
RO 289

December 16, 2005

DH

Mr. Amir Gholami Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Owens-Brockway Glass Container - Oakland, CA

Dear Mr. Gholami:

Attached is the 2005 Groundwater Monitoring Report for the Owens-Brockway Glass Container facility in Oakland. If there are questions regarding its content, please give Chris Kennedy a call at 707-967-8080.

Sincerely,

Robert C. Neal, P.E.

Environmental Administrator

2005 GROUNDWATER MONITORING REPORT

OWENS-BROCKWAY
GLASS CONTAINER FACILITY
OAKLAND, CALIFORNIA

Alama County

A Report Prepared for:

Mr. Mark Tussing Owens-Brockway Glass Container, Inc. One Seagate-30L Toledo, OH 43666

2005 GROUNDWATER MONITORING REPORT

OWENS-BROCKWAY GLASS CONTAINER FACILITY, OAKLAND, CALIFORNIA

No. 5077

November 29, 2005

Prepared by:

Christina J. Kennedy R.G.

Principal

CKG Environmental, Inc. 808 Zinfandel Lane St. Helena, California 94574 (707) 967-8080

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	2
2.0	INTRODUCTION	3
2.1	SITE DESCRIPTION	3
3.0	GROUNDWATER MONITORING	4
3.1 3.2 3.3 3.4	GROUNDWATER GRADIENT	4 5
4.0	FINDINGS	6
	SUMMARY OF GROUNDWATER RESULTS	
5.0	CONCLUSIONS AND RECOMMENDATIONS	8
5.1 5.2	CONCLUSIONS RECOMMENDATIONS	
6.0	REFERENCES	
7.0	LIMITATIONS	
TABL	LES	
Table		
Table 1		
PLAT	·	
Plate 1	······································	
Plate 2	- · · · · · · · · · · · · · · · · · · ·	
Plate 3 Plate 4	• • • • • • • • • • • • • • • • • • •	
APPE	ENDICES	
Appen Appen		

1.0 EXECUTIVE SUMMARY

The Owens-Brockway glass manufacturing facility is located at 3600 Alameda Avenue in Oakland, California. The site is located to the north of the Oakland Estuary with Fruitvale Avenue to the west, a Home Depot to the east and residences to the north. Onsite facilities include the operating glass manufacturing plant, warehouses, offices and two former underground fuel storage tank areas.

Two underground fuel storage tank (UST) areas existed at the Oakland plant. The first UST area was located on the west side of the plant and included three fuel oil USTs. Impacts by fuel oil to the subsurface were observed when the associated USTs were removed. The second UST area was located near the central part of the plant adjacent to the compressor building. Originally there were four USTs in this area. When they were removed and replaced by two new USTs, a gasoline release to the subsurface was observed.

CKG compiled all the historic data for the site and completed a Cone Penetration Test (CPT) subsurface investigation and installed one offsite monitoring well. This data was used to refine our understanding of the distribution of petroleum hydrocarbons at the site and to evaluate the UST releases with respect to potential closure. A round of groundwater monitoring also was completed to comply with regulatory requirements and to evaluate the existence and distribution of the various types of petroleum hydrocarbons potentially present on and off site.

The recent groundwater monitoring, as well as a review of historic data, shows that the petroleum hydrocarbon plumes at the site are stable and have attenuated substantially over time. The fuel oil release appears to extend only slightly off site. CKG recommends that Owens-Brockway submit this report to the Alameda County Health Agency.

2.0 INTRODUCTION

The following report presents the results and conclusions of the annual of groundwater monitoring in 2005. The work was performed in general accordance with CKG's proposal dated November 15, 2002 with slight modifications as discussed below.

2.1 SITE DESCRIPTION

The Owens-Brockway glass manufacturing facility is located at 3600 Alameda Avenue in Oakland, California, (Plate 1). The site is located to the north of the Oakland Estuary with Fruitvale Avenue to the west, a former retail center to the east and residences to the north. Onsite facilities include the operating glass manufacturing plant, warehouses, offices and two former underground fuel storage tank areas, (Plate 2).

Fuel Oil USTs

One UST site was located on the west side of the plant and included three former USTs, which were used to contain fuel oil. At the time these USTs were removed it was discovered that fuel oil had been released to the subsurface. Owens-Brockway excavated impacted soil at the time the USTs were removed. Floating product associated with the fuel oil release exists and past efforts to remove it have been unsuccessful. This lack of success is mainly due to the clay rich nature of the subsurface and the viscosity of the product. Groundwater monitoring has been ongoing sporadically for the last 16 years. A GeoprobeTM investigation completed in 1999 by Kennedy/Jenks Consultants included collecting groundwater samples from five locations off-site in the downgradient direction. Three of these samples were found to contain petroleum hydrocarbons. This petroleum hydrocarbon was identified to be Stoddard solvent, not fuel oil.

Gasoline USTs

The second UST area was located near the central part of the plant adjacent to the compressor building. Originally there were four USTs in the area. When they were removed and replaced by two new USTs a gasoline release to the subsurface was observed. Owens-Brockway excavated impacted soil at the time the USTs were removed. Groundwater monitoring has shown that the gasoline release has attenuated naturally.

3.1 GROUNDWATER GRADIENT

Depth to groundwater measurements were made on June 30, 2005, before the monitoring wells were sampled. Depth to static ground water was measured from a marked location at the top of the PVC casing. The depth of water was then subtracted from the elevation of the top of the well casing to provide a ground water elevation for each monitoring well. Plate 2 shows groundwater elevations and the interpreted groundwater flow direction. Based on the data measured on June 30 the groundwater flow direction is generally to the south. This groundwater flow direction has been observed in past monitoring events. Monitoring well construction details are presented in Table 1. Depth to water measurements and groundwater elevations are summarized in Table 2. Well sampling and purge logs are contained in Appendix A.

3.2 WELL SAMPLING

On June 30, 2005 a round of groundwater sampling in the monitoring wells was performed. Sheen was observed in MW-2, and MW-6 but they were sampled anyway. The product appeared as a sheen so a thickness could not be measured. MW-1 was covered with glass and was not accessible. MW-9, which is located in the middle of the loading ramp, also could not be safely accessed. The remaining wells were sampled using the following protocol.

- The depth-to-water was measured using a conductivity-based water level indicator.
- The volume of water standing in each well was calculated by subtracting the depth-to-water measurement from the total depth of the well, and multiplying by the appropriate volume conversion factor.
- A minimum of three well volumes of water was purged from each well using a centrifugal pump. The pump was decontaminated prior to use in each well by washing with TSP and rinsing with distilled water. Fresh tubing was used for each well
- Physical parameters of pH and temperature were monitored for stability during purging.

- Sample bottles, provided by the analytical laboratory were filled from a new clean disposable bailer at each well.
- Samples were immediately labeled and placed in an iced sample container. The samples
 were picked up by the analytical laboratory, under chain-of-custody control the following
 day.

3.3 CHEMICAL ANALYSIS

Groundwater samples were submitted under chain-of-custody to McCampbell Analytical Laboratory in Pacheco, California. McCampbell is a laboratory certified with the California Department of Health Services under the California Environmental Laboratory Accreditation Program (ELAP) for the requested analyses. The analytical program was completed in general accordance with CKG's proposal dated November 15, 2002 with some additions. The chemical analyses performed include the following:

- Total Petroleum Hydrocarbons quantified as diesel, (TPHd,) motor oil (TPHmo) and gasoline (TPHg) by Modified EPA Method 8015 and;
- Benzene, Toluene, Ethylbenzene, xylenes, and MTBE by EPA Method 8020
- The analytical laboratory also was asked to reanalyze sample with sheen or product by
 modifying the analytical method to avoid the product. This was done to evaluate how
 much of the petroleum hydrocarbon detected was actually dissolved in the groundwater.

In addition to asking the laboratory to perform the TPH analysis by the usual 8015 method, CKG also asked the laboratory to re-extract the samples with floating product using a modification. The modification was to avoid the floating layer of product altogether and only analyze water from below that. The purpose of this variation was to evaluate the solubility of the product observed in the groundwater.

3.4 INVESTIGATION DERIVED WASTES (IDW)

Investigation derived wastes (IDW) were generated during the investigation and included purge water. Purge water was placed into the on-site oil/water separator system.

The following describes the results of the annual groundwater monitoring at the Owens-Brockway Glass Container facility in Oakland, California. Comparisons are made between the data and appropriate regulatory standards and risk based screening levels where they are available. Groundwater sample results are presented in Table 3. Analytical laboratory reports are included in Appendix B. Sample locations and pertinent data are presented on Plates 3 and 4.

4.1 SUMMARY OF GROUNDWATER RESULTS

4.1.1 Fuel Oil Release Area (MW-2, MW-5, MW-7, MW-8, MW-10, MW-19)

Petroleum hydrocarbons quantified as diesel/fuel oil, were detected in all of the water samples collected as summarized in Table 3. Diesel concentrations are shown and contoured on Plate 3. Detected TPHd concentrations in groundwater range from 1700 to 290,000 µg/l. The highest concentrations were detected in MW-7. The estimated outline of the product plume is illustrated on Plate 3. In general the overall size of the product plume is the same as has been observed over the last 18 years of monitoring.

Separate phase floating product was observed in MW-2, and MW-6 in the field and in MW-5 and MW-7 at the laboratory. After the initial sampling was completed CKG had the laboratory remove the separate phase product from the samples and re-run the analysis. This was done to evaluate to what extent the product is actually soluble in the groundwater. The following summarizes a comparison between the two results:

Sample		ts unmodified μg/l)	TPH result with product removed first (μg/l)		
	ТРНа	TPHmo	TPHd	TPHmo	
MW-2	1,600,000	1,200,000	320,000	240,000	
MW-5	34,000	26,000	28,000	27,000	
MW-6	270,000	200,000	21,000	18,000	
MW-7	290,000	150,000	81,000	18,000	

Based on the above comparison it is clear that the concentrations of the product in groundwater in MW-2, MW-6 and MW-7 are an order of magnitude lower than would be indicated with the product present. In MW-5 there was effectively no difference. MW-5 was submitted for the modified analysis only because the laboratory thought that they had observed separate phase product in the sample. This observation was not made in the field.

4.1.2 Gasoline Release Area (MW-13, MW-15, MW- 16, MW17, MW-20)

Petroleum hydrocarbons quantified as gasoline, were detected in one of the water samples collected as summarized in Table 3. TPHg was detected in MW-17 at 1400 μ g/l. This detection illustrates the very limited area where gasoline remains in the subsurface at the site. The extent of the gasoline plume is illustrated on Plate 4.

5.0 CONCLUSIONS AND RECOMMENDATIONS

On the basis of the annual monitoring the following conclusions and recommendations can be made:

5.1 CONCLUSIONS

The recent groundwater monitoring, as well as a review of historic data, shows that the petroleum hydrocarbon plumes at the site are stable and have attenuated substantially over time. The fuel oil release appears to extend only slightly off site.

5.2 RECOMMENDATIONS

CKG recommends that Owens-Brockway submit this report to the Alameda County Health Agency and respectfully request case closure. A full description of the rationale for closure is described in CKG's Data Compilation and Closure Report Underground Fuel Storage Tank Locations, Owens-Brockway Glass Container Facility, Oakland, California, November 4, 2003.

6.0 REFERENCES

California Regional Water Quality Control Board – San Francisco Bay region, Order No 99-045, 1999

CKG Environmental, Inc. 2004 Groundwater Monitoring Report, Owens-Brockway Glass Container Facility, Oakland, California April 29, 2004.

CKG Environmental, Inc. Summary of Remediation History and Groundwater Impact by Petroleum Hydrocarbons, Owens-Brockway Glass Container Facility, 3600 Alameda Avenue, Oakland, California. April 4, 2003.

CKG Environmental, Inc. Work Plan to Install One Monitoring Well and Assess the Distribution of Petroleum Hydrocarbons, Owens-Brockway Glass Container Facility, Oakland, California, April 22, 2003.

CKG Environmental, Inc. Data Compilation and Closure Report Underground Fuel Storage Tank Locations, Owens-Brockway Glass Container Facility, Oakland, California, November 4, 2003.

Exeltech, Soil and Groundwater Contamination Investigation for Owens-Illinois Glass Container Division, 3600 Alameda Avenue, Oakland, California, December 1986.

Exeltech, Soil and Groundwater Contamination Investigation for Owens-Illinois Glass Container Division, 3600 Alameda Avenue, Oakland, California, February 1987.

Kennedy/Jenks, Consultants. Groundwater investigation Report, Owens-Brockway Glass Containers, February 16, 1999.

Kennedy/Jenks, Consultants. Annual Groundwater Monitoring Report, Owens-Brockway Glass Containers, January 21, 2003.

7.0 LIMITATIONS

CKG Environmental, Inc. prepared this report in accordance with generally accepted standards of care, which exist in Northern California at this time. It should be recognized that definition and evaluation of geologic and environmental conditions is a difficult and an inexact science.

Conclusions and recommendations presented in this report are based on the results of the scope of work presented in our proposal dated November 15, 2002. This scope of work includes groundwater sampling at total of 10 wells, and quantitative analysis of groundwater samples conducted by McCampbell Analytical. Only work described herein was performed. As such CKG cannot render opinions on issues not resulting directly from the work performed.

Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present. More extensive studies, including additional subsurface investigations, may be performed to reduce uncertainties. If the client wishes to reduce the uncertainties of this investigation, CKG should be notified for additional consultation. No warranty, expressed or implied, is made.

This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both onsite and offsite) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify CKG of such intended use. Based on the intended use of the report, CKG may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release CKG from any liability resulting from the use of this report by any unauthorized party.

	Table 1 Summary of Well Construction Details										
Well Number	Date Installed	Top of Casing Elelvation ^(a)	Top of Screen ^(b)	Screen Length	Well Depth ^(c)	Casing Diameter (inches)	Comments				
MW-1	9/12/1986	16.02	8	21	29	2					
MW-2	12-Sep-86	17.11	10	20	30	2					
MW-3	12-Sep-86	15.46	10	20	39	2	Destroyed				
MW-4	12-Sep-86	16.02	8.5	20	28.5	2					
MW-5	12-Sep-86	16.19	8.5	20	28.5	2					
MW-6	12-Sep-86	17.48	12.5	16	28.5	2					
MW-7	12-Sep-86	16.11	12.5	11	23.5	2					
MW-8	12-Sep-86	16.57	15	13.5	28.5	2					
MW-9	12-Sep-86	7.33 ^(d)	5	10	20	2					
MW-10	12-Sep-86	15.96	10	15	25	2					
MW-11	12-Sep-86	13.99	10	20	30	2					
MW-12	12-Sep-86	13.83	11	15	26	2					
MW-13	12-Sep-86	13.98	9.5	15	24.5	2					
MW-14	12-Sep-86	14.78	10	15	25	2	Destroyed				
MW-15	12-Sep-86	15.16	9.5	20	29.5	2					
MW-16	12-Sep-86	13.48	10	14.5	24,5	2					
MW-17	12-Sep-86	14.17	9.5	15	24.5	2					
MW-18	12-Sep-86	14.89	9	15	24	2	Destroyed				
MW-19	01-May-03	NA	10	15	25	2					
MW-20	01-Dec-00	12.74	6.9	15	21.9	2					
R-1	1987	NM ^(e)	NA ^(f)	NA	24	36	Destroyed				
R-2	1989	NM	NA	NA	NA	12	Destroyed				

⁽a) Top of casing elevation (TOCE) except where noted; measured in feet above US Coast and Geodetic Datum (mean sea level). Elevations measured by Exceltech in 1986, and by PLS Surveys for MW-20 in 2000.

⁽b) Depth to top of screened interval (feet below top of casing)

⁽c) Depth to bottom of screened interval (feet below top of casing)

⁽d) Well casing was not measured for this well; well is located beneath forklift ramp and this measurement is the ground surface elevation in MSL.

⁽e) NM = Not measured

⁽f) NA = Not available

Table 2 Groundwater Depths and Elevation June 30, 2005

		Top of Casing		Groundwater
Well Number	Date Installed	Elelvation ^(a)	Depth to Water	Elevation
MW-1	9/12/1986	16.02	NM	
MW-2	12-Sep-86	17.11	12.23	4.88
MW-4	12-Sep-86	16.02	NM	
MW-5	12-Sep-86	16.19	11.65	4.54
MW-6	12-Sep-86	17.48	13.74	3.74
MW-7	12-Sep-86	16.11	12.45	3.66
MW-8	12-Sep-86	16.57	9.52	7.05
MW-9	12-Sep-86	7.33 ^(d)	NM	
MW-10	12-Sep-86	15.96	9.58	6.38
MW-11	12-Sep-86	13.99	NM	
MW-12	12-Sep-86	13.83	NM	
MW-13	12-Sep-86	13.98	10.41	3.57
MW-15	12-Sep-86	15.16	11.28	3.88
MW-16	12-Sep-86	13.48	7.98	5.5
MW-17	12-Sep-86	14.17	9.2	4.97
MW-19	01-May-03	NA	11.68	
MW-20	01-Dec-00	12.74	9.15	3.59

⁽a) Top of casing elevation (TOCE) except where noted; measured in feet above US Coast and Geodetic Datum (mean sea level). Elevations measured by Exceltech in 1986, and by PLS Surveys for MW-20 in 2000.

⁽d) Well casing was not measured for this well; well is located beneath forklift ramp and this measurement is the ground surface elevation in MSL.

⁽e) NM = Not measured

⁽f) NA = Not available

MW-1	Date	В	Ŧ	Ε	X	TPHd	TPHg	TOG
	9/23/1986	<10	<10	NA	<10	<.01	< 01	25
	4/9/1987	<10	<10	NA NA	<10	<.01	NA	NA
	9/16/1987	not accessit	ole					
	1	not accessit						
	1	not accessit						
	1	not accessit						
	9/14/1988	not accessit	ı					
	9/16/1997	<.5	<.5	<.5	<.5	0.19 ^(a)	<50	NA
	11/2/1998	<.5	<.5	<.5	<.5	0.16 ^(a)	<50	NA
	12/11/2001	not accessit	ole			-		
	12/6/2002	<.5	<.5	<.5	<.5	0.069 ^(a)	<50	NA
	3/15/2004	not accessit	ole			-		
	6/30/2005	not accessit	ole					
MW-2	4/9/1987	4/9/1987 floating product						
	9/16/1987 floating product							
	12/1/1987	floating proc	luct					
	3/7/1988	floating proc	luct					
	6/8/1988	floating proc	luct					
	9/14/1988	floating proc	luct					
	9/16/1997	floating proc	luct					
	11/2/1998	floating proc	luct					
	12/11/2001	floating prod	luct]		
	12/6/2002	floating proc	luct					
	3/15/2004	floating proc	luct					
	6/30/2005	<.5	<.5	<.5	<.5		2900	
MW-3	9/23/1986	<10	<10	NA	<10	NA	<10	18
	4/9/1987	BDL	BDL	NA ·	BDL	NA	370	NA
	9/16/1987	floating proc	luct					
	1	floating proc						
	3/7/1988		NA	NA NA	NA	190	NA	NA
	6/8/1988	NA.	NA	NA NA	NA	16	NA	NA
	9/14/1988	floating prod	ı				•	
	1	Destroyed						

NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Thylbenzene in ug/l

TOG - Total Oil and Grease in ug/l

BDL - Below detection limit

NA - Not analyzed

- (a) Quantified as diesel but chromatogram did not match diesel pattern
- (b) Quantified as gasoline but chromatogram did not match gasoline pattern

	Date	В	T	E	X	TPHd	TPHg	TOG
MW-4	9/23/1986	<5	<5	NA	<5	NA	20	7.2
•	4/9/1987	BDL	BDL	NA	BDL	NA	BDL	NA
	9/16/1987	BDL	BDL	NA	BDL	0.66	1.3	NA
	12/1/1987	BDL	BDL	NΑ	8.9	0.1	BDL	NA
	3/7/1988	BDL	BDL	NA	BDL.	BDL	BDL	NA
	6/8/1988	BDL	BDL	NA	BDL	BDL	BDL	NA
	9/14/1988	BDL	BDL	NA NA	BDL	0.1	BDL	NA
	6/30/2005	Destroyed						
MW-5	10/3/1986	<5	<5	NA	6.6	NA	1400	24
	4/9/1987	<5	<5	NA	<5	NA	54	NA
	9/16/1987	NA	NA	NA	NA	96	NA	NA
	12/1/1987	NA	NA	NA	NA	2	NA	NA
	3/9/1988	NA	NA	NA	NA	<.05	NA	NA
	6/8/1988	NA	NA	NA	NA	12	NA	NA
	9/14/1988	NA	NA	NA	NA	6.3	NA	NA
	9/16/1997	<.5	<.5	<.5	<.5	11.6 ^(a)	<50	NA
	11/2/1998	floating prod	luct					
	12/6/2000	<.5	<.5	<.5	<.5	11.7 ^(a)	1000	NA
	12/12/2001	<.5	<.5	<.5	<.5	10 ^(a)	360 ^(b)	NA
	12/6/2002	<.5	< 5	<.5	<.5	5.2 ^(a)	150 ^(b)	NA
	3/15/2004	<0.5	<0.5	<0.5	<0.5	46 ^(a)	180 ^(b)	NA
	6/30/2005	<.5	<.5	<.5	<.5		100	
MW-6	4/9/1987	floating prod	luct					
	9/16/1987	NA	NA	NA	NA	400	NA	NA
	12/1/1987	NA	NA	NA	NA	30	NA	NA
	3/7/1988	NA	NA	NA	NA	9.8	· NA	NA
	6/8/1988	NA NA	NA	NA	NA	63	NA.	NA
	9/14/1988	NA	NA	NA	NA	140	NA	NA
	9/16/1997	floating prod	luct					
		floating prod						٠.
		floating prod						
		floating prod						
		floating prod						
	6/30/2005	<.5	<.5	<.5	<.5		300	

NOTES

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Thylbenzene in ug/l

TOG - Total Oil and Grease in ug/l

BDL - Below detection limit

NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

(b) - Quantified as gasoline but chromatogram did not match gasoline pattern

L	Owens-Brockway Glass Container Facility, Oakland, CA									
	Date	В	T	E	X	TPHd	TPHg	TOG		
MW-7	10/3/1986		<5	NA	<5	NA	260	8		
		floating proc								
	9/16/1987		NA	NA	NA	790	NA	NA		
	12/1/1987		NA	NA	NA	5.3	NA	NA		
	3/9/1988		NA	NA	NA	<.05	NA	NA		
	6/9/1988		NA	NA	NA	12	NA	NA		
	9/14/1988		NA	NA	NA	67	NA	NA		
	9/16/1997		<.5	<.5	<.5	37 ^(a)	850	NA		
	11/2/1998	floating prod	luct							
	12/6/2000	<5	<.5	<.5	1.90	3.58 ^(a)	540	NA		
	12/12/2001	<1	<1	<1	<1	12.6 ^(a)	1200 ^(b)	NA		
	12/6/2002	<.5	<.5	<.5	<.5	27.6 ^(a)	480 ^(b)	NΑ		
	3/15/2004	<0.5	<0.5	0.57	1.10	170 ^(a)	890 ^(b)	NA		
	6/30/2005	<.5	<.5	3.1	<.5		3000			
MW-8	10/23/1986	<.2	<.2	NA	<1	NA	1300	14		
	4/9/1987	<.5	<.2	NA	<1	NA	73	NA		
	9/16/1987	floating product								
	12/1/1987	NA NA	NA	NA	NA	0.63	NA	NA		
	3/9/1988	NA	NA	NA	NA	2.6	NA	NA		
	6/9/1988	NA NA	NA	NA	NA	1.7	NA	NA		
	9/14/1988	NA	NA	NA	NA	0.15	NA	NA		
	8/12/1997	floating prod	luct							
	9/16/1997		<.5	<.5	<.5	0.29 ^(a)	<50	NA		
	11/2/1998	<.5	<.5	<.5	<.5	1.3 ^(a)	<50	NA		
	12/6/2000	<.5	<.5	<.5	<.5	0.16 ^(a)	<50	NA		
	12/12/2001	<.5	<.5	<.5	<.5	<.05	<50	NA		
	12/5/2002		<.5	<.5	<.5	0.17 ^(a)	55 ^(b)	NA		
	3/15/2004	<.5	<.5	<.5	<.5	3 ^(a)	320 ^(b)	NA		
	6/30/2005	t i	<.5	<.5	<.5		1100			

NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Thylbenzene in ug/l

TOG - Total Oil and Grease in ug/l

BDL - Below detection limit

NA - Not analyzed

- (a) Quantified as diesel but chromatogram did not match diesel pattern
- (b) Quantified as gasoline but chromatogram did not match gasoline pattern

		IIS-DITUCK		o om tame	,	Oakianu,		
	Date	В	T	E	X	TPHd	TPHg	TOG
MW-9		floating prod						
	9/16/1987	NA	NA	NA	NA	1.3	NA	NA
	12/1/1987	NA	NA	NA NA	NA	18	NA	NA
	3/9/1988	NA	NA	NA	NA	47	NA	NA
		floating prod			[
		floating prod				(n)		
	9/16/1997	S .	<13	<13	18.00	28 ^(a)	6000	NA
	11/2/1998	floating prod]			
	12/6/2000	<5	<.5	<.5	<.5	102 ^(a)	790	NA
	12/12/2001	innaccessib	le					
	12/5/2002	innaccessibl	le					
	3/15/2004	innaccessib	le					
	· · · · · · · · · · · · · · · · · · ·	innaccessil						
MW-10	10/23/1986	Į	<.2	NA	<.2	NA	380	7.2
	4/9/1987	<.2	<.2	NA	<.2	NA	300	NA
	9/16/1987	NA	NA	NA	NA NA	3.8	NA	NA
	12/1/1987	NA	NA	NA	NA	0.59	NA	NA
	3/8/1988	NA	NA	NA	NA	<.5	NA	NA
	6/8/1988	NA	NA	NA	NA NA	3.8	NA	NA
	9/14/1988	NA	NA	NA	NA NA	0.57	NA	NA
	9/16/1997	<.5	<.5	<.5	<.5	1.3 ^(a)	<50	NA
	11/2/1998	<.5	<.5	<.5	< 5	1.4 ^(a)	<50	NA
	12/6/2000	<.5	<.5	<.5	0.70	0.73 ^(a)	150	NA
	12/11/2001	<.5	<.5	<.5	<.5	0.63 ^(a)	210 ^(b)	NA
	12/5/2002	<.5	<.5	<.5	<.5	0.84 ^(a)	210 ^(b)	NA
	3/15/2004	<.5	<.5	<.5	0.8	2.5 ^(a)	160 ^(b)	NA
	6/30/2005	<.5	<.5	<.5	<.5		140	
MW-11	9/23/1986	<0.4	<0.4	NA	1.4	NA	<8	1.2
	4/9/1987	BDL	BDL	NA	BDL	NA	BDL	NA
	9/16/1987	BDL	BDL	NA	BDL	NA	BDL	NA
	12/1/1987	0.8	BDL	NA	10	NA	BDL	NA
	3/7/1988	BDL	BDL	NA	BDL	BDL	BDL	NA
	6/8/1988	BDL	BDL	NA	BDL	BDL	BDL	NA
	9/14/1988	BDL	BDL	NA	BDL	100	BDL	NA
	6/30/2005	Destroyed						
				·	·	I		<u> </u>

NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Thylbenzene in ug/l

TOG - Total Oil and Grease in ug/l

BDL - Below detection limit

NA - Not analyzed

(a) - Quantified as diesel but chromatogram did not match diesel pattern

(b) - Quantified as gasoline but chromatogram did not match gasoline pattern

	Ovens Diverway Glass Container Pacific, Oakland, CA								
	Date	В	T	E	X	TPHd	TPHg	TOG	
MW-12	9/23/1986	0.49	1	NA	1.3	NA	100	2.5	
	4/9/1987	BDL	BDL	NA	BDL	NA	BDL	NA	
	9/16/1987	BDL	BDL	NA	BDL	NA	BDL	NA	
	12/1/1987	BDL	BDL	NA	13	NA	BDL	NA	
	3/7/1988		BDL.	NA	BDL	BDL	BDL	NA	
	6/8/1988		BDL	NA	BDL	BDL	BDL	NA	
	9/14/1988	BDL	BDL	NA	BDL	0.12	BDL	NA	
	6/30/2005	Destroyed							
MW-13	12/24/1986	<.2	<.9	NA	<.9	NA	<10	57	
	4/9/1987	<5	<5	NA	<5	NA	<10	NA NA	
	9/16/1987	< 5	<5	NA	< 5	NA	<10	NA NA	
	12/1/1987	1.6	<5	NA	12	NA	<10	NA NA	
	3/8/1988		<5	NA	<5	<.5	7.7	NA	
	6/8/1988	<5	<5	NA	<5	<.5	<10	NA NA	
	9/14/1988	<5	<5	NA	<5	0.13	<10	NA NA	
	9/16/1997	<5	<5	<5	<5	0.12 ^(a)	<50	NA	
	11/2/1998	<5	<5	<5	<5	0.12 ^(a)	<50	NA	
	12/6/2000	<5	<.5	<.5	<.5	0.2 ^(a)	<50	NA	
	12/11/2001	<.5	<.5	<.5	<.5	0.091 ^(a)	<50	NA	
	12/5/2002	<.5	<.5	<.5	<.5	0.19 ^(a)	<50	NA	
	3/15/2004	<.5	<.5	<.5	<.5	<0.05	<50	NA	
	6/30/2005	<1.0	<1.0	<1.0	<1.0		<50		
MW-14	9/23/1986	<0.4	<0.2	NA	<0.2	NA	<8	3.2	
	4/9/1987	BDL	BDL	NA	BDL	NA	BDL	NA NA	
	9/16/1987	BDL	BDL	NA	BDL	0.056	1.7	NA	
	12/1/1987	1.2	4	NA	10	0.066	BDL	NA	
	3/7/1988	BDL	BDL	NA	BDL	BDL	20	NA	
	6/8/1988	inaccessible	•						
	9/14/1988	inaccessible)						
	l.	Destroyed							
			· <u>.</u>	•	······			· · · · · · · · · · · · · · · · · · ·	

NOTES

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Thylbenzene in ug/l

TOG - Total Oil and Grease in ug/l

BDL - Below detection limit

NA - Not analyzed

- (a) Quantified as diesel but chromatogram did not match diesel pattern
- (b) Quantified as gasoline but chromatogram did not match gasoline pattern

	Table 3 Summary of Groundwater Analytical Results	
	Owens-Brockway Glass Container Facility, Oakland, CA	
_		

MW-15	Date 12/24/1986 4/9/1987 9/16/1987 12/1/1987	<5 <5	<.9 <5	NA NA	9.20	TPHd NA	TPHg 120	TOG 1.6
MVV-15	4/9/1987 9/16/1987 12/1/1987	<5 <5	<5		ž .	NA :	120	! 16 !
	9/16/1987 12/1/1987	<5		I NA				
	12/1/1987	1			<5	NA	<.5	NA
			<5	NA	<5	<.1	8.4	NA
		3.30	0.84	NA	14	NA	<.5	NA
	3/8/1988		< 5	NA	<5	<.1	90	NA
	6/9/1988		<5	NA	<5	<.1	53	. NA
	9/14/1988		NA	NA	NA	0.1	NA	NA
ļ	9/16/1997		<.5	<.5	<.5	1.27 ^(a)	<50	NA
1	11/2/1998		<.5	<.5	<.5	0.34 ^(a)	<50	NA
	12/6/2000	<.5	<.5	<.5	<.5	0.4 ^(a)	<50	NA
	12/11/2001	<.5	<.5	<.5	<.5	0.29 ^(a)	<50	NA
	12/5/2002	<.5	<.5	<.5	<.5	0.44 ^(a)	<50	NA .
	3/15/2004	<.5	<.5	<.5	<.5	<0.05	<50	NA
	6/30/2005	<5	<5	<5	<5		<50	
ļ <u></u>								
MW-16	12/24/1986	<.2	<.9	NA	<.9	NA	<10	1.2
	4/9/1987	<5	<5	NA	<5	NA	<.5	NA
	9/16/1987	<5	<5	NA	<5	0.064	<.5	NA
	12/1/1987	1.00	0.37	NA	9.1	0.15	120	NA
	3/7/1988	0.50	<5	NA	<5	<.1	10	NA
	6/8/1988	<5	<5	NA	<5	<.1	<0.5	NA
	9/14/1988	<5	<5	NA	<5	0.19	<0.5	NA NA
	9/16/1997	floating prod	uct					
	12/6/2000	<.5	<.5	<.5	<.5	0.097 ^(a)	<50	NA
ł	12/11/2001	<.5	<.5	<.5	<.5	<0.05	<50	NA
	12/5/2002	<.5	<.5	<.5	<.5	0.051 ^(a)	<50	NA
	3/15/2004	<.5	<.5	<.5	<.5	63	<50	NA
	6/30/2005	<5	<5	<5	<5		<50	

NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

B - Benzene in ug/l

X - Xylenes in ug/l

TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

T - Toluene in ug/l

E - Thylbenzene in ug/l

TOG - Total Oil and Grease in ug/l

BDL - Below detection limit

NA - Not analyzed

- (a) Quantified as diesel but chromatogram did not match diesel pattern
- (b) Quantified as gasoline but chromatogram did not match gasoline pattern

	Date	В	T	1	X	TPHd	TPHg	TOG
MW-17	12/24/1986	5	1.20	NA	14.00	NA	240	2.4
	4/9/1987	<5	<5	NA	<5	NA	<.5	NA
	9/16/1987	<5	<5	NA	0.55	0.68	44	NA
	12/1/1987	7.80	2.40	NA	28	1.3	540	NA
	3/8/1988	83.00	<5	NA	46	3.8	4300	NA
		innaccessib	•			:		
	9/14/1988	<.5	<.5	<.5	<.5	64	54000	NA
	9/16/1997	<.5	<.5	<.5	<.5	119.6 ^(a)	1900	NA
	11/2/1998	<.5	<.5	<.5	0.60	16 ^(a)	<50	NA
	12/6/2000	<5	<.5	<.5	<.5	47.8 ^(a)	340	NA
	12/11/2001	<10	<10	<10	<10	101 ^(a)	5300 ^(b)	NA
	12/5/2002	<.5	<.5	<.5	<.5	71 ^(a)	700 ^(b)	NA
	3/15/2004	2.1	0.71	<.5	1.5	660 ^(a)	1400 ^(b)	NA
	6/30/2005	<.5	2.4	<.5	1.1		1700	
MW-18	9/23/1986	<0.3	<0.3	NA	0.99	NA	<20	1.6
	4/9/1987	BDL	BDL	NA	BDL	NA	BDL	NA
	9/16/1987	BDL	BDL	NA	BDL	0.48	BDL	NA
	12/1/1987	BDL	BDL	NA	6.6	0.18	BDL	NA
	3/7/1988	BDL	BDL	NA	BDL	BDL	BDL	NA
	6/8/1988	BDL	BDL	NA	BDL	BDL	BDL	NA
	9/14/1988	BDL	BDL	NA	BDL	0.19	BDL	NA
	6/30/2005	Destroyed	i					
MW-19	6/23/2004	<0.5	<0.5	<0.5	<0.5	1.1	480	NA
	3/15/2004	<0.5	<0.5	<0.5	<0.5	1.1 ^(a)	330 ^(b)	NA
	6/30/2005	<0.5	<0.5	1.5	4.5		840	
MW-20	12/11/2000	<0.5	<0.5	<0.5	<0.5	0.11 ^(a)	<50	NA
	4/6/2001	<0.5	<0.5	<0.5	<0.5	0.057 ^(a)	<50	NA
	7/6/2001	<0.5	<0.5	<0.5	<0.5	0.12 ^(a)	<50	NA
	9/19/2001	<0.5	<0.5	<0.5	<0.5	0.16 ^(a)	<50	NA
	12/11/2001	<0.5	<0.5	<0.5	<0.5	0.082 ^(a)	86 ^(b)	NA
	2/6/2002	<0.5	<0.5	<0.5	<0.5	0.085 ^(a)	<50	NA
	3/15/2004	<0.5	<0.5	<0.5	<0.5	<0.5	<50	NA
	6/30/2005	<0.5	<0.5	<0.5	<0.5		<50	

NOTES:

TPH-g - Total Petroleum Hydrocarbons as Gasoline in ug/l

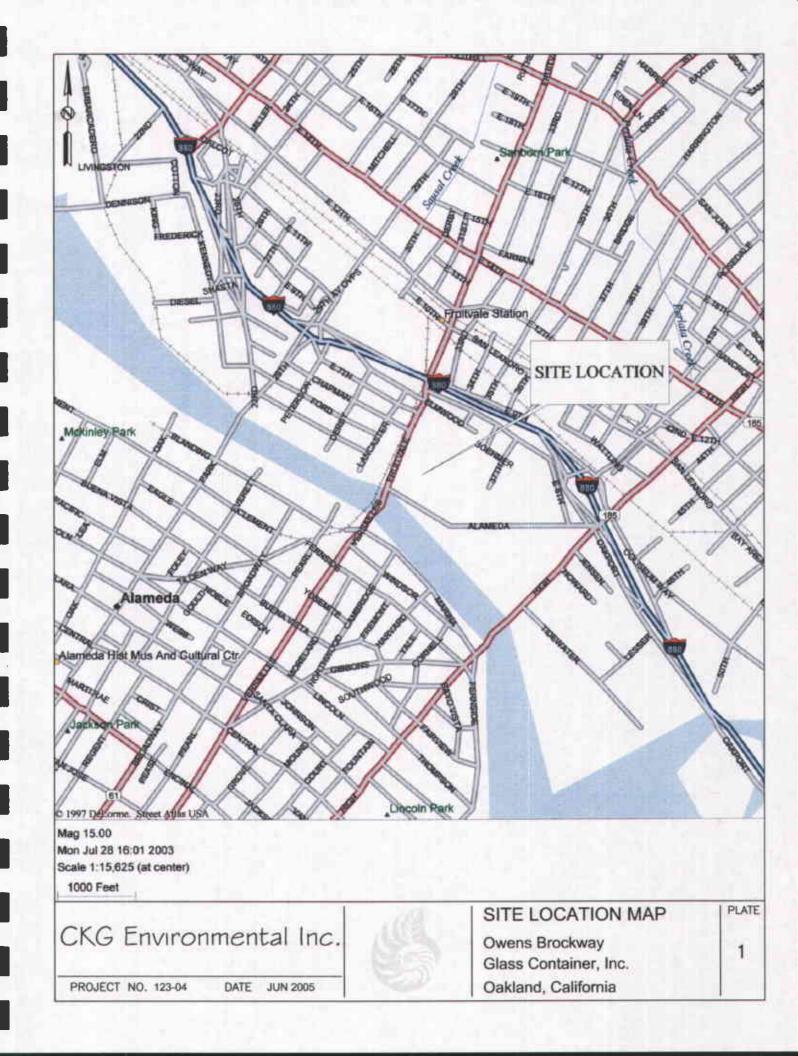
B - Benzene in ug/l

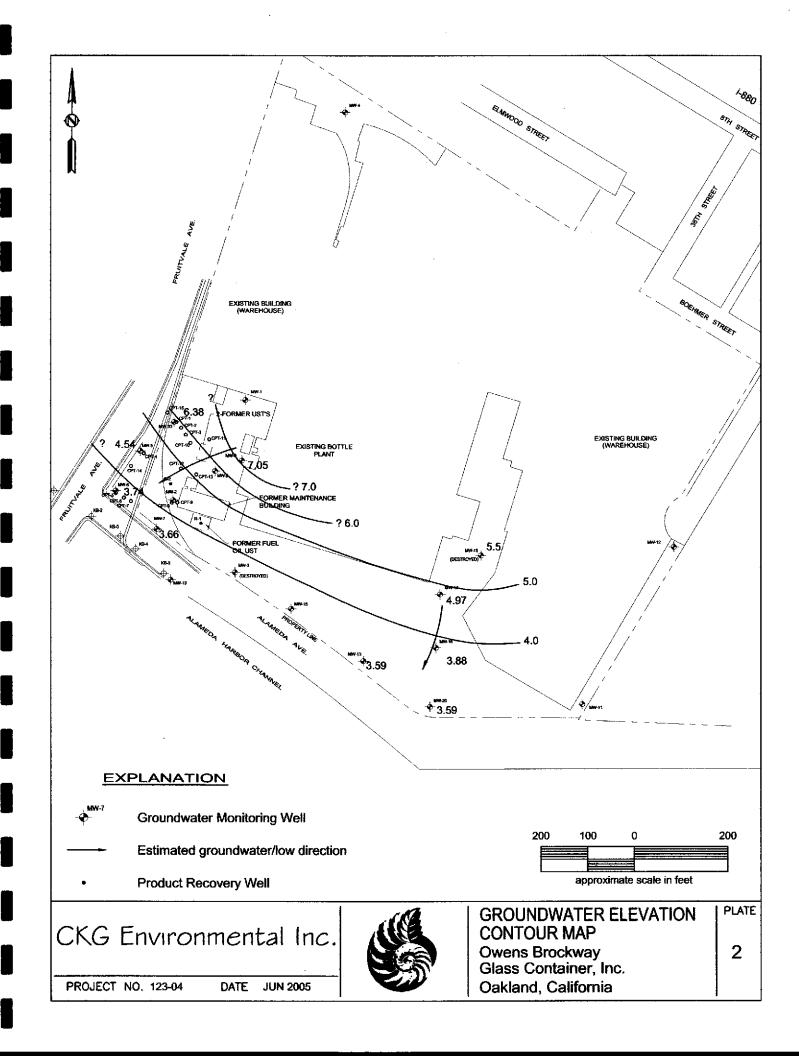
X - Xylenes in ug/l

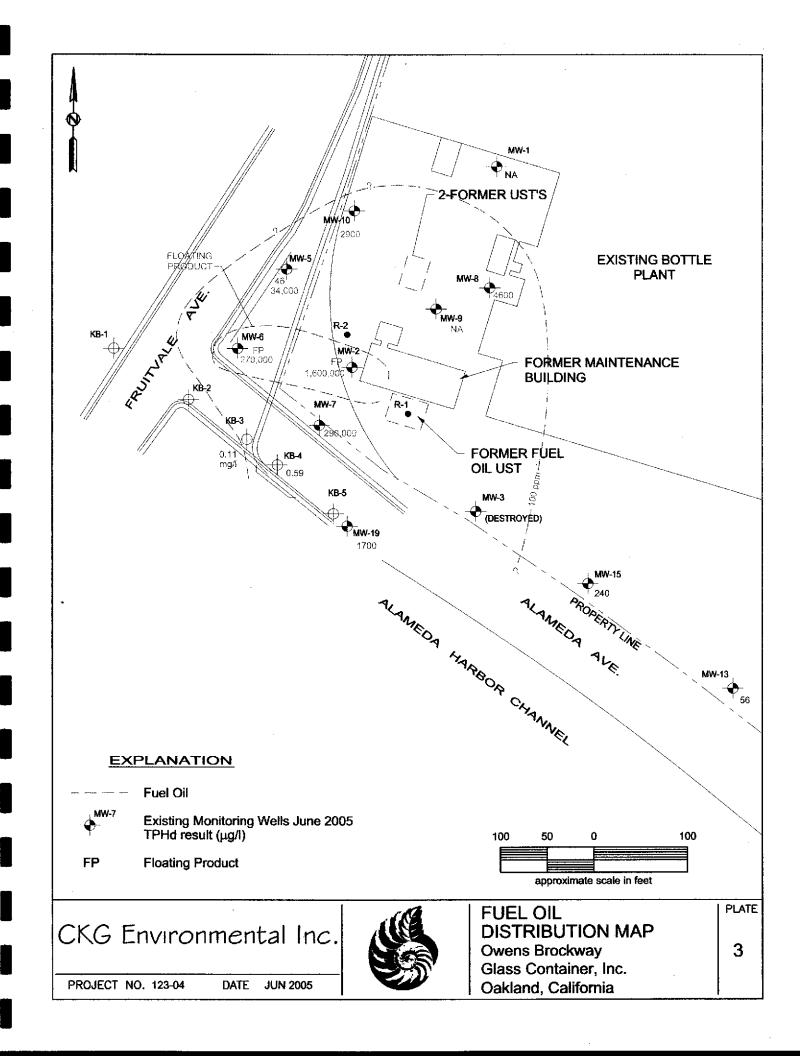
TPH-d - Total Petroleum Hydrocarbons as Diesel in ug/l

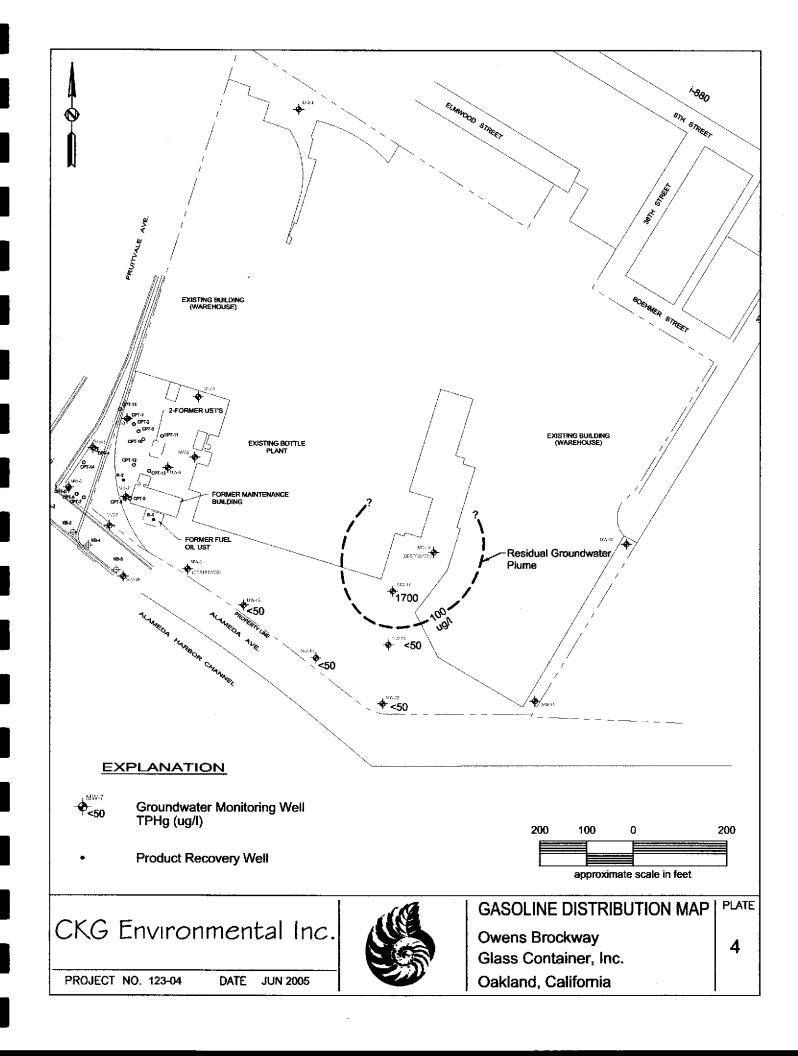
T - Toluene in ug/l

E - Thylbenzene in ug/l


TOG - Total Oil and Grease in ug/l


BDL - Below detection limit


NA - Not analyzed


(a) - Quantified as diesel but chromatogran NA - Not analyzed

(b) - Quantified as gasoline but chromatogram did not match gasoline pattern

WELLHEAD INSPECTION CHECKLIST

Page _ / of _ |

ob Number <u>a</u>	50630 - DU	<i> - </i>	 	Tec		Dw		. , , , , , , , , , , , , , , , , , , ,
Well ID	Well Inspected - No Corrective Action Required	Waler Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain helow)	Well Not inspected (explain below)
MW-1								*
MW-2		man mud		·			X	
mw-5					····			
mw-6		ļ						
Mw.7		ļ					X	
mw-8		X					X	
MW-10		X					x	
mw-13							×	
mw-15		X					X	
MEV-16							x	
MW17							x	
MW-19								
MW-20		***************************************						

····								
NOTES:	w-17 - No 1 gravel	il Apro	broken	up. P	16 E.	m. Una	bly to se	1 people
	id broken							, , , , , , , , , , , , , , , , , , ,
Av-15 - cap	broken	MW-1	- Buriel	under	alass oi	,	U DISK-MA.	b
MW-7 - 10	lid m	W-8 no	12.0	ae boo	ke.	· · · · · · · · · · · · · · · · · · ·		*

WELL GAUGING DATA

Project	# 050	1630-PW-1	Date	6-30-05	Client	CRG	
Site	3600	Alameda	Ave	Oak land			

	Well		Dark	Thickness	Volume of				<u> </u>
	Size	Sheen /	Depth to Immiscible	of Immiscible	Immiscibles Removed	Depth to water	Depth to well	Survey	
Well ID	(in.)	Odor	Liquid (ft.)		(ml)	(ft.)	bottom (ft.)	or (OC)	
MW-1	2	Buries	under	large a	lass pile				
MW-2	2	gheen No	OH deter	ted w/1	ass pile	12.73	2680		
MW-5	2				+	11-65	22.65.		
mw-6	2	Sheen No 91	OH Leteur	al w/II	7	13.74	25.85		
ww-7	2				*		22.10	÷	
MW-8	2					9.52	18.18	•	
MW-10	2					9.58	19.60	·	
MW-13	2					10.41	20.33		
mw .15	2					11.28	29.00		
mw-16	. 2				*	7.98	20.35		
MW-17	2					9.20	15.90		
MW-19	7					11.68	25.08	The state of the s	
mw-20	2		_			9.15	21.85	V	
			* 120	pull soe	ks from	well to	garge.		
									\ <u>-</u>

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

N. ELL MONITORING DATA SHEET

Project #:	Client: Ck 6								
Sampler:				Date: 6					
Well I.D.:	new-1				Well Diameter: 2 3 4 6 8				
Total Well); • `		Depth to	Water	(DTW):		\	
Depth to Fr	ee Product	•		Thicknes	s of Fr	ee Produc	t (feet)):	
Referenced	to:	Ø	Orade	D.O. Met	ter (if r	eq'd):	Y	SI HAC	CH
DTW with	80% Rech	arge [(H	leight of Wate	r Column x	(0.20)	+ DTW]:			
Purge Method:	Bailer Disposable Be Positive Alr I Electric Subn	Displaceme		Waterra Peristaltic action Pump	:ll Diameter		Other:		Bailer Port
1 Case Volume	Gals.) X Speci	3 fied Volum	= Calculated V	Gals. /olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² • 0	.163
Time	Temp (°F or °C)	pН	Cond. (mS or µS)	Turbid (NTU	· ·	Gals. Rem	oved	Observat	ions
	We	ll bu	wied under	Large	-14	55 fil.	c. Ne	- samples	
 									
						·			
					•				
Did well de	water?	Yes	No \	Gallons a	actually	evacuate	ed:	1	
Sampling I	Date: 6-3	30-05	Sampling Tin	ne:		Depth to	Water:		
Sample I.D	.: mu-	1		Laborato	ry:	Kiff Cals	Science	XOther Met	Cambe 11
Analyzed f	or: APH	BTEX	MTBE TPH-D	Oxygenate	es (5)	Other:			
EB I.D. (if	applicable):(@ Time	\ Duplicate	e I.D. (if applica	ble):		
Analyzed f	or: TPH-G	BEX	MTBE TPH-D	Oxygenate	es (5)	Other:		/	
D.O. (if red	ı'd): P	re-purge:		mg/L	Po	ost-purge			nig/[
O.R.P. (if r	eq'd): P	re-purge:		ηV	Po	ost-purge:			\ _{mV}

W. LL MONITORING DATA SHEET

Project #: 0506 50 - 0W - 1	***************************************	Client: Ck 6					
Sampler: Dw	ŀ	Date: 6-30-05					
Well I.D.: nw -2	1	Well Diameter: 2 3 4 6 8					
Total Well Depth (TD): 26.80		Depth to Water (DTW): 12.23					
Depth to Free Product:		Thickness of Free Product (feet):					
Referenced to:	· · · · · · · · · · · · · · · · · · ·	D.O. Meter (if		YSI HACH			
DTW with 80% Recharge [(He	ight of Water	Column x 0.20)	+ DTW]:				
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible	•	Waterra Peristaltic ion Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
2.3 (Gals.) X 3 Case Volume Specified Volumes	= 6.9 Calculated Vol	Gals. unie	r Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	Nameter Multiplier 0.65 1.47 radius ² * 0.163			
Temp Time Or °C) pH	Cond. (mS or AS)	Turbidity (NTUs)	Gals. Removed	Observations			
1440 Heavy sheen, R							
16.00			4.6				
1948 parameters to	nem. Black	<u> </u>	6.9				
				,			
Did well dewater? Yes	 6)	Gallons actuall	v evacuated:	6.9			
Sampling Date: 6-30-05 S		· · · · · · · · · · · · · · · · · · ·	Depth to Wate				
Sample I.D.:		Laboratory:		Xother McCanbell			
		Oxygenates (5)	Other:	7 10 10 10			
EB I.D. (if applicable):	@ Time	Duplicate I.D.		V 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 			
1.0		Oxygenates (5)	Other:				
D.O. (if req'd): Pre-purge:		^{mg} /∟ P	ost-purge:	^{mg} / _L			
O.R.P. (if req'd): Pre-purge:		mV P	ost-purge:	mV			

W.LL MONITORING DATA SHEEF

Project #: 0506 30 - 0W - 1	Client: Ck 6						
	Date: 6-30-05						
	Well Diameter: 2 3 4 6 8						
Total Well Depth (TD): 23.65	Depth to Water (DTW): /1.65						
Depth to Free Product:	Thickness of Free Product (feet):						
Referenced to: Grade 1	O.O. Meter (if req'd):	SI HACH					
DTW with 80% Recharge [(Height of Water (Column x 0.20) + DTW]:						
	Waterra Sampling Method: eristaltic on Pump Other: Well Diameter Multiplier Well Diam 1" 0.04 4"	Bailer Disposable Bailer Extraction Port Dedicated Tubing Octor Multiplier 0.65					
1.8 (Gals.) X 3 = 5.4 Calculated Volumes Calculated Volumes	Gals. 2" 0.16 6"	1,47 radius ² * 0,163					
Temp Cond. Time (For °C) pH (mS or AS) 1130 Heavy sheen, Bailer Coate 1134 No parameters taken, Blot		Observations					
1137 Product at top of each be	iler S.4						
Did wall downton?							
		. 4					
Sampling Date: 6-30-45 Sampling Time	: 1142 Depth to Water:						
Sample I.D.: mw-5	Laboratory: Kiff CalScience	Kother McCanbe !!					
Analyzed for: PH-2 STEX TBE TPH-D	Oxygenates (5) Other:						
EB I.D. (if applicable):	Duplicate I.D. (if applicable):						
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:						
D.O. (if req'd): Pre-purge:	mg/L Post-purge:	mg/L					
O.R.P. (if req'd): Pre-purge:	mV Post-purge:	mV					

W.LL MONITORING DATA SHELL

Project #:		Client: Ck 6									
اما	DW .				Date:	6-30	- as				
Well I.D.:	mw-6				Well D	iameter	:(2)	3 4	6 8		
Total Well): 25.9	35		Depth	to Wate	r (DTV	V): /3.7	7 Y		
Depth to Fr	ee Product	:			Thickn	ess of F	ree Pro	oduct (fee			
Referenced	to:	Ø	Grade		D.O. Meter (if req'd): YSI HACH						
DTW with	80% Recha	arge [(H	eight of W	/ater	Colum	x 0.20) + DT	'W]:	•		
	Bailer ∠Disposable Ba Positive Air I Electric Subm	Displacement Displacement Displacement	nt Othe		Waterra Peristaltic tion Pump	Well Diamete		Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing iameter Multiplier 0.65		
1 Case Volume	Gałs.) X Speci	3 fied Volum	= <u>5</u> les Calcule	*****	_Gals.	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163		
Time 1059	Bailer	ended	Cond. (mS or per due to the product on to	B) to Just,	oreduct Thin la			Removed 2 4	Observations		
1106		/ r -						6			
Did well de	water?	Yes	<u>M</u>				ly evac	cuated: 6			
Sampling D	Date: 6-3	30-15	Sampling	Tim	e: ///	-	Deptl	n to Water	r:		
Sample I.D	: mw-	6			Labora	itory:	Kiff	CalScience	Xother McCambe		
Analyzed for	or: APH-A	BTEX	MIBE TP	H-I)	Oxygen	ates (5)	Other:				
EB I.D. (if	applicable)):	@ Time		Duplic	ate I.D.	(if app	olicable):			
Analyzed for	or: TPH-G	BTEX	мтве тр	H-D	Oxygen	ates (5)	Other:				
D.O. (if rec	l'd): P	re-purge:			mg/L		Post-pui	rge:	mg/		
O.R.P. (if r	eq'd): P	re-purge:			mV]	Post-pui	rge:	m\		

W.LL MONITORING DATA SHEET

Project #:	0506 30-	OW-1		Client: Ck 6-					
ا ما	DW .			Date:					
Well I.D.:	nw-7					<u> </u>	6	8	:
Total Well): 22.	10	Depth t	o Water	r (DTW): /	2.45		
Depth to Fr		-		Thickness of Free Product (feet):					
Referenced		Ø	Grade	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Recha	arge [(H	leight of Water	Column	x 0.20)) + DTW]:			
	Disposable Bar Positive Air E Electric Subm	Displacement Displacement Displacement	ont Extrac Other	_ Gals.	Well Diamete I" 2" 3"	0.04 4' 0.16 6'	Iner:	Disposal Extract Dedicate Multip 0.65 1.47	ailer ble Bailer tion Port ed Tubing blier 3 * 0.163
Time	Temp	pН	Cond. (mS or (15)	j	oidity 'Us)	Gals. Remove	ed	Obser	vations
1035	70.4	7.1	1072	7/	000	1.5	sh	, ICCh	gray
1038	68.6	7.1	1137	> > /6	00	7.0		<u>u</u>	<u> </u>
1040	67.9	7.1	1161	>10	00	4.5	-		<u> </u>
					· · ·				<u> </u>
Did well de	ewater?	Yes	[ND	Gallons	s actuall	ly evacuated:	45		
Sampling I	Date: 6-3	6-05	Sampling Time			Depth to Wa			····
Sample I.D	: mw-			Labora		Kiff CalScie	nce Ko	ther_	McCambe 11
Analyzed f	or: PH-3	BTEX	THE TPH-D	Oxygena	ites (5)	Other:			
EB I.D. (if	applicable)):	@ Tiqse	Duplica	ate I.D.	(if applicable	·):		
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:	-		
D.O. (if red	q'd): Pi	re-purge:		mg/L	· F	Post-purge:			mg/L
O.R.P. (if r	eq'd): Pi	re-purge:		mV	F	Post-purge:			mV

WELL MONITORING DATA SHEET

									
Project #:	0506 30-	ew-1		Client: Ck 6					
Sampler:				Date: 6-30-a5					
Well I.D.:	ne - 8			Well Diameter: 2 3 4 6 8					
Total Well	Depth (TD): 18.18		Depth to	Water	(DTW): 9	1.52		
Depth to F	ree Product				-	ree Product			
Referenced	l to:	Ø	Grade	D.O. Me	eter (if	req'd):		YSI HACH	
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]:			
/	Bailer ØDisposable Bardoni Positive Air I Electric Subm)isplacemer	nt Extrac Other	Waterra Peristaltic stion Pump	(oll Diamete		thod: Other: Well Di	Bailer Disposable Bailer Extraction Port Dedicated Tubing ameter Multiplier 0.65	
1 Case Volume	(Gals.) X	3 fied Volum	$= \frac{4.7}{\text{Calculated Vo}}$	Gals.	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163	
Time 1412	Temp (or °C)	рН 7.3	Cond (mS or (μS)	Turbi (NTI	Us)	Gals. Remo	oved	Observations	
1416	66.0	7.3	3392	>10	00	2.8		<u>ч</u>	
1420	L5,1	7.3	3400	>/00	0	4.2		~ .	
Did well d	ewater?	Yes	ND	Gallons	actuall	y evacuated	d: 4	4.2	
Sampling	Date: 6-3		Sampling Tim	· · · · · · · · · · · · · · · · · · ·		Depth to V			
).: mw-			Laborate				Xother McCanbe	
Analyzed	for: PH-2	BTEX	MTBE TPH-D	Oxygenat	tes (5)	Other:			
EB I.D. (if	applicable):	@ Time	Duplica	te I.D.	(if applicab	ole):		
Analyzed	for: трн-G	BTEX	мтве трн-о	Oxygenat	tes (5)	Other:			
D.O. (if re	q'd): P	re-purge:		mg/L	P	ost-purge:		mg/	
O.R.P. (if	req'd): P	re-purge:		mV	P	ost-purge:	~ ~	m\	

ν, LLL MONITORING DATA SHEE Γ

Project #:	0506 30	·04-1		Client: Ck 6						
Sampler:				Date: 6-30-05						
Well I.D.:	mw - 10)		Well Diameter: (2) 3 4 6 8						
	Depth (TD		0	Depth t	Depth to Water (DTW): 9.58					
Depth to F	ree Product	•		Thickness of Free Product (feet):						
Reference	d to:	Ø	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	eight of Water	Column	x 0.20) + DTW]:				
,	Coals.) X	Displaceme:	Other	_ Gals.	<u>Well Diamete</u> 1** 2** 3**	0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing er: ell Diameter Multiplier 0.65			
Time	Temp Por °C)	pH 7.3	Cond. (mS or (uS))	Turb (NT	Us)	Gals. Remove				
1208	67.0	72	1364	>/00	• <i>D</i>	3.2	gray u			
1310	66.9	7.7	1377	>/00		4.8	N			
					·					
Did well d	lewater?	Yes (NO)	Gallons	actual	ly evacuated:	48			
Sampling	Date: 6-3	10-05	Sampling Tim	ie: 131	5	Depth to Wa	iter:			
Sample I.I	D.: MW-	18		Laborat	tory:	Kiff CalScie	nce XOther McCanbell			
Analyzed	for: (PH-2)	BTEX	MIBE TPH-D	Oxygena	ites (5)	Other:				
EB I.D. (it	f applicable)):	@ Time	Duplica	ite I.D.	(if applicable):			
Analyzed	for: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other;				
D.O. (if re	q'd): P	re-purge:		mg/L	I	Post-purge:	mg/L			
O.R.P. (if	req'd): P	re-purge:		mV	I	Post-purge:	mV			

WALL MONITORING DATA SHEET

Project #:	0506 50-	·0W-1		Client: Ck 6-						
ia .	DW	•		Date:						
Weil I.D.:	mw - 13	3		Well Di			6 8			
Total Well			33	Depth to Water (DTW): /0.4/						
Depth to Fr					Thickness of Free Product (feet):					
Referenced	to:	Ø	Grade	D.O. Me			YSI **HACH *			
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20)) + DTW]:				
	Bailer Disposable Ba Positive Air D Electric Subm	Displacemen nersible	nt Extrac Other	Waterra Peristaltic stion Pump	<u>Vell Diamete</u> 1"	Sampling Metho Other Multiplier We 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing			
l Case Volume	Gals.) X	3 fied Volume	= <mark>4.8</mark> Calculated Vo	Gals.	2" 3"	0.16 6° 0.37 Out	1.47			
Time 1326 1323 1325	Temp (*) or °C) 61. 3 69. 2 68. 5	pH 7.6 7.7 7.8	Cond. (mS or AS) 860 889 892	Turbi (NT)	Us) 000	Gals. Remove 1.6 3.2 4.8	d Observations Brown 4			
Did well de			N)			ly evacuated:	4.8			
Sampling D)ate: 6-3	10-05	Sampling Time	e: 1330	l	Depth to Wa	ter:			
Sample I.D	: mw -	13	M	Laborat	ory:	Kiff CalScier	ce Xother <u>McCambe</u> 11			
Analyzed f	or: PHD	BTEX	TBE TPH-D	Oxygena	tes (5)	Other:				
EB I.D. (if	applicable)):	@ Time	Duplica	te I.D.	(if applicable)):			
Analyzed for	or: трн-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:				
D.O. (if rec	l'd): Pr	re-purge:		^{mg} /L	P	ost-purge:	mg/L			
O.R.P. (if r	eq'd): Pı	re-purge:		mV	P	ost-purge:	mV			

		T										
Project #:	0506 50-	-0W-1		Client:	Ck	6-						
Sampler:				į	6-30							
Well I.D.:	mw-15					:(2) 3	4	6 8				
Total Well			0	Depth to Water (DTW): //. >\$								
Depth to Fr			· · · · · · · · · · · · · · · · · · ·	Thickness of Free Product (feet):								
Referenced	to:	Ø	Grade	D.O. Meter (if req'd): YSI HACH								
DTW with	80% Rech	arge [(He	eight of Water	Colum	ı x 0.20) + DTW]	:					
,	Bailer Disposable B Positive Air I Electric Subn	Displacement Presible	Other_	Waterra Peristaltic ction Pump	Well Diamet	Sampling	Other;	Bailer Disposable Bailer Extraction Port Dedicated Tubing ismeter Multiplier 0.65				
1 Case Volume	Gals.) X Speci	3 fied Volume	= 8.4 Calculated Vo	_ Gals.	2* 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163				
Time	Temp (% or °C) 69.9	рН 7. 6	Cond. (mS or uS) /86 3	1	oidity l'Us)	Gals, Rer	noved	Observations Brown				
1345	69.8	7.5	1874	>10	0 6	5.6		ų				
1350	69.3	7.5	1801	710	00	8.4		A				
Did well de	ewater?	Yes (R)	Gallon	s actual	ly evacuat	ted: &	. <i>y</i>				
Sampling D	Date: 6-3	0-45	Sampling Tim	e: / 75	5	Depth to	Water					
Sample I.D	.: mw-	15		Labora	tory:	Kiff Cal	Science	Xother McCanbe 11				
Analyzed for	or: APH-2	BTEX	ATBE TPH-D	Oxygen	ates (5)	Other:						
EB I.D. (if	applicable)):	@ Tique	Duplic	ate I.D.	(if applica	able):					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:						
D.O. (if req	l'd): Pi	re-purge:		^{tog} /L	F	ost-purge:		mg/L				
O.R.P. (if r	eq'd): Pı	re-purge:		mV	F	ost-purge:		mV				

·····													
Project #:	0506 30	-0W-1		Client: Ck 6									
Sampler:				1		o- a5	·/ • ····						
Well I.D.:	mw - 16	7		Well Diameter: 2 3 4 6 8									
Total Well	Depth (TD): 20.3	5	Depth to Water (DTW): 7.98									
Depth to F	ree Product			Thickness of Free Product (feet):									
Reference	i to:	Ø	Grade			f req'd):		YSI HACH					
DTW with	80% Rech	arge [(H	eight of Water	Colum	x 0.20)) + DTW]:	;						
·	Disposable B Positive Air I Electric Subn (Gals.) X	Displacem er	Other	Waterra Peristaltic ction Pump Gals. Olume		Sampling N Her Multiplier 0.04 0.16 0.37	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing ismeter Multiplier 0.65 1.47 radius² * 0.163					
Time	Temp Or or °C)	рН 7.9	Cond. (mS or as)	(N'	bidity FUs)	Gals. Ren	ioved	Observations					
1232	70.0	7.8	778	710		Ч		Brown					
1>35	70.0	7.7	753	>10		6		4					
Did well d	ewater?	Yes (No	Callen		11							
· · · · · · · · · · · · · · · · · · ·						lly evacuate							
	Date: 6-3		Sampling Tim			Depth to							
).: nw-			Labora		Kiff Cal	Science	Kother McCanbe !!					
	for: PH-D		MTBE TPH-D	Oxygen		Other:							
····	applicable)		Time			(if applica	ble):						
Analyzed f			MTBE TPH-D	Oxygen	- ` ` 	Other:							
D.O. (if rea		re-purge:	***************************************	mg/L		Post-purge:		mg/1					
O.R.P. (if 1	req'd): Pi	re-purge:		mV		Post-purge:		mV					

Project #:	506 50-	OW-1		Client:	Cke	5-								
Sampler: 1				Date:										
Well I.D.:	mw - 17			Well Di			6 8 _							
Total Wëll I			0	Depth to Water (DTW): 9.20										
Depth to Fre	ee Product			Thickness of Free Product (feet):										
Referenced	to:	Ø	Grade	D.O. Meter (if req'd): YSI HACH										
DTW with 8	80% Recha	rge [(H	eight of Water	Column	x 0.20)	+ DTW]:		·						
_	Bailer Disposable Ba Positive Air E Electric Subm)isplacemei	nt Extrac Other		Well Dismete	Sampling Method Other	Disposa Extrac Dedicat	tion Port ed Tubing						
1 Case Volume		3 fied Volum	= 3.3 Calculated Vo	_ Gais.	2" 3"	9.04 4° 0.16 6° 0.37 Othe	0.65 1.47	s² + 0.163						
Time	Temp or °C)	рН	Con <u>d.</u> (mS or (IS))	Turb (NT	•	Gals, Removed	Obse	rvations						
1255	69.7	7.3	861	>/6	00	1.7	9144	/sheen						
1257	68,9	7.2	897	> 10	00	2.2	N.	9						
1300	68.8	7.2	902	7100) 0	3,3	ч	4						
				<u> </u>				4 (42-4 (114) <u>4, - 0 (4</u>						
Did well de	water?	Yes	ND .	Gallons	actuall	y evacuated:	3.3							
Sampling D	ate: 6-3	0-05	Sampling Tim	e: 130	5	Depth to Wat	er:	`						
Sample I.D.	· mw-	17		Labora	tory:	Kiff CalScience	ce Kother_	ne Cambe 11						
Analyzed fo			MTBE TPH-D	Oxygena	ites (5)	Other:								
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D.	(if applicable)	•							
Analyzed fo	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygena		Other:								
D.O. (if req	'd): P	re-purge:		^{mg} / _L	F	ost-purge:		nig/						
O.R.P. (if re	eq'd): P	re-purge:		mV	F	ost-purge:		🦥mV						

Project #:	0506 50-	0w-1		Client:	ck	6-						
Sampler:		-		Date:								
Well I.D.:	new - 19			Well Diameter: 2 3 4 6 8								
Total Well	Depth (TD): 25.0	8	Depth to Water (DTW): 11.68								
Depth to Fr	ee Product			Thickness of Free Product (feet):								
Referenced	to:	evo	Grade	D.O. M				YSI HACH				
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20)) + DTW]:						
Purge Method:	Bailer CDisposable Ba Positive Air E Electric Subm	Displacemen		Waterra Peristattic tion Pump	Well Diamete		Other; Well Di					
2.1 I Case Volume	Gals.) XSpeci	3 fied Volum	= 6.3 Calculated Vo	_ Gais.	2" 3"	0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163				
Time	Temp (F) or °C)	рН	Cond. (mS or (1S)	I	idity 'Us)	Gals, Remo	ved	Observations				
1005	48.7	1.3	727	4	39	2.1						
1008	67.6	7.2	750	3.	> 9	4.2						
1012	67.3	7.1	734	6	71	6.3						
					·.							
Did well de	water?	Yes	No	Gallons	actuall	y evacuated	d: 6	3				
Sampling I	Date: 6-3	10-05	Sampling Time	e: /6 /	7	Depth to V	Vater					
Sample I.D	mw	19		Labora		Kiff CalSo	ience	Xother MeCanbell				
Analyzed f	or: PH-2	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:						
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D.	(if applicab	le):					
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other:								
D.O. (if red	l'd): Pi	re-purge:		^{mg} /∟	P	Post-purge:		ⁿ vg/ _L				
O.R.P. (if r	eq'd): Pi	re-purge:		mV	F	Post-purge:		mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

				}								
Project #: 6	2506 30 -	OW-1	·	Client:	Ck	6-						
Sampler:				Date:	6-30	- a5						
Well I.D.:	mb - 21	>			iameter	_	4	6 8				
Total Well I			5	Depth t	o Wate	r (DTW):	9.15					
Depth to Fre	ee Product	:		Thickness of Free Product (feet):								
Referenced	to:	W	Grade	D.O. Meter (if req'd): YSI HACH								
DTW with 8	30% Recha	arge [(H	leight of Water	Column	x 0.20) + DTW]:						
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme			Well Diamete	Sampling M	Other;	Bailer Disposable Bailer Extraction Port Dedicated Tubing Multiplier				
	Gals,) X	3	_ =6	_Gals.	1" 2" 3"	0.04 0.16 0.37	4° 6" Other	0.65 1.47 radius ² * 0.163				
1 Case Volume	Specia	fied Volum	nes Calculated Vo	olume		U.3/	Quiei	radius + 0.103				
Time	Temp F or °C)	рН	Cond. (mS or (18))		oidity (Us)	Gals. Rem	oved	Observations				
0938	70.8	7.5	1000	41	8	2		Brown				
0942	69.6	7.5	1677	79	2	4		*				
0945	68.7	7.5	1027	>100	7 0	6						
				<u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······································				
Did well de	water?	Yes	Mo	Gallons	actuall	y evacuate	:d: 6	<i>1</i>				
Sampling D	ate: 6-3	io-a5	Sampling Time	e: <i>095</i> 5	•	Depth to	Wate	r:				
Sample I.D.	: mw-	20		Labora	tory:	Kiff Cals	cience	Kother McCambe 11				
Analyzed fo	ог: арн-д	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:						
EB I.D. (if a	pplicable)	1:	@ Time	Duplica	ate I.D.	(if applical	ble):					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	٠,	Other:						
D.O. (if req	d): Pr	e-purge:		ing/L	P	ost-purge:	-	mg/L				
O.R.P. (if re	:q'd): Pr	re-purge:		mV	P	ost-purge:		mV				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BLA	INF	SAN	JOSE, (CALIFO	DGERS A RNIA 951	12.110S	 	CC	<u> NDUK</u>	TANA	<u>Lysis</u>	TO DE	TECT	l =:	LAB	McCampbe	B	DHS#
TECH SEF	RVICES,	NG.	# <u>05</u> 0	FA PHON	X (408) 5 E (408) 5	73-7771 73-0555									ALL ANALYSES MUST ME BY CALIFORNIA DHS ANE EPA LIA OTHER	•	TIONS AND DE	TECTION LIMITS
CLIENT	CKGE	nvironn	' -			THE SE								İ	SPECIAL INSTRUCTIONS			
SITE	Owens	Brockw	ay Gla	ss Pla	mt	CONTAINERS	1							Į .	Torraine and Yamanda	OV.O.D.		
	3600 Alameda Avenue						1								Invoice and Report t			
	Oakland, CA						(8015)			'				Ě	808 Zinfindel Lane,		CA 94574	
	نندي أنجهيه والجيوس بنجاب	and spin and the second	MATRI	× cc	MIAINE	Posite	P	1 🗢			2		ا پر دو حو واليساغ	-5	Attn: Christina Ken	nedy	بالمعادي والمحمد ويويد مساورة	idaga wasaningana kaji waka
SAMPLE I.D.	DATE	****	S= SOIL W=H20		1	- COMP	TPH-	Motor	TPH-G	BTEX	EPA 82	MTBE	SQL	CONDU	Dissolved product in	samples Mi	N-2 and MW	\$
_		TIME			Her Ve	MS U		T .	1	m	国	Σ	F	8	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
<u>://W-2</u>	6-30	1953	W	5	MA	-	ᇫ	 	ᅩ	<u>X</u>		소						
14-5	· - -	1143-	 -	+-	╅╌╁		X	읁	X	X	-	X						
MU-7	-	1111	 	+	╂╼╂		X	K	X	A		X		• • • • • • • • • • • • • • • • • • • •				
	_	1425	 	╂╌╂╾	+ +	_	K	K	X	×		X						· · · · · · · · · · · · · · · · · · ·
mw-8		-	-	 	╀		X	X	X	X		시						
mW-/0	-	1715		-			×	×	之	X		X		<u>.</u>				
MU-13	-	1330		╂┼	┝╌╂		<u> </u>	٨	と	メ		시						
MW-15	+	1355				_	X	X	X	X		A		,				
MW-16	4	1210		4		/ 	×	×	X	X.								<u> </u>
MPLING MPLETED	DATE		SAMPLII PERFOR	NG		e W	<u>ヤ</u>	×	X	<u> </u>		<u>لا ا</u>			RESULTS NEEDED			
LEASED BY		1-			Lary	DATE			TIME			RECEIV	Æn a		NO LATER THAN	Per Client		·
LEASED BY	<u>C 54</u>	M				6-	એ	•	16	15					Barl Sounds C	سعداما	DATE 6/30/05	TIME 5 1645
LEASED BY		SW	TE C	15TOP1	av	DATE	105	1	TIME 19	07	7	1			April Somple C	2	~ - / / /	TIME 5 140
			•			DATE		1	TIME			RECEN	ED B	Y			JOATE	TIME
PPED VIA	· · · · · · · · · · · · · · · · · · ·		-			DATE	SEN	·	TIME :	BENT	7	COOLE	R#					· · · · · · · · · · · · · · · · · · ·

			10	680 RCK	SERS AVENL	JE,		CON	DUCT	ANAL	YSIS	TO DE	TECT		LAB	McCampbell		DHS#	
BLA TECH SER CHAIN OF CUS CLIENT SITE	(VICES, m	BTS # nvironm Brockw ameda	ental ay Glas Avenue	PHONE	NIA 95112-11 (498) 573-77 (498) 573-95	POSITE ALL CONTAINERS	- D (8615)	70	Mr C Strick 3		82.70			CONDUCTIVITY	ALL ANALYSES MUST ME BY CALIFORNIA DHS AND EPA LIA OTHER SPECIAL INSTRUCTIONS Invoice and Report to 808 Zinfindel Lane, Attn: Christina Ken	S MUST MEET SPECIFICATIONS AND DETECTION LINE DIS AND REGION REGION REGION REPORT TO CKG Environmental del Lane, St Helena, CA 94574			
44'00 F 1 D		T11.45	S= SOIL	TOTAL		¥CON	TPH	Motor	TPH-G	BTEX	EPA	MTBE	TDS	Š	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#	
AMPLE I.D.	DATE 6-3	///T	w	S	Her von 6	٥	×	X	×	×		K		_	ADSERFORMATION	OINIOO			
MW-19 - WM	6-30	•	W/	5	J.	一	×	1	x	ィ		人							
	. <i></i>																		
																	<u> </u>		
	-										<u> </u>								
			ļ			_	ļ,		<u> </u>		ļ								
				<u> </u>	<u> </u>	_				<u> </u>	<u> </u>	ļ	ļ				-		
·····			<u> </u>	<u> </u>		_	 			÷	┞	ļ		ļ.,		· • •			
			ļ ·	<u> </u>	ļ		 		<u> </u>	<u> </u>	 	<u> </u>		-			-		
AMPLING OMPLETED	DATE	TIME	SAMPL		PY 0	<u> </u>					<u></u>	<u>l</u>	<u> </u>	<u> </u>	RESULTS NEEDED NO LATER THAN	Per Client			
ELEASED BY	6.30.0 C. Wa					DAT	2/E 30-0		TIME	64	_ اے	REC		BY	<u> </u>		DATE OF SOLO	TIME 5 1645	
SLEANEU BY		SI	HILE	CUST	ODIAN	₽.	UN	95	14	07				<u> </u>		<u> </u>	1/1/0	5 140	
ELEASED BY						DAT	E		TIME			REC	EIVED	ÆY.			DATE	TIME /	
HIPPED VIA						DAT	E SE	VT	TIME	SENT		<u> </u>	LER#						

.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

CKG Environmental	Client Project ID: Owen Brockway Glass	Date Sampled: 06/30/05
808 Zinfandel Lane	Plant	Date Received: 07/01/05
St. Helena, CA 94574	Client Contact: Chris Kennedy	Date Reported: 07/12/05
St. Helena, OA 94574	Client P.O.:	Date Completed: 07/12/05

WorkOrder: 0507024

July 12, 2005

Dear Chris:

Enclosed are:

- 1). the results of 12 analyzed samples from your Owen Brockway Glass Plant project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

CKG Environmental	Client Project ID: Owen Brockway Glass	Date Sampled: 06/30/05				
808 Zinfandel Lane	Plant	Date Received: 07/01/05				
Ct U-laws CA 04574	Client Contact: Chris Kennedy	Date Reported: 07/12/05				
St. Helena, CA 94574	Client P.O.:	Date Completed: 07/15/05				

Work Order: 0507024

July 15, 2005

CASE NARRATIVE

RE: TPH(d,mo) results excluding sheen/product phase for MW-2, MW-5, MW-6, MW-7, MW-17

At the client's request, the sheen/product phase of the above mentioned samples was removed using a manual pipet prior to extraction. Complete removal of all sheen/product from the samples cannot be assumed.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

CKG Environmental	Client Project ID: Owen Brockway Glass	Date Sampled: 06/30/05
808 Zinfandel Lane	riant	Date Received: 07/01/05
St. Helena, CA 94574	Client Contact: Chris Kennedy	Date Extracted: 07/07/05-07/12/05
3. 110.0.1	Client P.O.:	Date Analyzed: 07/07/05-07/12/05

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Lab ID Client ID Matrix TPF V 001A MW-2 W 2900, 002A MW-5 W 100, 003A MW-6 W 300, 004A MW-7 W 3000 005A MW-8 W 1100, 006A MW-10 W 140, 007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g 011A MW-19 W 840,g 012A MW-20 W NI			/8015Cm	UIDIEA ANG	Work C	Order: 0	507024
002A MW-5 W 100, 003A MW-6 W 300, 004A MW-7 W 3000 005A MW-8 W 1100, 006A MW-10 W 140, 007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g 011A MW-19 W 840,g	(g) MTBE	Ī	Toluene	Ethylbenzene	Xylenes	DF	% SS
003A MW-6 W 300, 004A MW-7 W 3000 005A MW-8 W 1100, 006A MW-10 W 140 007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g	,m,h ND<10	T	ND<1.0	4.3	1.7	2	92
004A MW-7 W 3000 005A MW-8 W 1100 006A MW-10 W 140 007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g	g,h ND	T	ND	ND	ND	1	95
005A MW-8 W 1100, 006A MW-10 W 140 007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g	g,h ND	Ī	ND	ND	ND	1	94
006A MW-10 W 140 007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g	g,h ND	Ī	ND	3.1	ND	1	100
007A MW-13 W NI 008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g	g,m ND		ND	ND	3.6	ı	98
008A MW-15 W NI 009A MW-16 W NI 010A MW-17 W 1700,g	g ND		ND	ND	ND	1	96
009A MW-16 W NI 010A MW-17 W 1700,g 011A MW-19 W 840,g) ND	Ī	ND	ND	ND	1	103
010A MW-17 W 1700,g) ND		ND	ND	ND	1	102
011A MW-19 W 840,	ND ND		ND	ND	ND	1	103
	,m,h ND<10	Ī	2.4	ND	1.1	1	97
012A MW-20 W NI	,m ND	Ī	ND	1.5	4.5	1	98
	ND	F	ND	ND	ND	1	99
Reporting Limit for DF =1; W 50 ND means not detected at or above the reporting limit S NA			0.5 NA	0.5 NA	0.5 NA	1	μg/L mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coclutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~I vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

CKG Environmental	Client Project ID: Owen Brockway Glass	Date Sampled: 06/30/05
808 Zinfandel Lane	Plant	Date Received: 07/01/05
St. Helena, CA 94574	Client Contact: Chris Kennedy	Date Extracted: 07/12/05
St. Heigha, CA 74314	Client P.O.:	Date Analyzed: 07/13/05-07/14/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

xtraction method:	SW3510C		Analytical methods: SW8015C		Work Ord	ler: 050702
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0507024-001C	MW-2 (w/o sheen)	w	320,000,a,g,p	240,000	100	#
0507024-002C	MW-5 (w/o sheen)	w	28,000,b,g,p	27,000	20.	104
0507024-003C	MW-6 (w/o sheen)	w	21,000,b,g,p	18,000	10	103
0507024-004C	MW-7 (w/o sheen)	w	81,000,a,g,p	000,a,g,p 52,000		113
0507024-010C	MW-17 (w/o sheen)	w	36,000,a,g,p	18,000	10	98
						
						L
	· ,	-				
	1	ļ - ·	: 			; •
.		<u> </u>				
	: -	ļ				
	i : ·	<u> </u>				
	÷			· · · · · · · · · · · · · · · · · · ·		: !
	Limit for DF =1; not detected at or	w	50	250	μ	g/L
	not detected at or e reporting limit	S	NA	NA	mg	/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; t) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

CKG Environmental	Client Project ID: Owen Brockway Glass	Date Sampled: 06/30/05
808 Zinfandel Lane		Date Received: 07/01/05
St. Helena, CA 94574	Client Contact: Chris Kennedy	Date Extracted: 07/01/05
	Client P.O.:	Date Analyzed: 07/03/05-07/06/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW	/3510C		Analytical methods: SW8015C		Work Or	der: 0507024
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0507024-001B	MW-2	w	1,600,000,a,g,h	1,200,000	1000	#
0507024-002B	MW-5	w	34,000,b,g,h	26,000	20	104
0507024-003B	MW-6	w	270,000,b,g,h	200,000	200	86
0507024-004B	MW-7	w	290,000,a,g,h	150,000	001	110
0507024-005B	MW-8	w	4600,a,d,g	1400	1	103
0507024-006B	MW-10	w	2500,b,g	2300	1	101
0507024-007B	MW-13	w	56,b	ND	1	96
0507024-008B	MW-15	w	240,g,b	360	1	95
0507024-009B	MW-16	w	66,b	ND	1	98
0507024-010B	MW-17	w	1,600,000,a,g,h	650,000	1000	#
0507024-011B	MW-19	w	1700,d,b,g	350	ı	104
0507024-012B	MW-20	w	50,b	ND	1	99
D	i c pp 4					
Reporting Lin ND means not	nit for DF =1; detected at or	W	50	250	ду.	L
above the re	porting limit	S	NA	NA	mg/l	Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0507024

EPA Method: SW8021B/	8015Cm E	xtraction:	SW50308		Batchl	D: 16981		Spiked San	nple ID: 050	7020-013A
A coludo	Sample	Spiked	MS	MSD	MSD MS-MSD		LCSD	LCS-LCSD	Acceptance	: Criteria (%)
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	60	93	93.9	1.01	103	97.1	5.46	70 - 130	70 - 130
мтве	ND	10	96	88.4	8.30	96.1	98.5	2.47	70 - 130	70 - 130
Benzene	ND	10	93.8	89.6	4.59	95.1	99.9	4.96	70 - 130	70 - 130
Toluene	ND	10	95.8	91.5	4.58	88.5	93.2	5.25	70 - 130	70 - 130
Ethylbenzene	ND	10	95.6	92.4	3.37	97.2	99.9	2.77	70 - 130	70 - 130
Xylenes	ND	30	95.3	94.7	0.702	95.3	96.3	1.04	70 - 130	70 - 130
%SS:	112	10	102	99	3.20	97	100	2.24	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 16981 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0507024-001A	6/30/05 2:53 PM	7/09/05	7/09/05 7:16 AM	0507024-002A	6/30/05 11:42 AM	7/12/05	7/12/05 12:30 AM
0507024-003A	6/30/05 11:11 AM	7/12/05	7/12/05 1:36 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to righ matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0507024

EPA Method: SW8021B	/8015Cm E	xtraction:	SW5030B	030B BatchID: 16989				Spiked San	nple ID: 050	7026-006A
Analyte	Sample	Spiked	MS	MSD		LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)	
	μg/L		% Rec.	% Rec.		% Rec.	% RPD	MS / MSD	LCS/LCSD	
TPH(btex) [£]	ND	60	92.7	94.3	1.70	95.5	102	7.02	70 - 130	70 - 130
МТВЕ	ND	10	87.4	88.4	1.19	96.1	99	3.02	70 - 130	70 - 130
Benzene	ND	10	88.5	90.7	2.48	95.3	98	2.72	70 - 130	70 - 130
Toluene	ND	10	90.1	92.5	2.70	88.3	90.4	2.29	70 - 130	70 - 130
Ethylbenzene	ND	10	90.8	93.5	3.00	91.2	98.3	7.44	70 - 130	70 - 130
Xylenes	ND	30	90.7	95	4.67	92	96	4.26	70 - 130	70 - 130
%SS:	101	10	99	98	0.309	100	99	0.281	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 16989 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0507024-004A	6/30/05 10:45 AM	7/12/05	7/12/05 2:40 AM	0507024-005A	6/30/05 2:25 PM	7/12/05	7/12/05 4:51 AM	
0507024-006A	6/30/05 [2:15 PM	7/12/05	7/12/05 3:13 AM	1	6/30/05 1:30 PM	7/07/05	7/07/05 12:52 AM	
0507024-008A	6/30/05 1:55 PM	7/07/05	7/07/05 1:24 AM	0507024-009A	6/30/05 12:40 PM	7/07/05	7/07/05 1:57 AM	
0507024-010A	6/30/05 1:05 PM	7/12/05	7/12/05 4:18 AM	0507024-011A	6/30/05 10:17 AM	7/09/05		
0507024-012A	6/30/05 9:50 AM	7/07/05	7/07/05 3:03 AM		0,00,00 to.17 MM	1/03/03	7/09/05 11:42 AM	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0507024

EPA Method: SW8015C	E	xtraction:	SW35100	;	Batchl		Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	µg/L	% Rec. % Rec.		% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(d)	N/A	1000	N/A	N/A	N/A	108	108	0	N/A	70 - 130
%SS:	N/A	2500	N/A	N/A	N/A	84	84	0	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 16984 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0507024-001B	6/30/05 2:53 PM	7/01/05	7/06/05 6:15 PM	0507024-002B	6/30/05 11:42 AM	7/01/05	7/06/05 3:40 PM
0507024-003B	6/30/05 11:11 AM	7/01/05	7/06/05 6:15 PM	0507024-004B	6/30/05 10:45 AM	7/01/05	7/06/05 8:40 PM
0507024-005B	6/30/05 2:25 PM	7/01/05	7/05/05 11:01 PM	0507024-006B	6/30/05 12:15 PM	7/01/05	7/03/05 8:49 AM
0507024-007B	6/30/05 1:30 PM	7/01/05	7/05/05 9:50 PM	0507024-008B	6/30/05 1:55 PM	7/01/05	7/03/05 6:32 AM
0507024-009B	6/30/05 12:40 PM	7/01/05	7/03/05 8:49 AM	0507024-010B	6/30/05 1:05 PM	7/01/05	7/06/05 8:40 PM
0507024-011B	6/30/05 10:17 AM	7/01/05	7/06/05 1:38 AM	0507024-012B	6/30/05 9:50 AM	7/01/05	7/03/05 7:41 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample dituted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0507024

EPA Method: SW8015C		xtraction	SW35100	;	Batchi	D: 17090		Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	μg/L	μg/L	μg/L % Rec. % Rec. %		% RPD	% Rec.	% Rec.	% RPD MS/MSD LCS/LCS			
TPH(d)	N/A	1000	N/A	N/A	N/A	117	115	1.84	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	95	91	4.64	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 17090 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0507024-001C	6/30/05 2:53 PM	7/12/05	7/13/05 10:54 PM	0507024-002C	6/30/05 11:42 AM	7/12/05	7/13/05 3:51 PM
0507024-003C	6/30/05 11:11 AM	7/12/05	7/14/05 1:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0507024

EPA Method: SW8015C	E	xtraction:	SW35100	;	BatchID: 17094			Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	µg/L	μg/L % Rec.		% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	106	107	0.457	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	97	97	0	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 17094 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0507024-004C	6/30/05 10:45 AM	7/12/05	7/13/05 8:37 PM	0507024-010C	6/30/05 1:05 PM	7/12/05	7/13/05 6:20 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

RI All	SAN JOSE, CALIFORNIA 95112-1105														LAB	McCampbel				
TECH SERV				FAX	(408) 573-7	771						}	1/2		ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION BY CALIFORNIA DHS AND					
				-none	(408) 573-0		:						2		☐ EPA ☐ LIA	-	RWQCB REG	ION		
HAIN OF CUSTODY BTS # 050 650 - PW - 1						ပ္သ				 - -			Shee		OTHER					
CKG Environmental						i								SPECIAL INSTRUCTIONS	3					
ΓΕ	Owens	Brockwa	av Glas	s Plar	nt	CONTAINERS							(w/o		Invoice and Report	to : CKG En	vironmental			
Owens Brockway Glass Plant 3600 Alameda Avenue					1 -	6			-			mo.		808 Zinfindel Lane,						
						3015						4 n	Ě	Attn: Christina Ken	·	J2				
	o dindrid	, 0, (MATRIX	CON	TAINERS	- 180 180	D (G	Oil	7 h		8270		THAT	딩		-				
ŧ		1	S= SOIL W=H ₂ 0		ļ	COMPOSITE	TPH - D (8015)	Motor	TPH-G	BTEX	A 8	MTBE		CONDUCTIVITY	Dissolved product in	n samples MV I	N-2 and MW-	6		
MPLE I.D.	DATE	TIME	% ₹	TOTAL		= 0	TP	Mo	TP	BT	EPA	Σ		ဝ၁	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE		
nw-2+19	6-30	1453	W	5	No trade		上	ょ	፦	ኦ		\times	\boxtimes			•	,			
W-5 +2		1142			1		X	X	X	Х		X	X							
W-6+5		<u> (41)</u>					X	λ	χ	X		X	X					1		
W-7+2		1045					X	X	X	X		X	X	•	NCS16					
W-8 +15		1425					×	X	X	X		X			GOOD CONDITION HEAD SPACE ABSE	OT	PROPRIATE NIAINERS	•		
w-10+10		1215					×	χ.	X	X		X			DECHLORINATED		ESERVED IN LA	مسجستارات		
W-13+10		1330					>	Κ	と	入		X			PROGRAMMEN.		-			
W-15+7		1355					Х	አ	X	X		X		۲						
w-16+1		1240		Π,			X	X	X	X		X								
w-17+5	W	1395	(1)	W	V		x	x	X	大		X	X					···		
VIPLING	DATE	TIME	SAMPLI	NG	V 6		1/								RESULTS NEEDED					
EASED BY	6-50-05	1515	FERFOR	ZIMICO D	Y DAVE	DAT	k/te		TIME			RECE	IVĘD I	BY	NO LATER THAN	Per Client	DATE	TIME		
Tavid	a of	alt				6.	30 0		16	45		15.	the		March Samble	Ludodian		5 1045		
EASED BY		Cial	MAKE 1	-75	.4.7	DAT	5/05		TIME	775		RECE	IVED	BY	122	Z	DATE	TIME		
EASE BY			ME C	W CODI	141/	DAT	E//	اسر	TIME	407		RECE	IVED	BY	000	·····	DATE DATE	TIME		
		<u>~</u>	1			1	1/0	کو	3	40)) ×	24	رس	lil V		^	· · · · · · · · · · · · · · · · · · ·		
PPED VIA			`		>	DAT	SEN	T	TIME	SENT		COOL	ER#							

					ERS AVENU			CON	DUCT	ANAL	YSIS 1	O DE	rect		LAB McCampbell DHS#
SITE	CES, INC DDY CKG En	(A 95112-11(408) 573-77 408) 573-055	05 71									ALL ANALYSES MUST MEET SPECIFICATIONS AND DETECTION LIMITS SET BY CALIFORNIA DHS AND EPA			
	3600 Alameda Avenue						015							ИTY	808 Zinfindel Lane, St Helena, CA 94574 Attn: Christina Kennedy
SAMPLE L.D.	Dakland,	CA TIME	MATRIX N=H ² 0	CON	ITAINERS	C = COMPOSITE	TPH - D (8015)	Motor Oil	TPH-G	BTEX	EPA 8270	MTBE	TDS	CONDUCTIVITY	Dissolved product in samples MW-2 and MW- ADD'L INFORMATION STATUS CONDITION LAB SAMPLE #
1 nw-19 +2			w	5	HCL VOAS		x	X	×	۶		K			
@ MW-20+2			W	5	4		×	ኡ	x	X		大	<u> </u>		-
		<u></u>		<u> </u>		<u> </u>	<u> </u>						ļ		SCOT CONDITION APPROPRIATE
	<u>:</u>			ļ		_	ļ				<u> </u>		<u> </u>		READ SPACE ABSENT CONTAINERS DECHLORINATED IN LAB PRESERVED IN LAB
	<u>:</u>	,		 ·		-		<u> </u>	ļ		,			 	PRESERVATION ONG METALS OTHER
	•		, · ,	 		ļ···.		 	<u> </u>		<u> </u>	<u> </u>			
	,					\vdash	-		├		 	<u> </u>		_	
		. <u></u>		 	1.	\vdash	 			-	\vdash	\vdash			
			 	1		-			 		 			<u> </u>	
SAMPLING COMPLETED	DATE 6-30-0	TIME \$ 1515	SAMPL PERFO	I ING RMED B	Y Dave	W	a/t	er		<u> </u>	.]	<u> </u>		1	RESULTS NEEDED NO LATER THAN Per Client DATE TIME
RELEASED BY	C. She	_				DA1	30-0	5	TIME	64		REC			paged Sample Custodian 6/3905 1645
RELEASED BY			AMILE	C057	ODIAN	*	the	95	14	107				73	1/1/05 /907
RELEASED BY	//		2			DA:	TE //	1.	TIME	-cR		REC		/8Y \$√(.	lin Van 7/1/05 1740
SHIPPED VIA				\	J	DX	TE/SE	ΝŢ		SEN		coo	LER#		

CHAIN-OF-CUSTODY RECORD

Page 1 of

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0507024

ClientID: CKGS

EDF: NO

Report to:								Bill	to:							Reque	sted TAT	:	5 d	days
Chris Kenn	-	TEL:	(707) 967-802						Acco	unts Pa	yable	•								-
CKG Envir		FAX:	(707) 967-808							Enviror							_	_		
808 Zinfan		ProjectNo: Owen Brockway Glass Plant							808 Z	Zinfande	el Lan	e				Date.	Received	<i>i:</i> 0	7/01/2	:005
St. Helena,	, CA 94574	PO;						St. Helena, CA 94574								Date .	Printed:	0	7/12/2	:005
						1.1.1000 A			* ***	Reques	sted T	ests	(See le	gend	below)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	7	8	9	10	11	12	13	14	15
0507024-001	. MW-2	Water	6/30/05 2:53:00 PM	1 []	A	¦ В	Ţ		7		- '		- 1 -	40.000 C.C.						
0507024-001	MW-2 (w/o sheen)	Water	6/30/05 2:53:00 PM		<u> </u>	C				1	<u> </u>			:					-	
0507024-002	MW-5	Water	6/30/05 11:42:00		Α	В				i	:						!		-+	+
0507024-002	MW-5 (w/o sheen)	Water	6/30/05 11:42:00		· ,	C	<u> </u>		7		!	•	·	<u> </u>	** N. No. 1.1.		- 			
0507024-003	MW-6	Water	6/30/05 11:11:00		Α	В	!										:		:	
0507024-003	MW-6 (w/o sheen)	Water	6/30/05 11:11:00			C	l				_	·						†		
0507024-004	MW-7	Water	6/30/05 10:45:00		Α	В	4								araka arasa A				********	
0507024-004	MW-7 (w/o sheen)	Water	6/30/05 10:45:00			C	3]		1		:					1	
0507024-005	MW-8	Water	6/30/05 2:25:00 PM	i 🗍	Α	В								:	,			····	-	
0507024-006	MW-10	Water	6/30/05 12:15:00		Α	В			1					r ~-∗ :					W-4	
0507024-007	MW-13	Water	6/30/05 1:30:00 PM	i 🔲 .	Α	В								1				-	-	i
0507024-008	MW-15	Water	6/30/05 1:55:00 PM	i 🗇	Α	В						············				:	. 	:		
0507024-009	MW-16	Water	6/30/05 12:40:00		Α	В	f !			!	-			: · · · · · · · · · · · · · · · · · · ·					i	
0507024-010	MW-17	Water	6/30/05 1:05:00 PM		Α	В				İ					1				***************************************	
0507024-010	MW-17 (w/o sheen)	Water	6/30/05 1:05:00 PM			С			1											
Test Legend:																				
1 G-ME	BTEX_W	2 TP	H(DMO)_W		3 :				:	4						, 5				
6		7			8				·	9					-	10				
11		12	The second of the second secon		13				!	14					~	15				
															F	repare	d by: R	losa V	enegas	3

Comments:

001-004,010 added for TPHdmo w/o Sheen on 7/12/05 per C.K on 5d

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0507024

ClientID: CKGS

EDF: NO

Date Printed:

Report to:

Chris Kennedy CKG Environmental 808 Zinfandel Lane St. Helena, CA 94574 TEL: (707) 967-8022 FAX: (707) 967-8080

ProjectNo: Owen Brockway Glass Plant

PO:

Bill to: Accounts Payable

CKG Environmental 808 Zinfandel Lane

St. Helena, CA 94574

Requested TAT: 5 days

Date Received: 07/01/2005

07/12/2005

				Requested Tests (See legend below)													
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1.	2	3	4	5	6	7	8	9 10	11 '	12	13 14	4 15
0507024-011 0507024-012	MW-19 MW-20	Water Water	6/30/05 10:17:00 6/30/05 9:50:00 AM	и 🗀 🗀	A	B B	-1				<u> </u>			<u> </u>	:	Acoustic Control	

Test Legend:

	and the second	and the second of the second o	the state of the s	t the state of the		É .	
1 G-MBTEX W	9	TPH(DMO) W	3	4		D .	
I G-MDIEV M	; -	The second second second	The state of the s	processor and a second	and the second of the second of		
production of the company of the com		and the second s	D	0	1	10	
6	· 7		O to the second of the second	1. 	and the second of		And the second of the second o
The second secon	k	The second secon	Application of the state of the	1 2 2 1 1 th 1 th 1 th	a company of the second	46	
the second secon	40		13	14		าอ	
111	12	Arte en la la la la la la la la la la la la la	and the second of the second o	In			***

Prepared by: Rosa Venegas

Comments:

001-004,010 added for TPHdmo w/o Sheen on 7/12/05 per C.K on 5d

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.