RECEIVED

9:06 am, Feb 05, 2010

Alameda County Environmental Health

DATA GAP INVESTIGATION REPORT

OWENS-BROCKWAY GLASS CONTAINER INC. OAKLAND, CALIFORNIA

A Report Prepared for:

Mr. Mark Tussing Owens-Brockway Glass Container Inc. Two O-I Plaza One Michael Owens Way Perrysburg, OH 43551-2999

DATA GAP INVESTIGATION REPORT

OWENS-BROCKWAY GLASS CONTAINER INC. OAKLAND, CALIFORNIA

February 3, 2010

Prepared by:

Vo. 5077 oires 5/10

Christina J. Kennedy R.G.

Principal

CKG Environmental, Inc. P.O. Box 246 St. Helena, California 94574 (707) 967-8080

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	.1
2.0	INTRODUCTION	.3
2.1 2.2	SITE DESCRIPTION OBJECTIVE	
3.0	FIELD INVESTIGATON	.5
3.1 3.2 3.3 3.4	SUBSURFACE UTILITY SUVEY GEOPROBE™ INVESTIGATION CHEMICAL ANALYSIS INVESTIGATION DERIVED WASTES (IDW)	.5 .5
4.0	FINDINGS	.7
•••	SUBSURFACE LITHOLOGY SUMMARY OF ANALYTICAL FINDINGS 2.1 Central UST Area 2.2 Western UST Area	.7 .8
6.0	CONCLUSIONS AND RECOMMENDATIONS1	1
7.0	REFERENCES1	3
8.0	LIMITATIONS1	6

TABLES

Table 1 – Soil Sample Analytical Results Table 2 – Groundwater Sample Analytical Results

PLATES

Plate 1 – Site Location Map

Plate 2 – Site Features Map

Plate 3a – Subsurface Utilities Western Area

- Plate 3b Subsurface Utilities Central Area
- Plate 4 TPHd in Soil Distribution Map
- Plate 5 TPHd in Groundwater Distribution Map
- Plate 6 TPHg in Groundwater Distribution Map
- Plate 7 Geologic Cross-Section A-A'
- Plate 8 Geologic Cross-Section B-B'
- Plate 9 Approximate Soil Source Areas

APPENDICES

Appendix A	Soil Boring Logs
Appendix B	Analytical Laboratory reports

1.0 EXECUTIVE SUMMARY

The Oakland, CA Owens-Brockway Glass Container Inc. (Owens-Brockway) facility is located at 3600 Alameda Avenue in Oakland, California. The site is located to the north of the Oakland Estuary and Alameda Avenue; Fruitvale Avenue is to the west, a Home Depot to the east and residences to the north. The facility formerly had two underground storage tank (UST) areas which are the subject of this report.

The first UST area (Western UST Area) was located on the west side of the plant and included three fuel oil USTs. In July 1986, construction of a new forklift ramp exposed soil impacted with petroleum hydrocarbons. Starting in July 1986, Exceltech conducted subsurface investigations that included completing 16 soil borings and installing 18 monitoring wells. Ensco continued the groundwater monitoring until early 1989. After a hiatus Kennedy Jenks continued groundwater monitoring from 1997 through 2003 and installed equipment to remove separate phase fuel oil product, however, with limited success. Kennedy Jenks also completed a Geoprobe™ investigation to evaluate soil and groundwater impacts south of Alameda Avenue.

The second UST area (Central UST Area) was located near the south-central part of the plant adjacent to the compressor building. Originally there were four USTs in this area. When the original four USTs were removed and replaced by two new USTs, a gasoline release to the subsurface was observed. Groundwater monitoring has indicated that the gasoline impact has dissipated in groundwater. Beginning with groundwater monitoring conducted in 2004 diesel contamination has been noted in MW-17.

CKG Environmental, Inc, (CKG) contracted with Owens-Brockway in 2001 and has completed additional subsurface investigations and continued with the annual groundwater monitoring. CKG prepared a Site Conceptual Model (SCM), dated April 3, 2009. To address the data gaps identified in the SCM CKG completed a data gap investigation commencing in August 2009. The data gap investigation included a comprehensive utility survey to accurately map out subsurface utilities. CKG then installed 41 soil borings using a Geoprobe[™] rig. Soil and groundwater samples were collected for quantitative chemical analysis. Based on the findings of the data gap investigation, as well as consideration of historic data CKG draws the following conclusions:

- Diesel and gasoline concentrations above the San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels (ESLs) in soil and groundwater remain in the Central UST Area
- A previously unknown petroleum hydrocarbon release associated with a former lube oil AST was discovered adjacent to the south wall of the plant. Soil and groundwater concentrations above ESLs occur at this location
- Shallow soil impacts associated with the former fuel oil USTs and a potential waste oil UST were documented in the Western UST Area.
- Groundwater and the associated capillary fringe soil located at and downgradient of the Western UST area are impacted with diesel and motor oil range petroleum hydrocarbons.
- The groundwater impact downgradient of the Western UST Area extends to the Oakland Estuary.
- The Sausal Creek Storm sewer may be acting as a hydraulic barrier to impacted groundwater migration.
- The distribution of contaminants does not appear to be controlled by subsurface utilities.

CKG recommends that Owens-Brockway implement an interim remediation action that includes soil excavation at the source areas. A significant mass of petroleum hydrocarbon impacted soil will be removed during the excavations and chemical oxidant can be added to the groundwater at the excavations to enhance in-situ oxidation of petroleum hydrocarbons and to promote natural bacterial degradation. There are difficult logistical issues associated with these excavations because of full time plant operations, and the proximity of plant structures.

To address impacted groundwater CKG recommends completing a feasibility which will address remediation alternatives. CKG further recommends that Owens-Brockway submit this report to the ACDEH.

2.0 INTRODUCTION

The following report presents the results and conclusions of CKG's, investigation to address data gaps identified in the April 3, 2009 Site Conceptual Model (SCM) prepared for the Owens-Brockway facility in Oakland, California. This investigation included conducting a comprehensive subsurface utility survey to assess the potential that utilities may have contributed to the distribution of contaminants in the subsurface. In addition, CKG installed a total of 41 Geoprobe[™] borings and collected soil and groundwater samples. Vacuum potholing was planned to expose and assess subsurface utilities that may have contributed to the distribution of contamination however, once the Geoprobe[™] data was plotted and compared with utility locations it was concluded that the utilities were not preferential pathways for contaminant migration, therefore, the potholing was not completed. The work was performed in general accordance with CKG's work plan dated July 7, 2009 and Work Plan Addendum dated August 27, 2009.

2.1 SITE DESCRIPTION

The Owens-Brockway glass manufacturing facility is located at 3600 Alameda Avenue in Oakland, California, (Plate 1). The site is located to the north of the Oakland Estuary with Fruitvale Avenue to the west, a Home Depot to the east and residences to the north. Onsite facilities include the operating glass manufacturing plant, warehouses, offices and two former underground fuel storage tank areas, (Plate 2).

The first UST area (Western UST Area) was located in the south-west area of the plant and included three fuel oil USTs and possibly one small historical waste oil UST. A release of fuel oil to the subsurface was observed when the fuel oil USTs were removed. The second UST area (Central UST Area) was located near the south-central portion of the plant adjacent to the compressor building. Originally there were four USTs in this area. When they were removed in 1986 and replaced by two new USTs, a gasoline release to the subsurface was observed.

2.2 OBJECTIVE

The objective of this investigation was to address data gaps identified in the SCM, and address comments provided in an ACDEH letter dated August 13, 2009 as follows:

- Assess fuel oil distribution in soil and groundwater in the vicinity of MW-3
- Assess the potential of a historical release from a small waste oil UST that was reportedly located adjacent to the forklift ramp in the south-west portion of the facility
- Assess the concentrations of petroleum hydrocarbons in soil in the Western UST Area, in an effort to complete a fate and transport model, if needed, and to compare with clean up goals and cleanup levels (ESLs). Soil data, particularly in the areas of MW-1, MW-8 and MW-9 were collected to assess the distribution of petroleum hydrocarbons in the subsurface and to clarify the 1986 data from that area.
- Assess the potential that two off site sources (near KB-1 and at the corner of Alameda and Fruitvale Avenue), may be contributing contaminants to groundwater downgradient of the site.
- Assess the potential that localized hydrocarbon sources may occur in the vicinity of MW-1, MW-10, and in the shallow soil near MW-2 due to subsurface utilities.
- Assess soil and groundwater in the vicinity of MW-17 and the nearby Central UST Area.

To address the data gaps identified in the SCM CKG completed a comprehensive utility survey to clearly map out all subsurface utilities. CKG then installed 41 soil borings using a Geoprobe[™] rig. Soil and groundwater samples were collected for quantitative chemical analysis.

3.1 SUBSURFACE UTILITY SUVEY

CKG contracted with Cruz Brothers Locators of Santa Cruz, California to complete a detailed subsurface utility survey at the site. Cruz brothers mapped utilities from August 6 through August 11, 2009. The results of the utility survey are presented on Plates 3a and 3b.

3.2 GEOPROBETM INVESTIGATION

From August 31 through September 4, 2009 Geoprobe[™] borings were advanced at 41 locations as shown on Plates 4 and 5. CKG subcontracted with EnProb Environmental Probing of Oroville to use a Geoprobe[™] direct push rig to complete the work. The Geoprobe[™] rig allowed continuous sampling so that a detailed soil profile could be constructed. The depth of petroleum hydrocarbon impact was also visually monitored. Soil boring logs are presented in Appendix A. Soil samples were selected based on field observations and work plan objectives. Soil samples were cut in approximately 6-inch lengths from the acetate liner containing the continuous core. One to two samples per boring were submitted. Groundwater samples were collected at each boring directly through temporary well screens placed in the Geoprobe[™] boreholes.

3.3 CHEMICAL ANALYSIS

Soil and groundwater samples were submitted to McCampbell Analytical Laboratory of Pittsburg, California for quantitative chemical analysis.

Soil and groundwater samples associated with the Western UST Area were analyzed for total petroleum hydrocarbons (TPH) as heavy range compounds quantified as motor oil (TPHmo), midrange compounds quantified as diesel (TPHd), and benzene, toluene, ethylbenzene, and

xylenes (BTEX). Based on visual observations in the field select samples also were analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs).

Central UST Area soil and groundwater samples were analyzed for TPHd, TPHmo, gasoline range compounds (TPHg) and BTEX. Based on visual observations in the field select samples were analyzed for VOCs and SVOCs.

The laboratory performed a silica gel clean-up on all the submitted samples so that only petroleum hydrocarbon related materials were detected. The following analytical methods were employed:

- Total Petroleum Hydrocarbons quantified as diesel, gasoline and motor oil (TPHd, TPHg, and TPHmo) by Modified EPA Method 8015
- Benzene, Toluene, Ethylbenzene, xylenes, (BTEX) and MTBE by EPA Method 8020
- Semivolatile organics by EPA Method 8270
- Volatile organics by EPA Method 8260

3.4 INVESTIGATION DERIVED WASTES (IDW)

Investigation derived wastes (IDW) were generated during the investigation. IDW soil was placed in a container used for the storage of oil contaminated solids generated from the glass manufacturing process and properly disposed.

The following describes the results of the Geoprobe[™] investigation and soil and groundwater sampling. Soil boring logs are included in Appendix A. Analytical laboratory reports are included in Appendix B. Sample locations are presented on Plates 4 through 6 and Plate 9.

4.1 SUBSURFACE LITHOLOGY

The GeoprobeTM sampler provides a continuous soil sample at each location. To illustrate the subsurface lithology and the distribution of petroleum hydrocarbons in the soil and groundwater, CKG prepared cross-sections using the recent Geoprobe boring logs combined with boring logs from previous investigations. Cross section locations are shown on Plate 2. Cross-sections are shown on Plates 7 and 8. A review of this data indicates that the subsurface is characterized by interbedded layers of clays and silts with a few thin discontinuous sand lenses. Toward the north end of the site at A' some gravelly material occurs at a depth of 20-25 feet below ground surface (bgs). In general, throughout the investigation area, discontinuous sand lenses occur at a depth of approximately 12-20 or more feet bgs. Groundwater was encountered at a depth of approximately 9-14 feet bgs.

4.2 SUMMARY OF ANALYTICAL FINDINGS

Analytical data from the 2009 investigation is tabulated in Tables 1 and 2. Analytical laboratory reports are contained in Appendix B. A full compilation of historic data is presented in the SCM however, because of the age and incompatibility of that data due to different testing methods used in the past, CKG will use only the 2009 data to develop conclusions regarding the magnitude and extent of petroleum hydrocarbon impacts at the site.

Concentrations of contaminants in soil and groundwater will be compared with the May 2008 Environmental Screening Levels (ESLs) established by the San Francisco Bay Region of the Regional Water Quality Control Board (SFRWQCB). For the purposes of this comparison CKG has selected Table B-2, Shallow Soil Screening Levels, Commercial/Industrial Land Use (groundwater is not a current or potential drinking water re source) and Table F-1b Groundwater Screening Levels (groundwater is not a current or potential drinking water resource). These ESLs most accurately reflect current land use conditions at the site. The following summarizes the ESLs, if they exist, for the constituents detected during the 2009 investigation:

ESL Table	B-2	F-1b
Analyte	mg/kg	μg/l
Benzene	0.27	46
Ethylbenzene	4.7	43
Toluene	9.3	130
Xylenes	11	100
TPHg	180	210
TPHd	180	210
TPHmo	180	210
Acetone	0.50	1500
2-butanone (MEK)	13	14,000
T-butyl alcohol	110	18,000
Chloroethane	0.85	12
Methyl-t-butyl ether (MTBE)	8.4	1800
2 Methylnaphthalene	0.25	2.1
Naphthalene	2.8	24

4.2.1 Central UST Area

Field observations made during the subsurface explorations and analytical laboratory reports indicate that the fuel release originally reported for the former gasoline UST is larger than originally concluded. In addition, the 1986 data did not detect a diesel release associated with the former diesel USTs, however, the 2009 data indicates that soil and groundwater in the vicinity and downgradien of the former diesel/lube oil USTs has been impacted with petroleum hydrocarbon in the diesel and motor oil ranges. This finding explains the source of the elevated TPHd concentrations observed in MW-17 beginning with the 2004 groundwater monitoring.

Borings B1 through B7 were advanced in the vicinity of the Central UST Area. As can be seen on Tables 1 and 2, constituents related to gasoline and diesel/motor oil exceed the ESLs in soil and groundwater. Shallower soil impacts at B1 and B2 probably reflect proximity to the original UST source areas. Plate 9 shows an approximate outline of the potential source area based on subsurface data and historical information.

4.2.2 Western UST Area

Soil borings B8 through B41 were advanced in order to assess the Western UST Area and included offsite downgradient locations. A review of Tables 1 and 2 and a review of Plates 4 and 5 indicate that groundwater in the area is impacted with petroleum hydrocarbons that exceed the ESLs. The highest concentrations occur in the diesel range. The lack of BTEX constituents suggests that there are no gasoline releases in the Western UST Area High concentrations in the gasoline range likely reflect the overlap of diesel components into the gasoline range of the chromatogram.

A review of Plate 4 indicates concentrations of diesel range petroleum hydrocarbons in soil above the water table. CKG considers impacted soil above 10 feet in depth to be potential source areas. Deeper soil samples probably reflect groundwater impacting soil in the capillary fringe.

Based on soil data and field observations, potential soil source areas may occur at the following locations:

- B23 and B24 At the location of a former lube oil UST. Access to this area is very limited due to its location immediately adjacent to the glass plant, underneath the rail spur and between two smokestacks associated with the glass furnaces.
- B25, B26, B37 and B38 In the vicinity of the former Maintenance Building and east of former fuel oil USTs. This area has impacted shallow soil which may be the result of historical surface releases.
- B12, B33 and B40 The former location of two fuel oil USTs near the former Maintenance Building
- B8 Adjacent to an alleged former waste oil tank. There or no records confirming that such a tank existed however shallow soil at B8 suggest a potential source in the vicinity.

Plate 9 shows approximate outlines of these potential source areas with the exception of impacts in the vicinity of B8. This particular location is difficult to pinpoint because the alleged waste oil tank is not located on site plans and it does not appear in site records. Also, this location straddles the ramp to the basement. The ramp itself may present a location where surface spills may have accumulated in the past and provided an opportunity to impact soil and groundwater below the ramp.

Impacted groundwater is summarized on Plate 5. TPHd concentrations have attenuated significantly at B-21 and B-35; however, it appears that impacted groundwater extends as far as the Oakland Estuary. On the southwest side of the Western UST Area, at Fruitvale Avenue, historic data shows no impact to groundwater across Alameda Avenue or Fruitvale Avenue. CKG suspects that the Sausal Creek storm sewer acts as a hydraulic barrier to downgradient migration to the southwest. CKG understands that the storm sewer is an 8 foot diameter concrete pipe with the bottom resting below the water table. Based on the most recent groundwater monitoring event, (October 16, 2009), static groundwater was encountered at depths of 9 - 12 feet below ground surface.

Based on the findings of the data gap investigation, as well as consideration of historic data CKG draws the following conclusions:

- Diesel and gasoline has impacted soil and groundwater above ESLs in the Central UST Area
- A previously unknown petroleum hydrocarbon release associated with a former lube oil AST was discovered adjacent to the plant. Soil and groundwater impacts above ESLs occur at this location
- Shallow soil impacts associated with the former fuel oil USTs and a potential waste oil UST adjacent to the south all of the plant were documented in the Western UST Area.
- Groundwater and the associated capillary fringe soil in the Western UST Area are impacted with diesel and motor oil range petroleum hydrocarbons.
- Groundwater downgradient of the Western UST Area is impacted with diesel and motor oil range petroleum hydrocarbons
- The impacted groundwater extends as far as the Oakland Estuary.
- The Sausal Creek Storm sewer may be acting as a hydraulic barrier to impacted groundwater migration.
- The distribution of the contaminants does not appear to be controlled by subsurface utilities.

CKG recommends that Owens-Brockway implement an interim remediation action that includes soil excavation at the source areas (as shown on Plate 9). A significant mass of petroleum hydrocarbon impacted soil will be removed during the excavations and chemical oxidant can be added to the groundwater at the excavations to enhance in-situ oxidation of petroleum hydrocarbons and to promote natural bacterial degradation. There are difficult logistical issues associated with these excavations because of full time plant operations, and the proximity of plant structures.

To address the groundwater impacts CKG recommends completing the feasibility study as required in the ACDEH letter dated May 8, 2009. CKG recommends that Owens-Brockway submit this report to the ACDEH.

California Regional Water Quality Control Board – San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, May 2008.

California Regional Water Quality Control Board – San Francisco Bay Region, Order No 99-045, 1999.

CKG Environmental, Inc. 2009 Addendum to Work Plan to Complete a Detailed Utility Survey and Sampling, and Soil and Groundwater Investigation to Address Data Gaps, Owens-Brockway Glass Container Facility, Oakland, California, August 27, 2009.

CKG Environmental, Inc. 2009 Work Plan to Complete a Detailed Utility Survey and Sampling, and Soil and Groundwater Investigation to Address Data Gaps, Owens-Brockway Glass Container Facility, Oakland, California July 7, 2009.

CKG Environmental, Inc. 2009 Site Conceptual Model, Owens-Brockway Glass Container Facility, 3600 Alameda Avenue, Oakland, California April 3, 2009.

CKG Environmental, Inc. 2008 Groundwater Monitoring Report, Owens-Brockway Glass Container Facility, Oakland, California December 22, 2008.

CKG Environmental, Inc. 2007 Groundwater Monitoring Report, Owens-Brockway Glass Container Facility, Oakland, California December 17, 2007.

CKG Environmental, Inc. 2006 Phase I Environmental Site Assessment, Owens-Brockway Glass Container Facility, 3600 Alameda Avenue, Oakland, California August 8, 2006.

CKG Environmental, Inc. 2006 Groundwater Monitoring Report, Owens-Brockway Glass Container Facility, Oakland, California January 12, 2006.

CKG Environmental, Inc., 2005 Groundwater Monitoring Report Owens-Brockway Glass Container Facility, Oakland, California, November 29, 2005.

CKG Environmental, Inc. Work Plan To Prepare A Site Conceptual Model, Owens-Brockway Glass Container Facility, Oakland, California, April 6, 2005.

CKG Environmental, Inc. Work Plan to Complete a Focused Geoprobe[™] Investigation, Owens-Brockway Glass Container Facility, Oakland, California, January 20, 2005.

CKG Environmental, Inc. 2004 Groundwater Monitoring Report, Owens-Brockway Glass Container Facility, Oakland, California April 29, 2004.

CKG Environmental, Inc. Data Compilation and Closure Report Underground Fuel Storage Tank Locations, Owens-Brockway Glass Container Facility, Oakland, California, November 4, 2003.

CKG Environmental, Inc. Work Plan to Install One Monitoring Well and Assess the Distribution of Petroleum Hydrocarbons, Owens-Brockway Glass Container Facility, Oakland, California, April 22, 2003.

CKG Environmental, Inc. Summary of Remediation History and Groundwater Impact by Petroleum Hydrocarbons, Owens-Brockway Glass Container Facility, 3600 Alameda Avenue, Oakland, California. April 4, 2003.

Ensco Environmental Services, Inc., September Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, November 8, 1988.

Ensco Environmental Services, Inc., December Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, February 2, 1989.

Ensco Environmental Services, Inc., Status of Site Remediation and Monitoring Owens-Illinois Oakland Facility, Oakland, California, February 9, 1989.

Exceltech, Soil and Groundwater Contamination Investigation for Owens-Illinois Glass Container Division, 3600 Alameda Avenue, Oakland, California, December 1986.

Exceltech, Soil and Groundwater Contamination Investigation for Owens-Illinois Glass Container Division, 3600 Alameda Avenue, Oakland, California, February 1987.

Exceltech, Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, May 5, 1987.

Exceltech, Removal of Two 24,000 Gallon Subsurface Tanks at Owens-Illinois Oakland Facility, Oakland, California, March 4, 1987.

Exceltech, Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, October 16, 1987.

Exceltech, December Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, January 27, 1988.

Exceltech, March Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, April 19, 1988.

Exceltech, June Quarterly Groundwater Sampling and Analysis for O-I Glass Container Division, S.T.S, 3600 Alameda Avenue, August 16, 1988.

Helley, E.J., Lajoie, K.R. and Burke, D.B., 1972, Geologic map of Late Cenozoic deposits, Alameda County, California: U.S. Geological Survey Map MF-429.

IT Corporation Final Verification Sampling Report, Decontamination of the Owens-Illinois Forming Facility, Oakland, California, October 1992

Kennedy/Jenks, Consultants. Groundwater Investigation Report, Owens-Brockway Glass Containers, February 16, 1999.

Kennedy/Jenks, Consultants. Annual Groundwater Monitoring Report, Owens-Brockway Glass Containers, January 21, 2003.

Owens-Illinois, Oakland Spill Prevention Control and Countermeasure Plan, January 8, 1985.

Lawrence Livermore National Laboratory (LLNL), 1995, Recommendations to Improve the Cleanup Process for California's Leaking Underground Fuel Tanks (LUFTs) October 16, 1995.

USGS Topographic Map 1980.

CKG Environmental, Inc. prepared this report in accordance with generally accepted standards of care which exist in Northern California at this time. It should be recognized that definition and evaluation of geologic and environmental conditions is a difficult and an inexact science.

Conclusions and recommendations presented in this report are based on the results of the scope of work presented in our work plan dated July 7, 2009. This scope of work includes installing a total of 41 Geoprobe[™] borings, quantitative analysis of soil and groundwater samples conducted by McCampbell Analytical, and reviewing all data collected to date. Only work described herein was performed. As such CKG cannot render opinions on issues not resulting directly from the work performed.

Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present. More extensive studies, including additional subsurface investigations, may be performed to reduce uncertainties. If the client wishes to reduce the uncertainties of this investigation, CKG should be notified for additional consultation. No warranty, expressed or implied, is made.

This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both onsite and offsite) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify CKG of such intended use. Based on the intended use of the report, CKG may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release CKG from any liability resulting from the use of this report by any unauthorized party.

TABLES

Table 1. Soil Sample Analytical Results Oakland, California

Sample ID	Sample	Depth	TPHd	TPHmo	TPHg		I	BTEX		MTBE	SVOCs ¹¹	VOCs ¹²
Sample ID	Date	ft bgs				Benzene	Toluene	Ethylbenzene	Xylenes			
CKG - B1 3.5-4 ³	8/31/2009	3.5-4	ND	ND	1.8	ND	ND	ND	ND	-	-	-
CKG - B1 8-8.5 ^{3,4} CKG - B2 5-5.5 ³	8/31/2009 8/31/2009	1 8-8.5	510 ⁵ 710 ⁵	180° 1905	340 66	ND<0.050 ND	ND<0.050 ND	0.057 ND	0.55 0.039	-	ND<3.3 - ND<16 ¹	0.053-0.541
CKG - B2 5-5.5 CKG - B2 12-12.5 ³	8/31/2009	5-5.5 12-12.5	150 ^{6,8}	98 ^{6,8}	50	ND<0.010	ND<0.010	ND<0.10	0.039 ND<0.10	-	-	-
CKG - B3 12.5-13	8/31/2009	12.5-13	ND	ND	ND	ND	ND	ND	ND	-	-	-
CKG - B4 9-9.5	8/31/2009	9-9.5	196,8	59 ^{6,8}	ND	ND	ND	ND	ND	-	-	-
CKG - B5 11.5-12 ^{3,4}	8/31/2009	11.5-12	63 ⁵	18 ⁵	24	ND	0.013	0.07	0.064	-	-	-
CKG - B6 5-5.5 CKG - B6 7.5-8	8/31/2009 8/31/2009	5-5.5 7.5-8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-
CKG - B7 7.5-8	8/31/2009	7.5-8	9.9 ⁷	ND	ND	ND	ND	ND	ND	-	-	-
CKG - B7 12-12.53	8/31/2009	12-12.5	ND	ND	6.3	ND	ND	ND	ND	-	-	-
CKG - B8 7.5-8 ^{3,4}	9/1/2009	7.5-8	1,800 ^{5,8}	390 ^{5,8}	2,000	ND<0.25	0.51	2.4	10	-	-	-
CKG - B8 13-13.5 ^{3,4} CKG - B9 4-4.5 ^{3,4}	9/1/2009 9/1/2009	13-13.5	580 ^{5,8} 140 ^{6,8,9}	170 ^{5,8} 200 ^{6,8,9}	840 140	ND<0.25 ND<0.050	ND<0.25 ND<0.050	4.3 0.26	2.9 0.18	-	-	-
CKG - B9 14-14.5 ^{2,3}	9/1/2009 9/1/2009	4-4.5 14-14.5	760 ^{5,8}	200 ^{-5,8}	870	ND<0.050 ND<1.0	ND<0.050 ND<1.0	0.26 ND<1.0	0.18 ND<1.0	-	-	-
CKG - B11 11-11.5	9/1/2009	11-11.5	ND	ND	ND	ND<1.0	ND<1.0	ND	ND ND	-	-	-
CKG - B11 13.5-143	9/1/2009	13.5-14	800 ^{5,8}	360 ^{5,8}	280	ND<0.25	ND<0.25	ND<0.25	ND<0.25	-	-	-
CKG - B12 3.5-4 ^{3,4}	9/1/2009	3.5-4	7,500	3,600	2,400	ND<1.0	ND<1.0	4.9	11	-	-	- ,
CKG - B12 13.5-14 ^{3,4}	9/1/2009	13.5-14	220 ^{5,8} 8.5 ^{6,8}	$87^{5,8}$ $14^{6,8}$	490	ND<0.25	ND<0.25	0.5	1.2	-	ND<0.66-0.8	ND<0.008 - ND<0.2 ¹
CKG - B13 10-10.5 CKG - B14 10-10.5 ^{3,4}	9/1/2009 9/1/2009	10-10.5 10-10.5	8.5 ^{-,-} 3,100 ^{6,8,9}	3,200 ^{6,8,9}	ND 890	ND ND<0.25	ND 1.1	ND 2.5	ND 5.5	-	-	-
CKG - B14 10-10.5 CKG - B14 15-15.5 ^{3,4}	9/1/2009 9/1/2009	15-15.5	290 ^{6,8}	260 ^{6,8}	420	ND<0.25 ND<0.010	0.25	0.62	5.5 1.1	-	-	-
CKG - B15 4-4.5	9/1/2009	4-4.5	$2.8^{6,9}$	ND	ND	ND	ND	ND	ND	-	-	-
CKG - B15 9-9.5 ^{3,4}	9/1/2009	9-9.5	430 ^{5,8}	1405,8	400	ND<0.10	ND<0.10	0.51	1.5	-	-	-
CKG - B16 4-4.5 ^{3,4}	9/1/2009	4-4.5	4.8 ^{6,8,9}	7.7 ^{6,8,9}	-	ND ND	ND	0.013	0.074	-	-	-
CKG - B16 9.5-10 ^{3,4} CKG - B17 4-4.5 ³	9/1/2009 9/1/2009	9.5-10 4-4.5	7,900 ND	5,300 ND	-	ND<1.0 ND	7.5 ND	11 ND	36 ND	-	-	-
CKG - B17 9.5-10 ³	9/1/2009	9.5-10	1,000 ^{5,8}	270 ^{5,8}	-	ND<0.10	ND<0.10	2	4.4	-	-	-
CKG - B19 4-4.5 ³	9/2/2009	4-4.5	20 ^{6,8}	92 ^{6,8}	-	ND	ND	ND	ND	-	-	-
CKG - B19 10-10.5 ³	9/2/2009	10-10.5	680 ^{5,8}	320 ^{5,8}	-	ND<0.10	ND<0.10	0.14	0.17	-	-	-
CKG - B20 3.5-4	9/2/2009	3.5-4	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B20 13-13.5 ^{3,4}	9/2/2009 9/2/2009	13-13.5	38 ^{6,8} ND	31 ^{6,8} ND	-	ND ND	ND ND	0.02 ND	ND ND	-	-	-
CKG - B21 5.5-6 CKG - B21 12.5-13	9/2/2009	5.5-6 12.5-13	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B22 7.5-8	9/2/2009	7.5-8	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B22 12-12.5	9/2/2009	12-12.5	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B23 8-8.5 ³	9/2/2009	8-8.5	940 ^{6,8}	970 ^{6,8}	-	ND<0.050	ND<0.050	ND<0.050	ND<0.050	-	-	-
CKG - B23 12.5-13 ³ CKG - B24 4-4.5 ^{3,4}	9/2/2009 9/2/2009	12.5-13 4-4.5	23 ^{6,8} 420 ^{6,8}	33 ^{6,8} 860 ^{6,8}	-	ND 0.012	ND ND	ND 0.096	ND 0.18	-	-	ND<0.005-0.082
CKG - B24 $4-4.5$ CKG - B24 $11.5-12^3$	9/2/2009	11.5-12	420 15 ^{6,8}	28 ^{6,8}	-	0.012 ND	ND	ND	0.18 ND	-	- ND<0.33-ND<1.6	-
CKG - B25 3.5-4	9/2/2009	3.5-4	1306,8	340 ^{6,8}	-	ND	ND	ND	ND	-	-	-
CKG - B25 7.5-8 ³	9/2/2009	7.5-8	1,700 ^{6,8}	1,800 ^{6,8}	-	0.36	ND<0.25	ND<0.25	ND<0.25	-	-	-
CKG - B26 7.5-8 ³	9/2/2009	7.5-8	8.9 ^{6,8}	28 ^{6,8}	-	ND	ND ND 0.10	ND	ND	-	-	-
CKG - B26 14.5-15 ³ CKG - B27 5.5-6	9/2/2009 9/3/2009	14.5-15 5.5-6	1,200 ^{6,8} ND	1,200 ^{6,8} ND	-	ND<0.10 ND	ND<0.10 ND	0.34 ND	0.98 ND	-	-	0.021-0.054
CKG - B27 8.5-9	9/3/2009	8.5-9	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B28 8.5-9	9/3/2009	8.5-9	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B28 12.5-13	9/3/2009	12.5-13	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B29 4-4.5	9/3/2009	4-4.5	$2.5^{6,8,10}$	9.7 ^{6,8,10}	-	ND	ND	ND	ND	-	-	-
CKG - B29 12-12.5	9/3/2009 9/3/2009	12-12.5	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	-	-	-
CKG - B30 8-8.5 CKG - B30 14-14.5	9/3/2009	8-8.5 14-14.5	1.5 ⁶	ND	-	ND	ND	ND	ND	-	-	-
CKG - B31 8-8.5	9/3/2009	8-8.5	14 ^{6,8}	100 ^{6,8}	-	ND	ND	ND	ND	-	-	-
CKG - B31 13-13.5	9/3/2009	13-13.5	$4.6^{6,8}$	$9.9^{6,8}$	-	ND	ND	ND	ND	-	-	-
CKG - B32 7-7.5	9/3/2009	7-7.5	ND	ND	-	ND	ND	ND	ND	-	-	-
CKG - B32 14-14.5 ³	9/3/2009	14-14.5	230 ^{5,8} 2,300 ^{5,8}	67 ^{5,8} 890 ^{5,8}	-	ND<0.50	ND<0.50	ND<0.50	ND<0.50	-	-	ND<0.016-ND<0.41
CKG - B33 5-5.5 ³ CKG - B33 10-10.5 ^{3,4}	9/3/2009 9/3/2009	5-5.5 10-10.5	2,300°,° 980 ^{5,8}	890 ^{5,8}	-	ND<1.0 ND<1.0	ND<1.0 1.7	2.3 1.2	7 2.8	-	-	-
CKG - B34 5.5-6 ³	9/3/2009	5.5-6	ND	ND	-	ND<1.0 ND	ND	ND	2.8 ND	-	-	-
CKG - B34 12-12.5	9/3/2009	12-12.5	$2.1^{6,8}$	106,8	-	ND	ND	ND	ND	-	-	-
CKG - B35 4-4.5	9/3/2009	4-4.5	9.1 ^{6,8}	85 ^{6,8}	-	ND	ND	ND	ND	-	-	-
CKG - B35 9.5-10	9/3/2009	9.5-10	1.2°	ND	-	ND	ND	ND	ND	-	-	-
CKG - B36 4-4.5 CKG - B36 9-9.5	9/4/2009 9/4/2009	4-4.5 9-9.5	ND 72 ^{6,8}	ND 210 ^{6,8}	-	ND ND	ND ND	ND ND	ND ND	-	-	-
CKG - B37 4-4.5 ³	9/4/2009	9-9.5 4-4.5	7.7 ^{6,8}	36 ^{6,8}	-	ND	ND	0.0081	0.029	-	-	-
CKG - B37 16.5-173,4	9/4/2009	16.5-17	4,100 ^{6,8,10}	3.100 ^{6,8,10}	-	ND<1.0	ND<1.0	5.7	6.7	-	-	-
CKG - B38 7.5-8 ³	9/4/2009	7.5-8	590 ^{5,8}	240 ^{5,8}	-	ND<0.050	ND<0.050	ND<0.0050	0.56	-	-	-
CKG - B38 15-15.5 ³	9/4/2009	15-15.5	66 ^{5,8}	$26^{5,8}$	-	ND	ND	0.0094	0.12	-	-	-
CKG - B39 8-8.5 ³	9/4/2009	8-8.5	14 ^{6,8} 480 ^{5,8}	39 ^{6,8} 90 ^{5,8}	-	ND <0.10	ND <0.10	ND ND <0.10	ND	-	-	-
CKG - B39 15.5-16 ³ CKG - B40 9-9.5 ^{3,4}	9/4/2009 9/4/2009	15.5-16 9-9.5	480 ^{-,*} 3,800 ^{5,8}	90°** 1,100 ^{5,8}	-	ND<0.10 ND<0.25	ND<0.10 ND<0.25	ND<0.10 ND<0.25	0.63 10	-	-	-
CKG - B40 9-9.5 CKG - B40 15.5-16 ³	9/4/2009	9-9.5 15.5-16	190 ^{5,8}	76 ^{5,8}	-	ND<0.25 ND<0.050	ND<0.25 ND<0.050	0.073	4.6	-	-	-
CKG - B41 8-8.5 ³	9/4/2009	8-8.5	126,8,9	$28^{6,8,9}$	-	ND	ND	ND	ND	-	-	-
CKG - B41 16.517 ^{3,4}	9/4/2009	16.5-17	24 ^{5,8}	115,8	-	ND	ND	0.035	0.072	-	-	-
	ndard B-2		180	180	180	0.27	9.3	4.7	11	8.4	-	-

Notes: All results in mg/kg ESL Standard B-2 - Shallow Soil Screening Levels, Commercial/Industrial Land Use (groundwater is not a current or potential drinking water resource).

1 2

3

4

5

Sample diluted due to high organic content Estimated value due to low surrogate recovery, caused by matrix interface Strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram No recognizable pattern Unmodified or weakly modified diesel is significant; and/or kerosene/kerosene range/jet fuel range 6 Diesel range compounds are significant; no recognizable pattern

8

Aged diesel is significant Oil range compounds are significant Stoddard solvent/mineral spirit (?) 9

Gasoline range compounds are significant See table 1A below 10 11

12

See table 1B below

Table 1A. Soil Sample Analytical Results - SVOCs Oakland, California

Sample ID:	CKG - B1 8-8.5 ¹	CKG - B12 13.5-14	CKG - B24 11.5-12	ESL Standard B-2
SVOCs				
2-Methylnapthalene	ND<3.3	0.8	ND	0.25
All Other SVOCs	ND<3.3 - ND<16	ND<0.66-ND<3.2	ND<0.33-ND<1.6	-

Note: All results in mg/kg Standard B-2 - Shallow Soil Screening Levels, Commercial/Industrial Land Use (groundwater is not a current or potential drinking water resource).

1 Sample diluted due to high organic content

Table 1B. Soil Sample Analytical Results - VOCs Oakland, California

Sample ID:	CKG - B1 8-8.5 ¹	CKG - B12 13.5-14 ¹	CKG - B23 12.5-13	CKG - B26 14.5-15	CKG - B32 14-14.5 ¹	ESL Standard B-2
VOCs						
Acetone	ND<0.2	ND<0.1	0.082	ND<0.2	ND<0.2	0.50
n-Butyl benzene	0.54	ND<0.01	ND	0.038	ND<0.02	-
1,2,4 - Trimethylbenzene	ND<0.02	ND<0.01	ND	0.052	ND<0.02	-
sec Butyl Benzene	0.20	ND<0.01	ND	0.054	ND<0.02	-
Ethylbenzene	ND<0.02	ND<0.01	ND	0.021	ND<0.02	4.7
Isopropylbenzene	0.068	ND<0.01	ND	0.035	ND<0.02	-
n-Propyl benzene	0.053	ND<0.01	ND	0.032	ND<0.02	-
1,2,3 - Trichloropropane	ND<0.02	ND<0.01	ND	0.024	ND<0.02	-
1,3,5 - Trimethylbenzene	ND<0.02	- ND<0.01	ND	0.052	ND<0.02	-
All Other VOCs	ND<0.016 - ND<0.2	ND<0.008 - ND<0.2	ND<0.005-ND<0.1	ND<0.016-ND<0.4	ND<0.016 - ND<0.4	-

Note: All results in mg/kg ESL Standard B-2 - Shallow Soil Screening Levels, Commercial/Industrial Land Use (groundwater is not a current or potential drinking water resource).

1 Sample diluted due to high organic content

Table 2. Groundwater Sample Analytical Results Oakland, California

Sample ID	Sample	TPHd	TPHmo	TPHg]	BTEX		MTBE	SVOCs ¹²	VOCs ¹³
Sample ID	Date				Benzene	Toluene	Ethylbenzene	Xylenes			
CKG - B1 ^{2,3,3}	8/31/2009	220,000 ^{2,3,7,8,10}	53,000 ^{2,3,7,8,10}	17,000	720	ND<25	400	340	-	-	22-710 ^{2,3}
CKG - B2 ^{2,3,5}	8/31/2009	720,000 ^{2,3,4,9}	630,000 ^{2,3,6,9}	15,000	ND<10	ND<10	ND<10	ND<10	-	-	-
CKG - B3 ²	8/31/2009	270 ^{2,6,9}	310 ^{2,6,9}	ŃD	ND	ND	ND	ND	-	-	-
CKG - B4 ²	8/31/2009	410 ^{2,6,9}	520 ^{2,6,9}	ND	ND	ND	ND	ND	-	-	-
CKG - B5 ^{2,6}	8/31/2009	1.200 ^{2,6,9}	850 ^{2,6,9}	240	ND	1.6	ND	ND	-	-	-
CKG - B6 ²	8/31/2009	3,900 ^{2,6,9}	3,400 ^{2,6,9}	ND	ND	ND	ND	ND	-	-	-
CKG - B8 ^{2,3,5,6}	9/1/2009	170,000 ^{2,3,7,9}	62.000 ^{2,3,7,9}	-	ND<10	ND<10	17	ND<10	-	-	-
CKG - B9 ^{2,3,5,6}	9/1/2009	330,000 ^{2,3,4,7,9}	120,000 ^{2,3,4,7,9}	23,000	ND<10	ND<10	46	200	-	-	-
CKG - B11 ^{2,5}	9/1/2009	3.100 ^{2,6,9}	6.300 ^{2,6,9}	-	ND	ND	ND	ND	-	-	-
CKG - B12 ^{2,3,5}	9/1/2009	150,000 ^{2,3,4,7,9}	100.000 ^{2,3,4,7,9}	-	ND<2.5	ND<2.5	3.8	10	-	-	1.4-13 ^{2,3}
CKG - B13 ²	9/1/2009	3,200 ^{2,6,9}	10,000 ^{2,6,9}	-	ND	ND	ND	ND	-	-	-
CKG - B14 ^{2,3,6,7}	9/1/2009	82,000 ^{2,6,9}	81,000 ^{2,6,9}	1,400	ND<1.0	2.2	14	4.6	-	-	-
CKG - B15 ^{2,3,5}	9/1/2009	34,000 ^{2,3,4,9}	19,000 ^{2,3,4,9}	-	ND<2.5	ND<5.0	ND<5.0	ND<5.0	-	-	-
CKG - B16 ^{2,3,6,7}	9/1/2009	680.000 ^{2,6,9,11}	490.000 ^{2,6,9,11}	11,000	ND<1.0	10	26	63	-	-	-
CKG - B17 ^{2,3,6,7}	9/1/2009	19,000 ^{2,3,4/7,9}	9.300 ^{2,3,4/7,9}	1.400	ND<1.7	ND<1.7	ND<1.7	ND<1.7	-	-	-
CKG - B19 ^{2,3,6,7}	9/2/2009	1,300,000 ^{2,6,9,11}	860,000 ^{2,6,9,11}	19.000	ND<10	12	39	14	-	-	-
CKG - B20 ^{2,3,7}	9/2/2009	1,100,000 ^{2,6,9}	900,000 ^{2,6,9}	4,300	ND<10	ND<10	ND<10	ND<10	-	-	4.3-271,2,3
CKG - B21 ²	9/2/2009	310 ^{2,6,9}	330 ^{2,6,9}	ND	ND	ND	ND	ND	-	-	-
CKG - B22 ^{2,3,7}	9/2/2009	70,000 ^{2,3,6,9}	60,000 ^{2,3,6,9}	110	ND	ND	ND	ND	-	-	_
CKG - B23 ^{2,3,6,7}	9/2/2009	140,000 ^{2,6,9,11}	590,000 ^{2,6,9,11}	7,500	ND	2.6	5.1	39	-	-	-
$CKG - B24^2$	9/2/2009	3.900 ^{2,8,9}	4,300 ^{2,8,9}	ND	ND	ND	ND	ND	-	-	_
CKG - B25 ^{2,3,7}	9/2/2009	34.000 ^{2,6,9}	57,000 ^{2,8,9}	270	ND	ND	N D	2.5	-	-	-
CKG - B26 ^{2,3,6,7}	9/2/2009	4,700,000 ^{2,3,6,9}	4,700,000 ^{2,3,6,9}	5.500	ND<2.05	2.6	4.7	42	-	-	6.1-701,2,3
CKG - B27 ^{2,3,7}	9/3/2009	3,200 ^{2,4/7,9}	1,500 ^{2,4/7,9}	250	ND	ND	ND	2.3	-	-	-
CKG - B28 ^{2,3,6,7}	9/3/2009	770,000 ^{2,4/7,9}	230,000 ^{2,4/7,9}	8.000	ND<1.7	ND<1.7	9.5	35	-	-	-
CKG - B29 ^{2,3,7}	9/3/2009	120,000 ^{2,4/7,9}	55,000 ^{2,4/7,9}	1.700	ND<5.0	ND<5.0	ND<5.0	ND<5.0	-	-	-
CKG - B30 ^{2,3,7}	9/3/2009	29,000 ^{2,6,9}	36,000 ^{2,6,9}	120	ND	1.1	ND	0.8	-	-	-
CKG - B31 ^{2,3,7}	9/3/2009	260,000 ^{2,4/7,9}	150,000 ^{2,4/7,9}	2.100	ND<5.0	ND<5.0	ND<5.0	ND<5.0	-	-	$2.8-72^{1,2}$
CKG - B32 ^{2,3,7}	9/3/2009	1,700,000 ^{2,4/7,9}	820,000 ^{2,4/7,9}	18,000	ND<1.7	ND<1.7	13	78	-	-	
CKG - B33 ^{2,3,5,6}	9/3/2009	1,500,000 ^{2,3,4/7,9}	1,100,000 ^{2,3,4/7,9}		ND<1.7	8	19	50	-	-	-
CKG - B34 ^{5,6}	9/3/2009	1,000 ^{2,6,9}	2,800 ^{2,6,9}	-	ND	ND	ND	ND	-	-	-
CKG - B35 ²	9/3/2009	450 ^{2,6,9}	$1.200^{2,6,9}$	-	ND	ND	ND	ND	-	-	-
CKG - B36 ^{2,3,5,6}	9/4/2009	310.000 ^{2,3,6,9,11}	250.000 ^{2,3,6,9,11}	-	ND	1.9	2.7	16	-	-	-
CKG - B37 ^{2,3,5,6}	9/4/2009	460.000 ^{2,3,6,9,11}	550.000 ^{2,3,6,9,11}	-	ND	2.6	6.5	34	-	-	-
CKG - B38 ^{2,3,5,6}	9/4/2009	620.000 ^{2,3,4/7,9}	300.000 ^{2,3,4/7,9}	-	ND	3.4	4.7	20	-	-	-
CKG - B39 ^{2,3,5}	9/4/2009	180,000 ^{2,3,4/7,9}	64.000 ^{2,3,4/7,9}	-	ND	ND	5.1	ND	-	ND<1,000-ND<5,0001,2	-
CKG - B40 ^{2,3,5,6}	9/4/2009	350,000 ^{2,3,4/7,9}	150,000 ^{2,3,4/7,9}	-	ND<2.5	2.6	47	200	-	-	-
CKG - B41 ^{2,3,5,6}	9/4/2009	150,000 ^{2,3,4/7,9}	87,000 ^{2,3,4/7,9}	-	ND<10	ND<10	ND<10	ND<10	-	-	-
ESL Standar		210	210	210	46	130	43	100	1.800	-	-

Note: All results in $\mu g/l$ ESL Standard F-1b - Groundwater Screening Levels (groundwater is not a current or potential drinking water resource).

Sample diluted due to high organic content Aqueous sample that contains greater than ~1 vol. % sediment Lighter than water immiscible sheen/product is present Weakly modified or unmodified gasoline is significant Strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram No recognizable pattern Kerosene/kerosene range/jet fuel range

7

- Aged diesel is significant Oil range compounds are significant Stoddard solvent/mineral spirit (?) Gasoline range compounds are significant See table 2A below See table 2B below

12

Table 2A. Groundwater Sample Analytical Results - SVOCsOakland, California

CKG - B39 ^{1,2}
ND<1,000-ND<5,0000

Note: All results in µg/l

2

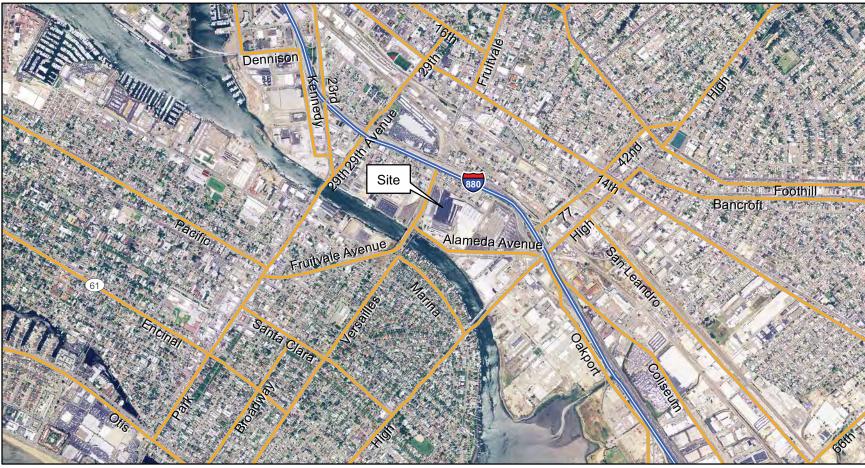
Sample diluted due to high organic content Aqueous sample that contains greater than ~1 vol. % sediment

Table 2B. Groundwater Sample Analytical Results - VOCsOakland, California

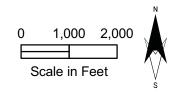
Sample ID:	CKG - B1 ^{2, 3}	CKG - B12 ^{2,3}	CKG - B20 ^{1,2,3}	CKG - B26 ^{1,2,3}	CKG - B32 ^{1,2}	ESL Standard F-1b
VOCs						
Acetone	ND<330	13	27	70	72	1,500
Benzene	710	ND	ND<1.0	ND<1.0	ND<2.5	46
2-Butanone(MEK)	ND<67	ND	4.3	15	17	14,000
n-Butyl benzene	100	6.1	ND<1.0	11	10	-
tert-Butyl benzene	ND<17	1.4	ND<1.0	ND<1.0	ND<2.5	-
Chloroethane	ND<17	ND	ND<1.0	ND<1.0	2.8	12
4-Isopropyl toluene	ND<17	3.9	ND<1.0	9	ND<2.5	-
Naphthalene	190	ND	ND<1.0	ND<1.0	ND<2.5	24
1,2,4 - Trimethylbenzene	92	ND	ND<1.0	14	ND<2.5	-
t-Butyl alcohol (TBA)	ND<67	ND	5.3	44	ND<10	18,000
sec Butyl Benzene	22	8.7	ND<1.0	6.1	15	-
Ethylbenzene	360	ND	ND<1.0	ND<1.0	ND<2.5	43
Isopropylbenzene	91	2.3	ND<1.0	15	ND<2.5	-
Methyl-t-butyl ether (MTBE)	320	ND	ND<1.0	ND<1.0	ND<2.5	1,800
n-Propyl benzene	220	ND	ND<1.0	16	ND<2.5	-
1,2,3 - Trichloropropane	ND<17	ND	ND<1.0	ND<1.0	ND<2.5	-
1,3,5 - Trimethylbenzene	190	ND	ND<1.0	6.3	ND<2.5	-
Xylenes	320	ND	ND<1.0	24	ND<2.5	100
All Other VOCs	ND<17-ND<330	ND<0.2-ND<10	ND<0.4-ND<20	ND<0.4-ND<20	ND<1.0-ND<50	-

Note: All results in µg/l

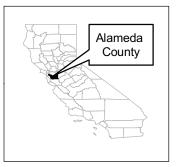
ESL Standard F-1b - Groundwater Screening Levels (groundwater is not a current or potential drinking water resource).


Sample diluted due to high organic content

Aqueous sample that contains greater than ~1 vol. % sediment
 Lighter than water immiscible sheen/product is present

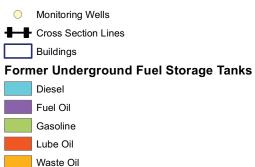

NOTES (Tables 1-2):

- TPHg: Total petroleum hydrocarbons as gasoline; analyzed by Method SW8021B/8015Bm
- TPHd: Total petroleum hydrocarbons as diesel w/silica gel cleanup; analyzed by Method SW8015B
- TPHmo: Total petroleum hydrocarbons as motor oil w/silica gel cleanup; analyzed by Method SW8015B
- SVOCs: Semi-Volatile Organic Compounds; analyzed by Method SW8720C
- VOCs: Volatile Organic Compounds; analyzed by Method SW8260B
- MTBE: Methyl-t-butyl-ether; analyzed by Method SW8021B/8015Bm
- mg/kg: Milligrams per kilogram
- μg/l: Micrograms per liter
- ND: Not detected above the respective reporting limit
- : Not Analyzed

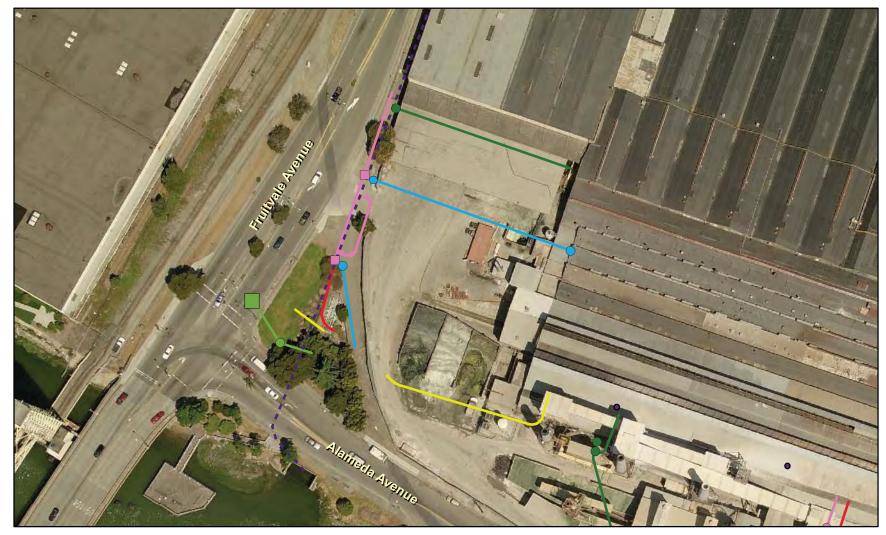

PLATES

Drawn by A. Llewellyn. December 2009. Base layers are unmodified Alameda County Digital Data Sets.

Site Location Map PLATE Owens-Brockway Glass Container Facility 22302 Hathaway Avenue , Hayward, California



0 75 150 Scale in Feet

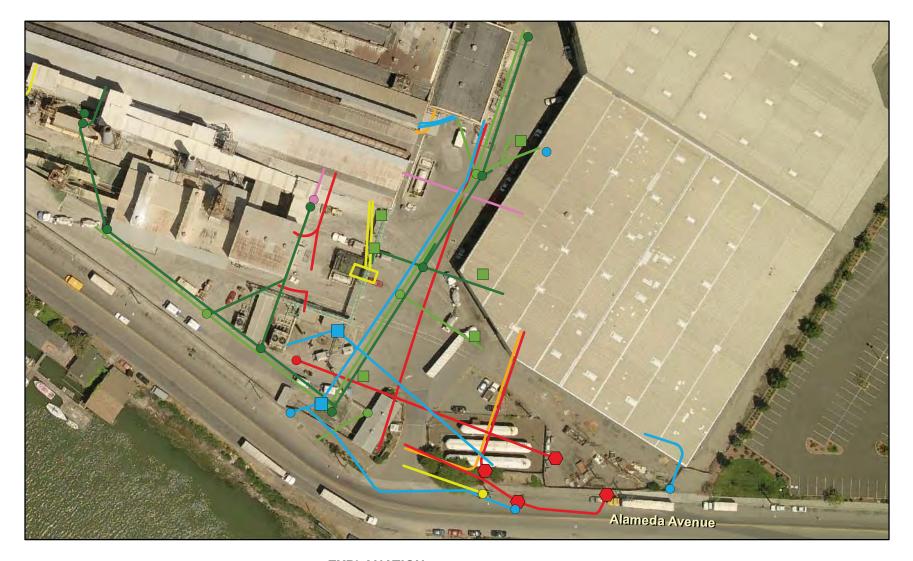

EXPLANATION

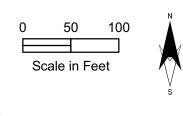
Drawn by A. Llewellyn. December 2009. Base layers are unmodified Pictometry Digital Data Sets.

Site Features Map PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

CKG Environmental, Inc.

0 50 100 Scale in Feet




CKG Environmental, Inc.

EXPLANATION

- - Sausal Creek Storm Sewer
- Gas or Oil
- Water Lines
- Sanitary Sewer
- Storm Drain
- Electric
- Communications
- MetalUtility

Subsurface Utilities, Western Area PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

Gas or Oil
Water Lines

------ Sanitary Sewer

Storm Drain

----- Electric

Communications

Metal Utility

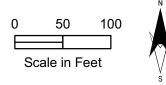
Subsurface Utilities, Central Area PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

CKG Environmental, Inc.

Drawn by A. Llewellyn. Deceember 2009. Base layers are unmodified Pictometry Digital Data Sets.

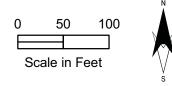
0	50	100	
S	cale in Fe	eet	\sim
			S

- = = · Sausal Creek Storm Sewer
- Geoprobe Locations
- 710 TPHd Concentration in mg/kg


TPHd in Soil Distribution Map PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

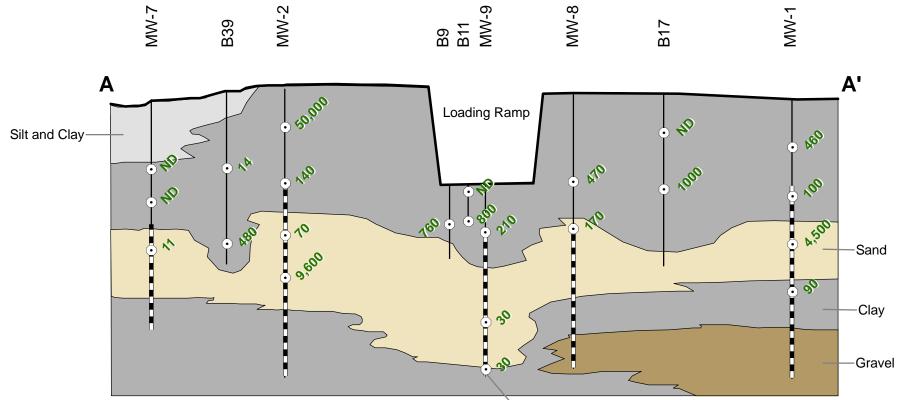
CKG Environmental, Inc.

Drawn by A. Llewellyn. December 2009. Base layers are unmodified Pictometry Digital Data Sets.


- --- Sausal Creek Storm Sewer
 - Geoprobe Locations

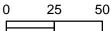
310 TPHd Concentration from Geoprobe Sample in µg/I

- Monitoring Wells
- 310 TPHd Concentration from Monitoring Well Sample in µg/l
 - TPHd in Groundwater Distribution Map PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California



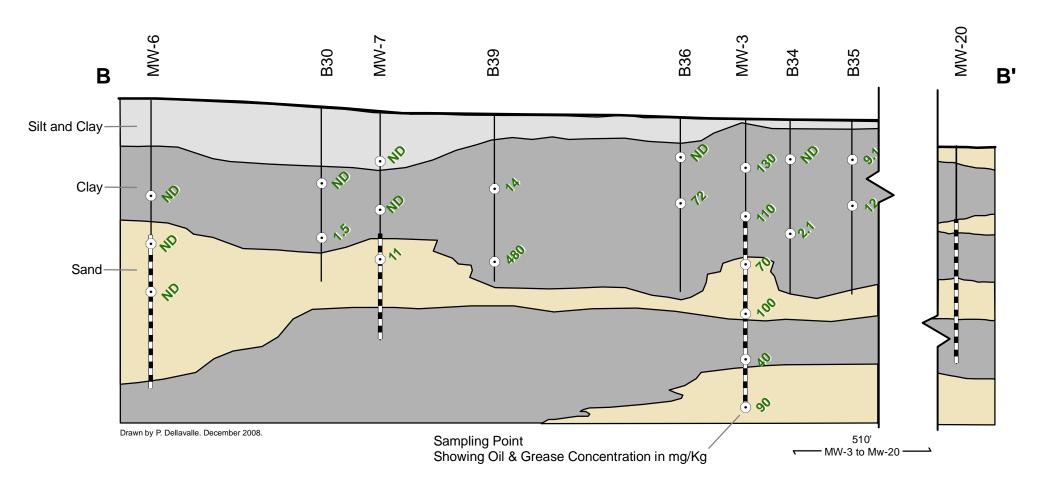
- - · Sausal Creek Storm Sewer
- Monitoring Wells
- Geoprobe Locations
- ----- Contour Line of Equal Concentration
- 710 TPHg Concentration in µg/I

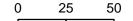
Drawn by A. Llewellyn. December 2009. Base layers are unmodified Pictometry Digital Data Sets.


TPHg in Groundwater Distribution Map PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California 6

CKG Environmental, Inc.

Drawn by P. Dellavalle. December 2008.


Sampling Point Showing Oil & Grease Concentration in mg/Kg

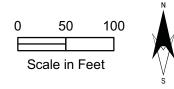


Horizontal Scale in Feet 5X Vertical Exaggeration

Geologic Cross Section A - A' PLATE Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

Horizontal Scale in Feet 5X Vertical Exaggeration

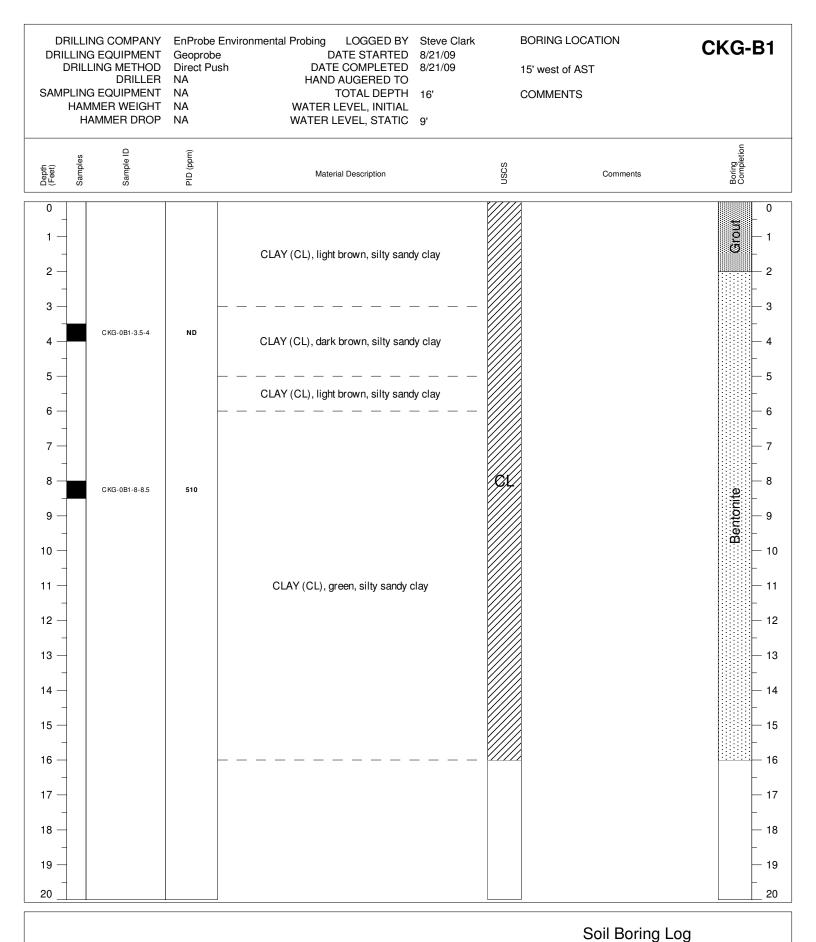
Geologic Cross Section B - B' Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California


PLATE

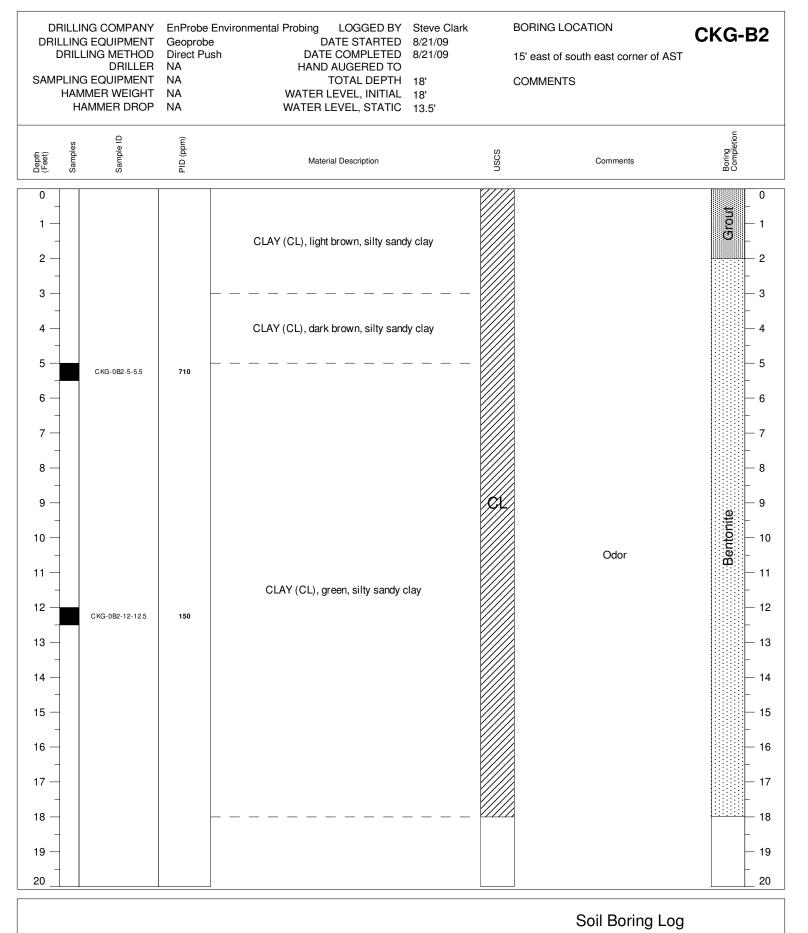
8

CKG Environmental, Inc.

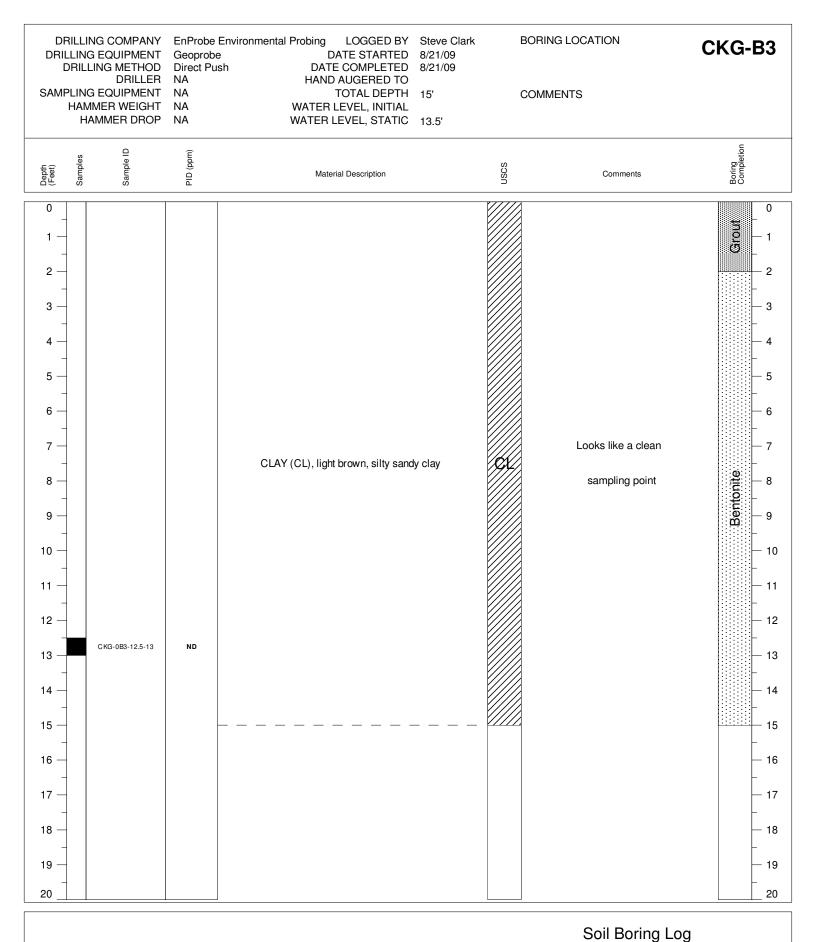
- Soil Source Areas
- - · Sausal Creek Storm Sewer
- Geoprobe Locations
- 230 TPHd Concentration in mg/kg

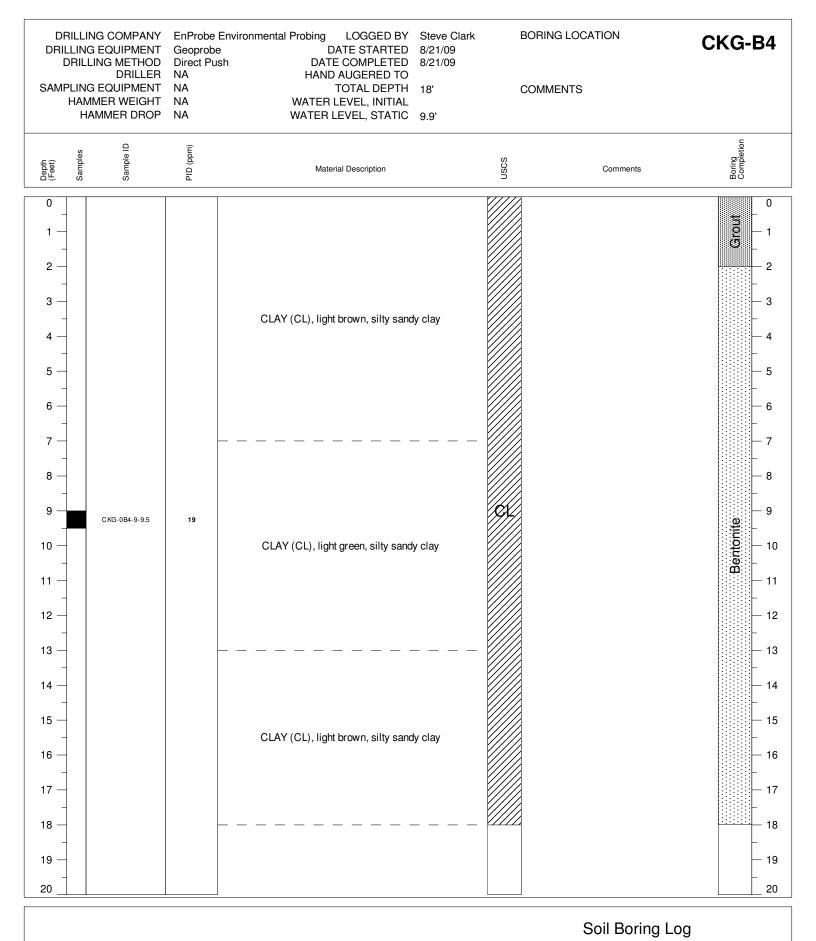

Drawn by A. Llewellyn. Deceember 2009. Base layers are unmodified Pictometry Digital Data Sets.

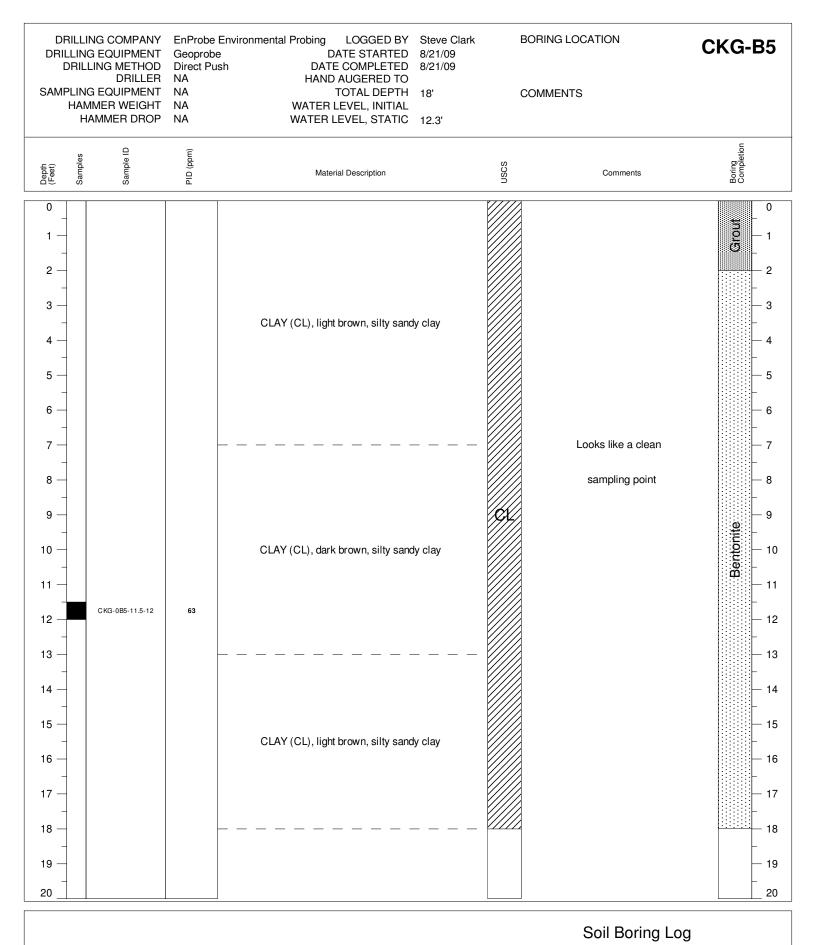
Approximate Soil Source Areas Map Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

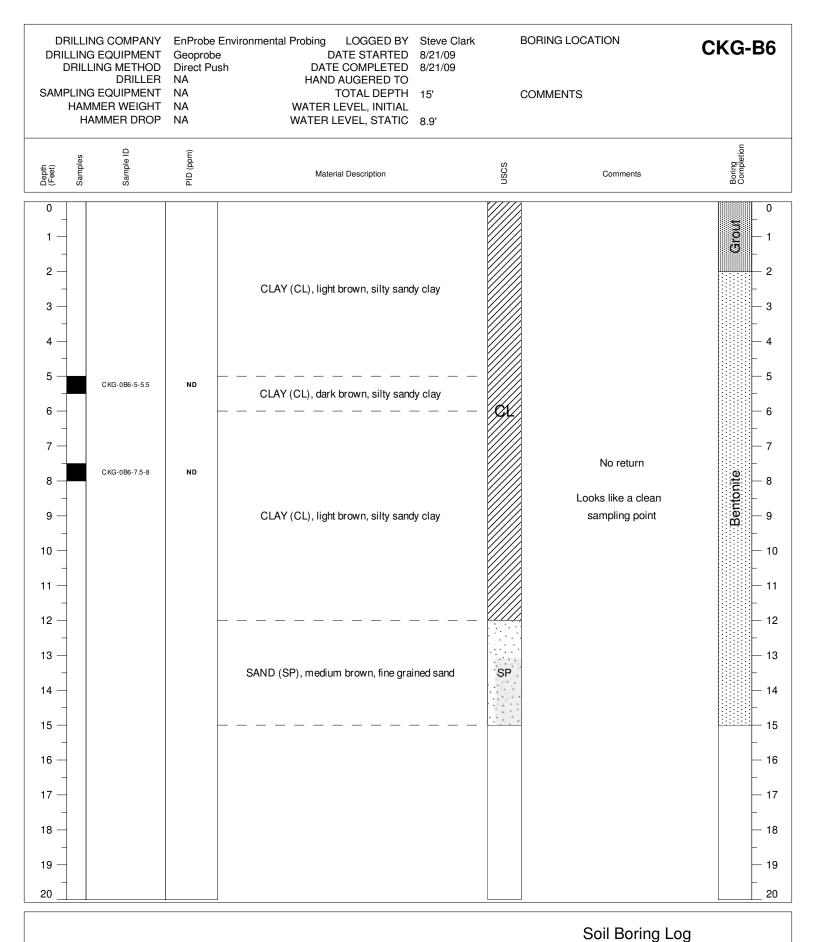


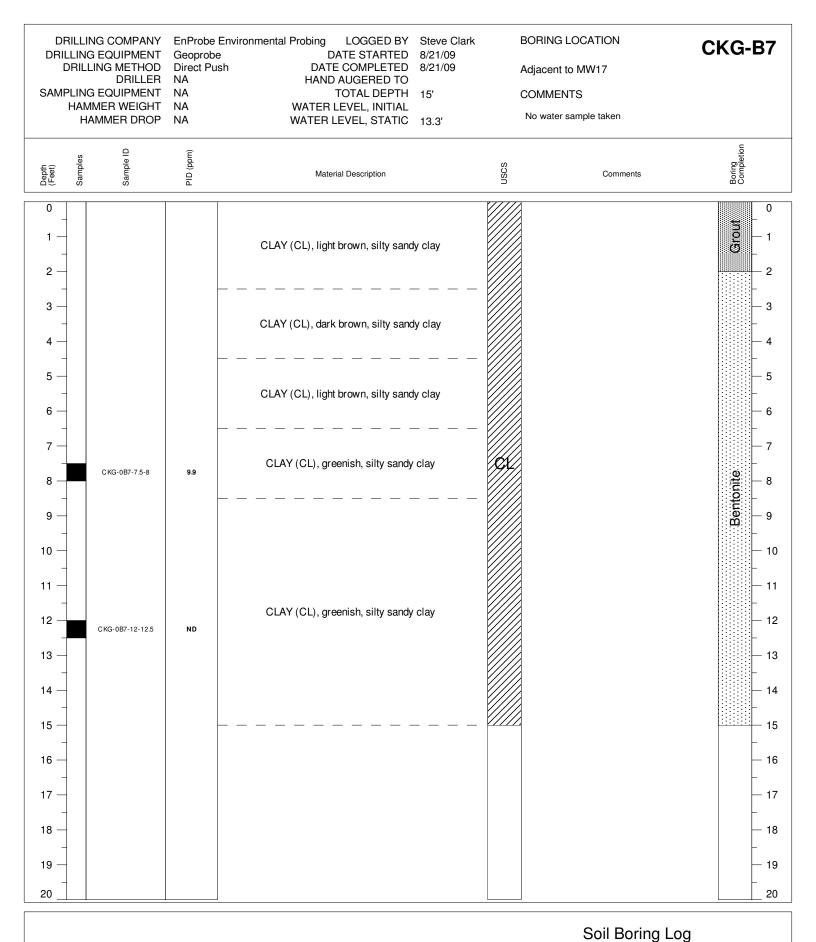
CKG Environmental, Inc.

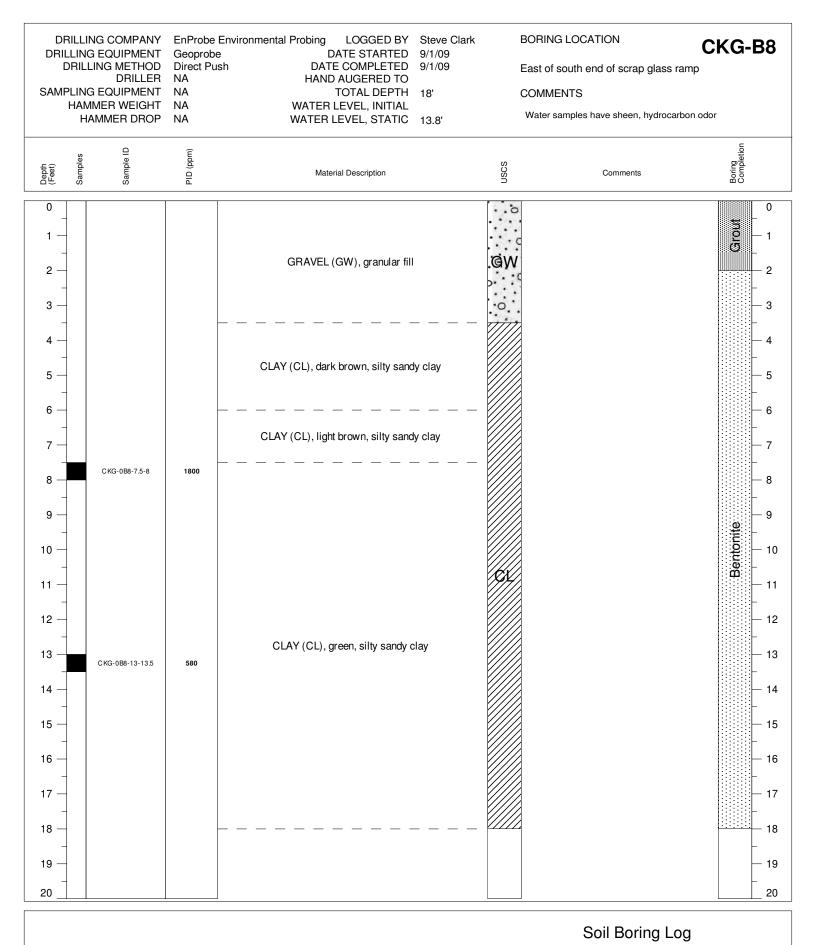

APPENDIX A

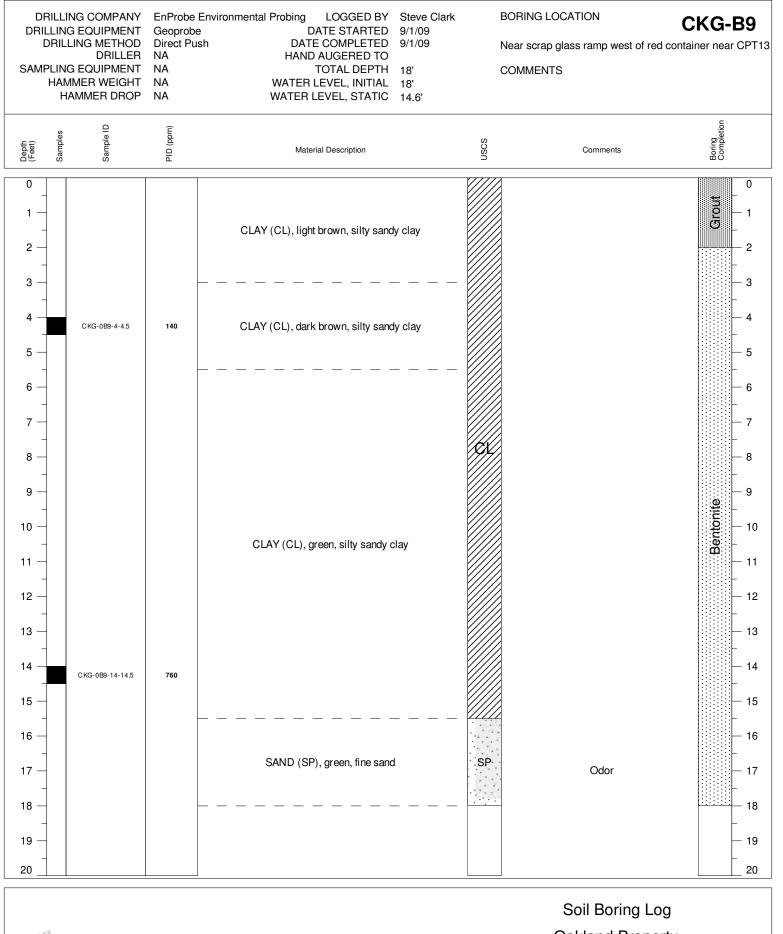



Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

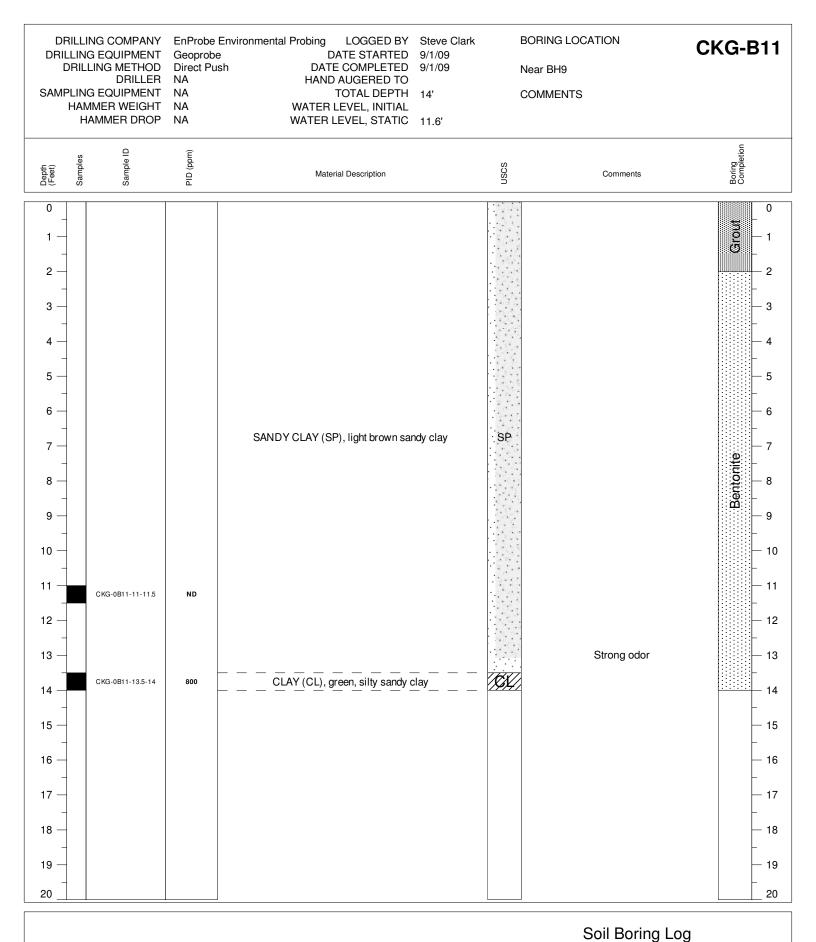



Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

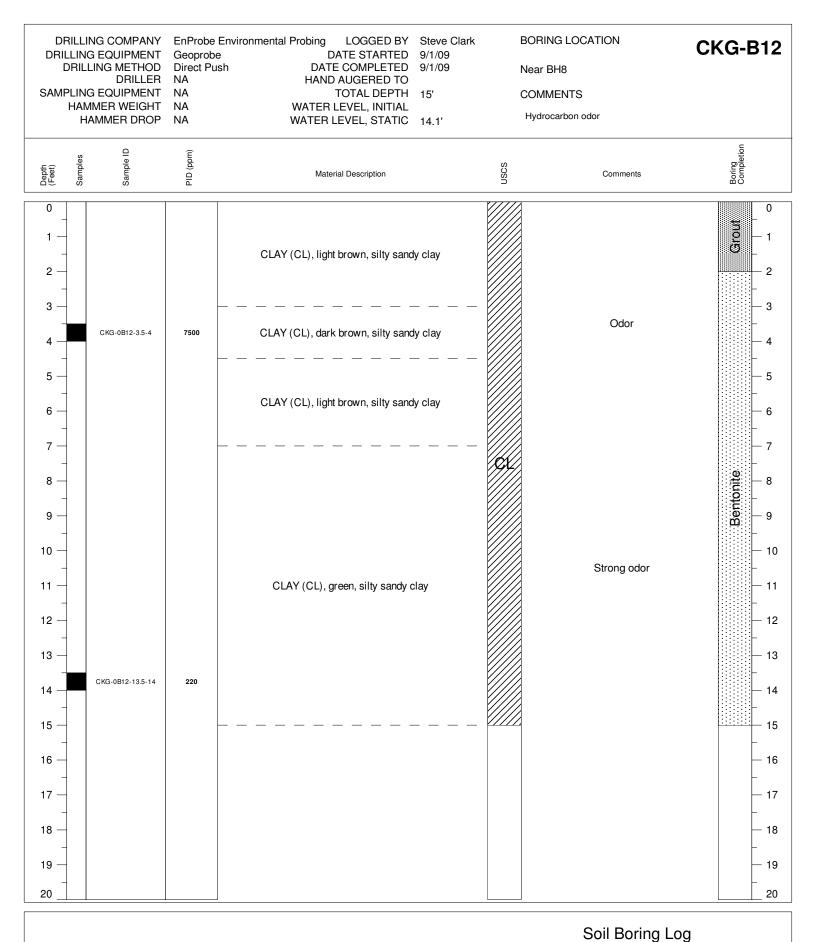

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

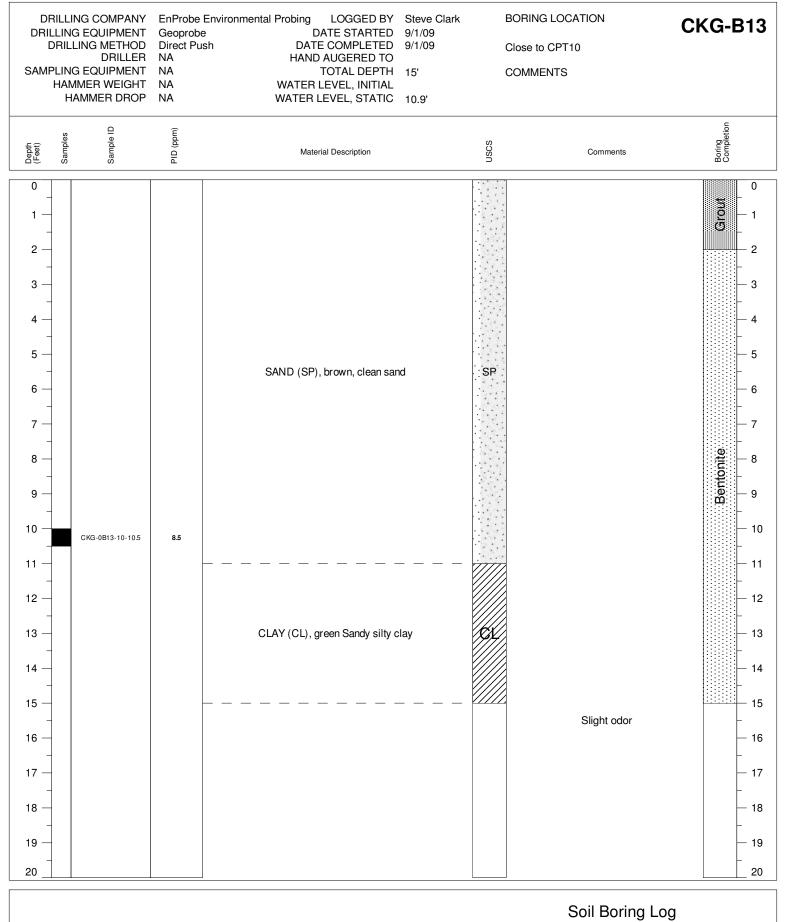


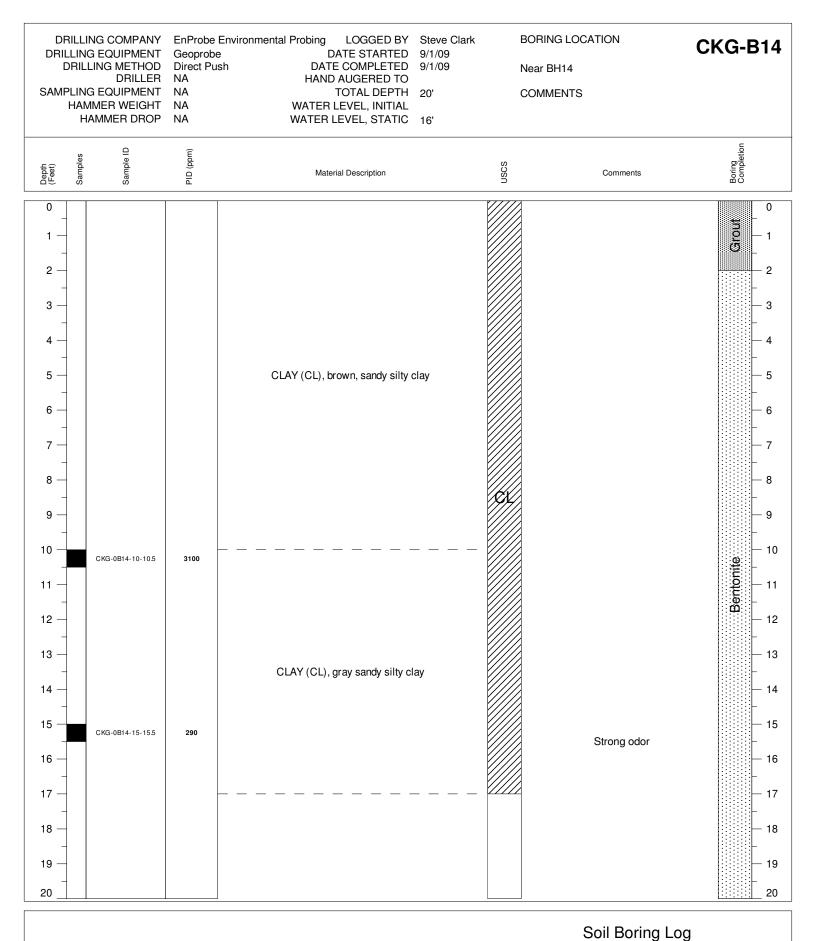
Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

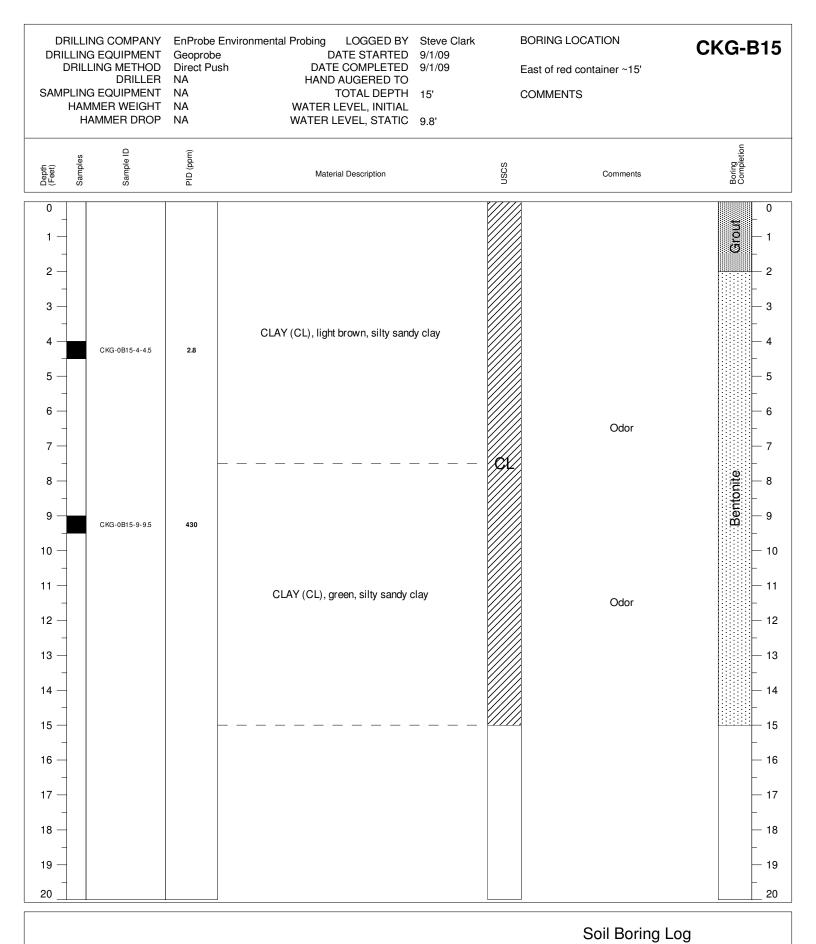


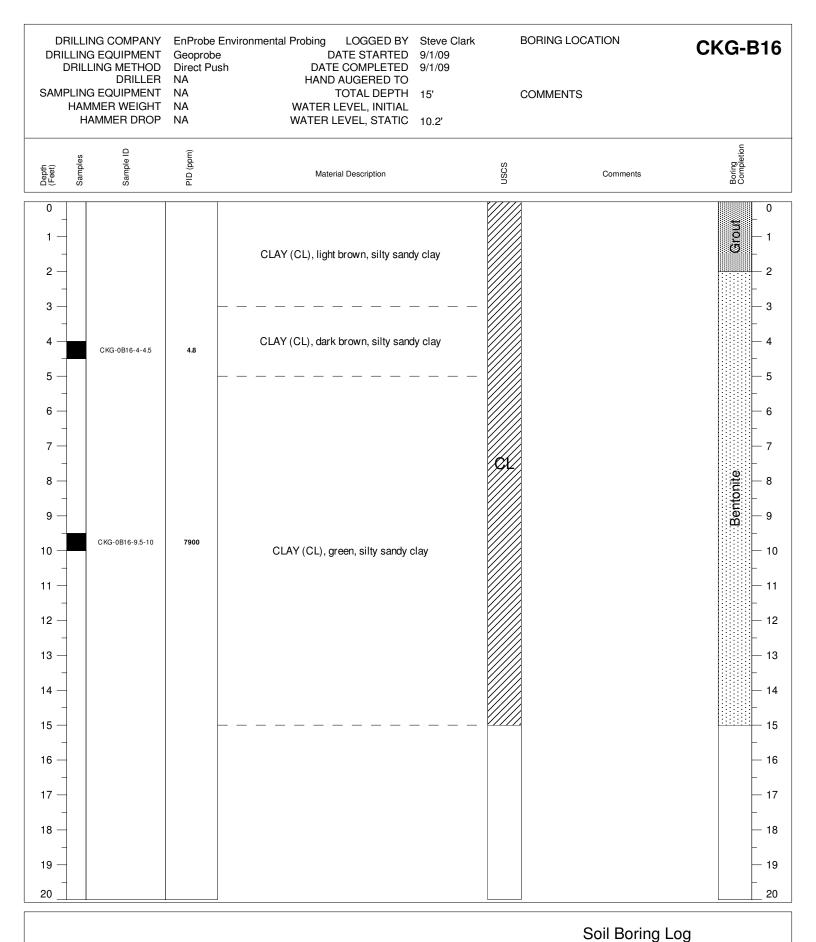
Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

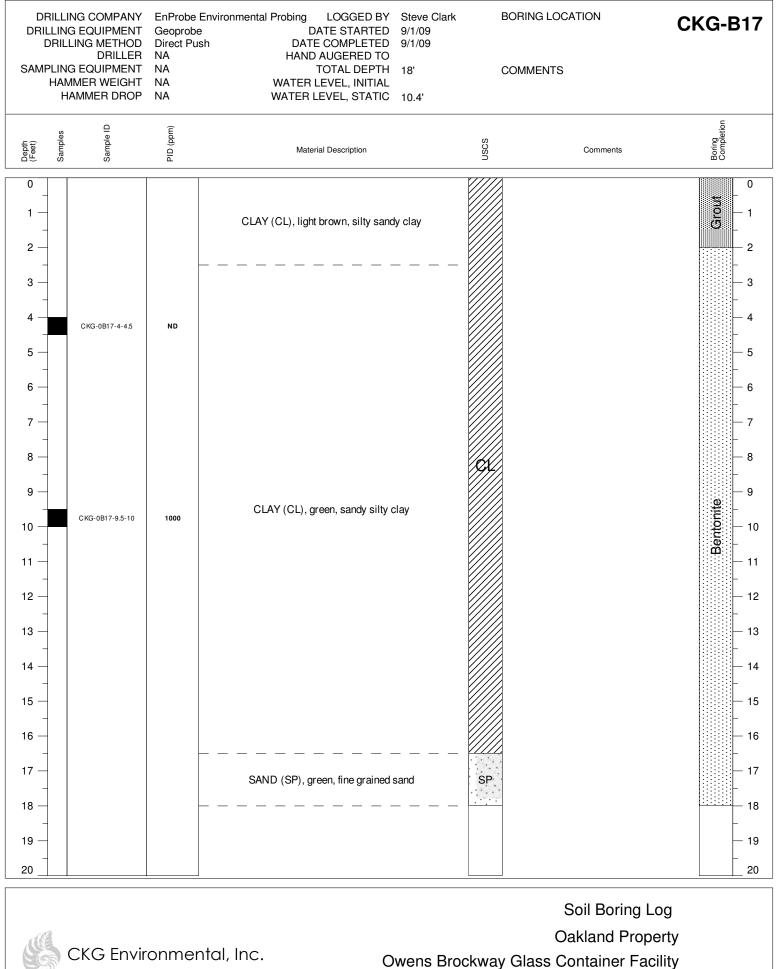

DRILLING COMPANY DRILLING EQUIPMENT DRILLING METHOD DRILLER SAMPLING EQUIPMENT HAMMER WEIGHT HAMMER DROP		EnProbe Geoprobe Direct Pus NA NA NA NA		/1/09 /1/09	BORING LOCATION Near BH1 COMMENTS No Samples	CKG-B10
Depth (Feet) Samples	Sample ID	PID (ppm)	Material Description	CSS	Comments	Boring Completion
$ \begin{array}{c} 0 \\ 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ 4 \\ - \\ 5 \\ - \\ 6 \\ - \\ 7 \\ - \\ 6 \\ - \\ 7 \\ - \\ 8 \\ - \\ 9 \\ - \\ 10 \\ - \\ 11 \\ - \\ 12 \\ - \\ 13 \\ - \\ 14 \\ - \\ 15 \\ - \\ 16 \\ - \\ 17 \\ - \\ 18 \\ - \\ - \\ 18 \\ - \\ - \\ - \\ - \\ 18 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$			Fill (FILL), Granular Backfill	Fill	Refusal	0 - 1 - 2 - 3 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18
19 — 20						19 20


Soil Boring Log **Oakland Property Owens Brockway Glass Container Facility** 3600 Alameda Avenue, Oakland, California

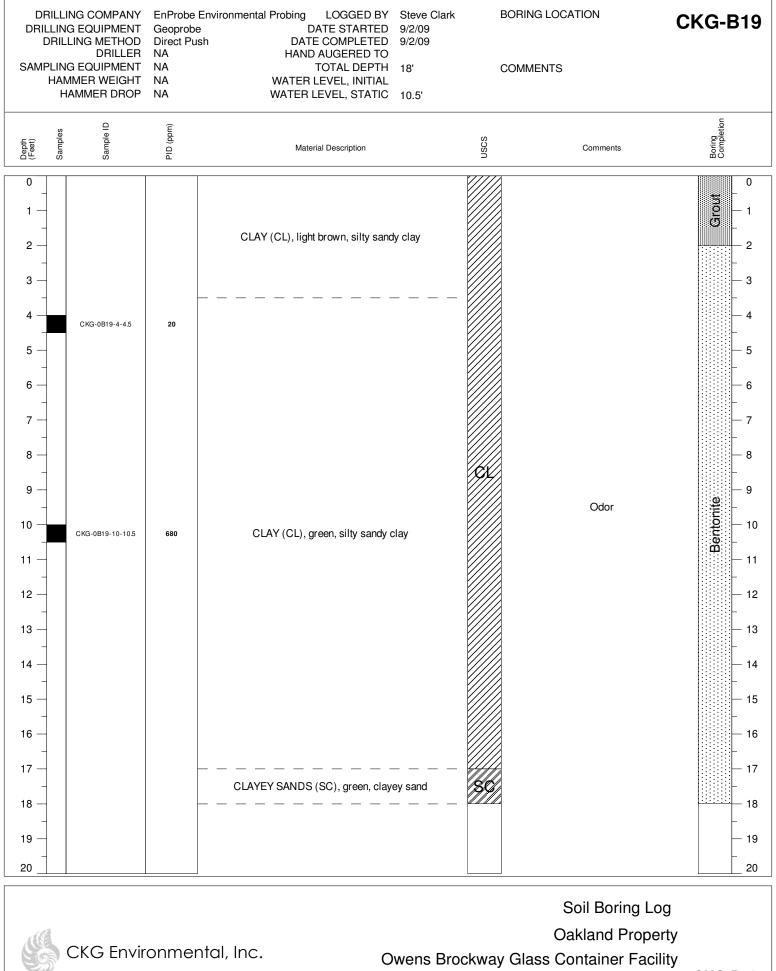

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California



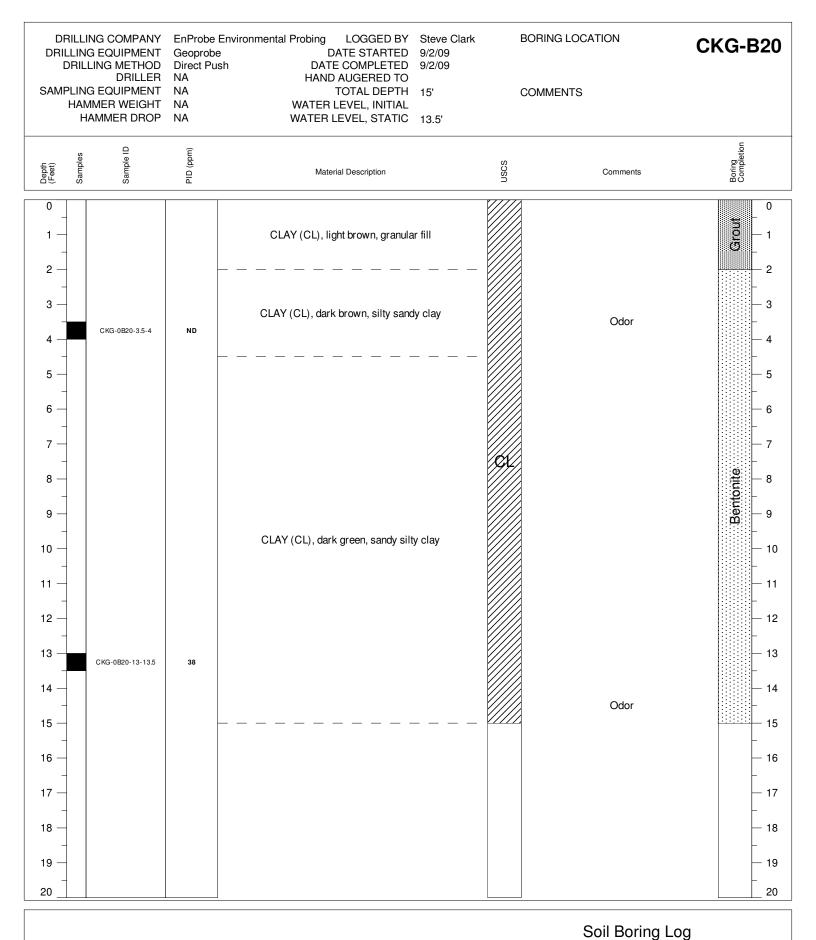

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California



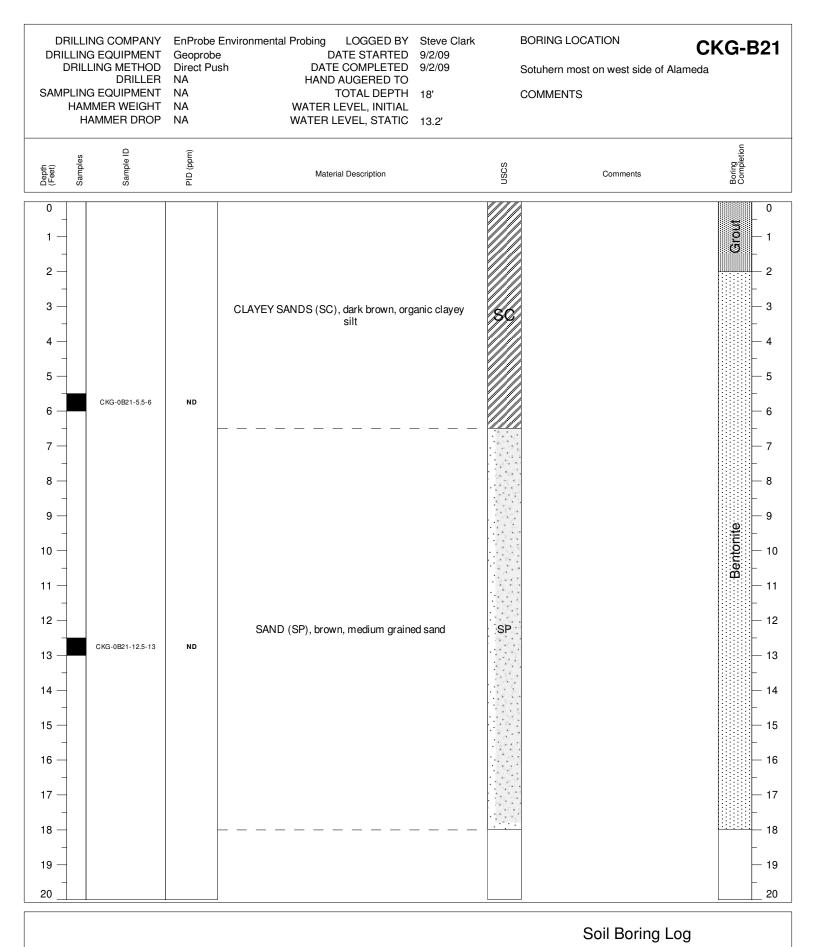
Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

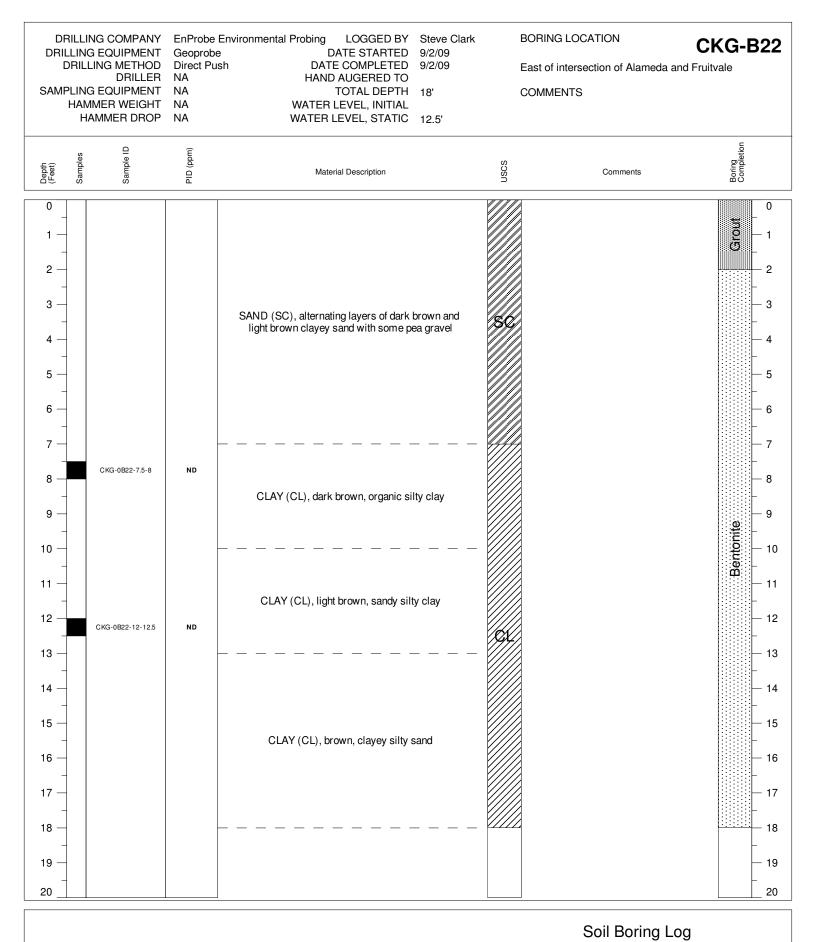


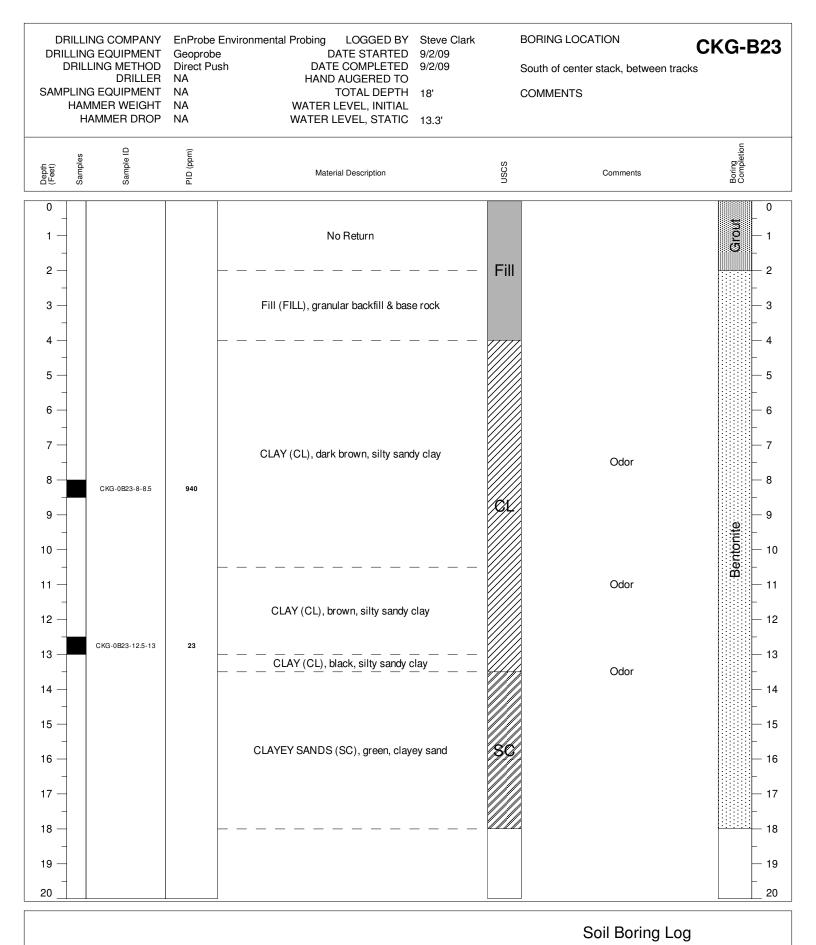
CKG-B17

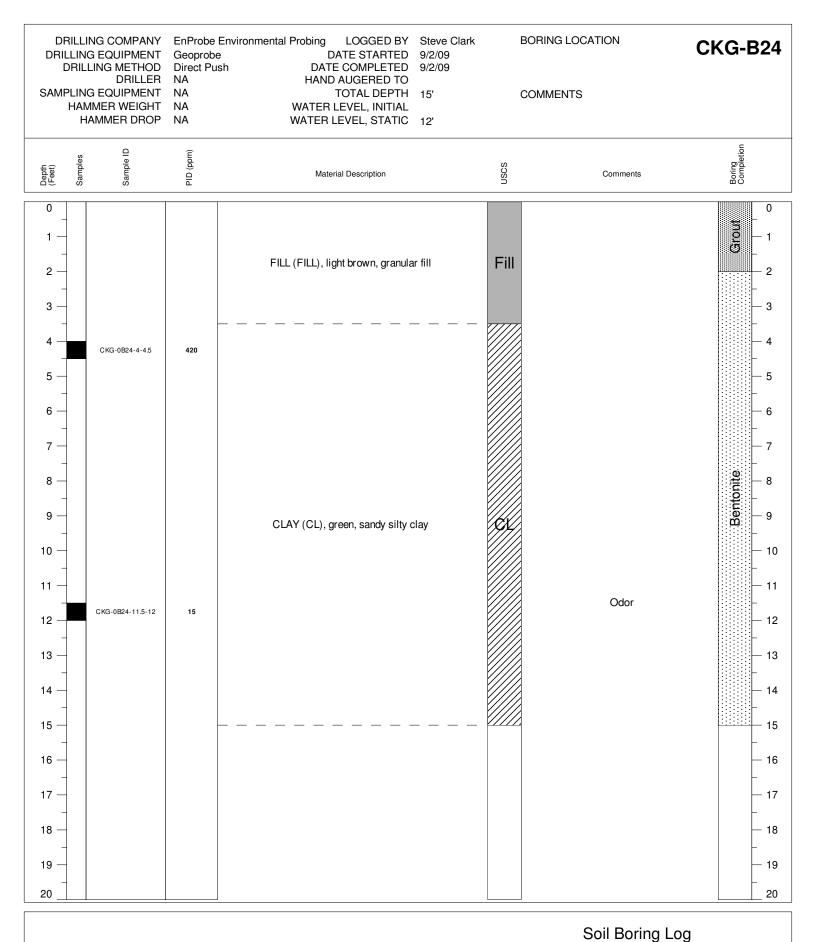

3600 Alameda Avenue, Oakland, California

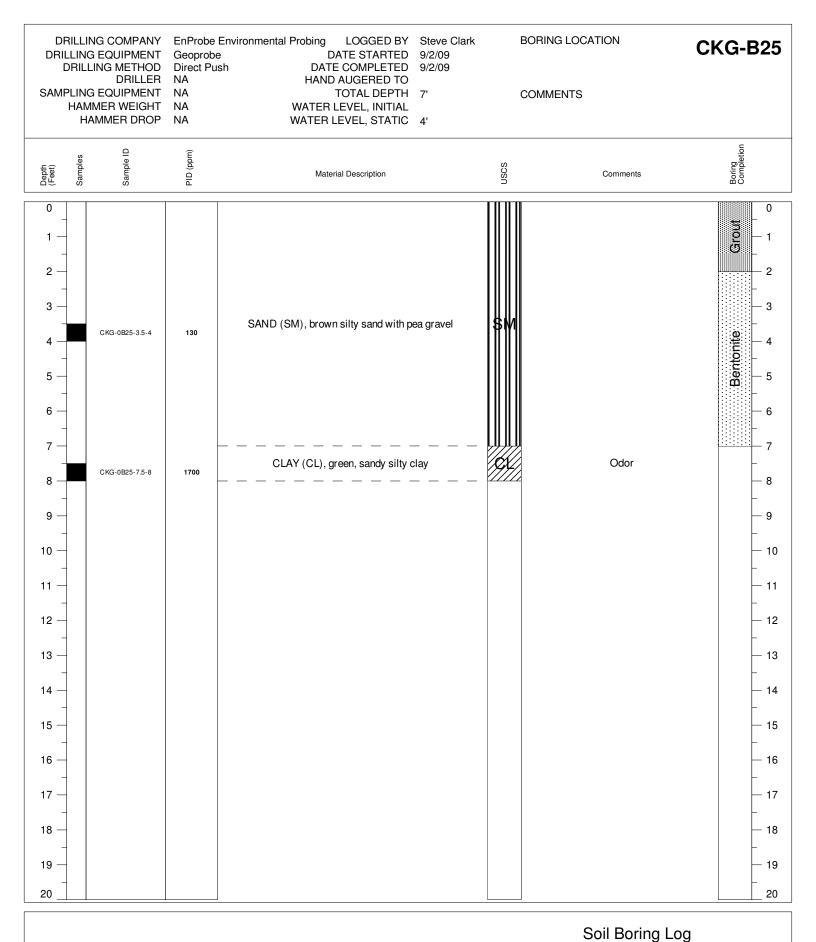
DRII [SAMF	RILLING COMPA LLING EQUIPME DRILLING METHO DRILLI PLING EQUIPME HAMMER WEIG HAMMER DRO	NT Geoprob DD Direct Pu ER NA NT NA HT NA		9/2/09 9/2/09	BORING LOCATION COMMENTS Not sampled, concrete too think	CKG-B18
Depth (Feet)	Samples Sample ID	PID (ppm)	Material Description	nscs	Comments	Boring Completion
0			Concrete too thick	CR		0
1 -						- 1
2 —						- 2
3 —						- 3
-						_
4						- 4
5 —						- 5
6 —						- 6
7 —						- 7
8						
-						_
9 —						— 9 -
10						- 10
11 -						- 11
12 —						- 12
- 13 —						-
-						-
14						— 14 -
15 —						- 15
16 —						— 16
17 —						- 17
- 18						
-						-
19 —						— 19 -
20 _]			20

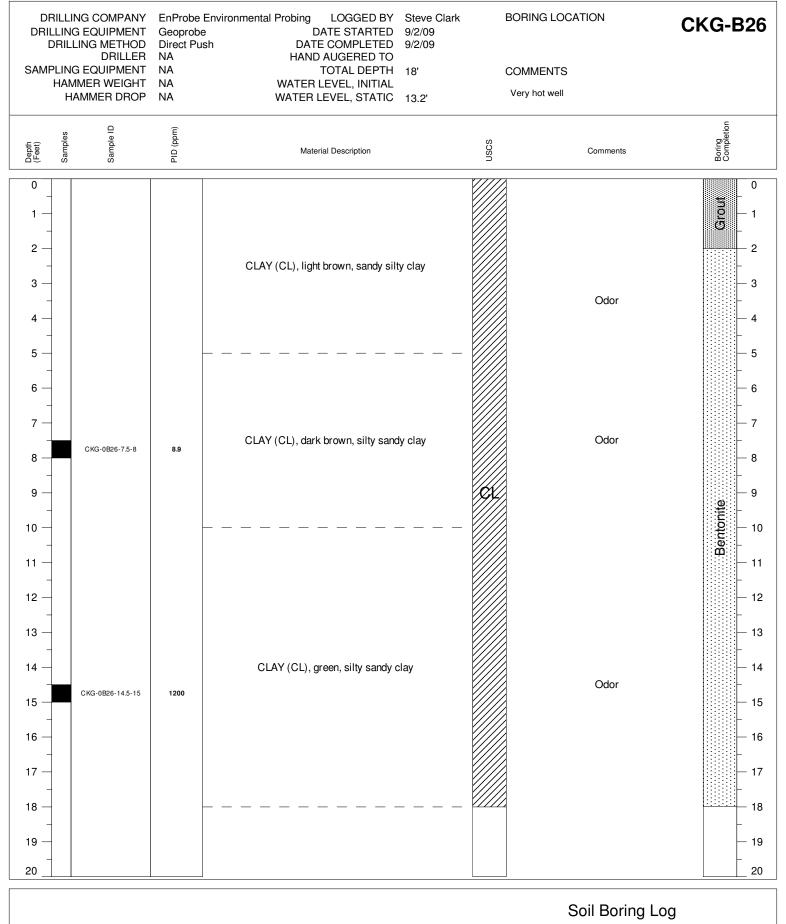


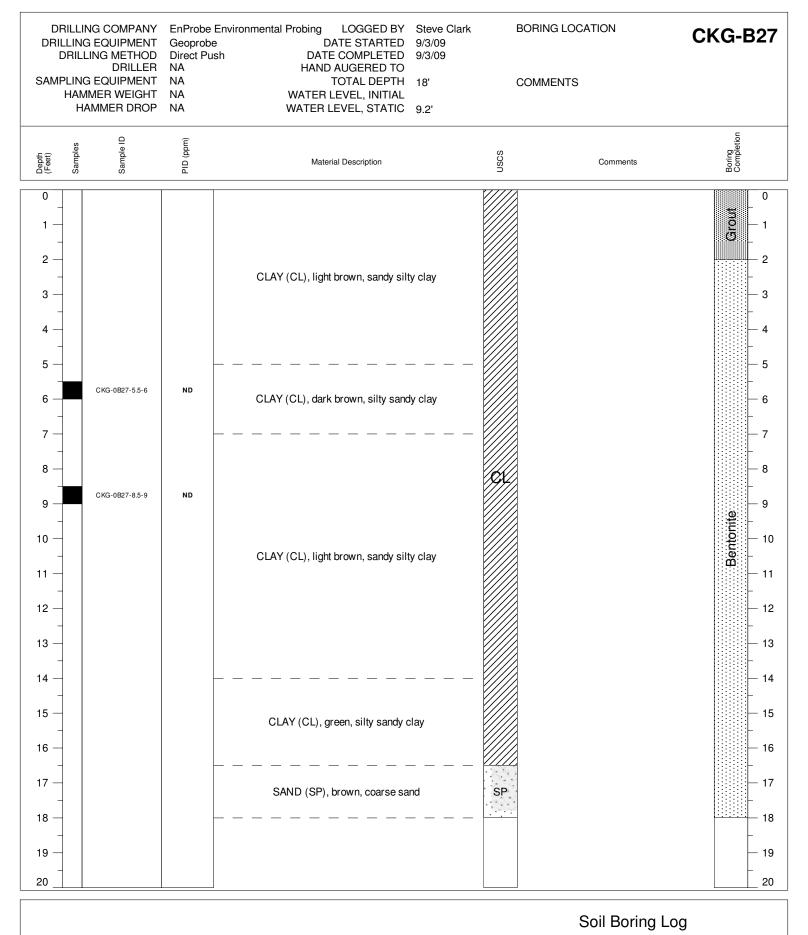

3600 Alameda Avenue, Oakland, California

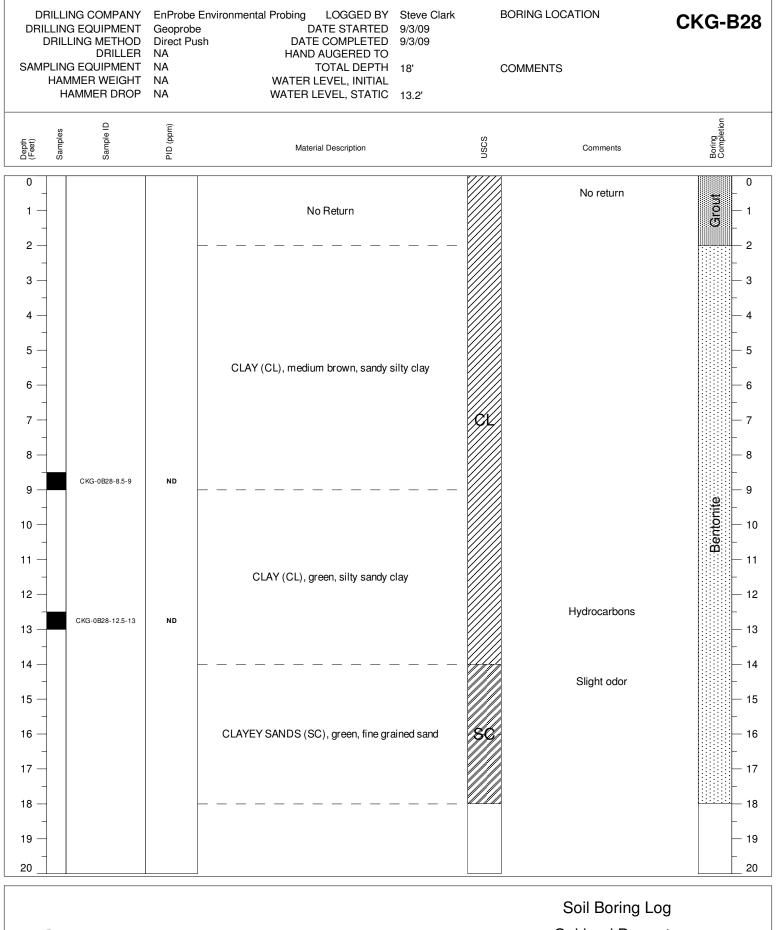

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

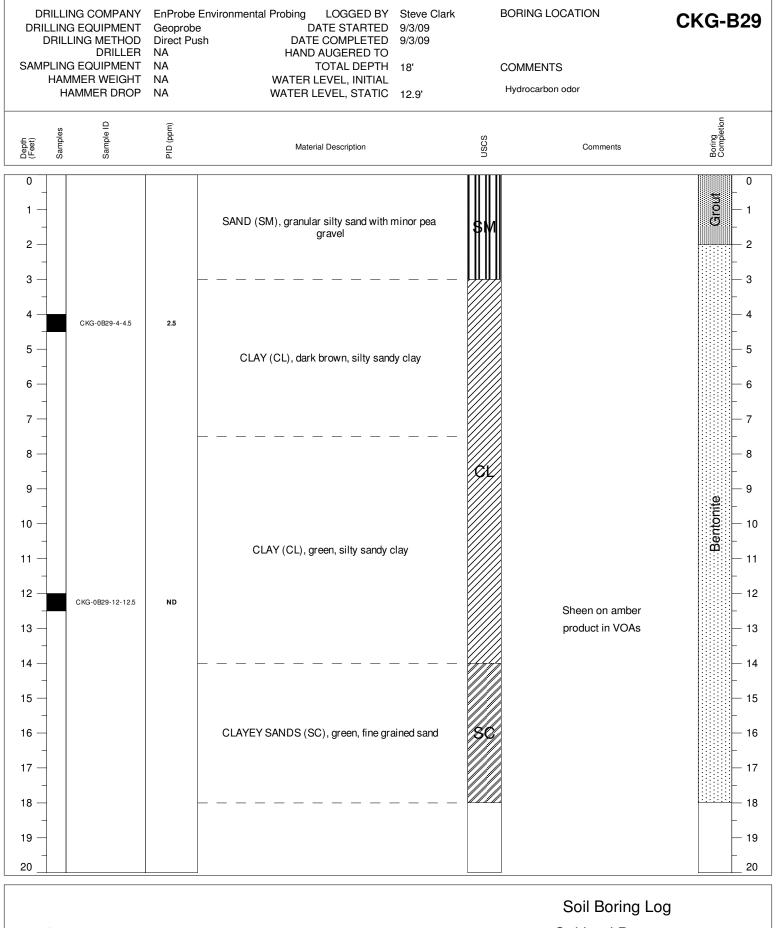

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

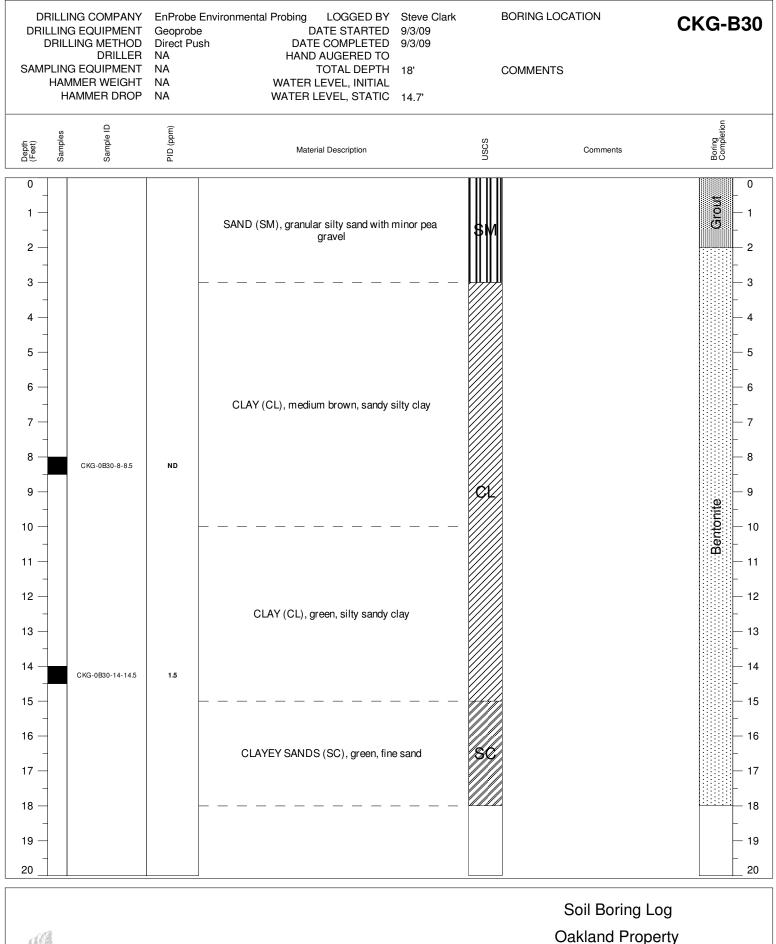


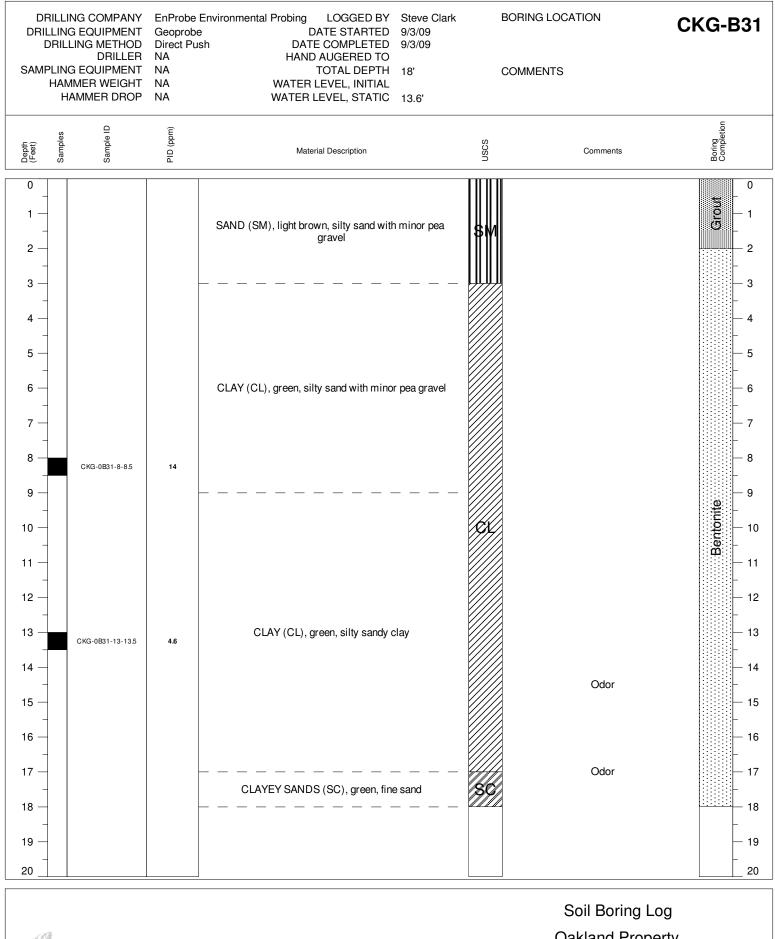

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

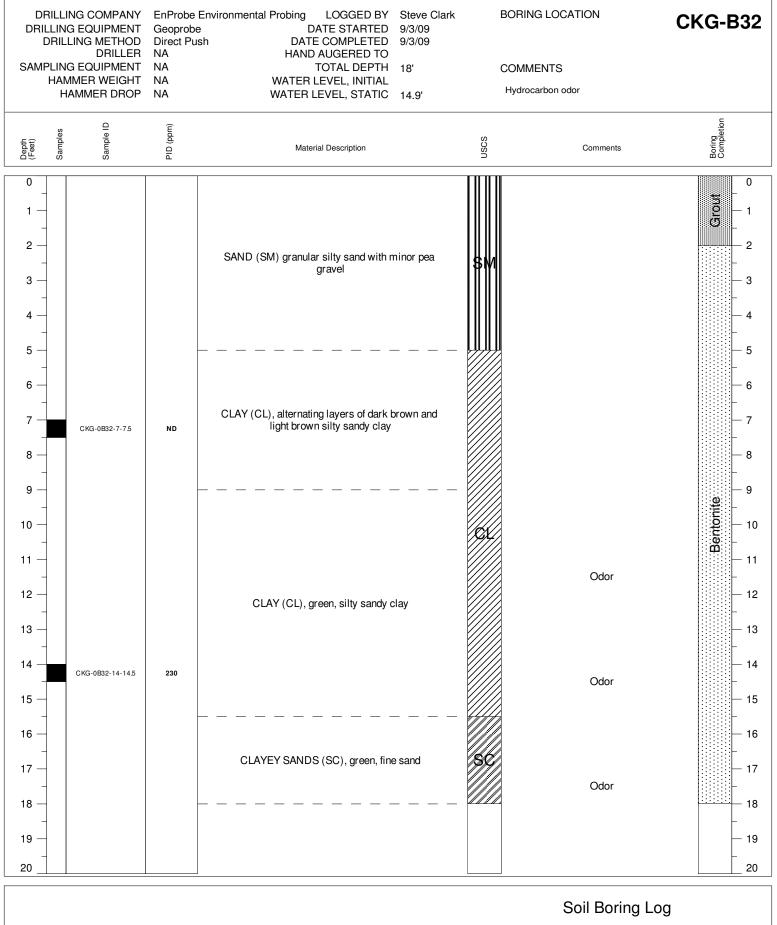


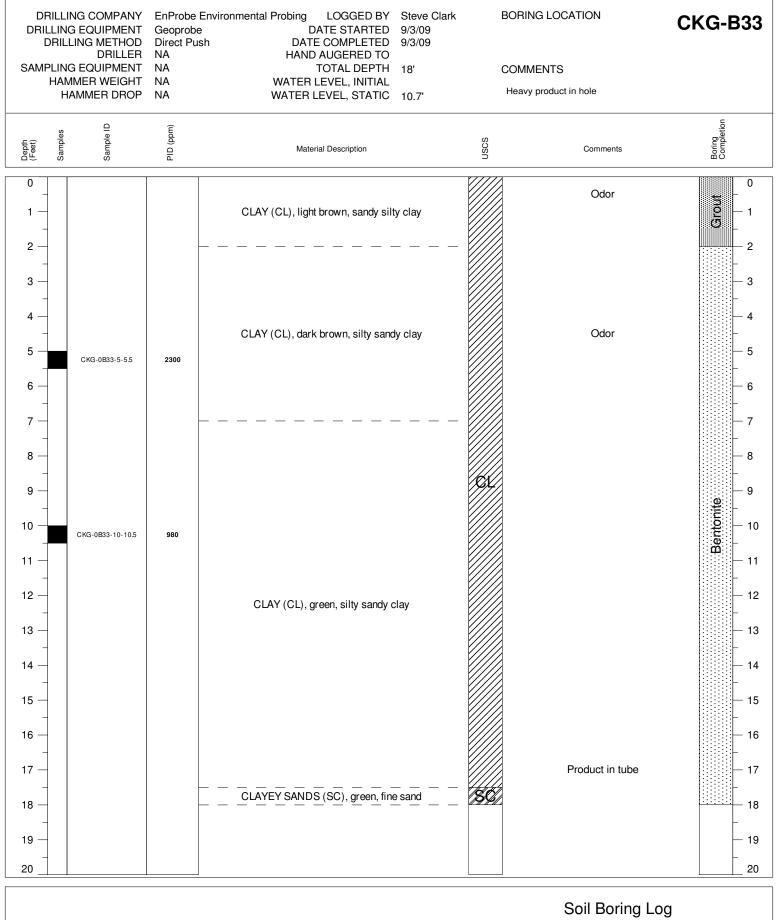


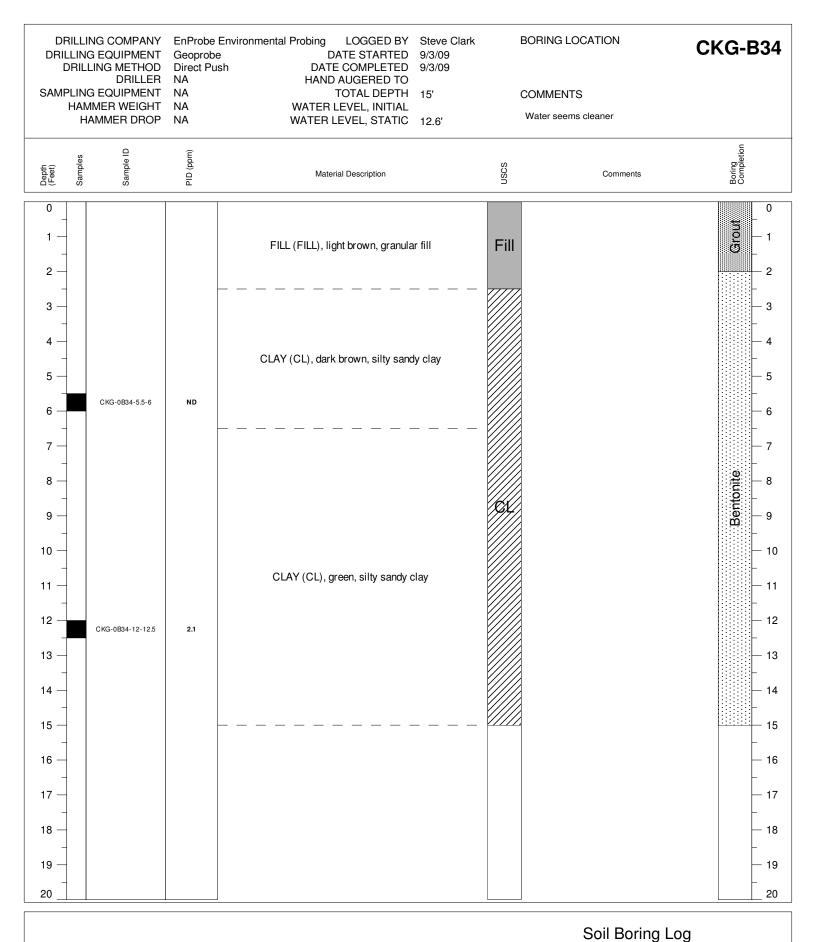

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

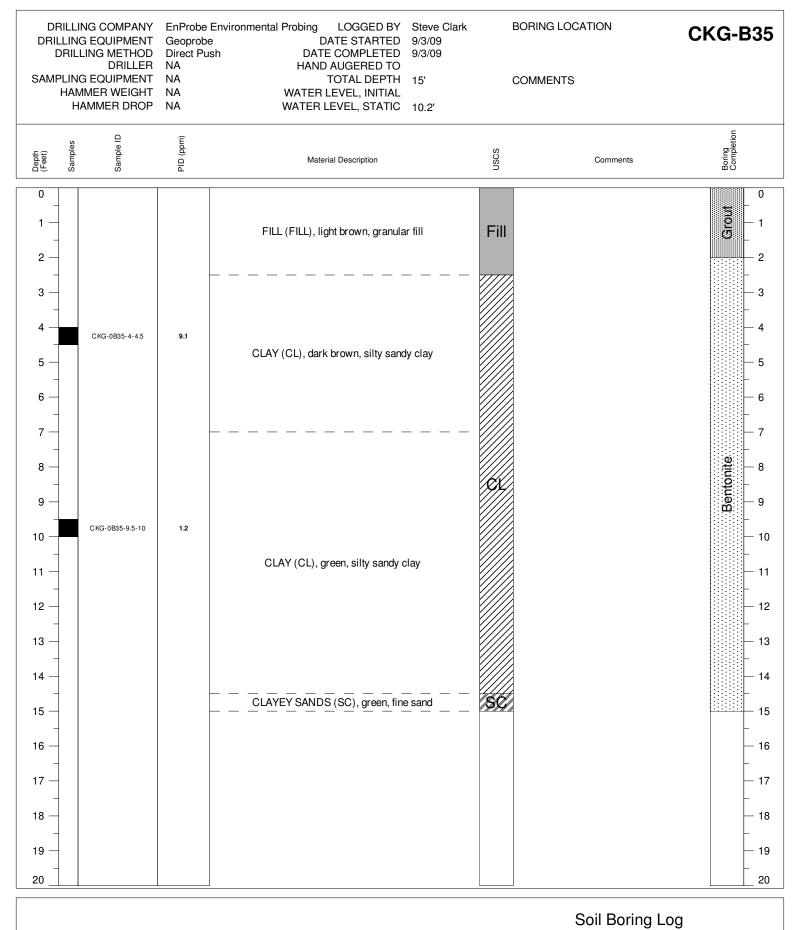

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

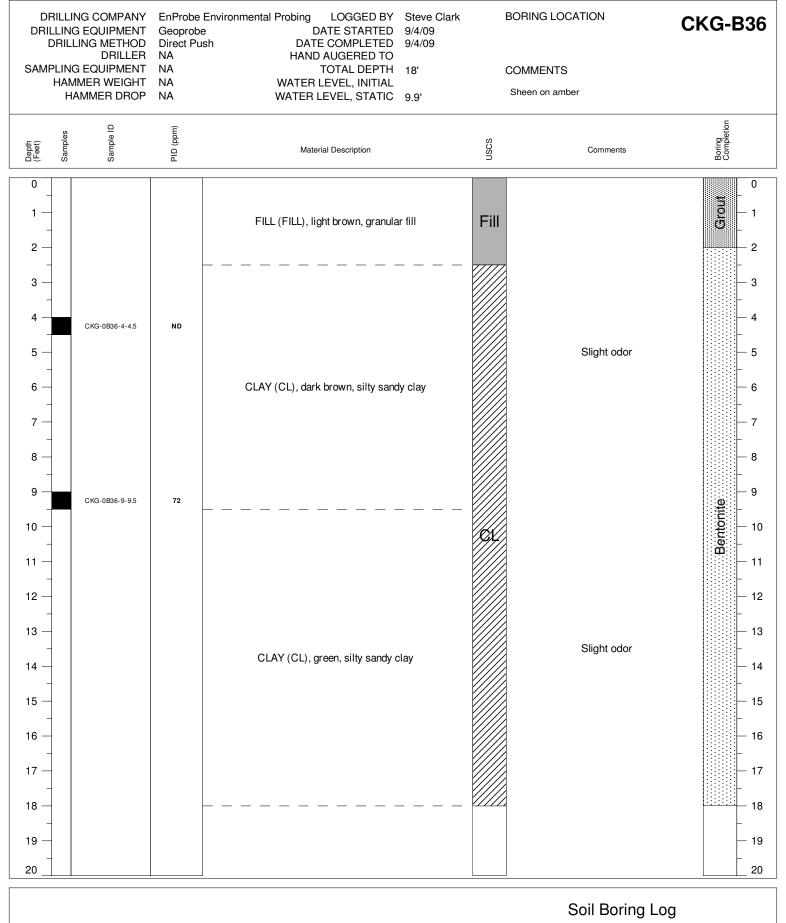


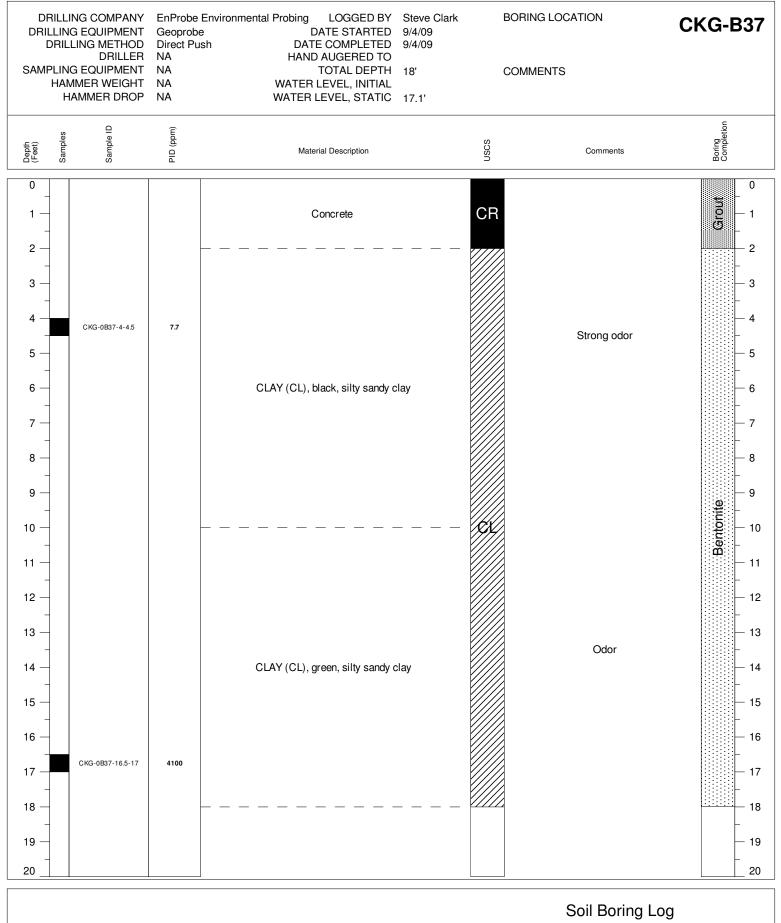


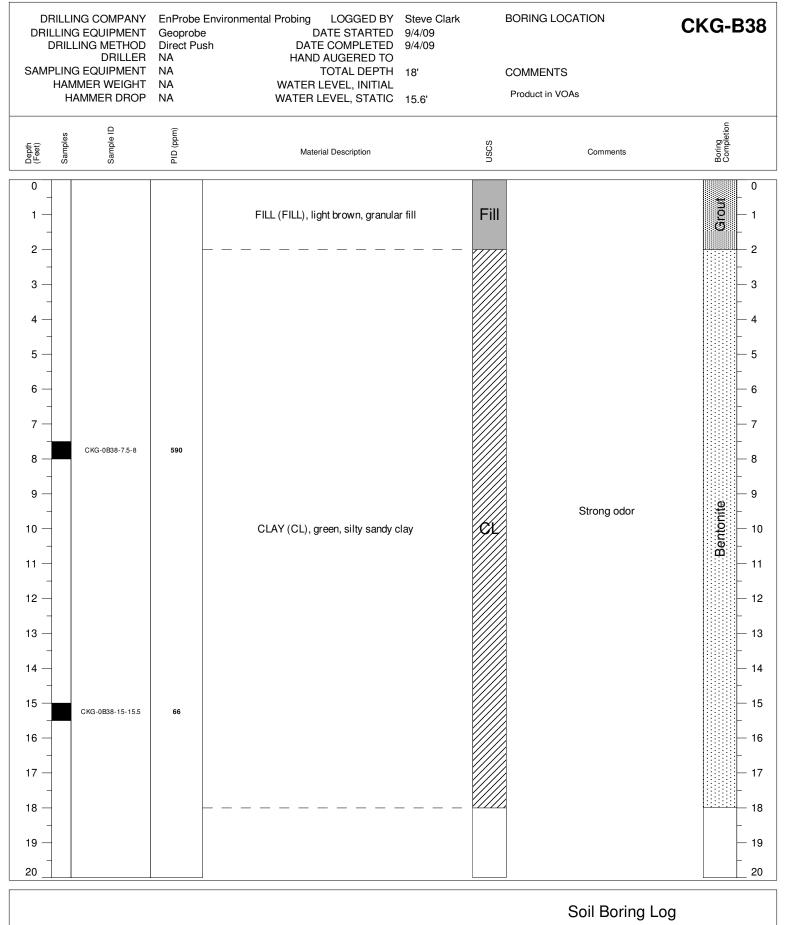

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

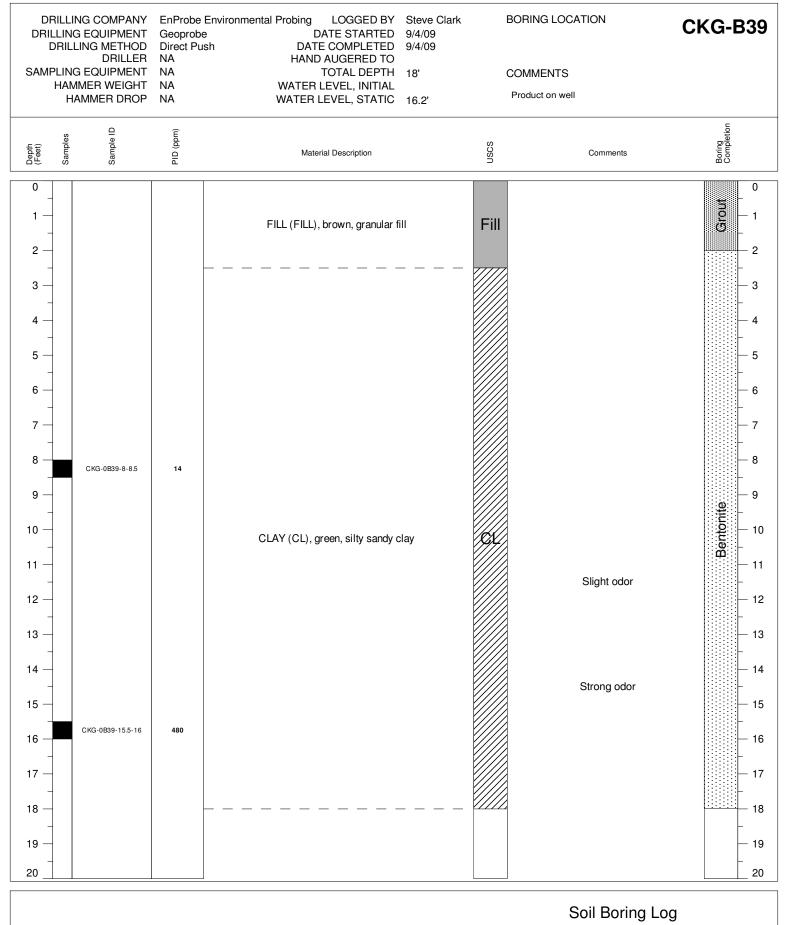

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

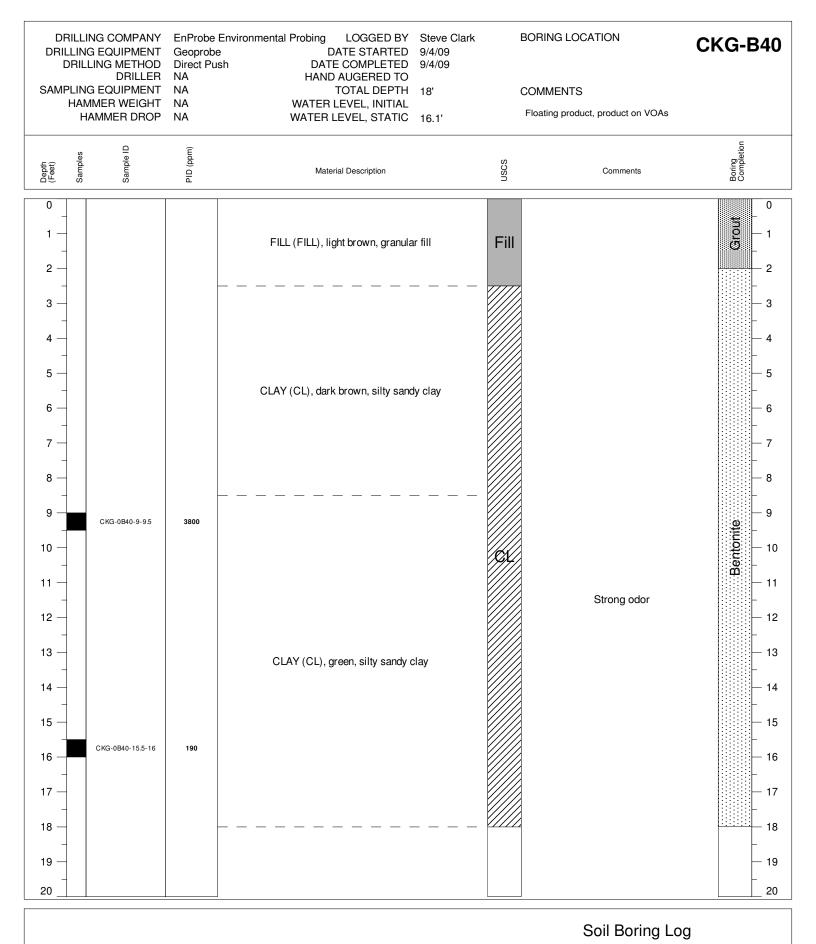


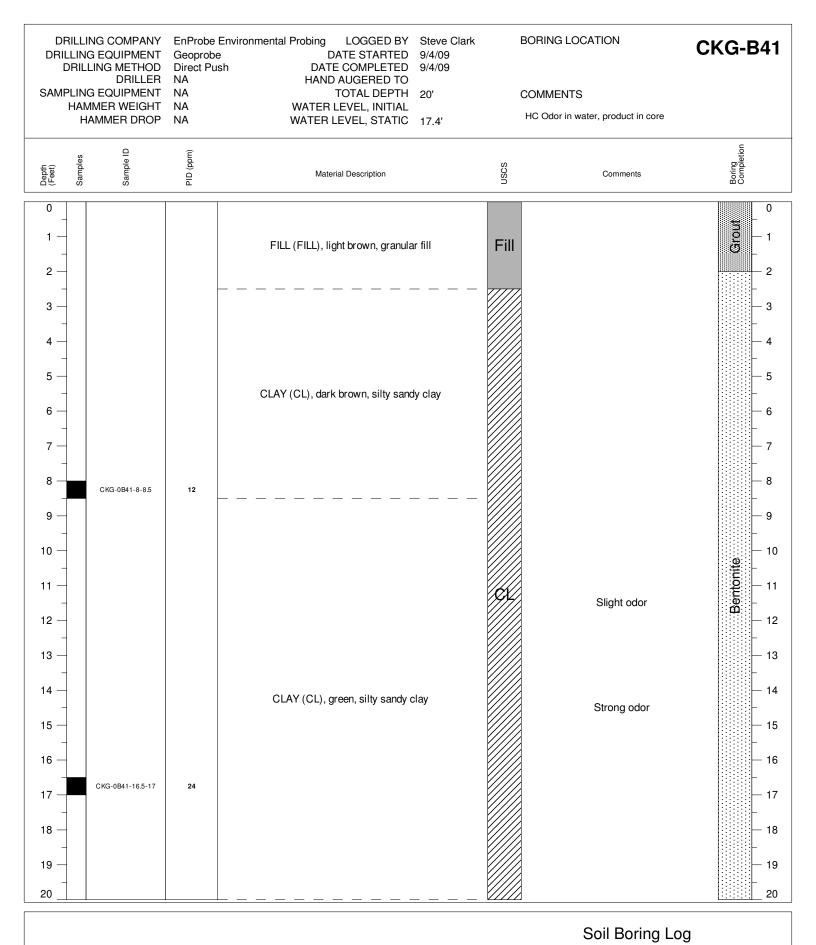

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California




Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California


Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California


Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California


Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

Oakland Property Owens Brockway Glass Container Facility 3600 Alameda Avenue, Oakland, California

APPENDIX B

	ll Analytical, Inc. Ouality Counts"	Web: www.me	llow Pass Road, Pittsburg, 6 ccampbell.com E-mail: m one: 877-252-9262 Fax:	ain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway;	Date Sampled:	09/04/09
P.O. Box 246	Oakland		Date Received:	09/04/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/14/09
51. Helena, CA 94574	Client P.O.:		Date Completed:	09/14/09

WorkOrder: 0909168

September 14, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: Owens Brockway; Oakland,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Te	ebsite: <u>www.m</u>	PITTSBU	RG, CA 94	SS RO 565-17	AD 701			NC.						ΓU	RN	AF				IM	E		RUS	SH	24			۲ 48	HR	72	HR	
	lephone: (877	7) 252-92	62					252-9					1	Geo	Tra	ack	er l	EDI	FG		PE)F		E	xce			Wr	ite (On (DV	V) 📮
Report To: CH	IS RENALED	74	E	ill To):		-				-	_	+	_				/	\nal	vsis		ques	_	amp	ole is	s en	luer	nt a	_	J ² Ha	-	s required Commen
Company: Cka	3 EXIREN	YELTA													_													Γ	Ē		+	
													8015) / MTBE		5520 E/B&F)					agene												Filter Samples
The last of a last				E-Mai	_	_		_					- N/0		520 E					/Cor							6020)					for Meta
Tele: () Project #:				ax: (rojec	-	ne.	21.20	au c	70	111	-	AV	801		4/5	8.1)		8021)		clors		cides			As)		0 / 60					analysis:
Project Location	: OtkLA	JAND ,	1	Tojee	t I tai	ne.C	1400	945	1yc	60	c co		8021+		e (166	141 su		602 /	cides)	; Aro	(s	Ierbi	-	(8)	/ bN/		/ 6010 /	20)				Yes / No
Sampler Signatu		HEGL	h										02/8	2	Grease (1664 /	arbor		EPA (Pestic	NLY	ticide	C II	/00	NOC	AHs	6020)	8.00.8	0 / 60				
		SAMI	PLING	8	lers	Ι	MA	TRI	ĸ			HOD RVE		15) +	Oil & G	Hydroc	(C3)	NLY (I	(CI)	CB's O	NP Pes	(Acidi	8260 (V	8270 (S	8270 SIM / 8310 (PAHs / PNAs)	200.8/	00.7/2	8 / 6010				
SAMPLE ID	LOCATION/			iner	Containers								PH as	sel (8)	eum	eum]	(HVO	EX 0	18 / 80	082 P	\$141 (8151	624 /	625 /	/ WIS	etals (tals (2	/ 200.				
	Field Point Name	Date	Time	# Containers	Type Cor	Water	Soil	Air Sludge	Other	ICE	HCL	HNO3	ULINET & TPH	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	ALTER / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507/8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 S	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 /	Lead (200.7 / 200.8 / 6010 / 6020)				
CK6-0333		72/04		3	V	X					x		\uparrow					X													+	
CK6-0333 CK6-0333		23/39		1	A	×					X			X																		
CKG - 0834		94/05		3	V	x					x			Í				X														
CICG-0834		9/2/09		1	A	Y					X			X																		
0KG - 0B 35		9/3/69		3	V	X		÷			x							X														
CK6-0835		9/3/09		1	A	X					X			X																		
2K8-0376		914/09		3	V	x					8							x														
CK6-0336		914/09		1	À	x					x)	(1														
CK6-0B37		7/4/09		3	V	X					X							x														
CKG-0837		9/4/09		1	A	X					X			X																		
CKG-0038		910/2		3	V	X					x			Í				X														
CKG-0838		9/4/09		1	Å	X					X			X																		
CKG-00 39		914/09		3	V	x					X			1				X														
CK6-0839		9/4/09		1	A	8	1	1			X			X	h	U																
Relinquished By	1	Date:	Time: 350	Rece	~	/		>	-	<		1	G	CE/t°	D CON				_								CO	MM	ENTS	3:		
Relinquished By: Relinquished By:	- 9	Pate:	Time:	\mathcal{O}	ived B	-€	2		8				A	PPR	OPRI ERVI	ATE	CO	NTA		RS_	_	-										

	ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccampbel) 252-92	LLOW PA RG, CA 94 <u>l.com</u> En 62	SS RO	AD 701 nain@ Fax:	mcc	amp	bell.c	om						RN Tra		10	DNI	T F C		E PD	F l	RUS	H Ex	24 cel	HR	1	48 H Vri	te On (D	
	LG HUDINA : CAKIN	N IUEN 1	TAL I F	E-Mai Tax: (Projec	il:)	ne:	000	645	BA				as Gas (602 / 8021 + 8015) / MTBE		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	carbons (418.1)				EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners				SVOCs)	PAHs / PNAs)	6020)	200.8 / 6010 / 6020)	(0 / 6020)	otter	Filter Samples for Metal analysis: Yes / No
SAMPLE ID	LOCATION/ Field Point Name	SAMI	Time	# Containers	Type Containers	er		Air		PRI		OPHor Cothor	HdT	TPH as Diesel (8015)	Total Petroleum Oil & 0	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	A BL/ BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's 0	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lend (200.7 / 200.8 / 6010 / 6020)		
CKG-0840 CKG-0840 CKG-0841 CKG-0841 CKG-0839	UNMBRUCD	9/4/09 9/4/09 9/4/09 9/4/09 9/4/09		3 3 1	V A Y A A	x x x x x x					X X X X			×				×						X	NO.					U Jacobier UN Priesco
Relinguished By:	19	Date: 9/4/09 Date:	Time:		ived B	y:	. / 10		X	8			G H D	EAD ECH	O CON SPA LOR	CE A	ABSE	IN L									CO	MMH	ENTS:	

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	g, CA 94565-1701 52-9262					Work	Order:	09091	168	С	lientCod	le: CH	KGS				
		WaterTrax	WriteOn			Excel	Γ	Fax	•	Email] HardC	Сору	Thir	dParty	☐ J-f	lag
Report to: Chris Kenne	edy	Email: c	ckennedy@ge	eologist.com			Bill to: Acc	counts I	Payable	1			Requ	lested	TAT:	5 d	lays
CKG Enviro P.O. Box 240	6	cc: PO:					P.C). Box 2	-							09/04/2	
St. Helena, ((707) 967-808		ProjectNo: (Jwens Brock	way; Oakland			St.	Helena	i, CA 94	574			Date	e Print	ed:	09/04/2	2009
					[Requ	ested 1	Fests (Se	ee leg	end be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	Requ 4	ested 1 5	fests (Se	ee leg 7	end be 8	elow) 9	10	11	12
Lab ID 0909168-001	Client ID CKG-OB33		Matrix Water	Collection Date	Hold	1	2 A	3 B	Requ 4	1	<u> </u>	ee lego 7	end be 8	,	10	11	12
					Hold	1		•	Requ 4	1	<u> </u>	ee lego 7	end be 8	,	10	11	12
0909168-001	CKG-OB33		Water	9/3/2009	Hold	1	A	В	Requ 4	1	<u> </u>	ee lege 7	end be 8	,	10	11	12
0909168-001 0909168-002	CKG-OB33 CKG-OB34		Water Water	9/3/2009 9/3/2009	Hold	1	A A	B	Requ 4	1	<u> </u>	ee lege 7	end be 8	,	10	11	12
0909168-001 0909168-002 0909168-003	CKG-OB33 CKG-OB34 CKG-OB35		Water Water Water	9/3/2009 9/3/2009 9/3/2009	Hold	1	A A A	B B B	Requ	1	<u> </u>	ee leg 7	end be	,	10	11	12
0909168-001 0909168-002 0909168-003 0909168-004	CKG-OB33 CKG-OB34 CKG-OB35 CKG-OB36		Water Water Water Water	9/3/2009 9/3/2009 9/3/2009 9/4/2009		1	A A A A	B B B B	Requ 4	1	<u> </u>	ee leg 7	end be 8	,	10	11	12

Test Legend:

0909168-008

0909168-009

1	8270D_W	
6		
11		

2	G-MBTEX_W
7	
12	

CKG-OB40

CKG-OB41

3	TPH(DMO)_W
8	

А

А

В

В

9/4/2009

9/4/2009

Water

Water

4	
9	

5	
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	CKG Environmen	tal				Date	e and	Time Received:	9/4/2009 8	:03:22 PM
Project Name:	Owens Brockwa	y; Oakla	and			Che	cklist	completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	0909168	Matrix	Water			Carı	rier:	Rob Pringle (M	Al Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Inform	natio	<u>n</u>		
Chain of custody	present?			Yes		No 🗆				
Chain of custody	signed when relinqui	shed and	I received?	Yes	✓	No 🗆				
Chain of custody	agrees with sample	abels?		Yes	\checkmark	No 🗌				
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆				
Date and Time of	collection noted by Cl	ient on CO	OC?	Yes	✓	No 🗆				
Sampler's name r	noted on COC?			Yes		No 🗆				
			<u>Sa</u>	ample	Receipt	Informatio	<u>on</u>			
Custody seals int	tact on shipping conta	iner/coole	er?	Yes		No 🗆			NA 🔽	
Shipping containe	er/cooler in good conc	lition?		Yes	✓	No 🗆				
Samples in prope	er containers/bottles?			Yes	✓	No 🗆				
Sample containe	rs intact?			Yes	✓	No 🗆				
Sufficient sample	e volume for indicated	test?		Yes		No 🗌				
		<u>Sar</u>	mple Preser	vatior	and Ho	ld Time (H	IT) In	formation		
All samples recei	ived within holding tim	e?		Yes	\checkmark	No 🗌				
Container/Temp E	Blank temperature			Coole	r Temp:	2.6°C			NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bi	ubbles?	Yes	✓	No 🗆	No	VOA vials submi	itted 🗌	
Sample labels ch	necked for correct pre	servation	?	Yes	✓	No 🗌				
TTLC Metal - pH	acceptable upon rece	ipt (pH<2))?	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆				
			(Ice Type	e: WE	TICE))				
* NOTE: If the "N	No" box is checked, s	ee comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

<u>McCampbell</u>		al,	Inc.		Web: www.mccar	npbell.com	Pittsburg, CA 94565-17 E-mail: main@mccampl	bell.com	
	ality Counts"						62 Fax: 925-252-9269		
CKG Environmental				ect ID:	Owens Brockway;	Date S	ampled: 09/04/0	19	
		Oakl	and			Date R	Received: 09/04/0	9	
P.O. Box 246		Clier	nt Cont	act: Cl	nris Kennedy	Date E	xtracted: 09/04/0	9	
St. Helena, CA 94574			nt P.O.:			_	analyzed 09/13/0		
51. Helena, CA 94574			ш г .О			Date P	maryzeu 09/15/0	19	
	Semi-Vola	atile	Organ	ics by (GC/MS (Basic Target	t List)*			
Extraction Method: SW3510C			Analy	tical Met	hod: SW8270C		Work Ord	er: 090	9168
Lab ID					0909168-007	С			
Client ID					CKG-OB39				
Matrix					Water				
		Na	DE	Reporting			a	DE	Repor
Compound	Concentratio	n *	DF	Limit	Compound		Concentration *	DF	Lin
Acenaphthene	ND<1000		100	10	Acenaphthylene		ND<1000	100	1
Acetochlor	ND<1000		100	10	Anthracene		ND<1000	100	1
Benzidine	ND<5000		100	50	Benzoic Acid		ND<5000	100	5
Benzo(a)anthracene	ND<1000		100	10	Benzo(b)fluoranthene		ND<1000	100	1
Benzo(k)fluoranthene	ND<1000		100	10	Benzo(g,h,i)perylene		ND<1000	100	1
Benzo(a)pyrene	ND<1000		100	10	Benzyl Alcohol	r .1	ND<5000	100	5
1,1-Biphenyl	ND<1000		100	10	Bis (2-chloroethoxy) M		ND<1000	100	1
Bis (2-chloroethyl) Ether Bis (2-ethylhexyl) Phthalate	ND<1000 ND<2000		100 100	10 20	Bis (2-chloroisopropyl) 4-Bromophenyl Pheny		ND<1000 ND<1000	100 100	1
Bis (2-ethylnexyl) Phthalate Butylbenzyl Phthalate	ND<2000 ND<1000		100	10	4-Chloroaniline	Etner	ND<1000 ND<2000	100	2
4-Chloro-3-methylphenol	ND<1000		100	10	2-Chloronaphthalene		ND<2000	100	1
2-Chlorophenol	ND<1000		100	10	4-Chlorophenyl Pheny	Ether	ND<1000	100	1
Chrysene	ND<1000		100	10	Dibenzo(a,h)anthracene		ND<1000	100	1
Dibenzofuran	ND<1000		100	10	Di-n-butyl Phthalate	, 	ND<1000	100	1
1,2-Dichlorobenzene	ND<1000		100	10	1,3-Dichlorobenzene		ND<1000	100	1
1,4-Dichlorobenzene	ND<1000		100	10	3,3-Dichlorobenzidine		ND<2000	100	2
2,4-Dichlorophenol	ND<1000		100	10	Diethyl Phthalate		ND<1000	100	1
2,4-Dimethylphenol	ND<1000		100	10	Dimethyl Phthalate		ND<1000	100	1
4,6-Dinitro-2-methylphenol	ND<5000		100	50	2,4-Dinitrophenol		ND<5000	100	5
2,4-Dinitrotoluene	ND<1000		100	10	2,6-Dinitrotoluene		ND<1000	100	1
Di-n-octyl Phthalate	ND<1000		100	10	1,2-Diphenylhydrazine		ND<1000	100	1
Fluoranthene	ND<1000		100	10	Fluorene		ND<1000	100	1
Hexachlorobenzene	ND<1000		100	10	Hexachlorobutadiene		ND<1000	100	1
Hexachlorocyclopentadiene	ND<5000		100	50	Hexachloroethane		ND<1000	100	1
Indeno (1,2,3-cd) pyrene	ND<1000		100	10	Isophorone		ND<1000	100	1
2-Methylnaphthalene	ND<1000		100	10	2-Methylphenol (o-Cre	sol)	ND<1000	100	1
3 &/or 4-Methylphenol (m,p-Cres	ND<1000		100	10	Naphthalene		ND<1000	100	1
2-Nitroaniline	ND<5000		100	50	3-Nitroaniline		ND<5000	100	5
4-Nitroaniline	ND<5000		100	50	Nitrobenzene		ND<1000	100	1
2-Nitrophenol N-Nitrosodiphenylamine	ND<5000 ND<1000		100	50	4-Nitrophenol N-Nitrosodi-n-propylar	nina	ND<5000 ND<1000	100	5
N-Nitrosodipnenylamine Pentachlorophenol	ND<1000 ND<5000		100 100	10 50	N-Nitrosodi-n-propylat Phenanthrene	nine	ND<1000 ND<1000	100 100	1
Phenol	ND<3000		100	10	Pyrene		ND<1000	100	1
1,2,4-Trichlorobenzene	ND<1000		100	10	2,4,5-Trichlorophenol		ND<1000	100	1
2.4.6-Trichlorophenol	ND<1000		100	10	2,1,5 111011010000000		112 11000	100	
					coveries (%)				
%SS1:		96		J	%SS2:		97		
%SS3:		#			%SS4:		10:		
		п			/0001.		10.	/	

water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

a3) sample diluted due to high organic content.

b1) aqueous sample that contains greater than ~1 vol. % sediment

	McCampbe	ell An en Ouality (nc.		: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	main@mccamp	bell.com						
CKG I	Environmental			Project ID:	Owens Broc	kway;	Date Sample	d: 09/03	3/09-09/	/04/09					
P.O. B	ox 246		Oaklar	nd			Date Receive	ed: 09/04	1/09						
1.0.2			Client	Contact: Ch	nris Kennedy	,	Date Extract	ed: 09/10)/09-09/	/11/09					
St. He	lena, CA 94574		Client	P.O.:			Date Analyzed: 09/10/09-09/11/09								
Extractio	Gan method: SW5030B	asoline R	Range (C6-C12	2) Volatile Hy Analy		·k Order:	0909168								
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments				
001A	CKG-OB33	w			ND<1.7	8.0	19	50	3.3	119	d7,d9,b6,b1				
002A	CKG-OB34	w			ND	ND	ND	ND	1	92	d7,b1				
003A	CKG-OB35	w			ND	ND	ND	ND	1	97	b1				
004A	CKG-OB36	w			ND	1.9	2.7	16	1	111	d7,d9,b6,b1				
005A	CKG-OB37	w			ND	2.6	6.5	34	1	#	d7,d9,b6,b1				
006A	CKG-OB38	w			ND	3.4	4.7	20	1	104	d7,d9,b6,b1				
007A	CKG-OB39	W			ND	ND	5.1	ND	1	89	d7,b6,b1				
008A	CKG-OB40	w			ND<2.5	2.6	47	200	5	107	d7,d9,b6,b1				
009A	CKG-OB41	W			ND<10	ND<10	ND<10	ND<10	20	90	d7,d9,b6,b1				
-	ting Limit for DF =1; eans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5		µg/l					
	the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/I	Кg				

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

<u>McCa</u>	ampbell Analy "When Ouality Counts"		Web: www.r	/illow Pass Road, Pittsburg, CA nccampbell.com E-mail: main hone: 877-252-9262 Fax: 925			
CKG Environment	al	5	D: Owens Brockway;	Date Sampled:	09/03/	09-09/04/	09
P.O. Box 246		Oakland		Date Received:	09/04/0	09	
F.O. DOX 240		Client Contact:	Chris Kennedy	Date Extracted:	09/04/0	09	
St. Helena, CA 945	74	Client P.O.:		Date Analyzed:	09/11/	09-09/14/	09
Extraction method: SW3	3510C		able Petroleum Hydroc methods: SW8015B	carbons*	Wo	ork Order:	0909168
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
0909168-001B	CKG-OB33	W	1,500,000	1,100,000	1000	107	e1/e8,e7,b6,b1
0909168-002B	CKG-OB34	W	1000	2800	2	81	e7,e2,b1
0909168-003B	CKG-OB35	W	450	1200	1	94	e7,e2,b1
0909168-004B	CKG-OB36	W	310,000	250,000	200	117	e2,e7,e4,b6,b1
0909168-005B	CKG-OB37	W	460,000	550,000	500	118	e7,e2,e4,b6,b1
0909168-006B	CKG-OB38	W	620,000	300,000	100	114	e8/e1,e7,b6,b1
0909168-007B	CKG-OB39	W	180,000	64,000	50	93	e8/e1,e7,b6,b1
0909168-008B	CKG-OB40	W	350,000	150,000	100	118	e8/e1,e7,b6,b1
0909168-009B	CKG-OB41	W	150,000	87,000	20	89	e8/e1,e7,b6,b1
I		I		1	1	1	

Reporting Limit for $DF = 1$;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

e1) unmodified or weakly modified diesel is significant; and/or e8) kerosene/kerosene range/jet fuel range

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

"When Ouality Counts"

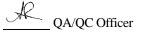
QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	ID: 45588		WorkC	Order 09091	68
EPA Method SW8270C	Extra	ction SW	3510C					S	Spiked San	nple ID	: N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Acenaphthene	N/A	50	N/A	N/A	N/A	74.6	74	0.807	N/A	N/A	30 - 130	20
4-Chloro-3-methylphenol	N/A	100	N/A	N/A	N/A	111	105	5.56	N/A	N/A	30 - 130	20
2-Chlorophenol	N/A	100	N/A	N/A	N/A	105	103	1.98	N/A	N/A	30 - 130	20
1,4-Dichlorobenzene	N/A	50	N/A	N/A	N/A	39.1	39.2	0.460	N/A	N/A	30 - 130	20
2,4-Dinitrotoluene	N/A	50	N/A	N/A	N/A	83.6	83.6	0	N/A	N/A	30 - 130	20
4-Nitrophenol	N/A	100	N/A	N/A	N/A	72.2	67.4	6.84	N/A	N/A	30 - 130	20
N-Nitrosodi-n-propylamine	N/A	50	N/A	N/A	N/A	116	109	6.65	N/A	N/A	30 - 130	20
Pentachlorophenol	N/A	100	N/A	N/A	N/A	73.5	72.1	1.94	N/A	N/A	30 - 130	20
Phenol	N/A	100	N/A	N/A	N/A	97.9	95.7	2.31	N/A	N/A	30 - 130	20
Pyrene	N/A	50	N/A	N/A	N/A	80.2	77.6	3.28	N/A	N/A	30 - 130	20
1,2,4-Trichlorobenzene	N/A	50	N/A	N/A	N/A	48.1	47.1	2.06	N/A	N/A	30 - 130	20
%SS1:	N/A	5000	N/A	N/A	N/A	86	84	1.87	N/A	N/A	30 - 130	20
%SS2:	N/A	5000	N/A	N/A	N/A	93	89	3.79	N/A	N/A	30 - 130	20
%SS3:	N/A	5000	N/A	N/A	N/A	93	92	1.81	N/A	N/A	30 - 130	20
%SS4:	N/A	5000	N/A	N/A	N/A	73	74	1.94	N/A	N/A	30 - 130	20
%SS5:	N/A	5000	N/A	N/A	N/A	93	90	3.17	N/A	N/A	30 - 130	20
%SS6:	N/A	5000	N/A	N/A	N/A	89	87	2.74	N/A	N/A	30 - 130	20

NONE

			<u>BATCH 45588 SU</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909168-007C	09/04/0	9 09/04/09	09/13/09 1:34 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

5	Spiked Sam			
	-	pie iD.	N/A	
SD LCS-LCSD	Acce	ptance	Criteria (%)	
Rec. % RPD	MS / MSD	RPD	LCS/LCSD	RPD
)1 4.29	N/A	N/A	70 - 130	30
4 4.67	N/A	N/A	70 - 130	30
2	ec. % RPD 1 4.29 4 4.67	ec. % RPD MS / MSD 1 4.29 N/A	ec. % RPD MS / MSD RPD 1 4.29 N/A N/A 4 4.67 N/A N/A	ec. % RPD MS / MSD RPD LCS/LCSD 1 4.29 N/A N/A 70 - 130 4 4.67 N/A N/A 70 - 130

BATCH 45647 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909168-001B	09/03/09	09/04/09	09/11/09 8:48 PM	0909168-002B	09/03/09	09/04/09	09/11/09 7:35 PM
0909168-003B	09/03/09	09/04/09	09/14/09 11:22 AM	0909168-004B	09/04/09	09/04/09	09/11/09 6:00 PM
0909168-005B	09/04/09	09/04/09	09/14/09 2:23 PM	0909168-006B	09/04/09	09/04/09	09/11/09 10:34 PM
0909168-007B	09/04/09	09/04/09	09/14/09 2:53 PM	0909168-008B	09/04/09	09/04/09	09/12/09 12:29 AM
0909168-009B	09/04/09	09/04/09	09/11/09 2:08 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water			QC Matrix	k: Water			Batch	ID: 45653		WorkC	order: 09091	68
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					s	Spiked San	nple ID	: 0909167-0	05A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	114	97.5	15.9	110	109	0.608	70 - 130	20	70 - 130	20
MTBE	ND	10	116	111	4.83	96.7	108	11.4	70 - 130	20	70 - 130	20
Benzene	ND	10	105	109	3.80	95.6	95.5	0.116	70 - 130	20	70 - 130	20
Toluene	ND	10	93.5	99.4	6.05	93.6	93.4	0.196	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	93.6	99.9	6.47	92.9	92.5	0.384	70 - 130	20	70 - 130	20
Xylenes	ND	30	107	115	7.22	94.2	93.8	0.415	70 - 130	20	70 - 130	20
%SS:	106	10	100	101	0.730	96	96	0	70 - 130	20	70 - 130	20

			<u>BATCH 45653 SL</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909168-001A	09/03/09	09/10/09	09/10/09 12:59 AM	0909168-002A	09/03/09	09/10/09	09/10/09 1:28 AM
0909168-003A	09/03/09	09/11/09	09/11/09 5:31 AM	0909168-004A	09/04/09	09/10/09	09/10/09 4:26 AM
0909168-005A	09/04/09	09/10/09	09/10/09 3:57 AM	0909168-006A	09/04/09	09/10/09	09/10/09 3:27 AM
0909168-007A	09/04/09	09/10/09	09/10/09 2:57 AM	0909168-008A	09/04/09	09/11/09	09/11/09 5:01 AM
0909168-009A	09/04/09	09/10/09	09/10/09 1:58 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway	Date Sampled:	09/03/09-09/04/09
P.O. Box 246			Date Received:	09/04/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/15/09
54. Holona, 644 9 157 1	Client P.O.:		Date Completed:	09/14/09

WorkOrder: 0909151

September 15, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the **18** analyzed samples from your project: **Owens Brockway**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

								_				_		-			_		_		_							-	-		1/2			
MAN N	IcCAMP					AL	, II	N	2.										C	H	AI	N	OF	C					R	E	CO	RD)	44
		1534 WII PITTSBU													T	UR	N	AR	01	JNI) T	IM	Ð							-	1			P
	ebsite: www.m	ccampbel	Lcom En		nain@										0		P						DD		RUS			HR		48 1			2 HR	
Tel	ephone: (877) 252-92	62		Fax	: (92	25) 2	52	-926	9					G	eo	l ra	ска	er I	SDI														W) 🖵 s required
Report To: CHIL	C FORMER	iv.	F	Bill To	0:			-	-	-	_	_		+	-		-			A	nal	vsis	_	ues	_	mp	10 13	em	uen	t ai	_	Other	_	Comments
Company: CKG	EXMANN	MENT						_		_		_		t											-									
		- terefre													MTBE		B&F)					gener												Filter Samples
			I	E-Ma	il:										IN/		5520 E/B&F)					Con							(0					for Metals
Tele: ()				ax: (_							8015)/			(1		121)		ors/		des)					602					analysis:
Project #:			P	rojec	et Nai	ne:	CW	al	S A	CH	N	AY	/		+		Grease (1664/	(418		2/8(les)	Aroch		rbici			PNAS		2010	-				Yes / No
Project Location:	CAKLAN	9nA	-					_						-	/ 8021	30	ase (bons		09 V.	sticic	LY;	ides)	CIHe	(Cs)	0Cs	Hs /]	20)	0.8/	6020				
Sampler Signatur	re:	the	2		-				_		м	FTI	IOD	-	(602	F		ocar		(EP	CIPe	NO	estic	idic (OV0	VS) ((PA	3 / 60	/ 200	010/				
		SAMI	PLING		Containers		MA	TR	IX	1			RVE	D	Gas	015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1))Cs)	MARE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
SAMPLE ID	LOCATION/			Containers	Itai						1				TPH as	TPH as Diesel (8015)	eum	cum	8260 (HVOCs)	EX (8/8	082 I	8141	815	624	625	MIS IN	etals	tals (/ 200				
	Field Point Name	Date	Time	nta	Col	L			ae	-					& 11	s Die	etrol	etrol	260	/ B1	05/ 6(08/8	1 10	15.3 /	24.2 /	25.2 /	270 5	M 1	5 Me	200.7				
		- Suit		S	Type	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO3	Other	BTEX &	PHa	otal F	otal F	EPA 8	1	PA SI	PA 6	PA 5	PA 5	PA 5	PA 5	EPA 8	AMI	UFT	ead (
				#	H	2	ŝ	<	S	2	-	-	= 0	1	B	F	F	T	E	ę.	E	E	Э	E	E	E	E	0	P	2				
CKG-0333		9/3/09		1	Scy		X				-	5)				X				X														
CR6-0333	10-1012	91409		1	V\$2		x				-	X	NÞ			X				X														
CK6-0334	5/2-6	9/3/09		1	8V		x									X				X														
CKG-033#	12-12/2	9/2/09		1	SZY		x									X				X														
CKG-0B35	4-41/2	9/3/09		1	STY		x									X				X														
CKG-0335	91/2-10			i	2×		x									X				x														
CKG-0B36	4-41/2	9/4/09		1	SEY		X									X				X														
CKG-0836	9-91/2				SLY		x									X				x														
CKG - 0837	4-41/2	11.101		15	SLY		X			1				1		X				x														
CK6-0B37	16/2-17			1	SEV		Ŷ									X				x														
CK6-0B38	71/2-8			1			x	+			+					x				X			-						-			-		
CKG-0338	15-15/2			1,	SCV		X			+	-	-	-			X				x														
	D-Alla	0/07		1	1		~	+			+			+		1	-	-		1			-	-										
CKG- 0339		714/07			SLV		x	-		+	-	+		+		Х				X	-	-	-	-										
CKG-, OB 39 Relinquished By: /	1510-16	Datas	Time:	Rec	Sty cived 1	IV:	X	_			_	_	-	+	ICF	X E/t°	S.	4c		X	7								CO	MM	IENT	S:	_	
Ry	'n	9/4/09	350	2		-	-					-	+		GO	OD	CON	TIDI	ION		_					91							-	
Relinquished By:	2	Date:	Time	Rec	eiveft E	y)		la	01	1	-	C			AD S CHI				INI	AB	_	1		1	(c)	V	50	14	SI	PM	Cal	2	P
/	A	7101	5/5	-	M	R	-	1	100	q	-					PRO				NTA	INE	RS_	\checkmark	-				w	S	141	CA	eler	ANK	AP.
Relinquished By	//	Date:	Time:	Rec	eived I	By:									IR	LOL	NVE.	D II																
		5													PRI	ESE	RVA	TIO		OAS	0	&G	pH		LS	OTI	HER	1						
								_			_			_		-					_	_		-	_	_			_			_		

•

.

.

.

.

W. Te	ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccampbel) 252-920	LOW PA RG, CA 94 Lcom En 62	SS RO 1565-17 nail: m	AD 701 nain@ Fax:	mcca	mpl	bell.	com	,								οι	JNI EDI	T F C		E PD Ch	F	RUS if sa	H Ex	24 cel	HR	1	48 H Wri	HR ite C	72 On (l J" fla	HR DV g is	V) 🖵 required
Report To: Ch Company: Ck	IS Keyyet	1 martin		Bill To):						_		-						A	nal	ysis	Rec	lues	t						0	ther	+	Comments
Company: CR	6 EXAMINON	Mayn	~									_	-	BE		&F)					eners												Filter
			I	E-Mai	il:									8015) / MTBE		E/B					ong							-					Samples for Metals
Tele: ()				ax: ((510		5520	-		E		rs/(cs)					6020					analysis:
Project #:				rojec		ne:	sca	45	7	10	ex.	VA	~	+ 80		564 /	118.1		/ 802	(s	oclo		bicid			(SAS)		10/					Yes / No
Project Location	DAKLAN	120 00	Λ.											\$021	8	se (16	ms (4		602	icide	(; AI	es)	Her	(5	Cs)	s/P		8 / 60	020)				
Sampler Signatur		1950	h.											02/1	tra	reas	arbe		EPA	Pest	NUN	ticid	ic Cl	VOC	SVO	HVd	6020	200.8	9/0				
		SAMP	LING		rs	I	MAT	FRI	х		MET			as (6	5) 7	1.6.0	ydroc	(8)	ILY (1 (CI	B's O	P Pes	Acidi	260 (270 (310 (1	00.8 /	0.7 /	/ 601				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Alf	Other					BTEX & TPH as Gas (602 / 8021	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Ilydrocarbons (418.1)	EPA 8260 (HVOCs)	WILL / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
CKG-0340	9-91/2	9/4/09		1	SLY		x			Γ					X				X														
CKG- BB 40	15/2-16	0/0/09		1	SLY		k								x				X														
CKG-0BA1	&_ 8 V.	9/4/2		1	SLY		x			\top					X				x														
(KG-01341	16/2-17	0/1/2	-	1		-	X	-	-						0				2	-													
(K6-013-71	100 [2-1]	14/07			SEV		-								^				x														
																																-	
1							-						1																				
Relinquished By: Relinquished By: Relinquished By:	_ 9	Date: 9/4/89 9/4/89 9/07 9/07 Pate:	Time: 3 Time: 5/5 Time:	Rece	eived B	iy: J	1-	Q	2	(a	l	R		GC HE DE AP PR	CHI	SPA LOR PRI RVE	CE A INAT ATE D IN	BSH FED CO LA	IN I NTA B_	AB_INEI		MI		s						STU STU	S: PLCS ICA C CLOB	Sel	2

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order	09091	51		Client	Code: C	KGS				
		WaterTrax	WriteOn	EDF		Excel		Fax	[🗸 Email		Hard	lCopy	Thir	dParty	J-	flag
Report to: Chris Kenne	•		kennedy@ge	eologist.com				counts F	-				Req	uested	TAT:	5 (days
CKG Enviror P.O. Box 246 St. Helena, 0 (707) 967-808	6 CA 94574	cc: PO: ProjectNo: (Dwens Brock	way			Ρ.0	(G Envir D. Box 2 Helena	46					e Rece e Print			
Lab ID	Client ID		Matrix	Collection Date	Hald	1	2	3	Req	uested 5	Tests 6	(See leg	gend b 8	elow) 9	10	11	40
	Client ID		Matrix	Collection Date	Ποία	1	2	3	4	5	0	1	0	9	10	11	12
0909151-001	CKG-OB33 5-5	1/2	Soil	9/3/2009		А	А										
0909151-002	CKG-OB33 10-10	1/2	Soil	9/3/2009		А	А										
0909151-003	CKG-OB34 5 1/2	2-6	Soil	9/3/2009		А	А										
0909151-004	CKG-OB34 12-12	1/2	Soil	9/3/2009		А	А										
0909151-005	CKG-OB35 4-4	1/2	Soil	9/3/2009		А	А										
0909151-006	CKG-OB35 9 1/2	-10	Soil	9/3/2009		А	А										
0909151-007	CKG-OB36 4-4	1/2	Soil	9/4/2009		А	А										
0909151-008	CKG-OB36 9-9	1/2	Soil	9/4/2009		А	Α										
0909151-009	CKG-OB37 4-4	1/2	Soil	9/4/2009		А	А										
0909151-010	CKG-OB37 16 1/2	2-17	Soil	9/4/2009		А	А										
0909151-011	CKG-OB38 7 1/2	2-8	Soil	9/4/2009		А	А										
0909151-012	CKG-OB38-15-15	1/2	Soil	9/4/2009		А	А										
0909151-013	CKG-OB39 8-8	1/2	Soil	9/4/2009		А	А										
0909151-014	CKG-OB39 15 1/2	2-16	Soil	9/4/2009		А	А										

Test Legend:

1 G-MBTEX_S	2 TPH(DMO)WSG_S
6	7
11	12

3		
8		

4	
9	

5	
10	

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262		WorkOrder: 0909151	ClientCode: CKGS
	WaterTrax WriteOn EDF	🗌 Excel 🔤 Fax 🖌 Email	HardCopy ThirdParty J-flag
Report to:		Bill to:	Requested TAT: 5 days
Chris Kennedy CKG Environmental P.O. Box 246 St. Helena, CA 94574 (707) 967-8080 FAX (707) 967-8080	Email: ckennedy@geologist.com cc: PO: ProjectNo: Owens Brockway	Accounts Payable CKG Environmental P.O. Box 246 St. Helena, CA 94574	Date Received: 09/04/2009 Date Printed: 09/04/2009
		Requested	Tests (See legend below)
Lab ID Client ID	Matrix Collection Date	Hold 1 2 3 4 5	6 7 8 9 10 11 12

0909151-015	CKG-OB40 9-9 1/2	Soil	9/4/2009	А	А					
0909151-016	CKG-OB40 15 1/2-16	Soil	9/4/2009	А	А					
0909151-017	CKG-OB41 8-8 1/2	Soil	9/4/2009	А	А					
0909151-018	CKG-OB41 16 1/2-17	Soil	9/4/2009	A	А					

Test Legend:

1	G-MBTEX_S
6	
11	

2	TPH(DMO)WSG_S
7	
12	

3	
8	

4			
9			
•			

5		
10		

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	CKG Environmen	tal					Date a	and Ti	ime Received:	9/4/2009 5	:47:17 PM
Project Name:	Owens Brockwa	у					Check	klist c	completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0909151	Matrix <u>Soil</u>					Carrie	er:	Rob Pringle (M	AI Courier)	
			<u>Chain d</u>	of Cu	stody (C	:0C)	Informa	ation			
Chain of custody present? Yes 🗹 No 🗌											
Chain of custody	signed when relinqui	shed and rece	ived?	Yes	✓		No 🗆				
Chain of custody	agrees with sample I	abels?		Yes	✓		No 🗌				
Sample IDs noted	by Client on COC?			Yes	✓		No 🗆				
Date and Time of	collection noted by Cli	ent on COC?		Yes	✓		No 🗆				
Sampler's name r	noted on COC?			Yes	✓		No 🗆				
			<u>Sa</u>	mple	Receipt	Info	mation	<u>1</u>			
Custody seals int	tact on shipping conta	iner/cooler?		Yes			No 🗆			NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓		No 🗆				
Samples in prope	er containers/bottles?			Yes	✓		No 🗆				
Sample containe	rs intact?			Yes	✓		No 🗆				
Sufficient sample	e volume for indicated	test?		Yes			No 🗌				
		<u>Sample</u>	Preserv	vatior	and Ho	old Ti	<u>me (HT</u>) Info	ormation		
All samples recei	ived within holding tim	e?		Yes			No 🗌				
Container/Temp B	Blank temperature			Coole	r Temp:	5.4°	С			NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubble	s?	Yes			No 🗆	No	VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?		Yes	✓		No 🗌				
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?		Yes			No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	✓		No 🗆				
		(1	се Туре	: WE	TICE)					
* NOTE: If the "No" box is checked, see comments below.											

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell Ar		cal, Ir	<u>nc.</u>		: www.mccampl	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa:	main@mccamp	bell.com		
CKG	Environmental			Client P	roject ID: (Owens Brock	kway	Date Sample	d: 09/03	/09-09/	04/09	
P.O. B	ox 246						-	Date Receive	ed: 09/04	/09		
				Client C	Contact: Ch	ris Kennedy		Date Extract	ed: 09/04	/09		
St. He	lena, CA 94574			Client P	.0.:			Date Analyz	ed: 09/08	8/09-09/	15/09	
Extractio	Ga on method: SW5030B	asoline]	Range (C6-C12)	•	drocarbons		with BTEX a	nd MTBE*		k Order:	0909151
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	CKG-OB33 5-5 1/2	S	-			ND<1.0	ND<1.0	2.3	7.0	200	#	d7
002A	CKG-OB33 10-10 1/2	S	-			ND<0.10	1.7	1.2	2.8	20	#	d7,d9
003A	CKG-OB34 5 1/2-6	S	-			ND	ND	ND	ND	1	81	d7
004A	CKG-OB34 12-12 1/2	S	-			ND	ND	ND	ND	1	90	
005A	CKG-OB35 4-4 1/2	S	-			ND	ND	ND	ND	1	85	
006A	CKG-OB35 9 1/2-10	S	-			ND	ND	ND	ND	1	82	
007A	CKG-OB36 4-4 1/2	S	-			ND	ND	ND	ND	1	82	
008A	CKG-OB36 9-9 1/2	S	-			ND	ND	ND	ND	1	83	
009A	CKG-OB37 4-4 1/2	S	-			ND	ND	0.0081	0.029	1	83	d7
010A	CKG-OB37 16 1/2-17	s	-			ND<1.0	ND<1.0	5.7	6.7	200	#	d7,d9
011A	CKG-OB38 7 1/2-8	S	-			ND<0.050	ND<0.050	ND<0.050	0.56	10	77	d7
012A	CKG-OB38-15-15 1/2	S	-			ND	ND	0.0094	0.12	1	114	d7
013A	CKG-OB39 8-8 1/2	S	-			ND	ND	ND	ND	1	86	d7
014A	CKG-OB39 15 1/2-16	S	-			ND<0.10	ND<0.10	ND<0.10	0.63	20	#	d7
015A	CKG-OB40 9-9 1/2	S	-			ND<0.25	ND<0.25	ND<0.25	10	50	#	d7,d9
016A	CKG-OB40 15 1/2-16	S	-			ND<0.050	ND<0.050	0.073	4.6	10	#	d7
	ting Limit for DF =1;	W	4	50	5.0	0.5	0.5	0.5	0.5		ug/I	_
	eans not detected at or ve the reporting limit	S	1	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	<u>í</u> g

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

	McCampbe	ell An en Ouality (ical, Ir	<u>nc.</u>		: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fa	main@mccamp	bell.com		
CKG	Environmental			Client P	Project ID:	Owens Brock	kway	Date Sample	ed: 09/03	3/09-09/	04/09	
P.O. E	Box 246							Date Receiv	ed: 09/04	4/09		
				Client C	Contact: Ch	ris Kennedy	7	Date Extract	ed: 09/04	1/09		
St. He	elena, CA 94574			Client P	2.0.:			Date Analyz	ed: 09/08	8/09-09/	15/09	
Extracti	Gaton method: SW5030B	asoline R	Range ((C6-C12)	-	drocarbons		e with BTEX a	and MTBE*		k Ordori	0000151
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF		Comments
017A	CKG-OB41 8-8 1/2	s				ND	ND	ND	ND	1	83	d7
018A	CKG-OB41 16 1/2-17	s				ND	ND	0.035	0.072	1	117	d7,d9
											15/09 k Order: 0909151 % SS Comment: 83 d7	
											15/09 k Order: 0909151 % SS Comment 83 d7 117 d7,d9 117 d7,d9 110 1 117 d7,d9 110 1 1117 1 11117 1	
										<u> </u>		
	rting Limit for DF =1; eans not detected at or	w		50	5.0	0.5	0.5	0.5	0.5		-	
	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/k	g

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

	Campbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.u	mccamp	Pass Road, Pittsburg, CA bell.com E-mail: main 677-252-9262 Fax: 925	@mccampbe				
CKG Environmen	ntal	Client Project II	D: Owens Brockway		Date Sampled:	09/03/0	09-09/04/	09		
P.O. Box 246					Date Received:	09/04/0	09			
F.O. D0X 240		Client Contact:	Chris Kennedy		Date Extracted:	09/04/0	09			
St. Helena, CA 94	4574	Client P.O.:			Date Analyzed:	09/09/	09-09/14/	09		
Extraction method: SV			m Hydrocarbons with methods: SW8015B	Silica	Gel Clean-Up*	Wo	ork Order:	0909151		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	Т	CPH-Motor Oil (C18-C36)	DF	% SS	Comment		
0909151-001A	CKG-OB33 5-5 1/2	S	2300		890	50	112	e8/e1,e7		
0909151-002A	CKG-OB33 10-10 1/2	S	980		380	20	95	e8/e1,e7		
0909151-003A	CKG-OB34 5 1/2-6	S	ND		ND	1	97			
0909151-004A	CKG-OB34 12-12 1/2	S	2.1		10	1	95	e7,e2		
0909151-005A	CKG-OB35 4-4 1/2	S	9.1		85	5	83	e7,e2		
0909151-006A	CKG-OB35 9 1/2-10	S	1.2		ND	1	94	e2		
0909151-007A	CKG-OB36 4-4 1/2	S	ND		ND	1	96			
0909151-008A	CKG-OB36 9-9 1/2	S	72		210	10	106	e7,e2		
0909151-009A	CKG-OB37 4-4 1/2	S	7.7		36	2	95	e7,e2		
0909151-010A	CKG-OB37 16 1/2-17	S	4100		3100	200	87	e2,e7,e4		
0909151-011A	CKG-OB38 7 1/2-8	S	590		240	10	106	e1,e7		
0909151-012A	CKG-OB38-15-15 1/2	S	66		26	1	111	e8/e1,e7		
0909151-013A	CKG-OB39 8-8 1/2	S	14		39	2	94	e7,e2		
0909151-014A	CKG-OB39 15 1/2-16	S	480		90	10	105	e8/e1,e7		
0909151-015A	CKG-OB40 9-9 1/2	S	3800	50	#	e8/e1,e7				
-	ting Limit for DF =1;	W	NA		NA		ug/L			
	ans not detected at or e the reporting limit	S 1.0 5.0 mg/Kg								

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.n	illow Pass Road, Pittsburg, CA nccampbell.com E-mail: main hone: 877-252-9262 Fax: 925	@mccampbe		
CKG Environme	ental	Client Project ID	D: Owens Brockway	Date Sampled:	09/03/	09-09/04/	09
P.O. Box 246				Date Received:	09/04/	09	
F.O. B0x 240		Client Contact:	Chris Kennedy	Date Extracted:	09/04/	09	
St. Helena, CA 94	4574	Client P.O.:		Date Analyzed:	09/09/	09-09/14/	09
	Total Ext	ractable Petroleur	m Hydrocarbons with	Silica Gel Clean-Up*			
Extraction method: SV	W3550C/3630C	Analytical r	nethods: SW8015B		W	ork Order:	0909151
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
0909151-016A	CKG-OB40 15 1/2-16	S	190	76	1	112	e8/e1,e7
0909151-017A	CKG-OB41 8-8 1/2	S	12	28	1	112	e7,e2,e11
0909151-018A	CKG-OB41 16 1/2-17	S	24	11	1	96	e8/e1,e7

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

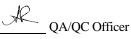
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matriz	x: Soil			Batch	ID: 45623		WorkC	Order 09091	51
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0909120-0)31A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
/ mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	106	111	4.68	116	107	7.98	70 - 130	20	70 - 130	20
MTBE	ND	0.10	113	111	1.54	116	116	0	70 - 130	20	70 - 130	20
Benzene	ND	0.10	97.2	95.5	1.84	102	107	4.53	70 - 130	20	70 - 130	20
Toluene	ND	0.10	96.4	94.4	2.09	102	106	4.03	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	96.4	94.6	1.90	99.4	104	4.97	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	97.9	95.8	2.14	101	104	3.08	70 - 130	20	70 - 130	20
%SS:	91	0.10	96	84	13.2	87	92	5.50	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			BATCH 45623 SL	<u>IMMARY</u>			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909151-001A	09/03/09	09/04/09	09/08/09 11:16 PM	0909151-002A	09/03/09	09/04/09	09/09/09 5:41 AM
0909151-003A	09/03/09	09/04/09	09/09/09 2:46 AM	0909151-004A	09/03/09	09/04/09	09/15/09 1:41 PM
0909151-005A	09/03/09	09/04/09	09/12/09 8:35 AM	0909151-006A	09/03/09	09/04/09	09/09/09 12:27 AM
0909151-007A	09/04/09	09/04/09	09/11/09 5:15 PM	0909151-008A	09/04/09	09/04/09	09/08/09 5:22 PM
0909151-009A	09/04/09	09/04/09	09/08/09 10:06 PM	0909151-010A	09/04/09	09/04/09	09/08/09 7:09 PM
0909151-011A	09/04/09	09/04/09	09/09/09 3:28 AM	0909151-012A	09/04/09	09/04/09	09/09/09 7:26 AM
0909151-013A	09/04/09	09/04/09	09/15/09 12:40 PM	0909151-014A	09/04/09	09/04/09	09/09/09 5:06 AM
0909151-015A	09/04/09	09/04/09	09/09/09 3:58 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

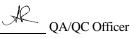
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 45641		WorkC	Order 09091	51
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0909192-0	07A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	0.60	113	114	1.30	107	113	5.36	70 - 130	20	70 - 130	20
MTBE	ND	0.10	104	101	2.32	102	100	1.92	70 - 130	20	70 - 130	20
Benzene	ND	0.10	102	105	2.85	106	96.2	9.81	70 - 130	20	70 - 130	20
Toluene	ND	0.10	102	105	2.29	104	94.4	9.30	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	101	103	2.19	104	94.2	9.49	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	102	104	2.23	104	95.3	9.10	70 - 130	20	70 - 130	20
%SS:	82	0.10	87	89	1.37	99	85	15.2	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 45641 SUMMARY Lab ID Date Sampled Date Extracted Date Extracted Date Analyzed Lab ID **Date Sampled** Date Analyzed 0909151-016A 09/04/09 09/08/09 6:34 PM 09/04/09 09/04/09 09/09/09 1:02 AM 0909151-017A 09/04/09 0909151-018A 09/04/09 09/04/09 09/08/09 5:58 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

				k: Soil			Batch	D: 45642		WorkC	order 09091	51
EPA Method SW8015B	Extrac	tion SW	3550C/36	630C				s	piked San	nple ID:	0909151-0	18A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	24	20	NR	NR	NR	88.5	88.3	0.240	70 - 130	30	70 - 130	30
%SS:	96	50	97	99	1.21	97	97	0	70 - 130	30	70 - 130	30

BATCH 45642 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909151-001A	09/03/09	09/04/09	09/11/09 6:26 PM	0909151-002A	09/03/09	09/04/09	09/11/09 7:35 PM
0909151-003A	09/03/09	09/04/09	09/14/09 1:42 PM	0909151-004A	09/03/09	09/04/09	09/09/09 1:56 AM
0909151-005A	09/03/09	09/04/09	09/12/09 2:53 AM	0909151-006A	09/03/09	09/04/09	09/11/09 11:16 PM
0909151-007A	09/04/09	09/04/09	09/10/09 3:08 AM	0909151-008A	09/04/09	09/04/09	09/09/09 7:02 PM
0909151-009A	09/04/09	09/04/09	09/10/09 9:24 PM	0909151-010A	09/04/09	09/04/09	09/11/09 8:48 PM
0909151-011A	09/04/09	09/04/09	09/10/09 8:15 PM	0909151-012A	09/04/09	09/04/09	09/09/09 7:55 AM
0909151-013A	09/04/09	09/04/09	09/10/09 5:59 PM	0909151-014A	09/04/09	09/04/09	09/09/09 10:34 PM
0909151-015A	09/04/09	09/04/09	09/10/09 4:51 PM	0909151-016A	09/04/09	09/04/09	09/10/09 3:13 AM
0909151-017A	09/04/09	09/04/09	09/10/09 2:04 AM	0909151-018A	09/04/09	09/04/09	09/09/09 5:21 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

	l Analytical, Inc. Ouality Counts"	Web: www.m	llow Pass Road, Pittsburg, ccampbell.com E-mail: n one: 877-252-9262 Fax:	nain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway;	Date Sampled:	09/01/09-09/03/09
P.O. Box 246	Oakland		Date Received:	09/03/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/11/09
St. Helelia, CA 94574	Client P.O.:		Date Completed:	09/11/09

WorkOrder: 0909127

September 11, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the 17 analyzed samples from your project: Owens Brockway; Oakland,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	ebsite: <u>www.m</u> ephone: (877	1534 WII PITTSBU ccampbel () 252-92	62	SS RO. 565-17 1ail: m	AD 01 ain@ Fax:		mpl	bell.c	om								RC	U	ND DF	T	IMO Ji Ji	E PD	F	RUS	H Ex	24 cel	HR		Wr	HR HR ite	On	72 HI (D) flag	R 5 DAY W)
Report To: CH Company: CK	6 ENVIDA	NMEN1		ill To	:		-						+			_			A	nar	vsis e	Rec	ues					T	Τ	ť		er	
													MTDF	1 DE		E/B&F)					angene												Filter Samples
				C-Mai	1:								- 3	N 16		20 E					/ Cor							20)					for Met
Tele: ()				ax: ()			1.4.1		2.4			108	TAO		4/55	8.1)		8021)		clors		ides)			(5)		1 60					analysis
Project #:	Maria	a A	P	rojec	t Nar	ne:	οw	ONS	B	100	CR	A	4		0	se (1664/	s (41)		02/8	des)	Aroc	-	erbid		(PNA		6010	6				Yes / No
Project Location: Sampler Signatur		Dille	in										- 1 80	100	2	ease	rbon		9 V 0	estici	TV;	cides	CIH	OCs)	VOC	VHs /	020)	0.8/	/ 602				
Sampler Signatur		SAME	PLING		10		TA'	TRE	v			HOD		no) s	+	& Gr	m Hydrocarbons (418.1)		Y (E	(CIP	8082 PCB's ONLY; Aroclors /	Pesti	cidic	50 (V	70 (S)	0 (PA	8/6	7/20	200.8 / 6010 / 6020)				
		SAMI	LING	LS	iner		IA	IRL	-	PR	ESF	RVE	D	EU SI	10108	m Oil &	h Hyd	(HVOCs)	INO	8081	PCB	(NP	51 (A	/ 82(182	/ 831	(200	(200.	0.8/				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	2011	Air	Other	ICE	HCL	HNO ₃	Other	DIEA & IFII 2		Total Petroleum	Petroleur	EPA 8260 (HV	ARREN BTEX ONLY (EPA 602/8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 20				
CKG-0B14 CKG-0B14 CKG-0B16 CKG-0B16		911/04		3	V	X					x								Х														
CKG-DRIA		9/1/09		1	A	X					X			>	X																		
CKG-BRIG		2/1/09		3	V	X					X								X							1							
CKG-UBIL		9/1/09		1	A	X					N				X				~					1									
CKG - 0B17		9/1/69		3	i.	V	1	-			Ŷ			-	~				x										1		-	-	
CKG-OBIT		9/2/09		0	2	V	-	+	+		A					+	+		^											+	-	-	
CRO-UBII		7/2/04		1	A	×	+	+	+		X		+	-	X	+	-	-		-	-				-		-	-	+	+	+	+	
CKG - 018/9		\rightarrow		3	V	X	+	+	+		Х	-	+	-		+	+	-	X	-	_		-		-	-	-	-	-	+	+	-	
CK6-0819				1	A	X	+	+	-		X	-	+		X	-	-	_	-	-		_		1.	-	-	-	-	-	+	+	+-	
CK6-0220				3	V	x	_	-	-		X		+	-	-	-	-	-	X	-		_	1	X	-	-	-	-	-	⊢	-		
CK6-0819 CK6-0870 CKG-0820				1	A	X	_	_			χ		+		X	-	_	_											-	1	_	_	
CK6-0B21				3	V	X					X								X	-									_		_		
CKG - 0B21				1	A	x					x				x				1														
CKG - 0B21 CKG - 0B22				3	V	X					X								X														
CKG - OB22		N		1	4	X					X)	¢.		2																
Relinquisked By:	1	Date:	Time:	Reer	ived B	y.	-	-	-	5	1			CE/		5									-			C	OMN	IEN	TS:		
Attal	1	9/3/69	320	-			/	~		V							DITI		NT	-													
Relinquished By:		Date:	Time:	Rece	IVEL	y:		1	5				1	DEC	HLC	RIA	TE O	ED I	IN LA	_	RS_	_	_										
Relinquished By:		Date:	Time:	Rece	ived B	y:							٦.		-	1 454				_	&G												

We Tel		1534 WII PITTSBU ccampbel) 252-920	LOW PA RG, CA 94 Lcom En 62	SS RO. 1565-17 nail: m	AD 01 ain@ Fax:	mcca	mpb	ell.c	om									U	ND DF		ME	PD Che	F	RUS f sa	H Ex	24 cel	HR	I V	48 H Vrit	te On d "J"	72 H n (D)	R 5 DAY W)
	CG EXVINO	NAENT	TAL I F	E-Mai ax: (Project	l:)	ne: (N W BR	15 2	nd	Ku	IAY	,		8021 + 8015) / MTBE	C	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	ns (418.1)		8021)		EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners				Cs) 💥	(PNAs)	()	1/6010/6020)	020)			Filter Samples for Metal analysis: Yes / No
Sampler Signatur		Alto	the		15			DI	<i>v</i>	M	ET	HOD		(602/	K .	& Greas	rocarbo		Y (EPA	(CI Pest	S ONLY	Pesticid	cidic CI	50 (VOC	0 (SVO	HAH) 0	.8 / 6020	7/200.	6010/6			
SAMPLE ID	LOCATION/ Field Point Name	SAMP	Time	# Containers	Type Containers	er	Vir Soil	lge		PR	ESE	RVE	D	BTEX & TPH as Gas	TPH as Diesel (8015)	Total Petroleum Oil d	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	MILLE / BTEX ONLY (EPA	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 /	Lead (200.7 / 200.8 / 6010 / 6020)			
CKG-0B23		9/2/09		3	Y	X					Х		T						X						X							
CKG-0B23		9/2/09		1	A	X					х				X	-	_	_		_											_	
CKG-032A		2/2/09		3	V	X					χ					_		_	X	-								-	\square		_	-
CKG-0B24		9/2/09		1	A	X	_				Х			-	*	_	_	_		_	_	_						_			_	-
CK5-0325		9/2/09		3	¥.	X	_	-			X	_	+	_	_	_		_	X	_	_	_		1				-			_	-
CKG-0825		9/2/09		1	A	X					X		4	7	X	-	-	_		_	_	_	_				_	_			_	-
CK6-0B26		7/2/09		3	V	X					X		-	_		_			X	_		_		χ		_		-			_	
CKG-0B26		9/2/09		1	A	X	_				X	_)	X	_		_		_		_			_			-				-
(KG-0B27 CKG-0B27		9/2/09		3	Y	X					X					_		_	X	_								-			_	-
CKG-OB27		9/2/09		1	A	X					X	_	4)	X					_	_					_	-	-			-	-
CKG-0B28		9/3/09		3	V	X		_			X	_			_	_	-		X	-	_					_	-	-			-	-
CKG-OB28		9/3/69		1	A	X	_				X	_	+	1	X	_	_	_		_	_						-	-	-			
CKG- OB29		9/3/09		3	V	X					X								X	_								-				
CKG- OB 29		9/3/69		1	A	X				6	×	-			X					_								0			2	
Relinquished By	1	Date: 9/2/14	Time:	Rece	rved B	iy:	-	-	_			1		ICE/ GOO	DC					_								CO	MIN	IENTS	н -	
Relinquished By:	9 8	Date:	Time: 445	Recei	wed B	v:	n	X	8	¢	/			APP	HLO	RIA	NAT	EDI	IN LA		RS_	_										
Relinquished By:	/	Date:	Time:	Recei	ived B	iy:								PRE			TION	vo	AS	04	&G	MI		LS	от	HEF	ł					

W Te	ebsite: <u>www.m</u> lephone: (877	1534 WI PITTSBU ccampbel () 252-92	LLOW PA RG, CA 9 Lcom En 62	SS RO 1565-17	AD 701	mcc	amp	bell.	com						UR eoT			DU	ND	TI	MI	E PD	F	RUS	H Ex	24 cel	HR	1	48 H Wri	HR ite C id "J	J" flag	IR 5 W)
Report To: CHA Company: CKA Tele: ()	IS KENNI S ELINIRO	DY XILOUT	I	E-Mai	il:								_	8015) / MTBE		5520 E/B&F)	0			naly		Req		t				6020)		0	Other	Filt San for ana
Project #: Project Location Sampler Signatur		An	Al	rojec	t Nai	ne:	040	CAIS	D	_	_			as Gas (602 / 8021 + 8	t yo	Grease (1664)	carbons (418.1)		(EPA 602 / 80)	Pesticides)	DNLY ; Aroch	sticides)	ic Cl Herbicid	(VOCs)	(SVOCs)	PAHs / PNAs	(6020)	200.8 / 6010 /	10 / 6020)			Yes
SAMPLE ID	LOCATION/ Field Point Name	SAMI	Time	# Containers	Type Containers	Water		JIR JIE	Other	PF	ESE	FONH CONH		BTEX & TPH as Gas (6	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydro	EPA 8260 (HVOCs)	Mane / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 /	Lead (200.7 / 200.8 / 6010 / 6020)			
CKG - 0B 30		9/3/09		3	V	Х				t	X		1						X													
CKG-0830 CKG-0830 CKG-0831		9/3/09 9/3/09		1	A	X	-	+	+	+	X	_	+	-	X	_	_	-	~	-	_		_	_				-	\vdash			-
CRG-0831		915/69		3	Y	X		+	+	+	X	-	+	-	~	-	-	-	X	-	_		-						\square			-
CKG-0B3Z		9/3/69		3	A	Ŷ		+	+	+	x		+		X				V		_			X					\square			
CK6-0B32		9/3/69		1	A	x					x				Х		_		^													
														-																		
Relinquistied By:	6	Date: 9/2/09 Date:	Time: 370 Time:	2	ived B	-	7	1	7	2		2	-	HE. DE	OD O AD S CHL	PAC	E A	BSEI ED I	NL	-	_							CO	MM	IENTS	S:	
Relinquished By:	/	Date:	Time:	Rece	ived B	y:	9		(2	2		-		PRO			LAE	3	_		M	TA	LS	от	HER						

1534 Willow Pass Rd Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order:	09091	.27	(ClientC	Code: C	KGS				
		WaterTrax	WriteOn	EDF		Excel	[Fax	5	🖌 Email		Hard	Сору	🗌 Thir	dParty	□ J-1	flag
Report to: Chris Kenne	edv	Email: c	kennedy@ge	eologist com			Bill to:	counts F	Pavable	<u>ə</u>			Requ	uested	TAT:	5 c	lays
CKG Enviror P.O. Box 246 St. Helena, C (707) 967-808	nmental S CA 94574	cc: PO:		vay; Oakland			CK P.C	G Envir). Box 2 Helena	onmer 46	ntal				e Rece e Print		09/03/: 09/04/:	
					[Req		1	(See leg		1		[
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0909127-001	CKG-OB14		Water	9/1/2009			А	В									
0909127-002	CKG-OB16		Water	9/1/2009			А	В									
0909127-003	CKG-OB17		Water	9/1/2009			Α	В									
0909127-004	CKG-OB19		Water	9/2/2009			А	В									
0909127-005	CKG-OB20		Water	9/2/2009		С	А	В									
0909127-006	CKG-OB21		Water	9/2/2009			А	В									
0909127-007	CKG-OB22		Water	9/2/2009			А	В									
0909127-008	CKG-OB23		Water	9/2/2009			А	В									
0909127-009	CKG-OB24		Water	9/2/2009			А	В									
0909127-010	CKG-OB25		Water	9/2/2009			А	В									
0909127-011	CKG-OB26		Water	9/2/2009		С	А	В									
0909127-012	CKG-OB27		Water	9/3/2009			А	В									
0909127-013	CKG-OB28		Water	9/3/2009			А	В									
0909127-014	CKG-OB29		Water	9/3/2009			А	В									

Test Legend:

1 8260B_W	2 G-MBTEX_W
6	7
11	12

3	TPH(DMO)_W
8	

4	
9	

5					
10	1				

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262			We	orkOrder	: 09091	27 C	lientCode: CK	GS			
	WaterTrax WriteO	n 🗌 EDF	Ex	cel	Fax	🖌 Email	HardC	opy 🗌 Th	nirdParty	□ J-1	flag
Report to:				Bill to:	:			Requeste	d TAT:	5 c	days
Chris Kennedy CKG Environmental P.O. Box 246	Email: ckennedy@g cc: PO:	geologist.com		CI	ccounts F KG Envir O. Box 24	onmental		Date Rec	eived:	09/03/2	2009
St. Helena, CA 94574 (707) 967-8080 FAX (707) 967-8080	ProjectNo: Owens Brock	kway; Oakland		St	. Helena,	, CA 94574		Date Prin	nted:	09/04/2	2009
						Requested 1	ests (See lege	and below)			
Lab ID Client ID	Matrix	Collection Date	Hold 1	2	3	4 5	6 7	8 9	10	11	12

	matrix	Concerten Date				-		-	-		-	-	-		
CKG-OB30	Water	9/3/2009			Α	В									
CKG-OB31	Water	9/3/2009			Α	В									
CKG-OB32	Water	9/3/2009		С	Α	В									
	CKG-OB31	CKG-OB31 Water	CKG-OB31 Water 9/3/2009	CKG-OB31 Water 9/3/2009 CKG-OB32 Water 9/3/2009	CKG-OB31 Water 9/3/2009 CKG-OB32 Water 9/3/2009	CKG-OB31 Water 9/3/2009 A CKG-OB32 Water 9/3/2009 C A	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B CKG-OB32 Water 9/3/2009 C A B	CKG-OB31 Water 9/3/2009 A B B CKG-OB32 Water 9/3/2009 C A B C	CKG-OB31 Water 9/3/2009 A B B CKG-OB32 Water 9/3/2009 C A B Image: CKG-OB32 Image: CKG-OB32

Test Legend:

1	8260B_W	
6		
11		

2	G-MBTEX_W
7	
12	

3	TPH(DMO)_W
-	
8	

4		
9		

5			
10			

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	CKG Environmen	tal				Date	e and	Time Received:	9/3/2009 7	:39:01 PM
Project Name:	Owens Brockwa	y; Oakl	and			Che	cklist	completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	0909127	Matrix	Water			Car	rier:	Rob Pringle (M	AI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Inforr	natio	n		
Chain of custody	present?			Yes	\checkmark	No 🗆				
Chain of custody	signed when relinqui	shed and	1 received?	Yes	\checkmark	No 🗆	Ì			
Chain of custody	agrees with sample I	abels?		Yes	\checkmark	No				
Sample IDs noted	by Client on COC?			Yes	\checkmark	No				
Date and Time of	collection noted by Cli	ient on CO	OC?	Yes	\checkmark	No				
Sampler's name r	noted on COC?			Yes	✓	No 🗆				
			<u>Sa</u>	mple	Receipt	Informatio	<u>on</u>			
Custody seals int	tact on shipping conta	iner/cool	er?	Yes		No 🗆			NA 🔽	
Shipping containe	er/cooler in good cond	lition?		Yes	\checkmark	No 🗆				
Samples in prope	er containers/bottles?			Yes	✓	No 🗆				
Sample containe	rs intact?			Yes	\checkmark	No 🗆	Ì			
Sufficient sample	volume for indicated	test?		Yes	\checkmark	No				
		<u>Sa</u>	mple Preser	vatior	n and Ho	ld Time (H	IT) In	formation		
All samples recei	ved within holding tim	e?		Yes	✓	No				
Container/Temp E	Blank temperature			Coole	r Temp:	3.2°C			NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bi	ubbles?	Yes	✓	No	No	o VOA vials submi	itted	
Sample labels ch	necked for correct pres	servation	ı?	Yes	\checkmark	No	Ì			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2))?	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	\checkmark	No 🗆				
			(Ісе Туре	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	ee comm	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Oualit"		Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
CKG Environmental		•	D: Ow	ens Brockway;	Date Sampled:	09/02/09				
	Oakla	and			Date Received:	09/03/09				
P.O. Box 246	Clien	t Contact:	Chris	Kennedy	Date Extracted:	09/09/09				
St. Helena, CA 94574	Clien	t P.O.:		•	Date Analyzed	09/09/09				
	Volatile Org	anics by P	&T an	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B	,	•		d: SW8260B		Work Order: 0909	0127			
Lab ID				0909127	7-005C					
Client ID				CKG-0						
Matrix				Wat						
Compound	Concentration	* DF	Reporting Limit	Compour		Concentration *	DF	Reporting Limit		
Acetone	27	2.0	10	tert-Amyl methyl e	ther (TAME)	ND<1.0	2.0	0.5		
Benzene	ND<1.0	2.0	0.5	Bromobenzene	· · · · ·	ND<1.0	2.0	0.5		
Bromochloromethane	ND<1.0	2.0	0.5	Bromodichlorometh	iane	ND<1.0	2.0	0.5		
Bromoform	ND<1.0	2.0	0.5	Bromomethane		ND<1.0	2.0	0.5		
2-Butanone (MEK)	4.3	2.0	2.0	t-Butyl alcohol (TB	A)	5.3	2.0	2.0		
n-Butyl benzene	ND<1.0	2.0	0.5	sec-Butyl benzene		ND<1.0	2.0	0.5		
tert-Butyl benzene	ND<1.0	2.0	0.5	Carbon Disulfide		ND<1.0	2.0	0.5		
Carbon Tetrachloride	ND<1.0	2.0	0.5	Chlorobenzene		ND<1.0	2.0	0.5		
Chloroethane	ND<1.0	2.0	0.5	Chloroform		ND<1.0	2.0	0.5		
Chloromethane	ND<1.0	2.0	0.5	2-Chlorotoluene		ND<1.0	2.0	0.5		
4-Chlorotoluene	ND<1.0	2.0	0.5	Dibromochlorometh		ND<1.0	2.0	0.5		
1,2-Dibromo-3-chloropropane	ND<0.40	2.0	0.2	1,2-Dibromoethane	(EDB)	ND<1.0	2.0	0.5		
Dibromomethane	ND<1.0	2.0	0.5	1,2-Dichlorobenzen	e	ND<1.0	2.0	0.5		
1,3-Dichlorobenzene	ND<1.0	2.0	0.5	1,4-Dichlorobenzen		ND<1.0	2.0	0.5		
Dichlorodifluoromethane	ND<1.0	2.0	0.5	1,1-Dichloroethane		ND<1.0	2.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<1.0	2.0	0.5	1,1-Dichloroethene		ND<1.0	2.0	0.5		
cis-1,2-Dichloroethene	ND<1.0	2.0	0.5	trans-1,2-Dichloroe		ND<1.0	2.0	0.5		
1,2-Dichloropropane	ND<1.0	2.0	0.5	1,3-Dichloropropan		ND<1.0	2.0	0.5		
2,2-Dichloropropane	ND<1.0	2.0	0.5	1,1-Dichloropropen		ND<1.0	2.0	0.5		
cis-1,3-Dichloropropene	ND<1.0	2.0	0.5	trans-1,3-Dichlorop	propene	ND<1.0	2.0	0.5		
Diisopropyl ether (DIPE)	ND<1.0	2.0	0.5	Ethylbenzene		ND<1.0	2.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND<1.0	2.0	0.5	Freon 113		ND<20	2.0	10		
Hexachlorobutadiene	ND<1.0	2.0	0.5	Hexachloroethane		ND<1.0	2.0	0.5		
2-Hexanone	ND<1.0	2.0	0.5	Isopropylbenzene		ND<1.0	2.0	0.5		
4-Isopropyl toluene	ND<1.0	2.0	0.5	Methyl-t-butyl ethe		ND<1.0	2.0	0.5		
Methylene chloride	ND<1.0	2.0	0.5	4-Methyl-2-pentane	one (MIBK)	ND<1.0	2.0	0.5		
Naphthalene Styrene	ND<1.0 ND<1.0	2.0	0.5	n-Propyl benzene 1,1,1,2-Tetrachloro	athana	ND<1.0 ND<1.0	$\frac{2.0}{2.0}$	0.5		
•	ND<1.0				emane			1		
1,1,2,2-Tetrachloroethane Toluene	ND<1.0	2.0	0.5	Tetrachloroethene 1,2,3-Trichlorobenz	zene	ND<1.0 ND<1.0	2.0	0.5		
1.2.4-Trichlorobenzene	ND<1.0	2.0	0.5				2.0	0.5		
1.1.2-Trichloroethane	ND<1.0	2.0	0.5	Trichloroethene	ND<1.0	2.0	0.5			
Trichlorofluoromethane	ND<1.0	2.0	0.5	1,2,3-Trichloroprop	oane	ND<1.0	2.0	0.5		
1.2.4-Trimethylbenzene	ND<1.0	2.0	0.5	1,3,5-Trimethylben		ND<1.0	2.0	0.5		
Vinvl Chloride	ND<1.0	2.0	0.5	Xvlenes		ND<1.0	2.0	0.5		
		Surro	gate Re	coveries (%)						
%SS1:		101		%SS2:		9	6			
%SS3:		96								
Comments: b6,a3,b1										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

When Oua	Analytical lity Counts"	<u>, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
CKG Environmental		•	D: Ow	ens Brockway;	Date Sampled:	09/02/09				
DO D 046	Oal	kland			Date Received:	09/03/09				
P.O. Box 246	Clie	ent Contact:	Chris	Kennedy	Date Extracted:	09/09/09				
St. Helena, CA 94574		ent P.O.:		•	Date Analyzed	09/09/09				
	Volatile O	rganics by P	&T an	d GC/MS (Basic T	'arget List)*					
Extraction Method: SW5030B	, onume of			d: SW8260B	urget Elst)	Work Order: 0909	9127			
Lab ID				090912	7-011C					
Client ID				CKG-						
Matrix					ter					
Compound	Concentratio	n * DF	Reporting Limit	Compou		Concentration *	DF	Reporting Limit		
Acetone	70	2.0	10	tert-Amyl methyl e	ether (TAME)	ND<1.0	2.0	0.5		
Benzene	ND<1.0	2.0	0.5	Bromobenzene	,	ND<1.0	2.0	0.5		
Bromochloromethane	ND<1.0	2.0	0.5	Bromodichloromet	hane	ND<1.0	2.0	0.5		
Bromoform	ND<1.0	2.0	0.5	Bromomethane		ND<1.0	2.0	0.5		
2-Butanone (MEK)	15	2.0	2.0	t-Butyl alcohol (TE	BA)	44	2.0	2.0		
n-Butyl benzene	11	2.0	0.5	sec-Butyl benzene		6.1	2.0	0.5		
tert-Butyl benzene	ND<1.0	2.0	0.5	Carbon Disulfide		ND<1.0	2.0	0.5		
Carbon Tetrachloride	ND<1.0	2.0	0.5	Chlorobenzene		ND<1.0	2.0	0.5		
Chloroethane	ND<1.0	2.0	0.5	Chloroform		ND<1.0	2.0	0.5		
Chloromethane	ND<1.0	2.0	0.5	2-Chlorotoluene		ND<1.0	2.0	0.5		
4-Chlorotoluene	ND<1.0	2.0	0.5	Dibromochloromet	hane	ND<1.0	2.0	0.5		
1,2-Dibromo-3-chloropropane	ND<0.40	2.0	0.2	1,2-Dibromoethane	(EDB)	ND<1.0	2.0	0.5		
Dibromomethane	ND<1.0	2.0	0.5	1,2-Dichlorobenzer	ne	ND<1.0	2.0	0.5		
1,3-Dichlorobenzene	ND<1.0	2.0	0.5	1,4-Dichlorobenzer		ND<1.0	2.0	0.5		
Dichlorodifluoromethane	ND<1.0	2.0	0.5	1,1-Dichloroethane	2	ND<1.0	2.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<1.0	2.0	0.5	1,1-Dichloroethene		ND<1.0	2.0	0.5		
cis-1,2-Dichloroethene	ND<1.0	2.0	0.5	trans-1,2-Dichloro		ND<1.0	2.0	0.5		
1,2-Dichloropropane	ND<1.0	2.0	0.5	1,3-Dichloropropa		ND<1.0	2.0	0.5		
2,2-Dichloropropane	ND<1.0	2.0	0.5	1,1-Dichloroproper		ND<1.0	2.0	0.5		
cis-1,3-Dichloropropene	ND<1.0	2.0	0.5	trans-1,3-Dichloro	propene	ND<1.0	2.0	0.5		
Diisopropyl ether (DIPE)	ND<1.0	2.0	0.5	Ethylbenzene		ND<1.0	2.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND<1.0	2.0	0.5	Freon 113		ND<20	2.0	10		
Hexachlorobutadiene	ND<1.0	2.0	0.5	Hexachloroethane		ND<1.0	2.0	0.5		
2-Hexanone	ND<1.0	2.0	0.5	Isopropylbenzene		15	2.0	0.5		
4-Isopropyl toluene	9.0		0.5	Methyl-t-butyl ethe		ND<1.0	2.0	0.5		
Methylene chloride	ND<1.0	2.0	0.5	4-Methyl-2-pentan	one (MIBK)	ND<1.0	2.0	0.5		
Naphthalene	ND<1.0	2.0	0.5	n-Propyl benzene	41	16	2.0	0.5		
Styrene	ND<1.0 ND<1.0	2.0	0.5	1,1,1,2-Tetrachlore		ND<1.0 ND<1.0	2.0	0.5		
1,1,2,2-Tetrachloroethane Toluene	ND<1.0 ND<1.0	2.0	0.5	Tetrachloroethene 1,2,3-Trichloroben		ND<1.0 ND<1.0	2.0	0.5		
1.2.4-Trichlorobenzene	ND<1.0	2.0	0.5	1,2,3-Trichloroben	ND<1.0	2.0	0.5			
1.1.2-Trichloroethane	ND<1.0	2.0	0.5	Trichloroethene	ND<1.0	2.0	0.5			
Trichlorofluoromethane	ND<1.0	2.0	0.5	1,2,3-Trichloropro	pane	ND<1.0	2.0	0.5		
1,2,4-Trimethylbenzene	14		0.5	1,3,5-Trimethylber		6.3	2.0	0.5		
Vinvl Chloride	ND<1.0	2.0	0.5	Xvlenes		24	2.0	0.5		
				ecoveries (%)			=12			
%SS1:		98	IC	%SS2:		9	8			
%SS3:		<u> </u>		70.552.		9	0			
Comments: b6,a3,b1	I	101								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

When Out	Analytica	al, Ir	nc.		Web: www.mccam	Pass Road, Pittsburg, Ca pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com				
CKG Environmental			÷	D: Owe	ens Brockway;	Date Sampled:	09/03/09				
	C	akland	1			Date Received:	09/03/09				
P.O. Box 246	C	lient C	Contact:	Chris I	Kennedy	Date Extracted:	.d. 09/10/09				
St. Helena, CA 94574		lient P				Date Analyzed					
				& T on	d GC/MS (Basic T						
Extraction Method: SW5030B	volatile	Organ	•		d: SW8260B	aiget List)	Work Order: 0909	0127			
Lab ID					090912	7-017C					
Client ID					CKG-						
Matrix						iter					
Compound	Concentra	tion *	DF	Reporting Limit	Compou		Concentration *	DF	Reporting Limit		
Acetone		72	5.0	10	tert-Amyl methyl	ether (TAME)	ND<2.5	5.0	0.5		
Benzene	ND<2		5.0	0.5	Bromobenzene	,,	ND<2.5	5.0	0.5		
Bromochloromethane	ND<2	.5	5.0	0.5	Bromodichloromet	hane	ND<2.5	5.0	0.5		
Bromoform	ND<2		5.0	0.5	Bromomethane		ND<2.5	5.0	0.5		
2-Butanone (MEK)		17	5.0	2.0	t-Butyl alcohol (TH	BA)	ND<10	5.0	2.0		
n-Butyl benzene		10	5.0	0.5	sec-Butyl benzene		15	5.0	0.5		
tert-Butyl benzene	ND<2	.5	5.0	0.5	Carbon Disulfide		ND<2.5	5.0	0.5		
Carbon Tetrachloride	ND<2	.5	5.0	0.5	Chlorobenzene		ND<2.5	5.0	0.5		
Chloroethane	2	2.8	5.0	0.5	Chloroform		ND<2.5	5.0	0.5		
Chloromethane	ND<2	.5	5.0	0.5	2-Chlorotoluene		ND<2.5	5.0	0.5		
4-Chlorotoluene	ND<2	.5	5.0	0.5	Dibromochloromet		ND<2.5	5.0	0.5		
1,2-Dibromo-3-chloropropane	ND<1		5.0	0.2	1,2-Dibromoethane	e (EDB)	ND<2.5	5.0	0.5		
Dibromomethane	ND<2	.5	5.0	0.5	1,2-Dichlorobenzer		ND<2.5	5.0	0.5		
1,3-Dichlorobenzene	ND<2		5.0	0.5	1,4-Dichlorobenzer		ND<2.5	5.0	0.5		
Dichlorodifluoromethane	ND<2	.5	5.0	0.5	1,1-Dichloroethane		ND<2.5	5.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<2		5.0	0.5	1,1-Dichloroethene		ND<2.5	5.0	0.5		
cis-1,2-Dichloroethene	ND<2		5.0	0.5	trans-1,2-Dichloro		ND<2.5	5.0	0.5		
1,2-Dichloropropane	ND<2		5.0	0.5	1,3-Dichloropropa		ND<2.5	5.0	0.5		
2,2-Dichloropropane	ND<2		5.0	0.5	1,1-Dichloroprope		ND<2.5	5.0	0.5		
cis-1,3-Dichloropropene	ND<2		5.0	0.5	trans-1,3-Dichloro	propene	ND<2.5	5.0	0.5		
Diisopropyl ether (DIPE)	ND<2		5.0	0.5	Ethylbenzene		ND<2.5	5.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND<2		5.0	0.5	Freon 113		ND<50	5.0	10		
Hexachlorobutadiene	ND<2		5.0	0.5	Hexachloroethane		ND<2.5	5.0	0.5		
2-Hexanone	ND<2		5.0	0.5	Isopropylbenzene		ND<2.5	5.0	0.5		
4-Isopropyl toluene	ND<2		5.0	0.5	Methyl-t-butyl eth		ND<2.5	5.0	0.5		
Methylene chloride	ND<2		5.0	0.5	4-Methyl-2-pentan	one (MIBK)	ND<2.5	5.0	0.5		
Naphthalene	ND<2 ND<2		5.0	0.5	n-Propyl benzene 1,1,1,2-Tetrachlor	41	ND<2.5	5.0	0.5		
Styrene		-	5.0				ND<2.5	5.0	0.5		
1,1,2,2-Tetrachloroethane Toluene	ND<2 ND<2		<u>5.0</u> 5.0	0.5	Tetrachloroethene 1,2,3-Trichloroben		ND<2.5 ND<2.5	<u>5.0</u> 5.0	0.5		
1,2,4-Trichlorobenzene	ND<2		5.0	0.5	1,1,1-Trichloroeth		ND<2.5	5.0	0.5		
1.1.2-Trichloroethane	ND<2		5.0	0.5	Trichloroethene	anc	ND<2.5	5.0	0.5		
Trichlorofluoromethane	ND<2		5.0	0.5	1,2,3-Trichloropro	nane	ND<2.5	5.0	0.5		
1,2,4-Trimethylbenzene	ND<2		5.0	0.5	1,3,5-Trimethylber		ND<2.5	5.0	0.5		
Vinvl Chloride	ND<2		5.0	0.5	Xvlenes		ND<2.5	5.0	0.5		
					coveries (%)			- 1 2			
%SS1:		10		Burr Ht	%SS2:		9	0			
%SS1: %SS3:		10			70332.		9	2			
Comments: a3,b1	.		<u>v</u>								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

	McCampbe	ell An en Oualitv		cal, In	<u>nc.</u>		: www.mccamp	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccamp	bell.com					
CKG	Environmental					Owens Brock	kway;	Date Sample	d: 09/01	/09-09/	03/09				
P.O. B	ov 246			Oakland	1			Date Receive	ed: 09/03	3/09					
1.0. D	04 240			Client C	Contact: Ch	act: Chris Kennedy Date Extracted: 09/08/09-09/11/09									
St. He	lena, CA 94574			Client P	.0.:	Date Analyzed: 09/08/09-09/11/09									
Extractio	Gaon method: SW5030B	asoline I	Range (C6-C12)	•	ydrocarbons as Gasoline with BTEX and MTBE* Uytical methods: SW8021B/8015Bm Work Order: 090									
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
001A	CKG-OB14	w	14	400		ND<1.0	2.2	1.4	4.6	2	114	d7,d9,b6,b1			
002A	CKG-OB16	,000		ND<1.0	10	26	63	2	#	d7,d9,b6,b1					
003A	CKG-OB17	w	14	400		ND<1.7	ND<1.7	ND<1.7	ND<1.7	3.3	97	d7,d9,b6,b1			
004A	CKG-OB19	W	19	,000		ND<10	12	39	14	5	111	d7,d9,b6,b1			
005A	CKG-OB20	w	43	300		ND<10	ND<10	ND<10	ND<10	20	102	d7,b6,b1			
006A	CKG-OB21	W	١	ND		ND	ND	ND	ND	1	101	b1			
007A	CKG-OB22	w	1	10		ND	ND	ND	ND	1	95	d7,b6,b1			
008A	CKG-OB23	w	7:	500		ND	2.6	5.1	39	1	87	d7,d9,b6,b1			
009A	CKG-OB24	W	١	ND		ND	ND	ND	ND	1	97	b1			
010A	CKG-OB25	w	2	270		ND	ND	ND	2.5	1	93	d7,b6,b1			
011A	CKG-OB26	W	5:	500		ND<2.5	2.6	4.7	42	5	107	d7,d9,b6,b1			
012A	CKG-OB27	W	2	250		ND	ND	ND	2.3	1	93	d7,b6,b1			
013A	CKG-OB28	w	80	000		ND<1.7	ND<1.7	9.5	35	3.3	94	d7,d9,b6,b1			
014A	CKG-OB29	W	17	700		ND<5.0	ND<5.0	ND<5.0	ND<5.0	10	88	d7,b6,b1			
015A	015A CKG-OB30 W 120						1.1	ND	0.80	1	93	d7,b6,b1			
016A CKG-OB31 W 2100						ND<5.0	ND<5.0	ND<5.0	ND<5.0	10	91	d7,b6,b1			
-	ting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		μg/I				
	eans not detected at or ve the reporting limit	S	1	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg			

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

	McCampbo	ell Ana en Ouality Co		cal, In	<u>ic.</u>		: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 377-252-9262 Fax	-	bell.com				
CKG	Environmental				•	Owens Brock	kway;	Date Sample	d: 09/01	/09-09/	03/09			
P.O. B	ox 246			Oakland	l			Date Receive	ed: 09/03	8/09				
				Client C	Contact: Cl	nris Kennedy	ŕ	Date Extracted: 09/08/09-09/11/09						
St. He	lena, CA 94574			Client P.	.0.:			Date Analyz	ed: 09/08	8/09-09/	11/09			
Extracti	G on method: SW5030B	asoline Ra	nge ((C6-C12)	-	drocarbons as Gasoline with BTEX and MTBE* tical methods: SW8021B/8015Bm Work Order: 090								
Lab ID	Client ID	Matrix	TPI	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
017A	CKG-OB32	w	18,	000		ND<1.7	ND<1.7	13	78	3.3	102	d7,b6,b1		
												<u> </u>		
												+		
	rting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		μg/I			
	we the reporting limit	S	1	.0	0.05	0.005	0.005	0.005	0.005		mg/k	(g		
	and vapor samples are re & SPLP extracts in mg/I		g/L, soi	il/sludge/so	olid samples	in mg/kg, wip	e samples in	µg/wipe, product	t/oil/non-aque	ous liqui	d sample	s and all		

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

<u> </u>	When Ouality Count		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
CKG Environmenta	1	5	: Owens Brockway;		Date Sampled:	09/01/0)9-09/03/	09		
P.O. Box 246		Oakland		Ī	Date Received:	09/03/0)9			
F.O. DOX 240		Client Contact:	Chris Kennedy		Date Extracted:	09/03/0)9-09/04/	09		
St. Helena, CA 9457	74	Client P.O.:			Date Analyzed:	09/06/09-09/11/09				
Extraction method: SW35	510C		ble Petroleum Hydroc ethods: SW8015B	carbon	IS*	Wo	ork Order:	0909127		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	Diesel TPH-Motor Oil			% SS	Comment		
0909127-001B	CKG-OB14	W	82,000		81,000	20	110	e2,e7,b1		
0909127-002B	CKG-OB16	W	680,000		490,000	500	107	e2,e7,e4,b		
0909127-003B	CKG-OB17	W	19,000		9300	20	86	e8/e1,e7,b6,		
0909127-004B	CKG-OB19	W	1,300,000		860,000	1000	115	e2,e7,e4,b		
0909127-005B	CKG-OB20	W	1,100,000		900,000	500	94	e2,e7,b1		
0909127-006B	CKG-OB21	W	310		330	1	92	e7,e2,b1		
0909127-007B	CKG-OB22	W	70,000		60,000	20	89	e2,e7,b6,b		
0909127-008B	CKG-OB23	W	410,000		590,000	400	94	e7,e2,e4,b		
0909127-009B	CKG-OB24	W	3900		4300	2	90	e7,e3,b1		
0909127-010B	CKG-OB25	W	34,000		57,000	50	90	e7,e2,b1		
0909127-011B	CKG-OB26	W	4,700,000		4,700,000	2000	110	e2,e7,b6,b		
0909127-012B	CKG-OB27	W	3200		1500	1	96	e8/e1,e7,b		
0909127-013B	CKG-OB28	W	770,000		230,000	100	109	e8/e1,e7,b		
0909127-014B	CKG-OB29	W	120,000		55,000	100 79 e8/e1,e		e8/e1,e7,b		
0909127-015B	CKG-OB30	W	29,000 36,000		36,000	20	88	e7,e2,b1		
Reporting	g Limit for DF =1;	W	50		250		ug/I			
ND means	s not detected at or	S	NA		250 μg/L NA mg/Kg					

S

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

above the reporting limit

e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

Angela Rydelius, Lab Manager

mg/Kg

	Campbell Analy		<u>nc.</u>	Web: www.r	mccampbel	s Road, Pittsburg, CA l.com E-mail: main -252-9262 Fax: 925					
CKG Environme	ental			Owens Brockway;	Ι	Date Sampled:	09/01/0)9-09/03/	09		
P.O. Box 246		Oakland	1		Ι	Date Received:	09/03/09				
1.0. D0X 240		Client C	Contact:	Chris Kennedy	Ι	Date Extracted:	09/03/0	09			
St. Helena, CA 9	94574	Client P	.0.:		Ι	Date Analyzed:	09/06/0)9-09/11/	09		
		Total	Extractab	le Petroleum Hydroc							
Extraction method: S	SW3510C		Analytical me	thods: SW8015B	I		Wo	ork Order:	0909127		
Lab ID	Client ID	М	TPH-Diesel (C10-C23)	TP	H-Motor Oil (C18-C36)	DF	% SS	Comments			
0909127-016B	CKG-OB31		W	260,000		150,000	400	97	e8/e1,e7,b1		
0909127-017B	CKG-OB32		W	1,700,000		820,000	1000	118	e8/e1,e7,b1		

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

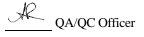
W.O. Sample Matrix: Water			QC Matri	x: Water		BatchID: 45592 WorkOrder					Order 09091	27
EPA Method SW8260B	Extra	ction SW	5030B					s	Spiked San	nple ID	: 0909113-0)40A
Analyte	Sample	ble Spiked MS			MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, unary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	91.2	99.2	8.37	94.9	93.2	1.78	70 - 130	30	70 - 130	30
Benzene	ND	10	106	114	6.78	114	115	1.12	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	91.6	93.2	1.76	89.9	95.1	5.60	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	109	116	6.64	99.8	101	1.41	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	121	130	7.02	101	99.6	1.51	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	100	103	2.32	103	106	2.69	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	101	98.9	1.62	110	109	0.808	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	98	104	6.26	119	122	2.29	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	96.7	104	7.26	108	110	1.35	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	105	108	3.32	107	104	2.14	70 - 130	30	70 - 130	30
Toluene	ND	10	108	116	7.13	106	108	1.22	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	125	114	8.75	110	110	0	70 - 130	30	70 - 130	30
%SS1:	90	25	81	88	8.60	77	78	1.87	70 - 130	30	70 - 130	30
%SS2:	93	25	103	112	7.90	100	101	1.09	70 - 130	30	70 - 130	30
%SS3:	103	2.5	121	101	18.3	101	98	3.79	70 - 130	30	70 - 130	30

BATCH 45592 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909127-005C	09/02/09	09/09/09	09/09/09 3:29 PM	0909127-011C	09/02/09	09/09/09	09/09/09 4:12 PM
0909127-017C	09/03/09	09/10/09	09/10/09 9:40 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

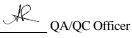
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water			QC Matriz	x: Water			Batch	ID: 45624	WorkOrder 0909127			
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0909126-0)03B
Analyte	Sample Spiked MS MSD				MS-MSD	LCS	LCSD	D LCS-LCSD Acceptance Criteria			Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	122	116	5.18	88.8	103	14.9	70 - 130	20	70 - 130	20
MTBE	ND	10	114	114	0	112	113	0.860	70 - 130	20	70 - 130	20
Benzene	ND	10	106	101	4.92	104	103	1.30	70 - 130	20	70 - 130	20
Toluene	ND	10	97	94.4	2.74	94.7	95	0.377	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.9	93.5	1.51	96	95.2	0.888	70 - 130	20	70 - 130	20
Xylenes	ND	30	109	110	0.947	109	109	0	70 - 130	20	70 - 130	20
%SS:	106	10	97	98	1.09	95	97	2.26	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

			<u>BATCH 45624 SL</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909127-001A	09/01/09	09/09/09	09/09/09 10:11 PM	0909127-002A	09/01/09	09/09/09	09/09/09 10:44 PM
0909127-003A	09/01/09	09/09/09	09/09/09 11:52 PM	0909127-004A	09/02/09	09/08/09	09/08/09 2:47 PM
0909127-004A	09/02/09	09/09/09	09/09/09 9:37 PM	0909127-005A	09/02/09	09/08/09	09/08/09 6:07 PM
0909127-006A	09/02/09	09/10/09	09/10/09 3:42 AM	0909127-007A	09/02/09	09/09/09	09/09/09 4:56 PM
0909127-008A	09/02/09	09/09/09	09/09/09 5:26 PM	0909127-009A	09/02/09	09/11/09	09/11/09 1:53 PM
0909127-010A	09/02/09	09/09/09	09/09/09 5:56 PM	0909127-011A	09/02/09	09/09/09	09/09/09 6:26 PM
0909127-012A	09/03/09	09/09/09	09/09/09 6:56 PM	0909127-013A	09/03/09	09/09/09	09/09/09 8:27 PM
0909127-014A	09/03/09	09/09/09	09/09/09 1:49 AM	0909127-015A	09/03/09	09/09/09	09/09/09 9:57 PM
0909127-016A	09/03/09	09/09/09	09/09/09 3:17 AM	0909127-017A	09/03/09	09/09/09	09/09/09 10:28 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

Spiked Sample ID: N/A	
CSD Acceptance Criteria (%)	
PD MS / MSD RPD LCS/LCSD	RPD
4 N/A N/A 70 - 130	30
4 N/A N/A 70 - 130	30
(PD MS / MSD RPD LCS/LCSD 4 N/A N/A 70 - 130

BATCH 45512 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909127-001B	09/01/09	09/03/09	09/09/09 3:04 AM	0909127-002B	09/01/09	09/03/09	09/11/09 1:00 AM
0909127-003B	09/01/09	09/03/09	09/08/09 12:41 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

•			QC Matrix	x: Water			Batch	ID: 45627		WorkC	order 09091	27
EPA Method SW8015B	Extrac	ction SW	3510C					5	spiked San	nple ID	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	100	101	0.441	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	94	95	0.975	N/A	N/A	70 - 130	30

BATCH 45627 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909127-004B	09/02/09	09/03/09	09/10/09 11:48 PM	0909127-005B	09/02/09	09/03/09	09/11/09 5:43 AM
0909127-006B	09/02/09	09/03/09	09/08/09 4:48 PM	0909127-007B	09/02/09	09/03/09	09/10/09 12:16 AM
0909127-008B	09/02/09	09/03/09	09/11/09 9:16 AM	0909127-009B	09/02/09	09/03/09	09/10/09 1:01 PM
0909127-010B	09/02/09	09/03/09	09/10/09 9:28 AM	0909127-011B	09/02/09	09/03/09	09/09/09 8:44 PM
0909127-012B	09/03/09	09/03/09	09/06/09 7:26 AM	0909127-013B	09/03/09	09/03/09	09/11/09 6:52 AM
0909127-014B	09/03/09	09/03/09	09/09/09 9:54 PM	0909127-015B	09/03/09	09/03/09	09/09/09 5:10 PM
0909127-016B	09/03/09	09/04/09	09/11/09 2:12 AM	0909127-017B	09/03/09	09/04/09	09/11/09 1:15 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway	Date Sampled:	09/01/09-09/03/09
P.O. Box 246			Date Received:	09/03/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/11/09
	Client P.O.:		Date Completed:	09/11/09

WorkOrder: 0909120

September 11, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the 32 analyzed samples from your project: Owens Brockway,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccampbel) 252-92	LLOW PA RG, CA 94 Lcom En 62	SS RO	AD 701 nain@ Fax:	mcc	ampt	bell.	com	,							AR		DF			OF E PD	°C F	RUS	H Ex	24 cel	HR		48 H Vrit	IR te C d "J)n (1	HR DV	5 DAY V)
Company: CKC				in re												0			-	III		Rec	ues						\neg		ther	+	Filter
						_				_			_	8015) / MTBE		5520 E/B&F)					ngene												Samples
Tele: ()				ax: (-	2)/(2)		520 F			~		s/Co		(9					020)					for Metal
Project #:					t Nan	ne:	aute	211C	RA	CR.	. the	/	\neg	+ 801			18.1)		8021		oclor		icide			(SV)		9/01					analysis: Yes / No
Project Location:	CAKLA	DM.	1.						01		0.1	_		1201	0	e (16	ns (4		602 /	cides	An	(52	Herb	(\$	(8)	NH/	_	/ 601	120)				1 407 110
Sampler Signatur		tell	M											(602 / 8021	y	reas	arbo		EPA	Pesti	VIN	ticid	ie CI	VOC	SVO	PAHs	6020)	200.8	0/6				
		SAMI	PLING	80	iers	1	MAT	FR	IX		AETI ESE			Gas (6	15) +	Oil & C	Hydroc	(S)	NLY (381 (CI	CB's O	NP Pes	l (Acidi	8260 (8270 (8310 (1	200.8 /	200.77	8/601				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	AIr .	Sludge Other	ICE	HCL	HNO3	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664/	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	AND PLAN ONLY (EPA 602 / 8021)	EPA 505/608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 /	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
CKG-OB16	4-41/2	9/1/19		1	SU		X								X				X													1	
CKG-OBIG	912-10	9/1/09		1	SLY		X								X				X														
CK6-0317		9/1/09		1	Sa		X								x				X														
CKG-OBIT	912-10			1	5LV		x								X				X														
CK6-0B19	4-41/2			1	SLY		x								X				x														
CKG-OB19		9/2/09		1	SLY		v								X				X														
CKG-0820		9/2/09		1	RY		X								X				x														
CK6-0B20			1/10	1	Sev		X								X				x														
KG-0B21	\$2-6	9/2/09	100	1	SIX		x								X				r														
KG-0B21		9/2/09		1	XX		x								x				x														
KG-0822		9/2/09		1	CIV		x								V				V														
CK6-0B22	12-12/2	9/1/0		1	SLY		x						1		Y				x														
CKG - 0823				1	SV		V								X				X														
CKG - 0B 23				1	SV		v	1				-			C				Ŷ					V								1	
Relinquisheit By:	k	Date: 9/.3/05 Date:	Time: 320 Time:		ived B	_	7	>	>		_	/		GO HE DE	AD S CHL	ORI	DIT CE A NAT	BSE	_	_	25	_								ENTS	ica ICA	RE	5
Relinquished By:		Date:	Time:	Rece	ived B	y:	1.	3				_		PR	ESEI	RVE	D IN	LAI			&G	ME pH<		s	отн		ĸ	0	(T)	0	LCA	NIA	P

																																21.	3	
We Tel	ebsite: <u>www.m</u> ephone: (877	1534 WII PITTSBU ccampbel) 252-92	LOW PA RG, CA 94 Lcom En 62	SS RO 4565-1' nail: n	AD 701 nain@ Fax:	mcc	amp	bell	l.com									AR	01	DI	T T T		E PD Ch	F	RUS if sa	H Ex	24 cel	HR		48 1 Wri	HR ite nd "	On 'J" f	72 H (D) flag	W)
Report To: CHA Company: CKA	SKCNNPD	M PAITA		Bill To):						-	-	-	-						P	nai		Rec	ues	t						+	Othe	er	Comment
Company. (RC	3 CAVIKON	14 64/10	-	_	_		_				_		-		MTBE		\$&F)					cuers												Filter
			1	E-Ma	il:										LW/		Grease (1664 / 5520 E/B&F)					Cong							6					Samples for Metal
Tele: ()				ax: (_	_		_					_	_	8015)/		/ 552	-		(17)		ors/		des)					6010 / 6020)					analysis:
Project #:			P	rojec	t Nar	ne:	010	CN,	SE	Ro	ch	cu	IRY	-	+		1664	(418		2/80	(cs)	Vrocl		rbici			PNAS		010	-				Yes / No
Project Location:		0											_	_	/ 8021	g,	ase (bons		A 60	sticid	N:	ides)	HE	Cs)	OCs)	Hs/1	20)	18/6	6020				
Sampler Signatur	e:					_	_	_	_	-	M	ETI	HO	D	(602	X	Gre	ocarl		(EP	CI Pe	ONI	estic	dic (OV)	(SV	(PA)	3/60	/ 200	010/				
		SAMI	PLING		ners		MA	TR	IX			ESE			s Gas	015)	Oil &	Hydr	OCs)	NUN	081 (6	PCB's	(NP P	I (Aci	/ 8260	/ 8270	8310	(200.5	200.7	18/6				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA \$260 (HVOCs)	MERE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 /	Lead (200.7 / 200.8 / 6010 / 6020)				
CKG-0B24	4-41/2	9/2/09		1	SEV		X			T		80)			X				X														
	1142-12			1	SLY		X					Nº.				X				X						X								
CKG-0B25	3/12-4	9/2/09		1	sy		x					2	2	NO		x				X														
CR6-0B28	71/2-8	9/2/09		1	RY		X					*	5"			X				x														
CK6-0B26	71/2-8	9/2/09		1	SA		x			T						X				X														
CK6.08 26	14/2-15	9/2/09		1	SIV		1									X				X					X									
CK6-0B27		9/3/09		5	SUV		Ŷ									X				X														
(KG-0827	81/2-9	9/2/09		1	Sev		X			1						x				X														
CK6-0B28	81/2-9	9/3/09		1	Scy		Ŷ			1						x				X														
CK6-0B28	121/2-13			1			X			+						x				X					1							-		
CKG-OB29		9/3/09		1	SLY		V			+						x				X												-		
CKG-OB29				1	SY		x			1						x				x												-		
CKG-0330	0-01/2	9/2/00			SU		Y			1						x				x												1		
CKG-01330	14-14%	9/2/0		1	SV		×									x				Y												1		
Relinquished By:	114-1112	Date:	Time: 320	6	elved B	y:	4	-	5	~	<	1)	GO	E/t°_	CON	DIT CE A	ION	NT_	_					nux.		2.1			IENT			
Relinquished By:	A	Date: 369 Date:	Time:	()	rived B	e	V	X	8						AP	PRC	PRI	INATE ATE D IN	CO	NTA		RS_	_	-	,	an	w	IT	H .	SIL	100	A C	Sel Main	P
Kennquisned By:		Jare:	Time:	Rece	aveu B	y:									PR	ESE	RVA	TIO		DAS	0	&G	ME_pH<											

PITTSBU mccampbe 77) 252-92	II.com En	SS RO 4565-1' nail: n	AD 701 nain@ Fax:	mcca		bell	.com									RO		D T		PD Ch	F	RUS If sa	SH Ex	24 cel	HR		48 1 Wri	HR ite C	72 H 72 H On (D " flag	W) 📮
MentThe	l	E-Mai	il:	ne:	ви	leg	58	100	Ku	My	/	8021+		-176	arease (1004 / 3520 E/B&F)	carbons (416.1)	VICUS/ CUY VICUS		clors / Congeners				SVOCs)	PAHs / PNAs)	6020)	200.8 / 6010 / 6020)	0 / 6020)			Filter Samples for Metal analysis: Yes / No
V I	Time	# Containers	Type Containers	er				P	RES	ER	VED	TPH as Gas	4) sets et first an Addition L (\$108) [asseid as HqT	CUM Design of the Cum	Total Pretroicum Oli & C	Lotal Fetroleum Hydroc	EFA 8260 (HVUUS)	EPA 505/ 608 / 8081 (CI	EPA 608 / 8082 PCB's C	EPA 507 / 8141 (NP Pes	EPA 515.3 / 8151 (Acidi	EPA 524.2 / 624 / 8260 (EPA 525.2 / 625 / 8270 (EPA 8270 SIM / 8310 (1	CAM 17 Metals (200.8 /	LUFT 5 Metals (200.7 /)	Lead (200.7 / 200.8 / 601			
9/3/09			\$₹¥ \$₹¥ \$₹¥ \$₹¥										X	<			X					×								
		\$	2	_								GH	GOOI	D CO D SP	ACE	AB	SENT	-					1	Im	15					
	PITTSBU .mccampbe 77) 252-92 (D) (D) (D) (D) (D) (D) (D) (D)	PITTSBURG, CA 94 .mccampbell.com En 77) 252-9262 (D) / E 	PITTSBURG, CA 94565-17 mccampbell.com Email: n 77) 252-9262 (D) Bill To MeMM E-Mai Fax: (Project MOMM SAMPLING SAMPLING 1 1 1 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2	PITTSBURG, CA 94565-1701 .mccampbell.com Email: main@ 77) 252-9262 Fax: (D) Bill To: 	PITTSBURG, CA 94565-1701 .mccampbell.com Email: main@mcc: 77) 252-9262 Fax: (92 (OY Bill To: 	PITTSBURG, CA 94565-1701 .mccampbell.com Email: main@mccamp T7) 252-9262 Fax: (925) 2 (D) Bill To: 	PITTSBURG, CA 94565-1701 .mccampbell.com Email: main@mccampbell 77) 252-9262 Fax: (925) 252- (OY Bill To: 	PITTSBURG, CA 94565-1701 .mccampbell.com Email: main@mccampbell.com 77) 252-9262 Fax: (925) 252-926 (20) Bill To: 	PITTSBURG, CA 94565-1701 imaccampbell.com T77) 252-9262 Fax: (925) 252-9269 E-Mail: E-Mail: Fax: (1) Project Name: OWCUS That MATRIX MATRIX SAMPLING Sam Sample A SiV 2 2/3/69 / A SiV A SiV 2 2/3/69 / Date: Time: Receivéd By: 2/3/59 Sin	PITTSBURG, CA 94565-1701 <u>mccampbell.com</u> Email: main@mccampbell.com 77) 252-9262 Fax: (925) 252-9269 (D) Bill To: <u>MeMAAA</u> E-Mail: Fax: () Project Name: MANS MACKAA MATRIX ME PRES MATRIX ME PRES MATRIX ME PRES MATRIX ME PRES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PITTSBURG, CA 94565-1701 .mccampbell.com T7) 252-9262 Fax: (925) 252-9269 (D) Bill To: .mounted E-Mail: Fax: () Project Name: $AWAYS BOULDAYY$ MATRIX METHON SAMPLING SAMPLING Vit Date Time State 1000 add_{L} 1000 ad_{L}	PITTSBURG, CA 94565-1701 <u>mccampbell.com</u> Email: main@mccampbell.com 77) 252-9262 Fax: (925) 252-9269 (20)/ Bill To: <u>MaxM4</u> E-Mail: Fax: () Project Name: <u>AWAYS TACKAW</u> <u>MATRIX METHOD</u> <u>PRESERVED</u> <u>MATRIX METHOD</u> <u>MATRIX PRESERVED</u> <u>MATRIX PRESERVED</u> <u>Date: Time: Received By:</u> <u>YJJSQ XQ XQ XQ</u>	PITTSBURG, CA 94565-1701 .mccampbell.com Email: main@mccampbell.com 77) 252-9262 Fax: (925) 252-9269 (D)/ Bill To: 	PITTSBURG, CA 94565-1701 Get	PITTSBURG, CA 94565-1701 TURE .mccampbell.com Email: main@mccampbell.com 77) 252-9262 Fax: (925) 252-9269 (20) Bill To:	PITTSBURG, CA 94565-1701 	PITTSBURG, CA 94565-1701 .mccampbell.com TORN ARCO Geo Tracker Geo Tracker Geo Tracker INV / Gio Particle Com Fax: (0) Project Name: AUGUS BAUGUM MATRIX PRESERVED V tr Date Time Statistics Statistic	PTTTSBURG, CA 94565-1701 	PTTSBURG, CA 94565-1701 .mccampbell.com T7) 252-9262 Fax: (925) 252-9269 COY Bill To: Cov Bill To: Bill To: Cov Bill To:	PTTSBURG, CA 94565-1701 .mccampbell.com Email: main@mccampbell.com 77) 252-9262 Fax: (925) 252-9269 COY Bill To: Analysis COY BILL TO:	PTTTSBURG, CA 94565-1701 .mccampbell.com T7) 252-9262 Fax: (925) 252-9269 COV Bill To: Fax: () Project Name: AUX255 Za CUCLUT Time SAMPLING Vit Date Time Time Date Time Date: Time: Received By: Date: Time: Received By: Time: Received By: Time: Received By: Time: Received By: Time: Received By: Time: Received By: Time:	PTTTSBURG, CA 94565-1701 <u>mccampbell.com</u> Fax: (925) 252-9269 TORN AROUND TIME GeoTracker EDF Check Analysis Reques CO Y Bill To: Fax: () Frax: ()	PTTTSBURG, CA 94565-1701 <u>mccampbell.com</u> Email: main@mccampbell.com T7) 252-9262 Fax: (925) 252-9269 Fax: (925) 252-9269 Corracker EDF PDF Check if ss CeoTracker EDF Check if ss Check if ss CeoTracker EDF Chec	PTITISBURG, CA 94565-1701 <u>mccampbell.com</u> Fax: (925) 252-9269 TORN AROUND TIME GeoTracker EDF PDF C Ex Check if samp CO Check if samp	PTTTSBURG, CA 34555-1701 RUSH 24 Inccampbell.com Email: main@mccampbell.com Fax: (925) 252-9269 COPY Bill To: Incompletition Analysis Request Copy Bill To: Incompletition Analysis Request Copy Bill To: Incompletition Analysis Request Incompletition Incompletition Incompletition Incompletin	PTTTSBURG, CA 94565-1701 RUSH 24 HR mccampbell.com Fax: (925) 252-9269 PTJ 252-9262 Fax: (926) 252-9269 PTJ 252-9262 Fax: (927) 2627 PTJ 252-9262 Fax: (927) 2627 PTJ 252-9262 Fax: (928) 2629 PTJ 252-9269 Fax: (928) 2629 <tr< td=""><td>PTTTSBURG, CA 94565-1701 RUSH 24 HR mccampbell.com Fax: (925) 252-9269 T/ 252-9262 Fax: (925) 252-9269 Bill To: Analysis Request Marcan Memolil.com Fax: () Project Name: August 24 HR SAMPLING Sampling Nat Sampling SAMPLING Sampling Sa</td><td>PTITISURG, CA 9455-1701 RUSH 24 HR 48 GOON DITINE RUSH 24 HR 48 GOON DITINE RUSH 24 HR 48 GOON DITINE CONN AROUND TIME RUSH 24 HR 48 GOON DITINE CONN AROUND TIME RUSH 24 HR 48 GOON DITINE CONN AROUND TIME RUSH 24 HR 48 GOON DITINE CONN DITINE PTITISURG, CA 9455-1701 RUSH 24 HR 48 GOON DITINE CONN DITINE Project Name: Outputs Tome Tome Tome Tome Tome Tome Tome Tome</td><td>PTTTSUURG, CA 94555-1701 RUSH 24 HR 48 HR maccampbell.com Fax: (925) 252-9269 PDF I Excel I Write C CDV Bill To: Check if sample is effluent and "J CDV Bill To: Check if sample is effluent and "J Image: Sample Ison Fax: (925) 252-9269 Check if sample is effluent and "J Project Name: Analysis Request O Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison</td><td>PTTSBURG, CA 94565-1701 REUBING 24 HBC 72 HBC 7</td></tr<>	PTTTSBURG, CA 94565-1701 RUSH 24 HR mccampbell.com Fax: (925) 252-9269 T/ 252-9262 Fax: (925) 252-9269 Bill To: Analysis Request Marcan Memolil.com Fax: () Project Name: August 24 HR SAMPLING Sampling Nat Sampling SAMPLING Sampling Sa	PTITISURG, CA 9455-1701 RUSH 24 HR 48 GOON DITINE RUSH 24 HR 48 GOON DITINE RUSH 24 HR 48 GOON DITINE CONN AROUND TIME RUSH 24 HR 48 GOON DITINE CONN AROUND TIME RUSH 24 HR 48 GOON DITINE CONN AROUND TIME RUSH 24 HR 48 GOON DITINE CONN DITINE PTITISURG, CA 9455-1701 RUSH 24 HR 48 GOON DITINE CONN DITINE Project Name: Outputs Tome Tome Tome Tome Tome Tome Tome Tome	PTTTSUURG, CA 94555-1701 RUSH 24 HR 48 HR maccampbell.com Fax: (925) 252-9269 PDF I Excel I Write C CDV Bill To: Check if sample is effluent and "J CDV Bill To: Check if sample is effluent and "J Image: Sample Ison Fax: (925) 252-9269 Check if sample is effluent and "J Project Name: Analysis Request O Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison Image: Sample Ison	PTTSBURG, CA 94565-1701 REUBING 24 HBC 72 HBC 7

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order:	0909	120	(Client	Code: C	KGS				
		WaterTrax	WriteOn	EDF	Ľ	Excel	[Fax	[🗸 Email		Hard	Сору	Thir	dParty	□ J-1	flag
Report to: Chris Kenne	-		kennedy@ge	eologist.com				counts	•				Req	uested	TAT:	5 c	days
CKG Enviror P.O. Box 246 St. Helena, C (707) 967-808	S CA 94574	cc: PO: ProjectNo: C	Wens Brock	way			P.0	G Envi D. Box 2 Helena	246					e Recei e Print		09/03/2 09/03/2	
							_	-	Req		Tests	(See leg	·	T Ó			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0909120-001	CKG-OB16 4-4	1/2	Soil	9/1/2009				А	Α								
0909120-002	CKG-OB16 9 1/2	-10	Soil	9/1/2009				А	Α								
0909120-003	CKG-OB17 4-4	1/2	Soil	9/1/2009				А	А								
0909120-004	CKG-OB17 9 1/2	-10	Soil	9/1/2009				А	А								
0909120-005	CKG-OB19 4-4	1/2	Soil	9/2/2009				А	А								
0909120-006	CKG-OB19 10-10	1/2	Soil	9/2/2009				А	А								
0909120-007	CKG-OB20 3 1/2	2-4	Soil	9/2/2009				А	А								
0909120-008	CKG-OB20 13-13	3 1/2	Soil	9/2/2009				А	А								
0909120-009	CKG-OB21 5 1/2	2-6	Soil	9/2/2009				А	А								
0909120-010	CKG-OB21 12 1/2	2-13	Soil	9/2/2009				А	А								
0909120-011	CKG-OB22 7 1/2	2-8	Soil	9/2/2009				А	А								
0909120-012	CKG-OB22 12-12	2 1/2	Soil	9/2/2009				А	А								
0909120-013	CKG-OB23 8-8	1/2	Soil	9/2/2009				А	А								
0909120-014	CKG-OB23 12 1/2	2-13	Soil	9/2/2009		А		А	А								

Test Legend:

1	8260B_S		2	8270D_S
6			7	
11		Γ	12	

3	G-MBTEX_S
8	

4	TPH(DMO)WSG_S
9	

5	
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					Work	Order:	0909	120	(Client	Code: C	KGS				
		WaterTrax	WriteOn	EDF	Ľ	Excel	[Fax		🖌 Email		Hard	Сору	🗌 Thir	dParty	□ J-1	flag
Report to: Chris Kenne	edy	Email: c	kennedy@ge	eologist.com			Bill to: Ac	counts	Payabl	е			Requ	uested	TAT:	5 c	lays
CKG Enviror P.O. Box 246 St. Helena, 0 (707) 967-808	nmental 6 CA 94574	cc: PO:	Dwens Brocky	-			P.(G Envi D. Box 2 Helena	246					e Rece e Print		09/03/: 09/03/:	
								•	Req	uested	Tests	(See leg	gend b	elow)	1		
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0909120-015	CKG-OB24 4-4	1/2	Soil	9/2/2009				А	Α								
0909120-016	CKG-OB24 11 1/2	2-12	Soil	9/2/2009			Α	А	Α								
0909120-017	CKG-OB25 3 1/2	2-4	Soil	9/2/2009				А	Α								
0909120-018	CKG-OB25 7 1/2	2-8	Soil	9/2/2009				А	Α								
0909120-019	CKG-OB26 7 1/2	2-8	Soil	9/2/2009				А	Α								
0909120-020	CKG-OB26 14 1/2	2-15	Soil	9/2/2009		А		А	Α								
0909120-021	CKG-OB27 5 1/2	2-6	Soil	9/3/2009				А	Α								
0909120-022	CKG-OB27 8 1/2	2-9	Soil	9/3/2009				А	Α								
0909120-023	CKG-OB28 8 1/2	2-9	Soil	9/3/2009				А	Α								
0909120-024	CKG-OB28 12 1/2	2-13	Soil	9/3/2009				А	Α								
0909120-025	CKG-OB29 4-4	1/2	Soil	9/3/2009				А	Α								
0909120-026	CKG-OB29 12-12	2 1/2	Soil	9/3/2009				А	Α								
0909120-027	CKG-OB30 8-8	1/2	Soil	9/3/2009				А	Α								
0909120-028	CKG-OB30 14-14	1/2	Soil	9/3/2009				А	Α								

Test Legend:

1 8260B_S	2 8270D_S
6	7
11	12

3	G-MBTEX_S
8	

4	TPH(DMO)WSG_S
9	

5	
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg CA 04555 Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262					Work	Order	: 0909	120	(Client(Code: C	KGS				
	WaterTrax	WriteO	n 🗌 EDF		Excel		Fax		🖌 Email		Hard	Сору	Third	Party	J-	flag
Report to:	Fmeile	akannadu@a	valagist som			Bill to:		Davabl				Req	uested T	AT:	5 0	days
Chris Kennedy CKG Environmental P.O. Box 246 St. Helena, CA 94574 (707) 967-8080 FAX (707) 967-8080	cc: PO: ProjectNo:	owens Brock	jeologist.com kway			Cł P.	counts KG Envi O. Box 2 . Helena	ironme 246	ntal				e Receiv e Printe		09/03/ 09/03/	
								Req	uested	Tests	(See leg	jend b	elow)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

0909120-029	CKG-OB31 8-8 1/2	Soil	9/3/2009		А	А				
0909120-030	CKG-OB31 13-13 1/2	Soil	9/3/2009		А	А				
0909120-031	CKG-OB32 7-7 1/2	Soil	9/3/2009		Α	А				
0909120-032	CKG-OB32 14-14 1/2	Soil	9/3/2009	А	Α	А				

Test Legend:

1	8260B_S	
6		
11		

2	8270D_S
7	
12	

3	G-MBTEX_S
8	

4	4	TPH(DMO)WSG_S
	9	

[5	
Ī	10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	CKG Environmen	tal				Date a	and Time Received:	9/3/2009 6	:23:17 PM
Project Name:	Owens Brockwa	у				Chec	klist completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	0909120	Matrix	<u>Soil</u>			Carrie	er: <u>Rob Pringle (M</u>	AI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	present?			Yes	\checkmark	No 🗆			
Chain of custody	signed when relinquis	shed and	d received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes	✓	No 🗆			
			Sa	mple	Receipt	Information	<u>n</u>		
Custody seals int	tact on shipping contai	iner/cool	er?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?		Yes		No 🗌			
		Sa	mple Preser	vatior	and Ho	<u>ld Time (HT</u>	<u>) Information</u>		
All samples recei	ved within holding time	e?		Yes		No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	11.4°C		NA 🗆	
Water - VOA vial	ls have zero headspac	ce / no b	ubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation	1?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2))?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type	e: WE	TICE))			
* NOTE: If the "N	lo" box is checked, se	ee comm	ents below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

Wen Our	Analytical, In ality Counts"	<u>ıc.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main 877-252-9262 Fax: 92	n@mccampbell.com		
CKG Environmental		Project ID	: Owe	ens Brockway	Date Sampled:	09/02/09		
					Date Received:	d: 09/03/09		
P.O. Box 246	Client (Contact:	Chris I	Zennedy	Date Extracted:	09/03/09		
St. Helena, CA 94574				Kenneuy			/00	
St. Helella, CA 94374	Client P	2.0.:			Date Analyzed	09/08/09-09/10/	/09	
	Volatile Orgar	nics by P&	&T and	d GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B		Analytic	al Metho	d: SW8260B		Work Order: 0909	0120	
Lab ID				090912	0-014A			
Client ID				CKG-OB23				
Matrix				Sc	bil			
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reporti Limi
Acetone	0.082	1.0	0.05	tert-Amyl methyl e		ND	1.0	0.00
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00
Bromochloromethane	ND	1.0	0.005	Bromodichloromet	hane	ND	1.0	0.00
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	SA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.00
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.00
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromet	hane	ND	1.0	0.00
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane		ND	1.0	0.00
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzer		ND	1.0	0.00
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzer		ND	1.0	0.00
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.00
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.00
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe		ND	1.0	0.00
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropar		ND	1.0	0.00
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloroproper		ND	1.0	0.00
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorog	propene	ND	1.0	0.00
Diisopropyl ether (DIPE) Ethyl tert-butyl ether (ETBE)	ND ND	1.0 1.0	0.005	Ethylbenzene Freon 113		ND ND	<u>1.0</u> 1.0	0.00
		1.0		Hexachloroethane		ND ND	1.0	
Hexachlorobutadiene 2-Hexanone	ND ND	1.0	0.005	Isopropylbenzene		ND ND	1.0	0.00
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ethe	(MTDE)	ND	1.0	0.00
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentan		ND ND	1.0	0.00
Naphthalene	ND	1.0	0.005		one (MIDK)	ND	1.0	0.00
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	oethane	ND	1.0	0.00
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	Joinuno	ND	1.0	0.00
Toluene	ND	1.0	0.005	1,2,3-Trichloroben	zene	ND	1.0	0.00
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha		ND	1.0	0.00
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.00
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropro	pane	ND	1.0	0.00
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben		ND	1.0	0.00
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.00
		Surrog	gate Re	coveries (%)				
%SS1:	9'	7		%SS2:		9	8	
%SS3:	9						-	

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

When Out	Analytical, 1	nc.		Web: www.mccam	Pass Road, Pittsburg, C. pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com		
CKG Environmental	Client	Project ID	: Owe	ens Brockway	Date Sampled:	09/02/09		
					Date Received:	09/03/09		
P.O. Box 246	Client	Contact:	Chris	Kennedv	Date Extracted:	09/03/09		
St. Helena, CA 94574	Client			licinicaj	Date Analyzed			
			8-T on	d GC/MS (Basic T	-	0,7,20,07		
Extraction Method: SW5030B	volatile Orga	·		d: SW8260B	arget List)	Work Order: 0909	0120	
Lab ID				090912	0-0204			
Client ID				CKG-OB2				
Matrix				S				
Compound	Concentration *	• DF	Reporting Limit			Concentration *	DF	Reportin Limit
Acetone	ND<0.20	4.0	0.05	tert-Amyl methyl e	ether (TAME)	ND<0.020	4.0	0.005
Benzene	ND<0.020	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005
Bromochloromethane	ND<0.020	4.0	0.005	Bromodichloromet	hane	ND<0.020	4.0	0.005
Bromoform	ND<0.020	4.0	0.005	Bromomethane		ND<0.020	4.0	0.005
2-Butanone (MEK)	ND<0.080	4.0	0.02	t-Butyl alcohol (TH	BA)	ND<0.20	4.0	0.05
n-Butyl benzene	0.038	4.0	0.005	sec-Butyl benzene		0.054	4.0	0.005
tert-Butyl benzene	ND<0.020	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.005
Carbon Tetrachloride	ND<0.020	4.0	0.005	Chlorobenzene		ND<0.020	4.0	0.005
Chloroethane	ND<0.020	4.0	0.005	Chloroform		ND<0.020	4.0	0.005
Chloromethane	ND<0.020	4.0	0.005	2-Chlorotoluene		ND<0.020	4.0	0.005
4-Chlorotoluene	ND<0.020	4.0	0.005			ND<0.020	4.0	0.005
1,2-Dibromo-3-chloropropane	ND<0.016	4.0	0.004	1,2-Dibromoethane	(EDB)	ND<0.016	4.0	0.004
Dibromomethane	ND<0.020	4.0	0.005	1,2-Dichlorobenzei	ne	ND<0.020	4.0	0.005
1,3-Dichlorobenzene	ND<0.020	4.0	0.005	1,4-Dichlorobenzei		ND<0.020	4.0	0.005
Dichlorodifluoromethane	ND<0.020	4.0	0.005	1,1-Dichloroethane		ND<0.020	4.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND<0.016	4.0	0.004	1,1-Dichloroethene		ND<0.020	4.0	0.005
cis-1,2-Dichloroethene	ND<0.020	4.0	0.005	trans-1,2-Dichloro		ND<0.020	4.0	0.005
1,2-Dichloropropane	ND<0.020	4.0	0.005	1,3-Dichloropropa		ND<0.020	4.0	0.005
2,2-Dichloropropane	ND<0.020	4.0	0.005	1,1-Dichloroproper		ND<0.020	4.0	0.005
cis-1,3-Dichloropropene	ND<0.020	4.0	0.005	trans-1,3-Dichloro	propene	ND<0.020	4.0	0.005
Diisopropyl ether (DIPE)	ND<0.020	4.0	0.005	Ethylbenzene		0.021	4.0	0.005
Ethyl tert-butyl ether (ETBE)	ND<0.020	4.0	0.005	Freon 113		ND<0.40	4.0	0.1
Hexachlorobutadiene	ND<0.020	4.0	0.005	Hexachloroethane		ND<0.020	4.0	0.005
2-Hexanone	ND<0.020	4.0	0.005	Isopropylbenzene		0.035	4.0	0.005
4-Isopropyl toluene	ND<0.020	4.0	0.005	Methyl-t-butyl eth		ND<0.020	4.0	0.005
Methylene chloride	ND<0.020	4.0	0.005		one (MIBK)	ND<0.020	4.0	0.005
Naphthalene Styrene	ND<0.020	4.0	0.005	n-Propyl benzene	athana	0.032	4.0	0.005
1.1.2.2-Tetrachloroethane	ND<0.020	4.0	0.005	1,1,1,2-Tetrachlor Tetrachloroethene	Jemane	ND<0.020	4.0	0.005
Toluene	ND<0.020 ND<0.020	4.0	0.005	1,2,3-Trichloroben	7ene	ND<0.020 ND<0.020	4.0	0.005
1,2,4-Trichlorobenzene	ND<0.020	4.0	0.005	1.1.1-Trichloroeth		ND<0.020	4.0	0.005
1,1,2-Trichloroethane	ND<0.020	4.0	0.005	Trichloroethene		ND<0.020	4.0	0.005
Trichlorofluoromethane	ND<0.020	4.0	0.005	1,2,3-Trichloropro	pane	ND<0.020	4.0	0.005
1,2,4-Trimethylbenzene	0.052	4.0	0.005	1.3.5-Trimethylber		0.024	4.0	0.005
Vinvl Chloride	ND<0.020	4.0	0.005	Xvlenes		0.052	4.0	0.005
				ecoveries (%)		0.004		
%SS1:		73		%SS2:		10	2	
%SS3:		103		70.552.		1 10	2	
Comments:								

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

When Our	Analytical, I ality Counts"	<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, Ca pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com			
CKG Environmental	Client	Project ID	: Owe	ens Brockway	Date Sampled:	09/03/09			
					Date Received: 09/03/09				
P.O. Box 246	Client	Contact:	Chris l	Kennedv	Date Extracted:	ed: 09/03/09			
St. Helena, CA 94574	Client				Date Analyzed				
			R-T on	d GC/MS (Basic T	•	0,710,07			
Extraction Method: SW5030B	volatile Orga	·		d: SW8260B	arget List)	Work Order: 0909	9120		
Lab ID					0-032A				
Client ID				CKG-OB3					
Matrix					oil				
Compound	Concentration *	DF	Reporting Limit		-	Concentration *	DF	Reportin Limit	
Acetone	ND<0.20	4.0	0.05	tert-Amyl methyl	ether (TAME)	ND<0.020	4.0	0.005	
Benzene	ND<0.020	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005	
Bromochloromethane	ND<0.020	4.0	0.005	Bromodichloromet	hane	ND<0.020	4.0	0.005	
Bromoform	ND<0.020	4.0	0.005	Bromomethane		ND<0.020	4.0	0.005	
2-Butanone (MEK)	ND<0.080	4.0	0.02	t-Butyl alcohol (TH	BA)	ND<0.20	4.0	0.05	
n-Butyl benzene	ND<0.020	4.0	0.005	sec-Butyl benzene		ND<0.02	4.0	0.005	
tert-Butyl benzene	ND<0.020	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.005	
Carbon Tetrachloride	ND<0.020	4.0	0.005	Chlorobenzene		ND<0.020	4.0	0.005	
Chloroethane	ND<0.020	4.0	0.005	Chloroform		ND<0.020	4.0	0.005	
Chloromethane	ND<0.020	4.0	0.005	2-Chlorotoluene		ND<0.020	4.0	0.005	
4-Chlorotoluene	ND<0.020	4.0	0.005			ND<0.020	4.0	0.005	
1,2-Dibromo-3-chloropropane	ND<0.016	4.0	0.004	1,2-Dibromoethane		ND<0.016	4.0	0.004	
Dibromomethane	ND<0.020	4.0	0.005	1,2-Dichlorobenzer		ND<0.020	4.0	0.005	
1,3-Dichlorobenzene	ND<0.020	4.0	0.005	1,4-Dichlorobenzer		ND<0.020	4.0	0.005	
Dichlorodifluoromethane	ND<0.020	4.0	0.005	1,1-Dichloroethane		ND<0.020	4.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND<0.016	4.0	0.004	1,1-Dichloroethene		ND<0.020	4.0	0.005	
cis-1,2-Dichloroethene	ND<0.020	4.0	0.005	trans-1,2-Dichloro		ND<0.020	4.0	0.005	
1,2-Dichloropropane	ND<0.020	4.0	0.005	1,3-Dichloropropa		ND<0.020	4.0	0.005	
2,2-Dichloropropane	ND<0.020	4.0	0.005	1,1-Dichloroprope		ND<0.020	4.0	0.005	
cis-1,3-Dichloropropene	ND<0.020	4.0	0.005	trans-1,3-Dichloro	propene	ND<0.020	4.0	0.005	
Diisopropyl ether (DIPE)	ND<0.020	4.0	0.005	Ethylbenzene		ND<0.020	4.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND<0.020	4.0	0.005	Freon 113		ND<0.40	4.0	0.1	
Hexachlorobutadiene	ND<0.020	4.0	0.005	Hexachloroethane		ND<0.020	4.0	0.005	
2-Hexanone	ND<0.020	4.0	0.005	Isopropylbenzene		ND<0.020	4.0	0.005	
4-Isopropyl toluene	ND<0.020	4.0	0.005	Methyl-t-butyl eth		ND<0.020 ND<0.020	$\frac{4.0}{4.0}$	0.005	
Methylene chloride	ND<0.020		0.005		olle (MIDK)	ND<0.020			
Naphthalene Styrene	ND<0.020 ND<0.020	4.0	0.005	n-Propyl benzene 1,1,1,2-Tetrachlor	oethane	ND<0.020 ND<0.020	4.0	0.005	
1.1.2.2-Tetrachloroethane	ND<0.020	4.0	0.005	Tetrachloroethene		ND<0.020	4.0	0.005	
Toluene	ND<0.020	4.0	0.005	1,2,3-Trichloroben		ND<0.020	4.0	0.005	
1,2,4-Trichlorobenzene	ND<0.020	4.0	0.005	1.1.1-Trichloroeth		ND<0.020	4.0	0.005	
1,1,2-Trichloroethane	ND<0.020	4.0	0.005	Trichloroethene	une	ND<0.020	4.0	0.005	
Trichlorofluoromethane	ND<0.020	4.0	0.005	1,2,3-Trichloropro	pane	ND<0.020	4.0	0.005	
1,2,4-Trimethylbenzene	ND<0.020	4.0	0.005	1.3.5-Trimethylber		ND<0.020	4.0	0.005	
Vinvl Chloride	ND<0.020	4.0	0.005	Xvlenes		ND<0.020	4.0	0.005	
	· · · · · · · · · · · · · · · · · · ·			ecoveries (%)			.12		
%SS1:	,	77		%SS2:		8	3		
%\$\$31. %\$\$3:		28		70552.		0.	<i>.</i> ,		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

McCampbell	Analytic	al,	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
CKG Environmental		Clia	at Droig	ot ID:	Owens Brockway		ampled: $09/02/0$				
CKO Environmentai		Clief	n rioje	αι ID.	Owells DIOCKway		•	-			
P.O. Box 246						Date R	e Received: 09/03/09				
1.0. DOX 240		Clie	nt Cont	act: Cl	nris Kennedy	Date E	xtracted: 09/03/09				
St. Helena, CA 94574	_	Clier	lient P.O.: Date Analyzed 09/								
St. Helena, CA 94974		Clief	IL F .O			Date P	maryzeu 09/11/0	9			
	Semi-Vol	atile	Organ	ics by (GC/MS (Basic Targe	t List)*					
Extraction Method: SW3550C			Analy	tical Met	hod: SW8270C		Work Ord	er: 090	9120		
Lab ID					0909120-016	A					
Client ID					CKG-OB24 11 1						
Matrix					Soil	12 12					
				Reporting					Repor		
Compound	Concentratio	n *	DF	Limit	Compound		Concentration *	DF	Lin		
Acenaphthene	ND		1.0	0.33	Acenaphthylene		ND	1.0	0.3		
Acetochlor	ND		1.0	0.33	Anthracene		ND	1.0	0.3		
Benzidine	ND		1.0	1.6	Benzoic Acid		ND	1.0	1.		
Benzo(a)anthracene	ND		1.0	0.33	Benzo(b)fluoranthene		ND	1.0	0.3		
Benzo(k)fluoranthene	ND		1.0	0.33	Benzo(g,h,i)perylene		ND	1.0	0.		
Benzo(a)pyrene	ND		1.0	0.33	Benzyl Alcohol		ND	1.0	1.		
1,1-Biphenyl	ND		1.0	0.33	Bis (2-chloroethoxy) M		ND ND	1.0	0.3		
Bis (2-chloroethyl) Ether	ND		1.0	0.33		chloroisopropyl) Ether		1.0	0.1		
Bis (2-ethylhexyl) Phthalate	ND		1.0 1.0	0.33		Bromophenyl Phenyl Ether		1.0	0.3		
Butylbenzyl Phthalate		ND		0.33			ND	1.0	0.0		
4-Chloro-3-methylphenol			2-Chloronaphthalene		ND	1.0	0.1				
2-Chlorophenol			1.0 1.0			ND	1.0	0.1			
Chrysene				0.33	Dibenzo(a,h)anthracen	e	ND ND	1.0	0.1		
Dibenzofuran	ND		1.0	0.33	Di-n-butyl Phthalate			1.0	0.1		
1,2-Dichlorobenzene	ND		1.0	0.33	1,3-Dichlorobenzene		ND	1.0	0.1		
1,4-Dichlorobenzene	ND		1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.0		
2,4-Dichlorophenol	ND		1.0	0.33	Diethyl Phthalate		ND	1.0	0.3		
2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol	ND ND		1.0 1.0	0.33	Dimethyl Phthalate 2,4-Dinitrophenol		ND ND	1.0	0.3		
, , , , , , , , , , , , , , , , , , , ,	ND ND		1.0	0.33	2,4-Dinitrophenoi		ND	1.0			
2,4-Dinitrotoluene			1.0	0.33	,		ND	1.0	0.3		
Di-n-octyl Phthalate Fluoranthene	ND ND		1.0	0.33	1,2-Diphenylhydrazine Fluorene		ND	1.0	0.		
Hexachlorobenzene	ND ND		1.0	0.33	Hexachlorobutadiene		ND	1.0	0.		
Hexachlorocyclopentadiene	ND ND		1.0	1.6	Hexachloroethane		ND	1.0	0.1		
Indeno (1,2,3-cd) pyrene	ND		1.0	0.33	Isophorone		ND	1.0	0.1		
2-Methylnaphthalene	ND		1.0	0.33	2-Methylphenol (o-Cre	sol)	ND	1.0	0.1		
3 &/or 4-Methylphenol (m,p-Cres	ND		1.0	0.33	Naphthalene	301)	ND	1.0	0.1		
2-Nitroaniline	ND		1.0	1.6	3-Nitroaniline		ND	1.0	1.		
4-Nitroaniline	ND		1.0	1.6	Nitrobenzene		ND	1.0	0.1		
2-Nitrophenol	ND		1.0	1.6	4-Nitrophenol		ND	1.0	1.		
N-Nitrosodiphenylamine	ND		1.0	0.33	N-Nitrosodi-n-propyla	nine	ND	1.0	0.1		
Pentachlorophenol	ND		1.0	1.6	Phenanthrene		ND	1.0	0.1		
Phenol	ND		1.0	0.33	Pyrene		ND	1.0	0.1		
1,2,4-Trichlorobenzene	ND		1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.3		
2.4.6-Trichlorophenol	ND		1.0	0.33							
			Surro	gate Re	coveries (%)						
%SS1:		95 %SS2:					87				
%8S3:		95			%SS4:		93				
%SS5:		66			%SS6:		98				

* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

	McCampbe	ell Ar en Ouality		cal, In	<u>ic.</u>		: www.mccampl	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccampl	bell.com			
CKG	Environmental		(Client P	roject ID: 0	Owens Brock	ƙway	Date Sample	d: 09/01	/09-09/	03/09		
P.O. B	ox 246							Date Received: 09/03/09					
			(Client C	Contact: Ch	ris Kennedy	,	Date Extract	ed: 09/03	/09			
St. He	lena, CA 94574		(Client P.	.0.:			Date Analyz	ed: 09/04	/09-09/	11/09		
Extractio	Ga on method: SW5030B	asoline l	Range (C	C6-C12)	-	drocarbons		e with BTEX & Bm	and MTBE*		k Order:	0909120	
Lab ID	Client ID	Matrix	TPH	[(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	CKG-OB16 4-4 1/2	S		-		ND	ND	0.013	0.074	1	94	d7,d9	
002A	CKG-OB16 9 1/2-10	S		-		ND<1.0	7.5	11	36	200	#	d7,d9	
003A	CKG-OB17 4-4 1/2	S		-		ND	ND	ND	ND	1	85	d7	
004A	CKG-OB17 9 1/2-10	S		-		ND<0.10	ND<0.10	2.0	4.4	20	#	d7	
005A	CKG-OB19 4-4 1/2	S		-		ND	ND	ND	ND	1	85	d7	
006A	CKG-OB19 10-10 1/2	S		-		ND<0.10	ND<0.10	0.14	0.17	20	122	d7	
007A	CKG-OB20 3 1/2-4	S		-		ND	ND	ND	ND	1	85		
008A	CKG-OB20 13-13 1/2	S		-		ND	ND	0.020	ND	1	89	d7,d9	
009A	CKG-OB21 5 1/2-6	S		-		ND	ND	ND	ND	1	88		
010A	CKG-OB21 12 1/2-13	s		-		ND	ND	ND	ND	1	72		
011A	CKG-OB22 7 1/2-8	S		-		ND	ND	ND	ND	1	81		
012A	CKG-OB22 12-12 1/2	S		-		ND	ND	ND	ND	1	86		
013A	CKG-OB23 8-8 1/2	s		-		ND<0.050	ND<0.050	ND<0.050	ND<0.050	10	83	d7	
014A	CKG-OB23 12 1/2-13	S		-		ND	ND	ND	ND	1	84	d7	
015A	015A CKG-OB24 4-4 1/2 S					0.012	ND	0.096	0.18	1	113	d7,d9	
016A	CKG-OB24 11 1/2-12	S		-		ND	ND	ND	ND	1	79	d7	
-	rting Limit for DF =1;	W	50	C	5.0	0.5	0.5	0.5	0.5		ug/I	_	
	eans not detected at or ve the reporting limit	S	1.(0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

	McCampbe	ell Ar en Ouality		cal, In	<u>ic.</u>		: www.mccampl	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccamp	bell.com			
CKG	Environmental			Client P	roject ID: 0	Owens Brock	kway	Date Sample	d: 09/01	/09-09/	03/09		
P.O. B	ox 246							Date Received: 09/03/09					
				Client C	Contact: Ch	ris Kennedy	Date Extract	ed: 09/03	8/09				
St. He	lena, CA 94574			Client P	.0.:			Date Analyz	ed: 09/04	/09-09/	11/09		
Extractio	Gaton method: SW5030B	asoline]	Range (O	C6-C12)	-	drocarbons		e with BTEX & Bm	nd MTBE*		k Order:	0909120	
Lab ID	Client ID	Matrix	TPF	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
017A	CKG-OB25 3 1/2-4	S				ND	ND	ND	ND	1	77		
018A	CKG-OB25 7 1/2-8	S				0.36	ND<0.25	ND<0.25	ND<0.25	50	84	d7	
019A	CKG-OB26 7 1/2-8	S				ND	ND	ND	ND	1	86	d7	
020A	CKG-OB26 14 1/2-15	S				ND<0.10	ND<0.10	0.34	0.98	20	99	d7	
021A	CKG-OB27 5 1/2-6	S				ND	ND	ND	ND	1	92		
022A	CKG-OB27 8 1/2-9	S				ND	ND	ND	ND	1	75		
023A	CKG-OB28 8 1/2-9	S				ND	ND	ND	ND	1	83		
024A	CKG-OB28 12 1/2-13	S				ND	ND	ND	ND	1	88		
025A	CKG-OB29 4-4 1/2	S				ND	ND	ND	ND	1	77		
026A	CKG-OB29 12-12 1/2	S				ND	ND	ND	ND	1	83		
027A	CKG-OB30 8-8 1/2	S				ND	ND	ND	ND	1	92		
028A	CKG-OB30 14-14 1/2	S				ND	ND	ND	ND	1	95		
029A	CKG-OB31 8-8 1/2	S				ND	ND	ND	ND	1	95		
030A	CKG-OB31 13-13 1/2	S				ND	ND	ND	ND	1	91		
031A CKG-OB32 7-7 1/2 S						ND	ND	ND	ND	1	91		
032A	CKG-OB32 14-14 1/2	S				ND<0.50	ND<0.50	ND<0.50	ND<0.50	100	#	d7	
-	rting Limit for DF =1;	W	5	50	5.0	0.5	0.5	0.5	0.5		ug/I	_	
	eans not detected at or ve the reporting limit	S	1.	.0	0.05	0.005	0.005	0.005	0.005		mg/k	g	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

	Campbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.r	fillow Pass Road, Pittsburg, CA nccampbell.com E-mail: main hone: 877-252-9262 Fax: 92	@mccampbe				
CKG Environmen	ntal	Client Project II	D: Owens Brockway	Date Sampled:	09/01/	09-09/03/	09		
P.O. Box 246				Date Received:	e Received: 09/03/09				
F.O. DOX 240		Client Contact:	Chris Kennedy	Date Extracted:	09/03/	09/03/09			
St. Helena, CA 94	4574	Client P.O.:	09/05/	09/05/09-09/11/09					
Extraction method: SV			m Hydrocarbons with methods: SW8015B	Silica Gel Clean-Up*	W	Work Order: 0909120			
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comment		
0909120-001A	CKG-OB16 4-4 1/2	S	4.8	7.7	1	103	e7,e2,e11		
0909120-002A	CKG-OB16 9 1/2-10	S	7900	5300	200	92	e2,e7,e4		
0909120-003A	CKG-OB17 4-4 1/2	S	ND	ND	1	100			
0909120-004A	CKG-OB17 9 1/2-10	S	1000	270	10	113	e1,e7		
0909120-005A	CKG-OB19 4-4 1/2	S	20	92	5	87	e7,e2		
0909120-006A	CKG-OB19 10-10 1/2	S	680	320	20	92	e1,e7		
0909120-007A	CKG-OB20 3 1/2-4	s	ND	ND	1	100			
0909120-008A	CKG-OB20 13-13 1/2	S	38	31	1	104	e2,e7		
0909120-009A	CKG-OB21 5 1/2-6	S	ND	ND	1	103			
0909120-010A	CKG-OB21 12 1/2-13	S	ND	ND	1	103			
0909120-011A	CKG-OB22 7 1/2-8	S	ND	ND	1	103			
0909120-012A	CKG-OB22 12-12 1/2	s	ND	ND	1	92			
0909120-013A	CKG-OB23 8-8 1/2	S	940	970	50	89	e7,e2		
0909120-014A	CKG-OB23 12 1/2-13	s	23	33	1	94	e7,e2		
0909120-015A	CKG-OB24 4-4 1/2	S	420	860	20	88	e7,e2		
-	ting Limit for DF =1;	W	NA	NA		ug/L			
	ans not detected at or e the reporting limit	S	1.0	5.0		mg/K	g		

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	Campbell Analyti	cal, Inc.	Web: www.r	'illow Pass Road, Pittsburg, C nccampbell.com E-mail: ma hone: 877-252-9262 Fax: 9	in@mccampbe		
CKG Environm	ental	Client Project ID	: Owens Brockway	Date Sampled:		09-09/03/	09
P.O. Box 246				Date Received:	09/03/	09	
F.O. D0X 240		Client Contact:	Chris Kennedy	Date Extracted:	09/03/	09	
St. Helena, CA	94574	Client P.O.:		Date Analyzed:	09/05/	09-09/11/	09
Extraction method:			n Hydrocarbons with nethods: SW8015B	Silica Gel Clean-Up*	W	ork Order:	0909120
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
0909120-016A	CKG-OB24 11 1/2-12	S	15	28	1	94	e7,e2
0909120-017A	CKG-OB25 3 1/2-4	S	130	340	5	87	e7,e2
0909120-018A	CKG-OB25 7 1/2-8	S	1700	1800	50	81	e7,e2
0909120-019A	CKG-OB26 7 1/2-8	S	8.9	28	1	96	e7,e2
0909120-020A	CKG-OB26 14 1/2-15	S	1200	1200	50	91	e7,e2
0909120-021A	CKG-OB27 5 1/2-6	S	ND	ND	1	98	
0909120-022A	CKG-OB27 8 1/2-9	S	ND	ND	1	98	
0909120-023A	CKG-OB28 8 1/2-9	S	ND	ND	1	98	
0909120-024A	CKG-OB28 12 1/2-13	S	ND	ND	1	96	
0909120-025A	CKG-OB29 4-4 1/2	S	2.5	9.7	1	92	e7,e2,e4
0909120-026A	CKG-OB29 12-12 1/2	S	ND	ND	1	96	
0909120-027A	CKG-OB30 8-8 1/2	S	ND	ND	1	97	
0909120-028A	CKG-OB30 14-14 1/2	S	1.5	ND	1	97	e2
0909120-029A	CKG-OB31 8-8 1/2	S	14	100	5	87	e7,e2
0909120-030A	CKG-OB31 13-13 1/2	S	4.6	9.9	1	95	e7,e2
0909120-031A	CKG-OB32 7-7 1/2	S	ND	ND	1	96	
	orting Limit for DF =1;	W	NA	NA		ug/L	
	neans not detected at or ove the reporting limit	S	1.0	5.0		mg/K	g

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	ampbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.r	/illow Pass Road, Pittsburg, CA nccampbell.com E-mail: main hone: 877-252-9262 Fax: 925	@mccampbe			
CKG Environment	tal	Client Project II	D: Owens Brockway	Date Sampled:	09/01/	09-09/03/	09	
P.O. Box 246				Date Received:	09/03/	09		
F.O. DOX 240		Client Contact:	Chris Kennedy	Date Extracted:	09/03/	09		
St. Helena, CA 945	574	Client P.O.:	lient P.O.: Date Analyzed: 09/05/					
Extraction method: SW3			m Hydrocarbons with methods: SW8015B	Silica Gel Clean-Up*	W	ork Order:	0909120	
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments	
0909120-032A	CKG-OB32 14-14 1/2	S	230	67	5	90	e8/e1,e7	

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or	S	1.0	5.0	ma/Ka
above the reporting limit	5	1.0	5.0	mg/Kg

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

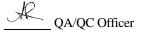
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			BatchID: 45604			WorkOrder 0909120		
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0909129-004					04A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	84.1	85.7	1.94	81.7	83.1	1.70	60 - 130	30	60 - 130	30
Benzene	ND	0.050	102	105	2.57	97.8	97.3	0.533	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	104	107	2.78	100	97.3	2.91	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	103	106	2.72	102	103	0.339	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	95.9	99	3.12	98.1	98.1	0	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	105	109	2.95	108	108	0	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	107	108	1.38	110	107	2.63	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	97.6	99.9	2.28	93.2	92.9	0.314	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	98.3	100	1.78	98.2	98	0.195	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	103	105	2.04	103	103	0	60 - 130	30	60 - 130	30
Toluene	ND	0.050	106	109	3.20	108	106	1.15	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	114	117	3.29	113	113	0	60 - 130	30	60 - 130	30
%SS1:	99	0.12	92	91	0.231	93	94	0.522	70 - 130	30	70 - 130	30
%SS2:	95	0.12	100	101	0.380	100	100	0	70 - 130	30	70 - 130	30
%SS3:	88	0.012	121	118	2.06	115	114	1.04	70 - 130	30	70 - 130	30

BATCH 45604 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909120-014A	09/02/09	09/03/09	09/08/09 2:43 PM	0909120-014A	09/02/09	09/03/09	09/10/09 3:45 PM
0909120-020A	09/02/09	09/03/09	09/10/09 3:56 PM	0909120-032A	09/03/09	09/03/09	09/10/09 1:24 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 45614		WorkOrder 0909120			
EPA Method SW8015B Extraction SW3550			3550C/3	630C				5	Spiked San	nple ID	: 0909113-0)43A	
Analyte	Sample	Sample Spiked MS MSD MS-MSD LC						LCS-LCSD	Acce	eptance	Criteria (%)	1	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	16	20	72.3	70.9	0.903	88.2	88.4	0.269	70 - 130	30	70 - 130	30	
%SS:	97	50	109	109	0	95	94	0.246	70 - 130	30	70 - 130	30	
All target compounds in the Metho NONE	od Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 45614 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909120-001A	09/01/09	09/03/09	09/05/09 6:39 PM	0909120-002A	09/01/09	09/03/09	09/10/09 4:36 PM
0909120-003A	09/01/09	09/03/09	09/05/09 7:49 PM	0909120-004A	09/01/09	09/03/09	09/10/09 8:18 AM
0909120-005A	09/02/09	09/03/09	09/09/09 1:37 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil			Batch	ID: 45620	WorkOrder 0909120							
EPA Method SW8015B	Extra			Spiked Sample ID: 0909120								
Analyte	Sample	Sample Spiked MS MSD MS-MSD mg/Kg mg/Kg % Rec. % Rec. % RPD %						LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	mg/Kg							% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	2.5	20	122	123	0.563	91.6	90.6	1.12	70 - 130	30	70 - 130	30
%SS:	92	50	100	100	0	99	98	0.634	70 - 130	30	70 - 130	30
%SS: All target compounds in the Metho NONE										30	70 - 130	L

BATCH 45620 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909120-006A	09/02/09	09/03/09	09/09/09 2:45 AM	0909120-007A	09/02/09	09/03/09	09/05/09 10:08 PM
0909120-008A	09/02/09	09/03/09	09/05/09 3:09 PM	0909120-009A	09/02/09	09/03/09	09/06/09 12:26 AM
0909120-010A	09/02/09	09/03/09	09/06/09 1:34 AM	0909120-011A	09/02/09	09/03/09	09/06/09 2:42 AM
0909120-012A	09/02/09	09/03/09	09/10/09 8:09 PM	0909120-013A	09/02/09	09/03/09	09/10/09 3:44 AM
0909120-014A	09/02/09	09/03/09	09/08/09 1:52 PM	0909120-015A	09/02/09	09/03/09	09/11/09 8:03 AM
0909120-016A	09/02/09	09/03/09	09/08/09 3:03 PM	0909120-017A	09/02/09	09/03/09	09/06/09 4:02 AM
0909120-018A	09/02/09	09/03/09	09/09/09 8:27 AM	0909120-019A	09/02/09	09/03/09	09/06/09 8:00 AM
0909120-020A	09/02/09	09/03/09	09/10/09 4:52 AM	0909120-021A	09/03/09	09/03/09	09/10/09 8:18 AM
0909120-022A	09/03/09	09/03/09	09/06/09 11:24 AM	0909120-023A	09/03/09	09/03/09	09/06/09 1:41 PM
0909120-024A	09/03/09	09/03/09	09/06/09 2:49 PM	0909120-025A	09/03/09	09/03/09	09/09/09 5:02 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

McCampbell Analytical, Inc. "When Ouality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 45621		WorkOrder 0909120			
EPA Method SW8015B	B Extraction SW3550C/3630C							5	Spiked Sar	nple ID	: 0909120-0)32A	
Analyte	Sample	Sample Spiked MS MSD MS-MSD						LCS-LCSD	Acc	eptance	Criteria (%)	1	
, inary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	230	20	NR	NR	NR	88.7	88.3	0.480	70 - 130	30	70 - 130	30	
%SS:	90	50	101	103	1.79	95	94	1.28	70 - 130	30	70 - 130	30	
All target compounds in the Meth- NONE	od Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 45621 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909120-026A	09/03/09	09/03/09	09/06/09 3:58 PM	0909120-027A	09/03/09	09/03/09	09/06/09 5:06 PM
0909120-028A	09/03/09	09/03/09	09/06/09 8:31 PM	0909120-029A	09/03/09	09/03/09	09/09/09 3:54 AM
0909120-030A	09/03/09	09/03/09	09/06/09 9:39 PM	0909120-031A	09/03/09	09/03/09	09/06/09 10:47 PM
0909120-032A	09/03/09	09/03/09	09/10/09 10:39 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8270C

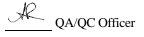
W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 45618		WorkC	Order 09091	20	
EPA Method SW8270C	Extra	ction SW	3550C				Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))	
7 that y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Acenaphthene	N/A	2	N/A	N/A	N/A	86.9	88.1	1.35	N/A	N/A	30 - 130	30	
4-Chloro-3-methylphenol	N/A	4	N/A	N/A	N/A	111	110	0.793	N/A	N/A	30 - 130	30	
2-Chlorophenol	N/A	4	N/A	N/A	N/A	100	101	0.985	N/A	N/A	30 - 130	30	
1,4-Dichlorobenzene	N/A	2	N/A	N/A	N/A	92.9	94.3	1.58	N/A	N/A	30 - 130	30	
2,4-Dinitrotoluene	N/A	2	N/A	N/A	N/A	88.2	90.9	2.95	N/A	N/A	30 - 130	30	
4-Nitrophenol	N/A	4	N/A	N/A	N/A	81.4	82.1	0.924	N/A	N/A	30 - 130	30	
N-Nitrosodi-n-propylamine	N/A	2	N/A	N/A	N/A	88.4	91.8	3.83	N/A	N/A	30 - 130	30	
Pentachlorophenol	N/A	4	N/A	N/A	N/A	79.4	82.5	3.91	N/A	N/A	30 - 130	30	
Phenol	N/A	4	N/A	N/A	N/A	87.7	88.5	0.971	N/A	N/A	30 - 130	30	
Pyrene	N/A	2	N/A	N/A	N/A	93.2	95.2	2.11	N/A	N/A	30 - 130	30	
1,2,4-Trichlorobenzene	N/A	2	N/A	N/A	N/A	105	108	3.00	N/A	N/A	30 - 130	30	
%SS1:	N/A	200	N/A	N/A	N/A	97	99	1.35	N/A	N/A	30 - 130	30	
%SS2:	N/A	200	N/A	N/A	N/A	98	100	1.63	N/A	N/A	30 - 130	30	
%SS3:	N/A	200	N/A	N/A	N/A	104	108	3.46	N/A	N/A	30 - 130	30	
%SS4:	N/A	200	N/A	N/A	N/A	90	88	1.41	N/A	N/A	30 - 130	30	
%SS5:	N/A	200	N/A	N/A	N/A	102	105	2.97	N/A	N/A	30 - 130	30	
%SS6:	N/A	200	N/A	N/A	N/A	101	102	1.07	N/A	N/A	30 - 130	30	

NONE

			<u>BATCH 45618 SL</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909120-016A	09/02/09	9 09/03/09	09/11/09 3:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

#) surrogate diluted out of range; & = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

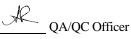
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 45605		WorkOrder 0909120		
EPA Method SW8021B/8015Bm	Extra	Extraction SW5030B Spiked Sample ID: 0909102-005										
Analyte	Sample	Spiked	MSD	MS-MSD	LCS LO	LCSD	LCS-LCSD	Acceptance Criteria (%)				
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	116	115	0.385	107	110	3.46	70 - 130	20	70 - 130	20
MTBE	ND	0.10	122	119	2.29	109	119	8.03	70 - 130	20	70 - 130	20
Benzene	ND	0.10	97.2	97.5	0.219	102	100	1.95	70 - 130	20	70 - 130	20
Toluene	ND	0.10	100	101	0.511	102	102	0	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	99.1	99.7	0.578	101	99.2	1.47	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	101	101	0	102	102	0	70 - 130	20	70 - 130	20
%SS:	77	0.10	85	86	1.13	86	83	3.93	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 45605 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
0909120-001A	09/01/09	09/03/09	09/04/09 7:13 PM	0909120-002A	09/01/09	09/03/09	09/06/09 12:34 AM			
0909120-003A	09/01/09	09/03/09	09/04/09 10:42 PM	0909120-004A	09/01/09	09/03/09	09/04/09 10:16 PM			
0909120-005A	09/02/09	09/03/09	09/04/09 6:43 PM	0909120-006A	09/02/09	09/03/09	09/04/09 10:51 PM			
0909120-007A	09/02/09	09/03/09	09/05/09 6:34 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

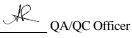
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil		QC Matrix: Soil					BatchID: 45622		WorkOrder 0909120			
EPA Method SW8021B/8015Bm	Extraction SW5030B Spiked Sample ID: 0909120-027A)27A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)			
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	0.60	104	100	3.72	122	121	0.712	70 - 130	20	70 - 130	20
MTBE	ND	0.10	104	108	3.77	111	109	2.01	70 - 130	20	70 - 130	20
Benzene	ND	0.10	92.9	92.4	0.570	107	107	0	70 - 130	20	70 - 130	20
Toluene	ND	0.10	90.7	90.4	0.335	107	107	0	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	90.2	89.5	0.756	104	104	0	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	91.2	90.8	0.350	109	110	1.20	70 - 130	20	70 - 130	20
%SS:	92	0.10	87	89	3.28	85	82	4.51	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 45622 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
0909120-008A	09/02/09	09/03/09	09/05/09 2:09 AM	0909120-009A	09/02/09	09/03/09	09/05/09 1:10 AM		
0909120-010A	09/02/09	09/03/09	09/04/09 8:43 PM	0909120-011A	09/02/09	09/03/09	09/04/09 10:17 PM		
0909120-012A	09/02/09	09/03/09	09/05/09 3:08 AM	0909120-013A	09/02/09	09/03/09	09/05/09 2:20 AM		
0909120-014A	09/02/09	09/03/09	09/04/09 9:13 PM	0909120-015A	09/02/09	09/03/09	09/05/09 2:55 AM		
0909120-016A	09/02/09	09/03/09	09/05/09 4:07 AM	0909120-017A	09/02/09	09/03/09	09/11/09 1:23 PM		
0909120-018A	09/02/09	09/03/09	09/05/09 4:04 AM	0909120-019A	09/02/09	09/03/09	09/05/09 5:36 AM		
0909120-020A	09/02/09	09/03/09	09/05/09 12:12 PM	0909120-021A	09/03/09	09/03/09	09/04/09 6:47 PM		
0909120-022A	09/03/09	09/03/09	09/04/09 10:48 PM	0909120-023A	09/03/09	09/03/09	09/04/09 9:43 PM		
0909120-024A	09/03/09	09/03/09	09/05/09 1:40 AM	0909120-025A	09/03/09	09/03/09	09/09/09 3:40 PM		
0909120-026A	09/03/09	09/03/09	09/04/09 7:43 PM	0909120-027A	09/03/09	09/03/09	09/05/09 5:06 AM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

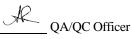
W.O. Sample Matrix: Soil	IdQC Matrix: SoilBatchID: 45623WorkOrder 0909120								20			
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0909120-0	31A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	106	111	4.68	116	107	7.98	70 - 130	20	70 - 130	20
MTBE	ND	0.10	113	111	1.54	116	116	0	70 - 130	20	70 - 130	20
Benzene	ND	0.10	97.2	95.5	1.84	102	107	4.53	70 - 130	20	70 - 130	20
Toluene	ND	0.10	96.4	94.4	2.09	102	106	4.03	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	96.4	94.6	1.90	99.4	104	4.97	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	97.9	95.8	2.14	101	104	3.08	70 - 130	20	70 - 130	20
%SS:	91	0.10	96	84	13.2	87	92	5.50	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 45623 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909120-028A	09/03/09	09/03/09	09/05/09 3:38 AM	0909120-029A	09/03/09	09/03/09	09/04/09 11:12 PM
0909120-030A	09/03/09	09/03/09	09/05/09 4:37 AM	0909120-031A	09/03/09	09/03/09	09/05/09 6:05 AM
0909120-032A	09/03/09	09/03/09	09/06/09 1:09 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway	Date Sampled:	08/31/09-09/01/09
P.O. Box 246			Date Received:	09/01/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/10/09
54 Holding, 671 94574	Client P.O.:		Date Completed:	09/10/09

WorkOrder: 0909023

September 10, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the **2** analyzed samples from your project: **Owens Brockway**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

		1534 WII PITTSBU ccampbel	LLOW PA RG, CA 94 <u>l.com</u> En 62	SS RO 4565-1' nail: n	AD 701 nain@ Fax	mcc	amp	bel	l.coi										ou	NE	T	IM	E PD	F	RUS	H Ex	24 cel	PY HR	R		te O	RD 72 H 0n (D	IR 5 DAY W)
Report To: CH	RIS KEINO		E	Bill To):							_				_	_	_	_	A	nal	ysis	Rec	ues	t	_	_	_	_		0	ther	Comment
Company: CK	G 64X1 NONT	1017AL											_	-	BE		(JX					ners			G								Filter
			I	E-Ma	il:					_					8015) / MTBE		Grease (1664 / 5520 E/B&F)					Conge			202				-				Samples for Metals
Tele: ()				ax: (015)		5520			51)		ors / o		les)	050		-		6020				analysis:
Project #:			F	rojec	t Nai	me:	ab	aus	R	al	1 su	sty	/	_	+		664	(418,		2/80	(s)	rocle		rhicid	Celes		NAS		010 /				Yes / No
Project Location		D		_										_	/ 8021	2	ase (1	Suos		A 602	sticid	.Y; A	ides)	1 He	CS)	OCs)	Hs / F	20)	18/6	6020			
Sampler Signatu	ire:			-		-	_		-	_	м	FTI	HOI	_	(602	t	Gre	ocarł		(EP.	CIPe	INO	estici	idic C	(VO	(SVI	(PA)	8 / 603	/ 200	010/			
		SAMI	PLING	5	ners		MA	TR	IX	4			RVI		Gas	015)-	Oil &	Hydr	OCs)	VIN	081 (0	CB's	d dN)	1 (Ac	8260	8270	8310	(200.5	200.7	8/6			
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	APPEN / BTEX ONLY (EPA 602 / 8021)	EPA 505/608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeneri	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic C1 Herbicides)	EPA 524.2 / 624 / 8260 (VOCs) 7/3	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)			
KG-OBI	=1/2-4	8/31/09		1	S.Y		X			1						x				X						Ng.			-				
CKG-OBI	8-8/2	1931/01		i	5		v									X				X					X	X							
CKG - 0B2	5-51/2				1		X									2				X					-								
che- 0B2	12-R+2			1	17		X									v				x													
CKG-083	12/2-13	1			1		x									S																	
CK6-0B4	9-91/2				IT		r									C				XX													
CKG-0BS	111/2-12						v			1						Ŷ				Y													1
CKG-BB6	5-5/2						x									6				v									1				
CKG-GBT	71/2-8						X									X				ĉ													
CKG-OR7	12-12/2	V					X									x				Ŷ									-				
CK6-088	71/2-8	9/1/09					X									5				n													
CHG-088	13-13/2	45					x									X				Ŷ													
CKG - 0B9	A-A1/2			1			X									V				x													
CKG-ORA.	17= 14/2	V			1		X			1						X		-		X													
Relinquished By:	1100	Date:	Time:	Rece	ived I	iy:	-	-	-	-		-	-	1	ICI	E/t°_	-	5.2	2	A	7								CO	MM	ENTS	:	
Relinquished By:	A)	Date:	Time:	Reco	ived E	1	e		V	a	q	2		_	HE DE AP	AD S CHI PRO	SPA LOR PRI	INAT ATE	BSE TED CON	NT_IN L	AB_ INEI	RS_	1	_				Ru	W	Soi	54	AMP LA G	(5)2
Relinquished By:		Date!	Time:	Reco	ived E	3y												T10	ve		0	&G	ME pH<		s	OTH	IER				act	Bill	

	ebsite: <u>www.m</u> elephone: (877	1534 WII PITTSBU ccampbel	LOW PA RG, CA 94 Lcom En	SS RO 4565-1	AD 701 nain@		mpb	ell.co							UR			ou	D			E PD Ch	F	RUS if sa	H Ex	24 cel	HR		48 I Wri	ite (72 On (J" fla	D A	W) 🖵 s required
Report To: CH			B	Bill To	D:														A	nal	ysis	Rec	ques	L	_					C	Other	r	Comments
Company: CKC	ENMONTHE	marge											_	-		6					ŝ			26									Filter
													_	MTBE		Grease (1664 / 5520 E/B&F)					ngen			西									Samples
The local and lo				E-Ma									_	S)/N		\$20 F					/C0		-	02				6020)					for Metals
Tele: () Project #:				ax: (21.37	- 7	71 - 1		4	-	-	8015)/		4/5	8.1)		8021)		clors		cides	200		(5)		0 / 60					analysis: Yes / No
Project #: Project Location	: OAKLA	0	r	rojec	et Nai	ne: (we	es la	10(1	an	77		-	8021+	0	(166	s (41		02/3	ides)	Aro		lerbi	Re	(s	Nd		601	(0)				res/ino
Sampler Signatu		Ψ₽							-					2 / 80	2	case	rbon		PA 6	estic	ALY;	cides	CLE	OCS	VOC	VHs	020)	90.8	/ 602				
Sampler Signatu	10.	CANAL	INC					DIV		M	IET	ноі	D	(60)	f		roca		Y (E	GP	\$ ON	Pesti	cidic	0 (V	(S) 0.	0 (P)	8/6	7/20	6010				
		SAMI	PLING	2	ners	I N	IAI	RIX				RVI		as Gas	8015)	Oil	Hyd	OCs)	UNI	1800	PCB	(NP	V) [5	/ 826	/ 823	/ 831	(200	(200.	0.8/				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	2011	Sludge	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH a	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	ALDE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA \$15.3 / \$151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)c	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 /	Lead (200.7 / 200.8 / 6010 / 6020)				
CKG-0BII	11-111/2	9/1/09		1	5%		X								×				X										Π				
CKG-0BII	131/2-14	7		1	SN		X								X				X														
CKS-OBIZ	31/2-4			5	1		Y								X				x						60								
CKG-0B12	13/2-1A				$\uparrow \uparrow$,								x				x					X	X								
CK6-0B13	10-10/2				H			-							x				x					1	~								
	10-10/2			++	11		x	-				-			x			_	x														
CKG-0BIA	15-15/2			\vdash	\square													-						-			-					-	
CKG-OBIA	4-41/2			H^{-}	+		×	-	-				-		X	-	-		X	-	-			-			-	-					
CK6-OBIS				1	V		+	-	-				-	-	×	_	-	-	X		-		-	-			-	-	\vdash			-	
CKB-0B15	9-91/2	Y-		Y	1V		+	-	_				-	-	X	-	_	-	X			-		-		-	-	-	\vdash			-	
ckg-cB6	71/2-8	1			-		+	-	_			_	-	_	Х	-	-	_	X	-	-	-	-	-		-	-	-				-	-11-1
				-	-	\vdash	-	_	_		_	_	_	_	_		_			_	_	_		_	_	_	_	_					
							_											_									-					_	
		-													_																		
/	1	11																															
Relinquished By: Relinquished By:	12/9	Date:	Time:	Reco	eived E	Ÿ-	e	V	a	q	7			GO HE DE AP	E/t ^e _OOD CAD S CCHI PRO ESE	SPAC ORI	NATE	BSE CO LA	IN L IN L NTA B	INE		_						W	MM So CH	SIL	SAM CUCA	1740	25 CZ UP
		-						_						PR	ESE	RVA	TIO		DAS	0	& G	pH		LS	OTI	HER				_			

1:
P
(9

534 Willow Pass Rd itteburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262			Wo	kOrde	r: 090902	A	ClientCode: CKG	S	
	WaterTrax	WriteOn EDF		xcel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bill	to:		R	equested TAT:	5 days
Chris Kennedy CKG Environmental P.O. Box 246	Email: ckenne cc: PO:	edy@geologist.com			Accounts P CKG Envire P.O. Box 24	onmental)ate Received:)ate Add-On:	09/01/2009 09/03/2009
St. Helena, CA 94574 (707) 967-8080 FAX (707) 967-8080	ProjectNo: Owens	Brockway			St. Helena,	, CA 94574	D	Date Printed:	09/03/2009
						Requested	Tests (See legend	below)	
Lah ID Client ID	Ma	atrix Collection Da	to Hold	1 2	2	4 5	6 7 9	0 10	11 12

	Client ID	Matrix	Collection Date	Ηοία	1	2	3	4	ົ	6	1	8	9	10	11	12
				_												
0909023-002	CKG-OB1 8-8 1/2	Soil	8/31/2009		А											
0909023-018	CKG-OB12 13 1/2-14	Soil	9/1/2009		А											

Test Legend:

1	8260B_S
6	
11	

2	
7	
12	

3	
8	

5	
10	

Prepared by: Melissa Valles

Comments: 8260 added on 9/3/09 on a std tat per C.K

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

When Our	Analytical, I ality Counts"	nc.		Web: www.mccan	Pass Road, Pittsburg, C. pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com		
CKG Environmental	Client	Project ID	: Owe	ens Brockway	Date Sampled:	08/31/09		
					Date Received:	09/01/09		
P.O. Box 246	Client	Contact:	Chris I	Kennedy	Date Extracted:	09/03/09		
St. Helena, CA 94574	Client			letineay	Date Analyzed:			
					-	09/10/09		
	Volatile Orga	nics by P	&T an	d GC/MS (Basic T	Carget List)*			
Extraction Method: SW5030B		Analyti	cal Metho	od: SW8260B		Work Order: 0909	023	
Lab ID				090902	3-002A			
Client ID				CKG-OE	1 8-8 1/2			
Matrix		1		S	oil			
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reportin Limit
Acetone	ND<0.20	4.0	0.05	tert-Amyl methyl	ether (TAME)	ND<0.020	4.0	0.005
Benzene	ND<0.020	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005
Bromochloromethane	ND<0.020	4.0	0.005	Bromodichloromet	hane	ND<0.020	4.0	0.005
Bromoform	ND<0.020	4.0	0.005	Bromomethane		ND<0.020	4.0	0.005
2-Butanone (MEK)	ND<0.080	4.0	0.02	t-Butyl alcohol (TI	BA)	ND<0.20	4.0	0.05
n-Butyl benzene	0.54	4.0	0.005	sec-Butyl benzene		0.20	4.0	0.00
tert-Butyl benzene	ND<0.020	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.003
Carbon Tetrachloride	ND<0.020	4.0	0.005	Chlorobenzene		ND<0.020	4.0	0.005
Chloroethane	ND<0.020	4.0	0.005	Chloroform		ND<0.020	4.0	0.005
Chloromethane	ND<0.020	4.0	0.005	2-Chlorotoluene		ND<0.020	4.0	0.00
4-Chlorotoluene	ND<0.020	4.0	0.005	Dibromochloromet		ND<0.020	4.0	0.005
1,2-Dibromo-3-chloropropane	ND<0.016	4.0	0.004	1,2-Dibromoethane		ND<0.016	4.0	0.004
Dibromomethane	ND<0.020	4.0	0.005	1,2-Dichlorobenze		ND<0.020	4.0	0.005
1,3-Dichlorobenzene	ND<0.020	4.0	0.005	1,4-Dichlorobenze		ND<0.020	4.0	0.00
Dichlorodifluoromethane	ND<0.020	4.0	0.005	1,1-Dichloroethan		ND<0.020	4.0	0.00
1,2-Dichloroethane (1,2-DCA) cis-1,2-Dichloroethene	ND<0.016 ND<0.020	4.0	0.004	1,1-Dichloroethene trans-1,2-Dichloro		ND<0.020 ND<0.020	4.0	0.00
1,2-Dichloropropane	ND<0.020	4.0	0.005	1,3-Dichloropropa		ND<0.020	4.0	0.00
2,2-Dichloropropane	ND<0.020	4.0	0.005	1,1-Dichloroprope		ND<0.020	4.0	0.005
cis-1,3-Dichloropropene	ND<0.020	4.0	0.005	trans-1,3-Dichloro		ND<0.020	4.0	0.00
Diisopropyl ether (DIPE)	ND<0.020	4.0	0.005	Ethylbenzene	propene	ND<0.020	4.0	0.005
Ethyl tert-butyl ether (ETBE)	ND<0.020	4.0	0.005	Freon 113		ND<0.40	4.0	0.00.
Hexachlorobutadiene	ND<0.020	4.0	0.005	Hexachloroethane		ND<0.020	4.0	0.00
2-Hexanone	ND<0.020	4.0	0.005	Isopropylbenzene		0.068	4.0	0.00
4-Isopropyl toluene	ND<0.020	4.0	0.005	Methyl-t-butyl eth	er (MTBE)	ND<0.020	4.0	0.005
Methylene chloride	ND<0.020	4.0	0.005			ND<0.020	4.0	0.005
Naphthalene	ND<0.020	4.0	0.005	n-Propyl benzene	/	0.053	4.0	0.005
Styrene	ND<0.020	4.0	0.005	1,1,1,2-Tetrachlor	oethane	ND<0.020	4.0	0.005
1,1,2,2-Tetrachloroethane	ND<0.020	4.0	0.005	Tetrachloroethene		ND<0.020	4.0	0.005
Toluene	ND<0.020	4.0	0.005	1,2,3-Trichloroben	zene	ND<0.020	4.0	0.005
1,2,4-Trichlorobenzene	ND<0.020	4.0	0.005	1,1,1-Trichloroeth	ane	ND<0.020	4.0	0.005
1,1,2-Trichloroethane	ND<0.020	4.0	0.005	Trichloroethene		ND<0.020	4.0	0.005
Trichlorofluoromethane	ND<0.020	4.0	0.005	1,2,3-Trichloropro	pane	ND<0.020	4.0	0.00
1,2,4-Trimethylbenzene	ND<0.020	4.0	0.005	1,3,5-Trimethylber	nzene	ND<0.020	4.0	0.00
Vinvl Chloride	ND<0.020	4.0	0.005			ND<0.020	4.0	0.005
		Surro	gate Re	ecoveries (%)				
%SS1:	1	05		%SS2:		10	19	
%SS3:	(94						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

When Our	Analytical, ality Counts"	Inc.		Web: www.mccam	Pass Road, Pittsburg, C. pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com		
CKG Environmental	Clie	nt Project II	D: Owe	ens Brockway	Date Sampled:	09/01/09		
					Date Received:	09/01/09		
P.O. Box 246	Clie	nt Contact:	Chris I	Kennedy	Date Extracted:	09/03/09		
St. Helena, CA 94574		nt P.O.:	CIIIISI	Kennedy				
5. Пенена, СЛ 94574	Che	nt P.O.:			Date Analyzed:	09/10/09		
	Volatile Or	ganics by H	P&T an	d GC/MS (Basic T	Carget List)*			
Extraction Method: SW5030B		Analyt	ical Metho	od: SW8260B		Work Order: 0909	023	
Lab ID				090902	3-018A			
Client ID				CKG-OB1	2 13 1/2-14			
Matrix				S	bil			
Compound	Concentration	n* DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reporting Limit
Acetone	ND<0.10	2.0	0.05	tert-Amyl methyl	ether (TAME)	ND<0.010	2.0	0.005
Benzene	ND<0.010		0.005	Bromobenzene		ND<0.010	2.0	0.005
Bromochloromethane	ND<0.010	2.0	0.005	Bromodichloromet	hane	ND<0.010	2.0	0.005
Bromoform	ND<0.010		0.005	Bromomethane		ND<0.010	2.0	0.005
2-Butanone (MEK)	ND<0.040		0.02	t-Butyl alcohol (TI	BA)	ND<0.10	2.0	0.05
n-Butyl benzene	ND<0.010		0.005	sec-Butyl benzene		ND<0.010	2.0	0.005
tert-Butyl benzene	ND<0.010		0.005	Carbon Disulfide		ND<0.010	2.0	0.005
Carbon Tetrachloride	ND<0.010		0.005	Chlorobenzene		ND<0.010	2.0	0.005
Chloroethane	ND<0.010		0.005	Chloroform		ND<0.010	2.0	0.005
Chloromethane	ND<0.010		0.005	2-Chlorotoluene		ND<0.010	2.0	0.005
4-Chlorotoluene	ND<0.010		0.005	Dibromochloromet		ND<0.010	2.0	0.005
1,2-Dibromo-3-chloropropane	ND<0.0080		0.004	1,2-Dibromoethane		ND<0.0080	2.0	0.004
Dibromomethane	ND<0.010		0.005	1,2-Dichlorobenzer		ND<0.010	2.0	0.005
1,3-Dichlorobenzene	ND<0.010		0.005	1,4-Dichlorobenzer		ND<0.010	2.0	0.005
Dichlorodifluoromethane	ND<0.010		0.005	1,1-Dichloroethan		ND<0.010	2.0	0.005
1,2-Dichloroethane (1,2-DCA) cis-1,2-Dichloroethene	ND<0.0080 ND<0.010		0.004	1,1-Dichloroethene trans-1,2-Dichloro		ND<0.010 ND<0.010	2.0	0.005
1,2-Dichloropropane	ND<0.010		0.005	1,3-Dichloropropa		ND<0.010	2.0	0.005
2.2-Dichloropropane	ND<0.010		0.005	1,1-Dichloroprope		ND<0.010	2.0	0.005
cis-1,3-Dichloropropene	ND<0.010		0.005	trans-1,3-Dichloro		ND<0.010	2.0	0.005
Diisopropyl ether (DIPE)	ND<0.010		0.005	Ethylbenzene	propene	ND<0.010	2.0	0.005
Ethyl tert-butyl ether (ETBE)	ND<0.010		0.005	Freon 113		ND<0.20	2.0	0.1
Hexachlorobutadiene	ND<0.010		0.005	Hexachloroethane		ND<0.010	2.0	0.005
2-Hexanone	ND<0.010		0.005	Isopropylbenzene		ND<0.010	2.0	0.005
4-Isopropyl toluene	ND<0.010	2.0	0.005	Methyl-t-butyl eth	er (MTBE)	ND<0.010	2.0	0.005
Methylene chloride	ND<0.010	2.0	0.005			ND<0.010	2.0	0.005
Naphthalene	ND<0.010	2.0	0.005	n-Propyl benzene		ND<0.010	2.0	0.005
Styrene	ND<0.010	2.0	0.005	1,1,1,2-Tetrachlor	oethane	ND<0.010	2.0	0.005
1,1,2,2-Tetrachloroethane	ND<0.010	2.0	0.005	Tetrachloroethene		ND<0.010	2.0	0.005
Toluene	ND<0.010		0.005	1,2,3-Trichloroben		ND<0.010	2.0	0.005
1,2,4-Trichlorobenzene	ND<0.010		0.005	1,1,1-Trichloroeth	ane	ND<0.010	2.0	0.005
1,1,2-Trichloroethane	ND<0.010		0.005	Trichloroethene		ND<0.010	2.0	0.005
Trichlorofluoromethane	ND<0.010		0.005	1,2,3-Trichloropro		ND<0.010	2.0	0.005
1,2,4-Trimethylbenzene	ND<0.010		0.005	1,3,5-Trimethylber	nzene	ND<0.010	2.0	0.005
Vinvl Chloride	ND<0.010		0.005	Xvlenes		ND<0.010	2.0	0.005
			ogate Re	ecoveries (%)		T		
%SS1:		104		%SS2:		10	19	
%SS3:		101						

Comments: a3

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

a3) sample diluted due to high organic content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix: Soil BatchID: 45604 WorkOrder: 090902											23
EPA Method SW8260B	Extra	ction SW	5030B					s	Spiked Sar	nple ID	: 0909129-0	004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	1
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	84.1	85.7	1.94	81.7	83.1	1.70	60 - 130	30	60 - 130	30
Benzene	ND	0.050	102	105	2.57	97.8	97.3	0.533	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	104	107	2.78	100	97.3	2.91	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	103	106	2.72	102	103	0.339	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	95.9	99	3.12	98.1	98.1	0	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	105	109	2.95	108	108	0	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	107	108	1.38	110	107	2.63	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	97.6	99.9	2.28	93.2	92.9	0.314	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	98.3	100	1.78	98.2	98	0.195	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	103	105	2.04	103	103	0	60 - 130	30	60 - 130	30
Toluene	ND	0.050	106	109	3.20	108	106	1.15	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	114	117	3.29	113	113	0	60 - 130	30	60 - 130	30
%SS1:	99	0.12	92	91	0.231	93	94	0.522	70 - 130	30	70 - 130	30
%SS2:	95	0.12	100	101	0.380	100	100	0	70 - 130	30	70 - 130	30
%SS3:	88	0.012	121	118	2.06	115	114	1.04	70 - 130	30	70 - 130	30

BATCH 45604 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909023-002A	08/31/09	09/03/09	09/10/09 12:52 PM	0909023-018A	09/01/09	09/03/09	09/10/09 1:35 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: mone: 877-252-9262 Fax:	ain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway	Date Sampled:	08/31/09-09/01/09
P.O. Box 246			Date Received:	09/01/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/09/09
54. Holonu, 671 94574	Client P.O.:		Date Completed:	09/09/09

WorkOrder: 0909023

September 10, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the 24 analyzed samples from your project: Owens Brockway,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

																						_							0	90	90	2	3	
W Te	ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccampbel () 252-92	LLOW PA RG, CA 9 Lcom Er	SS R0 4565-1	701	mcc	amp	bell	l.con										01	CH JNI EDI	DT	IM	E PD	F	RU	SH E	24 xce	4 HR		48 Wr	HR HR	On	72 H	R 5 DAY W)
Report To: 04 Company: CK	RIS KEND		ł	Bill T	0:											_				1	Ana	lysis	Re	the second s							_	Othe	and the owner whether the owne	Comments
Company: CK	G EAXINONIP	184TAL					_								64		6					ers												Filter
				E Mo								_		-	8015) / MTBE		Grease (1664 / 5520 E/B&F)					ngen												Samples
Tele: ()				E-Ma Fax:	II:							-	_	-	(2)/3		520 F			-		/ Co		-					(0)					for Metals
Project #:					et Nai	ne:	~ ^	a.c	2	.0	1	A	/	-	- 801		11/5	(1.8)		8021		clors		cides			As)		0 / 00					analysis:
Project Location	: atkity	3		Tojet		iic.	ao	40	CA	aki	~n	1	-		8021 +	8	: (166	15 (41		502 /	ides)	Aro	(5	Ierbi	_	(5)	/PN/		601	(0)				Yes / No
Sampler Signatu		0									_		_		(602 / 8)	7	rease	rbor		PA 6	estic	NLY	icide	CIF	OCs	VOC	AHs	020)	00.8	/ 602				
		SAMI	PLING	80	lers		MA	TR	IX			ETH			Gas (60	15)+	8	Hydroca	Cs)	NLY (E	81 (CLF	CB's Of	NP Pest	(Acidic	8260 (V	8270 (S	8310 (P)	200.8 / 6	00.7 / 20	8 / 6010				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH as	TPH as Diesel (8015) +	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	APPEN / BTEX ONLY (EPA 602 / 8021)	EPA 505/608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
CKG-OBI	=1/2-4	8/31/09		1	SY		V			$^{+}$				+		X	-			V						NG M				-	\vdash	+	-	
CKG-OBI	8-81/2	42401		1	5		V			+		-		1		X				x						X			-	-		-	-	
0KG - 0B2	5-51/2				\square		X	-		t	-			1		~										~	-	-	-	\vdash		-	-	
NG-OB2	12-12-12			\square	\square		X	1	+	+	-			+		0				X								-	-			-	-	
CKG-0B3	12/2-13	1		\square	\mathbf{H}		V	+	-	$^{+}$	+	+		+		2	-		-	1.0		-	-		-		-	-	-	-	-	-	-	
CKG-0B4	9-91/2				11		r	+		t	-	+	-	+		1		-	-	XX			-				-	-	-			-	-	
CKG-OBS	111/2-12			++			A	+	-	+	+	+	+	+		X		_	-	Y	-				_		-	-	-		\vdash	-	-	1.5
							X	+	-	+	+	+	+	+	-	Å		-	-	1	-			-		-	-	-	-	-	-	-		
CKG-6B6	5-5/2			\mathbf{H}			X	+	+	+	+	+	+	+	-	X	-	_		X	-		-		_	-	-	-	-		-	-		
CKG-GB7	71/2-8			\vdash			X	+	-	+	+	+	+	+	-	X	-	_	_	X			_		-	-		-	-			-	-	
CKG-087	12-12/2	V		\square			X	-	+	+	+	-	+	+	-	×	_	-	-	x				_										
C146-088	7/2-8	9/1/09	-				χ	-	-	+	+	-	-	-		x	_		_	X														
CKG-088	13-13/2			\square			X	-		+	_	-	-	-	_	X	_	_		X					_									
CK6-089	A-A/2						X	_	_	1			_			K				X														
CKG-ORA	19-14/2	V,		V	V		X									X		-		X														
Relinquished By:	n ?	Date: Date:	Time:	-	ived B	+	e	1	10		X	2		-	GO HE DE AP	PRO	CON SPAC ORI PRI/	DIT E A NAT	ION BSE ED CO	IN L		RS_	f					N			IENT	Strain CA	R4	3
Relinquished By:		Date!	Time:	Rece	ived B	y.			V.							ESEI			ve	B	0	&G	ME pH<		.s	οτι	HER		W	74		April	R	

		1534 WI PITTSBU ccampbe	LLOW PA RG, CA 9- Il.com En	SS R0 4565-1	AD 701	mcc	amp	bell	l.con							RN			DU	ND	T	IM	E		RUS	SH	۲ 24	HR		48 1	HR	72	2 HF	S DAY
) = 3 = 7 =				. ()		54	740												Ę		Ch	eck	if sa						nd "J	J" fla	ag i	s required
Report To: CH			H	Bill To):	_								┝	_	-	_	_	_	A	nal	ysis	Rec	ues	t		_	_	_	_	0)ther	r	Comments
Company: CKC	E CANADAIME	entral										-			E C	G D	(IX					ners												Filter
]	E-Ma	il:	-		_		_		_		SOLA / MTRF	W	4470 F/B.6.FV	E4 DA					onge							_					Samples for Metals
Tele: ()				ax: (1510	len	6620	1700	_		(II		ns/((s)					6020					analysis:
Project #:				rojec		me:	BW	aus.	BL	0(4	ut	1		+	+	664.1		418.1		/ 802	(s	roclo		bicid			(SVN)		10/					Yes / No
Project Location		P												1008	1700	0	r) as	ons (-	A 602	ticide	Y; A	des)	I Her	(s)	(Cs)	ls / P	6	8/6(6020)				
Sampler Signatu	ire:					_		_		-				- 609	1700	E		carb		(EPA	I Pes	ONL	sticio	lie C	(VO	(SVC	PAH	/ 602	200.	10/6				
		SAMI	PLING		ers		MA	ГR	IX	1	ME			Cas (602 / 8021	198	3 IN		lydro	(cs)	NLY	81 (C	CB's	NP Pe	(Acid	8260	8270	8310	200.8	00.7	200.8 / 6010 / 6020)				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HND	Other Other	TPH as	BIEA & IFH 35	Tetal Petroloum Oil & Grosse (1664 /		Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	ALC: BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.				
CKG-0BII	11-111/2	9/1/09		1	STE		X			1				T)	K				X														
CKG-OBII	131/2-14	7		1	SN		X								1	5				X														
CKS-OBIZ	31/2-9						X								>	<				x						50								
CKG-0B12	13/2-1A						x)	(x						×								
KG -0B13	10-10/2						X									X				X														
CKG-OBIA	10-10 1/2						x)	(-	X														
CKG-OBIA	15-15/2						x								j					x														
K6-OBIS	4-41/2						1			Т						1				x														
CKB-OB15	9-91/2			V	V											(x														
ckg-cB6	71/2-8	1		_											X					x														
																																		- 11 ,
	1	1.										-			1		1																	
Relinquished By:	le g	Date:	Time:		ived B	E	e		T		20		-	G H D	HEAD	D CO D SP HLO ROPH	ACH	AH	BSEI ED I	NT_IN L	AB_	RS_	_						co	MM So	ENTS IC . SL	SAM SAM	ne G	25 24 10
Relinquished By:		Date:	Time:	Rece	eived B	iy:			y.		f		_			SERV			vo	_	08		ME pH<		S	OTI	HER					Caa	(TAF)	¥7

i

1

.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

2-9262					Work	Order:	0909()23	(ClientC	Code: C	KGS				
	WaterTrax	WriteOn	EDF		Excel	[Fax	ľ	🗸 Email		Hard	Сору	🗌 Thir	dParty	□ J-1	flag
dy imental XA 94574	cc: PO:		-			Ac CK P.C	G Envii D. Box 2	ronmer 246	ntal			Date	e Rece	ived:	09/01/2	
0 FAX (707) 967-8080			,			-		,								
				[Req	uested	Tests	(See le	gend b	elow)			
Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
CKG-OB1 3 1/2	-4	Soil	8/31/2009			А	Α									
CKG-OB1 8-8 1	/2	Soil	8/31/2009		А	А	Α									
CKG-OB2 5-5 1	/2	Soil	8/31/2009			Α	Α									
CKG-OB2 12-12	1/2	Soil	8/31/2009			Α	Α									
CKG-OB3 12 1/2	-13	Soil	8/31/2009			Α	Α									
CKG-OB4 9-9 1	/2	Soil	8/31/2009			А	А									
CKG-OB5 11 1/2	-12	Soil	8/31/2009			А	А									
CKG-OB6 5-5 1	/2	Soil	8/31/2009			А	А									
CKG-OB7 7 1/2	-8	Soil	8/31/2009			А	А									
CKG-OB7 12-12	1/2	Soil	8/31/2009			А	А									
CKG-OB8 7 1/2	-8	Soil	9/1/2009			А	Α									
CKG-OB8 13-13	1/2	Soil	9/1/2009			А	Α									
CKG-OB9 4-4 1	/2	Soil	9/1/2009			А	Α									
CKG-OB9 14-14	1/2	Soil	9/1/2009			Α	Α									
	dy imental CA 94574 0 FAX (707) 967-8080 Client ID CKG-OB1 3 1/2 CKG-OB1 3 1/2 CKG-OB2 5-5 1 CKG-OB2 12-12 CKG-OB3 12 1/2 CKG-OB4 9-9 1 CKG-OB5 11 1/2 CKG-OB5 11 1/2 CKG-OB7 7 1/2 CKG-OB7 7 1/2 CKG-OB8 7 1/2 CKG-OB8 13-13 CKG-OB9 4-4 1	☐ WaterTrax dy Email: cl mental cc: PO: CA 94574 ProjectNo: C 0 FAX (707) 967-8080	WaterTrax WriteOn dy Email: ckennedy@ge mental cc: PO: CA 94574 ProjectNo: Owens Brockwork 0 FAX (707) 967-8080 Client ID Matrix CKG-OB1 3 1/2-4 Soil CKG-OB1 3 1/2-4 Soil CKG-OB1 8-8 1/2 Soil CKG-OB2 5-5 1/2 Soil CKG-OB2 12-12 1/2 Soil CKG-OB3 12 1/2-13 Soil CKG-OB4 9-9 1/2 Soil CKG-OB5 11 1/2-12 Soil CKG-OB5 7 1/2-8 Soil CKG-OB7 7 1/2-8 Soil CKG-OB8 7 1/2-8 Soil CKG-OB8 13-13 1/2 Soil CKG-OB8 13-13 1/2 Soil	WaterTrax WriteOn EDF dy Email: ckennedy@geologist.com mental cc: PO: A 94574 ProjectNo: Owens Brockway 0 FAX (707) 967-8080 Matrix Collection Date Client ID Matrix Collection Date CKG-OB1 3 1/2-4 Soil 8/31/2009 CKG-OB1 8-8 1/2 Soil 8/31/2009 CKG-OB2 5-5 1/2 Soil 8/31/2009 CKG-OB3 12 1/2-12 Soil 8/31/2009 CKG-OB4 9-9 1/2 Soil 8/31/2009 CKG-OB5 11 1/2-12 Soil 8/31/2009 CKG-OB5 5.5 1/2 Soil 8/31/2009 CKG-OB5 11 1/2-12 Soil 8/31/2009 CKG-OB6 5.5 1/2 Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil 8/31/2009 CKG-OB8 7 1/2-8 Soil 9/1/2009 CKG-OB8 13-13 1/2 Soil 9/1/2009 CKG-OB8 14-1/2 Soil </td <td>WaterTrax WriteOn EDF dy Email: ckennedy@geologist.com mental cc: PO: PO: CA 94574 ProjectNo: O FAX (707) 967-8080 Matrix Collection Date CKG-OB1 3 1/2-4 Soil 8/31/2009 CKG-OB1 8-8 1/2 Soil Soil 8/31/2009 CKG-OB2 5-5 1/2 Soil Soil 8/31/2009 CKG-OB3 12 1/2-13 Soil Soil 8/31/2009 CKG-OB5 11 1/2-12 Soil Soil 8/31/2009 CKG-OB6 5-5 1/2 Soil Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil Soil 8/31/2009 CKG-OB8 7 1/2-8 Soil Soil 9/1/2009 CKG-OB8 13-13 1/2 Soil Soil 9/1/2009</td> <td>2-9262 WaterTrax WriteOn EDF Excel dy Email: ckennedy@geologist.com immental cc: PO: A 94574 ProjectNo: Owens Brockway 0 FAX (707) 967-8080 Matrix Collection Date Mode CKG-OB1 3 1/2-4 Soil Soil 8/31/2009 CKG-OB1 3 1/2-4 Soil 8/31/2009 A CKG-OB1 3 1/2-4 Soil 8/31/2009 A CKG-OB2 12-12 1/2 Soil 8/31/2009 A CKG-OB2 12-12 1/2 Soil 8/31/2009 C CKG-OB4 9-9 1/2 Soil 8/31/2009 C CKG-OB5 11 1/2-12 Soil 8/31/2009 C CKG-OB5 5-5 1/2 Soil 8/31/2009 C CKG-OB5 5-5 1/2 Soil 8/31/2009 C CKG-OB7 12-12 1/2 Soil 8/31/2009 C CKG-OB7 7 1/2-8 Soil 8/31/2009 C CKG-OB8 7 1/2-8 Soil 9/1/2009 C CKG-OB8</td> <td>2-9262 WaterTrax WriteOn EDF Excel [Bill to: bill to: C C CK dy Email: ckennedy@geologist.com Acc imental cc: CK CK A 94574 ProjectNo: Owens Brockway St. 0 FAX (707) 967-8080 Matrix Collection Date Hold 1 2 CKG-OB1 3 1/2-4 Soil 8/31/2009 A A CKG-OB2 5-5 1/2 Soil 8/31/2009 A A CKG-OB2 12-12 1/2 Soil 8/31/2009 A A CKG-OB3 12 1/2-13 Soil 8/31/2009 A A CKG-OB5 11 1/2-12 Soil 8/31/2009 A A CKG-OB5 11 1/2-13 Soil 8/31/2009 A A CKG-OB5 11 1/2-12 Soil 8/31/2009</td> <td>2-9262 WaterTrax WriteOn EDF Excel Fax dy Email: ckennedy@geologist.com Accounts I immental cc: CKG Envir pO: PO: P.O. Box 2 A 94574 ProjectNo: Owens Brockway St. Helena 0 FAX (707) 967-8080 Katrix Collection Date Hold 1 2 3 CKG-OB1 3 1/2-4 Soil 8/31/2009 A A A CKG-OB1 3 1/2-4 Soil 8/31/2009 A A CKG-OB1 3 1/2-4 Soil 8/31/2009 A A CKG-OB1 2 1/2-13 Soil 8/31/2009 A A CKG-OB2 12-12 1/2 Soil 8/31/2009 A A CKG-OB3 12 1/2-13 Soil 8/31/2009 A A CKG-OB4 9-9 1/2 Soil 8/31/2009 A A CKG-OB5 11 1/2-12 Soil 8/31/2009 A A CKG-OB7 7 1/2-8 Soil 8/31/2009 A A CKG-OB7 12-12 1/2 Soil 8/31/2009 A</td> <td>WaterTrax WriteOn EDF Excel Fax dy Email: ckennedy@geologist.com Accounts Payable dy Email: ckennedy@geologist.com Accounts Payable mmental cc: PO: P.O. Box 246 A 94574 ProjectNo: Owens Brockway St. Helena, CA 9 0 FAX (707) 967-8080 Matrix Collection Date Hold 1 2 3 4 CKG-0B1 3 1/2-4 Soil 8/31/2009 A A A CKG-0B1 2 1/2-13 Soil 8/31/2009 A A A CKG-0B3 12 1/2-13 Soil 8/31/2009 A A A CKG-0B4 9-9 1/2 Soil 8/31/2009 A A A CKG-0B5 51 1/2-12 Soil 8/31/2009 A A A CKG-0B6 55 1/2</td> <td>2-9262 </td> <td>2-9262</td> <td>2-9262</td> <td>2-9262</td> <td>2-9262</td> <td>2-9262</td> <td>2-962 Image: State of the state of th</td>	WaterTrax WriteOn EDF dy Email: ckennedy@geologist.com mental cc: PO: PO: CA 94574 ProjectNo: O FAX (707) 967-8080 Matrix Collection Date CKG-OB1 3 1/2-4 Soil 8/31/2009 CKG-OB1 8-8 1/2 Soil Soil 8/31/2009 CKG-OB2 5-5 1/2 Soil Soil 8/31/2009 CKG-OB3 12 1/2-13 Soil Soil 8/31/2009 CKG-OB5 11 1/2-12 Soil Soil 8/31/2009 CKG-OB6 5-5 1/2 Soil Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil Soil 8/31/2009 CKG-OB7 7 1/2-8 Soil Soil 8/31/2009 CKG-OB8 7 1/2-8 Soil Soil 9/1/2009 CKG-OB8 13-13 1/2 Soil Soil 9/1/2009	2-9262 WaterTrax WriteOn EDF Excel dy Email: ckennedy@geologist.com immental cc: PO: A 94574 ProjectNo: Owens Brockway 0 FAX (707) 967-8080 Matrix Collection Date Mode CKG-OB1 3 1/2-4 Soil Soil 8/31/2009 CKG-OB1 3 1/2-4 Soil 8/31/2009 A CKG-OB1 3 1/2-4 Soil 8/31/2009 A CKG-OB2 12-12 1/2 Soil 8/31/2009 A CKG-OB2 12-12 1/2 Soil 8/31/2009 C CKG-OB4 9-9 1/2 Soil 8/31/2009 C CKG-OB5 11 1/2-12 Soil 8/31/2009 C CKG-OB5 5-5 1/2 Soil 8/31/2009 C CKG-OB5 5-5 1/2 Soil 8/31/2009 C CKG-OB7 12-12 1/2 Soil 8/31/2009 C CKG-OB7 7 1/2-8 Soil 8/31/2009 C CKG-OB8 7 1/2-8 Soil 9/1/2009 C CKG-OB8	2-9262 WaterTrax WriteOn EDF Excel [Bill to: bill to: C C CK dy Email: ckennedy@geologist.com Acc imental cc: CK CK A 94574 ProjectNo: Owens Brockway St. 0 FAX (707) 967-8080 Matrix Collection Date Hold 1 2 CKG-OB1 3 1/2-4 Soil 8/31/2009 A A CKG-OB2 5-5 1/2 Soil 8/31/2009 A A CKG-OB2 12-12 1/2 Soil 8/31/2009 A A CKG-OB3 12 1/2-13 Soil 8/31/2009 A A CKG-OB5 11 1/2-12 Soil 8/31/2009 A A CKG-OB5 11 1/2-13 Soil 8/31/2009 A A CKG-OB5 11 1/2-12 Soil 8/31/2009	2-9262 WaterTrax WriteOn EDF Excel Fax dy Email: ckennedy@geologist.com Accounts I immental cc: CKG Envir pO: PO: P.O. Box 2 A 94574 ProjectNo: Owens Brockway St. Helena 0 FAX (707) 967-8080 Katrix Collection Date Hold 1 2 3 CKG-OB1 3 1/2-4 Soil 8/31/2009 A A A CKG-OB1 3 1/2-4 Soil 8/31/2009 A A CKG-OB1 3 1/2-4 Soil 8/31/2009 A A CKG-OB1 2 1/2-13 Soil 8/31/2009 A A CKG-OB2 12-12 1/2 Soil 8/31/2009 A A CKG-OB3 12 1/2-13 Soil 8/31/2009 A A CKG-OB4 9-9 1/2 Soil 8/31/2009 A A CKG-OB5 11 1/2-12 Soil 8/31/2009 A A CKG-OB7 7 1/2-8 Soil 8/31/2009 A A CKG-OB7 12-12 1/2 Soil 8/31/2009 A	WaterTrax WriteOn EDF Excel Fax dy Email: ckennedy@geologist.com Accounts Payable dy Email: ckennedy@geologist.com Accounts Payable mmental cc: PO: P.O. Box 246 A 94574 ProjectNo: Owens Brockway St. Helena, CA 9 0 FAX (707) 967-8080 Matrix Collection Date Hold 1 2 3 4 CKG-0B1 3 1/2-4 Soil 8/31/2009 A A A CKG-0B1 2 1/2-13 Soil 8/31/2009 A A A CKG-0B3 12 1/2-13 Soil 8/31/2009 A A A CKG-0B4 9-9 1/2 Soil 8/31/2009 A A A CKG-0B5 51 1/2-12 Soil 8/31/2009 A A A CKG-0B6 55 1/2	2-9262	2-9262	2-9262	2-9262	2-9262	2-9262	2-962 Image: State of the state of th

Test Legend:

1 8270D_S	2 G-MBTEX_S
6	7
11	12

3	TPH(DMO)WSG_S
8	

4	
9	

1	5			
	10			

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	252-9262					Work	Order:	: 0909	023	(ClientC	Code: C	KGS				
		WaterTrax	WriteOr	n EDF		Excel	[Fax	F	🖌 Email		Hard	Сору	Thir	dParty	□ J-1	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
Chris Kenn	edy	Email: c	kennedy@g	eologist.com			Ac	counts	Payabl	Э							
CKG Enviro	onmental	CC:					CK	G Envi	ronmer	ntal							
P.O. Box 24	6	PO:					P.0	D. Box 2	246				Dat	e Recei	ived:	09/01/	2009
St. Helena,	CA 94574	ProjectNo: C	Owens Brock	way			St.	Helena	a, CA 94	4574			Dat	e Print	ted:	09/01/2	2009
(707) 967-80	80 FAX (707) 967-8080			-													
							-		Req	uested	Tests	(See leg	gend b	elow)			-
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0909023-015	CKG-OB11 11-1	1 1/2	Soil	9/1/2009			Α	А									
0909023-016	CKG-OB11 13 1	/2-14	Soil	9/1/2009			А	А									
0909023-017	CKG-OB12 3 1	/2-4	Soil	9/1/2009			А	А									
0909023-018	CKG-OB12 13 1	/2-14	Soil	9/1/2009		А	А	А									
0909023-019	CKG-OB13 10-1	0 1/2	Soil	9/1/2009			А	А									
0909023-020	CKG-OB14 10-1	0 1/2	Soil	9/1/2009			А	Α									
0909023-021	CKG-OB14 15-1	5 1/2	Soil	9/1/2009			А	Α									
0909023-022	CKG-OB15 4-4	1/2	Soil	9/1/2009			Α	А									

Test Legend:

0909023-023

0909023-024

1	8270D_S	2
6		7
11		12

CKG-OB15 9-9 1/2

CKG-OB6 7 1/2-8

2	G-MBTEX_S	L
7		[
2		

Soil

Soil

3	TPH(DMO)WSG_S
8	

А

А

А

А

9/1/2009

8/31/2009

4	
9	

5	
10	

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	CKG Environmen	tal					Date a	and Time Re	eceived:	9/1/2009 5	:48:08 PM
Project Name:	Owens Brockwa	у					Check	dist comple	ted and re	eviewed by:	Melissa Valles
WorkOrder N°:	0909023	Matrix	<u>Soil</u>				Carrie	er: <u>Rob F</u>	Pringle (M	AI Courier)	
			<u>Chain</u>	of Cu	stody (C	:OC) Ir	nforma	ation			
Chain of custody	present?			Yes	\checkmark	Ν	ю 🗆				
Chain of custody	signed when relinqui	shed and	d received?	Yes	\checkmark	N	lo 🗆				
Chain of custody	agrees with sample I	abels?		Yes	\checkmark	Ν	lo 🗌				
Sample IDs noted	by Client on COC?			Yes	\checkmark	N	lo 🗆				
Date and Time of	collection noted by Cli	ent on C	OC?	Yes	\checkmark	N	lo 🗆				
Sampler's name r	noted on COC?			Yes		N	lo 🔽				
			<u>Sa</u>	ample	Receipt	Inforr	nation	<u>1</u>			
Custody seals int	tact on shipping conta	iner/cool	er?	Yes		N	lo 🗆			NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	\checkmark	Ν	lo 🗆				
Samples in prope	er containers/bottles?			Yes	✓	N	lo 🗆				
Sample containe	rs intact?			Yes	\checkmark	Ν	lo 🗆				
Sufficient sample	e volume for indicated	test?		Yes	\checkmark	Ν	lo 🗌				
		Sa	mple Preser	vatior	n and Ho	ld Tim	ne (HT	<u>) Informati</u>	ion		
All samples recei	ived within holding tim	e?		Yes	✓	N	lo 🗌				
Container/Temp E	Blank temperature			Coole	r Temp:	5.2°C	;			NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no b	ubbles?	Yes		N	lo 🗆	No VOA vi	ials submi	itted 🗹	
Sample labels ch	necked for correct pres	servation	1?	Yes	✓	N	lo 🗌				
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		Ν	lo 🗆			NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	N	lo 🗆				
			(Ice Type	e: WE	TICE))					
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.								

Client contacted:

Date contacted:

Contacted by:

Comments:

WcCampbell	Analyti uality Counts"	<u>cal,</u>	Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
CKG Environmental		Clier	nt Proje	ect ID:	Owens Brockway				1/09			
						Date R	e Received: 09/01/09					
P.O. Box 246		Clie	nt Cont	act: Cl	xtracted: 09/01/0	9						
St Halana CA 04574								-				
St. Helena, CA 94574		Client P.O.: Date Analyzed: 09/05/										
	Semi-Vo	olatile	Orgai	nics by	GC/MS (Basic Targe	t List)*						
Extraction Method: SW3550C			Anal	ytical Met	hod: SW8270C		Work Ord	er: 090	9023			
Lab ID					0909023-002	A						
Client ID					CKG-OB1 8-8							
Matrix					Soil	1/2						
				Reporting					Reporti			
Compound	Concentrat	ion *	DF	Limit	Compound		Concentration *	DF	Limi			
Acenaphthene	ND<3.3	3	10	0.33	Acenaphthylene		ND<3.3	10	0.3			
Acetochlor	ND<3.3	3	10	0.33	Anthracene		ND<3.3	10	0.3			
Benzidine	ND<16	<u>,</u>	10	1.6	Benzoic Acid		ND<16	10	1.6			
Benzo(a)anthracene	ND<3.3	3	10	0.33	Benzo(b)fluoranthene		ND<3.3	10	0.3			
Benzo(k)fluoranthene	ND<3.3		10	0.33	Benzo(g,h,i)perylene		ND<3.3	10	0.3			
Benzo(a)pyrene	ND<3.3		10	0.33	Benzyl Alcohol		ND<16	10	1.0			
1,1-Biphenyl	ND<3.3		10	0.33	Bis (2-chloroethoxy) M	lethane	ND<3.3	10	0.3			
Bis (2-chloroethyl) Ether	ND<3.3		10	0.33	Bis (2-chloroisopropyl)		ND<3.3	10	0.3			
Bis (2-ethylhexyl) Phthalate	ND<3.3		10	0.33	4-Bromophenyl Pheny	l Ether	ND<3.3	10	0.3			
Butylbenzyl Phthalate	ND<3.3		10	0.33	4-Chloroaniline		ND<6.6	10	0.6			
4-Chloro-3-methylphenol	ND<3.3		10	0.33	2-Chloronaphthalene		ND<3.3	10	0.3			
2-Chlorophenol	ND<3.3		10	0.33	4-Chlorophenyl Pheny		ND<3.3	10	0.3			
Chrysene	ND<3.3		10	0.33	Dibenzo(a,h)anthracen	9	ND<3.3	10	0.3			
Dibenzofuran	ND<3.3		10	0.33	Di-n-butyl Phthalate		ND<3.3	10	0.3			
1,2-Dichlorobenzene	ND<3.3		10	0.33	1,3-Dichlorobenzene		ND<3.3	10	0.3			
1,4-Dichlorobenzene	ND<3.3		10 10	0.33	3,3-Dichlorobenzidine		ND<6.6	10 10	0.6			
2,4-Dichlorophenol 2,4-Dimethylphenol	ND<3.3 ND<3.3		10	0.33	Diethyl Phthalate Dimethyl Phthalate		ND<3.3 ND<3.3	10	0.3			
4,6-Dinitro-2-methylphenol	ND<3.3 ND<16		10	1.6	2,4-Dinitrophenol		ND<3.3 ND<16	10	1.0			
2,4-Dinitrotoluene	ND<10		10	0.33	2,4-Dinitrophenor		ND<10 ND<3.3	10	0.3			
Di-n-octyl Phthalate	ND<3.3		10	0.33	1,2-Diphenylhydrazine		ND<3.3	10	0.3			
Fluoranthene	ND<3.3		10	0.33	Fluorene		ND<3.3	10	0.3			
Hexachlorobenzene	ND<3.3		10	0.33	Hexachlorobutadiene		ND<3.3	10	0.3			
Hexachlorocyclopentadiene	ND<16		10		Hexachloroethane		ND<3.3	10	0.3			
Indeno (1,2,3-cd) pyrene	ND<3.3		10	0.33	Isophorone		ND<3.3	10	0.3			
2-Methylnaphthalene	ND<3.3		10	0.33	2-Methylphenol (o-Cre	sol)	ND<3.3	10	0.3			
3 &/or 4-Methylphenol (m,p-Cres	ND<3.3		10	0.33	Naphthalene		ND<3.3	10	0.3			
2-Nitroaniline	ND<16		10	1.6	3-Nitroaniline		ND<16	10	1.0			
4-Nitroaniline	ND<16	;	10	1.6	Nitrobenzene		ND<3.3	10	0.3			
2-Nitrophenol	ND<16		10	1.6	4-Nitrophenol		ND<16	10	1.0			
N-Nitrosodiphenylamine	ND<3.3	3	10	0.33	N-Nitrosodi-n-propylar	nine	ND<3.3	10	0.3			
Pentachlorophenol	ND<16		10	1.6	Phenanthrene		ND<3.3	10	0.3			
Phenol	ND<3.3		10	0.33	Pyrene		ND<3.3	10	0.3			
1,2,4-Trichlorobenzene	ND<3.		10	0.33	2,4,5-Trichlorophenol		ND<3.3	10	0.3			
2.4.6-Trichlorophenol	ND<3.3	3	10	0.33								
				ogate Re	ecoveries (%)		1					
%SS1:		77			%SS2:		68					
%SS3:		87			%SS4:	100						
%SS5:		79			%SS6: 99							

* water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

a3) sample diluted due to high organic content.

McCampbell	Analyti uality Counts"	cal,	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269											
CKG Environmental	uality Counts"	Cliar	t Droig	ot ID:	Owens Brockway				1/00					
CKG Environmental		Cilei	ii Floje	ct ID.		ampled: 08/31/09-09/01/09								
P.O. Box 246				eceived: 09/01/09										
F.O. B0X 240		Clier	nt Cont	act: Cl	xtracted: 09/01/0	9								
St. Halana, CA 04574					5	D. ()		0						
St. Helena, CA 94574		Clier	nt P.O.:			Date A	analyzed: 09/03/0	9						
	Semi-Vo	olatile	Organ	nics by (GC/MS (Basic Targe	t List)*								
Extraction Method: SW3550C			Analy	tical Met	hod: SW8270C		Work Ord	er: 090	9023					
Lab ID		0909023-018A												
Client ID					CKG-OB12 13 1									
Matrix					Soil	/2-14								
				Reporting					Repor					
Compound	Concentrat	ion *	DF	Limit	Compound		Concentration *	DF	Lin					
Acenaphthene	ND<0.6	6	2.0	0.33	Acenaphthylene		ND<0.66	2.0	0.3					
Acetochlor	ND<0.6		2.0	0.33	Anthracene		ND<0.66	2.0	0.3					
Benzidine	ND<3.2	2	2.0	1.6	Benzoic Acid		ND<3.2	2.0	1.					
Benzo(a)anthracene	ND<0.6	6	2.0	0.33	Benzo(b)fluoranthene		ND<0.66	2.0	0.					
Benzo(k)fluoranthene	ND<0.6	6	2.0	0.33	Benzo(g,h,i)perylene		ND<0.66	2.0	0.					
Benzo(a)pyrene	ND<0.6	6	2.0	0.33	Benzyl Alcohol		ND<3.2	2.0	1.					
1,1-Biphenyl	ND<0.6	6	2.0	0.33	Bis (2-chloroethoxy) M	lethane	ND<0.66	2.0	0.					
Bis (2-chloroethyl) Ether	ND<0.6	6	2.0	0.33	Bis (2-chloroisopropyl)	Ether	ND<0.66	2.0	0.					
Bis (2-ethylhexyl) Phthalate	ND<0.6	6	2.0	0.33	4-Bromophenyl Pheny	l Ether	ND<0.66	2.0	0.					
Butylbenzyl Phthalate	ND<0.6	6	2.0	0.33	4-Chloroaniline		ND<1.3	2.0	0.					
4-Chloro-3-methylphenol	ND<0.6	6	2.0	0.33	2-Chloronaphthalene		ND<0.66	2.0	0.					
2-Chlorophenol	ND<0.6		2.0	0.33	4-Chlorophenyl Pheny		ND<0.66	2.0	0.					
Chrysene	ND<0.6		2.0	0.33	Dibenzo(a,h)anthracene	9	ND<0.66	2.0	0.1					
Dibenzofuran	ND<0.6		2.0	0.33	Di-n-butyl Phthalate		ND<0.66	2.0	0.1					
1,2-Dichlorobenzene	ND<0.6		2.0	0.33	1,3-Dichlorobenzene		ND<0.66	2.0	0.1					
1,4-Dichlorobenzene	ND<0.6		2.0	0.33	3,3-Dichlorobenzidine		ND<1.3	2.0	0.0					
2,4-Dichlorophenol	ND<0.6		2.0	0.33	Diethyl Phthalate		ND<0.66	2.0	0.1					
2,4-Dimethylphenol	ND<0.6		2.0	0.33	Dimethyl Phthalate		ND<0.66	2.0	0.1					
4,6-Dinitro-2-methylphenol	ND<3.2		2.0	1.6	2,4-Dinitrophenol		ND<3.2	2.0	1.					
2,4-Dinitrotoluene	ND<0.6		2.0	0.33	2,6-Dinitrotoluene		ND<0.66	2.0	0.1					
Di-n-octyl Phthalate	ND<0.6		2.0	0.33	1,2-Diphenylhydrazine Fluorene		ND<0.66 ND<0.66	2.0	0.					
Fluoranthene	ND<0.6		2.0	0.33	Hexachlorobutadiene		ND<0.66	2.0	0.					
Hexachlorobenzene Hexachlorocyclopentadiene	ND<0.6		2.0	1.6	Hexachloroethane		ND<0.66	2.0	0.					
Indeno (1,2,3-cd) pyrene	ND<3.2		2.0	0.33	Isophorone		ND<0.66	2.0	0.					
2-Methylnaphthalene	0.8		2.0	0.33	2-Methylphenol (o-Cre	sol)	ND<0.66	2.0	0.					
3 &/or 4-Methylphenol (m,p-Cres	ND<0.6		2.0	0.33	Naphthalene	301)	ND<0.66	2.0	0.					
2-Nitroaniline	ND<3.2		2.0	1.6	3-Nitroaniline		ND<3.2	2.0	1.					
4-Nitroaniline	ND<3.2		2.0	1.6	Nitrobenzene		ND<0.66	2.0	0.1					
2-Nitrophenol	ND<3.2		2.0	1.6	4-Nitrophenol		ND<3.2	2.0	1.					
N-Nitrosodiphenylamine	ND<0.6		2.0	0.33	N-Nitrosodi-n-propyla	nine	ND<0.66	2.0	0.1					
Pentachlorophenol	ND<3.2		2.0	1.6	Phenanthrene		ND<0.66	2.0	0.1					
Phenol	ND<0.6		2.0	0.33	Pyrene		ND<0.66	2.0	0.1					
1,2,4-Trichlorobenzene	ND<0.6	6	2.0	0.33	2,4,5-Trichlorophenol		ND<0.66	2.0	0.3					
2.4.6-Trichlorophenol	ND<0.6	6	2.0	0.33										
			Surro	gate Re	coveries (%)									
%SS1:		47			%SS2:		#	#						
%SS3:		47			%SS4: 67									
%SS5:		35			%SS6:		52							

* water samples in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

a3) sample diluted due to high organic content.

	McCampbe	ell Ar		cal, In	<u>nc.</u>		: www.mccampl	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccamp	bell.com			
CKG	Environmental			Client P	roject ID: 0	Owens Brockway Date Sampled: 08/31/09-09/01/09							
P.O. B	ox 246					Date Received: 09/01/09							
				Client C	Contact: Ch	ris Kennedy	7	Date Extract	ed: 09/01	/09			
St. He	lena, CA 94574			Client P.	.0.:			Date Analyz	ed: 09/02	/09-09/	08/09		
Extractio	Gather Sw5030B	asoline l	Range (C6-C12)	•	drocarbons		with BTEX &	nd MTBE*		k Order:	0909023	
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	CKG-OB1 3 1/2-4	S	1	.8		ND	ND	ND	ND	1	80	d7	
002A	CKG-OB1 8-8 1/2	S	3	40		ND<0.050	ND<0.050	0.057	0.55	10	111	d7,d9	
003A	CKG-OB2 5-5 1/2	S	(66		ND	ND	ND	0.039	1	85	d7	
004A	CKG-OB2 12-12 1/2	S	4	50		ND<0.10	ND<0.10	ND<0.10	ND<0.10	20	70	d7	
005A	CKG-OB3 12 1/2-13	s	Ν	ND		ND	ND	ND	ND	1	76		
006A	CKG-OB4 9-9 1/2	s	Ν	ND		ND	ND	ND	ND	1	89		
007A	CKG-OB5 11 1/2-12	s		24		ND	0.013	0.070	0.064	1	99	d7,d9	
008A	CKG-OB6 5-5 1/2	S	١	ND		ND	ND	ND	ND	1	78		
009A	CKG-OB7 7 1/2-8	S	Ν	ND		ND	ND	ND	ND	1	73		
010A	CKG-OB7 12-12 1/2	s	6	5.3		ND	ND	ND	ND	1	76	d7	
011A	CKG-OB8 7 1/2-8	S	20	000		ND<0.25	0.51	2.4	10	50	97	d7,d9	
012A	CKG-OB8 13-13 1/2	S	8	340		ND<0.25	ND<0.25	4.3	2.9	50	90	d7,d9	
013A	CKG-OB9 4-4 1/2	S	1	40		ND<0.050	ND<0.050	0.26	0.18	10	#	d7,d9	
014A	СКС-ОВ9 14-14 1/2	S	8	370		ND<1.0	ND<1.0	ND<1.0	ND<1.0	200	96	d7,c2	
015A	CKG-OB11 11-11 1/2	S	Ν	ND		ND	ND	ND	ND	1	84		
016A	CKG-OB11 13 1/2-14	S	2	280		ND<0.25	ND<0.25	ND<0.25	ND<0.25	50	85	d7	
-	rting Limit for DF =1;	W	4	50	5.0	0.5	0.5	0.5	0.5		ug/I		
	eans not detected at or ve the reporting limit	S	1	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	Kg	

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

c2) estimated value due to low surrogate recovery, caused by matrix interference.

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

	McCampbe	ell An en Oualitv		cal, Ir	<u>nc.</u>		: www.mccamp	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa:	main@mccamp	bell.com		
CKG	Environmental			Client P	roject ID: (Owens Brock	ƙway	Date Sample	d: 08/31	/09-09/	01/09	
P.O. B	ox 246							Date Receive	ed: 09/01	/09		
				Client C	Contact: Ch	ris Kennedy		Date Extract	ed: 09/01	/09		
St. He	lena, CA 94574			Client P	.0.:			Date Analyz	ed: 09/02	2/09-09/	08/09	
Extractio	Ga on method: SW5030B	asoline I	Range (C6-C12)	•	drocarbons		e with BTEX a	nd MTBE*		k Order:	0909023
Lab ID	Client ID	Matrix	TP	H(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
017A	CKG-OB12 3 1/2-4	S	2	400		ND<1.0	ND<1.0	4.9	11	200	#	d7,d9
018A	CKG-OB12 13 1/2-14	S	4	90		ND<0.25	ND<0.25	0.50	1.2	50	#	d7,d9
019A	CKG-OB13 10-10 1/2	S	I	ND		ND	ND	ND	ND	1	91	
020A	CKG-OB14 10-10 1/2	s	8	390		ND<0.25	1.1	2.5	5.5	50	70	d7,d9
021A	CKG-OB14 15-15 1/2	s	2	20		ND<0.10	0.25	0.62	1.1	20	95	d7,d9
022A	CKG-OB15 4-4 1/2	S	l	ND		ND	ND	ND	ND	1	74	
023A	CKG-OB15 9-9 1/2	s	4	00		ND<0.10	ND<0.10	0.51	1.5	20	82	d7,d9
024A	CKG-OB6 7 1/2-8	s]	ND		ND	ND	ND	ND	1	83	
Repor	ting Limit for DF =1;	W		50	5.0	0.5	0.5	0.5	0.5		ug/I	<u> </u>
ND m	eans not detected at or ve the reporting limit	s		1.0	0.05	0.005	0.005	0.005	0.005		mg/k	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

c2) estimated value due to low surrogate recovery, caused by matrix interference.

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

	Campbell Analyt	ical, Inc.	Web: www.n	illow Pass Road, Pittsburg, CA accampbell.com E-mail: main@ hone: 877-252-9262 Fax: 925				
CKG Environme	ental	Client Project ID	: Owens Brockway	Date Sampled:	08/31/	09-09/01/	09	
P.O. Box 246				Date Received:	09/01/	09		
P.O. DOX 240		Client Contact:	Chris Kennedy	Date Extracted:	09/01/	09		
St. Helena, CA 9	4574	Client P.O.:		Date Analyzed:	09/01/09-09/06/09			
Extraction method: S			m Hydrocarbons with nethods: SW8015B	Silica Gel Clean-Up*	W	ork Order:	0909023	
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comment	
0909023-001A	023-001A CKG-OB1 3 1/2-4		ND	ND	1	94		
0909023-002A	CKG-OB1 8-8 1/2	S	510	180	10	91	e1	
0909023-003A	CKG-OB2 5-5 1/2	S	710	190	10	88	e1	
0909023-004A	CKG-OB2 12-12 1/2	S	150	98	1	94	e2,e7	
0909023-005A	CKG-OB3 12 1/2-13	S	ND	ND	1	94		
0909023-006A	CKG-OB4 9-9 1/2	S	19	59	5	90	e7,e2	
0909023-007A	CKG-OB5 11 1/2-12	S	63	18	1	94	e1	
0909023-008A	CKG-OB6 5-5 1/2	S	ND	ND	1	94		
0909023-009A	CKG-OB7 7 1/2-8	S	9.9	ND	1	95	e3	
0909023-010A	CKG-OB7 12-12 1/2	S	ND	ND	1	94		
0909023-011A	CKG-OB8 7 1/2-8	S	1800	390	20	98	e8,e7	
0909023-012A	CKG-OB8 13-13 1/2	S	580	170	20	101	e8,e7	
0909023-013A	CKG-OB9 4-4 1/2	S	140	200	5	96	e7,e2,e1	
0909023-014A	CKG-OB9 14-14 1/2	S	760	190	10	111	e8/e1,e7	
0909023-015A	CKG-OB11 11-11 1/2	S	ND	ND	1	99		
Repor	rting Limit for DF =1;	W	NA	NA		ug/L		
	eans not detected at or ve the reporting limit	S	1.0	5.0		mg/K	g	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e1) unmodified or weakly modified diesel is significant; and/or e8) kerosene/kerosene range/jet fuel range

e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

	Campbell Analyti	cal, Inc.	Web: www.	/illow Pass Road, Pittsburg, CA mccampbell.com E-mail: main ohone: 877-252-9262 Fax: 925	@mccampbell.com 5-252-9269				
CKG Environm	nental	Client Project II	D: Owens Brockway	Date Sampled:	08/31/	09-09/01/	09		
P.O. Box 246				Date Received:	09/01/	09			
1.0. DOX 240		Client Contact:	Chris Kennedy	Date Extracted:	09/01/	09			
St. Helena, CA	94574	Client P.O.:		Date Analyzed:	09/01/	09-09/06/	09		
	Total Ext	actable Petroleu	ım Hydrocarbons with	Silica Gel Clean-Up*					
Extraction method:	SW3550C/3630C	Analytical	methods: SW8015B		W	ork Order:	0909023		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments		
0909023-016A	CKG-OB11 13 1/2-14	S	800	360	5	101	e1,e7		
0909023-017A	CKG-OB12 3 1/2-4	S	7500	3600	200	104			
0909023-018A	CKG-OB12 13 1/2-14	S	220	87	1	104	e8/e1,e7		
0909023-019A	CKG-OB13 10-10 1/2	S	8.5	14	1	93	e7,e2		
0909023-020A	CKG-OB14 10-10 1/2	S	3100	3200	200	117	e7,e2,e11		
0909023-021A	CKG-OB14 15-15 1/2	S	290	260	10	90	e2,e7		
0909023-022A	CKG-OB15 4-4 1/2	S	2.8	ND	1	93	e2,e11		
0909023-023A	CKG-OB15 9-9 1/2	S	430	140	5	94	e1/e8,e7		
0909023-024A	CKG-OB6 7 1/2-8	S	ND	ND	1	91			

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e1) unmodified or weakly modified diesel is significant; and/or e8) kerosene/kerosene range/jet fuel range

e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e1) unmodified or weakly modified diesel is significant

e11) stoddard solvent/mineral spirit (?)

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8270C

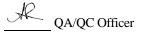
W.O. Sample Matrix: Soil			QC Matri	x: Soil			Batch	ID: 45482		WorkC	Order 09090	23
EPA Method SW8270C	Extra	ction SW	3550C					s	Spiked San	nple ID	: 0909023-0)18A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Acenaphthene	ND<0.66	2	86.9	82	5.82	79.7	78.1	2.04	30 - 130	30	30 - 130	30
4-Chloro-3-methylphenol	ND<0.66	4	90.6	83.6	8.07	83.6	81.2	2.97	30 - 130	30	30 - 130	30
2-Chlorophenol	ND<0.66	4	88.4	85.6	3.23	98.8	97.1	1.76	30 - 130	30	30 - 130	30
1,4-Dichlorobenzene	ND<0.66	2	91.7	89.1	2.87	91.3	90	1.43	30 - 130	30	30 - 130	30
2,4-Dinitrotoluene	ND<0.66	2	83.5	83.4	0.0958	99.7	94.5	5.40	30 - 130	30	30 - 130	30
4-Nitrophenol	ND<3.2	4	81.4	82.9	1.82	63	58.2	7.89	30 - 130	30	30 - 130	30
N-Nitrosodi-n-propylamine	ND<0.66	2	128	126	1.74	84.5	80.2	5.25	30 - 130	30	30 - 130	30
Pentachlorophenol	ND<3.2	4	36.1	35.3	2.32	65.2	58.1	11.5	30 - 130	30	30 - 130	30
Phenol	ND<0.66	4	96	95.5	0.532	95.8	93.9	1.95	30 - 130	30	30 - 130	30
Pyrene	ND<0.66	2	80.8	78.7	2.64	77.8	73.5	5.59	30 - 130	30	30 - 130	30
1,2,4-Trichlorobenzene	ND<0.66	2	75.7	75	0.862	83.7	76.7	8.72	30 - 130	30	30 - 130	30
%SS1:	47	200	80	76	6.09	77	75	3.32	30 - 130	30	30 - 130	30
%SS2:	#	200	78	75	4.29	81	78	3.74	30 - 130	30	30 - 130	30
%SS3:	47	200	75	72	3.15	75	69	7.35	30 - 130	30	30 - 130	30
%SS4:	67	200	67	64	4.98	76	78	2.00	30 - 130	30	30 - 130	30
%SS5:	35	200	73	75	1.75	76	70	7.40	30 - 130	30	30 - 130	30
%SS6:	52	200	67	64	4.51	67	66	2.97	30 - 130	30	30 - 130	30

NONE

			<u>BATCH 45482 SI</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909023-002A	08/31/09	09/01/09	09/05/09 10:24 PM	0909023-018A	09/01/09	09/01/09	09/03/09 4:02 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

#) surrogate diluted out of range; & = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

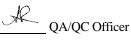
W.O. Sample Matrix: Soil			QC Matri	k: Soil		BatchID: 45486 WorkOrder 090902					23	
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID: 0908737-002A		
Analyte	Analyte Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%											
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	107	114	6.26	109	112	2.86	70 - 130	20	70 - 130	20
MTBE	ND	0.10	112	114	1.40	109	112	2.78	70 - 130	20	70 - 130	20
Benzene	ND	0.10	94.4	98.3	3.99	96.7	99.5	2.83	70 - 130	20	70 - 130	20
Toluene	ND	0.10	94.7	101	6.59	96.4	99.1	2.78	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	92.8	95.6	3.01	93.8	96.9	3.27	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	94.2	96.2	2.11	94.6	97.9	3.39	70 - 130	20	70 - 130	20
%SS:	84	0.10	81	84	3.35	84	85	1.51	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

BATCH 45486 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909023-001A	08/31/09	09/01/09	09/05/09 1:11 AM	0909023-002A	08/31/09	09/01/09	09/03/09 8:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matriz	x: Soil			BatchID: 45523 WorkOrder 090				Order 09090	23
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					s	Spiked San	nple ID	: 0909009-0	001A
Analyte	te Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Crit											
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	108	111	2.69	107	111	4.04	70 - 130	20	70 - 130	20
MTBE	ND	0.10	91.6	98.1	6.90	100	102	1.52	70 - 130	20	70 - 130	20
Benzene	ND	0.10	91.3	95.6	4.65	93.4	98.2	5.10	70 - 130	20	70 - 130	20
Toluene	ND	0.10	89.4	94.6	5.63	92	95.9	4.15	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	90.5	95.4	5.26	93.4	96.5	3.28	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	92.7	98.5	6.10	96	98.6	2.70	70 - 130	20	70 - 130	20
%SS:	95	0.10	98	100	1.83	106	99	6.58	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

			<u>BATCH 45523 SU</u>	JMMARY				
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0909023-024A	08/31/09	09/01/09	09/03/09 2:30 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil			QC Matriz	x: Soil		BatchID: 45533 WorkOrder 09090						23
EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 0909023-0)15A
Analyte	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%											
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	114	122	6.09	118	112	4.62	70 - 130	20	70 - 130	20
MTBE	ND	0.10	122	123	0.705	118	117	0.407	70 - 130	20	70 - 130	20
Benzene	ND	0.10	98	97.7	0.322	95.9	92.5	3.56	70 - 130	20	70 - 130	20
Toluene	ND	0.10	95.6	95.6	0	93.8	90.1	4.01	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	94.2	94.6	0.368	92.4	89.3	3.41	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	95.3	96.2	0.941	93.8	90.9	3.15	70 - 130	20	70 - 130	20
%SS:	84	0.10	90	98	8.44	88	81	9.03	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909023-003A	08/31/09	09/01/09	09/03/09 7:06 AM	0909023-004A	08/31/09	09/01/09	09/02/09 9:21 PM
0909023-005A	08/31/09	09/01/09	09/04/09 2:19 AM	0909023-006A	08/31/09	09/01/09	09/04/09 3:20 AM
0909023-007A	08/31/09	09/01/09	09/04/09 11:48 PM	0909023-008A	08/31/09	09/01/09	09/05/09 12:18 AM
0909023-009A	08/31/09	09/01/09	09/05/09 2:17 AM	0909023-010A	08/31/09	09/01/09	09/05/09 3:17 AM
0909023-011A	09/01/09	09/01/09	09/04/09 7:50 AM	0909023-012A	09/01/09	09/01/09	09/05/09 6:16 AM
0909023-013A	09/01/09	09/01/09	09/06/09 1:44 AM	0909023-014A	09/01/09	09/01/09	09/02/09 10:54 PM
0909023-015A	09/01/09	09/01/09	09/02/09 11:25 PM	0909023-016A	09/01/09	09/01/09	09/04/09 11:35 AM
0909023-017A	09/01/09	09/01/09	09/05/09 10:49 PM	0909023-018A	09/01/09	09/01/09	09/05/09 11:59 PM
0909023-019A	09/01/09	09/01/09	09/04/09 2:50 AM	0909023-020A	09/01/09	09/01/09	09/08/09 6:53 PM
0909023-021A	09/01/09	09/01/09	09/03/09 12:27 AM	0909023-022A	09/01/09	09/01/09	09/05/09 2:47 AM
0909023-023A	09/01/09	09/01/09	09/04/09 8:20 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil		BatchID: 45457 Work					23					
EPA Method SW8015B	Extra	ction SW	3550C/3	630C				5	Spiked San	nple ID	: 0908738-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	ND	20	91.6	91.8	0.180	93.1	92.9	0.279	70 - 130	30	70 - 130	30
%SS:	94	50	99	99	0	96	95	0.594	70 - 130	30	70 - 130	30
All target compounds in the Meth NONE										50	70 130	5

BATCH 45457 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909023-021A	09/01/09	09/01/09	09/06/09 1:17 PM	0909023-022A	09/01/09	09/01/09	09/05/09 12:57 PM
0909023-023A	09/01/09	09/01/09	09/05/09 11:47 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil		(QC Matrix	c: Soil			Batch	ID: 45534		WorkOrder: 0909023					
EPA Method SW8015B	nod SW8015B Extraction SW3550C/3630C									Spiked Sample ID: 0909023-020A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)				
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH-Diesel (C10-C23)	3100	20	NR	NR	NR	94.9	95.2	0.394	70 - 130	30	70 - 130	30			
%SS:	117	50	95	105	9.59	101	102	0.972	70 - 130	30	70 - 130	30			
All target compounds in the Meth- NONE	od Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:						

BATCH 45534 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909023-001A	08/31/09	09/01/09	09/01/09 10:45 PM	0909023-002A	08/31/09	09/01/09	09/03/09 4:31 AM
0909023-003A	08/31/09	09/01/09	09/01/09 10:36 PM	0909023-004A	08/31/09	09/01/09	09/02/09 3:18 AM
0909023-005A	08/31/09	09/01/09	09/02/09 4:27 AM	0909023-006A	08/31/09	09/01/09	09/02/09 11:44 PM
0909023-007A	08/31/09	09/01/09	09/02/09 5:35 AM	0909023-008A	08/31/09	09/01/09	09/02/09 6:43 AM
0909023-009A	08/31/09	09/01/09	09/02/09 7:52 AM	0909023-010A	08/31/09	09/01/09	09/02/09 9:00 AM
0909023-011A	09/01/09	09/01/09	09/02/09 3:18 AM	0909023-012A	09/01/09	09/01/09	09/02/09 4:28 AM
0909023-013A	09/01/09	09/01/09	09/02/09 5:37 AM	0909023-014A	09/01/09	09/01/09	09/02/09 6:52 PM
0909023-015A	09/01/09	09/01/09	09/02/09 7:57 AM	0909023-016A	09/01/09	09/01/09	09/02/09 9:08 AM
0909023-017A	09/01/09	09/01/09	09/03/09 3:20 AM	0909023-018A	09/01/09	09/01/09	09/03/09 8:03 AM
0909023-019A	09/01/09	09/01/09	09/05/09 9:26 AM	0909023-020A	09/01/09	09/01/09	09/05/09 8:17 AM
0909023-024A	08/31/09	09/01/09	09/05/09 7:08 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	ain@mccampbell.com
CKG Environmental	Client Project ID: Owens	Brockway	Date Sampled:	08/31/09-09/01/09
P.O. Box 246			Date Received:	09/01/09
St. Helena, CA 94574	Client Contact: Chris Ker	nnedy	Date Reported:	09/09/09
54. Holonu, 671 94574	Client P.O.:		Date Completed:	09/09/09

WorkOrder: 0909021

September 09, 2009

Dear Chris:

Enclosed within are:

- 1) The results of the 12 analyzed samples from your project: Owens Brockway,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Webs Telep	F site: <u>www.mc</u> phone: (877)	534 WILI PITTSBUR campbell. 252-926	LOW PAS G, CA 945 <u>com</u> Ema 2	S ROA 65-170 ail: ma	D 1 in@r Fax:		npb	ell.co		24		1		UR G			DUI	ND r El	TII DF	ME] I Chec	RI PDF ek if	USH			R cel	48 48	HR Wand "	Vrite	2 HR 2 Or lag is	5 DAY 5 DAY (DW) 5 required Comment
Report To: CHA Company: CKG Tele: () Project #: Project Location: Sampler Signature	AKLAN		E F:	-Mail ax: (roject) ne: @	WA	15 20	6(K				(602 / 8021 + 8015) / MTBE	40	Grease (1664 / 5520 E/B&F)	Hydrocarbons (418.1)	601 / 8010 / 8021 (HVOCs)	/ BTEX ONLY (EPA 602 / 8021)	Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	sticides)	8151 (Acidic Cl Herbicides)	VOCs)	(SVOCs)	PAHs / PNAs)	200.87 60107 6020	7/200.8/6010/6020)	forms int		6	Filter Samples for Metal: analysis: Yes / No
SAMPLE IN 1	LOCATION/ Field Point Name	SAMP	LING Time	# Containers	Type Containers	er		Sludge		PRE	SEI	Other Days	TPH as Gas	TPH as Diesel (8015) 🕇	Total Petroleum Oil & C	Total Petroleum Hydroc	EPA 502.2 / 601 / 8010 /	THEY BLEN ONLY (EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's (EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic	EPA 524.2 / 624 / 8260 (VOCs)		EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.77/200.87/60107/6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 /	Lead (200.77 200.87 001			
CKG-OB1		8/3/1/29	0930	3	V	X					X							X					X								
CKG-0B1 CKG-0B1 CKG-0B2 CKG-0B2		- 7	6930	1_	A	X			-		X		-	X						_	-	_	-	-		-	_	-	-	-	
CK6-0B2			1630	3	V	X	-	-	-		X		-	-	1	-	-	X	-	-		-	+	-		-	-	+	-	- 7	
CK6-0152 CK6-0B3			1030	3	A	Ŷ	+	+	-		X	-	+	X	-	-		X		-	+	-	-	-	-	-	-	-	-	-	
CK6-0B3			1130	1	A	x	-	-	1		X		+	X	-		-	^													
CK6-0B4			1330	3	V	X					X			1				X	100												
CKG-034			1330	1	A	X					×			X																	
CKG-0B5			1430	3	V	X		1			X							×	-		10										11.15
CKG-0B5			1430	1	A	X					X	-		x		1					1									1978	
CKG-0B6	1.1.1.1.1.1.1		1530	3	V	X		-	-		X		-		123	-		X									-	-	-	-	
CK6-086		V	1530	1	A	X					X		+	X	-			v	11.				-						-	-	
CUG-0158		9/1/69	0830	13	V	X			-		XX		-	1	-		113	X	-			1.91	-					-		1	
Relinquished By:		Date: Date: Date:	DBS Time: 350 Time:	Rec	eived	By:	- 0		-	>	~			CE/P GOOI HEAD DECH	O CO SPA	NDI CE UNA	TION ABSI TED	ENT IN I				-					CON	IME	NTS:		
Relinquished By:	M	Date:	Time:	Rec	eived	By:	V		V				P	PRES	OPR ERV	IATI ED I	E CO N LA V	ONTA AB	INE	RS &G				от	IER						

Wet Tele	ephone: (877 (15) Kerry	1534 WII PITTSBU ccampbel) 252-920	LLOW PAS RG, CA 94 Lcom Em 62 B	SS RO.	AD 01 ain@ Fax:		pbe	ll.con									OU	ND			E PD	F	RUS If sa	H Ex	24 cel	HR		48 H Wri	HR ite C id "J	72 I 72 I	· /3
Company: CKG Tele: () Project #: Project Location: Sampler Signature	Енивона Онкур	uley del	P	E-Mai ax: (rojec) t Nan						THOI		as Gas (602 / 8021 + 8015) / MTBE	+ 40	Totul Petroleum Oil & Grease (1664 / 5520 E/B&F)	rocarbons (418.1)		#/ BTEX ONLY (EPA 602 / 8021)	CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	Pesticides)	idic Cl Herbicides)) (VOCs)	(SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	8 / 6020)	7/200.8/6010/6020)	010 / 6020)			Filter Sampl for Me analys Yes / N
SAMPLE ID	LOCATION/ Field Point Name	SAMF Date	Time	# Containers	Type Containers	Water	Air			RES	ERVI	Other 3	BTEX & TPH as Gas	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	VINO XELE / BTEX ONLY	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB ¹	EPA 507 / 8141 (NP Pesticides)	EPA \$15.3 / \$151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)			
CK6-039		9/1/09	1	3	Y	X				X				X				X					Re la								
CKG-0B9		7		1	A	X	-		-	X		-	-	×	-	_	-		_	_	_	_	NR.			_	-			-	-
CK6-0B/1	4.0.011			3	V	X	-		+	X		-	-	X	+	-		Х	-	_	_	-	Ne K			-	-			-	
O MELANBIT	CRG-OBII			1	A	X	-		+	X		-	-	^	+	-	-	V				-	18			-	-			-	-
CKG-0B13 CKG-0B13				3	V	X	-		+	X		-		x	-	-	_	X				-	N				-			-	-
				3	A	x	-		+			-	-	^	+	-	_	x				-	×				-			-	
CKG-0B12				-	Y	$\hat{\mathbf{v}}$			+	X	-			x				~				-	~								
CILG-0BIG				3	A	x			+	V				^				X					_							-	
CKG DDIS		1.V		1	X	ĉ			+	î				v				^													
					-11																										
2.0	-	1.																													
Relinquished By:		Date:	Time:	Rece	ived B	y:	_			_	-		ICE	/t°	ON	DIT	ION										CO	MM	ENTS	:	
Relinquished By:	-Jg	Date:	Time:	Rece	ived, B	he	2	V	a	2	_	-	HE/ DEC	DS	PAC	E A NAT	BSE ED CON	NT_IN L		s_		-									
Relinquished By:	t	Date:	Time:	Rece	ived B	y!								SER			vo	-	08		ME pH<				HER						

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	52-9262					Work	Order:	09090	21	(ClientC	ode: C	KGS				
		WaterTrax	WriteOn	EDF	Ľ	Excel	[Fax		Email		Hard	Сору	Thir	dParty	J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
Chris Kenne CKG Enviro P.O. Box 24 St. Helena, (707) 967-808	nmental 6 CA 94574	cc: PO: ProjectNo: (kennedy@ge Dwens Brockv	-			CK P.C	counts F G Envir D. Box 2 Helena	onmen 46	tal				e Rece e Print		09/01/ 09/01/	2009
									Requ	ested	Tests	(See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0909021-001	CKG-0B1		Water	8/31/2009 9:30		В	А	С								1	
0909021-002	CKG-0B2		Water	8/31/2009 10:30			А	В									
0909021-003	CKG-0B3		Water	8/31/2009 11:30			А	В									
0909021-004	CKG-0B4		Water	8/31/2009 13:30			А	В									
0909021-005	CKG-0B5		Water	8/31/2009 14:30			А	В									
0909021-006	CKG-0B6		Water	8/31/2009 15:30			А	В									
0909021-007	CKG-0B8		Water	9/1/2009 8:30			Α	В									
0909021-008	CKG-0B9		Water	9/1/2009			Α	В									
0909021-009	CKG-0B11		Water	9/1/2009			Α	В									
0909021-010	CKG-0B13		Water	9/1/2009			Α	В									

9/1/2009

9/1/2009

Test Legend:

0909021-011

0909021-012

1	8260B_W	2
6		7
11		12

CKG-0B12

CKG-0B15

G-MBTEX_W	3	
	8	

Water

Water

В

А

А

С

В

4	
9	-

5		
10		

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	CKG Environmen	tal				Date	and Time Received:	9/1/2009 7	:08:14 PM
Project Name:	Owens Brockwa	у				Chec	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0909021	Matrix	<u>Water</u>			Carrie	er: <u>Rob Pringle (M</u>	AI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Inform	ation		
Chain of custody	present?			Yes	✓	No 🗆			
Chain of custody	signed when relinqui	shed and	d received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample I	abels?		Yes		No 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ient on C	OC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes	✓	No 🗆			
			Sa	ample	Receipt	Informatio	<u>n</u>		
Custody seals int	tact on shipping conta	iner/cool	er?	Yes		No 🗆		NA 🗹	
Shipping containe	er/cooler in good cond	lition?		Yes	✓	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?		Yes		No 🗌			
		<u>Sa</u>	mple Preser	vation	and Ho	ld Time (H1	[] Information		
All samples recei	ved within holding tim	e?		Yes		No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	4.6°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no b	ubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation	ו?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2	2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type	e: WE	TICE))			
* NOTE: If the "N	lo" box is checked, se	ee comm	ents below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

When Our "When Our	Analytical, I ulity Counts"	<u>nc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
CKG Environmental	Client	Project ID	D: Owe	ens Brockway	Date Sampled:	08/31/09					
					Date Received:	09/01/09					
P.O. Box 246	Client	Contact:	09/03/09								
St. Helena, CA 94574	Client		01110		Date Extracted: Date Analyzed						
			0 T			07/03/07					
	Volatile Orga	•		d GC/MS (Basic T	arget List)*						
Extraction Method: SW5030B		Analyti	cal Metho	od: SW8260B		Work Order: 0909	9021				
Lab ID				090902							
Client ID CKG-0B1 Matrix Water											
Matrix			Reporting			Concentration *		Reportin			
Compound	Concentration *	DF	Limit	Compou	Compound		DF	Limit			
Acetone	ND<330	33	10	tert-Amyl methyl e	ether (TAME)	ND<17	33	0.5			
Benzene	710	33	0.5	Bromobenzene		ND<17	33	0.5			
Bromochloromethane	ND<17	33	0.5	Bromodichloromet	hane	ND<17	33	0.5			
Bromoform	ND<17	33	0.5	Bromomethane		ND<17 ND<67	33	0.5			
2-Butanone (MEK)	ND<67	33	2.0	t-Butyl alcohol (TE			33	2.0			
n-Butyl benzene	100	33	0.5	sec-Butyl benzene	•		33	0.5			
tert-Butyl benzene	ND<17	33	0.5	Carbon Disulfide			33	0.5			
Carbon Tetrachloride	ND<17	33 33	0.5	Chlorobenzene	Chloroform		33	0.5			
Chloroethane	ND<17		0.5			ND<17	33	0.5			
Chloromethane 4-Chlorotoluene	ND<17 ND<17	33 33	0.5	2-Chlorotoluene Dibromochloromet	hana	ND<17 ND<17	<u>33</u> 33	0.5			
1,2-Dibromo-3-chloropropane	ND<17	33	0.3	1,2-Dibromoethane (EDB)		ND<17	33	0.5			
Dibromomethane	ND<0.7	33	0.2	1,2-Dibromoetnane (EDB)		ND<17	33	0.5			
1,3-Dichlorobenzene	ND<17	33	0.5	1,4-Dichlorobenzer			33	0.5			
Dichlorodifluoromethane	ND<17	33	0.5	1,1-Dichloroethane		ND<17 ND<17	33	0.5			
1,2-Dichloroethane (1,2-DCA)	ND<17	33	0.5	1,1-Dichloroethene		ND<17	33	0.5			
cis-1,2-Dichloroethene	ND<17	33	0.5	trans-1,2-Dichloro		ND<17	33	0.5			
1,2-Dichloropropane	ND<17	33	0.5	1,3-Dichloropropa		ND<17	33	0.5			
2,2-Dichloropropane	ND<17	33	0.5	1,1-Dichloroproper	ne	ND<17	33	0.5			
cis-1,3-Dichloropropene	ND<17	33	0.5	trans-1,3-Dichloro		ND<17	33	0.5			
Diisopropyl ether (DIPE)	ND<17	33	0.5	Ethylbenzene		360	33	0.5			
Ethyl tert-butyl ether (ETBE)	ND<17	33	0.5	Freon 113		ND<330	33	10			
Hexachlorobutadiene	ND<17	33	0.5	Hexachloroethane		ND<17	33	0.5			
2-Hexanone	ND<17	33	0.5	Isopropylbenzene		91	33	0.5			
4-Isopropyl toluene	ND<17	33	0.5	Methyl-t-butyl ethe	er (MTBE)	320	33	0.5			
Methylene chloride	ND<17	33	0.5	4-Methyl-2-pentan	one (MIBK)	ND<17	33	0.5			
Naphthalene	190	33	0.5	n-Propyl benzene		220	33	0.5			
Styrene	ND<17	33	0.5	1,1,1,2-Tetrachlor	oethane	ND<17	33	0.5			
1,1,2,2-Tetrachloroethane	ND<17	33	0.5	Tetrachloroethene		ND<17	33	0.5			
Toluene	ND<17	33	0.5	1,2,3-Trichloroben		ND<17	33	0.5			
1,2,4-Trichlorobenzene	ND<17	33	0.5	1,1,1-Trichloroetha	ane	ND<17	33	0.5			
1,1,2-Trichloroethane	ND<17	33	0.5	Trichloroethene		ND<17	33	0.5			
Trichlorofluoromethane	ND<17	33	0.5	1,2,3-Trichloropro		ND<17	33	0.5			
1,2,4-Trimethylbenzene Vinvl Chloride	92 ND <17	33	0.5	1,3,5-Trimethylber Xylenes	izene	190	33	0.5			
viiivi Unioride	ND<17	33	0.5			320	33	0.5			
			gate Re	ecoveries (%)			_				
%SS1:		95		%SS2:		9	3				
%SS3: Comments: b6,b1	8	31									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

When Oua	Analytical, Ir	<u>1C.</u>		Web: www.mccam	Pass Road, Pittsburg, Ca pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com		
CKG Environmental	Client F	Project ID	: Owe	ens Brockway	Date Sampled:	09/01/09		
				09/01/09				
P.O. Box 246	Client	Contact:	09/04/09					
St. Helena, CA 94574			CIIIIS	Itennedy	Date Extracted:			
St. Helena, CA 94374	Client P				Date Analyzed	09/04/09		
	Volatile Organ	nics by P	&T an	d GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B		Analytic	al Metho	d: SW8260B		Work Order: 0909	021	
Lab ID				090902	1-011B			
Client ID				CKG	-0B12			
Matrix				Wa	iter			
Compound	Concentration *	DF	Reporting Limit	Compou	ınd	Concentration *	DF	Reportir Limit
Acetone	13	1.0	10	tert-Amyl methyl o	ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TH	BA)	ND	1.0	2.0
n-Butyl benzene	6.1	1.0	0.5	sec-Butyl benzene	•		1.0	0.5
tert-Butyl benzene	1.4	1.0	0.5	Carbon Disulfide			1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)		ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzer		ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloro		ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropa		ND	1.0	0.5
2,2-Dichloropropane cis-1,3-Dichloropropene	ND ND	<u>1.0</u> 1.0	0.5	1,1-Dichloroprope trans-1,3-Dichloro		ND ND	<u>1.0</u> 1.0	0.5
		1.0	0.5		propene	ND	1.0	0.5
Diisopropyl ether (DIPE) Ethyl tert-butyl ether (ETBE)	ND ND	1.0	0.5	Ethylbenzene Freon 113		ND ND	1.0	0.5
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		2.3	1.0	0.5
4-Isopropyl toluene	3.9	1.0	0.5	Methyl-t-butyl eth	er (MTRF)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentan		ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	lone (wildie)	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachlor	oethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroeth		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro	pane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber		ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
		Surro	gate Re	ecoveries (%)				
%SS1:	7'			%SS2:		9'	7	
%SS3:	10							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

	McCampbo	ell An en Ouality		cal, Ir	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
CKG	Environmental			Client P	Project ID: 0	Owens Brock	kway	Date Sample	ed: 08/31	/09-09/	01/09			
P.O. B	ox 246							Date Receiv	ed: 09/01	/09				
11012				Client C	Contact: Ch	ris Kennedy	Xennedy Date Extracted: 09/03/09-09/08/09							
St. He	lena, CA 94574	Client P	2.0.:			Date Analyz	ed: 09/03	5/09-09/	08/09					
Extractio	Gan method: SW5030B	asoline F	Range ((C6-C12)	-	drocarbons		e with BTEX a	nd MTBE*		k Order:	0909021		
Lab ID	D Client ID Matrix TPH(g) MTBE				MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	CKG-0B1	w	17,	000		720	ND<25	400	340	50	112	d1,b6,b1		
002A	CKG-0B2	w	15,	000		ND<10	ND<10	ND<10	ND<10	20	101	d7,b6,b1		
003A	CKG-0B3	w	Ν	ID		ND	ND	ND	ND	1	100	b1		
004A	CKG-0B4	W	N	ID		ND	ND	ND	ND	1	97	b1		
005A	CKG-0B5	w	24	40		ND	1.6	ND	ND	1	109	d9,b1		
006A	CKG-0B6	W	N	ID		ND	ND	ND	ND	1	96	b1		
007A	CKG-0B8	w				ND<10	ND<10	17	ND<10	20	108	d7,d9,b6,b1		
008A	CKG-0B9	w	23,	000		ND<10	ND<10	46	200	20	107	d7,d9,b6,b1		
009A	CKG-0B11	w				ND	ND	ND	ND	1	96	d7,b1		
010A	CKG-0B13	w	-			ND	ND	ND	ND	1	97	b1		
011A	CKG-0B12	W	-			ND<2.5	ND<2.5	3.8	10	5	115	d7,b6,b1		
012A	CKG-0B15	W	-			ND<5.0	ND<5.0	ND<5.0	ND<5.0	10	100	d7,b6,b1		
-	ting Limit for DF =1;	W	5	50	5.0	0.5	0.5	0.5	0.5		μg/I			
	eans not detected at or ve the reporting limit	S	1	.0	0.05	0.005	0.005	0.005	0.005		mg/k	Хg		

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d1) weakly modified or unmodified gasoline is significant

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

When Ouality		<u>.</u>		Web: www.mccamp		A 94565-1701 n@mccampbell.c 25-252-9269	com
CKG Environmental	Client Pr	roject ID: (Owens	Brockway	Date Sampled:	08/31/09-0	9/01/09
P.O. Box 246					Date Received:	09/01/09	
F.O. DOX 240	Client C	ontact: Ch	ris Kei	nnedy	Date Extracted:	09/01/09	
St. Helena, CA 94574	Client P.	0.:			Date Analyzed	09/02/09-0	9/09/09
	Total Extra	ctable Petro	oleum 1	Hydrocarbons*			
Extraction Method: SW3510C	Ana	lytical Method	: SW801	5B		Work Order:	0909021
Lab ID	0909021-001C	0909021-	002B	0909021-003B	0909021-004B		
Client ID	CKG-0B1	CKG-0	0B2 CKG-0B3		CKG-0B4	Reporting DF	
Matrix	W	W	W W		W		
DF	50	400		1	1	S	W
Compound		Conce	entration		ug/kg	μg/L	
TPH-Diesel (C10-C23)	220,000	720,00	00	270	410	NA	50
TPH-Motor Oil (C18-C36)	53,000	630,00	630,000 310		520	NA	250
	Surr	ogate Reco	overies	s (%)			
%SS:	102	96		97	111		
Comments	e11/e8,e3,e7,b6,b	e7,e2,b6	5,b1	e7,e2,b1	e7,e2,b1		
 ^k water samples are reported in µg/L, wipng/L, and all DISTLC / STLC / SPLP / ' ^k cluttered chromatogram resulting in codiminished by dilution of original extract ^k The following descriptions of the TPH nterpretation: ^b aqueous sample that contains greate ^b lighter than water immiscible sheen/ ^c unmodified or weakly modified diese ^c diesel range compounds are signification 	TCLP extracts are re eluted surrogate and ct. chromatogram are c r than ~1 vol. % sedi product is present cl is significant; and/o	eported in µg sample peak eursory in na iment or e8) kerose	/L.	nrogate peak is on McCampbell Anal	elevated baseline, o	or; surrogate h	as been

WcCampbell An "When Ouality		<u>c.</u>		Web: www.mccamp		A 94565-1701 n@mccampbell.c 5-252-9269	com
CKG Environmental	Client Pr	oject ID: 0	Owens	Brockway	Date Sampled:	08/31/09-0	9/01/09
					Date Received:	09/01/09	
P.O. Box 246	Client C	ontact: Ch	ris Ke	nnedy	Date Extracted:	09/01/09	
St. Helena, CA 94574	Client P.				Date Analyzed	09/02/09-0	9/09/09
				(T d			
Extraction Method: SW3510C		lytical Method		Hydrocarbons* 5B		Work Order:	0909021
Lab ID	0909021-005B	0909021-	006B	0909021-007B	0909021-008B		
Client ID	CKG-0B5	CKG-0B5 CKG-0		CKG-0B8	CKG-0B9	Reporting DF	
Matrix	W	W		W	W	1	
DF	1	2		50	100	S	W
Compound			Conce		ug/kg	μg/L	
TPH-Diesel (C10-C23)	1200	3900)	170,000	330,000	NA	50
TPH-Motor Oil (C18-C36)	850 3		3400 62,000		120,000	NA	250
	Surr	ogate Reco	overies	s (%)			
%SS:	95	74		89	111		
Comments	e2,e7,b1	e2,e7,t	51	e8,e7,b6,b1	e8/e1,e7,b6,b1		
 * water samples are reported in µg/L, wipe mg/L, and all DISTLC / STLC / SPLP / T # cluttered chromatogram resulting in coed diminished by dilution of original extract + The following descriptions of the TPH of interpretation: b1) aqueous sample that contains greater b6) lighter than water immiscible sheen/p e1) unmodified or weakly modified diesel e2) diesel range compounds are significant 	CLP extracts are re eluted surrogate and chromatogram are c than ~1 vol. % sedi product is present is significant; and/o	ported in µg sample peak ursory in na iment or e8) kerose pattern	/L. as, or; su ture and ne/keros	urrogate peak is on McCampbell Ana	elevated baseline, o lytical is not respon	r; surrogate h	as been

McCampbell An "When Ouality		<u>ic.</u>		Web: www.mccamp	ass Road, Pittsburg, Ca bell.com E-mail: mai 77-252-9262 Fax: 92		com
CKG Environmental	Client Pr	roject ID:	Owens	Brockway	Date Sampled:	08/31/09-0	9/01/09
DO D. 246					Date Received:	09/01/09	
P.O. Box 246	Client C	Contact: Cl	hris Kei	nnedy	Date Extracted:	09/01/09	
St. Helena, CA 94574	Client P.	.0.:			Date Analyzed	09/02/09-0	9/09/09
	 Total Extra	ctable Petr	oleum	Hydrocarbons*			
Extraction Method: SW3510C		lytical Method		•		Work Order:	0909021
Lab ID	0909021-012B						
Client ID	CKG-0B11	CKG-0	DB13 CKG-0B12		CKG-0B15	Reporting DF	
Matrix	W	w		W	W		-
DF	5	10		50	20	S	W
Compound			Conce	entration		ug/kg	μg/L
TPH-Diesel (C10-C23)	3100	630	0	150,000	34,000	NA	50
TPH-Motor Oil (C18-C36)	100,000	19,000	NA	250			
	Surr	ogate Rec	overies	s (%)			
%SS:	100	87		84	107		
Comments	e7,e2,b1	e7,e2,	b1	e1/e8,e7,b6,b1	e1,e7,b6,b1		
 * water samples are reported in µg/L, wiper mg/L, and all DISTLC / STLC / SPLP / T # cluttered chromatogram resulting in coed diminished by dilution of original extract + The following descriptions of the TPH of interpretation: b1) aqueous sample that contains greater b6) lighter than water immiscible sheen/p e1) unmodified or weakly modified diesel e2) diesel range compounds are significant e3) aged diesel is significant e7) oil range compounds are significant e8) kerosene/kerosene range/jet fuel range e11) stoddard solvent/mineral spirit (?); a 	CLP extracts are re- eluted surrogate and chromatogram are c than ~1 vol. % sed product is present is significant; and/ nt; no recognizable e; and/or e1) unmod	eported in µg l sample pea cursory in na liment for e8) keroso pattern lified or wea	g/L. ks, or; su ature and ene/keros	nrrogate peak is on McCampbell Anal sene range/jet fuel r	elevated baseline, o lytical is not respon	r; surrogate h	as been

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

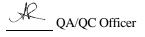
W.O. Sample Matrix: Water			QC Matri	x: Water			BatchID: 45542 WorkOrder 09090				21	
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0909034-001C					
Analyte	Sample	Spiked MS MSD MS-MSD LC					LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	89	88.6	0.343	94	93.9	0.117	70 - 130	30	70 - 130	30
Benzene	ND	10	89.4	99.7	10.9	116	114	1.95	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	105	92	12.9	86.3	91	5.25	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	93.6	98.2	4.72	100	99.4	0.596	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	102	93.8	8.74	100	100	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	106	107	1.40	105	103	1.54	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	92	99	7.35	109	109	0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	89	107	18.2	123	121	1.37	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	98.2	104	5.80	110	109	1.61	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	106	103	2.21	104	105	0.482	70 - 130	30	70 - 130	30
Toluene	ND	10	92.2	91.9	0.304	108	106	2.28	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	102	105	3.07	110	108	1.03	70 - 130	30	70 - 130	30
%SS1:	80	25	95	90	5.53	77	77	0	70 - 130	30	70 - 130	30
%SS2:	99	25	96	94	2.47	101	101	0	70 - 130	30	70 - 130	30
%SS3:	94	2.5	110	98	11.2	99	99	0	70 - 130	30	70 - 130	30

BATCH 45542 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909021-001B	08/31/09 9:30 AM	I 09/03/09	09/03/09 5:35 PM	0909021-011B	09/01/09	09/04/09	09/04/09 1:32 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

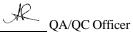
QC Matrix: Water W.O. Sample Matrix: Water BatchID: 45526 WorkOrder: 0909021 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0909014-011A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 122 5.59 122 2.82 70 - 130 70 - 130 60 115 119 20 20 MTBE 10 3.19 ND 113 112 1.20 111 115 70 - 130 2.0 70 - 130 20 Benzene ND 10 105 105 0 104 105 0.917 70 - 130 20 70 - 130 20 Toluene ND 10 93.1 93.7 0.644 93.2 93.1 0.119 70 - 130 20 70 - 130 20 Ethylbenzene ND 10 82.8 94.8 13.6 95 94.1 0.906 70 - 130 20 70 - 130 20 Xylenes ND 30 108 109 0.540 109 108 1.06 70 - 130 2.0 70 - 130 20 %SS: 99 10 96 98 2.07 97 99 2.52 70 - 130 20 70 - 130 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 45526 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909021-001A	08/31/09 9:30 AM	09/03/09	09/03/09 8:31 AM	0909021-002A	08/31/09 10:30 AM	09/03/09	09/03/09 9:05 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell Analytical, Inc. "When Ouality Counts"

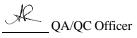
QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	. Sample Matrix: Water QC Matrix: Water						BatchID: 45541 WorkOrder: 090				order: 09090	21
EPA Method SW8021B/8015Bm	n Extraction SW5030B Spi							Spiked San	biked Sample ID: 0909021-010A			
Analyte	Sample	e Spiked MS MSD			MS-MSD	IS-MSD LCS		LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	107	105	1.90	105	104	0.492	70 - 130	20	70 - 130	20
MTBE	ND	10	99.5	93.4	6.30	103	95.7	7.02	70 - 130	20	70 - 130	20
Benzene	ND	10	97	93.8	3.28	95.4	96.1	0.688	70 - 130	20	70 - 130	20
Toluene	ND	10	97.9	94.8	3.23	96.3	96	0.291	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	97.8	94.5	3.41	95.1	96.9	1.95	70 - 130	20	70 - 130	20
Xylenes	ND	30	101	97.4	3.33	97.8	97.8	0	70 - 130	20	70 - 130	20
%SS:	97	10	96	95	1.27	98	96	1.27	70 - 130	20	70 - 130	20
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

	BATCH 45541 SUMMARY												
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed						
0909021-003A	08/31/09 11:30 AM	09/04/09	09/04/09 5:13 PM	0909021-004A	08/31/09 1:30 PM	09/03/09	09/03/09 11:48 PM						
0909021-005A	08/31/09 2:30 PM	09/04/09	09/04/09 12:18 AM	0909021-006A	08/31/09 3:30 PM	09/04/09	09/04/09 6:13 PM						
0909021-007A	09/01/09 8:30 AM	09/03/09	09/03/09 7:29 AM	0909021-008A	09/01/09	09/03/09	09/03/09 7:59 AM						
0909021-009A	09/01/09	09/08/09	09/08/09 7:20 PM	0909021-010A	09/01/09	09/03/09	09/03/09 7:46 PM						
0909021-011A	09/01/09	09/04/09	09/04/09 10:39 PM	0909021-012A	09/01/09	09/03/09	09/03/09 2:31 PM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water		QC Matrix: Water					BatchID: 45490		WorkOrder 0909021			
EPA Method SW8015B	Extra	ction SW	3510C					s	spiked San	nple ID	N/A	
Analyte	Sample Spiked MS		MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	99.5	101	1.48	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	94	95	0.551	N/A	N/A	70 - 130	30

BATCH 45490 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909021-001C	08/31/09 9:30 AM	09/01/09	09/08/09 6:37 PM	0909021-002B	08/31/09 10:30 AM	09/01/09	09/04/09 7:41 PM
0909021-003B	08/31/09 11:30 AM	09/01/09	09/04/09 8:21 AM	0909021-004B	08/31/09 1:30 PM	09/01/09	09/06/09 5:59 PM
0909021-005B	08/31/09 2:30 PM	09/01/09	09/05/09 1:28 AM	0909021-006B	08/31/09 3:30 PM	09/01/09	09/09/09 12:14 PM
0909021-007B	09/01/09 8:30 AM	09/01/09	09/04/09 11:10 PM	0909021-008B	09/01/09	09/01/09	09/02/09 8:05 PM
0909021-009B	09/01/09	09/01/09	09/08/09 4:14 PM	0909021-010B	09/01/09	09/01/09	09/05/09 12:19 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

						BatchID: 45512		WorkOrder 0909021			
Extraction SW3510C					Spiked Sample ID: N/A						
Sample Spiked MS MSD MS		MS-MSD	LCS	LCSD	LCSD LCS-LCSD		Acceptance Criteria (%)				
µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
1000	N/A	N/A	N/A	95.1	92.9	2.44	N/A	N/A	70 - 130	30	
2500	N/A	N/A	N/A	96	95	0.704	N/A	N/A	70 - 130	30	
b	ble Spiked μg/L 1000	hle Spiked MS μg/L % Rec. 1000 N/A	ble Spiked MS MSD μg/L % Rec. % Rec. 1000 N/A N/A	bleSpikedMSMSDMS-MSDμg/L% Rec.% Rec.% RPD1000N/AN/AN/A	Image Spiked MS MSD MS-MSD LCS μg/L % Rec. % Rec. % RPD % Rec. 1000 N/A N/A N/A 95.1	ble Spiked MS MSD MS-MSD LCS LCSD μg/L % Rec. % Rec. % RPD % Rec. % Rec. 1000 N/A N/A N/A 95.1 92.9	Me Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD μg/L % Rec. % Rec. % RPD % Rec. % Rep % Rec. % RPD 1000 N/A N/A N/A 95.1 92.9 2.44	Image: Metric bit with the sector of the sector	Ms MSD MS-MSD LCS LCSD LCS-LCSD Acceptance μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD 1000 N/A N/A N/A 95.1 92.9 2.44 N/A N/A	Me MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD 1000 N/A N/A N/A 95.1 92.9 2.44 N/A N/A 70 - 130	

BATCH 45512 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909021-011C	09/01/09	0 09/01/09	09/02/09 6:52 PM	0909021-012B	09/01/09	09/01/09	09/04/09 6:31 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer