μ g/l), RW-C5 (5,800 μ g/l; 3,900 in the duplicate sample), RW-D1 (5,100 μ g/l), RW-D4 (7,600 μ g/l), RW-D7 (3,400 μ g/l), and RW-D10 (640 μ g/l).

The SFAEPZ Tier I Standard is 3,700 μ g/l for TPHg (Ninyo & Moore 2004), and the RWQCB ESL for Surface Water Screening Levels Marine Habitats for TPHg is 210 μ g/l (RWQCB 2008; Table F-2b). No concentrations of TPHg were detected in monitoring wells above the SFAEPZ Tier I Standard for TPHg of 3,700 μ g/l during the November 2008 sampling event. TPHg was detected above the SFAEPZ Tier I Standards in five remediation wells (RW-B2, RW-B4, RW-C5, RW-D1, and RW-D4). TPHg was detected above the ESL of 210 μ g/l in three monitoring wells (MW-1, MW-5, and MW-6) and seven remediation wells (RW-B2, RW-B4, RW-C5, RW-D1, RW-D4, RW-D7, and RW-D10).

TPHg was not detected above the ESL in any monitoring wells bounding the Site and the Bay, indicating that elevated benzene concentrations are not migrating off site to the Bay.

4.3.7 TPHd

TPHd was reported in groundwater samples collected from eight of the 12 monitoring wells and all 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum TPHd concentration in November 2008 was detected in MW-16 at 52,000 μ g/l. In the remediation wells, the maximum TPHd concentration was detected in RW-D4 at 55,000 μ g/l.

TPHd was also detected in wells MW-1 (110 μ g/l), MW-5 (660 μ g/l), MW-6 (1,500 μ g/l), MW-12 (170 μ g/l), MW-13 (120 μ g/l), MW-14 (150 μ g/l), MW-15 (110 μ g/l), RW-A1 (56 μ g/l), RW-A2 (590 μ g/l), RW-B2 (190 μ g/l), RW-B4 (3,100 μ g/l), RW-C1 (290 μ g/l), RW-C3 (720 μ g/l), RW-C5 (3,700 μ g/l; 3,400 μ g/l in the duplicate sample), RW-D1 (11,000 μ g/l), RW-D7 (54,000 μ g/l), and RW-D10 (1,000 μ g/l).

The SFAEPZ Tier I Standard is 640 μ g/l for TPHd (middle distillates; Uribe 2003), and the RWQCB ESL for Surface Water Screening Levels Marine Habitats for TPH (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-2b). TPHd concentrations were above the SFAEPZ Tier I Standard of 640 μ g/l in three monitoring wells (MW-5, MW-6, and MW-16) and seven remediation wells (RW-B4, RW-C3, RW-C5, RW-D1, RW-D4, RW-D7, and RW-D10). TPHd concentrations were above the ESL of 210 μ g/l in three monitoring wells (MW-5, MW-6, and MW-16) and nine remediation wells (RW-A2, RW-B4, RW-C1, RW-C3, RW-C5, RW-D1, RW-D4, RW-D7, and RW-D10).

MW-16 is the only well bounding the Site and the Bay that exceeded regulatory standards. The TPHd concentration measured in this well significantly increased from the TPHd concentration measured in October 2007 (2,300 μ g/l).

4.3.8 TPHmo

TPHmo was reported in groundwater samples collected from three of the 12 monitoring wells and eight of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum TPHmo concentration in November 2008 was detected in MW-16 at 110,000 μ g/l. In the remediation wells, the maximum TPHmo concentration was detected in RW-D7 at 59,000 μ g/l.

TPHmo was also detected in wells MW-13 (630 μ g/l), MW-14 (660 μ g/l), RW-B4 (2,900 μ g/l), RW-C1 (1,200 μ g/l), RW-C3 (1,600), RW-C5 (430 μ g/l; less than 300 μ g/l in the duplicate sample), RW-D1 (4,900 μ g/l), RW-D4 (9,700 μ g/l), and RW-D10 (650 μ g/l).

The SFAEPZ Tier I Standard is 640 μ g/l for TPHmo (middle distillates; Uribe 2003), and the RWQCB ESL for Surface Water Screening Levels Marine Habitats for TPH (middle distillates) is 210 μ g/l (RWQCB 2008; Table F-2b). TPHmo concentrations were above the SFAEPZ Tier I Standard of 640 μ g/l in two monitoring wells (MW-14 and MW-16) and seven remediation wells (RW-B4, RW-C1, RW-C3, RW-D1, RW-D4, RW-D7, and RW-D10). TPHmo concentrations were above the ESL of 210 μ g/l in three monitoring wells (MW-13, MW-14, and MW-16) and eight remediation wells (RW-B4, RW-C1, RW-C1, RW-C3, RW-D10).

MW-14 and MW-16 are the only wells bounding the Site and the Bay that exceeded regulatory standards. The TPHmo concentrations measured in these wells significantly increased from the TPHmo concentrations measured in October 2007 (4,300 μ g/l and less than 300 μ g/l, respectively).

4.3.9 TPHk

TPHk was reported in groundwater samples collected from 5 of the 12 monitoring wells and 10 of the 11 remediation wells sampled during the current monitoring event. In the monitoring wells, the maximum TPHk concentration in November 2008 was detected in MW-16 at 31,000 μ g/l. In the remediation wells, the maximum TPHk concentration was detected in RW-D4 at 46,000 μ g/l.

TPHk was also detected in wells MW-1 (87 μ g/l), MW-5 (690 μ g/l), MW-6 (1,200 μ g/l), MW-12 (120 μ g/l), RW-A2 (160 μ g/l), RW-B2 (150 μ g/l), RW-B4 (930 μ g/l), RW-C1 (76 μ g/l), RW-C3 (170 μ g/l), RW-C5 (3,300 μ g/l; 3,100 μ g/l in the duplicate sample), RW-D1 (9,400 μ g/l), RW-D7 (43,000 μ g/l), and RW-D10 (760 μ g/l).

4.4 Laboratory Analysis

Current laboratory analytical results and historical results are presented in Table 1. Copies of laboratory data sheets and chain-of-custody documents are included in Appendix C.

5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

A laboratory QA/QC review was performed on the laboratory analytical data to evaluate the quality and usability of the analytical results. The following sections summarize the QA/QC review.

5.1 Method Holding Times

The procedures used to extract and analyze the collected samples were reviewed by LFR personnel and were found to be within the appropriate holding times for all but one sample. RW-C3 had to be re-analyzed for total extractable hydrocarbons after the laboratory observed an unacceptable surrogate recovery. This re-analysis occurred after the holding time expired.

5.2 Blanks

Three field blanks (MW-17-FB, RW-C1-FB, and MW-9-FB) were collected along with corresponding groundwater samples and were analyzed for TPHg, TPHk, TPHd, TPHmo, BTEX, and MTBE. Additionally, laboratory method blank results were reviewed for detection of target analytes. No target analytes were detected in any of the three field blanks. These results indicate that sample collection methods were effective, and that transportation and laboratory procedures were not a source of contamination.

5.3 Laboratory Control Samples

Laboratory quality control samples were conducted by C&T for TPHg, TPHd, TPHk, TPHmo, and BTEX. All samples were within the percentage recovery range required by the laboratory.

5.4 Surrogates

All surrogates, including hexacosane, bromofluorobenzene, and trifluorotoluene for TPHg, TPHd, TPHk, and TPHmo, and bromofluorobenzene, 1,2-dichloroethane-d4, and toluene-d8 for BTEX, were used for laboratory QA/QC analysis. All but one of the surrogates were within the acceptable laboratory recovery limits. RW-C3, was re-analyzed for total extractable hydrocarbons as noted above in Section 5.1 due to the low surrogate recovery noted by the analytical laboratory.

5.5 False-Positive Petroleum Hydrocarbon Identification

Qualifiers were reported in the laboratory analytical reports as noted in previous sections.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the data collected during the Fall 2008 sampling event and presents the recommendations for the Spring 2009 monitoring period.

- Groundwater elevations ranged from 4.92 feet msl at MW-6 to -0.60 foot msl at MW-2. The direction of shallow groundwater flow is toward the northwest in the northern section of the Site at a 0.012 ft/ft gradient and toward the southwest in the southern portion of the Site at 0.009 ft/ft. A groundwater high was observed in the vicinity of well RW-A2 (Plume A) in the southern portion of the Site. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill. A depression in the groundwater surface was observed in the vicinity of the plume D extraction wells due to the active groundwater extraction in the area.
- SPH was observed in two wells: OB-C1 (approximately 0.03 foot) and MW-6 (small globules). SPH was not detected in any other wells monitored during the current monitoring event.
- Benzene was detected above LADL in 15 of the 23 of wells sampled. The maximum concentration of benzene detected in shallow groundwater was 3,200 µg/l in well RW-B2. The concentration of benzene is above both the SFAEPZ Tier I Standard and the RWQCB ESL for Surface Water Screening Levels Marine Habitats of 71 µg/l in seven of the wells sampled. None of the wells bounding the Site and the Bay exceeded either regulatory screening level.
- Toluene was detected above LADL in 11 of the 23 wells sampled. The maximum concentration of toluene detected in shallow groundwater was 2,100 μ g/l in well RW-B2. Concentrations of toluene were above the RWQCB ESL for Surface Water Screening Levels Marine Habitats of 40 μ g/l in five of the wells in which it was present.
- Ethylbenzene was detected above LADL in 10 of the 23 wells sampled. The maximum concentration of ethylbenzene was detected in shallow groundwater at 270 μ g/l in wells RW-B4 and RW-D4. No ethylbenzene concentrations exceeded the SFAEPZ Tier I Standard (29,000 μ g/l). Concentrations of ethylbenzene did exceed the RWQCB ESL for Surface Water Screening Levels Marine Habitats of 30 μ g/l in five of the wells sampled.
- Total xylenes were detected above LADL in 13 of the 23 wells sampled. The maximum concentration of xylenes detected in shallow groundwater was 830 µg/l in well RW-D7. Concentrations of total xylenes were above regulatory action levels for the RWQCB ESL for Surface Water Screening Levels Marine Habitats for total xylenes (100 µg/l) in six of the wells sampled.
- MTBE was detected above LADL in 3 of the 23 wells sampled. The maximum concentration of MTBE detected in shallow groundwater was 20 μ g/l in well MW-5. No concentrations of MTBE exceeded the RWQCB ESL for Surface Water

Screening Levels Marine Habitats for MTBE of 180 μ g/l during the November 2008 event.

- TPHg was detected in 12 of the 23 wells sampled. The maximum concentration of TPHg detected in shallow groundwater was 7,900 µg/l in well RW-B2. Concentrations of TPHg were above the SFAEPZ Tier I Standard of 3,700 µg/l in five of the wells sampled. TPHg concentrations were above the RWQCB ESL for Surface Water Screening Levels Marine Habitats of 210 µg/l in 10 of the wells sampled.
- TPHd was detected above LADL in 19 of the 23 wells sampled. The maximum concentration detected was present in well RW-D4 at a concentration of 55,000 μ g/l. TPHd concentrations were above the SFAEPZ Tier I Standard for TPHd of 640 μ g/l (middle distillates; Uribe 2003) in 10 of the wells sampled. TPHd concentrations were above the RWQCB ESL for Surface Water Screening Levels Marine Habitats for TPHd (middle distillates) of 210 μ g/l in 12 wells sampled.
- TPHmo was detected in 11 of the 23 wells sampled and had a maximum concentration of 110,000 μg/l in well MW-16. TPHmo concentrations were above the SFAEPZ Tier I Standard for TPHd (middle distillates) of 640 μg/l in nine of the wells sampled. TPHmo concentrations were above the RWQCB ESL for Surface Water Screening Levels Marine Habitats for TPHd (middle distillates) of 210 μg/l (middle distillates) in 11 wells sampled.
- TPHk was detected above laboratory analytical limits in 15 of the 23 wells sampled. The maximum concentration of TPHk detected was present in well RW-D4 (46,000 μ g/l).

Based on the results of the Fall 2008 groundwater monitoring event, LFR makes the following recommendations:

- Continue semiannual groundwater monitoring on site due to the elevated concentrations of TPHg, TPHd, TPHmo, and benzene reported during the current monitoring event.
- Continue monitoring SPH, which was present in two monitoring wells at the Site.
- Continue in situ remediation using hydrogen peroxide and continue groundwater extraction.
- Work with OTG to prepare a summary of remediation activities at each freeproduct plume area, assess free-product recovery and dual-phase extraction progress in the Plume D area, and assess the effectiveness of hydrogen peroxide treatment in the Plume A, B, and C areas. This remedial progress evaluation will be included in the second 2009 semiannual groundwater monitoring report.

7.0 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard of care exercised by environmental consultants performing similar work in the project area. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. Please note this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions and the referenced literature. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which LFR has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. LFR should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.

8.0 SELECTED REFERENCES

- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2008. Screening for Environmental Concerned Sites with Contaminated Soil and Groundwater. Interim Final – November 2007 (Revised May 2008). May.
- LFR Inc. (LFR). 2008. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. May 31.
- Ninyo & Moore. 2004. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center, 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. July 14.
- Uribe & Associates (Uribe). 2002. Test/Observation Well Installation Report, U & A Project 291-03. April 2.
- ———. 2003. Final Report, Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center. May.

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
MW-1														
10/4/89	10.20			8020					540	65	26	14	22	
10/4/89	10.20			8240						120	46	43	78	
4/27/93	10.20			8020					<1,000	< 1.0	<1.0	< 1.0	< 1.0	
4/19/95	10.20			8020					3,200	880	15	23	21	
7/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6	
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.1	4.6	
2/21/96	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16	
5/13/96	10.20	4.33	5.87	8020					7,300	2,000	30	42	38	
8/27/96	10.20	5.25	4.95	8020					380	61	2.4	< 0.5	4.2	
2/23/98	10.20	1.75	8.45	8020		< 50	< 500	< 50	820	160	4.9	3	9.7	
8/19/98	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.1	0.84	8.5	< 5.0
11/11/98	10.20	5.64	4.56											
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	< 50	1,100	190	5	3	12	< 5.0
5/27/99	10.20	3.96	6.24											
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	< 50	370	37	0.9	< 0.5	1.9	< 5.0
11/22/99	10.20	5.46	4.74											
1/18/00	10.05	5.41	4.64											
1/19/00	10.05			8020	SGC	50	< 200	< 50	660	43	2.3	1.1	6	< 5.0
5/11/00	10.05	4.63	5.42											
8/24/00	10.05	5.07	4.98											
8/25/00	10.05			8020	SGC	340	<250	290	480	53	1.4	< 0.5	2.9	< 5.0
11/28/00	10.05	5.60	4.45											
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	<250	< 61	1,500	110	6.3	<1.5	9.9	<15
5/17/01	10.05	4.00	6.05											
8/16/01	10.05	4.17	5.88		Filtered+SGC	280	<200B	<100	4,000	640	9.7	5.7	13	< 5.0
12/15/01	10.05	5.52	4.53											
4/9/02	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	<5
6/21/02	10.05	4.92	5.13											
9/13/02	10.05	5.52	4.53	8021	SGC	88 b,c	< 300	88	260	9.6	< 0.5	< 0.5	1.0	<2
4/22/03	10.05	4.41	5.64	8021B	SGC	570 L Y	< 300	660	1,900 Z	400.0	9.6	5.4	8.1	<2.0
4/28/04	10.05	3.95	6.10	8260B	SGC	< 100	<400	<100	154	20	<1.0	<1.0	2.3	<1.0
10/29/04	10.05	5.68	4.37	8260B	SGC	230 L Y	< 300	240	340 H Z	6.4	0.6	< 0.5	1.4	< 0.5
9/2/05 (1)	10.05	4.35	5.70	8260B	SGC	140 L Y	< 300	170	350	6.6	1.0	< 0.5	2.3	< 0.5
4/4/2006 (3)	10.05	2.24	7.81	8260B	SGC	830 L Y	< 300	1,100 L Y	3,700	470	13	7.8	6.3	<3.6
9/6/06	10.05	4.98	5.07	8260B	SGC	3,400 H L	400 L	3,100 H	480	4.2	1.0	< 0.5	1.9	< 0.5
4/5/07	10.05	3.56	6.49	8260B	SGC	500 L Y	< 300	490 L Y	1,500 Y	170	7.2	3.6	5.7	<1.3
10/2/07	10.05	5.59	4.46	8260B	SGC	600 Y	< 300	710 Y	460 Y	6.1	1.1	< 0.5	1.2	< 0.5
3/20/08 (8)	10.05	3.53	6.52	8260B	SGC	1,000 Y	< 300	960	1,600 Y	53	4.1	1.2	6.3	< 0.5
11/21/08 (10)	10.05	5.48	4.57	8260B	SGC	110 Y	< 300	87 Y	210 Y	2.4	0.52	< 0.50	1.3	< 0.50

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method	Notes	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
Duite	(feet)	(feet)	(feet)	inculou		V~8/1/	V~8/-7	V-8/-7	V~8/1/	V~8/-7	V-0/-/	(µg/l)	(µg/l)	V~8/ ·/
												10,	• • •	
MW-2														
10/4/89	10.47			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	10.47			8240						2	<2.0	< 2.0	< 2.0	
4/27/93	10.47			8020					<1,000	< 1.0	<1.0	< 1.0	<1.0	
4/19/95	10.47			8020					< 50	1.8	< 0.5	< 0.5	< 0.5	
7/27/95	10.47	6.22	4.25	8020					< 50	2.3	< 0.5	< 0.5	< 0.5	
11/20/95	10.47	7.49	2.98	8020					< 50	2.2	< 0.5	< 0.5	< 0.5	
2/12/96	10.47	6.68	3.79	8020					< 50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	< 0.5	< 0.5	
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		< 50	< 500	< 50		1.6	< 0.5	< 0.5	< 0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330			< 50	4.1	3.4	0.8	2.6	< 5.0
11/11/98	10.47	7.37	3.10											
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	< 50	< 50	3.5	0.6	0.6	1.2	< 5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	< 50	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	10.47	7.58	2.89											
1/18/00	10.47	7.41	3.06	8020	SGC	60 a	660	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.47	6.43	4.04											
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	< 59	<240	< 59	< 50	3.6	< 0.5	< 0.5	< 0.5	<5
5/17/01	10.47	6.90	3.57											
8/16/01	10.47	6.95	3.52		Filtered+SGC	< 50	200B	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/15/01	10.47	7.21	3.26											
4/5/02	10.47	6.02	4.45	8021	SGC	200	400		< 50	2.9	< 0.5	< 0.5	< 0.5	<5
6/21/02	10.47	8.07	2.40											
9/17/02	10.47	7.12	3.35	8021	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	<2
4/23/03	10.47	6.36	4.11	8021B	SGC	< 50	< 300	< 50	< 50	1.6	<.50	<.50	<.50	<2.0
4/28/04	10.47	5.99	4.48	8260B	SGC	<100	<400	<100	<100	< 0.5	< 1.0	<1.0	1.3	<1.0
9/1/05 (1)	10.47	6.08	4.39	8260B	SGC	< 50	< 300	< 50	< 50	2.8	< 0.5	< 0.5	< 0.5	0.8
4/4/2006 (3)	10.47	4.96	5.51	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	0.5	0.5
9/6/06	10.47	9.31	1.16											
4/5/07	10.47	9.21	1.26	8260B	SGC	< 50	< 300	< 50	< 50	1.6	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.47	10.81	-0.34											
3/20/08 (8)	10.47	12.36	-1.89	8260B	SGC	< 50	< 300	< 50	< 50	1.5	< 0.5	< 0.5	< 0.5	< 0.5
11/18/08	10.47	11.07	-0.60	8260B		< 50 	< 500 	< <u>50</u>	< 50 			<0.5 	<0.5	<0.5
11/10/00	10.47	11.07	-0.00	0200D										
MW-3														
10/4/89				8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89				8240						< 2.0	< 2.0	< 2.0	< 2.0	
10/4/89				8240						< 2.0	< 2.0	< 2.0	< 2.0	

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
2/23/98						< 50	< 500	< 50						
11/11/98		5.83												
2/23/99					Submerged									
5/27/99		1.68												
8/24/99		4.76												
11/22/99		6.46												
11/22/99					Destroyed									
MW-4														
10/4/89	7.89			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						< 2.0	<2.0	< 2.0	< 2.0	
11/11/98	7.89	6.25	1.64											
2/23/99	7.89	3.10	4.79											
5/27/99	7.89	4.03	3.86											
8/24/99	7.89	5.07	2.82											
11/22/99	7.89	6.32	1.57											
11/22/99					Destroyed									
MW-5														
12/13/91	11.15			8020		1,900			13,000	1,500	190	970	2,500	
12/13/91	11.15			8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240	_					1,800	<250	1,000	3,800	
12/13/91	11.15			8240	Dup					1,600	<250	980	3,500	
4/27/93	11.15			8240	-	12,000			35,000	2,100	<1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
11/20/95	11.15	6.98	4.17	8020		< 50	< 50	< 50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	< 50	< 50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	< 50	< 50	5,900	430	26	580	760	
5/13/96	11.15			8020	Dup	< 50	< 50	< 50	7,300	360	22	49	640	
8/27/96	11.15	6.40	4.75	8020	- F	2,000	<51	< 51	6,600	430	27	600	650	
8/27/96	11.15			8020	Dup	6,600	< 51	< 51	6,300	410	25	580	620	
2/23/98	11.15	4.22	6.93	8020	r	< 50	< 500	< 50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	<250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01	8260	SGC									6,700
11/11/98	11.15	6.51	4.64											
2/23/99	11.15	3.59	7.56	8020	SGC	2,000	700	< 50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44		555									
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 e	190 e	5.5	340 e	78	380 e
11/22/99	11.15	6.16	4.99		230		2,000	< <u>50</u>	2,100 C	190 €		J+0 C		
1/18/00	11.15	6.60	4.55											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
1/19/00	11.15			8020	SGC	100	320	< 50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/00	11.15	6.47	4.68											
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	<250	< 61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	<200	< 50	7,500	140	7	580	101	170
8/16/01	11.15	4.87	6.28		Filtered+SGC	320	500B	<100	2,300	46	<5	110	24	850
12/15/01	11.15	5.50	5.65											
4/9/02	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53.9	166
6/21/02	11.15	6.01	5.14	8021	SGC	200 a,b,c	< 300	190	4,600	130	33	380	56	440
9/12/02	11.15	6.40	4.75	8021	SGC	620 b,c	< 300	650	4,000 J	120	< 0.5	260	16	580
4/22/03	11.15	4.69	6.46	8021B	SGC	1600 L Y	< 300	1800	6000	91	<1.0	870	59.4	150 C
4/28/04	11.15	5.70	5.45	8260B	SGC	<650	<400	< 810	4780	34	<1.0	560	44	47
10/29/04	11.15	5.73	5.42	8260B	SGC	840 L Y	< 300	940	3000	18	2.1	280	16.1	94
9/2/05 (1)	11.15	6.08	5.07	8260B	SGC	510 L Y	< 300	640	1600	13	1.4	55	8.6	92
4/5/06 (3)	11.15	3.64	7.51	8260B	SGC	840 L Y	< 300	850 H	3,400	14	2.1	280	13	31
9/6/06	11.15	6.21	4.94	8260B	SGC	340 Y	< 300	400 Y	2000	8.3	1.1	8.2	6.8	50
4/5/07	11.15	5.31	5.84	8260B	SGC	340 L Y	< 300	310 L Y	3,100 Y	9.3	<2.0	230	13	38
10/2/07	11.15	6.51	4.64	8260B	SGC	400 Y	< 300	440	3,000 Y	11	1.4	100	6.8	46
3/20/08 (8)												270	12	
	11.15	5.37	5.78	8260B	SGC	1,400 Y	< 300	1,400	4,100 Y	8.4	1.7			23
11/21/08 (10)	11.15	6.51	4.64	8260B	SGC	660 Y	< 300	690 Y	2,600	11	1.7	240	6.5	20
MW-6														
12/13/91	10.98			8020		520			780	110	2.7	< 2.5	5.5	
12/13/91	10.98			8240						95	5	<5	<5	
4/27/93	10.98			8020		<1,000			<1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	< 0.8	3.9	29	
4/19/95	10.98			8020	Dup	3,700			3,000	310	3.1	2.7	100	
7/27/95	10.98	7.09	3.89	8020		3,900			6,100	430	15	200	600	
7/27/95	10.98			8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020		850			6,800	160	4.6	8	240	
11/20/95	10.98			8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700			2,800	230	2.8	3.8	44	
2/21/96	10.98			8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020	-	400	< 50	< 50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
8/19/98	10.98				SPH: 0.125 ft.									
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft.									
2/23/99	10.98	7.31	3.67		SPH: NM									
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft.									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft.									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft.									
1/18/00	10.98	8.08	3.05		SPH: 0.19 ft.									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft.									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft.									
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft.									
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft., f	820	<240	< 60	6,100	181	<5	14.2	< 5	< 50
2/26/01	10.98			8260B						270	3	9	3	(19)
5/17/01	10.98	7.57	3.66		SPH: 0.32 ft.									
8/16/01	10.98	7.75	3.49		SPH: 0.32 ft., f	740	200B	<100	4,200	360	4.6	13	12	14
12/15/01	10.98	7.58	3.40		SPH: 0.07 ft.									
4/3/02	10.98	6.92	4.06		SPH: 0.11 ft.									
6/21/02	10.98	7.05	3.93		SPH: 0.19 ft.									
9/12/02	10.98	7.22	4.02		SPH: 0.33 ft.									
4/22/03	10.98	4.71	6.27		SPH: 0.16 ft.									
4/28/04	10.98	5.09	5.89		SPH: 0.23 ft.									
10/27/04	10.98	6.12	4.86		SPH: product on probe									
8/31/05	10.98	6.11	4.87		SPH: 0.95 ft.									
3/27/06	10.98	4.11			SPH: 0.57 ft.									
9/6/06	10.98	5.42	5.56	8260B	SPH: 0.01 ft.	180 Y	< 300	200 Y	1,300	330	3.9	<1.7	3.7	4.8
9/6/06	10.98			8260B	Dup	2,400 H L	< 300	2,300 H	1,200	350	3.6	<1.3	3.4	4.7
4/4/07	10.98	4.37	6.61	8260B	SGC	3,300	< 300	3,000 H	1,400 H Y	520	<4.2	< 4.2	< 4.2	4.5
10/2/07	10.98	7.25	3.73	8260B	SGC SPH: Residual Product noted while bailing/	2,400	340 Y	2000	890 Y	270	3.8	5.5	3	7.8
3/20/08 (8)	10.98	6.59	4.39	8260B	SGC SPH: Residual Product noted while bailing/	7,200	820	5,900	1,100 Y	500	3.5	5.9	3.1	7.7
11/21/08 (10)	10.98	6.06	4.92	8260B	SGC	1,500 Y	< 300	1,200 Y	450 Y	96	1.9	< 0.50	1.2	5.7
MW-7														
12/13/91	11.51			8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/13/91	11.51			8240						<5	<5	< 5	< 5	
4/27/93	11.51			8240		<1,000			<1,000	< 1.0	<1.0	< 1.0	< 1.0	
4/19/95	11.51			8240		< 50	<1,000		< 50	< 2.0	<2.0	< 2.0	< 2.0	
7/27/95	11.51	6.87	4.64	8240		< 50	<1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
11/20/95	11.51	8.48	3.03	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	1.5	
2/21/96	11.51	6.29	5.22	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	< 0.5	< 0.5	
8/27/96	11.51	6.80	4.71	8020						< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	11.51	6.88	4.63											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
11/11/98	11.51	7.40	4.11											
2/23/99	11.51	5.57	5.94	8020		< 50	< 200	< 50	80	< 0.5	< 0.5	< 0.5	1	< 5.0
5/27/99	11.51	6.56	4.95											
8/24/99	11.51	6.29	5.22	8020	SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5
11/22/99	11.51	6.80	4.71											
1/18/00	11.51	7.31	4.20											
1/19/00	11.51			8020	SGC	< 50	< 200	< 50	54	1.5	1.5	2.4	3.8	< 5.0
5/11/00	11.51	6.41	5.10											
8/24/00	11.51	7.11	4.40	8020		< 50	<250	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.51	7.30	4.21											
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
5/17/01	11.51	6.65	4.86											
8/16/01	11.51	5.97	5.54		Filtered+SGC	< 50	600B	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/15/01	11.51	6.43	5.08											
4/8/02	11.51	6.17	5.34	8021	SGC	80	<200		< 50	< 0.5	0.5	0.6	< 0.5	<5
6/21/02	11.51	6.75	4.76	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3
9/12/02 4/22/03	11.51	7.05	4.46	8021 8021D	SGC SGC	< 50	< 300	< 50 < 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6 4 C
4/22/03 4/28/04	11.51 11.51	6.24 6.61	5.27 4.90	8021B 8260B	SGC	<50 <100	<300 <400	< 30 < 100	<50 <100	<0.5 1.6	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	4 C <1.0
9/2/05 ⁽¹⁾														
	11.51	6.56	4.95	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
4/5/06 ⁽³⁾	11.51	4.58	6.93	8260B	SGC	<50	< 300	< 50	< 50	2.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.51	6.67	4.84											
4/5/07 10/2/07	11.51	6.13	5.38	8260B	SGC	<50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
3/20/08 ⁽⁸⁾	11.51	7.07	4.44											
	11.51	6.24	5.27	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.7
3/20/08 dup 11/18/08	11.51	7.40	4.11	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
MW-8 11/20/96	12.22			8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/98	12.22	9.59	2.63	8020 8020		200			< 50 < 50	< 0.5	< 0.5	< 0.5	< 0.3 < 0.5	2
2/24/98	12.22	9.39 8.42	3.80	8020 8020		200 <50	< 500	< 50	< 50 < 50	< 0.3 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	2
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	12.22	9.49	2.03	8020	SGC	<50	<250	< 50	< 50	1.6	3.4	1	2.8	< 5.0
11/11/98	12.22	9.64	2.58	8020	SGC	<50	<200	< 50	< 50	0.9	0.8	0.6	2.3	< 5.0
2/23/99	12.22	11.53	0.69	8020	230	700	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
1/18/00	12.22	8.31	3.91	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
5/11/00	12.22	9.69	2.53	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	1.3	< 0.5	2.1	< 5.0
8/24/00	12.22	9.40	2.82											
8/25/00	12.22			8020	SGC	85	<250	< 50	< 50					
11/28/00	12.22	9.40	2.83	8020	SGC	< 50	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	12.22	9.50	2.72	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	12.22	9.71	2.51											
5/18/01	12.22			8020	Filtered+SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	12.22	9.80	2.42		Filtered+SGC	< 50	< 200	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/15/01	12.22	9.28	2.94	8021	SGC	390	1,300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/8/02	12.22	9.55	2.67	8021	SGC	440	800		< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02	12.22	9.71	2.51											
9/18/02	12.22	9.86	2.36	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	12.22	9.54	2.68	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	12.22													
10/27/04	12.22	NM ⁽⁴⁾												
4/5/06 (3)	12.22	8.73	3.49	8260B	SGC	54 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22	9.50	2.72	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	12.22	9.58	2.64	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	9.54	2.68	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	12.22	9.61	2.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	12.22	9.58	2.64	8260B	SGC	<50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-9														
11/20/96	10.77			8020		1,900			240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020					300	20	< 0.5	< 0.5	1.8	<1.0
2/24/98	10.77	6.11	4.66	8020		< 50	< 500	< 50	2,200	540	5.6	1.6	4.9	
6/8/98	10.77	7.14	3.63	8020		1,800	890	< 50	840	450	6.1	3.3	5.3	
8/19/98	10.77	7.88	2.89	8020	SGC	190	<250	160	740	370	8.6	0.99	7.3	< 5.0
11/11/98	10.77	8.23	2.54	8020	SGC	< 50	230	< 50	700	130	4.3	< 0.5	3.9	< 5.0
2/23/99	10.77	6.65	4.12	8020		1,100	3,700	< 50	1,100	620	9.7	1.5	7.7	< 5.0
5/27/99	10.77	7.70	3.07	8020	SGC	70	300	< 50	950	470	11	1.5	9.2	< 5.0
8/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	< 50	290	45	2.8	< 0.5	3	< 5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	< 50	170	12	1.8	< 0.5	2	< 5.0
1/18/00	10.77	8.63	2.14	8020	SGC	200 a	2,300	< 50	160	5.7	1.9	0.6	4.2	< 5.0
5/11/00	10.77	7.70	3.07	8020	SGC	180 a	980	<100	1,050	280	7.0	< 2.5	5.9	<25
8/24/00	10.77	8.31	2.46											
8/25/00	10.77			8020	SGC	580	2,200	170	180	23	2.4	< 0.5	2.7	< 5.0
11/28/00	10.77	8.45	2.32	8020	SGC	200	1,600	< 50	130	1.9	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.77	8.45	2.32		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.77	6.40	4.37	8020	Filtered+SGC	120	< 200	< 50	142	33	1.8	< 0.5	< 0.5	< 5.0

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
5/17/01	10.77	9.88	0.89											
5/18/01	10.77			8020	Filtered+SGC	<50	<200	< 50	74	4.6	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.77	8.05	2.72		Filtered+SGC	< 50	< 200	<100	70	0.62	< 0.5	< 0.5	< 0.5	<5
12/16/01	10.77	7.75	3.02	8021	SGC	1,400	4,100	< 50	210	15	1.6	< 0.5	2.2	<5
4/5/02	10.77	7.50	3.27	8021	SGC	870	1,000		1,498	367	11	2.1	7.8	<5
6/20/02	10.77	8.27	2.50	8021	SGC	< 50	< 300	< 50	430	180	5.7	2.4	4.15	<2
9/18/02	10.77	8.25	2.52	8021	SGC	63 b,c	< 300	60	250	49	5.8	< 0.5	3.1	<2
4/22/03	10.77	7.25	3.52	8021B	SGC	< 50	< 300	< 50	69	4.1 C	< 0.5	< 0.5	0.9	<2
4/28/04	10.77													
10/27/04	10.77	$\mathbf{NM}^{(4)}$												
9/6/06	10.77	8.44	2.33	8260B	SGC	210 Y	< 300	150 Y	240	58	5.3	< 0.5	5.68	< 0.5
4/3/07	10.77	8.28	2.49	8260B	SGC	180 H Y	< 300	140 H	240 Z	27	4.2	< 0.5	5.32	< 0.5
4/3/07	10.77			8260B	Dup	190 H Y	< 300	160 H	260 Z	28	4.5	< 0.5	5.87	< 0.5
10/3/07	10.77	8.58	2.19	8260B	SGC	110 Y	< 300	110 Y Z	240 Y	1	2.4	< 0.5	3.53	< 0.5
3/20/08 (8)	10.77	8.46	2.31	8260B	SGC	170 Y	< 300	150 Y	230	65	4.2	< 0.5	5.13	< 0.5
3/20/08 dup			2.51	8260B	SGC	190 Y	< 300	130 T 180 Y	250	66	4.4	< 0.5	5.5	< 0.5
$11/21/08^{(10)}$														
11/21/08	10.77	8.63	2.14	8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-10														
11/20/96	10.59			8020		940			< 50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	
2/24/98	10.59	4.39	6.20	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	< 500	< 50	< 50	7.3	< 0.5	< 0.5	< 0.5	
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/11/98	10.59	7.57	3.02	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/23/99	10.59	5.51	5.08	8020		170	1,200	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	10.59	6.72	3.87	8020	SGC	< 50	<200	< 50	350	170	1.5	0.5	2.3	< 5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	< 50	380	160 e	< 0.5	< 0.5	2.6	< 5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	< 50	110	5.1	< 0.5	< 0.5	0.72	< 5.0
1/18/00	10.59	7.77	2.82											
1/19/00	10.59			8020	SGC	120 a,b	1,200	< 50	100	< 0.5	< 0.5	0.8	< 0.5	< 5.0
5/11/00	10.59	7.00	3.59	8020	SGC	110 a	990	< 50	145	1.62	0.5	0.5	0.9	< 5.0
8/24/00	10.59	7.31	3.28											
8/25/00	10.59			8020	SGC	430	1,300	110	< 50	1.0	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	85	<230	< 57	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.59	6.27	4.32											
5/18/01	10.59			8020	Filtered+SGC	< 50	< 200	< 50	< 50	0.7	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.59	8.75	1.84		Filtered+SGC	< 50	< 200	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

7101 Edgewater Drive, Oakland, California Concentrations expressed in micrograms per liter ($\mu g/l$)

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
12/16/01	10.59	6.97	3.62	8021	SGC	410	2,100	< 50	< 50	2.4	< 0.5	< 0.5	< 0.5	<5
4/8/02	10.59	6.51	4.08	8021	SGC	220	300		< 50	1.1	< 0.5	< 0.5	< 0.5	<5
6/20/02	10.59	8.10	2.49	8021	SGC	1,100 a,c	6,200	< 50	120	34	< 0.5	< 0.5	< 0.5	<2
9/17/02	10.59	7.66	2.93	8021	SGC	150 a,c	880	< 50	130 a.c.j	32	< 0.5	2.3	< 0.5	<2
4/22/03	10.59	6.81	3.78	8021B	SGC	< 50	< 300	< 50	51	1.0 C	<.50	1.2	<.50	<2
4/28/04	10.59	6.70	3.89	8260B	SGC	<100	<400	<100	114	14	< 1.0	6.9	5.2	3.5
10/28/04	10.59	6.98	3.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.59	6.76	3.83	8260B	SGC	< 50	< 300	< 50	110	2.4	< 0.5	< 0.5	0.7	< 0.5
4/5/06 (3)	10.59	4.86	5.73	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.59	9.01	1.58	8260B	SGC	98 H Y	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.59	8.99	1.60	8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.59	9.78	0.81	8260B	SGC	< 50	< 300	< 50	< 50	30	< 0.5	< 0.5	< 0.5	< 0.5
3/21/08 (8)	10.59	10.20	0.39	8260B	SGC	< 50	< 300	< 50	< 50	3.9	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 (10)	10.59	9.55	1.04	8260B	SGC	<50	<300	< 50	<50	11	< 0.50	< 0.50	< 0.50	< 0.50
11/19/08 dup		9.55		8260B	SGC	< 50	< 300	< 50	< 50	11	< 0.50	< 0.50	< 0.50	< 0.50
11/19/08 dup				8200B	500	< 50	< 500	< 50	< 50	11	< 0.50	< 0.50	< 0.50	<0.50
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00	11.60			8020	SGC	< 50	500	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	11.60	5.95	5.65	8020	SGC	< 50	430	< 50	600	23	2.1	18	15	< 5.0
8/24/00	11.60	6.58	5.02	8020		< 50	<250	< 50	110	5.9	< 0.5	0.73	0.64	< 5.0
11/28/00	11.60	6.91	4.69	8020	SGC	< 50	< 200	< 50	180	4	< 0.5	1.9	< 0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	<240	< 60	720	29	5.2	38	36	< 5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	< 50	< 200	< 50	720	36	3.4	15	18	9.7
8/16/01	11.60	6.01	5.59		Filtered+SGC	< 50	500B	<100	110	4.8	< 0.5	1.4	< 0.5	<5
12/15/01	11.60	6.26	5.34	8021	SGC	200	300	< 50	170	1.7	0.6	2.4	1.8	<2
4/5/02	11.60	5.47	6.13	8021	SGC	160	<200		330	8.9	2.0	6.9	8.7	<5
6/21/02	11.60	6.17	5.43	8021	SGC	< 50	< 300	< 50	280	16	1.8	8.7	9.6	3.6
9/12/02	11.60	6.60	5.00	8021	SGC	< 50	< 300	< 50	93	< 0.5	< 0.5	1.1	< 0.5	2.1
4/24/03	11.60	5.71	5.89	8021B	SGC	< 50	< 300	< 50	320	21	2.1	12	6.13	8.9
4/28/04	11.60	5.92	5.68	8260B	SGC	<100	<400	<100	360	18	<1.0	6.5	4.5	4
10/27/04	11.60	6.59	5.01	8260B	SGC									
9/2/05 (1)	11.60	6.22	5.38	8260B	SGC	< 50	< 300	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	4.5
4/4/06 (3)	11.60	4.17	7.43	8260B	SGC	71 L Y	< 300	75 L Y	230	5.7	0.9	14	7.0	6.5
4/4/06	11.60			8260B	dup	< 50	< 300	55 L Y	220	6.5	1.0	15	7.3	7.4
9/6/06	11.60	6.46	5.14											
4/5/07	11.60	5.60	6.00	8260B	SGC	66 Y	< 300	55 Y	270 Y	9.6	0.7	7.3	2.4	11
10/2/07	11.60	6.83	4.77											
3/20/08 (8)	11.60	6.83	4.77	8260B	SGC	< 50	< 300	< 50	160	3.5	< 0.5	5.4	0.92	13
11/18/08	11.60	7.00	4.60											

	TOC	Dauth ta	Constant	DTEV	N - t	TDU	TDUL	TDUL		D	Talaana	T4b.d	Tetel	MTDE
Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total Xylenes	MTBE
Dale	(feet)	(feet)	(feet)	Method		(µg/I)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	(µg/l)	(µg/l)
	(ieet)	(ieet)	(leet)									(µg/1)	(µg/1)	
MW-12														
1/18/00	10.43	8.11	2.32											
1/19/00	10.43			8020	SGC	1,800 a	11,000	< 50	200	< 0.5	3.4	1.5	8.4	< 5.0
5/11/00	10.43	6.78	3.65	8020	SGC	2,400 a	4,900	<100	370	< 0.5	< 0.5	< 0.5	0.9	< 5.0
8/24/00	10.43	7.56	2.87											
8/25/00	10.43			8020	SGC	3,500	5,000	3,700	170	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30	8020	SGC	2,100	14,000	< 50	290	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30		Filtered+SGC	50	<200	< 50						
2/27/01	10.43	6.00	4.43	8020	Filtered+SGC	320	<250	66	110	1.4	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.43	7.01	3.42	8020	Filtered+SGC	< 50	<200	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.43	8.47	1.96	8020	Filtered+SGC	200	300B	<100	160	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/8/02	10.43	6.65	3.78	8021	SGC	500	500		180	< 0.5	< 0.5	0.7	<1.5	<5
6/21/02	10.43	7 10	2 22	8021	SGC	1 100 a h a	2 000 h	640	180	< 0.5	< 0.5	0.63	1.60	- 2
6/21/02 9/17/02	10.43	7.10 7.75	3.33 2.68	8021 8021	SGC	1,100 a,b,c 220 a,b,c	3,000 h 360	040 190	130	< 0.5	< 0.5 < 0.5	< 0.5	1.62 <0.5	<2 <2
4/22/03	10.43	6.60	3.83	8021B	SGC	140 L Y	< 300	190	150	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	10.43	6.60	3.83	8260B	SGC	< 550	1,020	<100	<100	< 0.5	< 1.0	< 1.0	< 1.0	<1.0
10/29/04	10.43	7.87	2.56	8260B	SGC	240 H L Y	460	180	170 H	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 ⁽¹⁾	10.43	7.04	3.39	8260B	SGC	<50	< 300	< 50	170 11	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
9/2/05 ⁽¹⁾	10.43	7.04	3.39	8260B	SGC	110 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/06 (3)	10.43	4.49	5.94	8260B	SGC	110 Y	< 300	110 Y	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.43	7.43	3.00	8260B	SGC	230 Y	< 300	200 Y	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/07	10.43	6.58	3.85	8260B	SGC	340 H Y	360 H L	230 H Y	160 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	10.43	8.14	2.29	8260B	SGC	290 Y	< 300	230	160 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/19/08	10.43	6.45	3.98	8260B	SGC	620 Y	340	430	130 Y	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	10.43	8.27	2.16	8260B	SGC	170 Y	< 300	120 Y	59 Y	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
101/12														
MW-13 1/18/00	11.24	9.63	1 71	8020	SGC	8 8 00 a	120,000	< 50	< 50	< 0.5	0.8	< 0.5	< 0.5	<5.0
5/11/00	11.34 11.34	10.12	1.71 1.22	8020 8020	SGC	8,800 a 11,000 a	120,000	<50 <500	< 50 70	< 0.5 1.6	0.8 5.4	<0.5 1.2	<0.5 7.6	<5.0 <5.0
8/24/00		10.12	1.12		300									
8/25/00	11.34		1.12	8020	SGC	3,100	13,000	1,200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
8/23/00 11/28/00	11.34	10.50		8020 8020	SGC	2,400	36,000	<1300	< 30 < 50	< 0.5	< 0.5	< 0.5	< 0.3 < 0.5	
	11.34		0.84											<5.0
11/28/00	11.34	10.50	0.84	8020	Filtered + SGC Filtered + SGC	280	1,100	< 50						
2/26/01 5/17/01	11.34	9.60	1.74	8020	rillered + SGC	100	<260	< 64	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	11.34	10.10	1.24	8020	Filtered SCC	<50	<200	< 50		< 0.5		<0.5		
5/18/01	11.34			8020	Filtered + SGC	< 50 < 50	< 200 300B		<50		< 0.5		<0.5	< 5.0
8/16/01 12/16/01	11.34	10.50	0.84	8021	Filtered + SGC SGC	< 50 1,900		<100	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5
	11.34	9.43	1.91		SGC	440	18,000 900	<250	<50	< 0.5	<0.5	< 0.5	< 0.5	<5
4/8/02	11.34	10.24	1.10	8021	200	440	900		< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	МТВЕ (µg/l)
6/20/02	11.34	10.75	0.59	8021	SGC	270 a,c	1,500 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	11.34	10.60	0.74	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	11.34	10.46	0.88	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
4/28/04	11.34	10.22	1.12	8260B	SGC	<100	799	<100	<100	< 0.5	<1.0	<1.0	<1.0	<1.0
10/28/04	11.34	9.50	1.84	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	11.34	9.56	1.78	8260B	SGC	< 50	320	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 (3)	11.34	7.86	3.48	8260B	SGC	180 H Y	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.34	10.53	0.81	8260B	SGC	150 H Y	730	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	11.34	9.73	1.61	8260B	SGC	58 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	11.34	10.18	1.16	8260B	SGC	120 Y	460	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	11.34	9.54	1.80	8260B	SGC	53 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	11.34	10.41	0.93	8260B	SGC	120 Y	630	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-14														
1/18/00	10.05	7.37	2.68	8020	SGC	1,700 a	22,000	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.05	6.73	3.32	8020	SGC	360 a	4,300	<100	120	< 0.5	< 0.5	< 0.5	0.5	<5.0
8/24/00	10.05	7.30	2.75		500									
8/25/00	10.05			8020	SGC	1,000	3,100	460	90	6.3	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65	8020	SGC	380	6,400	<250	140	7.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.05	6.20	3.85	8020	Filtered+SGC	150	<230	< 58	73	2.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.05	7.74	2.31											
5/18/01	10.05			8020	Filtered+SGC	120	< 200	< 50	100	11	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.05	7.85	2.20		Filtered+SGC	< 50	<200	<100	60	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/16/01	10.05	6.60	3.45	8021	SGC	1,110	3,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/9/02	10.05	6.58	3.47	8021	SGC	870	1,100		250	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/20/02	10.05	7.52	2.53	8021	SGC	< 50	310 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	10.05	7.55	2.50	8021	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	0.80	< 0.5	<2
4/22/03	10.05	6.71	3.34	8021B	SGC	< 50	< 300	< 50	61	4.2	< 0.5	1.0	< 0.5	12.0
4/28/04	10.05	6.81	3.24	8260B	SGC	<230	<400	<100	241	1.4	<1.0	<1.0	<1.0	<1.0
10/28/04	10.05	6.99	3.06	8260B	SGC	< 50	< 300	< 50	56	3.5	< 0.5	< 0.5	< 0.5	0.5
10/28/04	10.05			8260B	dup	< 50	< 300	< 50	53	1.9	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.05	7.60	2.45	8260B	SGC	< 50	< 300	< 50	79	6.7	< 0.5	< 0.5	< 0.5	0.7
4/5/06 (3)	10.05	5.91	4.14	8260B	SGC	50 Y	< 300	< 50	< 50	1.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.05	7.70	2.35	8260B	SGC	140 H Y	< 300	79 H Y	60	< 0.5	< 0.5	< 0.5	< 0.5	0.51
4/4/07	10.05	7.52	2.53	8260B	SGC	100 H Y	< 300	50 H Y	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/07	10.05			8260B	Dup	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	10.05	8.45	1.60	8260B	SGC	61 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	10.05	7.80	2.25	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/21/08 (10)	10.05	8.45	1.60	8260B	SGC	150 Y	660	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
(rec) (rec) <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Notes</th><th></th><th></th><th></th><th></th><th></th><th></th><th>,</th><th></th><th></th></t<>						Notes							,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Duite				incuidu		V~8, -/	V~8/-/	V-0/-/	V-0-1	V-8/-/	V-0-1			An 8/ 1/
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(<i>y</i>	()										4 G /	4 07	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$,	,							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						SGC									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							·	- /	,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,							
						Filtered + SGC									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Filtered + SCC									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					8020										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					8021										
6/2002 12.36 10.24 2.12 8021 SGC 670 a.c 2.700 h 95 c.i <50							,								
9/18/02 12.36 9.89 2.47 8021 SGC 70 a.c < 300 < 50 < 0.5 < 0.5 < 1.5 1.71 < 2 4/22/03 12.36 9.55 2.81 8021B SGC < 50 < 50 < 50 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 0.05 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <								,							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
4/28/04 12.36 9.68 2.68 8260B SGC <250	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12:00	,,		0021	500	, o u,o	1200			4012	4012	110	1.7.1	
4/28/04 12.36 9.68 2.68 8260B SGC <250	4/22/03	12.36	9.55	2.81	8021B	SGC	< 50	< 300	< 50	< 50	1 C	<.50	1.4	1.9	<2
10/28/04 12.36 9.58 2.78 8260B SGC <50					8260B		<250	567	<100				< 1.0	<1.0	
4/5/06 12.36 8.76 3.60 8260B SGC 300 H Y 760 87 H Y <50															
9/6/06 12.36 9.98 2.38 8260B SGC 220 H Y 400 80 H Y <50	9/1/05 (1)	12.36	9.56	2.80	8260B	SGC	420 Y	< 300	120 H Y	55	< 0.5	< 0.5	< 0.5	2.0	< 0.5
9/6/06 12.36 9.98 2.38 8260B SGC 220 H Y 400 80 H Y <50	4/5/06 (3)	12.36	8.76	3.60	8260B	SGC	300 H Y	760	87 H Y	< 50	< 0.5	< 0.5	< 0.5	2.4	< 0.5
4/3/07 12.36 10.05 2.31 8260B SGC 130 H Y <300															
10/3/07 12.36 10.16 2.20 8260B SGC 150 Y 550 <50			10.05					< 300	63 H Y						
11/19/08 (10) 12.36 10.28 2.08 8260B SGC 110 Y < 300 < 50 < 50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>SGC</td><td></td><td>550</td><td>< 50</td><td></td><td></td><td>< 0.5</td><td></td><td>1.96</td><td></td></t<>						SGC		550	< 50			< 0.5		1.96	
11/19/08 (10) 12.36 10.28 2.08 8260B SGC 110 Y < 300 < 50 < 50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 <t< td=""><td>3/20/08 (8)</td><td>12.36</td><td>10.08</td><td>2.28</td><td>8260B</td><td>SGC</td><td>88 Y</td><td>< 300</td><td>< 50</td><td>< 50</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>2.02</td><td>< 0.5</td></t<>	3/20/08 (8)	12.36	10.08	2.28	8260B	SGC	88 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.02	< 0.5
MW-16 1/18/00 13.57 10.22 3.43 SPH: 0.1 ft.															
1/18/00 13.57 10.22 3.43 SPH: 0.1 ft.	11/19/08	12.30	10.28	2.08	8200B	300	110 1	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	1.78	<0.50
1/18/00 13.57 10.22 3.43 SPH: 0.1 ft.	MW-16														
5/11/00 13.57 13.31 0.27 SPH: 0.01 ft. -		13.57	10.22	3.43		SPH: 0.1 ft.									
8/24/00 13.57 8.91 4.66 SPH: NM															
2/26/01 13.57 13.10 0.79 SPH: 0.40 ft. -	8/24/00	13.57	8.91	4.66		SPH: NM									
5/17/01 13.57 12.62G SPH: NM <td>11/28/00</td> <td>13.57</td> <td>13.05</td> <td>0.86</td> <td></td> <td>SPH: 0.42 ft.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	11/28/00	13.57	13.05	0.86		SPH: 0.42 ft.									
8/16/01 13.57 11.94G SPH: NM <td>2/26/01</td> <td>13.57</td> <td>13.10</td> <td>0.79</td> <td></td> <td>SPH: 0.40 ft.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2/26/01	13.57	13.10	0.79		SPH: 0.40 ft.									
12/15/01 13.57 NM SPH: NM	5/17/01	13.57	12.62G			SPH: NM									
4/3/02 13.57 12.88 0.69	8/16/01	13.57	11.94G			SPH: NM									
6/21/02 12.22 NM SPH: NM	12/15/01	13.57	NM			SPH: NM									
4/22/03 12.22 Well cap stuck				0.69											
x			NM			SPH: NM									
4/28/04 12.22 12.48 -0.26 8260B SGC <230 1030 <260 2000 150 <1.0 46 <1.0 <1.0															
	4/28/04	12.22	12.48	-0.26	8260B	SGC	<230	1030	<260	2000	150	<1.0	46	<1.0	<1.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
10/28/04	12.22	11.97	0.25	8260B	SGC	450 L Y	< 300	480	1100	18	1.7	29	1.7	< 0.5
8/31/05	12.22	12.09	0.13		SPH: None									
4/5/06 (3)	12.22	3.80	8.42	8260B	SGC	95 H Y	420	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22				Dry									
4/4/07 (5)	12.22	10.72	1.5	8260B	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	12.22	10.92	1.3	8260B	SGC	2,300 Y	4300	1700	480 Y	31	1.7	4.5	1.6	< 0.5
3/19/08 (9)	12.22	10.72	1.5											
11/19/08 (10)	12.22	12.33	-0.11	8260B	SGC	52,000 Y	110,000	31,000	150 Y	21	1.7	2.7	1.1	< 0.50
MW-17														
1/18/00	9.86	5.35	4.51	8020	SGC	850 a	21,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.86	9.85	0.01	8020	SGC	150 a	2,900	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/00	9.86	8.59	1.27											
8/25/00	9.86			8020	SGC	190	610	71	< 50	0.58	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	8020	SGC	<250	2,400	<250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61		Filtered+SGC	<50	<200	< 50						
2/26/01	9.86	9.40	0.46	8020	Filtered+SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.86	8.32	1.54											
5/18/01	9.86			8020	Filtered + SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	9.86	10.35	-0.49	0001	Filtered+SGC	< 50	400B	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01 4/9/02	9.86 9.86	8.01 9.76	1.85	8021 8021	SGC SGC	940 590	1,000 880	< 50	< 50 60	< 0.5	<0.5 <0.5	< 0.5	< 0.5	< 5.0
6/21/02	9.80 9.86	9.78 9.79	0.10 0.07	8021	SGC	99 a,c	650 h	<50	< 50	<0.5 <0.5	< 0.5	1.6 <0.5	<0.5 <0.5	<5.0 <2
9/18/02	9.80 9.86	8.25	1.61	8021	SGC	99 a.c <50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03	9.80 9.86	9.75	0.11	8021 8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	9.86	8.90	0.96	8260B	SGC	<100	<400	<100	<100	< 0.5	<1.0	2.4	<1.0	<1.0
10/28/04	9.86	8.32	1.54	02002	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	9.86	8.38	1.48	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/06 ⁽³⁾	9.86	6.86	3.00	8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	9.80 9.86	9.85	0.01	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07	9.80 9.86	7.67	2.19	8260B 8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07	9.86	7.97	1.89	8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/3/07 dupe				8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/20/08 (8)	9.86	6.70	3.16	8260B	SGC	< 50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08 ⁽¹⁰⁾	9.86	9.53	0.33	8260B	SGC	<50	< 300	< 50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-18														
4/24/03		6.49		8021B	SGC	<50	< 300	< 50	< 50	< 0.5	< 0.5	2.4	< 0.5	<2

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method	Notes	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
Duic	(feet)	(feet)	(feet)	method		(P6)(1)	(µg/1)	(P 6/1)	(415/1)	(418/1)	(415/1)	(µg/l)	(µg/l)	(416/1)
	(110)	(,	(,									V*0**	1-0-7	
					Developed to monitor a									
					utility trench, not									
4/28/04					sampled									
8/31/05														
3/27/06														
9/6/06														
TBW-1														
2/23/99		6.25			SPH: 0.10 ft.									
5/27/99		5.29			SPH: 0.01 ft.									
8/24/99		6.99			SPH: 0.18 ft.									
11/22/99					Inaccessible									
1/18/00					Inaccessible									
5/11/00		6.90			SPH: 0.10 ft.									
8/24/00		7.12			SPH: NM									
11/28/00		7.75			SPH: 0.36 ft.									
2/27/01		9.06			SPH: 0.51 ft.									
5/17/01		6.98			SPH: 0.28 ft.									
8/16/01		6.62			SPH: 0.66 ft., f	1,100	700B	<100	17,000	2,100	75	730	850	<1
12/15/01		6.86			SPH 0.35 ft.					2,100				
4/3/02		6.14			SPH: None									
9/12/02		7.52			SPH: None									
4/22/03		6.41			SPH: None									
4/28/04		6.33			SPH: None									
10/28/04		NM												
8/31/05		6.50			Well cap smashed 6"									
3/27/06		5.20			SPH: None									
9/6/06		NM			SPH: None									
4/4/07		8.26												
10/2/07		NM												
3/19/08		NM												
11/18/08		NM												
TBW-2														
6/21/02		8.28												
4/22/03		6.70			SPH globules									
4/28/04		6.61			SPH: None									
10/28/04		7.31			SPH: None									
8/31/05		NM			5111. 11010									
		NM ⁽⁴⁾												
3/27/06		INIVI												

Well ID/ Date	TOC Elevation	Depth to Groundwater	Groundwater Elevation	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	МТВЕ (µg/l)
	(feet)	(feet)	(feet)			4-9-7	V=0-7	¥* 8* 7	¥* 8* */	V-0-7	V-0-7	(µg/l)	(µg/l)	V =0 ⁺⁺ /
9/6/06		NM ⁽⁴⁾			SPH: None									
4/4/07		NM ⁽⁴⁾												
10/2/07		NM												
3/19/08		NM												
11/18/08		NM												
TBW-3														
8/19/98		2.67		8020	SGC	810,000			920	3.2	< 0.5	< 0.5	0.77	<10
8/19/98		2.67		8260										< 5.0
2/23/98		1.25		8020		3,800	3,000	< 50	110	1.6	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99					DTW: NM									
8/24/99		3.25			SPH globules									
11/22/99		3.68												
1/18/00	9.92	3.73	6.19		SPH globules									
5/11/00	9.92	2.07	7.85											
8/24/00	9.92	2.82	7.10		SPH: sheen	44,000	13,000	34,000	570	4.7	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.92													
2/27/01	9.92	1.29	8.63	8020	Filtered+SGC	560	<230	< 57	120	1.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.92	2.47	7.45											
8/16/01	9.92	1.81	8.11		Filtered+SGC	1,500	400B	<100	180	< 0.5	< 0.5	< 0.5	< 0.5	<1
12/15/01	9.92	2.52			SPH: 0.02 ft.									
4/3/02	9.92	1.50			SPH: None									
6/21/02	9.92 9.92	2.37	7.55		SPH: None									
9/12/02	9.92 9.92	3.48	6.44		SPH: None SPH: None									
4/22/03	9.92 9.92	5.48 1.45	8.47		SPH: None Sheen									
4/22/03	9.92	2.26	7.66		SPH: None									
10/28/04	9.92 9.92	3.42	6.50		Sheen									
8/31/05	9.92	2.99	6.93		SPH: None									
3/27/06	9.92	0.49	9.43		SPH: None									
9/6/06	9.92	3.42	6.50		SPH: None SPH:0.01 ft.									
4/4/07	9.92	1.93	7.99		SF11.0.01 It.									
10/2/07	9.92	NM			NA									
3/19/08		NM			NA									
11/18/08		NM			NA									
11/10/00		1111/1			INA									
TBW-4														
2/27/01		1.35		8020	Filtered+SGC	410	<230	< 57	250	1.9	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01		2.52												
8/16/01		1.88			Filtered+SGC	2,600	700B	<100	390	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02		2.32												

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/22/03		1.41			Sheen									
4/28/04		2.21												
10/27/04		3.37			Sheen									
8/31/05		2.92												
3/27/06		0.49			SPH: None									
9/6/06		3.37			SPH:0.01 ft.									
4/4/07		1.88												
10/2/07		NM			NA									
3/19/08		NM			NA									
11/18/08		NM			NA									
TBW-5														
2/23/99		9.72			SPH: 1.45 ft.									
5/27/99		7.03			SPH: 1.13 ft.									
8/24/99		6.52			SPH: 1.33 ft.									
11/22/99		8.31			SPH: 1.29 ft.									
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft.									
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft.									
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft.									
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft.									
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft.									
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft.									
8/16/01	10.22	8.32	2.51	8020	SPH: 0.76 ft., f	550	400B	<100	30,000	2,900	100	1,500	5,100	<1
12/15/01 4/3/02 ⁽⁶⁾	10.22	9.09	1.13		SPH: 0.36 ft.									
6/21/02	10.22	7.87	2.35		SPH: 0.03 ft.									
9/12/01	10.22	7.26	2.97		SPH: 0.01 ft.									
4/22/03	10.22	6.22	4.00		SPH: 0.06 ft.									
4/28/04	10.22	6.26	3.96		SPH: 0.21 ft.									
10/27/04	10.22	3.62	6.60		SPH: None									
8/31/05	10.22	6.41			SPH: 0.30 ft.									
3/27/06	10.22	NM ⁽²⁾			5111. 0.50 11.									
9/6/06	10.22	NM ⁽²⁾												
4/4/07	10.22	NM ⁽²⁾												
10/2/07		NM			SPH: viscous residual									
3/19/08		NM			SPH: None									
11/18/08	10.22	9.32	0.9											
TBW-6 2/23/99		2.09		8020		160	600	< 50	60	< 0.5	< 0.5	< 0.5	< 0.5	<5.0

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
5/27/99		3.31												
8/24/99		7.29		8020	SGC	180	400	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99		4.37												
1/18/00	9.49	3.83	5.66											
1/19/00	9.49			8020	SGC	55 C	< 200	< 50	170	0.6	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.49	2.51	6.98											
8/24/00	9.49	4.34	5.15											
8/25/00	9.49			8020	SGC	320	<250	200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.49	4.74	4.75											
2/27/01	9.49	2.30	7.19	8020	Filtered+SGC	<57	<230	< 57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.49	3.35	6.14											
8/16/01	9.49	3.85	5.64		Filtered+SGC	< 50	< 200	<100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/15/01	9.49	3.96	5.53											
4/3/02	9.49	2.51	6.98											
6/21/02	9.49	3.58	5.91											
9/12/02	9.49	6.07	4.56		SPH: 1.42 ft.									
4/23/03	9.49	2.42	7.07											
4/28/04	9.49	3.21	6.28											
10/27/04	9.49	4.49	5.00		SPH: None									
8/31/05	9.49	4.43			SPH: 0.52 ft.									
3/27/06	9.49	1.90	7.59		SPH: None									
9/6/06	9.49	4.33	5.16		SPH:0.01 ft.									
4/4/07	9.49	3.08	6.41											
10/2/07	9.49	4.98	4.51		SPH: None									
3/19/08	9.49	3.16	6.33		SPH: None									
11/18/08	9.49	5.32	4.17		SPH: None									
RW-A1														
4/22/03		1.81												
4/28/04	10.09	2.52	7.57											
10/27/04	10.09	3.03	7.06		SPH: None									
8/31/05	10.09	3.31	6.78		SPH: None									
3/27/06	10.09	0.62	9.47		SPH: None									
9/6/06	10.09	3.52	6.57		SPH: None									
4/3/07	10.09	2.93	7.16											
10/2/07	10.09	NM ⁽⁷⁾												
3/19/08	10.09	3.16	6.93		SPH: None									
11/20/08 (10)	10.09	4.49	5.60	8260B	SGC	56 Y	< 300	< 50	< 50	8.8	< 0.50	< 0.50	< 0.50	4.5
RW-A2														
4/22/03		1.22			Sheen									

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	
4/28/04	9.67	2.01	7.66											
10/27/04	9.67	3.20	6.47		SPH: None									
8/31/05	9.67	2.75	6.92		SPH: None									
3/27/06	9.67	0.30	9.37		SPH: None									
9/6/06	9.67	3.19	6.48		SPH: 0.01 ft.									
4/4/07	9.67	1.70	7.97	8260B	SGC	200 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07	9.67	3.81	5.86		SPH: None									
3/19/08	9.67	1.71	7.96		SPH: None									
11/20/08 (10)	9.67	3.96	5.71	8260B	SGC	590 Y	< 300	160 Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
OB-A1														
4/22/03		2.24			SPH: .01 ft.									
4/28/04		3.01			SPH: None									
					SPH: None (strong									
10/27/04		5.11			odor)									
8/31/05		4.10			SPH: None									
3/27/06		1.25			SPH: None									
9/7/06		4.49												
4/4/07		2.72												
10/2/07		5.34												
3/19/08		2.73			SPH: None									
11/18/08		5.31												
RW-B1														
4/22/03		7.26			Sheen									
4/28/04	11.22	7.20	4.02											
10/27/04	11.22	7.80	3.42		SPH: None									
8/31/05	11.22	7.14	4.08		SPH: None									
3/27/06	11.22	6.10	5.12		SPH: None									
9/6/06	11.22	7.39	3.83		SPH:0.01 ft.									
4/4/07	11.22	7.06	4.16	8260B	SGC	130 L	< 300	100 H	220	410	23	9.4	16	6.3
10/2/07	11.22	7.70	3.52		SPH: None									
3/19/08	11.22	7.06	4.16		SPH: None									
11/18/08	11.22	7.90	3.32		SPH: None									
RW-B2														
4/22/03		7.29			Sheen, Odor									
4/28/04	11.23	7.20	4.03											
10/27/04	11.23	7.81	3.42		SPH: None									
8/31/05	11.23	7.14	4.09		SPH: None									

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
3/27/06	11.23	6.09	5.14		SPH: None									
9/6/06	11.23	7.39	3.84		SPH: None									
4/4/07	11.23	9.84	1.39	8260B	SGC	500 L Y	< 300	500 L	11,000	3400	2700	190	1100	<10
10/2/07	11.23	7.71	3.52		SPH: None SPH: None (strong									
3/19/08	11.23	7.07	4.16		odor)									
11/20/08 (10)	11.23	7.92	3.31	8260B	SGC	190 Y	< 300	150 Y	7,900 Y	3,200	2,100	140	720	<25
RW-B3														
4/22/03		9.90			visible Product									
4/28/04	11.14	13.20	-2.06		SPH: 3.09									
10/27/04	11.14	9.33	1.81		SPH: None									
8/31/05	11.14	9.60	1.54		SPH: 0.01									
3/27/06	11.14	9.08	2.06		SPH: None									
9/6/06	11.14	9.61	1.53		SPH: None									
4/4/07	11.14	9.84	1.30	8260B	SGC	3,600 L Y	880	4,000 L	7900	4300	130	520	357	<31
10/2/07	11.14	9.56	1.58		SPH: None									
3/19/08		NM ⁽⁷⁾			NM									
11/18/08	11.14	9.57	1.57											
RW-B4														
4/22/03		10.55			SPH: .55 ft.									
4/28/04	11.29	10.22	1.07		SPH: None									
10/27/04	11.29	9.55	1.74		SPH: None									
8/31/05	11.29	9.70	1.59		SPH: None									
3/27/06	11.29	9.23	2.06		SPH: None									
9/6/06	11.29	9.69	1.60		SPH: None									
4/4/07	11.29	10.04	1.25	8260B	SGC	3,500 Y	360	4,000 L	16000	3200	150	460	1430	< 8.3
10/2/07	11.29	9.72	1.57		SPH: None									
3/19/08	11.29	9.87	1.42		SPH: None (odor)									
11/20/08 (10)	11.29	9.75	1.54	8260B	SGC	3,100 Y	2,900	930	6,000 Y	3,100	100	270	679	<25
RW-C1														
4/24/03		8.34												
4/28/04	10.44	8.00	2.44											
10/27/04	10.44	7.59	2.85		SPH: None									
8/31/05	10.44	5.81	4.63		SPH: None									
3/27/06	10.44	1.94	8.50		SPH: None									
9/6/06	10.44	6.71	3.73		SPH: 0.01 ft.									
4/5/07	10.44	6.66	3.78	8260B		220 H Y	1300	63 H Y	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
10/2/07	10.44	8.48	1.96		SPH: 0.01 ft.									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	МТВЕ (µg/l)
3/19/08	10.44	8.56	1.88		SPH: None									
11/20/08 (10)	10.44	8.29	2.15	8260B	SGC	290 Y	1,200	76 Y	< 50	6.4	< 0.50	< 0.50	0.51	< 0.50
RW-C2														
4/24/03		6.22			SPH: .03 ft.									
4/28/04	10.58	6.19	4.39		SPH: 0.06 ft									
10/27/04	10.58	7.00	3.58		SPH: Present									
8/31/05	10.58	6.30	4.28		SPH: 0.01 ft.									
3/27/06	10.58	5.10	5.48		SPH: None									
9/6/06	10.58	8.19	2.39		SPH: 0.12 ft.									
4/4/07	10.58	8.28	2.30											
10/2/07	10.58	9.75	0.83		SPH: 0.015 ft.									
10/3/07	10.58	9.39	1.19		SPH: None									
11/18/08	10.58	9.38	1.20											
RW-C3														
4/24/03		6.36												
4/28/04	10.71	6.25	4.46											
10/27/04	10.71	7.10	3.61		SPH: None									
8/31/05	10.71	6.39	4.32		SPH: None									
3/27/06	10.71	5.30	5.41		SPH: None									
9/6/06	10.71	8.10	2.61		SPH: 0.01 ft.									
4/5/07	10.71	7.97	2.74	8260B	SPH: None	540 H L Y	360 H L	430 H L Y	520	13	14	32	54	< 0.5
10/2/07	10.71	8.59	2.12		SPH: 0.01 ft.									
3/19/08	10.71	8.38	2.33		SPH: None									
11/20/08 (10)	10.71	8.61	2.10	8260B	SGC	720 Y $^{(11)}$	1600 (11)	170 Y ⁽¹¹⁾	< 50	1.1	< 0.50	0.67	< 0.50	< 0.50
RW-C4														
4/22/03		7.15			Strong odor									
4/28/04	11.32	6.95	4.37		SPH: 0.01 ft									
10/27/04	11.32	7.45	3.87		SPH: None									
8/31/05	11.32	6.71	4.61		SPH: None									
3/27/06	11.32	6.47	4.85		SPH: None									
9/6/06	11.32	8.16	3.16		SPH: 0.01 ft.									
4/4/07	11.32	8.50	2.82											
10/2/07	11.32	8.62	2.82		SPH: None									
3/19/08	11.32	9.13	2.10		SPH: None									
11/18/08	11.32	8.99	2.19											
11/18/08	11.32	8.99	2.33											

RW-C5

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
4/22/03		6.46												
4/28/04	10.79	6.39	4.40											
10/27/04	10.79	7.21	3.58		SPH: Present									
8/31/05	10.79	6.51	4.28		SPH: None									
3/27/06	10.79	5.33	5.46		SPH: None									
9/6/06	10.79	8.03	2.76		SPH: 0.01 ft.									
4/4/07	10.79	8.27	2.52	8260B	SGC	3,800 Y	310	4,100 L	12000	3400	170	520	1300	<25
10/2/07	10.79	8.95	1.84		SPH: None									
3/19/08	10.79	8.82	1.97		SPH: 0.01 ft.									
11/20/08 (10)	10.79	8.92	1.87	8260B	SPH: None/ SGC	3,700 Y	430	3,300	5,800 Y	2,900	91	120	437	< 20
11/20/08 dup				8260B	SGC: Oder	3,400 Y	<300	3,100	3,900 Y	2,700	78	91	358	<25
RW-C6														
4/22/03		6.05			SPH: 0.07 ft.									
4/28/04	10.31	6.30	4.01		SPH: 0.05 ft.									
10/27/04	10.31	6.85			SPH: 0.15 ft.									
8/31/05	10.31	6.81			SPH: 0.93 ft.									
3/27/06	10.31	5.66			SPH: 0.96 ft.									
9/6/06	10.31	7.96	2.35		SPH: 0.18ft.									
4/4/07	10.31	NM ⁽⁴⁾												
10/2/07	10.31	8.45	1.86		SPH: residual									
3/19/08	10.31	8.32	1.99		SPH: None									
11/18/08	10.31	8.42	1.89		SPH: Oder									
RW-C7														
4/22/03		6.51			visible Product									
4/28/04	10.12	6.60	3.52		SPH: 0.02 ft.									
10/27/04	10.12	NM												
8/31/05	10.12	NM												
3/27/06	10.12	NM ⁽⁴⁾												
9/6/06	10.12	8.34	1.78		SPH: 0.01 ft.									
4/4/07	10.12	NM ⁽⁴⁾												
10/2/07	10.12	9.01	1.11		SPH: None									
3/19/08	10.12	8.85	1.27		SPH: None									
11/18/08	10.12	8.97	1.15											
OB-C1														
4/22/03		6.26												
4/28/04	10.39	7.39	3.00		SPH: 1.27 ft.									
10/27/04	10.39	8.06	2.33		SPH: 1.08 ft.									
8/31/05	10.39	7.84			SPH: 1.55 ft.									

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
3/27/06	10.39	6.15			SPH: 1.05 ft.									
9/6/06		NM ⁽⁴⁾			Buried									
4/4/07	10.39	7.78	2.61											
10/2/07	10.39	8.67	1.72		SPH: 0.02 ft.									
3/19/08	10.39	8.49	1.90		SPH: 0.29 ft.									
11/18/08	10.39	8.57	1.82		SPH: 0.03 ft.									
RW-D1														
4/22/03		6.97												
4/28/04	10.18	5.62	4.56											
10/27/04	10.18	6.67	3.51		SPH: Present									
8/31/05	10.18	5.75			SPH: 0.02 ft.									
3/27/06	10.18	NM ⁽²⁾												
9/6/06	10.18	NM ⁽²⁾			No Access									
4/4/07	10.18	NM ⁽²⁾												
10/2/07	10.18	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/19/08	10.18	11.29	-1.11	6260B	SGC	11,000 Y	4,900	9,400	5,100 Y	270	85	150	710	<2.0
RW-D2														
4/22/03		7.15			SPH 1.25 ft.									
4/28/04	10.33	7.45	2.88		SPH: 0.1 ft.									
10/27/04	10.33	6.41	3.92		SPH: Present									
8/31/05	10.33	8.44			SPH: 3.12 ft.									
3/27/06	10.33	NM ⁽²⁾												
9/6/06	10.33	NM ⁽²⁾			No Access									
4/4/07	10.33	NM ⁽²⁾												
10/2/07	10.33	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08	10.33	10.95	-0.62											
RW-D3														
4/22/03		6.89			SPH: 1.58 ft.									
4/28/04	10.07	8.18	1.89		SPH: 3.25 ft.									
10/27/04	10.07	6.37	3.70		SPH: Present									
8/31/05	10.07	7.72			SPH: 2.46									
3/27/06	10.07	NM ⁽²⁾												
9/6/06	10.07	NM ⁽²⁾			No Access									
4/4/07	10.07	NM ⁽²⁾												

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method	Notes	(µg/l)	μg/l)	теп-к (µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	μg/l)
Duic	(feet)	(feet)	(feet)	Method		(475/1)	(26/1)	(µg/1)	(P26/1)	(26,1)	Q26/1)	(µg/l)	(µg/l)	(428/1)
10/2/07	10.07	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08	10.07	10.10	-0.03											
RW-D4														
4/22/03		8.11			SPH: 1.98 ft.									
4/28/04	10.22	7.99	2.23		SPH: 2.09 ft.									
10/27/04	10.22	6.49	3.73		SPH: Present									
8/31/05	10.22	8.09			SPH: 2.12 ft.									
3/27/06	10.22	NM ⁽²⁾												
9/6/06	10.22	NM ⁽²⁾			No Access									
4/4/07	10.22	NM ⁽²⁾												
10/2/07	10.22	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/19/08 ⁽¹⁰⁾	10.22	9.10	1.12	8260B	SGC	55,000	9,700	46,000	7,600 Y	210	17	270	280	<1.7
11/19/08	10.22	9.10	1.12	8200B	SGC	33,000	9,700	40,000	7,000 1	210	17	270	280	<1.7
RW-D5														
4/22/03		6.04			SPH: 0.07 ft.									
4/28/04	9.99	5.96	4.03		SPH: None									
10/27/04	9.99	6.48	3.51		SPH: Present									
8/31/05	9.99	7.02			SPH: 1.01 ft.									
3/27/06	9.99	NM ⁽²⁾												
9/6/06	9.99	NM ⁽²⁾			No Access									
4/4/07	9.99	NM ⁽²⁾												
10/2/07	9.99	NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
11/18/08	9.99	9.45	0.54											
RW-D6		11 10												
11/18/08		11.10												
RW-D7														
11/19/08 (10)		9.62		8260B	SGC	54,000 Y	59,000	43,000	3,400	100	54	13	830	<3.1
				02002	500	21,000 1	27,000	12,000	2,100	100		10	000	1011
RW-D8														
11/18/08		8.48												
RW-D9		0.70												
11/18/08		9.70												

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Oakland, California

										-				
Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	мтве
Date	Elevation (feet)	Groundwater (feet)	Elevation (feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(leet)	(leet)	(leet)									(µg/l)	(µg/l)	
RW-D10														
11/18/08		8.84		8260B	SGC	1,000 Y	650	760	640 Y	2.7	0.69	5.6	17.71	< 0.50
RW-D11		0.((
11/18/08		8.66												
OB-D1														
4/22/03		5.41			Strong Odor									
4/28/04	9.46	5.31	4.15		Strong Odor									
10/27/04	9.46	5.89	3.57											
8/31/05	9.46	5.42			SPH: None									
3/27/06	9.46	3.09	6.37		SPH: None									
9/6/06	9.46	8.31	1.15		SPH: 0.01 ft.									
4/4/07	9.46	7.77	1.69											
10/2/07	9.46	8.66	0.80		SPH: None									
3/19/08	9.46	8.90	0.56		SPH: None									
11/18/08	9.46	8.41	1.05											
OB-D2														
4/22/03		5.14												
4/28/04	9.95	5.25	4.70											
10/27/04	9.95	6.42	3.53		SPH: None									
8/31/05	9.95	5.71			SPH: 0.01 ft.									
3/27/06	9.95	2.32	7.63		SPH: None									
9/6/06	9.95	8.39	1.56		SPH: 0.01 ft.									
4/4/07	9.95	7.94	2.01											
10/2/07	9.95	9.07	0.88		SPH: None									
3/19/08	9.95	8.64	1.31		SPH: None									
11/18/08	9.95	8.94	1.01											
D 11/4														
RW-1		<i>c</i> 10												
4/22/03		6.43												
4/28/04		5.73			CDIL None									
10/27/04 8/31/05		6.34 5.83			SPH: None									
					SPH: None									
3/27/06		NM ⁽²⁾												
9/6/06		NM ⁽²⁾			No Access									
4/4/07		NM ⁽²⁾												
10/2/07		NM ⁽²⁾												
3/19/08		NM ⁽²⁾												
		-												

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	TOC Elevation (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	BTEX Method	Notes	TPH-d (µg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
11/18/08		8.81												
Field Blank														
10/28/04				8260B					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05				8260B					< 50					
4/4/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/7/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/3/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.54	< 0.5	< 0.5	< 0.5
10/2/07				8260B		< 50	< 300	< 50	< 50	< 0.5	0.5	< 0.5	< 0.5	< 0.5
3/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11/19/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/20/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
11/21/08				8260B	SGC	< 50	< 300	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Trip Blank														
8/19/98				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01				8020	Filtered+SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01				8020	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01				8021					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/5/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/5/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/21/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
9/12/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/13/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03				8021B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04				8260B	Trip Blank 1				<100	< 0.5	<1.0	< 1.0	< 1.0	<1.0
10/29/04				8260B	Trip Blank 2				< 50					
4/3/07				8260B	Trip Blank 1					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
10/2/07				8260B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Groundwater elevations corrected for the presence of free product according to the calculation: GW Elevation = $TOC - DTW + (0.8 \times SPH \text{ thickness})$

(1) = Depth to groundwater measured on August 31, 2005.

(2) = Converted to an extraction well, and access port is too small for the oil/water probe.

(3) = Depth to groundwater measured on March 27, 2006.

(4) = Could not locate well.

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter $(\mu g/l)$

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes	(µg/l)
	(feet)	(feet)	(feet)									(µg/l)	(µg/l)	

(5) = Well dewatered, field staff unable to collect all samples.

(6) = Well has active remediation unit/recovery.

(7) = Well was covered by car or heavy equipment.

(8) = Depth to groundwater measured on March 19, 2008.

(9) = Well dewatered, field staff unable to collect samples.

(10) = Depth to groundwater measured on 11/18/2008.

(11) = Low surrogate recovery was observed for hexacosane. The sample was re-extracted, but was outside the EPA-recommended hold time.

--- = Not measured/analyzed

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8240/8260

DTW = Depth to water

Dup = Duplicate sample

Filtered = Groundwater samples were filtered through a 0.45-micron glass membrane filter.

ID = Identification

MTBE = Methyl tertiary-butyl ether by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.

NM = Not measured. Well obstructed or could not be located.

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPH-d, TPH-k, or TPH-mo analysis, following California Regional Water Quality Control Board February 16, 1999 memorandum

TBW = Tank backfill well

TOC = Top of casing

TPH-d = Total petroleum hydrocarbons quantitated as diesel - analyzed by EPA Method 8015B

TPH-g = Total petroleum hydrocarbons quantitated as gasoline - analyzed by EPA Method 8015B

TPH-k = Total petroleum hydrocarbons quantitated as kerosene - analyzed by EPA Method 8015B

TPH-mo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by EPA Method 8015B

a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble heavier fuels at the front end of the motor oil pattern.

b= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble lighter fuels; the response looks like lower carbon chain compounds close to the gasoline range.

c = The analytical laboratory reviewed the data and noted that the sample exhibits a fuel pattern that does not resemble the standard.

e= Results are estimated due to concentrations exceeding the calibration range

f= Filtration with 0.45-micron glass membrane filter and silica gel treatment

h= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the front end of the kerosene oil pattern.

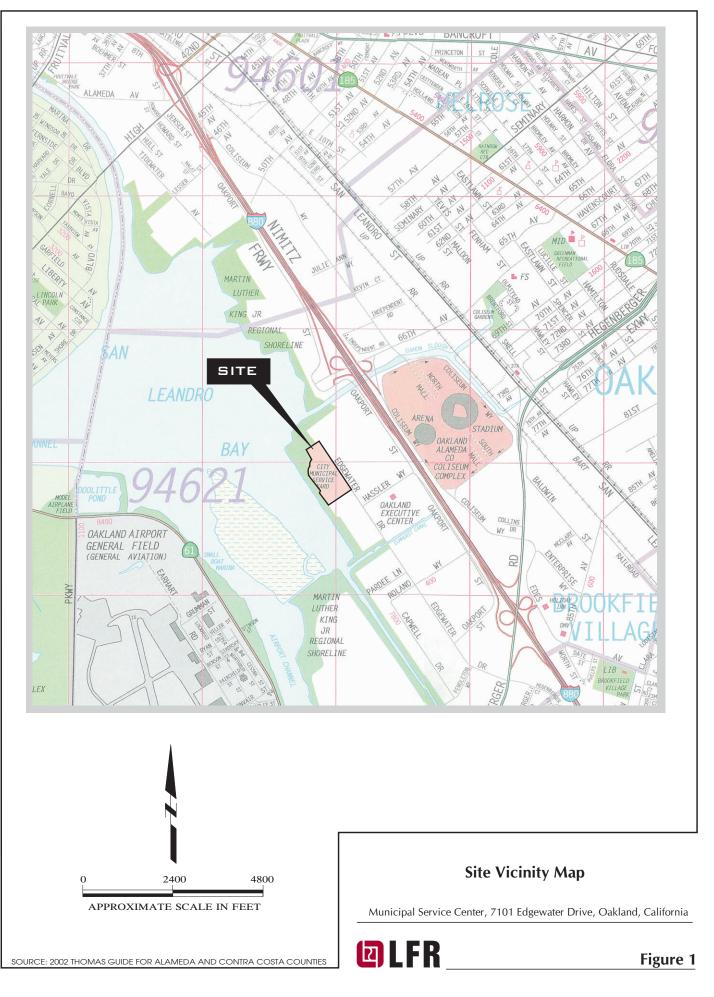
i = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the back end of the kerosene oil pattern.

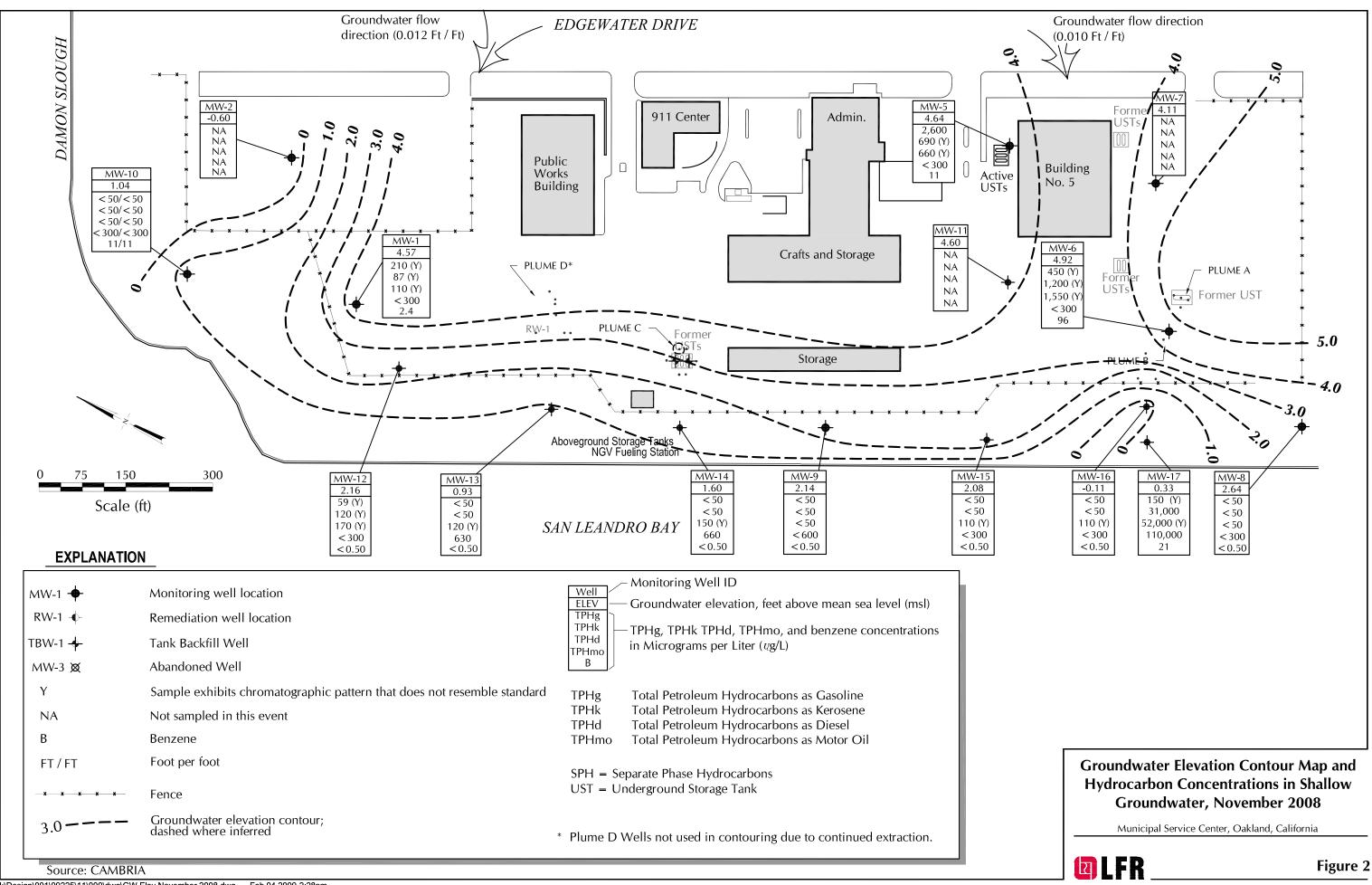
j = The analytical laboratory reviewed the data and noted that the sample exhibited an unknown peak or peaks.

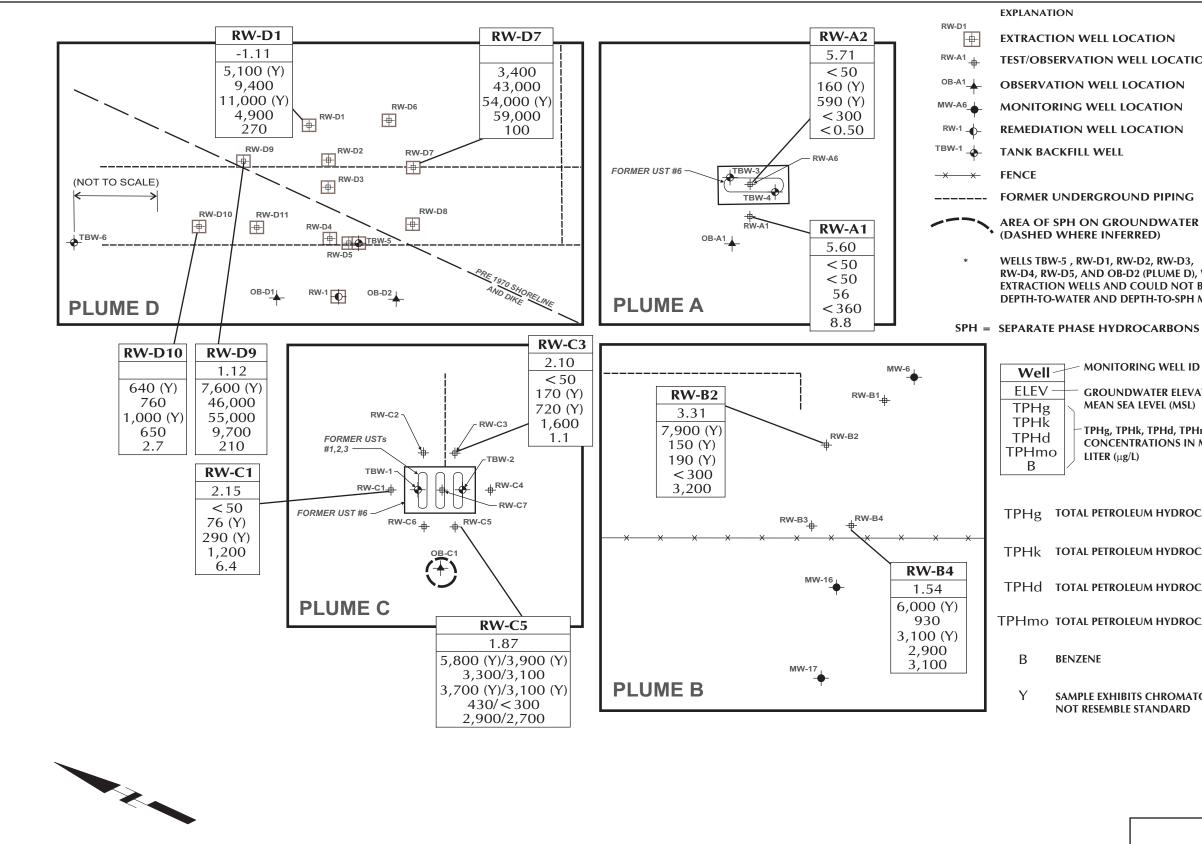
B = Results flagged with "B" indicate motor oil was detected in the method blank.

C = Footnote assigned by Ninyo and Moore, not defined in their historical tables.

E= Footnote assigned by Ninyo and Moore, not defined in their historical tables.


H = Heavier hydrocarbons contributed to the quantitation.


J = Value qualified as "estimated"


L= Lighter hydrocarbons contributed to the quantitation.

Y = Sample exhibits chromatographic pattern that does not resemble standard.

Z = Sample exhibits unknown single peak or peaks

100 50 APPROXIMATE SCALE IN FEET

NOTE: ALL DIMENSIONS, DIRECTIONS, AND LOCATIONS ARE APPROXIMATE SOURCE: NINYO & MOORE - JULY 2004

DESIGN\001\09225\11\000\09225 Plume Detail rev4.CDR

EXTRACTION WELL LOCATION

TEST/OBSERVATION WELL LOCATION

OBSERVATION WELL LOCATION

REMEDIATION WELL LOCATION

FORMER UNDERGROUND PIPING

AREA OF SPH ON GROUNDWATER

WELLS TBW-5, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, AND OB-D2 (PLUME D), WERE CONVERTED TO EXTRACTION WELLS AND COULD NOT BE ACCESSED FOR DEPTH-TO-WATER AND DEPTH-TO-SPH MEASUREMENTS.

- MONITORING WELL ID

GROUNDWATER ELEVATION, FEET ABOVE MEAN SEA LEVEL (MSL)

TPHg, TPHk, TPHd, TPHmo, AND BENZENE CONCENTRATIONS IN MICROGRAMS PER LITER (µg/L)

TPHg TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

TPHk TOTAL PETROLEUM HYDROCARBONS AS KEROSENE

TPHd TOTAL PETROLEUM HYDROCARBONS AS DIESEL

TPHmo TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL

SAMPLE EXHIBITS CHROMATOGRAPHIC PATTERN THAT DOES NOT RESEMBLE STANDARD

Detail Plume Map with Hydrocarbon Concentrations November 2008

Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Figure 3

APPENDIX A

City of Oakland MSC Schedule and Protocol

Table A:	Revised Well Sampling Schedule and Protocol
	City of Oakland Municipal Service Center

March September [Elevation] PH Dissolved Temperature Specific IPH-das IPH-dissolved WW-1 X	Well ID	Monitoring					Paramete	ers to Be Mo	nitored		1
Indian Opposition Product Oxygen Conductivity (PTEX & d/k/mo WW-1 X		the second s	Sentember	Flevation	Floating	PH	Dissolved	Temperature	Specific	TPH-gas	TPH
Image: Second									Conductivity		d/k/mo
WW-1 X							- 78			MTBE	
MW-2 X				Y		X	X	X	X	X	
WH-2 Characterized X										Х	X
WW-4 Closed/Destroyed X					^	<u> </u>					1
WW-5 X											1
NW-6 X					Y	X	X	X	X	X	X
NW-0 X										Х	X
WW-3 X										X	
MW-9 X				- Ŷ						Х	
MW-30 X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td>									X		
Am-10 A A A X <td></td>											
Amy -11 X Y X<								X		Х	X
Imital X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td>X</td> <td>Х</td> <td></td>						X			X	Х	
MW-13 X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td>									Х		
Image of the second s								Х	X		
Iminizion X								X			
Number X <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					X						
WW-18 gauge only gauge only X X IBW-1 gauge only gauge only X X				X				X	X	X	X
BW-1 gauge only gauge only X X BW-2 gauge only gauge only X X BW-3 gauge only gauge only X X BW-3 gauge only gauge only X X BW-4 gauge only gauge only X X BW-5 gauge only gauge only X X BW-6 gauge only gauge only X X BW-1 gauge only gauge only X X BW-4 gauge only gauge only X X BH-41 gauge only gauge only X X BW-53 gauge only gauge only X X BW-54 gauge only gauge only X X BW-54 gauge only gauge only X X BW-54 gauge only gauge only X X BW-55 gauge only gauge only X X BW-55 gauge on											
BW-2 gauge only		gauge only	gauge only								ļ
BW-3 gauge only											
BW-4 gauge only X X BW-5 gauge only gauge only X X FBW-6 gauge only gauge only X X FBW-7 gauge only gauge only X X FBW-7 gauge only gauge only X X FBW-8 gauge only gauge only X X FBW-81 gauge only gauge only X X FW-81 gauge only gauge only X X FW-84 gauge only gauge only X X FW-61 gauge only gauge only X X FW-C2 gauge		gauge only	gauge only	X							
FBW-5 gauge only gauge only X X X FBW-6 gauge only gauge only X X X RW-1 gauge only gauge only X X X RW-1 gauge only gauge only X X X RW-42 gauge only gauge only X X X RW-42 gauge only gauge only X X X RW-41 gauge only gauge only X X X RW-42 gauge only gauge only X X X RW-43 gauge only gauge only X X X X RW-51 gauge only gauge only X X X X X RW-52 gauge only gauge only X <td< td=""><td></td><td>gauge only</td><td>gauge only</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		gauge only	gauge only	X							
FBW-6 gauge only gauge only X X RW-1 gauge only gauge only X X RW-22 gauge only gauge only X X DB-A1 gauge only gauge only X X RW-1 gauge only gauge only X X RW-11 gauge only gauge only X X RW-12 gauge only gauge only X X RW-13 gauge only gauge only X X RW-14 gauge only gauge only X X RW-15 gauge only gauge only X X RW-24 gauge only gauge only X X RW-25 gauge only gauge only X X RW-26 gauge only gauge only X X RW-25 gauge only gauge only X X RW-26 gauge only gauge only X X RW-27 g	TBW-5	gauge only	gauge only								<u> </u>
W-A1 gauge only gauge only X X W-A2 gauge only gauge only X X W-A2 gauge only gauge only X X W-A1 gauge only gauge only X X W-B1 gauge only gauge only X X W-B1 gauge only gauge only X X W-B2 gauge only gauge only X X W-B4 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X DB-D1 </td <td>TBW-6</td> <td></td>	TBW-6										
RW-A2 gauge only gauge only X X DB-A1 gauge only gauge only X X DB-A1 gauge only gauge only X X RW-B1 gauge only gauge only X X RW-B1 gauge only gauge only X X RW-B2 gauge only gauge only X X RW-B3 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D3	RW-1	gauge only	gauge only		Χ						
With the second seco	RW-A1										
W-B1 gauge only X X W-B2 gauge only gauge only X X W-B3 gauge only gauge only X X W-B3 gauge only gauge only X X W-B3 gauge only gauge only X X W-B4 gauge only gauge only X X W-C1 gauge only gauge only X X W-C2 gauge only gauge only X X W-C2 gauge only gauge only X X W-C4 gauge only gauge only X X W-C5 gauge only gauge only X X W-C6 gauge only gauge only X X W-C7 gauge only gauge only X X W-D1 gauge only gauge only X X RW-D2 gauge only X X X RW-D3 gauge only X X X X RW-D4 gauge only	RW-A2										
RW-B2 gauge only gauge only X X RW-B3 gauge only gauge only X X RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X OB-D1	OB-A1	gauge only	gauge only								<u> </u>
RW-B3 gauge only gauge only X X RW-B4 gauge only gauge only X X Image: Stress only RW-C1 gauge only gauge only X X Image: Stress only Image: Stress only RW-C2 gauge only gauge only X X Image: Stress only Image: Stress only RW-C2 gauge only gauge only X X Image: Stress only Image: Stress only RW-C2 gauge only gauge only X X Image: Stress only Image: Stress only RW-C3 gauge only gauge only X X Image: Stress only Image: Stress only RW-C4 gauge only gauge only X X Image: Stress only Image: Stress only RW-C5 gauge only gauge only X X Image: Stress only Image: Stress only RW-C4 gauge only gauge only X X Image: Stress only Image: Stress only RW-D5 gauge only gauge only X X Image: Stress only Image: Stress only	RW-B1										
RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X OB-D1 gauge only gauge only X X <td< td=""><td>RW-B2</td><td></td><td></td><td></td><td></td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td></td<>	RW-B2						· · ·				
RW-C1 gauge only gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X QB-C1 gauge only gauge only X X QW-D1 gauge only gauge only X X QW-D1 gauge only gauge only X X QB-C1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X QB-D4 gauge only gauge only X X <td< td=""><td>RW-B3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	RW-B3										
Wich gauge only X X RW-C2 gauge only gauge only X X RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-C7 gauge only gauge only X X OB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D3 gauge only X X Image: Constraint on the state on the									·		
RW-C3 gauge only gauge only X X RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X RW-C7 gauge only gauge only X X DB-C1 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes: Taure only Taure only Taure only Taure only											
RW-C4 gauge only gauge only X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:	RW-C2						<u> </u>				1
RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:					× V		<u> </u>				1
RW-C6 gauge only gauge only X X RW-C7 gauge only gauge only X X OB-C1 gauge only gauge only X X OB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:		gauge only	gauge only					<u> </u>			
RW-00 gauge only gauge only X X DB-C1 gauge only gauge only X X DB-C1 gauge only gauge only X X RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:				X			<u> </u>				1
OB-C1 gauge only gauge only X X CW-D1 gauge only gauge only X X CW-D2 gauge only gauge only X X CW-D3 gauge only gauge only X X CW-D3 gauge only gauge only X X CW-D4 gauge only gauge only X X CW-D5 gauge only gauge only X X CW-D5 gauge only gauge only X X CB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes: Dauge only = measure groundwater elevation and floating product thickness only							<u> </u>	<u> </u>	 		
RW-D1 gauge only gauge only X X RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:											<u> </u>
RW-D2 gauge only gauge only X X RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:		gauge only	gauge only			ļ		<u> </u>	<u> </u>	<u> </u>	1
RW-D3 gauge only gauge only X X RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:					× ×		<u> </u>				1
RW-D4 gauge only gauge only X X RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:							+	+	<u> </u>		·
RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:							<u> </u>			<u> </u>	
OB-D1 gauge only gauge only X X OB-D2 gauge only gauge only X X Notes:						 		<u> </u>	<u> </u>		+
OB-D2 gauge only gauge only X X Notes:									<u> </u>		+
Notes: nauge only = measure groundwater elevation and floating product thickness only	OB-D1	gauge only	gauge only				<u> </u>		 	<u> </u>	+
pauge only = measure groundwater elevation and floating product thickness only	OB-D2	gauge only	gauge only	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	l	L	
auge only = measure groundwater elevation and floating product thickness only [PH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup	Notes:					,					
TPH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup	gauge only	y = measure	e groundwate	er elevation	n and floatir	ng pro	duct thickne	ess only			
	TPH d/k/m	o = total pet	roleum hydro	ocarbons a	is diesel, ke	eroser	ne, and mot	or oil after sili	ca gel cleanu	p	

APPENDIX B

Groundwater Sampling Field Data Sheets

Ľ	LEVINE-FRICK	E	· · · ·		۰۰ مر 	<u> </u>		LEVEL MEASUREMENTS LC	
	Project No	028-100	60-00-***			Date _	Щ/П	Page [of	
	Project Name	Oakla	and MSC	<u> </u>		Day: D	3 Sun I	⊡Mon potTues ⊡Weds ⊡Thurs ⊡Fri D	3 S
	Field Personn	ielM	ichael Sullivan	and Sharon Te	erwilliger				·
	General Ober	ervations							
		1 valions	······································		· · · -			······································	
	••••••••••••••••••••••••••••••••••••••	Tive Hos	har						
Γ	WELL	WELL		O WATER	Opend WAJER	WELL S	ECURE?	Depty to Product REMARKS	
	NO.	ELEVATION	1	2	ELEVATION	Y	N	Time (UNITS = FEET)	
	RWF-D4	911	9110	9.10		\checkmark		<u>^</u>	
	RW.DJ	915	9,405	9,45		×		-	
-	TWB-5	1426	9,32	9.32	920	x		₩₩₽	
	OBD	1429	8.41	8,41	915	×	<u> </u>		
	OBD2	14.32	8.94	8.94	910	×			
	2m-118	928	8.48	8,48		×			
	RW-\$1	1436	8.81	8.81	925	\times		925	
	RW-D7	940	9.62	9,62		7			
- H-	2W-D3	1410	10-10	10.10	10-00				
- 1-	RW-DII	1010	8,66	8,66	\sim	$\left \right\rangle$		· · · · ·	
- i	RW-DP	1012	8.84	8.94		<u>X</u>			
-	2.10-09	955	9,70	9,70		X			
	RW-D2	1414	10.95	10.95	950				
	RW-DI		1.15	1110	9,45				
	2W-D4 OB-C1	1417	-11.10	H-101 8,57	1015			Pipe conclud ~ ~1000 pie pe Bis 4 Poliet 0.05 in Bai	м́
-	Rw-(4			8.99	10,20	<u>. Ж</u>		Bist Product 0,05 in Bai	æ
	RWGI	1530 1535	8,99	8.29	1025	7			
H	PBW-2	15'22	8.29	Didi	10-20	×		a	
	RW-67		0,97	8.97	1040				.
, F.	poner-	1532	8:92	8,92	10.32	<u>×</u>		Doter Noin Brifler	
<u>ר</u> ת	RW-CD	1520	9.38	9,38	1045	× –			
	RUNCZ	1522	8.61	8.6(1050			•	
	RUS-CG	1538	8,42	8.42	1030	- - -		oder but no product smills ,	42
	RW-89	1344	9.75	9.75	1100	X		vaer put no product, sper-	
-	RW-B-3	1246	9.57	9.57	1050	~ ~	<u> </u>		
	26-62	1349	7.91	7.92	1055	-			
	RW-BI	1351	7.90	790	1058	У У			
	MW-6	1365	5.16	6.16	1102	X		200 200 1	<u>,,</u>
┢	OB-A	1357	6 21	5.3	1(03	\propto			
ł	RW-A1	1359	449	449	105	X			
-	RULAN	1401	3.96	3.96	1105	14			
Ľ	1 110		<u> </u>		<u>I</u>	·/	1	1	

.

1

.

. عدر ا

 \cdot

					WA	TER	LEVEL N	IEASUREME	NTS LOG
Project No	028-100	30-00-***			Date	11//	B/095	Pa	ige Lof L
Project Name	e <u>Oakl</u> i	and MSC			Day: 🗆	I Sun I	⊡Mon DA-Tue	es 🗆 Weds 🗀 Thurs	🗆 Fri 🗆 Sat
	nelM				•		,		
			an <u>a onaron r</u> e						
General Obs	ervations								
	Measured		<u> </u>						
WELL	WELL	DEPTH T	O WATER	Depth topie		CURE?		REMARKS	
NO.	ELEVATION	1	2	ELEVATION	Y	N	oreded	(UNITS = FEET)	
Hw-8	1132	9,58 9.53	9:58		X		800		
MW-17 MW-60	1137		9.53		X		805	-1201	01,1,11
· · · ·		12,33	10.28				30	70=1301	2/3 bolts
MW-15 MW-9	1142	10.28	8.63		Υ γ.		815		13 DOLTS
MW-14	4152	9.163	8.45		X X		829 822		2/3 60000
MW-D	1156	10.41	10.41		X	-	8.30		0/36000
MW-10	1201	9.55	9.55	~	X		835		150000
MW-Z	1210	11.07	11.07	— ·			845		
MW-1	1304,	5.48	5.48	-	×		855		
NW-12	8.27		8.27		X		900 01	c national on pro	De-no in 19
MW-11	1337	7,60	7.00		X		1112	NA LING THOUGH	<u>ج</u> د
MW-5	1334	6.51	6.51		X		1106		
MW-7	- 1329	1, 7.40	7,40					pened well that	5
TBN-6	13251	5.32	5.32	1325	7 X		1325E	to pad in proton	Voneved 1. d
	10 percent		5:56						•
					-				
					- 				
	- 1 W =								
				-					
								- 1 ch ch / - N - T-STITUT AN UNDER UNDER DATE	
			·					•	
· .					ļ		<u> </u>		
				 			<u></u>		
					·				
	·	·	·				*		

MSC_fmi-Water-Levels_Nov2008.doc: d; 11/08; FORM FRONT

•

	₩			,	WAT	FER-Q	JALIT	Y SĂN	APLIN	NG LO	G
Project No. <u>02</u> 8	8-10060-00-***			Date: _	11/2	21/08	-		Pag	e 1 of	
Project Name <u>: MSC (</u>	roječt Name: MSC Oakland Edgewater						dgewater I				
Sampler's Name:						Sampl	e No.: 🕂	1 (w - 1)		🗆 FB	
Sampling Plan By:	DCR			Dated:	<u>11/12/08</u>		C.O.C. N	0.:			
Purge Method: 🛛 Ce	ntrifugal Pump	Disposable	Bailer 🛱 H	land Bail 🗔 Si	ubmersible	Pump 🗖 T	eflon Bailer	Other			
Purge Water Storage C	ontainer Type:	55 gallon di	<u>rum</u>	Stor	age Locati	on:(<u>On-site</u>				
Date Purge Water Disp	osed:			Whe	ere Dispose	ed: <u>On-site</u>	·				
Analyses	s Requested		No.	and Type of Bott	les Used	· .	10.	09		10.6	۱.
TPHg/BTEX/MTBE	<u>E by 8260</u>		3 VOA	s with HCI pres	servative _		20	118		X .16	$\frac{1}{\iota}$
TPHd / TPHmo / TPHk	by 8010 with sil	lica gel clean-u	<u>ıp</u>	1 Liter Amber			.5.1	60	í	6050	5
Lab Name: Cu	rtis and Tompki	ns					17	618	۲ ا	6.144	_
Delivery By 🛛 Courie	er	X	Hand						•		-
					,9						
[x2 2" (0.16 gal/feet) □ 4" (0.65 gal/feet)	□ 5" (1.02 g	al/feet) W	ater Colum	n Height	<u>10.09</u>		80% E	отw <u>7</u>	.(02		
1 % [2" (0.16 gal/feet)	□ 5" (1.02 g	al/feet) W	ater Colum	n Height	<u>10.09</u>		80% [0RP (mV)		Remark		
12 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Iniet	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume DO	n Height	<u>10.09</u> 0144 рн	Cond	ORP				
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Time Depth	☐ 5" (1.02 g ☐ 6" (1.47 g 	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume DO (mg/L)	n Height Temperature (C°) 20,773	<u>10.09</u> 0144 (SU)	Cond (uSicm C) (3233)	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume DO (mg/L)	n Height Temperature (C°) 20,773	10.09 0144 (SU) 6.64	Cond (uSicm C) (3233)	ORP (mV)		Remark		
IX 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Time 00000	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	Cond (uSicm C) (3233)	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height Temperature (C°) 20,773	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (13233 4 4 4 4	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
IX 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Time 00000	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
IX 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Time 00000	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
IX 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		
ISC 2" (0.16 gal/feet) □ 4" (0.65 gal/feet) Inlet Depth	□ 5" (1.02 g □ 6" (1.47 g Depth to Water	al/feet) W al/feet) W Volume Purged (gal)	ater Colum ell Volume (mg/L)	n Height (C°) 	10.09 0144 (SU) 6.64	2 Cond (uS/cm C) (3233) 4 4 4 4	ORP (mV)		Remark		

	WATER-QUALITY SAMPLING LOG
	Date: 11/21/0 % Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: 7101 Edgewater Drive, Oakland, Ca
Sampler's Name:	Sample No.: <u>MW-5</u> □ FB
Sampling Plan By: DCR	Dated:11/12/08 C.O.C. No.: DUP
Purge Method: Dentrifugal Pump Z Disposable Bailer Hand	d Bail □ Submersible Pump □ Teflon Bailer □ Other
Purge Water Storage Container Type: <u>55 gallon drum</u>	Storage Location: On-site
Date Purge Water Disposed:	Where Disposed:On-site
Analyses Requested No. and	Type of Bottles Used
TPHg / BTEX / MTBE_by_8260 3 VOAs wi	th HCI preservative
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up 1 Li	iter Amber
Lab Name: Curtis and Tompkins	
Delivery By 🛛 Courier 🕅 Hand	
······································	
Well No. MW-5 Depth of Water	
Well Diameter: Well Depth	1.08
2" (0.16 gạl/feet) □ 5" (1.02 gal/feet) Water Column He	eight <u>7,77</u> 1,24 80% DTW 8,06
☐ 4" (0.65 gal/feet)	1.74
	mperature PH Cond ORP
Depth to Water Purged (gal) (mg/L)	(C°) (SU) (uS/cm C) (mV) Remarks
1044 1.5 2.87	1.91 7,5 230 255
1016 3 3,08 7 1649 4.5 295 3	$A D C \neg \neg \gamma (C \neg \gamma \gamma)$
06 675 94	NO1611/300/3-0
	0.92 6.94 2 952 26:3 D 2.75
1055 6.57 7.40.2	$\frac{0.61}{4} \frac{0.0}{300} \frac{500}{0^{11}}$
-1057 6.77	Sample
r	
1	Continue remarks on reverse, if needed.
	MSC_frm-Water-Quality_Nov2008.doc: d; 11/08; FORM FRONT

.,

	R			स १२२ २	-	WAT	ER-Q	UALIT	Y SAMPLING LOG
Project No	028-	10060-00-***	· · · · · · · ·		Date:	11/2	1/08		Page 1 of)
Project Name	e: <u>MSC Oa</u>	akland Edgew	vater		Samp	ling Locatio	n: <u>7101 E</u>	Edgewater I	Drive, Oakland, Ca
Sampler's Na	ame: <u>S</u>	Teru	Miger				Samp!	e No.:	<u>Мш-6</u> ПГВ
Sampling Pla	an By:	DCR			Dated:				lo.: □ DUP
Purge Metho	d: 🗆 Centi	rifugal Pump	Disposable	Bailer 12 H	> land Bail □ S	ubmersible	Pump 🗖 T	eflon Bailer	□ Other
Purge Water	Storage Cor	ntainer Type:	z <u>55 gallon dr</u>	<u>um</u>	Sto	rage Locati	on:(<u>On-site</u>	
Date Purge V	Vater Dispos	ed:	· · ·		Wh	ere Dispose	ed: <u>On-site</u>		
	Analyses R	tequested	l	No.	and Type of Bot	tles Used			8.06 2 612 06
	EX/MTBE	<u>by 8260</u>		3 VOA	s with HCI pre	<u>servative</u> _		X	
<u>TPHd / TPHr</u>	no / TPHk by	v 8010 with si	licá gel clean-u	p	1 Liter Amber			14	614
Lab Name: _	Curti	s and Tompki	<u>ns</u>		•			6.	00
Delivery By				Hand				. 7	67
1.4.2 II NI	MIN.	-10			/	0/0	<u></u>		
Well No			De	pth of Wat	er <u>(o:</u> 143	12-			
	-				n Height		 o		
		□ 5" (1.02 g			n Height 2			80% D	TW 7.67
	i gal/feet)	🗆 6" (1.47 g	avieet) vv		U		-	L	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	्रPH ्(SU)	Cond (uS/cm C)	ORP (mV)	Remarks
868			1.5	2.07	18.43	6.81	3968	-10,6	
812			2.75	1,70	19.08	678	4097	-59.3	3
815			4	1.92	19.08	6.86	4153	-313	•
818			5.25						
821		12.12	6.5	5.95	18.43	6.78	4191	5.5	Sulty-Starting to day
828			7.5	7.51	19.01	6.81	4271	19.0	0.01.0
858		8.2			4		<u>.</u>		
914	•	7.65		<u>r Sa</u>	mple	\sim			
		·							
						. *			
						۰		,	
		-	•	· · ·					
					*				Continue remarks on reverse, if needed.

. .

Proiect No.	028	3-10060-00-***	,		Data		jalna	a		Dese d of	
									Drive, Oakland		
Sampler's Na						• •			Drive, Oakland		
							•		No.:		
									er 🗆 Other		
			~** •				sed: <u>On-site</u>				<u> </u>
		Requested			and Type of Bo				557	<u>,</u>	
TPHg / BTE						•			5.57	ł	
			lica gel clean-u			•			1114	•	
		tis and Tompk		·····		,		a c	- 10 X-	•	
			X	Hand				ĺ	0,00	ň	露
		>							1,11		ñ.
Vell No. 👖	IND-X		De	epth of Wal	er <u>9</u> ,	66			t i	•	
•)`'		eil Depth _	9	15.1:	7	,	•		
1		🖾 5" (1.02 g			n Height	5.57	ſ	/ 80% [.71	
ā 4" (0.65 g	jal/feet)	🖾 6" (1.47 g	al/feet) W	ell Volume	D	1912	<u>/</u>	00% L	<u> </u>		
Time	iniet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (m)0		- -	
025		9.60	Sta	7	(07	(50)		(mV)	· •	Remarks	
1034	<u>.</u>			2.48	K 95	7.38	6406	18.2			
1037			2	2014	19.47			30.6			<u>u.</u>
10.42	•	•	2	2.66	19.20	7.16	5049K	20.8		•	
046			Ŭf.	418	18.85	7.19	5 DSD	31.0	-		
050		13.95	4,5		\sim \cap	SWG	H. ~	01.0			
MB		9. ED		.,	<		ste				
							1				
					•			•			
		:	æ						•		
					*						
<u> </u>		· .					•		1	•••••	
÷	•	•									
		-						. ÷	•		•
					·						
							ta	· · ·			

r* 6

WATER-QUALITY SAMPLING LOG

Project No. 028-10060-00-***	Date:	1/21/08	Page 1 of
Project Name: MSC Oakland Edgewa	terSampling L	ocation: <u>7101 Edgewater Drive</u>	, Oakland, Ca
Sampler's Name: EMW		Sample No.:	
Sampling Plan By: DCR	Dated:	• • • • • • • • • • • • • • • • • • • •	
Purge Method: 🛛 Centrifugal Pump	Disposable Bailer 🛛 Hand Bail 🗆 Subme	rsible Pump 🖾 Teflon Bailer 🖾 (Diher
	55 gallon drum Storage I		
	Where D		····
Analyses Requested	No. and Type of Bottles Us		
	3 VOAs with HCl preserva	ive MU	j-9-FB
	a gel clean-up 1 Liter Amber		20
Lab Name: <u>Curtis and Tompkin</u>			
Delivery By 🔲 Courier		· · · · · · · · · · · · · · · · · · ·	142
Well No Well Diameter:	Depth of Water	2	872
⊠ 2" (0.16 gal/feet) □ 5" (1.02 gal	feet) Water Column Height5	71	9.86
□ 4" (0.65 gal/feet) □ 6" (1.47 gal	feet) Well Volume 🖸 🦣	80% DTW	· • 0 •
Inlet Depth Time Depth to Water	Volume DO Temperature P Purged (gal) (mg/L) (C°) (S	1 1 1	Remarks
			conduct
248	D.66, 20 B B.	9 36391-170.2	3429
051	C. Liller al	\$ 36972-1880	,
1253		10 35416-207.4 b	lad
1255		59 34373-250.4	
1257			
1300	10 0.71 19.80 10.	13 33666-244.7 12 32271-244.3 g	1000 inder
1302 9.79	h Spin oli		and the
	·····		7

			•
ll			Continue remarks on reverse, if needed.

MSC_frm-Water-Quality_Nov2008.doc: d; 11/08; FORM FRONT

LEVINE · FRICKE								PLING LO
Project No. 0	28-10060-00-***		Date:	1171	9104			_ Page 1 of
Project Name: MSC								
Sampler's Name:								
Sampling Plan By:		//	Dated:	11/12/08		C.O.C. N	lo.:	
Purge Method: C	entrifugal Pump. D	sposable Bailer, ZI H	and Bail 🗖 S	ubmersible	Pump 🗆 T	eflon Bailei	r 🗖 Other	
Purge Water Storage	Container Type: <u>5</u>	gallon drum	Sto	rage Locati	on:(<u>On-site</u>		
Date Purge Water Dis	posed:		Wh	ere Dispose	ed: <u>On-site</u>			<u></u>
Analys	es Requested	· No.	and Type of Bot	les Used				
TPHg / BTEX / MTE	<u> BE by 8260</u>	3 VOA	s with HCI pre	servalive	<u> </u>			
<u> TPHd / TPHmo / TPH</u>	<u>k by 8010 with silica c</u>	el clean-up	1 Liter Amber		.			
Lab Name: <u>C</u>	urtis and Tompkins							
Delivery By 🖾 Cour	er	X Hand						
		olume DO (rged (gal) (mg/L)	n Height $_{C^{\circ}}$ Temperature (C°) T	рн (SU) 7,34	Cond (us/cm C) 12590 11556- 11625	ORP (mV) -37,1	тw <u>1</u> С	Remarks
153	<u> </u>	2.65 2000	19.62	12.13	10106	~)4,8		
1534	£	5 1.85	20.00	7.03	1978	-14.5		
1539		<u>5 1.50 </u>	<u>pq. 96</u>	6.96	11568	-20.	₽	
1593	1.70	7 2.15	19.36	6.96	1050D	-3/0	1	
1550	10.32		<u> </u>	ampl	ť			
455		for	ling (ruld	ke iv	Auce	nced	by tisb
						<u> </u>	Cartinua	romotio on round of
· · · · · · · · · · · · · · · · · · ·						-7	Continue i ater-Quality_Nov20	remarks on reverse, if i

Ι.

Britishalburk to A

.....

APLING LOG	JALITY SAM	ER-QU	WAT		τ.			R	
Page 1 of){	21/2	11/	Date:			10060-00-***	028-	roject No
nd, Ca	dgewater Drive, Oaklar	n: <u>7101 E</u>	ling Location	Samp		vater	akland Edgew	: MSC O	roject Name
FB	No.:	Sample						me:	ampler's Na
	C.O.C. No.:		11/12/08	Dated:				n 'By:	ampling Pla
	flon Bailer 🛛 Other	Pump 🗖 Te	ubmersible	and Bail 🗖 S	Bailer 🗆 H	Disposable	irifugal Pump I	d: 🗆 Cent	'urge Methor
	n-site	on: <u>C</u>	rage Locatio	Sto	<u>um</u>	<u>55 gallon dr</u>	ntainer Type:	Storage Cor	urge Water
	r	d: <u>On-site</u>	ere Dispose	Wh			sed:	Vater Dispos	ate Purge W
			lles Used	nd Type of Bot			Requested	Analyses F	
									TPHg / BTI
				l Liter Amber	<u>p</u>	lica gel clean-u	y 8010 with sil	no / TPHk by	PHd / TPHm
						ins	is and Tompki	Curti	.ab Name:
						_			
			pT	A ~	•••		17	Aler	
			-5	6.2	pth of Wate	De	1-10	_/MW	Vell No
			> 	M.49				r:	Vell Diameter
s/	80% DTW		<u> /</u>	Height O		-	🗆 5" (1.02 g	gal/feet)	□ 2" (0.16
				0.78	ell Volume	jal/feet) We	🗆 6" (1.47 g	gal/feet)	□ 4" (0.65
Remarks	ORP (mV)	Cond (uS/cm C)	PH (SU)	Temperature (C°)	DO (mg/L)	Volum e Purged (gal)	Depth to Water	inlet Depth	Time
_, ,									
	<u>~110, </u>	7760	7,K	14.34	D.4B				£556
	-13,0	6062-	7.40	jBr6	0.54	.2			∞
	- 13M.Y	7937	7.46	18.48	0.54	Å			001
-135,124		736	2.43	<u>19.24</u> -	6.20	F	4554		906
	· •		<u> </u>	sampl		an a	8.9		010
	· · ·	Ņ		Ű					
	1-7852	3		·					
······									
		<u> </u>			<u> </u>		~		
				•					1
				• ,.				•••	
remarks on reverse, if needed. 2008.doc: e: 11/08; FORM FRONT		OND'S		•					

	WATER-QUALITY SAMPLING LOG
Project No 028-10060-00-***	Date: 11/21/28 Page 1 of
Project Name: MSC Oakland Edgewater	Sampling Location: 7101 Edgewater Drive, Oakland, Ca
Sampler's Name:	Sample No.:S □ FB
Sampling Plan By: DCR I	
Purge Method:	Bail 🗆 Submersible Pump 🗆 Tefton Bailer 🗆 Other
Purge Water Storage Container Type: <u>55 gallon drum</u>	Storage Location: On-site
Date Purge Water Disposed:	Where Disposed: On-site
Analyses Requested No. and T	ype of Bottles Used
TPHg / BTEX / MTBE by 8260 3 VOAs with	n HCI preservative
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up 1 Lite	er Amber
Lab Name: Curtis and Tompkins	
Delivery By 🛛 Courier 🕅 Hand	
Well No MW-B Depth of Water	10-70
	9.54
	A at A
1 2 [™] (0.16 gal/feet) □ 5 [™] (1.02 gal/feet) Water Column Hei	19ht 0,48 1,42 80% DTW 12,48
/ 4" (0.65 gal/feet) 6" (1.47 gal/feet) Well Volume	
	Operature (C°) PH (SU) Cond (uS/cm C) ORP (mV) Remarks
355 74	tt
1356 1.5 0.56 19	. D 7:40 14194-154.4 provar
140 30334319	14 7,19 15926 - 201.4 grey braces
$ 40^{\circ} $ $ 4.5^{\circ} $ $ 4.7 $ 9	18/ 7.05 16264-198.5
1407 60.00 37 182	87 206 4000-1466
7.5 0.5%	1.28, 6,99 16476-167.5
1414 14.15 9 0.66 0	7,04 6.99 16408 -152.6
1420 12.3 Sam	dr .
	Continue remarks on reverse, if needed.
	MSC_frm-Water-Quality_Nov2008.doc: d; 11/08; FORM FRONT

	Ke			·	WA	TER-Q	UALI	FY SAMF	PLING LO
Project No	028-10060-00	***		Date	. 11	12110	78	<u> </u>	Page 1 of
	: MSC Oakland Ed					ion: 7101			
	me:								
	n By: DCR								
	l: 🛛 Centrifugal Pu								
	Storage Container Ty								
	/ater Disposed:					sed: <u>On-sit</u>			
	Analyses Requested			and Type of Bo		· · · · · · · · · · · · · · · · · · ·			
TPHg / BTE	EX/MTBE by 8260			••					
	o / TPHk by 8010 with								
	Curtis and Tor								
	Courier								
					,	·			
Vell No	MW-10	1□	epth of Wal	ter <u>A M</u>	<u>M</u>	,			
Vell Diameter		V	Vell Depth	<u>_14, 6</u>	0				
2" (0.16	gal/feet) 🛛 5" (1.0	2 gal/feet) V	Vater Colum	n Height 6	. <u>18</u> _			отw <u>9.6</u>	4
□ \4" (0.65	gal/feet) 🛛 6" (1.4	7 gal/feet) V	Vell Volume	0,1	8		80% L		20
-	iniet Depth	Volume	DO	Temperature	PH	Cond	ORP		<u></u>
Time	Depth to Water		(mg/L)	(C°)	(SU)	(uS/cm C)	(mV)	R	emarks
203	540	$\sqrt{\frac{1}{1}}$	ad	Jaal	7.10		2-		
1001		106	0.60			24996-			et line
726 1-29		2.25	0.74	19,84	1151	<u>93940</u>	267.		ck lgrin
120 1		- 3,26	0.51	19.11	7.63	20271-	346,6	4 <u>(</u>	
772		<u>9.0</u>	0.41	1010	1,10	19564	554,		<u> </u>
$\frac{55}{154}$. 9.7/	$\frac{5}{6}$	051	10.00	7.1	14588 -	369,0	gra	
770		6.25	0.99	19.0	11 Kb	17/66	54,	1 grey	
540	9.40		 	San	ple	2 		1 0	
							; 		
							·		
			<u> </u>						
			· · · · · · · · · · · · · · · · · · ·						
			· · ·						
1	ł	1	1			1			·····

		WATER-Q	UALITY SA	MPLING LOG
Project No028-10060-00-***	Date	11/19/0	<u> K</u>	Page 1 of
Project Name: MSC Oakland Edgewater				
Project Name: <u>MSC Oakland Edgewater</u> Sampler's Name: <u>ST-SUC</u>	- Coundlyer	Sam	ple No.:	🗆 FB
Sampling Plan By: DCR	U Dated: _	11/12/08	C.O.C. No.:	DUP
Purge Method:	able Bailer 🗀 Hand Bail 🗀	Submersible Pump 🗆	Teflon Bailer 🗖 Other	
Purge Water Storage Container Type: <u>55 gall</u>	on drum St	orage Location:	On-site	
Date Purge Water Disposed:	W	here Disposed: <u>On-si</u>	te	
Analyses Requested	No. and the of Be	ottles Used		
TPHg/BTEX/MTBE by 8260	3 VOAs with ACI pr	eservative	10.	0/ 10.01
TPHd / TPHmo / TPHk by 8010 with silica gel cle	an-up 1 Liter Ambe	<u></u>	. √0.	16 x.2
Lab Name: Curtis and Tompkins		•	Ð	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Delivery By Courier	X Hand	~	60	06
Well No. MUI +15		1031	100	10
) ⁽¹	Depth of Water Well Depth	13-9-	1.60.	ile
Well Diameter:				
⊠ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) □ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Water Column Height		80% DTW	12.30
		<u>`</u>	.	
Inlet Depth Volume Time Depth to Water Purged (g		PH Cond (SU) (uS/cm C)	ORP (mV)	Remarks
125 2	1.05 19,30	7.65 15767		
1130 3.5	6.42 18.63		7-117.5	
1135 5	6.41 18.88	17	2-121.3	
1140 6.5	1 6	7,37 1536	3123.4	
1144 10.44 .				
1148 A Sample	$\overline{\mathbf{v}}$			
U				
			a	13 6otts - none
			5	1360ttst none
				· · ·
			- <u> </u>	
· ·				
		· · · · · · · · · · · · · · · · · · ·	Contin	ue remarks on reverse, if needed.
•	•		MSC_frm-Water-Quality_No	ov2008.doc: d; 11/08; FORM FRONT

	WATER-QUALITY SAMPLING LOG							
Project No028-10060-00-***	Date: Page 1 of							
Project Name: MSC Oakland Edgewater	Sampling Location: 7101 Edgewater Drive, Oakland, Ca							
	Sample No.: □ FB							
Sampling Plan By: DCR 7 Dated: Dated: C.O.C. No.: DUP								
	il □ Submersible Pump □ Teflon Bailer □ Other							
Purge Water Storage Container Type:55 gallon drum								
Date Purge Water Disposed:	Where Disposed: <u>On-site</u>							
Analyses Requested No. and Type	e of Bottles Used							
TPHg / BTEX / MTBE by 8260 3 VOAs with H	ICI preservative							
TPHd / TPHmo / TPHk by 8010 with silica gel clean-up 1 Liter	Amber							
Lab Name: Curtis and Tompkins	·							
Delivery By 🛛 Courier 🛛 Hand								
1	2.04							
Well No. <u>MW-16</u> Depth of Water <u>1</u>								
Well Diameter: Well Depth								
2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Water Column Heigh								
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Weil Volume								
	erature PH Cond ORP (SU) (uS/cm C) (mV) Remarks							
1034 12-24								
	32 8,70,16835 -211.91							
a word, well de yo								
1445 1236 Sample	and prosperige							
	<u>Continue re</u> marks on reverse, if needed. MSC_frm-Water-Quality_Nov2008.doc: e; 11/08; FORM FRONT							

						WAT	ER-QL	ALIT	Y SAM	PLING LO
Project No	028-1	10060-00-***			Date:	110	(1910	<	-	_ Page 1 of
Project Name:	MSC Oa		ter		Samplii	ng Location	: <u>7101 E</u>	igewater D	rive, Oaklar	id, Ca
Sampler's Nam	e:					A Martin Martin -	Sample	No.:		🗆 Fi
Samplino Plan	Bv:	DCR			Dated: 1	<u>1/12/08</u>		C.O.C. No).:	
Purce Method:	Cent	rifugal Pump D] Disposable	Bailer 🗖 Ha	nd Bail 🗆 Su	bmersible F	⊃ump 🗖 Te	flon Bailer	🗆 Other	
Purge Water S										
Date Purge Wa	-					re Dispose	d: <u>On-site</u>	·		
	Analyses F				nd Type of Bottl		<u></u>			
τρως / στε		by <u>8260</u>			-					
TPHd / TPHm										
Lab Name:										
Delivery By									5 - M	W-17-FA
·····								11E	م	1050
Well No	<u>110-1</u>	17			r <u>9.1</u>			4	1.25	9.14
, Well Diameter		2	W	ell Depth	17.4	<u>}_</u>		16	36	1.65
🗆 2" (0.16 ·	gal/feet)	🗆 5" (1.02 g			Height			80% D	τw _[(10,110
□ 4" (0.65	gal/feet)	🖾 6" (1.47 g	al/feet) W	ell Volume	1.32	×		007010		
r[۰ Inlet	Depth	Volume	DO	Temperature	РН	Cond	ORP		<u>.</u>
Time	Depth	to Water	Purged (gal)	(mg/L)	(C°)	(SU)	(uS/cm C)	(mV)		Remarks
1109			•		10.00	010		210		
MA			1.5	0.13	14.07	8.69	41859	245,	5	
1119			3	0.15	19,64	8,88	1000	039.	<u>р</u>	
1122				0,10	19.00	8:71	1062	00-	¥	
1124				1 1 43	1-1-7-71-	サーチト	nau	001		
1127	_,		·	1.47	18,33	6,04	40761	144	1	
1152				1.63	18.37	3,65	112011	0 16.		
1140			 	0.8	18,89	0.64	17004	- 25	<u>}.9</u>	
1142				p.yy	14.87	13,99	111900	-28h	6	
1146		9.38		1.56	19.0!	8.6!	POIN	<u>- M</u>	<u>f. 8</u>	
1150	4	Samp	1k			ļ	<u> </u>	ļ	<u> </u>	
		1	 			<u> </u>		ļ		
				_	<u> </u>					
		1			<u> </u>					
		`							l	······································
									Contini	

- Star

WATER-QUALITY SAMPLING LOG FR Σ Date: 11/20/08 Page 1 of _____ Project No. _____028-10060-00-*** Project Name: MSC Oakland Edgewater Sampling Location: 7101 Edgewater Drive, Oakland, Ca Sample No.: **C**I FB Sampler's Name:_____ Sampling Plan By: _____ DCR _____ Dated: _____11/12/08 _____ C.O.C. No.: _____ DUP ____ Purge Method: Centrifugal Pump Disposable Bailer Hand Bail Storage Location: ____On-site _____ Purge Water Storage Container Type: ____55 gallon drum S Where Disposed: On-site Date Purge Water Disposed: 1.98 No. and Type of Bottles Used Analyses Requested TPHg / BTEX / MTBE by 8260 _____ 3 VOAs with HCl preservative ____ TPHd / TPHmo / TPHk by 8010 with silica gel clean-up _____1 Liter Amber_____ Lab Name: Curtis and Tompkins X Hand Delivery By D Courier RW-AL Depth of Water Well No. 44 Well Diameter: Well Depth D Water Column Height □ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) 658 80% DTW Well Volume -💢 4" (0.65 gal/feet) 6" (1.47 gal/feet) \$ 2.2 Cond Depth Temperature PH ORP DO Inlet Volume Remarks (SU) (uS/cm C) Time Depth to Water Purged (gal) (mg/L) (°°) (mV) Ъ. 17719 30,7 19.06 わちら 6.88 touteras @ +1100l 11/21 6 90X 9ÌÌ

Continue remarks on reverse, if needed.

MSC_frm-Water-Quality_Nov2008.doc: d; 11/08; FORM FRONT

	WA	TER-QUALITY	(SAMPLING LOG
Project No 028-10060-00-***	Date:	20/08	Page 1 of
Project Name: MSC Oakland Edgewater		ion: <u>7101 Edgewater Dr</u>	ive, Oakland, Ca
Sampler's Name:		Sample No.:	FB
Sampling Plan By: DCR	Dated: 11/12/08	C.O.C. No	.: DUP
Purge Method: Centrifugal Pump Dispo	able Bailer 🗆 Hand Bail 🗙 Submersit	le Pump 🗔 Teflon Bailer I	□ Other
Purge Water Storage Container Type: <u>55 ga</u>	• \	ation: <u>On-site</u>	
Date Purge Water Disposed:		sed: <u>On-site</u>	
Analyses Requested	No. and Type of Bottles Used		1846
TPHg / BTEX / MTBE by 8260			17
TPHd / TPHmo / TPHk by 8010 with silica gel of			* *
Lab Name: Curtis and Tompkins			
Delivery By Courier			
		2	
Well No	Depth of Water3, 9	<u> </u>	
Well Diameter:4"	Well Depth3_3	2	
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	<u>⊃</u> 	TW 5.836
	Well Volume6_, 0.64	5	
		Cond ORP (uS/cm C) (mV)	Cerved 1014 Remarks
758 4.00	pump 1	1	<u></u>
fump	R1996 peland	logical, goi	15 to Dail
930 b	1.68 16.53 6.73	J0 J	1027 119,2
344 B	1.65 17.45 677	C 10 1.06	769/ 114.4
ASD 14	12 18,72 65	0	956/ 103,5
85/2 .2		0	955/97.8
art		73	954/920
905 400			iscuste
			-
			Continue remarks on reverse, if neede
		MSC_frm-V	Vater-Quality_Nov2008.cloc: d: 11/08: FORM FROM

	WATER-QL	JALITY	SAMP	LING	LO
--	----------	--------	------	------	----

ĥ

Project No. <u>028-10060-00-***</u>					
Project Name: <u>MSC Oakland Edgewater</u>	Sa	ampling Location: <u>7</u>	101 Edgewater	Drive, Oakland, Ca	
Sampler's Name: <u>Crùca ()</u>	Deted		ample No.:	NI	
Sampling Plan By; DCR		: <u>11/12/08</u>	_ C.O.C. N	0.:	
Purge Method: □ Centrifugal Pump □ Dis Purge Water Storage Container Type: <u>55 (</u>		1			
Date Purge Water Disposed:		Where Disposed: _O			
Analyses Requested					<u></u>
TPHg / BTEX / MTBE by 8260	No. and Type of				
TPHd / TPHmo / TPHk by 8010 with silica get			-		
ab Name: Curtis and Tompkins		<u>NOI</u>	-		
Delivery By [→] □ Courier <u>~</u>	Xi Hand		-		
	· · · · · · · · · · · · · · · · · · ·		-		
Nell No. <u>RW-B2</u>	_ Depth of Water	98			
Vell Diameter:	Well Depth Y	15			
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	r " "			9.21	
▶ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume	101	80% D		
	ume DO Temperatu	re PH Con	d ORP	<u></u>	<u>,</u>
Time Depth to Water Purger	d (gal) (mg/L) (C°)	(SU) (uS/cm	C) (mV)	Remarks	
228 101 4	hige DRT	1 mins	AGA		<u> </u>
350 10.44 8	21.95 7-3.7	6.76 7 2619	1010		
104 1200 12	12.41 Bir	6.90 422		Tenf 25.3	>8
105 Greineras		. 0x 10 100	10,0		<u> </u>
P3K/ Chai	+ again				
XO L	9:34 73.34	12350			<u> </u>
	5	TIOT SMI	- land	j	
149 37	14.19 22.4	6199 1129	4 14.5		
506 911	13 8 1 22 9	67 DD UCA	6 14 10		<u> </u>
516 1177 78	10.07 22,88	701 412	2 10.9	<u> </u>	
1524 9.13				· · · · · · · · · · · · · · · · · · ·	<u></u>
1527 N SAM	nt /	· · · · ·			·
a chang					<u>, 6</u>
				·······	
I	······	<u> </u>		Continue remarks on re	

ŕ

віска

ť

	• 	·.'	JALITY SAM	FLING LUC
Project No028-10060-00-***	Date:	11/20/08		_ Page 1 of
Project Name: MSC Oakland Edgewater				d, Ca
Sampler's Name: Stervil		•		
Sampling Plan By: DCR	Dated:	11/12/08	C.O.C. No.:	DUP
Purge Method: Centrifugal Pump Dis				
Purge Water Storage Container Type:5	•		Dn-site	
Date Purge Water Disposed:		ere Disposed: On-site		
Analyses Requested	No. and Type of Bot	les Used		
TPHg / BTEX / MTBE by 8260	•			
TPHd / TPHmo / TPHk by 8010 with silica ge				
Lab Name: <u>Curtis and Tompkins</u>		,		
Delivery By D Courier	XHand			
N #				
Well No. RW-BAD		<u>69</u>	,	
Well Diameter:	Well Depth <u>13, 90</u>)		
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet		1.06	80% DTW	
🕺 🗸 4" (0.65 gal/feet) 🛛 6" (1.47 gal/feet) Well Volume <u>2.6</u>	5	80% D1VV	
Inlet Depth Vo	lume DO Temperature	PH Cond	ORP .	
	ed (gal) (mg/L) (C°)	(SU) (uS/cm C).	(mV)	Remarks
134	5 1.15 20.68	6.02 12672		
1318 5	5 1.08 2058		-63.3	
1322	B 0.93 20.52			
1336 10	5 1.14 20.34	6.79 12452	-65.4	
1335	3 0,81 2036	6.76/2-121	-69.7	. .
1346 15	5 0.90 20.25	Lei76 12360	-63.9	<u>.</u>
13.52	8 1.19 20.20	6.76 1233	F-62.R	:*
1355 9.93	Sample	\sim		
	1 1	×		
ر معربوری با ۲۵ میروری				
	im			
			<u> </u>	
	······			
		<u> </u>	Continue	e remarks on reverse, if nee
187			MSC_frm-Water-Quality_Nov	2008 doc: d: 11/08: FORM FR

	WATER-QUALITY 5	
Project No028-10060-00-***		Page 1 of
	Sample No.:	
	Dated: <u>11/12/08</u> C.O.C. No.:	
Purge Method: 🖾 Centrifugal Pump	⊐ Disposable Bailer 🗆 Hand Bail 🕱 Submersible Pump 🗆 Teflon Baller 🗆 Oth	er
Purge Water Storage Container Type:	55 gallon drum Storage Location: On-site	
Date Purge Water Disposed:	Where Disposed: On-site	
Analyses Requested	No. and Type of Bottles Used	
TPHg / BTEX / MTBE by 8260	<u>3 VOAs with HCI preservative</u>	1605
TPHd / TPHmo / TPHk by 8010 with sil	ca gel clean-up 1 Liter Amber	
Lab Name: <u>Curlis and Tompki</u>	IS	
	🛛 Hand	
PUD-C)	Depth of Water (a.33) Well Depth 14.34	
	Depth of Water	1 6.33
Well Diameter:	Well Depth 9 + 1	01 6:33
Li 2" (0.16 gai/feet) Li 5" (1.02 g	l/feet) Water Column Height 0.01	
🛱 4" (0.65 gal/feet) 🛛 6" (1.47 g	I/feet) Well Volume <u>5</u> , 20 6 80% DTW _	·····
inlet Depth Time Depth to Water	Volume DO Temperature PH Cond ORP Purged (gal) (mg/L) (C°) (SU) (uS/cm C) (mV)	
KH34		Remarks
445	2 0.57 19.09 5.78 22219-33.1	
456 112	4.5 1.27 26,3 5,49 14657-96-46.	1
923 135	1 ALD 00 52 - 17 921mg 11 5	·
925		
		to see it
921	vell will recharge tast.	
azzl well	recharging slow pulling further	<u>+ Will</u>
921 . 0	rest	
120 mer	(deplatered	
1139 13,08		
141-132		
1200 1620 - 20	mpla	
		nue remarks on reverse, if neer
Y	MSC_ITM-Water-Quality_N	lov2008.doc: e; 11/08; FORN ,

LEVINE	KE			<u>.</u>		<u></u>	30104	/	Y SAMPL	
		-10060-00-***			-			•••	P	• <u> </u>
-		~							rive, Oakland, Ca	
		Erica								
									.::	
Purge Metho	d: 🗆 Cen	trifugal Pump	Disposable	e Bailer 🗖 H	and Bail 🕅 S	ubmersible	Pump 🗖 T	eflon Bailer	Other	
Purge Water	Storage Co	ontainer Type:	55 gallon o	<u>Irum</u>			•		<u></u>	
Date Purge \	Vater Dispo	sed:			Wh	ere Dispose	ed: <u>On-site</u>	²		
, <u> </u>	Analyses	Requested		No.	and Type of Bot	tles Used				
TPHg / B1	<u>EX / MTBE</u>	<u>by 8260</u>		3 VOAs	s with HCI pre	servative				
<u>TPHd / TPH</u>	no / TPHk b	oy 8010 with si	lica gel clean-	up	1 Liter Amber					
Lab Name: _	Cur	tis and Tompk	ins							
Delivery By	Courier		Þ	Hand						
	· ///~/~	2			4	<u>~</u>	<u> </u>			
Well No 《		3	L	epth of Wat		ý —				
				Vell Depth _		$\overline{\mathbf{n}}$				
		🖾 5" (1.02 g		Vater Colum		$\frac{1}{2}$		80% D	rw 9.7)
X ^{4" (0.6)}	5 gal/feet)	🗆 6° (1.47 g	gal/feet) V	Vell Volume	$-\frac{\mathcal{D}}{(\mathbf{S})}$	territero	2	L	·····	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Ren	arks
1036	Deptin	R.46		up in	(0)	(30)	(action of	(114)		
1048		rellis	1 , 1							
IIB	<u> </u>	9,66	i	1.4.45	1	614	1/27	732		
287 JUL			3,75	7:65	22,49.	2010	12305	760	<u></u>	
In .		1111	5175	0	50110	111	63		morew	sterli
1120(1		12-21		pung	not	abre	I U M	ing wp		
101	,	Will	paul	1957	110		hon.		_ ,	Al street
1124	11.92	pell	ary) we				urge	·	
1650	1.15							-		
16 40		Samp	۲ ۲						i.	
							·	I	* \ \	$ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$
······							· · · ·	·// \		$\sum_{i=1}^{n}$
									$\setminus \setminus \setminus$	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·							,	+	$\langle \rangle \rangle \langle \rangle$	· · · · ·
								<u> </u>		
								,		

ļ

;

ľ

		· ·			WAT	ER-QL	ALIT	Y SAMF	PLING	LOG
Project No	028-10060-00-*	**	•	Date: _	11	20 08			Page 1 of	
Project Name:_	MSC Oakland Edg	ewater	•	Sampli	ng Location	: <u>7101 E</u>	dgewater D	rive, Oakland,	Ca	-
Sampler's Nam	MSC Oakland Edg	STERI	lliger			Sample	No.:		C	I FB
	By: DCR									
	Centrifugal Pum									
	orage Container Typ	•								
	ter Disposed:				• •					
<u> </u>	Analyses Requested	<u>.</u>		nd Type of Bott			,	4,97		
	<u>(/MTBE_by_8260</u> _							X il	-	
	/ TPHk by 8010 with				,			893	/	
	Curtis and Tom						-	9.92		
Delivery By [Courier	X	Hand	•				-1.		
	RIN 05		09100		x 92					
	<u>RW-65</u>	De	pth of Wate	er [2	$\frac{0.12}{96}$					
	<u> </u>	^ We	ell Depth	<u> </u>	<u>パ</u> タ=	<u>→</u>	2			
	al/feet) □ 5" (1.0	2.gal/feet) Wa	ater Colum	Height	272		80% E	τw _ε _ 9	.92	
Į [4* (0.65 g	jal/feet) □ 6" (1:4	/ gal/teet) W	eli volume	<u> </u>		Cast				
Time	inlet Depth Depth to Wate	Volume Purged (gal)	DO (mg/L)	·Temperature (C°)	PH ' (SU)	Cond (uS/cm C)	ORP (mV)		Remarks	
920		875		21.57	6.26	10 41/2	-167.4		-	DE
927		14.5	2.15	21.34	6.66	10.05	-124.1	-7 .	- <u>N</u>	2
934		935	0,40	21.89	6.76	10,27	-43).9	· · ·		
945		13	1.72	20.88	6.85	10.18	-91.8	Spec Con	d 1 6550	ns/con
955		16.25	0.80	21,09	(1.82	10,25	-101.2		089	
1003		19.5	0.35	21.61	6.85	10,50	-117,4	1	1234	r
1008			1.84	21.49	6.85	10.62	-93.4	• • •	1393	
1015	Kil	a day		bang	r Ce	-	ł			
ino		<u> </u>	\sim	Dron					۰ 	
	·		1997 - 1997 -	· · · ·						
				-					~ 	· ·
			<u> </u>	1						
								· ·		
	• · · ·		-							
									•	:
· * . 41 ¥								Caultana	emarks on revel	ren if neer

Project No	028-10060-00).***		Date:	11	1910	≪	Page 1 of
Project Name	MSC Oakland E	dgewater		Samplin	g Location:	<u>7101 Ec</u>	lgewater Di	ive, Oakland, Ca
Sampler's Nam	<u>م.</u>					Sample	No.:	🗆 FB
Sampling Plan	By: DC	<u>R</u>		Dated:11	/12/08		C.O.C. No	
Purge Method:	Centrifugal P	ump 🗆 Disposable	Bailer 🗖 Hand	l Bail 🗆 Sub	mersible P	ump 🗆 Te	fion Bailer i	Other
		ype: <u>55 gallon di</u>			ge Location	n:C	n-site	
-					e Disposed	: <u>On-site</u>		
	Analyses Requested	<u> </u>		Type of Bottle	s Used			
TPHa / BTE		<u> </u>	<u>3 VOAs w</u>	ith HCl prese	ervative			
		vith silica gel clean-u						
		ompki <u>ns</u>						
Delivery By	Courier	X	Hand					
	Pin-D	1		1129	,			
Well No.	<u>RW-D</u>	[D	epth of Water /ell Depth	4 29	/			
Well Diameter	<u> </u>		/ell Depth /ater Column I		2			$ \rangle$ and
-	gal/feet) 🛛 5" (1.02 gal/feet) V	/ater Column F /ell Volume _	L95	/		80% D	TW 1.89
A 4" (0.65	gal/feet) 🛛 6" (1.47 gal/feet) V	/ell Volume _					
Time		pth Volume later Purged (gal)	DO (mg/L)	Temporature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
Q17		8 W	en Pur	mp	recyc			
97		29		Start	Pu	nge		
920	11.	29 2	0.12	3.26	7.78	2698	66,9	
925		angle					<u> </u>	
							Ļ	[]
						5	<u> </u>	
							<u> </u>	;
						···· ··		
					÷-		<u> </u>	
	· · · · · · · · · · · · · · · · · · ·				·	8		
					2 5 1			<u> </u>
			1			1		
								-

. .

JLFR	WATER-QUALITY SAMPLING LC
roject No028-10060-00-***	Date: 1. /19/02
roject Name: MSC Oakland Edgewater	Sampling Location:
	Sample No.: FB
ampling Plan By: DCR	Dated: DUP C.O.C. No.: DUP _
	and Bail 🗆 Submersible Pump 🖾 Teflon Bailer 🗖 Other
urge Water Storage Container Type: <u>55 gallon drum</u>	
ate Purge Water Disposed:	
	and Type of Bottles Used
TPHg / BTEX / MTBE_by_8260 3 VOA	
PHd / TPHmo / TPHk by 8010 with silica gel clean-up	- -
ab Name:Curtis and Tompkins	
Delivery By Courier X Hand	
Vell No. <u>KW-D4</u> . Depth of Wat	er <u>1.65</u>
	12.90
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	n Height 3.67 Q, 60
(0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume	<u>9 - 5</u>
inlet ∰ Depth Volume DO Time ∞ Depth to Water Purged (gal) (mg/L)	Temperature PH Cond ORP (C°) (SU) (uS/cm C) (mV) Remarks
350 9.03 MTTF108	well pump revoved Stant wel
12,25 >2.5 0.18	21.98 6197 32335 -153.3
	Dait to recharge
325 11.68 20	mple ENP
	r r r
	· · · · · · · · · · · · · · · · · · ·
	8
	• • • • • • •
·	
€.	

.

.

WATER-QUALITY SAMPLING LOG

	f 34 1 1					WAT	ER-QL	JALIT	Y SAMPLIN	G LOC
roject No.	028-1	0060-00-***			Date: _	1/1	9/08	<u></u>	Page	1 of
						ng Locatior	: <u>7101</u> E	dgewater D	rive, Oakland, Ca	
Sampling Plan	Bv:	DCR			Dated:1	1/12/08		C.O.C. No).: [DUP
									Other	
			55 gallon dr							
						ere Dispose	d: <u>On-site</u>			
	Analyses Re				and Type of Bott	les Used				
TPHa/ RTE	-									
			ica gel clean-u							
			<u>ns</u>							
Well No	BW-I	77	De	pth of Wate	er <u>9.62</u>	<u>}</u>				
Well Diameter	- 6'	.1	W	ell Depth _	20.11					
□ 2° (0.16	jal/feet)	🗆 5" (1.02 g	al/feet) Wa	ater Colum	n Height	<u>j.49</u>		80% D	TH 11 72	
□ 4" (0.65	gal/feet) 🚶	र्द्र 6" (1.47 g		ell Volume	1 / 1	-12-		80% D		
	Inlet	Ďepth	Volume	DO	Temperature	РН	Cond	ORP		<u>.</u>
Time	Depth	to Water	Purged (gal)	(mg/L)	(C°)	(SU)	(uS/cm C)	(mV)	Remarks	
11/17/08	Wel	e run	ip wa		more	•			i	<u></u>
			-15.5	1.21	32.23	6.55	28776	- +13.7		
405		15.16					1 Sa	nppe	·	
· .		ļ,		<u> </u>	 	<u> </u>	<u> </u>			•
			 	ļ						
	<u> </u>			<u> </u>					······································	
		<u> </u>	· · · · · ·	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
						<u> </u>		<u> </u>		
					<u> </u>	<u> </u>	<u> </u>	<u> </u>		
							<u> </u>	<u> </u>	<u> </u>	<u> </u>
										in Course
						1	1			X
					-	1			,	
		•		<u> </u>						

Proje	ct No.	028-10	1060-00-***			Date:	۱۱/	1810	8	Page 1 of
							1			rive, Oakland, Ca
Fiuje	ot Name	<u></u>	<u>AUNS</u>	,						□ FB
Com	ling Diop	C								D.: CI DUP
										Other
				55 gallon dru						
-		-					-	d: <u>On-site</u>		
	Fulge wa	,			<u></u>		<u> </u>			• X.
		Analyses Re				nd Type of Bottl with 니CI proc				,
			F -							•
				ca gel clean-u						
				<u>)s</u>			•			
Deliv	very By [L Courier		XI	⊓and		<u>.</u>	······		
Well	Nó.	KW - S)/0	De	pth of Wate	er	8.84	<u> </u>		
	Diameter	1	N.		ell Depth	• • •	1,4D			•
			🗆 5" (1.02 ga		•	Height	10,5	او		
	•		54 6" (1.47 ga						80% D	TW
	14 (0.00 į		N ⁰ (9.							•
1	lime	iniet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
15	39			4	0.82	22.89	7.05	18337	-57.3	
	-53			Ś	1.03	22.87	6.98	18217	-61.9	
1 [(12	1.6D	23.14	7.08	8820	-59.3	
	nγl			1 (1.17	27,03		1860	المسيخية أرا	2=64,6
16	08								5 x +	
16	20			16		<u></u> u	7.01	1200	- 0 - 1	Sompy
	08			16				1200		somp y
	08					<u> </u>			•••	Samp y
16	08									Som y
	08									som y
	08			A						som y
	08			A						som y
	08			A						som y
	08			A						som y
	08			A						som y
	08			A						som y

APPENDIX C

Laboratory Results and Chain-of-Custody Documentation

Laboratory Job Number 207988 ANALYTICAL REPORT

Levine Fricke	Project : 028-10060-00
) Powell Street	Location : Oakland MSC
ryville, CA 94608	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
TB-111808	207988-001
RW-D10	207988-002
MW-8	207988-003
MW-17-FB	207988-004
MW-17	207988-005
MW-16	207988-006
RW-D1	207988-007
RW-D4	207988-008
RW-D7	207988-009
MW-15	207988-010
MW-10	207988-011
MW-10D	207988-012

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Signature:

Senior Program Manager

Date: <u>12/15/2008</u>

Date: <u>12/15/2008</u>

NELAP # 01107CA

Page 1 of ____

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 207988 LFR Levine Fricke 028-10060-00 Oakland MSC 11/19/08 11/19/08

This data package contains sample and QC results for eleven water samples, requested for the above referenced project on 11/19/08. The samples were received cold and intact. All data were e-mailed to Daren Roth on 12/09/08.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for bromofluorobenzene in the method blank for batch 145309, the method blank for batch 145369, and the method blanks for batch 145422; no target analytes were detected in these samples. RW-D4 (lab # 207988-008) had pH greater than 2. No other analytical problems were encountered.

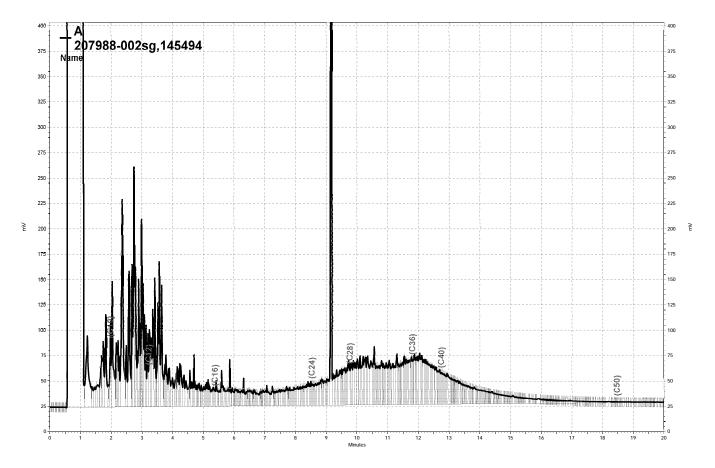
		Total H	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	207988 LFR Levine F: 028-10060-00	ricke		Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B
Matrix: Units: Batch#:	Water ug/L 145494			Received: Prepared:	11/19/08 12/01/08
Field ID: Type: Lab ID: Diln Fac:	RW-D10 SAMPLE 207988-002 1.000			Sampled: Analyzed: Cleanup Method:	11/18/08 12/05/08 EPA 3630C
Anal Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C	б		Result 760 1,000 Y 650	RL 50 50 300	
Surro Hexacosane	gate	%REC 105	Limits 58-127		
Field ID: Type: Lab ID: Diln Fac:	MW-8 SAMPLE 207988-003 1.000			Sampled: Analyzed: Cleanup Method:	11/19/08 12/05/08 EPA 3630C
Anal Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C	6	ND ND ND	1	RL 50 50 300	
Surro Hexacosane	gate	%REC 86	Limits 58-127		
Field ID: Type: Lab ID: Diln Fac:	MW-17-FB SAMPLE 207988-004 1.000			Sampled: Analyzed: Cleanup Method:	11/19/08 12/05/08 EPA 3630C
Anal Kerosene C10-C1		ND	Result	RL 50	
Diesel C10-C24 Motor Oil C24-C		ND ND	1	50 300	
Surro Hexacosane	gate	%REC 98	Limits 58-127		

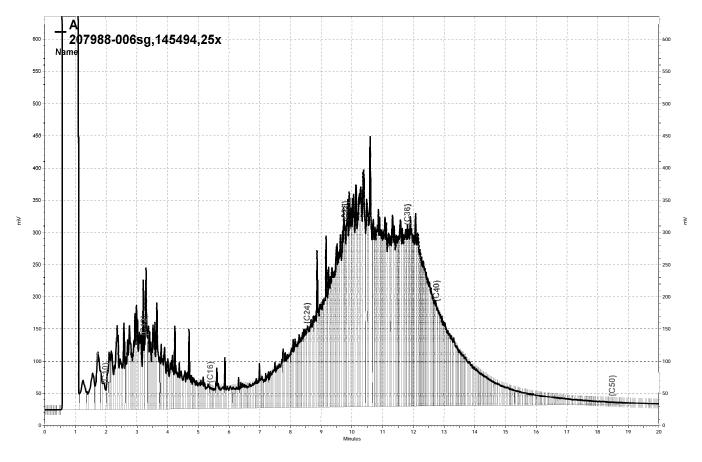
Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 4

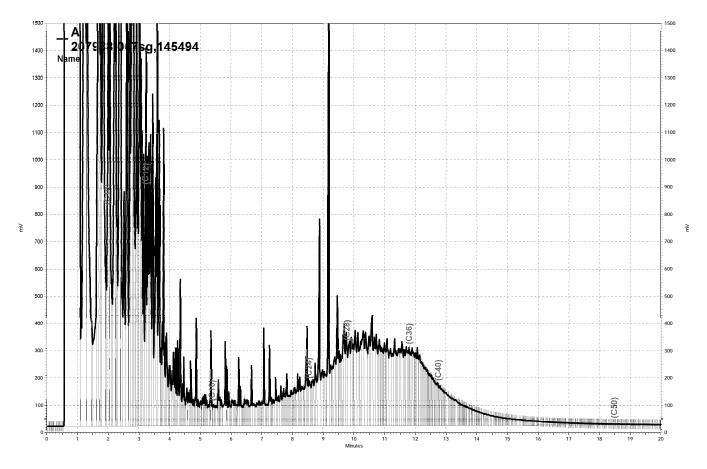
		Total Extracta	able Hydrocarbo	ns
Lab #: Client:	207988 LFR Levine Fi	ricke	Location: Prep:	Oakland MSC EPA 3520C
Project#: Matrix:	028-10060-00 Water		Analysis: Received:	EPA 8015B 11/19/08
Units:	uq/L		Prepared:	12/01/08
Batch#:	145494			
Field ID:	MW-17		Sampled:	11/19/08
Type: Lab ID:	SAMPLE 207988-005		Analyzed: Cleanup Method:	12/06/08 FDA 3630C
Diln Fac:	1.000		creanup mecnou.	EFA JUJUC
	lyte	Result	RL	
Kerosene C10-C Diesel C10-C24		ND ND	50 50	
Motor Oil C24-		ND	300	
Surr	ogate	%REC Limits		
Hexacosane	09400	115 58-127		
Field ID: Type: Lab ID: Diln Fac:	MW-16 SAMPLE 207988-006 25.00		Sampled: Analyzed: Cleanup Method:	11/19/08 12/05/08 EPA 3630C
	lyte	Result	RL	
Kerosene C10-C Diesel C10-C24		31,000 52,000 Y	1,300 1,300	
Motor Oil C24-		110,000	7,500	
	ogate	%REC Limits		
Hexacosane		DO 58-127		
Field ID: Type: Lab ID: Diln Fac:	RW-D1 SAMPLE 207988-007 1.000		Sampled: Analyzed: Cleanup Method:	11/19/08 12/05/08 EPA 3630C
	lyte	Result	RL	
Kerosene C10-C Diesel C10-C24		9,400 11,000 Y	50 50	
Motor Oil C24-		4,900	300	
Surr Hexacosane	rogate	%REC Limits 99 58-127		

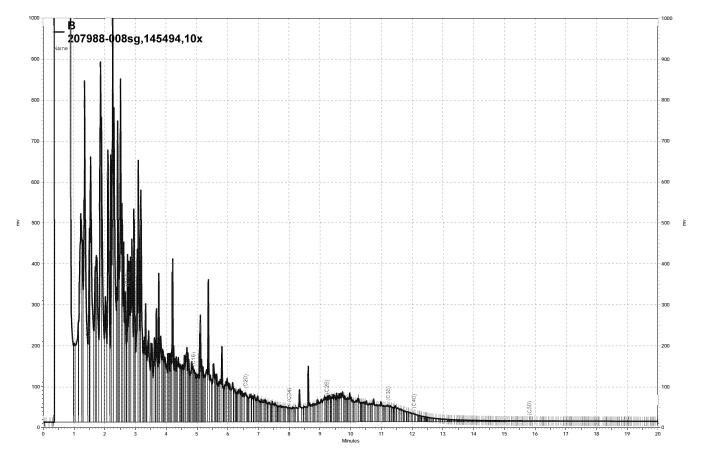
Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 4

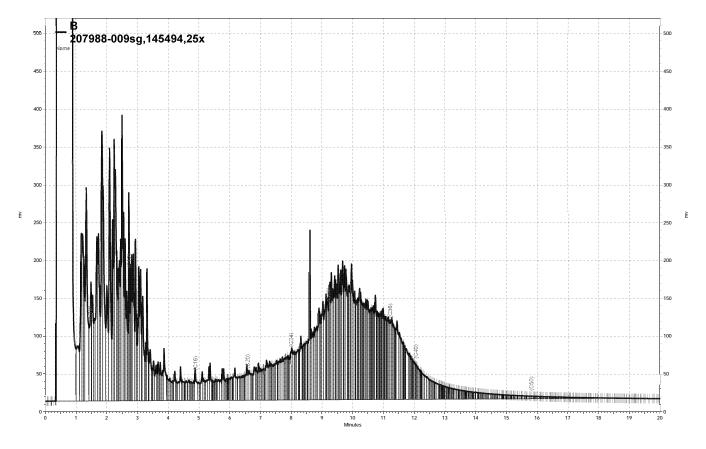
	2	fotal Extr	actable Hyd	lrocarboi	ns	
Lab #: Client:	207988 LFR Levine Fr	ricke	Locatic Prep:	n:	Oakland MSC EPA 3520C	
Project#:	028-10060-00		Analysi	s:	EPA 8015B	
Matrix:	Water		Receive		11/19/08	
Units: Batch#:	ug/L 145494		Prepare	d:	12/01/08	
Batch#•	145494					
Field ID: Type: Lab ID: Diln Fac:	RW-D4 SAMPLE 207988-008 10.00		Sampled Analyze Cleanup	d:	11/19/08 12/09/08 EPA 3630C	
_			•.			
Ana Kerosene C10-C1		<u>Resu</u> 46,00		RL 500		
Diesel C10-C24		55,00		500		
Motor Oil C24-0	236	9,70		3,000		
Gurre	anto	%REC Lim	nits			
Hexacosane	ogate		127			
Field ID: Type: Lab ID: Diln Fac:	RW-D7 SAMPLE 207988-009 25.00		Sampled Analyze Cleanup	d:	11/19/08 12/06/08 EPA 3630C	
Ana Kerosene C10-C1	lyte	<u>Resu</u> 43,00		RL 1,300		
Diesel C10-C24 Motor Oil C24-C		43,00 54,00 59,00	Y 0	1,300 1,300 7,500		
Surro			nits			
Hexacosane	Jyace		127			
	NUL 1 E				11/10/00	
Field ID: Type:	MW-15 SAMPLE		Sampled Analyze		11/19/08 12/06/08	
Lab ID:	207988-010		Cleanup	Method:	EPA 3630C	
Diln Fac:	1.000					
Ana	lvte	Resu	ılt	RL		
Kerosene C10-C1	ló	ND		50		
Diesel C10-C24			.0 Y	50		
Motor Oil C24-0	236	ND		300		
Surro	ogate	%REC Lim	nits			
Hexacosane		104 58-	127			

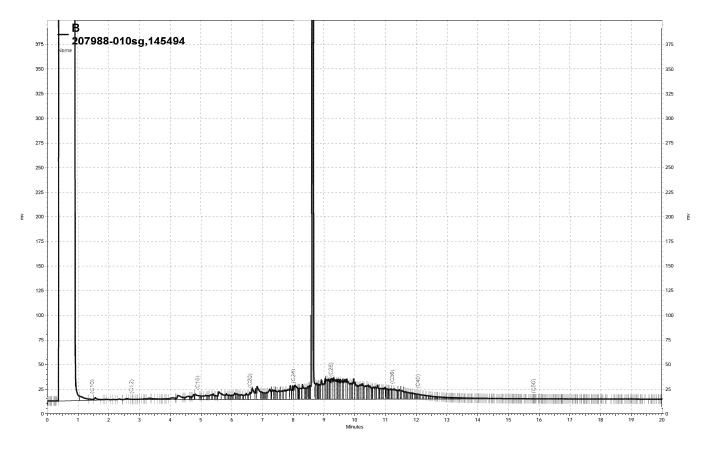

Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 3 of 4

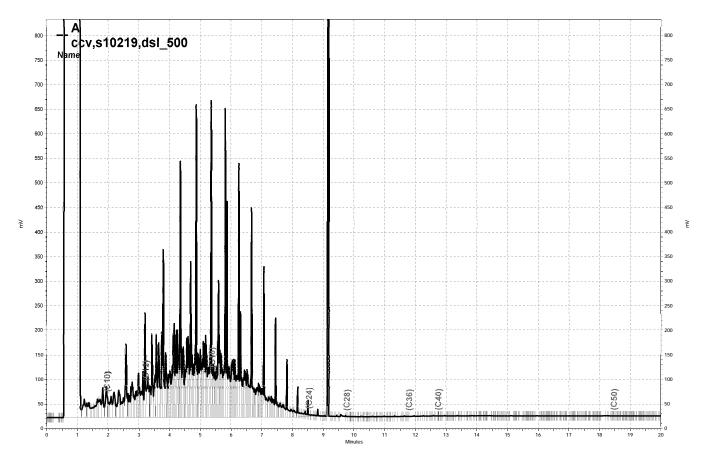

		Total E	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	207988 LFR Levine F 028-10060-00	ricke		Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B
Matrix: Units: Batch#:	Water ug/L 145494			Received: Prepared:	11/19/08 12/01/08
Field ID: Type: Lab ID: Diln Fac:	MW-10 SAMPLE 207988-011 1.000			Sampled: Analyzed: Cleanup Method:	11/19/08 12/06/08 EPA 3630C
Anal			Result	RL	
Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C		ND ND ND	1	50 50 300	
Surro	ogate	%REC	Limits		
Hexacosane		94	58-127		
Field ID: Type: Lab ID: Diln Fac:	MW-10D SAMPLE 207988-012 1.000			Sampled: Analyzed: Cleanup Method:	11/19/08 12/06/08 EPA 3630C
Anal Kerosene C10-C1		ND	Result	RL 50	
Diesel C10-C24 Motor Oil C24-C		ND ND	1	50 300	
Surro	ogate	%REC			
Hexacosane		100	58-127		
Type: Lab ID: Diln Fac:	BLANK QC473083 1.000			Analyzed: Cleanup Method:	12/05/08 EPA 3630C
Anal			Result	RL	
Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C		ND ND ND	1	50 50 300	
Surro Hexacosane	ogate	% REC 105	Limits 58-127		


	:	Iotal 1	Extracta	ble Hydrocarbo	ns			
Lab #:	207988			Location:	Oakland MSC			
Client:	LFR Levine Fi	ricke		Prep:	EPA 3520C			
Project#:	028-10060-00			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	145494			-
Units:	ug/L			Prepared:	12/01/08			
Diln Fac:	1.000			Analyzed:	12/04/08			
Type: Lab ID:	BS QC473084			Cleanup Method:	EPA 3630C			
An	alyte		Spiked	Result	%REC	Limits		
Diesel C10-C2	24		2,500	1,866	75	52-120		
Sur	rogate	%REC	Limits					
Hexacosane		96	58-127					
Type: Lab ID:	BSD QC473085			Cleanup Method:	EPA 3630C			
An	alyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C2	24		2,500	2,097	84	52-120	12	30
Sur	rogate	%REC	Limits					
Hexacosane		106	58-127			,		

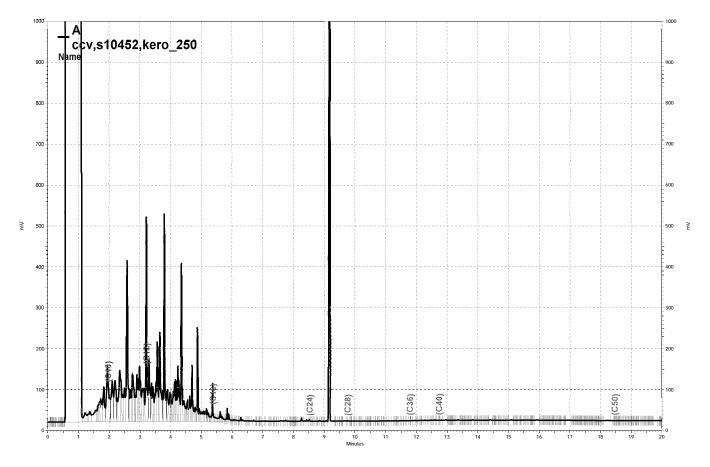

-\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a045, A


-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a048, A

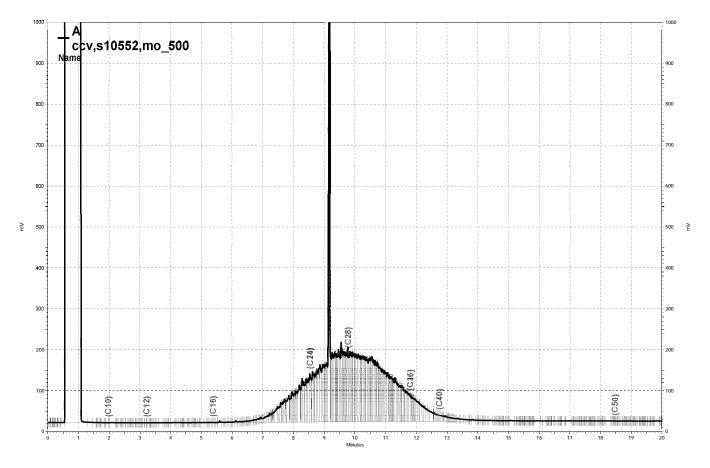

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a046, A



-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\343b025, B



-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b084, B



-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\338a032, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a038, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a037, A

		Gasoline	by GC/MS		
Lab #: Client: Project#:	207988 LFR Levine Frick 028-10060-00	e	Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Matrix: Units:	Water ug/I		Received:	11/19/08	
Field ID: Type: Lab ID: Diln Fac:	RW-D10 SAMPLE 207988-002 1.000		Batch#: Sampled: Analyzed:	145487 11/18/08 12/01/08	
Analy	yte	Result		RT.	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		640 Y ND 2.7 0.69 5.6 17 0.71		50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro	rate %	REC Limits			
Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	ane-d4 87 10	80-137 0 80-120			
Field ID: Type: Lab ID: Diln Fac:	MW-8 SAMPLE 207988-003 1.000		Batch#: Sampled: Analyzed:	145309 11/19/08 11/24/08	
Anal	yte	Result		RI.	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenze	thane 98 ane-d4 93 10	80-137 4 80-120			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 10

		Gasc	oline by GC/MS		
Lab #: Client:	207988 LFR Levine Fr	icke	Location: Prep:	Oakland MSC EPA 5030B	
Project#: Matrix: Units:	028-10060-00 Water ug/L		Analysis: Received:	EPA 8260B 11/19/08	
Field ID: Type: Lab ID: Diln Fac:	MW-17-FB SAMPLE 207988-004 1.000		Batch#: Sampled: Analyzed:	145309 11/19/08 11/24/08	
	Lyte	Resu	ılt	RL	
Gasoline C7-C1: MTBE Benzene Toluene Ethylbenzene	2	ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50	
m,p-Xylenes o-Xylene		ND ND		0.50	
Surr	ogate	%REC Lim	nits		
Dibromofluorom 1,2-Dichloroet Toluene-d8 Bromofluoroben	ethane nane-d4	98 80- 92 80- 103 80-	-125 -137 -120 -122		
Field ID: Type: Lab ID: Diln Fac:	MW-17 SAMPLE 207988-005 1.000		Batch#: Sampled: Analyzed:	145309 11/19/08 11/25/08	
	Lyte	Resu	ılt	RL	
Gasoline C7-C1: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	2	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
	ogate	%REC Lim	nits		
Dibromofluorome 1,2-Dichloroet Toluene-d8 Bromofluoroben:	nane-d4	93 80- 104 80-	-125 -137 -120 -122		

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 10

		Gasoline	by GC/MS		
Lab #: Client:	207988 LFR Levine Fricke 028-10060-00	2	Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Project#: Matrix: Units:	028-10080-00 Water ug/L		Received:	11/19/08	
Field ID: Type: Lab ID: Diln Fac:	MW-16 SAMPLE 207988-006 1.000		Batch#: Sampled: Analyzed:	145561 11/19/08 12/03/08	
Anal		Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene		150 Y ND 21 1.7 2.7		50 0.50 0.50 0.50 0.50 0.50	
m,p-Xylenes o-Xylene		1.1 ND		0.50 0.50	
0 Kyrene				0.30	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	thane 94 ane-d4 88 101				
Field ID: Type: Lab ID: Diln Fac:	RW-D1 SAMPLE 207988-007 4.000		Batch#: Sampled: Analyzed:	145422 11/19/08 11/26/08	
Anal		Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		5,100 Y ND 270 85 150 470 240		200 2.0 2.0 2.0 2.0 2.0 2.0 2.0	
Surro Dibromofluorome	thane 98	EC Limits 80-125			
1,2-Dichloroeth Toluene-d8 Bromofluorobenz	102				

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 10

		Gasoline	by GC/MS		
Lab #: Client:	207988 LFR Levine Fricke		Location: Prep:	Oakland MSC EPA 5030B	
Project#: Matrix:	028-10060-00 Water		Analysis: Received:	EPA 8260B 11/19/08	
Units:	ug/L		Keceived:	11/19/00	
Field ID:	RW-D4		Batch#:	145422	
Type: Lab ID:	SAMPLE 207988-008		Sampled: Analyzed:	11/19/08 11/26/08	
Diln Fac:	3.333		-		
Anal	yte	Result		RL	
Gasoline C7-C12 MTBE		7,600 Y ND		170 1.7	
Benzene		210		1.7	
Toluene Ethylbenzene		17 270		1.7 1.7	
m,p-Xylenes		260		1.7	
o-Xylene		20		1.7	
Surro		EC Limits			
Dibromofluorome		80-125 80-137			
Toluene-d8	102	80-120			
Bromofluorobenz	ene 93	80-122			
Field ID:	RW-D7		Batch#:	145369	
Type:	SAMPLE		Sampled:	11/19/08	
Lab ID: Diln Fac:	207988-009 6.250		Analyzed:	11/25/08	
Anal Gasoline C7-C12		Result 3,400		RL 310	
MTBE		ND		3.1	
Benzene Toluene		100 54		3.1 3.1	
Ethylbenzene		13		3.1	
m,p-Xylenes		430		3.1	
o-Xylene		400		3.1	
Surro	gate %R	EC Limits			
Dibromofluorome		80-125 80-137			
Toluene-d8	101	80-120			
Bromofluorobenz	iene 111	80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 4 of 10

		Ga	asoline	by GC/MS		
Lab #: Client:	207988 LFR Levine Fricl	ce		Location: Prep:	Oakland MSC EPA 5030B	
Project#: Matrix: Units:	028-10060-00 Water ug/L			Analysis: Received:	EPA 8260B 11/19/08	
UIILES.	ug/ II					
Field ID: Type: Lab ID: Diln Fac:	MW-15 SAMPLE 207988-010 1.000			Batch#: Sampled: Analyzed:	145309 11/19/08 11/25/08	
Anal			esult		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND	1.1 0.68		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro	ate (REC	Limits			
Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	thane 98 ane-d4 92 10	3 2)1	80-125 80-137 80-120 80-122			
Field ID: Type: Lab ID: Diln Fac:	MW-10 SAMPLE 207988-011 1.000			Batch#: Sampled: Analyzed:	145309 11/19/08 11/25/08	
Anal			esult		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND	11		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro	gate	REC	Limits			
Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	thane 9' ane-d4 9: 10	7 2) 4	80-125 80-137 80-120 80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 5 of 10

		Gasoline	by GC/MS		
Lab #: Client:	207988 LFR Levine Fric	rke	Location: Prep:	Oakland MSC EPA 5030B	
Project#:	028-10060-00		Analysis:	EPA 8260B	
Matrix: Units:	Water ug/L		Received:	11/19/08	
0	49/H				
Field ID:	MW-10D SAMPLE		Batch#: Sampled:	145309 11/19/08	
Type: Lab ID:	207988-012		Analyzed:	11/25/08	
Diln Fac:	1.000			, _2, 00	
Anal		Result		RL	
Gasoline C7-C12 MTBE	2	ND ND		50 0.50	
Benzene		11		0.50	
Toluene Ethylbenzene		ND ND		0.50 0.50	
m,p-Xylenes		ND		0.50	
o-Xylene		ND		0.50	
	ogate	%REC Limits			
Dibromofluorome		98 80-125 92 80-137			
Toluene-d8	1	LO3 80-120			
Bromofluorobenz	zene 1	L17 80-122			
Type:	BLANK		Batch#:	145309	
Lab ID: Diln Fac:	QC472282 1.000		Analyzed:	11/24/08	
Ana Gasoline C7-C12	lyte	Result		RL	
MTBE	-	ND		0.50	
Benzene Toluene		ND ND		0.50 0.50	
Ethylbenzene		ND		0.50	
m,p-Xylenes		ND		0.50	
o-Xylene		ND		0.50	
	ogate	%REC Limits			
Dibromofluorome		98 80-125 90 80-137			
Toluene-d8	1	L04 80-120			
Bromofluorobenz	zene 1	L23 * 80-122			

Г

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 6 of 10

		Gasc	oline by	GC/MS		
Lab #:	207988			cation:	Oakland MSC	
Client: Project#:	LFR Levine F 028-10060-00			ep: alysis:	EPA 5030B EPA 8260B	
Matrix:				ceived:	11/19/08	
Units:	ug/L		110	001104	, _,, 00	
Type: Lab ID: Diln Fac:	BLANK QC472283 1.000			tch#: alyzed:	145309 11/24/08	
Anal		Resi	ult		RL	
Gasoline C7-C12 MTBE	2	ND ND			50 0.50	
Benzene		ND			0.50	
Toluene		ND			0.50	
Ethylbenzene		ND			0.50	
m,p-Xylenes		ND ND			0.50	
o-Xylene		ND			0.50	
Surro	ogate		mits			
Dibromofluorome			-125			
1,2-Dichloroeth Toluene-d8	lane-d4		-137 -120			
Bromofluorobenz	zene		-122			
Type: Lab ID: Diln Fac:	BLANK QC472551 1.000		An	tch#: alyzed:	145369 11/25/08	
Anal		Resu	ult		RL	
Gasoline C7-C12 MTBE	2	ND ND			50 0.50	
Benzene		ND			0.50	
Toluene		ND			0.50	
Ethylbenzene		ND			0.50	
m,p-Xylenes o-Xylene		ND ND			0.50 0.50	
0-VATEIIG					0.30	
Surro			mits			
Dibromofluorome			-125			
1,2-Dichloroeth Toluene-d8	lane-04		-137 -120			
Bromofluorobenz	zene		-120			
	-					

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 7 of 10

		Gasoline	by GC/MS		
Lab #: Client: Project#: Matrix: Units:	207988 LFR Levine Fr 028-10060-00 Water ug/L	icke	Location: Prep: Analysis: Received:	Oakland MSC EPA 5030B EPA 8260B 11/19/08	
Type: Lab ID: Diln Fac:	BLANK QC472774 1.000		Batch#: Analyzed:	145422 11/26/08	
Anal Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result ND ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	ethane nane-d4	%REC Limits 98 80-125 89 80-137 103 80-120 129 *			
Type: Lab ID: Diln Fac:	BLANK QC472775 1.000		Batch#: Analyzed:	145422 11/26/08	
Anal Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		Result ND ND ND ND ND ND ND ND		RL 50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	ethane nane-d4	%RECLimits9780-1258980-13710480-12012680-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 8 of 10

		Ga	soline	by GC/MS		
Lab #: Client: Project#:	207988 LFR Levine Fr 028-10060-00	icke		Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Matrix: Units:	Water ug/L			Received:	11/19/08	
Туре:	BLANK			Batch#:	145487	
Lab ID: Diln Fac:	QC473035 1.000			Analyzed:	12/01/08	
Anal			esult		RL	
Gasoline C7-C12 MTBE		ND ND			50 0.50	
Benzene		ND			0.50 0.50	
Toluene Ethylbenzene		ND ND			0.50	
m,p-Xylenes o-Xylene		ND ND			0.50 0.50	
0-Ayrene		ND			0.50	
Surro Dibromofluorome			.imits 80-125			
1,2-Dichloroeth		90 8	80-137			
Toluene-d8 Bromofluorobenz	ono	105 8 118 8	80-120 80-122			
BIOMOTIUOIODENZ	6116	110 0	0-122			
Туре:	BLANK			Batch#:	145487	
Lab ID: Diln Fac:	QC473036 1.000			Analyzed:	12/01/08	
Anal Gasoline C7-C12		Re ND	esult		RL 50	
MTBE		ND			0.50	
Benzene		ND			0.50 0.50	
Toluene Ethylbenzene		ND ND			0.50	
m,p-Xylenes		ND			0.50	
o-Xylene		ND			0.50	
Surro			imits			
Dibromofluorome 1,2-Dichloroeth			80-125 80-137			
Toluene-d8 Bromofluorobenz			80-120 80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 9 of 10

		G	asoline	by GC/MS		
Lab #: Client: <u>Project</u> #: Matrix: Units:	207988 LFR Levine Fr 028-10060-00 Water ug/L	icke		Location: Prep: Analysis: Received:	Oakland MSC EPA 5030B EPA 8260B 11/19/08	
Type: Lab ID: Diln Fac:	BLANK QC473427 1.000			Batch#: Analyzed:	145561 12/03/08	
Anal Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND ND			RL 50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	thane ane-d4	%REC 92 87 103 119	Limits 80-125 80-137 80-120 80-122			
Type: Lab ID: Diln Fac:	BLANK QC473428 1.000			Batch#: Analyzed:	145561 12/03/08	
Anal Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND			RL 50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	thane ane-d4	%REC 93 89 102 114	Limits 80-125 80-137 80-120 80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 10 of 10

	Gasc	oline by GC/MS		
Lab #:	207988	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	145309	
Units:	ug/L	Analyzed:	11/24/08	
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC472284

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.57	98	70-125
Benzene	20.00	21.69	108	80-120
Toluene	20.00	20.05	100	80-120
Ethylbenzene	20.00	19.60	98	80-122
m,p-Xylenes	40.00	39.62	99	80-126
o-Xylene	20.00	20.09	100	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-125	
1,2-Dichloroethane-d4	89	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	103	80-122	

Type: B	SD	Lab ID:	QC472285			
Analyt	e Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20	.00 19.	43 97	70-125	1	20
Benzene	20	.00 21.	06 105	80-120	3	20
Toluene	20	.00 19.	69 98	80-120	2	20
Ethylbenzene	20	.00 19.	62 98	80-122	0	20
m,p-Xylenes	40	.00 38.	94 97	80-126	2	20
o-Xylene	20	.00 19.	88 99	80-120	1	20

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-125	
1,2-Dichloroethane-d4	89	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	105	80-122	

Gasoline by GC/MS					
Lab #:	207988	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145309		
Units:	ug/L	Analyzed:	11/24/08		
Diln Fac:	1.000				

Type:

Toluene-d8

Bromofluorobenzene

BS

Lab ID:

QC472286

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	877.6	88	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-125
1,2-Dichloroethane-d4	89	80-137
Toluene-d8	103	80-120
Bromofluorobenzene	109	80-122

Type:	BSD			Lab ID:	QC	472287			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C	27-C12		1,000		858.0	86	80-120	2	20
	Surrogate	%REC	Limits						
Dibromoflu	oromethane	99	80-125						
1 2 - Dichlo	roethane-d4	89	80-137						

80-120

80-122

104

Gasoline by GC/MS					
Lab #:	207988	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145369		
Units:	ug/L	Analyzed:	11/25/08		
Diln Fac:	1.000				

Type:

BS

Lab ID:

QC472553

Analyte	Spiked	Result	%REC	Limits
MTBE	22.50	22.05	98	70-125
Benzene	22.50	23.66	105	80-120
Toluene	22.50	22.28	99	80-120
Ethylbenzene	22.50	21.92	97	80-122
m,p-Xylenes	45.00	43.37	96	80-126
o-Xylene	22.50	21.88	97	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-125	
1,2-Dichloroethane-d4	87	80-137	
Toluene-d8	104	80-120	
Bromofluorobenzene	106	80-122	

Type: BSD	Lab ID	: QC47	2554			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	22.50	21.87	97	70-125	1	20
Benzene	22.50	22.79	101	80-120	4	20
Toluene	22.50	21.10	94	80-120	5	20
Ethylbenzene	22.50	20.74	92	80-122	6	20
m,p-Xylenes	45.00	41.12	91	80-126	5	20
o-Xylene	22.50	20.81	93	80-120	5	20

Surrogate	%REC	Limits	
Dibromofluoromethane	98	80-125	
1,2-Dichloroethane-d4	88	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	106	80-122	

Gasoline by GC/MS					
Lab #:	207988	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145369		
Units:	ug/L	Analyzed:	11/25/08		
Diln Fac:	1.000				

Type:

Bromofluorobenzene

BS

Lab ID:

QC472555

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	804.5	80	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-125
1,2-Dichloroethane-d4	91	80-137
Toluene-d8	104	80-120
Bromofluorobenzene	113	80-122

Type: BSD			Lab ID:	QC4	72556			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		840.0	84	80-120	4	20
Surrogate	%REC	Limits						
Dibromofluoromethane	96	80-125						
1,2-Dichloroethane-d4	90	80-137						
Toluene-d8	104	80-120						

80-122

	Gasc	oline by GC/MS		
Lab #:	207988	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	145422	
Units:	ug/L	Analyzed:	11/26/08	
Diln Fac:	1.000			

Type:

o-Xylene

BS

Lab ID:

QC472776

23.39

94

80-120 5

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	23.58	94	70-125
Benzene	25.00	26.84	107	80-120
Toluene	25.00	25.71	103	80-120
Ethylbenzene	25.00	24.69	99	80-122
m,p-Xylenes	50.00	48.29	97	80-126
o-Xylene	25.00	24.60	98	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	103	80-120
Bromofluorobenzene	107	80-122

Type: BSD	Lab ID:	QC47	2777			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	23.50	94	70-125	0	20
Benzene	25.00	25.17	101	80-120	6	20
Toluene	25.00	23.64	95	80-120	8	20
Ethylbenzene	25.00	23.38	94	80-122	5	20
m,p-Xylenes	50.00	45.95	92	80-126	5	20

25.00

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-125
1,2-Dichloroethane-d4	87	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	106	80-122

	Gasoline	by GC/MS	
Lab #:	207988	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145422
Units:	ug/L	Analyzed:	11/26/08
Diln Fac:	1.000		

Type:

Bromofluorobenzene

BS

Lab ID:

QC472778

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	907.1	91	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-125
1,2-Dichloroethane-d4	89	80-137
Toluene-d8	104	80-120
Bromofluorobenzene	110	80-122

Type: BSD			Lab ID:	QC4	72779			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		855.1	86	80-120	6	20
Surrogate	%REC	Limits						
Dibromofluoromethane	96	80-125						
1,2-Dichloroethane-d4								
1,2 DICHIOIOECHAHE UI	90	80-137						

80-122

	Gaso	oline by GC/MS		
Lab #:	207988	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	145487	
Units:	ug/L	Analyzed:	12/01/08	
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC473037

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	17.61	88	70-125
Benzene	20.00	21.25	106	80-120
Toluene	20.00	20.04	100	80-120
Ethylbenzene	20.00	19.67	98	80-122
m,p-Xylenes	40.00	38.36	96	80-126
o-Xylene	20.00	19.30	97	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-125	
1,2-Dichloroethane-d4	88	80-137	
Toluene-d8	99	80-120	
Bromofluorobenzene	107	80-122	

Type: BSD	Lab ID:	QC47	73038			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	17.70	89	70-125	1	20
Benzene	20.00	20.75	104	80-120	2	20
Toluene	20.00	19.52	98	80-120	3	20
Ethylbenzene	20.00	19.05	95	80-122	3	20
m,p-Xylenes	40.00	37.98	95	80-126	1	20
o-Xylene	20.00	19.08	95	80-120	1	20

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-125	
1,2-Dichloroethane-d4	88	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	110	80-122	

	Gasoline	by GC/MS	
Lab #:	207988	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145487
Units:	ug/L	Analyzed:	12/01/08
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC473039

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	825.5	83	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-125
1,2-Dichloroethane-d4	86	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	109	80-122

Type: BSD			Lab ID:	QC	473040			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		853.4	85	80-120	3	20
Surrogate	%REC	Limits						
Dibromofluoromethane	95	80-125						
1,2-Dichloroethane-d4	87	80-137						
Toluene-d8	100	80-120						
Bromofluorobenzene	104	80-122						

	Gasol	ine by GC/MS	
Lab #:	207988	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145561
Units:	ug/L	Analyzed:	12/03/08
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC473429

Analyte	Spiked	Result	%REC	Limits
MTBE	22.50	19.34	86	70-125
Benzene	22.50	23.69	105	80-120
Toluene	22.50	22.45	100	80-120
Ethylbenzene	22.50	22.40	100	80-122
m,p-Xylenes	45.00	44.62	99	80-126
o-Xylene	22.50	22.66	101	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-125	
1,2-Dichloroethane-d4	84	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	104	80-122	

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	22.50	19.24	86	70-125	1	20
Benzene	22.50	23.76	106	80-120	0	20
Toluene	22.50	22.51	100	80-120	0	20
Ethylbenzene	22.50	21.87	97	80-122	2	20
m,p-Xylenes	45.00	43.68	97	80-126	2	20
o-Xylene	22.50	22.09	98	80-120	3	20

Surrogate	%REC	Limits	
Dibromofluoromethane	92	80-125	
1,2-Dichloroethane-d4	87	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	104	80-122	

	Gasoline	e by GC/MS	
Lab #:	207988	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145561
Units:	ug/L	Analyzed:	12/03/08
Diln Fac:	1.000		

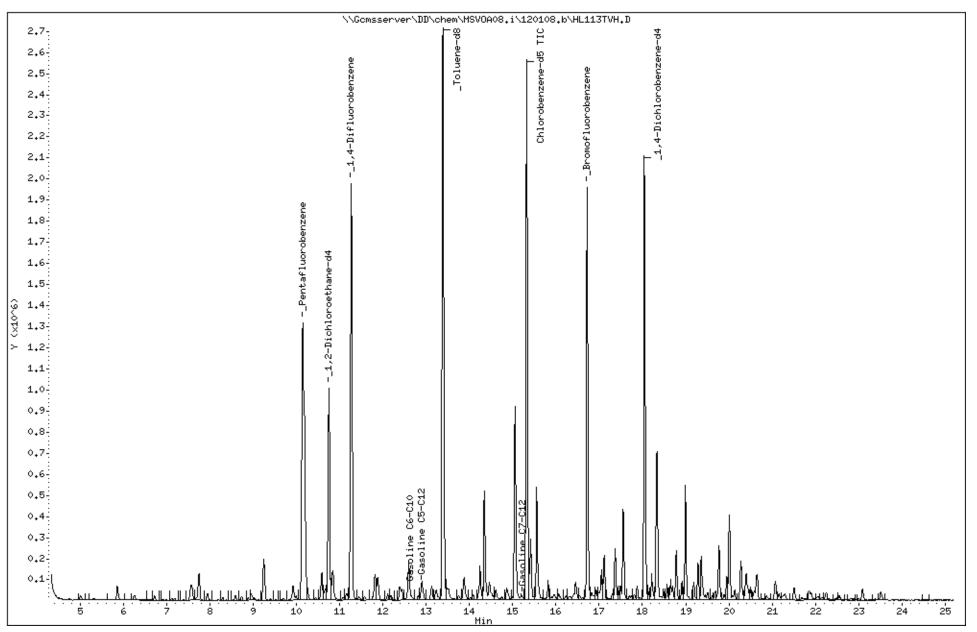
Type:

BS

Lab ID: QC473431

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	972.7	97	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	109	80-122

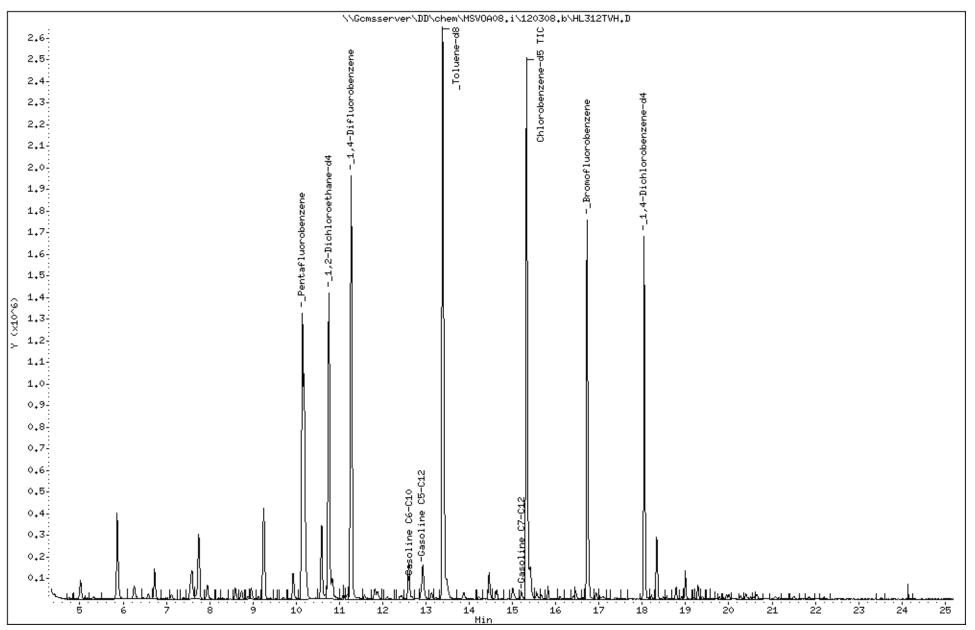

Type: BSD			Lab ID:	Q	C473432			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		997.8	100	80-120	3	20
Surrogate	%REC	Limits						
Dibromofluoromethane	93	80-125						
1,2-Dichloroethane-d4	85	80-137						
Toluene-d8	99	80-120						
Bromofluorobenzene	108	80-122						

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\120108.b\HL113TVH.D
Date : 01-DEC-2008 18:10
Client ID: DYNA P&T
Sample Info: \$,207988-002

Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00


Column phase:

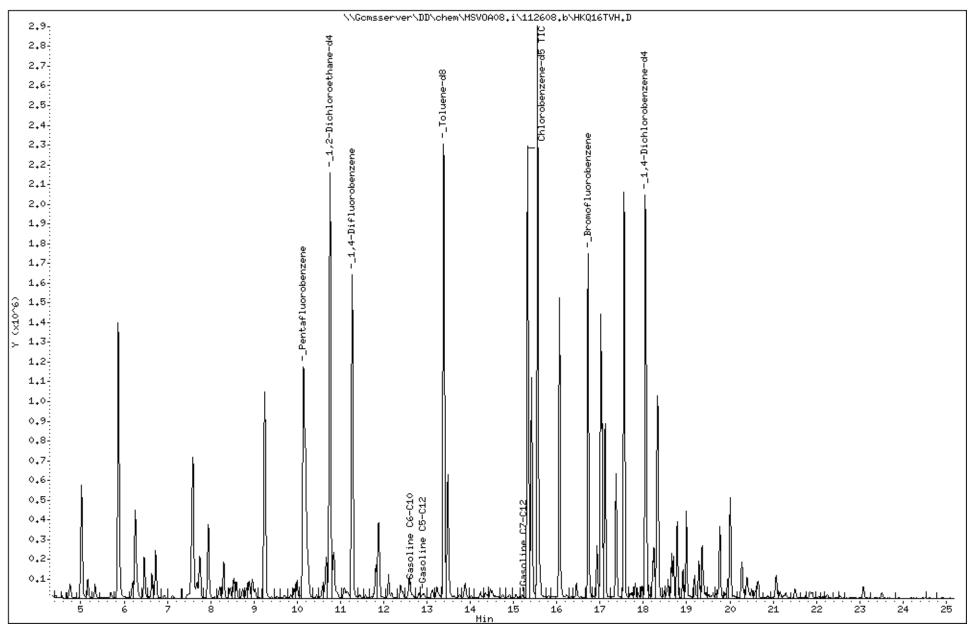
Data File: \\Gcmsserver\DD\chem\MSVOA08.i\120308.b\HL312TVH.D Date : 03-DEC-2008 17:30 Client ID: DYNA P&T Sample Info: S,207988-006

Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00

Column phase:

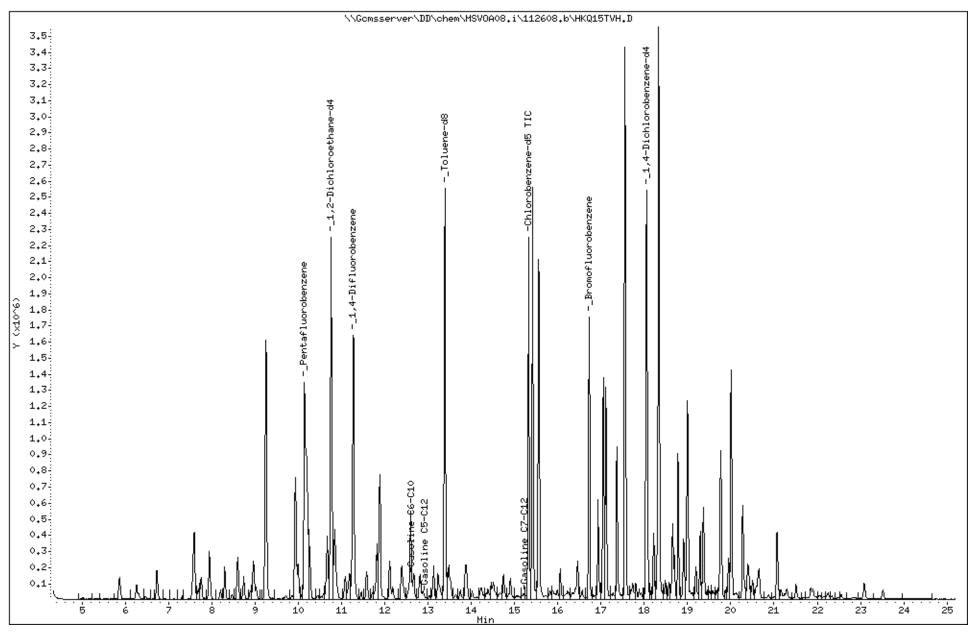

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\112608.b\HKQ16TVH.D Date : 26-NOV-2008 19:26 Client ID: DYNA P&T Sample Info: S,207988-007

Column phase:

Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00



Data File: \\Gomsserver\DD\chem\MSVOA08.i\112608.b\HKQ15TVH.D Date : 26-NOV-2008 18:51 Client ID: DYNA P&T Sample Info: S,207988-008

Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00

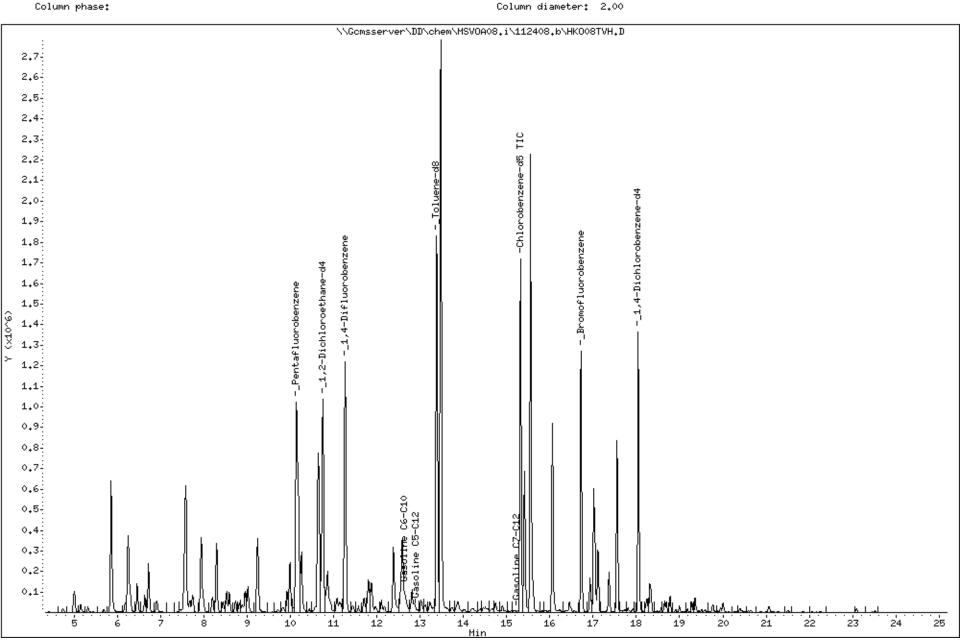
Column phase:

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\112508.b\HKP15TVH.D Date : 25-NOV-2008 19:25 Client ID: DYNA P&T Sample Info: S,207988-009

Instrument: MSV0A08.i

Operator: voc

Column diameter: 2.00


	\\Gomsserver\	r\DD\chem\MSV0A08.i\112508.b\HKP15TVH.D
2.2	-	Chlorobenzene-d5 TIC
2,1		
2.0	- 	3 y y y y y y y y y y y y y y y y y y y
1.9	- 8 5	open start picture in the star
1,8	Li la	
1.7	4 _1,4-Difluorobenzene	
1.6		
1.5	Pentafluorobenzene 	
1.4	et 12	
1.3		
	2-Did	
() () () () () () () () () () () () () (Pentafluorobenzene 1,2-Dichloroethan	
1.1		
> 1.0		
0.9		
0.8		
0.7		
0.6		
0.5		
0.4	- - -	
0.3		
0.2		
0.1		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20 21 22 23 24 25 Min

Column phase:

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\112408.b\HK008TVH.D
Date : 24-NOV-2008 13:46
Client ID: DYNA P&T
Sample Info: CCV,S9459,0.015/100,

Instrument: MSVOA08.i

Operator: voc Column diameter: 2.00

Curtis & Tomp Analytical Laborator		CH	IAIN C	OF CU	STC	DY			Pa	ige	_of
2323 Fifth S Berkeley, CA (510) 486-090 (510) 486-05	Street 94710 D Phone	C & T L	.ogin #: <u>2</u>	0798	8		*		Analysis	5	
Project No.: のみ Project Name: <i>の</i> の Project P.O.: のみ	kland M. 6-10060-	D^OO Report SC Compa OO Telepho	<u>to: Del</u> ny: LPR	NW/N Ven Rot Inc 52450	lws 4 DD		MTBE(236)				
Turnaround Time:	Standa	nd Fax:	510	65272	746		Ŭ ₹				
Lab San No. San 1 TB-11190 2 RW-D10 3 MW-8 4 NW-17 5 MW-17 6 MW-17		Sampling Date Time MASIDA DZC MAROG 1630 IV 1906 1430 IV 1906 1430 IV 1906 1450 IV 1908 1450 IV 1908 1445	Xinter Soil Water Waste	# of Containers	HCL HSO HCL HSO HCL HSO HCL HSO HCL HSO HCL HCL HCL HCL HCL HCL HCL HCL HCL HCL		H X X X X TPHOL / BT	>			
7 RW2DI 9 RW-D4 9 RW-D7 0 MW-D7 11 MW-T0 12 MW-102	2	11/19/08 925 11/9/08 925 11/9/08 1325 11/19/08 1955 11/19/08 1555 11/19/08 1555			XXXXX	XXXXXX			S ADOT	Pee	3ECUT
Notes: USE GEL CLEANU TPHA/molik PTOT TO au	SIECA PON Samples alysis	SAMPLE RECEIPT	RELINQUISH	IED BY:	108	DATE / TIME		D BY: Har	<i>ş</i> lı _j	<u> </u>	78 /755 PATE / TIME PATE / TIME
K HAN KW	YVDAS A	VOT TRESEASE	ρ			DATE / TIME				C	ATE / TIME

	ER RECEIPT CHECE			Curtis & Tor	npkias. Ltd
Login # Client	207988 LFR INC	Date Received	1 11-19-07 Troject OARCAN	Number of coolers	2
Date Opt Date Log	cned <u> -19.07</u> By (j ged in By (j	print) <u>J. Rasaur</u> print) <u>M. V</u> [L	(sign)	(mat)	The
t. Did co	oler come with a shipp	ing slip (airbill,			
2B. Were 3. Were c 4. Were c 5. Is the p 6. Indicate	custody seals present? ow many custody seals intact up ustody papers dry and i ustody papers filled out project identifiable from the packing in cooler:	☐ YES Name on arrival? intact when rece t properly (ink, s a custody papers (if other, descr	(circle) on coole sived? signed, etc)? s? (If so fill out top ibe)	CT on samples DateYES N	NO NA
7. Temper	Bubble Wrap \mathcal{K} f Cloth material \square C ature documentation:	Foam blocks Cardboard	☐ Bags ☐ Styrofoam	None Paper towels	
8. Were M If Y 9. Did all b 10. Are san 11. Are san 12. Do the s 13. Was suf 14. Are the 15. Are bub 16. Was the	pe of ice used: A Wet Samples Received on ic Samples received on ic Samples received on ic ethod 5035 sampling c ES, what time were the ottles arrive unbroken/in ples in the appropriate ple labels present, in g sample labels agree wit ficient amount of samp samples appropriately bles > 6mm absent in V client contacted conce ES, Who was called?	ce & cold witho e directly from a containers presen ey transferred to unopened? e containers for good condition a th custody paper ple sent for tests preserved? VOA samples?	ut a temperature b the field. Cooling nt?	lank process had begun YE YE YE YE YE YE YE YE YE YE YE YE	S NO S NO S NO S NO S NO S NO D N/A
SOP Volume: Section: Page:	Client Services 1.1.2 1 of 1			Rev. 6 Numbe Effective: 23 Ju Cooler Receipt Checklist_	r L of 3 14 2008

Laboratory Job Number 208024 ANALYTICAL REPORT

LFR Levine Fricke	Project : 028-10060-00
1900 Powell Street	Location : Oakland MSC
Emeryville, CA 94608	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
TB-112008	208024-001
RW-B4	208024-002
RW-C5	208024-003
RW-C5-D	208024-004
RW-C3	208024-005
RW-C1-FB	208024-006
RW-C1	208024-007
RW-B2	208024-008
RW-C3-RE	208024-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Project Manager

Signature:

Senior Program Manager

Date: <u>12/22/2008</u>

Date: <u>12/22/2008</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 208024 LFR Levine Fricke 028-10060-00 Oakland MSC 11/21/08 11/20/08

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 11/21/08. The samples were received cold and intact. All data were e-mailed to Daren Roth on 12/15/08.

TPH-Extractables by GC (EPA 8015B):

Low surrogate recovery was observed for hexacosane in RW-C3 (lab # 208024-005). The sample was re extracted outside the EPA recommended hold time under (CT# 208024-009); affected data was qualified with "b". Both sets of data have been reported. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for bromofluorobenzene in RW-C1-FB (lab # 208024-006) and the method blank for batch 145309; no target analytes were detected in these samples. RW-C1 (lab # 208024-007) had pH greater than 2. No other analytical problems were encountered.

	Tota	l Extracta	ble Hydrocarbo	ns
Lab #: Client:	208024 LFR Levine Fricke		Location: Prep:	Oakland MSC EPA 3520C
Project#:	028-10060-00		Analysis:	EPA 8015B
Matrix:	Water		Sampled:	11/20/08
Units: Diln Fac:	ug/L 1.000		Received:	11/20/08
	1.000			
Field ID:	RW-B4		Prepared:	12/02/08
Type: Lab ID:	SAMPLE 208024-002		Analyzed: Cleanup Method:	12/04/08 EPA 3630C
Batch#:	145538		creanup Mechou.	EFA JUJUC
Ana	lyte	Result	RL	
Kerosene C10-C	16	2,900	50	
Diesel C10-C24 Motor Oil C24-		3,100 Y 930	50 300	
			500	
Surr Hexacosane	ogate %R 93	<u>EC Limits</u> 58-127		
inemacobaire		50 127		
Field ID:	RW-C5		Prepared:	12/02/08
Type:	SAMPLE		Analyzed: Cleanup Method:	12/05/08
Lab ID: Batch # :	208024-003 145538		creanup method.	EPA SOSUC
300		Result	RL	
Kerosene C10-C	lyte 16	3,300	50	
Diesel C10-C24		3,700 Y	50	
Motor Oil C24-	C36	430	300	
Surr Hexacosane	ogate %R 91	EC Limits 58-127		
liexacosalie	71	50 127		
Field ID:	RW-C5-D		Prepared:	12/02/08
Type:	SAMPLE		Analyzed:	12/05/08
Lab ID: Batch#:	208024-004 145538		Cleanup Method:	EPA 3630C
703	lyte	Result	RL	
Kerosene C10-C	16	3,100	50	
Diesel C10-C24 Motor Oil C24-		3,400 Y	50	
MOLOF OIL C24-	0.30	ND	300	
		EC Limits		
Hexacosane	100	58-127		

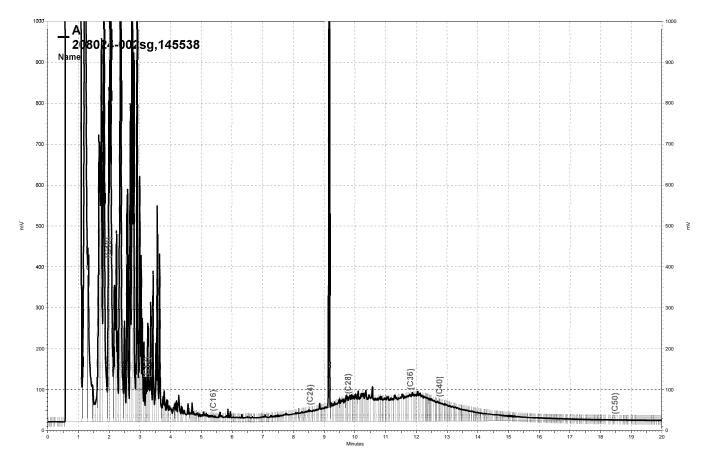
*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard b= See narrative ND= Not Detected RL= Reporting Limit Page 1 of 4

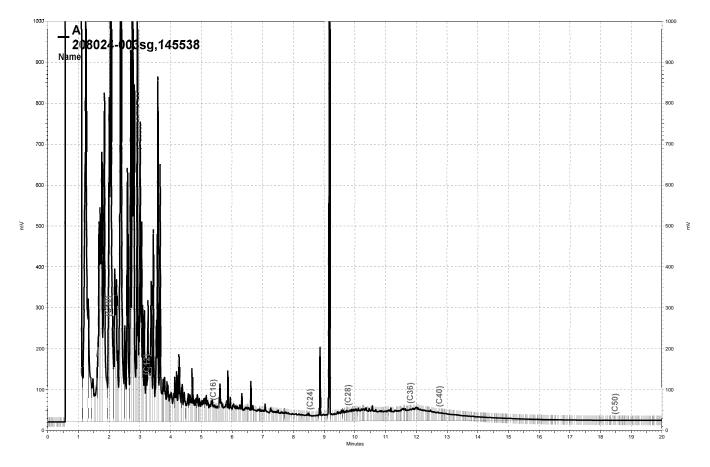
	Total Extractable Hydrocarbons						
Lab #: Client: Project#:	208024 LFR Levine F 028-10060-00		Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B			
Matrix: Units: Diln Fac:	Water ug/L 1.000		Sampled: Received:	11/20/08 11/20/08			
Field ID: Type: Lab ID: Batch#:	RW-C3 SAMPLE 208024-005 145538		Prepared: Analyzed: Cleanup Method:	12/02/08 12/05/08 EPA 3630C			
Ana Kerosene C10-C Diesel C10-C24	lyte 16	Result ND 190 Y	RL 50 50				
Motor Oil C24-	C36	600	300				
Surr Hexacosane	ogate	%REC Limits 14 * 58-127					
Field ID: Type: Lab ID: Batch#:	RW-C1-FB SAMPLE 208024-006 145538		Prepared: Analyzed: Cleanup Method:	12/02/08 12/05/08 EPA 3630C			
Ana Kerosene C10-C Diesel C10-C24 Motor Oil C24-		Result ND ND ND	RL 50 50 300				
Surr Hexacosane	ogate	%REC Limits 95 58-127					
Field ID: Type: Lab ID: Batch#:	RW-C1 SAMPLE 208024-007 145538		Prepared: Analyzed: Cleanup Method:	12/02/08 12/05/08 EPA 3630C			
	lyte	Result	RL				
Kerosene C10-C Diesel C10-C24 Motor Oil C24-		76 Y 290 Y 1,200	50 50 300				
Surr Hexacosane	ogate	%REC Limits 79 58-127					

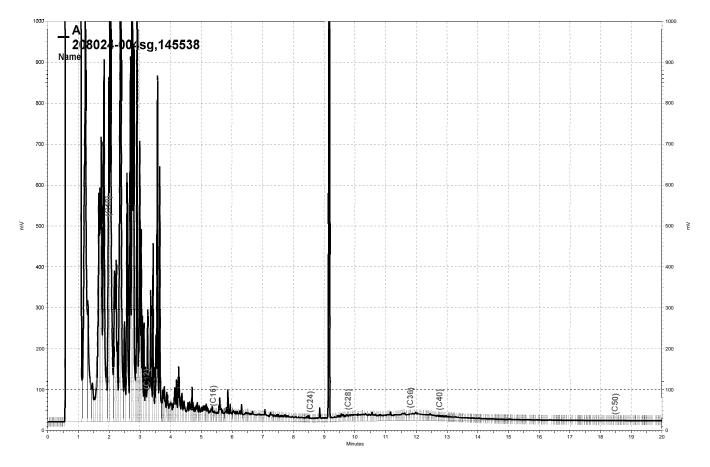
*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard b= See narrative ND= Not Detected RL= Reporting Limit Page 2 of 4

	Total Extractable Hydrocarbons							
Lab #: Client: Project#: Matrix: Units: Diln Fac:	208024 LFR Levine F 028-10060-00 Water ug/L 1.000			Location: Prep: Analysis: Sampled: Received:	Oakland MSC EPA 3520C EPA 8015B 11/20/08 11/20/08			
Field ID: Type: Lab ID: Batch#:	RW-B2 SAMPLE 208024-008 145538			Prepared: Analyzed: Cleanup Method:	12/02/08 12/05/08 EPA 3630C			
Ar	alyte	Resi		RL				
Kerosene C10- Diesel C10-C2 Motor Oil C24	24		50 Y 90 Y	50 50 300				
Sur	rogate	%REC Lin	nits					
Hexacosane		85 58-	-127					
Field ID: Type: Lab ID: Batch#:	RW-C3-RE SAMPLE 208024-009 145662			Prepared: Analyzed: Cleanup Method:	12/05/08 12/11/08 EPA 3630C			
Ar	alyte	Resi		RL				
Kerosene C10- Diesel C10-C2 Motor Oil C24	24	72	70 Y b 20 Y b 00 b	50 50 300				
Sur	rogate	%REC Lin	nits					
Hexacosane			-127					
Type: Lab ID: Batch#:	BLANK QC473291 145538			Prepared: Analyzed: Cleanup Method:	12/02/08 12/04/08 EPA 3630C			
	alyte	Resi	ılt	RL				
Kerosene C10- Diesel C10-C2 Motor Oil C24	24	ND ND ND		50 50 300				
Sur	rogate	%REC Lin	nits					
Hexacosane			-127					

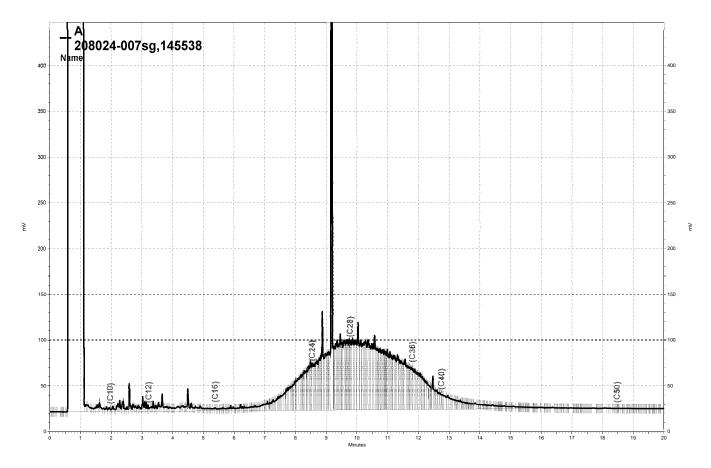
*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard b= See narrative ND= Not Detected RL= Reporting Limit Page 3 of 4

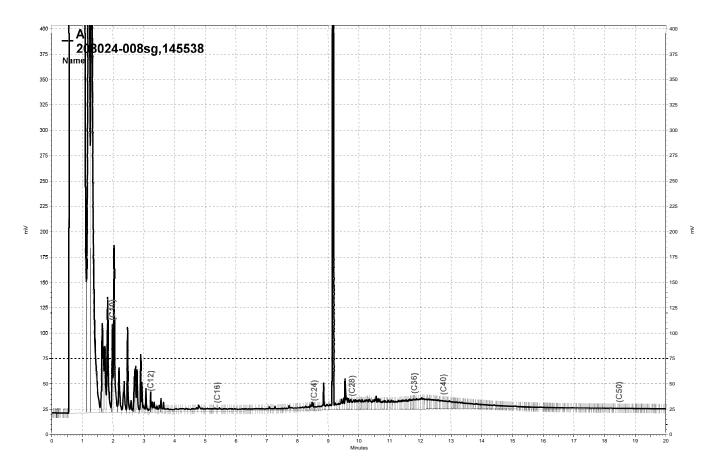

		Total E	xtracta	ble Hydrocarbo	ns	
Lab #: Client: Project#:	208024 LFR Levine F 028-10060-00			Location: Prep: Analysis:	Oakland MSC EPA 3520C EPA 8015B	
Matrix: Units: Diln Fac:	Water ug/L 1.000			Sampled: Received:	11/20/08 11/20/08	
Type: Lab ID: Batch#:	BLANK QC473889 145662			Prepared: Analyzed: Cleanup Method:	12/05/08 12/10/08 EPA 3630C	
Ana			Result	RL		
Kerosene C10-C1 Diesel C10-C24 Motor Oil C24-C		ND ND ND		50 50 300		
Surro Hexacosane	ogate	% REC 124	Limits 58-127			

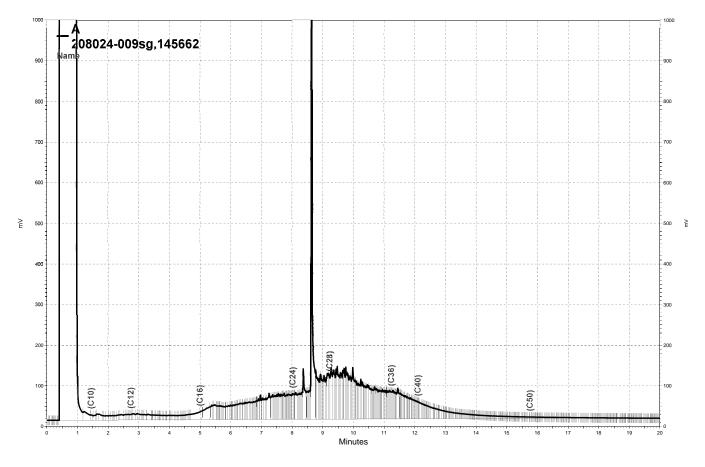

	Total Extractable Hydrocarbons								
Lab #:	208024			Location:	Oakland MSC				
Client:	LFR Levine F	ricke		Prep:	EPA 3520C				
Project#:	028-10060-00			Analysis:	EPA 8015B				
Matrix:	Water			Batch#:	145538				
Units:	ug/L			Prepared:	12/02/08				
Diln Fac:	1.000			Analyzed:	12/05/08				
Type: Lab ID:	BS QC473292			Cleanup Method:	EPA 3630C				
A	nalyte		Spiked	Result	%REC	Limits			
Diesel C10-C	24		2,500	1,730	69	52-120			
Sui	rrogate	%REC	Limits						
Hexacosane		88	58-127						
Type: Lab ID:	BSD QC473293			Cleanup Method:	EPA 3630C				
	nalyte		Spiked	Result	%REC	Limits	RPD	Lim	
Diesel C10-C	24		2,500	2,068	83	52-120	18	30	
Sui	rrogate	%REC	Limits						
Hexacosane		107	58-127						

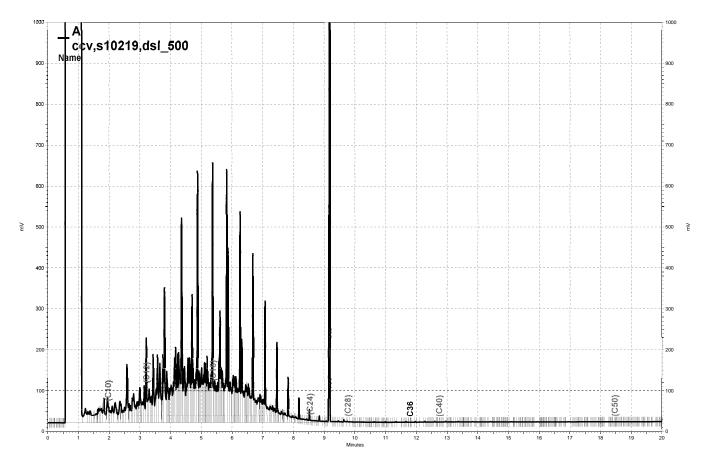

	Total Extractable Hydrocarbons								
Lab #:	208024			Location:	Oakland MSC				
Client:	LFR Levine Fr	icke		Prep:	EPA 3520C				
Project#:	028-10060-00			Analysis:	EPA 8015B				
Matrix:	Water			Batch#:	145662				
Units:	ug/L			Prepared:	12/05/08				
Diln Fac:	1.000			Analyzed:	12/13/08				
Type: Lab ID:	BS QC473890			Cleanup Method:	EPA 3630C				
	Analyte		Spiked	Result	%REC	Limits			
Diesel C10-	-C24		2,500	2,452	98	52-120			
2	Surrogate	%REC	Limits						
Hexacosane		88	58-127						
Type: Lab ID:	BSD QC473891			Cleanup Method:	EPA 3630C				
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim	
Diesel C10-	-C24		2,500	2,407	96	52-120	2	30	
S	Surrogate	%REC	Limits						
Hexacosane		85	58-127						

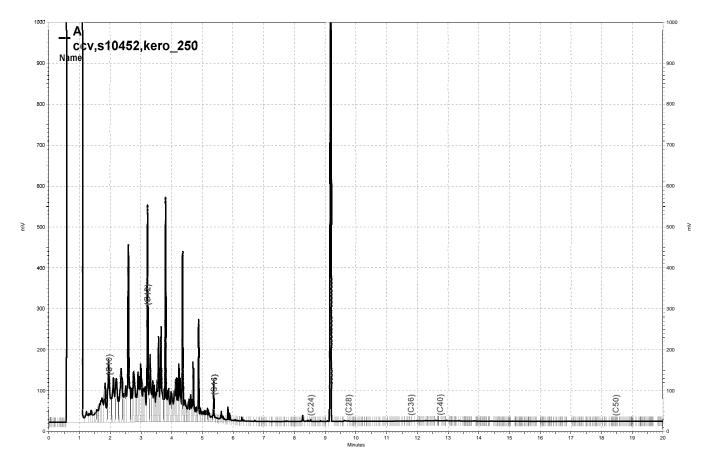
-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a012, A

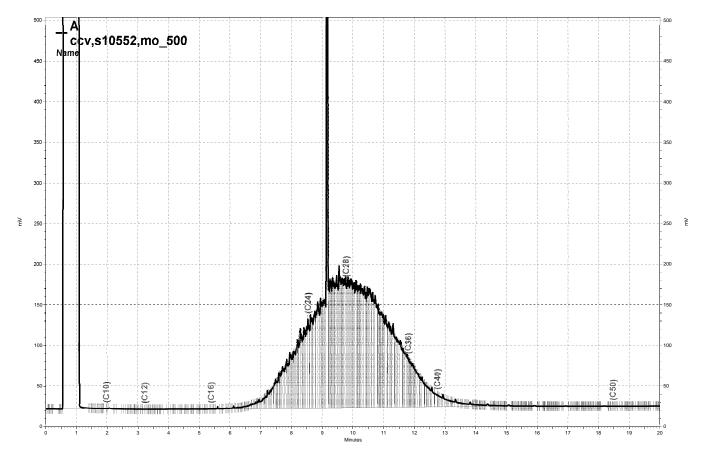

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a013, A


-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a014, A


-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a015, A


-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a017, A


-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a018, A


-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\344a061, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a003, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a008, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a004, A

	Gasc	oline by GC/MS		
Lab #:	208024	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	11/20/08	
Units:	ug/L	Received:	11/20/08	

Field ID: Type: Lab ID:	RW-B4 SAMPLE 208024-002		Diln Fac: Batch#: Analyzed:	50.00 145487 12/02/08
An	alvte	Result	RL	
Gasoline C7-C		6,000 Y	2,500	
MTBE		ND	25	
Benzene		3,100	25 25	
Toluene		100	25	
Ethylbenzene		270	25	
m,p-Xylenes		610	25	
o-Xylene		69	25	
Sur	rogate	%REC Limits		

Surrogate	%REC	Limits	(
Dibromofluoromethane	94	80-125	
1,2-Dichloroethane-d4	86	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	117	80-122	

Field ID: Type: Lab ID:	RW-C5 SAMPLE 208024-003			Diln Fac: Batch#: Analyzed:		40.00 145561 12/04/08	
Ana	lvte		Result		RT.		
Gasoline C7-C1	2		5,800 Y		2,000		
MTBE		NI			20		
Benzene			2,900		20		
Toluene			91		20		
Ethylbenzene			120		20		
m,p-Xylenes			380		20		
o-Xylene			57		2.0		
		•					
	ogate	%REC	Limits				
Dibromofluorom		93	80-125				
1,2-Dichloroet	nane-d4	83	80-137				
Toluene-d8		103	80-120				
Bromofluoroben	zene	117	80-122				

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 7

	Gasc	oline by GC/MS		
Lab #:	208024	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	11/20/08	
Units:	ug/L	Received:	11/20/08	

Field ID:	RW-C5-D	Diln Fac:	50.00
Type:	SAMPLE	Batch#:	145462
Lab ID:	208024-004	Analyzed:	12/01/08

Analyte	Result	RL	
Gasoline C7-C12	3,900 Y	2,500	
MTBE	ND	25	
Benzene	2,700	25	
Toluene	78	25	
Ethylbenzene	91	25	
m,p-Xylenes	310	25	
o-Xylene	48	25	

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-125
1,2-Dichloroethane-d4	85	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	119	80-122

Field ID: Type: Lab ID:	RW-C3 SAMPLE 208024-005			Diln Fac: Batch#: Analyzed:	-	1.000 145462 11/30/08	
Ana	lyte	1	Result		RL		
Gasoline C7-C12	2	ND			50		
MTBE		ND			0.50	0	
Benzene			1.1		0.50	0	
Toluene		ND			0.50	0	
Ethylbenzene			0.67		0.50		
m,p-Xylenes		ND			0.50		
o-Xylene		ND			0.50	0	
	ogate	%REC	Limits				
Dibromofluorome		96	80-125				
1,2-Dichloroeth	nane-d4	91	80-137				
Toluene-d8		102	80-120				
Bromofluoroben:	zene	119	80-122				

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 7

	Gasc	oline by GC/MS		
Lab #:	208024	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	11/20/08	
Units:	ug/L	Received:	11/20/08	

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-125
1,2-Dichloroethane-d4	90	80-137
Toluene-d8	104	80-120
Bromofluorobenzene	123 *	80-122

Field ID: Type: Lab ID:	RW-C1 SAMPLE 208024-007			Diln Fac: Batch#: Analyzed:	1.	.000 45309 1/25/08	
Ana	lyte	F	Result		RL		
Gasoline C7-C12	2	ND			50		
MTBE		ND			0.50		
Benzene			б.4		0.50		
Toluene		ND			0.50		
Ethylbenzene		ND			0.50		
m,p-Xylenes			0.51		0.50		
o-Xylene		ND			0.50		
		-					
	ogate	%REC	Limits				
Dibromofluorome		99	80-125				
1,2-Dichloroeth	nane-d4	93	80-137				
Toluene-d8		102	80-120				
Bromofluorobenz	zene	118	80-122				

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 7

		Ga	soline	by GC/MS		
Lab #: Client: Project#:	208024 LFR Levine F: 028-10060-00	ricke		Location: Prep: Analysis:		Oakland MSC EPA 5030B EPA 8260B
Matrix: Units:	Water ug/L			Sampled: Received:		11/20/08 11/20/08
Field ID: Type: Lab ID:	RW-B2 SAMPLE 208024-008			Diln Fac: Batch#: Analyzed:		50.00 145462 12/01/08
Ana Gasoline C7-C12		Re 7	esult ,900 Y		RL 2,500	
MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	2	ND 3,	,200 ,100 140 390 330		2,500 25 25 25 25 25 25	
Surro			Limits			
Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	nane-d4	85 8 102 8	30-125 30-137 30-120 30-122			
Type: Lab ID: Diln Fac:	BLANK QC472282 1.000			Batch#: Analyzed:		145309 11/24/08
Anal Gasoline C7-C12		Re NA	esult		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		NA ND ND ND ND ND			0. 0. 0. 0. 0.	50 50 50 50
Surro			Limits			
Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	nane-d4	90 8 104 8	30-125 30-137 30-120 30-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 4 of 7

	Gasoline	by GC/MS		
Lab #: 208024 Client: LFR Levine D Project#: 028-10060-00		Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Matrix: Water Units: ug/L	5	Sampled: Received:	11/20/08 11/20/08	
Type: BLANK Lab ID: QC472283 Diln Fac: 1.000		Batch#: Analyzed:	145309 11/24/08	
Analyte	Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surrogate	%REC Limits			
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	99 80-125 89 80-137 103 80-120 122 80-122			
Type: BLANK Lab ID: QC472943 Diln Fac: 1.000		Batch#: Analyzed:	145462 11/30/08	
Analyte	Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surrogate	%REC Limits			
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	94 80-125 88 80-137 102 80-120 122 80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 5 of 7

	Gasoline	by GC/MS		
Lab #: 208024 Client: LFR Levine 1	Fricke	Location: Prep:	Oakland MSC EPA 5030B	
Project#: 028-10060-0		Analysis:	EPA 8260B	
Matrix: Water		Sampled:	11/20/08	
Units: ug/L		Received:	11/20/08	
Type: BLANK Lab ID: QC473035 Diln Fac: 1.000		Batch#: Analyzed:	145487 12/01/08	
Analyte	Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surrogate	%REC Limits			
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	96 80-125 90 80-137 105 80-120 118 80-122			
Type: BLANK Lab ID: QC473036 Diln Fac: 1.000		Batch#: Analyzed:	145487 12/01/08	
Analyte	Result		RL	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50	
Surrogate	%REC Limits			
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	93 80-125 87 80-137 103 80-120 119 80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 6 of 7

		C	Sasoline	by GC/MS		
Lab #: Client:	208024 LFR Levine B	Fricke		Location: Prep:	Oakland MSC EPA 5030B	
Project#:	028-10060-00)		Analysis:	EPA 8260B	
Matrix: Units:	Water ug/L			Sampled: Received:	11/20/08 11/20/08	
UIILS.	ug/ L			Received	11/20/08	
Type: Lab ID:	BLANK QC473427			Batch#:	145561	
Diln Fac:	1.000			Analyzed:	12/03/08	
	lyte		Result		RL	
Gasoline C7-C1 MTBE	2	ND ND			50 0.50	
Benzene		NL			0.50	
Toluene		ND			0.50	
Ethylbenzene m,p-Xylenes		ND ND			0.50 0.50	
o-Xylene		ND			0.50	
Surr	ogate	%REC	Limits			
Dibromofluorom	ethane	92	80-125			
1,2-Dichloroet	hane-d4	87	80-137			
Toluene-d8 Bromofluoroben	zene	103 119	80-120 80-122			
Type: Lab ID: Diln Fac:	BLANK QC473428 1.000			Batch#: Analyzed:	145561 12/03/08	
DIIN Fac.	1.000					
Ana Gasoline C7-C1	lyte	NE	Result		RL 50	
MTBE	2	NL ND			0.50	
Benzene		ND	1		0.50	
Toluene Ethylbenzene		ND ND			0.50 0.50	
m,p-Xylenes		ND			0.50	
o-Xylene		ND	1		0.50	
	ogate	%REC	Limits			
Dibromofluorom	ethane	93	80-125			
1,2-Dichloroet	nane-04	89 102	80-137 80-120			
Bromofluoroben	zene	114	80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 7 of 7

Gasoline by GC/MS					
Lab #:	208024	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145309		
Units:	ug/L	Analyzed:	11/24/08		
Diln Fac:	1.000				

Type:

BS

Lab ID:

QC472284

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.57	98	70-125
Benzene	20.00	21.69	108	80-120
Toluene	20.00	20.05	100	80-120
Ethylbenzene	20.00	19.60	98	80-122
m,p-Xylenes	40.00	39.62	99	80-126
o-Xylene	20.00	20.09	100	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-125	
1,2-Dichloroethane-d4	89	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	103	80-122	

Type: BSD	Lab ID:	Lab ID: QC472285				
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	19.43	97	70-125	1	20
Benzene	20.00	21.06	105	80-120	3	20
Toluene	20.00	19.69	98	80-120	2	20
Ethylbenzene	20.00	19.62	98	80-122	0	20
m,p-Xylenes	40.00	38.94	97	80-126	2	20
o-Xylene	20.00	19.88	99	80-120	1	20

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-125	
1,2-Dichloroethane-d4	89	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	105	80-122	

Gasoline by GC/MS					
Lab #:	208024	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145309		
Units:	ug/L	Analyzed:	11/24/08		
Diln Fac:	1.000				

Type:

Bromofluorobenzene

BS

Lab ID:

QC472286

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	877.6	88	80-120

Surrogate	%REC	Limits
	99	80-125
1,2-Dichloroethane-d4 8	89	80-137
Toluene-d8 1	103	80-120
Bromofluorobenzene 1	109	80-122

Type: BSD			Lab ID:	QC	472287			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		858.0	86	80-120	2	20
Surrogate	%REC	Limits						
Dibromofluoromethane	99	80-125						
1,2-Dichloroethane-d4	89	80-137						
Toluene-d8	104	80-120						

80-122

109

Gasoline by GC/MS					
Lab #:	208024	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145462		
Units:	ug/L	Analyzed:	11/30/08		
Diln Fac:	1.000				

Type:

BS

Lab ID:

QC472944

Analyte	Spiked	Result	%REC	Limits
MTBE	22.50	20.68	92	70-125
Benzene	22.50	22.81	101	80-120
Toluene	22.50	21.61	96	80-120
Ethylbenzene	22.50	21.21	94	80-122
m,p-Xylenes	45.00	41.07	91	80-126
o-Xylene	22.50	21.27	95	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-125
1,2-Dichloroethane-d4	87	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	108	80-122

Type: BSD	Lab ID:	QC4	72945			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	22.50	20.82	93	70-125	1	20
Benzene	22.50	23.68	105	80-120	4	20
Toluene	22.50	22.55	100	80-120	4	20
Ethylbenzene	22.50	22.22	99	80-122	5	20
m,p-Xylenes	45.00	43.54	97	80-126	6	20
o-Xylene	22.50	22.20	99	80-120	4	20

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-125	
1,2-Dichloroethane-d4	87	80-137	
Toluene-d8	100	80-120	
Bromofluorobenzene	108	80-122	

Gasoline by GC/MS					
Lab #:	208024	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145462		
Units:	ug/L	Analyzed:	11/30/08		
Diln Fac:	1.000				

Type:

Gasoline C7-C12

Toluene-d8

Bromofluorobenzene

BS

Analyte

Lab ID:

Result

825.0

QC472946

 %REC
 Limits

 82
 80-120

Surrogate	%REC	Limits
	97	80-125
1,2-Dichloroethane-d4 8	37	80-137
Toluene-d8 1	101	80-120
Bromofluorobenzene 1	109	80-122

Spiked

1,000

103

110

Туре:	BSD			Lab ID:	Q	C472947			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		1,000		804.5	80	80-120	3	20
	Surrogate	%REC	Limits						
Dibromof	luoromethane	97	80-125						
1,2-Dich	loroethane-d4	90	80-137						

80-120

80-122

Gasoline by GC/MS					
Lab #:	208024	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145487		
Units:	ug/L	Analyzed:	12/01/08		
Diln Fac:	1.000				

Type:

BS

Lab ID:

QC473037

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	17.61	88	70-125
Benzene	20.00	21.25	106	80-120
Toluene	20.00	20.04	100	80-120
Ethylbenzene	20.00	19.67	98	80-122
m,p-Xylenes	40.00	38.36	96	80-126
o-Xylene	20.00	19.30	97	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	99	80-120
Bromofluorobenzene	107	80-122

Type: BSD	Lab ID:	QC47	3038			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	17.70	89	70-125	1	20
Benzene	20.00	20.75	104	80-120	2	20
Toluene	20.00	19.52	98	80-120	3	20
Ethylbenzene	20.00	19.05	95	80-122	3	20
m,p-Xylenes	40.00	37.98	95	80-126	1	20
o-Xylene	20.00	19.08	95	80-120	1	20

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-125	
1,2-Dichloroethane-d4	88	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	110	80-122	

Gasoline by GC/MS					
Lab #:	208024	Location:	Oakland MSC		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	028-10060-00	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	145487		
Units:	ug/L	Analyzed:	12/01/08		
Diln Fac:	1.000				

Type:

Bromofluorobenzene

BS

Lab ID:

QC473039

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	825.5	83	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-125
1,2-Dichloroethane-d4	86	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	109	80-122

Type: BSD			Lab ID:	QC47	73040			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		853.4	85	80-120	3	20
Surrogate	%REC	Limits						
Dibromofluoromethane	95	80-125						
1,2-Dichloroethane-d4	87	80-137						
	• •							

80-122

104

	Gasoline	by GC/MS	
Lab #:	208024	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145561
Units:	ug/L	Analyzed:	12/03/08
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC473429

Analyte	Spiked	Result	%REC	Limits
MTBE	22.50	19.34	86	70-125
Benzene	22.50	23.69	105	80-120
Toluene	22.50	22.45	100	80-120
Ethylbenzene	22.50	22.40	100	80-122
m,p-Xylenes	45.00	44.62	99	80-126
o-Xylene	22.50	22.66	101	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-125	
1,2-Dichloroethane-d4	84	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	104	80-122	

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	22.50	19.24	86	70-125	1	20
Benzene	22.50	23.76	106	80-120	0	20
Toluene	22.50	22.51	100	80-120	0	20
Ethylbenzene	22.50	21.87	97	80-122	2	20
m,p-Xylenes	45.00	43.68	97	80-126	2	20
o-Xylene	22.50	22.09	98	80-120	3	20

Surrogate	%REC	Limits	
Dibromofluoromethane	92	80-125	
1,2-Dichloroethane-d4	87	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	104	80-122	

	Gasol	ine by GC/MS	
Lab #:	208024	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145561
Units:	ug/L	Analyzed:	12/03/08
Diln Fac:	1.000		

Type:

BS

Lab ID: QC473431

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	972.7	97	80-120

Surrogate	%REC	%REC	Limits
Dibromofluoromethane	94	94	80-125
1,2-Dichloroethane-d4	88	88	80-137
Toluene-d8	102	102	80-120
Bromofluorobenzene	109	109	80-122

Type: BSD			Lab ID:	Q	C473432			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		997.8	100	80-120	3	20
Surrogate	%REC	Limits						
Dibromofluoromethane	93	80-125						
1,2-Dichloroethane-d4	85	80-137						
Toluene-d8	99	80-120						
Bromofluorobenzene	108	80-122						

Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00

2.6- 2.5- 2.4- 2.3- 2.2- 2.1- 2.0-		Ľ	em\MSVOA08.i\120108 80 90 10 10 10 10 10 10 10 10 10 10 10 10 10	Bromofluorobenzene 1,4-Dichlorobenzene-d4		
1.9- 1.8- 1.7- 1.6- 1.5- (§ 1.4- 0.7- 0.9- 0.9- 0.9- 0.7- 0.5- 0.4-	Pentafluorobenzene	120	2	Bromof		
0,3- 0,2- 0,1-		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 3 4 3 4 3 4 2 3 4 2 3 4 4 15 1 14 15 1		<u> 19 20 21</u>	<u>1 1 1</u>

Instrument: MSVOA08.i

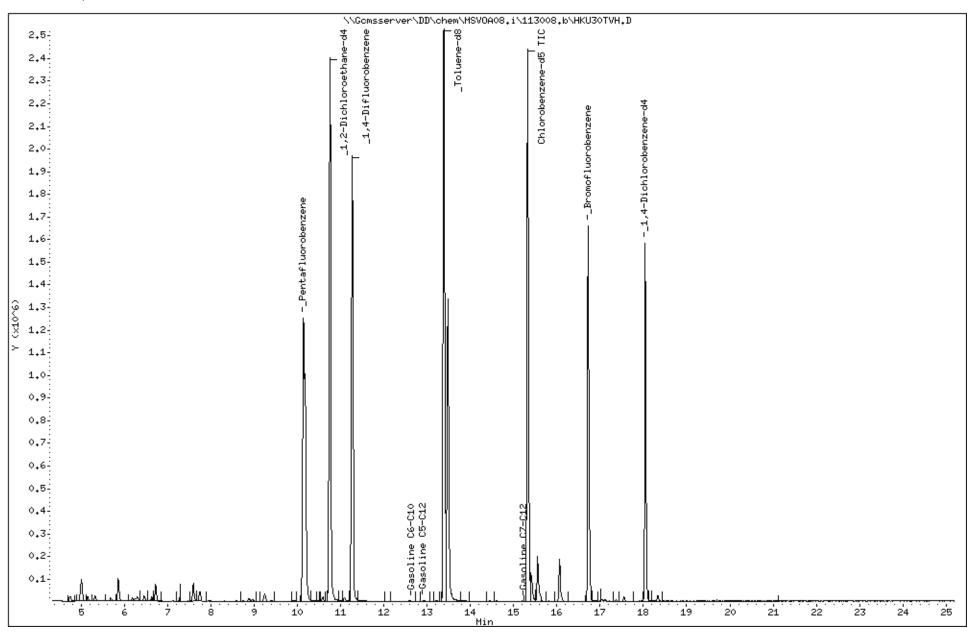
Operator: voc

Column diameter: 2.00

2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 (§ 1.3 1.2 > 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2	
0.3-	oline CC-0

Data File: \\Gcmsserver\DD\chem\MSVDA08.i\113008.b\HKU29TVH.D
Date : 01-DEC-2008 04:28
Client ID: DYNA P&T
Sample Info: \$,208024-004

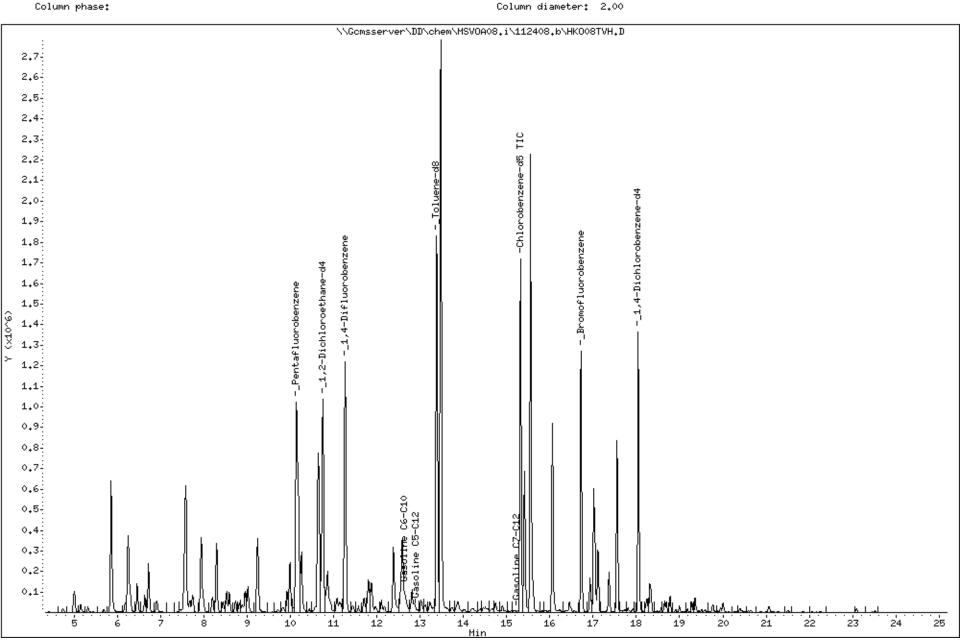
Instrument: MSVOA08.i


Operator: voc Column diameter: 2.00

\\Gcmsserver\DD\chem\MSVOA08.i\113008.b\HKU29TVH.D 2.64 Å Ξ 쯓 1,2-Dichloroethane 1,4-Difluorobenzene _Toluene ស្ត 2.5-2.4-Chlorobenze 2,3-2,2-Å 2,1-4-Dichlorobenzene 2.0-1.9-1.8-Pentafluorobenzene 1.7-1.6-1.5-1.4-Y (×10^6) 1.3-1,2-1.1-1.0-0,9-0.84 0.74 0.6-0.5-Gasoline C6-C10 Gasoline C5-C12 0,4-0,34 0,2-0,1lementer d'allerne e առու 1.1166 - Mar Ji 10 13 15 17 22 23 25 6 ÷ 9 11 12 18 19 21 5 έ 14 16 20 24 Min

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\113008.b\HKU30TVH.D
Date : 01-DEC-2008 05:04
Client ID: DYNA P&T
Sample Info: \$,208024-008

Instrument: MSVOA08.i


Operator: voc Column diameter: 2.00

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\112408.b\HK008TVH.D
Date : 24-NOV-2008 13:46
Client ID: DYNA P&T
Sample Info: CCV,S9459,0.015/100,

Instrument: MSVOA08.i

Operator: voc Column diameter: 2.00

	ţ					/
Curtis & Tompkins, Ltd. Analytical Laboratory Since 1878	CH		F CU	STODY	5	Page of
2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax	C & T L	ogin #:	08024			Analysis
	Sample	r: STTE	NU)			
Project No.: 1)28-10060-	-0 Report	To: Dire	y Rith			
Project Name: Dakand MS	Compa	1 CM	he		- Day	
Project P.O.: 079 -/0060-0	<u> </u>	10.1	CAUT.	R		
Turnaround Time: Sta	Fax:	5106	5777	, 6		
	<u> </u>					
		Matrix		Preservative		
Lab Sample ID.	Sampling Date Time	Soil Water Waste	# of \ Containers			
1 JB-112005	11/20103 0700	7			TOLD	
1 KW-BY	1/20/08 1335	<u> </u>	U U	XXXX		
4 KW-CS-D	11,20100 1020	X	4			
5 KW-C3 6 KW-CI-FB	11/20/06 640		U V			
7 KW-CI	1129061620	X	4			AS NOT PRES
8 KW-89	11/20/06 1527	X	4	<u> </u>		
Notes: USE SILICA	SAMPLE RECEIPT	RELINQUISH		WAX 18 43	RECEIVED BY:	A 1/2/08 1848
GELYNG	On Ice Ambient	em l	2 111	006 /8 93 DATE / T		Offin DATE / TIME
WON IT Droved	Preservative Correct?	-	\bigcirc	DATE / T		DATE / TIME
ARANKE - Purchas	te 1 Ast Pro-		-			
SIGNATURE	12 NOI 1142			DATE / T	IME	DATE / TIME

COOL	ER RECEIPT CHECKLI	IST			
	0.00-211			CC Curtis &	: Tompkins, Etd
Login #	126024	late Recoision			
Client	208024 LFR Inc	aic iteretiet f	1 11-20-09	Number of coole	ers Z
		•••••••	Contrat Contrat	msc	
Date Op	pened 11-20-08 By (prin	1) J- Ram	ASEN (SIGN	A	
Date Lo	gged in By (prin	N.VIL	LAME Z(sign	A Pat	Tet
U Did co	poler come with a shipping hipping info	slin (airhill	etery	<i>~</i>	YES .
	C Cusulay scars nrecent?	$-\pi v c c$			FI-NO
2B. Were	custody seals intact upon	Name		Date	
3. Were o	low many custody seals intact upon custody papers dry and inta- custody papers filled out pro-	attivat! ct.when.reco	·····	····· YES	NO MA
4. Were c	sustody papers filled out or	operty (ink	ionad stag		NO NO
				n of form	NO NO
6. Indicat	e the packing in cooler: (if	other, descr	ibe)	p or total)	ES NO
	Bubble Wrap Afoar	n blocks	00		
	Cloth material Card	lboard		Paper to	vels
	ature documentation:				weis
Ty 54	pe of ice used: [Y Wet	🗌 Blue/Ge	l [] None	Temp(°C) (.6	
Ť.	Samples Received on ice &	k cold without	ut a temperature l	plank	
X	Samples received on ice di	rectly from t	he field Cooling		
8. Were M	lethod 5035 sampling cont	ai a	ao aola. Cooling	process had begun	
te y	fethod 5035 sampling cont. (ES, what time were they to pottles arrive unbroken/uno	amers preser	t? 9	••••••	YES 🔬
9. Did alļ b	ottles arrive unbroken/uno mples in the appropriate co	nened?			
					VES NO
					KES NO
					ES NO
					NO N/A
lf Y	client contacted concernin ES, Who was called?	ig this sampl	e delivery?	•••••••••••••••••	res 🔞
	ES, Who was called?		By	Date:	
COMMENT	[S				
	······································				
SOP Volume:	Clinet S.				
Section:	Client Services			Rev. 6 Nu	mber 1 of 3
Page:	loft	£-1	action also - Lt	Effective 1	1 6.1. 2000
		C.)	www.www.usicnocklists	Cooler Receipt Checkl	ist_rv6.doc

Laboratory Job Number 208064 ANALYTICAL REPORT

	1900 Powell Street	Project : Location : Level :	Oakla		
--	--------------------	------------------------------------	-------	--	--

<u>Sample ID</u>	<u>Lab ID</u>
MW-13	208064-001
MW-6	208064-002
MW-1	208064-003
MW-14	208064-004
MW-9-FB	208064-005
MW-9	208064-006
MW-5	208064-007
MW-12	208064-008
RW-A2	208064-009
RW-A1	208064-010
TB-112108	208064-011

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Project Manager

Signature:

Senior Program Manager

Date: <u>12/09/2008</u>

Date: <u>12/09/2008</u>

NELAP # 01107CA

Page 1 of ____

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 208064 LFR Levine Fricke 028-10060-00 Oakland MSC 11/21/08 11/21/08

This data package contains sample and QC results for ten water samples, requested for the above referenced project on 11/21/08. The samples were received cold and intact. All data were e-mailed to Daren Roth on 12/09/08.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for bromofluorobenzene in MW-13 (lab # 208064-001) and the method blanks for batch 145422; no target analytes were detected in these samples. No other analytical problems were encountered.

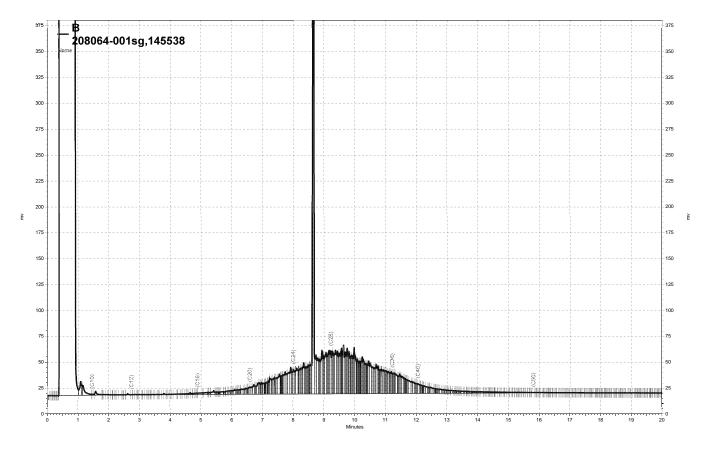
	Total Extr	actable Hydrocar	bons	
Lab #: 2	08064	Location:	Oakland MSC	
Client: L	FR Levine Fricke	Prep:	EPA 3520C	
	28-10060-00 ater	Analysis: Sampled:	EPA 8015B 11/21/08	
Units: u	g/L	Received:	11/21/08	
	.000 45538	Prepared:	12/02/08	
	45538			
	-13	Analyzed:	12/06/08 d: EPA 3630C	
	MPLE 8064-001	Cleanup Metho	d: EPA 3630C	
Analyte		lt R	L	
Kerosene C10-C16 Diesel C10-C24	ND 1.2	0 Ү	50 50	
Motor Oil C24-C36	63		00	
Surrogat				
Hexacosane	103 58-	127		
	<i>c</i>	D	10/06/00	
Field ID: MW Type: SA	-6 MPLE	Analyzed: Cleanup Metho	12/06/08 d: EPA 3630C	
	8064-002			
Analyte Kerosene C10-C16	Resu 1,20		L 50	
Diesel C10-C24	1,20		50	
Motor Oil C24-C36	ND	3	00	
Surrogat Hexacosane	e %REC Lim 107 58-			
nexacosaile	107 58-			
Field ID: MW	-1	Analyzed:	12/06/08	
	MPLE	Cleanup Metho	12/06/08 d: EPA 3630C	
	8064-003			
Analyte Kerosene C10-C16		1t R 7 Y	L 50	
Diesel C10-C24	11	0 Ү	50	
Motor Oil C24-C36	ND		00	
Surrogat Hexacosane	e %REC Lim 103 58-			
	-14	Analyzed:	12/06/08	
Type: SAI	MPLE	Analyzed: Cleanup Metho	12/06/08 d: EPA 3630C	
Type: SAI Lab ID: 20	MPLE 8064-004	Cleanup Metho	d: EPA 3630C	
Type: SAI Lab ID: 20 Analyte Kerosene C10-C16	MPLE 8064-004 Resu ND	Cleanup Metho	d: EPA 3630C L 50	
Type: SAI Lab ID: 20 Analyte Kerosene C10-C16 Diesel C10-C24	MPLE 8064-004 <u>Resu</u> ND 15	Cleanup Metho It R	d: EPA 3630C <u>L</u> 50 50	
Type: SAI Lab ID: 20 Analyte Kerosene C10-C16	MPLE 8064-004 ND 15 66	Cleanup Metho 1t R 0 Y 0 3	d: EPA 3630C L 50	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

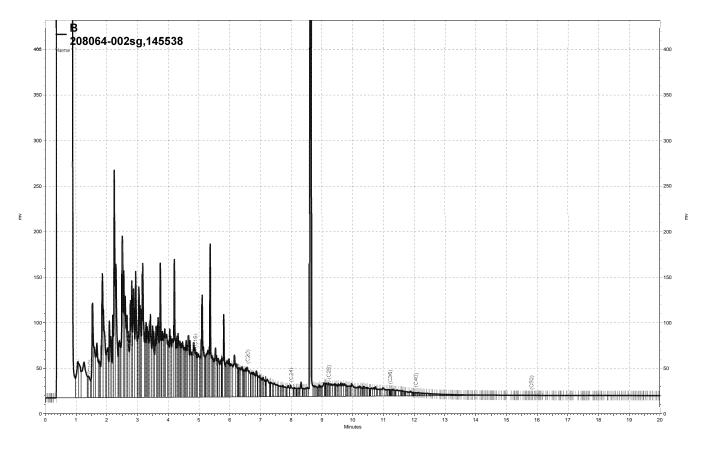
Page 1 of 3

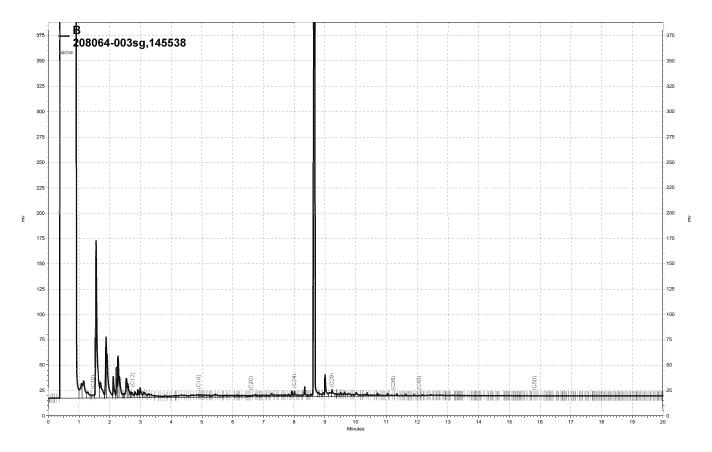
		Total E	Extracta	ble Hydrocarbo	ns
Lab #:	208064			Location:	Oakland MSC
Client:	LFR Levine F:	ricke		Prep:	EPA 3520C
Project#: Matrix:	028-10060-00 Water			Analysis: Sampled:	EPA 8015B 11/21/08
Units:	ug/L			Received:	11/21/08
Diln Fac: Batch#:	1.000 145538			Prepared:	12/02/08
Datein.	115550				
Field ID:	MW-9-FB			Analyzed:	12/06/08
Type: Lab ID:	SAMPLE 208064-005			Cleanup Method:	EPA 3630C
Anal Kerosene C10-C1		ND	Result	RL 50	
Diesel C10-C24		ND		50	
Motor Oil C24-C	236	ND)	300	
Surro	ogate	%REC			
Hexacosane		88	58-127		
Field ID:	MHI O			Apolyzod.	12/06/08
Type:	MW-9 SAMPLE			Analyzed: Cleanup Method:	12/06/08 EPA 3630C
Lab ID:	208064-006			L	
Anal	lyte		Result	RL	
Kerosene C10-C1	6	ND)	50	
Diesel C10-C24 Motor Oil C24-C	136	ND ND		50 300	
-					
Surro Hexacosane	ogate	<u>%REC</u> 97	Limits 58-127		
		-			
Field ID:	MW-5			Analyzed:	12/06/08
Type: Lab ID:	SAMPLE 208064-007			Cleanup Method:	EPA 3630C
Anal Kerosene C10-C1			Result 690 Y	<u>RL</u> 50	
Diesel C10-C24			660 Y	50	
Motor Oil C24-C	236	ND)	300	
Surro	ogate	%REC	Limits		
Hexacosane		96	58-127		
Field ID:	MW-12			Analyzed:	12/06/08
Type:	MW-12 SAMPLE			Cleanup Method:	EPA 3630C
Lab ID:	208064-008			······································	
Anal	lyte		Result	RL	
Kerosene C10-C1			120 Y	50	
Diesel C10-C24 Motor Oil C24-C	236	ND	170 Y	50 300	
Surro	ogate	<u>%REC</u> 97	Limits 58-127		
Hexacosane		<i>J i</i>			

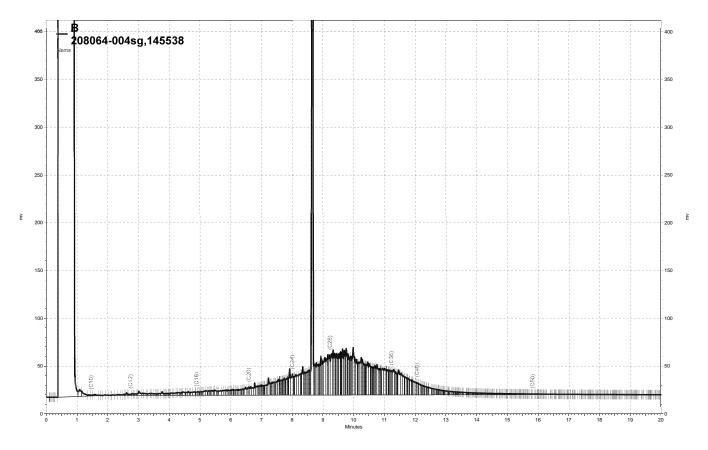
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 2\ of\ 3}$

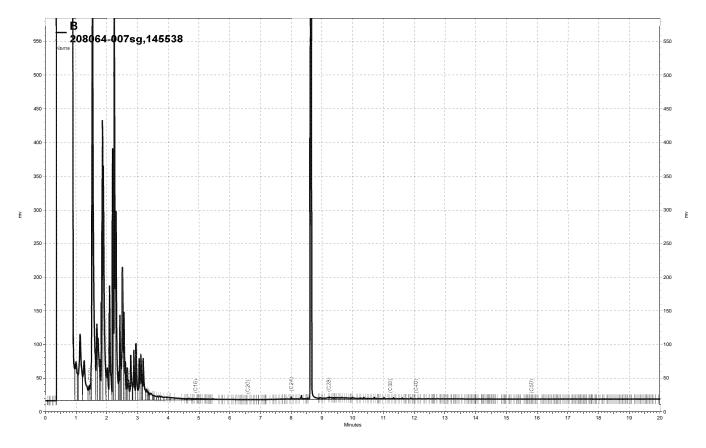


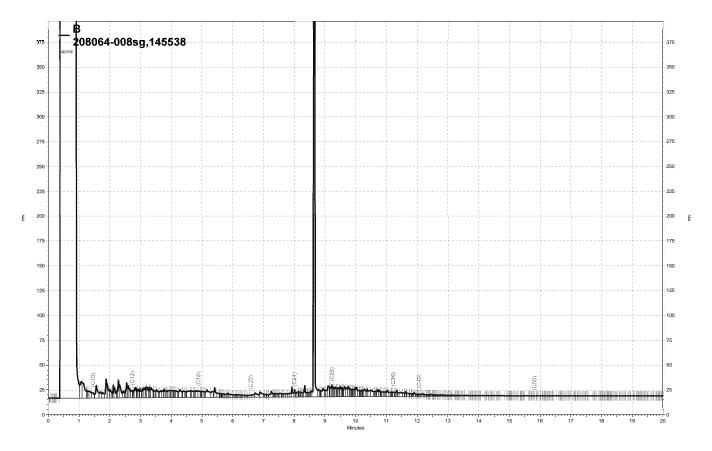
		Total Extract	able Hydrocarbo	ns
Lab #: Client: Project#: Matrix: Units:	208064 LFR Levine H 028-10060-00 Water ug/L		Location: Prep: Analysis: Sampled: Received:	Oakland MSC EPA 3520C EPA 8015B 11/21/08 11/21/08
Diln Fac: Batch#:	1.000 145538		Prepared:	12/02/08
	RW-A2 SAMPLE 208064-009	Result	Analyzed: Cleanup Method: RL	12/06/08 EPA 3630C
Kerosene C10-C Diesel C10-C24 Motor Oil C24-		160 Y 590 Y ND %REC Limits	50 300	
Hexacosane	ogale	105 58-127		
Field ID: Type: Lab ID:	RW-A1 SAMPLE 208064-010		Analyzed: Cleanup Method:	12/06/08 EPA 3630C
Ana Kerosene C10-C Diesel C10-C24 Motor Oil C24-		Result ND 56 Y ND	RL 50 50 300	
Surr Hexacosane	ogate	%REC Limits 113 58-127		
Type: Lab ID:	BLANK QC473291		Analyzed: Cleanup Method:	12/04/08
			_	EPA 3030C
Ana Kerosene C10-C	lyte 16	Result ND	<u>RL</u> 50	
Diesel C10-C24 Motor Oil C24-		ND ND	50 300	
Surr Hexacosane	ogate	%REC Limits 95 58-127		

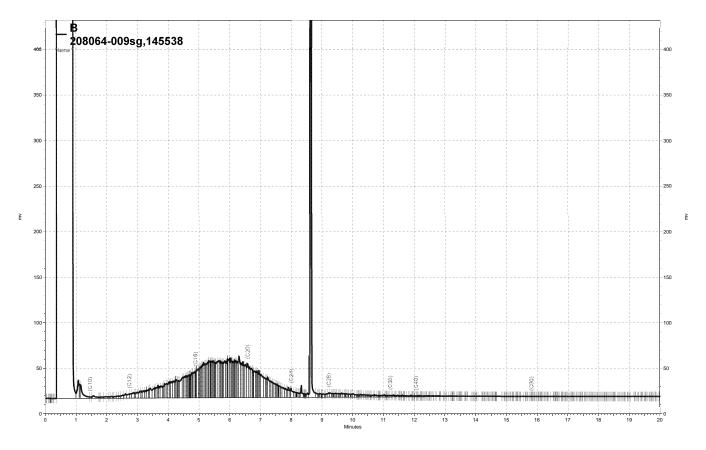

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{Page\ 3\ of\ 3}$

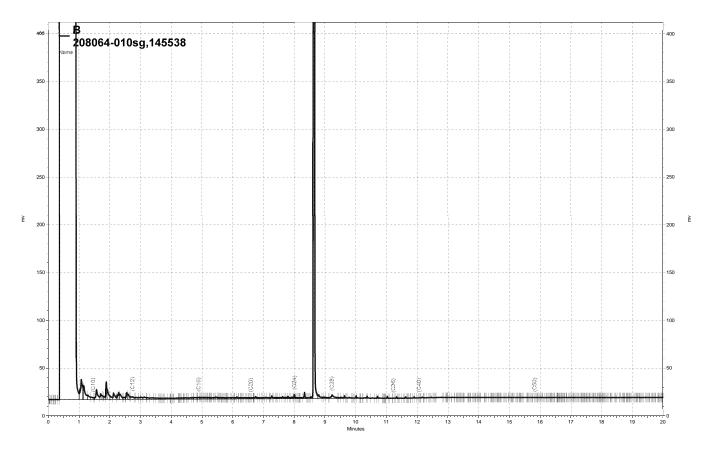

Total Extractable Hydrocarbons								
Lab #:	208064			Location:	Oakland MSC			
Client:	LFR Levine Fi	ricke		Prep:	EPA 3520C			
Project#:	028-10060-00			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	145538			
Units:	ug/L			Prepared:	12/02/08			
Diln Fac:	1.000			Analyzed:	12/05/08			
Type: Lab ID:	BS QC473292			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits		
Diesel C10-	C24		2,500	1,730	69	52-120		
S	urrogate	%REC	Limits					
Hexacosane		88	58-127					
Type: Lab ID:	BSD QC473293			Cleanup Method:	EPA 3630C			
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-	C24		2,500	2,068	83	52-120	18	30
S	urrogate	%REC	Limits					
Hexacosane		107	58-127					

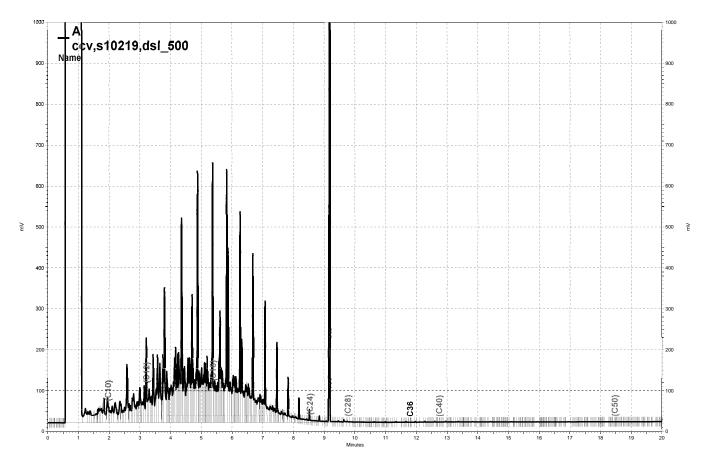

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b064, B

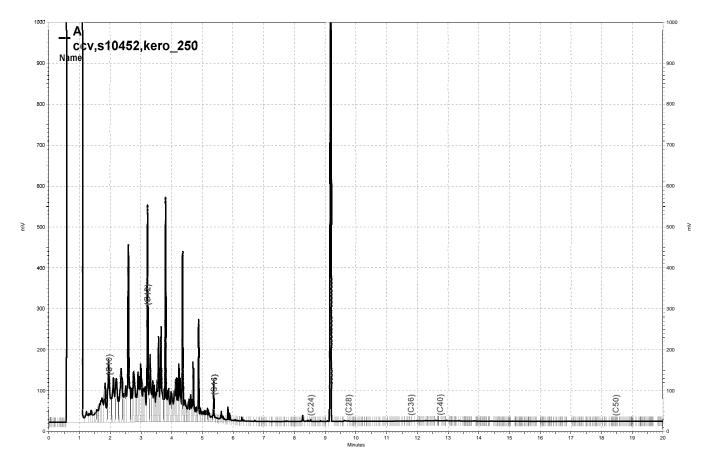

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b065, B

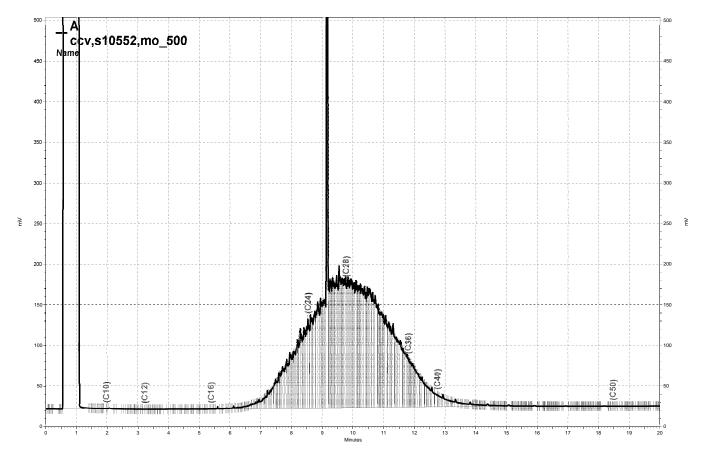

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b066, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b067, B


-\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b070, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b071, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b072, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\339b073, B

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a003, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a008, A

-\\Lims\gdrive\ezchrom\Projects\GC11A\Data\339a004, A

Gasoline by GC/MS							
Lab #:	208064	Location:	Oakland MSC				
Client:	LFR Levine Fricke	Prep:	EPA 5030B				
Project#:	028-10060-00	Analysis:	EPA 8260B				
Matrix:	Water	Sampled:	11/21/08				
Units:	ug/L	Received:	11/21/08				

Field ID: Type: Lab ID:	MW-13 SAMPLE 208064-001		Diln Fac: Batch#: Analyzed:	1.000 145422 11/27/08	
Ana	alvte	Result		RL	
Gasoline C7-C	12	ND		50	
MTBE		ND		0.50	
Benzene		ND		0.50	
Toluene		ND		0.50	
Ethylbenzene		ND		0.50	
m,p-Xylenes		ND		0.50	
o-Xylene		ND		0.50	
-					

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-125	
1,2-Dichloroethane-d4	92	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	127 *	80-122	

Field ID: Type: Lab ID:	MW-6 SAMPLE 208064-002			Diln Fac: Batch#: Analyzed:		1.000 145422 11/27/08	
Ana	alvte		Result		RI.		
Gasoline C7-C			450 Y		50		
MTBE			5.7		Ö.	50	
Benzene			96		0.		
Toluene			1.9		Ο.	50	
Ethylbenzene		NI)		Ο.	50	
m,p-Xylenes			1.2		Ο.		
o-Xylene		NI)		0.	50	
a		0.DEC	Limits				
	rogate	<u>%REC</u>					
Dibromofluoron		96	80-125				
1,2-Dichloroe	cnane-04	87	80-137				
Toluene-d8		101	80-120				
Bromofluorobei	nzene	102	80-122				

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 8

	Gasc	line by GC/MS		
Lab #:	208064	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	11/21/08	
Units:	ug/L	Received:	11/21/08	

Field ID:	MW-1	Diln Fac:	1.000
Type:	SAMPLE	Batch#:	145422
Lab ID:	208064-003	Analyzed:	11/27/08

Analyte	Result	RL	
Gasoline C7-C12	210 Y	50	
MTBE	ND	0.50	
Benzene	2.4	0.50	
Toluene	0.52	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	1.3	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-125
1,2-Dichloroethane-d4	91	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	111	80-122

Field ID: Type: Lab ID:	MW-14 SAMPLE 208064-004		Diln Fac: Batch#: Analyzed:	1.000 145462 11/30/08	
Anal	yte	Result		RL	
Gasoline C7-C12		ND		50	
MTBE		ND		0.50	
Benzene		ND		0.50	
Toluene		ND		0.50	
Ethylbenzene		ND		0.50	
m,p-Xylenes		ND		0.50	
o-Xylene		ND		0.50	

Surrogate %	REC	Limits
Dibromofluoromethane 96	5	80-125
1,2-Dichloroethane-d4 91	L	80-137
Toluene-d8 10)3	80-120
Bromofluorobenzene 11	19	80-122

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

	Gasc	oline by GC/MS		
Lab #:	208064	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	11/21/08	
Units:	ug/L	Received:	11/21/08	

Field ID:	MW-9-FB	Diln Fac:	1.000
Type:	SAMPLE	Batch#:	145462
Lab ID:	208064-005	Analwzed:	12/01/08
Lab ID:	208064-005	Analyzed:	12/01/08

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-125
1,2-Dichloroethane-d4	89	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	118	80-122

Field ID: MW-9 Type: SAMPLE Lab ID: 208064-006	Ba	iln Fac: 1.000 atch#: 145561 nalyzed: 12/03/08	
Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	
Surrogate	%REC Limits		
Dibromofluoromethane	92 80-125		
1,2-Dichloroethane-d4	87 80-137		
Toluene-d8	101 80-120		

80-122

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

120

Page 3 of 8

Bromofluorobenzene

	Gasc	oline by GC/MS		
Lab #:	208064	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Sampled:	11/21/08	
Units:	ug/L	Received:	11/21/08	

Field ID: Type: Lab ID:	MW-5 SAMPLE 208064-007		Diln Fac: Batch#: Analyzed:	3.333 145561 12/03/08	
	Analyte	Result	F	RT.	

Analyte	Result	RL	
Gasoline C7-C12	2,600	170	
MTBE	20	1.7	
Benzene	11	1.7	
Toluene	1.7	1.7	
Ethylbenzene	240	1.7	
m,p-Xylenes	6.5	1.7	
o-Xylène	ND	1.7	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	102	80-122

Field ID: Type: Lab ID:	MW-12 SAMPLE 208064-008		Diln Fac: Batch#: Analyzed:	1.000 145561 12/03/08	
An	nalyte	Resu	ılt	RL	
Gasoline C7-C	212	5	59 Y	50	
MTBE		ND		0.50	
Benzene		ND		0.50	
Toluene		ND		0.50	
Ethylbenzene		ND		0.50	
m,p-Xylenes		ND		0.50	
o-Xylene		ND		0.50	
	rogate		nits		
Dibromofluoro			-125		
1,2-Dichloroe	ethane-d4		-137		
Toluene-d8			-120		
Bromofluorobe	nzene	118 80-	122		

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Gasoline by GC/MS						
Lab #:	208064	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 5030B			
Project#:	028-10060-00	Analysis:	EPA 8260B			
Matrix:	Water	Sampled:	11/21/08			
Units:	ug/L	Received:	11/21/08			

Field ID:	RW-A2	Diln Fac:	1.000
Type:	SAMPLE	Batch#:	145462
Lab ID:	208064-009	Analyzed:	12/01/08

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-125
1,2-Dichloroethane-d4	90	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	119	80-122

Field ID: Type: Lab ID:	RW-A1 SAMPLE 208064-010			Diln Fac: Batch#: Analyzed:	1.000 145561 12/03/08	
Ana	alyte	F	Result		RL	
Gasoline C7-C	12	ND			50	
MTBE			4.5		0.50	
Benzene			8.8		0.50	
Toluene		ND			0.50	
Ethylbenzene		ND			0.50	
m,p-Xylenes		ND			0.50	
o-Xylene		ND			0.50	
	rogate	%REC	Limits			
Dibromofluoror	nethane	93	80-125			
1,2-Dichloroet	chane-d4	87	80-137			
Toluene-d8		103	80-120			
Bromofluorober	nzene	115	80-122			

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 5 of 8

		Gaso	line by GC/MS		
Lab #: Client: Project#:	208064 LFR Levine 1 028-10060-0		Location: Prep: Analysis:	Oakland MSC EPA 5030B EPA 8260B	
Matrix: Units:	Water ug/L		Sampled: Received:	11/21/08 11/21/08	
Type: Lab ID: Diln Fac:	BLANK QC472774 1.000		Batch#: Analyzed:	145422 11/26/08	
	Lyte	Resul	lt	RL	
Gasoline C7-C1: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	2	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50	
	ogate	%REC Limi			
Dibromofluoromo 1,2-Dichloroetl Toluene-d8 Bromofluoroben:	nane-d4	98 80-1 89 80-1 103 80-1 129 * 80-1	137 120		
Type: Lab ID: Diln Fac:	BLANK QC472775 1.000		Batch#: Analyzed:	145422 11/26/08	
	lyte	Resul	lt	RL	
Gasoline C7-C1: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	2	ND ND ND ND ND ND ND		50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
Surre	ogate	%REC Limi			
Dibromofluorom 1,2-Dichloroet Toluene-d8 Bromofluoroben:	nane-d4	97 80-1 89 80-1 104 80-1 126 * 80-1	137 120		

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 6 of 8

		C	Gasoline	by GC/MS		
Lab #: Client: Project#: Matrix:	208064 LFR Levine F 028-10060-00 Water			Location: Prep: Analysis: Sampled:	Oakland MSC EPA 5030B EPA 8260B 11/21/08	
Units:	ug/L			Received:	11/21/08	
Type: Lab ID: Diln Fac:	BLANK QC472943 1.000			Batch#: Analyzed:	145462 11/30/08	
Ana	lyte		Result		RL	
Gasoline C7-C1 MTBE	2	NE NE			50 0.50	
Benzene		NE			0.50	
Toluene		NI			0.50	
Ethylbenzene		NE			0.50	
m,p-Xylenes o-Xylene		NE NE			0.50 0.50	
0 Ayrene		INL	,		0.50	
	ogate	%REC				
Dibromofluorom		94	80-125			
1,2-Dichloroet Toluene-d8	nane-04	88 102	80-137 80-120			
Bromofluoroben	zene	122	80-122			
Type: Lab ID: Diln Fac:	BLANK QC473427 1.000			Batch#: Analyzed:	145561 12/03/08	
	lyte		Result		RL	
Gasoline C7-C1 MTBE	2	NE NE			50 0.50	
Benzene		NE			0.50	
Toluene		NE			0.50	
Ethylbenzene		NE			0.50	
		NE			0.50	
m,p-Xylenes		NT)		0 50	
m,p-Xylenes o-Xylene		NE)		0.50	
o-Xylene	ogate	%REC	Limits		0.50	
o-Xylene Surr Dibromofluorom	ethane	%REC 92	Limits 80-125		0.50	
o-Xylene Surr Dibromofluorom 1,2-Dichloroet	ethane	%REC 92 87	Limits 80-125 80-137		0.50	
o-Xylene Surr Dibromofluorom	ethane hane-d4	%REC 92	Limits 80-125		0.50	

*= Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 7 of 8

Gasoline by GC/MS						
Lab #:	208064	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 5030B			
Project#:	028-10060-00	Analysis:	EPA 8260B			
Matrix:	Water	Sampled:	11/21/08			
Units:	ug/L	Received:	11/21/08			

Type: Lab ID: Diln Fac:	BLANK QC473428 1.000			Batch#: Analyzed:	145561 12/03/08	
Anal	vte		Result		RL	
Gasoline C7-C12	•	ND)		50	
MTBE		ND	1		0.50	
Benzene		ND	1		0.50	
Toluene		ND	1		0.50	
Ethylbenzene		ND)		0.50	
m,p-Xylenes		ND)		0.50	
o-Xylene		ND			0.50	
Surro		%REC	Limits			
Dibromofluorome		93	80-125			
1,2-Dichloroeth	ane-d4	89	80-137			
Toluene-d8		102	80-120			
Bromofluorobenz	ene	114	80-122			

Gasoline by GC/MS						
Lab #:	208064	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 5030B			
Project#:	028-10060-00	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	145422			
Units:	ug/L	Analyzed:	11/26/08			
Diln Fac:	1.000					

Type:

o-Xylene

BS

Lab ID:

QC472776

23.39

94

80-120

5

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	23.58	94	70-125
Benzene	25.00	26.84	107	80-120
Toluene	25.00	25.71	103	80-120
Ethylbenzene	25.00	24.69	99	80-122
m,p-Xylenes	50.00	48.29	97	80-126
o-Xylene	25.00	24.60	98	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	98	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	103	80-120
Bromofluorobenzene	107	80-122

Type:	BSD	Lab ID:	QC47	2777			
	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE		25.00	23.50	94	70-125	0	20
Benzene		25.00	25.17	101	80-120	6	20
Toluene		25.00	23.64	95	80-120	8	20
Ethylbenze	ne	25.00	23.38	94	80-122	5	20
m,p-Xylene	S	50.00	45.95	92	80-126	5	20

25.00

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-125
1,2-Dichloroethane-d4	87	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	106	80-122

20

Gasoline by GC/MS						
Lab #:	208064	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 5030B			
Project#:	028-10060-00	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	145422			
Units:	ug/L	Analyzed:	11/26/08			
Diln Fac:	1.000					

Type:

Bromofluorobenzene

BS

Lab ID:

QC472778

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	907.1	91	80-120

Surrogate %	%REC	Limits
Dibromofluoromethane 96	6	80-125
1,2-Dichloroethane-d4 89	9	80-137
Toluene-d8 10	04	80-120
Bromofluorobenzene 11	10	80-122

Type:	BSD			Lab ID:	QC4	72779			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		1,000		855.1	86	80-120	6	20
	Surrogate	%REC	Limits						
Dibromof	luoromethane	96	80-125						
1,2-Dich	loroethane-d4	90	80-137						
Toluene-	d8	103	80-120						

80-122

111

Gasoline by GC/MS						
Lab #:	208064	Location:	Oakland MSC			
Client:	LFR Levine Fricke	Prep:	EPA 5030B			
Project#:	028-10060-00	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	145462			
Units:	ug/L	Analyzed:	11/30/08			
Diln Fac:	1.000					

Type:

BS

Lab ID:

QC472944

Analyte	Spiked	Result	%REC	Limits
MTBE	22.50	20.68	92	70-125
Benzene	22.50	22.81	101	80-120
Toluene	22.50	21.61	96	80-120
Ethylbenzene	22.50	21.21	94	80-122
m,p-Xylenes	45.00	41.07	91	80-126
o-Xylene	22.50	21.27	95	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-125	
1,2-Dichloroethane-d4	87	80-137	
Toluene-d8	100	80-120	
Bromofluorobenzene	108	80-122	

Type: BSD	Lab ID:	Lab ID: QC472					
Analyte	Spiked	Result	%REC	Limits	RPD	Lim	
MTBE	22.50	20.82	93	70-125	1	20	
Benzene	22.50	23.68	105	80-120	4	20	
Toluene	22.50	22.55	100	80-120	4	20	
Ethylbenzene	22.50	22.22	99	80-122	5	20	
m,p-Xylenes	45.00	43.54	97	80-126	6	20	
o-Xylene	22.50	22.20	99	80-120	4	20	

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-125
1,2-Dichloroethane-d4	87	80-137
Toluene-d8	100	80-120
Bromofluorobenzene	108	80-122

	Gas	oline by GC/MS		
Lab #:	208064	Location:	Oakland MSC	
Client:	LFR Levine Fricke	Prep:	EPA 5030B	
Project#:	028-10060-00	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	145462	
Units:	ug/L	Analyzed:	11/30/08	
Diln Fac:	1.000			

Type:

Bromofluorobenzene

BS

Lab ID:

QC472946

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	825.0	82	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-125
1,2-Dichloroethane-d4	87	80-137
Toluene-d8	101	80-120
Bromofluorobenzene	109	80-122

Type: BSI	0		Lab ID:	QC4	172947			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		804.5	80	80-120	3	20
Surrogate	e %REC	Limits						
Dibromofluorometham	ne 97	80-125						
1,2-Dichloroethane	-d4 90	80-137						

80-122

110

	Gasoline	by GC/MS	
Lab #:	208064	Location:	Oakland MSC
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	028-10060-00	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	145561
Units:	ug/L	Analyzed:	12/03/08
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC473429

Analyte	Spiked	Result	%REC	Limits
MTBE	22.50	19.34	86	70-125
Benzene	22.50	23.69	105	80-120
Toluene	22.50	22.45	100	80-120
Ethylbenzene	22.50	22.40	100	80-122
m,p-Xylenes	45.00	44.62	99	80-126
o-Xylene	22.50	22.66	101	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	93	80-125	
1,2-Dichloroethane-d4	84	80-137	
Toluene-d8	102	80-120	
Bromofluorobenzene	104	80-122	

		-				
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	22.50	19.24	86	70-125	1	20
Benzene	22.50	23.76	106	80-120	0	20
Toluene	22.50	22.51	100	80-120	0	20
Ethylbenzene	22.50	21.87	97	80-122	2	20
m,p-Xylenes	45.00	43.68	97	80-126	2	20
o-Xylene	22.50	22.09	98	80-120	3	20

Surrogate	%REC	Limits	
Dibromofluoromethane	92	80-125	
1,2-Dichloroethane-d4	87	80-137	
Toluene-d8	101	80-120	
Bromofluorobenzene	104	80-122	

Gasoline by GC/MS										
Lab #:	208064	Location:	Oakland MSC							
Client:	LFR Levine Fricke	Prep:	EPA 5030B							
Project#:	028-10060-00	Analysis:	EPA 8260B							
Matrix:	Water	Batch#:	145561							
Units:	ug/L	Analyzed:	12/03/08							
Diln Fac:	1.000									

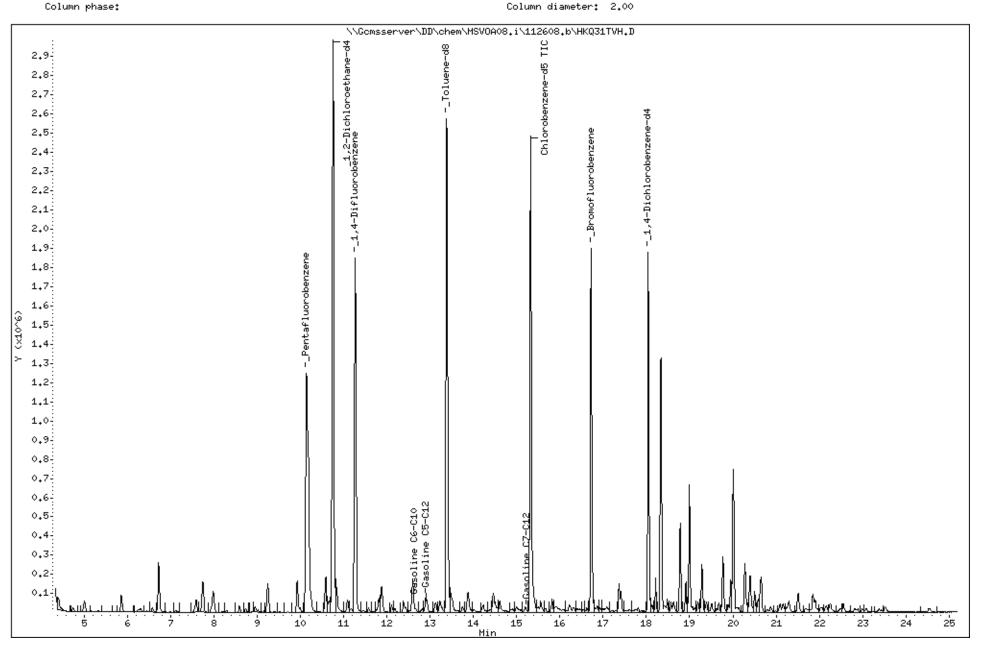
Type:

BS

Lab ID:

QC473431

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	972.7	97	80-120


Surrogate	%REC	Limits
Dibromofluoromethane	94	80-125
1,2-Dichloroethane-d4	88	80-137
Toluene-d8	102	80-120
Bromofluorobenzene	109	80-122

Type: BSD			Lab ID:	QC	473432			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		1,000		997.8	100	80-120	3	20
Surrogate	%REC	Limits						
Dibromofluoromethane	93	80-125						
1,2-Dichloroethane-d4	85	80-137						
Toluene-d8	99	80-120						
Bromofluorobenzene	108	80-122						

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\112608.b\HKQ31TVH.D Date : 27-NOV-2008 04:12 Client ID: DYNA P&T Sample Info: S,208064-002

Instrument: MSVOA08.i

Operator: voc

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\112608.b\HKQ32.D Date : 27-NOV-2008 04:47 Client ID: DYNA P&T Sample Info: S,208064-003 Purge Volume: 5.0 Column phase: RTX 624

Instrument: MSVOA08.i

Operator: voc

Column diameter: 0.25

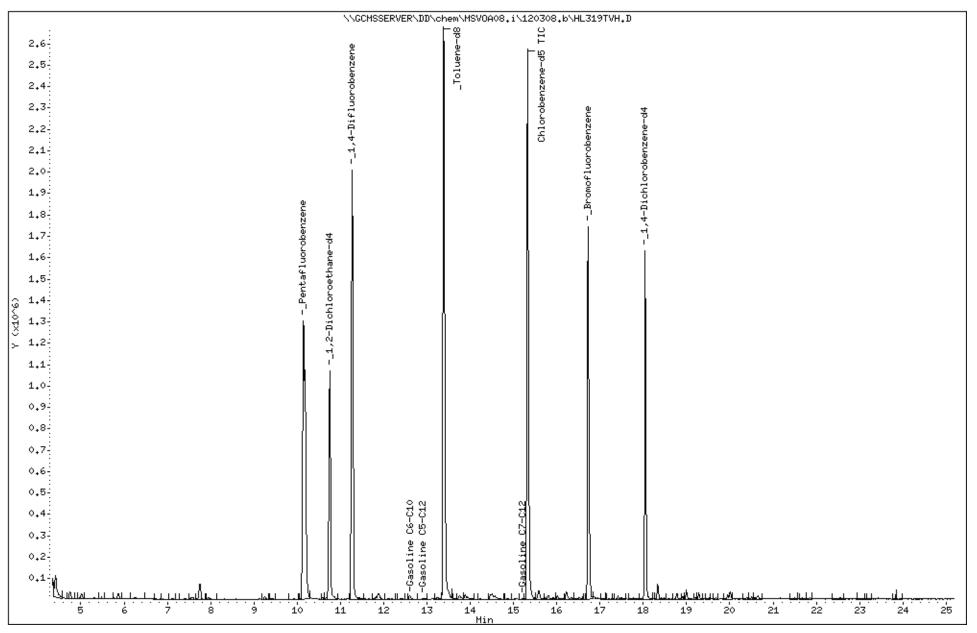
2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 (9.0T×) > 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2	e 11 Alcohol (TBA)+ ther (DIPE) chloropropane chloropropane ydrofurant -Pentafluorobenzenet	-1,2-Dichloroethane+ -1,2-Dichloroethane+ thane e+ mone	0.14-First -1.1150010006 -1.1150010 -1.1150010 -1.115001000 -1.11500010 -1.1150000 -1.11500000 -0.111500100 -1.11500000 -1.11500000 -1.11500000 -1.11150010000 -1.111500000 -1.111500000 -1.111000000000 -1.11111111111111111111111111111111111
0,3-	6-F -Bromomethane 6-F -Bromomethane -Ethanol -ISOPFOPEnol -ISOPFOPEnol -ISOPFOPEnol -ISOPFOPEnol -ISOPFOPEnol 	11- 22 -Trichloroethene 23 -T./2-Dichloropr 24 -Bromodichloromethan 21 - Dibromomethan 21 - Hethyl-2-Penta	

Data File: \\Gomsserver\DD\chem\MSVOA08.i\120308.b\HL320.D Date : 03-DEC-2008 22:05 Client ID: DYNA P&T Sample Info: S,208064-007 Purge Volume: 5.0 Column phase: RTX 624

Instrument: MSV0A08.i

Operator: voc

Column diameter: 0.25

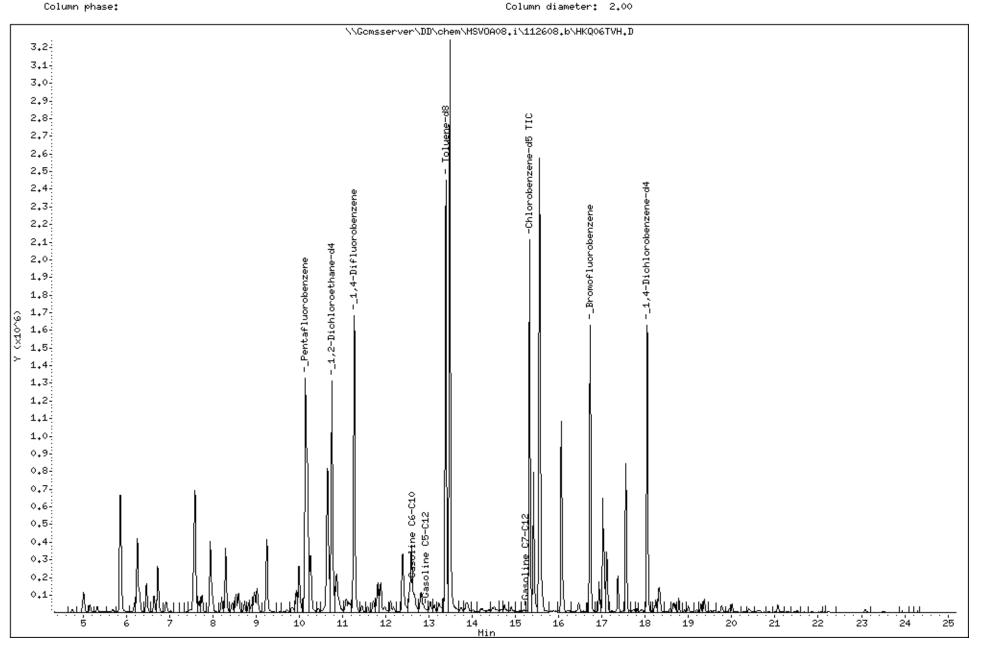

					\\Gcmsserver\DD\	.chem\MSV0	A08.i∖	120308.b\	HL320,D							
2,	.8-					_ ·										
	.7-					Toluene-d8+	ſ	chloeephgnaspeads		<u>8</u>						
2,	.6-				9	olue		hene Ne	+	-1,4-Dichlorobenzene-d4 n-Butylbenzene						
2,	.5-				enze	F		loe0	IZen	penz						
2,	.4-				doro			ਤ	ober	orok ben:						
	.3-				fluc				uon.	lty1						
2,	.2-				-1,4-Difluorobenzene				-Bromofluorobenzene+	,4-Dichlorobenz -n-Butylbenzene						
2,	1-			+	τ. Τ				о щ	ΫÏ						
2,	.0-			eue					Ì							
1,	.9-			benz -d4+												
1,	.8-			-aue												
1,	:			-Pentafluorobenzene+ hloroethane-d4+												
1.				Pent	ļ											
Ģ 1.				-Pentafluoroben -1,2-Dichloroethane-d4												
() () () () () () () () () () () () () (- S-1												
> ¹			+	l l		ļ										
1.			itide TBA)													
1.	:	Bromomethane	- 									2-Dibromo-3-Chloropropa				
	0-	ometl	E C C C C C C C C C C C C C C C C C C C	e												
٥.		owor	B B B C B C B C B C C C C C C C C C C C C C C C C C C C C		ther				e e	11		Chlo				
۰.	•	е 1	ut 41 ut 41	이다 물	ne Nyle				hzer			Т М				
	.7-		μ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		opa	Jane		ene	e e uene			owou				
	.6- .5-		te HTBer	NC Sea	ropr tanc	oet!	ļ	+ +	Stop: net fol:		I	ġi				
			ซ	ore chiloropropane+ Tetrahydrofuran+ <u>1,1,1-Trichloroethane</u> <u>1,2,2Dichloroethane</u>	Trichloroethene 	hlor	ane	[orobenzenē+ .ene −I sopropylbenzene	uente otoj 829n	200		स	Ð			
	Me tha				Professional Control C	je se	- Vex	benz opro				Ϊ.	alen			
	10-0%	-Ethanol loetone+	-Vinyl Ac		chl(bro) -1,2 -2 ethy		lord	-Chlorobenzene -Xylene Isopropyll	101 101 101 101 101 101 101 101				htha			
	-Chloromethane	-fcetone+	NAL A LAL		- Trichloroethene - Trichloroethene - Dibromomethane - 2-Chloroet - Tetramethyl THF - Tetramethyl 2-Pent	- - 2번핫,환약퉈chloroethane	1-Chlorohexane	1 - X - 1	<u>E-Z-Chlorotolu</u> enEtoPylbenzene <u>E-Z-Chlorotolu</u> ene <u>- tert-Butyl</u> benzene <u>5 - 58</u> pgzByt <u>Sk</u> DFigAgrane			1	-Naphthalene			
~.	: <u>N_II</u>	16 Kinghum			that the second	L Burk	المسرب	<u>իս ս</u>			ակիրեր	, AL	Muhn	└╾╬┟╫┼╦╾┾┥╴╸	<u> </u>	
	5	6 7	8 9	10 11	12 13	14 14 Min	15	16	17	18	19	20	21	22	23 24	25

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\120308.b\HL319TVH.D Date : 03-DEC-2008 21:30 Client ID: DYNA P&T Sample Info: S,208064-008

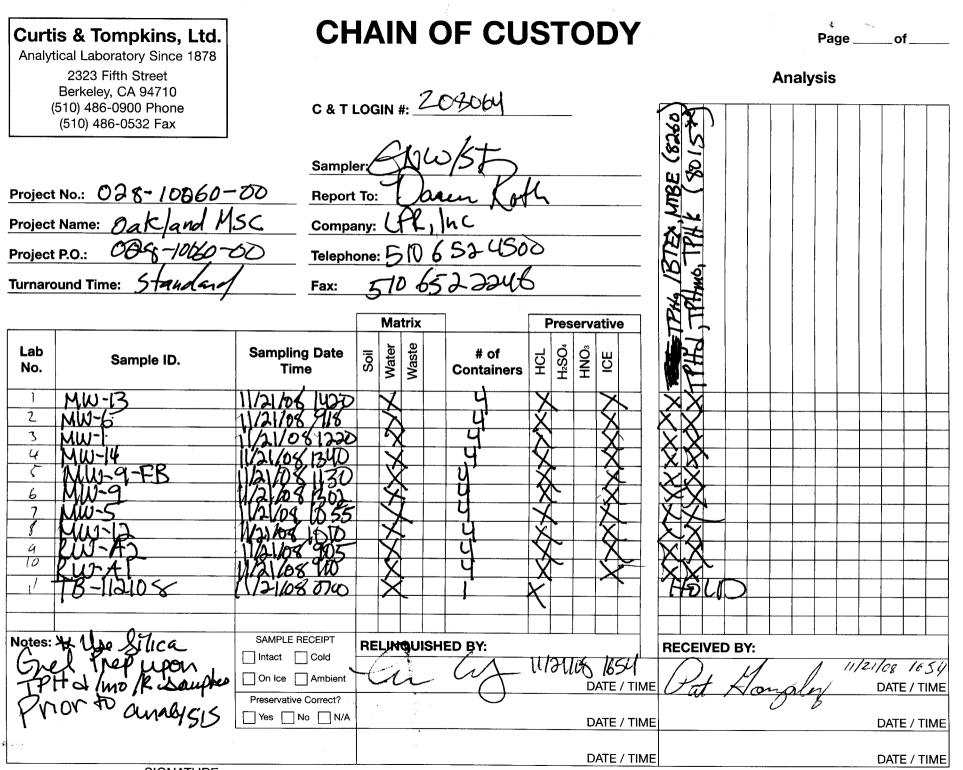
Instrument: MSVOA08.i

Operator: voc

Column diameter: 2.00



Column phase:


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\112608.b\HKQ06TVH.D
Date : 26-NOV-2008 13:28
Client ID: DYNA P&T
Sample Info: CCV,S9459,0.014/100,

Instrument: MSVOA08.i

Operator: voc Column diameter: 2.00

Page 2

SIGNATURE

COOL	ER RECEIPT CHECKI	IST		CC Curtis &	. Compkins, Ltd
Logia # Client	ZOBOGY LFR IV.	Date Receive	d <u>11-21-01</u> Project Dakland	Number of coole	жз 2
Date Op Date Log	ened 1/- 21-07 By (pri gged in By (pri	nt) 5. Aria	-556-05 (Sign (Sign)		
1. Did co	oler come with a shipping	g slip (airbill,	etc)?		YES NO
2B. Were 3. Were c 4. Were c 5. Is the	e custody seals present? ow many custody seals intact upor custody papers dry and int custody papers filled out p project identifiable from c e the packing in cooler: (VES Name acrival? act when record roperly (ink,	(circle) on cool eived? signed, etc)? s? (If so fill out to	er on samples DateYES	NO MAR NO MAR MAR NO MAR NO MAR NO
	Bubble Wrap Def For Cloth material Can ature documentation:	am blocks			
Ty J	pe of ice used: K Wet Samples Received on ice	Blue/G	el 🗌 None	Temp(°C) <u>7.9</u>	, 1-1
л Г	Samples received on ice of		sut a temperature t	plank	
 9. Did all b 10. Are san 11. Are san 12. Do the s 13. Was sub 14. Are the 15. Are bub 16. Was the 	lethod 5035 sampling cor (ES, what time were they ottles arrive unbroken/un mples in the appropriate of aple labels present, in good sample labels agree with fficient amount of sample samples appropriately pro- bles > 6mm absent in VC client contacted concern ES. Who was called?	opened? containers for od condition a custody pape sent for testa eserved? A samples?	indicated tests? and complete? rs? s requested?		YES NO YES NO YES NO YES NO YES NO YES NO NO N/A NO N/A
lf Y	ES, Who was called?		By	Date:	YES AD
	rs		·		
SOP Volume: Section: Page:	Client Services 1.1.2 1 of 1	£	:\qc\forms\checklists	Rev. 6 Nu Effective: 2 Cooler Receipt Check	mber 1 of 3 3 July 2008 list_rv6.doc

APPENDIX D

Historical Tables

Table D-1Summary of Groundwater Analytical Data, VOCsMunicipal Service Center, 7101 Edgewater Drive, Oakland, California

											-		0,							
Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)	Chloro- form (µg/l)	Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2- DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-lsopropyl- toluene (µg/l)	MTBE (µg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)		1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6																				
2/27/01	270	11	3	ND	<1	ND	ND	7	ND	<1	9	6.0	1.0	19.0	62	21	3	1	<1	3
8/20/01	E280	14	<1	<1	<1	3	2	<1	<1	<1	11	4.0	<1	14.0	E82	14	4	<1	<1	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100

Concentrations expressed in micrograms per liter (µg/l)

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = Estimated concentration.

MTBE = methyl tertiary-butyl ether

ND = Not detected.

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table D-2

Summary of Groundwater Analytical Data, SVOCs Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
MW-6			
2/27/01	19	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	<5	<5	5
TDM 5			
TBW-5		_	
8/20/01	220	<5	73

Concentrations expressed in micrograms per liter ($\mu g/l$)

Notes:

SVOCs = Semivolatile organic compounds by EPA Method 8270. ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table D-3Summary of Groundwater Analytical Data, LUFT MetalsMunicipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2 8/19/98			<100			а
8/19/98			< 100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1*
0,10,01	101001	0.017	01012		0.10	
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	

Concentrations expressed in milligrams per liter (mg/l)

Notes:

--- = Not measured/analyzed.

* = Note was indicated but not defined in historical data tables.

a = Analyzed for organic lead.

LUFT = Leaking Underground Fuel Tank

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

Table D-4 Summary of Groundwater Analytical Data, Additional Metals Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Sample ID/ Date	Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
MW-6							
8/16/01	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
TBW-1							
8/16/01	< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
TBW-3							
	< 0.01	0.000	< 0.001	0.009	< 0.01	< 0.002	< 0.01
8/16/01	< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
TBW-5							
8/16/01	< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01

Notes:

Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.