## **RECEIVED**

By Alameda County Environmental Health at 9:10 am, May 01, 2013



Owens-Illinois, Inc. One Michael Owens Way Perrysburg, Ohio 43552 www.o-i.com

April 30, 2013

Mr. Paresh Khatri Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Subject:

RO0000289

2013 ANNUAL GROUNDWATER MONITORING REPORT, OWENS-BROCKWAY GLASS CONTAINER FACILITY. 3600 ALAMEDA AVENUE, OAKLAND, CALIFORNIA.

Dear Mr. Khatri

Owens-Brockway Glass Container Corporation is pleased to submit the attached 2013 Annual Groundwater Monitoring Report for the above site.

I declare under penalty of perjury that the information and recommendations contained in the attached report are true and correct to the best of my knowledge.

If you need further information feel free to call me at (567) 336-8682.

Sincerely,

Mark Tussing.

Manager, Environmental Affairs

## 2013 GROUNDWATER MONITORING REPORT

# OWENS-BROCKWAY GLASS CONTAINER FACILITY OAKLAND, CALIFORNIA



A Report Prepared for:

Mr. Mark Tussing Environmental Affairs One Michael Owens Way Perrysburg, OH 43551-2999

## 2013 GROUNDWATER MONITORING REPORT

OWENS-BROCKWAY GLASS CONTAINER FACILITY, OAKLAND, CALIFORNIA

April 30, 2013

Prepared by:

Principal

Christina J. Kennedy R.G.

CKG Environmental, Inc. P.O. Box 246 St. Helena, California 94574 (707) 967-8080

#### TABLE OF CONTENTS

| 1.0                      | EXECUTIVE SUMMARY               | 1 |
|--------------------------|---------------------------------|---|
| 2.0                      | INTRODUCTION                    | 2 |
| 2.1                      | SITE DESCRIPTION                | 2 |
| 3.0                      | GROUNDWATER MONITORING          | 3 |
| 3.1<br>3.2<br>3.3<br>3.4 | GROUNDWATER GRADIENT            |   |
| 4.0                      | FINDINGS                        | 5 |
| •                        | SUMMARY OF GROUNDWATER RESULTS  | 5 |
| 5.0                      | CONCLUSIONS AND RECOMMENDATIONS | 6 |
| 5.1<br>5.2               | CONCLUSIONSRECOMMENDATIONS      |   |
| 6.0                      | REFERENCES                      | 7 |
| LIMI                     | TATIONS                         | 8 |
|                          |                                 |   |
| TABI                     | LES                             |   |

| Table 1 Monitoring Well Construction | n Details |
|--------------------------------------|-----------|
|--------------------------------------|-----------|

Table 2 **Groundwater Elevations** 

Summary of Groundwater Analytical Results Table 3

#### **PLATES**

Plate 1 Site Location Map

Groundwater Elevation Contour Map Plate 2

Fuel Oil Distribution Map Plate 3

#### **APPENDICES**

Appendix A Well Sampling Logs

Appendix B Analytical Laboratory Report

#### 1.0 EXECUTIVE SUMMARY

The Owens-Brockway glass manufacturing facility is located at 3600 Alameda Avenue in Oakland, California. The site is located to the north of the Oakland Estuary with Fruitvale Avenue to the west, a Home Depot to the east and residences to the north. Onsite facilities include the operating glass manufacturing plant, warehouses, offices and two former underground fuel storage tank areas.

Two underground fuel storage tank (UST) areas existed at the Oakland plant. The first UST area was located on the west side of the plant and included three fuel oil USTs. Impacts by fuel oil to the subsurface were observed when the associated USTs were removed. The second UST area was located near the central part of the plant adjacent to the compressor building. Originally there were four USTs in this area. When they were removed and replaced by two new USTs, a gasoline release to the subsurface was observed.

CKG compiled all the historic data for the site and completed a Cone Penetration Test (CPT) subsurface investigation and installed one offsite monitoring well. This data was used to refine our understanding of the distribution of petroleum hydrocarbons at the site and to evaluate the UST releases with respect to potential closure. A round of groundwater monitoring also was completed to comply with regulatory requirements and to evaluate the existence and distribution of the various types of petroleum hydrocarbons potentially present on and off site. In August 2009 a subsurface investigation was completed to address data gaps identified in a Site Conceptual Model (SCM) prepared in April 2009. The subsurface investigation and groundwater monitoring, and a review of historic data, shows that the petroleum hydrocarbon plumes are stable and have attenuated substantially over time. The fuel oil release appears to extend off site.

Based on the SCM a Feasibility Study dated August 27, 2010 was completed. The recommended remediation option was targeted excavations at fuel source areas with chemical oxidant placed in the excavations before backfilling. The targeted excavation program was partially implemented in summer of 2011. The full program could not be completed due to logistical issues associated with working at an operating plant. CKG recommends that Owens-Brockway submit this report to the Alameda County Health Agency.

#### 2.0 INTRODUCTION

The following report presents the results and conclusions of the annual of groundwater monitoring in 2013. The work was performed in general accordance with CKG's proposal dated November 15, 2002 with slight modifications as discussed below.

#### 2.1 SITE DESCRIPTION

The Owens-Brockway glass manufacturing facility is located at 3600 Alameda Avenue in Oakland, California, (Plate 1). The site is located to the north of the Oakland Estuary with Fruitvale Avenue to the west, a former retail center to the east and residences to the north. Onsite facilities include the operating glass manufacturing plant, warehouses, offices and two former underground fuel storage tank areas, (Plate 2).

#### **Fuel Oil USTs**

One UST site was located on the west side of the plant and included three former USTs, which were used to contain fuel oil. At the time these USTs were removed it was discovered that fuel oil had been released to the subsurface. Owens-Brockway excavated impacted soil at the time the USTs were removed. Floating product associated with the fuel oil release exists and past efforts to remove it have been unsuccessful. This lack of success is mainly due to the clay rich nature of the subsurface and the viscosity of the product. Groundwater monitoring has been ongoing sporadically for the last 17 years. A Geoprobe™ investigation completed in 1999 by Kennedy/Jenks Consultants included collecting groundwater samples from five locations off-site in the downgradient direction. Three of these samples were found to contain petroleum hydrocarbons. This petroleum hydrocarbon was identified to be Stoddard solvent, not fuel oil.

#### **Gasoline USTs**

The second UST area was located near the central part of the plant adjacent to the compressor building. Originally there were four USTs in the area. When they were removed and replaced by two new USTs a gasoline release to the subsurface was observed. Owens-Brockway excavated impacted soil at the time the USTs were removed. Groundwater monitoring has shown that the gasoline release has attenuated naturally.

#### 3.0 GROUNDWATER MONITORING

#### 3.1 GROUNDWATER GRADIENT

Depth to groundwater measurements were made on March 22 2013, before the monitoring wells were sampled. Depth to static ground water was measured from a marked location at the top of the PVC casing. The depth of water was then subtracted from the elevation of the top of the well casing to provide a ground water elevation for each monitoring well. Plate 2 shows groundwater elevations and the interpreted groundwater flow direction. Based on the data measured on March 22, 2013 the groundwater flow direction is generally to the south-southwest. This groundwater flow direction has been observed in past monitoring events. To prepare for the remediation work completed in the summer of 2011 CKG properly closed MW-2. Monitoring well construction details are presented in Table 1. Depth to water measurements and groundwater elevations are summarized in Table 2. Well sampling and purge logs are contained in Appendix A.

#### 3.2 WELL SAMPLING

On March 22, 2012 a round of groundwater sampling in the monitoring wells was performed. Floating product was observed in MW-5, MW-6, and MW-7 so they were not sampled. Separate phase product also was observed in MW-15, which has typically been a less impacted well, so it was not sampled. MW-1 was buried under cullet (waste glass) so it could not be accessed. MW-9, which is located in the middle of the loading ramp, could not be safely accessed.

The wells were sampled using the following protocol.

- The depth-to-water was measured using a conductivity-based water level indicator.
- The volume of water standing in each well was calculated by subtracting the depth-to-water measurement from the total depth of the well, and multiplying by the appropriate volume conversion factor.
- A minimum of three well volumes of water was purged from each well using a centrifugal pump. A total of 10 purge volumes was removed from MW-13. The pump was decontaminated prior to use in each well by washing with TSP and rinsing with distilled water. Fresh tubing was used for each well

- Physical parameters of pH and temperature were monitored for stability during purging.
- Sample bottles, provided by the analytical laboratory were filled from a new clean disposable bailer at each well.
- Samples were immediately labeled and placed in an iced sample container. The samples
  were picked up by the analytical laboratory, under chain-of-custody control the following
  day.

#### 3.3 CHEMICAL ANALYSIS

Groundwater samples were submitted under chain-of-custody to McCampbell Analytical Laboratory in Pacheco, California. McCampbell is a laboratory certified with the California Department of Health Services under the California Environmental Laboratory Accreditation Program (ELAP) for the requested analyses. The analytical program was completed in general accordance with CKG's proposal dated November 15, 2002. The chemical analyses performed include the following:

- Total Petroleum Hydrocarbons quantified as diesel, (TPHd,) motor oil (TPHmo) and gasoline (TPHg) by Modified EPA Method 8015 and;
- Benzene, Toluene, Ethylbenzene, xylenes, and MTBE by EPA Method 8020

#### 3.4 INVESTIGATION DERIVED WASTES (IDW)

Investigation derived wastes (IDW) were generated during the investigation and included purge water. Purge water was placed into the on-site oil/water separator system.

#### 4.0 FINDINGS

The following describes the results of the annual groundwater monitoring at the Owens-Brockway Glass Container facility in Oakland, California. Comparisons are made between the data and appropriate regulatory standards and risk based screening levels where they are available. Groundwater sample results are presented in Table 3. Analytical laboratory reports are included in Appendix B. Sample locations and pertinent data are presented on Plate 3.

#### 4.1 SUMMARY OF GROUNDWATER RESULTS

#### 4.1.1 Fuel Oil Release Area (MW-1, MW-5, MW-6, MW-7, MW-8, MW-10, MW-19)

Petroleum hydrocarbons quantified as diesel/fuel oil, were detected in all of the water samples collected as summarized in Table 3, except for MW-20. Diesel concentrations are shown and contoured on Plate 3. Separate phase floating product was observed in MW-5, MW-6, MW-7 and MW-15, as shown on Table 2 and Plate 2, so they were not sampled. TPHd concentrations detected in groundwater range from 88 to 3100  $\mu$ g/l. Absorbent socks are installed in MW-5, MW-6, and MW-7. Owens-Brockway regularly changes the socks. The estimated outline of the product plume is illustrated on Plate 3.

#### **4.1.2** Gasoline Release Area (MW-13, MW-15, MW- 16, MW17, MW-20)

Petroleum hydrocarbons quantified as gasoline, were detected in one water sample as summarized in Table 3. TPHg was detected in MW-17 at 4,500 µg/l which is comparable to that observed over the last few years, and likely reflects the very high concentration of diesel present in the well as opposed to the presence of gasoline in the groundwater. TPH quantified as diesel/motor oil was detected at MW-17 at 570,000 µg/l which was higher than that observed in 2012. An absorbent sock has been maintained in MW-17 since 2008.

Owens-Brockway had installed absorbent socks in MW-13, MW-15, and MW-20, as part of their general well maintenance. On March 3 the sock in MW-15 appeared to be stained and separate phase product was measured in MW-15. This was the first time that separate phase product had been observed in MW-15.

#### 5.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of the annual monitoring the following conclusions and recommendations can be made:

#### 5.1 CONCLUSIONS

The recent groundwater monitoring, as well as a review of historic data, shows that the petroleum hydrocarbon plumes at the site are stable and have attenuated over time. The fuel oil release appears to extend off site.

#### 5.2 **RECOMMENDATIONS**

CKG recommends that Owens-Brockway submit this report to the Alameda County Health Agency.

#### 6.0 REFERENCES

California Regional Water Quality Control Board – San Francisco Bay region, Order No 99-045, 1999

CKG Environmental, Inc. Groundwater Monitoring Reports,

2012 Report, April 22, 2012.

2010 Report, January 20, 2011.

2009 Report, January 10, 2010.

2008 Report, January 8, 2009.

2007 Report, December 17, 2007.

2006 Report, January 12, 2007.

2005 Report, November 29, 2005.

2004 Report, April 29, 2004.

CKG Environmental, Inc. 2005, Work Plan to Prepare a Site Conceptual Model, Owens-Brockway Glass Container Facility, Oakland, California. April 6, 2005.

CKG Environmental, Inc. Summary of Remediation History and Groundwater Impact by Petroleum Hydrocarbons, Owens-Brockway Glass Container Facility, 3600 Alameda Avenue, Oakland, California. April 4, 2003.

CKG Environmental, Inc. Work Plan to Install One Monitoring Well and Assess the Distribution of Petroleum Hydrocarbons, Owens-Brockway Glass Container Facility, Oakland, California, April 22, 2003.

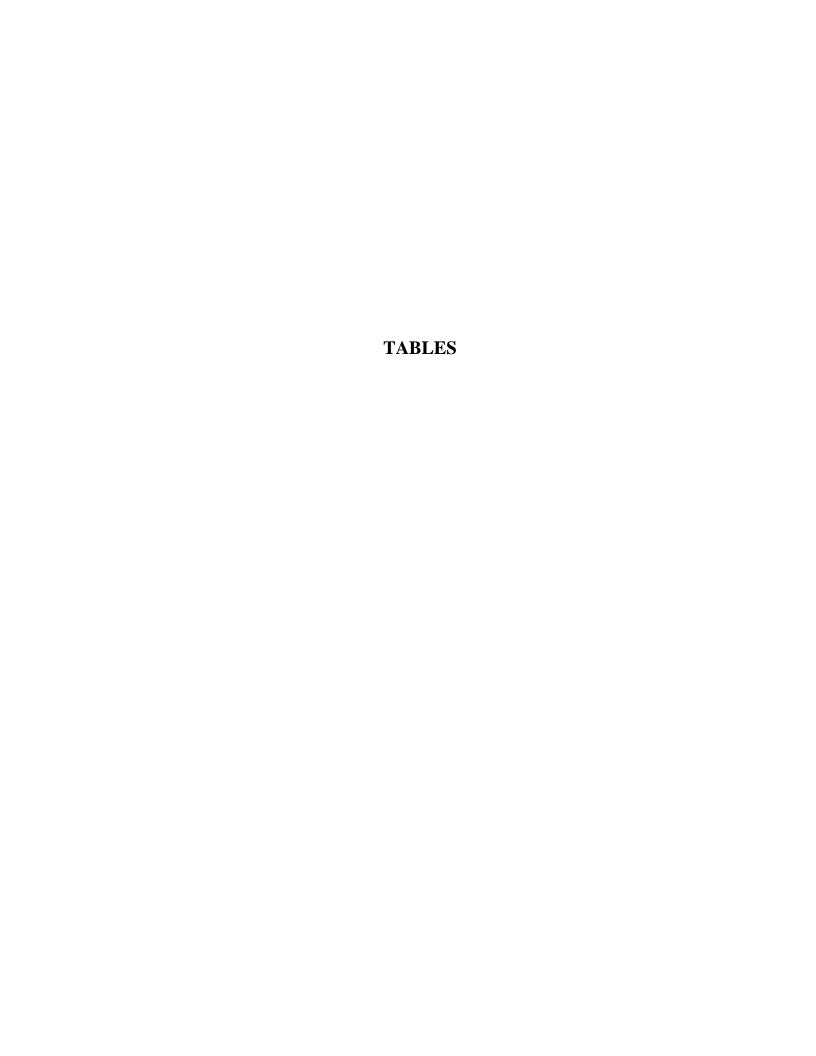
CKG Environmental, Inc. Data Compilation and Closure Report Underground Fuel Storage Tank Locations, Owens-Brockway Glass Container Facility, Oakland, California, November 4, 2003.

Exeltech, Soil and Groundwater Contamination Investigation for Owens-Illinois Glass Container Division, 3600 Alameda Avenue, Oakland, California, December 1986.

Exeltech, Soil and Groundwater Contamination Investigation for Owens-Illinois Glass Container Division, 3600 Alameda Avenue, Oakland, California, February 1987.

Kennedy/Jenks, Consultants. Groundwater investigation Report, Owens-Brockway Glass Containers, February 16, 1999.

Kennedy/Jenks, Consultants. Annual Groundwater Monitoring Report, Owens-Brockway Glass Containers, January 21, 2003.


#### LIMITATIONS

CKG Environmental, Inc. prepared this report in accordance with generally accepted standards of care, which exist in Northern California at this time. It should be recognized that definition and evaluation of geologic and environmental conditions is a difficult and an inexact science.

Conclusions and recommendations presented in this report are based on the results of the scope of work presented in our proposal dated November 15, 2002. This scope of work includes groundwater sampling at total of 10 wells, and quantitative analysis of groundwater samples conducted by McCampbell Analytical. Only work described herein was performed. As such CKG cannot render opinions on issues not resulting directly from the work performed.

Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present. More extensive studies, including additional subsurface investigations, may be performed to reduce uncertainties. If the client wishes to reduce the uncertainties of this investigation, CKG should be notified for additional consultation. No warranty, expressed or implied, is made.

This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both onsite and offsite) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify CKG of such intended use. Based on the intended use of the report, CKG may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release CKG from any liability resulting from the use of this report by any unauthorized party.



|                |                   | Table 1 St                              | ummary o                     | f Well Co        | nstruction                   | Details                  |           |
|----------------|-------------------|-----------------------------------------|------------------------------|------------------|------------------------------|--------------------------|-----------|
| Well<br>Number | Date<br>Installed | Top of Casing Elelvation <sup>(a)</sup> | Top of Screen <sup>(b)</sup> | Screen<br>Length | Well<br>Depth <sup>(c)</sup> | Casing Diameter (inches) | Comments  |
| MW-1           | 9/12/1986         | 16.02                                   | 8                            | 21               | 29                           | 2                        |           |
| MW-2           | 12-Sep-86         | 17.11                                   | 10                           | 20               | 30                           | 2                        | Destroyed |
| MW-3           | 12-Sep-86         | 15.46                                   | 10                           | 20               | 39                           | 2                        | Destroyed |
| MW-4           | 12-Sep-86         | 16.02                                   | 8.5                          | 20               | 28.5                         | 2                        | Destroyed |
| MW-5           | 12-Sep-86         | 16.19                                   | 8.5                          | 20               | 28.5                         | 2                        |           |
| MW-6           | 12-Sep-86         | 17.48                                   | 12.5                         | 16               | 28.5                         | 2                        |           |
| MW-7           | 12-Sep-86         | 16.11                                   | 12.5                         | 11               | 23.5                         | 2                        |           |
| MW-8           | 12-Sep-86         | 16.57                                   | 15                           | 13.5             | 28.5                         | 2                        |           |
| MW-9           | 12-Sep-86         | 7.33 <sup>(d)</sup>                     | 5                            | 10               | 20                           | 2                        |           |
| MW-10          | 12-Sep-86         | 15.96                                   | 10                           | 15               | 25                           | 2                        |           |
| MW-11          | 12-Sep-86         | 13.99                                   | 10                           | 20               | 30                           | 2                        |           |
| MW-12          | 12-Sep-86         | 13.83                                   | 11                           | 15               | 26                           | 2                        |           |
| MW-13          | 12-Sep-86         | 13.98                                   | 9.5                          | 15               | 24.5                         | 2                        |           |
| MW-14          | 12-Sep-86         | 14.78                                   | 10                           | 15               | 25                           | 2                        | Destroyed |
| MW-15          | 12-Sep-86         | 15.16                                   | 9.5                          | 20               | 29.5                         | 2                        |           |
| MW-16          | 12-Sep-86         | 13.48                                   | 10                           | 14.5             | 24.5                         | 2                        |           |
| MW-17          | 12-Sep-86         | 14.17                                   | 9.5                          | 15               | 24.5                         | 2                        |           |
| MW-18          | 12-Sep-86         | 14.89                                   | 9                            | 15               | 24                           | 2                        | Destroyed |
| MW-19          | 01-May-03         | NA                                      | 10                           | 15               | 25                           | 2                        |           |
| MW-20          | 01-Dec-00         | 12.74                                   | 6.9                          | 15               | 21.9                         | 2                        |           |
| R-1            | 1987              | NM <sup>(e)</sup>                       | NA <sup>(f)</sup>            | NA               | 24                           | 36                       | Destroyed |
| R-2            | 1989              | NM                                      | NA                           | NA               | NA                           | 12                       | Destroyed |

<sup>(</sup>a) Top of casing elevation (TOCE) except where noted; measured in feet above US Coast and Geodetic Datum (mean sea level). Elevations measured by Exceltech in 1986, and by PLS Surveys for MW-20 in 2000.

<sup>(</sup>b) Depth to top of screened interval (feet below top of casing)

<sup>(</sup>c) Depth to bottom of screened interval (feet below top of casing)

<sup>(</sup>d) Well casing was not measured for this well; well is located beneath forklift ramp and this measurement is the ground surface elevation in MSL.

<sup>(</sup>e) NM = Not measured

<sup>(</sup>f) NA = Not available

Table 2 Groundwater Depths and Elevation March 22, 2013

|             |                | Top of Casing             | Depth to | Product         | Groundwater |
|-------------|----------------|---------------------------|----------|-----------------|-------------|
| Well Number | Date Installed | Elelvation <sup>(a)</sup> | Water    | thickness (ft)* | Elevation   |
| MW-1        | 12-Sep-86      | 16.02                     | NM       |                 |             |
| MW-2        | 12-Sep-86      | 17.11                     | NM       |                 |             |
| MW-4        | 12-Sep-86      | 16.02                     | NM       |                 |             |
| MW-5        | 12-Sep-86      | 16.19                     | 11.98    | 0.03            | 4.24        |
| MW-6        | 12-Sep-86      | 17.48                     | 14.42    | 0.02            | 3.08        |
| MW-7        | 12-Sep-86      | 16.11                     | 12.40    | 0.02            | 3.73        |
| MW-8        | 12-Sep-86      | 16.57                     | 9.40     |                 | 7.17        |
| MW-9        | 12-Sep-86      | 7.33 <sup>(d)</sup>       | NM       |                 |             |
| MW-10       | 12-Sep-86      | 15.96                     | 9.93     |                 | 6.03        |
| MW-11       | 12-Sep-86      | 13.99                     | NM       |                 |             |
| MW-12       | 12-Sep-86      | 13.83                     | NM       |                 |             |
| MW-13       | 12-Sep-86      | 13.98                     | 9.39     |                 | 4.59        |
| MW-15       | 12-Sep-86      | 15.16                     | 11.91    | 0.01            | 3.26        |
| MW-16       | 12-Sep-86      | 13.48                     | 9.52     |                 | 3.96        |
| MW-17       | 12-Sep-86      | 14.17                     | 9.21     |                 | 4.96        |
| MW-19       | 01-May-03      | NA                        | 11.56    |                 |             |
| MW-20       | 01-Dec-00      | 12.74                     | 8.25     |                 | 4.49        |

<sup>(</sup>a) Top of casing elevation (TOCE) except where noted; measured in feet above US Coast and Geodetic Datum (mean sea level). Elevations measured by Exceltech in 1986, and by PLS Surveys for MW-20 in 2000.

<sup>(</sup>d) Well casing was not measured for this well; well is located beneath forklift ramp and this measurement is the ground surface elevation in MSL.

<sup>(</sup>e) NM = Not measured

<sup>(</sup>f) NA = Not available

<sup>\*</sup> In the case where separate phase product is measured, groundwater elevation is corrected assuming a fuel oil with product density of 0.893

|      |             | vens-Brock                         | •    |                | •    |                    | , CA                 |           |
|------|-------------|------------------------------------|------|----------------|------|--------------------|----------------------|-----------|
| MW-1 | Date        | В                                  | T    | E              | X    | TPHd               | TPHg                 | TOG/TPHmo |
|      | 9/23/1986   | <10                                | <10  | NA             | <10  | <.01               | <.01                 | 25,000    |
|      | 4/9/1987    | <10                                | <10  | NA             | <10  | <.01               | NA                   | NA        |
|      | 9/16/1987   | not accessible                     | )    |                |      |                    |                      |           |
|      | 12/1/1987   | not accessible                     | )    |                |      |                    |                      |           |
|      |             | not accessible                     |      |                |      |                    |                      |           |
|      |             | not accessible                     |      |                |      |                    |                      |           |
|      | 9/14/1988   | not accessible                     | )    |                |      | (-)                |                      |           |
|      | 9/16/1997   | <0.5                               | <0.5 | <0.5           | <0.5 | 190 <sup>(a)</sup> | <50                  | NA        |
|      | 11/2/1998   |                                    | <0.5 | <0.5           | <0.5 | 160 <sup>(a)</sup> | <50                  | NA        |
|      |             | not accessible                     |      |                |      | ( )                |                      |           |
|      | 12/6/2002   | <0.5                               | <0.5 | <0.5           | <0.5 | 69 <sup>(a)</sup>  | <50                  | NA        |
|      |             | not accessible                     |      |                |      |                    |                      |           |
|      |             | not accessible                     |      |                |      |                    |                      |           |
|      | 10/19/2006  | <u> </u>                           | <0.5 | <0.5           | <0.5 | 5400               | 120                  | 3300      |
|      |             | not accessible                     |      |                |      |                    |                      |           |
|      | 10/21/2008  |                                    | <0.5 | <0.5           | <0.5 | 2000               | 69                   | 1300      |
|      | 10/16/2009  |                                    | <0.5 | <0.5           | <0.5 | 310                | <50                  | 310       |
|      | 10/29/2010  |                                    | <0.5 | <0.5           | <0.5 | 100                | <50                  | <250      |
|      | 3/1/2012    | <u> </u>                           | <0.5 | <0.5           | <0.5 | 92                 | <50                  | <250      |
|      |             | not accessible                     |      |                |      |                    |                      |           |
| MW-2 |             | floating produ                     |      |                |      |                    |                      |           |
|      |             | floating produ                     |      |                |      |                    |                      |           |
|      |             | floating produc                    |      |                |      |                    |                      |           |
|      |             | floating produc                    |      |                |      |                    |                      |           |
|      |             | floating produc                    |      |                |      |                    |                      |           |
|      |             | floating produc                    |      |                |      |                    |                      |           |
|      |             | floating produc                    |      |                |      |                    |                      |           |
|      |             | floating produ-<br>floating produc |      |                |      |                    |                      |           |
|      |             | floating production                |      |                |      |                    |                      |           |
|      |             | floating production                |      |                |      |                    |                      |           |
|      | 6/30/2005   |                                    | <0.5 | <0.5           | <0.5 | 1,600,000          | 2900                 | 1,200,000 |
|      | 9/11/2006   |                                    | 4.4  | 19             | 60   | 830,000            | 13000 <sup>(b)</sup> | 530,000   |
|      |             | floating produ                     |      |                | 00   | 030,000            | 10000                | 330,000   |
|      |             | floating production                |      | ·)             |      |                    |                      |           |
|      |             | floating production                |      |                |      |                    |                      |           |
|      |             | floating produ                     |      | t)             |      |                    |                      |           |
|      |             | Destroyed Ma                       |      | <del>'</del> / |      |                    |                      |           |
|      | 5, 1, 25 12 | _ 555                              | , == |                |      |                    |                      |           |

**Table 3 Summary of Groundwater Analytical Results** 

#### NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l B - Benzene in ug/l X - Xylenes in ug/l TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l T - Toluene in ug/l E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E - E -

TOG - Total Oil and Grease in ug/l TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

|      |            |               |                |      | atel Allaiy<br>er Facility |                       |                    |           |
|------|------------|---------------|----------------|------|----------------------------|-----------------------|--------------------|-----------|
|      | Date       | В             | T              | E    | X                          | TPHd                  | TPHg               | TOG/TPHmo |
| MW-3 | 9/23/1986  | <10           | <10            | NA   | <10                        | NA                    | <10                | 18        |
|      | 4/9/1987   | BDL           | BDL            | NA   | BDL                        | NA                    | 370                | NA        |
|      |            | floating prod |                |      |                            |                       |                    |           |
|      | 12/1/1987  | floating prod | luct           |      |                            |                       |                    |           |
|      | 3/7/1988   | NA            | NA             | NA   | NA                         | 190,000               | NA                 | NA        |
|      | 6/8/1988   |               | NA             | NA   | NA                         | 16,000                | NA                 | NA        |
|      | 9/14/1988  | floating prod | luct           |      |                            |                       |                    |           |
|      |            | Destroyed     |                |      |                            |                       |                    |           |
| MW-4 | 9/23/1986  | <5            | <5             | NA   | <5                         | NA                    | 20                 | 7,200     |
|      | 4/9/1987   | BDL           | BDL            | NA   | BDL                        | NA                    | BDL                | NA        |
|      | 9/16/1987  | BDL           | BDL            | NA   | BDL                        | 660                   | 1.3                | NA        |
|      | 12/1/1987  | BDL           | BDL            | NA   | 8.9                        | 100                   | BDL                | NA        |
|      | 3/7/1988   |               | BDL            | NA   | BDL                        | BDL                   | BDL                | NA        |
|      | 6/8/1988   |               | BDL            | NA   | BDL                        | BDL                   | BDL                | NA        |
|      | 9/14/1988  | BDL           | BDL            | NA   | BDL                        | 100                   | BDL                | NA        |
|      |            | Destroyed     |                |      |                            |                       |                    |           |
| MW-5 | 10/3/1986  | <5            | <5             | NA   | 6.6                        | NA                    | 1400               | 24,000    |
|      | 4/9/1987   | <5            | <5             | NA   | <5                         | NA                    | 54                 | NA        |
|      | 9/16/1987  |               | NA             | NA   | NA                         | 960                   | NA                 | NA        |
|      | 12/1/1987  | NA            | NA             | NA   | NA                         | 2000                  | NA                 | NA        |
|      | 3/9/1988   |               | NA             | NA   | NA                         | <50                   | NA                 | NA        |
|      | 6/8/1988   |               | NA             | NA   | NA                         | 12,000                | NA                 | NA        |
|      | 9/14/1988  |               | NA             | NA   | NA                         | 6,300                 | NA                 | NA        |
|      | 9/16/1997  | <0.5          | <0.5           | <0.5 | <0.5                       | 11,600                | <50                | NA        |
|      | 11/2/1998  | floating prod | luct           |      |                            |                       |                    |           |
|      | 12/6/2000  | <0.5          | <0.5           | <0.5 | <0.5                       | 11,700 <sup>(a)</sup> | 1000               | NA        |
|      | 12/12/2001 | <0.5          | <0.5           | <0.5 | <0.5                       | 10,000 <sup>(a)</sup> | 360 <sup>(b)</sup> | NA        |
|      | 12/6/2002  | <0.5          | <0.5           | <0.5 | <0.5                       | 5,200 <sup>(a)</sup>  | 150 <sup>(b)</sup> | NA        |
|      | 3/15/2004  | <0.5          | <0.5           | <0.5 | <0.5                       | 46,000 <sup>(a)</sup> | 180 <sup>(b)</sup> | NA        |
|      | 6/30/2005  | <0.5          | <0.5           | <0.5 | <0.5                       | 34,000                | 100                | 26,000    |
|      | 9/11/2006  | <0.5          | <0.5           | <0.5 | <0.5                       | 45,000                | 300 <sup>(a)</sup> | 33,000    |
|      | 10/17/2007 | <0.5          | <0.5           | <0.5 | <0.5                       | 34,000                | 120                | 31,000    |
|      | 10/21/2008 | <0.5          | <0.5           | <0.5 | <0.5                       | 13,000                | 150                | 11,000    |
|      | 10/16/2009 | <0.5          | <0.5           | <0.5 | <0.5                       | 160,000               | 180                | 140,000   |
|      | 10/29/2010 | floating prod | luct (0.04 ft) |      |                            |                       |                    |           |
|      | 3/1/2012   | <0.5          | <0.5           | <0.5 | <0.5                       | 8,600                 | 190                | 8,900     |
|      | 3/22/2013  | floating prod | luct (0.03 ft) |      |                            |                       |                    |           |

**Table 3 Summary of Groundwater Analytical Results** 

#### **NOTES:**

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Ethylbenzene in ug/l

TOG - Total Oil and Grease in ug/l TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

|        | Date       | В             | T             | E    | X     | TPHd                   | TPHg                | TOG/TPHmo |
|--------|------------|---------------|---------------|------|-------|------------------------|---------------------|-----------|
| MW-6   | 4/9/1987   | floating prod | uct           |      |       |                        |                     |           |
|        | 9/16/1987  | NA            | NA            | NA   | NA    | 400,000                | NA                  | NA        |
|        | 12/1/1987  | NA            | NA            | NA   | NA    | 30,000                 | NA                  | NA        |
|        | 3/7/1988   | NA            | NA            | NA   | NA    | 9,800                  | NA                  | NA        |
|        | 6/8/1988   | NA            | NA            | NA   | NA    | 63,000                 | NA                  | NA        |
|        | 9/14/1988  | NA            | NA            | NA   | NA    | 140,000                | NA                  | NA        |
|        |            | floating prod |               |      |       |                        |                     |           |
|        |            | floating prod |               |      |       |                        |                     |           |
|        |            | floating prod |               |      |       |                        |                     |           |
|        |            | floating prod |               |      |       |                        |                     |           |
|        |            | floating prod |               |      |       |                        |                     |           |
|        | 6/30/2005  | <0.5          | <0.5          | <0.5 | <0.5  | 270,000                | 300                 | 200,000   |
|        | 9/11/2006  | <0.5          | <0.5          | <0.5 | <0.5  | 100,000                | 700 <sup>(a)</sup>  | 77,000    |
|        | 10/17/2007 | <1            | <1            | <1   | 11.00 | 290,000                | 3400                | 190,000   |
|        | 10/21/2008 | <1            | <1            | <1   | <1    | 38,000                 | 330                 | 28,000    |
|        | 10/16/2009 | <0.5          | <0.5          | <0.5 | <0.5  | 98,000                 | 490                 | 89,000    |
|        |            | floating prod |               |      |       |                        |                     |           |
|        |            | floating prod |               |      |       |                        |                     |           |
|        | 3/22/2013  | floating prod |               |      |       |                        |                     |           |
| MW-7   | 10/3/1986  | <5            | <5            | NA   | <5    | NA                     | 260                 | 8,000     |
|        |            | floating prod |               |      |       |                        |                     |           |
|        | 9/16/1987  | NA            | NA            | NA   | NA    | 790,000                | NA                  | NA        |
|        | 12/1/1987  | NA            | NA            | NA   | NA    | 5,300                  | NA                  | NA        |
|        | 3/9/1988   | NA            | NA            | NA   | NA    | <50                    | NA                  | NA        |
|        | 6/9/1988   | NA            | NA            | NA   | NA    | 12,000                 | NA                  | NA        |
|        | 9/14/1988  | NA            | NA            | NA   | NA    | 67,000                 | NA                  | NA        |
|        | 9/16/1997  | <0.5          | <0.5          | <0.5 | <0.5  | 37,000 <sup>(a)</sup>  | 850                 | NA        |
|        |            | floating prod |               |      |       | o =00(a)               |                     |           |
|        | 12/6/2000  | <b>&lt;</b> 5 | <.05          | <.05 | 1.90  | 3,580 <sup>(a)</sup>   | 540                 | NA        |
|        | 12/12/2001 | <1            | <1            | <1   | <1    | 12,600 <sup>(a)</sup>  | 1200 <sup>(b)</sup> | NA        |
|        | 12/6/2002  | <0.5          | <0.5          | <0.5 | <0.5  | 27,600 <sup>(a)</sup>  | 480 <sup>(b)</sup>  | NA        |
|        | 3/15/2004  | <0.5          | <0.5          | 0.57 | 1.10  | 170,000 <sup>(a)</sup> | 890 <sup>(b)</sup>  | NA        |
|        | 6/30/2005  | <.05          | <.05          | 3.1  | <.05  | 290,000                | 3000                | 150,000   |
|        | 9/11/2006  | <5            | <5            | <5   | <5    | 310,000                | 6600 <sup>(a)</sup> | 150,000   |
|        | 10/17/2007 | <1            | <1            | <1   | 2.70  | 330,000                | 1900                | 190,000   |
|        | 10/21/2008 | <1            | <1            | <1   | <1    | 82,000                 | 1100                | 43,000    |
|        | 10/16/2009 | <5            | <5            | <5   | <5    | 60,000                 | 2200                | 35,000    |
|        |            | floating prod |               |      |       |                        |                     |           |
|        |            | floating prod |               |      |       |                        |                     |           |
| NOTES. | 3/22/2013  | floating prod | uct (0.02 It) |      |       |                        |                     |           |

#### **NOTES:**

 $TPH-g - Total \ Petroleum \ Hydrocarbons \ as \ Gasoline \ in \ ug/l \\ TPH-d - Total \ Petroleum \ Hydrocarbons \ as \ Diesel \ in \ ug/l \\ T - Toluene \ in \ ug/l \\ E - Ethylbenzene \ in \ ug/l$ 

TOG - Total Oil and Grease in ug/l

TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

|      | Ov         | vens-Brocl    | kway Glas | s Contain | er Facility | , Oakland              | , CA               |           |
|------|------------|---------------|-----------|-----------|-------------|------------------------|--------------------|-----------|
|      | Date       | В             | T         | E         | X           | TPHd                   | TPHg               | TOG/TPHmo |
| MW-8 | 10/23/1986 | <0.2          | <0.2      | NA        | <1          | NA                     | 1300               | 14,000    |
|      | 4/9/1987   | <0.5          | <0.2      | NA        | <1          | NA                     | 73                 | NA        |
|      | 9/16/1987  | floating prod | uct       |           |             |                        |                    |           |
|      | 12/1/1987  | NA            | NA        | NA        | NA          | 630                    | NA                 | NA        |
|      | 3/9/1988   | NA            | NA        | NA        | NA          | 2,600                  | NA                 | NA        |
|      | 6/9/1988   | NA            | NA        | NA        | NA          | 1,700                  | NA                 | NA        |
|      | 9/14/1988  | NA            | NA        | NA        | NA          | 150                    | NA                 | NA        |
|      | 8/12/1997  | floating prod | uct       |           |             |                        |                    |           |
|      | 9/16/1997  | <0.5          | <0.5      | <0.5      | <0.5        | 290 <sup>(a)</sup>     | <50                | NA        |
|      | 11/2/1998  | <0.5          | <0.5      | <0.5      | <0.5        | 1,300 <sup>(a)</sup>   | <50                | NA        |
|      | 12/6/2000  | <0.5          | <0.5      | <0.5      | <0.5        | 160 <sup>(a)</sup>     | <50                | NA        |
|      | 12/12/2001 | <0.5          | <0.5      | <0.5      | <0.5        | <50                    | <50                | NA        |
|      | 12/5/2002  | <0.5          | <0.5      | <0.5      | <0.5        | 170 <sup>(a)</sup>     | 55 <sup>(b)</sup>  | NA        |
|      | 3/15/2004  |               | <0.5      | <0.5      | <0.5        | 3,000 <sup>(a)</sup>   | 320 <sup>(b)</sup> | NA        |
|      | 6/30/2005  |               | <0.5      | <0.5      | <0.5        | 4,600                  | 1100               | 1,400     |
|      | 9/11/2006  |               | <0.5      | <0.5      | 2.1         | 1800                   | 1200               | 760       |
|      | 10/17/2007 |               | <0.5      | <0.5      | <0.5        | 1,300                  | 390                | 2,100     |
|      | 10/21/2008 |               | <0.5      | <0.5      | <0.5        | 380                    | 74                 | 470       |
|      | 10/16/2009 |               | <0.5      | <0.5      | <0.5        | 340                    | 280                | <250      |
|      | 10/29/2010 |               | <0.5      | <0.5      | <0.5        | 84                     | 150                | <250      |
|      | 3/1/2012   |               | <0.5      | <0.5      | <0.5        | 410                    | 560                | 600       |
|      | 3/22/2013  | <0.5          | <0.5      | <0.5      | <0.5        | 570                    | 420                | 310       |
| MW-9 | 4/9/1987   | floating prod | uct       |           |             |                        |                    |           |
|      | 9/16/1987  |               | NA        | NA        | NA          | 1,300                  | NA                 | NA        |
|      | 12/1/1987  |               | NA        | NA        | NA          | 18,000                 | NA                 | NA        |
|      | 3/9/1988   |               | NA        | NA        | NA          | 47,000                 | NA                 | NA        |
|      |            | floating prod |           |           |             |                        |                    |           |
|      |            | floating prod |           |           |             | (-)                    |                    |           |
|      | 9/16/1997  |               | <13       | <13       | 18.00       | 28,000 <sup>(a)</sup>  | 6000               | NA        |
|      | 11/2/1998  | floating prod | uct       |           |             |                        |                    |           |
|      | 12/6/2000  | <5            | <.5       | <.5       | <.5         | 102,000 <sup>(a)</sup> | 790                | NA        |
|      | 12/12/2001 | innaccessibl  | е         |           |             |                        |                    |           |
|      | 12/5/2002  | innaccessibl  | е         |           |             |                        |                    |           |
|      | 3/15/2004  | innaccessibl  | е         |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      |            | innaccessibl  |           |           |             |                        |                    |           |
|      | 3/22/2013  | innaccessibl  | e         |           |             |                        |                    |           |

**Table 3 Summary of Groundwater Analytical Results** 

#### **NOTES:**

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l B - Benzene in ug/l X - Xylenes in ug/l TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l T - Toluene in ug/l E - Ethylbenzene in ug/l

TOG - Total Oil and Grease in ug/l TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit NA - Not analyzed
(a) - Quantified as diesel but chromatogram did not match diesel pattern
(b) - Quantified as gasoline but chromatogram did not match gasoline pattern

|       | Date       | В         | T     | E    | X    | TPHd                 | TPHg               | TOG/TPHmo |
|-------|------------|-----------|-------|------|------|----------------------|--------------------|-----------|
| MW-10 | 10/23/1986 | <0.2      | <0.2  | NA   | <0.2 | NA                   | 380                | 7,200     |
|       | 4/9/1987   | <0.2      | <0.2  | NA   | <0.2 | NA                   | 300                | NA        |
|       | 9/16/1987  | NA        | NA    | NA   | NA   | 3,800                | NA                 | NA        |
|       | 12/1/1987  | NA        | NA    | NA   | NA   | 590                  | NA                 | NA        |
|       | 3/8/1988   | NA        | NA    | NA   | NA   | <50                  | NA                 | NA        |
|       | 6/8/1988   | NA        | NA    | NA   | NA   | 3,800                | NA                 | NA        |
|       | 9/14/1988  | NA        | NA    | NA   | NA   | 570                  | NA                 | NA        |
|       | 9/16/1997  | <0.5      | <0.5  | <0.5 | <0.5 | 1,300 <sup>(a)</sup> | <50                | NA        |
|       | 11/2/1998  | < 0.5     | <0.5  | <0.5 | <0.5 | 1400 <sup>(a)</sup>  | <50                | NA        |
|       | 12/6/2000  | <0.5      | <0.5  | <0.5 | 0.70 | 730 <sup>(a)</sup>   | 150                | NA        |
|       | 12/11/2001 | <0.5      | <0.5  | <0.5 | <0.5 | 630 <sup>(a)</sup>   | 210 <sup>(b)</sup> | NA        |
|       | 12/5/2002  | < 0.5     | <0.5  | <0.5 | <0.5 | 840 <sup>(a)</sup>   | 210 <sup>(b)</sup> | NA        |
|       | 3/15/2004  | < 0.5     | <0.5  | <0.5 | 0.8  | 2,500 <sup>(a)</sup> | 160 <sup>(b)</sup> | NA        |
|       | 6/30/2005  | <0.5      | <0.5  | <0.5 | <0.5 | 2900                 | 140                | 2300      |
|       | 9/11/2006  | <0.5      | <0.5  | <0.5 | 0.81 | 3400                 | 270                | 2600      |
|       | 10/17/2007 | <0.5      | <0.5  | <0.5 | <0.5 | 1700                 | 140                | 1500      |
|       | 10/21/2008 | <0.5      | <0.5  | <0.5 | <0.5 | 2300                 | 240                | 1500      |
|       | 10/16/2009 | < 0.5     | < 0.5 | <0.5 | <0.5 | 4700                 | 110                | 4600      |
|       | 10/29/2010 | < 0.5     | <0.5  | <0.5 | <0.5 | 640                  | 190                | 530       |
|       | 3/1/2012   | <0.5      | <0.5  | <0.5 | <0.5 | 2000                 | 140                | 2400      |
|       | 3/22/2013  | <0.5      | <0.5  | <0.5 | <0.5 | 3100                 | 150                | 3200      |
| MW-11 | 9/23/1986  | <0.4      | <0.4  | NA   | 1.4  | NA                   | <8                 | 1,200     |
|       | 4/9/1987   | BDL       | BDL   | NA   | BDL  | NA                   | BDL                | NA        |
|       | 9/16/1987  | BDL       | BDL   | NA   | BDL  | NA                   | BDL                | NA        |
|       | 12/1/1987  | 8.0       | BDL   | NA   | 10   | NA                   | BDL                | NA        |
|       | 3/7/1988   | BDL       | BDL   | NA   | BDL  | BDL                  | BDL                | NA        |
|       | 6/8/1988   | BDL       | BDL   | NA   | BDL  | BDL                  | BDL                | NA        |
|       | 9/14/1988  | BDL       | BDL   | NA   | BDL  | 100,000              | BDL                | NA        |
|       |            | Destroyed |       |      |      |                      |                    |           |
| MW-12 | 9/23/1986  | 0.49      | 1     | NA   | 1.3  | NA                   | 100                | 2,500     |
|       | 4/9/1987   | BDL       | BDL   | NA   | BDL  | NA                   | BDL                | NA        |
|       | 9/16/1987  | BDL       | BDL   | NA   | BDL  | NA                   | BDL                | NA        |
|       | 12/1/1987  | BDL       | BDL   | NA   | 13   | NA                   | BDL                | NA        |
|       | 3/7/1988   | BDL       | BDL   | NA   | BDL  | BDL                  | BDL                | NA        |
|       | 6/8/1988   | BDL       | BDL   | NA   | BDL  | BDL                  | BDL                | NA        |
|       | 9/14/1988  | BDL       | BDL   | NA   | BDL  | 120                  | BDL                | NA        |
|       | 6/30/2005  | Destroyed |       |      |      |                      |                    |           |
|       | l l        |           |       |      |      |                      |                    |           |

#### NOTES:

 $TPH-g - Total \ Petroleum \ Hydrocarbons \ as \ Gasoline \ in \ ug/l \\ TPH-d - Total \ Petroleum \ Hydrocarbons \ as \ Diesel \ in \ ug/l \\ T - Toluene \ in \ ug/l \\ E - Ethylbenzene \ in \ ug/l$ 

TOG - Total Oil and Grease in ug/l TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

|       | Date       | В            | T    | E    | X    | TPHd               | TPHg | TOG/TPHmo |
|-------|------------|--------------|------|------|------|--------------------|------|-----------|
| MW-13 | 12/24/1986 | <0.2         | <0.9 | NA   | <0.9 | NA                 | <10  | 57,000    |
|       | 4/9/1987   | <5           | <5   | NA   | <5   | NA                 | <10  | NA        |
|       | 9/16/1987  | <5           | <5   | NA   | <5   | NA                 | <10  | NA        |
|       | 12/1/1987  | 1.6          | <5   | NA   | 12   | NA                 | <10  | NA        |
|       | 3/8/1988   | <5           | <5   | NA   | <5   | <50                | 7.7  | NA        |
|       | 6/8/1988   | <5           | <5   | NA   | <5   | <50                | <10  | NA        |
|       | 9/14/1988  | <5           | <5   | NA   | <5   | 130                | <10  | NA        |
|       | 9/16/1997  | <5           | <5   | <5   | <5   | 120 <sup>(a)</sup> | <50  | NA        |
|       | 11/2/1998  | <5           | <5   | <5   | <5   | 120 <sup>(a)</sup> | <50  | NA        |
|       | 12/6/2000  | <0.5         | <0.5 | <0.5 | <0.5 | 200 <sup>(a)</sup> | <50  | NA        |
|       | 12/11/2001 | <0.5         | <0.5 | <0.5 | <0.5 | 91 <sup>(a)\</sup> | <50  | NA        |
|       | 12/5/2002  | <0.5         | <0.5 | <0.5 | <0.5 | 190 <sup>(a)</sup> | <50  | NA        |
|       | 3/15/2004  | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | NA        |
|       | 6/30/2005  | <1.0         | <1.0 | <1.0 | <1.0 | 56                 | <50  | <250      |
|       | 9/11/2006  | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 10/17/2007 | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 10/21/2008 | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 10/16/2009 | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 10/29/2010 | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 3/1/2012   | <0.5         | <0.5 | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 3/22/2013  | <0.5         | <0.5 | <0.5 | <0.5 | 88                 | <50  | <250      |
| MW-14 | 9/23/1986  | <0.4         | <0.2 | NA   | <0.2 | NA                 | <8   | 3,200     |
|       | 4/9/1987   | BDL          | BDL  | NA   | BDL  | NA                 | BDL  | NA        |
|       | 9/16/1987  | BDL          | BDL  | NA   | BDL  | 56                 | 1.7  | NA        |
|       | 12/1/1987  | 1.2          | 4    | NA   | 10   | 66                 | BDL  | NA        |
|       | 3/7/1988   | BDL          | BDL  | NA   | BDL  | BDL                | 20   | NA        |
|       | 6/8/1988   | inaccessible |      |      |      |                    |      |           |
|       | 9/14/1988  | inaccessible |      |      |      |                    |      |           |
|       |            | Destroyed    |      |      |      |                    |      |           |
|       |            |              | 1    |      |      |                    |      |           |

#### **NOTES:**

 $\ensuremath{\mathsf{TPH-g}}$  -  $\ensuremath{\mathsf{Total}}$  Petroleum Hydrocarbons as Gasoline in ug/l

 $\boldsymbol{B}$  - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Ethylbenzene in  $ug\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\sla$ 

TOG - Total Oil and Grease in ug/l TPHmo - To

TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit

NA - Not analyzed

<sup>(</sup>a) - Quantified as diesel but chromatogram did not match diesel pattern

|       | Date       | В             | T             | E    | X    | TPHd               | TPHg | TOG/TPHmo |
|-------|------------|---------------|---------------|------|------|--------------------|------|-----------|
| MW-15 | 12/24/1986 | <0.2          | <0.9          | NA   | 9.20 | NA                 | 120  | 1,600     |
|       | 4/9/1987   | <5            | <5            | NA   | <5   | NA                 | <0.5 | NA        |
|       | 9/16/1987  | <5            | <5            | NA   | <5   | <100               | 8.4  | NA        |
|       | 12/1/1987  | 3.30          | 0.84          | NA   | 14   | NA                 | <0.5 | NA        |
|       | 3/8/1988   | 0.80          | <5            | NA   | <5   | <100               | 90   | NA        |
|       | 6/9/1988   | <5            | <5            | NA   | <5   | <100               | 53   | NA        |
|       | 9/14/1988  | NA            | NA            | NA   | NA   | 100                | NA   | NA        |
|       | 9/16/1997  | < 0.5         | <0.5          | <0.5 | <0.5 | 127 <sup>(a)</sup> | <50  | NA        |
|       | 11/2/1998  | < 0.5         | <0.5          | <0.5 | <0.5 | 340 <sup>(a)</sup> | <50  | NA        |
|       | 12/6/2000  | < 0.5         | <0.5          | <0.5 | <0.5 | 400 <sup>(a)</sup> | <50  | NA        |
|       | 12/11/2001 | <0.5          | <0.5          | <0.5 | <0.5 | 290 <sup>(a)</sup> | <50  | NA        |
|       | 12/5/2002  | < 0.5         | <0.5          | <0.5 | <0.5 | 440 <sup>(a)</sup> | <50  | NA        |
|       | 3/15/2004  | < 0.5         | <0.5          | <0.5 | <0.5 | <50                | <50  | NA        |
|       | 6/30/2005  | < 0.5         | <0.5          | <0.5 | <0.5 | 240                | <50  | 360       |
|       | 9/11/2006  | < 0.5         | <0.5          | <0.5 | <0.5 | 56                 | <50  | <250      |
|       | 10/17/2007 | < 0.5         | <0.5          | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 10/21/2008 | < 0.5         | <0.5          | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 10/16/2009 | <0.5          | <0.5          | <0.5 | <0.5 | 55                 | <50  | <250      |
|       | 10/29/2010 | <0.5          | <0.5          | <0.5 | <0.5 | <50                | <50  | <250      |
|       | 3/1/2012   | <0.5          | <0.5          | <0.5 | <0.5 | 100                | <50  | <250      |
|       | 3/22/2013  | floating prod | uct (0.01 ft) |      |      |                    |      |           |
| MW-16 | 12/24/1986 | <0.2          | <0.9          | NA   | <.9  | NA                 | <10  | 1,200     |
|       | 4/9/1987   | <5            | <5            | NA   | <5   | NA                 | <.5  | NA        |
|       | 9/16/1987  | <5            | <5            | NA   | <5   | 64                 | <.5  | NA        |
|       | 12/1/1987  | 1.00          | 0.37          | NA   | 9.1  | 150                | 120  | NA        |
|       | 3/7/1988   | 0.50          | <5            | NA   | <5   | <100               | 10   | NA        |
|       | 6/8/1988   | <5            | <5            | NA   | <5   | <100               | <0.5 | NA        |
|       | 9/14/1988  | <5            | <5            | NA   | <5   | 190                | <0.5 | NA        |
|       |            | floating prod |               |      |      | (-)                |      |           |
|       | 12/6/2000  | < 0.5         | <0.5          | <0.5 | <0.5 | 97 <sup>(a)</sup>  | <50  | NA        |
|       | 12/11/2001 | < 0.5         | <0.5          | <0.5 | <0.5 | <50                | <50  | NA        |
|       | 12/5/2002  | < 0.5         | <0.5          | <0.5 | <0.5 | 51 <sup>(a)</sup>  | <50  | NA        |
|       | 3/15/2004  | < 0.5         | <0.5          | <0.5 | <0.5 | 63                 | <50  | NA        |
|       | 6/30/2005  | < 0.5         | <0.5          | <0.5 | <0.5 | 66                 | <50  | <250      |
|       | 9/11/2006  | <0.5          | <0.5          | <0.5 | <0.5 | 140                | <50  | 550       |
|       | 10/17/2007 | <0.5          | <0.5          | <0.5 | <0.5 | 92                 | <50  | 290       |
|       | 10/21/2008 | <0.5          | <0.5          | <0.5 | <0.5 | 76                 | <50  | <250      |
|       | 10/16/2009 | <0.5          | <0.5          | <0.5 | <0.5 | 780                | <50  | 910       |
|       | 10/29/2010 | <0.5          | <0.5          | <0.5 | <0.5 | 390                | <50  | 1500      |
|       | 3/1/2012   | <0.5          | <0.5          | <0.5 | <0.5 | 270                | <50  | 1600      |
|       | 3/22/2013  | <0.5          | <0.5          | <0.5 | <0.5 | 220                | <50  | 1700      |

#### NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l B - Benzene in ug/l X - Xylenes in ug/l TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l T - Toluene in ug/l E - Ethylbenzene in ug/l

TOG - Total Oil and Grease in ug/l TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

| Date       | В                                                                                                                                                                                                                                                                                                                                                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                                               | X                                                                          | TPHd                                                                                     | TPHg                                                                                                | TOG/TPHmo      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------|
| 12/24/1986 | 5                                                                                                                                                                                                                                                                                                                                                                         | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                              | 14.00                                                                      | NA                                                                                       | 240                                                                                                 | 2,400          |
| 4/9/1987   | <5                                                                                                                                                                                                                                                                                                                                                                        | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                              | <5                                                                         | NA                                                                                       | < 0.5                                                                                               | NA             |
| 9/16/1987  | <5                                                                                                                                                                                                                                                                                                                                                                        | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                              | 0.55                                                                       | 680                                                                                      | 44                                                                                                  | NA             |
| 12/1/1987  | 7.80                                                                                                                                                                                                                                                                                                                                                                      | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                              | 28                                                                         | 1,300                                                                                    | 540                                                                                                 | NA             |
| 3/8/1988   | 83.00                                                                                                                                                                                                                                                                                                                                                                     | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                              | 46                                                                         | 3,800                                                                                    | 4300                                                                                                | NA             |
| 6/8/1988   | innaccessible                                                                                                                                                                                                                                                                                                                                                             | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |                                                                            |                                                                                          |                                                                                                     |                |
| 9/14/1988  | <0.5                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                            | <0.5                                                                       | 64,000                                                                                   | 54000                                                                                               | NA             |
| 9/16/1997  | <0.5                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                            | <0.5                                                                       |                                                                                          | 1900                                                                                                | NA             |
| 11/2/1998  | <0.5                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                            | 0.60                                                                       | 16,000 <sup>(a)</sup>                                                                    | <50                                                                                                 | NA             |
| 12/6/2000  | <0.5                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                            | <0.5                                                                       | 47,800 <sup>(a)</sup>                                                                    | 340                                                                                                 | NA             |
| 12/11/2001 | <10                                                                                                                                                                                                                                                                                                                                                                       | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <10                                                             | <10                                                                        | 101,000 <sup>(a)</sup>                                                                   | 5300 <sup>(b)</sup>                                                                                 | NA             |
| 12/5/2002  | <0.5                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                            | <0.5                                                                       | 71,000 <sup>(a)</sup>                                                                    | 700 <sup>(b)</sup>                                                                                  | NA             |
| 3/15/2004  | 2.1                                                                                                                                                                                                                                                                                                                                                                       | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5                                                            | 1.5                                                                        | 660,000 <sup>(a)</sup>                                                                   | 1400 <sup>(b)</sup>                                                                                 | NA             |
| 6/30/2005  | <0.5                                                                                                                                                                                                                                                                                                                                                                      | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.5                                                            | 1.1                                                                        | 1,600,000                                                                                | 1700                                                                                                | NA             |
| 9/11/2006  | <2.5                                                                                                                                                                                                                                                                                                                                                                      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.50                                                            | 79                                                                         | 2,300,000                                                                                | 26,000                                                                                              | 810,000        |
| 10/19/2006 | 5.90                                                                                                                                                                                                                                                                                                                                                                      | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1.0                                                            | 3.7                                                                        | 1,100,000                                                                                | 1,600                                                                                               | 480,000        |
| 10/17/2007 | <2.5                                                                                                                                                                                                                                                                                                                                                                      | <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2.5                                                            | <2.5                                                                       | 710,000                                                                                  | 4,400                                                                                               | 270,000        |
| 10/21/2008 | <2.5                                                                                                                                                                                                                                                                                                                                                                      | <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2.5                                                            | <2.5                                                                       | 330,000                                                                                  | 3,300                                                                                               | 130,000        |
| 10/16/2009 | <1.0                                                                                                                                                                                                                                                                                                                                                                      | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1.0                                                            | <1.0                                                                       | 900,000                                                                                  | 2,400                                                                                               | 350,000        |
| 10/29/2010 | <5.0                                                                                                                                                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92                                                            | 12                                                                         | 610,000                                                                                  | 5,000                                                                                               | 360,000        |
| 3/1/2012   | <5.0                                                                                                                                                                                                                                                                                                                                                                      | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0                                                            | <5.0                                                                       | 390,000                                                                                  | 3,000                                                                                               | 160,000        |
| 3/22/2013  | 8.2                                                                                                                                                                                                                                                                                                                                                                       | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <5.0                                                            | 4.1                                                                        | 570,000                                                                                  | 4,500                                                                                               | 220,000        |
| 9/23/1986  | <0.3                                                                                                                                                                                                                                                                                                                                                                      | <0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                              | 0.99                                                                       | NA                                                                                       | <20                                                                                                 | 1,600          |
| 4/9/1987   | BDL                                                                                                                                                                                                                                                                                                                                                                       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                              | BDL                                                                        | NA                                                                                       | BDL                                                                                                 | NA             |
| 9/16/1987  | BDL                                                                                                                                                                                                                                                                                                                                                                       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                              | BDL                                                                        | 480                                                                                      | BDL                                                                                                 | NA             |
| 12/1/1987  | BDL                                                                                                                                                                                                                                                                                                                                                                       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                              | 6.6                                                                        | 180                                                                                      | BDL                                                                                                 | NA             |
| 3/7/1988   | BDL                                                                                                                                                                                                                                                                                                                                                                       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                              | BDL                                                                        | BDL                                                                                      | BDL                                                                                                 | NA             |
| 6/8/1988   | BDL                                                                                                                                                                                                                                                                                                                                                                       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                              | BDL                                                                        | BDL                                                                                      | BDL                                                                                                 | NA             |
| 9/14/1988  | BDL                                                                                                                                                                                                                                                                                                                                                                       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                              | BDL                                                                        | 190                                                                                      | BDL                                                                                                 | NA             |
|            | Destroyed                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                            |                                                                                          |                                                                                                     |                |
|            | 12/24/1986<br>4/9/1987<br>9/16/1987<br>12/1/1987<br>3/8/1988<br>6/8/1988<br>9/14/1988<br>9/16/1997<br>11/2/1998<br>12/6/2000<br>12/11/2001<br>12/5/2002<br>3/15/2004<br>6/30/2005<br>9/11/2006<br>10/19/2006<br>10/19/2006<br>10/17/2007<br>10/21/2008<br>10/16/2009<br>10/29/2010<br>3/1/2012<br>3/22/2013<br>9/23/1986<br>4/9/1987<br>9/16/1987<br>3/7/1988<br>6/8/1988 | 12/24/1986 5 4/9/1987 <5 9/16/1987 <5 12/1/1987 7.80 3/8/1988 83.00 6/8/1988 83.00 6/8/1988 60.5 9/14/1988 <0.5 9/16/1997 <0.5 11/2/1998 <0.5 12/6/2000 <0.5 12/11/2001 <10 12/5/2002 <0.5 3/15/2004 2.1 6/30/2005 <0.5 9/11/2006 5.90 10/17/2007 <2.5 10/19/2006 5.90 10/17/2007 <2.5 10/21/2008 <2.5 10/16/2009 <1.0 10/29/2010 <5.0 3/1/2012 <5.0 3/1/2012 3/22/2013 8.2  9/23/1986 <0.3 4/9/1987 BDL 9/16/1987 BDL 12/1/1987 BDL 3/7/1988 BDL 6/8/1988 BDL 6/8/1988 BDL 9/14/1988 BDL | 12/24/1986         5         1.20           4/9/1987         <5 | 12/24/1986         5         1.20         NA           4/9/1987         <5 | 12/24/1986         5         1.20         NA         14.00           4/9/1987         <5 | 12/24/1986         5         1.20         NA         14.00         NA           4/9/1987         <5 | 12/24/1986   5 |

#### **NOTES:**

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

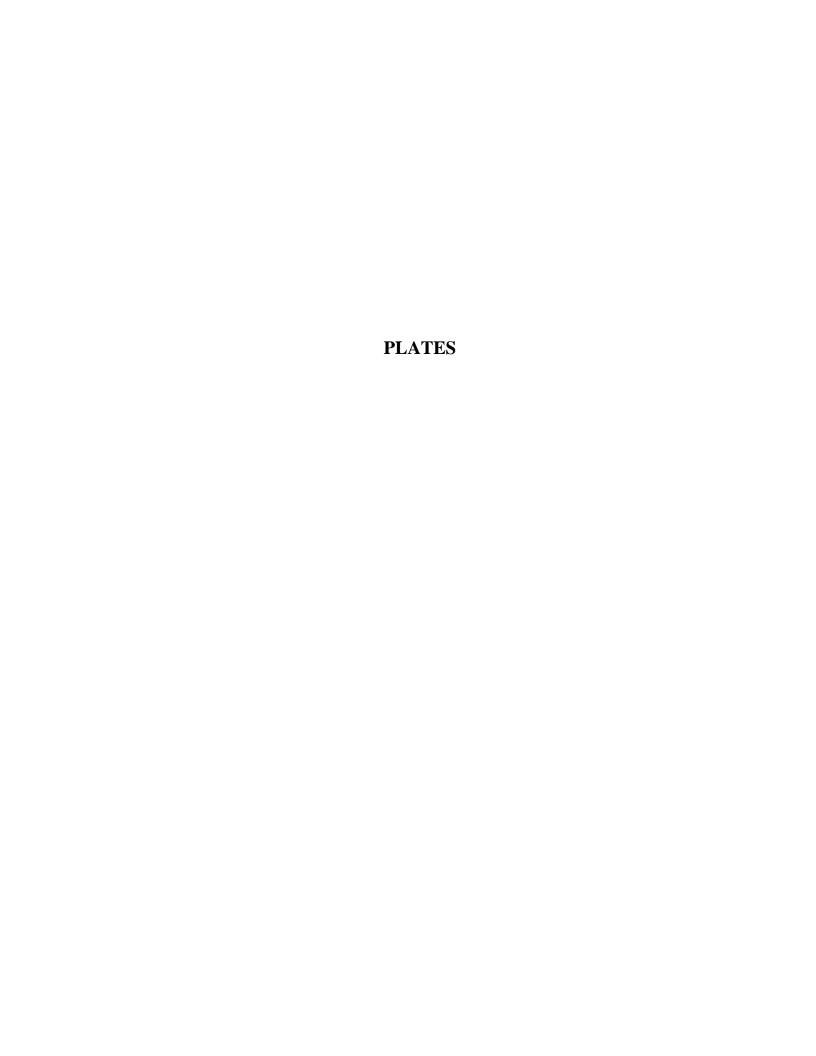
B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Ethylbenzene in ug/l


TOG - Total Oil and Grease in  $ug\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash\slash$ 

TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

BDL - Below detection limit

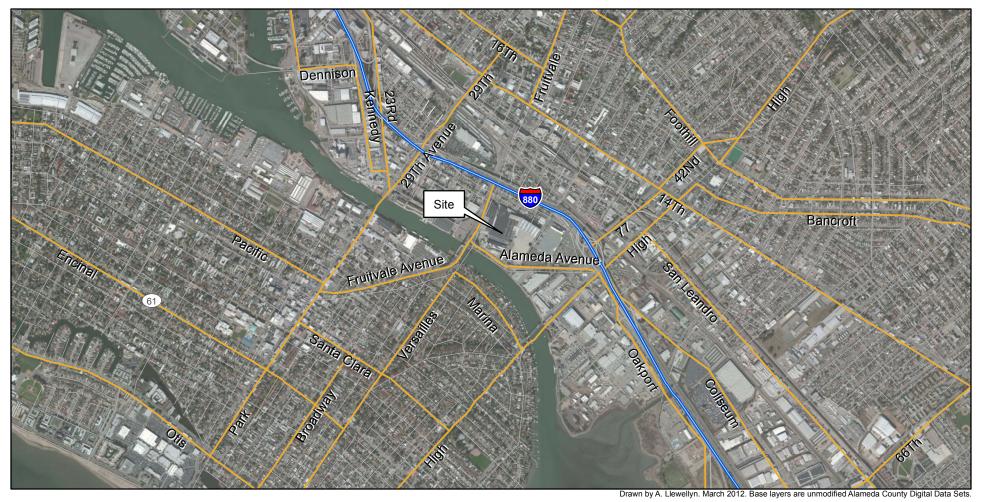
NA - Not analyzed

<sup>(</sup>a) - Quantified as diesel but chromatogram did not match diesel pattern



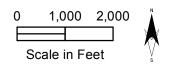
|       | Date       | В     | T    | E     | X    | TPHd                 | TPHg               | TOG/TPHmo |
|-------|------------|-------|------|-------|------|----------------------|--------------------|-----------|
| MW-19 | 6/23/2004  | < 0.5 | <0.5 | <0.5  | <0.5 | 1,100                | 480                | NA        |
|       | 3/15/2004  | < 0.5 | <0.5 | <0.5  | <0.5 | 1,100 <sup>(a)</sup> | 330 <sup>(b)</sup> | NA        |
|       | 6/30/2005  | <0.5  | <0.5 | 1.5   | 4.5  | 1700                 | 840                | 350       |
|       | 9/18/2006  | < 0.5 | <0.5 | <0.5  | 0.83 | 890                  | 280                | 280       |
|       | 10/17/2007 | < 0.5 | <0.5 | <0.5  | 0.61 | 1200                 | 880                | <250      |
|       | 10/21/2008 | < 0.5 | <0.5 | <0.5  | <0.5 | 300                  | 340                | <250      |
|       | 10/16/2009 | < 0.5 | <0.5 | <0.5  | <0.5 | 440                  | 390                | <250      |
|       | 10/29/2010 | <0.5  | <0.5 | <0.5  | 0.95 | 460                  | 670                | <250      |
|       | 3/1/2012   | <0.5  | <0.5 | <0.5  | <0.5 | 440                  | 310                | <250      |
|       | 3/22/2013  | <0.5  | <0.5 | <0.5  | 1.1  | 780                  | 620                | <250      |
|       |            |       |      |       |      |                      |                    |           |
| MW-20 | 12/11/2000 | < 0.5 | <0.5 | <0.5  | <0.5 | 110 <sup>(a)</sup>   | <50                | NA        |
|       | 4/6/2001   | < 0.5 | <0.5 | <0.5  | <0.5 | 57 <sup>(a)</sup>    | <50                | NA        |
|       | 7/6/2001   | < 0.5 | <0.5 | <0.5  | <0.5 | 120 <sup>(a)</sup>   | <50                | NA        |
|       | 9/19/2001  | <0.5  | <0.5 | <0.5  | <0.5 | 160 <sup>(a)</sup>   | <50                | NA        |
|       | 12/11/2001 | <0.5  | <0.5 | <0.5  | <0.5 | 82 <sup>(a)</sup>    | 86 <sup>(b)</sup>  | NA        |
|       | 2/6/2002   | <0.5  | <0.5 | <0.5  | <0.5 | 85 <sup>(a)</sup>    | <50                | NA        |
|       | 3/15/2004  | <0.5  | <0.5 | <0.5  | <0.5 | <0.5                 | <50                | NA        |
|       | 6/30/2005  | < 0.5 | <0.5 | <0.5  | <0.5 | <500                 | <50                | NA        |
|       | 9/11/2006  | < 0.5 | <0.5 | <0.5  | <0.5 | <50                  | <50                | <250      |
|       | 10/17/2007 | < 0.5 | <0.5 | < 0.5 | <0.5 | <50                  | <50                | <250      |
|       | 10/21/2008 | <0.5  | <0.5 | <0.5  | <0.5 | <50                  | <50                | <250      |
|       | 10/16/2009 | <0.5  | <0.5 | <0.5  | <0.5 | <50                  | <50                | <250      |
|       | 10/29/2010 | <0.5  | <0.5 | <0.5  | <0.5 | <50                  | <50                | <250      |
|       | 3/1/2012   | <0.5  | <0.5 | <0.5  | <0.5 | <50                  | <50                | <250      |
|       | 3/22/2013  | <0.5  | <0.5 | <0.5  | <0.5 | <50                  | <50                | <250      |

#### **NOTES:**


TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l B - Benzene in ug/l X - Xylenes i

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l T - Toluene in ug/l E - Ethylbenzene in ug/l

TOG - Total Oil and Grease in ug/l TPHmo - Total Petroleum Hydrocarbons as Motor Oil ug/l (after 2004)

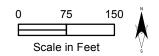

BDL - Below detection limit NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern











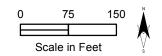



#### **EXPLANATION**

- Monitoring Well
- Destroyed Well
- Line of Equal Groundwater Elevation
- Approximate Line of Equal Groundwater Elevation
- 4.59 Groundwater Elevation
- NA Not Available
- Not Measured

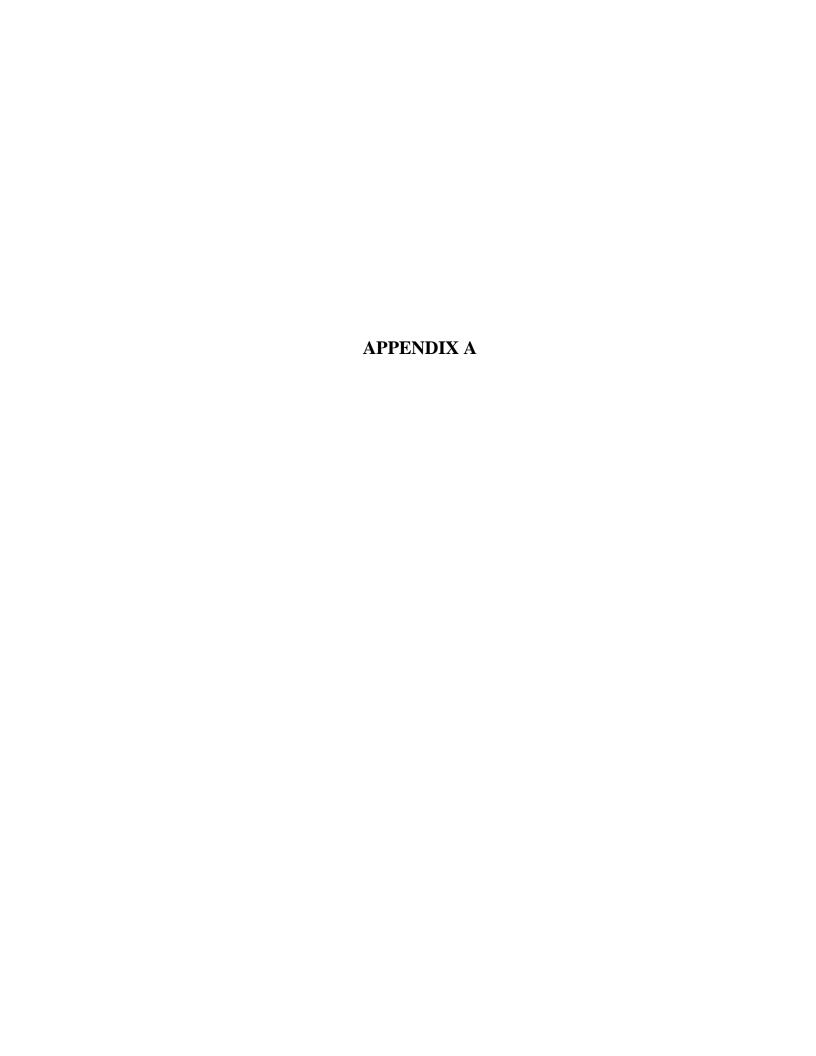


Groundwater Elevation Contour Map March 22, 2013 Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California


PLATE

2




#### **EXPLANATION**

- Monitoring Well
- Destroyed Well
  - Line of Equal Fuel Oil Concentration
- Approximate Line of Equal Fuel Oil Concentration
- 220 TPHd Cocentration in μg/L
- FP Floating Product
- NA Not Available
- \* MW-3 was last reported to have floating product before being destroyed in 1988



Fuel Oil/Diesel Contour Map March 22, 2013 Owens-Brockway Glass Container Facility 3600 Alameda Avenue, Oakland California

PLATE



## WELL GAUGING DATA

| Proj | ect#_ | 1303       | <u> 22-jol</u> | Date | 3-22-13 |     | Client | CKG |  |
|------|-------|------------|----------------|------|---------|-----|--------|-----|--|
|      |       |            |                |      |         |     |        |     |  |
| Site | 360   | ) <i>O</i> | Mangla         | Ne   | Oaldand | 014 |        |     |  |

| Well ID | Time  | Well<br>Size<br>(in.) | Sheen /<br>Odor | t     | Thickness<br>of<br>Immiscible<br>Liquid (ft.) | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth to water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth to well bottom (ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Survey<br>Point:<br>TOB or<br>TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Notes        |
|---------|-------|-----------------------|-----------------|-------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| MW-1    | 4_    | 601                   | esed            |       | Nuss                                          | yaesS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Mw-5    | 0912  | 2                     |                 | 11.95 | )<br>0.03                                     | ** Galinary and Charles and Dauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The Committee of the Association | de la companya de la  | SOLK         |
| MW-6    | 0913  | 2                     |                 | 14.40 | 0.02                                          | -pathone and the pathone and t | 14.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>36 - Забанна авторин оструду</sup> н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOCK         |
| Mu. 7   | 0924  | 2                     |                 | 1238  | 0.02                                          | THE STATE OF THE S | 12.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GPH<br>SCOL  |
| MW-B    | 0918  | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State Color  |              |
| WM-10   | 0914  | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A Company of the Comp |              |
| MW-13   | 09 24 | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ent-ben-paragraphy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sour<br>Sour |
| MW15    | 0920  | 2                     |                 | 11.90 | 0.01                                          | MONTH COMMENTAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Annably Control of the Control of t | A Company of the Comp | SPH<br>SOLE  |
| MW-16   | 0927  | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPH<br>SOCK  |
| MW-17   | 0930  | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La publicación de la constitución de la constitució | SOLK         |
| MW-19   | 0930  | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and if you shall be s |              |
| MW-20   | 0934  | 2                     |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | opt<br>Souc  |
|         |       |                       |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |       |                       |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |       |                       |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |       |                       |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|         |       |                       |                 |       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

## WELLHEAD INSPECTION CHECKLIST

Page \_ \( \) of \_\_\_

| Client Use                              | 7 Ehrwarnen                                          | ła l                            |                                  |                                        | Date                                   | 3-22-                                       | 13                                          |                           |
|-----------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------|
| Site Address                            | 3600 Dames                                           | la Ne                           | - 00                             | Hunk                                   | CA.                                    |                                             |                                             |                           |
| Job Number                              | 130322-101                                           |                                 |                                  | Tech                                   | nician                                 | do                                          |                                             |                           |
| Well ID                                 | Well Inspected -<br>No Corrective<br>Action Required | Water Bailed<br>From<br>Wellbox | Wellbox<br>Components<br>Cleaned | Cap<br>Replaced                        | Lock<br>Replaced                       | Other Action<br>Taken<br>(explain<br>below) | Well Not<br>Inspected<br>(explain<br>below) | Repair Order<br>Submitted |
| NW-l                                    |                                                      | CO                              | e/qu/                            |                                        |                                        |                                             |                                             |                           |
| Mw-5                                    |                                                      |                                 |                                  |                                        |                                        | X                                           |                                             |                           |
| MW-4.                                   | >                                                    |                                 |                                  |                                        |                                        |                                             |                                             |                           |
| FWM                                     | X                                                    |                                 |                                  |                                        |                                        |                                             |                                             |                           |
| NW-8                                    | 又                                                    |                                 |                                  | ······································ |                                        |                                             |                                             |                           |
| MW-10                                   |                                                      |                                 |                                  |                                        |                                        | X                                           |                                             |                           |
| MW-13                                   |                                                      |                                 |                                  |                                        |                                        | X                                           |                                             |                           |
| MW-15                                   |                                                      |                                 |                                  |                                        |                                        | 又                                           | -                                           |                           |
| MW-16                                   |                                                      |                                 |                                  |                                        |                                        | ×                                           |                                             |                           |
| MW-17                                   |                                                      |                                 |                                  |                                        |                                        | ,                                           |                                             |                           |
| MW-19                                   | 1                                                    |                                 |                                  |                                        |                                        |                                             |                                             |                           |
| MW-ZO                                   |                                                      |                                 |                                  |                                        |                                        |                                             |                                             |                           |
| 14/00,00                                |                                                      |                                 |                                  |                                        |                                        | <u> </u>                                    |                                             |                           |
|                                         |                                                      |                                 |                                  |                                        |                                        |                                             |                                             |                           |
|                                         |                                                      |                                 |                                  |                                        |                                        |                                             |                                             |                           |
|                                         |                                                      |                                 |                                  |                                        |                                        |                                             |                                             |                           |
|                                         |                                                      |                                 |                                  |                                        |                                        |                                             |                                             |                           |
| NOTES:                                  | MW-S April                                           |                                 |                                  |                                        |                                        | als Bo                                      | bun M                                       | bolts                     |
| M4-20                                   | 212 Tabs                                             | 4                               |                                  | WO Boi                                 |                                        |                                             | Booker                                      | id,                       |
| MW-13                                   | Boku K                                               | d imi                           | <u>v (5</u> _                    | 42 Bd                                  | lts 1                                  | 15547                                       |                                             |                           |
|                                         |                                                      |                                 |                                  |                                        | · · · · · · · · · · · · · · · · · · ·  |                                             |                                             |                           |
| *************************************** | ****                                                 |                                 |                                  |                                        | ······································ | ÷                                           |                                             |                           |
|                                         |                                                      |                                 |                                  |                                        | <u> </u>                               |                                             |                                             |                           |

| Project #:                              | B1327.                                                    | <u> </u>   |                        | Client                              | : C)<                                   | 4            |             |                                                                                    |
|-----------------------------------------|-----------------------------------------------------------|------------|------------------------|-------------------------------------|-----------------------------------------|--------------|-------------|------------------------------------------------------------------------------------|
| Sampler:                                | Jo                                                        |            | Date: 3-22-13          |                                     |                                         |              |             |                                                                                    |
| Well I.D.:                              | Mw-I                                                      |            | Well I                 | Diamete                             |                                         | 3 4          | 6 8         |                                                                                    |
|                                         |                                                           |            |                        |                                     | to Wat                                  | er (DTW      | ):          |                                                                                    |
| Depth to Fr                             | ee Product                                                | ~•         |                        | Thickr                              | ness of                                 | Free Prod    | duct (fee   | t):                                                                                |
| Referenced                              | to:                                                       | PVC        | Grade                  | D.O. N                              | Aeter (i                                | f req'd):    |             | YSI HACH                                                                           |
| DTW with                                | 80% Rech                                                  | arge [(F   | leight of Water        | Colum                               | n x 0.20                                | )) + DTW     | <i>V</i> ]: | ,                                                                                  |
| Purge Method:                           | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displacem- |                        | Waterra<br>Peristaltic<br>tion Pump | ;                                       | _            | Other:      | Bailer Disposable Bailer Extraction Port Dedicated Tubing  Hameter Multiplier 0.65 |
| 1 Case Volume                           | Gals.) X<br>Speci                                         | fied Volur | =<br>nes Calculated Vo | Gals.                               | 2"<br>3"                                | 0.16<br>0.37 | 6"<br>Other | 1.47<br>radius <sup>2</sup> * 0.163                                                |
| Time                                    | Temp<br>(°F or °C)                                        | pН         | Cond.<br>(mS or μS)    | 1                                   | bidity<br>TUs)                          | Gals. R      | emoved      | Observations                                                                       |
| Well<br>Sample                          | covered                                                   | Bu         | gluss w                | able                                | <i>√</i> 6                              | ACCE         | ?s Ç        | <i>N</i> ()                                                                        |
|                                         | - Sa                                                      |            |                        |                                     | **************************************  |              |             |                                                                                    |
| *************************************** |                                                           |            |                        |                                     | *************************************** |              |             |                                                                                    |
| <u> </u>                                |                                                           |            |                        | <u> </u>                            |                                         | -            |             |                                                                                    |
| Did well de                             | water?                                                    | Yes        | No                     | Gallon                              | s actual                                | lly evacu    | ated:       |                                                                                    |
| Sampling D                              | ate:                                                      |            | Sampling Time          | 3;                                  |                                         | Depth 1      | to Water    | •                                                                                  |
| Sample I.D.                             |                                                           |            |                        | Labora                              | itory:                                  | Kiff C       | alScience   | Other                                                                              |
| Analyzed fo                             | TPH-G                                                     | втех       | MTBE TPH-D             | Oxygen                              | atęs (5)                                | Other:       |             |                                                                                    |
| EB İ.D. (if a                           | ipplicable)                                               | •          | @<br>Time              | Duplic                              | ate I.Q.                                | . (if appli  | cable):     |                                                                                    |
| Analyzed fo                             | ог: трн-6                                                 | BTEX       | MTBE TPH-D             | Oxygen                              | ates (5)                                | Other:       |             |                                                                                    |
| D.O. (if req'                           | d): Pr                                                    | e-purge:   |                        | mg/I                                |                                         | Post-purge   | ):          | ng/L                                                                               |
| O.R.P. (if re                           | eq'd): Pr                                                 | e-purge:   |                        | mV                                  |                                         | Post-purge   | ··<br>>:    | m√                                                                                 |

| Project #:    | 130322                                                    |            |                                                      | Client: Ck                          | <b>-</b> G                                     |                                                                                             |  |  |  |
|---------------|-----------------------------------------------------------|------------|------------------------------------------------------|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Sampler:      | SD                                                        |            |                                                      | Date: 3 - 22 - (3                   |                                                |                                                                                             |  |  |  |
| Well I.D.:    | MW-5                                                      |            |                                                      | Well Diamete                        |                                                | 6 8                                                                                         |  |  |  |
| Total Well    | Depth (TD                                                 | ):         | virtainmining page page page page page page page pag | Depth to Wat                        | er (DTW):                                      | 1.98                                                                                        |  |  |  |
| Depth to Fr   | ee Product                                                | *          | 1.95                                                 | Thickness of                        | Free Product (fe                               |                                                                                             |  |  |  |
| Referenced    | to:                                                       | (PVC)      | Grade                                                | D.O. Meter (i                       | f req'd):                                      | YSI HACH                                                                                    |  |  |  |
| DTW with      | 80% Recha                                                 | arge [(F   | leight of Water                                      | Column x 0.20                       | 0) + DTW]:                                     |                                                                                             |  |  |  |
| Purge Method: | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme |                                                      | Waterra<br>Peristaltic<br>tion Pump | Sampling Method Other                          | Disposable Bailer<br>Extraction Port<br>Dedicated Tubing                                    |  |  |  |
| 1 Case Volume | Gals.) X<br>Speci                                         | fied Volum | =nes Calculated Vo                                   | Gals. Jume                          | eter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe | Diameter         Multiplier           0.65         1.47           r         radius² * 0.163 |  |  |  |
| Time          | Temp<br>(°F or °C)                                        | pН         | Cond.<br>(mS or µS)                                  | Turbidity<br>(NTUs)                 | Gals. Removed                                  | Observations                                                                                |  |  |  |
| SPH Del       | eded in                                                   | well       | W/ Interface                                         | probe                               | 0.03' 50                                       | 44                                                                                          |  |  |  |
| Saturated     | W/5PH                                                     |            | Sock repla                                           | ced. N                              | o sample                                       | taley                                                                                       |  |  |  |
|               |                                                           |            |                                                      |                                     | ,                                              |                                                                                             |  |  |  |
|               |                                                           |            |                                                      |                                     |                                                |                                                                                             |  |  |  |
|               |                                                           |            |                                                      |                                     |                                                |                                                                                             |  |  |  |
| Did well dev  | water?                                                    | Yes        | No                                                   | Gallons actua                       | lly evacuated:                                 |                                                                                             |  |  |  |
| Sampling D    | ate:                                                      |            | Sampling Time                                        | <b>&gt;:</b>                        | Depth to Wate                                  | er:                                                                                         |  |  |  |
| Sample I.D.   | •                                                         |            |                                                      | Laboratory:                         | Kiff CalScience                                | e Other                                                                                     |  |  |  |
| Analyzed fo   | r: TPH-G                                                  | BTEX       | мтве трң-d                                           | Oxygenates (5)                      | Other:                                         |                                                                                             |  |  |  |
| EB I.D. (if a | pplicable)                                                | •          | @ Time                                               | Duplicate I.D                       | . (if applicable):                             | . \                                                                                         |  |  |  |
| Analyzed fo   | r: ТРН-G                                                  | BTEX       | MTBE TPH-D                                           | Oxygenates (5)                      | Other:                                         |                                                                                             |  |  |  |
| D.O. (if req' | d): Pr                                                    | e-purge:   |                                                      | T/Sm                                | Post-purge:                                    | mg/I                                                                                        |  |  |  |
| O.R.P. (if re | q'd): Pr                                                  | è-purge:   |                                                      | mV                                  | Post-purge:                                    | mV                                                                                          |  |  |  |

| Project #:    | 130322                                                    | · Jol      |                     | Client:                             | CK                                      | -0                                               |                    |                                                           |
|---------------|-----------------------------------------------------------|------------|---------------------|-------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------|-----------------------------------------------------------|
| Sampler:      | 70                                                        |            |                     | Date: 3-22-(3                       |                                         |                                                  |                    |                                                           |
| Well I.D.:    | Mw-                                                       | 6          |                     | Well D                              | iameter                                 | :(2)                                             | 3 4                | 6 8                                                       |
| Total Well    | Depth (TD                                                 | ):         | H.40°               | Depth                               | to Water                                | r (DTV                                           | V): }              | 4.42                                                      |
| Depth to Fr   | ee Product                                                | •          | 14.40               | Thickn                              | ess of F                                | ree Pro                                          | duct (fee          | et): 0.02                                                 |
| Referenced    | to:                                                       | PVC        | Grade               | D.O. M                              | leter (if                               | req'd):                                          |                    | YSI HACH                                                  |
| DTW with      | 80% Rech                                                  | arge [(H   | leight of Water     | Columr                              | 1 x 0.20)                               | + DT                                             | W]:                |                                                           |
| Purge Method: | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme |                     | Waterra<br>Peristaltic<br>tion Pump | Well Diamete                            | -                                                | ing Method: Other: | Bailer Disposable Bailer Extraction Port Dedicated Tubing |
|               | Gals.) X                                                  |            |                     | Gals.                               | l"<br>2"                                | 0.04<br>0.16                                     | 4"<br>6"           | 0.65<br>1.47                                              |
| 1 Case Volume | -                                                         | fied Volun | nes Calculated Vo   | 1                                   | 3"                                      | 0.37                                             | Other              | radius <sup>2</sup> * 0.163                               |
| Time          | Temp<br>(°F or °C)                                        | pН         | Cond.<br>(mS or μS) | ł                                   | oidity<br>(TUs)                         | <del>                                     </del> | Removed            | Observations                                              |
| SPH           | Declact                                                   | 1 L        | 1/ Interface        | Probe                               | 2 1 50                                  | bck_                                             | Sutwa              | ted w/SPH                                                 |
| Socie         | redu                                                      | ed.        | NO Sac              | note                                | tale                                    |                                                  |                    |                                                           |
|               | ,                                                         |            |                     | <b>!</b>                            |                                         |                                                  |                    |                                                           |
|               |                                                           |            |                     |                                     |                                         |                                                  |                    |                                                           |
|               |                                                           |            |                     |                                     |                                         |                                                  |                    |                                                           |
| Did well de   | water?                                                    | Yes        | No                  | Gallon                              | s actuall                               | y evacı                                          | uated:             |                                                           |
| Sampling D    | ate:                                                      |            | Sampling Time       | e:                                  |                                         | Depth                                            | to Water           | :                                                         |
| Sample I.Q.   | •                                                         |            |                     | Labora                              | tory:                                   | Kiff                                             | CalScience         | Other                                                     |
| Analyzed fo   | TPH-G                                                     | BTEX       | мтве трн-р          | Oxygena                             | ates (5)                                | Other:                                           |                    |                                                           |
| EB I.D. (if a | applicable)                                               | *          | @ Time              | Duplic                              | ate I.D. (                              | (if appl                                         | licable):          |                                                           |
| Analyzed fo   | <del>\</del>                                              | BTEX       | MTBE TPH-D          | Oxygena                             | *************************************** | Other:                                           |                    |                                                           |
| D.O. (if req  | 'd): Pu                                                   | e-purge:   |                     | mg/L                                | P                                       | ost-purg                                         | ge:                | mg/                                                       |
| O.R.P. (if re | eq'd): Pr                                                 | e-purge:   |                     | mV                                  | P                                       | ost-purg                                         | ge:                | mV                                                        |

|               |                                                           |            | *                                      |                                     |                       |                                                      |                                                                                   |  |
|---------------|-----------------------------------------------------------|------------|----------------------------------------|-------------------------------------|-----------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Project #:    | 130322                                                    | - Joi      |                                        | Client: CKG                         |                       |                                                      |                                                                                   |  |
| Sampler:      | 10                                                        |            |                                        | Date:                               | 3-2                   | 2-(3                                                 |                                                                                   |  |
| Well I.D.:    | F-WM                                                      |            |                                        | Well D                              | iameter:              | : 2 3 4                                              | 6 8                                                                               |  |
| Total Well    | Depth (TD                                                 | ):         | ************************************** | Depth                               | to Water              | ·(DTW): \7                                           | 2.40                                                                              |  |
| Depth to Fr   | ee Product                                                | :          | 12.39                                  | Thickn                              | ess of Fi             | ree Product (fe                                      |                                                                                   |  |
| Referenced    | to:                                                       | (PVC)      | Grade                                  | D.O. M                              | leter (if             | req'd):                                              | YSI HACH                                                                          |  |
| DTW with      | 80% Rech                                                  | arge [(H   | leight of Water                        | Column                              | x 0.20)               | + DTW]:                                              |                                                                                   |  |
| Purge Method: | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme |                                        | Waterra<br>Peristaltic<br>tion Pump |                       | Sampling Method                                      | Disposable Bailer Extraction Port Dedicated Tubing                                |  |
| 1 Case Volume | Gals.) X<br>Speci                                         | fied Volun | =<br>nes Calculated Vo                 | Gals.                               | Well Diamete 1" 2" 3" | r Multiplier Well   0.04 4"   0.16 6"   0.37   Other | Diameter         Multiplier           0.65         1.47           radius² * 0.163 |  |
| Time          | Temp<br>(°F or °C)                                        | pН         | Cond.<br>(mS or μS)                    | 1                                   | oidity<br>ΓUs)        | Gals. Removed                                        | Observations                                                                      |  |
| "SPH DE       | Lecter                                                    | w/Iv       | leracie pro                            | be,                                 | Sod                   | saturated                                            | W/SPH                                                                             |  |
| Sock          | replueer                                                  | M          | Sauple fa                              | cen                                 |                       |                                                      |                                                                                   |  |
|               | <b>,</b>                                                  |            | ļ                                      |                                     |                       |                                                      |                                                                                   |  |
| _             |                                                           |            |                                        |                                     |                       |                                                      |                                                                                   |  |
|               |                                                           |            |                                        |                                     |                       | ***************************************              |                                                                                   |  |
| Did well dev  | water?                                                    | Yes        | No                                     | Gallons                             | s actually            | y evacuated:                                         | A                                                                                 |  |
| Sampling D    | ate:                                                      |            | Sampling Time                          | e:                                  |                       | Depth-to Wate                                        | r:                                                                                |  |
| Sample I.D.   | *                                                         |            |                                        | Labora                              | tory:                 | Kiff CalScience                                      | e Other                                                                           |  |
| Analyzed fo   | τ: TPH-G                                                  | BTEX       | мтве трн-d                             | Oxygena                             | ates (5)              | Other:                                               | \                                                                                 |  |
| EB I.D. (if a | pplicable)                                                | •          | @<br>Time                              | Duplica                             | ate I.D. (            | (if applicable):                                     | . \ .                                                                             |  |
| Analyzed fo   | r: TPH-G                                                  | BTEX       | MTBE TPH-D                             | Oxygen                              | ` ` '                 | Other:                                               |                                                                                   |  |
| D.O. (if req' | d): Pr                                                    | è-purge:   |                                        | <sup>mg</sup> /L                    | P                     | ost-purge:                                           | mg/ <sub>1</sub>                                                                  |  |
| O.R.P. (if re | q'd): Pr                                                  | e-purge:   |                                        | mV                                  | P                     | ost-purge:                                           | mV                                                                                |  |

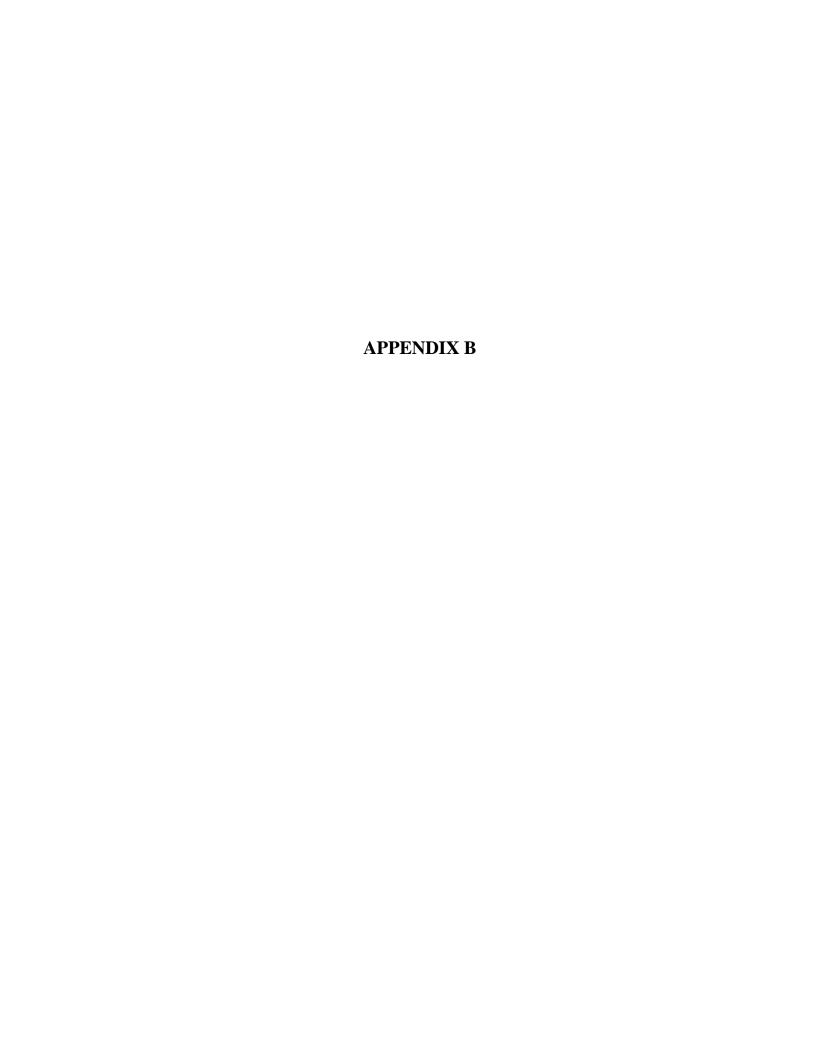
| Client: CKG                    |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Date: 3-22-13                  |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |  |  |  |
| Well Diameter                  | r: (2) 3 4                                                                                                                                                                                                                                                                                                        | 6 8                                                                                                                                                                                                                                   |  |  |  |
| Depth to Wate                  | er (DTW): 9,0                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                    |  |  |  |
| Thickness of I                 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |  |  |  |
| D.O. Meter (if                 | req'd):                                                                                                                                                                                                                                                                                                           | YSI HACH                                                                                                                                                                                                                              |  |  |  |
| Column x 0.20                  | ) + DTW]:                                                                                                                                                                                                                                                                                                         | 11.93                                                                                                                                                                                                                                 |  |  |  |
| Waterra Peristaltic ction Pump |                                                                                                                                                                                                                                                                                                                   | Bailer Disposable Bailer Extraction Port Dedicated Tubing                                                                                                                                                                             |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                   | Diameter Multiplier                                                                                                                                                                                                                   |  |  |  |
| Gals. 2"                       | 0.16 6"                                                                                                                                                                                                                                                                                                           | 0.65<br>1.47                                                                                                                                                                                                                          |  |  |  |
| olume 3"                       | 0.37 Other                                                                                                                                                                                                                                                                                                        | radius <sup>2</sup> * 0.163                                                                                                                                                                                                           |  |  |  |
| Turbidity<br>(NTUs)            | Gals. Removed                                                                                                                                                                                                                                                                                                     | Observations                                                                                                                                                                                                                          |  |  |  |
| >1000                          | 2-0                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |  |  |  |
| >1000                          | 4,0                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |  |  |  |
| >1000                          | 6-0                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |  |  |  |
| Gallons actuall                | y evacuated:                                                                                                                                                                                                                                                                                                      | 6.0                                                                                                                                                                                                                                   |  |  |  |
| e: llzs                        | Depth to Water                                                                                                                                                                                                                                                                                                    | r: 10.04                                                                                                                                                                                                                              |  |  |  |
| Laboratory:                    | Kiff CalScience                                                                                                                                                                                                                                                                                                   | Other McCanshell                                                                                                                                                                                                                      |  |  |  |
| Oxygenates (5)                 | Other: Soo                                                                                                                                                                                                                                                                                                        | e cie                                                                                                                                                                                                                                 |  |  |  |
| Duplicate I.D.                 |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |  |  |  |
| Oxygenates (5)                 | Other:                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |  |  |  |
| mg/ <sub>L</sub> P             | ost-purge:                                                                                                                                                                                                                                                                                                        | $^{ m mg}\!/_{ m L}$                                                                                                                                                                                                                  |  |  |  |
| mV P                           | ost-purge:                                                                                                                                                                                                                                                                                                        | mV                                                                                                                                                                                                                                    |  |  |  |
|                                | Date: 3-2 Well Diameter Depth to Wate Thickness of I D.O. Meter (if Column x 0.20 Waterra Peristaltic ction Pump  Gals. olume  Well Diame  "" 2" 3"  Turbidity (NTUs)  >(000  >(000)  >(000)  >(000)  Callons actual e: \(\( \) \( \) \( \) \( \)  Coygenates (5)  Duplicate I.D.  Oxygenates (5)  Oxygenates (5) | Date: 3-22-13  Well Diameter: 2 3 4  Depth to Water (DTW): 4  Thickness of Free Product (fee D.O. Meter (if req'd):  Column x 0.20) + DTW]:  Waterra Sampling Method: Peristaltic etion Pump  Other:  Well Diameter Multiplier Well I |  |  |  |

|                        |                                                           | `               | , 222 112 01 11 1             |                                      | - WILEI.                               | LOWER                                           |                                                           |
|------------------------|-----------------------------------------------------------|-----------------|-------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| Project #:             | 130322                                                    | -101            |                               | Client:                              | CKG                                    |                                                 |                                                           |
| Sampler:               | 70                                                        |                 |                               | Date:                                | 3-2                                    | 2-13                                            |                                                           |
| Well I.D.:             | MW - 1                                                    | 0               |                               | Well D                               | iameter                                | :(2) 3 4                                        | 6 8                                                       |
| Total Well             | Depth (TD                                                 | ): \            | 9.00                          | Depth                                | to Wate                                | r (DTW): व्                                     |                                                           |
| Depth to Fr            | ee Product                                                | *               | ) we constitute high          | Thickn                               | ess of F                               | Free Product (fee                               | et):                                                      |
| Referenced             | to:                                                       | (PVC)           | Grade                         | D.O. M                               | leter (if                              | req'd):                                         | YSI HACH                                                  |
| DTW with               | 80% Rech                                                  | arge [(H        | leight of Water               |                                      | ······································ | ······································          | 11.74                                                     |
| Purge Method:          | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme      | ent Extrac<br>Other           | Waterra<br>Peristaltic<br>ction Pump |                                        | Sampling Method: Other:                         | Disposable Bailer Extraction Port Dedicated Tubing        |
| 1.5 (constitution 1.5) | Gals.) X<br>Speci                                         | 3<br>fied Volun | = 4.5<br>nes Calculated Vo    | Gals.<br>olume                       | Well Diamete<br>1"<br>2"<br>3"         | er Multiplier Well I 0.04 4" 0.16 6" 0.37 Other | Diameter Multiplier 0.65 1.47 radius <sup>2</sup> * 0.163 |
| Time                   | Temp<br>(°F or °C)                                        | pН              | Cond.<br>(mS or (\hat{\mu}S)) | 1                                    | oidity<br>TUs)                         | Gals. Removed                                   | Observations                                              |
| 1023                   | 4.5                                                       | 7.10            | 12:22                         | Xo                                   | 00                                     | 4.5                                             |                                                           |
| (025                   | H.6                                                       | 7-06            | 1219                          | 7:0                                  | 0 <sub>U</sub>                         | 4,0                                             |                                                           |
| 1022                   | ()-E)                                                     | 7-03            | 1217                          | 710                                  | 90                                     | 4.5                                             |                                                           |
|                        |                                                           |                 |                               |                                      |                                        |                                                 |                                                           |
|                        |                                                           |                 |                               |                                      |                                        |                                                 | i i                                                       |
| Did well de            | water?                                                    | Yes             | (No)                          | Gallon                               | s actuall                              | y evacuated:                                    | 4,5                                                       |
| Sampling D             | ate: 3-7                                                  | 12-13           | Sampling Tim                  | e: 102                               | O                                      | Depth to Water                                  | r: 10,17                                                  |
| Sample I.D.            | : Nw-11                                                   | O               |                               | Labora                               | tory:                                  | Kiff CalScience                                 | Other McCampbel                                           |
| Analyzed fo            | r: TPH-G                                                  | BTEX            | МТВЕ ТРН-D                    | Oxygena                              | ates (5)                               | Other:                                          | ee we                                                     |
| EB I.D. (if a          | pplicable)                                                | •               | @ ·<br>Time                   | Duplica                              | ate I.D.                               | (if applicable):                                |                                                           |
| Analyzed fo            | r: TPH-G                                                  | BTEX            | MTBE TPH-D                    | Oxygena                              | ates (5)                               | Other:                                          |                                                           |
| D.O. (if req'          | d): Pr                                                    | e-purge:        |                               | $^{ m mg}/_{ m L}$                   | P                                      | ost-purge:                                      | mg/ <sub>I</sub>                                          |
| ORP (if re             | a'd). Pr                                                  | e-nurge         |                               | mV                                   | T                                      | oct_nurge:                                      | mV                                                        |

|               |                                                 |                 |                       | •                                    |                                |                |                               |                                                                |
|---------------|-------------------------------------------------|-----------------|-----------------------|--------------------------------------|--------------------------------|----------------|-------------------------------|----------------------------------------------------------------|
| Project #:    | 13032                                           | 2-10            | 1                     | Client:                              | CE                             | 6              |                               |                                                                |
| Sampler:      | 10                                              |                 |                       | Date:                                | *                              | 3-22-03        | ,<br>)                        |                                                                |
| Well I.D.:    | Mh-                                             | 13              |                       | Well D                               | iameter                        | /R             | 4                             | 6 8                                                            |
| Total Well    | Depth (TD                                       | )):             | (9.2                  | Depth 1                              | to Wate                        | r (DTW):       | 9.                            | 39                                                             |
| Depth to Fr   | ee Product                                      |                 |                       | Thickn                               | ess of F                       | ree Product    |                               |                                                                |
| Referenced    | to:                                             | (eve            | Grade                 | D.O. M                               | leter (if                      | req'd):        | ,                             | YSI HACH                                                       |
| DTW with      | 80% Rech                                        | arge [(H        | leight of Water       | Column                               | 1 x 0.20)                      | ) + DTW]:      | Mallacon                      | .47                                                            |
| Purge Method: | Disposable B<br>Positive Air I<br>Electric Subn | Displaceme      | ent Extrac<br>Other   | Waterra<br>Peristaltic<br>ction Pump |                                | Sampling Met   | hod:                          | Bailer Disposable Bailer Extraction Port Dedicated Tubing      |
| 1 Case Volume | Gals.) X<br>Speci                               | 5<br>fied Volum | =<br>nes Calculated V | Gals.<br>olume                       | Well Diamete<br>1"<br>2"<br>3" | 0.04<br>0.16   | Well Dis<br>4"<br>6"<br>Other | nmeter <u>Multiplier</u> 0.65 1.47 radius <sup>2</sup> * 0.163 |
| Time          | Temp<br>(°F or °C)                              | pН              | Cond.<br>(mS or (uS)  | ı                                    | oidity<br>ΓUs)                 | Gals. Remov    | /ed                           | Observations                                                   |
| 1441          | US                                              | 705             | 10.21                 | 30K                                  | )ن                             | 1.6            |                               |                                                                |
| 1144          | 175                                             | 745             | 1036                  | 0K                                   | 00                             | 3.2            |                               |                                                                |
| ((47          | (7.5                                            | 7-05            | 1070                  | 30K                                  | 0                              | 4.8            |                               |                                                                |
|               |                                                 |                 |                       |                                      |                                |                |                               |                                                                |
|               |                                                 |                 |                       |                                      |                                | ·              |                               |                                                                |
| Did well de   | water?                                          | Yes             | <b>6</b> 9            | Gallons                              | s actuall                      | y evacuated:   |                               | 4.8                                                            |
| Sampling D    | ate: 3                                          | -22-13          | Sampling Tim          | e: \( <u> </u>                       | .0                             | Depth to W     | ater:                         | 9.42                                                           |
| Sample I.D.   | .: M                                            | V-17            |                       | Labora                               | tory:                          | Kiff CalSci    | ence                          | Other Manapay                                                  |
| Analyzed fo   | or: TPH-G                                       | BTEX            | MTBE TPH-D            | Oxygena                              | ates (5)                       | Other:         | Sce                           | ·                                                              |
| EB I.D. (if a | applicable)                                     | :               | @<br>Time             | Duplica                              | ate I.D.                       | (if applicable |                               |                                                                |
| Analyzed fo   | or: TPH-G                                       | BTEX            | MTBE TPH-D            | Oxygena                              | ` '                            | Other:         |                               |                                                                |
| D.O. (if req  | 'd): Pı                                         | e-purge:        |                       | $^{ m mg}/_{ m L}$                   | P                              | ost-purge:     |                               | mg/[                                                           |
| O.R.P. (if re | eq'd): Pi                                       | e-purge:        |                       | mV                                   | P                              | ost-purge:     |                               | mV                                                             |

| Project #:    | 130322                                                    | -301                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client:                             | Ck              | <u>G</u>             |                   |                                                          |
|---------------|-----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|----------------------|-------------------|----------------------------------------------------------|
| Sampler:      | 70                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                               | 3-2             | Z-13                 |                   |                                                          |
| Well I.D.:    | Mw-                                                       | 15                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well D                              | iameter:        | <i></i>              | 4                 | 6 8                                                      |
| Total Well    | Depth (TD                                                 | ):                                      | - The state of the | Depth                               | to Water        | · (DTW):             | 169               |                                                          |
| Depth to Fr   | ee Product                                                | :                                       | 2-ot 11.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Thickn                              | ess of F        | ree Produ            | *************     |                                                          |
| Referenced    | to:                                                       | (PVC)                                   | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.O. M                              | leter (if       | req'd):              |                   | YSI HACH                                                 |
| DTW with      | 80% Rech                                                  | arge [(H                                | leight of Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Column                              | x 0.20)         | +DTW]                | •                 |                                                          |
| Purge Method: | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waterra<br>Peristaltic<br>tion Pump | \               | Sampling 1           | Method:<br>Other: | Disposable Bailer<br>Extraction Port<br>Dedicated Tubing |
|               |                                                           | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Well Diamete    | r Multiplier<br>0.04 | Well I            | Diameter Multiplier<br>0.65                              |
| (0            | Gals.) X                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _Gals.                              | 2"              | 0.16                 | 6"                | 1.47                                                     |
| 1 Case Volume | Speci                                                     | fied Volun                              | nes Calculated Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lume                                | 3"              | 0.37                 | Other             | radius** 0.163                                           |
| Time          | Temp<br>(°F or °C)                                        | pН                                      | Cond.<br>(mS or μS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                   | oidity<br>(TUs) | Gals. Rer            | noved             | Observations                                             |
| SPH Dec       | Aected                                                    | 4/1                                     | Herface Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne i                                | Suzk            | Satu                 | rate,             | u spl                                                    |
| SUL           | reduced                                                   | N.                                      | o Sande                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tale                                | y               |                      |                   |                                                          |
|               | ,                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 |                      |                   |                                                          |
|               |                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 |                      |                   |                                                          |
| Sole          | replaced                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | -                    |                   |                                                          |
| Did well de   | water?                                                    | Yes                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gallons                             | s actually      | y evacuat            | ed:               |                                                          |
| Sampling D    | ate:                                                      |                                         | Sampling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e:                                  |                 | Depth to             | Wate              | ŗ:                                                       |
| Sample LD.    | <b>:</b>                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Labora                              | tory:           | Kiff Cal             | Science           | Other                                                    |
| Analyzed fo   | ж: трн-с                                                  | BTEX                                    | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygena                             | ates (5)        | Other:               |                   |                                                          |
| EB I.D. (if a | applicable)                                               | •                                       | @<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Duplic                              | ate I.D. (      | (if applica          | ıble):            |                                                          |
| Analyzed fo   | r: трң-G                                                  | BTEX                                    | MTBE TPH-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oxygena                             | ates (5)        | Other:               |                   |                                                          |
| D.O. (if req' | 'd): Pr                                                   | ę-purge:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                | P               | ost-purge:           |                   | mg/                                                      |
| O.R.P. (if re | eq'd): Pr                                                 | e-purge:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                  | P               | ost-purge:           |                   | mV                                                       |

| Project #:    | 130322                                           | -101            |                                                  | Client: CKG                         |                                        |                      |                                     |  |  |  |  |
|---------------|--------------------------------------------------|-----------------|--------------------------------------------------|-------------------------------------|----------------------------------------|----------------------|-------------------------------------|--|--|--|--|
| Sampler:      | SZ                                               |                 |                                                  | Date:                               |                                        | 3-22-13              |                                     |  |  |  |  |
| Well I.D.:    | MW-16                                            |                 |                                                  | Well I                              | Diameter                               | : ② 3 4              | 6 8                                 |  |  |  |  |
| Total Well I  | Depth (TD                                        | ): /            | 9.91                                             | Depth                               | to Water                               | r (DTW): 9.9         | [2                                  |  |  |  |  |
| Depth to Fro  | ee Product                                       | *               |                                                  | Thickr                              | ness of F                              | ree Product (fe      | et):                                |  |  |  |  |
| Referenced    | to:                                              | (PVC)           | Grade                                            | D.O. Meter (if req'd): YSI HACH     |                                        |                      |                                     |  |  |  |  |
| DTW with      | 80% Recha                                        | arge [(H        | leight of Water                                  | Column x 0.20) + DTW]: //, 60       |                                        |                      |                                     |  |  |  |  |
| Purge Method: | Bailer Disposable B Positive Air I Electric Subn | Displaceme      |                                                  | Waterra<br>Peristaltic<br>tion Pump | ion Pump Extraction Dedicated 1 Other: |                      |                                     |  |  |  |  |
|               |                                                  |                 | 1.1                                              | <del></del>                         | Well Diamete                           | 0.04 4"              | Diameter Multiplier<br>0.65         |  |  |  |  |
| Case Volume   | Gals.) X                                         | 了<br>fied Volun | $\frac{1}{1} = \frac{4.8}{\text{Calculated Vo}}$ | Gals.                               | 2"<br>3"                               | 0.16 6"<br>0.37 Othe | 1.47<br>radius <sup>2</sup> * 0.163 |  |  |  |  |
|               |                                                  |                 |                                                  |                                     |                                        |                      |                                     |  |  |  |  |
| Time          | Temp                                             | pН              | Cond.<br>(mS or (LS)                             | 1                                   | bidity<br>TUs)                         | Gals. Removed        | Observations                        |  |  |  |  |
| 1129          | 18.3                                             | 7.5             | 655                                              | ><                                  | ලග                                     | 1.6                  |                                     |  |  |  |  |
| 1(3)          | 18.6                                             | 7.4             | 647                                              | 10                                  | 00                                     | 3.2                  |                                     |  |  |  |  |
| 1133          | 18.9.                                            | 7,4             | 632                                              | >18                                 | 00                                     | 4.8                  |                                     |  |  |  |  |
|               |                                                  |                 |                                                  |                                     | , P                                    | ,                    |                                     |  |  |  |  |
|               |                                                  |                 |                                                  |                                     |                                        | · .                  | 41                                  |  |  |  |  |
| Did well dev  | water?                                           | Yes (           | Ñò                                               | Gallon                              | s actuall                              | y evacuated:         | 4.8                                 |  |  |  |  |
| Sampling D    | ate: 3-23                                        | 2-13            | Sampling Time                                    | e: //4                              | 13                                     | Depth to Wate        | er: 10.37                           |  |  |  |  |
| Sample I.D.   | : MW-16                                          | <u> </u>        |                                                  | Labora                              | itory:                                 | Kiff CalScienc       | e Other Campbell                    |  |  |  |  |
| Analyzed fo   | r: TPH-G                                         | BTEX            | MTBE TPH-D                                       | Oxygen                              | ates (5)                               | Other: $SEE$         | COC                                 |  |  |  |  |
| EB I.D. (if a | pplicable)                                       | •               | @<br>Time                                        | Duplic                              | ate I.D.                               | (if applicable):     |                                     |  |  |  |  |
| Analyzed fo   | r: TPH-G                                         | BTEX            | MTBE TPH-D                                       | Oxygen                              | ates (5)                               | Other:               |                                     |  |  |  |  |
| D.O. (if reg' | d): Pr                                           | e-purge:        | · · · · · · · · · · · · · · · · · · ·            | $^{ m mg}/_{ m L}$                  | Р                                      | ost-purge:           | mg/L.                               |  |  |  |  |
| O.R.P. (if re | q'd): Pr                                         | e-purge:        |                                                  | mV                                  | P                                      | ost-purge:           | mV                                  |  |  |  |  |


|                                         |                                                           |            |                     | *                                    |                |                      |                   |                                       |                                                   |
|-----------------------------------------|-----------------------------------------------------------|------------|---------------------|--------------------------------------|----------------|----------------------|-------------------|---------------------------------------|---------------------------------------------------|
| Project #:                              | 13032                                                     | 22 - Jo    | <b>&gt;</b> \       | Client:                              | CK             | <u>(</u> -7          |                   |                                       |                                                   |
| Sampler:                                | 70                                                        |            |                     | Date:                                |                | 22-13                | <u></u>           |                                       | **************************************            |
| Well I.D.:                              | Mw-1                                                      | 7          |                     | Well D                               | iameter        | -                    |                   | 6 8                                   |                                                   |
| Total Well                              |                                                           |            | 5.47                | Depth                                | to Wate        | er (DTV              | v): 0             | 1-21                                  |                                                   |
| Depth to Fr                             | ee Product                                                | *          |                     | Thickn                               | ess of F       | ree Pro              | duct (fee         | t):                                   | ***************************************           |
| Referenced                              | to:                                                       | (PVC)      | Grade               | D.O. M                               | leter (if      | req'd):              |                   | YSI                                   | HACH                                              |
| DTW with                                | 80% Rech                                                  | arge [(H   | eight of Water      | Column                               | x 0.20         | ) + DT'              | W]:               | 10.46                                 |                                                   |
| Purge Method:                           | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme | ent Extrac<br>Other | Waterra<br>Peristaltic<br>ction Pump |                | Sampli               | ing Method:       | Disposa<br>Extrac                     | bailer<br>able Bailer<br>ction Port<br>ted Tubing |
|                                         |                                                           |            |                     |                                      | Well Diamet    | ter Multip           | lier Well D       | viameter Multi                        | plier                                             |
| 1                                       | Gals.) X                                                  |            | = 3.0               | Gals.                                | l"<br>2"<br>3" | 0.04<br>0.16<br>0.37 | 4"<br>6"<br>Other | 0.65<br>1.47<br>radii                 | $as^2 * 0.163$                                    |
| 1 Case Volume                           | Speci                                                     | fied Volum | nes Calculated V    | olume [                              |                |                      |                   |                                       |                                                   |
| Time                                    | Temp                                                      | pН         | Cond.<br>(mS or(µS) | 1                                    | oidity<br>ΓUs) | Gals.                | Removed           | Obse                                  | rvations                                          |
| 1040                                    | 47                                                        | 7.31       | 1129                | >(c                                  | 20 <u>0</u>    | , political ex       | 0                 | Odor                                  | Isheen                                            |
| 1042                                    | 14                                                        | 7.41       | 1134                | <u> </u>                             | <i>900</i>     | 2.                   |                   | ( ~                                   |                                                   |
| 1044                                    | 17.7                                                      | 740        | 137                 | >(6                                  | 00             | 3.                   | 0                 | 1 ~                                   | ~}                                                |
| , , , , , , , , , , , , , , , , , , , , |                                                           |            | -                   |                                      |                |                      |                   |                                       |                                                   |
| 500k 1                                  | enluced                                                   |            |                     |                                      |                |                      |                   |                                       |                                                   |
| Did well de                             | water?                                                    | Yes (      | Ng                  | Gallons                              | s actual       | ly evacı             | uated:            | 3.0                                   |                                                   |
| Sampling D                              | ate: 3-7                                                  | 27-13      | Sampling Tim        | e: 105                               | 0              | Depth                | to Water          | : 9.7                                 | 7                                                 |
| Sample I.D.                             | : Mu                                                      | 1-17       |                     | Labora                               | tory:          | Kiff                 | CalScience        | Other <u>M</u>                        | ccumpidell                                        |
| Analyzed fo                             | r: TPH-G                                                  | BTEX       | МТВЕ ТРН-D          | Oxygena                              | ates (5)       | Other:               | SLE               | . (00                                 |                                                   |
| EB I.D. (if a                           | pplicable)                                                | :          | @<br>Time           | Duplica                              | ate I.D.       | (if appl             | licable):         | -                                     |                                                   |
| Analyzed fo                             | r: TPH-G                                                  | BTEX       | MTBE TPH-D          | Oxygena                              | ates (5)       | Other:               |                   |                                       | · · · · · · · · · · · · · · · · · · ·             |
| D.O. (if req'                           | d): Pr                                                    | e-purge:   |                     | <sup>mg</sup> / <sub>L</sub>         | I              | Post-purg            | ge:               | , , , , , , , , , , , , , , , , , , , | mg/I                                              |
| O.R.P. (if re                           | q'd): Pr                                                  | e-purge:   |                     | mV                                   | F              | Post-purg            | ge:               |                                       | mV                                                |

| Project #:     | 130322-3                                                  | ,01        |                                   | Client:                                 | C               | ₹G                     |                |                                                           |
|----------------|-----------------------------------------------------------|------------|-----------------------------------|-----------------------------------------|-----------------|------------------------|----------------|-----------------------------------------------------------|
| Sampler: S     |                                                           |            |                                   | Date:                                   |                 | -22                    |                |                                                           |
| Well I.D.:     | HW-19                                                     |            |                                   | Well D                                  | iameter         | <u> </u>               | 4              | 6 8                                                       |
| Total Well     | Depth (TD                                                 | ):         | 25.04                             | Depth                                   | to Wate         | er (DTW):              | () :           | 56                                                        |
| Depth to Fr    | ee Product                                                | •          |                                   | Thickn                                  | ess of F        | Free Produ             | ct (fee        | :t):                                                      |
| Referenced     | to:                                                       | €vc)       | Grade                             | D.O. M                                  | leter (if       | req'd):                |                | YSI HACH                                                  |
| DTW with       | 80% Recha                                                 | arge [(H   | leight of Water                   | Column                                  | x 0.20          | ) + DTW]               | : 14           | 26                                                        |
| Purge Method:  | Bailer<br>Disposable B<br>Positive Air I<br>Electric Subn | Displaceme |                                   | Waterra<br>Peristaltic<br>tion Pump     |                 | Sampling l             | Method: Other: | Bailer Pisposable Bailer Extraction Port Dedicated Tubing |
|                | ·                                                         |            |                                   |                                         | Well Diamet     | ter Multiplier<br>0.04 | Well D         | Diameter Multiplier<br>0.65                               |
| 2. Case Volume | Gals.) X                                                  | <u> </u>   | = <u>6.3</u><br>nes Calculated Vo | _ Gals.                                 | 2"<br>3"        | 0.16<br>0.37           | 6"<br>Other    | 1.47<br>radius <sup>2</sup> * 0.163                       |
|                |                                                           |            |                                   | <u> </u>                                |                 | T                      |                |                                                           |
| Time           | Temp                                                      | рН         | Cond<br>(mS or uS)                | 1                                       | oidity<br>(TUs) | Gals. Ren              | noved          | Observations                                              |
| 1044           | 17.2                                                      | 6-9        | 878.0                             | > /€                                    | gg              | 2.1                    |                | Cilor                                                     |
| 1047           | 17.4                                                      | 6.9        | 861.4                             | 3/6                                     | 90              | 4,3                    | )              | Odo 🗠                                                     |
| 1050           | 17.5                                                      | 6.9        | 853.7                             | >100                                    | 0               | 6.5                    |                | Odor                                                      |
|                |                                                           |            |                                   | *************************************** |                 |                        |                |                                                           |
|                |                                                           |            |                                   |                                         | ·               |                        |                |                                                           |
| Did well de    | water?                                                    | Yes (      | (No)                              | Gallon                                  | s actual        | ly evacuat             | ed:            | 6.5                                                       |
| Sampling D     | ate: 3-27                                                 | -13        | Sampling Time                     | e: /e                                   | 55              | Depth to               | Water          | :: 14.10                                                  |
| Sample I.D.    | : Ma                                                      | 1-19       |                                   | Labora                                  | tory:           | Kiff Cal               | Science        | Other McCampell                                           |
| Analyzed fo    | or: TPH-G                                                 | BTEX       | MTBE TPH-D                        | Oxygena                                 | ates (5)        | ی :Other               | EE             | coc                                                       |
| EB I.D. (if a  | applicable)                                               | •          | @<br>Time                         | Duplica                                 | ate I.D.        | (if applica            | ıble):         |                                                           |
| Analyzed fo    | or: TPH-G                                                 | BTEX       | MTBE TPH-D                        | Oxygena                                 | , ,             | Other:                 |                |                                                           |
| D.O. (if req   | d): Pr                                                    | e-purge:   |                                   | mg/L                                    | I               | Post-purge:            |                | mg/                                                       |
| O.R.P. (if re  | eq'd): Pr                                                 | e-purge:   |                                   | mV                                      | I               | Post-purge:            |                | mV                                                        |

| Project #:    | 130322                                            | <b>30</b> 1 |                          | Client:                             | CKG                                   |              |                  |                                                            |
|---------------|---------------------------------------------------|-------------|--------------------------|-------------------------------------|---------------------------------------|--------------|------------------|------------------------------------------------------------|
| Sampler:      | 514                                               |             |                          | Date:                               | 3-20                                  | 73           |                  |                                                            |
| Well I.D.:    | MW-20                                             |             |                          | Well D                              | iameter                               | (2) 3        | 3 4              | 6 8                                                        |
| Total Well I  | Depth (TD                                         | ): 21       | .75                      | Depth 1                             | to Wateı                              | r (DTW)      | ): 8,6           | <u>4</u> 5                                                 |
| Depth to Fro  | ee Product                                        | *           |                          | Thickn                              | ess of F                              | ree Prod     | uct (fee         | t):                                                        |
| Referenced    | to:                                               | (PVC)       | Grade                    | D.O. M                              | leter (if                             | req'd):      |                  | YSI HACH                                                   |
| DTW with 8    | 80% Recha                                         | arge [(H    | eight of Water           | Column                              | x 0.20)                               | + DTW        | 7]: [1           | .20                                                        |
| Purge Method: | Bailer Disposable Be Positive Air I Electric Subn | Displaceme  |                          | Waterra<br>Peristaltic<br>tion Pump |                                       |              | g Method: Other: | Bailer  Xisposable Bailer Extraction Port Dedicated Tubing |
| 7             | · · · · · · · · · · · · · · · · · · ·             | 7           |                          |                                     | Well Diamete                          | 0.04         | 4"               | Diameter Multiplier<br>0.65                                |
| 1 Case Volume | Gals.) X<br>Specif                                | ied Volun   | es Calculated Vo         |                                     | 2"<br>3"                              | 0.16<br>0.37 | 6"<br>Other      | 1.47<br>radius <sup>2</sup> * 0.163                        |
| Time          | Temp<br>(°F or C)                                 | рН          | Cond.<br>(mS or $\mu$ S) | (N)                                 | oidity<br>ΓUs)                        |              | emoved           | Observations                                               |
| 1023          | 17.7                                              | 6.6         | 1087                     |                                     | <i>೯</i> ೮೦                           | 2.           |                  |                                                            |
| 1025          | 18.3                                              | 69          | 953                      | 3/6                                 |                                       | <u> </u>     | <u> </u>         |                                                            |
| 1027          | 18.9                                              | 7.0         | 916                      | >100                                | <b>&gt;</b> 0                         | 6            | 6                |                                                            |
| ·             |                                                   |             |                          |                                     | · · · · · · · · · · · · · · · · · · · |              | ·                |                                                            |
|               |                                                   |             |                          |                                     | 4.5                                   |              |                  |                                                            |
| Did well dev  | water?                                            | Yes (       | Mg)                      | Gallon                              | s actuall                             | y evacua     | ated:            | 6.6                                                        |
| Sampling D    | ate: <i>3-2</i>                                   | 2-13        | Sampling Time            | e: 103                              | 35                                    | Depth t      | o Water          | : 11.07                                                    |
| Sample I.D.   | : MW                                              | -20         |                          | Labora                              | tory:                                 | Kiff C       | alScience        | Other Campell                                              |
| Analyzed fo   | r: TPH-G                                          | BTEX        | MTBE TPH-D               | Oxygena                             | ates (5)                              | Other:       | SE               | £ 000                                                      |
| EB I.D. (if a | pplicable)                                        | •           | @<br>Time                | Duplica                             | ate I.D.                              | (if appli    | cable):          |                                                            |
| Analyzed fo   | r: TPH-G                                          | BTEX        | MTBE TPH-D               | Oxygena                             | ` '                                   | Other:       |                  |                                                            |
| D.O. (if req' | d): Pr                                            | e-purge:    |                          | mg/L                                | P                                     | ost-purge    | :                | mg/L                                                       |
| O.R.P. (if re | q'd): Pr                                          | e-purge:    |                          | mV                                  | P                                     | ost-purge    | :                | mV                                                         |

# TEST EQUIPMENT CALIBRATION LOG

| PROJECT NAME                                                                                                   | WE CYG              |                      |                                       | PROJECT NUN                   | PROJECT NUMBER (30322-5)d        | -30   |          |
|----------------------------------------------------------------------------------------------------------------|---------------------|----------------------|---------------------------------------|-------------------------------|----------------------------------|-------|----------|
| EQUIPMENT<br>NAME                                                                                              | EQUIPMENT<br>NUMBER | DATE/TIME<br>OF TEST | STANDARDS<br>USED                     | EQUIPMENT<br>READING          | CALIBRATED TO:<br>OR WITHIN 10%: | TEMP. | INITIALS |
| MACOUR<br>VIHEL MERCII                                                                                         | H162229             | 3-22-14<br>062U      | 1110,4 39000 701,10,25,3,991 3802 200 | 701, 10.02, 3.961<br>3697 249 | \$                               |       | B        |
| Myron C.<br>Himster                                                                                            | 560393              | 61-22-8              | 7,10,4<br>390an                       | 7.03, 10.05,<br>4.01 389745   | X                                | 14.7  | 2/5      |
|                                                                                                                |                     |                      | ÷                                     |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  | ,     |          |
| under nutwertunderstraterstraterstraterstraterstraterstraterstraterstraterstraterstraterstraterstraterstraters |                     |                      |                                       |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  |       | -        |
|                                                                                                                |                     | ,                    |                                       |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  |       |          |
|                                                                                                                |                     |                      |                                       |                               |                                  |       |          |



# **Analytical Report**

| CKG Environmental    | Client Project ID: Owens Brockway Glass Plant | Date Sampled: 03/22/13   |
|----------------------|-----------------------------------------------|--------------------------|
| P.O. Box 246         |                                               | Date Received: 03/25/13  |
| 110.204210           | Client Contact: Christina Kennedy             | Date Reported: 04/01/13  |
| St. Helena, CA 94574 | Client P.O.:                                  | Date Completed: 04/01/13 |

WorkOrder: 1303696

April 01, 2013

Dear Christina:

## Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: Owens Brockway Glass Plant,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1303696

| DLA                   | INIT     |           |                               |        | GERS AVEN                                    |            |             | CON       | NDUCT      | ANAL                       | YSIS ' | TO DE | TECT |      |                                                     | McCampbel    |             | DHS#         |
|-----------------------|----------|-----------|-------------------------------|--------|----------------------------------------------|------------|-------------|-----------|------------|----------------------------|--------|-------|------|------|-----------------------------------------------------|--------------|-------------|--------------|
| BLA<br>TECH SER       |          |           |                               | FAX    | NIA 95112-11<br>(408) 573-77<br>(408) 573-05 | 71         |             | dn uz     |            |                            |        |       |      |      | ALL ANALYSES MUST MEE BY CALIFORNIA DHS AND EPA LIA |              |             | GION         |
| CHAIN OF CU           | STODY    | BTS#      | 137                           | 322    | -70)                                         | SS (S      |             | gel clean |            |                            |        |       |      |      | OTHER                                               |              |             |              |
| CLIENT                | CKG En   | vironm    | ental                         |        | 1,000,000                                    | AINERS     | 021)        |           |            |                            |        |       |      |      | SPECIAL INSTRUCTIONS                                |              |             |              |
| SITE                  | Owens I  | Brockwa   | ay Glas                       | s Plar | nt                                           | CONT       | (8015/8021) | w/silica  |            |                            |        |       |      |      | Invoice and Report to                               | : CKG En     | vironmental |              |
|                       | 3600 Ala | ameda A   | Avenue                        | )      |                                              | ALL        |             |           |            |                            |        |       |      |      | 808 Zinfindel Lane, S                               | St Helena, C | CA 94574    |              |
|                       | Oakland, | CA        | I                             | 1 00   | NTAINERS                                     | SITE       | / BTEX      | TPH-mo    |            |                            |        |       |      |      | Attn: Christina Kenr                                |              | A/ O        |              |
|                       | T I      |           | MATRIX<br>N OF                |        | I                                            | COMPOSITE  | TPHg/B      | Ď,        |            |                            |        |       |      |      | Dissolved product in<br>Please provide EDF a        |              |             | -0           |
| SAMPLE I.D.           | DATE     | TIME      | S= SOIL<br>W=H <sub>2</sub> 0 | TOTAL  | L .                                          | 0          | T           | TPH       |            |                            |        |       |      |      | ADD'L INFORMATION                                   | STATUS       | CONDITION   | LAB SAMPLE#  |
| Mw-8                  | 3-27-13  | 1125      | W                             | 4      | mixed                                        |            | X           | X         |            |                            |        |       |      |      |                                                     |              |             |              |
| MW-10                 |          | 1030      |                               |        |                                              |            | X           | X         |            |                            |        |       |      |      | 5. 2.                                               |              |             |              |
| MW-13                 |          | 1150      |                               |        |                                              |            | ~           | ×         |            |                            |        |       |      |      |                                                     |              |             |              |
| MW-16                 |          | 1143      |                               |        |                                              |            | ×           | X         |            |                            |        |       |      |      |                                                     |              |             |              |
| MW-17                 |          | 9050      |                               |        |                                              |            | ×           | 7         |            |                            |        |       |      |      |                                                     |              |             |              |
| MW-19                 |          | 1055      |                               |        |                                              |            | X           | 大         |            |                            | 8      |       |      |      |                                                     |              |             |              |
| MW-20                 |          | 1035      | Ь                             | b      | }                                            |            | X           | X         |            |                            |        |       |      |      |                                                     |              |             |              |
|                       |          |           |                               |        | -                                            |            |             |           | ICE/6      | 4.8                        | 1      |       |      |      |                                                     |              |             | 100          |
|                       |          |           |                               |        |                                              |            |             |           | HEAL       | D CON<br>D SPACE<br>LLORES | EABS   | ENT_  |      | _PRE | OPRIATE TAINERS SERVED IN LAB ALS   OTHER           |              |             |              |
| SAMPLING<br>COMPLETED | 3-22-13  | TIME (330 | SAMPLI<br>PERFO               |        | 3Y ).                                        |            | hz          | ~         |            | ERVA                       | HON,   |       |      |      | RESULTS NEEDED                                      | Per Client   |             |              |
| RELEASED BY           | In       |           |                               |        | , .                                          |            | 22-1        | 3         | TIME<br>14 | 45                         |        | RECE  |      | h    |                                                     |              | 3-72-L      | 5 1445       |
| RELEASED BY           | of his   | Sarap     | the Ca                        |        |                                              |            | 25.1        | 3         |            | 55                         |        | RECE  | Her  | 1    |                                                     |              | 3/22/13     | TIME<br>1305 |
| RELEASED BY           | 2        |           |                               |        |                                              | DAT<br>3/2 | 5           |           | TIME<br>/4 | 40                         |        | RECÉ  | ()   | SV A | vet                                                 |              | 3/22/13     | TIME         |
| SHIPPED VIA           |          |           |                               |        |                                              | DAT        | E SEN       | Т         | TIME       | SENT                       |        | COOL  | ER#  | 1    |                                                     |              |             |              |

# McCampbell Analytical, Inc.

FAX: (707) 967-8080

# **CHAIN-OF-CUSTODY RECORD**

ClientCode: CKGS

WorkOrder: 1303696

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(707) 967-8080

□WaterTrax **EQuIS** WriteOn □ EDF Excel ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days ckennedy@geologist.com Accounts Payable Christina Kennedy Email: **CKG** Environmental **CKG** Environmental cc: Date Received: 03/25/2013 PO: P.O. Box 246 808 Zinfindel Lane St. Helena, CA 94574 ProjectNo: Owens Brockway Glass Plant St. Helena, CA 94574 Date Printed: 03/25/2013

|             |           |        |                        |      | Requested Tests (See legend below) |   |   |   |  |   |   |   |   |   |    |    |    |
|-------------|-----------|--------|------------------------|------|------------------------------------|---|---|---|--|---|---|---|---|---|----|----|----|
| Lab ID      | Client ID | Matrix | <b>Collection Date</b> | Hold | 1                                  | 2 | 3 | 4 |  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1303696-001 | MW-8      | Water  | 3/22/2013 11:25        |      | Α                                  | В |   |   |  |   |   |   |   |   |    |    |    |
| 1303696-002 | MW-10     | Water  | 3/22/2013 10:30        |      | A                                  | В |   |   |  |   |   |   |   |   |    |    |    |
| 1303696-003 | MW-13     | Water  | 3/22/2013 11:50        |      | Α                                  | В |   |   |  |   |   |   |   |   |    |    |    |
| 1303696-004 | MW-16     | Water  | 3/22/2013 11:43        |      | Α                                  | В |   |   |  |   |   |   |   |   |    |    |    |
| 1303696-005 | MW-17     | Water  | 3/22/2013 10:50        |      | Α                                  | В |   |   |  |   |   |   |   |   |    |    |    |
| 1303696-006 | MW-19     | Water  | 3/22/2013 10:55        |      | Α                                  | В |   |   |  |   |   |   |   |   |    |    |    |
| 1303696-007 | MW-20     | Water  | 3/22/2013 10:35        |      | A                                  | В |   |   |  |   |   |   |   |   |    |    |    |

## Test Legend:

| 1 G-MBTEX_W | 2 TPH(DMO)WSG_W | 3 | 4 | 5  |
|-------------|-----------------|---|---|----|
| 6           | 7               | 8 | 9 | 10 |
| 11          | 12              |   |   |    |

**Prepared by: Zoraida Cortez** 

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

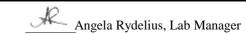
1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Sample Receipt Checklist**

| Client Name:              | CKG Environme       | sintai                 |                 |          | Date an          | a Time Received: 3/25  | 0/2013 /:18:45 PIVI |
|---------------------------|---------------------|------------------------|-----------------|----------|------------------|------------------------|---------------------|
| Project Name:             | #1; Cal Trans       |                        |                 |          | LogIn R          | eviewed by:            | Zoraida Cortez      |
| WorkOrder N°:             | 1303696             | Matrix: Water          |                 |          | Carrier:         | Benjamin Yslas (MA     | .I Courier)         |
|                           |                     | <u>Cha</u>             | ain of Cı       | ustody ( | COC) Information | <u>on</u>              |                     |
| Chain of custody present? |                     |                        |                 | <b>✓</b> | No 🗌             |                        |                     |
| Chain of custody          | signed when relia   | nquished and received? | Yes             | ✓        | No 🗌             |                        |                     |
| Chain of custody          | agrees with sam     | ple labels?            | Yes             | <b>✓</b> | No 🗆             |                        |                     |
| Sample IDs note           | d by Client on CC   | OC?                    | Yes             | ✓        | No 🗌             |                        |                     |
| Date and Time of          | f collection noted  | by Client on COC?      | Yes             | <b>✓</b> | No 🗌             |                        |                     |
| Sampler's name            | noted on COC?       |                        | Yes             |          | No 🗸             |                        |                     |
|                           |                     |                        | Sample          | e Receip | t Information    |                        |                     |
| Custody seals int         | tact on shipping c  | ontainer/cooler?       | Yes             |          | No 🗌             | NA [                   | •                   |
| Shipping contain          | er/cooler in good   | condition?             | Yes             | <b>✓</b> | No 🗌             |                        |                     |
| Samples in prope          | er containers/bottl | es?                    | Yes             | <b>✓</b> | No 🗌             |                        |                     |
| Sample containe           | rs intact?          |                        | Yes             | ✓        | No 🗌             |                        |                     |
| Sufficient sample         | e volume for indica | ated test?             | Yes             | <b>✓</b> | No 🗆             |                        |                     |
|                           |                     | Sample Pres            | <u>servatio</u> | n and H  | old Time (HT) Ir | <u>nformation</u>      |                     |
| All samples recei         | ived within holding | g time?                | Yes             | <b>✓</b> | No 🗌             |                        |                     |
| Container/Temp            | Blank temperatur    | е                      | Coole           | er Temp: | 4.8°C            | NA [                   |                     |
| Water - VOA vial          | s have zero head    | space / no bubbles?    | Yes             | <b>✓</b> | No 🗆 N           | lo VOA vials submitted |                     |
| Sample labels ch          | necked for correct  | preservation?          | Yes             | <b>✓</b> | No 🗌             |                        |                     |
| Metal - pH accep          | table upon receip   | ot (pH<2)?             | Yes             |          | No 🗌             | NA [                   | ✓                   |
| Samples Receive           | ed on Ice?          |                        | Yes             | <b>✓</b> | No 🗆             |                        |                     |
|                           |                     | (Ice Typ               | pe: WE          | T ICE    | )                |                        |                     |
| * NOTE: If the "N         | lo" box is checke   | d, see comments below. |                 |          |                  |                        |                     |

| CKG Environmental    | Clear Plant                       | Date Sampled:   | 03/22/13          |
|----------------------|-----------------------------------|-----------------|-------------------|
| P.O. Box 246         | Glass Plant                       | Date Received:  | 03/25/13          |
|                      | Client Contact: Christina Kennedy | Date Extracted: | 03/27/13-03/28/13 |
| St. Helena, CA 94574 | Client P.O.:                      | Date Analyzed:  | 03/27/13-03/28/13 |

## Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*


| Extraction method: SW5030B Analytical methods: SW8021B/8015Bm |                                                    |        |        |      |         | Wor     | k Order:     | 1303696 |    |      |                |
|---------------------------------------------------------------|----------------------------------------------------|--------|--------|------|---------|---------|--------------|---------|----|------|----------------|
| Lab ID                                                        | Client ID                                          | Matrix | TPH(g) | MTBE | Benzene | Toluene | Ethylbenzene | Xylenes | DF | % SS | Comments       |
| 001A                                                          | MW-8                                               | W      | 420    |      | ND      | ND      | ND           | ND      | 1  | 95   | d7,d9          |
| 002A                                                          | MW-10                                              | W      | 150    |      | ND      | ND      | ND           | 0.88    | 1  | 93   | d7             |
| 003A                                                          | MW-13                                              | W      | ND     |      | ND      | ND      | ND           | ND      | 1  | 100  |                |
| 004A                                                          | MW-16                                              | W      | ND     |      | ND      | ND      | ND           | ND      | 1  | 101  |                |
| 005A                                                          | MW-17                                              | W      | 4500   |      | 8.2     | 1.4     | ND           | 4.1     | 1  | #    | d7,d9,b6       |
| 006A                                                          | MW-19                                              | W      | 620    |      | ND      | ND      | ND           | 1.1     | 1  | 96   | d7             |
| 007A                                                          | MW-20                                              | W      | ND     |      | ND      | ND      | ND           | ND      | 1  | 99   |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      |                |
|                                                               |                                                    |        |        |      |         |         |              |         |    |      | _              |
| ND m                                                          | rting Limit for DF =1;<br>neans not detected at or | W      | 50     | 5.0  | 0.5     | 0.5     | 0.5          | 0.5     |    | μg/I |                |
|                                                               | ve the reporting limit                             | S      | 1.0    | 0.05 | 0.005   | 0.005   | 0.005        | 0.005   |    | mg/K | <sup>z</sup> g |

<sup>\*</sup> water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

# cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b6) lighter than water immiscible sheen/product is present
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern



|                      | Client Project ID: Owens Brockway | Date Sampled:   | 03/22/13          |
|----------------------|-----------------------------------|-----------------|-------------------|
| P.O. Box 246         | Glass Plant                       | Date Received:  | 03/25/13          |
|                      | Client Contact: Christina Kennedy | Date Extracted: | 03/25/13          |
| St. Helena, CA 94574 | Client P.O.:                      | Date Analyzed:  | 03/26/13-03/28/13 |

## Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up\*

| Extraction method: | SW3510C/3630C             | Analytical methods: SW8015B |                         |                            |     |      | 1303696  |
|--------------------|---------------------------|-----------------------------|-------------------------|----------------------------|-----|------|----------|
| Lab ID             | Client ID                 | Matrix                      | TPH-Diesel<br>(C10-C23) | TPH-Motor Oil<br>(C18-C36) | DF  | % SS | Comments |
| 1303696-001B       | MW-8                      | W                           | 570                     | 310                        | 1   | 103  | e4,e2,e7 |
| 1303696-002B       | MW-10                     | W                           | 3100                    | 3200                       | 1   | 98   | e7,e3/e2 |
| 1303696-003B       | MW-13                     | W                           | 88                      | ND                         | 1   | 97   | e2       |
| 1303696-004B       | MW-16                     | W                           | 220                     | 1700                       | 1   | 92   | e7,e2    |
| 1303696-005B       | MW-17                     | W                           | 570,000                 | 220,000                    | 100 | 113  | e1,b6    |
| 1303696-006B       | MW-19                     | W                           | 780                     | ND                         | 1   | 95   | e4       |
| 1303696-007B       | MW-20                     | W                           | ND                      | ND                         | 1   | 96   |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
|                    |                           |                             |                         |                            |     |      |          |
| Re                 | eporting Limit for DF =1; | W                           | 50                      | 250                        |     | μg/  | <br>L    |

|    | ND means not detected at or |      | 20   | 200         | rs 2   |  |  |
|----|-----------------------------|------|------|-------------|--------|--|--|
|    |                             | S    | NA   | NA          | mg/Kg  |  |  |
| L  | above the reporting limit   | D    | 1,11 | 1112        | g. 1-g |  |  |
| Ε. |                             | 1/ 1 |      | 1 ./ '1/ 1: | : 1    |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant
- e3) aged diesel is significant; and/or e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant



\_\_Angela Rydelius, Lab Manager

<sup>#)</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

## QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75915 WorkOrder: 1303696

| EPA Method: SW8021B/8015Bm Extraction: SW5030B Spiked Sample ID: 1303763-001A |        |        |        |        |        |        |          |         |              |
|-------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|----------|---------|--------------|
| Analyte                                                                       | Sample | Spiked | MS     | MSD    | MS-MSD | LCS    | Acc      | eptance | Criteria (%) |
| , may c                                                                       | μg/L   | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | MS / MSD | RPD     | LCS          |
| TPH(btex) <sup>£</sup>                                                        | ND     | 60     | 101    | 97.2   | 3.67   | 101    | 70 - 130 | 20      | 70 - 130     |
| MTBE                                                                          | ND     | 10     | 75.7   | 75     | 0.840  | 83     | 70 - 130 | 20      | 70 - 130     |
| Benzene                                                                       | ND     | 10     | 85.8   | 87     | 1.46   | 87.3   | 70 - 130 | 20      | 70 - 130     |
| Toluene                                                                       | ND     | 10     | 85.9   | 87.3   | 1.58   | 87.4   | 70 - 130 | 20      | 70 - 130     |
| Ethylbenzene                                                                  | ND     | 10     | 84.1   | 86.1   | 2.34   | 87.2   | 70 - 130 | 20      | 70 - 130     |
| Xylenes                                                                       | ND     | 30     | 84.4   | 86.4   | 2.33   | 87.3   | 70 - 130 | 20      | 70 - 130     |
| %SS:                                                                          | 96     | 10     | 98     | 97     | 0.899  | 99     | 70 - 130 | 20      | 70 - 130     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

## **BATCH 75915 SUMMARY**

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed     |
|--------------|-------------------|----------------|------------------|--------------|-------------------|----------------|-------------------|
| 1303696-001A | 03/22/13 11:25 AM | 03/28/13       | 03/28/13 2:49 AM | 1303696-002A | 03/22/13 10:30 AM | 03/27/13       | 03/27/13 7:21 PM  |
| 1303696-003A | 03/22/13 11:50 AM | 03/27/13       | 03/27/13 8:51 PM | 1303696-004A | 03/22/13 11:43 AM | 03/27/13       | 03/27/13 9:51 PM  |
| 1303696-005A | 03/22/13 10:50 AM | 03/28/13       | 03/28/13 8:15 AM | 1303696-006A | 03/22/13 10:55 AM | 03/27/13       | 03/27/13 10:21 PM |
| 1303696-007A | 03/22/13 10:35 AM | 03/28/13       | 03/28/13 7:16 PM |              |                   |                |                   |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$ 

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

## QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 75802 WorkOrder: 1303696

| EPA Method: SW8015B Extraction: S | N3510C/3630C |        |        |        |        | 5      | Spiked Sample ID: N/A |         |              |
|-----------------------------------|--------------|--------|--------|--------|--------|--------|-----------------------|---------|--------------|
| Analyte                           | Sample       | Spiked | MS     | MSD    | MS-MSD | LCS    | Acc                   | eptance | Criteria (%) |
| ,                                 | μg/L         | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | MS / MSD              | RPD     | LCS          |
| TPH-Diesel (C10-C23)              | N/A          | 1000   | N/A    | N/A    | N/A    | 115    | N/A                   | N/A     | 70 - 130     |
| %SS:                              | N/A          | 625    | N/A    | N/A    | N/A    | 93     | N/A                   | N/A     | 70 - 130     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### **BATCH 75802 SUMMARY**

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|------------------|--------------|-------------------|----------------|------------------|
| 1303696-001B | 03/22/13 11:25 AM | 03/25/13       | 03/26/13 4:32 PM | 1303696-002B | 03/22/13 10:30 AM | 03/25/13       | 03/26/13 6:56 PM |
| 1303696-003B | 03/22/13 11:50 AM | 03/25/13       | 03/26/13 8:07 PM | 1303696-004B | 03/22/13 11:43 AM | 03/25/13       | 03/26/13 9:19 PM |
| 1303696-005B | 03/22/13 10:50 AM | 03/25/13       | 03/28/13 7:41 PM | 1303696-006B | 03/22/13 10:55 AM | 03/25/13       | 03/26/13 5:44 PM |
| 1303696-007B | 03/22/13 10:35 AM | 03/25/13       | 03/26/13 9:19 PM |              |                   |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$ 

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

**DHS ELAP Certification 1644** 

QA/QC Officer