RECEIVED

By dehloptoxic at 9:44 am, Aug 09, 2006

Groundwater Monitoring Report
Spring 2006 Semiannual Sampling Event
Municipal Service Center
7101 Edgewater Drive
Oakland, California

May 19, 2006 001-09225-21

Prepared for: City of Oakland, Public Works Agency Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California

May 19, 2006 001-09225-21

Mr. Gopal Nair City of Oakland, Public Works Department Environmental Sciences Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

Subject: Groundwater Monitoring Report, Spring 2006 Semiannual Sampling Event, Municipal

Service Center, 7101 Edgewater Drive, Oakland, California

Dear Mr. Nair:

LFR Inc. (LFR) is pleased to present this report summarizing data collected during the spring 2006 semiannual groundwater monitoring event at the Municipal Service Center, located at 7101 Edgewater Drive in Oakland, California ("the Site"). These activities were performed in accordance with previous sampling events conducted at the Site.

If you have any questions regarding this report, please call me at (510) 596-9536.

Sincerely,

Charles H. Pardini, P.G. #6444

win Madus

Principal Geologist

Attachment

CONTENTS

1.0	INTRODUCTION	1
2.0	SITE BACKGROUND AND CORRECTIVE ACTION MEASURES	1
3.0	SPRING 2006 SEMIANNUAL MONITORING ACTIVITIES	2
	3.1 Field Activities	2
	3.2 Sample Analyses	3
4.0	MONITORING RESULTS	3
	4.1 Shallow Groundwater Topography	3
	4.2 Occurrence of Separate-Phase Hydrocarbons	4
	4.3 Contaminant Distribution in Groundwater	4
	4.3.1 Benzene	4
	4.3.2 Toluene	5
	4.3.3 Ethylbenzene	5
	4.3.4 Total Xylenes	5
	4.3.5 MTBE	5
	4.3.6 TPH-g	6
	4.3.7 TPH-d	6
	4.3.8 TPH-mo	6
	4.3.9 TPH-k	6
	4.4 Laboratory Analysis	7
5.0	LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL	7
	5.1 Method Holding Times	7
	5.2 Blanks	7
	5.3 Laboratory Control Samples	7
	5.4 Surrogates	7
	5.5 False-Positive Petroleum Hydrocarbon Identification	8
6.0	CONCLUSIONS AND RECOMMENDATIONS	8

7.0	LIMITATIONS
8.0	SELECTED REFERENCES
TAl	BLES
1	Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
2	Summary of Groundwater Analytical Data, VOCs
3	Summary of Groundwater Analytical Data, SVOCs
2	Summary of Groundwater Analytical Data, LUFT Metals
5	Summary of Groundwater Analytical Data, Additional Metals
FIG	URES
1	Site Vicinity Map
2	Groundwater Elevation Contour Map and Hydrocarbon Concentrations in Shallow Groundwater
3	Detail Plume Map
API	PENDICES
A	City of Oakland MSC Schedule and Protocol
I	Groundwater Sampling Field Data Sheets
(Laboratory Results and Chain-of-Custody Documentation
Ι	Historical Tables

Page ii smr-MSC-may06-09225.doc:vch

1.0 INTRODUCTION

This report presents the results of the spring 2006 semiannual groundwater monitoring event conducted from March 27 through April 5, 2006 at the Municipal Service Center (MSC), located at 7101 Edgewater Drive in Oakland, California ("the Site"; Figure 1). LFR Levine Fricke (LFR) conducted monitoring activities at the Site in accordance with Assignment No. GO3-LFR-20.

Described below are the monitoring activities, analytical results, distribution of contaminants in groundwater, conclusions, recommendations, and anticipated semiannual monitoring activities tentatively scheduled for September/October 2006.

2.0 SITE BACKGROUND AND CORRECTIVE ACTION MEASURES

Eighteen 4-inch-diameter and four 2-inch-diameter test/observation wells were installed on site to depths ranging from 13 feet below ground surface (bgs) to 17 feet bgs, in December 2001 and January 2002 by others, according to Uribe & Associates' "Test/Observation Well Installation Report U & A Project 291-03," prepared in April 2002 (Uribe 2002). Seven of the wells (RW-Al, RW-A2, OB-A1, RW-B1, RW-B2, RW-B3, and RW-B4) were installed in the vicinity of Plumes A and B. Fifteen wells (RW-C1, RW-C2, RW-C3, RW-C4, RW-C5, RW-C6, RW-C7, OB-C1, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, OB-D1, and OB-D2) were installed in the vicinity of plumes C and D. Every well, except OB-A1, was surveyed subsequent to the installation event. The plume locations are shown on Figure 2 and Figure 3. The well locations are shown on Figure 3.

According to the "Second Quarter 2003 Monitoring Report" (Uribe 2003), approximately 10,000 gallons of a groundwater/free product mixture were removed from on-site wells RW-B3 and RW-B4 (Plume B) in September and October 2002, using a trailer-mounted, dual-phase extraction unit with a 10-horsepower vacuum pump. Additionally, approximately 10,000 gallons of liquid were removed from wells RW-C3, RW-C4, RW-C5, and RW-C7 (Plume C) through five daily extractions over a two-month period. The liquid was pumped into a 21,000-gallon aboveground storage tank to allow separation of oil from water and drained through three 2,000-pound granular-activated carbon filters (in series). After filtration, the wastewater was discharged into a local storm drain. A National Pollutant Discharge Elimination System permit was issued prior to discharge.

Within the same time period, hydrogen peroxide, followed by water, was injected biweekly into wells OB-Al, RW-Al, RW-A2, TBW-3, and TBW-4 (Plume A); MW-16 and MW-17 (Plume B); and MW-5 in the active tank area, to promote in-situ bioremediation.

smr-MSC-may06-09225.doc:vch

In addition, construction of an extraction system to remove separate-phase hydrocarbons (SPH) within the vicinity of Plume D began in January 2006. Seven existing groundwater monitoring wells (RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1) were converted to extraction wells by URS. The extraction system was completed in April 2006, and the system will begin operation in mid-May 2006.

3.0 SPRING 2006 SEMIANNUAL MONITORING ACTIVITIES

3.1 Field Activities

The field activities, which included depth to water/product measurement and well sampling, were conducted in accordance with the City of Oakland MSC Schedule and Protocol Table presented in Appendix A.

On March 27, 2006, LFR personnel measured depth to water and depth to SPH using an electric oil/water interface probe in the following wells: MW-1, MW-2, MW-5 through MW-17, TBW-1, TBW-3 through TBW-6, RW-A1, RW-A2, OB-A1, RW-B1 through RW-B4, RW-C1 through RW-C5, RW-C8, OB-C1, OB-D1, OB-D2, and RW-1. Monitoring wells MW-3 and MW-4 have been destroyed (Ninyo & Moore 2004) and are not included in the sampling plan. Wells RW-C7 and TBW-2 were covered by equipment and could not be measured. Wells RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, TBW-5, and RW-1 were converted to extraction wells and could not be accessed for depth-to-water and depth-to-SPH measurements. The oil/water interface probe was decontaminated with hexanol when product was encountered, and rinsed with liquinox and distilled water before use in each well to avoid potential cross contamination. Current and historical product thickness measurements, depth-to-groundwater measurements, and groundwater elevations calculated from groundwater measurements are presented in Table 1. Monitoring well locations are shown on Figures 2 and 3.

On April 4 and 6, 2006, LFR personnel collected groundwater samples from wells MW-1, MW-2, MW-5, and MW-7 through MW-17. Well MW-6 was not sampled because SPH was encountered in this well. Using a clean, disposable Teflon bailer for each well, a minimum of three well-casing volumes of water was purged from each of the nine on-site wells before groundwater samples were collected. The wells were allowed to recover to at least 80 percent of their original static groundwater levels before sampling. Oxygen reduction potential (ORP), temperature, pH, and conductivity were measured for each well volume purged. Additionally, characteristics of the water (color, turbidity, odor, sheen) were noted on the field data sheets, which are included in Appendix B.

After purging the wells, samples were collected using the disposable, polyvinyl chloride, bottom-discharging bailer used to purge the well. The samples were transferred from the bailer to the appropriate sample containers, labeled, and placed in a "wet chilled" cooler containing ice, under chain-of-custody protocol. The samples

Page 2 smr-MSC-may06-09225.doc:vch

were secured in the cooler and transferred to Curtis & Tompkins, Ltd., Analytical Laboratories (C&T), a California Department of Health Services-certified environmental laboratory located in Berkeley, California. Purged and decontamination water generated during sampling activities was transferred into an on-site Baker tank that was part of the on-site extraction and treatment system maintained by the City of Oakland.

3.2 Sample Analyses

The groundwater samples were analyzed by C&T for the following parameters:

- total petroleum hydrocarbons (TPH) as gasoline (TPH-g) using U.S. Environmental Protection Agency (U.S. EPA) Method 8015B; kerosene (TPH-k), diesel (TPH-d), and motor oil (TPH-mo) using U.S. EPA Method 8015B, using a silica gel cleanup
- the aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary-butyl ether (MTBE) using U.S. EPA Method 8260B

4.0 MONITORING RESULTS

4.1 Shallow Groundwater Topography

Depth to groundwater was measured on March 27, 2006, using a Solinst oil/water interface meter (Table 1). Prior to groundwater measurement, the well caps were removed from all wells to allow the water column within each well to come into equilibrium with atmospheric pressure. Groundwater levels were allowed to equilibrate prior to groundwater measurement. Groundwater elevations were determined using well survey data from the report entitled "Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center" (Uribe 2003).

Groundwater elevations ranged from 9.43 feet mean sea level (msl) at TBW-3 to 3.00 feet msl at MW-17 (Figure 2). Wells MW-16 and MW-17 are located adjacent to San Leandro Bay on the southwestern portion of the Site, with MW-17 located farther downgradient. Groundwater flow direction, measured between wells TBW-6 and MW-12, is toward the west in the northern section of the Site at 0.020 foot/foot (ft/ft), and toward the southwest (measured between wells MW-6 and MW-17) at 0.023 ft/ft in the southern portion of the Site. A groundwater high is observed in the vicinity of well TBW-3. This observed groundwater high may be due to the presence of coarse-grained backfill in the area. The variation in the groundwater gradient may be due to differences in lithologic characteristics in the subsurface, preferential pathways (possibly due to backfilled utility trenches and underground storage tank pits). The groundwater flow direction for this sampling period was similar to that reported by Ninyo & Moore in its July 14, 2004 Spring Semiannual Monitoring Report for the Site, and in more recent LFR monitoring reports.

smr-MSC-may06-09225.doc:vch

4.2 Occurrence of Separate-Phase Hydrocarbons

SPH was observed and thickness measured in the following on-site wells: MW-6 (0.57 foot), OB-C1 (1.05 foot), and RW-C6 (0.96 foot). These results are similar to previous results. SPH was previously observed and measured in wells TBW-5, RW-D1, RW-D2, RW-D3, RW-D4, RW-D5, and OB-D2 (Plume D) during the September 2005 monitoring event; however, SPH could not be assessed and measured in these wells during this monitoring event because the wells had been converted to extraction wells and the access hole in each well was too small to accommodate the oil/water interface probe. The results of the SPH assessment are presented in Table 1. SPH was observed in September 2005 in wells TBW-6, RW-B3, RW-C2, and OB-D2 but was not present in these wells during this monitoring event. Plumes B and C show a significant decrease in lateral extent of SPH compared to the April 2004 monitoring event. The four monitoring wells that comprised Plume A did not contain measurable amounts of SPH during this monitoring event. The lateral extent of plume D could not be assessed as noted above. The extent of SPH is presented on Figure 2. Figure 3 presents a detailed plume map of SPH.

4.3 Contaminant Distribution in Groundwater

The analytical data from this groundwater monitoring event are presented in Table 1 along with historical analytical results. Laboratory analytical data reports are included in Appendix C. Historical data for volatile organic compounds, semivolatile organic compounds, Leaking Underground Fuel Tank metals, and other metals are provided in Appendix D, (in Tables 2, 3, 4, and 5, respectively).

For quality assurance/quality control (QA/QC), LFR collected a duplicate sample from well MW-11 and analyzed it for TPH-g, TPH-k, TPH-d, TPH-mo, BTEX, and MTBE. Analytical results for this duplicate sample were very similar to the analytical results for sample MW-11.

4.3.1 Benzene

Benzene concentrations detected above laboratory analytical detection limits (LADL) were reported in groundwater samples collected from 8 of the 14 monitoring wells sampled. The maximum benzene concentration reported from groundwater samples collected during this monitoring event was 470 micrograms per liter (μ g/l) in well MW-1. Historically, concentrations of benzene in well MW-1 have been as high as 2,000 μ g/l.

In its July 2004 monitoring report (Ninyo & Moore 2004), Ninyo & Moore cited the following regulatory standards for benzene: acceptable risk threshold for the San Francisco Airport Ecological Protection Zone (SFAEPZ) Tier I Standard was 71 μ g/l; the City of Oakland Tier I Carcinogenic Risk-Based Standard Level (RBSL) was also 71 μ g/l. However, LFR has not included City of Oakland RBSLs in this report because they were promulgated in 1999 and are considered out of date. The San Francisco Bay

Page 4 smr-MSC-may06-09225.doc;vch

Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) for Surface Water Bodies in a Marine Environment for benzene is 71 μ g/l (RWQCB 2005; Table F). Benzene concentrations at the Site for this sampling event are above these levels at monitoring wells MW-1 and MW-9.

Benzene was also reported in groundwater samples collected from wells MW-2 (2.1 μ g/l), MW-5 (14 μ g/l), MW-7 (2.7 μ g/l), MW-9 (140 μ g/l), MW-10 (2.1 μ g/l), MW-11 (5.7 μ g/l and 6.5 μ g/l), and MW-14 (1.7 μ g/l). These concentrations are generally consistent with historical concentrations for these wells and, with the exception of MW-9, are below the above-referenced standards.

4.3.2 Toluene

Toluene was reported at very low concentrations in 4 of the 14 wells sampled: wells MW-1 (13 μ g/l), MW-5 (2.1 μ g/l), MW-9 (5.2 μ g/l), and MW-11 (1.0 μ g/l). Concentrations are well below regulatory action levels for toluene of 40 μ g/l (RWQCB ESLs).

4.3.3 Ethylbenzene

Ethylbenzene was reported in a groundwater sample collected from 3 of the 14 wells sampled. Ethylbenzene was detected at a concentration of 280 μ g/l in the sample collected from well MW-5. This concentration is similar to the historical concentration of ethylbenzene in this well. The concentration is below the SFAEPZ Tier I Standard (29,000 μ g/l), but exceeds the RWQCB ESL for Surface Water Bodies in a Marine Environment of 30 μ g/l (RWQCB 2005).

4.3.4 Total Xylenes

Total xylenes were reported in groundwater samples collected from 5 of the 14 monitoring wells sampled. The maximum concentration of total xylenes was 13 μ g/l in a groundwater sample collected from well MW-5. Concentrations are below regulatory action levels for the RWQCB ESLs for Surface Water Bodies in a Marine Environment for total xylenes (100 μ g/l).

Total xylenes were also reported in samples collected from wells MW-1 (6.3 μ g/l), MW-2 (0.5 μ g/l), MW-9 (4.1 μ g/l) and MW-11 (7.3 μ g/l). These concentrations are consistent with historical concentrations for these wells and are below RWQCB ESLs.

4.3.5 MTBE

MTBE concentrations above LADL were reported in groundwater samples collected from 3 of the 14 monitoring wells sampled. MTBE was detected in samples collected from wells MW-2 (0.5 μ g/l), MW-5 (31 μ g/l), and MW-11 (7.4 μ g/l). The concentration in MW-5 is below historical concentrations previously detected in this

smr-MSC-may06-09225.doc:vch

well. All concentrations of MTBE detected in samples collected during this sampling event are below the RWQCB ESLs for Surface Water Bodies in a Marine Environment for MTBE (180 μ g/l).

4.3.6 TPH-g

TPH-g was reported in groundwater samples collected from 4 of the 14 wells sampled. The maximum TPH-g concentration reported for this groundwater monitoring event was 3,700 μ g/l in the groundwater sample collected from well MW-1. This concentration is consistent with historical concentrations for this well. It is equal to the SFAEPZ Tier I Standard Acceptable Threshold of 3,700 μ g/l for TPH-g (Ninyo & Moore 2004), and equal to the RWQCB ESL for Surface Water Bodies in a Marine Environment for TPH-g, which is also 3,700 μ g/l.

TPH-g was also detected in wells MW-5 (3,400 μ g/l), MW-9 (160 μ g/l) and MW-11 (220 μ g/l). Concentrations of TPH-g are consistent with historical concentrations for these wells and are below the SFAEPZ Tier I Standard Acceptable Threshold for TPH-g and the RWQCB ESL for Surface Water Bodies in a Marine Environment for TPH-g.

4.3.7 TPH-d

TPH-d was reported in groundwater samples collected from 9 of the 14 monitoring wells sampled. Analytical results presented in Table 1 indicated that all of the TPH-d concentrations contained a caveat. Upon further review of the chromatograms by C&T, the analytical laboratory, it was noted that there was no diesel present in any of the samples collected. The samples either contained TPH-g (four samples), TPH-mo (four samples), or a heavier oil (one sample).

4.3.8 TPH-mo

TPH-mo was reported in groundwater samples collected from 4 of the 14 wells sampled. TPH-mo was detected at 910 μ g/l in a sample from well MW-13 and at 760 μ g/l in a sample from well MW-15. These concentrations are above both the SFAEPZ Tier I Standard Acceptable Threshold for TPH-mo of 640 μ g/l (middle distillates; Uribe 2003) and the RWQCB ESL for Surface Water Bodies in a Marine Environment for residual fuels, which is also 640 μ g/l (middle distillates). This concentration is consistent with historical concentrations of TPH-mo in this well. Other TPH-mo concentrations were 420 μ g/l and 320 μ g/l in samples collected from wells MW-16 and MW-9, respectively.

4.3.9 TPH-k

TPH-k was reported in groundwater samples collected from 6 of the 14 monitoring wells sampled. Analytical results presented in Table 1 indicated that all of the TPH-k

Page 6 smr-MSC-may06-09225.doc:vch

concentrations contained a caveat. Upon further review of the chromatograms by C&T, it was noted that there was no kerosene present in any of the samples collected. The samples contained either TPHg (three samples), TPHmo (two samples), or a heavier oil (one sample).

4.4 Laboratory Analysis

Current laboratory analytical results and historical results are presented in Table 1. Copies of laboratory data sheets and chain-of-custody documents are included in Appendix C.

5.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

A laboratory QA/QC review was performed on the laboratory analytical data to evaluate the quality and usability of the analytical results. The following sections summarize the QA/QC review.

5.1 Method Holding Times

Extraction and analyses performed on the collected samples were reviewed by LFR personnel and were found to be within the appropriate holding times.

5.2 Blanks

One field blank (MW-1-FB) was collected along with groundwater sample MW-1, and analyzed for TPH-g, TPH-k, TPH-d, TPH-mo, BTEX, and MTBE. Additionally, laboratory method blank results were reviewed for detection of target analytes. No target analytes were detected in MW-1-FB, indicating that sample collection methods and transportation and laboratory procedures were not a source of contamination.

5.3 Laboratory Control Samples

Laboratory Control Samples and MS, MSD and BS, BSD were conducted by C&T for TPH-g, TPH-d, TPH-mo, and BTEX. All samples were within the percentage recovery range required by the laboratory.

5.4 Surrogates

All surrogates, including hexacosane, bromofluorobenzene, and trifluorotoluene for TPH-g, TPH-d, TPH-k, and TPH-mo, and bromofluorobenzene, 1,2-dichloroethane-d4, and toluene-d8 for BTEX, were used for laboratory QA/QC analysis. All surrogates were within the laboratory recovery limits.

smr-MSC-may06-09225.doc:vch

5.5 False-Positive Petroleum Hydrocarbon Identification

Qualifiers were reported in the laboratory analytical reports as noted in previous sections.

6.0 CONCLUSIONS AND RECOMMENDATIONS

- Groundwater elevations ranged from 3.00 feet msl at well MW-17 to 6.43 feet msl at well TBW-3, located on the southern portion of the Site. The direction of shallow groundwater flow is toward the southwest in the northern section of the Site at a 0.021 ft/ft gradient and toward the southwest at 0.014 ft/ft in the southern portion of the Site. A shallow groundwater high was observed in the vicinity of well TBW-3. This groundwater high is probably the result of higher subsurface permeability in areas of excavation backfill.
- SPH was observed in three wells. The maximum product thickness measured was 1.05 feet in well OB-C1, located in the vicinity of plume C.
- Benzene was detected above LADL in 8 of 14 wells sampled. The maximum concentration of benzene detected in shallow groundwater was 470 μ g/l in well MW-1 and 140 μ g/l in well MW-9. These concentrations are above both the SFAEPZ threshold and the RWQCB ESL for Surface Water Bodies in a Marine Environment of 71 μ g/l.
- Toluene was detected above LADL in 4 of 14 wells sampled. The maximum concentration of toluene detected in shallow groundwater was 13 μ g/l in well MW-1. This concentration is well below the RWQCB ESL for Surface Water Bodies in a Marine Environment of 40 μ g/l.
- Ethylbenzene was detected above LADL in 3 of 14 wells sampled. The maximum concentration of ethylbenzene was detected in shallow groundwater at 280 μg/l in well MW-5. The concentration is below the SFAEPZ Tier I Standard (29,000 μg/l), but exceeds the RWQCB ESL for Surface Water Bodies in a Marine Environment of 30 μg/l (RWQCB 2005).
- Total xylenes were detected above LADL in 5 of 14 wells sampled. The maximum concentration of xylenes detected in shallow groundwater was 13 μg/l in well MW-5. Concentrations are well below regulatory action levels for the RWQCB ESL for Surface Water Bodies in a Marine Environment for total xylenes (100 μg/l).
- MTBE was detected above LADL in 3 of 14 wells sampled. The maximum concentration of MTBE detected in shallow groundwater was 31 μg/l in well MW-5. This concentration is below the RWQCB ESL for Surface Water Bodies in a Marine Environment for MTBE of 180 μg/l.
- TPH-g was detected in 4 of 14 wells sampled. The maximum concentration of TPH-g detected in shallow groundwater was 3,700 μ g/l in well MW-1. This

Page 8 smr-MSC-may06-09225.doc:vch

- concentration is equal to both the SFAEPZ acceptable threshold and RWQCB ESL for middle petroleum distillates of 3,700 μ g/l.
- TPH-k was not detected above laboratory analytical limits in any of the 14 wells sampled, as noted in Section 4.3.9.
- TPH-mo was detected in 4 of 14 wells sampled at a maximum concentration of 910 μ g/l in well MW-13 and at a concentration of 760 μ g/l in well MW-15. These concentrations are above both the SFAEPZ acceptable threshold and the RWQCB ESL for middle petroleum distillates of 640 μ g/l.
- TPH-d was not detected above laboratory analytical detection limits in any of the 14 wells sampled as noted in Section 4.3.7.
- Petroleum hydrocarbon concentrations were similar to previous sampling event results in 9 of the 14 wells sampled. Heavier hydrocarbon concentrations (TPH-mo, wells MW-13 and MW-15) increased in 2 wells and lighter petroleum hydrocarbon concentrations (TPH-g, wells MW-1 and MW-9) increased an order of magnitude in 2 wells.

Based on the results of the spring 2006 groundwater monitoring event, LFR has the following recommendations:

- Continue semiannual groundwater monitoring on site due to the elevated concentrations of TPH-g, ethylbenzene, and TPH-mo reported during this monitoring event.
- Continue monitoring SPH, which was detected in 3 monitoring wells at the Site, ranging from 0.57 foot to 1.05 feet.
- Continue in situ remediation using hydrogen peroxide and begin groundwater extraction.

7.0 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard-of-care exercised by environmental consultants performing similar work in the project area. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. Please note this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions and the referenced literature. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which LFR has no control.

smr-MSC-may06-09225.doc:vch

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. LFR should be contacted if the reader requires any additional information or has questions regarding the content, interpretations presented, or completeness of this document.

Page 10 smr-MSC-may06-09225.doc:vch

8.0 SELECTED REFERENCES

- Ninyo & Moore. 2004. Groundwater Monitoring Report, Spring Semiannual, Municipal Service Center, 7101 Edgewater Drive, Oakland, California, Assignment No. G03-N&M-10. July 14.
- Regional Water Quality Control Board (RWQCB). 2003. Screening for Environmental Concerned Sites with Contaminated Soil and Groundwater (Interim Final). July.
- Uribe & Associates ("Uribe"). 2002. Test/Observation Well Installation Report U & A Project 291-03. April 2.
- ———. 2003. Final Report, Second Quarter 2003 Monitoring Report, City of Oakland Municipal Service Center. May.

smr-MSC-may06-09225.doc:vch

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)				(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)		(µg/l)
MW-1														
10/4/089	10.20			8020					540	65	26	14	22	
10/4/89	10.20			8240						120	46	43	78	
4/27/93	10.20			8020					< 1,000	< 1.0	< 1.0	<1.0	< 1.0	
4/19/95	10.20			8020					3,200	880	15	23	21	
7/27/95	10.20	4.62	5.58	8020					980	130	3.6	1.4	5.6	
11/20/95	10.20	6.08	4.12	8020					400	99	2.8	1.1	4.6	
2/21/96	10.20	4.62	5.58	8020					1,700	340	8.4	5.3	16	
5/13/96	10.20	4.33	5.87	8020					7,300	2,000	30	42	38	
8/27/96	10.20	5.25	4.95	8020					380	61	2.4	< 0.5	4.2	
2/23/98	10.20	1.75	8.45	8020		< 50	< 500	< 50	820	160	4.9	3	9.7	
8/19/98	10.20	4.78	5.42	8020	SGC	1,200			780	69	4.1	0.84	8.5	< 5.0
11/11/98	10.20	5.64	4.56											
2/23/99	10.20	3.41	6.79	8020	SGC	1,200	1,600	< 50	1,100	190	5	3	12	< 5.0
5/27/99	10.20	3.96	6.24											
8/24/99	10.20	4.92	5.28	8020	SGC	640	1,900	< 50	370	37	0.9	< 0.5	1.9	< 5.0
11/22/99	10.20	5.46	4.74											
1/18/00	10.05	5.41	4.64	0020	000									
1/19/00	10.05	4.62	 5 40	8020	SGC	50	< 200	< 50	660	43	2.3	1.1	6	< 5.0
5/11/00	10.05	4.63 5.07	5.42											
8/24/00 8/25/00	10.05 10.05	3.07	4.98	8020	SGC	340	<250	290	480	53	1.4	<0.5	2.9	< 5.0
11/28/00	10.05	5.60	4.45	6020 	300	340	< 230 	290	400		1.4	< 0.5 	2.9	
2/27/01	10.05	3.95	6.10	8020	Filtered+SGC	270	<250	<61	1,500	110	6.3	<1.5	9.9	<15
5/17/01	10.05	4.00	6.05		Tilleled See								9.9 	
8/16/01	10.05	4.17	5.88		Filtered+SGC	280	<b200< td=""><td>< 100</td><td>4,000</td><td>640</td><td>9.7</td><td>5.7</td><td>13</td><td>< 5.0</td></b200<>	< 100	4,000	640	9.7	5.7	13	< 5.0
12/15/01	10.05	5.52	4.53		T Merea : 500									
4/9/02	10.05	3.78	6.27	8021	SGC	1,100	1,000		2,000	320	5.38	3.08	6.24	< 5
6/21/02	10.05	4.92	5.13											
9/13/02	10.05	5.52	4.53	8021	SGC	88 b,c	< 300	88	260	9.6	< 0.5	< 0.5	1.0	< 2
4/22/03	10.05	4.41	5.64	8021B	SGC	570 L Y	< 300	660	1,900 Z	400.0	9.6	5.4	8.1	< 2.0
4/28/04	10.05	3.95	6.10	8260B	SGC	< 100	< 400	< 100	154	20	< 1.0	< 1.0	2.3	< 1.0
10/29/04	10.05	5.68	4.37	8260B	SGC	230 L Y	< 300	240	340 H Z	6.4	0.6	< 0.5	1.4	< 0.5
9/2/05 (1)	10.05	4.35	5.70	8260B	SGC	140 L Y	< 300	170	350	6.6	1.0	< 0.5	2.3	< 0.5
$4/4/2006^{(3)}$	10.05	2.24	7.81	8260B	SGC	830 L Y	< 300	1,100 L Y	3,700	470	13	7.8	6.3	< 3.6
MW-2														
10/4/89	10.47			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	10.47			8240						2	< 2.0	< 2.0	< 2.0	
4/27/93	10.47			8020					<1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	10.47			8020					< 50	1.8	< 0.5	< 0.5	< 0.5	
7/27/95	10.47	6.22	4.25	8020					< 50	2.3	< 0.5	< 0.5	< 0.5	
11/20/95	10.47	7.49	2.98	8020					< 50	2.2	< 0.5	< 0.5	< 0.5	
2/12/96	10.47	6.68	3.79	8020					< 50	1.7	< 0.5	< 0.5	0.5	
5/13/96	10.47	6.32	4.15	8020						2	< 0.5	< 0.5	< 0.5	

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)				(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)		Xylenes (µg/l)	(μg/l)
8/27/96	10.47	6.84	3.63	8020						2.4	< 0.5	< 0.5	< 0.5	
2/24/98	10.47	5.44	5.03	8020		< 50	< 500	< 50		1.6	< 0.5	< 0.5	< 0.5	
8/19/98	10.47	6.56	3.91	8020	SGC	330			< 50	4.1	3.4	0.8	2.6	< 5.0
11/11/98	10.47	7.37	3.10											
2/23/99	10.47	8.68	1.79	8020	SGC	200	900	< 50	< 50	3.5	0.6	0.6	1.2	< 5.0
5/27/99	10.47	5.20	5.27											
8/24/99	10.47	6.75	3.72	8020	SGC	140	700	< 50	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	10.47	7.58	2.89											
1/18/00	10.47	7.41	3.06	8020	SGC	60 a	660	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	10.47	6.43	4.04											
8/24/00	10.47	8.91	1.56	8020	SGC	170	440	130	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.47	7.35	3.12											
2/27/01	10.47	6.70	3.77	8020	Filtered+SGC	< 59	< 240	< 59	< 50	3.6	< 0.5	< 0.5	< 0.5	< 5
5/17/01	10.47	6.90	3.57											
8/16/01	10.47	6.95	3.52		Filtered+SGC	< 50	B200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/15/01	10.47	7.21	3.26											
4/5/02	10.47	6.02	4.45	8021	SGC	200	400		< 50	2.9	< 0.5	< 0.5	< 0.5	< 5
6/21/02	10.47	8.07	2.40											
9/17/02	10.47	7.12	3.35	8021	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 2
4/23/03	10.47	6.36	4.11	8021B	SGC	< 50	<300	< 50	< 50	1.6	<.50	<.50	<.50	< 2.0
4/28/04	10.47	5.99	4.48	8260B	SGC	< 100	<400	< 100	< 100	< 0.5	<1.0	<1.0	1.3	<1.0
9/1/05 (1)	10.47	6.08	4.39	8260B	SGC	< 50	<300	< 50	< 50	2.8	< 0.5	< 0.5	< 0.5	0.8
4/4/2006 ⁽³⁾	10.47	4.96	5.51	8260B	SGC	< 50	<300	< 50	< 50	2.1	< 0.5	< 0.5	0.5	0.5
4/4/2006	10.47	4.90	5.51	8200B	SGC	< 30	< 300	< 50	< 30	2.1	₹0.5	₹0.5	0.5	0.5
MW-3														
10/4/89				8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89				8240						< 2.0	<2.0	<2.0	<2.0	
2/23/98						< 50	< 500	< 50						
11/11/98		5.83					~ 300 							
2/23/99		3.63			Cubmargad									
5/27/99		1.68			Submerged									
8/24/99		4.76												
11/22/99		6.46			Destruct									
11/22/99					Destroyed									
MW-4														
10/4/89	7.89			8020					< 30	< 0.3	< 0.3	< 0.3	< 0.3	
10/4/89	7.89			8240						< 2.0	< 2.0	<2.0	< 2.0	
11/11/98	7.89	6.25	1.64							~2.0	~2.0			
2/23/99	7.89	3.10	4.79											
5/27/99	7.89	4.03	3.86											
8/24/99	7.89 7.89	5.07	2.82											
8/24/99 11/22/99	7.89 7.89	6.32	1.57											
					Dogtwayad									
11/22/99					Destroyed									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)	Elevation (in feet)			(µ g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	
MW-5						<u>I</u>								
12/13/91	11.15			8020		1,900			13,000	1,500	190	970	2,500	
12/13/91	11.15			8020	Dup				16,000	1,400	180	870	2,500	
12/13/91	11.15			8240	-					1,800	< 250	1,000	3,800	
12/13/91	11.15			8240	Dup					1,600	< 250	980	3,500	
4/27/93	11.15			8240		12,000			35,000	2,100	< 1.0	1,800	2,700	
4/19/95	11.15			8240		880	4,700		14,000	490	51	610	1,200	
7/27/95	11.15	6.29	4.86	8240		590	5,000		22,000	1,300	54	1,500	2,400	
11/20/95	11.15	6.98	4.17	8020		< 50	< 50	< 50	8,900	430	31	610	880	
2/21/96	11.15	5.97	5.18	8020		480	< 50	< 50	1,000	540	65	700	970	
5/13/96	11.15	6.25	4.90	8020		< 50	< 50	< 50	5,900	430	26	580	760	
5/13/96	11.15			8020	Dup	< 50	< 50	< 50	7,300	360	22	49	640	
8/27/96	11.15	6.40	4.75	8020		2,000	< 51	< 51	6,600	430	27	600	650	
8/27/96	11.15			8020	Dup	6,600	< 51	< 51	6,300	410	25	580	620	
2/23/98	11.15	4.22	6.93	8020		< 50	< 500	< 50	740	19	1.4	41	34	
8/19/98	11.15	6.14	5.01	8020		1,400	<250	1700	5,800	500	25	730	300	5,900
8/19/98	11.15	6.14	5.01	8260	SGC									6,700
11/11/98	11.15	6.51	4.64											
2/23/99	11.15	3.59	7.56	8020	SGC	2,000	700	< 50	6,700	300	26	800	690	1,600
5/27/99	11.15	5.71	5.44											
8/24/99	11.15	6.02	5.13	8020	SGC	220	2,000	< 50	2,100 e	190 e	5.5	340 e	78	380 e
11/22/99	11.15	6.16	4.99											
1/18/00	11.15	6.60	4.55											
1/19/00	11.15			8020	SGC	100	320	< 50	3,000	66 e	6.3	400 e	90	300 E (1,300)
5/11/00	11.15	5.62	5.53											
8/24/00	11.15	6.32	4.83	8020	SGC	4,800	560	6,600	12,000	220	21	430	91	1,200 (1,400)
11/28/00	11.15	6.47	4.68											
2/27/01	11.15	4.40	6.75	8020	Filtered+SGC	230	<250	< 61	6,300	150	7	350	55	830
5/17/01	11.15	5.77	5.38	8020	Filtered+SGC	190	< 200	< 50	7,500	140	7	580	101	170
8/16/01	11.15	4.87	6.28		Filtered+SGC	320	B500	< 100	2,300	46	< 5	110	24	850
12/15/01	11.15	5.50	5.65											
4/9/02	11.15	5.15	6.00	8021	SGC	480	260		8,000	110	5.95	650	53.9	166
6/21/02	11.15	6.01	5.14	8021	SGC	200 a,b,c	< 300	190	4,600	130	33	380	56	440
9/12/02	11.15	6.40	4.75	8021	SGC	620 b,c	< 300	650	4,000 J	120	< 0.5	260	16	580
4/22/03	11.15	4.69	6.46	8021B	SGC	1600 L Y	< 300	1800	6000	91	< 1.0	870	59.4	150 C
4/28/04	11.15	5.70	5.45	8260B	SGC	< 650	< 400	< 810	4780	34	< 1.0	560	44	47
10/29/04	11.15	5.73	5.42	8260B	SGC	840 L Y	< 300	940	3000	18	2.1	280	16.1	94
9/2/05 (1)	11.15	6.08	5.07	8260B	SGC	510 L Y	< 300	640	1600	13	1.4	55	8.6	92
4/5/2006 (3)	11.15	3.64	7.51	8260B	SGC	840 L Y	< 300	850 H	3,400	14	2.1	280	13	31
MW-6														
12/13/91	10.98			8020		520			780	110	2.7	< 2.5	5.5	
12/13/91	10.98			8240						95	5	< 5	< 5	
4/27/93	10.98			8020		< 1,000			< 1,000	430	4	5	10	
4/19/95	10.98			8020		6,700			5,700	40	< 0.8	3.9	29	

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)		Method		(µg/l)	(µg/l)	$(\mu g/I)$	(μg/l)	(µg/l)	(µg/l)	benzene (µg/l)		(µg/l)
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	, ,		ъ									
4/19/95 7/27/95	10.98	7.09	3.89	8020	Dup	3,700			3,000	310	3.1	2.7 200	100	
	10.98			8020	Dom	3,900			6,100	430	15		600	
7/27/95	10.98	 7.00	2.00	8020	Dup	2,600			6,300	420	15	200	600	
11/20/95	10.98	7.89	3.09	8020	D	850			6,800	160	4.6	8	240	
11/20/95	10.98	 7.40	2.50	8020	Dup				3,600	130	11	4.4	200	
2/21/96	10.98	7.40	3.58	8020	Filtered+SGC	1,700			2,800	230	2.8	3.8	44	
2/21/96	10.98	 7.10		8020	Dup	2,500			2,200	280	3	4	4.6	
5/13/96	10.98	7.10	3.88	8020		400	< 50	< 50	3,100	430	12	5.2	67	
8/27/96	10.98	7.42	3.56	8020	an	3,100			4,200	300	9.3	110	110	
8/19/98	10.98				SPH: 0.125 ft.									
11/11/98	10.98	7.09	3.93		SPH: 0.05 ft.									
2/23/99	10.98	7.31	3.67		SPH: N M									
5/27/99	10.98	6.91	4.25		SPH: 0.20 ft.									
8/24/99	10.98	7.46	3.72		SPH: 0.03 ft.									
11/22/99	10.98	7.96	3.15		SPH: 0.16 ft.									
1/18/00	10.98	8.08	3.05		SPH: 0.19 ft.									
5/11/00	10.98	7.52	4.47		SPH: 0.01 ft.									
8/24/00	10.98	7.50	3.53		SPH: 0.06 ft.									
11/28/00	10.98	6.39	4.62		SPH: 0.04 ft.									
2/26/01	10.98	7.80	3.50	8020	SPH: 0.40 ft., f	820	< 240	< 60	6,100	181	<5	14.2	<5	< 50
2/26/01	10.98			8260B						270	3	9	3	(19)
5/17/01	10.98	7.57	3.66		SPH: 0.32 ft.									
8/16/01	10.98	7.75	3.49		SPH: 0.32 ft., f	740	B200	< 100	4,200	360	4.6	13	12	14
12/15/01	10.98	7.58	3.40		SPH: 0.07 ft.									
4/3/02	10.98	6.92	4.06		SPH: 0.11 ft.									
6/21/02	10.98	7.05	3.93		SPH: 0.19 ft.									
9/12/02	10.98	7.22	4.02		SPH: 0.33 ft.									
4/22/03	10.98	4.71	6.27		SPH: 0.16 ft.									
4/28/04	10.98	5.09	5.89		SPH: 0.23 ft.									
10/27/04	10.98	6.12	4.86		SPH: product on									
					probe									
8/31/05	10.98	6.11	4.87		SPH: 0.95 ft.									
3/27/06	10.98	4.11			SPH: 0.57 ft.									
MW-7														
12/13/91	11.51			8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
12/13/91	11.51			8240						< 5	< 5	< 5	< 5	
4/27/93	11.51			8240		< 1,000			< 1,000	< 1.0	< 1.0	< 1.0	< 1.0	
4/19/95	11.51			8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
7/27/95	11.51	6.87	4.64	8240		< 50	< 1,000		< 50	< 2.0	< 2.0	< 2.0	< 2.0	
11/20/95	11.51	8.48	3.03	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	1.5	
2/21/96	11.51	6.29	5.22	8020		< 50			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
5/13/96	11.51	6.95	4.56	8020		< 50				< 0.5	< 0.5	< 0.5	< 0.5	
8/27/96	11.51	6.80	4.71	8020						< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	11.51	6.88	4.63											
11/11/98	11.51	7.40	4.11											

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)		Method		(µg/l)	(µg/l)	$(\mu g/I)$	(μg/l)	(µg/l)	(µg/l)	,	Xylenes (µg/l)	(µg/l)
2/23/99		5.57	5.94	0020					80					< 5.0
5/27/99	11.51 11.51	5.57 6.56	5.94 4.95	8020		< 50 	<200	< 50 	80	< 0.5	< 0.5	< 0.5	1	
8/24/99	11.51	6.29	5.22	8020	SGC	< 50	<200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5
11/22/99	11.51	6.80	4.71		300				~30 					
1/18/00	11.51	7.31	4.20											
1/19/00	11.51			8020	SGC	< 50	< 200	< 50	54	1.5	1.5	2.4	3.8	< 5.0
5/11/00	11.51	6.41	5.10		500									
8/24/00	11.51	7.11	4.40	8020		< 50	< 250	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	11.51	7.30	4.21											
2/27/01	11.51	5.75	5.76	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
5/17/01	11.51	6.65	4.86											
8/16/01	11.51	5.97	5.54		Filtered+SGC	< 50	B600	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	11.51	6.43	5.08											
4/8/02	11.51	6.17	5.34	8021	SGC	80	< 200		< 50	< 0.5	0.5	0.6	< 0.5	< 5
6/21/02	11.51	6.75	4.76	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3
9/12/02	11.51	7.05	4.46	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.6
4/22/03	11.51	6.24	5.27	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4 C
4/28/04	11.51	6.61	4.90	8260B	SGC	< 100	< 400	< 100	< 100	1.6	< 1.0	< 1.0	< 1.0	< 1.0
9/2/05 (1)	11.51	6.56	4.95	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
4/5/2006 (3)	11.51	4.58	6.93	8260B	SGC	< 50	< 300	< 50	< 50	2.7	< 0.5	< 0.5	< 0.5	< 0.5
MW-8														
11/20/96	12.22			8020		880			< 50	0.66	< 0.5	< 0.5	< 0.5	
11/20/97	12.22	9.59	2.63	8020		200			< 50	< 0.5	< 0.5	< 0.5	< 0.5	2
2/24/98	12.22	8.42	3.80	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	12.22	9.57	2.65	8020		1,200	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
8/19/98	12.22	9.49	2.73	8020	SGC	< 50	< 250	< 50	< 50	1.6	3.4	1	2.8	< 5.0
11/11/98	12.22	9.64	2.58	8020	SGC	< 50	< 200	< 50	< 50	0.9	0.8	0.6	2.3	< 5.0
2/23/99	12.22	11.53	0.69	8020		700	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	12.22	9.65	2.57	8020		< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/99	12.22	9.62	2.60	8020	SGC	70	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99	12.22	9.64	2.58	8020	SGC	57	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
1/18/00	12.22	8.31	3.91	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	12.22	9.69	2.53	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	1.3	< 0.5	2.1	< 5.0
8/24/00	12.22	9.40	2.82											
8/25/00	12.22			8020	SGC	85	<250	< 50	< 50					
11/28/00	12.22	9.40	2.83	8020	SGC	< 50	910	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	12.22	9.50	2.72	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	12.22	9.71	2.51		711 1 27 -									
5/18/01	12.22			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	12.22	9.80	2.42	005	Filtered+SGC	< 50	<200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/15/01	12.22	9.28	2.94	8021	SGC	390	1,300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/8/02	12.22	9.55	2.67	8021	SGC	440	800		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02	12.22	9.71	2.51		ac-									
9/18/02	12.22	9.86	2.36	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)	Elevation (in feet)	Method		(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	$(\mu g/I)$
4/22/03	12.22	9.54	2.68	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04	12.22													
10/27/04	12.22	$NM^{(4)}$												
4/5/2006 (3)	12.22	8.73	3.49	8260B	SGC	54 Y	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-9														
11/20/96	10.77			8020		1,900			240	21	0.81	1.8	2.2	
11/20/97	10.77	7.91	2.86	8020					300	20	< 0.5	< 0.5	1.8	< 1.0
2/24/98	10.77	6.11	4.66	8020		< 50	< 500	< 50	2,200	540	5.6	1.6	4.9	
6/8/98	10.77	7.14	3.63	8020		1,800	890	< 50	840	450	6.1	3.3	5.3	
8/19/98	10.77	7.88	2.89	8020	SGC	190	< 250	160	740	370	8.6	0.99	7.3	< 5.0
11/11/98	10.77	8.23	2.54	8020	SGC	< 50	230	< 50	700	130	4.3	< 0.5	3.9	< 5.0
2/23/99	10.77	6.65	4.12	8020		1,100	3,700	< 50	1,100	620	9.7	1.5	7.7	< 5.0
5/27/99	10.77	7.70	3.07	8020	SGC	70	300	< 50	950	470	11	1.5	9.2	< 5.0
8/24/99	10.77	8.12	2.65	8020	SGC	890	1,700	< 50	290	45	2.8	< 0.5	3	< 5.0
11/22/99	10.77	8.33	2.44	8020	SGC	1,000	6,000	< 50	170	12	1.8	< 0.5	2	< 5.0
1/18/00	10.77	8.63	2.14	8020	SGC	200 a	2,300	< 50	160	5.7	1.9	0.6	4.2	< 5.0
5/11/00	10.77	7.70	3.07	8020	SGC	180 a	980	< 100	1,050	280	7.0	< 2.5	5.9	< 25
8/24/00	10.77	8.31	2.46											
8/25/00	10.77			8020	SGC	580	2,200	170	180	23	2.4	< 0.5	2.7	< 5.0
11/28/00	10.77	8.45	2.32	8020	SGC	200	1,600	< 50	130	1.9	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.77	8.45	2.32		Filtered+SGC	< 50	< 200	< 50						
2/26/01	10.77	6.40	4.37	8020	Filtered+SGC	120	< 200	< 50	142	33	1.8	< 0.5	< 0.5	< 5.0
5/17/01	10.77	9.88	0.89											
5/18/01	10.77			8020	Filtered+SGC	< 50	< 200	< 50	74	4.6	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.77	8.05	2.72		Filtered+SGC	< 50	< 200	< 100	70	0.62	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.77	7.75	3.02	8021	SGC	1,400	4,100	< 50	210	15	1.6	< 0.5	2.2	< 5
4/5/02	10.77	7.50	3.27	8021	SGC	870	1,000		1,498	367	11	2.1	7.8	< 5
6/20/02	10.77	8.27	2.50	8021	SGC	< 50	< 300	< 50	430	180	5.7	2.4	4.15	< 2
9/18/02	10.77	8.25	2.52	8021	SGC	63 b,c	< 300	60	250	49	5.8	< 0.5	3.1	< 2
4/22/03	10.77	7.25	3.52	8021B	SGC	< 50	< 300	< 50	69	4.1 C	< 0.5	< 0.5	0.9	< 2
4/28/04	10.77													
10/27/04	10.77	$NM^{(4)}$												
4/5/2006 (3)	10.77	6.01	4.76	8260B	SGC	140 H Y	320	64 H Y	160	140	5.2	<1.0	4.1	<1.0
MW-10														
11/20/96	10.59			8020		940			< 50	49	0.59	0.54	1.2	
11/20/97	10.59	7.70	2.89	8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	
2/24/98	10.59	4.39	6.20	8020		< 50	< 500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
6/8/98	10.59	6.94	3.65	8020		500	< 500	< 50	< 50	7.3	< 0.5	< 0.5	< 0.5	
8/19/98	10.59	6.99	3.60	8020	SGC	240	520	110	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/11/98	10.59	7.57	3.02	8020	SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/23/99	10.59	5.51	5.08	8020		170	1,200	< 50	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99	10.59	6.72	3.87	8020	SGC	< 50	< 200	< 50	350	170	1.5	0.5	2.3	< 5.0
8/24/99	10.59	7.27	3.32	8020	SGC	140	300	< 50	380	160 e	< 0.5	< 0.5	2.6	< 5.0

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)	Elevation (in feet)	Method		(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	$(\mu g/I)$
11/22/99	10.59	7.71	2.88	8020	SGC	570	3,400	< 50	110	5.1	< 0.5	< 0.5	0.72	< 5.0
1/18/00	10.59	7.77	2.82											
1/19/00	10.59			8020	SGC	120 a,b	1,200	< 50	100	< 0.5	< 0.5	0.8	< 0.5	< 5.0
5/11/00	10.59	7.00	3.59	8020	SGC	110 a	990	< 50	145	1.62	0.5	0.5	0.9	< 5.0
8/24/00	10.59	7.31	3.28											
8/25/00	10.59			8020	SGC	430	1,300	110	< 50	1.0	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	10.59	7.90	2.69	8020	SGC	220	1,500	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01	10.59	5.80	4.79	8020	Filtered+SGC	85	< 230	< 57	< 50	1.3	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	10.59	6.27	4.32											
5/18/01	10.59			8020	Filtered+SGC	< 50	< 200	< 50	< 50	0.7	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	10.59	8.75	1.84		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
12/16/01	10.59	6.97	3.62	8021	SGC	410	2,100	< 50	< 50	2.4	< 0.5	< 0.5	< 0.5	< 5
4/8/02	10.59	6.51	4.08	8021	SGC	220	300		< 50	1.1	< 0.5	< 0.5	< 0.5	< 5
6/20/02	10.59	8.10	2.49	8021	SGC	1,100 a,c	6,200	< 50	120	34	< 0.5	< 0.5	< 0.5	< 2
9/17/02	10.59	7.66	2.93	8021	SGC	150 a,c	880	< 50	130 a,c,j	32	< 0.5	2.3	< 0.5	< 2
4/22/03	10.59	6.81	3.78	8021B	SGC	< 50	< 300	< 50	51	1.0 C	<.50	1.2	<.50	< 2
4/28/04	10.59	6.70	3.89	8260B	SGC	< 100	< 400	< 100	114	14	< 1.0	6.9	5.2	3.5
10/28/04	10.59	6.98	3.61	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	10.59	6.76	3.83	8260B	SGC	< 50	< 300	< 50	110	2.4	< 0.5	< 0.5	0.7	< 0.5
4/5/2006 (3)	10.59	4.86	5.73	8260B	SGC	< 50	< 300	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	< 0.5
MW-11														
1/18/00	11.60	7.08	4.52											
1/19/00	11.60			8020	SGC	< 50	500	< 50	220	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	11.60	5.95	5.65	8020	SGC	< 50	430	< 50	600	23	2.1	18	15	< 5.0
8/24/00	11.60	6.58	5.02	8020		< 50	< 250	< 50	110	5.9	< 0.5	0.73	0.64	< 5.0
11/28/00	11.60	6.91	4.69	8020	SGC	< 50	< 200	< 50	180	4	< 0.5	1.9	< 0.5	< 5.0
2/27/01	11.60	5.65	5.95	8020	Filtered+SGC	86	< 240	< 60	720	29	5.2	38	36	< 5.0
5/17/01	11.60	6.85	4.75	8020	Filtered+SGC	< 50	< 200	< 50	720	36	3.4	15	18	9.7
8/16/01	11.60	6.01	5.59		Filtered+SGC	< 50	B500	< 100	110	4.8	< 0.5	1.4	< 0.5	< 5
12/15/01	11.60	6.26	5.34	8021	SGC	200	300	< 50	170	1.7	0.6	2.4	1.8	< 2
4/5/02	11.60	5.47	6.13	8021	SGC	160	< 200		330	8.9	2.0	6.9	8.7	< 5
6/21/02	11.60	6.17	5.43	8021	SGC	< 50	< 300	< 50	280	16	1.8	8.7	9.6	3.6
9/12/02	11.60	6.60	5.00	8021	SGC	< 50	< 300	< 50	93	< 0.5	< 0.5	1.1	< 0.5	2.1
4/24/03	11.60	5.71	5.89	8021B	SGC	< 50	< 300	< 50	320	21	2.1	12	6.13	8.9
4/28/04	11.60	5.92	5.68	8260B	SGC	< 100	< 400	< 100	360	18	< 1.0	6.5	4.5	4
10/27/04	11.60	6.59	5.01	8260B	SGC									
9/2/05 (1)	11.60	6.22	5.38	8260B	SGC	< 50	< 300	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	4.5
4/4/2006 (3)	11.60	4.17	7.43	8260B	SGC	71 LY	< 300	75 L Y	230	5.7	0.9	14	7.0	6.5
4/4/06	11.60			8260B	dup	< 50	< 300	55 L Y	220	6.5	1.0	15	7.3	7.4
MW-12														
1/18/00	10.43	8.11	2.32											
1/19/00	10.43			8020	SGC	1,800 a	11,000	< 50	200	< 0.5	3.4	1.5	8.4	< 5.0
5/11/00	10.43	6.78	3.65	8020	SGC	2,400 a	4,900	< 100	370	< 0.5	< 0.5	< 0.5	0.9	< 5.0

Well ID/ TOC Depth to Groundwater BTEX Notes TPH-d TPH-mo TPH-k TPH-g Benzene Toluen	e Ethyl- Total MTBE
Date Elevation (in feet) Groundwater (in feet) Elevation (in feet) Method (µg/l) (µg/l) (µg/l) (µg/l) (µg/l) (µg/l)	benzene (μ g/l) Xylenes (μ g/l) (μ g/l)
8/24/00 10.43 7.56 2.87	
8/25/00 10.43 8020 SGC 3,500 5,000 3,700 170 <0.5 <0.5	<0.5 <0.5 <5.0
11/28/00 10.43 8.13 2.30 8020 SGC 2,100 14,000 <50 290 <0.5 <0.5	<0.5 <0.5 <5.0
11/28/00 10.43 8.13 2.30 Filtered+SGC 50 <200 <50	
2/27/01 10.43 6.00 4.43 8020 Filtered+SGC 320 <250 66 110 1.4 <0.5	< 0.5 < 0.5 < 5.0
5/17/01 10.43 7.01 3.42 8020 Filtered+SGC <50 <200 <50 220 <0.5 <0.5	< 0.5 < 0.5 < 5.0
8/16/01 10.43 8.47 1.96 8020 Filtered+SGC 200 B300 <100 160 <0.5 <0.5	< 0.5 < 0.5 < 5
4/8/02 10.43 6.65 3.78 8021 SGC 500 500 180 <0.5 <0.5	0.7 <1.5 <5
6/21/02 10.43 7.10 3.33 8021 SGC 1,100 a,b,c 3,000 h 640 180 < 0.5 < 0.5	0.63 1.62 <2
9/17/02 10.43 7.75 2.68 8021 SGC 220 a,b,c 360 190 130 <0.5 <0.5	< 0.5 < 0.5 < 2
4/22/03 10.43 6.60 3.83 8021B SGC 140 L Y <300 120 150 <0.5 <0.5	< 0.5 < 0.5 < 2
4/28/04 10.43 6.60 3.83 8260B SGC <550 1,020 <100 <100 <0.5 <1.0	<1.0 <1.0 <1.0
10/29/04 10.43 7.87 2.56 8260B SGC 240 H L Y 460 180 170 H < 0.5 < 0.5	<0.5 <0.5 <0.5
9/2/05 (1) 10.43 7.04 3.39 8260B SGC <50 <300 <50 170 <0.5 <0.5	<0.5 <0.5 <0.5
9/2/05 (1) 10.43 7.04 3.39 8260B SGC 110 L Y <300 120 150 <0.5 <0.5	< 0.5 < 0.5 < 0.5
4/4/2006 ⁽³⁾ 10.43 4.49 5.94 8260B SGC 110 Y <300 110 Y 110 <0.5 <0.5	< 0.5 < 0.5 < 0.5
MW-13	
1/18/00 11.34 9.63 1.71 8020 SGC 8,800 a 120,000 <50 <50 <0.5 0.8	<0.5 <0.5 <5.0
5/11/00 11.34 10.12 1.22 8020 SGC 11,000 a 110,000 <500 70 1.6 5.4	1.2 7.6 <5.0
8/24/00 11.34 10.22 1.12	
8/25/00 11.34 8020 SGC 3,100 13,000 1,200 <50 <0.5 <0.5	< 0.5 < 0.5 < 5.0
11/28/00 11.34 10.50 0.84 8020 SGC 2,400 36,000 <1300 <50 <0.5 <0.5	<0.5 <0.5 <5.0
11/28/00 11.34 10.50 0.84 Filtered+SGC 280 1,100 <50	
2/26/01 11.34 9.60 1.74 8020 Filtered+SGC 100 <260 <64 <50 <0.5 <0.5	<0.5 <0.5 <5.0
5/17/01 11.34 10.10 1.24	
5/18/01 11.34 8020 Filtered+SGC <50 <200 <50 <50 <0.5 <0.5	<0.5 <0.5 <5.0
8/16/01 11.34 10.50 0.84 Filtered+SGC <50 B300 <100 <50 <0.5 <0.5	<0.5 <0.5 <5
12/16/01 11.34 9.43 1.91 8021 SGC 1,900 18,000 <250 <50 <0.5 <0.5	<0.5 <0.5 <5
4/8/02 11.34 10.24 1.10 8021 SGC 440 900 <50 <0.5 <0.5	<0.5 <0.5 <5
6/20/02 11.34 10.75 0.59 8021 SGC 270 a,c 1,500 h <50 <0.5 <0.5	<0.5 <0.5 <2
9/18/02 11.34 10.60 0.74 8021 SGC <50 <300 <50 <50 <0.5 <0.5	<0.5 <0.5 <2
4/22/03 11.34 10.46 0.88 8021B SGC <50 <300 <50 <50 <0.5 <0.5 4/28/04 11.34 10.22 1.12 8260B SGC <100 799 <100 <100 <0.5 <1.0	<0.5 <0.5 <2.0 <1.0 <1.0 <1.0
10/28/04 11.34 9.50 1.84 8260B SGC <50 <300 <50 <50 <0.5 <0.5 9/1/05 (1) 11.34 9.56 1.78 8260B SGC <50 320 <50 <50 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5
27 EV 45	
4/5/2006 (3) 11.34 7.86 3.48 8260B SGC 180 H Y 910 <50 <50 <0.5 <0.5	<0.5 <0.5 <0.5
MW-14	
1/18/00 10.05 7.37 2.68 8020 SGC 1,700 a 22,000 <50 120 <0.5 <0.5	<0.5 <0.5 <5.0
5/11/00 10.05 6.73 3.32 8020 SGC 360 a 4,300 <100 120 <0.5 <0.5	<0.5 0.5 <5.0
8/24/00 10.05 7.30 2.75	
8/25/00 10.05 8020 SGC 1,000 3,100 460 90 6.3 <0.5	<0.5 <0.5 <5.0
11/28/00 10.05 7.40 2.65 8020 SGC 380 6,400 <250 140 7.4 <0.5	<0.5 <0.5 <5.0
11/28/00 10.05 7.40 2.65 Filtered+SGC <50 <200 <50	

Well	ID/ TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE	_
Da		et) Groundwater (in feet)		Method	. Total	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	benzene (µg/l)		(µg/l)	
2/26	/01 10.05	6.20	3.85	8020	Filtered+SGC	150	<230	<58	73	2.3	< 0.5	<0.5	<0.5	< 5.0	_
5/17		7.74	2.31		rillered+3GC					2.3			< 0.3 		
5/18		7.74	2.31	8020	Filtered+SGC	120	<200	< 50	100	11	< 0.5	< 0.5	< 0.5	< 5.0	
8/16		7.85	2.20	0020	Filtered+SGC	< 50	<200	< 100	60	< 0.5	< 0.5	< 0.5	< 0.5	<5	
12/10		6.60	3.45	8021	SGC	1,110	3,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5	
4/9		6.58	3.47	8021	SGC	870	1,100		250	< 0.5	< 0.5	< 0.5	< 0.5	< 5	
6/20		7.52	2.53	8021	SGC	< 50	310 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2	
9/18		7.55	2.50	8021	SGC	< 50	< 300	< 50	< 50	1.3	< 0.5	0.80	< 0.5	<2	
4/22		6.71	3.34	8021B	SGC	< 50	< 300	< 50	61	4.2	< 0.5	1.0	< 0.5	12.0	
4/28		6.81	3.24	8260B	SGC	< 230	< 400	< 100	241	1.4	< 1.0	< 1.0	< 1.0	< 1.0	
10/2		6.99	3.06	8260B	SGC	< 50	< 300	< 50	56	3.5	< 0.5	< 0.5	< 0.5	0.5	
10/2	3/04 10.05			8260B	dup	< 50	< 300	< 50	53	1.9	< 0.5	< 0.5	< 0.5	< 0.5	
9/1/0	os (1) 10.05	7.60	2.45	8260B	SGC	< 50	< 300	< 50	79	6.7	< 0.5	< 0.5	< 0.5	0.7	
4/5/20		5.91	4.14	8260B	SGC	50 Y	< 300	< 50	< 50	1.7	< 0.5	< 0.5	< 0.5	< 0.5	
MW	-15														
1/18	/00 12.36	10.56	1.80	8020	SGC	12,000 a	89,000	< 50	110	3.8	2.1	1	4.6	< 5.0	
5/11	/00 12.36	10.03	2.33	8020	SGC	120 a	590	< 50	90	0.9	0.9	< 0.5	3.3	< 5.0	
8/24	/00 12.36	10.22	2.14												
8/25	/00 12.36			8020	SGC	1,900	8,600	1,000	< 50	1.9	< 0.5	< 0.5	1.5	< 5.0	
11/2		10.30	2.06	8020	SGC	2,500	36,000	< 1300	80	1.7	< 0.5	< 0.5	1.6	< 5.0	
11/2		10.30	2.06		Filtered+SGC	73	< 200	< 50							
2/26		9.30	3.06	8020	Filtered+SGC	190	< 240	< 60	55	0.6	< 0.5	< 0.5	0.5	< 5.0	
5/17		10.09	2.27												
5/18				8020	Filtered+SGC	210	<230	< 57	66	1.5	< 0.5	< 0.5	2.1	< 5.0	
8/16		10.20	2.16		Filtered+SGC	< 50	B500	< 100	< 50	< 0.5	< 0.5	< 0.5	2.4	< 5	
12/10		9.80	2.56	8021	SGC	3,800	15,000	< 250	< 50	< 0.5	< 0.5	< 0.5	2	< 5	
4/5		9.58	2.78	8021	SGC	1,000	1,400		< 50	< 0.5	< 0.5	< 0.5	2.3	< 5	
6/20		10.24	2.12	8021	SGC	670 a,c	2,700 h	95 c,i	< 50	0.83	< 0.5	< 0.5	2.20	<2	
9/18		9.89	2.47	8021	SGC	70 a,c	< 300	< 50	< 50	< 0.5	< 0.5	1.5	1.71	<2	
4/22		9.55	2.81	8021B	SGC	< 50	< 300	< 50	< 50	1 C	<.50	1.4	1.9	<2	
4/28		9.68	2.68	8260B	SGC	< 250	567	< 100	< 100	< 0.5	< 1.0	< 1.0	<1.0	2.8	
10/2		9.58	2.78	8260B	SGC	<50	<300	< 50	< 50	< 0.5	< 0.5	< 0.5	2.2	< 0.5	
9/1/0		9.56	2.80	8260B	SGC	420 Y	< 300	120 H Y	55	< 0.5	< 0.5	< 0.5	2.0	< 0.5	
4/5/20	06 ⁽³⁾ 12.36	8.76	3.60	8260B	SGC	300 H Y	760	87 H Y	< 50	< 0.5	< 0.5	< 0.5	2.4	< 0.5	
MW	'-16														
1/18		10.22	3.43		SPH: 0.1 ft.										
5/11		13.31	0.27		SPH: 0.11 ft.										
8/24		8.91	4.66		SPH: N M										
11/2		13.05	0.86		SPH: 0.42 ft.										
2/26		13.10	0.79		SPH: 0.40 ft.										
5/17		12.62G			SPH: N M										
8/16		11.94G			SPH: N M										
12/1:		N M			SPH: N M										
/															

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)		Method	Hotes	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	benzene (µg/l)		(µg/l)
				Methou		(με/1)	(με/1)	(με/1)	(μς/1)	(με/1)	(μ'ξ/1)	belizelle (µg/I)	Aylenes (µg/1)	(µg/1)
4/3/02	13.57	12.88	0.69											
6/21/02	12.22	N M			SPH: N M									
4/22/03	12.22				Well cap stuck									
4/28/04	12.22	12.48	-0.26	8260B	SGC	< 230	1030	< 260	2000	150	< 1.0	46	< 1.0	< 1.0
10/28/04	12.22	11.97	0.25	8260B	SGC	450 L Y	< 300	480	1100	18	1.7	29	1.7	< 0.5
8/31/05	12.22	12.09	0.13		SPH: None									
4/5/2006 (3)	12.22	3.80	8.42	8260B	SGC	95 H Y	420	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-17														
1/18/00	9.86	5.35	4.51	8020	SGC	850 a	21,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/11/00	9.86	9.85	0.01	8020	SGC	150 a	2,900	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/24/00	9.86	8.59	1.27											
8/25/00	9.86			8020	SGC	190	610	71	< 50	0.58	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61	8020	SGC	< 250	2,400	< 250	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00	9.86	9.25	0.61		Filtered+SGC	< 50	< 200	< 50						
2/26/01	9.86	9.40	0.46	8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01	9.86	8.32	1.54											
5/18/01	9.86			8020	Filtered+SGC	< 50	< 200	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
8/16/01	9.86	10.35	-0.49		Filtered+SGC	< 50	B400	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01	9.86	8.01	1.85	8021	SGC	940	1,000	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/9/02	9.86	9.76	0.10	8021	SGC	590	880		60	< 0.5	< 0.5	1.6	< 0.5	< 5.0
6/21/02	9.86	9.79	0.07	8021	SGC	99 a,c	650 h	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
9/18/02	9.86	8.25	1.61	8021	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/23/03	9.86	9.75	0.11	8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 2
4/28/04	9.86	8.90	0.96	8260B	SGC	< 100	< 400	< 100	< 100	< 0.5	< 1.0	2.4	< 1.0	< 1.0
10/28/04	9.86	8.32	1.54	`	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05 (1)	9.86	8.38	1.48	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4/5/2006 (3)	9.86	6.86	3.00	8260B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-18														
4/24/03		6.49		8021B	SGC	< 50	< 300	< 50	< 50	< 0.5	< 0.5	2.4	< 0.5	<2
4/28/04		0.17		0021D	Developed to monitor	130	1300	130	130	VO. 5	٧٥.5	2.1	70.5	12
4/20/04					a utility trench, not sampled									
8/31/05					sumpieu									
3/27/06														
TBW-1														
2/23/99		6.25			SPH: 0.10 ft.									
5/27/99		5.29												
3/21/99 8/24/99		5.29 6.99			SPH: 0.01 ft SPH: 0.18 ft.									
11/22/99 1/18/00					Inaccessible									
		 6.00			Inaccessible									
5/11/00		6.90			SPH: 0.10 ft.									
8/24/00		7.12			SPH: N M									

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)				(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)		Xylenes (µg/l)	(µg/l)
11/28/00		7.75			SPH: 0.36 ft.						,			
2/27/01		9.06			SPH: 0.36 ft. SPH: 0.51 ft.									
5/17/01		6.98			SPH: 0.28 ft.									
8/16/01		6.62			SPH: 0.66 ft., f	1,100	B700	<100	17,000	2,100	75	730	850	<1
12/15/01		6.86			SPH 0.35 ft.					2,100				
4/3/02		6.14			SPH: None									
9/12/02		7.52			SPH: None									
4/22/03		6.41			SPH: None									
4/28/04		6.33			SPH: None									
10/28/04		NM			5111.110110									
8/31/05		6.50			Well cap smashed 6"									
3/27/06		5.20			SPH: None									
TBW-2														
6/21/02		8.28												
4/22/03		6.70			SPH globules									
4/28/04		6.61			SPH: None									
10/28/04		7.31			SPH: None									
8/31/05		NM												
3/27/06		$NM^{(4)}$												
TBW-3														
8/19/98		2.67		8020	SGC	810,000			920	3.2	< 0.5	< 0.5	0.77	< 10
8/19/98		2.67		8260										< 5.0
2/23/98		1.25		8020	DENT MAR	3,800	3,000	< 50	110	1.6	< 0.5	< 0.5	< 0.5	< 5.0
5/27/99		2.25			DTW: N M									
8/24/99		3.25			SPH globules									
11/22/99	0.02	3.68	 C 10		CDIT -1-1-1-									
1/18/00 5/11/00	9.92 9.92	3.73 2.07	6.19 7.85		SPH globules									
8/24/00	9.92 9.92	2.82	7.83		SPH: sheen	44,000	13,000	34,000	570	4.7	< 0.5	< 0.5	<0.5	< 5.0
11/28/00	9.92 9.92	2.82			SPH: sneen									
2/27/01	9.92	1.29	8.63	8020	Filtered+SGC	560	<230	<57	120	1.5	< 0.5	< 0.5	<0.5	< 5.0
5/17/01	9.92	2.47	7.45		Tillered + 3GC	J00 	<230 		120	1.5		~0.3 	< 0.5 	
8/16/01	9.92	1.81	8.11		Filtered+SGC	1,500	B400	< 100	180	< 0.5	< 0.5	< 0.5	< 0.5	<1
12/15/01	9.92	2.52	6.11		SPH: 0.02 ft.							~0.5 	< 0.5 	
4/3/02	9.92	1.50			SPH: None									
6/21/02	9.92	2.37	7.55		SPH: None									
9/12/02	9.92	3.48	6.44		SPH: None									
4/22/03	9.92	1.45	8.47		Sheen									
4/28/04	9.92	2.26	7.66		SPH: None									
10/28/04	9.92	3.42	6.50		Sheen									
8/31/05	9.92	2.99	6.93		SPH: None									
3/27/06	9.92	0.49	9.43		SPH: None									
3,2,,00)./ <u>~</u>	0.12	2.15		51 11. 110110									

TBW-4

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE	_
Date		Groundwater (in feet)		Method	. 10103	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)) Xylenes (µg/l)	(µg/l)	
					File 1 . 600										_
2/27/01		1.35		8020	Filtered+SGC	410	<230	< 57	250	1.9	< 0.5	< 0.5	< 0.5	< 5.0	
5/17/01		2.52			F'' 1 . 000	2.600	 D700		200						
8/16/01		1.88			Filtered+SGC	2,600	B700	< 100	390	< 0.5	< 0.5	< 0.5	< 0.5	< 5	
6/21/02		2.32			CI.										
4/22/03		1.41			Sheen										
4/28/04		2.21			CI.										
10/27/04		3.37			Sheen										
8/31/05		2.92			CDII N										
3/27/06		0.49			SPH: None										
TBW-5															
2/23/99		9.72			SPH: 1.45 ft.										
5/27/99		7.03			SPH: 1.13 ft.										
8/24/99		6.52			SPH: 1.33 ft.										
11/22/99		8.31			SPH: 1.29 ft.										
1/18/00	10.22	6.20	4.74		SPH: 0.90 ft.										
5/11/00	10.22	9.41	1.05		SPH: 0.30 ft.										
8/24/00	10.22	9.62	0.81		SPH: 0.26 ft.										
11/28/00	10.22	10.25	0.34		SPH: 0.46 ft.										
2/27/01	10.22	9.06	1.45		SPH: 0.36 ft.										
5/17/01	10.22	8.75	1.47		SPH: 0.67 ft.										
8/16/01	10.22	8.32	2.51	8020	SPH: 0.76 ft., f	550	B400	< 100	30,000	2,900	100	1,500	5,100	< 1	
12/15/01	10.22	9.09	1.13		SPH: 0.36 ft.										
4/3/02		has active remediation unit/r			5111. 0.50 10.										
6/21/02	10.22	7.87	2.35		SPH: 0.03 ft.										
9/12/01	10.22	7.26	2.97		SPH: 0.01 ft.										
4/22/03	10.22	6.22	4.00		SPH: 0.06 ft.										
4/28/04	10.22	6.26	3.96		SPH: 0.21 ft.										
10/27/04	10.22	3.62	6.60		SPH: None										
8/31/05	10.22	6.41			SPH: 0.30 ft.										
3/27/06	10.22	NM ⁽²⁾			5111. 0.50 10.										
		11111													
TBW-6															
2/23/99		2.09		8020		160	600	< 50	60	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
5/27/99		3.31													
8/24/99		7.29		8020	SGC	180	400	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
11/22/99		4.37													
1/18/00	9.49	3.83	5.66												
1/19/00	9.49			8020	SGC	55 C	< 200	< 50	170	0.6	< 0.5	< 0.5	< 0.5	< 5.0	
5/11/00	9.49	2.51	6.98												
8/24/00	9.49	4.34	5.15												
8/25/00	9.49			8020	SGC	320	< 250	200	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
11/28/00	9.49	4.74	4.75												
2/27/01	9.49	2.30	7.19	8020	Filtered+SGC	< 57	<230	< 57	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
5/17/01	9.49	3.35	6.14												
8/16/01	9.49	3.85	5.64		Filtered+SGC	< 50	< 200	< 100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5	

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date		Groundwater (in feet)				(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)		(µg/l)
											,			
12/15/01	9.49	3.96	5.53											
4/3/02	9.49	2.51	6.98											
6/21/02	9.49	3.58	5.91		CD11 1 10 C									
9/12/02	9.49	6.07	4.56		SPH: 1.42 ft.									
4/23/03	9.49	2.42	7.07											
4/28/04	9.49	3.21	6.28		an									
10/27/04	9.49	4.49	5.00		SPH: None									
8/31/05	9.49	4.43			SPH: 0.52 ft.									
3/27/06	9.49	1.90	7.59		SPH: None									
RW-A1														
4/22/03		1.81												
4/28/04	10.09	2.52	7.57											
10/27/04	10.09	3.03	7.06		SPH: None									
8/31/05	10.09	3.31	6.78		SPH: None									
3/27/06	10.09	0.62	9.47		SPH: None									
3/2//00	10.09	0.02	9.47		SFII. NOIC									
RW-A2														
4/22/03		1.22			Sheen									
4/28/04	9.67	2.01	7.66											
10/27/04	9.67	3.20	6.47		SPH: None									
8/31/05	9.67	2.75	6.92		SPH: None									
3/27/06	9.67	0.30	9.37		SPH: None									
OB-A1														
4/22/03		2.24			SPH: .01 ft.									
4/28/04		3.01			SPH: None									
10/27/04		5.11			SPH: None (strong									
					odor)									
8/31/05		4.10			SPH: None									
3/27/06		1.25			SPH: None									
RW-B1														
4/22/03		7.26			Sheen									
4/28/04	11.22	7.20	4.02		Sheen									
10/27/04	11.22	7.80	3.42		SPH: None									
8/31/05	11.22	7.14	4.08		SPH: None									
			5.12											
3/27/06	11.22	6.10	3.12		SPH: None									
RW-B2														
4/22/03		7.29			Sheen, Odor									
4/28/04	11.23	7.20	4.03		,									
10/27/04	11.23	7.81	3.42		SPH: None									
10,2.,01	11.20		5 <u>-</u>		D									

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (in feet)	Groundwater (in feet)		Method		(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
8/31/05	11.23	7.14	4.09		SPH: None									
3/27/06	11.23	6.09	5.14		SPH: None									
RW-B3														
4/22/03		9.90			visible Product									
4/28/04	11.14	13.20	-2.06		SPH: 3.09									
10/27/04	11.14	9.33	1.81		SPH: None									
8/31/05	11.14	9.60	1.54		SPH: 0.01									
3/27/06	11.14	9.08	2.06		SPH: None									
RW-B4														
4/22/03		10.55			SPH: .55 ft.									
4/28/04	11.29	10.22	1.07		SPH: None									
10/27/04	11.29	9.55	1.74		SPH: None									
8/31/05	11.29	9.70	1.59		SPH: None									
3/27/06	11.29	9.23	2.06		SPH: None									
RW-C1														
4/24/03		8.34												
4/28/04	10.44	8.00	2.44											
10/27/04	10.44	7.59	2.85		SPH: None									
8/31/05	10.44	5.81	4.63		SPH: None									
3/27/06	10.44	1.94	8.50		SPH: None									
RW-C2														
4/24/03		6.22			SPH: .03 ft.									
4/28/04	10.58	6.19	4.39		SPH: 0.06 ft									
10/27/04	10.58	7.00	3.58		SPH: Present									
8/31/05	10.58	6.30	4.28		SPH: 0.01 ft.									
3/27/06	10.58	5.10	5.48		SPH: None									
RW-C3														
4/24/03		6.36												
4/28/04	10.71	6.25	4.46											
10/27/04	10.71	7.10	3.61		SPH: None									
8/31/05	10.71	6.39	4.32		SPH: None									
3/27/06	10.71	5.30	5.41		SPH: None									
RW-C4														
4/22/03		7.15			Strong odor									
4/28/04	11.32	6.95	4.37		SPH: 0.01 ft									
10/27/04	11.32	7.45	3.87		SPH: None									
8/31/05	11.32	6.71	4.61		SPH: None									
3/27/06	11.32	6.47	4.85		SPH: None									

Well ID/	ТОС	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (in feet)	Groundwater (in feet)	Elevation (in feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
RW-C5									_					'
4/22/03		6.46												
4/28/04	10.79	6.39	4.40											
10/27/04	10.79	7.21	3.58		SPH: Present									
8/31/05	10.79	6.51	4.28		SPH: None									
3/27/06	10.79	5.33	5.46		SPH: None									
RW-C6														
4/22/03		6.05			SPH: 0.07 ft.									
4/28/04	10.31	6.30	4.01		SPH: 0.05 ft.									
10/27/04	10.31	6.85			SPH: 0.15 ft.									
8/31/05	10.31	6.81			SPH: 0.93 ft.									
3/27/06	10.31	5.66			SPH: 0.96 ft.									
RW-C7														
4/22/03		6.51			visible Product									
4/28/04	10.12	6.60	3.52		SPH: 0.02 ft.									
10/27/04	10.12	NM												
8/31/05	10.12	NM												
3/27/06	10.12	$NM^{(4)}$												
OB-C1														
4/22/03		6.26												
4/28/04	10.39	7.39	3.00		SPH: 1.27 ft.									
10/27/04	10.39	8.06	2.33		SPH: 1.08 ft.									
8/31/05	10.39	7.84			SPH: 1.55 ft.									
3/27/06	10.39	6.15			SPH: 1.05 ft.									
RW-D1														
4/22/03		6.97												
4/28/04	10.18	5.62	4.56											
10/27/04	10.18	6.67	3.51		SPH: Present									
8/31/05	10.18	5.75			SPH: 0.02 ft.									
3/27/06	10.18	$NM^{(2)}$												
RW-D2														
4/22/03		7.15			SPH 1.25 ft.									
4/28/04	10.33	7.45	2.88		SPH: 0.1 ft.									
10/27/04	10.33	6.41	3.92		SPH: Present									
8/31/05	10.33	8.44	3.72		SPH: 3.12 ft.									
3/27/06	10.33	NM ⁽²⁾			5111. 5.12 It. 									
3/2//00	10.55	INIVI												

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (in feet)	Groundwater (in feet)	Elevation (in feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
RW-D3	•								B .			-		
4/22/03		6.89			SPH: 1.58 ft.									
4/28/04	10.07	8.18	1.89		SPH: 3.25 ft.									
10/27/04	10.07	6.37	3.70		SPH: Present									
8/31/05	10.07	7.72			SPH: 2.46									
3/27/06	10.07	$NM^{(2)}$												
RW-D4														
4/22/03		8.11			SPH: 1.98 ft.									
4/28/04	10.22	7.99	2.23		SPH: 2.09 ft.									
10/27/04	10.22	6.49	3.73		SPH: Present									
8/31/05	10.22	8.09			SPH: 2.12 ft.									
3/27/06	10.22	$NM^{(2)}$												
RW-D5														
4/22/03		6.04			SPH: 0.07 ft.									
4/28/04	9.99	5.96	4.03		SPH: None									
10/27/04	9.99	6.48	3.51		SPH: Present									
8/31/05	9.99	7.02*			SPH: 1.01 ft.									
3/27/06	9.99	NM ⁽²⁾												
OB-D1														
4/22/03		5.41			Strong Odor									
4/28/04	9.46	5.31	4.15		Strong Odor									
10/27/04	9.46	5.89	3.57											
8/31/05	9.46	5.42			SPH: None									
3/27/06	9.46	3.09	6.37		SPH: None									
OB-D2														
4/22/03		5.14												
4/28/04	9.95	5.25	4.70											
10/27/04	9.95	6.42	3.53		SPH: None									
8/31/05	9.95	5.71			SPH: 0.01 ft.									
3/27/06	9.95	2.32	7.63		SPH: None									
RW-1														
4/22/03		6.43												
4/28/04		5.73												
10/27/04		6.34			SPH: None									
8/31/05		5.83			SPH: None									
3/27/06		NM ⁽²⁾												

Table 1
Summary of Groundwater Analytical Data, Petroleum Hydrocarbons
Municipal Service Center
7101 Edgewater Drive, Oakland, California

Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
Date	Elevation (in feet)	Groundwater (in feet)	Elevation (in feet)	Method		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)
Field Blank														
10/28/04				8260B					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/1/05				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
9/2/05				8260B					< 50					
4/4/06				8260B		< 50	< 300	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trip Blank														
8/19/98				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/22/99				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/28/00				8020					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
2/27/01				8020	Filtered+SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
5/17/01				8020	SGC				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
12/16/01				8021					< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
4/5/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
4/5/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
6/21/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
9/12/02				8021	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
9/13/02				8021	Trip Blank 2				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/23/03				8021B	Trip Blank 1				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2
4/28/04				8260B	Trip Blank 1				< 100	< 0.5	< 1.0	< 1.0	< 1.0	< 1.0
10/29/04				8260B	Trip Blank 2				< 50					

Notes:

Groundwater elevations corrected for the presence of free product according to the calculation: GW Elevation = TOC - DTW + (0.8 x SPH thickness)

- (1) = Depth to groundwater measured on August 31, 2005.
- (2) = Converted to an extraction well and access port is too small for the oil/water probe.
- (3) = Depth to groundwater measured on March 27, 2006.
- (4) = Could not locate well.
- --- = Not measured/analyzed

BTEX = Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8240/8260.

DTW = Depth to water

Dup = Duplicate sample

Filtered = Groundwater samples were filtered through a 0.45-micron glass membrane filter.

ID = Identification

MTBE = Methyl tertiary-butyl ether by EPA Method 8020 or 8260. Confirmation 8260 results shown in parentheses.

NM = Not measured. Well obstructed or could not be located.

SPH = Separate-phase hydrocarbons; measured thickness

SGC = Silica gel cleanup based on Method 3630B prior to TPH-d, TPH-k, or TPH-mo analysis, following California Regional Water Quality Control Board February 16, 1999 memorandum

TBW = Tank backfill well

^{* =} Product was thick; difficult to measure thickness.

Table 1

Summary of Groundwater Analytical Data, Petroleum Hydrocarbons Municipal Service Center

7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Ī	Well ID/	TOC	Depth to	Groundwater	BTEX	Notes	TPH-d	TPH-mo	TPH-k	TPH-g	Benzene	Toluene	Ethyl-	Total	MTBE
	Date	Elevation (in feet)	Groundwater (in feet)	Elevation (in feet)	Method		(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	benzene (µg/l)	Xylenes (µg/l)	(µg/l)

TOC = Top of casing

TPH-d = Total petroleum hydrocarbons quantitated as diesel - analyzed by EPA Method 8015B

TPH-g = Total petroleum hydrocarbons quantitated as gasoline - analyzed by EPA Method 8015B

TPH-k = Total petroleum hydrocarbons quantitated as kerosene - analyzed by EPA Method 8015B

TPH-mo = Total petroleum hydrocarbons quantitated as motor oil - analyzed by EPA Method 8015B

- a = The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble heavier fuels at the front end of the motor oil pattern.
- b= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the diesel range actually resemble lighter fuels; the response looks like lower carbon chain compounds close to the gasoline range.
- c= The analytical laboratory reviewed the data and noted that the sample exhibits a fuel pattern that does not resemble the standard.
- e = Results are estimated due to concentrations exceeding the calibration range
- f= Filtration with 0.45-micron glass membrane filter and silica gel treatment
- g = Depth to product, depth to water could not be determined.
- h= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the front end of the kerosene oil pattern.
- i= The analytical laboratory reviewed the data and noted that petroleum hydrocarbons quantified in the motor oil range are actually from the back end of the kerosene oil pattern.
- j= The analytical laboratory reviewed the data and noted that the sample exhibited an unknown peak or peaks.
- J= Value qualified as "estimated"
- L= Lighter hydrocarbons contributed to the quantitation.
- Y = Sample exhibits chromatographic pattern that does not resemble standard.
- B= Results flagged with "B" indicate motor oil was detected in the method blank.
- Z= Sample exhibits unknown single peak or peaks
- H= Heavier hydrocarbons contributed to the quantitation.

Table 2
Summary of Groundwater Analytical Data, VOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)	Chloro- form (µg/l)	Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2- DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-Isopropyl- toluene (µg/l)	MTBE (μg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)	Toluene (µg/l)	1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6																				
2/27/01	270	11	3	ND	<1	ND	ND	7	ND	< 1	9	6.0	1.0	19.0	62	21	3	1	< 1	3
8/20/01	E280	14	<1	<1	<1	3	2	<1	< 1	< 1	11	4.0	<1	14.0	E82	14	4	< 1	<1	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = estimated concentration

MTBE = methyl tertiary-butyl ether

ND = Not detected.

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table 3
Summary of Groundwater Analytical Data, SVOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
MW-6			
2/27/01	19	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	<5	< 5	5
TBW-5			
8/20/01	220	<5	73

Notes:

SVOCs = Semivolatile organic compounds by EPA Method 8270

ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table 4
Summary of Groundwater Analytical Data, LUFT Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2			z 100			
8/19/98			<100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1
0/10/01	(0.001	0.017	0.012	0.031	0.10	0.1
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	

Notes:

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

LUFT = Leaking Underground Fuel Tank

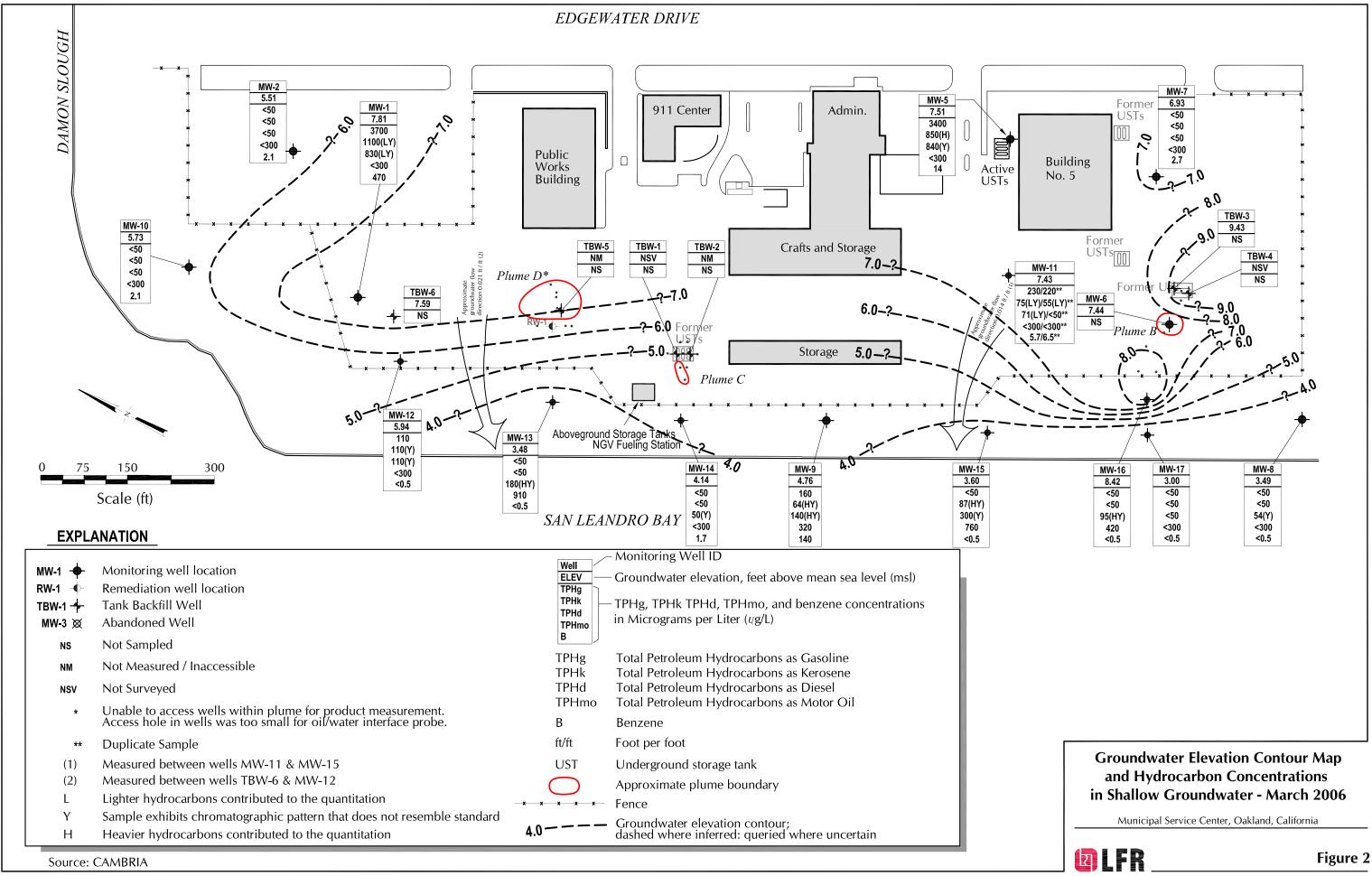
^{--- =} not measured/analyzed

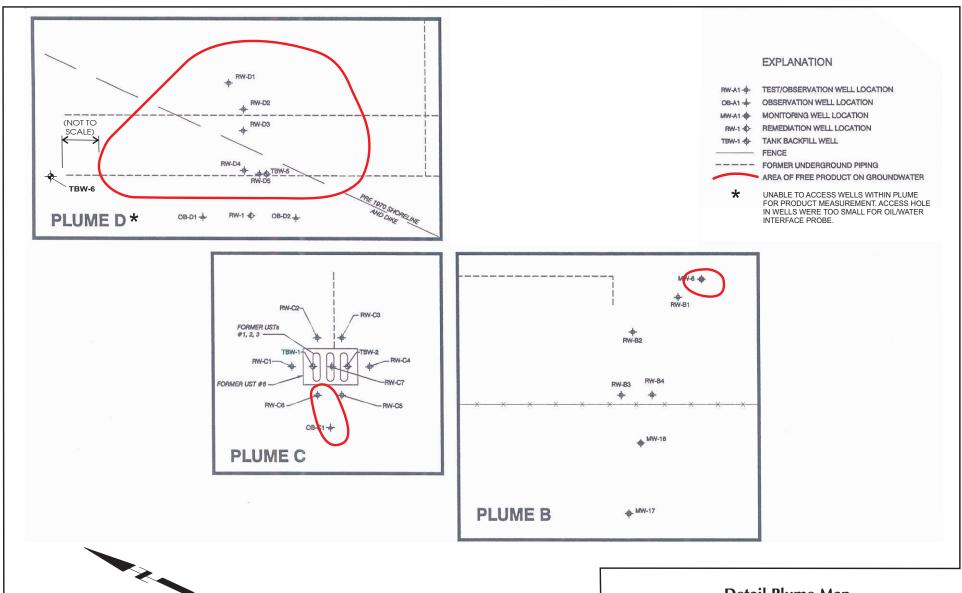
a = analyzed for organic lead

Table 5
Summary of Groundwater Analytical Data, Additional Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Sample ID/ Date	Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
MW-6							
8/16/01	< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
TBW-1							
8/16/01	< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
TBW-3							
8/16/01	< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
TBW-5							
8/16/01	< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01

Notes:


Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise. mg/l = milligrams per liter


DESIGN\09225\11\000\09225 SiteVicinity.CDR

Municipal Service Center, 7101 Edgewater Drive, Oakland, California

APPROXIMATE SCALE IN FEET

Detail Plume Map March 2006

Municipal Service Center, 7101 Edgewater Drive, Oakland, California

NOTE: ALL DIMENSIONS, DIRECTIONS, AND LOCATIONS ARE APPROXIMATE

APPROXIMATE SCALE IN FEET

SOURCE: NINYO & MOORE - JULY 2004

120

APPENDIX A

City of Oakland MSC Schedule and Protocol

Table A: Revised Well Sampling Schedule and Protocol

City of Oakland Municipal Service Center Parameters to Be Monitored Well ID Monitoring Schedule TPH-gas TPH Dissolved Temperature Specific September Elevation Floating March Conductivity BTEX & d/k/mo Oxygen Product MTBE Thickness $\overline{\mathsf{X}}$ X X X MW-1 X X Χ X X X X MW-2 gauge only MW-3 Closed/ Destroyed Closed/ Destroyed MW-4 X X X Х Х MW-5 X X X $\overline{\mathsf{x}}$ X Х X MW-6 X X X $\overline{\mathbf{x}}$ X X X X gauge only MW-7 $\overline{\mathbf{x}}$ X X X Х X X MW-8 X X X X X X X X MW-9 X X X X X X X $\overline{\mathsf{x}}$ X X MW-10 X X X X X X X MW-11 Х gauge only X X X X X X X X Х $\overline{\mathbf{x}}$ MW-12 Х X X X. $\overline{\mathsf{x}}$ X X X X X X MW-13 X $\overline{\mathbf{x}}$ X X X X X X X X MW-14 X X X X X X X X X MW-15 X X X X X X X X MW-16 X X X MW-17 X X X MW-18 gauge only gauge only $\overline{\mathbf{x}}$ TBW-1 gauge only gauge only X TBW-2 gauge only gauge only X TBW-3 gauge only gauge only $\overline{\mathsf{x}}$ TBW-4 gauge only gauge only $\overline{\mathbf{x}}$ TBW-5 gauge only gauge only X TBW-6 gauge only gauge only X X RW-1 gauge only gauge only X X RW-A1 gauge only gauge only X X RW-A2 gauge only gauge only X X OB-A1 gauge only gauge only X X RW-B1 gauge only gauge only X $\overline{\mathbf{x}}$ RW-B2 gauge only gauge only X RW-B3 gauge only gauge only Х X X RW-B4 gauge only gauge only X X RW-C1 gauge only gauge only X X gauge only gauge only RW-C2 $\overline{\mathbf{x}}$ X RW-C3 gauge only gauge only X $\overline{\mathsf{x}}$ gauge only gauge only RW-C4 X X RW-C5 gauge only gauge only X X RW-C6 gauge only gauge only X X gauge only gauge only RW-C7 X X gauge only gauge only OB-C1 X RW-D1 gauge only gauge only X gauge only gauge only X RW-D2 X gauge only gauge only X RW-D3 X gauge only gauge only X RW-D4 X $\overline{\mathbf{X}}$ RW-D5 gauge only gauge only X X OB-D1 gauge only gauge only OB-D2 gauge only gauge only gauge only = measure groundwater elevation and floating product thickness only

TPH d/k/mo = total petroleum hydrocarbons as diesel, kerosene, and motor oil after silica gel cleanup

APPENDIX B

Groundwater Sampling Field Data Sheets

		1			
×.	71	Ŷ	iks.	-11	
*	12	3	184	₹.	1
13°2	11100	\$J.,	335	ΔS_{1}	. Zi
XU.		ΝЗ	10	RIC	KE.

Project No	061	-0922	F- 21		Date	41	40	صا	Page of
Project Nam	e <u>Va</u>	Kland	Edge	water	V Sam	pling Loca	ition	Oak!	and "
Sampler's N			<u> </u>					. 1564	e No. <u>MW -)</u> ½ FE
Sampling Pla		_						C.O.Ç.	No DUP
									Teflon Bailer
					<u>Vu</u> VV Stora				
Date Purge	Water Dispo	sed	415/0	6	Whei	e Dispose	ed On	- Sit	e Treatment
	Analyses	Requested			nd Type of Bottle		· · · · · · · · · · · · · · · · · · ·	.	
TPHq	BTE	XIMT	BE_						
TPH	alxi	my			· · · · · · · · · · · · · · · · · · ·				
Lab Name _	C\$T	<u> </u>		• • • • • • • • • • • • • • • • • • • •					•
Delivery By	☐ Courier		~	Hand					·
	11/47	_1							
Well No					<u> </u>				
_				-	15.8		·		
		5" (1.02 (Height 13			80%	DTW 4.96
LI 4 (U.65	gavieet)	☐ 6" (1.47 <u>(</u>	gal/feet) W	ell Volume OLP	<u> 2.</u>	! +	melo	L	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	eTotalizer	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1049	_	225		-					START PURGE
1055			2.25	-1529	14 14	7.27	6.410	h. de	brown /aran
1200			4.50	-1523	16.76	7.10	9.04	turk	brown/gray.
1205	•		6-75	-1553					
			,						dimotela in
1412		3,24							Sample
·									sarrep a
					·	· · · · · · · · · · · · · · · · · · ·		•	
a*							·		
					· ·		· ·		

	****		mantha	annahi.
# Jan	m 🐉			8
# 17		3.2		- S
M #20	7 8	1000		3
(Carrier		11110		28/2000

	0	iklan	225- d Edg	21 Jena	Date Sampl		1 [S]	Jak	
Sampler's Na								•	No. MW-5 VIFE
Sampling Plan	ո By	TPL			Dated		 .	C.O.C.	No DUP
Purge Method	l: □ Centr	ifugal Pump	Disposab	le Bailer 💃	Hand Bail	□ Subme	ersible Pun	np 🗆 T	eflon Bailer
Purge Water S	Storage Con	tainer Type	SS gal	du	₩ Storag	e Location	n		
Date Purge W	/ater Dispos	ed <u>4</u>	15/86	,	Where	Disposed	0M-	8 ita	c Treatment
	Analyses R				nd Type of Bottles				•
TPH	127	_ 1	OBE_						•
TPH	3 m								
Lab Name				-					
Delivery By			/ছ	Hand		•			
									
Well No.	MW	-5	De	pth of Water	3.	28			
Well Diameter	r: 2	2"	w	ell Depth	14.	41			
2 " (0.16	gal/feet)	□ 5" (1.02 g	jal/feet) W	ater Column	Height 11	<u> 13</u>			
□ 4" (0.65	gal/feet)	□ 6" (1.47 g	jal/feet) W		1.7	ર્ષ		80%	DTW
· · · · · · · · · · · · · · · · · · ·		T		OKP	<u>.</u>		1		
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Readin g	Temperature (C°)	PH (SU)	Cond (µmhos)	Turb (NTU)	Remarks

				<u> </u>					
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Readin g	Temperature (C°)	PH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1500		3.28	_				_		STAKT PURGE
1503			1.75	- 43.6	17.10	7.09	5201	turk	doudy
1805			3.50	- 51.3	16.34				£ .\
1507			5.25	-45.2	16.22	7.30	1122	turk	o cloudy
1509			7.00	-45.9		7.27	1160	turk	2 doudy
1811			8.75	-44	16.13	7.22	1227	tur	o cloudy
1515		3.33	1		· - -				SAMPLE
						,			
							-		
							, , , , ,		
		1		L	1	<u> </u>			

ULF K		7	63	· > 1			
	*	\Box	*	ię.		9	
Marian Committee	S	LC.	11	28	\$		
	Š.	7177	Δì.	235 S	4.14	湿	

ELVINE FRICI	Œ	·	·	·			•				
Project No	001-0	922	5-21		Date	4 4	106			Page _	of
			Edge	2		ling Local		akla	^		
Sampler's Na								Sample	No. MN	- 2	
Sampling Pla			· · · · · · · · · · · · · · · · · · ·	· ·	Dated	·	<u>.</u>	C.O.C.	No	🗆	DUP
Purge Metho	d: 🗆 Centi	rifugal Pump	Disposal	le Bailer	Hand Bail	☐ Subn	nersible Pu	ımp 🗆 :	Teflon Bailer	☐ Other _	
Purge Water	Storage Cor	ntainer Type	55 ga	1 dru	Stora	ge Locatio	n				
Date Purge V	Vater Dispos	ed	4151	36 /	Wher	e Dispose	d <u>Ov</u>	<u> </u>	te Tre	catn	rent
	Analyses R	lequested	•	No. ar	nd Type of Bottle	s Used					·
TPHA	BTEX	MTB	SE,	···				1			
TPI	Hd/m	olk.									
Lab Name _		· · · · · · · · · · · · · · · · · · ·									
Delivery By	☐ Courier _		×	Hand							
Well No	N. DIA.	1-2	Do	nth of Water		95					Î
Well Diamete					15.70						. [
	_	□ 5" (1.02 g			Height		2				
·	•	☐ 6" (1.47 g		ell Volume	. 1	6		80% (DTW		
<u> </u>	garrocy	<u> — о (пи у</u>	avicety ***	ORP			Wolch				
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	-Totalizer- Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)		Remarks	
1045		r 9S	_			_	_	_	Start	Rura	ز
1051	metri	7	0.75		15.88	593	20.A	turb	avay	. 0	
1054	(100		1.50	-516	16.86	6.09	21.73	turb	gray		
1054			2.25	,44.3	1691	6.25	21.环	turb	gray		
1059	-	·	3.00	-\$9.9					gray	1	
101			1 00	497	PA C1	1.00	22.7	1.1	0	<u> </u>	

Continue remarks on reverse, if needed.

frm-water-quality sampling log: MER; 10/00; FORM FRONT

Project No	061-	0922	S-21		Date	4	15/0	6	Page <u>1 of 1</u>
	-		_		\				cland
Sampler's Na				•					e No. <u>MW-6</u> □ FB
Sampling Pla	n By	LPL							No DUP
Purge Metho	d: 🗆 Centr	rifugal Pump	Disposab	le Bailer	Hand Bail	☐ Subm	ersible Pur	np □.	Teflon Bailer Other
Purge Water	Storage Con	tainer Type	55 a	al di	✓ U VStorac	ne Locatio	n		
Date Purge V	Vater Dispos	ed	4151	06	Where	e Dispose	d On	- Si-	te Treatment
	Analyses R		•		nd Type of Bottles				•
	AN			,					
. <u> </u>									
Lab Name	·								
Delivery By	☐ Courier		□	Hand					
	4.4.4.	-10						·	
Well No.			De	pth of Water					
_			We						
2" (0.16	-				Height			80%	DTW
□ 4" (0.65	gal/feet)	□ 6" (1.47 g	jal/feet) We	ell Volume	-			·	
Time	inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	PH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1525						_	_		20.5 to 1 foot
	-								product in
									well as measur
		·							Ly oil/water.
									interface and
									interface and visual observation of bailer
, '									of bailer
				-					
									. ,
		,							
		·							

н		****	48.14			_	
н	114		133				•
ı	**	_	. e	10.77			:
ı	Y I			160			
ŀ	er e	11	1.0			-	•
ı	-71		100				9
п	X T		4.0	- 0			
ŀ	11.5	2227.00	E.D.L	VECT-L	亞"。	4 4 22	•
r	X8.	FV:	NУ	36.35	RIC	KE	٠,

Project No. 601 - 09225 - 21 Project Name Oakland Ed Sampler's Name EXIDN	Date	g Location Oakl	Page of 1 and No. MW-7 DFB
Sampling Plan By	osable Bailer 🗪 Hand Bail 🗆	C.O.C. Submersible Pump	No DUP
Date Purge Water Disposed			Site Treatme
Analyses Requested TPHA/BTEX/MTBE TPHA/SHAWO Lab Name	No. and Type of Bottles Us	ied	
Well No	Depth of Water Well Depth Water Column Height Well Volume DEP Depth of Water 4.30 1.60	00	DTW 6.30

		,		OKE					
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1431		4.30							START PURGE
1434			1.75	-34.5	12.19	6.70	5237	turb	
1436			3.25	- 35. (17.23	6.99	2239	tuck	brown
1438	,	·	5,00	-13.0	17-06	6.96	2248	turb	brown
1440			6.50	-12.4	16.98	6.92	2365		
1445		6.12							brown Sample
		·							
									,
						·			
					-				·
					·				

	7.0	455	1 N Y			
-5		1	4.5			
.Ŷ₩	21		(\$-5.1			27
\$		18				٠.
法国			14.00		-	
200		A-3		4.5		а.
	38.52 E	e NE	20.5			ж.
	HVE	MT.	(18)	ми	2 IN.	E.

	<u> </u>										
Project No	001-6	19225	-21		Date	4	15/0	(z)		Page _	
Project Name	_ Oa!	eland	Edge	wate							
Sampler's Na			V .							W-8	
Sampling Pla	n By	LPL		······································	Dated			C.O.C.	No	0	DUP
Purge Metho	d: 🗆 Cent	rifugal Pump	Disposab	le Bailer	Hand Bail	☐ Subm	nersible Pu	ımp 🗆	Teflon Bai <u>l</u> er	⊂ □ Other _	
Purge Water	Storage Cor	ntainer Type	SSO	al du	/ umStora	ge Locatio	n		•		
Date Purge V	Vater Dispos	sed4	1510	6	Where	e Dispose	d _O	<u> 12-Si</u>	te 7	Treat	ment
Lab Name _	BTE Ha /	El ma	NTBE		· · · · · · · · · · · · · · · · · · ·						
	er:	21	De	ell Depth		2				. •	
☐ 4" (0.65			al/feet) We	ell Volume	<u>0.</u>	1611	<i>o</i> .	80%	DTW	10.35	
· ` `	,	,	· '	6 RP			NS/CV	Δ	· .		
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)		Remarks	
0945		9.14		_	_	-4	-	***	Stav	+ Pur	a c.
0950		400	1,00	260	15-58	6.40	5,857	مأل بعل	loser		3

						100 July	7	
Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Aeading	Temperature (C°)	pH (SU)	Cond	Turb (NTU)	Remarks
	9.14			-		_	***	Start Purge
		1.00	26.0	15-58	6.40	5.857	tall	brown
		2.00	- 28.7	16.00				Lorown
•		3.00		16.34	6.99	1 1	1	
		4.00	m29.3	16.43	7.10	15.230	tur	
		4.75		****		1	Specific	· /
	1035							Sample
•	-			•				
						•		
·	-							
								· · · · · · · · · · · · · · · · · · ·
								<u></u>
		•	***************************************		-			
	· · · · · · · · · · · · · · · · · · ·			·		·. ·		
	Depth	Depth to Water 9.14	Depth to Water Purged (gal) 9.14 1.00 2.00 3.00 4.00 4.75	Depth to Water Purged (gal) Acading 9.14 — — 1.00 26.0 2.00 -28.7 3.00 -42.6 4.00 *29.3 4.75 — 10.35	Depth to Water Purged (gal) Acading (C°) 9.14 — — — — — — — — — — — — — — — — — — —	Depth to Water Purged (gal) Reading (C°) (SU) 9.14 — — — — — — — — — — — — — — — — — — —	Inlet Depth to Water Purged (gal) 9.14 — — — — — — — — — — — — — — — — — — —	Depth to Water Purged (gal) Areading (C°) (SU) 4 mmhor) (NTU) 9.14 — — — — — — — — — — — — — — — — — — —

(S)	COLUMN TWO	3. 2.	7 200	
20	~~	100		
23 I	71.0	100	3	- 18
3 L	→ 1 [8 24		
22.		L		

•							•				
Project No	001-	0922	5-21	·	Date		4 5	106		_ Page	_ of _1_
Project Name	e Oak	land	Edgen	sofer	Samp	oling Loca	tion	Oakl	<u>and</u>		
Sampler's Na	ame	5x-10	N			···-		Sampl	e No M \(\square\)	1-9	D FI
Sampling Pla	an By	LPL			Dated			C.O.C	. No		OUP
Purge Metho	d: 🗆 Cent	rifugal Pump	Disposal	ble Bailer 🏻 🏌	Hand Bail	☐ Subn	nersible Pu	ımp 🗆	Teflon Bailer	☐ Other	
Purge Water	Storage Co	ntainer Type	35 ga	dru	W Stora	ge Locatio	on				
Date Purge \	Water Dispos	sed	71510G		Where	e Dispose	d 0v	tiz-	CTV.	eatm	unt
TPH Lab Name _ Delivery By		EX/I			nd Type of Bottle					·	
•	r:2 gal/feet)		wal/feet) Wa	ell Depth ater Column	Height {	41		80%	DTW	1.71	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)		Remarks	

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ORP					<u></u>
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1835		6.04			_	_	_	_	Start Purge
1837			1.50	-1364	17:03	7.54	3348	turb	
18239			2.75	-135.1	16.92	7.50	3258	turb	
124	•		4.25	-136.1	17.12	7.42		tuvb	·
1295		7.21							Sample
		,							
							٠.		
									- 69
	·	:							
			·						

1	8.7	1000	432 Y	5.5		
ı	72		3	2.5		
	2.	171	3	1.67	2	
ı	3.3		3.	4.74	Z.	11 3
١	24.	1	ÆL		7.	
į	[3C	ÉVI	Νť	维维	AIC	KË

Project No. 001 - 09225 - 21	Date	06	Page 1 of 1
Project Name <u>Oakland</u> Eq	lawater Sampling Location	Dakland	
Sampler's Name EKIDN		Sample No. Mu	0- <u>1</u> 0 □ FE
Sampling Plan By LP L	Dated	C.O.C. No.	□ DUP
Purge Method: ☐ Centrifugal Pump	oosable Bailer Aland Bail 🗆 Submersible F		
Purge Water Storage Container Type 5 5	S gel drum Storage Location		•
	Where Disposed Ov		
Analyses Requested TPHS BTEX MTBE	No. and Type of Bottles Used		
Lab Name C\$T			
Delivery By	2 2NHand		
Well No. MW-10 Well Diameter: 2'	Depth of Water		
□ 4" (0.65 gal/feet) □ 5" (1.02 gal/feet) □ 6" (1.47 gal/feet)	Water Column Height	80% DTW	

	,	·		ORF					
Time	inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1337		4.62			_				Start Purge
1341			1.75	-13.2	15.59	7.90	521	turb	
1343	•		3,25	-2.3	15.57	7.68	645	turl	1 0 1
1345	,		5.00	-4. a	15.59	7.56	745	turb	
1347			6.75	-19.2	15.63	7.48	857	tury	avay
1349			02.8	-23.8	15.7	7.44	916	turb	
1353			(0.00		15.87	7.41		1	7
1355			11.75	-44.9	45.91	7.38	- 10	turb	avay.
1358			13.25	-50.4	16.00		1650		
1405			15,00	- 47.2	. 15.79	7.37			
1907		·	15.75	-S1.5	15.80	7.29	1085	turb	
1412		4.80		·					Sample
1									

т.	37.00.000	2.20	7:30.7		****	•
		1			•	
В.:	-	3	λ÷.			
12	- 171	1.5	2.5	- 6		ř.
125		藪	2.00			٠.
Hδ	Suma	.C.	8			
42	revi	14.0	12.12	20117		٠.

							•				
Project No	001 - 0	9225	~21			41		<i>o</i>		_ Page _	_ of
Project Name	Oak	land	Edge	nate	V Sampl	ing Locati	on 0	akla	ind		· · ·
Sampler's Na	me	EK					~~~			11-1	D FE
Sampling Pla	n By 🔣	PL		,	Dated			C.O.C.	No	Ø	QUP
			Disposab	le Bailer	☐ Hand Bail	☐ Subm	ersible Pur	mp 🗆 ː	Teflon Bailer	□ Other _	
Purge Water	Storage Con	tainer Type	55 e	pldn	um Storag	e Locatio	n			<u> </u>	
Date Purge V	Vater Dispos	ed	15/00	<u> </u>	Where	Disposed	1 Ou-	Site	-TVC	atm	ent
TP H	d (E)	XIMT		3 VC	d Type of Bottles	Hc ev					
Delivery by	Ci Connei -					·					
Well No			De	pth of Water	19.30	之)	•				
		•	al/fact) W/	eter Column	Height	5.28	<u> </u>				
_		□ 5" (1.02 g	alfact) W	all Volume	2.4	4	 _	80%	DTW	**********	
in 4 (0.00	yavieelj	□ 6" (1.47 g	avieci) W	6RP	~	1 1	ms/cm	<u> </u>			
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Tetalizer Reading	Temperature (C°)	pH (SU)	Cond (µmho s)	Turb (NTU)		Remarks	

Time Inlet Depth Volume Purged (gal) Reading Temperature (C*) (SU) April Remarks 1312					ORP			ms/cn	1 .	
1317 1322 5.00-59.6 16.92 6.89 4.764 turb gray 1327 7.50-53.2 16.99 6.79 5.574 turb gray 1331 10.00-50.4 17.08 6.745.770 turb gray 1338 12.50-47.1 17.20 6.736.221 turb gray 1344 4.92 15.00-45.1 17.04 6.76 6.099 turb gray 1354 1354 4.92 15.00-45.1 17.04 6.76 6.099 turb gray 1354 4.92 15.00-45.1 17.04 6.76 6.099 turb gray 1354 4.92 15.00-45.1 17.04 6.76 6.099 turb gray 1354	Time		Depth to Water			Temperature (C°)	pH (SU)			Remarks
1322	1312		4.02	_						START PURGE
1327	1317			250	-70.2	16.86	7.08	3.806	turb	gray
1327 750 - 53.2 16.99 6.79 5.579 turb gray 1331 10.00 - 50.6 17.08 6.795.770 turb gray 1338 12.50 - 47.1 17.20 6.736.229 turb gray 1344 4.92 15.00 - 45.1 17.04 6.76 6.099 turb gray 1349 sampte 1354 duplicate	1322			5.00	-59.6		6.89	4.764	turb	~
1331 10.00 - 50.4 17.08 6.745.770 turb gray 1338 12.50 - 47.1 17.20 6.736.20 turb gray 1344 4.92 15.00 - 45.1 17.09 6.76 6.099 turb gray 1349 sample 1354 duplicate	1327	,		7.50	- 53.2	16.99	6.79	5.574	turb	'
1338 12.50 -45.1 17.20 6.736.221 turb gray 1344 4.92 15.00-45.1 17.09 6.76 6.099 turb gray 1349 1354 1354 12.50 -45.1 17.20 6.736.221 turb gray sampte auplicate	1331			10.00		17.08	6.79	5.770	turb	
1344 4.92 15.00-45.1 17.04 6.76 6.099 turb gray 1349 sampte 1354 duplicate	1338			12.50	-471	17.20	6.73	6. 229	turb	grad
1349 1354 duplicate	1344		4.92	15.00	-45.1					
1354 duplicate	1349									ر. ر <u>ن</u>
	1354		·							duplicate
	1 1					v. ·		:	,	
			·							
	,			· · · · · · · · · · · · · · · · · · ·						
										`
	1		·							·v

	Á.
173 按 按	
'M' /	. i.
. See 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	-
- CA	₽:
19个的时代的影响的1954	# >.
E.FEARDE LLUION	ъ.

Continue remarks on reverse, if needed.

frm-water-quality sampling log: MER; 10/00; FORM FRONT

			1 0 1						Page <u>\</u>	
Project Name	Oa	Klan	d Ed	gewa	EW Samp	oling Locat	tion		12 Ex Oakla	
Sampler's Na	me	SK	MARIE AND					Sample	No. MW-12	☐ FB
Sampling Pla	n By	LPL			Dated		· · · · · · · · · · · · · · · · · · ·	C.O.C.	No DUP	·
									Teflon Baiḷer □ Other	
			55 go							
Date Purge V	Vater Dispos	sed	15/00	0 /	Wher	e Dispose	d O	4-S	iti Treatu	en
	Analyses F	Requested		No. ar	nd Type of Bottle	s Used				
TPHA	BIE	XIM	TBE_						•	
TPH	1 TP+	+ T	PHma						•	
Lab Name	CQ									
Delivery By	☐ Courier			Hand	• .					
M/off Alo	MW	-17	De			<u> </u>	•			
Well Diamete			De							1
_	•	•								
		□ 5" (1.02 g			Height	386		80%	DTW	
LI 4" (U.65	gal/reet)	□ 6" (1.47 g	al/feet) W	ell Volume OKP		6 1	mela	L		
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	-Totalizer - Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks	
1220		4.39						_	Start Par	ac
1224			1.75	-187,3	15.70	7.77	2.65	tuils	gvay	3]
1229			3,50		13.75	7 74	2.64	turk	gray	
1232	•		5.2S		- 15.93	7.74	2.909	turb	gray	
1237		4.75						Nay	Sample	
								- 3:	0-11-12-	
								i.		
•										
							·			
			· ·				·			
										-
			·	,						
					·	·				

9	1 5020)	<u>چې</u> د	2.		
×.		Y.	άċ		U . /
8	LC.	3	in i	T.	
		41.			
×4.	FVI	ИF	海源	n i c	KE.

•												
Project No	00	1-092	15-21		Date	4	15/	06		Pag	ge <u>\</u> c	of
Project Name	- Oa	kland	Edge	e wat	∠ Samp	ling Locat	tion	Dak	an	$d_{\underline{}}$		
		EK D							•	MW-1	3	
Sampling Pla	an By	LPL			Dated			C.O.C	. No		DUP	·
Purge Metho	d: 🗆 Cen	trifugal Pump	Disposal	ble Bailer	Hand Bail	☐ Subn	nersible Pu	ımp 🗆	Teflon f	Bailer 🗆 Oth	er	
			SS gal									
Date Purge V	Water Dispo	sed	415][<u>م ط(</u>	Where	e Dispose	d <u>O</u>	<u>: [2:</u>	te-	Treat	nei	<u>tr</u>
TPH TPH Lab Name Delivery By	1 K	ma T			nd Type of Bottle							
	er: gal/feet)	-	yal/feet) Wa	ell Depth		60		80%	DTW	10.	96	
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb		Damada		
1315		8.29			(0)	(30)	(printos)	(NTU)	C	Remarks		_

				ORI					· · · · · · · · · · · · · · · · · · ·
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1315		8.79							STAKT PUREGO
1317	·		1-75	-37.4	17.76	7.65	4489	turb	brown
1319	- :		3.5	-365	18.05	7.50	5351	turb	brown
1321	·		5.25	-39.8	18.18	7.45	5383	turb	brown
1324		10.80							brown Sample
			**************************************	·					
			·			- 9			
						•			
					·				
								<u>-</u>	
						:			

	description.	2000		*** ****	
3377		A 1		-	
77		133			
			1200		
	71				
~		12	4.0	3.00	
X3		20			
A		-0.2	8		
	20 3 E S	3 T	0.5	2.1	7
	evi:	M433	11.54	RIC	KF.

Project No	001-	0922	5-21		Date	4	5/2	000	Page _ of _
Project Name	e <u>0a</u>	cland	Edg	cuate	Samp	oling Locat	ion	Dak	laud
		ZKID						- 1944	No. MW-14 DFB
Sampling Pla	an By	LPU			Dated		· .	C.O.C.	No DUP
									Teflon Bailer
Purge Water	Storage Co	ntainer Type	55 g	al dri	AM Stora	ge Locatio	n		
Date Purge \	Water Dispos	sed 4	15/06		Wher	e Dispose	1 0 n	-12-	te Ticatment
TPH	del	ma ma			d Type of Bottle	~			
Lab Name _				••••••••••••••••••••••••••••••••••••••			2410		
Delivery By	☐ Courier .		X	Hand		•			
	r: gal/feet)		yal/feet) W	ell Depth ater Column I ell Volume _	5.5 14. Height	65 8.75		80%	DTW
	Inlet	Depth	Volume	Totalizer	Temperature	рН	Cond	Turb	
Time	Depth	to Water	Purged (gal)	<u>Reading</u>	(C°)	(ຮົບ)	(µmhos)	(NTU)	Remarks
1255		5.90							Start Phyge
1259		<u> </u>	1.50						black
1301			3.0	-136,3		7.60	9069	turl	black
1303	·		4.5	-127.2	17.24	7.65	8430	tuvb	black
1308		6.08			····				samph.
					• .				
									
	•			•					
					·				
								· .	
							. 1		

S 22	1-4-11	3 13			
39.0		168	3.5	~~:	1
√`		7	18-1	***	
6		4	3.0	17.0	
Х		X	100	.53	
×4.		54		A 64 .4	
	eon	16.0	10.0	äle	VE.
∴.					

Project No. 661 - 09225 - 21 Date	4151	06	Page of
Project Name <u>Oakland</u> Edgewater San	npling Location	akland	
Sampler's Name EX-LDN		Sample No	MW-18 OFF
Sampling Plan By Dated		C.O.C. No	DUP
Purge Method: ☐ Centrifugal Pump Disposable Bailer Hand Bail	☐ Submersible P	ump 🛮 Teflon Ba	ailer 🗆 Other
Purge Water Storage Container Type 55 gal drum Stor	age Location		
Date Purge Water Disposed 4 5 06 Whe			Treatment
Analyses Requested No. and Type of Bottl	les Used		
TPHylmold Lab Name C& T			
Delivery By			
Well No. NW-15 Depth of Water 8.4 Well Diameter: 2" Well Depth 20.5 Water Column Height	+ 0		
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume		80% DTW _	

		686					
Depth to Water	Volume Purged (gal)	T otalizer Beading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
8.64							Start Purge
	2,00	-140.4	18.22	7.22	7082	- twi	> brown
	3.75	-146.8	17.70	2.34	6210	れる	
	5,75	-147.2	17.58	7.35	6015	tury	brown brown Sample
8.98					·		Samol
				·			-
-							
,							
				·			
	8.64 8.64	to Water Purged (gal) 8.64 — 2.00 3.75 5.75 8.98	to Water Purged (gal) Beading 8.64 — — 2.00 -140.4 3.75 -146.8 5.75 -147.2 8.98	to Water Purged (gal) Beading (C°) 8.64 — — — — — — — — — — — — — — — — — — —	to Water Purged (gal) Beading (C°) (SU) 8.64 — — — — — 2.00 -140.4 18.22 4.22 3.75 -146.8 17.70 2.34 5.75 -147.2 17.58 7.55 8.98	to Water Purged (gal) Beading (C°) (SU) (µmhos) 8.64 — — — — — — — — — — — — — — — — — — —	to Water Purged (gal) Beading (C°) (SU) (µmhos) (NTU) 8.64 — — — — — — — — — — — — — — — — — — —

8.2	EC.	(S) =	-51		****
33.1	-7	18	3		D 8
ž.	7.1	I.	1.5		16
×.		4	245		
×1	77.98	έ'n,	235		7.2
	EVI	ΝE	78. F	HIC	KE:

Project No.	00	1-097	125-21		Date	4	151	ماه	· · · ·	Page _	of \
					ter Samp				4	,	·
Sampler's Na			•	7						W-16	
Sampling Pla	ın By	LPL			Dated			C.O.C.	. No		Р
Purge Metho	d: 🗆 Cent	rifugal Pump	Disposat	ole Bailer 🛭	Hand Bail	☐ Subm	ıersible Ρι	ımp 🗖	Teflon Bailer	☐ Other	
					um Storag						·
Date Purge V	Vater Dispos	ed	41570	6	Where	e Disposer	d On	-Site	: Tree	atmen	土
TPH TPH Lab Name Delivery By	el Kl	X/ N			nd Type of Bottles	3 Used					.
Well No Well Diamete	MW -	۱ (م	De Wegal/feet) Wa	epth of Water ell Depth ater Column ell Volume		1.42		80%	DTW	4.48	
	T	Dorah	V-1	ORP	Γ <u>-</u>	Γ			T ·		 -j
Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Fotalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)		Remarks	
1029		2.60				'		_	STEVI	+ Pinia	,

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	Totalizer Reading	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
1029		2.60						_	Start Purge
1032	· · · · · · · · · · · · · · · · · · ·		1.50	- 25.0	15.85	7,93	1002	turb	brown
1035			3.0	19.4	15.77	774	943	turb	brown
1037	•		4.S	28.3	15.72	7.60	1133	turk	. '
1039			6.0		15.83	7.54	1130	turb	brown
1045		3.60							brown sample
	······································								
	•								
					-				
j.									
		·							
·									

× 11	200	13. 2.		
3	577	经		0.8
é	T4 8		10.0	- N
53		g -~~e	72.	
5.7	278949	334	200	7
	B.V.III	7.0	: 11.1 (5.)	NE.

FENDESCHICKE						
Project No. 001-09225-21 Date 4[8]06 Page of Project Name Oakland Edgewatersampling Location Oakland						
Sampler's Name Sample No. MW-17						
Sampling Plan By Dated C.O.C. No DUP _						
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Hand Bail ☐ Submersible Pump ☐ Teflon Bailer ☐ Other						
Purge Water Storage Container Type 55 pal dvuvstorage Location						
Date Purge Water Disposed 418 06 Where Disposed Ou-Site Treatmen						
- kna bolts on well lid						
Analyses Requested No. and Type of Bottles Used TPHA / VI wo No. and Type of Bottles Used						
Lab Name						
Delivery By						
Well No. MW17 Depth of Water 8.64						
Well Diameter: Well Depth 17.55						
© 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet) Water Column Height						
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet) Well Volume						
Inlet Depth Volume Totalizer Temperature pH Cond Turb Time Depth to Water Purged (gal) Reading (C°) (SU) (µmhos) (NTU) Remarks						
1005 - 8.64 start Pura						
1008 1.50 -12.1 15.887.82 6.684 turb brown						

Inlet Depth	Depth to Water	Volume Purged (gal)	Totalize r <u>Beading</u>	Temperature (C°)	pH (SU)	Cond (µmhos)	Turb (NTU)	Remarks
	8.64							Start Purac
		1.50	-12.1	15.88	7.52	6.684	turb	
- <u>-</u>		3.00	-49.4	15.98	7.42	7.464	turl	brown
•		4.50			1	1 1		_
		6.00	-57.7	16.04	7.38	8.581	turb	•
	5.80							sample
	·							

				·		-	·	
		Depth to Water B.64	Depth to Water Purged (gal)	Depth to Water Purged (gal) Reading 9.64	Depth to Water Purged (gal) Reading (C°) -	Depth to Water Purged (gal) Reading (C°) (SU) -	Depth to Water Purged (gal) Reading (C°) (SU) (µmhos) —	Depth to Water Purged (gal) Reading (C°) (SU) (µmhos) (NTU) — 9.64 — — — — — — — — — — — — — — — — — — —

APPENDIX C

Laboratory Results and Chain-of-Custody Documentation

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 11-APR-06

Lab Job Number: 185979

Project ID: 001-09225-21

Location: Oakland Edgewater

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manage

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 3

CASE NARRATIVE

Laboratory number:

185979

Client:

LFR Levine Fricke

Project:

001-09225-21

Location:

Oakland Edgewater

Request Date:

04/04/06

Samples Received:

04/04/06

This hardcopy data package contains sample and QC results for six water samples, requested for the above referenced project on 04/04/06. The samples were received cold and intact. All data were e-mailed to Larry Lapuyade on 04/11/06.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM SAMPLER'S INITIALS: PROJECT NO.: SAMPLE COLLECTOR: SERIAL NO .: at at ak 2/2 001-09225-21 1900 Powell Street, 12th Floor № 201872 PROJECT NAME: Oakland Emeryville, California 94608-1827 (510) 652-4500 Fax: (510) 652-2246 REMARKS **ANALYSES** SAMPLE the dis ter sounded by let remediately yors lean appuran **TYPE** TAT MO of Containers **Metals: VOCs: 8260 List 🔲 CAM17 ☐ 8240 List ☐ RCRA ☐ 8010 List ☐ LUFT RUSH. HOLD Water SAMPLE ID. DATE TIME ☐ 624 List TB -414/06/04 4/4/06/1237 44/06/1349 MW-REHINQUISHED BY: RELINQUISHED BY: METHOD OF SHIPMENT: 2 RELINQUISHED BY: SAMPLE RECEIPT: Cooler Temp: Deract Hand Cold (SIGNATURE) (DATE) (SIGNATURE) (DATE) LAB REPORT NO .: Do Ice Ambient Cooler No: (TIME) (TIME) (PRINTED NAME) (PRINTED NAME) FAX COC CONFIRMATION TO: Preservative Correct? Yes No NA (COMPANY) COMPANY (COMPANY) 2 RECEIVED BY (LABORATORY): ANALYTICAL LABORATORY: FAX RESULTS TO: RECEIVED BY: RECEIVED BY: (SIGNATURE) (DATE) (SIGNATURE) (DATE) SEND HARDCOPY TO: C \$ 1 (PRINTED NAME) (TIME) (PRINTED NAME) (TIME) SEND EDD TO: EMV.LABEDDS.COM (COMPANY) (COMPANY) CHAIN of CUSTODY - ANALYSES FORM.CDR 5/2003 Shipping Copy (White) File Copy (Yellow) Field Copy (Pink)

185777

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Effective Date: Revision:

10-May-99

1 Number 1 of 3

Filename:

F:\QC\Forms\QC\Cooler.wpd

COOLER RECEIPT CHECKLIST

Login#	t: 185979 Date Received: 4/4/06 Number of Coolers:
Client:	LFR Project: Oskland Edgenster
A.	Preliminary Examination Phase
	Date Opened: 4/4/06 By (print): form (sign)
1.	Did cooler come with a shipping slip (airbill, etc.)? YES NO
	If YES, enter carrier name and airbill number:
2.	Were custody seals on outside of cooler?
	How many and where? Seal date: Seal name:
3.	Were custody seals unbroken and intact at the date and time of arrival? YES NOW
4.	Were custody papers dry and intact when received?
5.	Were custody papers filled out properly (ink, signed, etc.)?YES NO
6.	Did you sign the custody papers in the appropriate place?YENO
7.	Was project identifiable from custody papers?YEN NO
	If YES, enter project name at the top of this form.
8.	If required, was sufficient ice used? Samples should be 2-6 degrees C YES NO
	Type of ice: Wet Temperature: ON ICE No Pemper
	, //
B.	Login Phase
	Date Logged In: 4/4/06 By (print): Down P. (sign) Ludy
1.	Describe type of packing in cooler: Form
2.	Did all bottles arrive unbroken?
3. °	Were labels in good condition and complete (ID, date, time, signature, etc.)?(YES) NO
4.	Did bottle labels agree with custody papers?YES NO
5.	Were appropriate containers used for the tests indicated?
6.	Were correct preservatives added to samples?
7.	Was sufficient amount of sample sent for tests indicated? YES NO
8.	Were bubbles absent in VOA samples? If NO, list sample Ids belowYES NO
9.	Was the client contacted concerning this sample delivery?YES NO
	If YES, give details below.
	Who was called? By whom? Date:
Additio	onal Comments:
	
Filename	: F:\qc\forms\qc\cooler.doc Rev. 1, 4/95

Total Volatile Hydrocarbons Oakland Edgewater Location: 185979 Lab #: Prep: Analysis: EPA 5030B LFR Levine Fricke Client: EPA 8015B 001-09225-21 Project#: 111987 Batch#: Water Matrix: 04/04/06 Sampled: Units: ug/L 04/04/06 Received: 1.000 Diln Fac:

Field ID:

MW-2 SAMPLE Lab ID:

185979-002 04/04/06

Type:

Analyzed:

Result RLAnalyte 50 Gasoline C7-C12

Limits %REC Surrogate 69-137 80-133 106 Trifluorotoluene (FID) Bromofluorobenzene (FID) 107

Field ID: Type:

MW-1-FBSAMPLE

Lab ID: Analyzed: 185979-003 04/04/06

RL Result Analyte Gasoline C7-C12 ND

Limits Surrogate Trifluorotoluene (FID) 107 69-137 80-133 Bromofluorobenzene (FID) 108

Field ID:

Type:

MW-12

SAMPLE

Lab ID: Analyzed: 185979-004

04/04/06

Result RLAnalyte 50 Gasoline C7-C12 110Surrogate Limits 69-137

115 Trifluorotoluene (FID) 80-133 110 Bromofluorobenzene (FID)

Field ID:

Type:

MW-11 SAMPLE Lab ID: Analyzed: 185979-005 04/05/06

Result Analyte Gasoline C7-C12 50 230

Surrogate 115 69-137 Trifluorotoluene (FID) 80-133 Bromofluorobenzene (FID) 108

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Sample Name : 185979-004,111987,tvh FileName : G:\GC05\DATA\094G024.raw

Method : TVHBTXE

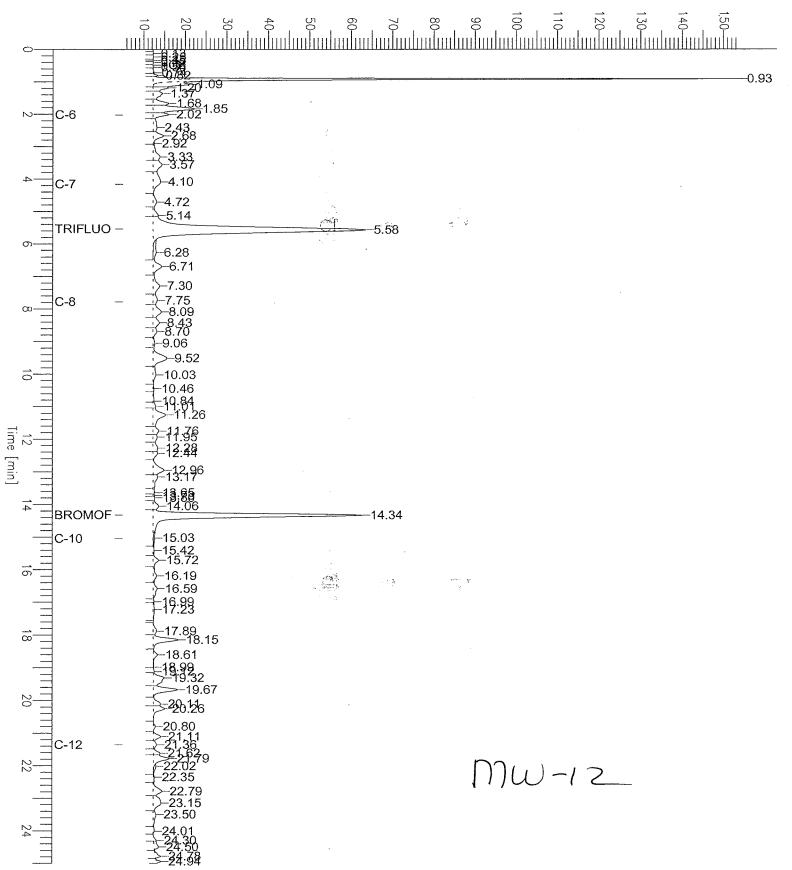
Start Time : 0.00 min
Scale Factor: 1.0

End Time : 25.00 min

Plot Offset: 5 mV

Sample #: a1.6

al.6 Page 1 of 1


Date: 4/4/06 11:54 PM

Time of Injection: 4/4/06 11:29 PM
Low Point: 5.08 mV High Po

Plot Scale: 148.9 mV

High Point : 153.98 mV

Response [mV]

Sample Name: 185979-005,111987,tvh

FileName : G:\GC05\DATA\094G027.raw

Method : TVHBTXE

Start Time : 0.00 min Scale Factor:

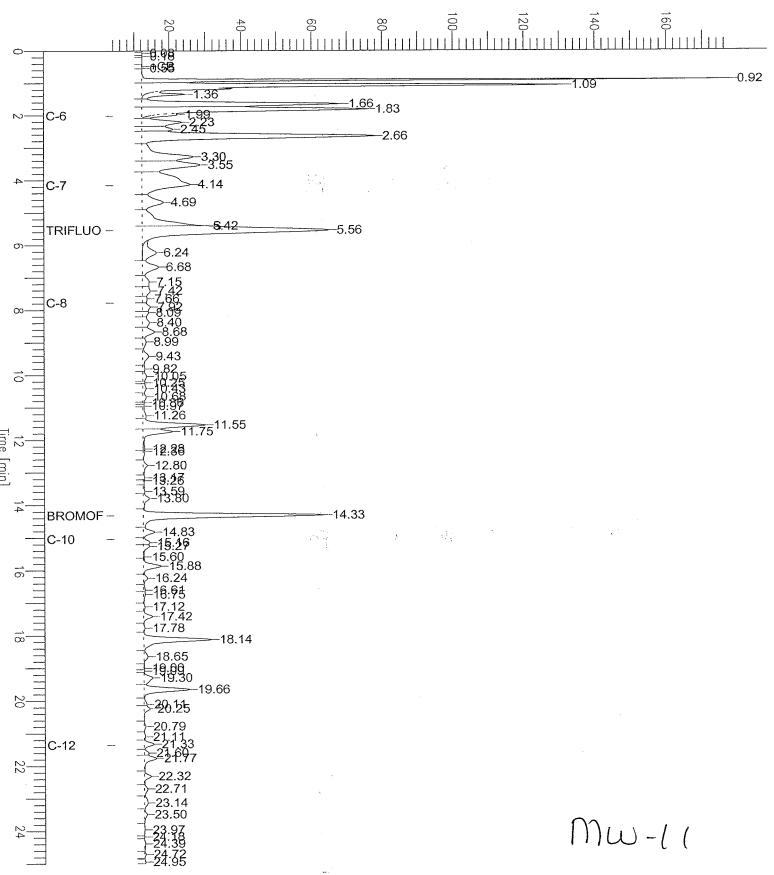
End Time : 25.00 min

Plot Offset: 4 mV

Sample #: a1.9

Date: 4/5/06 10:12 AM

Time of Injection: 4/5/06 09:01 AM


Low Point : 3.98 mV

High Point : 177.80 mV

Page 1 of 1

Plot Scale: 173.8 mV

Total Volatile Hydrocarbons Oakland Edgewater Location: Lab #: 185979 EPA 5030B EPA 8015B Prep: Analysis: LFR Levine Fricke Client: 001-09225-21 Project#: Batch#: 111987 Matrix: Water 04/04/06 04/04/06 ug/L Sampled: Units: 1.000 Received: Diln Fac:

Field ID: Type:

MW-11-D

SAMPLE

Lab ID:

185979-006

Analyzed:

04/05/06

Gasoline C7-C12	220	50	

*REC Limits Surrogate Trifluorotoluene (FID) Bromofluorobenzene (FID) 114 80-133 107

Field ID:

Type:

MW-1 SAMPLE Lab ID:

185979-007

04/05/06 Analyzed:

Analyte	Result	RL	
Gasoline C7-C12	3,700	50	
Odbottito O. OLL			

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	99	69-137	
Bromofluorobenzene (FID)	108	80-133	

Type: Lab ID:

BLANK QC334230 Analyzed:

04/04/06

	Result	RL	
ND		50	
109	69-137		
106	80-133		
	ND %REC	ND %REC Limits 109 69-137	ND 50 *REC Limits 109 69-137

Sample Name : 185979-006,111987,tvh FileName

: G:\GC05\DATA\094G028.raw

Method : TVHBTXE

Start Time : 0.00 min Scale Factor: 1.0

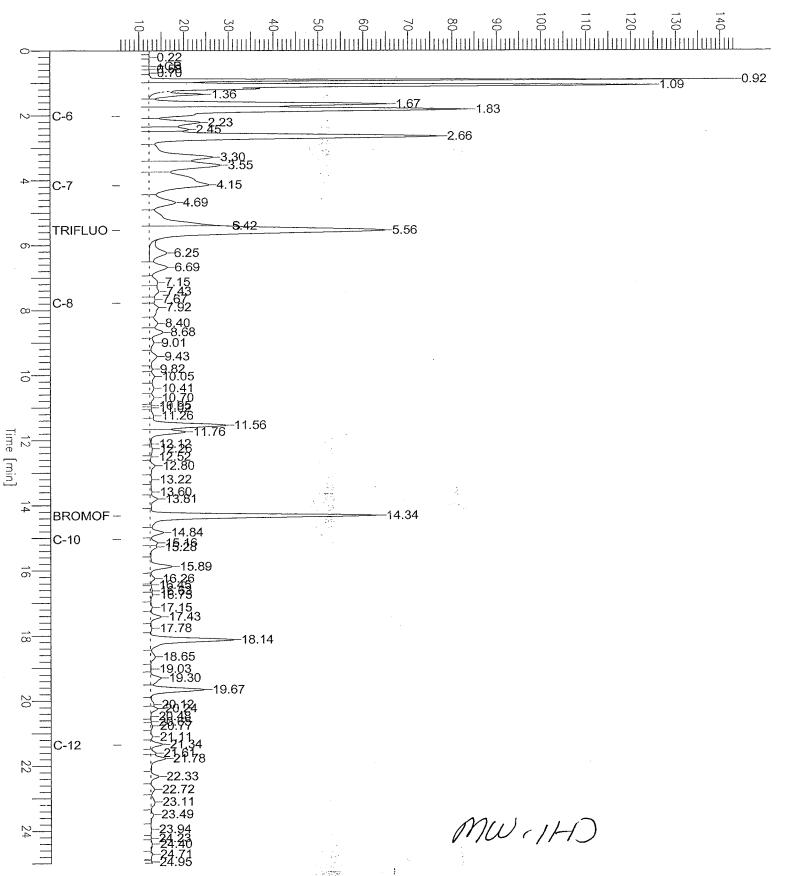
End Time : 25.00 min

Plot Offset: 6 mV

Sample #: al.9

Date: 4/5/06 10:12 AM

Time of Injection: 4/5/06 09:32 AM


Low Point : 5.67 mV

High Point : 143.23 mV

Page 1 of 1

Plot Scale: 137.6 mV

Response [mV]

Page 1 of 1 Sample #: a1.9 Sample Name : 185979-007,111987,tvh Date : 4/5/06 10:42 AM FileName : G:\GC05\DATA\094G029.raw Time of Injection: 4/5/06 10:03 AM Method : TVHBTXE : 25.00 min High Point : 735.10 mV End Time Low Point : -24.00 mV Start Time : 0.00 min Plot Offset: -24 mV Plot Scale: 759.1 mV Scale Factor: 1.0 Response [mV] 1,020.92 1,020.1.37 -1.67 2.012.24 --1.83 C-6 -3.31> 3.55 -4.18 C-7 -4.68 5.70 S.5±40 TRIFLUO -6.26 **≫**-6.70 9.04 9.46 2462. - Sylv 12 Time [min] 12.28 12.81 13.16 --13.82 BROMOF--14.34 C-10 -15.13 -16.24 =16:98 -17.13 --17.43 -17.80 18.16 -18.61 19.01 19.31 19.67 -20.26 20.60 20.79 -21.11 -21.34 C-12 21.62 -21.78 23.17 MW-1

Sample Name : ccv/lcs,qc334232,111987,S3057,5/5000

: G:\GC05\DATA\094G002.raw FileName

1.0

: TVHBTXE Method Start Time : 0.00 min

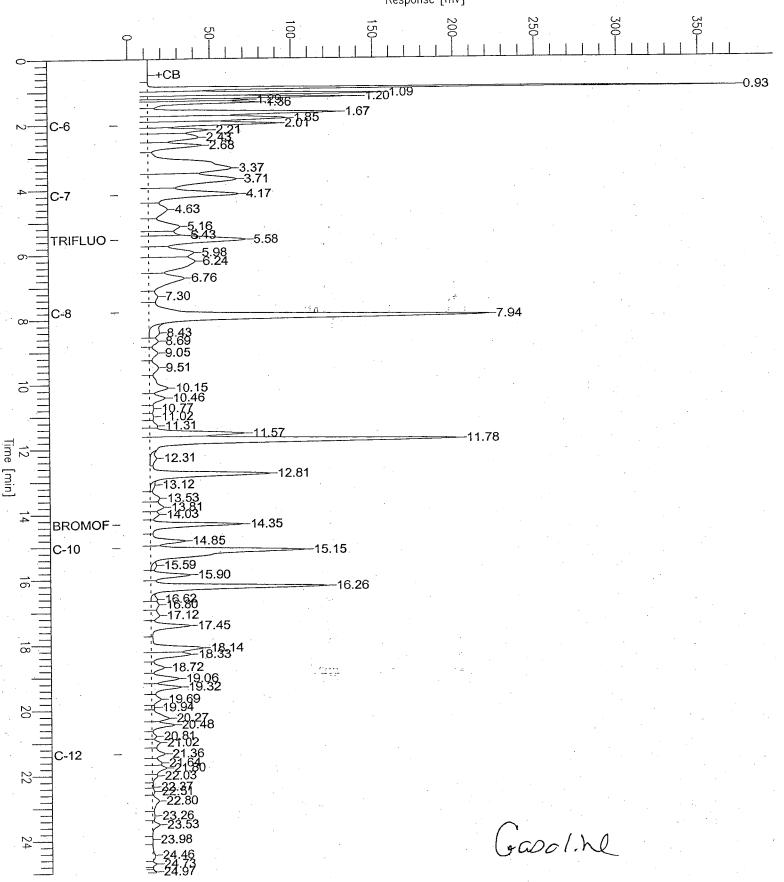
Scale Factor:

End Time : 25.00 min

Plot Offset: -6 mV

Sample #:

Page 1 of 1


Date: 4/5/06 10:11 AM

Time of Injection: 4/4/06 10:46 AM

High Point : 373.47 mV Low Point : -5.79 mV

Plot Scale: 379.3 mV

Batch QC Report

-	Total Vol	atile Hydrocarbo	DDS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC334232	Batch#:	111987
Matrix:	Water	Analyzed:	04/04/06
Units:	ug/L		

	Spiked		0.00	' Limits
Gasoline C7-C12	2,000	1,940	97	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	132	69-137
Bromofluorobenzene (FID)	122	80-133

Batch QC Report

Total Volatile Hydrocarbons					
Lab #:	185979	Location:	Oakland Edgewater		
Client:	LFR Levine Fricke	Prep:	EPA 5030B		
Project#:	001-09225-21	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	111987		
MSS Lab ID:	185952-001	Sampled:	04/03/06		
Matrix:	Water	Received:	04/03/06		
Units:	ug/L	Analyzed:	04/05/06		
Diln Fac:	1.000				

Type:

MS

Lab ID:

QC334268

Analyte M	ISS Result	Spiked	Result		C Limits
Gasoline C7-C12	27.06	2,000	1,916	94	80-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	128	69-137	
Bromofluorobenzene (FID)	122	80-133	

Type:

MSD

Lab ID:

QC334269

Analyte	Spiked		%REC	' Limits) Lim
Gasoline C7-C12	2,000	1,906	94	80-120	1	20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	131	69-137
Bromofluorobenzene (FID)	120	80-133

Total Extractable Hydrocarbons Lab #: Client: Oakland Edgewater Location: Prep: Analysis: EPA 3520C LFR Levine Fricke EPA 8015B 04/04/06 04/04/06 Project#: 001-09225-21 Matrix: Water Sampled: Received: Units: ug/L 04/05/06 Diln Fac: 1.000 Prepared: Analyzed: 04/06/06 Batch#: 112049

Field ID: Type:

MW-2 SAMPLE Lab ID:

185979-002

Cleanup Method: EPA 3630C

		RL
Kerosene C10-C16	ND	50
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogate	%REC	Limits	
Hexacosane	102	65-130	

Field ID: Type:

MW-1-FBSAMPLE

Lab ID:

185979-003

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Hexacosane	81	65-130	

Field ID: Type:

MW-12

SAMPLE

Lab ID:

185979-004

Cleanup Method: EPA 3630C

.:				***********
Analyte	Resul		RL	
	110	τ		\neg
Kerosene C10-C16	110	Y	50	- 1
Diesel C10-C24	110	Y	50	- 1
Motor Oil C24-C36	ND		300	

Surrogate	%REC	: Limits	
Hexacosane	86	65-130	

Field ID: Type:

MW-11

SAMPLE

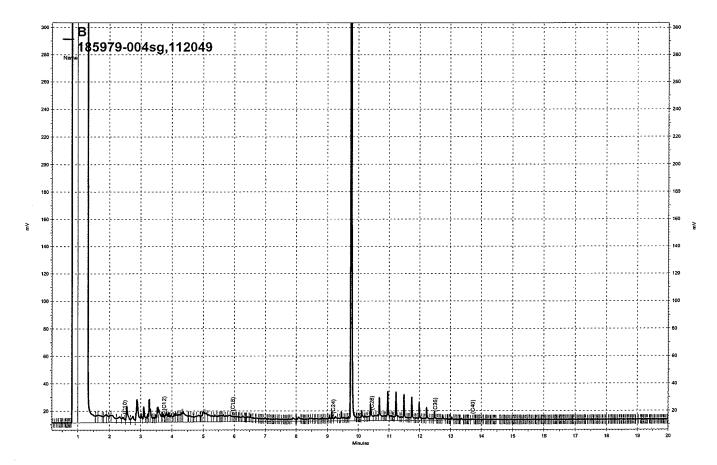
Lab ID:

185979-005

Cleanup Method: EPA 3630C

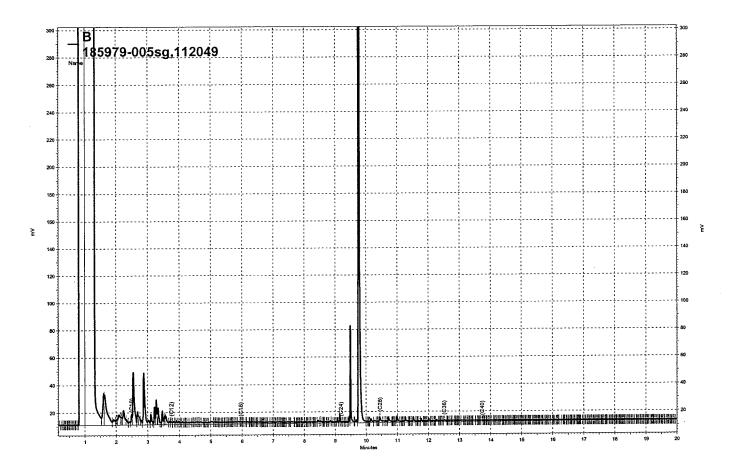
Analyte	Result	Rii	
Kerosene C10-C16	75 L	Y 50	
Diesel C10-C24	71 L	Y 50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Hexacosane	92	65-130	


L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected


RL= Reporting Limit

Page 1 of 2

\Lims\gdrive\ezchrom\Projects\GC15B\Data\096b011, B

MW-12

\Lims\gdrive\ezchrom\Projects\GC15B\Data\096b012, B

MU-11

	Total Ext	ractable Hydrocar	bons
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 3520C
Project#:	001-09225-21	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	04/04/06
Units:	uq/L	Received:	04/04/06
Diln Fac:	1,000	Prepared:	04/05/06
Batch#:	112049	Analyzed:	04/06/06

Field ID: Type:

MW-11-D SAMPLE

Lab ID:

185979-006 Cleanup Method: EPA 3630C

	Result	***********	DŦ	
Analyte	Result	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u> </u>	
Kerosene C10-C16	55	L Y	50	
Diesel C10-C24	ND		50	
Motor Oil C24-C36	ND		300	

Surrogate	%REC	Limits	
Hexacosane	82	65-130	

Field ID: Type:

MW-1 SAMPLE

185979-007

Cleanup Method: EPA 3630C

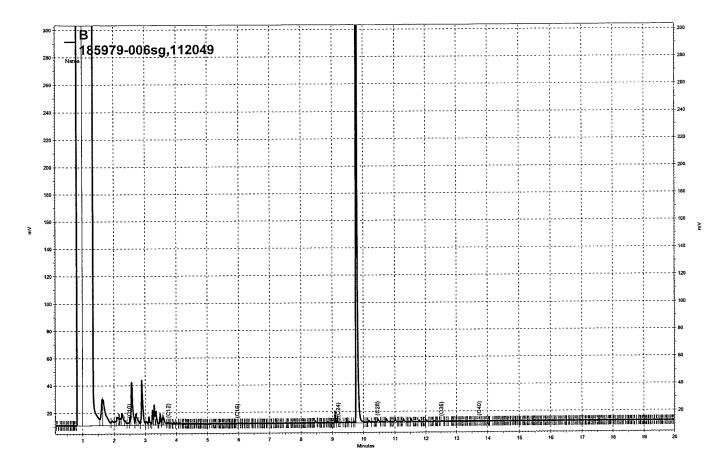
Analyte	Result	RL	
Kerosene C10-C16	1,100 L Y	50	,
Diesel C10-C24	. 830 L Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC		
Hexacosane	85	65-130	

Type: Lab ID: BLANK

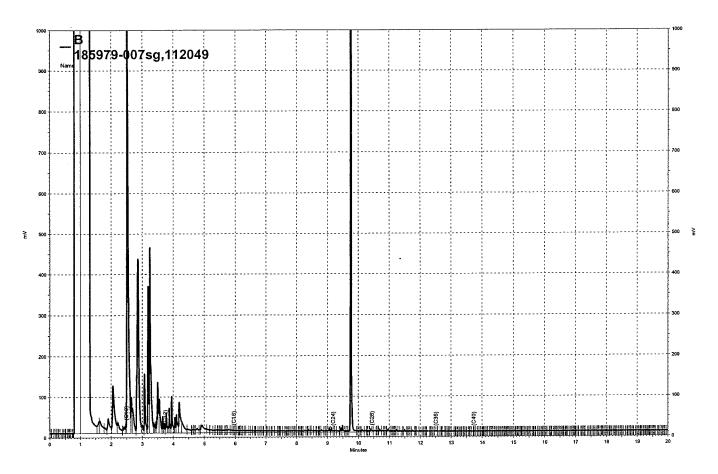
QC334476

Cleanup Method: EPA 3630C

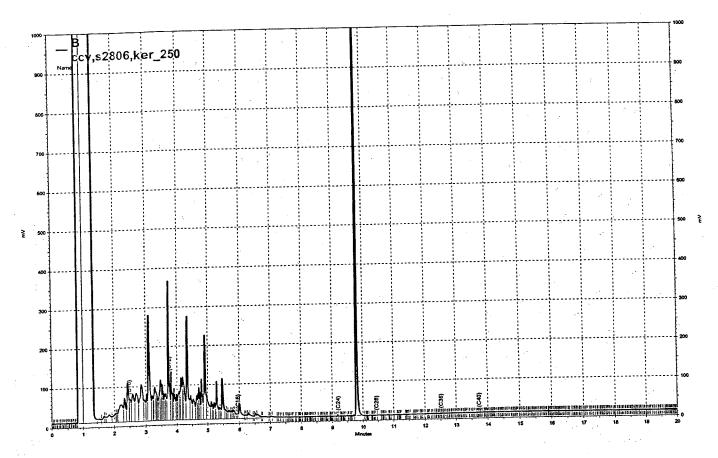

7.9-7.01-2	Result	RL	***************************************
77 27 27 27 27	NOOKA C	EA .	***************************************
	MD	50	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Hexacosane	90	65-130	

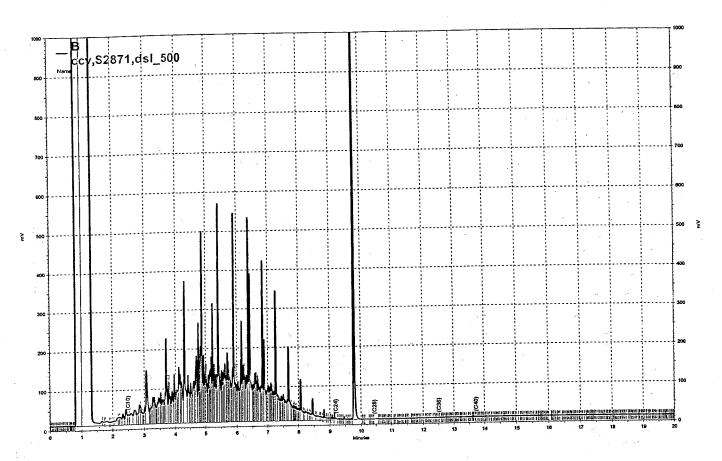
L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected


RL= Reporting Limit

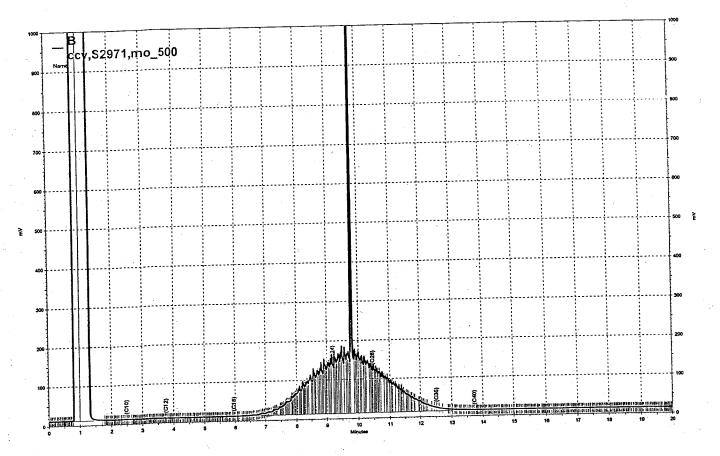
Page 2 of 2


\\Lims\gdrive\ezchrom\Projects\GC15B\Data\096b013, B

mw-11-D


\Lims\gdrive\ezchrom\Projects\GC15B\Data\096b014, B

mw-1



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\096b005, B

Kerosone

Diesol

----- \\Lims\gdrive\ezchrom\Projects\GC15B\Data\096b004, B

Moder Ci

Total Extractable Hydrocarbons						
Lab #:	185979	Location:	Oakland Edgewater			
Client:	LFR Levine Fricke	Prep:	EPA 3520C			
Project#:	001-09225-21	Analysis:	EPA 8015B			
Matrix:	Water	Batch#:	112049			
Units:	ug/L	Prepared:	04/05/06			
Diln Fac:	1.000	Analyzed:	04/06/06			

Type:

BS

Cleanup Method: EPA 3630C

Lab ID: QC334477

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,500	2,040	82	61-133	

Surrogate	%REC	Limits	
Hexacosane	98	65-130	,

Type:

BSD

Cleanup Method: EPA 3630C

Lab ID: QC334478

Analyte	Spiked	Result	%REC	' Limits	RPI) Lim
Diesel C10-C24	2,500	1,949	78	61-133	5	31

Surrogate	%REC		
Hexacosane	92	65-130	

	Purgeable	Aromatics by GO	C/MS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	112083
Lab ID:	185979-002	Sampled:	04/04/06
Matrix:	Water	Received:	04/04/06
Units:	ug/L	Analyzed:	04/06/06
Diln Fac:	1.000	_	

Analyte	Result	RL	
MTBE	0.5	0.5	
Benzene	2.1	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	0.5	0.5	
Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	101	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	93	80-122

	Purgeable	Aromatics by GO	C/MS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Field ID:	MW-1-FB	Batch#:	112083
Lab ID:	185979-003	Sampled:	04/04/06
Matrix:	Water	Received:	04/04/06
Units:	ug/L	Analyzed:	04/06/06
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	96	80-122

Purgeable Aromatics by GC/MS						
Lab #:	185979	Location:	Oakland Edgewater			
Client:	LFR Levine Fricke	Prep:	EPA 5030B			
Project#:	001-09225-21	Analysis:	EPA 8260B			
Field ID:	MW-12	Batch#:	112083			
Lab ID:	185979-004	Sampled:	04/04/06			
Matrix:	Water	Received:	04/04/06			
Units:	ug/L	Analyzed:	04/06/06			
Diln Fac:	1.000					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	%REC	Limits			
1,2-Dichloroethane-d4	97	80-130			
Toluene-d8	99	80-120			
Bromofluorobenzene	95	80-122		4.	

	Purgeable	e Aromatics by GO	C/MS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Field ID:	MW-11	Batch#:	112083
Lab ID:	185979-005	Sampled:	04/04/06
Matrix:	Water	Received:	04/04/06
Units:	ug/L	Analyzed:	04/06/06
Diln Fac:	1.000	_	

Analyte	Result	RL	
MTBE	6.5	0.5	
Benzene	5.7	0.5	
Toluene	0.9	0.5	
Ethylbenzene	14	0.5	
m,p-Xylenes	6.3	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	0.7	0.5	

Surrogate	%REC	' Limits	
1,2-Dichloroethane-d4	98	80-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	98	80-122	

	Purgeable	e Aromatics by GC	C/MS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Field ID:	MW-11-D	Batch#:	112083
Lab ID:	185979-006	Sampled:	04/04/06
Matrix:	Water	Received:	04/04/06
Units:	${ t ug/L}$	Analyzed:	04/06/06
Diln Fac:	1.000		

Analyte		RL	
MTBE	7.4	0.5	
Benzene	6.5	0.5	
Toluene	1.0	0.5	
Ethylbenzene	15	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	6.5	0.5	
o-Xylene	0.8	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	96	80-122

	Purgeable	Aromatics by GC	:/MS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Field ID:	MW-1	Batch#:	112128
Lab ID:	185979-007	Sampled:	04/04/06
Matrix:	Water	Received:	04/04/06
Units:	ug/L	Analyzed:	04/07/06
Diln Fac:	7.143		

Analyte	Result	RL	
MTBE	ND	3.6	
Benzene	470	3.6	
Toluene	13	3.6	
Ethylbenzene	7.8	3.6	
m,p-Xylenes	6.3	3.6	
Ethylbenzene m,p-Xylenes o-Xylene	ND	3.6	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	116	80-130
Toluene-d8	94	80-120
Bromofluorobenzene	105	80-122

Purgeable Aromatics by GC/MS							
Lab #:	185979	Location:	Oakland Edgewater				
Client:	LFR Levine Fricke	Prep:	EPA 5030B				
Project#:	001-09225-21	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC334612	Batch#:	112083				
Matrix:	Water	Analyzed:	04/06/06				
Units:	ug/L						

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	. ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	98	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	95	80-122	

Purgeable Aromatics by GC/MS							
Lab #:	185979	Location:	Oakland Edgewater				
Client:	LFR Levine Fricke	Prep:	EPA 5030B				
Project#:	001-09225-21	Analysis:	EPA 8260B				
Type:	BLANK	Diln Fac:	1.000				
Lab ID:	QC334778	Batch#:	112128				
Matrix:	Water	Analyzed:	04/07/06				
Units:	ug/L						

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	106	80-122

Purgeable Aromatics by GC/MS							
Lab #:	185979	Location:	Oakland Edgewater				
Client:	LFR Levine Fricke	Prep:	EPA 5030B				
Project#:	001-09225-21	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	112083				
Units:	ug/L	Analyzed:	04/06/06				
Diln Fac:	1.000						

Type:

BS

Lab ID:

QC334610

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	22.06	88	72-120
Benzene	25.00	26.19	105	80-120
Toluene	25.00	26.54	106	80-120
Ethylbenzene	25.00	27.94	112	80-120
m,p-Xylenes	50.00	57.20	114	80-121
m,p-Xylenes o-Xylene	25.00	28.26	113	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	98	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	92	80-122	

Type:

BSD

Lab ID:

QC334611

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	21.37	85	72-120	3	20
Benzene	25.00	24.99	100	80-120	5	20
Toluene	25.00	25.59	102	80-120	4	20
Ethylbenzene	25.00	26.95	108	80-120	4	20
m,p-Xylenes	50.00	55.97	112	80-121	2	20
o-Xylene	25.00	27.81	111	80-120	2	20

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	97	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	91	80-122

20011 <u>2</u> 0110		Aromatics by GO	2/MS
Lab #:	185979	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	112128
Units:	${\tt ug/L}$. Analyzed:	04/07/06
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC334776

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	22.31	89	72-120
Benzene	25.00	25.35	101	80-120
Toluene	25.00	26.33	105	80-120
Ethylbenzene	25.00	26.13	105	80-120
m,p-Xylenes o-Xylene	50.00	53.15	106	80-121
o-Xylene	25.00	25.75	103	80-120

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	95	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	100	80-122

Type:

BSD

Lab ID:

QC334777

Analyte	Spiked	Result	%REC	Limits	RPI) Lim
MTBE	25.00	21.88	88	72-120	2	20
Benzene	25.00	24.60	98	80-120	3	20
Toluene	25.00	24.95	100	80-120	5	20
Ethylbenzene	25.00	25.21	101	80-120	4	20
m,p-Xylenes	50.00	51.38	103	80-121	3	20
o-Xylene	25.00	24.87	99	80-120	3	20

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	95	80-130	
Toluene-d8	99	80-120	
Bromofluorobenzene	102	80-122	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 12-APR-06 Lab Job Number: 186011

Project ID: 001-09225-21

Location: Oakland Edgewater

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

erations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 5

CASE NARRATIVE

Laboratory number:

186011

Client:

LFR Levine Fricke

Project:

001-09225-21

Location:

Oakland Edgewater

Request Date:

04/06/06

Samples Received:

04/05/06

This hardcopy data package contains sample and QC results for ten water samples, requested for the above referenced project on 04/06/06. The samples were received cold and intact. All data were e-mailed to Larry Lapuyade on 04/12/06.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street

SIGNATURE

CHAIN OF CUSTODY

_	٥.	T	LOGIN	#.	186	11	1	
C	Ğ.	ı	LOGIN	#:_	100	U	\sqcup	L

	2323 Fifth Street			*									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6			Αı	naly	/sis					
. (Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax		C&TL	.OG	iN ‡	#: <u> </u>	186011	,					5	82608	· ,		· 							
			Sample	er:		Sx	RICA &	LA	-11	E	<u>.</u>		3	Ш										
roject	No.: 001-09225-2	2. \ i	Report	To:		10	ivry la	Du	l v		d c)	7	P				'					1	
roject	Name: Oakland S	An vola				15		1	7	ا	~~	-	-	A										
						<u> </u>	10)501	<u> </u>	5	C			د											
roject	^		Telepho	one:		(5	10)596.4	16	2	0			共	邱										
urnard	ound Time: Standar	α 1	Fax:			 			 ,				F	R										
				···	Ma	trix		F	Pres	erva	ative	•	7							.				
Lab No.	Sample ID.	Sampling Time		Soil	Water	Waste	# of Containers	HCL	H ₂ SO ₄	HNO3	ICE		HOL	PH										
-1	TR - 2	415/06	(000)		X]	-		_		_	14	0.1	7	_		╀						
2	MW-17	418/06	1025		$\stackrel{\frown}{\times}$		4						X	X	-4	+		+	-			+	-	
-3	MW-16	4506	1045		又		4						文	X										
-4	MW-8	4/5/06	1058		X		4						X	X										
	MW-1S	45106	1229		$\stackrel{\times}{\sim}$		1						X	$\langle \rangle$			_	 				-	 - -	
	MW-9	4 5 06	1308		X		- -	 				\dashv	X	$\langle \rangle$				 		_		+		
-4	MW-13 MW-13	4506	1329		\Diamond	<u> </u>	12	+					1					+	+					1
-9	MW-10	4506	1412		\		4	-					₹	*		+		+-				-	+	-
-10	MW-7	415106	1445	,	X		4						女	X		_	+-	+			_	+-		
-11	MW-5-FB	45106	1457		X		4						H	OL	N	_				_	+	+		
12	MW-5	4/5/08			X		4				•		X	X	`	·						\top		
		0414015.050																						
lotes:	N TD-2 and	SAMPLE REC		RE	LIN	QUI	SHED BY:						1		/ED	BY:								
400	D TB-2 and	On Ice		\$	$\overline{\zeta}$		1	0	-			06		50/)				$\overline{\cap}$,	4-5	<u>-0</u>	ρ S.	50
MM	-5-FB.	Preservative Co				9	wed in	/		D/	ATE /	TIME	-	X	eva	<u>-ni</u>	مدر	<u> </u>	卫	<u> </u>	TAC'	E/	TIME	
SE S	SILICA GEL	Yes No	□ N/A							DA	ATE /	TIME		•							ר ארו	ΓË /·	TIME	İ
CLET	MUP ON THATP	Hmo TPH	tr_																***************************************		יייי	/	TIVIL	
	mples	-								D/	ATE /	TIME									DA٦	ΓE / .	TIME	

SOP Volume:

Client Services

Section:

1.1.2

Page:

l of l

Filename: F:\qc\forms\qc\cooler.doc

Effective Date:

Revision:

10-May-99 1 Number 1 of 3

Filename:

 $F:\QC\Forms\QC\Cooler.wpd$

Curtis & Tompkins, Ltd.

Login#	#: \[\langle	
Client:	: LFR Project: (IAK(AN)) Egewitter	
A.	Preliminary Examination Phase	
	Date Opened: 4/5/06 By (print): 1/2 (sign)	
1.	Did cooler come with a shipping slip (airbill, etc.)?	S NO
	If YES, enter carrier name and airbill number:	\mathcal{L}
2.	Were custody seals on outside of cooler? YEs	SNO
	How many and where? Seal date: Seal name:	
3.	Were custody seals unbroken and intact at the date and time of arrival? YES	S NO
4.	Were custody papers dry and intact when received?	NO &
5.	Were custody papers filled out properly (ink, signed, etc.)?YE	NO 8
6.	Did you sign the custody papers in the appropriate place?	NO &
7.	Was project identifiable from custody papers?YE	ON (
	If YES, enter project name at the top of this form.	
8.	If required, was sufficient ice used? Samples should be 2-6 degrees C YES	S NO
	Type of ice: We Temperature: On 1 Ce - No Temp	0
В.	Login Phase	
	Date Logged In: 4/6/06 By (print): form fi (sign) frequent	_/
1.	Describe type of packing in cooler: Feam	
2.		ON(S
3. °	Were labels in good condition and complete (ID, date, time, signature, etc.)?.(YES	NO 🧞
4.	Did bottle labels agree with custody papers?	
5.	Were appropriate containers used for the tests indicated?	
6.	Were correct preservatives added to samples? YES	
7.	Was sufficient amount of sample sent for tests indicated?	
8.	Were bubbles absent in VOA samples? If NO, list sample Ids below	
9.	Was the client contacted concerning this sample delivery?	
	If YES, give details below.	
	Who was called? By whom? Date:	
Additie	onal Comments:	
	· · · · · · · · · · · · · · · · · · ·	
		
 		
Filename	e: F:\qc\forms\qc\cooler.doc Rev. 1, 4/9	95

Total Extractable Hydrocarbons Lab #: Location: Oakland Edgewater EPA 3520C Client: LFR Levine Fricke Prep: Analysis: Project#: 001-09225-21 EPA 8015B 04/05/06 Matrix: Water Sampled: 04/05/06 ug/L Units: Received: 04/07/06 Diln Fac: 1.000 Prepared: Batch#: 112153 Analyzed: 04/10/06

Field ID: Type:

MW-17 SAMPLE Lab ID:

186011-002

Cleanup Method: EPA 3630C

	Kesult	RL	
Kerogene C10-C16	ND	5.0	
RELOSCIC CIO CIO	112	. 50	•
Diesel Clu-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Hexacosane	93	65-130	

Field ID: Type:

MW-16 SAMPLE Lab ID:

186011-003

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	ND	50	
Diesel C10-C24	95 H Y	50	
Motor Oil C24-C36	420	300	

Surrogate	%REC	Limits	
Hexacosane	84	65-130	

Field ID:

Kerosene C10-C16

8 - WM SAMPLE Lab ID:

186011-004

EPA 3630C

Type: Cleanup Method: Analyte Result

50 54 Y 50

Diesel C10-C24	54 Y	. 50	
Motor Oil C24-C36	ND	300	
Surrogate	%REC Limits		

97 Hexacosane 65-130

Field ID: Type:

MW-15 SAMPLE

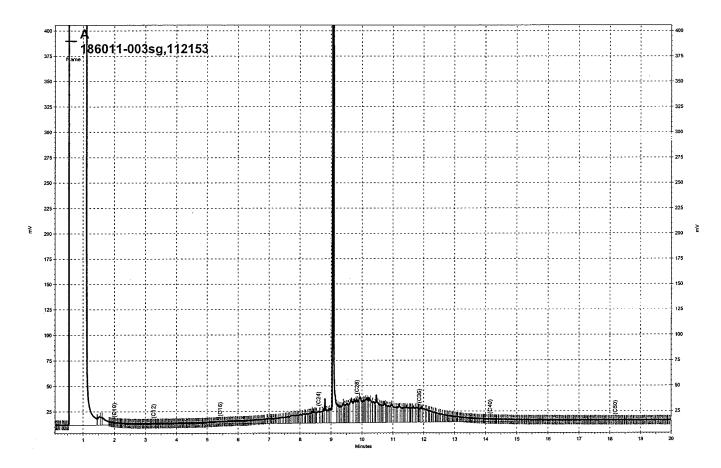
186011-005

Cleanup Method: EPA 3630C

Analyte	Result	RL.	
Kerosene C10-C16	87 H Y	50	
Diesel C10-C24	300 H Y	50	
Motor Oil C24-C36	760	300	

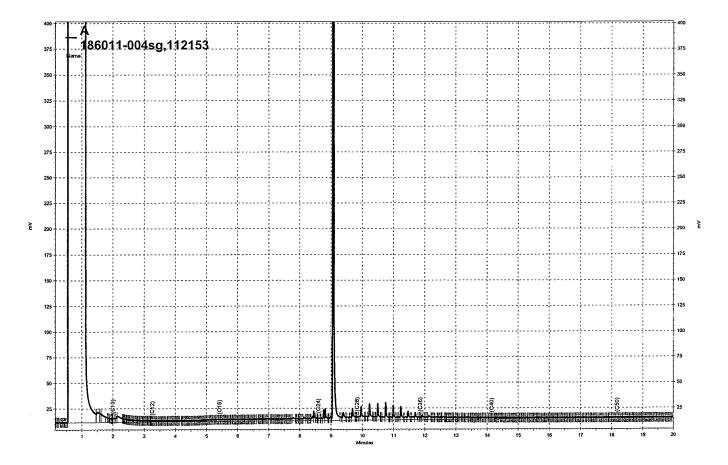
Surrogate	%REC	Limits	
Hexacosane	85	65-130	

H= Heavier hydrocarbons contributed to the quantitation

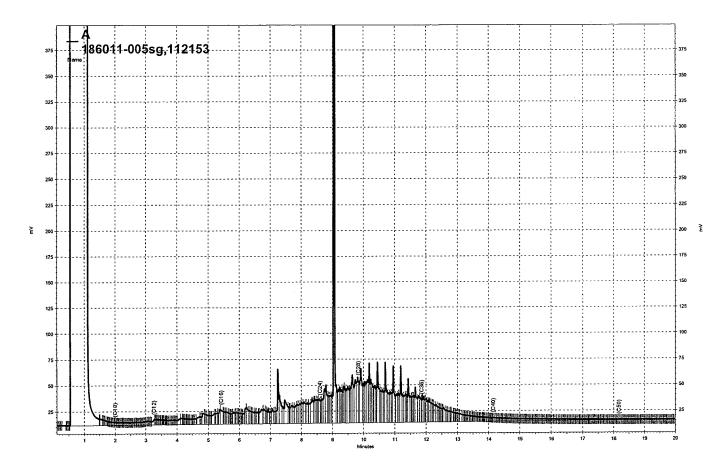

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected

ND


RL= Reporting Limit

Page 1 of 3


\\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a021, A

MW-16

\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a022, A

MW-E

\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a023, A

Mu 115

	Total Exti	ractable Hydrocar	bons
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 3520C
Project#:	001-09225-21	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	04/05/06
Units:	ug/L	Received:	04/05/06
Diln Fac:	1.000	Prepared:	04/07/06
Batch#:	112153	Analyzed:	04/10/06

Field ID: Type:

MW - 9 SAMPLE Lab ID:

186011-006 Cleanup Method: EPA 3630C

Analyte Result 64 H Y 140 H Y Kerosene C10-C16

50 50 Diesel C10-C24 Motor Oil C24-C36 320 300

Limits Surrogate 65-130 89 Hexacosane

Field ID: Type:

MW-14

SAMPLE

Lab ID:

186011-007

Cleanup Method:

EPA 3630C

Result Analyte Kerosene C10-C16 ND 50 50 Y 50 Diesel C10-C24 Motor Oil C24-C36 300 ND

	%REC	Limits		
Hexacosane	95	65-130		

Field ID: Type:

MW-13

SAMPLE

Lab ID:

186011-008

Cleanup Method: EPA 3630C

Result Analyte Kerosene C10-C16 ND 50 180 H Y 50 Diesel C10-C24 300 Motor Oil C24-C36 910

		CONTRACTOR STORMS INCOME AND ADDRESS OF THE PARTY OF THE	
Gurrogata	*REC	Lamate	
Surrogate	9 A A A A A A A A A A A A A A A A A A A		
**	0.7	CE 130	
I Hexacosane	04	02-T20	

Field ID: Type:

MW-10 SAMPLE

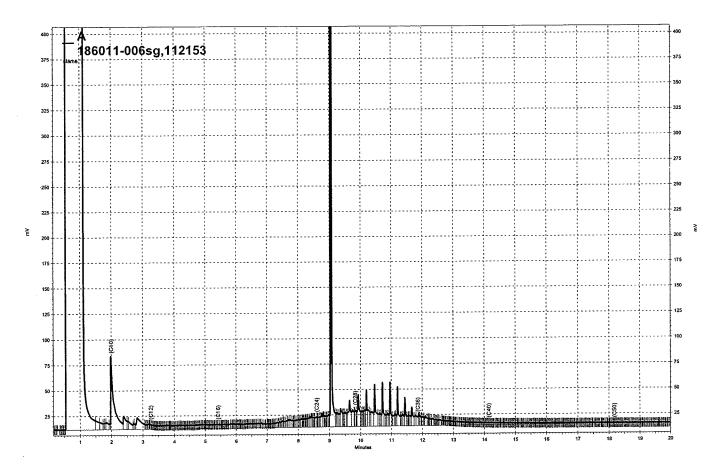
Lab ID:

186011-009

Cleanup Method: EPA 3630C

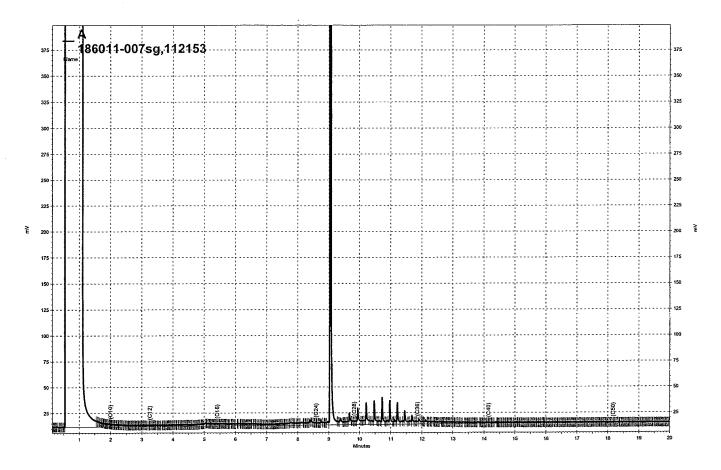
Analyte Result 50 ND Kerosene C10-C16 Diesel C10-C24 ND 50 300 Motor Oil C24-C36

Surrogate	%REC	Limits		
Hexacosane	82	65-130		

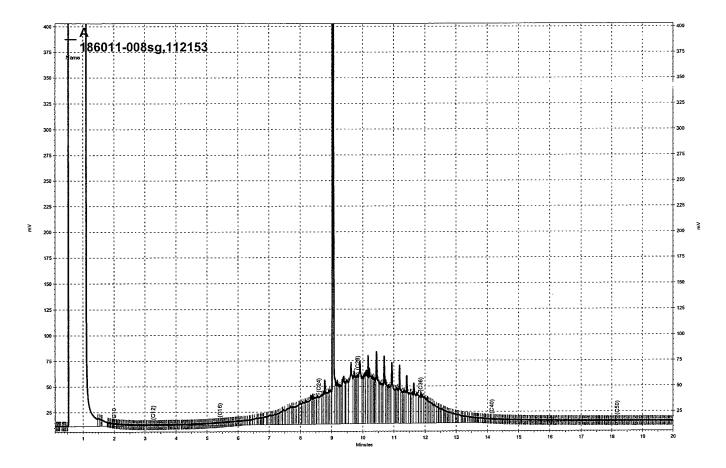

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected


RL= Reporting Limit

Page 2 of 3


\\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a024, A

Mu-9

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a026, A

MW-14

\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a027, A

MW-13

	Total Exti	ractable Hydrocar	bons
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 3520C
Project#:	001-09225-21	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	04/05/06
Units:	ug/L	Received:	04/05/06
Diln Fac:	1.000	Prepared:	04/07/06
Batch#:	112153	Analyzed:	04/10/06

Field ID: Type:

MW - 7 SAMPLE Lab ID:

186011-010 Cleanup Method: EPA 3630C

Ameliate	Result	RL	
-100-1100 to	1	F.0	
Kerosene C10-C16	ND	50	
1	MD	5.0	
Diesel C10-C24	ND	50	
M-1 0-1 024 026	ND	300	
1 MOEOT 011 0.24 = 0.36	1112	500	

Surrogate		Limits	
Hexacosane	92	65-130	

Field ID: Type:

MW-5 SAMPLE Lab ID:

186011-012

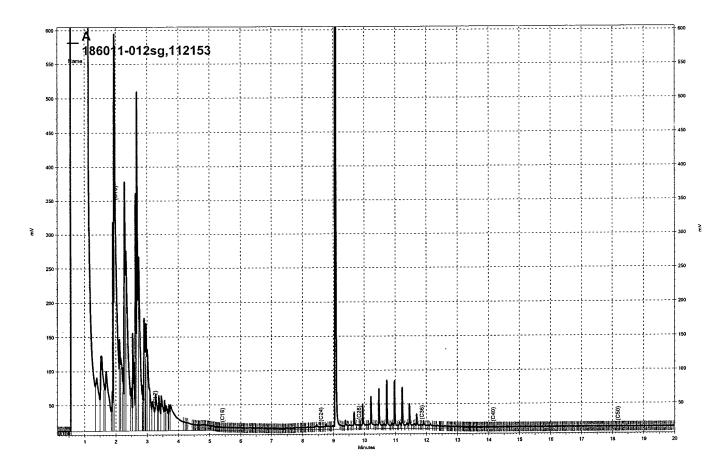
Cleanup Method: EPA 3630C

Analyte	Result	RL	
Kerosene C10-C16	850 H	50	
Diesel C10-C24	840 L Y	50	1
Motor Oil C24-C36	ND	300	
MOCOL OLL OLL OUT			

Surrogate	%RE		
Hexacosane	82	65-130	

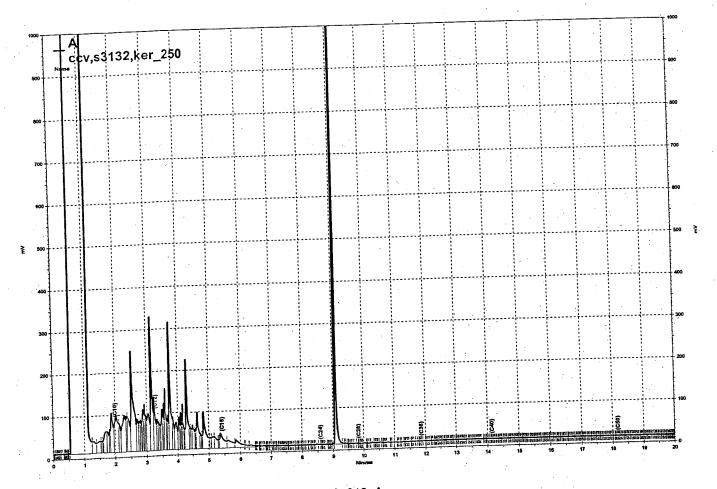
Type: Lab ID: BLANK QC334902 Cleanup Method: EPA 3630C

Analyte	Result	RL
Kerosene C10-C16	ND	50
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

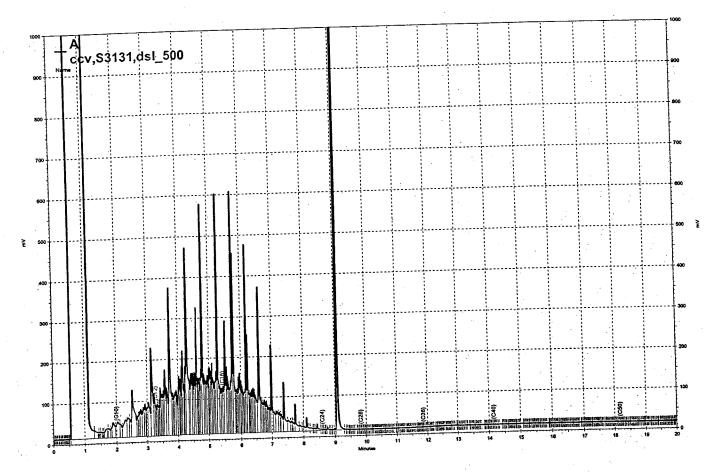

Surrogate		Limits	
Hexacosane	90	65-130	

H= Heavier hydrocarbons contributed to the quantitation
L= Lighter hydrocarbons contributed to the quantitation
Y= Sample exhibits chromatographic pattern which does not resemble standard

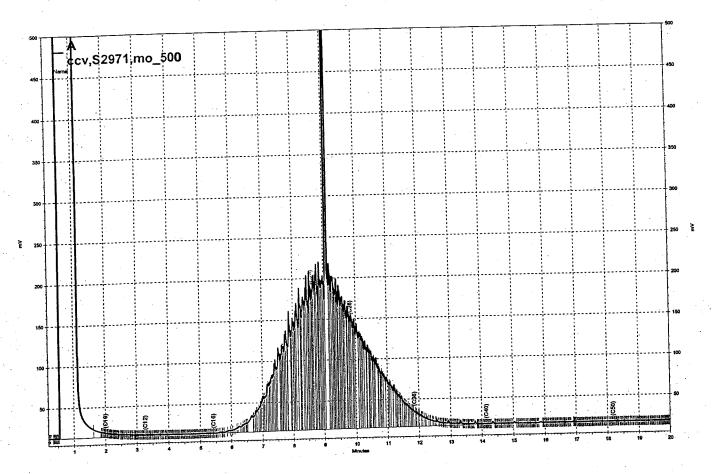
ND= Not Detected


RL= Reporting Limit

Page 3 of 3


\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a030, A

MW-5


_____\\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a019, A

Kerosone

\\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a004, A

D: 150l

_____\\Lims\gdrive\ezchrom\Projects\GC17A\Data\100a003, A

Motor oi

	Total Extracta	ble Hydrocarbo	ns
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 3520C
Project#:	001-09225-21	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	112153
Units:	ug/L	Prepared:	04/07/06
Diln Fac:	1.000	Analyzed:	04/10/06

Type: Lab ID: BS

QC334903

Cleanup Method: EPA 3630C

	Spiked	Result	%REC	? Limits	
Diesel C10-C24	2,500	2,339	94	61-133	

Surrogate	*REC	Limits	
Hexacosane	84	65-130	

Type: Lab ID: BSD

QC334904

Cleanup Method: EPA 3630C

Analyte	Spiked	Result		Limits	RPD	Lim
Diesel C10-C24	2,500	3,039	122	61-133	26	31

Surrogate	%REC	HTHIFF	
Hexacosane	110	65-130	

	Gasc	oline by GC/MS	
Lab #: Client:	186011 LFR Levine Fricke	Location: Prep:	Oakland Edgewater EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	04/05/06
Units:	ug/L	Received:	04/05/06

Field ID: Type:

MW-17 SAMPLE

Diln Fac: Batch#: 1.000 112127 04/07/06

Type: Lab ID:

186011-002

Analyte	Result	RL
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50
o-Xylene	ND	0.50

Analyzed:

Surrogate	%REC	? Limits
Dibromofluoromethane	91	80-120
1,2-Dichloroethane-d4	96	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	94	80-122

Field ID: Type: MW-16 SAMPLE 186011-00 Diln Fac:

1.000 112127

Lab ID: 186011-003

Batch#: Analyzed:

04/07/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	·
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	2 Limits
Dibromofluoromethane	95	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	96	80-122

ND= Not Detected

RL= Reporting Limit

Page 1 of 6

		oline by GC/MS	
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	04/05/06
Units:	ug/L	Received:	04/05/06

Field ID:

8-WM

SAMPLE

Type: Lab ID:

186011-004

Diln Fac:

1.000

Batch#:

112127

Analyzed:

04/07/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	C Limits
Dibromofluoromethane	92	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	95	80-122

Field ID:

MW-15

Type: Lab ID: SAMPLE 186011-005 Diln Fac:

1.000

Batch#:

112187

Analyzed:

04/10/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
m,p-Xylenes	1.5	0.50	
o-Xylene	0.87	0.50	

Surrogate	%REC] Limits	
Dibromofluoromethane	93	80-120	
1,2-Dichloroethane-d4	98	80-130	
Toluene-d8	99	80-120	i
Bromofluorobenzene	97	80-122	

ND= Not Detected

RL= Reporting Limit

Page 2 of 6

	Gasc	oline by GC/MS	
Lab #: Client:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	04/05/06
Units:	ug/L	Received:	04/05/06

Field ID:

MW-9

Type: Lab ID: SAMPLE

186011-006

Diln Fac:

2.000

Batch#:

Analyzed:

112187 04/10/06

Analyte	Result	RL	
Gasoline C7-C12	160	100	
MTBE	ND	1.0	
Benzene	140	1.0	
Toluene	5.2	1.0	
Ethylbenzene	ND	1.0	
Ethylbenzene m,p-Xylenes o-Xylene	4.1	1.0	
o-Xylene	ND	1.0	

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	94	80-122

Field ID:

MW-14

Type: SAMPLE Lab ID: 186011-007

Diln Fac: Batch#:

1.000 112127

Analyzed:

04/07/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	1.7	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	92	80-120
1,2-Dichloroethane-d4	96	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	93	80-122

ND= Not Detected

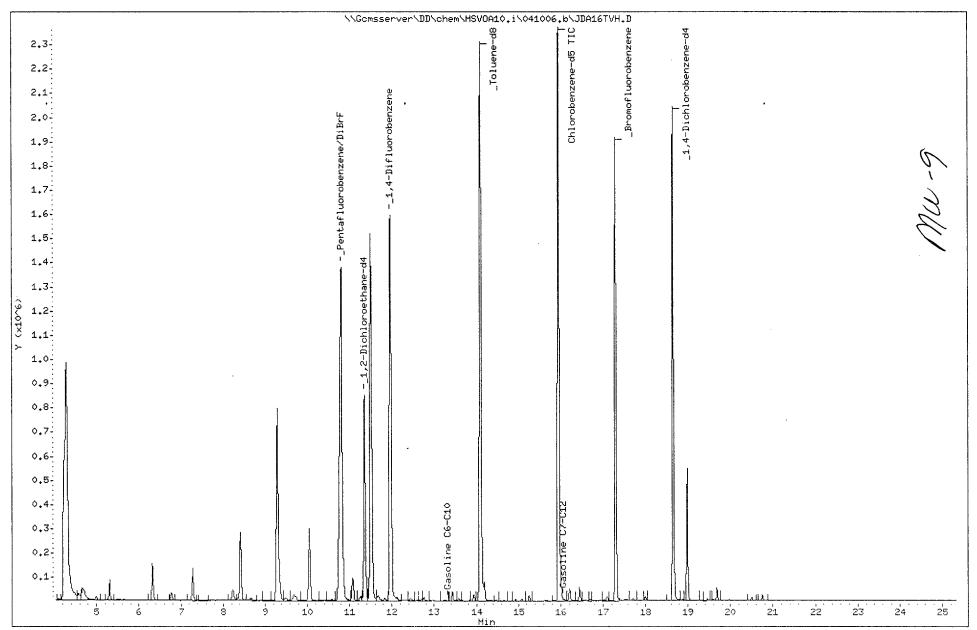
RL= Reporting Limit

Page 3 of 6

Data File: \\Gomsserver\DD\chem\MSVOA10.i\041006.b\JDA16TVH.D

Date : 10-APR-2006 16:50

Client ID: DYNA P&T


Sample Info: S,186011-006

Column phase:

Instrument: MSVOA10.i

Operator: LW

Column diameter: 2.00

	Gasc	oline by GC/MS	
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	04/05/06
Units:	ug/L	Received:	04/05/06

Field ID:

MW-13

Type: Lab ID: SAMPLE

186011-008

Diln Fac:

1.000

Batch#:

112127

Analyzed:

04/07/06

Analyte	Result	RL
Gasoline C7-C12	ND	50 .
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50
o-Xylene	ND .	0.50

Surrogate	%REC	C Limits	
Dibromofluoromethane	91	80-120	
1,2-Dichloroethane-d4	96	80-130	
Toluene-d8	98	80-120	
Bromofluorobenzene	95	80-122	

Field ID:

MW-10

Type: Lab ID:

SAMPLE 186011-009 Diln Fac:

Batch#:

1.000 112127

Analyzed:

04/07/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	2.1	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-122

ND= Not Detected

RL= Reporting Limit

Page 4 of 6

	Gasoline	by GC/MS	
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Sampled:	04/05/06 04/05/06
Units:	ug/L	Received:	04/05/06

Field ID: Type:

Lab ID:

MW-7

SAMPLE

186011-010

Diln Fac:

1.000

Batch#:

112127

Analyzed:

04/07/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	2.7	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-122

Field ID:

MW-5

Type: Lab ID:

SAMPLE 186011-012 Diln Fac:

4.000

Batch#:

112187

Analyzed:

04/10/06

Analyte	Result	RL	
Gasoline C7-C12	3,400	200	
MTBE	31	2.0	
Benzene	14	2.0	
Toluene	2.1	2.0	
Ethylbenzene	280	2.0	
m,p-Xylenes	13	2.0	
Ethylbenzene m,p-Xylenes o-Xylene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	96	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	90	80-122

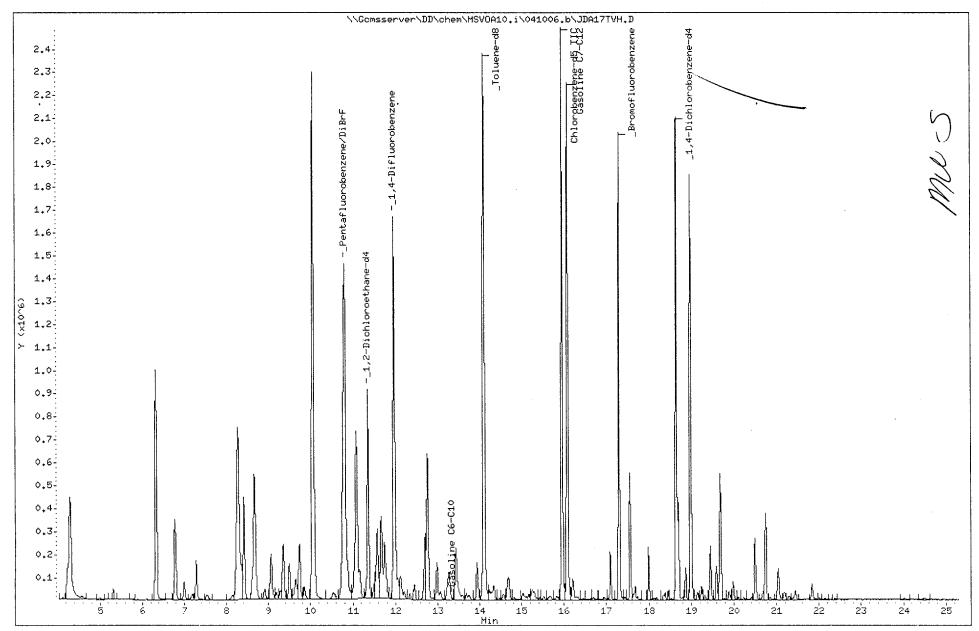
ND= Not Detected

RL= Reporting Limit

Data File: \\Gomsserver\DD\chem\MSVOA10.i\041006.b\JDA17TVH.D

Date : 10-APR-2006 17:25

Client ID: DYNA P&T


Sample Info: S,186011-012

Column phase:

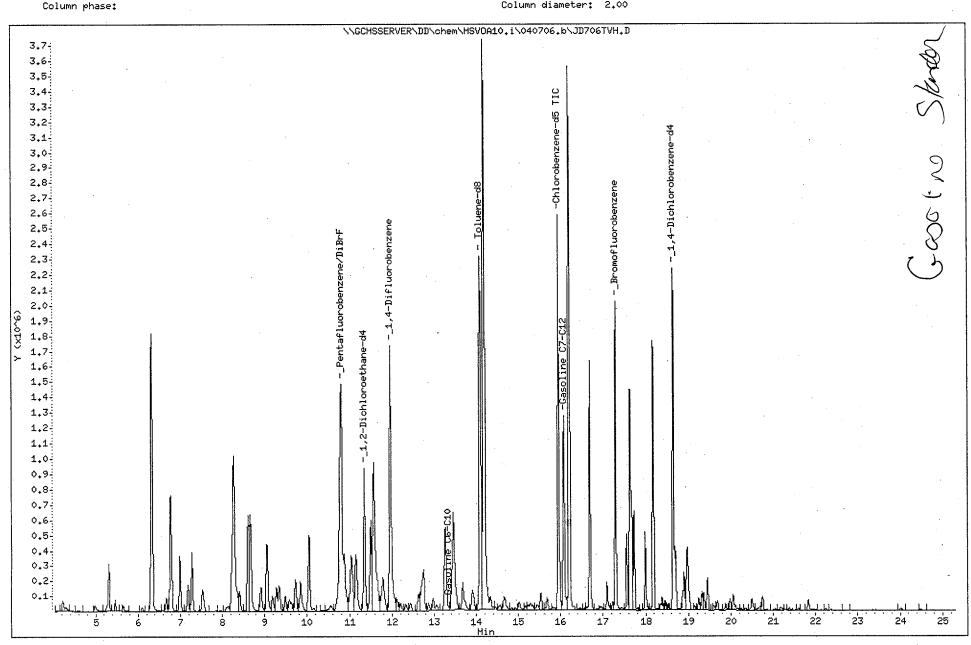
Instrument: MSVOA10.i

Operator: LW

Column diameter: 2.00

Data File: \\GCMSSERVER\DD\chem\MSVOA10.i\040706.b\JD706TVH.D

Date : 07-APR-2006 10:32


Client ID: DYNA P&T

Sample Info: CCV/BS,QC334774

Instrument: MSVOA10.i

Operator: LW

Column diameter: 2.00

Gasoline by GC/MS Lab #: 186011 Location: Oakland Edgewater Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09225-21 Analysis: EPA 8260B Matrix: Water Sampled: 04/05/06 Units: ug/L Received: 04/05/06

Type: Lab ID: BLANK

Lab ID:

QC334773

Diln Fac:

1.000

Batch#:

112127

Analyzed:

04/07/06

Analyte	Result	RL
Gasoline C7-C12	ND	50
MTBE	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

_		
Surrogate	*REC	' Limits
Dibromofluoromethane	95	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	95	80-122

Type:

Diln Fac:

BLANK

Lab ID: QC335

QC335048 1.000 Batch#:

112187

Analyzed:

04/10/06

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	: Limits
Dibromofluoromethane	94	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	98	80-122

ND= Not Detected

RL= Reporting Limit

Page 6 of 6

	Gasc	oline by GC/MS	
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	112127
Units:	ug/L	Analyzed:	04/07/06
Diln Fac:	1.000		

Type:

BS

Lab ID: QC334771

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	23.24	93	72-120
Benzene	25.00	26.64	107	80-120
Toluene	25.00	27.52	110	80-120
Ethylbenzene	25.00	28.27	113	80-120
m,p-Xylenes o-Xylene	50.00	56.78	114	80-121
o-Xylene	25.00	28.64	115	80-120

Surrogate	%RE(Limits
Dibromofluoromethane	94	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	93	80-122

Type:

BSD

Lab ID: QC334772

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	21.54	86	72-120	8	20
Benzene	25.00	24.78	99	80-120	7	20
Toluene	25.00	25.29	101	80-120	8	20
Ethylbenzene	25.00	26.40	106	80-120	7	20
m,p-Xylenes	50.00	53.54	107	80-121	6	20
o-Xylene	25.00	27.11	108	80-120	6	20

Surrogate	%REC	: Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	92	80-122

	Gasc	oline by GC/MS	
Lab #:	186011	Location:	Oakland Edgewater
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	112127
Units:	ug/L	Analyzed:	04/07/06
Diln Fac:	1.000	<u>-</u>	

Type:

BS

Lab ID:

QC334774

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	2,004	100	70-130

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-120
1,2-Dichloroethane-d4	100	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	90	80-122

Type:

Toluene-d8

Bromofluorobenzene

BSD

Lab ID:

QC334775

%REC Limits RPD Lim

Result

Gasoline C7-C12		2,000	1,964	98	70-130	2	20
Surrogate	%RE(: Limits					
Dibromofluoromethane	93	80-120					
1,2-Dichloroethane-d4	99	80-130					

Spiked

80-120

80-122

98

89

	Gasc	oline by GC/MS	
	186011	Location:	Oakland Edgewater
Lab #: Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	112187
Units:	ug/L	Analyzed:	04/10/06
Diln Fac:	1.000	_	,

Type:

BS

Lab ID: QC335044

Analyte	Spiked	Result	*REC	Limits	
Gasoline C7-C12	1,250	1,264	101	70-130	

Surrogate	%REC	C Limits
Dibromofluoromethane	94	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	93	80-122

Type:

BSD

Lab ID: QC335045

Analyte	Spiked	Result	%REC	Limits) Lim
Gasoline C7-C12	1,250	1,203	96	70-130	5	20

Surrogate	%REC	: Limits
Dibromofluoromethane	92	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	93	80-122

	Gasc	oline by GC/MS	
Lab #:	186011	Location:	Oakland Edgewater
Lab #: Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	001-09225-21	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	112187
Units:	ug/L	Analyzed:	04/10/06
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC335046

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	21.34	85	72-120
Benzene	25.00	25.10	100	80-120
Toluene	25.00	25.62	102	80-120
Ethylbenzene	25.00	26.62	106	80-120
m,p-Xylenes	50.00	54.51	109	80-121
o-Xylene	25.00	26.67	107	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	94	80-120
1,2-Dichloroethane-d4	99	80-130
Toluene-d8	99	80-120
Bromofluorobenzene	95	80-122

Type:

BSD

Lab ID:

QC335047

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	21.34	85	72-120	0	20
Benzene	25.00	24.69	99	80-120	2	20
Toluene	25.00	25.29	101	80-120	1	20
Ethylbenzene	25.00	26.47	106	80-120	1	20
m,p-Xylenes	50.00	53.52	107	80-121	2	20
o-Xylene	25.00	26.37	105	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	98	80-130
Toluene-d8	98	80-120
Bromofluorobenzene	94	80-122

APPENDIX D

Historical Tables

Table 2
Summary of Groundwater Analytical Data, VOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Benzene (µg/l)	n-Butyl- benzene (µg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl- benzene (µg/l)	Chloro- ethane (µg/l)		Methyl Chloride (µg/l)	1,2- DCA (µg/l)	cis-1,2- DCE (µg/l)	1,2- DCP (µg/l)	Ethyl- benzene (µg/l)	Isopropyl- benzene (µg/l)	p-isopropyi- toluene (µg/l)	MTBE (µg/l)	Napthalene (µg/l)	n-Propyl- benzene (µg/l)	Toluene (µg/l)	1,2,4- TMB (µg/l)	1,3,5- TMB (µg/l)	Xylenes (µg/l)
MW-5 2/27/01	180	9	4 .	ND	3	ND	ND	7	ND	3	260	23	6	1,100	43	68	7	1	11	53
MW-6	•					,														
2/27/01	270	11	3	ND	<1	ND	ND	7	ND	< 1	9	6.0	1.0	19.0	62	21	3	1	< 1	3
8/20/01	E280	14	<1	<1	<1	3	2	<1	<1	<1	11	4.0	<1	14.0	E82	14	4	<1	<1 .	9
TBW-1 8/20/01	E530	30	<1	54	<1	4	10	<1	2	<1	E540	36	54	<1	E300	E120	79	E430	<1	E790
TBW-3 8/20/01	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	5	<1	<1	<1	<1	3
TBW-5 8/20/01	E620	<1	<1	E160	<1	3	<1	<1	<1	<1	E730	40	E160	<1	E450	E140	E110	<1	<1	E3100
•																				

Notes:

cis-1,2-DCE = cis-1,2-dichloroethene

E = estimated concentration

MTBE = methyl tertiary-butyl ether

ND = Not detected.

VOCs = Volatile organic compounds by EPA Method 8260. Sample not subject to silica gel cleanup or filtration prior to analysis.

1,2-DCA = 1,2-dichloroethane

1,2-DCP = 1,2-dichloropropane

1,2,4-TMB = 1,2,4-trimethylbenzene

1,3,5-TMB = 1,3,5-trimethylbenzene

Table 3
Summary of Groundwater Analytical Data, SVOCs
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in micrograms per liter (µg/l)

Well ID/ Date	Napthalene (µg/l)	Pyrene (µg/l)	Other SVOCs (µg/l)
1.677			
MW-6	10		
2/27/01	19 52	ND	ND
8/20/01	52	<5	39
MW-9			
11/28/00	ND	ND	ND
MW-13			
11/28/00	ND	10	ND
MW-17			
11/28/00	ND	ND	ND
TBW-1			
8/20/01	140	8	387
TBW-3			
8/20/01	<5	<5	5
TBW-5			
8/20/01	220	<5	73

Notes.

SVOCs = Semivolatile organic compounds by EPA Method 8270

ND = Not detected

Samples not subject to silica gel cleanup or filtration before analysis.

Table 4
Summary of Groundwater Analytical Data, LUFT Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Concentrations expressed in milligrams per liter (mg/l)

Well ID/ Date	Cadmium (mg/l)	Chromium (mg/l)	Lead (mg/l)	Nickel (mg/l)	Zinc (mg/l)	Notes
MW-2						
8/19/98			<100			a
MW-6						
2/28/01	< 0.001	0.035	0.23	0.046	0.19	non-filtered
8/16/01	< 0.001	0.020	0.12	0.032	0.11	Mon microu
TBW-1						
8/16/01	< 0.001	0.017	0.042	0.034	0.10	0.1
TBW-3						
8/16/01	< 0.001	0.008	0.01	0.019	< 0.02	
TBW-5						
8/16/01	< 0.001	< 0.005	0.01	0.008	0.03	
				•		

Notes:

LUFT metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise.

LUFT = Leaking Underground Fuel Tank

^{--- =} not measured/analyzed

a = analyzed for organic lead

Table 5
Summary of Groundwater Analytical Data, Additional Metals
Municipal Service Center, 7101 Edgewater Drive, Oakland, California

Antimony (mg/l)	Arsenic (mg/l)	Beryllium (mg/l)	Copper (mg/l)	Selenium (mg/l)	Silver (mg/l)	Thallium (mg/l)
< 0.01	0.033	< 0.001	0.025	< 0.01	< 0.003	< 0.01
				Ť		
< 0.01	0.015	< 0.001	0.017	< 0.01	< 0.003	< 0.01
< 0.01	0.009	< 0.001	0.008	< 0.01	< 0.003	< 0.01
< 0.01	0.020	< 0.001	< 0.005	< 0.01	< 0.003	< 0.01
	(mg/l) <0.01 <0.01	(mg/l) (mg/l) <0.01	(mg/l) (mg/l) (mg/l) <0.01	(mg/l) (mg/l) (mg/l) <0.01	(mg/l) (mg/l) (mg/l) (mg/l) (mg/l) <0.01	(mg/l) (mg/l) (mg/l) (mg/l) (mg/l) <0.01

Notes:

Metals by EPA Method 6010. Samples filtered in lab before analysis, unless noted otherwise. mg/l = milligrams per liter