2307 Pacific Ave., Alameda, CA 94501 Phone: 510-865-9503 Fax: 510-865-1889 E-mail: xtracil@prodigy.net

Xtra Oil Company

RECEIVED

1:36 pm, Feb 05, 2008

January 30, 2008

Alameda County Environmental Health

Mr. Steven Plunkett Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: GROUNDWATER MONITORING WELL INSTALLATION REPORT (MW5 THROUGH MW12) CERTIFICATION County Case # RO 285 Xtra Oil Company 3495 Castro Valley Bivd. Castro Valley, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

Groundwater Monitoring Well Installation Report (MW5 Through MW12) dated January 30, 2008 (document 0014.R68).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerety,

Xtra Oil Company

0014.L147

Retail Fueling/Convenience Stores

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

January 30, 2008 Report 0014.R68

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: GROUNDWATER MONITORING WELL INSTALLATION REPORT (MW5 THROUGH MW12) County Case # RO 285 Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the drilling and installation of eight offsite groundwater monitoring wells designated as MW5 through MW12. This work was performed in accordance with a February 6, 2007 letter request from the Alameda County Department of Environmental Health (ACDEH), P&D's Groundwater Monitoring Well Installation Work Plan (MW5 Through MW13) dated March 5, 2007 (document 0014.W10), a conditional approval of the work plan from the ACDEH dated April 4, 2007, and P&D's Groundwater Monitoring Well Installation Work Plan (MW5 Through MW12) dated May 3, 2007 (document 0014.W10A).

A Site Location Map (Figure 1) and Site Vicinity Map showing the monitoring well locations (Figure 2) are attached with this report. Please note that the Norbridge School shown on Figure 1 to the south of the subject site has been demolished and replaced with the Castro Valley BART station and associated parking lot.

All work will be performed under the direct supervision of an appropriately registered professional. This work plan is prepared in accordance with guidelines set forth in the document "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991 and California Code of Regulations Title 23 Sections 2720-2728.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November 1988. The fuel tanks were replaced during August 1992.

Three monitoring wells, designated MW1, MW2 and MW3, were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown on Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D). TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10, and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentration of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photoionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively.

A groundwater monitoring and sampling program was initiated at the site on February 20, 1990. Historic water level measurements and historic water quality data are summarized in the quarterly groundwater monitoring and sampling reports for the site.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed associated with the widening of Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4, at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site.

In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates methyl tertiary-butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), diisopropyl ether (DIPE), and tertiary-butyl alcohol (TBA), and lead scavengers ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site.

On May 31, 2005, P&D submitted an Interim Source Area Remediation Plan (ISARP) to the ACDEH proposing free product removal at the site (document 0014.W9). P&D proposed using existing extraction well EW1 in the existing UST pit to dewater the existing pit and the previous UST pit. Monitoring of existing wells MW1, MW3, and MW4 to evaluate the effectiveness of water table drawdown at the site for plume control and associated free product recovery was also proposed. In January 2007, P&D installed a groundwater extraction system consisting of a pump in well EW1, associated piping for discharge of water from the well, and a carbon filtration system. System operation began March 27, 2007.

In response to a February 6, 2007 letter request from the ACDEH, P&D submitted a Groundwater Monitoring Well Installation Work Plan (MW5 Through MW13) dated March 5, 2007 (document 0014.W10) to the ACDEH proposing the installation of nine offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW13. The ACDEH conditionally approved the work plan in an April 4, 2007 letter. In accordance with the ACDEH conditional approval, P&D subsequently submitted a Groundwater Monitoring Well Installation Work Plan Amendment (MW5 Through MW12) dated May 3, 2007 (document 0014.W10A) to the ACDEH proposing the installation of eight offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW12.

FIELD ACTIVITIES

Field activities consisted of drilling and installation of wells MW5 through MW12 on November 27, 28, and December 5, 2007, development of the wells on December 11 and 12, 2007, purging and sampling of the wells on December 13 and 14, 2007, temporarily removing the well plugs on December 14, 2007 and monitoring of the wells for depth to water on December 17, 2007, and surveying of the wells horizontally and vertically by a State-licensed contractor on January 7, 2008. Details of the field activities completed since submittal of the March 5, 2007 work plan are presented below.

Prior to performing field work, Alameda County Public Works Agency (ACPWA) permits W2007-1168 through W2007-1175 were obtained, notification was provided to the ACPWA and ACDEH of the scheduled drilling dates, the drilling locations were marked with white paint, Underground Safety Alert was notified for buried utility location, and a health and safety plan was prepared. P&D personnel oversaw the installation of monitoring wells MW5, MW7, MW10 and MW11 at the subject site on November 27, 2007, and monitoring wells MW6 and MW9 on November 28, 2007. However, because of buried underground utilities, it was necessary to obtain encroachment permits for monitoring wells MW8 and MW12, which were installed on December 5, 2007. Exploration Geoservices, Inc. of San Jose, California performed the well installation. The locations of the wells at the site are shown in Figure 2.

Page 3 of 11 **P&D ENVIRONMENTAL, INC.**

Mr. Steven Plunkett of the ACDEH was onsite to observe drilling procedures on November 27, 2007. Ms. Vicki Hamlin of the ACPWA was onsite to observe grouting procedures on November 27 and 28, 2007.

Monitoring Well Installation

The boreholes for monitoring wells MW5, MW9 and MW10 were drilled to a total depth of 22.0 feet below the ground surface; for monitoring wells MW8 and MW11 to a total depth of 15.0 feet below ground surface; for monitoring well MW12 to a total depth of 13.0 feet below ground surface; and for monitoring wells MW6 and MW7 to 11.0 feet below ground surface. Each borehole was drilled using a truck-mounted 8-inch outside diameter hollow stem auger drill rig. Soil samples were collected at five-foot intervals for lithologic logging purposes using a California-modified split-spoon sampler lined with brass tubes driven by a 140-pound hammer falling 30 inches. Blow counts were recorded every six inches. The soil in the brass tubes and the soil cuttings from drilling were classified lithologically in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. Copies of the boring logs are attached with this report.

The soil samples were evaluated with a photoionization detector (PID) quipped with a 10.6 eV bulb and calibrated with a 100 ppm isobutylene standard for boreholes MW6, MW8, MW9 and MW12. The PID was not operating properly during drilling of the other boreholes. In addition to organic vapor concentrations recorded with the PID, petroleum hydrocarbon odors were recorded for soil from all of the boreholes. No odors were detected in boreholes MW5 and MW10. Slight petroleum hydrocarbon odors were detected in borehole MW9 between the depths of 1.5 and 16.5 feet, with a maximum PID value of 5 ppm at a depth of 5.5 feet, and slight petroleum hydrocarbon odors were detected in borehole MW11 at a depth of 4.5 feet. Slight to moderate petroleum hydrocarbon odors were detected in borehole MW8 below a depth of 8.5 feet, with a maximum PID value of 123 ppm at a depth of 9.5 feet. Moderate to strong petroleum hydrocarbon odors were detected in boreholes MW6, MW7 and MW12, with a maximum PID value of 296 ppm at a depth of 9.5 feet in borehole MW6, and odors limited to the depths of 9 to 10 feet in borehole MW12 with a maximum PID value of 23 ppm at a depth of 9.5 feet.

Groundwater was not encountered while drilling in boreholes MW6, MW7 and MW11. Groundwater was encountered during drilling in boreholes MW5 and MW9 at a depth of 19 feet, in borehole MW10 at a depth of 18 feet, in borehole MW8 between the depths of 14 and 15 feet, and in borehole MW12 at a depth of 12.5 feet.

All of the wells were constructed using a 2-inch diameter Schedule 40 PVC pipe with 5.0 feet of 0.010-inch factory slotted pipe placed in the bottom of the borehole. A cap was placed on the bottom of each well. The annular space surrounding the PVC pipe was filled with #2/12 RMC Pacific Materials sack sand from the bottom of the borehole to a height of one foot above the top of the slotted interval. A one-foot thick layer of bentonite pellets was placed above the sand and hydrated. Neat cement grout was placed in the remaining annular space to approximately one foot below the ground surface. The top of each of the PVC well pipes was secured with a watertight locking plug and enclosed in a watertight traffic-rated well box which was secured in the borehole with concrete. Well construction specifications for wells MW5 through MW12 are provided in Table 1, and in the Well Construction Diagrams for each of the wells attached with this report.

Page 4 of 11 **P&D ENVIRONMENTAL, INC.**

Soil and water generated during drilling activities were stored in drums onsite, pending analysis and appropriate disposal.

Well Development

On December 11 and 12, 2007, wells MW5 through MW12 were developed by surging and overpumping. Prior to development, the monitoring wells were monitored for depth to water to the nearest 0.01 feet using an electric water level indicator. The measured depth to groundwater prior to development on December 11 and 12, 2007 in wells MW5, MW6, MW7, MW8, MW9, MW10, MW11, and MW12 was 5.98, 6.17, 5.98, 6.56, 11.21, 5.70, 11.94, and 7.67 feet, respectively. The depth to water measurements are summarized in Table 2.

During development of the wells, P&D personnel did not detect petroleum hydrocarbon odors or sheen on the water purged from the wells, with the exception of MW6 and MW8 which both had petroleum hydrocarbon odors and sheen. As a result of relatively low recharge rates for the wells, approximately 6 and 3 gallons of water were removed during development of wells MW7 and MW11, respectively. Water removed from the wells during development was stored in drums onsite, and subsequently discharged through the onsite groundwater treatment system to the sanitary sewer.

Well Monitoring and Sampling

On December 13, 2007 P&D personnel monitored wells MW5 through MW12. The wells were monitored for depth to water and the presence of free product or sheen. The depth to water was measured to the nearest 0.01 foot using an electric water level indicator and the presence of free product or sheen was evaluated using a transparent bailer. No free product or sheen was observed in any of the groundwater monitoring wells. The depth-to-water measurements are summarized in Table 2.

On December 13, 2007 P&D purged and sampled wells MW5 through MW10 and MW12. However, due to a slow recharge rate in well MW11, this well was purged on December 13, 2007 and sampled on December 14, 2007. Each well was purged of a minimum of three casing volumes of water, or until the wells had been purged dry. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. No sheen or petroleum hydrocarbon odor was detected on the purge water from any of the wells, except for wells MW6 and MW8 which had odors, but no sheen present. A faint odor was reported in purge water from well MW12, however it was not possible to determine if the odor was a petroleum hydrocarbon odor.

Once the field parameters were observed to stabilize during well purging and a minimum of three casing volumes had been purged, or the well had been purged dry, water samples were collected using a clean disposable bailer. No sheen or separate phase layers of petroleum hydrocarbons were observed on the groundwater samples from any of the wells. The water samples were transferred from the disposable bailer to 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present. The VOA vials and bottles were then transferred to a cooler with ice, pending transport to the laboratory.

Page 5 of 11 **P&D ENVIRONMENTAL, INC.**

Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

Based on the slow recharge rates in some of the wells and the positive air pressure encountered when some of the wells were opened for development and sampling, the expanding plugs were temporarily removed from all of the wells on December 14, 2007 to allow the water levels in the wells to equilibrate. All of the wells were monitored on December 17, 2007 and the plugs replaced in the wells. The depth-to-water measurements are summarized in Table 2.

Well Surveying

The elevations of the top of the PVC casing and the ground surface (pavement or sidewalk) for each monitoring well were surveyed by Kier & Wright, Inc, on January 7, 2008. In addition, the well locations were surveyed horizontally. The surveying was performed in accordance with Geotracker requirements. The top of casing elevations for each well are provided in Table 1. In addition, the elevations for the tops of previously existing wells at the subject site, and selected offsite features (building corners and curbs for site vicinity map accuracy verification) were surveyed horizontally. A copy of the survey information provided by the surveyor, including a table of survey elevations and a map of horizontally surveyed locations is attached with this report.

Soil and Water Disposal

One composite soil sample designated as COMP A was collected from the drummed soil for characterization for disposal purposes. Nine drums of soil generated during well drilling were removed from the site as non-hazardous waste on December 11, 2007 by Clearwater Environmental of Newark, California (Clearwater). Clearwater is a State-licensed hazardous waste transporter. The drums were transported to the Alviso Independent Oil facility in Alviso, California using non-hazardous waste manifest 4845. The Alviso Independent Oil facility is a State-licensed Transfer Storage and Disposal Facility for hazardous waste. A copy of the soil disposal manifest is attached with this report. Drummed water associated with drilling equipment decontamination, well development and well sampling was pumped into the onsite groundwater treatment system and discharged to the sanitary sewer.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Late Pleistocene Alluvium (Qpa), which is described as weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel.

The subsurface materials encountered in the boreholes consisted predominantly of silty clay, with lesser amounts of clayey silt encountered in boreholes MW5, MW6, MW10 and MW12. Coarse - grained materials consisting of silty or clayey sand were encountered in boreholes MW5, MW8 and MW12 in layers measuring approximately 1.5, 1.0 and 1.5 feet thick, respectively.

Groundwater was not encountered while drilling in boreholes MW6, MW7 and MW11. Groundwater was encountered during drilling in boreholes MW5 and MW9 at a depth of 19 feet, in borehole MW10 at a depth of 18 feet, in borehole MW8 between the depths of 14 and 15 feet, and in borehole MW12 at a depth of 12.5 feet.

Review of depth to water level measurements in Table 2 shows a substantial difference between well MW11 and all of the other wells, indicating that the water level in well MW11 still had not equilibrated after more than two days. Figure 3 shows groundwater surface contours based on December 17, 2007 well monitoring data, after the wells had been uncapped for at least two days for water level equilibration. Based on the slow recovery of water levels in well MW11, this well was not included in the interpretation of groundwater surface contours shown on Figure 3. Review of the contours shows that the groundwater flow direction in the vicinity of the subject site is southerly. Inflections in the contours in the vicinity of wells MW5, MW6 and MW7 suggest a southwesterly groundwater flow direction in the vicinity of these wells, which is consistent with the distribution of petroleum hydrocarbons historically encountered in groundwater grab samples in the vicinity of the site (see Figures 7, 8 and 9).

LABORATORY ANALYSIS

All of the soil and groundwater samples were analyzed at McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a state-accredited hazardous waste testing laboratory. The soil samples collected from the boreholes for the monitoring wells were analyzed for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO), Total Petroleum Hydrocarbons as Diesel (TPH-D), and Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 8015C; and for benzene, toluene, ethylbenzene, and xylenes (BTEX), fuel oxygenates including MTBE, and lead scavengers using EPA Method 8260B. The groundwater samples were analyzed for the same compounds with the exception of TPH-BO. The composite soil sample collected from the drummed borehole soil was also analyzed for the same compounds using the same methods in addition to CAM 17 metals using EPA Method 6020A. The borehole soil sample results are summarized in Table 3, and the groundwater sample results are not summarized in a table. Copies of all of the laboratory analytical reports and chain of custody documentation are attached with this report.

No fuel oxygenates or lead scavengers were detected in any of the soil samples. No petroleum hydrocarbons were detected in any of the soil samples collected from boreholes MW10 and MW11. Petroleum hydrocarbons were not detected in any of the soil samples from borehole MW12 with the exception of TPH-BO, TPH-D and TPH-G, all detected in the soil sample collected at a depth of 9.5 feet, and with none of the detected concentrations exceeding their respective Environmental Screening Level (ESL) values for residential land use. Similarly, petroleum hydrocarbons were not detected in any of the soil samples from borehole MW8 with the exception of TPH-BO, TPH-D, TPH-G, ethylbenzene and total xylenes, all detected in the soil sample collected at a depth of 9.5 feet, and with none of the detected concentrations exceeding their respective ESL values for residential land use except for TPH-G. Petroleum hydrocarbons were also detected at a depth of 4.5 feet in the soil sample from borehole MW7, with detected concentrations exceeding the respective ESL values for TPH-G, benzene and total xylenes.

Petroleum hydrocarbons were detected at depths of approximately 5 and 10 feet in boreholes MW5, MW6 and MW9. In borehole MW5, TPH-G, benzene, ethylbenzene and total xylene concentrations exceeded the respective ESL values at a depth of 5.0 feet and benzene and total xylenes exceeded their respective ESL values at a depth of 10.0 feet. In borehole MW6, the benzene concentration exceeded the respective ESL value at a depth of 4.5 feet, and TPH-D, TPH-G, toluene, ethylbenzene and total xylenes exceeded their respective ESL values at a depth of 9.5 feet. In borehole MW9, the benzene concentration exceeded the respective ESL values at a depth of 5.5 feet.

Review of the laboratory analytical reports shows that the laboratory identified the results reported as diesel for the MW5 boring at a depth of 5.0 feet, the MW6 boring at 9.5 feet, the MW7 boring at 4.5 feet, the MW8 boring at 9.5 feet, and the MW12 boring at 9.5 feet, as consisting of both diesel range and gasoline range compounds. The lab reports identified the results reported as diesel for the MW6 boring at 4.5 feet, and the MW9 boring at 5.5 and 10.0 feet, as containing significant gasoline range compounds. The laboratory also identified the results reported as gasoline for the MW6 boring at 9.5 feet, the MW7 boring at 4.5 feet, the MW7 boring at 4.5 feet, the MW7 boring at 4.5 feet, the MW8 boring at 9.5 feet, and the MW12 boring at 9.5 feet, as containing significant heavier gasoline range compounds (aged gasoline?), and having no recognizable pattern.

Review of Table 4 shows that MTBE was detected in all of the groundwater samples except for the samples collected from wells MW6 and MW9. The MTBE concentrations exceeded the ESL in wells MW7, MW8 MW11 and MW12. No other fuel oxygenates or lead scavengers were detected other than 14 ug/L TBA in the sample from well MW7. Review of the groundwater sample results shows that the highest concentrations of petroleum hydrocarbons occurred in the groundwater samples from wells MW6 and MW8. TPH-D and TPH-G concentrations in MW6 were 6,200 and 66,000 ug/L, respectively, and in MW8 they were 1,500 and 6,200, respectively. In addition, petroleum hydrocarbons were detected in MW5 groundwater (110 ug/L TPH-G, and TPH-D not detected), and in MW12 groundwater (200 ug/L TPH-D, and 320 ug/L TPH-G). Neither TPH-D or TPH-G were detected in the groundwater samples from MW7, MW9, MW10, or MW11. Benzene was detected in wells MW5, MW6, MW8 and MW9 at concentrations of 5.3, 7,900, 57 and 1.0 ug/L, respectively. All of the detected TPH-D, TPH-G and benzene concentrations equaled or exceeded their respective ESL values. In addition, toluene, ethylbenzene and total xylenes concentrations exceeded the ESL.

Review of the laboratory analytical reports shows that the laboratory identified the results reported as diesel for the MW6, MW8, and MW12 groundwater samples as containing significant gasoline-range compounds. The laboratory also identified the results reported as gasoline for the MW12 groundwater sample as having no recognizable pattern.

DISCUSSION AND RECOMMENDATIONS

Review of the survey information provided by Kier & Wright shows that the survey results correspond well with the base map used as a Site Vicinity Map during previous subsurface investigations and in the work plan for offsite well installation.

Review of the boring logs shows that the subsurface materials encountered in the boreholes consisted predominantly of silty clay, with lesser amounts of clayey silt encountered in boreholes MW5, MW6, MW10 and MW12. Coarse -grained materials consisting of silty or clayey sand were encountered in boreholes MW5, MW8 and MW12 in layers measuring approximately 1.5, 1.0 and 1.5 feet thick, respectively.

Review of the water levels in Table 2 and the groundwater surface elevations shown on Figure 3 shows that there is very slow recovery of water levels in well MW11, and that a static water level was not measured in well MW11. For this reason, well MW11 was not included in the interpretation of groundwater surface contours and the groundwater flow direction in the vicinity of the subject site. Review of the contours shows that the groundwater flow direction in the vicinity of the subject site is southerly. Inflections in the contours in the vicinity of wells MW5, MW6 and MW7 suggest a southwesterly groundwater flow direction in the vicinity of these wells, which is consistent with the distribution of petroleum hydrocarbons historically encountered in groundwater grab samples in the vicinity of the site (see Figures 7, 8 and 9).

TPH-D, TPH-G, and benzene groundwater sample results are shown on Figures 4, 5 and 6, respectively. Offsite wells MW5, MW6, MW7 and MW8 were installed with the objective of monitoring groundwater in impacted areas identified during previous subsurface investigations, and the remaining offsite wells were installed with the objective of monitoring plume perimeter conditions. Figures 7, 8, and 9 show historic investigation TPH-D, TPH-G, and benzene, respectively for groundwater sample results. These figures also show the groundwater sample results for the recently installed offsite groundwater monitoring wells. Review of Figures 4 through 9 shows that the groundwater sample results from the wells corresponds with the expected results from the perimeter wells MW9 through MW12 with the exception of TPH-G in well MW12. However, the results also show that the plume interior wells MW5 through MW8 do not correspond well with the anticipated results with the exception of TPH-G and benzene in well MW6 and TPH-D and TPH-G in well MW8.

The absence of a good correlation between plume interior well expected results and actual results indicates that the petroleum hydrocarbons in groundwater downgradient from the subject site are present in localized pathways that are not as extensive as shown by the contours on Figures 7, 8 and 9, and that some of the plume interior wells are not located in the localized pathways where the petroleum hydrocarbons are present. This interpretation is consistent with the predominantly silty clay materials encountered in the boreholes for the wells and historic soil borings and the small amount of coarse-grained materials encountered in the boreholes.

Based on the sample results, P&D recommends that the offsite groundwater monitoring wells be sampled at the same time as the onsite groundwater monitoring wells during the next quarterly monitoring and sampling event. In addition, P&D recommends that a feasibility test be performed to evaluate effective remedial technologies for reducing elevated petroleum hydrocarbon concentrations encountered at locations downgradient of the subject site.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

and H. King

Paul H. King Professional Geologist #5901 Expires: 12/31/09

Attachments: Table 1 – Well Construction Detail Summary

Table 2 – Well Monitoring Data

Table 3 – Summary of Soil Sample Laboratory Analytical Results

Table 4 - Summary of Groundwater Sample Laboratory Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Vicinity Map Showing Monitoring Well and Soil Boring Locations

Figure 3 – Site Vicinity Map Showing Groundwater Surface Contours

Figure 4 - Site Vicinity Map Showing TPH-D in Groundwater

Figure 5 - Site Vicinity Map Showing TPH-G in Groundwater

Figure 6 - Site Vicinity Map Showing Benzene in Groundwater

Figure 7 - Site Vicinity Map Showing TPH-D Isoconcentration Contours

Figure 8 - Site Vicinity Map Showing TPH-G Isoconcentration Contours

Figure 9 - Site Vicinity Map Showing Benzene Isoconcentration Contours Boring Logs

Well Construction Diagrams

Survey Report

Well Monitoring and Purging Data Sheets

Drum Disposal Manifest

Laboratory Analytical Reports and Chain of Custody Documentation

PHK/ sf 0014.R68

TABLES

Table 1.	Fable 1. Well Construction Detail Summary										
Proposed	Construction	Total Borehole Depth	Screen Length	Screen Interval Depth	Filter Pack Interval	Bentonite Seal Interval	Sanitary Seal Interval	Top of Casing Elevation	ACPWA Permit		
Well	Date	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	Number		
MW5	11/27/07	22.0	5.0	17 to 22	16 to 22	15 to 16	1 to 15	176.02	W2007-1171		
MW6	11/28/07	11.0	5.0	6 to 11	5 to 11	4 to 5	1 to 4	175.24	W2007-1172		
MW7	11/27/07	11.0	5.0	6 to 11	5 to 11	4 to 5	1 to 4	170.34	W2007-1173		
MW8	12/5/07	15.0	5.0	10 to 15	9 to 15	8 to 9	1 to 8	176.00	W2007-1174		
MW9	11/28/07	22.0	5.0	17 to 22	16 to 22	15 to 16	1 to 15	175.09	W2007-1175		
MW10	11/27/07	22.0	5.0	17 to 22	16 to 22	15 to 16	1 to 15	176.03	W2007-1168		
MW11	11/27/07	15.0	5.0	10 to 15	9 to 15	8 to 9	1 to 8	171.03	W2007-1169		
MW12	12/5/07	13.0	5.0	8 to 13	7 to 13	6 to 7	1 to 6	173.98	W2007-1170		
Abbreviations ACDWA – Alemade County Dublic Works Agency											

ACPWA = Alameda County Public Works Agency

0014.R68 Table 1

TABLE 2 GROUNDWATER LEVEL MONITORING DATA FOR WELLS MW5, MW6, MW7, MW8, MW9, MW10, MW11, and MW12

Well No.	Date Monitored	*Top of Casing	Depth to Water	Water Table	
		Elev. (ft.)	(ft.)	Elev. (ft.)	
MXV5	12/12/2007	176.02	5 09**	170.04	
IVI VV S	12/12/2007	170.02	5.98**	170.04	
	12/13/2007		5.85	170.19	
	12/17/2007		5.85	170.19	
MW6	12/11/2007	175.24	6.17**	169.07	
	12/13/2007		5.63	169.61	
	12/17/2007		5.69	169.55	
MW7	12/11/2007	170.34	5.98**	164.36	
	12/12/2007		5.49	164.85	
	12/13/2007		4.74	165.60	
	12/17/2007		3.68	166.66	
MW8	12/12/2007	176.00	6 56**	160 44	
IVI VV O	12/12/2007	170.00	6.52	109.44	
	12/13/2007		6.73	160.27	
	12/17/2007		0.75	109.27	
MW9	12/11/2007	175.09	11.21**	163.88	
	12/13/2007		6.31	168.78	
	12/17/2007		6.35	168.74	
MW10	12/12/2007	176.03	5.70**	170.33	
	12/13/2007		5.55	170.48	
	12/17/2007		5.77	170.26	
MW11	12/11/2007	171.03	11 94**	159.09	
101 00 111	12/12/2007	171.05	12.99	158.04	
	12/13/2007		12.55	158 31	
	12/17/2007		10.19	160.84	
	12, 17, 2007		10.17	100.01	
MW12	12/12/2007	173.98	7.67**	166.31	
	12/13/2007		7.66	166.32	
	12/17/2007		7.71	166.27	

Notes:

* = Surveyed by Kier & Wright, Inc. on January 7, 2008

** = Prior to well development.

Sample Date	Well and Sample Depth	ТРН-ВО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/27/07	MW5-5.0	59	55, b	<u>180</u>	ND<0.10	<u>1.9</u>	ND<0.10	<u>3.9</u>	<u>5.3</u>	ND<0.10, except TBA
	MW5-10.0	ND<5.0	ND<1.0	4.3	ND<.005	<u>0.25</u>	0.012	0.019	<u>5.3</u>	ND<1.0 ND<.005, except TBA ND<.05
	MW5-15.0	ND<5.0	ND<1.0	ND<1.0	ND<.005	ND<.005	ND<.005	ND<.005	ND<.005	ND<.005, except TBA ND<.05
	MW5-20.5	ND<5.0	ND<1.0	ND<1.0	ND<.005	ND<.005	ND<.005	ND<.005	ND<.005	ND<.005, except TBA ND<.05
11/28/07	MW6-4.5	ND<5.0	4.7, c	15	ND<0.025	<u>0.62</u>	ND<0.025	0.64	0.88	ND<0.025 except TBA
	MW6-9.5	180	<u>240</u> , b	<u>1200</u> , f, g	ND<1.0	ND<1.0	<u>3.9</u>	<u>24</u>	<u>120</u>	ND<0.25 ND<1.0, except TBA ND<10
ESL^1		2500	83	83	0.023	0.044	2.9	3.3	2.3	
ESL^2		410	83	83	0.023	0.044	2.9	3.3	2.3	

TABLE 3 SUMMARY OF SOIL SAMPLE LABORATORY ANALYTICAL RESULTS

					(Continu	ed)				
Sample Date	Well and Sample Depth	ТРН-ВО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/27/07	MW7-4.5	32	38, b	<u>100</u> , f, g	ND<0.050	<u>0.066</u>	0.30	0.68	<u>2.5</u>	ND<0.050, except TBA ND<0.50
	MW7-9.5	ND<1.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<.005
12/5/07	MW8-4.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005, TBA ND<0.05
	MW8-9.5	57	59, b	<u>230</u> , f, g	ND<0.020	ND<0.020	ND<0.020	0.62	0.030	ND<0.020, TBA ND<0.20
	MW8- 14.0	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005, TBA ND<0.05
ESL^1		2500	83	83	0.023	0.044	2.9	3.3	2.3	
ESL^2		410	83	83	0.023	0.044	2.9	3.3	2.3	

TABLE 3 SUMMARY OF SOIL SAMPLE LABORATORY ANALYTICAL RESULTS (Continued)

TABLE 3
SUMMARY OF SOIL SAMPLE LABORATORY ANALYTICAL RESULTS
(Continued)

Sample Date	Well and Sample Depth	ТРН-ВО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/28/07	MW9-5.5	ND<5.0	1.2, c	24	ND<0.025	<u>0.70</u>	ND<0.025	0.73	0.89	ND<0.025, TBA ND<0.25
	MW9- 10.0	ND<5.0	1.5, c	11	ND<0.010	0.026	0.037	0.17	0.73	ND<0.010, TBA ND<0.10
	MW9- 15.0	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005, TBA ND<0.05
	MW9- 20.0	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005, TBA ND<0.05
ESL^1		2500	83	83	0.023	0.044	2.9	3.3	2.3	
ESL^2		410	83	83	0.023	0.044	2.9	3.3	2.3	

TABLE 3 SUMMARY OF SOIL SAMPLE LABORATORY ANALYTICAL RESULTS (Continued)

Sample Date	Well and Sample Depth	ТРН-ВО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives
11/27/07	MW10- 5.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	by 8260* ND<0.005 TBA
	MW10- 10.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05 ND<0.005 TBA
	MW10- 15.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05 ND<0.005 TBA
	MW10- 20.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05 ND<0.005 TBA ND<0.05
ESL^1		2500	83	83	0.023	0.044	2.9	3.3	2.3	110 (0.05
ESL^2		410	83	83	0.023	0.044	2.9	3.3	2.3	

TABLE 3 SUMMARY OF SOIL SAMPLE LABORATORY ANALYTICAL RESULTS (Continued)

Sample Date		ТРН-ВО	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/27/07	MW11- 4.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
	MW11- 9.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05 ND<0.005 TBA
	MW11- 14.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05 ND<0.005 TBA ND<0.05
12/5/07	MW12- 4.5	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005, TBA
	MW12- 9.5	7.1	5.4, b	20, f, g	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005, TBA
	MW12- 12.0	ND<5.0	ND<1.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05 ND<0.005, TBA ND<0.05
ESL^1		2500	83	83	0.023	0.044	2.9	3.3	2.3	
ESL^2		410	83	83	0.023	0.044	2.9	3.3	2.3	

Report 0014.R68

NOTES:

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

g = Laboratory analytical report note: TPH-G results show heavier gasoline range compounds are significant (aged gasoline?).

 ESL^1 = November 2007 San Fracisco Regional Water Quality Control Board Environmental Screening Level, commercial/industrial land use, where groundwater is considered a current or potential source of drinking water. <u>Values underlined exceed the Commercial/Industrial land use ESL</u>.

 ESL^2 = November 2007 San Francisco Regional Water Quality Control Board Environmental Screening Level, residential land use, where groundwater is considered a current or potential source of drinking water. Values in bold exceed the Residential land use ESL.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per kilogram (mg/Kg), unless otherwise indicated.

TABLE 4 SUMMARY OF GROUNDWATER SAMPLE LABORATORY ANALYTICAL RESULTS (Collected December 13-14, 2007)

Well ID	TPH-D	TPH-G	MTBE ⁺	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
MW5	ND<50	110	4.0	5.3	0.5	ND<0.5	5.1	ND
MW6	6,200 , c	66,000	ND<120	7900	3,600	2,600	16,000	ND
MW7	ND<50	ND<50	9.3	ND<0.5	ND<0.5	ND<0.5	0.83	ND, except TBA = 14
MW8	1 ,500 , c	6,200	11	57	ND<5.0	160	18	ND
MW9	ND<50	ND<50	ND<0.5	1.0	ND<0.5	ND<0.5	4.5	ND
MW10	ND<50	ND<50	1.9	ND<0.5	ND<0.5	1.5	1.8	ND
MW11	ND<50	ND<50	21	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
MW12	200 , c	320 , f	11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
ESL	100	100	5.0	1.0	40	30	20	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

ESL = November 2007 San Francisco Regional Water Quality Control Board Environmental Screening Level, where groundwater is considered a current or potential source of drinking water. **Values in bold exceed the ESL.**

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

Results in micrograms per liter (μ g/L), unless otherwise indicated.

FIGURES

P&D ENVIRONMENTAL, INC. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980

Figure 1 SITE LOCATION MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

BORING LOGS

В	BORING NO.: MW5 PROJECT NO.: 0014 PROJECT NAME: 3495 Castro Valley Blvd, Castro Valley									
в	ORING	LO	CATION: Shopping center parking lot, ~200 feet west o	f Redw	ood Road	F	ELEVATIO	ON AND DATU	IM: 176.02 NAVD88	
D	RILLIN	G AG	GENCY: Exploration Geoservices	DRILLEI	R: Loren D.	DAT	E & TIMI 11/27	E STARTED:	DATE & TIME FINISHED: 11/27/07	
D	RILLIN	IG E	QUIPMENT: Mobile B53 Hollow Stem Auger Drill Rig				105	55	1135	
С	OMPLI	ετιο	N DEPTH: 22 feet BEDROCK DEPTH: No	ne enc	ountered	LOGGED BY:			CHECKED BY:	
F	IRST W	ATE	R DEPTH: ~19 feet NO. OF SAM	PLES: 4	4 soil		SI	F		
DEPTH (FT.			DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	OIId		REMARKS	
			Asphalt (3 inch) Dark gray clay (CL); moist, stiff, with minor gravel to 0.25". Strong Petroleum Hydrocarbon (PHC) odor.	CL	See Well Construction Diagram			Soil samp 2-1/2" OE split spoo 140-pound falling 30	les collected using a D California Modified n sampler driven by a d downhole hammer inches.	
	5			02	MW5-5.0	6 10 16		recovery	6", 6", 6"	
	10		Gray clayey silt (ML); moist, stiff, with yellow-brown streaks or mottling. Moderate PHC odor. 10.5 to 11.0 ft. Change to brown, moist to wet, with orange and black mottling. No PHC odor.	ML	MW5-10.0	10 12 15		6", 6", 6"		
	15		Brown silty clay (CL); moist, very stiff.	CL	MW5-15.0	10 17 24		6", 6", 6"		
	20		Gray-brown clayey medium sand (SC); wet, stiff, with minor grayel to 0.25" and some orange mottling	∑ SC	- MW5-20.5	9 14		First wate ~19 feet o 2", 6", 6"	er encountered at depth, 11/27/07 1130.	
	25		Sand content decreasing with depth. No PHC odor.	CL		21		Borehole on 11/27/ 11/27/07. Alameda onsite to on 11/27/	terminated at 22.0 ft. 07. Well constructed Vicki Hamlin of Public Works Agency inspect sanitary seal 07.	
	30									

в	ORING	G NO.:	MW6 PROJECT NO.: 0014 PROJECT	' NA	.ME: 3	495 Castro Val	ley B	lvd, Ca	stro Valle	y	
B	ORIN	G LOO	CATION: South end shopping center parking lot, ~250 f	eet	west o	of Redwood Ro	ad	ELEVAT	ION AND DAT	TUM: 175.24 NAVD88	
D	RILLI	NG AO	SENCY: Exploration Geoservices	I	DRILLEI	R: Loren D.	DAT	е & тімі 11/28	e started: /07	DATE & TIME FINISHED: 11/28/07	
D	RILLI	NG EO	QUIPMENT: Mobile B53 Hollow Stem Auger Drill Rig					083	0	0855	
С	OMPL	ετιο	N DEPTH: 11 feet BEDROCK DEPTH: N	Nor	ne enco	ountered		LOGGED BY: CHECKED BY:			
F	IRST V	VATEI	R DEPTH: None encountered NO. OF SA	мр	PLES: 2	2 soil					
DEPTH (FT			DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	OIIA		REMARKS	
			Asphalt (4 inch) Black clay (CL); moist, stiff. Moderate Petroleum Hydrocarbon (PHC) odor.			See Well Construction Diagram		0	Soil samp 2-1/2" OE split spoor 140-pound falling 30	les collected using a O California Modified n sampler driven by a d downhole hammer inches.	
	5	 		X	CL	MW6-4.5	4 6 8	22	recovery:	4", 6", 6"	
	10		 8.5 ft. Gray-brown, with strong orange mottling, and clay content decreasing wih depth. Strong PHC odor. Gray-brown clayey silt (ML); moist, stiff, with orange mottling. Strong PHC odor. 	X	ML	MW6-9.5	7 9 10	218 296	6", 6", 6"		
									Borehole on 11/28/ 11/28/07.	terminated at 11.0 ft. 07. Well constructed	
	15										
	20										
	25										
	20										
	30										

BORING NO.: MW7 PROJECT NO.: 0014 PROJECT NAME: 3495 Castro Valley Blvd, Castro Valley											
1	ORIN	G LOO	CATION: Redwood Court cul-de-sac, SW side				I	ELEVATIO	ON AND DATU	m: 170.34 NAVD88	
D	RILLI	NG AG	GENCY: Exploration Geoservices		DRILLEI	R: Loren D.	DAT	e & time 11/27	e started: //07	DATE & TIME FINISHED: 11/27/07	
	RILLI	NG E	QUIPMENT: MODILE B55 HOHOW STEM Auger Drill Rig	NL				132	25 ED BV:	1355 CHECKED BV:	
	OMPI	LETIO	N DEPTH: 11 Ieet BEDROCK DEPTH:	No	one enco			SF			
F		VALE	R DEPTH: None encountered No. of	SAM	IPLES: 4						
	DEPTH (FT		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTIC LOG	BLOW COUNT PER 6"	UIA		REMARKS	
			Asphalt (4-5 inch) Concrete, gravel, and sand (FILL); dry, loose. No Petroleum Hydrocarbon (PHC) odor.		FILL	See Well Construction Diagram			Soil samp 2-1/2" OE split spoor 140-pound	les collected using a California Modified n sampler driven by a d downhole hammer	
	5		to 0.25". Moderate to strong (PHC) odor.4.5 to 5.0 ft. Color change to brown.	x		MW7-4.5	7 9 16		recovery:	3", 6", 6"	
					CL						
	10		8.5 ft. Brown with gray mottling. No PHC odor.	x		MW7-9.5	9 11 13		6", 6", 6"		
									Borehole on 11/27/ 11/27/07.	terminated at 11.0 ft. 07. Well constructed	
	15										
	20										
	25										
	30										
PAGE <u>1</u> OF <u>1</u>

ł	BORING NO.: MW8 PROJECT NO.: 0014 PROJECT NAME: 3495 Castro Valley Blvd, Castro Valley								
1	BORIN	G LO	CATION: W side Redwood Road			E	LEVATIC	ON AND DATU	m: 176.00 NAVD88
I	DRILLING AGENCY: Exploration Geoservices DRILLER: John C.							E STARTED:	DATE & TIME FINISHED: 12/5/07
1	ORILLI	NG E	QUIPMENT: Mobile B-40 L22 Hollow Stem Auger Drill R	ig			1325	5	1345
4	СОМРІ	ETIC	N DEPTH: 15 feet BEDROCK DEPTH: N	one enc	ountered		LOGGI	ED BY:	CHECKED BY:
I	TIRST V	VATE	R DEPTH: 14 to 15 feet NO. OF SAM	APLES:	3 soil		SI	F	
DEPTH (FT.)			DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	DIA	· · · ·	REMARKS
			Concrete (~8-in. slab), gravel, and sand (FILL); dry, loose. No Petroleum Hydrocarbon (PHC) odor.	FILL	See Well Construction Diagram		0	Soil samp 2-1/2" OE split spoor 140-pound falling 30	les collected using a O California Modified 1 sampler driven by a I downhole hammer inches
	5		marks decreasing with depth. No PHC odor.	-	MW8-4.5	6 7 7	0	recovery:	1", 6", 6"
	10		8.5 ft. Slight to moderate PHC odor.	CL	MW8-9.5	8 8 10	17 123	6", 6", 6"	
			13.0 ft. As above, but sandy, wet, medium soft, with gray segregations. Silty fine sand (SM); saturated, loose.	SM	MW8-14.0	6 6 7	14	First wate 14-15 fee 6", 6", 6"	r encountered at t depth, 12/5/07 1340.
	15		Slight PHC odor.	-				Borehole on 12/5/0 12/5/07.	terminated at 15.0 ft. 7. Well constructed
	20			-					
				-					
	25			- - - -					
	30			- - - -					

в	BORING NO.: MW9 PROJECT NO.: 0014 PROJECT NAME: 3495 Castro Valley Blvd, Castro Valley									
в	ORING	LO	CATION: South end shopping center parking lot, ~500 fe	et west	of Redwood Ro	ad	ELEVAT	ION AND DAT	TUM: 175.09 NAVD88	
D	DRILLING AGENCY: Exploration Geoservices DRILLER: Loren D. DATE & TIME STARTED: DATE & TIME FINISHED:									
D	RILLIN	G E	QUIPMENT: Mobile B53 Hollow Stem Auger Drill Rig				100)0)0	1035	
С	OMPLE	тю	N DEPTH: 22 feet BEDROCK DEPTH: N	one enc	ountered		LOGGI	ED BY:	CHECKED BY:	
FI	RST W	ATE	R DEPTH: ~19 feet NO. OF SAL	APLES:	4 soil		SI	F		
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	UIA		REMARKS	
			Asphalt (~6 inch) Gravel and sand (FILL); dry, loose No Petroleum Hydrocarbon (PHC) odor	FILL	See Well Construction			Soil samp 2-1/2" OE split spoor	les collected using a O California Modified n sampler driven by a	
			Black clay (CL); moist, stiff. Very slight (PHC) odor.	-	Diagram	140-j fallin		140-pound falling 30	nd downhole hammer 0 inches.	
	5		×		MW9-5.5	6 10 14	5	recovery:	1", 6", 6"	
				CL						
	10		10.0 ft. Change to gray and brown, with orange and black mottling. Slight PHC odor.		MW9-10.0	7 12 15	4	6", 6", 6"		
	15		 15.0 ft. As above but brown, very silty, moist to wet, with gray inclusions. Very slight to no PHC odor. 16.0 to 16.5 ft. Siltier, transitional to clayey silt (ML). 		MW9-15.0	11 12 16	0	6", 6", 6"		
	20		Light may brown gilty along (CI); wat stiff	_ _ ∑ _	MW0 20 0	10		First wate ~19 feet o	er encountered at depth, 11/28/07 1030.	
			homogeneous but for some orange and black mottling. No PHC odor.		MW9-20.0	10 11 17	0	6", 6", 6"		
	25							Borehole i on 11/28/0 11/28/07. Alameda I onsite to i on 11/28/0	terminated at 22.0 ft. 17. Well constructed Vicki Hamlin of Public Works Agency nspect sanitary seal 17.	
	30			- - - - -						

В	BORING NO.: MW10 PROJECT NO.: 0014 PROJECT NAME: 3495 Castro Valley Blvd, Castro Valley									
в	BORING LOCATION: Shopping center parking lot entrance, ~50 feet west of Redwood Road ELEVATION AND DATUM: 176.03 NAVD88									
D	DRILLING AGENCY: Exploration Geoservices DRILLER: Loren D. DATE & TIME STARTED: DATE & TIME FINISHED: 11/27/07 11/27/07 11/27/07 0.020									
c	OMPLI	TIO	N DEPTH: 22 feet BEDROCK DEPTH:	No	ne enc	ountered		LOGGI	ED BY:	CHECKED BY:
F	RST W	ATE	R DEPTH: ~18 feet NO. OF	SAM	PLES: 4	4 soil		SI	F	
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION	BLOW COUNT PER 6"	UII		REMARKS
			Asphalt (~3 inch) Concrete, gravel, and sand (FILL); dry, loose. No Petroleum Hydrocarbon (PHC) odor.		FILL	See Well Construction Diagram			Soil samp 2-1/2" OE split spool 140-pound	les collected using a O California Modified n sampler driven by a I downhole hammer
			Brown (black above 3 ft.) silty clay (CL); moist, stiff, with gray mottling. No PHC odor.		CL				falling 30	inches.
	5		Brown clayey silt (ML); dry to moist, very stiff,	x		MW10-5.5	7 16 30		recovery	5", 6", 6"
			with orange and gray mottling, and minor fine sand. No PHC odor.		ML					
	10		Brown silty clay (CL); moist, stiff, with gray mottling. NoPHC odor. 11.0 ft. With orange and black mottling.	×		MW10-10.5	9 14 22		6", 6", 6"	
	15		15 ft. As above, but moist to wet. Slight PHC odor.		CL	MW10-15.5	9 9		2", 6", 6"	
					Ţ		9		First wate ~18 feet o	er encountered at lepth, 11/27/07 0915.
	20		20 ft. As above, but brown-gray, saturated, with fine black mottling. No PHC odor	x		MW10-20.5	9 14 16		6", 6", 6"	
									Borehole on 11/27/ 11/27/07.	terminated at 22.0 ft. 07. Well constructed
	25									
F	30			_						

BORING NO.: MW11 PROJECT NO.: 0014 PROJECT NAME: 3495 Castro Valley Blvd, Castro Valley									
в	BORING LOCATION: Redwood Court cul-de-sac, SE side ELEVATION AND DATUM: 171.03 NAVD88								
D	DRILLING AGENCY: Exploration Geoservices DRILLER: Loren D.							E STARTED:	DATE & TIME FINISHED: 11/27/07
D	RILLI	NG E	QUIPMENT: Mobile B53 Hollow Stem Auger Drill Rig				144	5	1520
с	OMPL	ετιο	N DEPTH: 15 feet BEDROCK DEPTH: No	one enc	ountered		LOGGI	ED BY:	CHECKED BY:
F	RST W	ATE	R DEPTH: None encountered NO. OF SAM	IPLES:	3 soil		SI	F	
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			Asphalt (4-5 inch) Concrete, gravel, and sand (FILL); dry, loose No Petroleum Hydrocarbon (PHC) odor	FILL	See Well Construction Diagram			Soil samp 2-1/2" OE split spoo	les collected using a O California Modified n sampler driven by a
			Dark gray sandy silty clay (CL); moist, stiff, withfine sand, abundant gravel to 0.5", and orange, brown,	-	g			140-pound falling 30	d downhole hammer inches.
	5		and black sandy inclusions. Very slight (PHC) odor.	-	MW11-4.5	7 17 20		recovery:	4", 6", 6"
				-					
	10		8.5 ft. Brown with black mottling or root marks, no sand, and minor gravel to 0.25". No PHC odor.	CL	MW11-9.5	8 12 19		6", 6", 6"	
				-					
F	15		black mottling. No PHC odor.	-	MW11-14.5	16 17		6", 6", 6"	
	15			-				Borehole on 11/27/ 11/27/07.	terminated at 15.0 ft. 07. Well constructed
				-					
	20			-					
				-					
	25			-					
	-			-					
E			-	-					
E	30		-	-					

в	DRING	NO.:	MW12 PROJECT NO.: 0014 PROJECT N	AME:	3495 Castro Val	ley B	lvd, Ca	stro Valle	y
в	ORING	LO	CATION: W side Redwood Road			E	LEVATIO	ON AND DATU	m: 173.98 NAVD88
DRILLING AGENCY: Exploration Geoservices DRILLER: John C. DATE & TIME STARTED: D. 12/5/07 12/5/0							DATE & TIME FINISHED: 12/5/07		
	RILLIN	(G E)	QUIPMENT: MODILE B-40 L22 HOHOW STEM AUGER Drill R	Ig			114	D BV.	1220 CHECKED BV:
C	OMPLI	ETIO	N DEPTH: 13 IEEL BEDROCK DEPTH: NO	one enc	ountered		S	F	CHECKED B1.
FI		ALE	ND. OF SAM	IPLES: .					
	DEPTH (FT		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTIC LOG	BLOW COUNT PER 6"	OIId		REMARKS
			6-in. concrete slab and gravel (FILL).	FILL	See Well		0	Soil samp	les collected using a
			Black clay (CL); moist, stiff No Petroleum Hydrocarbon (PHC) odor	CL .	Diagram		0	split spoor	n sampler driven by a
F			Light brown clayey silt (ML); dry to moist, very stiff, —	-				falling 30	inches.
F						16 30	0	recovery	0" 6" 6"
F	5		×	ML	MW12-4.5	30	Ŭ	recovery.	0,0,0
_									
E									
				1			<u>^</u>		
			Brown very silty clay (CL); moist, medium soft, with gray sub-vertical streaks.	CI	MW12.0.5	5	0	6", 6", 6"	
F	10	_	8.5-9.0 ft. No PHC odor.		IVI VV 12-9.5	8	23	First wate	er encountered at
F			Brown silty clayey sand (SC): moist to wet medium soft	SC		8		12.5 feet	depth, 12/5/07 1215.
			with orange and gray segregations. No PHC odor.	⊻ SM	MW12-12.0	12 14	0	6", 6", 3"	
E			Brown silty fine to medium sand (SM); saturated, loose.					Borehole	terminated at 13.0 ft. 7 Well constructed
E	15							12/5/07.	. Wen constructed
E									
=									
	20		=						
_				-					
F				-					
E	25								
E	40								
F			=						
F		_	=						
F		_	-	-					
F	30								

BORING/WELL NO. <u>MW5</u>				
TOP OF CASING ELEV. <u>176.02</u>				
GROUND SURFACE ELEVATION176.27				
DATE(S) CONSTRUCTED <u>11/27/07</u>				
EXPLORATORY BORING				
a. Total depth <u>22.0 ft</u> .				
b. Diameter <u>8 in</u> .				
Drilling method Hollow-Stem Auger				
WELL CONSTRUCTION				
c. Casing length <u>22 ft</u> .				
Material PVC Schedule 40				
d. Diameter <u>2 in</u> .				
e. Depth to top of perforations <u>17 ft</u> .				
f. Perforated length <u>5 ft</u> .				
Perforated interval from 22 to 17 ft.				
Perforation type Factory Slotted PVC				
Perforation size0.010 in.				
g. Surface sanitary seal <u>1 ft</u> .				
Seal material <u>Portland cement type I-II</u>				
h. Sanitary seal <u>14 ft.</u>				
Seal material <u>Portland cement type I-II</u>				
i. Filter pack seal <u>1 ft</u> .				
Seal material <u>Bentonite pellet</u>				
j. Filter pack length <u>6 ft</u> .				
Filter pack interval from <u>22 to 16 ft</u> .				
Pack material #2/12 sand				
k. Bottom seal <u>0 ft</u> .				
Seal material <u>None</u>				
I. Sluff in bottom of borehole <u>0 ft</u> .				

PROJECT NUMBER 0014	BORING/WELL NO. <u>MW6</u>				
PROJECT NAME 3495 Castro Valley Blvd.	TOP OF CASING ELEV. <u>175.24</u>				
COUNTY Alameda	GROUND SURFACE ELEVATION <u>175.49</u>				
WELL PERMIT NO. <u>W2007-1172</u>	DATUM <u>NAVD88</u>				
	DATE(S) CONSTRUCTED 11/28/07				
Many Man I A TO MAN MAN	a Total depth 11.0 ft				
	b Diameter $\frac{11.0 \text{ m}}{1.0 \text{ m}}$				
	D. Diameter <u>o m</u> .				
	Dinning method Honow-Stem Auger				
	WELL CONSTRUCTION				
	c. Casing length <u>11 ft</u> .				
e	Material PVC Schedule 40				
	d. Diameter <u>2 in</u> .				
	e. Depth to top of perforations <u>6 ft</u> .				
	f. Perforated length <u>5 ft</u> .				
	Perforated interval from <u>11 to 6 ft.</u>				
	Perforation type Factory Slotted PVC				
	Perforation size0.010 in.				
° ! • • E = • • 	g. Surface sanitary seal <u>1 ft</u> .				
	Seal material <u>Portland cement type I-II</u>				
	h. Sanitary seal <u>3 ft.</u>				
	Seal material <u>Portland cement type I-II</u>				
	i. Filter pack seal <u>1 ft</u> .				
	Seal material Bentonite pellet				
	j. Filter pack length <u>6 ft</u> .				
· · E = · ·	Filter pack interval from <u>11 to 5 ft.</u>				
	Pack material #2/12 sand				
	k. Bottom seal <u>0 ft</u> .				
	Seal material <u>None</u>				
	I. Sluff in bottom of borehole <u>0 ft</u> .				

PROJECT NUMBER 0014	BORING/WELL NO. <u>MW7</u>
PROJECT NAME 3495 Castro Valley Blvd.	TOP OF CASING ELEV. <u>170.34</u>
COUNTYAlameda	GROUND SURFACE ELEVATION <u>170.66</u>
WELL PERMIT NO. <u>W2007-1173</u>	DATUM <u>NAVD88</u>
Locking water-tight well cover	DATE(S) CONSTRUCTED 11/27/07
Locking well plug	EXPLORATORY BORING
The second secon	a. Total depth <u>11.0 ft</u> .
	b. Diameter <u>8 in</u> .
	Drilling method Hollow-Stem Auger
	WELL CONSTRUCTION
	c. Casing length <u>11 ft</u> .
	Material PVC Schedule 40
	d. Diameter <u>2 in</u> .
	e. Depth to top of perforations <u>6 ft</u> .
	f. Perforated length <u>5 ft</u> .
	Perforated interval from <u>11 to 6 ft.</u>
	Perforation type Factory Slotted PVC
	Perforation size <u>0.010 in</u> .
	g. Surface sanitary seal <u>1 ft</u> .
	Seal material <u>Portland cement type I-II</u>
	h. Sanitary seal <u>3 ft.</u>
	Seal material <u>Portland cement type I-II</u>
	i. Filter pack seal <u>1 ft</u> .
	Seal material <u>Bentonite pellet</u>
	j. Filter pack length <u>6 ft</u> .
	Filter pack interval from <u>11 to 5 ft.</u>
	Pack material #2/12 sand
	k. Bottom seal <u>0 ft</u> .
	Seal material None
	I. Sluff in bottom of borehole <u>0 ft</u> .

PROJECT NUMBER 0014	BORING/WELL NO. <u>MW8</u>				
PROJECT NAME <u>3495 Castro Valley Blvd.</u>	TOP OF CASING ELEV. <u>176.00</u>				
COUNTY Alameda	GROUND SURFACE ELEVATION <u>176.36</u>				
WELL PERMIT NO. <u>W2007-1174</u>	DATUM <u>NAVD88</u>				
Looking water tight well cover	DATE(S) CONSTRUCTED <u>12/5/07</u>				
	EXPLORATORY BORING				
Man Man I A TO MAN MAN	a Total depth 15.0 ft				
	h Diameter 8 in				
	Drilling method Hollow-Stem Auger				
	Drining method <u>Honow-Stem Auger</u>				
	WELL CONSTRUCTION				
	c. Casing length <u>15 ft</u> .				
	Material PVC Schedule 40				
	d. Diameter <u>2 in</u> .				
	e. Depth to top of perforations <u>10 ft</u> .				
	f. Perforated length <u>5 ft</u> .				
	Perforated interval from <u>15 to 10 ft.</u>				
	Perforation type Factory Slotted PVC				
	Perforation size0.010 in.				
	g. Surface sanitary seal <u>1 ft</u> .				
	Seal material Portland cement type I-II				
	h. Sanitary seal <u>7 ft.</u>				
	Seal material <u>Portland cement type I-II</u>				
	i. Filter pack seal <u>1 ft</u> .				
	Seal material Bentonite pellet				
	j. Filter pack length <u>6 ft</u> .				
	Filter pack interval from <u>15 to 9ft.</u>				
	Pack material #2/12 sand				
	k. Bottom seal <u>0 ft</u> .				
	Seal material <u>None</u>				
	I. Sluff in bottom of borehole <u>0 ft</u> .				

ft.
<u>in</u> .
<u>ft</u> .
<u>in</u> .
<u>ft</u> .
<u>ft</u> .
<u>) in</u> .
<u>ft</u> .
<u>ft</u> .
<u>ft</u> .
<u>ft</u> .
<u>ft</u> .
<u>ft</u> .

PROJECT NUMBER 0014	BORING/WELL NO. <u>MW10</u>				
PROJECT NAME <u>3495 Castro Valley Blvd.</u>	TOP OF CASING ELEV. <u>176.03</u>				
COUNTYAlameda	GROUND SURFACE ELEVATION <u>176.32</u>				
WELL PERMIT NO. <u>W2007-1168</u>	DATUM <u>NAVD88</u>				
	DATE(S) CONSTRUCTED 11/27/07				
Locking water-tight well cover					
Locking well plug	EXPLORATORY BORING				
Manual C Parts 1960	a. Total depth <u>22.0 ft</u> .				
	b. Diameter <u>8 in</u> .				
	Drilling method Hollow-Stem Auger				
	WELL CONSTRUCTION				
	c. Casing length <u>22 ft</u> .				
	Material PVC Schedule 40				
	d. Diameter <u>2 in</u> .				
	e. Depth to top of perforations <u>17 ft</u> .				
	f. Perforated length <u>5 ft</u> .				
	Perforated interval from 22 to 17 ft.				
	Perforation type Factory Slotted PVC				
	Perforation size0.010 in.				
	g. Surface sanitary seal <u>1 ft</u> .				
	Seal material Portland cement type I-II				
	h. Sanitary seal <u>14 ft.</u>				
	Seal material <u>Portland cement type I-II</u>				
	i. Filter pack seal <u>1 ft</u> .				
	Seal material <u>Bentonite pellet</u>				
· ·E = · ·	j. Filter pack length <u>6 ft</u> .				
	Filter pack interval from <u>22 to 16 ft</u> .				
	Pack material #2/12 sand				
	k. Bottom seal <u>0 ft</u> .				
	Seal material <u>None</u>				
	I. Sluff in bottom of borehole <u>0 ft</u> .				

PROJECT NUMBER 0014	BORING/WELL NO. <u>MW11</u>					
PROJECT NAME <u>3495 Castro Valley Blvd.</u>	TOP OF CASING ELEV. <u>171.03</u>					
COUNTYAlameda	GROUND SURFACE ELEVATION <u>171.52</u>					
WELL PERMIT NO. <u>W2007-1169</u>	DATUM <u>NAVD88</u>					
	DATE(S) CONSTRUCTED 11/27/07					
Locking water-tight well cover						
	EXPLORATORY BORING					
	a. Total depth <u>15.0 ft</u> .					
	b. Diameter <u>8 in</u> .					
	Drilling method Hollow-Stem Auger					
	WELL CONSTRUCTION					
	c. Casing length 15 ft.					
	Material PVC Schedule 40					
	d. Diameter 2 in.					
	e. Depth to top of perforations 10 ft.					
	f. Perforated length 5 ft.					
	Perforated interval from 15 to 10 ft.					
	Perforation type Factory Slotted PVC					
	Perforation size 0.010 in.					
	g. Surface sanitary seal 1 ft.					
	Seal material Portland cement type I-II					
	h. Sanitary seal 7 ft.					
	Seal material Portland cement type I-II					
	i. Filter pack seal 1 ft.					
	Seal material Bentonite pellet					
	j. Filter pack length 6 ft.					
	Filter pack interval from 15 to 9ft.					
	Pack material #2/12 sand					
	k. Bottom seal					
	Seal material <u>None</u>					
K	I. Sluff in bottom of borehole <u>0 ft</u> .					

PROJECT NUMBER 0014	BORING/WELL NO. <u>MW12</u>			
PROJECT NAME 3495 Castro Valley Blvd.	TOP OF CASING ELEV173.98			
COUNTYAlameda	GROUND SURFACE ELEVATION <u>174.19</u>			
WELL PERMIT NO. <u>W2007-1170</u>	DATUM <u>NAVD88</u>			
	DATE(S) CONSTRUCTED 12/5/07			
Locking water-tight well cover				
	EXPLORATORY BORING			
Manual C Parts 1960	a. Total depth <u>13.0 ft</u> .			
	b. Diameter <u>8 in</u> .			
	Drilling method Hollow-Stem Auger			
	WELL CONSTRUCTION			
	c. Casing length <u>13 ft</u> .			
	Material PVC Schedule 40			
	d. Diameter <u>2 in</u> .			
	e. Depth to top of perforations <u>8 ft</u> .			
	f. Perforated length <u>5 ft</u> .			
	Perforated interval from <u>13 to 8 ft.</u>			
	Perforation type Factory Slotted PVC			
	Perforation size0.010 in.			
	g. Surface sanitary seal <u>1 ft</u> .			
	Seal material Portland cement type I-II			
	h. Sanitary seal <u>5 ft.</u>			
	Seal material <u>Portland cement type I-II</u>			
	i. Filter pack seal <u>1 ft</u> .			
	Seal material Bentonite pellet			
	j. Filter pack length <u>6 ft</u> .			
	Filter pack interval from <u>13 to 7 ft.</u>			
	Pack material #2/12 sand			
	k. Bottom seal <u>0 ft</u> .			
	Seal material <u>None</u>			
	I. Sluff in bottom of borehole <u>0 ft</u> .			

WELL SURVEY REPORT

P D ENVIRONMENTAL 3495 CASTRO VALLEY BOULEVARD, CASTRO VALLEY

WELL ID	NORTHING (FT.) /	EASTING (FT.) /		
#	LATITUDE (D.M.S.)	LONGITUDE (D.M.S.)	ELEVATION (FT.)	DESCRIPTION
EW-1	2079411.67	6106190.29	179.27	2" PVC NORTH SIDE
	N 37° 41' 42.52489"	W 122° 04' 27.50870"	179.75	NOTCH NORTH SIDE RIM
			179.74	CONC. NORTH SIDE
MW-1	2079508.78	6106168.07	180.22	2" PVC NORTH SIDE
	N 37° 41' 43.48109"	W 122° 04' 27.80553"	180.59	NOTCH NORTH SIDE RIM
			180.54	CONC. NORTH SIDE
MW-3	2079392.89	6106191.58	179.46	2" PVC NORTH SIDE
	N 37° 41' 42.33945"	W 122° 04' 27.48879"	179.95	NOTCH NORTH SIDE RIM
			179.94	CONC. NORTH SIDE
MW-4	2079455.99	6106244.22	179.21	2" PVC NORTH SIDE
	N 37° 41' 42.97199"	W 122° 04' 26.84706"	179.67	NOTCH NORTH SIDE RIM
			179.64	CONC. NORTH SIDE
MW-5	2079223.31	6106033.74	176.02	2" PVC NORTH SIDE
	N 37° 41' 40.63681"	W 122° 04' 29.41690"	176.28	NOTCH NORTH SIDE RIM
			176.27	PVMT. NORTH SIDE
MW-6	2079113.36	6105985.71	175.24	2" PVC NORTH SIDE
	N 37° 41' 39.54182"	W 122° 04' 29.99135	175.5	NOTCH NORTH SIDE RIM
			175.49	PVMT. NORTH SIDE
MW-7	2078922.29	6105903.77	170.34	2" PVC NORTH SIDE
	N 37° 41' 37.63937"	W 122° 04' 30.97075"	170.66	NOTCH NORTH SIDE RIM
			170.66	PVMT. NORTH SIDE
MW-8	2079164.71	6106369.73	176.00	2" PVC NORTH SIDE
	N 37° 41' 40.11333"	W 122° 04' 25.22471"	176.36	NOTCH NORTH SIDE RIM
			176.36	CONC. NORTH SIDE
MW-9	2079116.76	6105769.26	175.09	2" PVC NORTH SIDE
	N 37° 41' 39.53949"	W 122° 04' 32.684.92"	175.38	NOTCH NORTH SIDE RIM
			175.38	PVMT. NORTH SIDE

Kier Wright Civil Engineers Surveyors

P D ENVIRONMENTAL 3495 CASTRO VALLEY BOULEVARD, CASTRO VALLEY

WELL ID	NORTHING (FT.) /	EASTING (FT.) /		
#	LATITUDE (D.M.S.)	LONGITUDE (D.M.S.)	ELEVATION (FT.)	DESCRIPTION
MW-10	2079227.12	6106210.36	176.03	2" PVC NORTH SIDE
	N 37° 41' 40.70383"	W 122° 04' 27.22044"	176.32	NOTCH NORTH SIDE RIM
			176.32	PVMT. NORTH SIDE
MW-11	2078935.46	6105972.85	171.03	2" PVC NORTH SIDE
	N 37° 41' 37.78108"	W 122° 04' 30.11416"	171.50	NOTCH NORTH SIDE RIM
			171.52	PVMT. NORTH SIDE
MW-12	2078963.24	6106369.23	173.98	2" PVC NORTH SIDE
	N 37° 41' 38.12157"	W 122° 04' 25.18886"	174.20	NOTCH NORTH SIDE RIM
			174.19	CONC. NORTH SIDE
OW-1	2079384.06	6106324.06	178.93	2" PVC NORTH SIDE
	N 37° 41' 42.27418"	W 122° 04' 25.83876"	179.18	NOTCH NORTH SIDE RIM
			179.17	PVMT. NORTH SIDE
OW-2	2079098.62	6106323.09	176.03	2" PVC NORTH SIDE
	N 37° 41' 39.45224"	W 122° 04' 25.79112"	176.22	NOTCH NORTH SIDE RIM
			176.20	PVMT. NORTH SIDE

ADDITIONAL POINTS

PT#	NORTHING (FT.)	EASTING (FT.)	ELEVATION (FT.)	DESCRIPTION
59	2079527.38	6106166.71	N/A	тс
60	2079523.32	6106208.90	N/A	TC RET
61	2079467.34	6106259.33	N/A	TC RET
62	2079401.78	6106259.23	N/A	тс
64	2079351.15	6106369.06	N/A	тс
68	2078931.31	6106368.24	N/A	тс
73	2079151.82	6106241.80	N/A	BL<
74	2079152.58	6106151.56	N/A	BL<
75	2079171.22	6106102.78	N/A	BL<
76	2079257.77	6105813.50	N/A	BL<
77	2079309.57	6105977.00	N/A	BL<

Kier Wright Civil Engineers Surveyors

P D ENVIRONMENTAL 3495 CASTRO VALLEY BOULEVARD, CASTRO VALLEY

ADDITIONAL POINTS				
PT#	NORTHING (FT.)	EASTING (FT.)	ELEVATION (FT.)	DESCRIPTION
78	2079308.62	6106092.07	N/A	BL<
79	2079307.52	6106115.04	N/A	BL<
80	2079306.66	6106205.21	N/A	BL<
81	2079346.52	6106259.08	N/A	тс
87	2079125.16	6105607.43	N/A	BL<
92	2078991.76	6106258.25	N/A	TC RET
93	2078962.07	6106229.96	N/A	TC RET
94	2078921.85	6106228.47	N/A	TC RET
95	2078895.50	6106258.07	N/A	TC RET
98	2078962.56	6105967.93	N/A	ТС В-С
99	2078922.56	6105966.15	N/A	ТС В-С
100	2078912.80	6105938.62	N/A	TC PRC
101	2078973.10	6105938.17	N/A	TC PRC

Kier Wright Civil Engineers Surveyors

P D ENVIRONMENTAL 3495 CASTRO VALLEY BOULEVARD, CASTRO VALLEY

BENCH MARK: NGS Bench mark No.PID# HT0223

THE STATION IS LOCATED IN THE CITY OF HAYWARD AT THE RAILROAD CROSSING OF THE SOUTHERN PACIFIC RAIL-ROAD AND BLOSSOM WAY, IN THE TOP OF THE NORTHWEST CURB OF BLOSSOM WAY.

TO REACH THE STATION FROM THE JUNCTION OF U S HIGHWAY 880 ON WEST A STREET, GO SOUTHEAST ON WEST A STREET FOR 0.2 MILES TO A CROSSROAD, HATHAWAY AVE ON THE LEFT, SANTA CLARA STREET ON THE RIGHT. TURN LEFT, NORTH, ON HATHAWAY AVENUE AND CONTINUE FOR 0.7 MILES TO WEST BLOSSOM WAY. TURN RIGHT, NORTH, ON WEST BLOSSSOM WAY AND CONTINUE FOR 0.25 MILES TO THE STATION ON THE LEFT, JUST PAST THE RAIL-ROAD TRACKS.

THE STATION IS 48.95 M (160.6 FT) NORTHEAST OF THE NORTHEAST RAIL, 7.01 M NORTHWEST OF THE CENTER OF BLOSSOM WAY, 0.24 M (0.8 FT) NORTH OF THE NORTH CORNER OF A STEEL GRATE IN THE STREET, 5.6 M (18.5 FT) SOUTHWEST OF A POWER POLE AND 0.12 M (0.4 FT) HIGHER THAN THE STREET.

Elevation =56.33 FEET NAVD88 Datum ADJUSTED

HORIZONTAL CONTROL:

PID - HT0223

NORTHING =2,072,670.26 , EASTING = 6,095,650.79 FEET; EPOCH DATE = 1998.50

PID - HT 2583

NORTHING =2,082,510.30 , EASTING = 6,116,892.13 FEET; EPOCH DATE = 1991.35

Coordinate values are based on the California Coordinate System, Zone III NAD 83 Datum.

Kier Wright Civil Engineers Surveyors

WELL MONITORING AND PURGING DATA SHEETS

GROUNDWATER MON	VIRONMENTAL ITORING/WELL PURGING
site Name Xtra Dil/Casto Valley	Well No. AWS
JOB NO. 0014	Date 12/13/07
TOC to Water (ft.) 5.83	Sheen NO
Well Depth (ft.) 21.8	Free Product Thickness
Well Diameter 3" (0.16)	Sample Collection Method
Gal./Casing Vol. 7.6	Disposette Bale-
3421 = 7.8	° ELECTRICAL
TIME GAL. PURGED DH	TEMPERATURE CONDUCTIVITY
1043 0.7 6.80	57.5 70
1048 1.8 6.72	57,5 130
1050 2.6 6.77	57.1 180
1052 3.5 6.69	56.9 200
1054 4.4 6.64	56.4 210
1056 5.2 6.62	55.7 210
1058 6.1 6.67	55.4 210
1100 7.0 6.54	54,9 290
1107 7.8 1.45	55.3 620
	500 930
	511 1220
	36.1 1133
108 10.9 6.31	1,280
	/
	n an
1	and the second
No sheen, No odo-	
Sample Kre => 1115hr	<u>(</u>

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET Site Name Xtra Oil/Casta Velley Well No. MW6 001 12/13/06 Job No. Date TOC to Water (ft.) 5.63 No Sheen to S Well Depth (ft.) Free Product Thickness 2"/0.16 Well Diameter Sample Collection Method 0,8 Pisposable Baile -Gal./Casing Vol. 3001-2. ELECTRICAL GAL. PURGED TEMPERATURE TIME рH CONDUCTIVITY 9 0.3 6.62 20 0.6 ,2 68 50 70 0.8 69 7 3 220 67 4 ς . 200 3.5 1143 .4 9 480 well: 1.6 1145 1.9 1147 54 7 :70 020 9.2 55,8 1149 2.4 1151 56.4 380 69 1152 2.6 56.0 440 ----NOTES: Nosheen, but light - noderte phe ado-SARPLE FINE 2 1205h-J

PURGE10.92

P&D ENVIRONMENTA	
GROUNDWATER MONITORING/WE DATA SHEET	LL PURGING
site Name Xtra Oil/CustroValley	Well No. MW7
JOD NO. 0014	Date 12/13/07
TOC to Water (ft.) 4.74	Sheen No
Well Depth (ft.) 10.2	Free Product Thickness
Well Diameter <u><u><u></u><u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	Sample Collection Method
Gal./Casing Vol. 0,9	Disposable bailer
3v.1-, 2.7	ELECTRICAL Aska
1351 0.3 6.93 57	2.9 /2 U
1354 0.6 6.95 58.	8 360
1256 0.9 7.02 59.	9 420
1358 1.2 7.03 59.	3 - 540
1400 1.5 7.06 59.0	680
1402 1.8 7.06 59.	2 870
1404 2.1 7.04 58.	9 1.130
1406 2.4 7.04 59.	2 1,770 Weil
1408 7.7 51-7.047.02 59.	6 2,220 acwaining
Welldewatered	
NOTES: A () A la	
No sheen, No Udor	
Janpletine =/ 14/2hrs	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

a

59

Site Name XtraOil/ CastroValley 0014 Job No. 6.52 TOC to Water (ft.) 4.4 Well Depth (ft.)_ 31 10.16 Well Diameter , 3 Gal./Casing Vol. 3001=3,9 GAL. PURGED TIME <u>рН</u> 1523 0.4 .36 0.8 526 1.3 529 57 1.7 153 2.1 1535 2.6 3.0 1537 3.4 1539 48 1541 3.9 -NOTES:

MW8 Well No. Date_12/13/07 sheen No Free Product Thickness Sample Collection Method risposable bailer ELECTRICAL US/CA TEMPERATURE 60 270 8.4 500 2 870 6 ,050 4 ,390 59. L 470 -9.8 6.80 . 6 9.7 710

Nosheen; light-moderate pho o do-271545 'nπ

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING , DATA SHEET

Site Name	XtraOil/Castro	Valley	Well
Job No	0014	, ·	Date_
TOC to Wate	er (ft.) 6.31		Sheen
Well Depth	(ft.) <u>21.3</u>		Free
Well Diamet	er 2" (0.16)		Sampl
Gal./Casino	yol. 2.4		P.
, <u>-</u>	3vol=7.	2	
TIME	GAL. PURGED	DH	TEMPERATURE
1224	0.8	7.25	65.8
1227	1.6	7.29	65.2
1230	2.4	7.26	64.5
1232	2.2	7,23	63,7
1234	4.0	7.20	62.9
1237	4.8	7.10	62.8
1239	5.6	7.01	(3.3
1241	6.4	7.00	633
1244	78	6.92	67.2
			<u><u> </u></u>
<u></u>			
		- <u></u>	
		<u>.</u>	
		- <u></u>	
		· · · ·	
<u></u>			
<u></u>	•		
·		рана 1997 — Прилания 1997 — Прилания Прилания 1997 — Прилания Прилания (1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997 — 1997	
		<u> </u>	
		·	
NOTES :	No there ista -	10-	
	/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 JID Cal	
	Sunplet	1m(=) 1 2 3000	ς

II NO. MW9 67 2 ee Product Thickness mple Collection Method Pisposable bailer ELECTRICAL CONDUCTIVITY <u>ure</u> °F s/cm 4 70 800 . . 1220 1570 710 920 030 2.00 440

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

Site Name	Xtru Oil / Castro	Valley	W
Job No	0014		D
TOC to Wat	er (ft.) 5,55	· · · · · · · · · · · · · · · · · · ·	S
Well Depth	(ft.) 71.6		F
Well Diame	eter 74 (0	.16)	S
Gal./Casin	vol. 7.6		
	3001=7.8	3	
TIME	GAL. PURGED	<u>pH</u>	TEMPERA
0940	0,9	6.81	48.1
0943	1.8	6.79	49.5
0946	7.6	6.77	50.4
0948	3.5	6.75	50.8
0950	4,4	6.75	51.0
0952	5.2	6.68	50,5
0954	6. i	6.60	49.8
2956	7.0	6.58	50,8
- 664	7.8	6.56	51.7
1000	\$ 7	6.51	5 FIL
100		0.01	20110
,	·		
••			
			•
· · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
, 			
NOTES:			
Λ	losheen ino odo	· / · · · · · · · · · · · · · · · · · ·	
	Sar	ph Tr => 101.	shrs

Well No. MWIO υ7 2 Date Sheen o \oslash Free Product Thickness_ Sample Collection Method Disposable bailer ELECTRICAL CONDUCTIVITY Ka ATURE $\mathcal{F}()$ 70 520 40 400 610 770 970 170 ,700 51.6

	P&D GROUNDWATER M	ENVIRONMENTAL IONITORING/WELL PURGING
	Site Name Xtra Dil / actor Valley	DATA SHEET
	Job No. 00/4	Date $12/13/07$
	TOC to Water (ft.) 12.72	Sheen No
	Well Depth (ft.) 19.9	Free Product Thickness_Ø
	Well Diameter $2^{\prime\prime}(0.16)$	Sample Collection Method
	Gal./Casing Vol. 0.3	Disposable bailer
	3vol=0.9	of ELECTRICAL
	TIME GAL. PURGED DH	<u>TEMPERATURE</u> <u>CONDUCTIVITY</u> (n
	$\frac{1}{1322} \qquad $	
	1724 0.3 7.2	$\frac{1}{1}$
	1326 0.4 7,15	5 61.4 540
	1329 0.5 7.10	59.7 1,410
a	1334 0.6 7.00	59.7 1,790
	1336 07 7.11	60.0 2,350
	1338 0.8 7.17	- 60.2 2,830
	1340 0.9 7.18	59.9 2,530
	well demotired	
		n an
		<u></u>
	NOTES: bil bil file of our	
`	Nacha in the de	- 1. tra - 1016 12/14/07
		Sample IFIC - Jor J - Oa JULI
	FUNGELU.JZ	
,		

GROUNDW	P&D ENVIRONN ATER MONITORIN	1ENTAL NG/WELL PURGING	,
Xtra Dillo to 11.	DATA SHE	ET	141.12
Site Name //// Casto Vo	intra	Well No/	2/7
Job No. 0019		Date [7/1	5/07
TOC to Water (ft.) +.66	-	Sheen No	
Well Depth (ft.) 17.5	_	Free Produc	t Thickness 🦉
Well Diameter $\frac{\partial^{\prime}}{\partial c}(0.16)$		Sample Coll	ection Method
Gal./Casing Vol. 0.8	-	Pispos	ble barler
3001-2.4			ELECTRICAL
IIME GAL. PORGED	<u>0</u> (40	60.3	Zn
1456 2.6	6.82	577	<u> </u>
$\frac{11}{150} \qquad \qquad 0.0$	6.90	57.7	280
1502 11	682		260
	$\frac{0.87}{1.44}$	(z)	440
	6.81	$\sum 7 \cdot d$	490
1507 1.6	0.86	57,0	<u>670</u>
1509 1.9	6.88	56.7	840
1511 2.1	6.86	56.0	910
1513 2.7	6.89	56.3	1020
· · · · · · · · · · · · · · · · · · ·			
	-		/
	······································		/

NOTES	<u></u> .		
No shein	, light odor, b	ut campt teill if	t'sphc/
	Sapletine	=> 1515h-1	

DRUM DISPOSAL MANIFEST

			1			
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.	2. Page 1 of	3. Docume	4845	
	4. Generator's Name and Mailing Address XTra Oil CO. 3495 COSTRO Valley E COSTRO Valley CA a	1.UD R4546				
	5. Transporter Company Name	6. US EPA ID Number	7. Transpo	orter Phone		
	CLEARWATER ENVIRONMENTAL	CAR000007013		(510) 476-1	740	
	8. Designated Facility Name and Site Address ALVISO INDEPENDENT OIL 5002 ARCHER STREET	9. US EPA ID Number	10. Facilit	y's Phone		
G	ALVISO, CA 95002	CAL000161743		(510) 476-1	740	
E N E	11. Waste Shipping Name and Description		1:	2. Containers No. Type	13. Total Quantity	14. Unit Wt/Vol
H A T O	Non-Hazardous waste, liquid Solid	(Soil custines)		Q 10m	8000	P
	b.					
	15. Special Handling Instructions and Additional k	nformation	Handling	Codes for Waste	s Listed Above	
	Wear PPE			118.	115.	
	(510) 476-1740 Attn: Kirk Hayward		L			
	18. GENERATOR'S CERTIFICATION: I centify the	materials described above on this manifest are not subject to state or	federal regulations	s for reporting pro	per disposal of Haza	rdous Waste.
¥ TRAN	Xia Juan W	Constante X-9	A		Month	Day Year
P	17. Transporter Acknowledgement of Heceipt of N Printed/Typed Name	Skingture	$\overline{}$	/		
	Cott E	Saur Dat	Ŧ/		Month 12	Day Yeer リレン
FACILITY	18. Discrepancy Indication Space		-			
['	19. Facility Owner or Operator: Certification of per	sipt of waste materials covered by this manifest except synote	ed in Item 16.	4	<u></u>	
	KIRL D. NA YICK	ses in U.	1 Jay	nel -	VZ V	Day Yoar Z 07

. .

•

....

1 441.03

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

- Lab ID 0711698 Soil from Boreholes
- Lab ID 0712157 Soil from Boreholes
- Lab ID 0712503 Groundwater from Wells
- Lab ID 0711709 Soil for Waste Characterization

McCampbell Analytical, Inc.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; 3495 Castro	Date Sampled:	11/27/07-11/28/07
55 Santa Clara, Ste.240		Date Received:	11/29/07
Oakland, CA 94610	Client Contact: Steve Flexser	Date Reported:	12/06/07
	Client P.O.:	Date Completed:	12/06/07

WorkOrder: 0711698

December 06, 2007

Dear Steve:

Enclosed are:

- 1). the results of 19 analyzed samples from your #0014; 3495 Castro Valley Blvd project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

2 D ENVIRON 55 Santa Clara A Oakland, C. (510) 658	MENTA ve, Suite 240 A 94610 -6916.	L, INC	с. С	HAIN (DF CL	JSTOD	Y F	RE	co	RC	al al	and a second		P	AGE	OF 2	
PROJECT NUMBER: OOLY SAMPLED BY: (PRI	NTED AND	SIGNATI	JRE)	95 Cost	o Velley	BI~E.	IER OF AINERS	HAL YSISIFE	10BO	10	1	1		MUN	RE	MARKS	
SAMPLE NUMBER	DATE	TIME	TYPE	SAMP	LE LOCATIO	м	NUME	1ª	No all all all all all all all all all al	1	//	[]	PRE	Filo	vinal	TAT	
MW5-5.0	11/27/0	1105	5				1	1	1	T	T I	1	ice		1		1
1w5 -10.0		1110					(1	1								
425-15.0		1115			-		1	1	1	-		-	-				_
105-20.5		113+	*				1		4	+		+	+				-
MW6-4.5	11/28/0	7 0940	1				1		1		+	+					-
MW6-9.5	Ţ	0850	4				1	1	1								
MW7-4.5	11/27/07	1335						1	4	-		-	-				_
Mw7-9.5	L.	1340	T				-	17	1		\vdash	+	-				-
MW9-5.5	11/28/07	1010					1		1	+		-	-				
MW9 -10.0	1	1020					1	1	1			1					
Mwg - 15.0		1025					1	1	1							1	
4wa - 20.0	J.	1035	V				1	1	1				V .		4		
RELINQUISHED BY:	(SIGNATURE	E) ///	DATE	TIME RECEI	VED BY:	SIGNATURE)		TOTAL	NO. 00	CONTAN	E3 HOIS	19	LAB	DRATORY	r:	<u>.</u>	1
RELINQUISHED BY	SIGNATURE	E	DATE	TIME REGE	WED BY: (GIGNATURE)	1	LAB	ORAT	DRY	CONT	ACT:	LAB	RATORY	PHON	E NUMBER	
	2	-1	1/29/01	450 L	2nV	Y		A	mac	lak	yde	lilo	(8-	17)29	52-	9262	1
RELINQUISHED BY:	SIGNATUR	E) /	DATE	TIME RECEI	ATURE)	ABORATORY	BY:			ATT	ACHE	D: ()YTS		SHEET		
Results and billing P&D Environmental, lab©pdenviro.com	to: Inc.			REMA	RKS:	ICE	11.10	. 7	,			2					1

.

	-6916		(CHAI	N OF CUSTO	DDY F	REC	COI	RU	X		PAGE 2 OF	2
PROJECT NUMBER:	•	P	ROJECT	NAME:	Costro Valle Blu	2	S(ES).	18	AT I	17	7	1 5	_
SAMPLED BY: (PRI	NTED AND	SIGNAT	URE)	fer	Ale	BER OF	NAL YOU	13	1/	//	//	REMARKS	
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCATION	NUME	T	No al	//	1	/	Normal TAT	_
YW10-5.5	11/22/07	0855	-5			1	11	1	ff	1	1°C	<	
4010-10.5		0905				1	-			Í	1		
MW10-15.5		0910				1	1						-
NW10-20.5		0915				1	40	1					
						_							
71611-4.5	(127/07	1455	-				1	4	\square	-	\square		
Mw11 -9.5		1505				1	11	1					-
yw11-14.5	· ·	1510	V				17	4			-		
							\vdash	+		-			
								+					
			-				\vdash	+		-	-		
							\vdash	+					
						-	++	+			-		
			-	•			\vdash	1					
						1		+		\square			
ELINQUISHED BY:	SICNATURE	E)	DATE	TIME	RECEIVED BY: (SIGNATUR	E)	TOTAL	10. DF 1	SAMPLES	10	11	ABORATORY:	
Stern	Flac	-11	1296	1/30			TOTAL N	0. OF C		5 10	9	Michampbell	
ELINQUISHED BY:	SIGNATURE	E) /	DATE	TIME	RECEIVED BY: SIGNATUR	É)	LABO	RATO	RY CO	NTAC	T: L	ABORATORY PHONE NUMB	ER:
		11	BY.	350	any - 0		A	yel	a Ri	Idel	20	(877) 252-926:	2
CUMPUNCHED BY.	SIGNATURE	E)	DATE	TIME	RECEIVED FOR LABORATO	RY BY:		S	MPLE.	ANAL	YSIS	REQUEST SHEET	

McCampbell Analytical, Inc.

	AW.
[JE
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 2-9262					Work	Order	07116	598	(Client∏	D: PDE	0				
				EDF		Excel		Fax		🖌 Email		Harc	ICopy	🗌 Thir	dParty		
Report to: Steve Flexse P & D Enviro 55 Santa Cla Oakland, CA	er onmental ara, Ste.240 v 94610	Email: TEL: ProjectNo: PO:	lab@pdenvird (510) 658-6916 #0014; 3495 (o.com 5 FAX: (510) 8 Castro Valley Blvd	334-01! I	52	Bill to: Ac P & 55 Oa	counts F & D Envi Santa C Ikland, C	Payable ironme Clara, S CA 946	e ntal Ste.240 10			Req Dat Dat	uested e Rece e Print	TAT: ived: ted:	5 d 11/29/ 11/29/	days 2007 2007
									Requ	uested	Tests	(See le	gend b	elow)		1	
Sample ID	ClientSampID)	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0711698-001	MW5-5.0		Soil	11/27/07 11:05:00		А	Α										
0711698-002	MW5-10.0		Soil	11/27/07 11:10:00		А	А										
0711698-003	MW5-15.0		Soil	11/27/07 11:15:00		А	А										
0711698-004	MW5-20.5		Soil	11/27/07 11:30:00		А	А										
0711698-005	MW6-4.5		Soil	11/28/07 8:40:00		А	А										
0711698-006	MW6-9.5		Soil	11/28/07 8:50:00		А	А										
0711698-007	MW7-4.5		Soil	11/27/07 1:35:00		А	А										
0711698-008	MW7-9.5		Soil	11/27/07 1:40:00		А	А										
0711698-009	MW9-5.5		Soil	11/28/07 10:10:00		А	А										
0711698-010	MW9-10.0		Soil	11/28/07 10:20:00		А	А										
0711698-011	MW9-15.0		Soil	11/28/07 10:25:00		А	А										
0711698-012	MW9-20.0		Soil	11/28/07 10:35:00		А	А										
0711698-013	MW10-5.5		Soil	11/27/07 8:55:00		А	А										
0711698-014	MW10-10.5		Soil	11/27/07 9:05:00		А	А							1			
				1				1		1			1	1	+	1	

Test Legend:

1	G-MBTEX_S	:	2
6			7
11		1	2

MBTEXOXY-8260B_S	3	
	8	

	4
	9

5					
10					

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A, 013A, 014A, 015A, 016A, 017A, 018A, 019A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

	AWA
6	NU
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 071169	8 Clier	ntID: PDEO		
			EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:				В	ill to:		Red	quested TAT:	5 days
Steve Flexser	Email:	lab@pdenviro.co	om		Accounts Pa	ayable			
P & D Environmental	TEL:	(510) 658-6916	FAX: (510) 8	34-0152	P & D Envir	onmental			
55 Santa Clara, Ste.240	ProjectNo	: #0014; 3495 Ca	stro Valley Blvd		55 Santa Cl	ara, Ste.240	Da	te Received:	11/29/2007
Oakland, CA 94610	PO:				Oakland, C/	A 94610	Da	te Printed:	11/29/2007

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			-	-												
0711698-016	MW10-20.5	Soil	11/27/07 9:15:00		Α	А										
0711698-017	MW11-4.5	Soil	11/27/07 2:55:00		А	А										
0711698-018	MW11-9.5	Soil	11/27/07 3:05:00		А	Α										
0711698-019	MW11-14.5	Soil	11/27/07 1:10:00		А	A										

Test Legend:

1	G-MBTEX_S	2 MBTEXOXY-8260B_S	3	4	5
6		7	8	9	10
11		12			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A, 013A, 014A, 015A, 016A, 017A, 018A, 019A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ental	Date and Time Received: 11/29/07 4:30:57 PM									
Project Name:	#0014; 3495 Cas	stro Valley Blvd			Check	dist completed and re	eviewed by:	Ana Venegas				
WorkOrder N°:	0711698	Matrix <u>Soil</u>			Carrie	r: <u>Rob Pringle (M</u>	Al Courier)					
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation						
Chain of custody	y present?		Yes	✓	No 🗆							
Chain of custody	y signed when relinqu	iished and received?	Yes	✓	No 🗆							
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌							
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆							
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗆							
Sampler's name	noted on COC?		Yes	✓	No 🗆							
	Sample Receipt Information											
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗆		NA 🗹					
Shipping contain	ner/cooler in good con	dition?	Yes	✓	No 🗆							
Samples in prop	er containers/bottles?	2	Yes	✓	No 🗆							
Sample containe	ers intact?		Yes	✓	No 🗆							
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌							
		Sample Prese	rvatior	<u>n and Ho</u>	Id Time (HT)) Information						
All samples rece	ived within holding tin	ne?	Yes	\checkmark	No 🗌							
Container/Temp	Blank temperature		Coole	r Temp:	10.4°C		NA 🗆					
Water - VOA via	Ils have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹					
Sample labels checked for correct preservation?				✓	No 🗌							
TTLC Metal - pH acceptable upon receipt (pH<2)?					No 🗆		NA 🗹					

Client contacted:

Date contacted:

Contacted by:

Comments:

	IcCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
P & D Envir	onmental	Client Project ID:	#0014; 3495 Castro	Date Sampled: 11/27	/07-11/2	8/07	
55 Santa Cla	ra, Ste.240	Valley Blvd	Date Received: 11/29/07				
Oakland CA	94610	Client Contact: St	teve Flexser	Date Extracted: 11/29	/07		
		Client P.O.:		Date Analyzed 11/30	/07-12/0	3/07	
	Gasoline Ra	ange (C6-C12) Vola	tile Hydrocarbons as G	asoline*			
Extraction method	SW5030B	Analytical n Matrix	nethods SW8015Cm	DF	11698 % SS		
001 4	MW5.5.0	S S	20	120			
001A	MW5 10 0	3	130	,a	20	120	
002A	Mw5-10.0	8	4.3	a	1	82	
003A	MW5-15.0	S ND				80	
004A	MW5-20.5	S	NI)	1	76	
005A	MW6-4.5	S	15,	a	1	88	
006A	MW6-9.5	S	1200,	b,m	100	112	
007A	MW7-4.5	S	100,1	o,m	10	102	
008A	MW7-9.5	S	NI)	1	81	
009A	MW9-5.5	S	24,	a	1	91	
010A	MW9-10.0	S	11,	a	1	91	
011A	MW9-15.0	S	NI)	1	91	
012A	MW9-20.0	S	NI)	1	85	
013A	MW10-5.5	S	NI)	1	82	
014A	MW10-10.5	S	NI)	1	93	
015A	MW10-15.5	S	NI)	1	85	
016A	MW10-20.5	S	NI)	1	92	
R	eporting Limit for DF =1;	W	NA	A	N	A	
NI	D means not detected at or above the reporting limit	S	1.0)	mg	y/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

	IcCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow F Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 177-252-9262 Fax: 925-252-92	1701 npbell.com 69		
P & D Enviro	onmental	Client Project ID:	#0014; 3495 Castro	Date Sampled: 11/27	/07-11/2	8/07	
55 Santa Clar	ra, Ste.240	valley Bivd		Date Received: 11/29	0/07		
Oakland, CA	94610	Client Contact: St	teve Flexser	Date Extracted: 11/29	/07		
		Client P.O.:		Date Analyzed 11/30	/07-12/0	3/07	
Extraction method	Gasoline Ra	ange (C6-C12) Vola Analytical n	tile Hydrocarbons as G	rder: 07	11698		
Lab ID	Client ID	Matrix	TPH	DF	% SS		
017A	MW11-4.5	S	S ND				
018A	MW11-9.5	S	NI)	1	87	
019A	MW11-14.5	S	NI)	1	84	
Re	eporting Limit for DF =1;	W	NA	A	N	A	
NL a	b means not detected at or bove the reporting limit	S	1.0)	mg	g/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An "When Ouality	nalyti ' Counts"	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bbell.com E-mail: main 377-252-9262 Fax: 92	. 94565-1701 @mccampbell.c 5-252-9269	om	
P & D Environmental		Client Pro	oject ID:	#0014;	3495 Castro	Date Sampled:	11/27/07-1	1/28/07	
55 Santa Clara, Ste.240		Valley Bl	vd			Date Received:	11/29/07		
Oakland CA 04610		Client Co	ontact: St	teve Fle	exser	Date Extracted:	11/29/07	1/29/07	
Oakland, CA 94010		Client P.C).:			Date Analyzed:	12/01/07-12	2/05/07	
		Oxygen	ates and B	BTEX b	y GC/MS*	1			
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	0711698	
Lab ID	07116	98-001A	0711698	698-002A 0711698-003A		0711698-004A			
Client ID	MV	V5-5.0	MW5-	10.0	MW5-15.0	MW5-20.5	Reporting	Limit for	
Matrix		S	S		S	S	- DF	=1	
DF		20	1	1 1		1	s	W	
Compound				Conce	entration		mg/kg	ug/L	
tert-Amyl methyl ether (TAME)	ND	ND<0.10)	ND	ND	0.005	NA	
Benzene		1.9		5	ND	ND	0.005	NA	
t-Butyl alcohol (TBA)	NI	D<1.0	ND		ND	ND	0.05	NA	
1,2-Dibromoethane (EDB)	ND	<0.10	ND	1	ND	ND	0.005	NA	
1,2-Dichloroethane (1,2-DCA)	ND	<0.10	ND	1	ND	ND	0.005	NA	
Diisopropyl ether (DIPE)	ND	<0.10	ND	1	ND	ND	0.005	NA	
Ethylbenzene		3.9	0.01	9	ND	ND	0.005	NA	
Ethyl tert-butyl ether (ETBE)	ND	<0.10	ND)	ND	ND	0.005	NA	
Methyl-t-butyl ether (MTBE)	ND	<0.10	ND)	ND	ND	0.005	NA	
Toluene	ND	< 0.10	0.01	2	ND	ND	0.005	NA	
Xylenes		5.3	0.04	2	ND	ND	0.005	NA	
		Surro	ogate Rec	overies	s (%)				
%SS1:		90	96		91	85			
%SS2:		96	97		94	95			
%SS3:		93	107	7	112	112			
Comments									
* water and vapor samples are reported ir extracts are reported in mg/L, wipe samp	ιμg/L, so les in μg/	il/sludge/so wipe.	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TCI	LP & SPLP	

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Au "When Ouality	nalyti ' Counts"	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92	. 94565-1701 @mccampbell.c 5-252-9269	om		
P & D Environmental		Client Pro	oject ID:	#0014;	3495 Castro	Date Sampled:	11/27/07-1	1/28/07		
55 Santa Clara, Ste.240		Valley B	vd			Date Received:	11/29/07			
Oshland CA 04(10		Client Co	Client Contact: Steve Flexser Date Extracted:					11/29/07		
Oakland, CA 94610		Client P.0	D.:			Date Analyzed:	12/01/07-12	2/05/07		
		Oxygen	ates and E	BTEX b	y GC/MS*					
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	0711698		
Lab ID	07116	98-005A	0711698	-006A	0711698-007A	0711698-008A				
Client ID	MV	V6-4.5	MW6-	-9.5 MW7-4.5 MW7-9.5			Reporting	Limit for		
Matrix		S	S		S	S	DF	=1		
DF		5	200) 10		1	S	W		
Compound				Conce	entration		mg/kg	ug/L		
tert-Amyl methyl ether (TAME)	ND	ND<0.025		1.0	ND<0.050	ND	0.005	NA		
Benzene	0	0.62		1.0	0.066	ND	0.005	NA		
t-Butyl alcohol (TBA)	ND	< 0.25	ND<	10	ND<0.50	ND	0.05	NA		
1,2-Dibromoethane (EDB)	ND	<0.025	ND<	1.0	ND<0.050	ND	0.005	NA		
1,2-Dichloroethane (1,2-DCA)	ND	<0.025	ND<	1.0	ND<0.050	ND	0.005	NA		
Diisopropyl ether (DIPE)	ND	<0.025	ND<	1.0	ND<0.050	ND	0.005	NA		
Ethylbenzene	0	.64	24		0.68	ND	0.005	NA		
Ethyl tert-butyl ether (ETBE)	ND	<0.025	ND<	1.0	ND<0.050	ND	0.005	NA		
Methyl-t-butyl ether (MTBE)	ND	<0.025	ND<	1.0	ND<0.050	ND	0.005	NA		
Toluene	ND	<0.025	3.9		0.30	ND	0.005	NA		
Xylenes	0	.88	120)	2.5	ND	0.005	NA		
		Surre	ogate Rec	overie	s (%)					
%SS1:		93	91		89	86				
%SS2:		94	96		94	95				
%SS3:		99	99		99	109				
Comments										
* water and vapor samples are reported in extracts are reported in mg/L, wipe samp	ι μg/L, so les in μg/	il/sludge/so wipe.	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP		

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell	An	. alyti _{Counts"}	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92	94565-1701 @mccampbell.c 5-252-9269	om
P & D Environmental			Client Pr	oject ID:	#0014;	3495 Castro	Date Sampled:	11/27/07-1	1/28/07
55 Santa Clara, Ste.240			Valley B	lvd			Date Received:	11/29/07	
Oskland CA 94610			Client Co	ontact: St	teve Fle	exser	Date Extracted:	11/29/07	
Oakianu, CA 74010			Client P.O	D.:			Date Analyzed:	12/01/07-12	2/05/07
			Oxygen	ates and B	BTEX b	y GC/MS*			
Extraction Method: SW5030B			Anal	ytical Method	l: SW826	0B	1	Work Order:	0711698
Lat	b ID	07116	98-009A	0711698	-010A	0711698-011A	0711698-012A		
Clien	t ID	MW	V9-5.5	MW9-	10.0	MW9-15.0	MW9-20.0	Reporting	Limit for
Ma	atrix	S S 5 2				S	S	- Dr	=1
	DF		5 2			1	1	S	W
Compound					Conce	entration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)		ND	ND<0.025 ND<0.			ND	ND	0.005	NA
Benzene		0	0.70 0.02		6	ND	ND	0.005	NA
t-Butyl alcohol (TBA)		ND	<0.25	ND<0	.10	ND	ND	0.05	NA
1,2-Dibromoethane (EDB)		ND	<0.025	ND<0.	010	ND	ND	0.005	NA
1,2-Dichloroethane (1,2-DCA)		ND	<0.025	ND<0.	010	ND	ND	0.005	NA
Diisopropyl ether (DIPE)		ND	<0.025	ND<0.	010	ND	ND	0.005	NA
Ethylbenzene		0	1.73	0.17	7	ND	ND	0.005	NA
Ethyl tert-butyl ether (ETBE)		ND	<0.025	ND<0.	010	ND	ND	0.005	NA
Methyl-t-butyl ether (MTBE)		ND	<0.025	ND<0.	010	ND	ND	0.005	NA
Toluene		ND	<0.025	0.03	7	ND	ND	0.005	NA
Xylenes		0	1.89	0.73	3	ND	ND	0.005	NA
			Surr	ogate Rec	overies	s (%)	-		
%SS1:			91	91		89	86		
%SS2:			94	96		95	95		
%SS3:			105	101		108	110		
Comments									
* water and vapor samples are report	ted in	μg/L, so	oil/sludge/so	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP

extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A	nalyti v Counts"	ical, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 92	. 94565-1701 @mccampbell.c 5-252-9269	om
P & D Environmental		Client Pro	oject ID:	#0014;	3495 Castro	Date Sampled:	11/27/07-1	1/28/07
55 Santa Clara, Ste.240		Valley B	lvd			Date Received:	11/29/07	
Onlylond CA 04610		Client Co	ontact: S	teve Fle	exser	Date Extracted:	11/29/07	
Oakland, CA 94010		Client P.O	D.:			Date Analyzed:	12/01/07-12	2/05/07
		Oxygen	ates and E	BTEX b	y GC/MS*			
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	0711698
Lab ID	07116	98-013A	0711698	-014A	0711698-015A	0711698-016A		
Client ID	ID MW10-5.5 MW10-			-10.5	MW10-15.5	MW10-20.5	Reporting	Limit for
Matrix		S S			S	S	. DF	=1
DF		1	1	1		1	S	W
Compound				Conce	entration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)		ND 1)	ND	ND	0.005	NA
Benzene		ND N)	ND	ND	0.005	NA
t-Butyl alcohol (TBA)		ND	ND	1	ND	ND	0.05	NA
1,2-Dibromoethane (EDB)		ND	ND	1	ND	ND	0.005	NA
1,2-Dichloroethane (1,2-DCA)		ND	ND	1	ND	ND	0.005	NA
Diisopropyl ether (DIPE)		ND	ND	1	ND	ND	0.005	NA
Ethylbenzene		ND	ND)	ND	ND	0.005	NA
Ethyl tert-butyl ether (ETBE)		ND	ND)	ND	ND	0.005	NA
Methyl-t-butyl ether (MTBE)		ND	ND)	ND	ND	0.005	NA
Toluene		ND	ND)	ND	ND	0.005	NA
Xylenes		ND	ND)	ND	ND	0.005	NA
		Surre	ogate Rec	overies	s (%)			
%SS1:		86	88		85	79		
%SS2:		96	94		95	96		
%SS3:		111	106	6	112	111		
Comments								
* water and vapor samples are reported in extracts are reported in mg/L, wipe samp	n μg/L, so les in μg/	oil/sludge/so wipe.	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TCI	LP & SPLP

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbel	ll An n Ouality	l alyti Counts"	<u>cal, In</u>	<u>c.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: main 377-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	com
P & D Environmental			Client Pro	oject ID:	#0014;	3495 Castro	Date Sampled:	11/27/07-1	1/28/07
55 Santa Clara, Ste.240			Valley BI	lvd			Date Received:	11/29/07	
Ostend CA 9/610		ļ	Client Co	ontact: St	teve Fle	exser	Date Extracted:	11/29/07	
Udkianu, CA 24010			Client P.C	D.:			Date Analyzed:	12/01/07-12	2/05/07
		<u> </u>	Oxygen	ates and B	BTEX b	y GC/MS*			
Extraction Method: SW5030B			Anal	ytical Method	1: SW826	0B		Work Order:	0711698
L	.ab ID	07116	98-017A	0711698	8-018A 0711698-019A				
Clie	ent ID	MW	11-4.5	MW11	1-9.5 MW11-14.5			Reporting	Limit for
Ν	Лatrix		S S			S	1	Ur	=1
	DF		1	1	1			S	W
Compound					Conce	entration		mg/kg	ug/L
tert-Amyl methyl ether (TAME))]	ND ND			ND		0.005	NA
Benzene		ND NE		,	ND		0.005	NA	
t-Butyl alcohol (TBA)]	ND	ND)	ND		0.05 N	
1,2-Dibromoethane (EDB)]	ND	ND)	ND		0.005	NA
1,2-Dichloroethane (1,2-DCA)		I	ND	ND)	ND		0.005	NA
Diisopropyl ether (DIPE)		I	ND	ND)	ND		0.005	NA
Ethylbenzene]	ND	ND)	ND		0.005	NA
Ethyl tert-butyl ether (ETBE)]	ND	ND)	ND		0.005	NA
Methyl-t-butyl ether (MTBE)		I	ND	ND)	ND		0.005	NA
Toluene		1	ND	ND)	ND		0.005	NA
Xylenes]	ND	ND)	ND		0.005	NA
			Surre	ogate Rec	overies	š (%)			
%SS1:			79	81		79			
%SS2:		 	96	96		95			
%SS3:			109	113	3	111	ļ		
Comments									
* water and vapor samples are reported in mg/L, wip	orted in e samply	μg/L, so es in μg/	il/sludge/so wipe.	lid samples	in mg/kg	g, product/oil/non-a	queous liquid sample	s and all TCl	LP & SPLP

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
P & D Environ	umental	Client Project ID:	#0014; 3495 Castro	Date Sampled: 11/	27/07-11/	28/07	
55 Santa Clara,	, Ste.240	Valley Blvd		Date Received: 11/	Date Received: 11/29/07		
Optional CA 0	4610	Client Contact: S	Steve Flexser Date Extracted: 11/29/07				
Oakialiu, CA 9	4010	Client P.O.:		Date Analyzed 11/	30/07-12/	01/07	
Dies	el Range (C10-C23) & Bunk	er Oil Range (C10+	•) Extractable Hydroc	arbons as Diesel & Bunk	er Oil*		
Extraction method:	SW3550C	Analytical meth	ods: SW8015C	Wor	k Order: 0	711698	
Lab ID	Client ID	Matrix	Matrix TPH(d) TPH(bo)				
0711698-001A	MW5-5.0	S	55,d,b	59	1	113	
0711698-002A	MW5-10.0	S	ND	ND	1	100	
0711698-003A	MW5-15.0	S	ND	ND	1	102	
0711698-004A	MW5-20.5	S	ND	ND	1	99	
0711698-005A	MW6-4.5	S	4.7,d	ND	1	91	
0711698-006A	MW6-9.5	S	240,d,b	180	1	118	
0711698-007A	MW7-4.5	S	38,d,b	32	1	97	
0711698-008A	MW7-9.5	S	ND	ND	1	100	
0711698-009A	MW9-5.5	S	1.2,d	ND	1	100	
0711698-010A	MW9-10.0	S	1.5,d	ND	1	101	
0711698-011A	MW9-15.0	S	ND	ND	1	112	
0711698-012A	MW9-20.0	S	ND	ND	1	112	
0711698-013A	MW10-5.5	S	ND	ND	1	112	
0711698-014A	MW10-10.5	S	ND	ND	1	115	
0711698-015A	MW10-15.5	S	ND	ND	1	114	
0711698-016A	MW10-20.5	S	ND	ND	1	115	
Rep	Reporting Limit for DF =1; W			NA	ug	y/L	
ND ab	means not detected at or ove the reporting limit	S	1.0	5.0	mg	/Kg	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willo Web: www.mcca Telephon	w Pass Road, Pittsburg, CA 945 mpbell.com E-mail: main@mc e: 877-252-9262 Fax: 925-252	65-1701 campbell.con 2-9269	ı	
P & D Environ	imental	Client Project ID:	#0014; 3495 Castro	Date Sampled: 11/	27/07-11/	28/07	
55 Santa Clara,	, Ste.240	valley Bivd		Date Received: 11/	Date Received: 11/29/07		
Oakland, CA 94	4610	Client Contact: S	teve Flexser	Date Extracted: 11/	29/07		
		Client P.O.:		Date Analyzed 11/	/30/07-12/	01/07	
Dies Extraction method:	el Range (C10-C23) & Bunk SW3550C	ter Oil Range (C10+ Analytical meth) Extractable Hydroc ods: SW8015C	arbons as Diesel & Bunk Wor	ter Oil* k Order: 0	711698	
Lab ID	Client ID	Matrix	TPH(d)	TPH(bo)	DF	% SS	
0711698-017A	MW11-4.5	S	ND	1	100		
0711698-018A	MW11-9.5	S	ND	1	99		
0711698-019A	MW11-14.5	S	ND	ND	1	113	
Rep	orting Limit for DF =1;	W	NA	NA NA			
ND 1 ab	means not detected at or ove the reporting limit	S	1.0	5.0	mg	/Kg	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 32	152	Sp	iked Sam	ole ID:	0711698-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	1
, and y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	107	102	5.36	98.7	93.1	5.88	70 - 130	30	70 - 130	30
Benzene	ND	0.050	123	116	5.48	117	110	6.28	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	81.9	84.8	3.49	76.8	78	1.51	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	112	101	11.0	110	101	8.39	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	98.8	95.2	3.72	88.2	85.8	2.71	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	113	106	6.16	105	100	4.93	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	102	95	7.48	96.1	89.8	6.86	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	102	89.6	12.9	96.5	86.6	10.8	70 - 130	30	70 - 130	30
Toluene	ND	0.050	108	104	3.84	102	97.1	4.69	70 - 130	30	70 - 130	30
%SS1:	91	0.050	101	92	9.53	98	93	5.47	70 - 130	30	70 - 130	30
%SS2:	94	0.050	88	85	3.89	86	85	1.34	70 - 130	30	70 - 130	30
%SS3:	112	0.050	88	88	0	91	93	1.65	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exception NONE

BATCH 32152 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0711698-001A	11/27/07 11:05 AM	11/29/07	12/05/07 5:07 PM	0711698-002A	11/27/07 11:10 AM	11/29/07	12/04/07 7:36 PM			
0711698-003A	11/27/07 11:15 AM	11/29/07	12/01/07 9:43 PM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

MS % Rec. 111	MSD % Rec.	MS-MSD % RPD	LCS % Rec.	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
% Rec.	% Rec.	% RPD	% Rec.						(
111	112		/011001	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
	112	0.998	105	101	3.98	70 - 130	30	70 - 130	30
123	126	2.82	120	113	5.98	70 - 130	30	70 - 130	30
92.1	86.4	6.43	77.4	76.6	1.03	70 - 130	30	70 - 130	30
116	106	8.54	110	112	2.01	70 - 130	30	70 - 130	30
99.3	103	3.22	99.8	91.1	9.10	70 - 130	30	70 - 130	30
114	116	1.56	105	100	4.84	70 - 130	30	70 - 130	30
105	104	0.576	99.9	95.6	4.44	70 - 130	30	70 - 130	30
104	102	1.83	102	98.4	3.65	70 - 130	30	70 - 130	30
111	105	5.68	109	108	1.27	70 - 130	30	70 - 130	30
94	97	2.64	104	98	5.56	70 - 130	30	70 - 130	30
88	86	1.93	93	94	1.73	70 - 130	30	70 - 130	30
90	89	0.807	0.0						
	99.3 114 105 104 111 94 88 90	99.3 103 114 116 105 104 104 102 111 105 94 97 88 86 90 89	99.3 103 3.22 114 116 1.56 105 104 0.576 104 102 1.83 111 105 5.68 94 97 2.64 88 86 1.93	99.3 103 3.22 99.8 114 116 1.56 105 105 104 0.576 99.9 104 102 1.83 102 111 105 5.68 109 94 97 2.64 104 88 86 1.93 93	99.3 103 3.22 99.8 91.1 114 116 1.56 105 100 105 104 0.576 99.9 95.6 104 102 1.83 102 98.4 111 105 5.68 109 108 94 97 2.64 104 98 88 86 1.93 93 94	99.3 103 3.22 99.8 91.1 9.10 114 116 1.56 105 100 4.84 105 104 0.576 99.9 95.6 4.44 104 102 1.83 102 98.4 3.65 111 105 5.68 109 108 1.27 94 97 2.64 104 98 5.56 88 86 1.93 93 94 1.73	99.3 103 3.22 99.8 91.1 9.10 70 - 130 114 116 1.56 105 100 4.84 70 - 130 105 104 0.576 99.9 95.6 4.44 70 - 130 104 102 1.83 102 98.4 3.65 70 - 130 111 105 5.68 109 108 1.27 70 - 130 94 97 2.64 104 98 5.56 70 - 130 88 86 1.93 93 94 1.73 70 - 130	99.3 103 3.22 99.8 91.1 9.10 70 - 130 30 114 116 1.56 105 100 4.84 70 - 130 30 105 104 0.576 99.9 95.6 4.44 70 - 130 30 104 102 1.83 102 98.4 3.65 70 - 130 30 111 105 5.68 109 108 1.27 70 - 130 30 94 97 2.64 104 98 5.56 70 - 130 30 88 86 1.93 93 94 1.73 70 - 130 30	99.3 103 3.22 99.8 91.1 9.10 70 - 130 30 70 - 130 114 116 1.56 105 100 4.84 70 - 130 30 70 - 130 105 104 0.576 99.9 95.6 4.44 70 - 130 30 70 - 130 104 102 1.83 102 98.4 3.65 70 - 130 30 70 - 130 111 105 5.68 109 108 1.27 70 - 130 30 70 - 130 94 97 2.64 104 98 5.56 70 - 130 30 70 - 130 88 86 1.93 93 94 1.73 70 - 130 30 70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 32166 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711698-004A	11/27/07 11:30 AM	11/29/07	12/01/07 10:36 PM	0711698-005A	11/28/07 8:40 AM	11/29/07	12/05/07 3:11 AM
0711698-006A	11/28/07 8:50 AM	11/29/07	12/05/07 5:57 PM	0711698-007A	11/27/07 1:35 PM	11/29/07	12/05/07 4:48 AM
0711698-008A	11/27/07 1:40 PM	11/29/07	12/01/07 11:33 PM	0711698-009A	11/28/07 10:10 AM	11/29/07	12/05/07 5:38 AM
0711698-010A	11/28/07 10:20 AM	11/29/07	12/05/07 6:26 AM	0711698-011A	11/28/07 10:25 AM	11/29/07	12/02/07 12:26 AM
0711698-012A	11/28/07 10:35 AM	11/29/07	12/02/07 1:18 AM	0711698-013A	11/27/07 8:55 AM	11/29/07	12/02/07 2:14 AM
0711698-014A	11/27/07 9:05 AM	11/29/07	12/02/07 3:07 AM	0711698-015A	11/27/07 9:10 AM	11/29/07	12/02/07 3:58 AM
0711698-016A	11/27/07 9:15 AM	11/29/07	12/02/07 11:44 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 32	170	Sp	oiked Sam	ple ID:	0711696-01	4A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
, and y to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	100	91.7	8.69	108	119	9.83	70 - 130	30	70 - 130	30
MTBE	ND	0.10	95.8	90.7	5.44	95.5	94.3	1.20	70 - 130	30	70 - 130	30
Benzene	ND	0.10	85.6	90.6	5.64	97.3	100	2.94	70 - 130	30	70 - 130	30
Toluene	ND	0.10	96.6	101	4.28	111	114	2.79	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	95.2	101	5.76	105	109	3.29	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	103	110	6.25	113	120	5.71	70 - 130	30	70 - 130	30
%SS:	92	0.10	85	89	4.94	94	92	2.83	70 - 130	30	70 - 130	30
All target compounds in the Method E	Blank of this	extraction	batch we	ere ND les	ss than the	method I	RL with th	ne following	exceptions:			

NONE

BATCH 32170 SUMMARY										
Sample ID I	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0711698-001A 11	/27/07 11:05 AM	11/29/07	11/30/07 5:10 PM	0711698-002A	11/27/07 11:10 AM	11/29/07	11/30/07 5:44 PM			
0711698-003A 11	/27/07 11:15 AM	11/29/07	11/30/07 5:21 AM	0711698-004A	11/27/07 11:30 AM	11/29/07	11/30/07 6:20 AM			
0711698-005A 1	1/28/07 8:40 AM	11/29/07	11/30/07 9:42 AM	0711698-006A	11/28/07 8:50 AM	11/29/07	11/30/07 7:26 PM			
0711698-007A 1	11/27/07 1:35 PM	11/29/07	11/30/07 9:07 PM	0711698-008A	11/27/07 1:40 PM	11/29/07	11/30/07 10:18 AM			
0711698-009A 11	/28/07 10:10 AM	11/29/07	11/30/07 2:00 AM	0711698-010A	11/28/07 10:20 AM	11/29/07	11/30/07 2:33 AM			
0711698-011A 11	/28/07 10:25 AM	11/29/07	12/03/07 5:43 PM	0711698-012A	11/28/07 10:35 AM	11/29/07	11/30/07 7:28 AM			
0711698-013A 1	1/27/07 8:55 AM	11/29/07	11/30/07 8:34 AM	0711698-014A	11/27/07 9:05 AM	11/29/07	12/03/07 7:15 PM			
0711698-015A 1	1/27/07 9:10 AM	11/29/07	11/30/07 4:45 AM	0711698-016A	11/27/07 9:15 AM	11/29/07	12/03/07 7:45 PM			
0711698-017A 1	11/27/07 2:55 PM	11/29/07	11/30/07 5:50 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

A QA/QC Officer

EPA Method SW8015C	Extra	ction SW	3550C		Bat	chID: 32	171	Sp	iked Sam	ole ID:	0711696-01	4A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Crite MS / MSD RPD LCS/ 70 - 130 30 70 - 70 - 130 30 70 -	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	114	94.2	19.4	105	106	0.838	70 - 130	30	70 - 130	30
%SS:	101	50	100	99	0.653	113	113	0	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 32171 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711698-001A	11/27/07 11:05 AM	11/29/07	11/30/07 5:43 AM	0711698-002A	11/27/07 11:10 AM	11/29/07	11/30/07 6:51 AM
0711698-003A	11/27/07 11:15 AM	11/29/07	11/30/07 7:59 AM	0711698-004A	11/27/07 11:30 AM	11/29/07	11/30/07 3:19 PM
0711698-005A	11/28/07 8:40 AM	11/29/07	11/30/07 5:43 AM	0711698-006A	11/28/07 8:50 AM	11/29/07	11/30/07 6:51 AM
0711698-007A	11/27/07 1:35 PM	11/29/07	11/30/07 7:59 AM	0711698-008A	11/27/07 1:40 PM	11/29/07	11/30/07 4:31 PM
0711698-009A	11/28/07 10:10 AM	11/29/07	11/30/07 8:07 PM	0711698-010A	11/28/07 10:20 AM	11/29/07	11/30/07 9:19 PM
0711698-011A	11/28/07 10:25 AM	11/29/07	11/30/07 1:55 PM	0711698-012A	11/28/07 10:35 AM	11/29/07	11/30/07 3:04 PM
0711698-013A	11/27/07 8:55 AM	11/29/07	11/30/07 4:13 PM	0711698-014A	11/27/07 9:05 AM	11/29/07	11/30/07 5:22 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

EPA Method SW8015C	Extra	ction SW	3550C		Bat	chID: 32	174	Sp	iked Sam	ole ID:	0711698-01	9A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria Acceptance Criteria AS / MSD RPD LCS/LC 70 - 130 30 70 - 13 70 - 130 30 70 - 13	e Criteria (%))
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	103	106	2.69	104	105	1.34	70 - 130	30	70 - 130	30
%SS:	113	50	115	117	2.34	112	112	0	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	CL with th	ne following	exceptions:			

BATCH 32174 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711698-015A	11/27/07 9:10 AM	11/29/07	11/30/07 7:41 PM	0711698-016A	11/27/07 9:15 AM	11/29/07	11/30/07 8:50 PM
0711698-017A	11/27/07 2:55 PM	1 11/29/07	11/30/07 5:43 PM	0711698-018A	11/27/07 3:05 PM	11/29/07	11/30/07 10:30 PM
0711698-019A	11/27/07 1:10 PM	1 11/29/07	12/01/07 2:40 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 32	175	Sp	iked Sam	ple ID:	0711698-01	9A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	0.60	101	85.6	16.6	97.4	108	10.2	70 - 130	30	70 - 130	30
MTBE	ND	0.10	76	76.2	0.208	98.4	102	3.39	70 - 130	30	70 - 130	30
Benzene	ND	0.10	86.5	91.3	5.37	99.1	98.7	0.397	70 - 130	30	70 - 130	30
Toluene	ND	0.10	83.9	87.8	4.58	114	114	0	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	90.6	95.7	5.48	108	108	0	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	86	90	4.55	120	120	0	70 - 130	30	70 - 130	30
%SS:	84	0.10	77	81	5.32	97	91	6.12	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 32175 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711698-018A	11/27/07 3:05 PM	11/29/07	11/30/07 6:56 AM	0711698-019A	11/27/07 1:10 PM	11/29/07	11/30/07 7:28 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711698

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 32	176	Sp	iked Sam	ole ID:	0711727-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	105	108	2.72	105	106	0.499	70 - 130	30	70 - 130	30
Benzene	ND	0.050	119	122	2.76	121	123	2.35	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	83.7	81.3	2.97	80.7	80.4	0.401	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	111	114	2.47	115	114	0.624	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	98.2	101	3.28	93.3	97.3	4.12	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	110	112	1.73	106	109	2.31	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	100	104	3.86	99.2	99.2	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	98.3	106	7.59	98.5	96.6	1.91	70 - 130	30	70 - 130	30
Toluene	ND	0.050	106	104	1.24	116	120	4.01	70 - 130	30	70 - 130	30
%SS1:	73	0.050	94	98	4.76	92	86	6.80	70 - 130	30	70 - 130	30
%SS2:	100	0.050	87	88	0.733	91	90	1.10	70 - 130	30	70 - 130	30
%8S3:	93	0.050	90	89	1.70	91	90	0.917	70 - 130	30	70 - 130	30
All target compounds in the Method F	Rlank of this	extraction	batch we	ere ND les	ss than the	method F	PI with th	ne following	exceptions:			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exception NONE

BATCH 32176 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711698-017A	11/27/07 2:55 PM	11/29/07	12/02/07 12:34 PM	0711698-018A	11/27/07 3:05 PM	11/29/07	12/02/07 1:23 PM
0711698-019A	11/27/07 1:10 PM	11/29/07	12/02/07 2:12 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell A "When Oualit	nalytical, Inc. v Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0014;	3495 Castro	Date Sampled:	12/05/07			
55 Santa Clara, Ste.240	Valley Bivd		Date Received:	12/06/07			
Oakland CA 94610	Client Contact: Steve Flex	xser	Date Reported:	12/12/07			
	Client P.O.:		Date Completed:	12/12/07			

WorkOrder: 0712157

December 12, 2007

Dear Steve:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: #0014; 3495 Castro Valley Blvd,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

(510) 658	-6916		(CHAIN OF CUSIC	DY	RECO	RU	22		PAGE OF
PROJECT NUMBER:		P	ROJECT 349	NAME: 5 Crestro Vcelley Blud		See.	IF/	///	[]	2
SAMPLED BY: (PRI	F(e)	SIGNAT	URE)	Acn Az-	BER OF	E O'S	3//		1	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUMI	TE E	1//	1	PRE	Normal
MW8-4.5	12/5/07	1330	Soil		1	-11	11	;	ice	Tunorand
MW8-9.5		1335			1		+	++		
11000-14.0		0.00								
MW12-4.5	12/3/07	1145	SOIL			4		$\left \right $	+	
MW12 -12.0	L.	1215			1	11				V
					-	+++				
					· ·					
						+++				
						+++				
		1								
						+		++	<u>·</u>	
RELINQUISHED BY:	(SICNATUR	E)	DATE	TIME RECEIVED BY: (SIGNATUR	E)	TOTAL NO. DI	F SAMPLES	6	LAB	ORATORY:
RELINQUISHED BY:	(SIGNATUR	ETT	DATE/	TIME RECEIVED BY: (SIGNATUR	εĒ)	LABORAT	ORY CO	NTACT		ORATORY PHONE NUMBER:
	2	12	6/57	300 (hai 8	~	Angela	Ryde	eliu	(8-	17)252-9262
RELINQUISHED BY:	(SIGNATUR	ED /	BATE	TIME RECEIVED FOR LABORATO	RY BY:	J	ATTACH	ANALY	SIS RE	EQUEST SHEET 5 (V/)NO

McCampbell Analytical, Inc.

	AWA
[JE
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	g, CA 94565-1701 52-9262				W	/orkO	rder:	0712	157	C	lientID): PDE0	0				
				EDF	E	xcel	Γ	Fax		🖊 Email		Hard	Сору	Thir	dParty		
Report to: Steve Flexse	۶r	Email:	lab@pdenvirc	o.com		B	ill to: Acc	counts	Payable	9			Requ	uested	TAT:	5 c	lays
P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610		TEL: ProjectNo: PO:	(510) 658-6916 #0014; 3495 (FAX: (510) 834 Castro Valley Blvd	4-0152		P & 55 Oal	a D Env Santa (kland, (rironme Clara, S CA 946	ntal ite.240 10			Date Date	e Rece e Print	ived: ted:	12/06/2 12/06/2	2007 2007
									Requ	uested	Tests	(See leg	jend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	lold	1	2	3	4	5	6	7	8	9	10	11	12
			0.1			<u> </u>			1						T	1	1

0712157-001	MW8-4.5	Soil	12/5/2007 1:30:00	А	А					
0712157-002	MW8-9.5	Soil	12/5/2007 1:35:00	А	А					
0712157-003	MW8-14.0	Soil	12/5/2007 1:40:00	А	А					
0712157-004	MW12-4.5	Soil	12/5/2007	А	А					
0712157-005	MW12-9.5	Soil	12/5/2007	А	А					
0712157-006	MW12-12.0	Soil	12/5/2007	А	А					

Test Legend:

1 G-MBTEX_S	2 MBTEXOXY-8260B_S	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

Prepared by: Elisa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ental			Date a	and Time Received:	12/6/2007	4:05:29 PM
Project Name:	#0014; 3495 Cas	tro Valley Blvd			Check	list completed and r	eviewed by:	Elisa Venegas
WorkOrder N°:	0712157	Matrix <u>Soil</u>			Carrie	r: <u>Rob Pringle (M</u>	AI Courier)	
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?		Yes	✓	No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		Sa	ample	Receipt	Information	<u>l</u>		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	✓	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Preser	vatior	າ and Ho	ld Time (HT) Information		
All samples rece	ived within holding tin	ne?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	1.7°C			
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pre	eservation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	⊧ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
P & D Envi	ronmental	Client Project ID:	#0014; 3495 Castro	Date Sampled: 12/0)5/07						
55 Santa Cla	ara, Ste.240	valley Bivd		Date Received: 12/0	06/07						
Oakland CA	4 94610	Client Contact: St	teve Flexser	Date Extracted: 12/0	6/07						
		Client P.O.:		Date Analyzed 12/0)7/07						
Extraction metho	Gasoline Ra	ange (C6-C12) Vola Analytical n	ntile Hydrocarbons as G	asoline*	Order: 07	12157					
Lab ID	Client ID	Matrix	ТРН	DF	% SS						
001A	MW8-4.5	S	NI	1	85						
002A	MW8-9.5	S	230,1	o,m	40	108					
003A	MW8-14.0	S	NI	1	83						
004A	MW12-4.5	S	NI	1	86						
005A	MW12-9.5	S	20,b	2	97						
006A	MW12-12.0	s	NI	1	87						
					_						
F	Reporting Limit for DF =1;	W	NA	A	N	IA					
IN	above the reporting limit	S	1.0	mg	mg/Kg						

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An "When Ouality"	nalyti Counts"	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental		Client Pro	oject ID:	#0014;	3495 Castro	Date Sampled:	12/05/07				
55 Santa Clara, Ste.240		Valley B	lvd			Date Received:	12/06/07				
Ookland CA 04610		Client Co	ontact: St	teve Fle	exser	Date Extracted:	12/06/07				
Oakland, CA 94010		Client P.0	D.:			Date Analyzed:	12/08/07				
		Oxygen	ates and B	BTEX b	y GC/MS*						
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B	-	Work Order:	0712157			
Lab ID	07121	57-001A	0712157	-002A	0712157-003A	0712157-004A					
Client ID	MV	V8-4.5	MW8-	9.5	MW8-14.0	MW12-4.5	Reporting	Limit for			
Matrix		S	S		S	S	- DF	=1			
DF		1	4		1	1	S	W			
Compound				Conce	entration		mg/kg	ug/L			
tert-Amyl methyl ether (TAME)		ND	ND<0.	020	ND	ND	0.005	NA			
Benzene		ND	ND<0.	020	ND	ND	0.005	NA			
t-Butyl alcohol (TBA)		ND	ND<0	.20	ND	ND	0.05	NA			
1,2-Dibromoethane (EDB)		ND	ND<0.	020	ND	ND	0.005	NA			
1,2-Dichloroethane (1,2-DCA)		ND	ND<0.	020	ND	ND	0.005	NA			
Diisopropyl ether (DIPE)		ND	ND<0.	020	ND	ND	0.005	NA			
Ethylbenzene		ND	0.62	2	ND	ND	0.005	NA			
Ethyl tert-butyl ether (ETBE)		ND	ND<0.	020	ND	ND	0.005	NA			
Methyl-t-butyl ether (MTBE)		ND	ND<0.	020	ND	ND	0.005	NA			
Toluene		ND	ND<0.	020	ND	ND	0.005	NA			
Xylenes		ND	0.03	0	ND	ND	0.005	NA			
		Surr	ogate Rec	overie	s (%)						
%SS1:		93	95		94	96					
%SS2:	95		96	97							
%SS3:	92		108	112							
Comments	~	.1/1 1 /	1.1 1	. ,.	1		1.11.07.07	D 0 CDI F			

* water and vapor samples are reported in µg/L, sof/studge/sofid samples in mg/kg, product/of/non-aqueous fiquid samples and all TCLP & s extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

McCampbell Ar	alyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental		Client Pro	oject ID:	#0014;	3495 Castro	Date Sampled:	12/05/07				
55 Santa Clara, Ste.240		Valley Bl	vd			Date Received:	12/06/07				
0-111-CA-04(10		Client Co	ontact: St	eve Fle	exser	Date Extracted:	12/06/07				
Oakland, CA 94610		Client P.C	D.:			Date Analyzed:	12/08/07				
		Oxygen	ates and B	TEX b	v GC/MS*						
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	0712157			
Lab ID	07121	57-005A	0712157-	-006A							
Client ID MW12-9.5 MW				12.0			Reporting	, Limit for			
Matrix		S	S				- DF	/ =1			
DF 1							S	W			
Compound				Conce	entration		mg/kg	ug/L			
tert-Amyl methyl ether (TAME)		ND	ND				0.005	NA			
Benzene]	ND	ND				0.005	NA			
t-Butyl alcohol (TBA)		ND	ND				0.05	NA			
1,2-Dibromoethane (EDB)		ND	ND				0.005	NA			
1,2-Dichloroethane (1,2-DCA)	1	ND	ND				0.005	NA			
Diisopropyl ether (DIPE)		ND	ND				0.005	NA			
Ethylbenzene		ND	ND				0.005	NA			
Ethyl tert-butyl ether (ETBE)]	ND	ND				0.005	NA			
Methyl-t-butyl ether (MTBE)		ND	ND				0.005	NA			
Toluene		ND	ND				0.005	NA			
Xylenes		ND	ND				0.005	NA			
		Surro	ogate Rec	overies	s (%)						
%SS1:		89	91								
%SS2:		96	96								
%SS3:		103	110)							
Comments											
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	μg/L, so es in μg/	il/sludge/so wipe.	lid samples	in mg/k	g, product/oil/non-a	iqueous liquid sample	es and all TC	LP & SPLP			

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u> </u>	Campbell Analyti "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environ	mental	Client Project ID:	#0014; 3495 Castro	Date Sampled: 12/	/05/07					
55 Santa Clara,	Ste.240	Valley Blvd		Date Received: 12/	Date Received: 12/06/07					
Oakland CA 94	4610	Client Contact: St	teve Flexser	Date Extracted: 12/	Date Extracted: 12/06/07					
ouliulu, erry		Client P.O.:		Date Analyzed 12/	/08/07					
Extraction method: S	Diesel (C10-23) and Oil (C	C10+) Range Extrac Analytical meth	table Hydrocarbons as ods: SW8015C	s Diesel and Bunker Oil [*] Wor	* 'k Order: 0'	712157				
Lab ID	Client ID	Matrix	TPH(d)	TPH(bo)	DF	% SS				
0712157-001A	MW8-4.5	S	ND	ND	1	97				
0712157-002A	MW8-9.5	S	59,d,b	57	1	114				
0712157-003A	MW8-14.0	S	ND	ND	1	117				
0712157-004A	MW12-4.5	S	ND	ND	1	117				
0712157-005A	MW12-9.5	S	5.4,d,b	7.1	1	117				
0712157-006A	MW12-12.0	S	ND	ND	1	117				
Repo	porting Limit for DF =1; nears not detected at or	W	NA	NA	ug	ı/L				
abc	ove the reporting limit	S	1.0	5.0	mg/Kg					

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0712157

EPA Method SW8015C	Extraction SW3550C					BatchID: 32311				Spiked Sample ID: 0712110-002A				
Analyte	Sample Spiked MS MSD			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)					
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(d)	ND	20	94.7	99.7	5.16	98.1	99	0.909	70 - 130	30	70 - 130	30		
%SS:	91	50	99	92	7.34	91	93	1.95	70 - 130	30	70 - 130	30		
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	CL with th	e following	exceptions:					

			BATCH 32311 SL	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712157-001A	12/05/07 1:30 PM	12/06/07	12/08/07 2:36 PM	0712157-002A	12/05/07 1:35 PM	12/06/07	12/08/07 3:47 PM
0712157-003A	12/05/07 1:40 PM	12/06/07	12/08/07 8:14 AM	0712157-004A	12/05/07 11:45 AM	12/06/07	12/08/07 9:22 AM
0712157-005A	12/05/07 11:55 AM	12/06/07	12/08/07 10:29 AM	0712157-006A	12/05/07 12:15 PM	12/06/07	12/08/07 4:52 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0712157

EPA Method SW8015Cm	Extra	ction SW	5030B		Ba	tchID: 32	337	Sp	iked Sam	ple ID:	0712155-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
7 thuy to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	0.60	109	114	5.06	115	107	6.89	70 - 130	30	70 - 130	30
MTBE	ND	0.10	90.2	99.8	10.2	99.4	87	13.3	70 - 130	30	70 - 130	30
Benzene	ND	0.10	94.7	96.6	1.94	96.5	92.3	4.48	70 - 130	30	70 - 130	30
Toluene	ND	0.10	107	109	2.00	111	107	3.42	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	100	105	4.40	104	101	3.14	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	110	113	2.99	113	113	0	70 - 130	30	70 - 130	30
%SS:	76	0.10	91	93	1.84	93	90	3.70	70 - 130	30	70 - 130	30
All target compounds in the Method H NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method I	RL with th	ne following	exceptions:			

BATCH 32337 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712157-001A	12/05/07 1:30 PM	12/06/07	12/07/07 2:45 AM	0712157-002A	12/05/07 1:35 PM	12/06/07	12/07/07 4:17 AM
0712157-003A	12/05/07 1:40 PM	12/06/07	12/07/07 5:41 PM	0712157-004A	12/05/07 11:45 AM	12/06/07	12/07/07 12:42 AM
0712157-005A	12/05/07 11:55 AM	12/06/07	12/07/07 6:12 PM	0712157-006A	12/05/07 12:15 PM	12/06/07	12/07/07 1:43 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 32	340	Sp	iked Sam	ole ID:	0712157-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	111	106	4.01	99.8	96.7	3.09	70 - 130	30	70 - 130	30
Benzene	ND	0.050	126	120	4.86	113	109	3.41	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	83.8	82.5	1.63	76.7	76.7	0	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	111	108	2.92	100	96.5	3.64	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	105	102	2.74	96.2	92.7	3.63	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	106	105	0.474	100	96.1	3.99	70 - 130	30	70 - 130	30
Toluene	ND	0.050	109	111	1.65	111	108	2.37	70 - 130	30	70 - 130	30
%SS1:	93	0.050	107	101	5.02	98	96	2.59	70 - 130	30	70 - 130	30
%SS2:	96	0.050	90	91	1.78	93	93	0	70 - 130	30	70 - 130	30
%SS3:	110	0.050	88	89	0.506	89	90	0.813	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

	BATCH	32340	SUMMARY
--	-------	-------	---------

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712157-001A	12/05/07 1:30 PM	12/06/07	12/08/07 2:06 AM	0712157-002A	12/05/07 1:35 PM	12/06/07	12/08/07 6:35 PM
0712157-003A	12/05/07 1:40 PM	12/06/07	12/08/07 3:42 AM	0712157-004A	12/05/07 11:45 AM	12/06/07	12/08/07 4:29 AM
0712157-005A	12/05/07 11:55 AM	12/06/07	12/08/07 5:18 AM	0712157-006A	12/05/07 12:15 PM	12/06/07	12/08/07 6:06 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell A	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0014;	Xtra Oil/ Castro	Date Sampled:	12/13/07-12/14/07		
55 Santa Clara, Ste.240		Date Received:	12/14/07			
Oakland CA 94610	Client Contact: Steve Car	mack	Date Reported:	12/21/07		
	Client P.O.:		Date Completed:	12/21/07		

WorkOrder: 0712503

December 21, 2007

Dear Steve:

Enclosed within are:

- 1) The results of the 8 analyzed samples from your project: #0014; Xtra Oil/ Castro Valley,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

CHAIN OF CUSTODY RECORD P & D ENVIRONMENTAL, INC. 55 Santa Clara Ave. Suite 240 Oakland, CA 94610 (510) 658-6916 OF PAGE PROJECT NUMBER: PROJECT NAME: AWAL YSIS(ES); PRESERVATIVE Xtra Oil/ Castro Valley 0014 NUMBER OF CONTAINERS SAMPLED BY: (PRINTED AND SIGNATURE) Muth REMARKS Store Carmack 2 SAMPLE NUMBER SAMPLE LOCATION 48. DATE TIME TYPE 12/13/07/11/5 1420 MW 5 7 ICE Normal Turnessay Tic MW6 1205 1415 MW7 7 1545 MW8 MW9 1250 X mw10 1010 V 12/14/07 1015 7 MWII 12/13/07 V 1515 MW12 7 ICE/A GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT. DECHLORINATED IN LAB PRESERVED IN LAB VOAS MEALS COLLER PRESERVATION RELINQUISHED BY: (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) TOTAL NO. OF SAMPLES TIME 8 LABORATORY: (THIS SHIPHOIT) McCampbell Analytical TOTAL NO. OF CONTAINERS (THIS SHIPMENT) 56 RELINDUISHED BY: (SIGNATURE) DATE TIME LABORATORY CONTACT: LABORATORY PHONE NUMBER: RECEIVED BY: (SIGNATURE) 45 (877)252-9262 Angela Rydelins RELINQUISHED BY: (SICNATURE) DATE TIME RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET ATTACHED: ()YTS (Y)NO (SIGNATURE) Results and billing to: REMARKS: All bottles preserved m/ HCL except1 narrow necked amber Liter P&D Environmental, Inc. lob@pdenviro.com which is 6-MWII

McCampbell Analytical, Inc.

	1	JW)
6	.)	Y
1	-4	-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbur (925) 2	rg, CA 94565-1701 52-9262					Work	Order:	0712	503	(ClientID): PDF	O				
				EDF		Excel	[Fax		🖌 Email		Haro	dCopy	🗌 Thi	rdParty		
Report to: Steve Carm P & D Envir 55 Santa Cl Oakland, C/	nack onmental lara, Ste.240 A 94610	Email: TEL: ProjectNo: PO:	lab@pdenviro (510) 658-6916 #0014; Xtra C	o.com 5 FAX: 510-8: Dil/ Castro Valley	34-0152	2	Bill to: Ac Xtr 23 Ala coi	counts a Oil 07 Paci ameda, nstanza	Receive ific Aver CA 945 a.rodrigu	eable nue 501 uez@p	denviro	.com	Req Dat Dat	uested e Rece e Prin	TAT: ?ived: ted:	5 (12/14/ 12/14/	days /2007 /2007
									Requ	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0712503-001	MW-5		Water	12/13/07 11:15:00		А	В										
0712503-002	MW6		Water	12/13/07 12:05:00		А	В										
0712503-003	MW7		Water	12/13/07 2:15:00		Α	В										
0712503-004	MW8		Water	12/13/07 3:45:00		Α	В										
0712503-005	MW9		Water	12/13/07 12:50:00		А	В										
0712503-006	MW10		Water	12/13/07 10:10:00		А	В										
0712503-007	MW11		Water	12/14/07 10:15:00		А	В										
0712503-008	MW12		Water	12/13/07 3:15:00		А	В										

Test Legend:

1 G-MBTEX_W	2 MBTEXOXY-8260B_W	3
6	7	8
11	12	

4	
9	

5				
10	1			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ental		Date a	Date and Time Received: 12/14/07 7:47:50 PM				
Project Name:			Check	klist completed and r	eviewed by:	Ana Venegas			
WorkOrder N°:	0712503	Matrix <u>Water</u>			Carrie	r: <u>Rob Pringle (M</u>	IAI Courier)		
		Chair	n of Cu	stody (C	OC) Informa	ation			
Chain of custody	/ present?		Yes		No 🗆				
Chain of custody	/ signed when relinqu	ished and received?	Yes	\checkmark	No 🗆				
Chain of custody	agrees with sample	labels?	Yes	V	No 🗌				
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆				
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗆				
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆				
		c	amplo	Pacaint	Information				
		<u> </u>	ampie	Keceipt		<u>.</u>	_		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No		NA 🗹		
Shipping contain	er/cooler in good cond	dition?	Yes	\checkmark	No 🗆				
Samples in prop	er containers/bottles?		Yes	✓	No 🗆				
Sample containe	ers intact?		Yes	\checkmark	No 🗆				
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌				
		Sample Prese	rvatio	n and Ho	ld Time (HT) Information			
		<u></u>			<u> </u>	<u>,</u>			
All samples rece	ived within holding tim	ne?	Yes	\checkmark	No 🛄				
Container/Temp	Blank temperature		Coole	er Temp:	3.4°C		NA 🗆		
Water - VOA vials have zero headspace / no bubbles?			Yes	✓	No 🗆	No VOA vials subm	itted		
Sample labels checked for correct preservation?			Yes	✓	No 🗌				
TTLC Metal - pH acceptable upon receipt (pH<2)?			Yes		No 🗆		NA 🗹		

Client contacted:

Date contacted:

Contacted by:

Comments:

	IcCampbell Analyti "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Envir	onmental	Client Project ID:	#0014; Xtra Oil/	Date Sampled: 12/13/07-12/2		4/07		
55 Santa Clara, Ste.240		Castro Valley		Date Received: 12/14/07				
Oakland, CA 94610		Client Contact: St	eve Carmack	Date Extracted: 12/17/07-12/19/07				
		Client P.O.:		Date Analyzed 12/17/07-12/19/07				
Extraction method	Gasoline Ra SW5030B	ange (C6-C12) Vola Analytical n	tile Hydrocarbons as G	asoline* Work C	order: 07	12503		
Lab ID	Client ID	Matrix	ТРН	DF	% SS			
001A	MW5	W	110	1	105			
002A	MW6	W	66,00	100	98			
003A	MW7	W	NI	1	103			
004A	MW8	W	6200	0,a	10	114		
005A	MW9	W	NI)	1	97		
006A	MW10	W	NI)	1	100		
007A	MW11	W	NI)	1	106		
008A	MW12	W	320.	1	102			
Reporting Limit for DF =1;		W	50)	μ	g/L		
ND means not detected at or above the reporting limit		S	NA	4	N	A		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

McCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environmental	Client Project ID: #0014; Xtra Oil/			Date Sampled:	12/13/07-12	2/14/07				
55 Santa Clara, Ste.240		Castro Valley			Date Received: 12/14/07					
Oshland CA 04(10		Client Contact: Steve Carmack			Date Extracted: 12/18/07					
Oakland, CA 94610		Client P.O.:				Date Analyzed:	Analyzed: 12/18/07			
Oxygenates and BTEX by GC/MS*										
Extraction Method: SW5030B		Analytical Method: SW8260B				Work Order:	0712503			
Lab ID	07125	503-001B 0712503-		-002B	0712503-003B	0712503-004B				
Client ID	Ν	MW5 MW		6 MW7		MW8	Reporting Limit for			
Matrix		W			W	W	DF =1			
DF	1		250		1	10	S	W		
Compound	i			Concentration			ug/kg	μg/L		
tert-Amyl methyl ether (TAME)		ND	ND<120		ND	ND<5.0	NA	0.5		
Benzene		5.3	790	0	ND	57	NA	0.5		
t-Butyl alcohol (TBA)		ND	ND<1200		14	ND<50	NA	5.0		
1,2-Dibromoethane (EDB)		ND	ND<1	20	ND	ND<5.0	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND		ND<120		ND	ND<5.0	NA	0.5		
Diisopropyl ether (DIPE)	ND		ND<120		ND	ND<5.0	NA	0.5		
Ethylbenzene	ND		2600		ND	160	NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND		ND<120		ND	ND<5.0	NA	0.5		
Methyl-t-butyl ether (MTBE)	4.0		ND<120		9.3	11	NA	0.5		
Toluene	(0.50		0	ND	ND<5.0	NA	0.5		
Xylenes		5.1		16,000 0.83		18	NA	0.5		
Surrogate Recoveries (%)										
%SS1: 107		107	104		108	104				
%SS2:		96 96		95		98				
%SS3:	102		104	4 102		104				
Comments										
* water and vapor samples are reported in extracts are reported in mg/L, wipe samp	n μg/L, sc les in μg/	il/sludge/so wipe.	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP		

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0014; Xtra Oil/			Date Sampled:	12/13/07-12	2/14/07			
55 Santa Clara, Ste.240		Castro Valley			Date Received: 12/14/07				
Oshland CA 04(10		Client Co	ontact: St	teve Ca	rmack	Date Extracted: 12/18/07			
Oakland, CA 94010		Client P.O.:				Date Analyzed: 12/18/07			
Oxygenates and BTEX by GC/MS*									
Extraction Method: SW5030B		Analytical Method: SW3			0B	Work Order: 0712503			
Lab ID	07125	03-005B	0712503	-006B	0712503-007B	0712503-008B			
Client ID		MW9 MW1		10 MW11		MW12	Reporting Limit for		
Matrix		W			W	W)F =1	
DF	1		1		1	1	S	W	
Compound		Con			entration	ug/kg	μg/L		
tert-Amyl methyl ether (TAME)		ND	ND		ND	ND	NA	0.5	
Benzene			ND		ND	ND	NA	0.5	
t-Butyl alcohol (TBA)		ND	ND		ND	ND	NA	5.0	
1,2-Dibromoethane (EDB)		ND	ND		ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND		ND		ND	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND		ND		ND	ND	NA	0.5	
Ethylbenzene	ND		1.5		ND	ND	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND		ND		ND	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	ND		1.9		21	11	NA	0.5	
Toluene		ND	ND		ND	ND	NA	0.5	
Xylenes		4.5			ND	ND	NA	0.5	
Surrogate Recoveries (%)									
%SS1:	SS1: 107		107		108	104			
%SS2:		99		98 99		97			
%SS3:	103		101	101 103		104			
Comments									
* water and vapor samples are reported in extracts are reported in mg/L, wipe samp	n μg/L, sc les in μg/	oil/sludge/so wipe.	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TCI	LP & SPLP	

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Angela Rydelius, Lab Manager

<u> <u>Mc</u> <u>Mc</u> </u>	Campbell Analyti "When Ouality Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environr	nental	Client Project ID:	#0014; Xtra Oil/	Date Sampled: 12/	Date Sampled: 12/13/07-12/14/07		
55 Santa Clara, Ste.240		Castro Valley		Date Received: 12/	Date Received: 12/14/07		
Oakland, CA 94610		Client Contact: St	teve Carmack	Date Extracted: 12/	Date Extracted: 12/14/07		
		Client P.O.:		Date Analyzed 12/	Date Analyzed 12/18/07-12/20/07		
Extraction method: S	Diesel (C10-23) and Oil (C18+) Range Extrac	etable Hydrocarbons a	ns Diesel and Motor Oil*	Diesel and Motor Oil*		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0712503-001A	MW5	W	ND	ND	1	120	
0712503-002A	MW6	W	6200,d	ND	1	108	
0712503-003A	MW7	W	ND	ND	1	116	
0712503-004A	MW8	W	1500,d	ND	1	118	
0712503-005A	MW9	W	ND	ND	1	120	
0712503-006A	MW10	W	ND	ND	1	119	
0712503-007A	MW11	W	ND	ND	1	108	
0712503-008A MW12		W	200,d	ND	1	103	
Reporting Limit for DF =1;		W	50	250	250 μg/I		
above the reporting limit		S	NA	NA	NA mg/		

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		Ba	tchID: 32	581	Sp	oiked Sam	ole ID:	0712485-00	2A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	103	107	4.15	96.9	105	7.82	70 - 130	30	70 - 130	30
MTBE	ND	10	106	111	4.19	104	114	8.83	70 - 130	30	70 - 130	30
Benzene	ND	10	98.6	93.9	4.86	86	94	8.91	70 - 130	30	70 - 130	30
Toluene	ND	10	110	104	5.06	102	110	7.77	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	107	102	5.17	103	111	7.38	70 - 130	30	70 - 130	30
Xylenes	ND	30	113	110	2.99	113	120	5.71	70 - 130	30	70 - 130	30
%SS:	100	10	95	90	5.12	95	95	0	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	e following	exceptions:			

BATCH 32581 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-001A	12/13/07 11:15 AM	12/18/07	12/18/07 6:45 AM	0712503-002A	12/13/07 12:05 PM	12/19/07	12/19/07 9:59 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 32	2583	Sp	iked Sam	ple ID:	0712491-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	128	110	15.0	103	99.2	4.14	70 - 130	30	70 - 130	30
MTBE	ND	10	86.6	92	5.97	91.2	109	17.9	70 - 130	30	70 - 130	30
Benzene	ND	10	90.5	93.4	3.15	84.3	87.6	3.87	70 - 130	30	70 - 130	30
Toluene	ND	10	96	98.5	2.64	84.3	85.6	1.50	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	101	104	2.43	99.1	84.9	15.4	70 - 130	30	70 - 130	30
Xylenes	ND	30	115	119	2.82	96.7	96.7	0	70 - 130	30	70 - 130	30
%SS:	96	10	89	91	2.70	93	89	4.17	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 32583 SUMMARY

Sample ID	Date Sampled Date Extracted		Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-003A	12/13/07 2:15 PM	12/18/07	12/18/07 7:20 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		Ba	tchID: 32	590	Sp	biked Sam	ple ID:	0712552-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	83.6	110	27.0	99.6	100	0.913	70 - 130	30	70 - 130	30
MTBE	ND	10	95.9	100	4.67	98.6	96.6	2.00	70 - 130	30	70 - 130	30
Benzene	ND	10	97.7	87.1	11.5	100	97.9	2.58	70 - 130	30	70 - 130	30
Toluene	ND	10	103	103	0	104	104	0	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	106	104	1.91	106	108	2.37	70 - 130	30	70 - 130	30
Xylenes	ND	30	96.7	113	15.9	96.7	96.7	0	70 - 130	30	70 - 130	30
%SS:	99	10	108	88	20.6	113	111	1.33	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method R	L with th	e following	exceptions:			

BATCH 32590 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-004A	12/13/07 3:45 PM	12/17/07	12/17/07 4:16 PM	0712503-005A	12/13/07 12:50 PM	12/18/07	12/18/07 8:29 AM
0712503-006A	12/13/07 10:10 AM	12/18/07	12/18/07 9:03 AM	0712503-007A	12/14/07 10:15 AM	12/18/07	12/18/07 9:38 AM
0712503-008A	12/13/07 3:15 PM	12/17/07	12/17/07 10:22 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

NONE

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 32	577	Sp	iked Sam	ole ID:	0712483-00	1C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	100	102	1.62	104	100	4.38	70 - 130	30	70 - 130	30
Benzene	ND	10	113	115	1.60	124	116	6.21	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	74	74.4	0.526	72.6	77.7	6.74	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	112	112	0	108	99.8	8.12	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	89.6	93.5	4.32	94.4	89.2	5.76	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	103	106	2.58	110	103	6.53	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	93.4	96.9	3.70	99.4	92.2	7.52	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	90.9	94.4	3.73	98	90.3	8.21	70 - 130	30	70 - 130	30
Toluene	ND	10	108	104	3.51	109	102	7.05	70 - 130	30	70 - 130	30
%SS1:	117	10	88	91	3.84	99	94	4.43	70 - 130	30	70 - 130	30
%SS2:	96	10	86	87	0.487	91	87	3.96	70 - 130	30	70 - 130	30
%SS3:	103	10	83	84	0.130	84	85	0.564	70 - 130	30	70 - 130	30
All target compounds in the Method E	Blank of this	extraction	batch we	re ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 32577 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-001B	12/13/07 11:15 AM	12/18/07	12/18/07 10:56 AM	0712503-002B	12/13/07 12:05 PM	12/18/07	12/18/07 12:27 PM
0712503-003B	12/13/07 2:15 PM	12/18/07	12/18/07 11:41 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NONE

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 32	582	Sp	iked Sam	ole ID:	0712485-00	7B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	101	106	5.61	110	102	7.35	70 - 130	30	70 - 130	30
Benzene	ND	10	115	121	4.59	124	116	6.76	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	78	79.2	1.56	76.6	74.7	2.47	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	108	113	4.10	115	105	9.47	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	92.4	98.2	6.07	102	92.2	10.6	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	105	113	7.70	114	104	8.58	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	94.3	102	7.97	103	94.9	8.46	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	89.1	101	12.7	103	92.1	11.3	70 - 130	30	70 - 130	30
Toluene	ND	10	108	105	2.95	108	103	4.71	70 - 130	30	70 - 130	30
%SS1:	112	10	87	101	14.7	104	96	8.33	70 - 130	30	70 - 130	30
%SS2:	99	10	84	87	3.81	90	87	2.97	70 - 130	30	70 - 130	30
%SS3:	99	10	82	84	2.17	85	85	0	70 - 130	30	70 - 130	30
All target compounds in the Method E	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 32582 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-004B	12/13/07 3:45 PM	12/18/07	12/18/07 1:39 AM	0712503-005B	12/13/07 12:50 PM	12/18/07	12/18/07 2:24 AM
0712503-006B	12/13/07 10:10 AM	12/18/07	12/18/07 3:09 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 32	586	Sp	iked Sam	ole ID:	0712499-00	7B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND<1.0	10	100	104	4.14	101	105	3.86	70 - 130	30	70 - 130	30
Benzene	ND<1.0	10	113	118	4.98	118	119	0.824	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND<10	50	76.2	76.5	0.398	74.6	78.8	5.48	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND<1.0	10	110	117	5.77	107	116	7.75	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND<1.0	10	90.8	97.1	6.70	90.5	97.8	7.71	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<1.0	10	103	111	6.80	106	107	1.39	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<1.0	10	93.2	99.8	6.81	95.2	101	5.64	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND<1.0	10	90.3	95.9	6.03	90.7	99	8.83	70 - 130	30	70 - 130	30
Toluene	ND<1.0	10	107	110	2.92	109	110	0.733	70 - 130	30	70 - 130	30
%SS1:	92	10	87	91	3.64	93	96	3.46	70 - 130	30	70 - 130	30
%SS2:	98	10	86	86	0	87	89	2.07	70 - 130	30	70 - 130	30
%SS3:	95	10	84	84	0	85	84	0.445	70 - 130	30	70 - 130	30
All target compounds in the Method	Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	e following	exceptions:			

BATCH 32586 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-007B	12/14/07 10:15 AM	12/18/07	12/18/07 3:54 AM	0712503-008B	12/13/07 3:15 PM	12/18/07	12/18/07 4:39 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

QA/QC Officer

EPA Method: SW8015C Extraction: SW3510C					Bat	chID: 32	564	Sp	piked Sample ID: N/A				
Analyte	Sample Spiked MS MSD			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(d)	N/A	1000	N/A	N/A	N/A	113	112	1.15	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	119	118	1.36	N/A	N/A	70 - 130	30	
All target compounds in the Method Blar NONE	nk of this extr	action bate	h were NI) less than	the method	l RL with	the follow	ing exception	IS:				

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0712503-001A	12/13/07 11:15 AM	12/14/07	12/18/07 9:40 PM	0712503-002A	12/13/07 12:05 PM	12/14/07	12/18/07 8:32 PM
0712503-003A	12/13/07 2:15 PM	12/14/07	12/19/07 3:17 AM	0712503-004A	12/13/07 3:45 PM	12/14/07	12/19/07 4:24 AM
0712503-005A	12/13/07 12:50 PM	12/14/07	12/19/07 5:31 AM	0712503-006A	12/13/07 10:10 AM	12/14/07	12/19/07 6:38 AM
0712503-007A	12/14/07 10:15 AM	12/14/07	12/20/07 1:43 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0712503

EPA Method: SW8015C Extraction: SW3510C					BatchID: 32588 Spiked Sample ID: N/A							
Analyte	Sample Spiked M		MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	criteria (%)	
, noryce	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	113	112	1.69	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	116	117	1.43	N/A	N/A	70 - 130	30
All target compounds in the Method Blar NONE	nk of this extr	action bate	h were NI	O less than	the method	l RL with	the follow	ving exception	S:			

BATCH 32588 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0712503-008A	12/13/07 3:15 PM	12/14/07	12/20/07 6:20 AM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0014	Date Sampled: 11/28/07
55 Santa Clara, Ste.240		Date Received: 11/29/07
Oakland CA 94610	Client Contact: Paul King	Date Reported: 12/05/07
	Client P.O.:	Date Completed: 12/05/07

WorkOrder: 0711709

December 05, 2007

Dear Paul:

Enclosed are:

- 1). the results of 1 analyzed sample from your **#0014 project**,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius, Lab Manager

PROJECT NUMBER:	-6916	PI	ROJECT	NAME			370		3	7	77	PAGE OF
OOIY SAMPLED BY: (PRI Steven	NTED AND Fley	SIGNAT	URE)	Cestro Valley Blud Steen Flegen	ABER OF TAINERS	ANAL YSISIC	1403	13-1-	1 me		ESERUI	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUN	1ª	ETC.	3	/	1	1 4	
Comp A	11/28/07	1400	S		4	Х	X	X		2	TUE	Normal Turn Aron
· · ·						·	-		-	-		
								1	1	-		
						$\left \right $	+	+	+	-		
				ICE/10_6.4		-	-	-	-			
	•			GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB	APPRO CONTA PRESE	RIA NER	E 5 IN	AB				
				PRESERVATION	METAL	8 C	THER	+				
							+	+		·n.1	<u> </u>	
ELINQUISHED BY:	SIGNATURE	in A	DATE	TIME RECEIVED BY: (SIGNATURE)	2	TOTAL TOTAL	NO. 1	OF SAM	PLES) (AINOIS	14	LABO	accumpbell
ELINDUISHED BY:	(SIGNATURE	× 11	DATE	TIME RECEIVED BY: (SIGNATURE)		LAB	ORA	TORY	CON	NTAC	T: LABO	RATORY PHONE NUMBER:
ELINQUISHED BY:	(SIGNATURE	.)	DATE	TIME RECEIVED FOR LABORATORY	BY:	1		SAM	PLE.	ANA	YSIS RE	OUEST SHEET

· · ·

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORE)
-------------------------	---

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	order: 071170	9 Clier	ntID: PDEO		
			EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:				В	ill to:		Req	uested TAT:	5 days
Paul King	Email:	lab@pdenviro.co	m		Accounts Pa	yable			
P & D Environmental	TEL:	(510) 658-6916	FAX: 510-834	-0152	P & D Enviro	nmental			
55 Santa Clara, Ste.240	ProjectNo:	#0014			55 Santa Cla	ara, Ste.240	Dat	e Received:	11/29/2007
Oakland, CA 94610	PO:				Oakland, CA	94610	Dat	e Printed:	11/29/2007

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date H	Hold	1	2	3	4	5	6	7	8	9	10	11	12
						1										-
0711709-001	Comp A	Soil	11/28/07 2:00:00		А	Α	Α									

Test Legend:

1	CAM17MS_S		2 G-MBTEX_S] [3	MBTEXOXY-8260B_S	4	5
6			7] [8		9	10
11		1	2]				

The following SampID: 001A contains testgroup.

Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Ana "When Ouality Co	alytical, In	<u>c.</u>	1534 Willow I Web: www.mccamp Telephone: 5	Pass Road, Pittsburg, CA obell.com E-mail: main 377-252-9262 Fax: 92	94565-1701 @mccampbell.c 5-252-9269	com				
P & D Environmental	Client Pr	oject ID:	#0014	Date Sampled:	11/28/07					
55.9 4 61 94 949				Date Received:	11/29/07					
55 Santa Clara, Ste.240	Client Co	ontact: Pa	ul King	Date Extracted:	11/29/07					
Oakland, CA 94610	Client P.O	D.:		Date Analyzed	11/30/07					
	C	AM / CCF	R 17 Metals*							
Lab ID	0711709-001A									
Client ID	Comp A				ND means r above the re	nit for DF =1; not detected porting limit				
Matrix	S				S	W				
Extraction Type	TOTAL				mg/Kg	mg/L				
Analvtical Method: 6020A	ICP-N Extra	IS Metals, action Method	Concentration*		Work Order:	0711709				
Dilution Factor	1				1	1				
Antimony	ND				0.5	NA				
Arsenic	5.3				0.5	NA				
Barium	160				5.0	NA				
Beryllium	ND				0.5	NA				
Cadmium	ND				0.25	NA				
Chromium	42				0.5	NA				
Cobalt	1.5				0.5	NA				
Lead	7.6				0.5	NA NA				
Mercury	7.0 ND				0.5	NA NA				
Molybdenum	ND				0.5	NA				
Nickel	37				0.5	NA				
Selenium	ND				0.5	NA				
Silver	ND				0.5	NA				
Thallium	ND				0.5	NA				
Vanadium	38				0.5	NA				
Zinc	44				5.0	NA				
%SS:	100									
Comments										
*water samples are reported in µg/L, produc mg/L, soil/sludge/solid samples in mg/kg, wi	ct/oil/non-aqueous pe samples in μg/v	liquid samp vipe, filter s	ples and all TCLP / STLC / amples in µg/filter.	DISTLC / SPLP exti	racts are repo	rted in				
# means surrogate diluted out of range; ND instrument.	means not detected	ed above th	e reporting limit; N/A mea	ns not applicable to t	his sample of	r				
TOTAL = acid digestion.										
WET = Waste Extraction Test (STLC).										
DI WET = Waste Extraction Test using de-	ionized water.									
) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for 'OTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; J) analyte letected below quantitation limits; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, aused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.										

	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA 94 bell.com E-mail: main@m 77-252-9262 Fax: 925-25	565-1701 accampbell.com 52-9269					
P & D Envir	onmental	Client Project ID:	#0014	Date Sampled: 11	/28/07					
55 Santa Clar	ra, Ste.240			Date Received: 11	/29/07					
Ookland CA	04610	Client Contact: Pa	aul King	Date Extracted: 11/29/07						
Oakialiu, CA	94010	Client P.O.:		Date Analyzed 11	/30/07					
	Gasoline Ra	ange (C6-C12) Vola	ige (C6-C12) Volatile Hydrocarbons as Gasoline*							
Extraction method	SW5030B	Analytical n	nethods SW8015Cm	Wo	ork Order: 07	11709				
Lab ID	Client ID	Matrix	TPH	(g)	DF	% SS				
001A	Comp A	S	13,b	,m	1	91				
R	eporting Limit for DF =1;	W	NA	A	N	A				
NI	D means not detected at or above the reporting limit	S	1.0)	mg	/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

McCampbell An "When Ouality	alyti _{Counts"}	cal, In	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	com
P & D Environmental		Client Pro	oject ID:	#0014		Date Sampled:	11/28/07	
55 Santa Clara, Ste.240				11/29/07				
Oakland CA 94610		Client Co	ontact: Pa	aul King	g	Date Extracted:	11/29/07	
Oakialiu, CA 74010		Client P.C	D.:			Date Analyzed:	12/04/07	
		Oxygena	ates and B	TEX b	y GC/MS*			
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B	1	Work Order:	0711709
Lab ID	07117	09-001A						
Client ID	Co	mp A					Reporting	Limit for
Matrix		S					DF	=1
DF		1					s	W
Compound				Conce	entration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)]	ND					0.005	NA
Benzene	1	ND					0.005	NA
t-Butyl alcohol (TBA)	1	ND					0.05	NA
1,2-Dibromoethane (EDB)]	ND					0.005	NA
1,2-Dichloroethane (1,2-DCA)]	ND					0.005	NA
Diisopropyl ether (DIPE)]	ND					0.005	NA
Ethylbenzene	0.	036					0.005	NA
Ethyl tert-butyl ether (ETBE)]	ND					0.005	NA
Methyl-t-butyl ether (MTBE)]	ND					0.005	NA
Toluene	0.	0058					0.005	NA
Xylenes	0	.14					0.005	NA
		Surro	ogate Rec	overies	s (%)	-		
%SS1:		92						
%SS2:		97						
%SS3:		97						
Comments								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reporting	μg/L, so es in μg/ ng limit:	il/sludge/so wipe. N/A means	lid samples analyte no	in mg/k _i t applica	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

	Campbell Analyti	cal, Inc.	1534 Willow Web: www.mccan Telephone:	Pass Road, Pittsburg, CA 945 pbell.com E-mail: main@mc 877-252-9262 Fax: 925-252	65-1701 campbell.com -9269	1			
P & D Environ	nmental	Client Project ID:	Project ID: #0014 Date Sampled: 11/28/07						
55 Santa Clara,	, Ste.240		Date Received: 11/29/07						
Oakland CA Q	4610	Client Contact: P	aul King	Date Extracted: 11/	29/07				
Oakianu, CA 3	4010	Client P.O.:		Date Analyzed 12/	04/07				
	Diesel (C10-C23) and Oil F	Range (C10+) Extra	ctable Hydrocarbons as	Diesel and Bunker Oil	*				
Extraction method: 5	SW3550C	Analytical meth	nods: SW8015C	Wor	k Order: 07	711709			
Lab ID	Client ID	Matrix	TPH(d)	TPH(bo)	DF	% SS			
0711709-001A	Comp A	S	1.3,d,b,f	6.9	1	99			
Rep	porting Limit for DF =1;	W	NA	NA	ug	/L			
ND 1 ab	means not detected at or ove the reporting limit	S	1.0	5.0	mg	/Kg			

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR 6020A

W.O. Sample Ma	trix: Soil				QC M	atrix: Soil					WorkO	rder 07117	'09
EPA Method 60)20A			Extracti	on SW305)B	В	atchID: 3	2142	Spiked Sa	mple	ID 0711670	-030B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%	»)
, indiyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	50	108	109	1.21	10	116	118	1.20	70 - 130	20	80 - 120	20
Arsenic	1.7	50	99.4	100	0.756	10	103	102	1.17	70 - 130	20	80 - 120	20
Barium	110	500	102	105	2.00	100	106	107	0.847	70 - 130	20	80 - 120	20
Beryllium	ND	50	95.6	96.4	0.893	10	106	106	0	70 - 130	20	80 - 120	20
Cadmium	ND	50	101	102	0.925	10	106	107	0.749	70 - 130	20	80 - 120	20
Chromium	12	50	94.9	95.2	0.218	10	103	103	0	70 - 130	20	80 - 120	20
Cobalt	4.4	50	96.6	97.9	1.21	10	108	107	0.836	70 - 130	20	80 - 120	20
Copper	15	50	95.9	97.3	1.05	10	103	102	0.476	70 - 130	20	80 - 120	20
Lead	2.9	50	98.6	99	0.401	10	105	106	1.33	70 - 130	20	80 - 120	20
Mercury	ND	1.25	93.7	94.7	0.990	0.25	96.7	102	5.67	70 - 130	20	80 - 120	20
Molybdenum	ND	50	98.6	99	0.442	10	106	106	0	70 - 130	20	80 - 120	20
Nickel	14	50	97	98.1	0.913	10	102	103	0.195	70 - 130	20	80 - 120	20
Selenium	ND	50	98.6	99.4	0.845	10	106	103	2.48	70 - 130	20	80 - 120	20
Silver	ND	50	99.7	100	0.300	10	106	107	0.753	70 - 130	20	80 - 120	20
Thallium	ND	50	98.3	98.4	0.122	10	102	104	2.43	70 - 130	20	80 - 120	20
Vanadium	31	50	96.8	98.9	1.32	10	101	98.5	2.57	70 - 130	20	80 - 120	20
Zinc	52	500	103	104	0.193	100	109	109	0	70 - 130	20	80 - 120	20
%SS:	98	250	100	104	3.98	250	98	99	0.892	70 - 130	20	70 - 130	20
All target compou NONE	nds in the M	lethod Bla	ank of thi	s extractio	on batch wer	e ND less	than the r	nethod RL	with the fol	lowing exce	eptions:		

BATCH 32142 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711709-001A	11/28/07 2:00 PI	M 11/29/07	11/30/07 6:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte

JK QA/QC Officer

DHS ELAP Certification Nº 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711709

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 32	175	Sp	biked Sam	ple ID:	0711698-01	9A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	0.60	101	85.6	16.6	97.4	108	10.2	70 - 130	30	70 - 130	30
MTBE	ND	0.10	76	76.2	0.208	98.4	102	3.39	70 - 130	30	70 - 130	30
Benzene	ND	0.10	86.5	91.3	5.37	99.1	98.7	0.397	70 - 130	30	70 - 130	30
Toluene	ND	0.10	83.9	87.8	4.58	114	114	0	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	90.6	95.7	5.48	108	108	0	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	86	90	4.55	120	120	0	70 - 130	30	70 - 130	30
%SS:	84	0.10	77	81	5.32	97	91	6.12	70 - 130	30	70 - 130	30
All target compounds in the Method E NONE	3lank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:			

BATCH 32175 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711709-001A	11/28/07 2:00 PM	11/29/07	11/30/07 4:07 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

NONE

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0711709

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 32	176	Sp	iked Sam	ole ID:	0711727-00	1A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	105	108	2.72	105	106	0.499	70 - 130	30	70 - 130	30
Benzene	ND	0.050	119	122	2.76	121	123	2.35	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	83.7	81.3	2.97	80.7	80.4	0.401	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	111	114	2.47	115	114	0.624	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	98.2	101	3.28	93.3	97.3	4.12	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	110	112	1.73	106	109	2.31	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	100	104	3.86	99.2	99.2	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	98.3	106	7.59	98.5	96.6	1.91	70 - 130	30	70 - 130	30
Toluene	ND	0.050	106	104	1.24	116	120	4.01	70 - 130	30	70 - 130	30
%SS1:	73	0.050	94	98	4.76	92	86	6.80	70 - 130	30	70 - 130	30
%SS2:	100	0.050	87	88	0.733	91	90	1.10	70 - 130	30	70 - 130	30
%SS3:	93	0.050	90	89	1.70	91	90	0.917	70 - 130	30	70 - 130	30
All target compounds in the Method E	Blank of this	extraction	batch we	re ND les	ss than the	method R	L with th	e following	exceptions:			

BATCH 32176 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0711709-001A	11/28/07 2:00 PM	1 11/29/07	12/04/07 12:30 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder 0711709

EPA Method SW8015C	Extra	ction SW	3550C		Bat	chID: 32	174	Sp	iked Sam	ole ID:	0711698-01	9A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	ND	20	103	106	2.69	104	105	1.34	70 - 130	30	70 - 130	30
%SS:	113	50	115	117	2.34	112	112	0	70 - 130	30	70 - 130	30
All target compounds in the Method B NONE	lank of this	extraction	batch we	ere ND les	ss than the	method R	L with th	ne following	exceptions:			

BATCH 32174 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0711709-001A	11/28/07 2:00 PM	11/29/07	12/04/07 7:24 PM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

K QA/QC Officer