RECEIVED

By dehloptoxic at 9:35 am, Jan 16, 2007

Groundwater Monitoring Report
Fall 2006 Semiannual Sampling Event
Municipal Service Center
7101 Edgewater Drive
Oakland, California

December 4, 2006 001-09225-22

Prepared for: City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California

December 4, 2006 001-09225-22

Mr. Gopal Nair City of Oakland, Public Works Department Environmental Sciences Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

Subject: Groundwater Monitoring Report, Fall 2006 Semiannual Sampling Event, Municipal

Service Center, 7101 Edgewater Drive, Oakland, California

Dear Mr. Nair:

LFR Inc. (LFR) is pleased to present this report summarizing data collected during the fall 2006 semiannual groundwater monitoring event at the Municipal Service Center, located at 7101 Edgewater Drive in Oakland, California ("the Site"). These activities were performed in a manner consistent with previous sampling events conducted at the Site.

If you have any questions regarding this report, please call me at (650) 469-7224 or Erica Kalve at (510) 596-9692.

Sincerely,

Charles H. Pardini, P.G. #6444

Principal Geologist

Attachment

Offices Nationwide

CONTENTS

1.0	INTRODUCTION	1
2.0	SITE BACKGROUND AND CORRECTIVE ACTION MEASURES	1
3.0	FALL 2006 SEMIANNUAL MONITORING ACTIVITIES	2
	3.1 Field Activities	2
	3.2 Sample Analyses	3
4.0	MONITORING RESULTS	3
	4.1 Shallow Groundwater Topography	3
	4.2 Occurrence of Separate-Phase Hydrocarbons	4
	4.3 Contaminant Distribution in Groundwater	4
	4.3.1 Benzene	5
	4.3.2 Toluene	5
	4.3.3 Ethylbenzene	5
	4.3.4 Total Xylenes	5
	4.3.5 MTBE	6
	4.3.6 TPH-g	6
	4.3.7 TPH-d	6
	4.3.8 TPH-mo	7
	4.3.9 TPH-k	7
	4.4 Laboratory Analysis	7
5.0	LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL	7
	5.1 Method Holding Times	7
	5.2 Blanks	8
	5.3 Laboratory Control Samples	8
	5.4 Surrogates	8
	5.5 False-Positive Petroleum Hydrocarbon Identification	8
6.0	CONCLUSIONS AND RECOMMENDATIONS	8

7.0 L	IMITATIONS
8.0 S	ELECTED REFERENCES
TABL	ES
11122	
1	Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
FIGUI	RES
1	Site Vicinity Map
2	Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater, September 2006
3	Detail Plume Map
APPE	NDICES
A	City of Oakland MSC Schedule and Protocol
В	Groundwater Sampling Field Data Sheets
C	Laboratory Results and Chain-of-Custody Documentation
D	Historical Tables

Page ii smr-MSC-Oct06-09225.doc:deh

1.0 INTRODUCTION

This report presents the results of the fall 2006 semiannual groundwater monitoring event conducted from September 6 through September 7, 2006 at the Municipal Service Center (MSC), located at 7101 Edgewater Drive in Oakland, California ("the Site"; Figure 1). LFR Inc. (LFR) conducted monitoring activities at the Site in accordance with consultant Assignment No. GO5-LFR-20.

Described below are the monitoring activities, analytical results, distribution of contaminants in groundwater, conclusions, recommendations, and anticipated semiannual monitoring activities tentatively scheduled for March/April 2007.

2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES

Eighteen 4-inch-diameter and four 2-inch-diameter test/observation wells were installed on site to depths ranging from 13 feet below ground surface (bgs) to 17 feet bgs, in December 2001 and January 2002 by others, according to Uribe & Associates' "Test/Observation Well Installation Report U & A Project 291-03," prepared in April 2002 (Uribe 2002). Seven of the wells (RW-Al, RW-A2, OB-A1, RW-B1, RW-B2, RW-B3, and RW-B4) were installed in the vicinity of Plumes A and B. Fifteen wells (RW-C1, RW-C2, RW-C3, RW-C4, RW-C5, RW-C6, RW-C7, OB-C1, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, OB-D1, and OB-D2) were installed in the vicinity of plumes C and D. Every well, except OB-A1, was surveyed subsequent to the installation event. The plume locations are shown on Figures 2 and 3. The well locations are shown on Figure 3.

According to the "Second Quarter 2003 Monitoring Report" (Uribe 2003), approximately 10,000 gallons of a groundwater/free product mixture were removed from on-site wells RW-B3 and RW-B4 (Plume B) in September and October 2002, using a trailer-mounted, dual-phase extraction unit with a 10-horsepower vacuum pump. Additionally, approximately 10,000 gallons of liquid were removed from wells RW-C3, RW-C4, RW-C5, and RW-C7 (Plume C) through five daily extractions over a two-month period. The liquid was pumped into a 21,000-gallon aboveground storage tank to allow separation of oil from water and drained through three 2,000-pound granular-activated carbon filters (in series). After filtration, the wastewater was discharged into a local storm drain. A National Pollutant Discharge Elimination System permit was issued prior to discharge.

Within the same time period, hydrogen peroxide, followed by water, was injected periodically into wells located in Plumes A, B, C, and D areas, to promote in situ bioremediation.

In addition, construction of an extraction system to remove separate-phase hydrocarbons (SPH) within the vicinity of Plume D began in January 2006. Seven

smr-MSC-Oct06-09225.doc:deh

existing groundwater monitoring wells (RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1) were converted to extraction wells by URS. The extraction system was completed in April 2006, and the system began operation in mid-May 2006.

3.0 FALL 2006 SEMIANNUAL MONITORING ACTIVITIES

3.1 Field Activities

The field activities, which included depth to water/product measurement and well sampling, were conducted in accordance with the City of Oakland MSC Schedule and Protocol Table presented in Appendix A.

On September 6, 2006, LFR personnel measured depth to water and depth to SPH using an electric oil/water interface probe in the following wells: MW-1, MW-2, MW-5 through MW-17, TBW-1, TBW-3, TBW-4, TBW-6, RW-A1, RW-A2, OB-A1, RW-B1 through RW-B4, RW-C1 through RW-C7, OB-D1, and OB-D2. Monitoring wells MW-3 and MW-4 have been abandoned and sealed (Ninyo & Moore 2004) and are no longer included in the sampling plan. Wells TBW-2, OB-C1, RW-1, and RW-C8 were inaccessible and could not be measured. Wells RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1 were converted to extraction wells and could not be accessed for depth-to-water and depth-to-SPH measurements. The oil/water interface probe was decontaminated with hexanol when product was encountered, and rinsed with liquinox and distilled water before use in each well to avoid potential cross contamination. Current and historical product thickness measurements, depth-to-groundwater measurements, and groundwater elevations calculated from groundwater measurements are presented in Table 1. Monitoring well locations are shown on Figures 2 and 3.

On September 6 and 7, 2006, LFR personnel collected groundwater samples from wells MW-1, MW-5, MW-6, MW-8, MW-9, MW-10, MW-12, MW-13, MW-14, MW-15, and MW-17. Well MW-6 was sampled although approximately 0.01 foot of SPH was observed during depth-to-water and depth-to-SPH measurements. Using a clean, disposable polyethylene bailer for each well, a minimum of three well-casing volumes of water was purged from each of the 11 on-site wells before groundwater samples were collected. The wells were allowed to recover to at least 80 percent of their original static groundwater levels before sampling. Oxidation reduction potential, temperature, pH, and conductivity were measured for each well volume purged. Additionally, characteristics of the water (color, turbidity, odor, sheen) were noted on the field data sheets, which are included in Appendix B.

After purging the wells, samples were collected using the disposable, polyvinyl chloride, bottom-discharging bailer that was used to purge the well. The samples were transferred from the bailer to the appropriate sample containers, labeled, and placed in a "wet chilled" cooler containing ice, under chain-of-custody protocol. The samples

Page 2

were secured in the cooler and transferred to Curtis & Tompkins, Ltd., Analytical Laboratories (C&T), a California Department of Health Services-certified environmental laboratory located in Berkeley, California. Purged and decontamination water generated during sampling activities was transferred into an on-site holding tank that was part of the on-site extraction and treatment system maintained by the City of Oakland.

3.2 Sample Analyses

The groundwater samples were analyzed by C&T for the following parameters:

- total petroleum hydrocarbons (TPH) as gasoline (TPH-g) using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B; TPH as kerosene (TPH-k), diesel (TPH-d), and motor oil (TPH-mo) using U.S. EPA Method 8015B, using a silica gel cleanup
- the aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary-butyl ether (MTBE) using U.S. EPA Method 8260B

4.0 MONITORING RESULTS

4.1 Shallow Groundwater Topography

Depth to groundwater was measured on September 6, 2006, using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater levels were allowed to equilibrate prior to groundwater measurement. Groundwater elevations were determined using well survey data from the "Second Quarter 2003 Monitoring Report" (Uribe 2003).

Groundwater elevations ranged from 6.57 feet mean sea level (msl) at RW-A1 to 0.01 foot msl at MW-17 (Figure 2). Wells MW-16 and MW-17 are located adjacent to San Leandro Bay in the southwestern portion of the Site, with MW-17 located farther downgradient. Groundwater flow direction, measured between wells TBW-6 and MW-12, is toward the west at 0.027 foot/foot (ft/ft) in the northern section of the Site, and toward the southwest (measured between wells MW-6 and MW-17) at 0.028 ft/ft in the southern portion of the Site. A groundwater high is observed in the vicinity of well TBW-3. This observed groundwater high may be due to the presence of coarse-grained backfill in the area. The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface, preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). The groundwater flow direction for this sampling period was similar to that reported by

smr-MSC-Oct06-09225.doc:deh

Ninyo & Moore in its July 14, 2004 Spring Semiannual Monitoring Report for the Site, and in more recent LFR monitoring reports.

4.2 Occurrence of Separate-Phase Hydrocarbons

SPH was observed and thickness measured in the following on-site wells: TBW-1 (0.10 foot), RW-C2 (0.12 foot), and RW-C6 (0.18 foot). SPH was also measured in a thickness up to 0.01 foot at wells MW-6, TBW-4, RW-A2, RW-B1, RW-C3, and OB-D1. Sheen was observed at wells TBW-3, TBW-6, RW-C1, RW-C4, RW-C5, RW-C7, and OB-D2. These results are similar to previous results. SPH was previously observed and measured in wells TBW-5, RW-D1, RW-D2, RW-D3, RW-D4, and RW-D5 (Plume D) during the September 2005 monitoring event. However, SPH could not be assessed and measured in these wells during the current monitoring event because the wells had been converted to extraction wells and the access hole in each well was too small to accommodate the oil/water interface probe. The results of the SPH assessment are presented in Table 1. Plumes A and B show a significant decrease in the lateral extent of SPH, and Plume C shows a significant decrease in SPH thickness compared to previous monitoring events. The lateral extent of plume D could not be assessed, as noted above. The extent of SPH is presented on Figure 2. Figure 3 presents a detailed plume map of SPH.

4.3 Contaminant Distribution in Groundwater

The analytical data from this groundwater monitoring event are presented in Table 1 along with historical analytical results. Laboratory analytical data reports are included in Appendix C. Historical data for volatile organic compounds, semivolatile organic compounds, Leaking Underground Fuel Tank metals, and other metals are provided in Appendix D (in Tables D-1 through D-4, respectively).

For quality assurance/quality control (QA/QC), LFR collected a duplicate sample from well MW-6 and analyzed it for TPH-g, TPH-k, TPH-d, TPH-mo, BTEX, and MTBE. Analytical results for this duplicate sample were very similar for TPH-g, TPH-mo, BTEX, and MTBE to the analytical results for the sample from MW-6 (Table 1). However, analytical results for this duplicate sample were different than those in the primary sample for TPH-k and TPH-d, with a relative percent difference of 172 percent and 168 percent, respectively. The difference in concentrations for these two analytes between the primary and duplicate samples may be due to the presence of 0.01 foot of product measured during field activities and the heterogeneous distribution of product in the well caused by bailing. Such heterogeneity may have caused the primary sample to contain only dissolved concentrations of TPH while the duplicate sample contained an aliquot of SPH.

Page 4 smr-MSC-Oct06-09225.doc:deh

4.3.1 Benzene

Benzene concentrations detected above laboratory analytical detection limits (LADL) were reported in groundwater samples collected from four of the 11 monitoring wells sampled. The maximum benzene concentrations reported from groundwater samples collected during this monitoring event were 330 micrograms per liter (μ g/l) in well MW-6 and 350 μ g/l in the duplicate sample collected from MW-6. Historically, concentrations of benzene in well MW-6 have been as high as 430 μ g/l.

In its July 2004 monitoring report (Ninyo & Moore 2004), Ninyo & Moore cited the following regulatory standards for benzene: acceptable risk threshold for the San Francisco Airport Ecological Protection Zone (SFAEPZ) Tier I Standard was 71 μ g/l; the City of Oakland Tier I Carcinogenic Risk-Based Standard Level (RBSL) was also 71 μ g/l. However, LFR has not included City of Oakland RBSLs in this report because they were promulgated in 1999 and are considered out of date. The San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) for Surface Water Bodies in a Marine Environment for benzene is 71 μ g/l (RWQCB 2005, Table F). Benzene concentrations at the Site for this sampling event are above these levels at monitoring well MW-6.

Benzene was also reported in groundwater samples collected from wells MW-1 (4.2 μ g/l), MW-5 (8.3 μ g/l), and MW-9 (58 μ g/l). These concentrations are generally consistent with historical concentrations for these wells and are below the above-referenced standards.

4.3.2 Toluene

Toluene was reported at very low concentrations in four of the 11 wells sampled: wells MW-1 (1.0 μ g/l), MW-5 (1.1 μ g/l), MW-6 (3.9/3.6 μ g/l), and MW-9 (5.3 μ g/l). Concentrations are well below regulatory action levels for toluene of 40 μ g/l (RWQCB ESLs).

4.3.3 Ethylbenzene

Ethylbenzene was reported in a groundwater sample collected from one of the 11 wells sampled. Ethylbenzene was detected at a concentration of 8.2 μ g/l in the sample collected from well MW-5. This concentration is below historical concentrations of ethylbenzene in this well. The concentration is below both the SFAEPZ Tier I Standard (29,000 μ g/l) and the RWQCB ESL for Surface Water Bodies in a Marine Environment of 30 μ g/l (RWQCB 2005).

4.3.4 Total Xylenes

Total xylenes were reported in groundwater samples collected from five of the 11 monitoring wells sampled. The maximum concentration of total xylenes was 6.8 μ g/l

smr-MSC-Oct06-09225.doc:deh

in a groundwater sample collected from well MW-5. Concentrations are below regulatory action levels for the RWQCB ESLs for Surface Water Bodies in a Marine Environment for total xylenes (100 μ g/l).

Total xylenes were also reported in samples collected from wells MW-1 (1.9 μ g/l), MW-6 (3.7/3.4 μ g/l), MW-9 (5.68 μ g/l), and MW-15 (2.06 μ g/l). These concentrations are consistent with historical concentrations for these wells and are below RWQCB ESLs.

4.3.5 MTBE

MTBE concentrations above LADL were reported in groundwater samples collected from three of the 11 monitoring wells sampled. MTBE was detected in samples collected from wells MW-5 (50 μ g/l), MW-6 (4.8/4.7 μ g/l), and MW-14 (0.51 μ g/l). The concentration in MW-5 is similar to historical concentrations previously detected in this well. All concentrations of MTBE detected in samples collected during this sampling event are below the RWQCB ESLs for Surface Water Bodies in a Marine Environment for MTBE (180 μ g/l).

4.3.6 TPH-g

TPH-g was reported in groundwater samples collected from six of the 11 wells sampled. The maximum TPH-g concentration reported for this groundwater monitoring event was 2,000 μ g/l in the groundwater sample collected from well MW-5. This concentration is consistent with historical concentrations for this well. It is less than the SFAEPZ Tier I Standard Acceptable Threshold of 3,700 μ g/l for TPH-g (Ninyo & Moore 2004), and less than the RWQCB ESL for Surface Water Bodies in a Marine Environment for TPH-g, which is also 3,700 μ g/l.

TPH-g was also detected in wells MW-1 (480 μ g/l), MW-6 (1,300/1,200 μ g/l), MW-9 (240 μ g/l), MW-12 (120 μ g/l), and MW-14 (60 μ g/l). Concentrations of TPH-g are consistent with historical concentrations for these wells and are below the SFAEPZ Tier I Standard Acceptable Threshold for TPH-g and the RWQCB ESL for Surface Water Bodies in a Marine Environment for TPH-g.

4.3.7 TPH-d

TPH-d was reported in groundwater samples collected from nine of the 11 monitoring wells sampled. Analytical results presented in Table 1 indicated that all of the TPH-d concentrations contained a comment. Upon further review of the chromatograms by C&T, the analytical laboratory, it was noted that there was no diesel present in any of the samples collected. The samples either contained TPH-g range hydrocarbons (MW-1 and MW-6 [duplicate]) and/or TPH-mo (or heavier) range hydrocarbons (MW-1, MW-6 [duplicate], MW-10, MW-13, MW-14, and MW-15); and/or the sample

Page 6 smr-MSC-Oct06-09225.doc:deh

exhibited a chromatographic pattern that does not resemble the diesel standard (MW-5, MW-6, MW-9, MW-10, MW-12, MW-13, MW-14, and MW-15).

4.3.8 TPH-mo

TPH-mo was reported in groundwater samples collected from three of the 11 wells sampled. TPH-mo was detected at 730 μ g/l in a sample from MW-13. This concentration is above both the SFAEPZ Tier I Standard Acceptable Threshold for TPH-mo of 640 μ g/l (middle distillates; Uribe 2003) and the RWQCB ESL for Surface Water Bodies in a Marine Environment for residual fuels, which is also 640 μ g/l (middle distillates). This concentration is consistent with historical concentrations of TPH-mo in this well. Also, TPH-mo was detected at 400 μ g/l in the samples collected from wells MW-1 and MW-15.

4.3.9 TPH-k

TPH-k was reported in groundwater samples collected from seven of the 11 monitoring wells sampled. Analytical results presented in Table 1 indicated that all of the TPH-k concentrations contained a comment. Upon further review of the chromatograms by C&T, it was noted that there was no kerosene present in any of the samples collected. The samples either contained a heavier range hydrocarbon (MW-1, MW-6 [duplicate], MW-14, and MW-15), and/or the sample exhibited a chromatographic pattern that does not resemble the kerosene standard (MW-5, MW-6, MW-9, MW-12, MW-14, and MW-15).

4.4 Laboratory Analysis

Current laboratory analytical results and historical results are presented in Table 1. Copies of laboratory data sheets and chain-of-custody documents are included in Appendix C.

5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

A laboratory QA/QC review was performed on the laboratory analytical data to evaluate the quality and usability of the analytical results. The following sections summarize the QA/QC review.

5.1 Method Holding Times

Extraction and analyses performed on the collected samples were reviewed by LFR personnel and were found to be within the appropriate holding times.

smr-MSC-Oct06-09225.doc:deh

5.2 Blanks

One field blank (MW-8-FB) was collected along with groundwater sample MW-8, and analyzed for TPH-g, TPH-k, TPH-d, TPH-mo, BTEX, and MTBE. Additionally, laboratory method blank results were reviewed for detection of target analytes. No target analytes were detected in MW-8-FB, indicating that sample collection methods and transportation and laboratory procedures were not a source of contamination.

5.3 Laboratory Control Samples

Laboratory Control Samples and MS, MSD and BS, BSD were conducted by C&T for TPH-g, TPH-d, TPH-mo, and BTEX. All samples were within the percentage recovery range required by the laboratory.

5.4 Surrogates

All surrogates, including hexacosane for TPH-d, TPH-k, and TPH-mo, and bromofluorobenzene, 1,2-dichloroethane-d4, toluene-d8, and bromofluorobenzene for TPHg, BTEX, and MTBE, were used for laboratory QA/QC analysis. All surrogates were within the laboratory recovery limits.

5.5 False-Positive Petroleum Hydrocarbon Identification

Qualifiers were reported in the laboratory analytical reports as noted in previous sections.

6.0 CONCLUSIONS AND RECOMMENDATIONS

- Groundwater elevations ranged from 0.01 foot msl at well MW-17 to 6.57 feet msl at well RW-A1, located on the southern portion of the Site. The direction of shallow groundwater flow is toward the southwest in the northern section of the Site at a 0.027 ft/ft gradient and toward the southwest at 0.028 ft/ft in the southern portion of the Site. A shallow groundwater high was observed in the vicinity of well TBW-3. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill.
- SPH was observed in 16 wells, three of which had a measurable thickness of SPH (>0.01 foot): 0.18 foot in RW-C6, 0.12 foot in RW-C2, and 0.10 foot in TBW-1. Sheen was observed in seven wells (TBW-3, TBW-6, RW-C1, RW-C4, RW-C5, RW-C7, and OB-D2). Six wells exhibited SPH, more than just sheen but less than 0.01 foot (MW-6, TBW-4, RW-A2, RW-B1, RW-C3, and OB-D1).
- Benzene was detected above LADL in four of 11 wells sampled. The maximum concentration of benzene detected in shallow groundwater was 330 μ g/l in well

Page 8 smr-MSC-Oct06-09225.doc:deh

MW-6 and 350 μ g/l in the MW-6 duplicate. These concentrations are above both the SFAEPZ threshold and the RWQCB ESL for Surface Water Bodies in a Marine Environment of 71 μ g/l. MW-6 is the only well with detected concentrations of benzene that exceed the RWQCB ESL.

- Toluene was detected above LADL in four of 11 wells sampled. The maximum concentration of toluene detected in shallow groundwater was 5.3 μg/l in well MW-9. This concentration is well below the RWQCB ESL for Surface Water Bodies in a Marine Environment of 40 μg/l.
- Ethylbenzene was detected above LADL in one of 11 wells sampled. The maximum concentration of ethylbenzene was detected in shallow groundwater at 82 μ g/l in well MW-5. The concentration is below the SFAEPZ Tier I Standard (29,000 μ g/l), but exceeds the RWQCB ESL for Surface Water Bodies in a Marine Environment of 30 μ g/l (RWQCB 2005).
- Total xylenes were detected above LADL in five of 11 wells sampled. The
 maximum concentration of xylenes detected in shallow groundwater was 6.8 μg/l in
 well MW-5. Concentrations are well below regulatory action levels for the RWQCB
 ESL for Surface Water Bodies in a Marine Environment for total xylenes
 (100 μg/l).
- MTBE was detected above LADL in three of 11 wells sampled. The maximum concentration of MTBE detected in shallow groundwater was 50 μ g/l in well MW-5. This concentration is below the RWQCB ESL for Surface Water Bodies in a Marine Environment for MTBE of 180 μ g/l.
- TPH-g was detected in six of 11 wells sampled. The maximum concentration of TPH-g detected in shallow groundwater was 2,000 μ g/l in well MW-5. This concentration is below both the SFAEPZ acceptable threshold and RWQCB ESL for middle petroleum distillates of 3,700 μ g/l.
- TPH-k was not detected above laboratory analytical limits in any of the 11 wells sampled, as noted in Section 4.3.9.
- TPH-mo was detected in three of 11 wells sampled at a maximum concentration of 730 μ g/l in well MW-13. This concentration is above both the SFAEPZ acceptable threshold and the RWQCB ESL for middle petroleum distillates of 640 μ g/l. The other two samples were below these criteria.
- TPH-d was not detected above laboratory analytical detection limits in any of the 11 wells sampled as noted in Section 4.3.7.
- Petroleum hydrocarbon concentrations were similar to previous sampling event results in the 11 wells sampled.

Based on the results of the fall 2006 groundwater monitoring event, LFR has the following recommendations:

smr-MSC-Oct06-09225.doc:deh

- Continue semiannual groundwater monitoring on site due to the elevated concentrations of benzene, ethylbenzene, and TPH-mo reported during this monitoring event.
- Continue monitoring SPH, which was detected in 16 monitoring wells at the Site, ranging from the presence of sheen to 0.18 foot.
- Continue in situ remediation using hydrogen peroxide, and continue groundwater extraction in the vicinity of Plume D.

7.0 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard-of-care exercised by environmental consultants performing similar work in the project area. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. Please note this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions and the referenced literature. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which LFR has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. LFR should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.

Page 10 smr-MSC-Oct06-09225.doc:deh

8.0 SELECTED REFERENCES

- Ninyo & Moore. 2004. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center, 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. July 14.
- Regional Water Quality Control Board (RWQCB). 2003. Screening for Environmental Concerned Sites with Contaminated Soil and Groundwater (Interim Final). July.
- Uribe & Associates (Uribe). 2002. Test/Observation Well Installation Report U & A Project 291-03. April 2.
- ———. 2003. Final Report, Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center. May.

smr-MSC-Oct06-09225.doc:deh

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(μg/l)	$(\mu g/I)$	(µ g/l)	(µg/l)	(μg/l)	(µg/l)	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									(µg/l)	, ,	
MW-1														
10/4/089	10.20			8020					540	65	26	14	22	
10/4/89	10.20			8240						120	46	43	78	
4/27/93	10.20			8020					< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	10.20			8020					3,200	880	15	23	21	
7/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6	
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.1	4.6	
2/21/96	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16	
5/13/96	10.20	4.33	5.87	8020					7,300	2,000	30	42	38	
8/27/96	10.20	5.25	4.95	8020					380	61	2.4	< 0.5	4.2	
2/23/98	10.20	1.75	8.45	8020		< 50	< 500	< 50	820	160	4.9	3	9.7	
8/19/98	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.1	0.84	8.5	< 5.0
11/11/98	10.20	5.64	4.56											
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	< 50	1,100	190	5	3	12	< 5.0
5/27/99	10.20	3.96	6.24											
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	< 50	370	37	0.9	< 0.5	1.9	< 5.0
11/22/99	10.20	5.46	4.74											
1/18/00	10.05	5.41	4.64											
1/19/00	10.05			8020	SGC	50	< 200	< 50	660	43	2.3	1.1	6	< 5.0
5/11/00	10.05	4.63	5.42											
8/24/00	10.05	5.07	4.98											
8/25/00	10.05			8020	SGC	340	< 250	290	480	53	1.4	< 0.5	2.9	< 5.0
11/28/00	10.05	5.60	4.45											
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	< 250	< 61	1,500	110	6.3	<1.5	9.9	< 15
5/17/01	10.05	4.00	6.05											
8/16/01	10.05	4.17	5.88		Filtered+SGC	280	<b200< td=""><td>< 100</td><td>4,000</td><td>640</td><td>9.7</td><td>5.7</td><td>13</td><td>< 5.0</td></b200<>	< 100	4,000	640	9.7	5.7	13	< 5.0
12/15/01	10.05	5.52	4.53											
4/9/02	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	< 5
6/21/02	10.05	4.92	5.13											
9/13/02	10.05	5.52	4.53	8021	SGC	88 b,c	< 300	88	260	9.6	< 0.5	< 0.5	1.0	<2
4/22/03	10.05	4.41	5.64	8021B	SGC	570 L Y	< 300	660	1,900 Z	400.0	9.6	5.4	8.1	< 2.0
4/28/04	10.05	3.95	6.10	8260B	SGC	< 100	< 400	< 100	154	20	< 1.0	< 1.0	2.3	< 1.0
10/29/04	10.05	5.68	4.37	8260B	SGC	230 L Y	< 300	240	340 H Z	6.4	0.6	< 0.5	1.4	< 0.5
9/2/05 (1)	10.05	4.35	5.70	8260B	SGC	140 L Y	< 300	170	350	6.6	1.0	< 0.5	2.3	< 0.5
4/4/2006 (3)	10.05	2.24	7.81	8260B	SGC	830 L Y	< 300	1,100 L Y	3,700	470	13	7.8	6.3	< 3.6
9/6/06	10.05	4.98	5.07	8260B	SGC	3,400 H L	400 L	3,100 H	480	4.2	1.0	< 0.5	1.9	< 0.5
MW-2														
10/4/89	10.47			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	10.47			8240						2	< 2.0	< 2.0	< 2.0	

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µ g/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)			40,	40,	4 0 /	4 0 /	4 0 /	4 0 /	(µg/l)	7 4 6 7	4 3 /
4/27/93	10.47			8020					< 1,000	< 1.0	<1.0	< 1.0	<1.0	
4/19/95	10.47			8020					< 50	1.8	< 0.5	< 0.5	< 0.5	
7/27/95	10.47	6.22	4.25	8020					< 50	2.3	< 0.5	< 0.5	< 0.5	
11/20/95	10.47	7.49	2.98	8020					< 50	2.2	< 0.5	< 0.5	< 0.5	
2/12/96	10.47	6.68	3.79	8020					< 50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	< 0.5	< 0.5	
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		< 50	< 500	< 50		1.6	< 0.5	< 0.5	< 0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330			< 50	4.1	3.4	0.8	2.6	< 5.0
11/11/98	10.47	7.37	3.10											
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	< 50	< 50	3.5	0.6	0.6	1.2	< 5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	< 50	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	10.47	7.58	2.89											
1/18/00	10.47	7.41	3.06	8020	SGC	60 a	660	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.47	6.43	4.04											
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	< 59	< 240	< 59	< 50	3.6	< 0.5	< 0.5	< 0.5	< 5
5/17/01	10.47	6.90	3.57											
8/16/01	10.47	6.95	3.52		Filtered+SGC	< 50	B200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/15/01	10.47	7.21	3.26											
4/5/02	10.47	6.02	4.45	8021	SGC	200	400		< 50	2.9	< 0.5	< 0.5	< 0.5	< 5
6/21/02	10.47	8.07	2.40											
9/17/02	10.47	7.12	3.35	8021	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	<2
4/23/03	10.47	6.36	4.11	8021B	SGC	< 50	< 300	< 50	< 50	1.6	< .50	< .50	< .50	< 2.0
4/28/04	10.47	5.99	4.48	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	< 1.0	< 1.0	1.3	< 1.0
9/1/05 (1)	10.47	6.08	4.39	8260B	SGC	< 50	< 300	< 50	< 50	2.8	< 0.5	< 0.5	< 0.5	0.8
4/4/2006 (3)	10.47	4.96	5.51	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	0.5	0.5
9/6/06	10.47	9.31	1.16											
MW-3														
10/4/89				8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89				8240						< 2.0	< 2.0	< 2.0	< 2.0	
2/23/98						< 50	< 500	< 50						
11/11/98		5.83												
2/23/99					Submerged									
5/27/99		1.68			-									
8/24/99		4.76												
11/22/99		6.46												

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		$(\mu g/I)$	(µg/l)	$(\mu g/I)$	$(\mu g/I)$	$(\mu g/I)$	$(\mu g/I)$	benzene	Xylenes (µg/l)	(µg/l)
	(in feet)	(in feet)	(in feet)									(µg/l)		
11/22/99					Destroyed									
MW-4														
10/4/89	7.89			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						< 2.0	< 2.0	< 2.0	< 2.0	
11/11/98	7.89	6.25	1.64											
2/23/99	7.89	3.10	4.79											
5/27/99	7.89	4.03	3.86											
8/24/99	7.89	5.07	2.82											
11/22/99	7.89	6.32	1.57											
11/22/99					Destroyed									
MW-5														
12/13/91	11.15			8020		1,900			13,000	1,500	190	970	2,500	
12/13/91	11.15			8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240						1,800	< 250	1,000	3,800	
12/13/91	11.15			8240	Dup					1,600	< 250	980	3,500	
4/27/93	11.15			8240		12,000			35,000	2,100	< 1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
11/20/95	11.15	6.98	4.17	8020		< 50	< 50	< 50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	< 50	< 50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	< 50	< 50	5,900	430	26	580	760	
5/13/96	11.15			8020	Dup	< 50	< 50	< 50	7,300	360	22	49	640	
8/27/96	11.15	6.40	4.75	8020		2,000	< 51	< 51	6,600	430	27	600	650	
8/27/96	11.15			8020	Dup	6,600	< 51	< 51	6,300	410	25	580	620	
2/23/98	11.15	4.22	6.93	8020		< 50	< 500	< 50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	< 250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01	8260	SGC									6,700
11/11/98	11.15	6.51	4.64											
2/23/99	11.15	3.59	7.56	8020	SGC	2,000	700	< 50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44											
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 e	190 e	5.5	340 e	78	380 e
11/22/99	11.15	6.16	4.99											
1/18/00	11.15	6.60	4.55											
1/19/00	11.15			8020	SGC	100	320	< 50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/00	11.15	6.47	4.68											
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	< 250	< 61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	< 200	< 50	7,500	140	7	580	101	170

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	benzene	Xylenes (μg/l)	(μg/l)
	(in feet)	(in feet)	(in feet)			V-8-7	4 -8-5	V -0-7	(P-0 -7)	V -8-7	V -8-7	(μg/l)	, , , , , , , , , , , , , , , , , , ,	V =0-7
8/16/01	11.15	4.87	6.28		Filtered+SGC	320	B500	< 100	2,300	46	< 5	110	24	850
12/15/01	11.15	5.50	5.65											
4/9/02	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53.9	166
6/21/02	11.15	6.01	5.14	8021	SGC	200 a,b,c	< 300	190	4,600	130	33	380	56	440
9/12/02	11.15	6.40	4.75	8021	SGC	620 b,c	< 300	650	4,000 J	120	< 0.5	260	16	580
4/22/03	11.15	4.69	6.46	8021B	SGC	1600 L Y	< 300	1800	6000	91	< 1.0	870	59.4	150 C
4/28/04	11.15	5.70	5.45	8260B	SGC	< 650	< 400	< 810	4780	34	< 1.0	560	44	47
10/29/04	11.15	5.73	5.42	8260B	SGC	840 L Y	< 300	940	3000	18	2.1	280	16.1	94
9/2/05 (1)	11.15	6.08	5.07	8260B	SGC	510 L Y	< 300	640	1600	13	1.4	55	8.6	92
4/5/2006 (3)	11.15	3.64	7.51	8260B	SGC	840 L Y	< 300	850 H	3,400	14	2.1	280	13	31
9/6/06	11.15	6.21	4.94	8260B	SGC	340 Y	< 300	400 Y	2,000	8.3	1.1	8.2	6.8	50
MW-6														
12/13/91	10.98			8020		520			780	110	2.7	< 2.5	5.5	
12/13/91	10.98			8240						95	5	< 5	< 5	
4/27/93	10.98			8020		< 1,000			< 1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	< 0.8	3.9	29	
4/19/95	10.98			8020	Dup	3,700			3,000	310	3.1	2.7	100	
7/27/95	10.98	7.09	3.89	8020		3,900			6,100	430	15	200	600	
7/27/95	10.98			8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020		850			6,800	160	4.6	8	240	
11/20/95	10.98			8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700			2,800	230	2.8	3.8	44	
2/21/96	10.98			8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020		400	< 50	< 50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020		3,100			4,200	300	9.3	110	110	
8/19/98	10.98				SPH: 0.125 ft.									
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft.									
2/23/99	10.98	7.31	3.67		SPH: NM									
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft.									
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft.									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft.									
1/18/00	10.98	8.08	3.05		SPH: 0.19 ft.									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft.									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft.									
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft.									
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft., f	820	< 240	< 60	6,100	181	< 5	14.2	< 5	< 50
2/26/01	10.98			8260B						270	3	9	3	(19)
5/17/01	10.98	7.57	3.66		SPH: 0.32 ft.									
8/16/01	10.98	7.75	3.49		SPH: 0.32 ft., f	740	B200	< 100	4,200	360	4.6	13	12	14

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µ g/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									(µg/l)	,	
12/15/01	10.98	7.58	3.40		SPH: 0.07 ft.									
4/3/02	10.98	6.92	4.06		SPH: 0.11 ft.									
6/21/02	10.98	7.05	3.93		SPH: 0.19 ft.									
9/12/02	10.98	7.22	4.02		SPH: 0.33 ft.									
4/22/03	10.98	4.71	6.27		SPH: 0.16 ft.									
4/28/04	10.98	5.09	5.89		SPH: 0.23 ft.									
10/27/04	10.98	6.12	4.86		SPH: product on probe									
8/31/05	10.98	6.11	4.87		SPH: 0.95 ft.									
3/27/06	10.98	4.11			SPH: 0.57 ft.									
9/6/06	10.98	5.42	5.56	8260B	SPH: 0.01 ft.	180 Y	< 300	200 Y	1,300	330	3.9	< 1.7	3.7	4.8
9/6/06	10.98			8260B	Dup	2,400 H L	< 300	2,300 H	1,200	350	3.6	<1.3	3.4	4.7
MW-7														
12/13/91	11.51			8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/13/91	11.51			8240						< 5	< 5	< 5	< 5	
4/27/93	11.51			8240		< 1,000			< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	11.51			8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
7/27/95	11.51	6.87	4.64	8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
11/20/95	11.51	8.48	3.03	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	1.5	
2/21/96	11.51	6.29	5.22	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	< 0.5	< 0.5	
8/27/96	11.51	6.80	4.71	8020						< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	11.51	6.88	4.63											
11/11/98	11.51	7.40	4.11											
2/23/99	11.51	5.57	5.94	8020		< 50	< 200	< 50	80	< 0.5	< 0.5	< 0.5	1	< 5.0
5/27/99	11.51	6.56	4.95											
8/24/99	11.51	6.29	5.22	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5
11/22/99	11.51	6.80	4.71											
1/18/00	11.51	7.31	4.20											
1/19/00	11.51			8020	SGC	< 50	< 200	< 50	54	1.5	1.5	2.4	3.8	< 5.0
5/11/00	11.51	6.41	5.10											
8/24/00	11.51	7.11	4.40	8020		< 50	< 250	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.51	7.30	4.21		E.P. 1 . 000									
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
5/17/01	11.51	6.65	4.86		Eiltored SCC	 -50	 D600	 < 100	 -50					 -5
8/16/01	11.51	5.97	5.54		Filtered+SGC	< 50	B600	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	11.51	6.43	5.08	9021	900		 <200				0.5	0.6		
4/8/02	11.51	6.17	5.34	8021	SGC	80	<200		< 50	< 0.5	0.5	0.6	< 0.5	<5 2.2
6/21/02	11.51	6.75	4.76	8021	SGC	< 50	<300	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	3.3
9/12/02	11.51	7.05	4.46	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(μg/l)	$(\mu g/I)$	$(\mu g/I)$	$(\mu g/I)$	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									(µg/l)		
4/22/03	11.51	6.24	5.27	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4 C
4/28/04	11.51	6.61	4.90	8260B	SGC	< 100	< 400	< 100	< 100	1.6	< 1.0	< 1.0	< 1.0	< 1.0
9/2/05 (1)	11.51	6.56	4.95	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
4/5/2006 (3)	11.51	4.58	6.93	8260B	SGC	< 50	< 300	< 50	< 50	2.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.51	6.67	4.84											
MW-8														
11/20/96	12.22			8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/97	12.22	9.59	2.63	8020		200			< 50	< 0.5	< 0.5	< 0.5	< 0.5	2
2/24/98	12.22	8.42	3.80	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	12.22	9.49	2.73	8020	SGC	< 50	< 250	< 50	< 50	1.6	3.4	1	2.8	< 5.0
11/11/98	12.22	9.64	2.58	8020	SGC	< 50	< 200	< 50	< 50	0.9	0.8	0.6	2.3	< 5.0
2/23/99	12.22	11.53	0.69	8020		700	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
1/18/00	12.22	8.31	3.91	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	12.22	9.69	2.53	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	1.3	< 0.5	2.1	< 5.0
8/24/00	12.22	9.40	2.82											
8/25/00	12.22			8020	SGC	85	< 250	< 50	< 50					
11/28/00	12.22	9.40	2.83	8020	SGC	< 50	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	12.22	9.50	2.72	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	12.22	9.71	2.51											
5/18/01	12.22			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	12.22	9.80	2.42		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	12.22	9.28	2.94	8021	SGC	390	1,300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	12.22	9.55	2.67	8021	SGC	440	800		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02	12.22	9.71	2.51											
9/18/02	12.22	9.86	2.36	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/22/03	12.22	9.54	2.68	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/28/04	12.22													
10/27/04	12.22	$NM^{(4)}$												
4/5/2006 (3)	12.22	8.73	3.49	8260B	SGC	54 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22	9.50	2.72	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-9														
11/20/96	10.77			8020		1,900			240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020					300	20	< 0.5	< 0.5	1.8	< 1.0
2/24/98	10.77	6.11	4.66	8020		< 50	< 500	< 50	2,200	540	5.6	1.6	4.9	

Table 1 Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	$(\mu g/I)$	(µg/l)	(µg/l)	$(\mu g/I)$	(µg/l)	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									(µg/l)	, 101	
6/8/98	10.77	7.14	3.63	8020		1,800	890	< 50	840	450	6.1	3.3	5.3	
8/19/98	10.77	7.88	2.89	8020	SGC	190	< 250	160	740	370	8.6	0.99	7.3	< 5.0
11/11/98	10.77	8.23	2.54	8020	SGC	< 50	230	< 50	700	130	4.3	< 0.5	3.9	< 5.0
2/23/99	10.77	6.65	4.12	8020		1,100	3,700	< 50	1,100	620	9.7	1.5	7.7	< 5.0
5/27/99	10.77	7.70	3.07	8020	SGC	70	300	< 50	950	470	11	1.5	9.2	< 5.0
8/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	< 50	290	45	2.8	< 0.5	3	< 5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	< 50	170	12	1.8	< 0.5	2	< 5.0
1/18/00	10.77	8.63	2.14	8020	SGC	200 a	2,300	< 50	160	5.7	1.9	0.6	4.2	< 5.0
5/11/00	10.77	7.70	3.07	8020	SGC	180 a	980	< 100	1,050	280	7.0	< 2.5	5.9	< 25
8/24/00	10.77	8.31	2.46											
8/25/00	10.77			8020	SGC	580	2,200	170	180	23	2.4	< 0.5	2.7	< 5.0
11/28/00	10.77	8.45	2.32	8020	SGC	200	1,600	< 50	130	1.9	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.77	8.45	2.32		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.77	6.40	4.37	8020	Filtered+SGC	120	< 200	< 50	142	33	1.8	< 0.5	< 0.5	< 5.0
5/17/01	10.77	9.88	0.89											
5/18/01	10.77			8020	Filtered+SGC	< 50	< 200	< 50	74	4.6	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.77	8.05	2.72		Filtered+SGC	< 50	< 200	< 100	70	0.62	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.77	7.75	3.02	8021	SGC	1,400	4,100	< 50	210	15	1.6	< 0.5	2.2	< 5
4/5/02	10.77	7.50	3.27	8021	SGC	870	1,000		1,498	367	11	2.1	7.8	< 5
6/20/02	10.77	8.27	2.50	8021	SGC	< 50	< 300	< 50	430	180	5.7	2.4	4.15	<2
9/18/02	10.77	8.25	2.52	8021	SGC	63 b,c	< 300	60	250	49	5.8	< 0.5	3.1	<2
4/22/03	10.77	7.25	3.52	8021B	SGC	< 50	< 300	< 50	69	4.1 C	< 0.5	< 0.5	0.9	<2
4/28/04	10.77													
10/27/04	10.77	$NM^{(4)}$												
4/5/2006 (3)	10.77	6.01	4.76	8260B	SGC	140 H Y	320	64 H Y	160	140	5.2	< 1.0	4.1	< 1.0
9/6/06	10.77	8.44	2.33	8260B	SGC	210 Y	< 300	150 Y	240	58	5.3	< 0.5	5.68	< 0.5
MW-10														
11/20/96	10.59			8020		940			< 50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	
2/24/98	10.59	4.39	6.20	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	< 500	< 50	< 50	7.3	< 0.5	< 0.5	< 0.5	
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/11/98	10.59	7.57	3.02	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/23/99	10.59	5.51	5.08	8020		170	1,200	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	10.59	6.72	3.87	8020	SGC	< 50	< 200	< 50	350	170	1.5	0.5	2.3	< 5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	< 50	380	160 e	< 0.5	< 0.5	2.6	< 5.0
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	< 50	110	5.1	< 0.5	< 0.5	0.72	< 5.0
1/18/00	10.59	7.77	2.82											
1/19/00	10.59			8020	SGC	120 a,b	1,200	< 50	100	< 0.5	< 0.5	0.8	< 0.5	< 5.0

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		$(\mu g/I)$	(µ g/l)	$(\mu g/I)$	(μg/l)	$(\mu g/I)$	(µg/l)	benzene	Xylenes (µg/l)	(µg/l)
	(in feet)	(in feet)	(in feet)			• • •	• 0 /	• 0 /	• 0 /	, ,	• 0 /	(µg/l)	, ,	• 0 /
5/11/00	10.59	7.00	3.59	8020	SGC	110 a	990	< 50	145	1.62	0.5	0.5	0.9	< 5.0
8/24/00	10.59	7.31	3.28											
8/25/00	10.59			8020	SGC	430	1,300	110	< 50	1.0	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	85	< 230	< 57	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.59	6.27	4.32											
5/18/01	10.59			8020	Filtered+SGC	< 50	< 200	< 50	< 50	0.7	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.59	8.75	1.84		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.59	6.97	3.62	8021	SGC	410	2,100	< 50	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.59	6.51	4.08	8021	SGC	220	300		< 50	1.1	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.59	8.10	2.49	8021	SGC	1,100 a,c	6,200	< 50	120	34	< 0.5	< 0.5	< 0.5	<2
9/17/02	10.59	7.66	2.93	8021	SGC	150 a,c	880	< 50	130 a,c,j	32	< 0.5	2.3	< 0.5	< 2
4/22/03	10.59	6.81	3.78	8021B	SGC	< 50	< 300	< 50	51	1.0 C	< .50	1.2	< .50	< 2
4/28/04	10.59	6.70	3.89	8260B	SGC	< 100	< 400	< 100	114	14	< 1.0	6.9	5.2	3.5
10/28/04	10.59	6.98	3.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.59	6.76	3.83	8260B	SGC	< 50	< 300	< 50	110	2.4	< 0.5	< 0.5	0.7	< 0.5
4/5/2006 (3)	10.59	4.86	5.73	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.59	9.01	1.58	8260B	SGC	98 H Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00	11.60			8020	SGC	< 50	500	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	11.60	5.95	5.65	8020	SGC	< 50	430	< 50	600	23	2.1	18	15	< 5.0
8/24/00	11.60	6.58	5.02	8020		< 50	< 250	< 50	110	5.9	< 0.5	0.73	0.64	< 5.0
11/28/00	11.60	6.91	4.69	8020	SGC	< 50	< 200	< 50	180	4	< 0.5	1.9	< 0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	< 240	< 60	720	29	5.2	38	36	< 5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	< 50	< 200	< 50	720	36	3.4	15	18	9.7
8/16/01	11.60	6.01	5.59		Filtered+SGC	< 50	B500	< 100	110	4.8	< 0.5	1.4	< 0.5	< 5
12/15/01	11.60	6.26	5.34	8021	SGC	200	300	< 50	170	1.7	0.6	2.4	1.8	< 2
4/5/02	11.60	5.47	6.13	8021	SGC	160	< 200		330	8.9	2.0	6.9	8.7	< 5
6/21/02	11.60	6.17	5.43	8021	SGC	< 50	< 300	< 50	280	16	1.8	8.7	9.6	3.6
9/12/02	11.60	6.60	5.00	8021	SGC	< 50	< 300	< 50	93	< 0.5	< 0.5	1.1	< 0.5	2.1
4/24/03	11.60	5.71	5.89	8021B	SGC	< 50	< 300	< 50	320	21	2.1	12	6.13	8.9
4/28/04	11.60	5.92	5.68	8260B	SGC	< 100	< 400	< 100	360	18	< 1.0	6.5	4.5	4
10/27/04	11.60	6.59	5.01	8260B	SGC									
9/2/05 (1)	11.60	6.22	5.38	8260B	SGC	< 50	< 300	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	4.5
4/4/2006 (3)	11.60	4.17	7.43	8260B	SGC	71 LY	< 300	75 L Y	230	5.7	0.9	14	7.0	6.5
4/4/06	11.60			8260B	dup	< 50	< 300	55 L Y	220	6.5	1.0	15	7.3	7.4
9/6/06	11.60	6.46	5.14											

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method	. 10165	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	benzene	Xylenes (µg/l)	(µg/l)
Dute	(in feet)	(in feet)	(in feet)	Wicthou		(μg/1)	(PS/1)	(με/ι)	(P5/1)	(PS/1)	(PS/1)	(μg/l)	Aylenes (µg/1)	W 5/1/
MW-12	(,	,,	,,									4 0 /		
1/18/00	10.43	8.11	2.32											
1/19/00	10.43			8020	SGC	1,800 a	11,000	< 50	200	< 0.5	3.4	1.5	8.4	< 5.0
5/11/00	10.43	6.78	3.65	8020	SGC	2,400 a	4,900	< 100	370	< 0.5	< 0.5	< 0.5	0.9	< 5.0
8/24/00	10.43	7.56	2.87											
8/25/00	10.43			8020	SGC	3,500	5,000	3,700	170	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30	8020	SGC	2,100	14,000	< 50	290	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.43	8.13	2.30		Filtered+SGC	50	< 200	< 50						
2/27/01	10.43	6.00	4.43	8020	Filtered+SGC	320	< 250	66	110	1.4	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.43	7.01	3.42	8020	Filtered+SGC	< 50	< 200	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.43	8.47	1.96	8020	Filtered+SGC	200	B300	< 100	160	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.43	6.65	3.78	8021	SGC	500	500		180	< 0.5	< 0.5	0.7	< 1.5	< 5
6/21/02	10.43	7.10	3.33	8021	SGC	1,100 a,b,c	3,000 h	640	180	< 0.5	< 0.5	0.63	1.62	<2
9/17/02	10.43	7.75	2.68	8021	SGC	220 a,b,c	360	190	130	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	10.43	6.60	3.83	8021B	SGC	140 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	10.43	6.60	3.83	8260B	SGC	< 550	1,020	< 100	< 100	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0
10/29/04	10.43	7.87	2.56	8260B	SGC	240 H L Y	460	180	170 H	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	< 50	< 300	< 50	170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05 (1)	10.43	7.04	3.39	8260B	SGC	110 L Y	< 300	120	150	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/4/2006 (3)	10.43	4.49	5.94	8260B	SGC	110 Y	< 300	110 Y	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.43	7.43	3.00	8260B	SGC	230 Y	< 300	200 Y	120	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-13														
1/18/00	11.34	9.63	1.71	8020	SGC	8,800 a	120,000	< 50	< 50	< 0.5	0.8	< 0.5	< 0.5	< 5.0
5/11/00	11.34	10.12	1.71	8020	SGC	11,000 a	110,000	< 500	70	1.6	5.4	1.2	7.6	< 5.0
8/24/00	11.34	10.12	1.12		300	11,000 a							7.0	
8/25/00	11.34	10.22	1.12	8020	SGC	3,100	13,000	1,200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.34	10.50	0.84	8020	SGC	2,400	36,000	<1300	<50	< 0.5	< 0.5	< 0.5	<0.5	< 5.0
11/28/00	11.34	10.50	0.84		Filtered+SGC	280	1,100	< 50						
2/26/01	11.34	9.60	1.74	8020	Filtered + SGC	100	< 260	< 64	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	11.34	10.10	1.24		1 intered + boc									
5/18/01	11.34	10.10	1.24	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	11.34	10.50	0.84	0020	Filtered + SGC	< 50	B300	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
12/16/01	11.34	9.43	1.91	8021	SGC	1,900	18,000	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
4/8/02	11.34	10.24	1.10	8021	SGC	440	900		<50	< 0.5	< 0.5	< 0.5	< 0.5	<5
6/20/02	11.34	10.24	0.59	8021	SGC	270 a,c	1,500 h	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	11.34	10.60	0.74	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/22/03	11.34	10.46	0.88	8021B	SGC	< 50	<300	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
4/28/04	11.34	10.40	1.12	8260B	SGC	< 100	799	< 100	< 100	< 0.5	<1.0	<1.0	<1.0	<1.0
10/28/04	11.34	9.50	1.12	8260B	SGC	< 50	<300	< 50	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5
10/20/04	11.54	9.30	1.04	0200 D	300	\ JU	\ 300	\ 30	\ 30	\0.3	~ 0.3	~ 0.3	\U. J	\0. 3

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µ g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	(µ g/l)
	(in feet)	(in feet)	(in feet)									(µg/l)		
9/1/05 (1)	11.34	9.56	1.78	8260B	SGC	< 50	320	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/2006 (3)	11.34	7.86	3.48	8260B	SGC	180 H Y	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	11.34	10.53	0.81	8260B	SGC	150 H Y	730	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-14														
1/18/00	10.05	7.37	2.68	8020	SGC	1,700 a	22,000	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.05	6.73	3.32	8020	SGC	360 a	4,300	< 100	120	< 0.5	< 0.5	< 0.5	0.5	< 5.0
8/24/00	10.05	7.30	2.75											
8/25/00	10.05			8020	SGC	1,000	3,100	460	90	6.3	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65	8020	SGC	380	6,400	< 250	140	7.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.05	7.40	2.65		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.05	6.20	3.85	8020	Filtered+SGC	150	< 230	< 58	73	2.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.05	7.74	2.31											
5/18/01	10.05			8020	Filtered+SGC	120	< 200	< 50	100	11	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.05	7.85	2.20		Filtered+SGC	< 50	< 200	< 100	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.05	6.60	3.45	8021	SGC	1,110	3,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/9/02	10.05	6.58	3.47	8021	SGC	870	1,100		250	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.05	7.52	2.53	8021	SGC	< 50	310 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	10.05	7.55	2.50	8021	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	0.80	< 0.5	<2
4/22/03	10.05	6.71	3.34	8021B	SGC	< 50	< 300	< 50	61	4.2	< 0.5	1.0	< 0.5	12.0
4/28/04	10.05	6.81	3.24	8260B	SGC	< 230	< 400	< 100	241	1.4	< 1.0	< 1.0	< 1.0	< 1.0
10/28/04	10.05	6.99	3.06	8260B	SGC	< 50	< 300	< 50	56	3.5	< 0.5	< 0.5	< 0.5	0.5
10/28/04	10.05			8260B	dup	< 50	< 300	< 50	53	1.9	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.05	7.60	2.45	8260B	SGC	< 50	< 300	< 50	79	6.7	< 0.5	< 0.5	< 0.5	0.7
4/5/2006 (3)	10.05	5.91	4.14	8260B	SGC	50 Y	< 300	< 50	< 50	1.7	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	10.05	7.70	2.35	8260B	SGC	140 H Y	< 300	79 H Y	60	< 0.5	< 0.5	< 0.5	< 0.5	0.51
MW-15		40.50	4.00	2020		4.000		. = 0	440	• •				
1/18/00	12.36	10.56	1.80	8020	SGC	12,000 a	89,000	< 50	110	3.8	2.1	1	4.6	< 5.0
5/11/00	12.36	10.03	2.33	8020	SGC	120 a	590	< 50	90	0.9	0.9	< 0.5	3.3	< 5.0
8/24/00	12.36	10.22	2.14											
8/25/00	12.36			8020	SGC	1,900	8,600	1,000	< 50	1.9	< 0.5	< 0.5	1.5	< 5.0
11/28/00	12.36	10.30	2.06	8020	SGC	2,500	36,000	< 1300	80	1.7	< 0.5	< 0.5	1.6	< 5.0
11/28/00	12.36	10.30	2.06		Filtered+SGC	73	< 200	< 50						
2/26/01	12.36	9.30	3.06	8020	Filtered+SGC	190	< 240	< 60	55	0.6	< 0.5	< 0.5	0.5	< 5.0
5/17/01	12.36	10.09	2.27											
5/18/01	12.36			8020	Filtered+SGC	210	< 230	< 57	66	1.5	< 0.5	< 0.5	2.1	< 5.0
8/16/01	12.36	10.20	2.16		Filtered+SGC	< 50	B500	< 100	< 50	< 0.5	< 0.5	< 0.5	2.4	< 5
12/16/01	12.36	9.80	2.56	8021	SGC	3,800	15,000	< 250	< 50	< 0.5	< 0.5	< 0.5	2	< 5
4/5/02	12.36	9.58	2.78	8021	SGC	1,000	1,400		< 50	< 0.5	< 0.5	< 0.5	2.3	< 5

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µ g/l)	(µg/l)	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	(µ g/l)
	(in feet)	(in feet)	(in feet)									(µg/l)	,	
6/20/02	12.36	10.24	2.12	8021	SGC	670 a,c	2,700 h	95 c,i	< 50	0.83	< 0.5	< 0.5	2.20	<2
9/18/02	12.36	9.89	2.47	8021	SGC	70 a,c	< 300	< 50	< 50	< 0.5	< 0.5	1.5	1.71	< 2
4/22/03	12.36	9.55	2.81	8021B	SGC	< 50	< 300	< 50	< 50	1 C	<.50	1.4	1.9	<2
4/28/04	12.36	9.68	2.68	8260B	SGC	< 250	567	< 100	< 100	< 0.5	< 1.0	< 1.0	< 1.0	2.8
10/28/04	12.36	9.58	2.78	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.2	< 0.5
9/1/05 (1)	12.36	9.56	2.80	8260B	SGC	420 Y	< 300	120 H Y	55	< 0.5	< 0.5	< 0.5	2.0	< 0.5
4/5/2006 (3)	12.36	8.76	3.60	8260B	SGC	300 H Y	760	87 H Y	< 50	< 0.5	< 0.5	< 0.5	2.4	< 0.5
9/6/06	12.36	9.98	2.38	8260B	SGC	220 H Y	400	80 H Y	< 50	< 0.5	< 0.5	< 0.5	2.1	< 0.5
MW-16														
1/18/00	13.57	10.22	3.43		SPH: 0.1 ft.									
5/11/00	13.57	13.31	0.27		SPH: 0.01 ft.									
8/24/00	13.57	8.91	4.66		SPH: NM									
11/28/00	13.57	13.05	0.86		SPH: 0.42 ft.									
2/26/01	13.57	13.10	0.79		SPH: 0.40 ft.									
5/17/01	13.57	12.62G			SPH: NM									
8/16/01	13.57	11.94G			SPH: NM									
12/15/01	13.57	NM			SPH: NM									
4/3/02	13.57	12.88	0.69											
6/21/02	12.22	NM			SPH: NM									
4/22/03	12.22				Well cap stuck									
4/28/04	12.22	12.48	-0.26	8260B	SGC	< 230	1030	< 260	2000	150	< 1.0	46	< 1.0	< 1.0
10/28/04	12.22	11.97	0.25	8260B	SGC	450 L Y	< 300	480	1100	18	1.7	29	1.7	< 0.5
8/31/05	12.22	12.09	0.13		SPH: None									
4/5/2006 (3)	12.22	3.80	8.42	8260B	SGC	95 H Y	420	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	12.22				Dry									
MW-17														
1/18/00	9.86	5.35	4.51	8020	SGC	850 a	21,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.86	9.85	0.01	8020	SGC	150 a	2,900	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/00	9.86	8.59	1.27											
8/25/00	9.86			8020	SGC	190	610	71	< 50	0.58	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	8020	SGC	< 250	2,400	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61		Filtered+SGC	< 50	< 200	< 50						
2/26/01	9.86	9.40	0.46	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.86	8.32	1.54											
5/18/01	9.86			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	9.86	10.35	-0.49		Filtered+SGC	< 50	B400	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01	9.86	8.01	1.85	8021	SGC	940	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/9/02	9.86	9.76	0.10	8021	SGC	590	880		60	< 0.5	< 0.5	1.6	< 0.5	< 5.0

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		$(\mu g/I)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/I)$	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									(µ g/l)		
6/21/02	9.86	9.79	0.07	8021	SGC	99 a,c	650 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/18/02	9.86	8.25	1.61	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/23/03	9.86	9.75	0.11	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/28/04	9.86	8.90	0.96	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	< 1.0	2.4	< 1.0	< 1.0
10/28/04	9.86	8.32	1.54	`	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	9.86	8.38	1.48	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/2006 (3)	9.86	6.86	3.00	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/6/06	9.86	9.85	0.01	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-18														
4/24/03		6.49		8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	2.4	< 0.5	< 2
4/28/04					Developed to monitor a utility trench, not sampled									
					trenen, not sampled									
8/31/05														
3/27/06														
9/6/06														
TBW-1														
2/23/99		6.25			SPH: 0.10 ft.									
5/27/99		5.29			SPH: 0.01 ft									
8/24/99		6.99			SPH: 0.18 ft.									
11/22/99					Inaccessible									
1/18/00					Inaccessible									
5/11/00		6.90			SPH: 0.10 ft.									
8/24/00		7.12			SPH: NM									
11/28/00		7.75			SPH: 0.36 ft.									
2/27/01		9.06			SPH: 0.51 ft.									
5/17/01		6.98			SPH: 0.28 ft.									
8/16/01		6.62			SPH: 0.66 ft., f	1,100	B700	< 100	17,000	2,100	75	730	850	<1
12/15/01		6.86			SPH 0.35 ft.									
4/3/02		6.14			SPH: None									
9/12/02		7.52			SPH: None									
4/22/03		6.41			SPH: None									
4/28/04		6.33			SPH: None									
10/28/04		NM												
8/31/05		6.50			Well cap smashed 6"									
3/27/06		5.20			SPH: None									
9/6/06		NM			SPH: None									

7101 Edgewater Drive, Oakland, California

Well ID/ TOC Depth to Groundwater BTEX Notes TPH-d TPH-mo TPH-k TPH-g Benzene	Toluene	Ethyl-	Total	MTBE
Date Elevation Groundwater Elevation Method $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$	(µg/l)	benzene	Xylenes (µg/l)	(µg/l)
(in feet) (in feet)		(µg/l)		
TBW-2				
(184.108				
6/21/02 8.28 SPH globules				
4/28/04 6.61 SPH: None				
10/28/04 7.31 SPH: None				
8/31/05 NM				
3/27/06 NM ⁽⁴⁾				
9/6/06 NM ⁽⁴⁾ SPH: None				
TBW-3				
8/19/98 2.67 8020 SGC 810,000 920 3.2	< 0.5	< 0.5	0.77	< 10
8/19/98 2.67 8260				< 5.0
2/23/98 1.25 8020 3,800 3,000 <50 110 1.6	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99 DTW: NM				
8/24/99 3.25 SPH globules				
11/22/99 3.68				
1/18/00 9.92 3.73 6.19 SPH globules				
5/11/00 9.92 2.07 7.85				
8/24/00 9.92 2.82 7.10 SPH: sheen 44,000 13,000 34,000 570 4.7	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00 9.92				
2/27/01 9.92 1.29 8.63 8020 Filtered+SGC 560 <230 <57 120 1.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01 9.92 2.47 7.45				
8/16/01 9.92 1.81 8.11 Filtered+SGC 1,500 B400 <100 180 <0.5	< 0.5	< 0.5	< 0.5	< 1
12/15/01 9.92 2.52 SPH: 0.02 ft				
4/3/02 9.92 1.50 SPH: None				
6/21/02 9.92 2.37 7.55 SPH: None				
9/12/02 9.92 3.48 6.44 SPH: None				
4/22/03 9.92 1.45 8.47 Sheen				
4/28/04 9.92 2.26 7.66 SPH: None				
10/28/04 9.92 3.42 6.50 Sheen				
8/31/05 9.92 2.99 6.93 SPH: None				
3/27/06 9.92 0.49 9.43 SPH: None				
9/6/06 9.92 3.42 6.50 SPH:0.01 ft				
TBW-4				
2/27/01 1.35 8020 Filtered+SGC 410 <230 <57 250 1.9	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01 2.52				
8/16/01 1.88 Filtered+SGC 2,600 B700 <100 390 <0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02 2.32				

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (in feet)	Groundwater (in feet)	Elevation (in feet)	Method		(µg/l)	(µ g/ l)	(µg/l)	(µ g/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
4/22/03		1.41			Sheen									
4/28/04		2.21												
10/27/04		3.37			Sheen									
8/31/05		2.92												
3/27/06		0.49			SPH: None									
9/6/06		3.37			SPH:0.01 ft.									
TBW-5														
2/23/99		9.72			SPH: 1.45 ft.									
5/27/99		7.03			SPH: 1.13 ft.									
8/24/99		6.52			SPH: 1.33 ft.									
11/22/99		8.31			SPH: 1.29 ft.									
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft.									
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft.									
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft.									
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft.									
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft.									
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft.									
8/16/01	10.22	8.32	2.51	8020	SPH: 0.76 ft., f	550	B400	< 100	30,000	2,900	100	1,500	5,100	< 1
12/15/01	10.22	9.09	1.13		SPH: 0.36 ft.									
4/3/02	Well has	active remediation	unit/recovery											
6/21/02	10.22	7.87	2.35		SPH: 0.03 ft.									
9/12/01	10.22	7.26	2.97		SPH: 0.01 ft.									
4/22/03	10.22	6.22	4.00		SPH: 0.06 ft.									
4/28/04	10.22	6.26	3.96		SPH: 0.21 ft.									
10/27/04	10.22	3.62	6.60		SPH: None									
8/31/05	10.22	6.41			SPH: 0.30 ft.									
3/27/06	10.22	$NM^{(2)}$												
9/6/06	10.22	$NM^{(2)}$												
TBW-6														
2/23/99		2.09		8020		160	600	< 50	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99		3.31												
8/24/99		7.29		8020	SGC	180	400	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99		4.37												
1/18/00	9.49	3.83	5.66											
1/19/00	9.49			8020	SGC	55 C	< 200	< 50	170	0.6	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.49	2.51	6.98											
8/24/00	9.49	4.34	5.15											
8/25/00	9.49			8020	SGC	320	< 250	200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	$(\mu g/I)$	$(\mu g/I)$	$(\mu g/I)$	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									(µg/l)	,	
11/28/00	9.49	4.74	4.75											
2/27/01	9.49	2.30	7.19	8020	Filtered+SGC	< 57	< 230	< 57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.49	3.35	6.14											
8/16/01	9.49	3.85	5.64		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	9.49	3.96	5.53											
4/3/02	9.49	2.51	6.98											
6/21/02	9.49	3.58	5.91											
9/12/02	9.49	6.07	4.56		SPH: 1.42 ft.									
4/23/03	9.49	2.42	7.07											
4/28/04	9.49	3.21	6.28											
10/27/04	9.49	4.49	5.00		SPH: None									
8/31/05	9.49	4.43			SPH: 0.52 ft.									
3/27/06	9.49	1.90	7.59		SPH: None									
9/6/06	9.49	4.33	5.16		SPH:0.01 ft.									
RW-A1														
4/22/03		1.81												
4/28/04	10.09	2.52	7.57											
10/27/04	10.09	3.03	7.06		SPH: None									
8/31/05	10.09	3.31	6.78		SPH: None									
3/27/06	10.09	0.62	9.47		SPH: None									
9/6/06	10.09	3.52	6.57		SPH: None									
RW-A2														
4/22/03		1.22			Sheen									
4/28/04	9.67	2.01	7.66		SHEEH									
10/27/04	9.67	3.20	6.47		SPH: None									
8/31/05	9.67	2.75	6.92		SPH: None									
3/27/06	9.67	0.30	9.37		SPH: None									
9/6/06	9.67	3.19	6.48		SPH: 0.01 ft.									
9/0/00	9.07	3.19	0.48		3F11. 0.01 It.									
OB-A1														
4/22/03		2.24			SPH: .01 ft.									
4/28/04		3.01			SPH: None									
10/27/04		5.11			SPH: None (strong odor)									
8/31/05		4.10			SPH: None									
3/27/06		1.25			SPH: None									
9/7/06		4.49			5111.1.0110									
211100		1.12												

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	$(\mu g/I)$	(µg/l)	$(\mu g/I)$	benzene	Xylenes (µg/l)	(µ g/l)
	(in feet)	(in feet)	(in feet)									$(\mu g/I)$		
RW-B1														
4/22/03		7.26			Sheen									
4/28/04	11.22	7.20	4.02											
10/27/04	11.22	7.80	3.42		SPH: None									
8/31/05	11.22	7.14	4.08		SPH: None									
3/27/06	11.22	6.10	5.12		SPH: None									
9/6/06	11.22	7.39	3.83		SPH:0.01 ft.									
RW-B2														
4/22/03		7.29			Sheen, Odor									
4/28/04	11.23	7.20	4.03											
10/27/04	11.23	7.81	3.42		SPH: None									
8/31/05	11.23	7.14	4.09		SPH: None									
3/27/06	11.23	6.09	5.14		SPH: None									
9/6/06	11.23	7.39	3.84		SPH: None									
RW-B3														
4/22/03		9.90			visible Product									
4/28/04	11.14	13.20	-2.06		SPH: 3.09									
10/27/04	11.14	9.33	1.81		SPH: None									
8/31/05	11.14	9.60	1.54		SPH: 0.01									
3/27/06	11.14	9.08	2.06		SPH: None									
9/6/06	11.14	9.61	1.53		SPH: None									
RW-B4														
4/22/03		10.55			SPH: .55 ft.									
4/28/04	11.29	10.22	1.07		SPH: None									
10/27/04	11.29	9.55	1.74		SPH: None									
8/31/05	11.29	9.70	1.59		SPH: None									
3/27/06	11.29	9.23	2.06		SPH: None									
9/6/06	11.29	9.69	1.60		SPH: None									
RW-C1														
4/24/03		8.34												
4/28/04	10.44	8.00	2.44											
10/27/04	10.44	7.59	2.85		SPH: None									
8/31/05	10.44	5.81	4.63		SPH: None									
3/27/06	10.44	1.94	8.50		SPH: None									
9/6/06	10.44	6.71	3.73		SPH: 0.01 ft.									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method	. 10103	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	benzene	Xylenes (μg/l)	(μg/l)
	(in feet)	(in feet)	(in feet)			V 0 /	4 8 7	V 0 /	*0 /	4 8 /	4 0 /	(µg/l)	, , ,	40,
RW-C2													<u>.</u>	
4/24/03		6.22			SPH: .03 ft.									
4/28/04	10.58	6.19	4.39		SPH: 0.06 ft									
10/27/04	10.58	7.00	3.58		SPH: Present									
8/31/05	10.58	6.30	4.28		SPH: 0.01 ft.									
3/27/06	10.58	5.10	5.48		SPH: None									
9/6/06	10.58	8.19	2.39		SPH: 0.12 ft.									
RW-C3														
4/24/03		6.36												
4/28/04	10.71	6.25	4.46											
10/27/04	10.71	7.10	3.61		SPH: None									
8/31/05	10.71	6.39	4.32		SPH: None									
3/27/06	10.71	5.30	5.41		SPH: None									
9/6/06	10.71	8.10	2.61		SPH: 0.01 ft.									
RW-C4														
4/22/03		7.15			Strong odor									
4/28/04	11.32	6.95	4.37		SPH: 0.01 ft									
10/27/04	11.32	7.45	3.87		SPH: None									
8/31/05	11.32	6.71	4.61		SPH: None									
3/27/06	11.32	6.47	4.85		SPH: None									
9/6/06	11.32	8.16	3.16		SPH: 0.01 ft.									
RW-C5														
4/22/03		6.46												
4/28/04	10.79	6.39	4.40											
10/27/04	10.79	7.21	3.58		SPH: Present									
8/31/05	10.79	6.51	4.28		SPH: None									
3/27/06	10.79	5.33	5.46		SPH: None									
9/6/06	10.79	8.03	2.76		SPH: 0.01 ft.									
RW-C6														
4/22/03		6.05			SPH: 0.07 ft.									
4/28/04	10.31	6.30	4.01		SPH: 0.05 ft.									
10/27/04	10.31	6.85			SPH: 0.15 ft.									
8/31/05	10.31	6.81			SPH: 0.93 ft.									
3/27/06	10.31	5.66			SPH: 0.96 ft.									
9/6/06	10.31	7.96	2.35		SPH: 0.18ft.									

7101 Edgewater Drive, Oakland, California

Well	ID/ TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Dat		Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	$(\mu g/I)$
	(in feet)	(in feet)	(in feet)									$(\mu g/I)$,	
RW-	C 7					-			•		'			
4/22/	03	6.51			visible Product									
4/28/		6.60	3.52		SPH: 0.02 ft.									
10/27		NM												
8/31/		NM												
3/27/	06 10.12	$NM^{(4)}$												
9/6/0	10.12	8.34	1.78		SPH: 0.01 ft.									
OB-0	C1													
4/22/	03	6.26												
4/28/		7.39	3.00		SPH: 1.27 ft.									
10/27		8.06	2.33		SPH: 1.08 ft.									
8/31/		7.84			SPH: 1.55 ft.									
3/27/		6.15			SPH: 1.05 ft.									
9/6/0	06	$NM^{(4)}$			Buried									
RW-	D1													
4/22/	03	6.97												
4/28/		5.62	4.56											
10/27		6.67	3.51		SPH: Present									
8/31/		5.75			SPH: 0.02 ft.									
3/27/		$NM^{(2)}$												
9/6/0	10.18	NM ⁽²⁾			No Access									
RW-	02													
4/22/	03	7.15			SPH 1.25 ft.									
4/28/	04 10.33	7.45	2.88		SPH: 0.1 ft.									
10/27		6.41	3.92		SPH: Present									
8/31/		8.44			SPH: 3.12 ft.									
3/27/	06 10.33	$NM^{(2)}$												
9/6/0	10.33	$NM^{(2)}$			No Access									
RW-	03													
4/22/		6.89			SPH: 1.58 ft.									
4/28/		8.18	1.89		SPH: 3.25 ft.									
10/27		6.37	3.70		SPH: Present									
8/31/	05 10.07	7.72			SPH: 2.46									
3/27/		$NM^{(2)}$												
9/6/0		NM ⁽²⁾			No Access									

7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	benzene	Xylenes (μg/l)	(μg/l)
Dute	(in feet)	(in feet)	(in feet)	cuiou		V= 8/ -/	V-8/-7	Vm 8/ -/	VP-8/-/	V~ 8/ -/	V= 8/ -/	(μg/l)	/1) remes (4.8 /1)	V= 8/ ·/
	(,	,,	,,									4 0 /	•	
RW-D4														
4/22/03		8.11			SPH: 1.98 ft.									
4/28/04	10.22	7.99	2.23		SPH: 2.09 ft.									
10/27/04	10.22	6.49	3.73		SPH: Present									
8/31/05	10.22	8.09			SPH: 2.12 ft.									
3/27/06	10.22	$NM^{(2)}$												
9/6/06	10.22	$NM^{(2)}$			No Access									
RW-D5														
4/22/03		6.04			SPH: 0.07 ft.									
4/28/04	9.99	5.96	4.03		SPH: None									
10/27/04	9.99	6.48	3.51		SPH: Present									
8/31/05	9.99	7.02*			SPH: 1.01 ft.									
3/27/06	9.99	NM ⁽²⁾												
9/6/06	9.99	NM ⁽²⁾			No Access									
2/0/00	9.99	NM			No Access									
OB-D1														
4/22/03		5.41			Strong Odor									
4/28/04	9.46	5.31	4.15		Strong Odor									
10/27/04	9.46	5.89	3.57											
8/31/05	9.46	5.42			SPH: None									
3/27/06	9.46	3.09	6.37		SPH: None									
9/6/06	9.46	8.31	1.15		SPH: 0.01 ft.									
OB-D2														
4/22/03		5.14												
4/28/04	9.95	5.25	4.70											
10/27/04	9.95	6.42	3.53		SPH: None									
8/31/05	9.95	5.71			SPH: 0.01 ft.									
3/27/06	9.95	2.32	7.63		SPH: None									
9/6/06	9.95	8.39	1.56		SPH: 0.01 ft.									
RW-1														
4/22/03		6.43												
4/28/04		5.73												
10/27/04		6.34			SPH: None									
8/31/05		5.83			SPH: None									
3/27/06		NM ⁽²⁾												
9/6/06		$NM^{(2)}$			No Access									

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	TOC Elevation (in feet)	Depth to Groundwater (in feet)	Groundwater Elevation (in feet)	BTEX Method	Notes	TPH-d (μg/l)	TPH-mo (µg/l)	TPH-k (µg/l)	TPH-g (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (µg/l)
Field Blank														
10/28/04				8260B					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05				8260B					< 50					
4/4/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/7/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trip Blank														
8/19/98				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01				8020	Filtered+SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01				8020	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01				8021					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/5/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/5/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
9/12/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
9/13/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/23/03				8021B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/28/04				8260B	Trip Blank 1				< 100	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0
10/29/04				8260B	Trip Blank 2				< 50					

Notes:

Groundwater elevations corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

- (1) = Depth to groundwater measured on August 31, 2005.
- (2) = Converted to an extraction well, and access port is too small for the oil/water probe.
- (3) = Depth to groundwater measured on March 27, 2006.
- (4) = Could not locate well.
- --- = Not measured/analyzed
- * = Product was thick; difficult to measure thickness.

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8240/8260

DTW = Depth to water

Dup = Duplicate sample

Filtered = Groundwater samples were filtered through a 0.45-micron glass membrane filter.

Table 1

Summary of Groundwater Analytical Data, Petroleum Hydrocarbons

Municipal Service Center

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation	Groundwater	Elevation	Method		(µg/l)	(µg/l)	(µg/l)	$(\mu g/I)$	(µg/l)	(µg/l)	benzene	Xylenes (µg/l)	(µg/l)
	(in feet)	(in feet)	(in feet)									(µg/l)		

ID = Identification

MTBE = Methyl tertiary-butyl ether by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.

NM = Not measured. Well obstructed or could not be located.

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPH-d, TPH-k, or TPH-mo analysis, following California Regional Water Quality Control Board February 16, 1999 memorandum

TBW = Tank backfill well

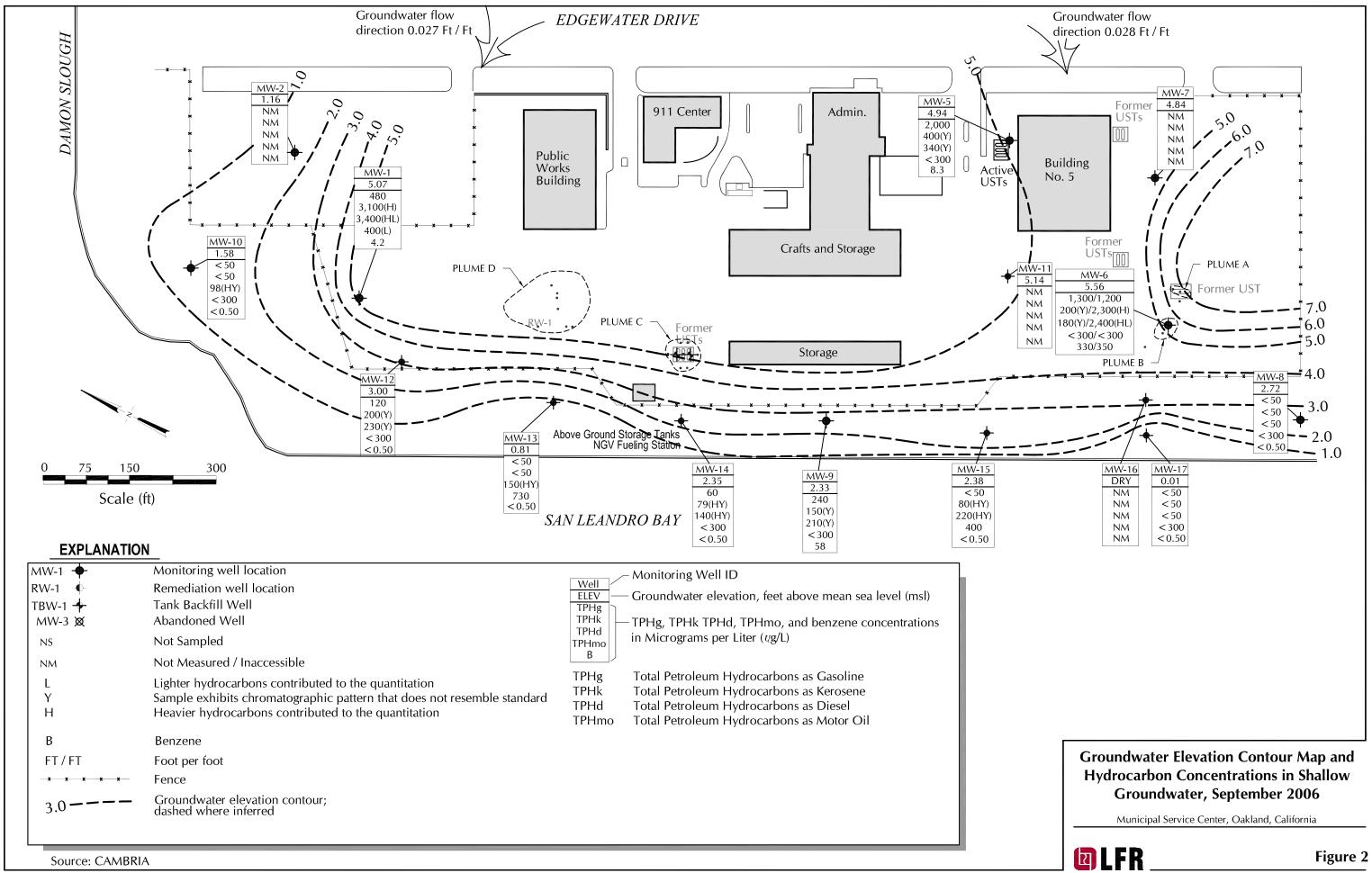
TOC = Top of casing

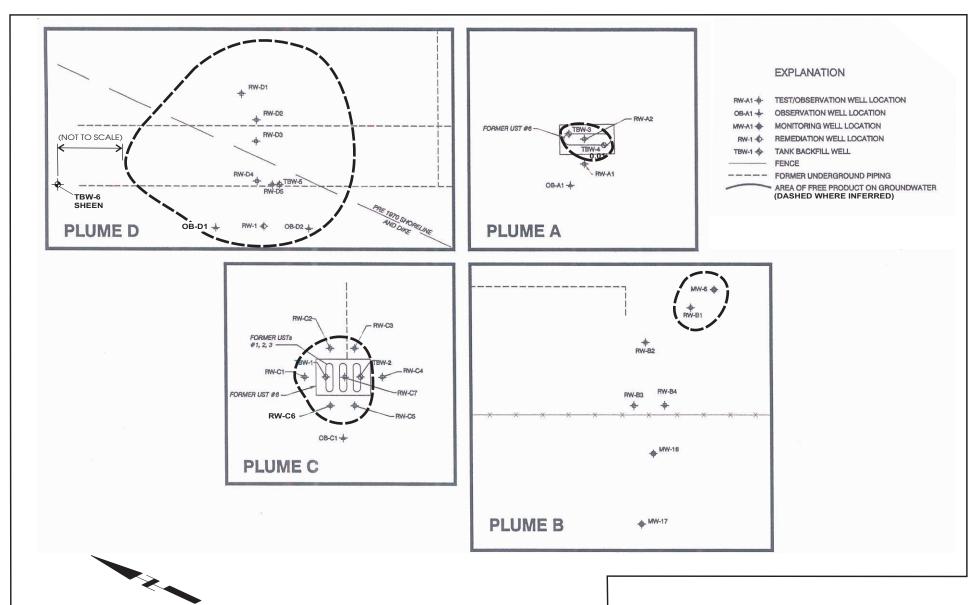
TPH-d = Total petroleum hydrocarbons quantitated as diesel - analyzed by EPA Method 8015B

TPH-g = Total petroleum hydrocarbons quantitated as gasoline - analyzed by EPA Method 8015B

TPH-k = Total petroleum hydrocarbons quantitated as kerosene - analyzed by EPA Method 8015B

TPH-mo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by EPA Method 8015B


- a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble heavier fuels at the front end of the motor oil pattern.
- b= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble lighter fuels; the response looks like lower carbon chain compounds close to the gasoline range.
- c = The analytical laboratory reviewed the data and noted that the sample exhibits a fuel pattern that does not resemble the standard.
- e= Results are estimated due to concentrations exceeding the calibration range
- f= Filtration with 0.45-micron glass membrane filter and silica gel treatment
- g = Depth to product, depth to water could not be determined.
- h= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the front end of the kerosene oil pattern.
- i= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the back end of the kerosene oil pattern.
- j = The analytical laboratory reviewed the data and noted that the sample exhibited an unknown peak or peaks.
- B= Results flagged with "B" indicate motor oil was detected in the method blank.
- C= Footnote assigned by Ninyo and Moore, not defined in their historical tables.
- E = Footnote assigned by Ninyo and Moore, not defined in their historical tables.
- H= Heavier hydrocarbons contributed to the quantitation.
- J= Value qualified as "estimated"
- L= Lighter hydrocarbons contributed to the quantitation.
- Y = Sample exhibits chromatographic pattern that does not resemble standard.
- Z = Sample exhibits unknown single peak or peaks


DESIGN\09225\11\000\09225 SiteVicinity.CDR

Municipal Service Center, 7101 Edgewater Drive, Oakland, California

APPROXIMATE SCALE IN FEET

Detail Plume Map

Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Figure 3

SOURCE: NINYO & MOORE - JULY 2004

APPROXIMATE SCALE IN FEET

NOTE: ALL DIMENSIONS, DIRECTIONS, AND LOCATIONS ARE APPROXIMATE

120

APPENDIX A

City of Oakland MSC Schedule and Protocol

Table A: Revised Well Sampling Schedule and Protocol

City of Oakland Municipal Service Center Parameters to Be Monitored Well ID Monitoring Schedule TPH-gas TPH Dissolved Temperature Specific September Elevation Floating March Conductivity BTEX & d/k/mo Oxygen Product MTBE Thickness $\overline{\mathsf{X}}$ X X X MW-1 X X Χ X X X X MW-2 gauge only MW-3 Closed/ Destroyed Closed/ Destroyed MW-4 X X X Х Х MW-5 X X X $\overline{\mathsf{x}}$ X Х X MW-6 X. X X $\overline{\mathbf{x}}$ X X X X gauge only MW-7 $\overline{\mathbf{x}}$ X X X Х X X MW-8 X X X X X X X X MW-9 X X X X X X X $\overline{\mathsf{x}}$ X X MW-10 X X X X X X X MW-11 Х gauge only X X X X X X X X Х $\overline{\mathbf{x}}$ MW-12 Х X X X. $\overline{\mathsf{x}}$ X X X X X X MW-13 X $\overline{\mathbf{x}}$ X X X X X X X X MW-14 X X X X X X X X X MW-15 X X X X X X X X MW-16 X X X MW-17 X X X MW-18 gauge only gauge only $\overline{\mathbf{x}}$ TBW-1 gauge only gauge only X TBW-2 gauge only gauge only X TBW-3 gauge only gauge only $\overline{\mathsf{x}}$ TBW-4 gauge only gauge only $\overline{\mathbf{x}}$ TBW-5 gauge only gauge only X TBW-6 gauge only gauge only X X RW-1 gauge only gauge only X X RW-A1 gauge only gauge only X X RW-A2 gauge only gauge only X X OB-A1 gauge only gauge only X X RW-B1 gauge only gauge only X $\overline{\mathbf{x}}$ RW-B2 gauge only gauge only X RW-B3 gauge only gauge only Х X X RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X gauge only gauge only RW-C2 $\overline{\mathbf{x}}$ X RW-C3 gauge only gauge only X $\overline{\mathsf{x}}$ gauge only gauge only RW-C4 X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X gauge only gauge only RW-C7 X X gauge only gauge only OB-C1 X RW-D1 gauge only gauge only X gauge only gauge only X RW-D2 X gauge only gauge only X RW-D3 X gauge only gauge only X RW-D4 X $\overline{\mathbf{X}}$ RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only OB-D2 gauge only gauge only gauge only = measure groundwater elevation and floating product thickness only

TPH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup

APPENDIX B

Groundwater Sampling Field Data Sheets

1	Z	L	F	R
1 6	5 V 1 A	1E .	EDIC	VE

WATER-LEVEL MEASUREMENTS LOG

Project No. 001-09225	Date	9/6/0	4	Page	_of <u>2</u>
Project Name MSC - 7101ED	GEWATER DR Day:	□ Sun □ Mon	□ Tues 🔀 Weds	☐ Thurs ☐ F	i □ Sat
Field Personnel M. Sullivan	J. Gonzales		•		
General Observations Clouds					

		 		· _T	,		
WELL	WELL		O WATER	DEPTH TO		SECURE?	REMARKS
NO.	ELEVATION	. 1	2	PRODUCT		N	(UNITS = FEET)
MW-I	/0 Z.O.	4.98	4.98		X		
2	905	9.31	9.31			X	No lock
3						 	Pestroyed
4							Diestroyed
5	1149	6,21	6,21		7		
6	1134 HEN 1134	(0,Cl	4 della	51.4(X		Dazirsace fodget
7	17 44	6,67	6167		X		
8	830	9,50	-9:50		У		
9	840	8,44	8.44		X		
10	900	9.01	9.01		Y		Water in vault above the cap
(1)	1152	6.46	6,40		V		booler in oans as loss cap
(2	1022	# 7,43	7.43		×	-	
13	850	10.5}	10.53		X		803 8,31 8,3
	844	7,10	7.70		/		
15	834	9.98	9,98		×		- X
16	834	- DLX				X	6 - 1 - 1
17	832	9,85	9,85		X	'	Cap not on well
18	.030.	1,03	1705				
	1027	88.35	8,35	E ₁ 25		5	D=9,68 K SPH thickness 20.
BW-1	10.54	0		01.00	`	1/1	D. 9,68 K SPH trickness 20.1
2							Fnoccessable
3	1136	3,42	3,42		<u> </u>	ļ	Sheen
4	1124	3,37	3,37	3:36	<u> </u>		
57							Suple Poxt too small
6	1025	4, 33	4,33		Υ.		Sheen
W-AI	1120	3,52	325		*		
	(129	3,17	3.17	3,18	×		Sheen
B-AL		4,49	4.49		×		TD= 15195
W-BI	1113	7.39	7,39	7.38	×		sheun
B2	1(12	7:39	7,39		×		
B 3		9,61	9.61		' ×		
84		9,69	9,69		*		
ודכו	1 * 1 3	11 ~	(' -		/		Sheer, Cap not on Princely

137	Ħ		D
النا	Ł		n
LEVIN	E • 1	FRIC	KE

WATER-LEVEL MEASUREMENTS LOG

Project No. 1001-09225	Date	9/	16/0	6 .		Pag	ge <u>2</u>	of <u>2</u>
Project Name Oakland Edgewater	Day:	□ Sun	☐ Mon	☐ Tues	₩eds	☐ Thurs	□ Fri	□ Sat
Field Personnel M. Sullium + J. Gontale	>				•			
General Observationselowly			•					
		•						

	<u> </u>	1		1_	r ·	·	<u> </u>
WELL NO.	WELL ELEVATION	DEPTH T	O WATER 2	DEPTHTO		SECURE?	REMARKS
 			8. 19	PRODUCT		N	(UNITS = FEET)
RW-C2	107	8.19		8.07	X	 	Product
53	1105	8,10	8.10	8,09	×		sloer
C4	1100	8.16	8.16		×	ļ	Sheen
<u>c5</u>	1052	87 8003			×		Sharn
C6	1040	7.96	7,96	7.78	አ		Product
C7	1055	8.34	8.34		· ×		sharin is a second
OB-CI	* 4						% Burnied
	*2 -						*No Access Somple Port
D2	7						too small to let the Probe
	×2 -						into well casing
	×-		وللأمواه وإليا أأووان				1.010, 200. 048/117
75	*.						
OB-DI	803	8,3/	8.31	8.30	Y		
OB-D2	805	8.31	8.39	A . C .	·		sheen, water above cap
RW-1	* ·				-		No Access
VAR. I					·		γ· πω»>
						-	
					<i>y</i> .		
					· ·		
							The state of the s
·							***
				<i>1</i> · · · · · · · · · · · · · · · · · · ·			
	, MAT.			•			
			1 () () () () () () () () () (
			18.2.			- " ; :	
	.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•		
					÷		
						-	
						<u> </u>	

trm-water-level measurements log: blh; 11:98 FORM FRONT

1000	28	1000	******	Mere No	W
3 Inv	- X	260	806	3	×
8 1 /	8	950			₩
g hada	- 18		1000	8	2
Down	4				.83
	HNA	-200 C	D30	ara.	38

Project No	001-0	9225-21			Date _	9/	6/06		Page of
Project Name	e Oakla	and MSC			Samp	ling Locati	on <u>710</u>	01 Edgew	ater Drive
Sampler's Na	me <u>Micha</u>	nel Sullivan a	nd James Gonz	zales			_ Sam	ple No. 🔟	MW-[□FB
Sampling Pla	n By <u>Erica</u>	Kalve			Dated 9/5/	<u>06</u> C.0	D.C. No		DUP
Purge Method	d: 🗆 Cent	rifugal Pump	(X) Qisposab	le Bailer	⊠ Hand Bail	☐ Subm	ersible Pu	mp 🗆	Teflon Bailer
					1				
Date Purge V	Vater Dispos	ed	9/6/0	·	Where	Disposed	i <u>purge</u>	-water dis	posed on-site
	Analyses R	tequested		No. aı	nd Type of Bottles	Used			
8260 for T	PHg/BTEX/I	ИТВЕ		3 VOAs	s with HCI				
								į	
Lab Name	Curtis a	nd Tompkins	s, Emeryville; co	ontact Tracy	Babjar at 510-2	204-2223			
			c \$,				
				sell botto	14 14 1				
Well No	• •		-De						•
Well Diamete		2"			4,89				
1 2" (0.16	gal/feet)	□ 5" (1.02 g	gal/feet) Wa	ater Column	Height	87		'	
₫ 4" (0.65	gal/feet)	□ 6" (1.47 g	gal/feet) We	ell Volume	21.74		ms/cm	80% (DTW
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond	Turb (NTU)	Remarks
·	Бериі	4.90		Reading	(0)	(30)	CIMILATON I	(110)	Reliairs
1340		(()	1,75		24.47	66	10.49	daly	Turbid
1350	·		3,50		23.25	678	1078	Clordy	Sightly Turbid
1400			5,25		21.92				
1405		13.29					10 10	/	wait for recharge
1515		8.38							
1608									Sample
							· .		
			<7/h	60					*
			X 17					1. 5 .	

4,000	gymmittaki	Some		20/000000	
127		338	23325		_ //
38		132	15.55	225	[2] [8]
22 .	6 / R	188	32/2	28	50
33.	Services.	-55	1000	335.36	6 8
28		200	3	82.33	8 8
5.75	200	2000	2000	711600	976 DXXX

Project No. 001-09225-21	Date <u>9/6/06</u> Page 1 of /
Project Name Oakland MSC	Sampling Location7101 Edgewater Drive
Sampler's Name Michael Sullivan and James Gonzales	Sample No. MW-5
Sampling Plan By Erica Kalve Dated	
Purge Method: ☐ Centrifugal Pump 📜 Disposable Bailer 🖼 Hand	·
Purge Water Storage Container Type 55-gal drum	Storage Location
Date Purge Water Disposed	Where Disposedpurge-water disposed on-site
Analyses Requested No. and Type of	Bottles Used
8260 for TPHg/BTEX/MTBE 3 VOAs with HC	-6.19
8015 for TPHd/ TPHmo/TPHk 1L Amber, no-pr	eservative 8.21
Lab Name Curtis and Tompkins, Emeryville; contact Tracy Babjar at	510-204-2223
Delivery By	8.21 Ft x 0,654 = 1.31 54
Well No Depth of Water	.19
Well Diameter: Well Depth	1
·	
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) Water Column Height	•
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume\	- 5 80% DTW

Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
	6-19							Sput
		1.3 .		2407	6.83	206		Sloshly clady
		2.4		24.12	6-83	1.94		Slighty cloudy
		3.9		24.17	626	218		Slighty cloudy
	625							Sampled
					·			,
:								
			~	2				
			1					
		~ J	7	9	,			
2								
			·					
								·
		Depth to Water	Depth to Water Purged (gal) 6.19 1.3 2.6 3.9	Depth to Water Purged (gal) Reading Co. 19 1.3 2.4 3.9	Depth to Water Purged (gal) Reading (C°) 6.19 1.3 24.07 2.6 24.12 3.9 24.17	Depth to Water Purged (gal) Reading (C°) (SU) (3)	Depth to Water Purged (gal) Reading (C°) (SU) (µmhos) 1.3	Depth to Water Purged (gal) Reading (C°) (SU) (µmhos) (NTU) (6.19 1.3 2407 (6.23) 2.66 2.1 3.9 24.17 (3.8) 6.25

4089711	2000	1000	**********	Separate S
₩ 1-	- N	Y. (6)	30000	Вβ
* 17				- €
(A)	- 8	2888	.58	3
100 m	:W9			

Project No. 001-09225-21	Date 9/6/06 Page 1 of 1
Project Name Oakland MSC	Sampling Location 7101 Edgewater Drive
Sampler's Name Michael Sullivan and James Gonzales	Sample No. <u>M W − Q</u> □ Fi
Sampling Plan By Erica Kalve D	Dated 9/5/06 C.O.C. No
	Hand Bail □ Submersible Pump □ Teflon Bailer □ Other
Purge Water Storage Container Type 35-gal drum	↑ Storage Location
Date Purge Water Disposed 9666	Where Disposedpurge-water disposed on-site
	ype of Bottles Used 8,73
8015 for TPHd/ TPHmo/TPHk 1L Amber,	no-preservative 5238 Z
Lab Name Curtis and Tompkins, Emeryville; contact Tracy Bab Delivery By □ Courier ☐ Hand	12918 7,50
Well Diameter: 2" Well Depth Well Depth Well Depth	5,42
	Temperature pH Cond Turb

							-ws/w		
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1425		5.38							Sart
1430			1,5		24.49	7.20	3.00	clordy	clady
1432			3.0		21.30	7.18	3.02		cloudy
1435			415		21.10	7.21	3.01		dady
1438		10.03							wait for recharge
1532		7,09							
16 15		6,95							·
1632		C.							Sample
:	-	1.							
								-	4:
			s/ ()	6		·			
·		_	1	5					

								,	
			L		<u> </u>	<u> </u>		L	

	MAN STATE		Marion Con	Marin Sa
88° L.	manus 🚟	100	1000	a i
*) I 🔞	2.22		" d
36 H			88 A	8
		8	335	. 8
	VINE			Y E

Continue remarks on reverse, if needed.

frm-water-quality-sample-info.doc; EK; 9/06; FORM FRONT

Project No	001-0	92 <u>25-21</u>			Date _	9	/7/05	~	Page 1 of 1
Project Name	•			.'•			`		ater Drive
•			d James Gonz	ales		•			MW-8 PFB
•									DUP
Purge Method	d: 🛘 Centr	ifugal Pump	⋈ Disposabl	le Bailer 🖪	☑ Hand Bail	☐ Subme	ersible Pu	mp □⊺	Γeflon Bailer □ Other
			1	,	Storag				
					Where				
	Analyses Re				nd Type of Bottles				
8260 for T	PHg/BTEX/N	итве		3 VOAs	with HCI				319-(9.41)= 5.90 H
8015 for T	PHd/ TPHmo	o/TPHk		1L Amb	er, no-preserva	ative _		5.9	0 Ct x 0.165d = . 944
Lab Name	Curtis a	nd Tompkins.	Emeryville; co	ntact Tracy	Babjar at 510-2	.04-2223		1 (4	h-1-1
Delivery By	☐ Courier _			Hand					Dailors)
	hA: ,				aul	C		9.	414x(.20)=1.88
Well No					9.41			(5	(90)+(09) = # 22
Well Diamete					15.31			,	770
		□ 5" (1.02 ga			Height <u>5</u>				1.10
□ 4" (0.65	gal/feet)	□ 6" (1.47 ga	al/feet) Wε	اد Volume	(') -17	4 ca	. 1	000/ 1	OTILL STATE !
				on voidino .		<u>'</u>	ms/com	80% [JIW
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)		Turb (NTU)	Remarks
Time 0815		Depth	Volume	Totalizer	Temperature	рН	Cond	Turb	
A		Depth to Water	Volume	Totalizer	Temperature	pH (SU)	Cond	Turb (NTU)	Remarks Start
0815		Depth to Water	Volume Purged (gal)	Totalizer	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks Start
0815 0832		Depth to Water	Volume Purged (gal)	Totalizer	Temperature (C°)	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start
0815 0838 0838		Depth to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start
0815 0836 0838		Depth to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Wait for rahuse
0815 0838 0844 0845		Depth to Water 9 4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Wait for reduce
0815 0838 0844 0845 0848		Depth to Water 9.41 12.1 11.77	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Wait for reduce
0815 0838 0844 0845 0848 0852		Depth to Water 9.4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Wait for reduce
0815 0838 0844 0845 0848 0852		Depth to Water 9.4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Lant for radiuse "Remarad O Bailan
0815 0838 0844 0845 0848 0852		Depth to Water 9.4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Lant for radiuse "Remarad O Bailan
0815 0838 0844 0845 0848 0852		Depth to Water 9.4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Lant for radiuse "Remarad O Bailan
0815 0838 0844 0845 0848 0852		Depth to Water 9.4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Lant for radiuse "Remarad O Bailan
0815 0838 0844 0845 0848 0852		Depth to Water 9.4/	Volume Purged (gal)	Totalizer	Temperature (C°) 21.19 20.2	pH (SU)	Cond (umhos) 30.52 3(.03	Turb (NTU)	Remarks Start Lant for radiuse "Remarad O Bailan

110	*******		200		
79		24	433	1500	D 8
354	<i>(</i>	×	2.5		. 48
23	sym(2	2023	250	8
	geologi Geolog	S. Carry	mila		es Sars
. L.L	VII	۱Ŀ	۰F	RIC	KE

Project Name	e Oakla	and MSC	,		Samp	ling Locati	ion <u>71</u>	01 Edgewa	Page of
Sampler's Name Michael Sullivan and James Gonzales Sa									MW-9 DFE
Sampling Pla	n By <u>Erica</u>	Kalve			<u> Dated 9/5/</u>	<u>/06</u> C.0	O.C. No		□ DUP
Purge Method	d: 🗆 Centi	rifugal Pump	Disposab	le Bailer	Hand Bail	☐ Subm	ersible Pu	ımp 🗆 -	Teflon Bailer 🔲 Other
Purge Water	Storage Con	ntainer Type	55 gal	dru	✓ Storag	ge Locatio	n		
Date Purge V	Vater Dispos	ed	917-106	,	Where	e Disposed	d <u>purge</u>	-water dis	posed on-site
	Analyses R	lequested		No. ar	nd Type of Bottles	s Used		(14.2	85(+-B.2564)=6.1Ft
8260 for T	PHg/BTEX/I	МТВЕ	<u> </u>	3 VOAs	s with HCI			6.18	tx 0.16 gal = , 976
8015 for T	PHd/ TPHm	o/TPHk		1L Amb	oer, no-preserv	ative		1 .	, , ,
Lab Name	Curtis a	and Tompkins	, Emeryville; co	ontact Tracy	Babjar at 510-2	204-2223		(1	(baik / well volume)
Delivery By	☐ Courier		\ >	Hand			.,		35 x ,20) = 2.87
Well No	Mw	-9	De		r <u>8.2</u>			(8.	25 (+)+(2.87 (+)
Well Diamete	r:	<i></i>	We	ell Depth	14.30	5			-11.12
1 2" (0.16	gal/feet)	□ 5" (1.02 g	al/feet) Wa	ater Column	Height	>-			15 10 61
□ 4" (0.65	gal/feet)	□ 6" (1.47 g	al/feet) We	ell Volume			mS/cui	80% [отw <u>11-12-(</u>
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (unitios)	Turb (NTU)	Remarks
1152		8.25					_		5 Av F
1158			1.0		21.41	6.95	496	chyly	Dark-Black Cloudy
1202),0		20.73	6.94	4.96	. /	4 4
1206		-	3.0		20.53	692	4.98	douly	· '1
1210		9.24							Sample

				September 1
	77 📓		2000	9
		3.5	360	ลิ
			233	Ž.
1 F	VINE	. E I	210	V E

EEVINE PHICKE		
Project No. 001-09225-21 Project Name Oakland MSC		
Sampler's Name Michael Sullivan and	James Gonzales Sample No. NW - 1	O □ FB
Sampling Plan By Erica Kalve	<u>Dated 9/5/06</u> C.O.C. No.	DUP
	☑ Disposable Bailer ☑ Hand Bail ☐ Submersible Pump ☐ Teflon Bailer ☐	
•	SS gal drum Storage Location	
	Where Disposed <u>purge-water disposed on-site</u>	
8015 for TPHd/ TPHmo/TPHk Lab Name Curtis and Tompkins,	No. and Type of Bottles Used 3 VOAs with HCl 1L Amber, no-preservative Emeryville; contact Tracy Babjar at 510-204-2223 Hand Underson	8.91(+)= (++).169=1= 1(++,8) well volve)
Well No	Well Depth 14.15 /feet) Water Column Height 5.66+	39
Inlet Depth Time Depth to Water	Volume Totalizer Temperature pH Cond Turb Purged (gal) Reading (C°) (SU) (μmhos) (NTU) R	emarks
1448 8.91	Start	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1448		8.91		-					Stat
1458			0.896		21.20	7,0%	P4.C	Turba	Hade & Gordy
1505					21.14	7.09	237	XX.	u ,
1510					20.98	7.15	2.39	u	Very Black
1612		9.31							Very Bkck Sample
				,					
					-				
				1)					
		, i	\mathcal{I}) /					
			:						
·									
				·	 				

		STATE OF THE PARTY.
	150	9 <u>#</u>
	B.	p li
		4 8

1 335

WATER-QUALITY SAMPLING LOG

	-								
Project No	001-0	9225-21			Date	9/	6/06		Page of
Project Name				••	•	-	-		ater Drive
Sampler's Na	ame <u>Micha</u>	<u>ıel Sullivan ar</u>	nd James Gonz	zales			_ Sam	ple No	MW-12 JEFE
									□ DUP
Purge Metho	d: □ Cent	rifugal Pump	Disposab	le Bailer	☐ Hand Bail	☐ Subm	ersible Pu	mp 🗆 .	Teflon Bailer
Purge Water	Storage Cor	itainer Type	55 · g	al du	um Stora	ge Locatio	n		
									posed on-site
	Analyses R	equested		No. ar	nd Type of Bottle	s Used		7.	63
8260 for T	PHg/BTEX/I	<u>√TBE</u>		3 VOAs	s with HCl			,	16 18 3 ×
8015 for T	PHd/ TPHm	o/TPHk	· ·	1L Amb	oer, no-preserv	ative _		42	(3
Lab Name	Curtis a	nd Tompkins	, Emeryville; co	ontact Tracy	Babjar at 510-	204-2223		117	3 ^ 4 B
Delivery By	☐ Courier _		M	Hand				ا الم	1
Well No.	/ MW	-(3-	De	pth of Water	7,43				
Well Diamete	er:	2"	We	ell Depth	14,46	•			
∑ 2" (0.16	gal/feet)	□ 5" (1.02 g	al/feet) Wa	ater Column	Height <u></u>	०उ			
		□ 6" (1.47 g			2/112			80% [DTW
	<u> </u>	T 5d.	V 1		Temperature	T .,	ris/am	<u> </u>	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1340		7,39							Start
1345			1,25		21.77	7,23	3,563	slisholy	dubil
1350			2.50		21,25	第22	3.811	1,	
1353		7,61	3175		21,02	7,22	4,68	11	, ,
1400								V	Souplas
	^_			-					
-									

FB090606

	3				1
3 H-		300	89	8 9	L
8 17		100			Ų.
8 L		5.0	2 35	8 B	ı,
8	_1.4			8 a	ı
200	VIN	200			3

Project No	001-0	9225-21			Date _	9	17/1	<u> </u>	Page of
Project Name_	Oakla	nd MSC		***	Samp	ling Locati	on <u>71</u>	01 Edgew	ater Drive
Sampler's Nan	ne <u>Micha</u>	el Sullivan ar	nd James Gonz	ales			_ Sam	ple No	MW-13 OF
Sampling Plan	By Erica	Kalve			Dated 9/5/	<u>/06</u> C.(D.C. No		DUP
Purge Method:	: 🗆 Centr	ifugal Pump	*⊟√Disposab	le Bailer (Hand Bail	□ Subm	ersible Pu	ımp 🗆 :	Teflon Bailer ☐ Other
Purge Water S	Storage Con	tainer Type	55-ga	av	UM Storaç	ge Locatio	n		
Date Purge Wa	ater Dispos	ed	917/06		Where	e Disposed	d <u>purge</u>	e-water dis	sposed on-site
	Analyses R	equested		No. ar	nd Type of Bottles	s Used		(19	55 CL (9.03(+)
8260 for TF	PHg/BTEX/N	итве		3 VOAs	s with HCl			(1)	(9.034)
8015 for TF	PHd/ TPHme	o/TPHk		1L Amb	oer, no-preserv	ative		1	
Lab Name	Curtis a	nd Tompkins	, Emeryville; co	ontact Tracy	Babjar at 510-	204-2223		10.	52 Ft x 0.1650 = 1-
Delivery By [☐ Courier _		o	Hand				/	
Well No.	M	W-13) De	nth of Water	9.0	3		(19.5	5 (-20) - 3.91
Well Diameter:		-2 ^k			19.5			(90	3(4)+(3.91(4)
71-2" (0.16 g					Height				= 15-8/CF
/		□ 6" (1.47 g			1.68		01/79	2 0000	DTW 12.94 LL
- 1 (0.00 §	ganioog	- · · · · · · · · · · · · · · · · · · ·	un1000 110	on voidino _					
•							mScm	00%	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)		Turb (NTU)	Remarks
Time 1348			Volume	Totalizer	Temperature	рН	m.Scm Cond	Turb	
		to Water	Volume	Totalizer	Temperature	рН	m.Scm Cond	Turb (NTU)	Remarks
1348		to Water	Volume Purged (gal)	Totalizer	Temperature (C°)	pH (SU)	Cond (umhos)	Turb (NTU)	Remarks
1348		to Water	Volume Purged (gal)	Totalizer	Temperature (C°)	pH (SU)	Cond (tumbos)	Turb (NTU)	Remarks Start Brown Turbid
1348 1358 1403		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn 2 Chady
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9
1348 1358 1403 1408		to Water	Volume Purged (gal)	Totalizer	Temperature (C°) 20.05	pH (su) 7,∞ 6,9,6	Cond (umhas) 5.85	Turb (NTU)	Remarks Start Brown Turbid Oark Brawn's Chady " 9

8 m		48.2	352	B 🖺
8 I (4 1 8	323		n %
2	"T. J.	200	322	8 8
1 E 1	71 N E	300	- 11	e e

				•			9/7	106	Page <u>\</u> of <u>\</u>
							- {		
Project Name	e Oakla	and MSC			Samp	ling Locati			ater Drive
Sampler's Na	me <u>Micha</u>	<u>el Sullivan ar</u>	nd James Gonz	zales			_ Sam	ple No	MW-14 DFE
Sampling Pla			,						DUP
			,		,				Teflon Bailer ☐ Other
Purge Water	Storage Cor	ntainer Type	91710	6	Stora	ge Locatio	ń		
Date Purge V	Vater Dispos	ed <u>8</u>	is -gal	drui	w Where	e Disposed	d <u>purg</u> e	-water dis	posed on-site
	Analyses R	Requested	<u> </u>	No. a	nd Type of Bottle	s Used		196	264-(7.524)=7.164
8260 for T	PHg/BTEX/I	МТВЕ		3 VOA	s with HCI				
8015 for T	PHd/ TPHm	o/TPHk		1L Am	oer, no-preserv	ative _		7.16	tx 0.1681 = 1.136
Lab Name	Curtis a	ınd Tompkins	, Emeryville; co	ntact Tracy	Babjar at 510-	204-2223		4,5	gallers/hell volum
Delivery By	☐ Courier		À	Hand					
Well No	MIN	1-14	Do	nth of Mata	r <u> </u>	5)	· · ·	19.6	2 (4)x(.20)=292H
Well Diamete	•				14.62			1/7.5	2(+)+(292(+)=
_		□ 5" (1.02 g			Height				10.4
1		□ 6" (1.47 g			~ (, 1년				124
LJ4 (0.00	ganeer	ш о (т.47 g	lairieet) vve	sii volume			m5/cm	80%	wrc <u>(0 4</u>
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (pmhos)	Turb (NTU)	Remarks
1305	-	752					-		Start
1312			1.14		21.65	7.23	10.15	Very Claray	Dark-Black Cloudy
1317			223		21.60	7.30	10.19	Dark	11
1320			342		21.51	7.30	10.22	u	Bleeck
1322		7.85	,						Sunple
									• •
				٠.					
			100				·		
	,		544)					
_		(-
		, ,				1]		
									

Continue remarks on reverse, if needed.

frm-water-quality-sample-info,doc: EK; 9/06; FORM FRONT

Project No	001-0	9225-21			Date		9/7/	ه ن	Page \(\frac{1}{2} \) of \(\frac{1}{2} \)
Project Name		•		·- <u>-</u>					ater Drive
			nd James Gon	zales	Oump	-		-	MW-1S DFB
Sampling Pla									DUP
	-								Teflon Bailer
			55 gal		-				
			117-106						
	Analyses R				nd Type of Bottles				.35 4) - (9.90 4)= 10.45 6
8260 for T	PHg/BTEX/	МТВЕ		.3 VOAs	s with HCI			(40	(101)
8015 for T	PHd/ TPHm	o/TPHk	, <u> </u>	1L Amb	er, no-preserv	ative		10.4	54x 0.16 gal = 1.7
Lab Name	Curtis a	nd Tompkins	, Emeryville; co	ontact Tracy	Babjar at 510-2	204-2223			Ex
		•			·				7 bals/well volue)
Well No	MN	1-15	D-	H E \AI - I - I	. 9.9	0 61	·	10.	45 f4) x (.20) = 2.09
Well Diamete				ptn or water	20.3	= CY		_	90 Ft) + (2.09) = ZELEI
,								(91.	_
. 1		□ 5" (1.02 g			Height		1/1		11.99 Fr
□ 4" (0.65	gal/feet)	□ 6" (1.47 g	al/feet) We	ell Volume <u> </u>	V 1.7	Jal	ns/cm	80%	DTW 781-C1
Time	inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1030		9.40		-				_	Start
1040			1.7		20.69	7.04	9-64	cloudy	
1045			34		20.37	7.04	9.54	dady	Dark-Black Clardy
1050			5.1		20.46	7.05		. ,	4
1055		10.04						1	Sample
					•				<u> </u>
			A						
			7 1/7	9					•
				/					
								·	
				· · · · · · · · · · · · · · · · · · ·				-	
·									

	ම කෙත් ව ම
SS 17 S S S	
器 ==== 	
LEVINE	EBICKE

Project No	001-0	9225-21			Date		917	106	Page of
Project Name	e <u>Oakla</u>	and MSC		***	Samp	ling Locat	ion <u>71</u>	01 Edgew	ater Drive
Sampler's Na	ame <u>Micha</u>	el Sullivan a	nd James Gon	zales		•	_ Sam	ple No	1- WM -1-WM
Sampling Pla	n By <u>Erica</u>	Kalve		· 	Dated 9/5	<u>/06</u> C.0	O.C. No		DUP
Purge Metho	d: 🗆 Centi	rifugal Pump	₩ Qisposab	ole Bailer 💆	Hand Bail	☐ Subm	ersible Pu	ımp 🗆	Teflon Bailer ☐ Other
Purge Water	Storage Cor	ntainer Type	35 -g	al du	<u>u</u> Wetora	ge Locatio	n		·
Date Purge V	Vater Dispos	ed	917/0	6	Where	e Dispose	d <u>purge</u>	-water dis	sposed on-site
	Analyses R	equested		No. a	nd Type of Bottles	Used		(17.	49 Ct) -(9.73 Ct)=7.76
8260 for T	PHg/BTEX/	МТВЕ		3 VOA	s with HCI			n i	1 77114 125
8015 for T	PHd/ TPHm	o/TPHk		1L Ami	ber, no-preserv	ative		10.16	5 bals
Lab Name	Curtis a	nd Tompkins	, Emeryville; co	ontact Tracy	Babjar at 510-	204-2223		,) (5 buls)
Delivery By	☐ Courier _		□	Hand	*****			100	13(-t)x(20)=(.95
Well No.	MLI-	17			97	2	·		
					r 9.7 17.4			(F	26 (4)+(1.954)
Well Diamete						•		9-	73 - 155=
- /	-	□ 5" (1.02 g			Height				11.68
□ 4" (0.65	gai/feet)	□ 6" (1.47 g	al/feet) We	eli volume	~1.2	-)		80%	DTW TO FO
							MS/cm		
Time	inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (umhos)	Turb (NTU)	Remarks
Time 09(5	l .						Cond	Turb	
6	l .	to Water					Cond (µmhos)	Turb (NTU)	Remarks
0915	Depth	to Water	Purged (gal)		(C°)	(SU)	Cond (tumbos)	Turb (NTU)	Remarks Start Dark-Hack Cloudy.
0915	l .	to Water	Purged (gal)		21.14	(su) (.84	Cond (tumbos)	Turb (NTU)	Remarks Starf Dark-Hack Cloudy Black: Vary Cloudy
0915 0920 0927	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy.
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""
0915 0920 0927 0931	Depth	to Water	Purged (gal) [.25] 2.80		21.14	(su) (.84 6.91	25.30 25.58	Turb (NTU)	Remarks Start Dark-Hack Cloudy Black: Vary Cloudy Sulphur Odor, ""

APPENDIX C

Laboratory Results and Chain-of-Custody Documentation

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 29-SEP-06

Lab Job Number: 189242

Project ID: 001-09225-21

Location: Oakland Edgewater

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

pera lons Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>46</u>

CASE NARRATIVE

Laboratory number:

189242

Client:

LFR Levine Fricke

Project:

001-09225-21

Location: Request Date: Oakland Edgewater

Samples Received:

09/07/06 09/07/06

This hardcopy data package contains sample and QC results for thirteen water samples, requested for the above referenced project on 09/07/06. The samples were received cold and intact. All data were e-mailed to Erica Kalve on 09/18/06.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

SAMPLE COLLECTOR: 1900 Powell Street	1 12th Floor		PROJECT	NO.:	7.5	-21	Si	CTION	10.:		DATE	9/	6/06	5	SAM	PLER'S	INITIAL	S:人(SERIAL		· · ·
1900 Powell Street Emeryville, Califorr (510) 652-4500 Fa	nia 94608-18:	27 2246	PROJECT O a	NAME:	F	Laen	74 Lo	<u>. </u>			SAMP	MIL	6/96 Bignay	ill		100		<u> </u>		- N	201	1303
(810) 302 1000) a	SAM	PLE		<u></u>	<u> </u>	<u>op on</u>	<u> </u>		$\overline{}$		Y ULL	auv.	-	_	ANALY	'SES				L.,,,,	RE	MARKS
						/	TYPE	1	/	\rightarrow \(\text{\$\pi_{\chinclext{\$\pi_{\etitil{\pi_{\text{\$\pi_{\text{\$\pi_{\chinclext{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\pi_{\text{\$\nii}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		://	85 (8 9		2/	$\overline{}$	/	//	TA	T /	* VOCs:	** Metals:
				Sarrile NO	COLINE TO		7	12 12 12 12 12 12 12 12 12 12 12 12 12 1		Solvie of the so	SEDICA SEDICA	Egigh	QZ			//		\mathcal{F}	7	- /≥	8260 List 8240 List	CAM17
			/ %	Sarrie of			1,20			(\$)	15 E				//	//	39	9 c×			8010 List	LUFT
Sample ID.	Date	Time	/ \2 ^N	4	30, 1	ite /	<u> </u>	~/_		1/4		1/	X.4	<u> </u>		/ 1	<u> 639</u>					
MW-12	9/6/06			4	$\frac{x}{\lambda}$			X X			×	K	 		-		X				ica c	
MW-6		1605		4	\forall \lambda \lambd			(X			X	**			_		7	+			on	TPH_
MW-5		1502		4	- 7 Y			2 X	-	·	×	X	7	-			×	-	San	ples	······································	
EB090606	 	1325		ч	X	 		7			X	$\frac{1}{2}$	 			 	*	1	.	Ø3(n	. (
MW-&D	9/16/06	1640		41	, ,	4	<u> </u>	< ×	+		X	へ	V.			┤┈┥	X	<u> </u>				or BTEX
MW-8-FB	9/7/06			4	$\frac{f}{\lambda}$	· · · · · ·		×××	1-		X	/				 		+	and.	MIB	<u> </u>	
MW-17	9/1/06	0940		4	X	 	-+-	$\langle \dot{\rangle}$			×	×	$\langle \cdot \rangle$		-	+-1	\mathcal{T}	+	Xci		- ماء	
Mw-15	9/7/06	1055		4	<u> </u>			× ×	1		X	X	×			11	/	+	Che	maye O	on to	name
MW-9	9/7/06	1210		4	×			×X			X	×	×				Ź		4		06 TC	>
mw-8	9/7/06	1235		4	×	>	Z 5	< ×	1		X	X	X			<u> </u>	$\langle T \rangle$		<u>NV</u>	<u> </u>	. 1-47	
MW-14	9/7/06	1322		4	X)		< ×			X	×	×				ХT		1			
MW-13	9/7/06	141)		4	~	У	<i>C</i> ,	× '×			X	X	X				X	-	1			
mw-xo mw-10	9/7/06	1515		4	7	>	× >	< X			X	X	X				X					
/trip blak	Hold	1															`					
No Scape	roces		<u>~ ^</u>	<u> </u>	10	<u>.</u>																
`1		<u> </u>																				
SAMPLE RECEIPT: Cooler Temp;	METHOD OF S	SHIPMENT		RELINOU	KSHED E	X; -				41	DE! IN	OHIEL	IED BY:				0 00	1111011	ICUED DV		· · · · · · · · · · · · · · · · · · ·	
Intact Cold Cooler No:								1/	7/01	2				·			2 KE	LINQU	ISHED BY	:		3
Un Ice Ambient			ľ	SIGNATUR	ane	5 (go n	2.6	- 1	652		(SIGNA		•			(DATE)	(SI	GNATUR	RE)			(DATE)
Preservative Correct? Yes No N/A	FAX COC CON		IN 10: [L	FR	·			(TIME)		PRINT	ED NA	ME)			(TIME)	(PF	RINTED	NAME)			(TIME)
	Kica K			COMPANY RECEIVE					1		COMP.		Υ·	·····				OMPAN)		ORATORY	().	
	· · · ·		Ľ	AGNATUI		<u> </u>	na	m 9	7-00 (DATE)	<u> </u>					···-	15.4==				CRAICRI	<i>).</i>	3
1	SEND HARDC			PRINTED		سروه	ım	16	52	- 1	(SIGNA					(DATE)		SNATUF				(DATE)
	SEND EDD TO EMV.LABEDD		L	C0	t				(TIME)	· ·	PRINTI	ED NA	ME)			(TIME)	(PF	IINTED	NAME)			(TIME)
Lab/Shipping Copy (White)	File Copy	(Yellow)	[COMPANY	0	py (Pir	nk)				COMP	ANY)					(LA	BORAT	ORY)	FORI	4 NO: 200	1/COC/SXS

SOP Volume:

Client Services

Section:

1.1.2

Page:

I of I

Effective Date: Revision:

10-May-99

Filename:

I Number 1 of 3

Curtis & Tompkins, Ltd.

Login Client		s: <u>2</u> Aw
A.	Preliminary Examination Phase	Λ
7.	Data Organist 9/2/11 Des Courists (Cattle Of De City)	
1.	Did cooler come with a shipping slip (airbill, etc.)?	VESCNO
	If YES, enter carrier name and airbill number:	1E5 40)
2.	Were custody seals on outside of cooler?	YES NO
2,	How many and where? Seal date: Seal nar	
3.	Were custody seals unbroken and intact at the date and time of arrival?	VES NOV
4.	Were custody papers dry and intact when received?	
5.	Were custody papers filled out properly (ink, signed, etc.)?	
6.	Did you sign the custody papers in the appropriate place?	
7.	Was project identifiable from custody papers?	
•	If YES, enter project name at the top of this form.	CILD NO
8.	If required, was sufficient ice used? Samples should be 2-6 degrees C	YES NO N
٠.	Type of ice: Wet Temperature: No temp	Made
	N The state of the	
B.	Login Phase Date Logged In: A to By (print): Pothical (sign) Describe type of packing in cooler: Zip (sign) Did all bottles arrive unbroken?	\wedge
	Date Logged In: 97 706 By (print): York (V) (sign)	
1.	Describe type of packing in cooler: Zon Lack Joyce Frank	
2.	Did all bottles arrive unbroken?	WES NO
3.	Were labels in good condition and complete (ID, date, time, signature, e	tc.)? YESINO
$\hat{4}$.	Did bottle labels agree with custody papers?	
5.	Were appropriate containers used for the tests indicated?	
6.	Were correct preservatives added to samples?	
7.	Was sufficient amount of sample sent for tests indicated?	
8.	Were bubbles absent in VOA samples? If NO, list sample Ids below	
9.	Was the client contacted concerning this sample delivery?	
	If YES, give details below.	
	Who was called? By whom?	Date:
Additi	onal Comments:	
-		
-		
Filename	:: F:\qc\forms\qc\cooler.doc	Rev. 1, 4/95

Total Extractable Hydrocarbons Lab #: Oakland Edgewater 189242 Location: EPA 3520C LFR Levine Fricke Prep: Client: EPA 8015B 001-09225-21 Analysis: Project#: Batch#: 117269 Water Matrix: 09/07/06 Units: ug/L Received: 1.000 Prepared: 09/11/06 Diln Fac:

Field ID: Type: Lab ID:

MW-12 SAMPLE

189242-001

Sampled:

09/06/06 Analyzed: 09/13/06 EPA 3630C Cleanup Method:

	Analyte	Resu	l t	RL		
K	erosene C10-C16	20		50)	
D	iesel C10-C24	23	0 Y	50)	1
M	otor Oil C24-C36	ND		300)	

Surrogate	%REC	Limits
Hexacosane	108	65-130

Field ID: Type:

Lab ID:

MW-1 SAMPLE 189242-002 Sampled: Analyzed:

Cleanup Method:

09/06/06 09/13/06 EPA 3630C

Analyte Result RL. 3,100 H 50 Kerosene C10-C16 Diesel C10-C24 Motor Oil C24-C36 50 3,400 H L 300 400 L

MOCOL OIL CZ4~C36		700 H	500	
Surrogate	%REC	Limits		
Hexacosane	124	65-130		
11011010000110	20.00	<u> </u>		

Field ID:

Type: Lab ID: MW - 6

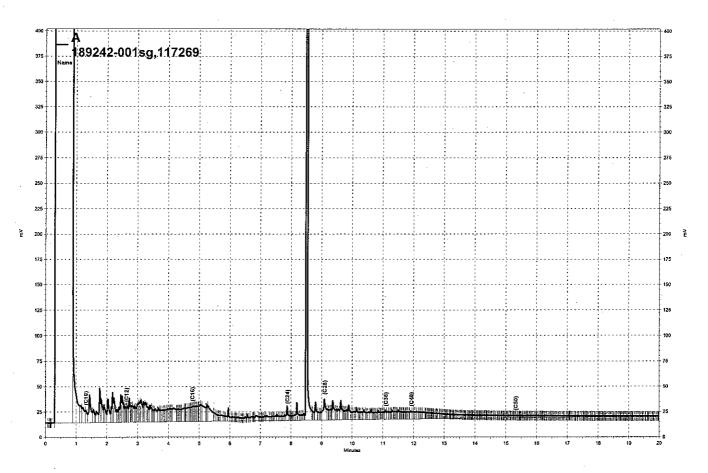
SAMPLE 189242-003 Sampled:

Analyzed: Cleanup Method: EPA 3630C

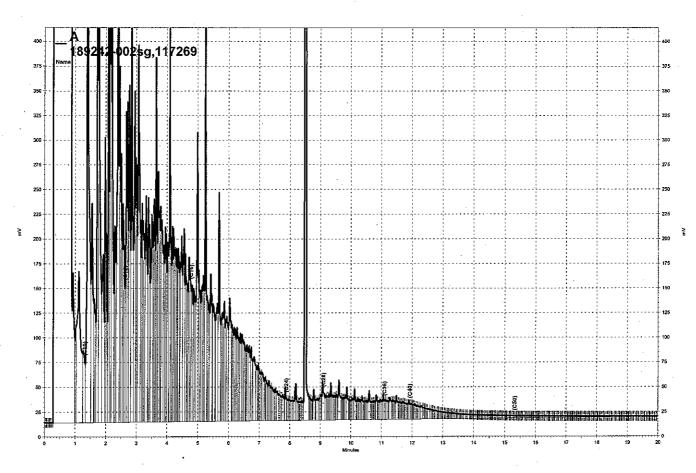
09/06/06 09/13/06

Analyte	Result		RL	
Kerosene C10-C16		Y	50	
Diesel C10-C24	180	Y	50	
Motor Oil C24-C36	ND		300	

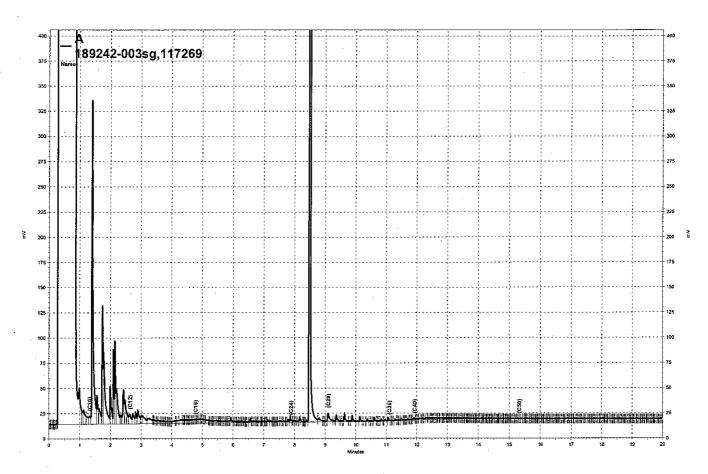
Surrogate	%REC	Limits	
Hexacosane	117	65-130	


H= Heavier hydrocarbons contributed to the quantitation

L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard


ND= Not Detected RL= Reporting Limit

Page 1 of 5


2.1

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a080, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a081, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a082, A

Total Extractable Hydrocarbons Oakland Edgewater Lab #: Location: Client: LFR Levine Fricke Prep: EPA 3520C EPA 8015B Project#: 001-09225-21 Analysis: Batch#: 117269 Matrix: Water 09/07/06 Units: ug/L Received: Diln Fac: 1.000 Prepared: 09/11/06

Field ID: Type:

Lab ID:

MW-5 SAMPLE 189242-004 Sampled: Analyzed: Cleanup Method:

09/06/06 09/13/06 EPA 3630C

Result RL Analyte Kerosene C10-C16 400 50 340 Y 50 Diesel C10-C24 Motor Oil C24-C36 ND 300

Surrogate	%REC	Limits
Hexacosane	95	65-130

Field ID: Type:

Lab ID:

MW-6D SAMPLE 189242-006 Sampled: Analyzed:

Cleanup Method:

09/06/06 09/13/06 EPA 3630C

Result RL Analyte Kerosene C10-C16 Diesel C10-C24 2,300 H 50 2,400 H L 50 Motor Oil C24-C36 300

	Surrogate	%REC	Limits	
i	Hexacosane	124	65-130	

Field ID:

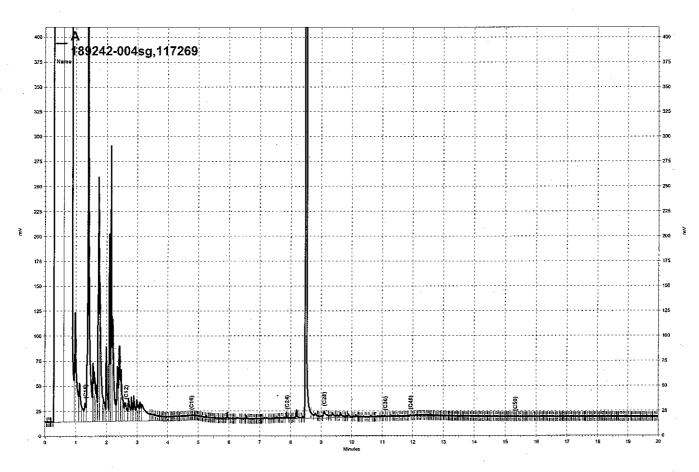
Type: Lab ID: MW-8-FB SAMPLE 189242-007 Sampled: Analyzed:

Cleanup Method:

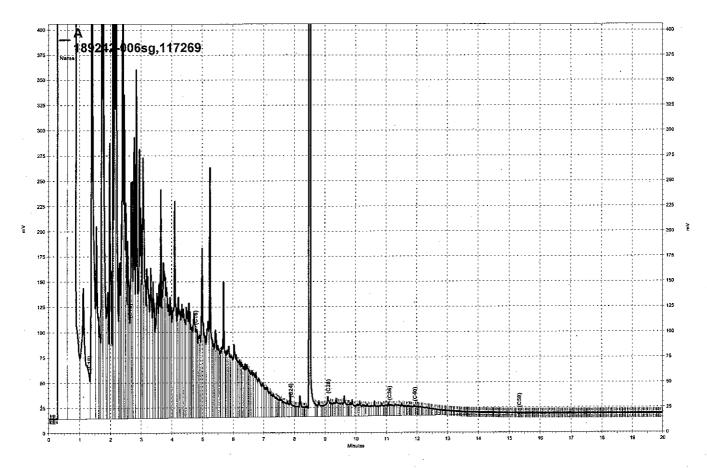
09/07/06 09/13/06 EPA 3630C

Result Analyte RL Kerosene C10-C16 Diesel C10-C24 ND 50 ND 50 Motor Oil C24-C36 ND300

to the second of	%REC	Limits
Hexacosane	100	65-130


H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard


ND= Not Detected

RL= Reporting Limit

Page 2 of 5

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a083, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a084, A

MW-61)

Total Extractable Hydrocarbons Oakland Edgewater Location: Lab #: 189242 Client: LFR Levine Fricke Prep: EPA 3520C EPA 8015B 117269 09/07/06 Project#: 001-09225-21 Analysis: Batch#: Matrix: Water Units: ug/L Received: Diln Fac: 1.000 Prepared: 09/11/06

Field ID: Type: Lab ID:

MW-17

SAMPLE 189242-008 Sampled:

09/07/06

Analyzed: Cleanup Method:

09/13/06 EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	ND	50
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogate	%RE		
Hexacosane	97	65-130	

Field ID:

MW-15

Type: Lab ID:

SAMPLE 189242-009 Sampled:

09/07/06

Analyzed:

09/13/06

Cleanup Method: EPA 3630C

Analyte	Result	3		RL	
Kerosene C10-C16	80	H	Y	50	
Diesel C10-C24	220	Н 7	Y	50	
Motor Oil C24-C36	400			300	

Surrogate	%RE(Limits	
Hexacosane	105	65-130	

Field ID:

Type: Lâb ID: MW-9

SAMPLE

Analyzed: 189242-010 Cleanup Method:

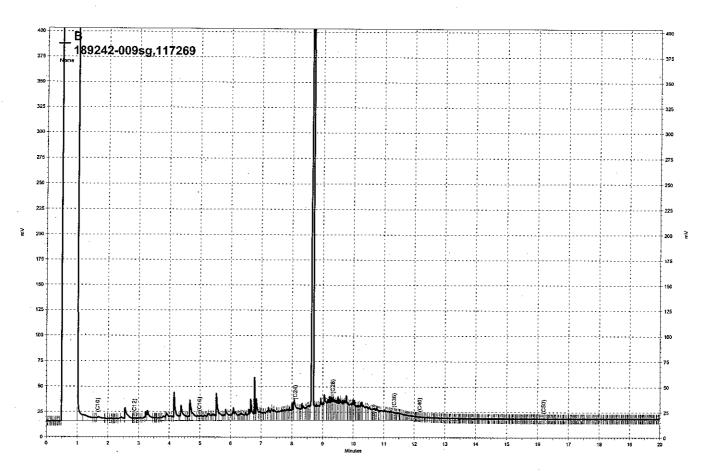
Sampled:

09/07/06 09/13/06

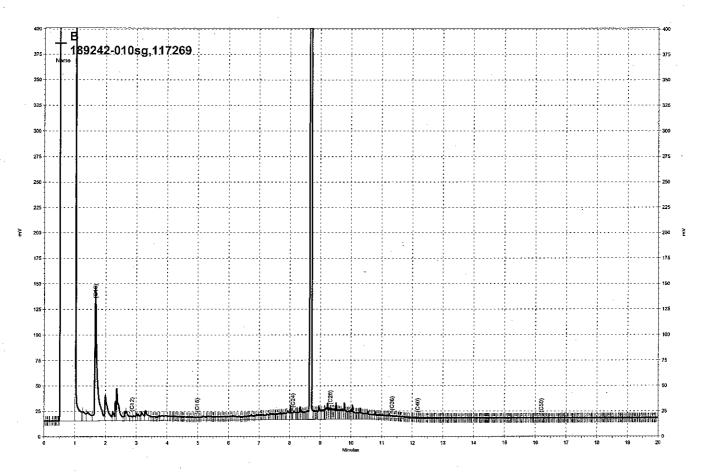
EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	150 Y	50	
Diesel C10-C24	210 Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC		
Hexacosane	127	65-130	


 $[\]mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc L=}$ Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard


ND= Not Detected

RL= Reporting Limit

Page 3 of 5

---- \\Lims\gdrive\ezchrom\Projects\GC15B\Data\255b033, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\255b034, B

Mw-9

Total Extractable Hydrocarbons Oakland Edgewater Lab #: Client: Location: LFR Levine Fricke Prep: EPA 3520C EPA 8015B Analysis: Project#: 001-09225-21 Batch#: 117269 Water Matrix: 09/07/06 Units: ug/L Received: 09/11/06 Diln Fac: 1,000 Prepared:

Field ID: Type: Lab ID:

SAMPLE

189242-011

Sampled: Analyzed: Cleanup Method:

Result

ND

09/07/06 09/13/06 EPA 3630C

Result RL Analyte Kerosene C10-C16 50 50 ND Diesel C10-C24 Motor Oil C24-C36 ND 300

Surrogate Limits Hexacosane 97 65-130

Field ID:

MW-14 SAMPLE

Analyte

Kerosene C10-C16

Motor Oil C24-C36

Diesel C10-C24

Sampled:

09/07/06 09/13/06 EPA 3630C

Type: Lab ID:

189242-012

Analyzed: Cleanup Method:

RL. 79 H Y 50 140 H Y 50

300

Limits Surrogate Hexacosane 96 65-130

Field ID:

Type: Lab ID:

MW-13

SAMPLE 189242-013 Sampled: Analyzed: 09/07/06

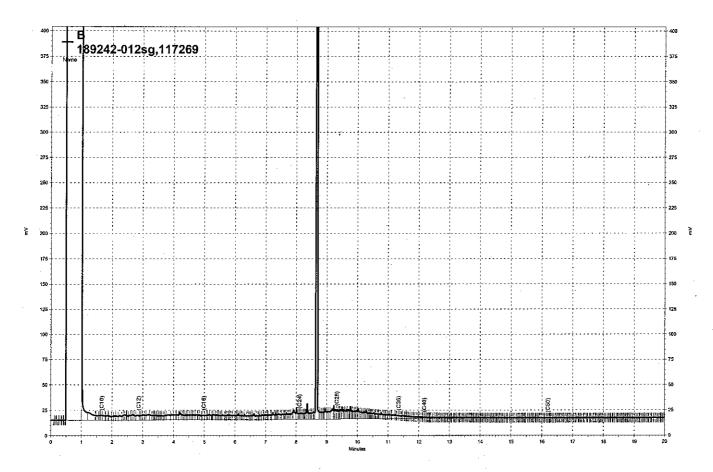
Cleanup Method:

09/13/06 EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	150 H Y	50	
Motor Oil C24-C36	730	300	

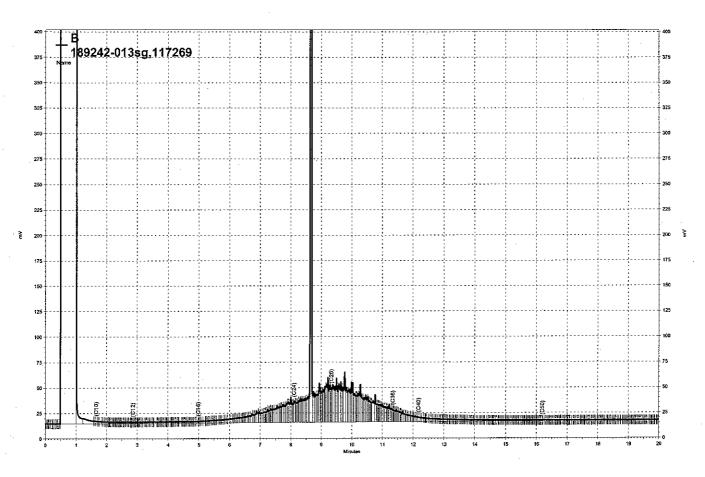
Surrogate		Limits	
Hexacosane	103	65-130	

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation


Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit


Page 4 of 5

2.1

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\255b036, B

Mw-Kl

\Lims\gdrive\ezchrom\Projects\GC15B\Data\255b037, B

MW-13

Total Extractable Hydrocarbons 189242 Oakland Edgewater Lab #: Location: Prep: Analysis: EPA 3520C Client: LFR Levine Fricke 001-09225-21 EPA 8015B Project#: Batch#: 117269 Matrix: Water ug/L 09/07/06 Units: Received: 09/11/06 1.000 Prepared: Diln Fac:

Field ID:

Type: Lab ID:

MW-10 SAMPLE

189242-014

Sampled:

Analyzed:

Cleanup Method:

09/07/06 09/13/06 EPA 3630C

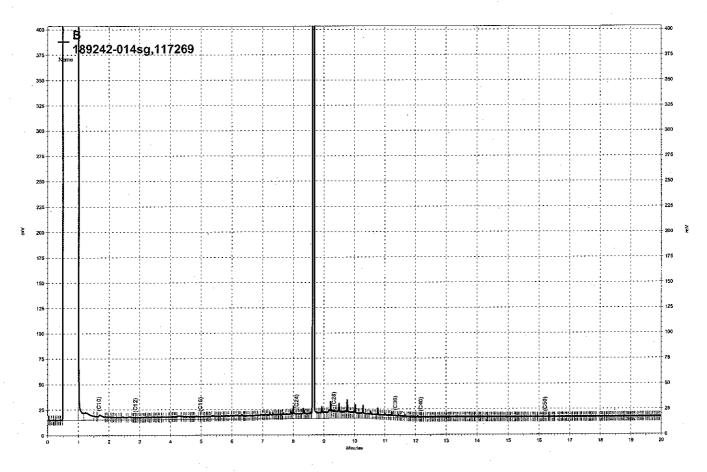
Analyte Kerosene C10-C16 Result RL ND 50 Diesel C10-C24 98 H Y 50 Motor Oil C24-C36 ND 300

Surrogate	%REC	Limits	
Hexacosane	120	65-130	

Type: Lab ID: BLANK QC355425 Analyzed:

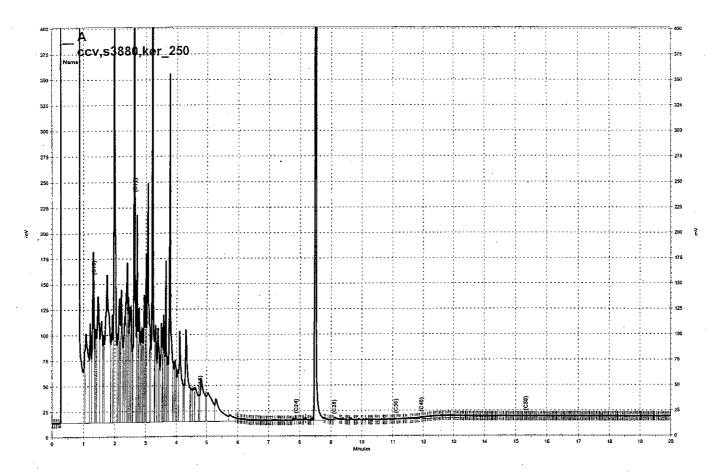
09/12/06 Cleanup Method: EPA 3630C

Result Analyte Kerosene C10-C16 ND 50 Diesel C10-C24 50 NDMotor Oil C24-C36 ND 300

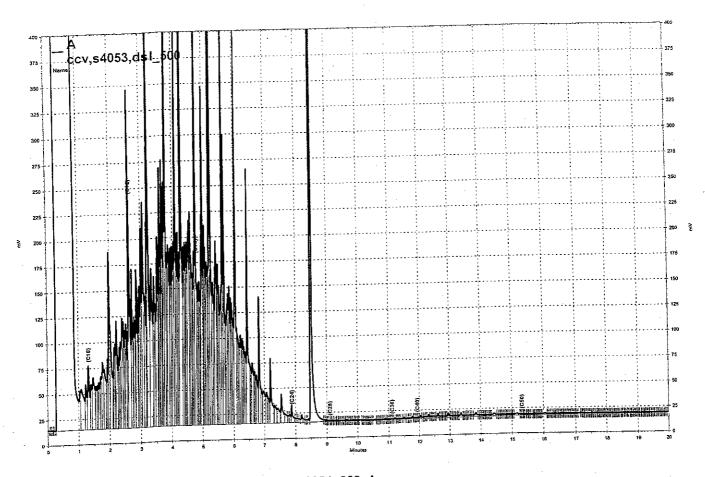

Surrogate	%REC	Limits	
Hexacosane	104	65-130	

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation

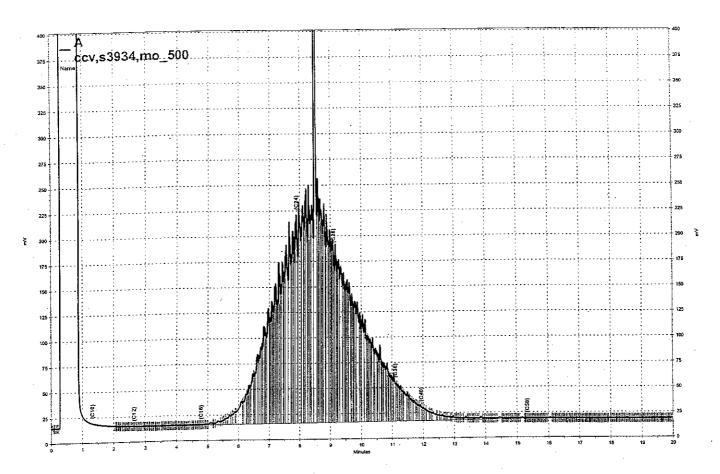
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected


RL= Reporting Limit

Page 5 of 5


\Lims\gdrive\ezchrom\Projects\GC15B\Data\255b038, B

MW-10


\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a073, A

Kerosone

--- \\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a003, A

Die Sel

\Lims\gdrive\ezchrom\Projects\GC17A\Data\254a004, A

Motor O, 7

	Total Exti	cactable Hydrocar	bons
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 3520C
Project#:	001-09225-21	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	117269
Units:	${\tt ug/L}$	Prepared:	09/11/06
Diln Fac:	1.000	Analyzed:	09/12/06

Type: Lab ID:

QC355426

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,153	86	61-133

Surrogate	%REC			
Hexacosane	97	65-130		

Type:

BSD

Cleanup Method: EPA 3630C

Lab ID:

QC355427

Analyte	Spiked	Result	%REC	Limits		Lim
Diesel C10-C24	2,500	2,223	89	61-133	3	31

Surrogate	%REC	Limits	
Hexacosane	102	65-130	

Gasoline by GC/MS Lab #: 189242 Location: Oakland Edgewater Client: LFR Levine Fricke 001-09225-21 Prep: Analysis: EPA 5030B EPA 8260B Project#: Matrix: Water 09/07/06 Received: Units: ug/L

Field ID:

MW-12 SAMPLE

Type: Lab ID: 189242-001 Diln Fac: 1.000

Batch#:

Sampled: Analyzed:

117379 09/06/06 09/14/06

Analyte	Result	RLi	
Gasoline C7-C12	120	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-120
1,2-Dichloroethane-d4	107	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	103	80-122

Field ID:

Diln Fac:

MW-1

Type: Lab ID: SAMPLE

189242-002 1.000

Batch#:

117379

Sampled: Analyzed:

09/06/06 09/14/06

Analyte	Result	RL	
Gasoline C7-C12	480	50	***************
MTBE	ND	0.50	
Benzene	4.2	0.50	
Toluene	1.0	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	1.9	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	************
Dibromofluoromethane	110	80-120	A200000000
1,2-Dichloroethane-d4	107	80-130	
Toluene-d8	96	80-120	ŀ
Bromofluorobenzene	100	80-122	Ī

NA= Not Analyzed ND= Not Detected RL= Reporting Limit

Page 1 of 9

Data File: \\Comsserver\DD\\ohem\\MSVOAO8.i\\091406.b\\HIE20TVH.D
Date : 14-SEP-2006 20:03

Instrument: MSVOA08.i

Client ID: DYNA P&T

Data File: \\Gomsserver\DD\chem\MSVOA08.i\\091406.b\\HIE21TVH.D

Date : 14-SEP-2006 20:40

Client ID: DYNA P&T

Sample Info: \$,189242-002

Operator: BO

Instrument: MSVOA08.i

Gasoline by GC/MS Oakland Edgewater EPA 5030B EPA 8260B Lab #: 189242 Location: LFR Levine Fricke 001-09225-21 Prep: Analysis: Client: Project#: 09/07/06 Received: Matrix: Water Units: ug/L

Field ID: Type: Lab ID:

Diln Fac:

MW-6

SAMPLE

189242-003

3.333

Batch#:

Sampled: Analyzed:

117379

09/06/06 09/15/06

Analyte	Result	RL	
Gasoline C7-C12	1,300	170	
MTBE	4.8	1.7	
Benzene	330	1.7	
Toluene	3.9	1.7	
Ethylbenzene	ND	1.7	
m,p-Xylenes	3.7	1.7	
o-Xylene	ND	1.7	

Surrogate	%REC	Limits
Dibromofluoromethane	112	80-120
1,2-Dichloroethane-d4	107	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	104	80-122

Field ID: Type: Lab ID:

Diln Fac:

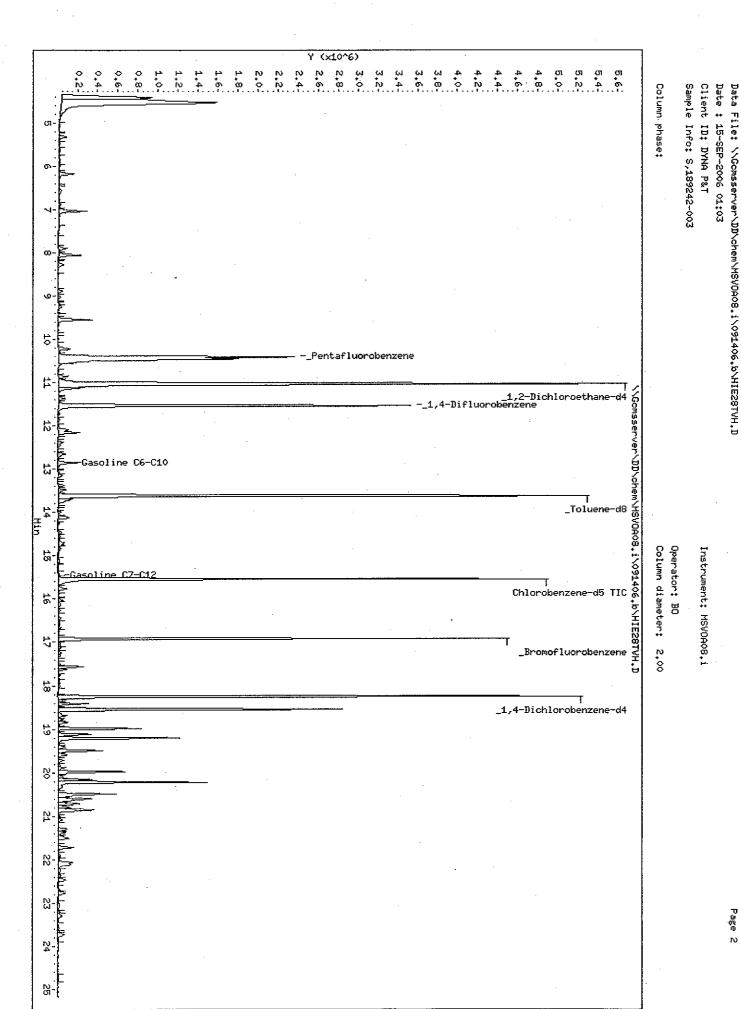
MW-5

SAMPLE

Batch#:

117435

189242-004


1.000

Sampled: Analyzed: 09/06/06 09/15/06

Analyte	Result	RL	
Gasoline C7-C12	2,000	50	
MTBE	50	0.50	
Benzene	8.3	0.50	
Toluene	1.1	0.50	
Ethylbenzene	82	0.50	
m,p-Xylenes	6.2	0.50	
o-Xylene	0.60	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-120	
1,2-Dichloroethane-d4	104	80-130	
Toluene-d8	95	80-120	
Bromofluorobenzene	98	80-122	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 2 of 9

Date : 15-SEP-2006 19:29 Data File: \\Gcmsserver\DD\chem\MSVOA08.i\091506.b\\HIF19TVH.D

Sample Info: \$,189242-004 Client ID: DYNA P&T

Instrument: MSVOA08.i

Gasoline by GC/MS

Lab #: 189242 Location: Oakland Edgewater
Client: LFR Levine Fricke Prep: EPA 5030B
Project#: 001-09225-21 Analysis: EPA 8260B
Matrix: Water Received: 09/07/06
Units: ug/L

Field ID: Type: Lab ID: MW-6D SAMPLE 189242-006 Sampled: Analyzed: 09/06/06 09/15/06

Analyte	Result	RL	Diln Fa	c Batch#
Gasoline C7-C12	1,200	130	2.500	117379
MTBE	4.7	1.3	2.500	117379
Benzene	350	2.5	5.000	117435
Toluene	3.6	1.3	2.500	117379
Ethylbenzene	ND	1.3	2.500	117379
m,p-Xylenes	3.4	1.3	2.500	117379
o-Xylene	ND	1.3	2.500	117379

Surrogate	%REC	Limits	Diln	Fac Batch#	
Dibromofluoromethane	107	80-120	2.500	117379	
1,2-Dichloroethane-d4	98	80-130	2.500	117379	
Toluene-d8	96	80-120	2.500	117379	
Bromofluorobenzene	101	80-122	2.500	117379	

Field ID: Type: Lab ID:

Diln Fac:

MW-8-FB SAMPLE 189242-007 1.000 Batch#: Sampled: Analyzed: 117379 09/07/06 09/14/06

	_	
Analyte Gasoline C7-C12	Result ND	RL .
MTBE	ND ND	50
Benzene	ND	0.50 0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Dibromofluoromethane 109 80-120 1,2-Dichloroethane-d4 108 80-130 Toluene-d8 97 80-120 Bromofluorobenzene 102 80-122		%REC	Limits
Toluene-d8 97 80-120	Dibromofluoromethane	109	80-120
	1,2-Dichloroethane-d4	108	80-130
Bromofluorobenzene 102 80-122	Toluene-d8	97	80-120
	Bromofluorobenzene	102	80-122

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 3 of 9

Data File: \\Comsserver\DD\\chem\\MSVOA08;i\091406;b\\HIE30TVH.D
Date : 15-SEP-2006 02:18

Client ID: DYNA P&T

Sample Info: 8,189242-006

Operator: BO

Column diameter:

Instrument: MSV0A08.i

Gasoline by GC/MS Lab #: 189242 Location: Oakland Edgewater Client: LFR Levine Fricke Prep: Analysis: EPA 5030B EPA 8260B Project#: 001-09225-21 Matrix: Water 09/07/06 Received: Units: ug/L

Field ID: Type: Lab ID:

Diln Fac:

MW-17

SAMPLE 189242-008

1.000

Batch#:

117379

Sampled: Analyzed:

09/07/06 09/14/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	1
Ethylbenzene	ND	0.50	- 1
m,p-Xylenes	ND	0.50	- 1
o-Xylene	ND ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	111	80-120	
1,2-Dichloroethane-d4	109	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	103	80-122	

Field ID:

MW-15

Type: Lab ID: Diln Fac:

SAMPLE

189242-009 1.000

Batch#: Sampled: 117379

Analyzed:

09/07/06 09/14/06

Result RL Gasoline C7-C12 ND 50 MTBE ND 0.50 0.50 Benzene ND Toluene ND Ethylbenzene ND 0.50 m,p-Xylenes o-Xylene 1.3 0.76 0.50 0.50

1,2-Dichloroethane-d4 114 80	imits 0-120 0-130
1,2-Dichloroethane-d4 114 80	0-130
Toluone_de	
Toluene-d8 98 80	0-120
Bromofluorobenzene 104 80	0-122

Gasoline by GC/MS Oakland Edgewater EPA 5030B Lab #: 189242 Location: LFR Levine Fricke Prep: Analysis: Client: EPA 8260B 09/07/06 Project#: 001-09225-21 Matrix: Water Received: Units: uq/L

Field ID: Type: Lab ID:

MW-9 SAMPLE

Diln Fac:

189242-010 1.000

Sampled: Analyzed:

Batch#:

117487 09/07/06 09/18/06

Analyte	Result	RL	
Gasoline C7-C12	240	50	
MTBE	ND	0.50	
Benzene	58	0.50	
Toluene	5.3	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	5.0	0.50	
o-Xylene	0.68	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	99	80~130
Toluene-d8	93	80-120
Bromofluorobenzene	99	80-122

Field ID:

MW-8 SAMPLE

189242-011

Batch#: Sampled: Analyzed: 117435 09/07/06 09/15/06

0.50

Type: Lab ID: Diln Fac:

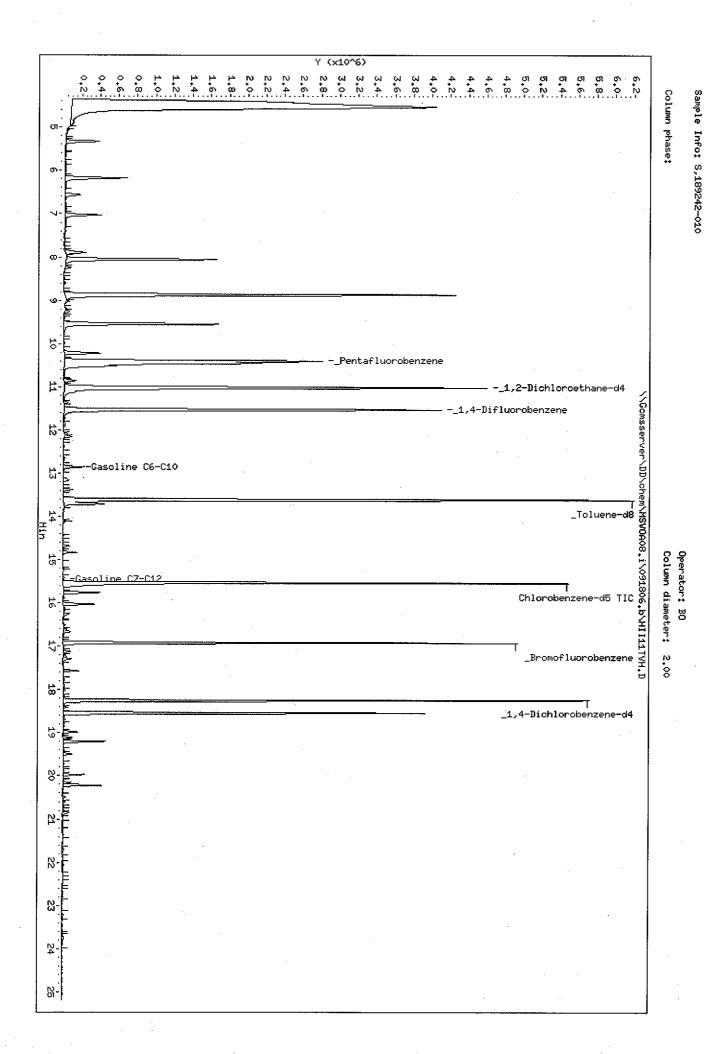
MTBE

Benzene

Toluene

Ethylbenzene

m,p-Xylenes o-Xylene


Gasoline C7-C12

1.000

Analyte Result RL ND 50 0.50 ND ND ND 0.50 0.50 0.50 ND ND

ND

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-120	
1,2-Dichloroethane-d4	101	80-130	
Toluene-d8	96	80-120	
Bromofluorobenzene	99	80-122	

Page 2

Instrument: MSVOA08.i

Date : 18-SEP-2006 14:38 Client ID: DYNA P%T

Data File: \\Gomsserver\DD\chem\MSVOA08.i\091806.b\HII11TVH.D

Gasoline by GC/MS Lab #: 189242 Location: Oakland Edgewater Client: LFR Levine Fricke Prep: Analysis: EPA 5030B EPA 8260B 001-09225-21 Project#: Matrix: Water Received: 09/07/06 Units: ug/L

Field ID:

MW-14

Type: Lab ID: Diln Fac: SAMPLE 189242-012 1.000

Batch#:

Sampled: Analyzed:

117435

09/07/06 09/15/06

Analyte	Result	RL	
Gasoline C7-C12	60	50	
MTBE	0.51	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	103	80-130
Toluene-d8	95	80-120
Bromofluorobenzene	98	80-122

Field ID:

MW-13

Type: Lab ID: Diln Fac:

SAMPLE 189242-013 1.000

Batch#:

Sampled: Analyzed:

117435 09/07/06 09/15/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-120	
1,2-Dichloroethane-d4	105	80-130	
Toluene-d8	96	80-120	
Bromofluorobenzene	100	80-122	

Data File: \\Gomsserver\DD\ohem\MSVOA08.i\091506.b\HIF22TVH.D

Sample Info; 8,189242-012

Client ID: DYNA P&T

Date : 15-SEP-2006 21:22

Operator: BO

Instrument: MSVOA08.i

Date : 14-SEP-2006 16:18 Data File: \\Comsserver\DD\chem\MSV0908.i\\091406.b\\HIE14TVH.D

Client ID: DYNA P&T

Column phase:

Sample Info: CCV,S4120,0.02/100

Operator: BO

2.00

Instrument: MSVOA08.i

Gasoline by GC/MS Lab #: Location: Oakland Edgewater Client: LFR Levine Fricke EPA 5030B EPA 8260B 09/07/06 Prep: Analysis: Project#: 001-09225-21 Water ug/L Matrix: Received: Units:

Field ID:

MW-10

Type: Lab ID:

SAMPLE 189242-014 Batch#:

117435

Diln Fac:

1.000

Sampled: Analyzed:

09/07/06 09/15/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-120
1,2-Dichloroethane-d4	106	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	102	80-122

Type: Lab ID: Diln Fac: BLANK

QC355877 1.000

Batch#: Analyzed: 117379 09/14/06

Analyte	Result	RL	
Gasoline C7-C12	NA		ł
MTBE	ND	0.50	
Benzene	ND	0.50	1
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes ·	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	109	80-120	
1,2-Dichloroethane-d4	110	80-130	
Toluene-d8	100	80-120	
Bromofluorobenzene	101	80-122	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit

Page 7 of 9

Gasoline by GC/MS Lab #: Location: Oakland Edgewater Client: LFR Levine Fricke EPA 5030B EPA 8260B Prep: Project#: 001-09225-21 <u> Analysis:</u> Matrix: Water 09/07/06 Received: Units: ug/L

Type: Lab ID: Diln Fac: BLANK QC355878 1.000 Batch#: Analyzed: 117379 09/14/06

Analyte Gasoline C7-C12 Result ND 50 0.50 0.50 MTBE ND Benzene ND Toluene 0.50 ND Ethylbenzene m,p-Xylenes o-Xylene ND 0.50 ND 0.50 ND 0.50

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-120	
1,2-Dichloroethane-d4	97	80-130	
Toluene-d8	95	80-120	
Bromofluorobenzene	99	80-122	

Type: Lab ID: Diln Fac:

BLANK QC356109 1.000 Batch#: Analyzed:

117435 09/15/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2~Dichloroethane-d4	99	80-130	
Toluene-d8	97	80-120	
Bromofluorobenzene	97	80-122	

NA= Not Analyzed ND= Not Detected RL= Reporting Limit

Page 8 of 9

Gasoline by GC/MS Lab #: Client: 189242 Location: Oakland Edgewater LFR Levine Fricke 001-09225-21 Prep: Analysis: Received: EPA 5030B EPA 8260B 09/07/06 Project#: Matrix: Water Units: ug/L

Type: Lab ID: Diln Fac:

BLANK OC356317 1.000 Batch#: Analyzed: 117487 09/18/06

Analyte	Result	RL _
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

1,2-Dichloroethane-d4 100 80-120 1,2-Dichloroethane-d4 100 80-130 Toluene-d8 95 80-120 Bromofluorobenzene 98 80-122	Surrogate	%REC	Limits
Toluene-d8 95 80-120 Bromofluorobenzene 98 80-122	Dibromofluoromethane		80-120
Bromofluorobenzene 98 80-122	1,2-Dichloroethane-d4	100	80-130
		95	80-120
	Bromofluorobenzene	98	80-122

	Gaso	oline by GC/MS	
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	117379
Units:	ug/L	Analyzed:	09/14/06
Diln Fac:	1.000	*	•

Type:

BS

Lab ID: QC355875

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	25.07	100	72-120
Benzene	25.00	23.59	94	80-120
Toluene	25.00	24.68	99	80-120
Ethylbenzene	25.00	25.80	103	80-120
m,p-Xylenes	50.00	49.97	100	80-121
o-Xylene	25.00	24.77	99	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-120
1,2-Dichloroethane-d4	110	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	100	80-122

Type:

BSD

Lab ID:

QC355876

Analyte	Spiked	Result	%REC	: Limits	RPD	Lim
MTBE	25.00	24.52	98	72-120	2	20
Benzene	25.00	22.27	89	80-120	6	20
Toluene	25.00	23.53	94	80-120	5	20
Ethylbenzene	25.00	24.92	100	80-120	3	20
m,p-Xylenes	50.00	47.29	95	80-121	5	20
o-Xylene	25.00	23.80	95	80~120	4	20

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-120
1,2-Dichloroethane-d4	111	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	100	80-122

-	Gaso	oline by GC/MS	
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	117379
Units:	ug/L	Analyzed:	09/14/06
Diln Fac:	1.000	<u>-</u>	

Type:

BS

Lab ID: QC356006

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	2,184	109	70-130

Surrogate	%REC	Limite
Dibromofluoromethane	105	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	101	80-122

Type:

BSD

Lab ID:

QC356007

	Spiked	Result	%REC	Limits	RPI) Lim
Gasoline C7-C12	2,000	2,170	109	70-130	1	20
dabotine c, ciz	2,000	2,170	109	70-130	1	20
Surrogate	%REC Limits					

Surrogate	%REC	C Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	95	80-120
Bromofluorobenzene	100	80-122

-	Gasc	oline by GC/MS	
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	117435
Units:	ug/L	Analyzed:	09/15/06
Diln Fac:	1.000		

Type:

ВŞ

Lab ID: QC356105

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	23.36	93	72-120
Benzene	25.00	25.62	102	80-120
Toluene	25.00	24.69	99	80-120
Ethylbenzene	25.00	27.25	109	80-120
m,p-Xylenes	50.00	53.65	107	80-121
o-Xylene	25.00	26.47	106	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	97	80-120
Bromofluorobenzene	101	80-122

Type:

BSD

Lab ID: QC356106

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	22.40	90	72-120	4	20
Benzene	25.00	23.90	96	80-120	7	20
Toluene	25.00	23.92	96	80-120	3	20
Ethylbenzene	25.00	25.17	101	80-120	8	20
m,p-Xylenes	50.00	49.67	99	80-121	8	20
o-Xylene	25.00	24.68	99	80-120	7	20

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-120
1,2-Dichloroethane-d4	96	80-130
Toluene-d8	94	80-120
Bromofluorobenzene	100	80-122

	Gası	oline by GC/MS	
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	117435
Units:	ug/L	Analyzed:	09/15/06
Diln Fac:	1.000		

Type:

BS

Lab ID: QC356107

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,500	2,905	116	70-130

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-120
1,2-Dichloroethane-d4	101	80-130
Toluene-d8	94	80-120
Bromofluorobenzene	99	80-122

Type:

BSD

Lab ID: QC356108

	SULKED	Result	%REC	Limits		.im
Gasoline C7-C12	2,500	2,816	113	70-130	3 2	20

	Gası	oline by GC/MS	
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	117487
Units:	$\mathtt{ug/L}$	Analyzed:	09/18/06
Diln Fac:	1.000	-	

Type:

BS

Lab ID: QC356315

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	22.68	91	72-120
Benzene	25.00	25.16	101	80-120
Toluene	25.00	25.06	100	80-120
Ethylbenzene	25.00	27.00	108	80-120
m,p-Xylenes	50.00	51.95	104	80-121
o-Xylene	25.00	25.99	104	80-120

Surrogate	%rec	Limits
Dibromofluoromethane	106	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	94	80-120
Bromofluorobenzene	100	80-122

Type:

BSD

Lab ID: QC356316

Analyte	Spiked	Result	%REC	Limits	RPL	Lim
MTBE	25.00	23.38	94	72-120	3	20
Benzene	25.00	25.84	103	80-120	3	20
Toluene	25.00	25.68	103	80-120	2	20
Ethylbenzene	25.00	26.50	106	80-120	2	20
m,p-Xylenes	50.00	50.72	101	80-121	2	20
o-Xylene	25.00	25.86	103	80-120	0	20

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-120
1,2-Dichloroethane-d4	106	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	98	80-122

	Gasc	oline by GC/MS	
Lab #:	189242	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	117487
Units:	ug/L	Analyzed:	09/18/06
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC356331

Analyte	Spiked	Result	*KEC	Limits	
Gasoline C7-C12	2,000	2,492	125	70-130	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-120
1,2-Dichloroethane-d4	101	80-130
Toluene-d8	95	80-120
Bromofluorobenzene	99	80-122

Type:

Toluene-d8

Bromofluorobenzene

BSD

Analyte

Lab ID:

QC356332

Spiked Result %REC Limits RPD Lim

Gasoline C7-C12	2,0		2,327	116	70-130	7	20
<u> </u>							
Surrogate	*REC	Limits					
Dibromofluoromethane	100	80-120					
1,2-Dichloroethane-d4	100	80-130					

80-120

80-122

94

101

RPD≂	Relative	Percent	Difference

APPENDIX D

Historical Tables

Table D-1
Summary of Groundwater Analytical Data, VOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)		Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2-DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-Isopropyl- toluene (µg/l)	MTBE (μg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)	Toluene (µg/l)	1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6																				
2/27/01	270	11	3	ND	< 1	ND	ND	7	ND	< 1	9	6.0	1.0	19.0	62	21	3	1	< 1	3
8/20/01	E280	14	<1	<1	<1	3	2	<1	<1	<1	11	4.0	<1	14.0	E82	14	4	<1	<1	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = estimated concentration

MTBE = methyl tertiary-butyl ether

ND = Not detected

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table D-2
Summary of Groundwater Analytical Data, SVOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
MW-6			
2/27/01	19	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	< 5	<5	5
TBW-5			
8/20/01	220	<5	73

Notes:

SVOCs = Semivolatile organic compounds by EPA Method 8270

ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table D-3
Summary of Groundwater Analytical Data, LUFT Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2						
8/19/98			< 100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	

Notes:

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

LUFT = Leaking Underground Fuel Tank

^{--- =} not measured/analyzed

a = analyzed for organic lead

Table D-4 Summary of Groundwater Analytical Data, Additional Metals Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Sample ID/ Date	Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
MW-6							
8/16/01	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
TBW-1							
8/16/01	< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
TBW-3							
8/16/01	< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
TBW-5							
8/16/01	< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01

Notes:

Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise. mg/l = milligrams per liter