2307 Pacific Ave. Alameda, CA 94552 Phone 510-865-9503 Fax: 510-865-1889 E-Mail: xtraoil/∂/sbcglobal.net

RECEIVED

2:20 pm, Oct 29, 2007

Alameda County Environmental Health

October 25, 2007

Mr. Steven Plunkett Alameda County Health Agency Dept. of Environmental Health 1131 Harbor Bay Pkwy. Alameda, CA 94502

Xtra Oil Company

SUBJECT: INTERIM SOURCE AREA REMEDIATION PLAN PROGRESS EVALUATION REPORT CERTIFICATION County Case # RO 285 Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Phunkett:

P&D Environmental, Inc. has prepared the following document:

 Interim Source Area Remediation Plan Progress Evaluation Report dated October 25, 2007 (document 0014.R67).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

.

Should you have any questions, please do not hesitate to contact me at (510) 865-9503.

Sincerely,

Keith Simas Operations Supervisor

0014.L143

Retail Fueling Convenience Stores

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

October 25, 2007 Report 0014.R67

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: INTERIM SOURCE AREA REMEDIATION PLAN PROGRESS EVALUATION REPORT Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this Interim Source Area Remediation Plan (ISARP) Evaluation Report for groundwater pumping and associated hydraulic control of petroleum hydrocarbons in groundwater at the subject site. This work is performed following implementation of the groundwater pumping program set forth in P&D's ISARP dated May 31, 2005 (document 0014.W9). The ISARP was approved in a letter from the Alameda County Department of Environmental Health (ACDEH) in a letter dated

The objective of the ISARP was to evaluate the ability of pumping from extraction well EW1 in the former UST pit and associated dewatering of the former UST pit to create adequate water table drawdown in surrounding subsurface materials to control migration of separate phase diesel-range hydrocarbons that appear to have originated at the former diesel dispenser adjacent to MW4 (see Figure 2). Separate phase diesel-range petroleum hydrocarbons have been detected in observation well OW1 located in the sanitary sewer trench in Redwood Road (see Table 1 and Figure 3).

A Site Location Map is attached as Figure 1, a Site Plan showing existing wells and proposed borehole and extraction well locations is attached as Figure 2, a Site Vicinity Map showing benzene isoconcentration contours in groundwater and proposed offsite borehole and extraction well locations is attached as Figure 3, and a Site Vicinity Map Detail showing proposed offsite borehole and extraction well locations is attached as Figure 4. The benzene isoconcentration contours shown in Figure 4 were created from groundwater grab samples collected between February 1993 and July 2001. Please note that the benzene concentrations and associated isoconcentration contours in Figure 4 are presented in mg/L and not ug/L. In addition, Norbridge School shown on Figure 1 to the south of the subject site has been demolished and replaced with the Castro Valley BART station and associated parking lot.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November 1988. The fuel tanks were replaced during August 1992.

Three monitoring wells, designated MW1, MW2 and MW3, were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown on Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D). TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10, and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentration of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photoionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively.

A groundwater monitoring and sampling program was initiated at the site on February 20, 1990. Historic water level measurements are summarized in Table 1, and historic water quality data is summarized in Table 2.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed associated with the widening of Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4, at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental

Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates methyl tertiary-butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), diisopropyl ether (DIPE), and tertiary-butyl alcohol (TBA), and lead scavengers ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site.

On May 31, 2005, P&D submitted an Interim Source Area Remediation Plan (ISARP) to the ACDEH proposing free product removal at the site (document 0014.W9). P&D proposed using existing extraction well EW1 in the existing UST pit to dewater the existing pit and the previous UST pit. Monitoring of existing wells MW1, MW3, and MW4 to evaluate the effectiveness of water table drawdown at the site for plume control and associated free product recovery was also proposed. In January 2007, P&D installed a groundwater extraction system consisting of a pump in well EW1, associated piping for discharge of water from the well, and a carbon filtration system. System operation began March 27, 2007.

In response to a February 6, 2007 letter request from the ACDEH, P&D submitted a Groundwater Monitoring Well Installation Work Plan (MW5 Through MW13) dated March 5, 2007 (document 0014.W10) to the ACDEH proposing the installation of nine offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW13. The ACDEH conditionally approved the work plan in an April 4, 2007 letter. P&D subsequently submitted a Groundwater Monitoring Well Installation Work Plan Amendment (MW5 Through MW12) dated May 3, 2007 (document 0014.W10A) to the ACDEH proposing the installation of eight offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW12).

FIELD ACTIVITIES

Field activities consisted of groundwater treatment system installation, pressure transducer installation, system start up, water level monitoring, and periodic monitoring. The treatment system monitoring included weekly recording of total volume discharged from the groundwater treatment system and monthly groundwater treatment system discharge water quality testing for discharge permit compliance evaluation.

Treatment System Installation and Start Up

The groundwater extraction system consists of a pump in well EW1, piping to transfer water discharged from the well, and a carbon filtration system that satisfies sanitary sewer discharge permit requirements. The carbon filtration system is located at the western edge of the property in the vicinity of the current UST pit. The piping is in a trench from well EW1 to the western edge of the property. At the western edge of the property the piping is above ground and at the property perimeter until the water treated in a 2,000 pound carbon vessel and then discharged to the sanitary sewer at the southern edge of the property, immediately east of the site building.

Following receipt of the permit to discharge to the sanitary sewer, the UST pit was dewatered beginning on February 23, 2007. The dewatering was temporarily discontinued to re-locate the flow totalizer, and UST pit dewatering resumed on March 27, 2007.

Water levels are monitored in the wells at the site on a quarterly basis using an electric water level indicator. Historic water level measurements are summarized in Table 1. Free product layer thickness is monitored quarterly in each well using a steel tape with water-finding and product-finding paste. Water levels were monitored in the extraction well and surrounding wells MW1, MW3 and MW4 using a pressure transducer and a data logger on an hourly basis to evaluate the effects of the dewatering system. Selected pressure transducer data (one daily value during the first week of dewatering and one reading per week thereafter) is summarized in Table 2. A flow meter is used to quantify the volume of water discharged from the system on a weekly basis in accordance with Castro Valley Sanitation District (CVSD) discharge permit requirements. A summary of the recorded periodic totalizer readings to date is attached with this report as Table 3. Based on the historical average depth to water in well MW1 of approximately eight feet, and the approximate depth of 13.5 feet for extraction well EW1, approximately five feet of drawdown was anticipated in the UST pit.

Water Level Measurements

Historic quarterly well monitoring and sampling has been performed since August 1991 in wells MW1, MW3 and MW4, since January 1999 in offsite observation wells OW1 and OW2, and since September 2003 in well EW1. The results of the historic well monitoring are summarized in Table 1. The results are shown graphically in Figures 5 through 8 for wells EW1, MW1, MW3 and MW4, respectively. Water level elevations which incorporate free product correction were used for graph preparation for well MW4.

Pressure transducers were installed in wells EW1, MW1, MW3, and MW4 on November 2, 2006 to obtain baseline pre-pumping water level information. However, the pressure transducers were not properly placed in the wells until March 16, 2007. Pressure transducer results are summarized in Table 2. The pressure transducer results for all of the wells from March 16, 2007 through September 18, 2007 are shown on Figure 9.

Following initial pumping system performance (leak check) evaluation and effluent testing on February 20, 2007 and receipt of approval from the CVSD to discharge to the sanitary sewer, UST pit dewatering from EW1 began on March 27, 2007. A summary of the recorded periodic system discharge totalizer readings to October 16, 2007 is attached with this report as Table 3. The total volume discharged by October 16, 2007 was 332,003.6 gallons.

Historic water levels and UST pit dewatering drawdown up to October 16, 2007 are shown graphically for each of the onsite wells in Figures 5 through 8. Wells MW1, MW3, and MW4 are located horizontally 20, 12, and 22 feet, respectively, from the old UST pit where dewatering was performed. It is P&D's understanding that the current UST pit and the old UST pit are connected with a trench at the southeast corner of the current UST pit. The depth of excavation is unknown. However, as a result of the trench connecting the two UST pits, it is possible that

the current UST pit is also dewatered as a result of pumping at EW1. Well MW1 is located approximately 20 feet from the current UST pit.

Review of Figures 5 through 8 shows that approximately 4.5 to 5.0 feet of drawdown has occurred in extraction well EW1, as much as 0.5 feet of drawdown has occurred in well MW1, and as much as 1.5 feet of drawdown has occurred in well MW3. It is presently unclear if decreases in water levels in well MW4 are the result of seasonal water level fluctuations or the result of dewatering at the former UST pit.

Water Quality Monitoring

In accordance with Castro Valley Sanitation District (CVSD) discharge permit requirements, water quality samples are collected and analyzed on a monthly basis. The water samples are collected from a sampling port located immediately downstream from the 2000-pound carbon vessel. The water samples are transferred from the sampling port to 40-milliliter glass VOA vials and 1-liter amber glass bottles that are sealed with Teflon-lined screw caps. The VOA vials are overturned and tapped to ensure that no air bubbles were present. The VOA vials and bottles are then transferred to a cooler with ice, until they are transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-certified hazardous waste testing laboratory. Chain of custody documentation accompany the samples to the laboratory.

None of the organic analytes for which analysis has been performed have been detected in any of the compliance monitoring samples. All detected metals concentrations have been within discharge permit requirement limits. Copies of the laboratory analytical reports and chain of custody documentation for samples collected to date are attached with this report.

In addition, quarterly groundwater monitoring and sampling is performed at onsite wells EW1, MW1, MW3 and MW4. The historic water quality data from these wells, including the October 16, 2007 sampling event results, are attached with this report as Table 4.

DISCUSSION AND RECOMMENDATIONS

Based on limited drawdown (5 feet) at EW1 associated with the shallow depth of EW1 (approximately 13.5 feet), minimal hydraulic control has been observed in surrounding wells. Extraction wells installed to greater depths might have greater hydraulic control. P&D recommends that extraction the effects of drawdown in wells installed to greater depths be evaluated for hydraulic control of separate phase diesel-range petroleum hydrocarbons which appear to be migrating beneath Redwood Road. P&D recommends that the vertical extent of petroleum hydrocarbons be investigated and that alternative remedial methods of combined water table drawdown using deeper wells and soil vapor extraction be evaluated in a remedial investigation and feasibility study.

Review of well EW1 water quality data shows that after UST pit dewatering began, water quality in EW1 changed and became more consistent with water quality encountered in the other wells at the site. It appears that pumping at well EW1 resulted in the flow of groundwater from the subsurface materials surrounding the former UST pit into the UST pit. The elevated petroleum

Page 5 of 7 **P&D ENVIRONMENTAL, INC.**

hydrocarbon concentrations observed in groundwater samples collected from well EW1 after the beginning of pumping are evidence that the pumping is effective in removing subsurface petroleum hydrocarbons dissolved in groundwater at the site.

P&D recommends the continued evaluation of drawdown in the wells at the site to determine if the drawdown observed since the beginning of pumping continues to be observed when seasonal water levels rise in the upcoming wet season. P&D also recommends that pumping continue at EW1 to remove dissolved petroleum hydrocarbons and that drawdown continue to be evaluated for another 6 months to evaluate drawdown during the wet season.

Proposed remedial investigation and feasibility evaluation activities are summarized as follows. Proposed drilling locations are shown in Figures 2, 3 and 4.

- Soil conductivity and Membrane Interface Probe (MIP) drilling at three onsite and two offsite locations to evaluate the vertical extent of petroleum hydrocarbons in groundwater.
- Installation of four onsite and five offsite extraction wells to evaluate hydraulic control with greater drawdown at extraction locations that are deeper than previously evaluated.
- Evaluation of soil vapor extraction feasibility at onsite and offsite extraction well locations.
- Continued groundwater extraction at well EW1 for evaluation of drawdown in onsite wells during the wet season.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

Page 6 of 7 **P&D ENVIRONMENTAL, INC.**

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

- aul H. King

Paul H. King Professional Geologist #5901 Expires: 12/31/07

EOF CALIFOR Attachments: Table 1 – Well Monitoring Data Table 2 – Summary of Transducer Data Table 3 – Summary of Totalizer Readings – Groundwater Treatment System Table 4 – Historic Well Water Quality Data Figure 1 - Site Location Map Figure 2 - Site Plan Figure 3 - Site Vicinity Map Figure 4 – Site Vicinity Map Detail Figure 5 – Graph of EW1 Historic Water Level Measurements Figure 6 – Graph of MW1 Historic Water Level Measurements Figure 7 – Graph of MW3 Historic Water Level Measurements Figure 8 – Graph of MW4 Historic Water Level Measurements

Figure 9 – Graph of MW1, MW3, MW4 and EW1 Pressure Transducer Water Level Measurements

Groundwater Treatment System Monthly Monitoring Laboratory Analytical Reports and Chain of Custody Documentation

PHK/ sic 0014.R65

TABLES

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW1	10/16/07	77.37*	8.65	168.72
	07/25/07		8.49	168.88
	04/17/07		8.30	169.07
	01/18/07		7.85	169.52
	11/14/06		7.38	169.99
	06/29/06		7.80	169.57
	02/03/06		6.65	170.72
	11/18/05		8.17	169.20
	07/28/05		7.98	169.39
	04/13/05		6.90	170.47
	01/31/05		7.20	170.17
	10/15/04		8.52	168.85
	07/13/04		8.33	169.04
	04/06/04		7.93	169.44
	12/18/03		7.65	169.72
	09/18/03		8.15	169.22
	06/19/03		8.13	169.24
	03/18/03		7.77	169.60
	12/21/02		5.74	171.63
	9/10/02		8.28	169.09
	3/30/02		7.43	169.94
	12/22/01		6.92	170.45
	9/23/01		8.53	168.84
	6/22/01		8.30	169.07
	4/22/01		7.77	169.60
	12/14/00		8.49	168.88
	9/18/00		8.56	168.81
	6/08/00		7.97	169.40
	3/09/00		6.68	170.69
	12/09/99		8.15	169.22
	8/31/99		8.36	169.01
	4/29/99		7.68	169.69

NOTES:

= Surveyed on August 20, 1997

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW1	1/29/99	177.37*	6.99	170.38
(Continued)	4/26/98		7.50	169.87
	1/24/98		6.61	170.76
	11/06/97		8.79	168.58
	8/26/97	177.3 7 *	8.51	168.86
	7/24/97		8.71	168.72
	4/25/97		7.98	169.45
	1/20/97		7.12	170.31
	7/26/96		8.39	169.04
	7/09/96		8.16	169.27
	4/23/96		7.47	169.96
	2/07/96		6.09	171.34
	1/29/96		6.17	171.26
	10/26/95		8.45	168.98
	7/28/95		8.27	169.16
	5/02/95		6.96	170.47
	2/23/95		7.72	169.71
	11/18/94		7.14	170.29
	8/22/94		8.67	168.76
	5/19/94	177.43**	8.05	169.38
	2/28/94		7.44	169.99
	11/24/93		8.74	168.69
	8/30/93		8.78	168.65
	5/18/93		8.12	169.31
	2/23/93		7.34	170.09
	11/13/92	200.00***	9.13	190.87
	5/29/92	175.73	8.59	167.14
	1/14/92		8.57	167.16
	12/23/91		9.65	166.08
	11/25/91		9.41	166.32
	10/10/91		9.70	166.03
	9/17/91		9.50	166.23
	8/19/91		9.31	166.42

NOTES:

* = Surveyed on August 20, 1997

** = Surveyed on March 24, 1993

*** = Surveyed on December 5, 1992

TABLE 1

WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW2	NOT MEASU	JRED (DESTROYED	ON FEBRUARY 7, 19	96)
	2/07/96	176.04**	5.70	Í70.34
	1/29/96		5.16	170.88
	10/26/95		8.21	167.83
	7/28/95		7.99	168.05
	5/02/95		6.79	169.25
	2/23/95		7.51	168.53
	11/18/94		6.92	169.12
	8/22/94		8.59	167.45
	5/19/94		7.70	168.34
	2/28/94		6.99	169.05
	11/24/93		8.47	167.57
	8/30/93		8.64	167.40
	5/18/93		7.73	168.31
	2/23/93		6.39	169.65
	11/13/92	198.61***	8.70	189.91
	5/29/92	175.45	9.31	166.14
	1/14/92		8.97	166.48
	12/23/91		10.39	165.06
	11/25/91		9.81	165.64
	10/10/91		10.39	165.06
	9/17/91		10.23	165.22
	8/19/91		9.60	165.85

NOTES:

* = Surveyed on August 20, 1997

** = Surveyed on March 24, 1993

*** = Surveyed on December 5, 1992

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW3	10/16/07	176.40*	9.43	166.97
	07/25/07		9.35	167.05
	04/17/07		8.88	167.52
	01/18/07		7.32	169.08
	11/14/06		7.53	168.87
	06/29/06		7.58	168.82
	02/03/06		6.10	170.30
	11/18/05		7.63	168.77
	07/28/05		7.58	168.82
	04/13/05		6.35	170.05
	01/31/05		6.79	169.61
	10/15/04		8.28	168.12
	07/13/04		8.11	168.29
	04/06/04		7.41	168.99
	12/18/03		6.99	169.41
	09/18/03		7.91	168.49
	06/19/03		7.60	168.80
	03/18/03		7.35	169.05
	12/21/02		5.43	170.97
	9/10/02		7.97	168.43
	3/30/02		6.97	169.43
	12/22/01		6.44	169.96
	9/23/01		8.17	168.23
	6/22/01		8.06	168.34
	4/22/01		7.50	168.90
	12/14/00		8.13	168.27
	9/18/00		7.83	168.57
	9/26/00		7.77	168.63
	6/08/00		7.50	168.90
	3/09/00		6.08	170.32
	12/09/99		7.90	168.50

NOTES:

* = Surveyed on August 20, 1997

** = Surveyed on March 24, 1993

*** = Surveyed on December 5, 1992

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW3	8/31/99	176.41**	7.95	168.45
(Continued)	4/29/99		7.09	169.31
	1/29/99		6.42	169.98
	4/26/98		6.85	169.55
	1/24/98		5.90	170.50
	11/06/97		7.80	168.80
	8/26/97		7.67	168.93
	7/24/97	176.41**	7.90	168.51
	4/25/97		7.12	169.29
	1/20/97		6.35	170.06
	7/26/96		7.84	169.57
	7/09/96		7.61	168.80
	4/23/96		6.81	169.60
	2/07/96		5.05	170.36
	1/29/96		5.77	170.64
	10/26/95		7.72	168.69
	7/28/95		7.80	168.61
	5/02/95		6.50	169.91
	2/23/95		7.24	169.17
	11/18/94		6.05	170.36
	8/22/94	190.97***	7.65	168.76
	5/19/94		7.15	169.26
	2/24/94		6.68	169.73
	11/24/93		7.55	168.86
	8/30/93		7.64	168.77
	5/18/93		7.12	169.29
	2/23/93		8.01	168.40
	11/13/92		7.86	191.12
	5/29/92	175.00	8.45	166.55
	1/14/92		8.24	166.55
	12/23/91		9.37	165.63
	11/25/91		9.19	165.81
	10/10/91		9.43	165.57
	9/17/91		9.20	165.80
	8/19/91		8.95	166.05

NOTES:

* = Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW4				
	10/16/07	176.35*	8.50(0.25)#	168.04
	07/25/07		8.04(0.17)#	168.44
	04/17/07		7.94 (0.19)#	168.55
	11/14/06		7.36 (0.25)#	169.18
	06/29/06		Unknown	Unknown
	02/03/06		5.86	170.49
	11/18/05		7.99 (0.51)#	168.36
	07/28/05		7.59	168.76
	04/13/05		6.78 (0.01)#	169.58
	01/31/05		7.34 (0.19)#	169.15
	10/15/04		8.73 (0.15)#	167.73
	07/13/04		8.44 (0.03)#	167.93
	04/06/04		9.58 (2.83)#	168.89
	02/11/04		9.43 (2.70)#	168.95
	12/18/03		9.75 (1.51)#	167.73
	9/18/03		9.13 (1.80)#	168.57
	6/19/03		8.56 (0.31)#	168.02
	3/18/03		7.49 (0.06)#	168.91
	12/21/02		8.58 (4.39)#	171.06

NOTES:

* = Surveyed on August 20, 1997

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
NANJA				
MW4	1)			
(Continued	/		0.00 (1. (0) //	1.00.4.0
	9/10/02		9.09 (1.60)#	168.46
	3/30/02		9.86 (2.49)#	168.36
	12/22/01		7.79 (1.75)#	169.87
	9/23/01		8.97 (1.17)#	168.26
	6/22/01		7.79	168.56
	4/22/01		9.07 (2.20)#	168.93
	12/14/00		8.87 (0.72)#	168.02
	9/18/00		8.50 (0.45)#	168.19
	6/08/00		7.34	169.01
	3/09/00		6.61 (0.46)#	170.08
	12/09/99		8.80	167.55
	8/31/99		8.28	168.07
	4/29/99		7.14	169.21
	1/29/99		6.68	169.67
	4/26/98		6.87	169.48
	1/24/98		6.61	169.74
	11/06/97		9.16	167.19
	8/26/97		8.92	167.43
	8/20/97		7.66 (prior to dev	
NOTES				

NOTES:

* = Surveyed on August 20, 1997

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)
EW1	10/16/07 07/25/07 04/17/07 01/18/07 11/14/06 06/29/06 02/03/06 11/18/05 07/28/05 04/13/05 01/31/05 10/15/04 07/13/04 04/06/04 12/18/03 09/18/03	Not Surveyed	11.95 11.57 11.35 6.60 6.11 6.88 5.23 6.63 6.94 5.23 6.25 7.65 7.51 6.63 6.72 7.29
	03/10/03		1.27

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
OW1	10/16/07	Not Surveyed	No Water	7.41
	07/25/07		No Water	7.41
	04/17/07		No Water	7.41
	01/18/07		No Water	7.41
	11/14/06		No Water (sheen)	7.41
	06/29/06		7.13	7.42
	02/03/06		6.97	7.45
	11/18/05		7.43 (0.13)#	7.50
	07/28/05		7.06 (0.01)#	7.45
	04/13/05		6.99	7.44
	01/31/05		7.03	7.44
	10/15/04		7.19 (0.08)#	7.44
	07/14/04		7.02	7.44
	04/06/04		7.01	7.44
	02/11/04		7.01	7.44
	10/06/03		7.07 (0.01)#	7.44
	11/02/00		7.12,+	
	12/09/99		7.27	
OW2	07/25/07	Not Surveyed	No Water or Product	7.28
	04/17/07	·	No Water or Product	7.28
	01/18/07		No Water or Product	7.28
	11/14/06		7.27	7.28
	06/29/06		7.30	7.33
	02/03/06		7.08	7.35
	11/18/05		7.33	7.35
	07/28/05		7.27	7.32
	04/13/05		7.06	7.35
	01/31/05		7.29	7.37
	10/15/04		No Water or Product	7.35
	07/14/04		No Water or Product	7.35
	04/06/04		7.27	7.33
	02/11/04		7.19	7.33
	10/06/03		7.29	7.34
	11/02/00		7.19	
	12/09/99		7.17	
NOTES	۲.			

NOTES:

 $\overline{\#}$ = Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

+ = Petroleum hydrocarbon odor reported on probe for water level indicator.

TABLE 1WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
OW1	01/29/99	Not Surveyed	7.12	
(continued)				
OW2	01/29/99	Not Surveyed	7.19	

(continued)

Page 10 of 10

TABLE 2 SUMMARY OF TRANSDUCER DATA: WELL MW1

Date	Time	LEVEL	TEMPERATURE
11/15/2006	8:44:55	14.3216	21.338
11/22/2006	8:44:55	14.0444	21.377
11/29/2006	8:44:55	14.3262	21.335
12/6/2006	8:44:55	14.0159	21.223
12/13/2006	8:44:55	15.3123	21.019
12/21/2006	8:44:55	14.525	20.848
12/28/2006	8:44:55	14.5795	20.657
1/3/2007	8:44:55	14.3003	20.497
1/10/2007	8:44:55	14.0998	20.29
1/17/2007	8:44:55	14.1437	20.084
1/24/2007	8:44:55	13.9432	19.893
1/31/2007	8:44:55	13,7397	19.698
2/7/2007	8:44:55	13.6291	19.501
2/14/2007	8:44:55	15.4644	19.191
2/21/2007	8:44:55	14.4076	19.1
2/28/2007	8:44:55	14.8488	19.046
3/7/2007	8:44:55	13.9606	18.983
3/14/2007	8:44:55	13.7385	18.882
3/21/2007	8:44:55	13.5815	18.804
3/27/2007	8:44:55	13.8775	18.757
3/28/2007	8:44:55	13.7904	18.76
3/29/2007	8:44:55	13.6584	18.767
3/30/2007	8:44:55	13.5542	18.768
3/31/2007	8:44:55	13.5668	18.762
4/1/2007	8:44:55	13.4124	18.758
4/2/2007	8:44:55	13.4084	18.755
4/4/2007	8:44:55	13.4141	18.75
4/11/2007	8:44:55	13.4106	18.74
4/18/2007	8:44:55	13.6319	18.801
4/25/2007	8:44:55	13.8095	18.781
5/2/2007	8:44:55	13.4324	18.809
5/9/2007	8:44:55	13.3418	18.843
5/16/2007	8:44:55	13.3703	18.897
5/23/2007	8:44:55	13.1707	18.981
5/30/2007	8:44:55	13.2822	19.076
6/6/2007	8:44:55	13.2956	19.167
6/13/2007	8:44:55	13.192	19.265
6/20/2007	8:44:55	13.2471	19.362
6/27/2007	8:44:55	13.2419	19.446
7/4/2007	8:44:55	13.1283	19.527
7/11/2007	8:44:55	13.1712	19.609
7/18/2007	8:44:55	13.1508	19.691
7/25/2007	8:44:55	13.1103	19.783
8/1/2007	8:44:55	13.0385	19.884
8/8/2007	8:44:55	13.1992	19.992
8/15/2007	8:44:55	13.0415	20.103
8/22/2007	8:44:55	12.9172	20.224
8/29/2007	8:44:55	12.9103	20.342
9/5/2007	8:44:55	12.9156	20.466
9/12/2007	8:44:55	13.1224	20.592
9/18/2007	8:44:55	13.0612	20.674

Notes: Level is how much water in feet above the transducer.

TABLE 2 SUMMARY OF TRANSDUCER DATA: WELL MW3

Date	Time	LEVEL	TEMPERATURE
11/15/2006	8:48:29	12.9776	20.988
11/22/2006	8:48:29	13.351	20.962
11/29/2006	8:48:29	13.5462	20.929
12/6/2006	8:48:29	13.3401	20.884
12/13/2006	8:48:29	14.2931	20.825
12/20/2006	8:48:29	14.0706	20.754
12/27/2006	8:48:29	13.7796	20.654
1/3/2007	8:48:29	13.7331	20.493
1/10/2007	8:48:29	13.5619	20.219
1/17/2007	8:48:29	13.4594	19.804
1/24/2007	8:48:29	13.3795	19.619
1/31/2007	8:48:29	13.1774	19.391
2/7/2007	8:48:29	13.0326	19.202
2/14/2007	8:48:29	14.8404	18.899
2/21/2007	8:48:29	13.9546	18.803
2/28/2007	8:48:29	12.9216	18.741
3/7/2007	8:48:29	12.1001	18.699
3/14/2007	8:48:29	12.091	18.617
3/21/2007	8:48:29	12.1478	18.549
3/27/2007	8:48:29	12.468	18.504
3/28/2007	8:48:29	12.264	18.51
3/29/2007	8:48:29	11.9463	18.52
3/30/2007	8:48:29	11.8655	18.527
3/31/2007	8:48:29	11.802	18.524
4/1/2007	8:48:29	11.7131	18.53
4/2/2007	8:48:29	11.6773	18.532
4/2/2007	8:48:29	11.6414	18.53
4/11/2007	8:48:29	11.5661	18.552
4/18/2007	9:48:29	11.5523	18.599
4/25/2007	8:48:29	12.0367	18.627
5/2/2007	8:48:29	11.6826	18.691
5/9/2007	8:48:29	11.6409	18.747
5/16/2007	8:48:29	11.6475	18.819
5/23/2007	8:48:29	11.4651	18.889
5/30/2007	8:48:29	11.484	18.967
6/6/2007	8:48:29	11.4365	19.035
6/13/2007	8:48:29	11.3866	19.105
6/20/2007	8:48:29	11.3749	19.177
6/27/2007	8:48:29	11.2982	19.248
7/4/2007	8:48:29	11.1847	19.328
7/11/2007	8:48:29	11.2295	19.415
7/18/2007	8:48:29	11.2295	19.415
7/25/2007	8:48:29	11.1225	19.612
8/1/2007	8:48:29	10.8577	19.717
8/8/2007	8:48:29	10.8577	19.829
8/15/2007	8:48:29	10.9924	19.942
8/22/2007	8:48:29	10.955	20.055
8/29/2007	8:48:29	10.873	20.055
9/5/2007	8:48:29	10.8490	20.165
9/12/2007	8:48:29	11.0361	20.272
9/12/2007 9/18/2007	8:48:29	11.0361	20.373
9/10/2007	0.40.29	0010.11	20.404

Notes: Level is how much water in feet above the transducer.

TABLE 2 SUMMARY OF TRANSDUCER DATA: WELL MW4

11/15/20068:54:09 10.487 22.149 $11/22/2006$ 8:54:09 10.2676 22.061 $11/29/2006$ 8:54:09 10.5357 21.951 $12/6/2006$ 8:54:09 10.2795 21.779 $12/13/2006$ 8:54:09 11.4301 21.602 $12/20/2006$ 8:54:09 10.8983 21.314 $12/20/2006$ 8:54:09 10.655 21.078 $1/3/2007$ 8:54:09 10.60811 20.876 $1/10/2007$ 8:54:09 10.4196 20.644 $1/17/2007$ 8:54:09 10.2611 20.156 $1/31/2007$ 8:54:09 10.0052 19.9711 $2/7/2007$ 8:54:09 10.0052 19.9711 $2/7/2007$ 8:54:09 10.7419 19.3955 $2/28/2007$ 8:54:09 10.7419 19.3955 $2/28/2007$ 8:54:09 10.2055 18.933 $3/7/2007$ 8:54:09 10.2055 18.933 $3/21/2007$ 8:54:09 10.2029 18.951 $3/29/2007$ 8:54:09 10.2029 18.931 $3/28/2007$ 8:54:09 10.378 18.924 $3/30/2007$ 8:54:09 9.97657 18.933 $4/1/2007$ 8:54:09 9.7657 18.922 $4/4/2007$ 8:54:09 9.7648 18.94	
11/29/2006 $8:54:09$ 10.5357 21.951 $12/6/2006$ $8:54:09$ 10.2795 21.779 $12/13/2006$ $8:54:09$ 11.4301 21.602 $12/20/2006$ $8:54:09$ 10.8983 21.314 $12/27/2006$ $8:54:09$ 10.655 21.078 $1/3/2007$ $8:54:09$ 10.6081 20.876 $1/10/2007$ $8:54:09$ 10.4196 20.644 $1/17/2007$ $8:54:09$ 10.261 20.156 $1/11/2007$ $8:54:09$ 10.261 20.156 $1/31/2007$ $8:54:09$ 10.0052 19.971 $2/7/2007$ $8:54:09$ 10.0052 19.971 $2/7/2007$ $8:54:09$ 10.969 19.285 $3/7/2007$ $8:54:09$ 10.969 19.285 $3/7/2007$ $8:54:09$ 10.2029 18.964 $3/22/2007$ $8:54:09$ 10.2029 18.93 $3/28/2007$ $8:54:09$ 10.2029 18.951 $3/29/2007$ $8:54:09$ 10.2029 18.951 $3/29/2007$ $8:54:09$ 10.2029 18.931 $3/28/2007$ $8:54:09$ 9.9261 18.978 $3/31/2007$ $8:54:09$ 9.7788 18.939 $4/1/2007$ $8:54:09$ 9.7657 18.922	
11/29/20068:54:0910.535721.95112/6/20068:54:0910.279521.77912/13/20068:54:0911.430121.60212/20/20068:54:0910.898321.31412/27/20068:54:0910.65521.0781/3/20078:54:0910.608120.8761/10/20078:54:0910.419620.6441/17/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:0910.005219.9712/7/20078:54:0910.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.963718.9643/27/20078:54:0910.202918.9513/28/20078:54:0910.202918.9513/29/20078:54:0910.202918.9513/30/20078:54:099.926118.9783/31/20078:54:099.926118.9394/1/20078:54:099.778818.9394/1/20078:54:099.765718.922	
12/13/20068:54:0911.430121.60212/20/20068:54:0910.898321.31412/27/20068:54:0910.6521.0781/3/20078:54:0910.608120.8761/10/20078:54:0910.419620.6441/17/20078:54:0910.442320.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:0910.005219.9712/7/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.20518.933/29/20078:54:099.926118.9783/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
12/13/20068:54:0911.430121.60212/20/20068:54:0910.898321.31412/27/20068:54:0910.6521.0781/3/20078:54:0910.608120.8761/10/20078:54:0910.419620.6441/17/20078:54:0910.26120.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/14/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:0910.20518.933/28/20078:54:0910.20518.933/28/20078:54:0910.20518.933/29/20078:54:0910.37818.9243/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
12/20/20068:54:0910.898321.31412/27/20068:54:0910.6521.0781/3/20078:54:0910.608120.8761/10/20078:54:0910.419620.6441/17/20078:54:0910.442320.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/14/20078:54:0910.741919.3952/28/20078:54:0910.741919.3952/28/20078:54:0910.142319.1323/14/20078:54:099.863718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.20518.933/29/20078:54:0910.20518.933/29/20078:54:099.926118.9783/30/20078:54:099.895718.9934/1/20078:54:099.778818.9394/1/20078:54:099.765718.922	
12/27/20068:54:0910.6521.0781/3/20078:54:0910.608120.8761/10/20078:54:0910.419620.6441/17/20078:54:0910.442320.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/1/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.863718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.20518.933/28/20078:54:0910.37818.9243/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
1/10/20078:54:0910.419620.6441/17/20078:54:0910.442320.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/14/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
1/10/20078:54:0910.419620.6441/17/20078:54:0910.442320.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/14/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
1/17/20078:54:0910.442320.3871/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/14/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:099.926118.9783/31/20078:54:099.875718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
1/24/20078:54:0910.26120.1561/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/14/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.863718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.20518.9313/28/20078:54:0910.037818.9243/30/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
1/31/20078:54:0910.005219.9712/7/20078:54:099.885319.7142/1/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:099.926118.9783/30/20078:54:099.778818.9394/1/20078:54:099.765718.922	
2/7/20078:54:099.885319.7142/14/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:0910.20518.933/28/20078:54:0910.20518.933/28/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
2/14/20078:54:0911.659319.5542/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
2/21/20078:54:0910.741919.3952/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
2/28/20078:54:0910.96919.2853/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.778818.9394/1/20078:54:099.765718.922	
3/7/20078:54:0910.142319.1323/14/20078:54:099.873419.0253/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/14/20078:54:099.873419.0253/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/21/20078:54:099.963718.9643/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/27/20078:54:0910.20518.933/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/28/20078:54:0910.202918.9513/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/29/20078:54:0910.037818.9243/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/30/20078:54:099.926118.9783/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
3/31/20078:54:099.895718.9934/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
4/1/20078:54:099.778818.9394/2/20078:54:099.765718.922	
4/2/2007 8:54:09 9.7657 18.922	
10 94 10 10 10 10 10 10 10 10 10 10 10 10 10	
4/11/2007 8:54:09 9.7396 18.988	
4/18/2007 8:54:09 10.6889 19.009	
4/25/2007 8:54:09 11.0686 19.062	
5/2/2007 8:54:09 10.6523 19.122	
5/9/2007 8:54:09 10.5756 19.207	
5/16/2007 8:54:09 10.5972 19.263	
5/23/2007 8:54:09 10.3824 19.348	
5/30/2007 8:54:09 10.4763 19.425	
6/6/2007 8:54:09 10.5213 19.51	
6/13/2007 8:54:09 10.3918 19.609	
6/20/2007 8:54:09 10.4418 19.718	
6/27/2007 8:54:09 10.4415 19.835	
7/4/2007 8:54:09 10.3275 19.964	
7/11/2007 8:54:09 10.3676 20.104	
7/18/2007 8:54:09 10.3532 20.252	
7/25/2007 8:54:09 10.2955 20.414	
8/1/2007 8:54:09 10.2136 20.578	
8/8/2007 8:54:09 10.419 20.738	
8/15/2007 8:54:09 10.237 20.896	
8/22/2007 8:54:09 10.0733 21.054	
8/29/2007 8:54:09 10.0603 21.2	
9/5/2007 8:54:09 10.1553 21.332	
9/12/2007 8:54:09 10.2281 21.466	
9/18/2007 8:54:09 10.2569 21.572	

Notes: Level is how much water in feet above the transducer.

TABLE 2 SUMMARY OF TRANSDUCER DATA: WELL EW1

Date	Time	LEVEL	TEMPERATURE
11/15/2006	8:51:47	4.3906	19.876
11/22/2006	8:51:47	4.3986	19.453
11/29/2006	8:51:47	4.6068	18.904
12/6/2006	8:51:47	4.2915	18.366
12/13/2006	8:51:47	5.3883	17.777
12/20/2006	8:51:47	5.1644	17.542
12/27/2006	8:51:47	4.7696	16.757
1/3/2007	8:51:47	4.7313	16.611
1/10/2007	8:51:47	4.3476	16.302
1/17/2007	8:51:47	4.2622	15.939
1/24/2007	8:51:47	4.0258	15.739
1/31/2007	8:51:47	3.6404	15.427
2/7/2007	8:51:47	3.4028	15.435
2/14/2007	8:51:47	5.5618	15.233
2/21/2007	8:51:47	4.7772	15.397
2/28/2007	8:51:47	2.6488	15.398
3/7/2007	8:51:47	2.689	15.917
3/14/2007	8:51:47	2.7474	16.362
3/21/2007	8:51:47	5.1856	16.5
3/27/2007	8:51:47	5.9364	16.742
3/28/2007	8:51:47	3.7795	16.382
3/29/2007	8:51:47	3.7081	16.748
3/30/2007	8:51:47	3.6331	16.731
3/31/2007	8:51:47	3.5831	16.721
4/1/2007	8:51:47	3.4665	16.703
4/2/2007	8:51:47	3.5174	16.558
4/4/2007	8:51:47	3.5453	16.514
4/11/2007	8:51:47	3.4789	16.667
4/18/2007	8:51:47	3.745	17.537
4/25/2007	8:51:47	3.6515	16.997
5/2/2007	8:51:47	3.4527	17.664
5/9/2007	8:51:47	3.3925	18.05
5/16/2007	8:51:47	3.5277	18.055
5/23/2007	8:51:47	3.4086	18.57
5/30/2007	8:51:47	3.5449	18.128
6/6/2007	8:51:47	3.4958	18.418
6/13/2007	8:51:47	3.4739	18.66
6/20/2007	8:51:47	3.4961	18.905
6/27/2007	8:51:47	3.4691	19.19
7/4/2007	8:51:47	3.3046	20.516
7/11/2007	8:51:47	3.4085	19.945
7/18/2007	8:51:47	3.3436	19.851
7/25/2007	8:51:47	3.3286	20.671
8/1/2007	8:51:47	3.3011	20.282
8/8/2007	8:51:47	3.425	20.022
8/15/2007	8:51:47	3.3552	20.22
8/22/2007	8:51:47	3.1976	20.784
8/29/2007	8:51:47	3.2606	20.639
9/5/2007	8:51:47	3.1591	20.877
9/12/2007	8:51:47	3.4377	20.965
9/18/2007	8:51:47	3.3881	20.994

<u>Notes:</u> Level is how much water in feet above the transducer.

TABLE 3 SUMMARY OF TOTALIZER READINGS GROUNDWATER TREATMENT SYSTEM

Date	System Conditions
2/20/07	Monitoring flow rate/ System Modifications 9,998,531.9
2/21/07	Cumulative gallons discharged = 16.6
2/23/07	Cumulative gallons discharged = 554 Official System startup
3/13/07	Cumulative gallons discharged = 44,491
4/5/07	Cumulative gallons discharged = 81,483.1
4/11/07	Cumulative gallons discharged = 99,528.1
4/24/07	Cumulative gallons discharged = 131,043.9
4/27/07	Cumulative gallons discharged = 137,698.1
5/7/07	Cumulative gallons discharged = 155,988.1
5/23/07	Cumulative gallons discharged = 178,878.1
5/29/07	Cumulative gallons discharged = 185,949.1
6/7/07	Cumulative gallons discharged = 196,958.1
6/14/07	Cumulative gallons discharged = 204,908.1
6/18/07	Cumulative gallons discharged = 210,019.6
6/22/07	Cumulative gallons discharged = 214,495.1
6/28/07	Cumulative gallons discharged = 220,731.1
7/16/07	Cumulative gallons discharged = 240,086.1
7/20/07	Cumulative gallons discharged = 244,093.1
7/30/07	Cumulative gallons discharged = 254,209.1
8/2/07	Cumulative gallons discharged = 257,287.1
8/17/2007	Cumulative gallons discharged = 272,488.1
8/24/2007	Cumulative gallons discharged = 279,488.1
8/31/2007	Cumulative gallons discharged = 286,541.1
9/7/07	Cumulative gallons discharged = 293,187.1

9/14/07 Cumulative gallons discharged = 299,912.1

TABLE 3 SUMMARY OF TOTALIZER READINGS GROUNDWATER TREATMENT SYSTEM (Continued)

Date	System Conditions
9/21/07	Cumulative gallons discharged = 306,343.1
10/1/07	Cumulative gallons discharged = 315,431.1
10/8/07	Cumulative gallons discharged = 322,426.1
10/12/07	Cumulative gallons discharged = 327,512.1
10/16/07	Cumulative gallons discharged = 332,003.6

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/16/07	2.5, a, b	23, a	0.13	0.48	0.23	1.1	1.7	ND
07/25/07	3.9, b	15, f	0.13	0.25	0.023	ND<0.01	1.5	ND
04/17/07	6.2, b	23	0.26	0.78	0.32	1.1	2.0	ND<0.025, except TBA ND<0.25
01/18/07	6.4, b	29	ND<1.0	1.8	0.87	1.6	3.3	ND<0.05, except TBA ND<0.5
11/14/06	7.2, b	30	0.44	2.2	0.60	1.8	2.9	ND<0.05, except TBA ND<0.5, Ethanol ND<5.0, Methanol ND<50.0
6/29/06	22,b	45	1.2	3.1	0.94	2.0	3.9	ND<0.05, TBA ND<0.5

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
02/03/06	9.7,c	37	0.62	2.2	1.2	2.0	3.5	ND<0.05, TBA ND<0.5
11/18/05	4.3,b	25	0.14	1.6	0.43	1.8	2.7	ND<0.05, TBA ND<0.5
7/28/05	16,a,b	30,a	0.26,+	2.5	0.76	2.1	4.8	ND<0.05, TBA ND<0.5
4/13/05	9.3,b	30	0.3	1.9	0.6	1.7	3	ND<0.05, TBA ND<0.5
1/31/05	14,b	29	0.27	2.2	1.2	1.9	5.0	ND<0.05, TBA ND<0.5
10/15/04	16,a,b	36,a	ND<0.05	1.5	1.0	2.1	5.1	ND<0.05, TBA ND<0.5
7/13/04	22a,b	34,a	0.053	2.1	0.59	2.1	4.4	ND<0.5, TBA ND<0.5

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives
4/6/04	18,a,b	28,a	0.11	2.3	0.8	0.99	4.5	by 8260* ND<0.1 TBA
12/18/03	13,b	33	0.038	2.1	0.77	1.8	4.4	ND<1 ND<0.005 TBA
9/18/03	15,a,b	32	0.052	2.2	0.62	1.8	3.8	ND<0.05 ND<0.017 , TBA ND<0.17

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
6/26/03	67,a,b	45	ND<0.05	2.1	0.72	2.3	5.5	ND
3/18/03	7.3,a,b	33	ND<0.05	2.4	0.9	1.6	1.0	ND
12/21/02	11,a,b	32	ND<0.1	2.6	0.98	2.2	5.5	ND
9/10/02	18,c	31	ND<0.25	2.2	0.65	1.7	4.8	
3/30/02	12,a,b	99	ND	4.1	1.2	2.5	6.4	
12/22/01	22,a,b	60	ND	3.2	1.9	2	6.2	
9/23/01	16,a,c	49	ND	4	1.4	2.2	6.2	
6/22/01	85,a,b	35	ND	3.1	0.75	1.2	4.0	
4/22/01	16,a	43	ND	3.6	1.2	1.6	5.8	
12/14/00	11,a,d	49	ND	5.8	1.6	2	6.9	
9/18/00	15,a,b	86	ND	7.2	2	3.2	13	
6/8/00	6.5,a,c	50	ND	5.7	1.5	1.8	7	
3/9/00	7.4,a,b	48	ND	5.3	3.1	1.6	8.1	
12/9/99	12,a,b	65	ND	9.3	2.9	2.2	8.8	
8/31/99	22,b	66	0.71	8.7	2.7	2.4	10	
4/29/99	22,b	48	ND	8.4	2.8	2.0	8.1	
1/29/99	9.1,b	47	ND	9.0	2.9	1.9	8.0	
4/26/98	7.8,c	60	ND	9.3	5.7	2.1	9.1	
1/24/98	24,b	57	ND	6.9	5.5	2.0	8.7	
11/6/97	17,c	63	ND	7.4	6.7	2.3	9.9	
7/27/97	28,c	66	1.8	8.6	8.1	2.2	10	
4/25/97	170,b	77	ND	7.4	7.9	2.1	9.8	
1/21/97	57,c	80	0.25	7.8	8.3	1.9	8.9	
7/26/96	11,c	76	ND	11	13	2.4	10	
4/23/96	5.7,c	73	ND	8.6	12	2.2	9.8	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
1/29/96	6.6,c	81	0.25	7.6	13	1.9	8.9	
10/26/95	62,c	89	ND	7.8	12	2.4	11	
7/28/95	2.0,c	35		3.8	8.7	1.1	6.5	
5/2/95	6.5,c	86		8.9	14	2.3	11	
2/24/95	9.1	90		7.5	12	1.5	11	
11/18/94	10	96		9.3	14	2.5	11	
8/22/94	8.3	100		9.0	11	2.1	9.4	
5/19/94	30	100		12	14	3.5	17	
2/28/94	110	90		11	9.6	2.1	9.9	
11/24/93	8.2	66		8.3	8.9	2.0	121	
8/30/93	9.4	77		6.4	11	2.2	12	
5/18/93	30	92		4.0	11	2.5	15	
2/23/93	14	100		4.5	11	2.1	12	
11/13/92	4.4	120		5.8	10	2.1	13	
5/27/92	11	120		8.8	16	2.3	15	
1/24/92	19	39		7.3	8.7	1.3	8.9	
12/23/91	34	78		9.3	7.3	0.54	13	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/25/91	36	170		5.5	5.6	1.6	8.4	
10/10/91	19	28		4.1	4.7	1.0	4.8	
9/17/91	19	39		4.9	4.1	1.2	5.9	
8/19/91	47	48		13	8.4	0.99	29	
7/20/91	49	100		11	14	2.3	17	
6/20/91	42	76		4.7	7.1	1.5	9.8	
5/17/91	26	72		7.7	9.9	ND	11	
4/15/91		56		6.5	8.5	0.41	9.9	
3/21/91		36		4.5	5.7	0.087	7.3	
2/15/91		120		7.4	6.6	ND	13	
1/15/91		33		3.9	2.9	0.21	5.3	
9/27/90		28		3.7	3.5	0.01	6.5	
8/23/90		40		5.1	4.9	0.35	6.0	
7/20/90	44			5.1	4.2	ND	9.1	
3/19/90		40		3.7	1.1	ND	3.3	
2/20/90**		7.6		1.6	ND	ND	1.3	

NOTES:

.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 4
SUMMARY OF LABORATORY ANALYTICAL RESULTS
Well MW2

			We	II MW2				
Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/7/96				MW2 D	estroyed			·
1/29/96	4.6,c	38	0.0071	1.9	5.7	1.1	5.9	
10/26/95	900	74	ND	2.9	5.9	2.0	10	
7/28/95	2.0,c	15		1.4	2.3	0.62	3.2	
5/2/95	6.6,b	55		3.3	10	1.8	10	
2/24/95	22	67		4.9	11	1.8	11	
11/18/94	5.0	86		11	17	1.8	12	
8/22/94	4.1	91		10	13	1.5	9.0	
5/19/94	5.8	62		92	13	1.3	8.4	
2/28/94	13	91		13	16	1.5	9.0	
11/24/93	79	12		13	17	2.5	17	
8/30/93	110	110		11	14	1.8	11	
5/18/93	44	67		9.2	12	1.4	9.3	
2/23/93	7.0	76		12	17	1.6	9.6	
11/13/92	8.2	79		10	13	1.4	8.6	
5/27/92	130	89		18	19	1.7	14	
1/14/92	1600	59		17	14	1.8	15	
12/23/91	700	2100		36	130	79	560	
11/25/91	130	230		11	9.7	1.4	9.7	
10/10/91	360	85		21	25	2.1	14	
9/17/91	56	74		10	11	1.4	8.1	
8/19/91	19	69		26	22	2.1	18	
7/20/91	100	51		9.9	7.7	1.2	7.5	
6/20/91	69	87		8.1	8.4	1.1	8.9	
5/17/91	33	62		5.9	6.3	1.2	9.0	
4/15/91		82		5.3	7.4	1.0	9.4	
3/21/91		62		9.3	11	0.35	9.7	
2/15/91		200		12	12	1.7	14	
1/14/91		78		11	8.7	0.58	8.0	
9/27/90		59		8.4	12	0.88	9.0	
8/23/90		96		8.1	8.4	1.5	8.6	
7/20/90	86			9.1	14	0.94	13	
3/19/90		50		7.7	8.7	0.075	5.6	
2/20/90**		38		7.3	3.1	0.075	6.8	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/16/07	13, a, b	69, a	13	18	ND<0.5	ND<0.5	5.0	ND, except
07/05/07	< 7	50	10	22	NID (0.25	ND 0.05	6.0	TBA=10
07/25/07	6.7, a, e	52, a	12	23	ND<0.25	ND<0.25	6.0	ND, except TBA= 8.6
04/17/07	7.9, a, b	92, a	14	23	ND<0.5	1.5	5.9	ND<0.5, except
								TBA = 8.0
01/18/07	6.4, b	94	22	29	1.3	2.1	9.6	ND<0.5, except
								TBA = 12
11/14/06	21, a, b	100, a	23	37	1.0	2.2	11	ND<0.5 except,
								TBA= 16, Ethanol
								ND<5.0,
								Methanol ND<50.0
6/29/06	12,b	36	27	14	ND<0.5	ND<0.5	ND<0.5	ND<0.5, except
00/02/06	22.1	0.6	24	26		17	6	TBA = 11
02/03/06	22,b	86	24	26	ND<0.5	1.7	6	ND<0.5, except
11/18/05	32,a,b	87,a	22	35	ND<1	2	11	TBA = 11 ND<1.0, except
11/18/03	32 , a,0	07,a	22	55		2	11	TBA ND<10
7/28/05	77,a,b	100,a	32,+	30	1.1	2.3	12	ND<0.5, except
1120/05	, , , u , o	100,4	52,1	50	1.1	2.5	12	TBA = 13
4/13/05	19,a,b	96,a	28	31	4	2.3	12	ND<0.5, except
	, ,	,						TBA = 12
1/31/05	13,a,b	93,a	31	36	1.5	2.5	11	ND<1, except
								TBA = 24
10/15/04	13,a,b	76,a	24	28	ND<0.5	1.1	3.6	ND<0.5, except
								TBA = 18

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

 $\label{eq:MTBE} MTBE = Methyl \ tert-Butyl \ Ether.$

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds. e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
7/13/04	57,a,b	98,a	15	28	2.9	1.7	8.9	ND<0.5, except
4/6/04	32,a,b	81,a	17	34	5.9	1.5	9.9	TBA = 11 ND<0.5, except TBA = 8.8
12/18/03	32,a,b	130,a	32	33	5.4	0.72	11	ND<0.5, except TBA = 17
9/18/03	140,a,b	130	23	34	11	2.5	14	ND < 0.5, except TBA = 10
6/26/03	27,a,b	96	21	29	5.2	2.0	10	ND, except $TBA = 8.9$
3/18/03	11,a,b	120	16	36	12	1.8	2.4	ND, except $TBA = 5.1$
12/21/02	21,a,b	110	33	34	9.3	2.0	13	ND, except TBA = 14
9/10/02	43,b	70	19	21	2.2	1.6	7.6	
3/30/02	8.5,a,b	170	26	40	17	2.6	16	
12/22/01	9.2,a,b	140	27	37	20	2.6	15	
9/23/01	47,a,b	130	26	32	9.1	2.4	12	
6/22/01	33,a,b	110	25	31	7.2	1.9	11	
4/22/01	61,a	140	24	25	5.4	1.7	11	
12/14/00	120,a,b	140	35	37	16	2.4	15	
9/18/00	43,a,b	130	33	39	91	2.3	14	
7/26/00			21					ND***,
								except tert-butanol = 19
6/8/00	74,a,b	130	23	41	16	1.9	13	
3/9/00	14,a,b	180	24	39	22	2.5	16	
12/9/99	17,a,b	120	16	35	6.7	2.4	12	
8/31/99	22,b	120	4.7	35	3.7	2.4	14	
4/29/99	48,b	100	2.5	33	8.0	2.1	14	
1/29/99	240,b	84	1.3	31	2.8	1.8	12	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

***Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including TAME, DIPE, ETBE, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/26/98	380,b	100	9.7	29	7.1	1.8	14	
1/24/98	77,b	97	ND	28	7.1	1.8	11	
11/6/97	120,b	140	ND	37	19	2.4	14	
7/24/97	91,c	120	1.4	33	17	2.2	12	
4/25/97	760,b	240	1.6	24	18	4.1	24	
1/21/97	34,c	150	1.3	40	14	2.6	12	
7/26/96	24,c	130	0.89	40	22	2.4	12	
4/23/96	280,c	170	0.72	34	22	2.2	14	
1/29/96	45,c	150	0.54	32	21	1.9	12	
10/26/95	33	130	0.69	37	21	0.21	11	
7/28/95	1.9,b	86		1.4	2.3	0.62	3.2	
5/2/95	9.7,b	170		43	30	2.5	14	
2/24/95	9.2	130		31	19	1.8	10	
11/18/94	23	140		38	22	2.0	11	
7/22/94	5.3	170		35	20	1.8	10	
5/19/94	30	150		38	25	2.4	14	
2/28/94	210	110		36	21	1.9	11	
11/24/93	24	160		48	26	2.2	12	
7/30/93	32	130		36	21	1.9	8.2	
5/18/93	7.2	130		36	21	2.1	12	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/23/93	8.1	110		31	18	1.9	11	
11/13/92	4.7	140		38	24	2.0	12	
5/27/92	27	370		91	57	3.0	21	
7/14/92	270	130		76	30	3.4	21	
12/23/91	540	740		30	61	31	180	
11/25/91	74	150		65	31	3.4	18	
10/10/91	39	140		57	31	2.2	14	
9/17/91	140	180		47	25	2.6	15	
8/19/91	150	170		82	31	4.4	22	
7/20/91	270	450		46	29	3.5	21	
6/20/91	210	920		39	49	13	69	
5/17/91	70	170		32	22	2.2	18	
4/15/91		110		31	15	0.88	7.4	
3/21/91		87		30	14	0.69	5.4	
2/15/91		230		44	40	ND	31	
1/14/91		160		48	25	1.0	16	
9/27/90		25		7.2	6.4	0.42	3.4	
8/23/90		220		67	46	27	18	
7/20/90	86			9.1	14	0.94	13	
3/19/90		210		38	28	1.8	12	
2/20/90**		46		20	15	1.8	9.7	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/16/07			Not S	ampled (Free	Product Pres	ent in Well)		-
07/25/07			Not S	ampled (Free	Product Pres	ent in Well)		
04/17/07			Not S	ampled (Free	Product Pres	ent in Well)		
01/18/07			Not S	ampled (Free	Product Pres	ent in Well)		
11/14/06			Not S	Sampled (Free	Product Pres	sent in Well)		
6/29/06	83,a,b	140,a	31	44	13	2.6	19	ND<1.0,
								except TBA = ND<10
2/3/06	83,a,b	150,a	22	35	12	3.2	14	ND<0.5,
								except
								TBA = 7
11/18/05			Not Sa	umpled (Free I	Product Prese	ent in Well)		
								ND<0.5, except
7/28/05	94,a,b	130,a	27,+	32	8.9	2.9	14	TBA = 8.4

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range

compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/13/05			Not S	ampled (Free I	Product Prese	ent in Well)		<i>xy</i> 0200
1/31/05				ampled (Free I				
10/15/04				ampled (Free I		,		
7/13/04				ampled (Free I				
2/11/04	Free P	roduct samp		ory fuel finger			bling diesel,	with a less
		1		ignificant gase			6 ,	
12/18/03				ampled (Free I	0 1			
9/18/03				ampled (Free I		,		
6/26/03				ampled (Free I				
3/18/03				ampled (Free I		,		
12/21/02			Not Sa	ampled (Free I	Product Prese	ent in Well)		
9/10/02			Not Sa	ampled (Free I	Product Prese	ent in Well)		
3/30/02				ampled (Free I				
12/22/01			Not Sa	ampled (Free I	Product Prese	ent in Well)		
9/23/01			Not Sa	ampled (Free I	Product Prese	ent in Well)		
6/22/01	440,a,b	140	15	35	19	2.0	10	
4/22/01			Not Sa	ampled (Free I	Product Prese	ent in Well)		
12/14/00			Not Sa	ampled (Free I	Product Prese	ent in Well)		
9/18/00			Not Sa	ampled (Free I	Product Prese	ent in Well)		
6/8/00			Not Sa	ampled (Free I	Product Prese	ent in Well)		
3/9/00	2,100,a,b	130	6.9	35	13	2.1	11	
12/9/99	9,000,a,b	120	8.1	33	6	2.4	12	
8/31/99	9.4,b	190	4.4	46	30	2.8	15	
4/29/99	9.4,b	210	3.2	42	35	2.8	15	
1/29/99	7.3,b	190	2.4	44	40	3.1	17	
4/26/98	13,b	190	ND	49	37	3.2	18	
1/24/98	20,b	200	ND	50	40	3.1	17	
11/6/97	110,b	160	ND	48	30	2.8	16	
8/26/97	5.5,b	210	1.7	48	42	3.4	19	
8/15/97				MW4	Installed			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range

compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additive
10/16/07	12, a, b	14, a	8.3	2.6	0.31	0.27	3.0	s by 8260* ND, except TBA =
07/25/07	7.7, a, e	11, a	14	3.2	ND<0.025	ND<0.025	2.6	15 ND, except TBA = 17
04/17/07	5.8, b	21	9.6	3.7	1.4	0.49	1.6	ND<0.1, except TBA = 18
01/18/07	0.93, b	0.93, d	0.60	0.0034	0.0050	ND< 0.0005	0.0041	ND< 0.050, except TBA= 6.8

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

P&D ENVIRONMENTAL, INC.

TABLE 4
SUMMARY OF LABORATORY ANALYTICAL RESULTS
Well EW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/14/06	1.8, b	0.87, d	0.17	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.025, except TBA= 5.9, Ethanol ND<2.5, Methanol ND<25.0
6/29/06	0.71,b	0.29	0.021	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01, Except TBA = 2.0
2/3/06	1.2,b	0.79	3.1	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND < 0.05, Except TBA = 13
11/18/05	1.2,a	0.9	2	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND < 0.05, Except TBA = 18
7/28/05	1.8,b	1.2	17,+	0.033	0.0051	0.00056	0.0059	ND < 0.25, except TBA = 22
4/13/05	2.2,b	0.38	2.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05, except TBA = 1.6

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

+ = Analyzed by EPA Method 8260.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: reporting limit raised due to high MTBE content

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

P&D ENVIRONMENTAL, INC.

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
1/31/05	3.4,b	1.9	38	ND<1	ND<1	ND<1	ND<1	ND<1, except
10/15/04	4.1,a,b	ND<5.0,a,e	96	ND<1.7	ND<1.7	ND<1.7	ND<1.7	TBA = 32 ND<1.7, except
7/13/04	3.3,a,b	2.6,a	73	ND<1.2	ND<1.2	ND<1.2	ND<1.2	TBA = 97 ND<1.2, except
4/6/04	3.4,a,b	2.6,a	72	ND<1	ND<1	ND<1	ND<1	TBA = 40 ND<1, except
12/18/03	3.0,b	ND<5.0,e	160	0.22	ND<50	ND<50	0.073	TBA = 34 ND<5, except
9/18/03	8.2,a,b	7.5	220	0.33	ND<0.05	ND<0.05	ND<0.05	TBA = 64 ND<2.5, except
2/23/93	9.6	66		14	8.5	1.4	9.8	TBA = 51
11/13/92	13	62		11	9.2	1.1	9.6	
8/92				EW1 I	nstalled			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

+ = Analyzed by EPA Method 8260.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: reporting limit raised due to high MTBE content

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates

(TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
10/16/07				No sample	e recovered			
07/25/07				No sample	recovered			
04/17/07				No sample	recovered			
01/18/07				No sample	recovered			
11/14/06				No sample	recovered			
6/29/06	290,b	24						
2/3/06	710a,g	31,a	210					
11/18/05	820,b	370		0.13	ND<0.025	0.4	0.29	ND<0.025
7/28/05	230,a,b	10,a		1.3	0.03	0.19	0.072	TBA<0.25 ND<0.05,
4/13/05	590a,b,d	35,a		2	ND<0.05	0.46	0.14	TBA ND<0.5 ND<0.05, TBA ND<0.5
1/31/05				No sample	e recovered			IBA ND<0.5
10/15/04				No sample	e recovered			
7/14/04	240,a,b	66,a	ND<0.05	1.8	ND<0.05	1.8	0.056	ND<0.05, TBA ND<0.5
4/6/04	74,a,b	50,a		3.1	ND<0.1	0.21	0.14	ND<0.1, TBA ND<1
2/11/04	450,a,b	15,a	130	2.2	0.031	0.16	0.054	ND<0.025, TBA ND<0.25
11/21/03	1,900,a,b	38,f	570	2.0	0.059	0.19	0.095	ND<0.05, TBA ND<0.5
6/10/98				OW1	Installed			10/110 \0.5

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

g = Fuel oil.

** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE,

TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

P&D ENVIRONMENTAL, INC.

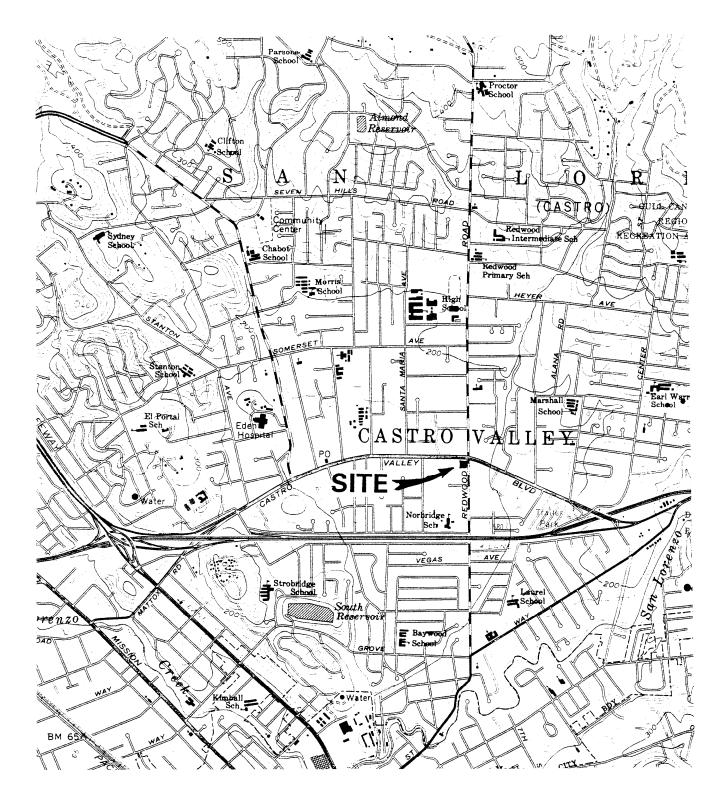
TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**		
10/16/07				No sa	mple recovered	ed				
07/25/07				No sa	mple recovered	ed				
04/17/07	No sample recovered									
01/18/07	/07 No sample recovered									
11/14/06				No sa	mple recover	ed				
6/29/06				No sa	mple recovered	ed				
2/3/06	0.37,b	0.14,h	ND<0.25							
11/18/05				No sa	mple recovered	ed				
7/28/05				No sa	mple recovered	ed				
4/13/05	0.22,b	0.065		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0097		
1/31/05				No sa	mple recovered	ed		010027		
10/15/04				No sa	mple recovered	ed				
07/14/04				No sa	mple recovered	ed				
4/6/04		0.069,a		ND	ND	ND	ND			
2/11/04		0.21		<0.00062 ND <0.0005	<0.00062 ND <0.0005	<0.00062 ND <0.0005	<0.00062 ND <0.0005	ND<0.0005, except MTBE = 0.0064 TBA = 0.0070		
11/21/03				No sa	mple recovere	ed.				
6/10/98				0	W2 Installed					
	otal Petroleu ethyl tert-Bu etected.	m Hydrocar tyl Ether.	bons as Gasol bons as Diese	1.	11.1		1			

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).


* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicate

FIGURES

P&D ENVIRONMENTAL, INC. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980

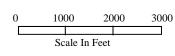
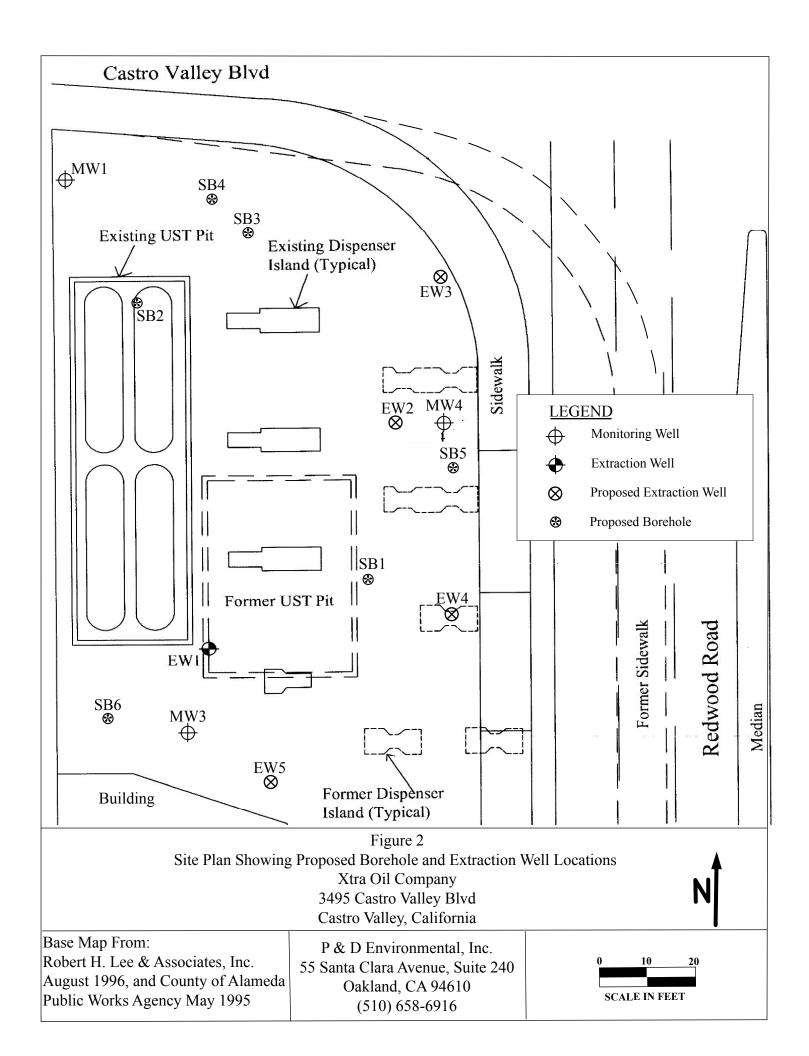
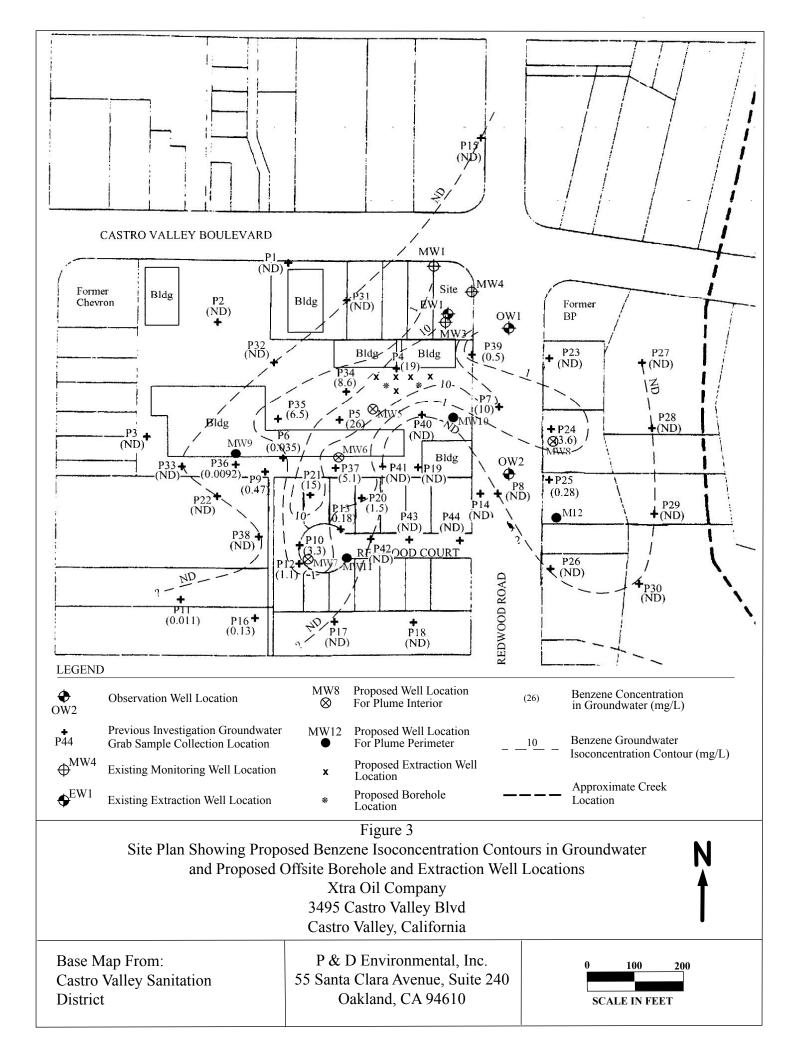
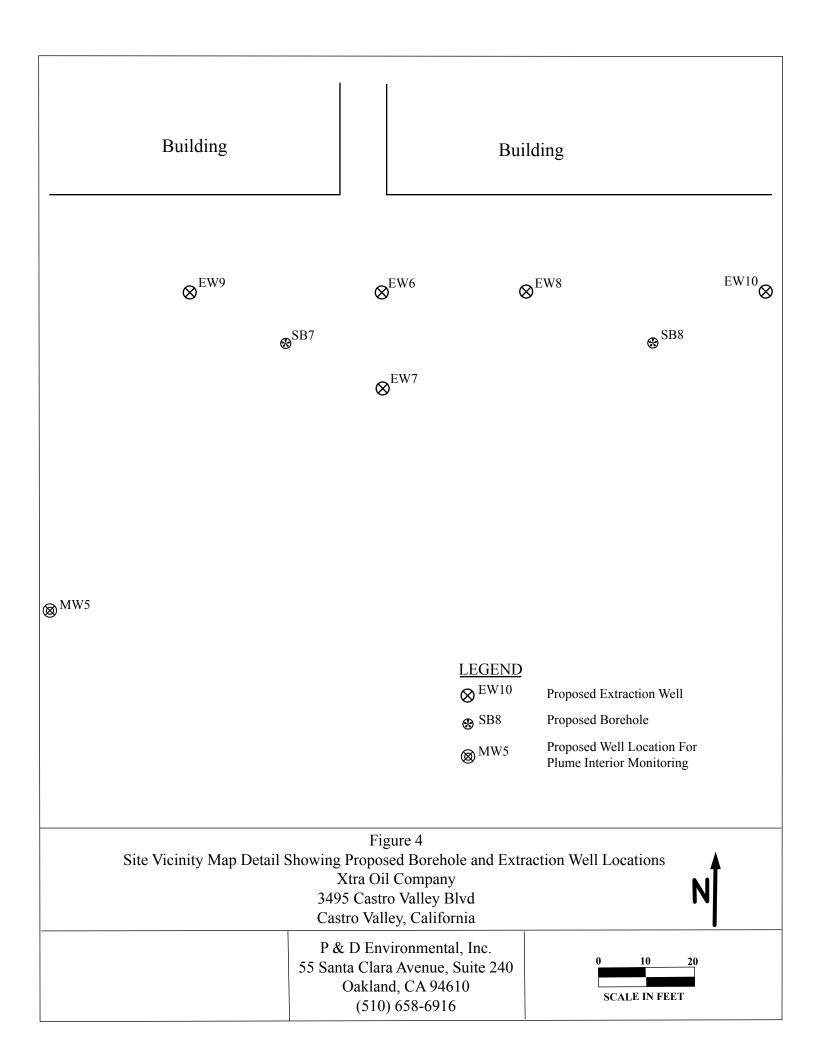





Figure 1 SITE LOCATION MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

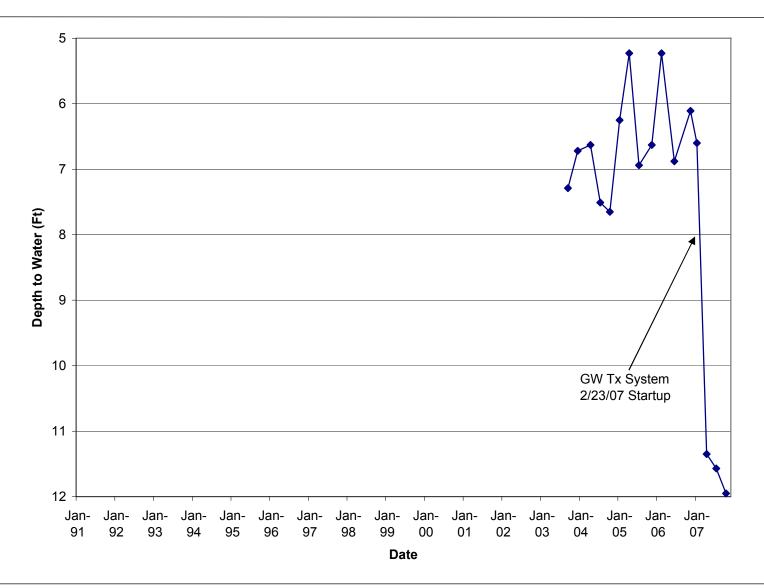


Figure 5 Graph of EW1 Historic Water Level Measurements Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

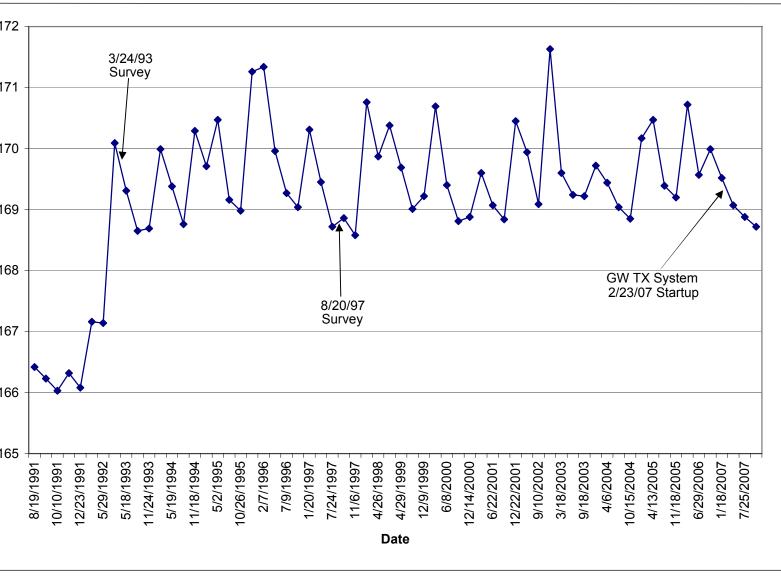


Figure 6 Graph of MW1 Historic Water Level Measurements Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

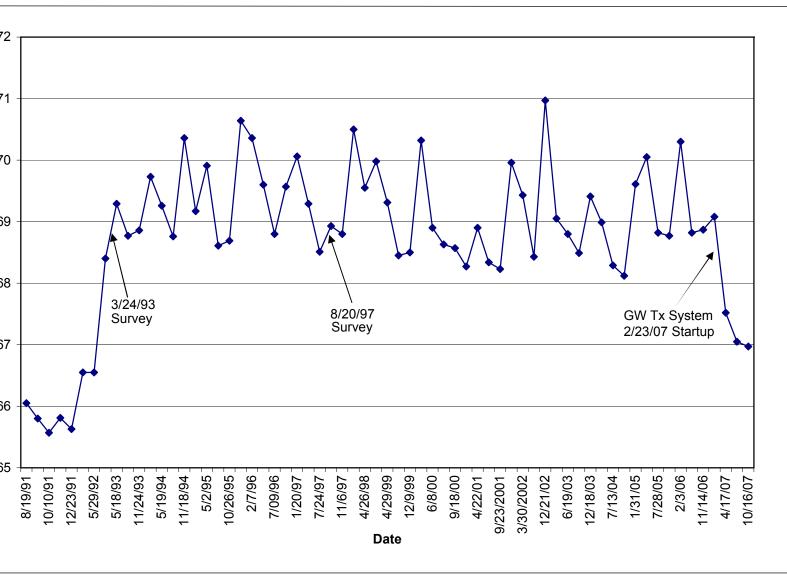


Figure 7 Graph of MW3 Historic Water Level Measurements Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

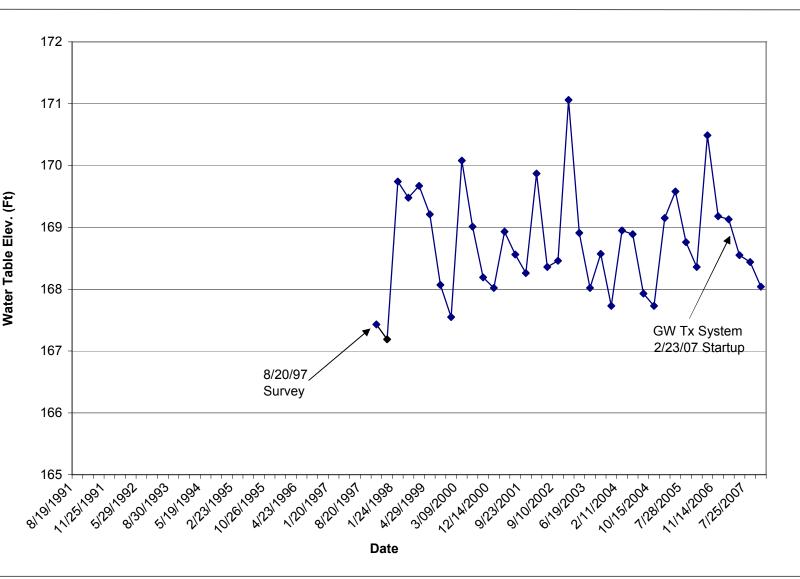
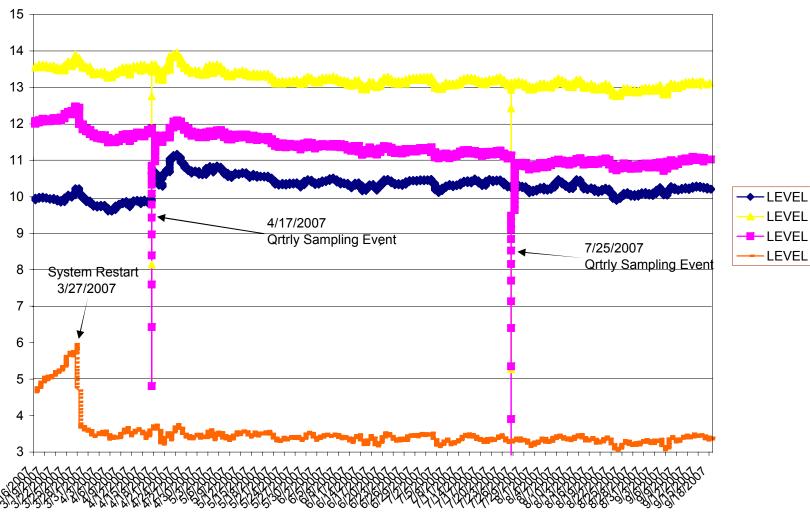



Figure 8 Graph of MW4 Historic Water Level Measurements Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

Time (M/D/Y)

Figure 9 Graph of MW1, MW3, MW4, EW1 Historic Water Level Measurements Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

GROUNDWATER TREATMENT SYSTEM MONTHLY MONITORING LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; Xtra Oil Castro	Date Sampled: 01/31/07
55 Santa Clara, Ste.240	Valley	Date Received: 02/01/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 02/08/07
	Client P.O.:	Date Completed: 02/08/07

WorkOrder: 0702032

February 08, 2007

Dear Steve:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; Xtra Oil Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

(S10) 658-6916 CHAIN OF CUSIODY RECORD												5 8 Age _[OF Z				
F	PROJECT NUMBER: DO14 SAMPLED BY: (PRI Sturen Carr		name: ra O, M	l Castro Ve	alley	ABER OF TANNERS AWAL 1515(ES): 117 TTC ESCES): 117 TTC ESCESS Muthing Control			REMARKS				RKS				
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCA	ноп	ΞS	V3	101	E	sk-	10	1	1		
1	Effluent-013107	01/31/07	1200	water	Tx	System		23	Х	X	XX	X	X	ICE	Norm	I Turna	ound Time
F		9 ⁴							•								
t										•							
┢																	
F		•															
F												1					
\mathbf{F}						<u>.</u>											
							*					-					
	RELINQUISHED BY:	(SIGNATURE	E)	DATE 2/1/07	TIME	RECEIVED BY:	(SIGNATURE)	1)	TOTA	THES :	OF SAM		1		ORATOR		tical, Fue
	RELINQUISHED BY:	(SIGNATURI	E)	DATE	TIME 30	RECEIVED BY:	(SIGNATURE)		1 1		ATORY RY					PHONE 2-92	NUMBER:
K	RELINQUISHED BY:	(SICNATURE	E) /	DATE	TIME	(SIGNATURE)	R LABORATORY				SAMI	PLE TACI	AN AL HED:	()YE	EQUEST	0	
				1		REMARKS:	VOAS prese Amber 12	erved.'s pr	w/ estr	Hc. . ed n	L j 1 Hz	soy +	+1+c	L; Pol	y's > t	HNO3 +	NAOH

55 Santa Clara A Oakland, C (510) 658	a 94610		С	HAIN	OF CUSTO	DY F	1		RD) -	77	PAGE 2 OF 2
PROJECT NUMBER: 0014 SAMPLED BY: (PRI Steven Garma	NTED AND S					NUMBER OF	ONTAINERS OF AWAL 1515(ES).				ANU TA REMARKS	
SAMPLE NUMBER	DATE	IIMC		Ty		23	X	H	-	ff	10	CE silica sel cleanup
ffluent-013107	01/31/07	1200	WATER	Iχ	System		•		+			Normal Turnaround Til
	0 ^{.2}				·		1		-		-	
							+					
						-				+		
RELINQUISHED BY:	(SICNATUR	ε)	DATE 2/1/07	тме 207	RECEIVED BY: (SIGNATI	IRE.)	101	THIS	or say	TANKOS	1 23	LABORATORY: McCanpbill Analytica
RELINQUISHED BY:	RELINQUISHED BY: (SICHATURE) DATE TIME				RECEIVED BY: (SIGNAT	IRE)		A	a Ry	delin	S	LABORATORY PHONE NUMBER (925) 252-9262
RELINQUISHED BY:	(SICHATUR	TIME	RECEIVED FOR LABORATORY BY:					~ . ~	AMPLE ANALYSIS REQUEST SHEET ATTACHED: ()YES (X)NO L W/ HCL+ H2SOY; Polys > HNO3+NaOF			

McCampbell Analytical, Inc.

1

_____ 1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkOr	der: 0702032	ClientID: PDEO		
			EDF	Fax	✓ Email	HardCopy	ThirdParty	
Report to:				Bill	to		Requested TAT:	5 days
Steve Carmack	Email:				Accounts Payable			
P & D Environmental	TEL:	(510) 658-691	FAX: 510-834-01	52	Xtra Oil			
55 Santa Clara, Ste.240	ProjectNo:	#0014; Xtra Oil C	Castro Valley		2307 Pacific Ave		Date Received:	02/01/2007
Oakland, CA 94610	PO:				Alameda, CA 94507		Date Printed:	02/08/2007

					Requested Tests (See legend below)										
Sample ID	ClientSampID	Matrix	Collection Date Hole	1 1	2	3	4	5	6	7	8	9	10	11	12
· · · · · · · · · · · · · · · · · · ·		1	· · · · · · · · · · · · · · · · · · ·	-	r	r	T	r		r			r –	r	r
0702032-001	Effluent-013107	Water	01/31/07 12:00:00	G	Н	E	Α	В	С	F	D				

Test Legend:

1	5520B_SG_W	2	5520B_W]	3	624_W	4 CAM17(T)MS_W	5 CN_TOTAL_W
6	G-MBTEX_W	7	PHENOLICS_W]	8	TPH(DMO)_W	9	10
11		12]				

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	CCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Enviro	nmental	Client Project ID:	#0014; Xtra Oil	Date Sampled: 01/31/	07				
55 Santa Clara	a, Ste.240	Castro Valley		Date Received: 02/01/07					
Oakland, CA	94610	Client Contact: St	eve Carmack	Date Extracted: 02/01/	/07				
Oakianu, CA		Client P.O.:	Client P.O.: Date Analyzed 02/0						
Analytical methods		eum Oil & Grease v	with Silica Gel Clean-U	-	der: 070	02032			
Lab ID	Client ID	Matrix	P	OG	DF	% SS			
0702032-001G	Effluent-013107	W	Ν	١D	1	N/A			
	Reporting Limit for DF =1;	XX 7	-	0		~/I			
	ND means not detected at or above the reporting limit	W S		JA		g/L A			

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) results are reported on a dry weight basis.

	[cCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Enviro	onmental	Client Project ID:	#0014; Xtra Oil	Date Sampled: 01/31/	07				
55 Santa Clara	a, Ste.240	Castro Valley		Date Received: 02/01/07					
Oakland, CA	94610	Client Contact: St	eve Carmack	Date Extracted: 02/01/	/07				
		Client P.O.:	Client P.O.: Date Analyzed 0						
Analytical method		il & Grease without	Silica Gel Clean-Up*	Work Or	der: 07()2032			
Lab ID	Client ID	Matrix	T	OG	DF	% SS			
0702032-001H	Effluent-013107	W	1	ŇD	1	N/A			
<u> </u>	Reporting Limit for DF =1;	W		5.0		g/L			
	ND means not detected at or above the reporting limit	w S		JA		A			

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) results are reported on a dry weight basis.

Angela Rydelius, Lab Manager

McCampbell	<u>.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental	(lient P	rojec	t ID:	#0014; Xtra Oil	Date S	ampled: 01/31/07			
	C	Castro Valley			Date Received: 02/01/07					
55 Santa Clara, Ste.240	(Client Contact: Steve Carmack					xtracted: 02/02/0	7		
	_		01110	ici. Su	eve Carmack					
Oakland, CA 94610	0	Client P	0.:			Date A	nalyzed 02/02/0	07		
•	Volatile Orgar	ics by	P&1	F and C	GC/MS (624 Basic Tar	get List)	*			
Extraction Method: E624	_	1	Analyt	ical Metl	nod: E624		Work Or	der: 070	02032	
Lab ID					0702032-001E					
Client ID					Effluent-013107	7				
Matrix					Water					
Compound	Reporting Limit	Compound		Concentration *	DF	Reporting Limit				
Acrolein	ND	1.	0	5.0	Acrylonitrile		ND	1.0	2.0	
Benzene	ND	ND 1.0 0.5			Bromodichloromethane		ND	1.0	0.5	
Bromoform	ND				Bromomethane		ND	1.0	0.5	
Carbon tetrachloride	ND	1.	0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.	0	0.5	2-Chloroethyl vinyl ether	r	ND	1.0	1.0	
Chloroform	ND	1.	0	0.5	Chloromethane		ND	1.0	0.5	
Dibromochloromethane	ND	1.	0	0.5	Dichlorodifluoromethane		ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.	0	0.5	1,3-Dichlorobenzene		ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.	0	0.5	1,1-Dichloroethane		ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.	0	0.5	1,1-Dichloroethene		ND	1.0	0.5	
cis-1,2-Dichloroethene	ND	1.	0	0.5	trans-1,2-Dichloroethene	;	ND	1.0	0.5	
1,2-Dichloropropane	ND	1.	0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.	0	0.5	Ethylbenzene		ND	1.0	0.5	
Hexachlorobutadiene	ND	1.	0	0.5	Hexachloroethane		ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.	0	0.5	Methylene chloride		ND	1.0	0.5	
Naphthalene	ND	1.	0	0.5	Nitrobenzene		ND	1.0	10	
Styrene	ND	1.	0	0.5	1,1,2,2-Tetrachloroethan	ie	ND	1.0	0.5	
Tetrachloroethene	ND	1.	0	0.5	Toluene		ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.	0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.	0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.	0	0.5	Freon 113		ND	1.0	10	
Vinyl chloride	ND	1.	0	0.5	Xylenes		ND	1.0	0.5	
		Sı	rrog	gate Re	coveries (%)					
%SS1:		110			%SS2:		99			
%SS3:		103								

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

When Ouality		<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental			#0014; Xtra Oil	Date Sampled:	01/31/07					
55 South Claure Sta 240	Castro V	alley		Date Received: 02/01/07						
55 Santa Clara, Ste.240	Client C	Client Contact: Steve Carmack			02/01/07					
Oakland, CA 94610	Client P.	0.:		Date Analyzed:	02/05/07					
	C	CAM / CCF	R 17 Metals*							
Lab ID	0702032-001A				Donortino Lie	nit for DF =1;				
Client ID	Effluent-013107				ND means	not detected porting limit				
Matrix	W				S	W				
Extraction Type	TTLC				mg/kg	μg/L				
Analytical Method: E200.8		AS Metals, action Method	Concentration*		Work Order:	0702032				
Dilution Factor	1		1. 1200.0		1	1				
Antimony	5.5				NA	0.5				
Arsenic	69				NA	0.5				
Barium	ND				NA	5.0				
Beryllium	ND				NA	0.5				
Cadmium	ND				NA	0.25				
Chromium	ND				NA	0.5				
Cobalt	ND				NA	0.5				
Copper	13				NA	0.5				
Lead	2.1				NA	0.5				
Mercury	ND				NA	0.012				
Molybdenum	56				NA	0.5				
Nickel	ND				NA	0.5				
Selenium	0.94				NA	0.5				
Silver	ND				NA	0.19				
Thallium	ND				NA	0.5				
Vanadium	2.3				NA	0.5				
Zinc	14				NA	5.0				
%SS:	103									
Comments										
 *water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument. 	wipe samples in µg/	wipe, filter s	amples in µg/filter.		-					

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Analy "When Ouality Counts		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID:	#0014; Xtra Oil	Date Sampled: 01/31/07				
55 Santa Clara, Ste.240	Castro Valley		Date Received: 02/01/07				
Oakland, CA 94610	Client Contact: S	teve Carmack	Date Extracted: 02/02/07				
	Client P.O.:		Date Analyzed 02/02/07				
Analytical Method: E335.3 / Kelada-01	Cyanid	e, Total*	Work Order: 0	702032			
Lab ID Client ID	Matri	x	Total Cyanide	DF			
0702032-001B Effluent-0131	07 W		ND	1			

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

* water samples are reported in ug/L; soil/sludge/solid samples in mg/kg; wipe samples in µg/wipe.

^ All water samples are screened for sulfide interference prior to analysis and treated to remove sulfide if it is present. All soil samples are treated to remove sulfide, nitrate and nitrite interference prior to analysis.

i) liquid sample contains greater than ~ 1 vol. % sediment; j) reporting limit raised due to high sediment content/matrix interference; m) sample treated to remove interfering nitrate and nitrite per E335.4; p) see attached narrative.

	McCampbell	Analyt		-	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D	Environmental		Client Proj	ject ID: #	40014; Xtra	a Oil Cas	stro Valley	Date Sample	d: 01/31/07			
55 Sai	nta Clara, Ste.240							Date Receive	ed: 02/01/07			
Oakla	nd, CA 94610		Client Cor	ntact: Ste	eve Carma	ck		Date Extracted: 02/07/07				
Ouniu			Client P.O.	.:				Date Analyz				
Extracti	Gasolin	ne Range (C	·	•	rocarbons ds SW8021B		line with BTH	EX and MTBE	* Work Order	r: 070	2032	
Lab ID	Client ID	Matrix	TPH(g)	MTBI	E Be	nzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	
001C	Effluent-013107	W	ND	ND		ND	ND	ND	ND	1	96	
											<u> </u>	
				<u> </u>								
										<u> </u>		
										<u> </u>		
											<u> </u>	
		+		<u> </u>								
Rej	porting Limit for DF =1;	W	50	5.0		0.5	0.5	0.5	0.5	1	μg/L	
ND	means not detected at or	S	NA	NA		NA	NA	NA	NA	1	mg/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

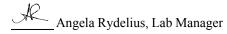
WcCampbell Analyt	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID:	#0014; Xtra Oil Date Sampled: 01/31/07					
55 Santa Clara, Ste.240	Castro Valley		Date Received: 02/01/07				
Oakland, CA 94610	Client Contact: St	eve Carmack	Date Extracted: 02/02/07				
· ·	Client P.O.:		Date Analyzed 02/02/07				
Analytical Method: E420.2	Phen	olics*	Work Order: 0	0702032			
Lab ID Client ID	Matriz	x	Phenolics	DF			
0702032-001F Effluent-013107	7 W		ND	1			

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

i) liquid sample that contains greater than 1 vol. % sediment.

	Campbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.mc	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environ	imental		D: #0014; Xtra Oil	Date Sampled: 01/	31/07				
55 Santa Clara	, Ste.240	Castro Valley		Date Received: 02/	Date Received: 02/01/07				
Oakland, CA 9	4610	Client Contact:	Steve Carmack	Date Extracted: 02/	01/07				
,		Client P.O.:		Date Analyzed 02/	01/07				
Extraction method S	Diesel (C10-23) and Oil (ractable Hydrocarbons nethods SW8015C	as Diesel and Motor Oil*	Work Order	· 0702032			
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS			
0702032-001D	Effluent-013107	W	ND	ND	1	95			


Reporting Limit for $DF = 1$;	W	50	250	μg/L
ND means not detected at or	S	NA	NA	mg/Kg
above the reporting limit	5	1111	1121	1119/119

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

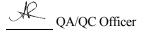
+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil;

DHS ELAP Certification Nº 1644

QC SUMMARY REPORT FOR SM5520B/F

W.O. Sample Matrix: Water/Water	QC Matrix	: Water			WorkOrder 0702032							
EPA Method SM5520B/F	Extraction SM5520B/F				BatchID: 26047 Sp				iked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
Analyte	mg/L mg/L % Rec. % Rec. % RPD % Rec. % Rec.						% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
POG	N/A	100	N/A	N/A	N/A	96.1	97.8	1.71	N/A	N/A	70 - 130	25
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	s than the	method F	RL with th	ne following	exceptions:			

BATCH 26047 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0702032-001	1/31/07 12:00 PM	2/01/07	2/06/07 2:58 PM	0702032-001	1/31/07 12:00 PM	2/01/07	2/06/07 3:08 PM	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR E420.2

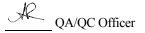
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0702032

EPA Method E420.2	Extraction E420.2						BatchID: 26057 Sp				viked Sample ID: 0702032-001F			
AnalyteSampleSpikedMSMSDMS-MSDLCS $\mu g/L$ $\mu g/L$ $\mu g/L$ % Rec.% Rec.% RPD% RecPhenolicsND401231147.7995.7All target compounds in the Method Blank of this extraction batch were ND less than the method	Sample	Spiked	MS	MSD	MS-MSD LCS LC		LCSD	LCS-LCSD	CS-LCSD Acceptance Criter			1		
	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD							
Phenolics	ND	40	123	114	7.79	95.7	101	5.25	70 - 130	30	80 - 120	20		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

26057 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0702032-001	1/31/07 12:00 PM	2/02/07	2/02/07 1:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

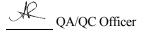
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0702032

	5C Extraction SW3510C					BatchID: 26036			Spiked Sample ID: N/A			
Analyte TPH(d) %SS:	Sample Spiked MS MS				MS-MSD LCS I		LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	103	102	1.13	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	102	100	1.71	N/A	N/A	70 - 130	30

BATCH 26036 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0702032-001	1/31/07 12:00 PM	2/01/07	2/01/07 9:35 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

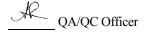
% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR Kelada-01

W.O. Sample Matrix: Water						WorkOrder 0702032						
Extrac	tion E33	35.3 / Kel	ada-01	Bat	chID: 26	043	43 Spiked Sample ID: 0702032-001B					
Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	ptance Criteria (%)		
µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
ND	40	84.1	82.8	1.62	98.4	92.5	6.17	80 - 120	20	90 - 110	20	
ink of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				
	Sample µg/L ND	Sample Spiked µg/L µg/L ND 40	Extraction E335.3 / KelSampleSpikedMSµg/Lµg/L% Rec.ND4084.1	Extraction E335.3 / Kelada-01 Sample Spiked MS MSD µg/L µg/L % Rec. % Rec. ND 40 84.1 82.8	Sample Spiked MS MSD MS-MSD µg/L µg/L % Rec. % Rec. % RPD ND 40 84.1 82.8 1.62	Extraction E335.3 / Kelada-01 BatchID: 26 Sample Spiked MS MSD MS-MSD LCS µg/L µg/L % Rec. % Rec. % RPD % Rec. ND 40 84.1 82.8 1.62 98.4	Extraction E335.3 / Kelada-01 BatchID: 26043 Sample Spiked MS MSD MS-MSD LCS LCSD µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. ND 40 84.1 82.8 1.62 98.4 92.5	Extraction E335.3 / Kelada-01 BatchID: 26043 Sp Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD ND 40 84.1 82.8 1.62 98.4 92.5 6.17	Extraction E335.3 / Kelada-01 BatchID: 26043 Spiked Samp Sample Spiked MS MS-MSD LCS LCSD LCS-LCSD Acce µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD	Extraction E335.3 / Kelada-01 BatchID: 26043 Spiked Sample ID: Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % RPD 20	Extraction E335.3 / Kelada-01 BatchID: 26043 Spiked Sample ID: 0702032-00 Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % Rec. % 0 - 120 20 90 - 110	


	BATCH 26043 SUMMARY									
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0702032-001	1/31/07 12:00 PM	2/02/07	2/02/07 1:37 PM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR E624

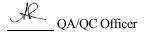
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0702032

EPA Method E624	Method E624 Extraction E624						056	Sp	Spiked Sample ID: 0702033-011A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, indivice	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Benzene	ND	10	127	125	1.64	127	127	0	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	10	99.3	100	1.05	97.3	98.5	1.17	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	92.8	99.4	6.82	105	106	0.722	70 - 130	30	70 - 130	30	
Toluene	ND	10	103	96.8	6.41	100	97	3.02	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	78.3	77.5	1.03	79.5	77.9	2.09	70 - 130	30	70 - 130	30	
%SS1:	105	10	104	103	1.56	105	104	0.545	70 - 130	30	70 - 130	30	
%SS2:	97	10	93	86	7.88	91	87	3.56	70 - 130	30	70 - 130	30	
%SS3:	101	10	104	101	3.37	104	101	2.95	70 - 130	30	70 - 130	30	
All target compounds in the Method I NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	CL with th	ne following	exceptions:				

BATCH 26056 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0702032-001	1/31/07 12:00 PM	2/02/07	2/02/07 9:20 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR E200.8

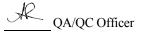
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0702032

EPA Method E200.8	Extraction E200.8				BatchID: 26049			Sp	iked Samp	ole ID:	0702031-00	1A
Analyte	Sample Spiked MS			MSD	MSD MS-MSD LCS			LCSD LCS-LCSD	Acceptance Criteria (%)			
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	2.2	10	93.4	94.2	0.690	95.4	94.4	0.959	75 - 125	20	85 - 115	20
Arsenic	770	10	NR	NR	NR	103	101	1.27	75 - 125	20	85 - 115	20
Barium	ND	100	93.8	93.8	0	95.2	95.7	0.576	75 - 125	20	85 - 115	20
Beryllium	ND	10	99.4	100	0.732	99.6	98.7	0.908	75 - 125	20	85 - 115	20
Cadmium	ND	10	97.9	98.2	0.275	102	101	0.0986	75 - 125	20	85 - 115	20
Chromium	0.61	10	98.5	103	4.03	104	105	0.671	75 - 125	20	85 - 115	20
Cobalt	0.68	10	88.4	89.1	0.753	98.5	97.3	1.23	75 - 125	20	85 - 115	20
Copper	3.7	10	105	111	3.87	104	106	1.14	75 - 125	20	85 - 115	20
Lead	3.3	10	94.4	95.1	0.547	94.3	94.4	0.117	75 - 125	20	85 - 115	20
Mercury	0.26	0.50	95.9	98.7	1.86	90.2	90.1	0.111	75 - 125	20	85 - 115	20
Molybdenum	2.8	10	101	102	1.16	97.8	98.3	0.490	75 - 125	20	85 - 115	20
Nickel	6.8	10	98.3	100	1.19	104	105	0.960	75 - 125	20	85 - 115	20
Selenium	6.0	10	103	103	0	104	104	0	75 - 125	20	85 - 115	20
Silver	0.35	10	90.2	90.5	0.288	97.6	98.4	0.755	75 - 125	20	85 - 115	20
Thallium	ND	10	92.5	93.1	0.690	92.5	93.8	1.44	75 - 125	20	85 - 115	20
Vanadium	1.8	10	100	103	2.49	100	101	0.398	75 - 125	20	85 - 115	20
Zinc	20	100	84.7	86.3	1.52	94.8	105	9.81	75 - 125	20	85 - 115	20
%SS:	102	750	103	101	2.05	102	103	0.768	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 26049 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0702032-001	1/31/07 12:00 PM	2/01/07	2/05/07 3:49 PM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0702032

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	054	Sp	Spiked Sample ID: 0702033-011A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and yes	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	96.1	99.6	3.62	91.4	95.4	4.33	70 - 130	30	70 - 130	30
MTBE	ND	10	91.7	86	6.41	93.6	88.9	5.16	70 - 130	30	70 - 130	30
Benzene	ND	10	106	96.3	9.99	102	100	1.61	70 - 130	30	70 - 130	30
Toluene	ND	10	105	95.8	9.44	101	99.2	2.15	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	107	99.7	7.26	104	99.7	4.18	70 - 130	30	70 - 130	30
Xylenes	ND	30	120	110	8.70	117	110	5.88	70 - 130	30	70 - 130	30
%SS:	106	10	95	92	4.02	95	93	2.40	70 - 130	30	70 - 130	30

BATCH 26054 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0702032-001	1/31/07 12:00 PM	2/07/07	2/07/07 1:24 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; Xtra Oil/Castro	Date Sampled: 04/24/07
55 Santa Clara, Ste.240	Valley	Date Received: 04/24/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 04/30/07
	Client P.O.:	Date Completed: 04/30/07

WorkOrder: 0704481

April 30, 2007

Dear Steve:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; Xtra Oil/Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

Pde0 0704481 P & D ENVIRONMENTAL, INC. 55 Santa Clara Ave, Suite 240 CHAIN OF CUSTODY RECORD Oakland, CA 94610 (510) 658-6916 PAGE ____ OF __ PROJECT NUMBER: PROJECT NAME: ANAL YSIS(ES) PRESERVA THE Xtra Oil/Castro Valley 0014 80 NUMBER OF CONTAINERS SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS Steven Cannack DATE TIME TYPE SAMPLE LOCATION SAMPLE NUMBER Effment=042407 04/24/07 0940 Hz0 ICE Normal Turneround Time Tx System 6 0.4 ICE/1º 3.80 GOOD CONDITION APPI OPRIATE CON AINERS PRE ERVED IN LAB 0.80 PESERVATION RELINQUISHED BY: (SIGNATURE) TOTAL NO. OF SAMPLES DATE TIME RECEIVED BY: (SIGNATURE) LABORATORY: (THUS SHETHOUT) 4/24/07 McCandoll Analytical Inc TOTAL NO. OF CONTAMOUS 6 Angela Lydelin) (925) 252-9262 RELINQUISHED BY: (SIGNATURE) DATÉ TIME RECEIVED BY: (SIGNATURE) SAMPLE ANALYSIS REQUEST SHEET RELINQUISHED BY: (SICNATURE) DATE TIME RECEIVED FOR LABORATORY BY: ATTACHED: ()YES (X)NO (SIGNATURE) REMARKS: Amber IL's preserved of Hzsay Cycllow stickers "Hzsay" Please Filter + Preserve Poly's prior to analy Sis,

. '

	AW.	5
6	1 C	1
1		ì
		Į

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 070448	1 Clie	ntID: PDEO		
			EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:				В	ill t		Re	quested TAT:	: 5 days
Steve Carmack	Email:	p_denvironment	al@msn.com		Accounts Pa	ayable			
P & D Environmental	TEL:	(510) 658-691	FAX: 510-83	4-0152	Xtra Oil Com	npany			
55 Santa Clara, Ste.240	ProjectNo:	#0014; Xtra Oil/C	Castro Valley		2307 Pacific	Avenue	Da	ite Received	04/24/2007
Oakland, CA 94610	PO:				Alameda, C	A 94507	De	te Printed:	04/24/2007

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0704481-001	Effluent-042407	Water	4/24/07 9:40:00		С	А	В	Α								

Test Legend:

1 8082A_PCB_W	2 CAM17MS_DISS	3 PHENOLICS_W	4 PRDISSOLVED	5
6	7	8	9	10
11	12			

Prepared by: Melissa Valles

Comments:

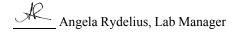
NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ental			Date a	and Time Received:	4/24/07 3:	44:09 PM
Project Name:	#0014; Xtra Oil/0	Castro Valley			Check	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0704481	Matrix <u>Water</u>			Carrie	r: <u>Rob Pringle (N</u>	IAI Courier)	
		Chain	of Cu	stodv (C	OC) Informa	ation		
Chain of custody	v present?		Yes		No 🗆			
-	y signed when relingu	ished and received?	Yes		No 🗆			
	y agrees with sample		Yes		No 🗆			
	d by Client on COC?		Yes					
	f collection noted by C	lient on COC2	Yes					
Sampler's name	-		Yes	\checkmark				
Sampler S hame	noted on COC?		165					
		<u>S</u> ;	ample	Receipt	Information	<u>1</u>		
Custody seals in	tact on shippping con	tainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?	,	Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	nuatio	a and Ha	ld Time (UT) Information		
		Sample Flese	vatioi			<u>) momation</u>		
All samples rece	ived within holding tin	ie?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	3.8°C		NA 🗆	
Water - VOA via	lls have zero headspa	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pre	eservation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		N 🗹	

Client contacted:


Date contacted:

Contacted by:

Comments:

McCampbell Ar		<u>cal, In</u>	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental			oject ID:	#0014;	Xtra	Date Sampled:	04/24/07				
55 Santa Clara, Ste.240		Oil/Castr	o Valley			Date Received:	04/24/07				
0-111-CA-04(10		Client C	ontact: St	eve Carmack Date Extracted			04/24/07				
Oakland, CA 94610		Client P.	D.:			Date Analyzed	04/27/07				
Pe	olychlor	inated Bi	phenyls (P	CBs) A	roclors by GC-I	ECD*					
Extraction Method: SW3510C			ytical Method	l: SW808	2A	1	Work Order:	0704481			
Lab ID		81-001C					-				
Client ID	Effluer	nt-042407						g Limit for F =1			
Matrix		W									
DF		1					S	W			
Compound				Conce	entration		ug/kg	μg/L			
Aroclor1016]	ND					NA	0.5			
Aroclor1221]	ND					NA	0.5			
Aroclor1232]	ND					NA	0.5			
Aroclor1242]	ND					NA	0.5			
Aroclor1248]	ND					NA	0.5			
Aroclor1254]	ND					NA	0.5			
Aroclor1260]	ND					NA	0.5			
PCBs, total]	ND					NA	0.5			
		Surr	ogate Rec	overies	· (%)						
%SS:		119									
Comments											
* water samples in µg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a	tre report	ted in mg/L					il/non-aqueou	s liquid			
ND means not detected above the reporting # surrogate diluted out of range or surrog	-		-	ot applica	able to this analysi	S.					

(a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains $>\sim1$ vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

& D Environmental	Clie						
		ent Project ID:	#0014; Xt	ra	Date Sampled:	04/24/07	
	Oil/	Castro Valley			Date Received:	04/24/07	
5 Santa Clara, Ste.240	Clie	ent Contact: St	eve Carma	ack	Date Extracted:	04/24/07	
akland, CA 94610	Clie	ent P.O.:			Date Analyzed:	04/26/07	
	I	CAM / CCI	R 17 Metals	5*			
Lab ID	0704481-00)1 A				<u> </u>	
Client ID	Effluent-042						nit for DF =1 not detected porting limit
Matrix	W					s	W
Extraction Type	DISS.					mg/kg	μg/L
	I	CP-MS Metals	, Concentr	ation*		2	
alvtical Method: E200.8		Extraction Metho	d: E200.8			Work Order:	0704481
Dilution Factor	1					1	1
ntimony	ND					NA	0.5
rsenic	2.4					NA	0.5
arium	700					NA	5.0
eryllium	ND					NA	0.5
admium	ND					NA	0.25
hromium	ND					NA	0.5
obalt	ND					NA	0.5
opper	3.0					NA	0.5
ead	ND					NA	0.5
ercury	0.019					NA	0.012
olybdenum	1.3					NA	0.5
ickel	0.86					NA	0.5
elenium	ND					NA	0.5
lver	ND					NA	0.19
nallium	ND					NA	0.5
anadium	ND					NA	0.5
nc	180					NA	5.0
	N/A						
nc %SS:							1
omments						<u> </u>	
ater samples are reported in μg/L, proc /L, soil/sludge/solid samples in mg/kg,			•		C / DISTLC / SPLP ext	racts are repo	rted in

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	•	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environm	ental	Client Proje Oil/Castro		014; Xtra	Date Sampled: 04/24/07					
55 Santa Clara, S	te.240		<i>v alley</i>		Date Received: 04/24/07					
Oakland, CA 946	10	Client Con	tact: Steve	Carmack						
o williana, 011 / 10		Client P.O.:			Date Analyzed: 04/25/07					
Analytical Method: E	420.2		Phenolic	°S*	Work Order: 0	0704481				
Lab ID	Client ID		Matrix		Phenolics	DF				
0704481-001B	Effluent-042407		W		ND	1				

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

i) liquid sample that contains greater than 1 vol. % sediment.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8082A

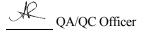
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0704481

EPA Method SW8082A Extraction SW3510C						chID: 27	582	Spiked Sample ID: N/A					
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Aroclor1260	N/A	3.75	N/A	N/A	N/A	124	126	1.75	N/A	N/A	70 - 130	20	
%SS:	N/A	2.5	N/A	N/A	N/A	121	127	5.19	N/A	N/A	70 - 130	30	
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	ere ND les	ss than the	method F	L with th	ne following	exceptions:				

BATCH 27582 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704481-001C	04/24/07 9:40 AM	04/24/07	04/27/07 9:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR E200.8

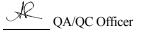
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0704481

EPA Method E200.8	Extra	ction E20	0.8	BatchID: 27595 Spiked Sample ID: 0704511-0								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	5.6	10	108	106	1.10	110	106	3.33	75 - 125	20	85 - 115	20
Arsenic	4.2	10	98.1	100	1.70	96.7	93.6	3.17	75 - 125	20	85 - 115	20
Barium	60	100	96.3	95.1	0.772	95	92.6	2.52	75 - 125	20	85 - 115	20
Beryllium	ND	10	85.4	82.6	3.27	97.7	97.2	0.575	75 - 125	20	85 - 115	20
Cadmium	1.3	10	94.7	93.8	0.843	97.4	94.7	2.84	75 - 125	20	85 - 115	20
Chromium	3.6	10	97.2	97.1	0.0750	96.4	95.2	1.32	75 - 125	20	85 - 115	20
Cobalt	1.2	10	90.2	88.3	1.81	94	93.2	0.801	75 - 125	20	85 - 115	20
Copper	39	10	87.5	90.8	0.687	98	99.8	1.88	75 - 125	20	85 - 115	20
Lead	2.1	10	95.1	93.4	1.48	94.5	93.4	1.23	75 - 125	20	85 - 115	20
Mercury	0.039	0.25	98.4	99.2	0.734	96	95.9	0.125	75 - 125	20	85 - 115	20
Molybdenum	70	10	96	82.8	1.67	91.6	90.5	1.14	75 - 125	20	85 - 115	20
Nickel	20	10	94.4	93.7	0.238	95.6	97	1.53	75 - 125	20	85 - 115	20
Selenium	ND	10	93	91.3	1.78	91.6	90.2	1.58	75 - 125	20	85 - 115	20
Silver	ND	10	93.5	92.8	0.751	98.3	94.5	3.94	75 - 125	20	85 - 115	20
Thallium	ND	10	95.4	93.9	1.56	92.6	90.7	2.02	75 - 125	20	85 - 115	20
Vanadium	8.2	10	101	100	0.164	96.9	95.6	1.32	75 - 125	20	85 - 115	20
Zinc	62	100	92.8	90.7	1.36	93.7	92.6	1.20	75 - 125	20	85 - 115	20
%SS:	114	750	98	98	0	103	100	3.12	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 27595 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0704481-001A	04/24/07 9:40 AM	04/24/07	04/26/07 4:53 AM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR E420.2

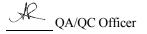
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0704481

EPA Method E420.2	Extraction E420.2					BatchID: 27523				Spiked Sample ID: 0704358-001D				
Analyte	Sample	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LC					LCS-LCSD	Acceptance Criteria (%)						
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Phenolics	ND	40	93.2	93.3	0.137	92.6	93	0.421	70 - 130	30	80 - 120	20		
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE														

BATCH 27523 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704481-001B	04/24/07 9:40 AN	1 04/25/07	04/25/07 1:22 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; Xtra Oil/ Castro	Date Sampled: 05/29/07
55 Santa Clara, Ste.240	Valley	Date Received: 05/29/07
Oakland, CA 94610	Client Contact: Paul King	Date Reported: 06/01/07
	Client P.O.:	Date Completed: 06/04/07

WorkOrder: 0705711

June 04, 2007

Dear Paul:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; Xtra Oil/ Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0705711 PDEO

PAGE OF

19.2

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

CHAIN OF CUSTODY RECORD

PROJECT NUMBER: 0014 SAMPLED BY: (PRI Stue Carnee			ROJECT X+1a URE)	NAME: Oil / Castro Valley	NUMBER OF CONTAINERS	ANAL YSICC	2 CCO 1	5 Total 1. 2	By Full	A	/	PRESEDU	MANNE	REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	NUM CON-	13	The	Pere		/	/	BRI	/	
E1052907	5/29/07	0820	HZO		8	Х	Х	Х				ICE	Sday	Twokround Time
	-							-	-	-				
									-					
							_		+	-				
								_	-	_				
			· •						+	-	-			
		2	>					-						
	ICE/ GOO HEA	D CONDI		APPROPRIATE				_	and and	_				
	DEG	D SPACE A	BSENT FED IN LA VOAS	CONTAINERS			_	-	-	+	-			
		SERVATIO	DN											
RELINQUISHED BY:	SIGNATURE	.) Sa	DATE/	TIME RECEIVED BY: (SIGNATURE)	/	1	THIS :	SHIPME	AMPLE DIT) NTAIN NT)		1	LABO	Campe	ell Anelytical
RELINQUISHED BY:	SIGNATURE		DATE	TIME RECEIVED BY: (SIGNATURE)		LAE	BOR	ATO	RYC	ON	TAC	T: LABO	RATORY	PHONE NUMBER:
		24	9/07	90 Stuti Onydunn		A,	150	la la	yde	lin	>			-9262
RELINQUISHED BY: (ISIGNA TURE	.)	ØATE	TIME RECEIVED FOR LABORATORY (SIGNATURE)	BT:								QUEST S	
				REMARKS: Amber 1L. - PLEASE FILTER	s pres Z JPR	ESF	RVI	~1 5	It z POL	So	4 5 f	(yellow	b Anal) Irns.

Page 1 of 1

Pittsbur (925) 2:	g, CA 94565-1701 52-9262					Work(Order:	0705	711	С	lientID	: PDE	0				
				EDF		Excel	[Fax	Ŀ	🖌 Email		Hard	Сору	Thir	dParty		
Report to: Paul King P & D Enviro	onmental	Email: TEL:	PDKing0000@	-	4-015				Payable /ironme				Req	luestec	I TAT:	5 c	days
	ara, Ste.240		()	il/ Castro Valley		52	55 Oa	Santa kland,	Clara, S CA 946 000@ac	Ste.240 10						05/29/2 05/29/2	
					Γ				Req	uested	Tests (See leg	jend be	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0705711-001	E1052907		Water	05/29/07 8:20:00		А	С	В	С								

Test Legend:

1 8082A_PCB_W	2 CAM17MS_DISS	3 PHENOLICS_W	4 PRDISSOLVED	5
6	7	8	9	10
11	12			

Prepared by: Sheli Cryderman

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environm	iental			Date	and Time Received:	05/29/07 5	5:07:27 PM
Project Name:	#0014; Xtra Oil	/ Castro Valley			Chec	klist completed and	reviewed by:	SC
WorkOrder N°:	0705711	Matrix <u>Water</u>			Carri	er: <u>Courier</u>		
		Chain	ofCu	stody (C	OC) Inform	ation		
Chain of custod	y present?		Yes	\checkmark	No 🗆			
Chain of custody	y signed when reling	uished and received?	Yes	\checkmark	No 🗆			
Chain of custod	y agrees with sample	e labels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>s</u>	ample	Receipt	Informatio	<u>n</u>		
Custody seals in	itact on shippping co	ntainer/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good co	ndition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles	?	Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicate	ed test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	Id Time (H	Γ) Information		
All samples rece	vived within holding ti	me?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	3.8°C			
Water - VOA via	ils have zero heads	bace / no bubbles?	Yes		No 🗆	No VOA vials subm	nitted 🗹	
Sample labels c	hecked for correct p	reservation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rec	ceipt (pH<2)?	Yes	✓	No 🗆		NA 🗆	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An		<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental	Client Pro	oject ID: #0	0014;		Date Sampled:	05/29/07				
55 Santa Clara, Ste.240	Castro Va	alley			Date Received:	eived: 05/29/07				
55 Santa Clara, Stc.240	Client Co	ontact: Paul	Date Extracted:							
Oakland, CA 94610			I Killg	,	Date Analyzed					
	Client P.C				-	03/31/07				
Pe Extraction Method: SW3510C	olychlorinated Bip	ohenyls (PC ytical Method: 1	ŕ	•	ECD*	Work Order:	0705711			
Lab ID	0705711-001A	ytical Method.	5 W 6062			work Order.	0703711			
Client ID	E1052907					Reporting	Limit for			
	117					DF				
Matrix	W									
DF	1		~			S	W			
Compound		(Conce	1	ug/kg	μg/L				
Aroclor1016	ND					NA	0.5			
Aroclor1221	ND					NA	0.5			
Aroclor1232	ND					NA	0.5			
Aroclor1242	ND					NA	0.5			
Aroclor1248	ND					NA	0.5			
Aroclor1254	ND					NA	0.5			
Aroclor1260	ND					NA	0.5			
PCBs, total	ND					NA	0.5			
	Surro	ogate Recov	veries	(%)						
%SS:	119									
Comments										
* water samples in μg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a ND means not detected above the reporti	re reported in mg/L.					l/non-aqueous	s liquid			

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains $>\sim 1$ vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

When Oualit		<u>cai, in</u>	<u>c.</u>	Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
P & D Environmental		Client Pr	oject ID:	#0014;	Xtra Oil/	Date Sampled:	05/29/07					
		Castro V	alley			Date Received:	Date Received: 05/29/07					
55 Santa Clara, Ste.240		Client C	ontact: Pa	aul King	y	Date Extracted:	05/29/07					
Deldand CA 04610		Client P.			2	_						
Dakland, CA 94610		Client P.	0			Date Analyzed	03/31/07					
		С	AM / CCF	R 17 Me	tals*							
Lab ID	07057	'11-001C					Reporting Li	mit for DF =				
Client ID	E10	52907					ND means	not detected				
Matrix		W					s	W				
Extraction Type	E	DISS.					mg/kg	μg/L				
		ICP-N	IS Metals	Conce	ntration*							
nalvtical Method: E200.8			action Method				Work Order:	0705711				
Dilution Factor		1					1	1				
Antimony		ND					NA	0.5				
Arsenic		1.0					NA	0.5				
Barium		700					NA	5.0				
Beryllium	ND						NA	0.5				
Cadmium		ND					NA	0.25				
Chromium		ND					NA	0.5				
Cobalt		ND					NA	0.5				
Copper		1.1					NA	0.5				
Lead		ND					NA	0.5				
Mercury		ND					NA	0.012				
Molybdenum	().64					NA	0.5				
Nickel		ND					NA	0.5				
Selenium		ND					NA	0.5				
Silver		ND					NA	0.19				
Fhallium		ND					NA	0.5				
Vanadium		ND					NA	0.5				
Zinc		96					NA	5.0				
		N/A						5.0				

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

<u> </u>	Campbell Analyti "When Ouality Counts"	ical, Inc.		Web: www.mccamp	Pass Road, Pittsburg, CA bbell.com E-mail: main 377-252-9262 Fax: 92		n
P & D Environm	ental	Client Project ID: Castro Valley	: #00)14; Xtra Oil/	Date Sampled:	05/29/07	
55 Santa Clara, S	te.240				Date Received:	05/29/07	
Oakland, CA 946	10	Client Contact:	Paul I	King	Date Extracted:	05/30/07	
		Client P.O.:			Date Analyzed	05/30/07	
Analytical Method: E	420.2	Phe	enolic	°S*		Work Order: 0	705711
Lab ID	Client ID	Mat	rix		Phenolics		DF
0705711-001B	E1052907	W	r		ND		1
						_	

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

i) liquid sample that contains greater than 1 vol. % sediment.

"When Ouality Counts"

QC SUMMARY REPORT FOR E420.2

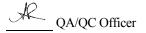
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0705711

EPA Method E420.2	0.2 Extraction E420.2						309	Spiked Sample ID: 0705627-001B					
Analyte	Sample	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD					LCS-LCSD	Acceptance Criteria (%)					
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Phenolics	81	40	81.3	84.9	1.27	91	91.5	0.521	70 - 130	30	80 - 120	20	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 28309 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705711-001B	05/29/07 8:20 AM	05/30/07	05/30/07 1:33 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8082A

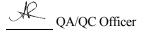
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0705711

EPA Method SW8082A		BatchID: 28368 Spiked Sam						N/A					
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Aroclor1260	N/A	3.75	N/A	N/A	N/A	120	121	0.822	N/A	N/A	70 - 130	20	
%SS:	N/A	2.5	N/A	N/A	N/A	119	117	1.40	N/A	N/A	70 - 130	30	
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 28368 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705711-001A	05/29/07 8:20 AN	1 05/29/07	05/31/07 5:48 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

"When Ouality Counts"

QC SUMMARY REPORT FOR E200.8

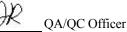
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0705711

EPA Method E200.8	Extra	ction E20	0.8		Bat	tchID: 28	362	Sp	iked Sam	ole ID:	0705705-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	3.6	10	113	109	3.25	104	102	1.85	75 - 125	20	85 - 115	20
Arsenic	1.4	10	111	106	4.07	106	107	0.564	75 - 125	20	85 - 115	20
Barium	61	100	114	108	3.21	104	103	1.35	75 - 125	20	85 - 115	20
Beryllium	ND	10	97.7	96	1.81	102	99.1	2.99	75 - 125	20	85 - 115	20
Cadmium	1.1	10	111	106	4.11	105	104	1.82	75 - 125	20	85 - 115	20
Chromium	3.6	10	121	115	3.83	108	105	3.66	75 - 125	20	85 - 115	20
Cobalt	0.60	10	113	112	0.846	111	110	1.09	75 - 125	20	85 - 115	20
Copper	380	10	NR	NR	NR	92.9	85.8	7.89	75 - 125	20	85 - 115	20
Lead	6.9	10	102	95.5	3.93	108	104	3.97	75 - 125	20	85 - 115	20
Mercury	0.37	0.25	93.7	81	5.44	98.1	96.5	1.60	75 - 125	20	85 - 115	20
Molybdenum	420	10	NR	NR	NR	100	98.9	1.04	75 - 125	20	85 - 115	20
Nickel	2.8	10	102	113	8.73	89.7	86.6	3.46	75 - 125	20	85 - 115	20
Selenium	0.97	10	115	108	5.37	104	103	0.867	75 - 125	20	85 - 115	20
Silver	5.4	10	101	95.2	4.02	105	104	1.34	75 - 125	20	85 - 115	20
Thallium	ND	10	101	97.4	3.32	100	99.2	0.973	75 - 125	20	85 - 115	20
Vanadium	91	10	NR	116	NR	109	106	2.89	75 - 125	20	85 - 115	20
Zinc	390	100	116	98.8	3.51	103	102	1.37	75 - 125	20	85 - 115	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 28362 SUMMARY											
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed				
0705711-001C	05/29/07 8:20 AM	05/29/07	05/31/07 7:53 AM								

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; XtreOil/ Castro	Date Sampled: 06/18/07
55 Santa Clara, Ste.240	Valley	Date Received: 06/18/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 06/22/07
	Client P.O.:	Date Completed: 06/22/07

WorkOrder: 0706466

June 22, 2007

Dear Steve:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; XtreOil/ Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

I

.

CHAIN OF CUSTODY RECORD

(510) 658			C	CHAI	N OF CUS	STOD	YH	(E(:0	RD)			P	AGE	OF
PROJECT NUMBER: ODIY SAMPLED BY: (PRI Sturn Com	NTED AND	X	URE)	NAME: 1/CLST, Parmes	n Velley L		NUMBER OF CONTAINERS	CAMAL YSIS(ES).	The second			[]	PRESERVICE	/		ARKS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCATION		NOS N	15	4	7	/ /	/ /	à	/		
E1061807	6/18/07	1050	H20				6	X	XX				ICE	5 day	Turnar	and Time
									-							
									+							
							/		+							
					VOAS (O& S) MET			HEADED		AATE	VOAS	104	GIMETA	S OTHER	N_AB_	_
RELINQUISHED BY:	(SIGNATUR	er) a	DATE	TIME SOO TIME	RECEIVED BY: (SIG	NATURE)	>		DRATE	DRY	CONT	'ns			PHONE 2-92	NUMBER:
Results and billing P&D Environmental, lab@pdenviro.com	to:	- /		TIME	(SIGNATURE) REMARKS: - Please filtor			ocly		ATTA	ACHE	D: ()YTS	(X)N		

1	J	Ū)
		2
-3	1	V
	1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 070646	6 Clie	ntID: PDEO		
			EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:				В	ill t		Re	quested TAT:	5 days
Steve Carmack	Email:	lab@pdenviro.co	om		Accounts Pa	yable			
P & D Environmental	TEL:	(510) 658-691	FAX: 510-8	334-0152	Xtra Oil Com	ipany			
55 Santa Clara, Ste.240	ProjectNo:	#0014; XtreOil/ (Castro Valley		2307 Pacific	Avenue	Da	ite Received	06/18/2007
Oakland, CA 94610	PO:				Alameda, C	۹4507	Da	te Printed:	06/22/2007
Steve Carmack P & D Environmental 55 Santa Clara, Ste.240	TEL: ProjectNo:	(510) 658-691	FAX: 510-8		Accounts Pa Xtra Oil Com 2307 Pacific	ipany Avenue	Da	ite Received	06/18/2

				Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0706466-001	E1061807	Water	6/18/2007	С	А	В	А								

Test Legend:

1 8082A_PCB_W	2 CAM17MS_DISS	3 PHENOLICS_W	4 PRDISSOLVED	5
6	7	8	9	10
11	12			

Prepared by: Chloe Lam

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environm	nental			Date a	ind Time Received:	6/18/2007	4:57:34 PM
Project Name:	#0014; XtreOil/	Castro Valley			Check	list completed and r	eviewed by:	Chloe Lam
WorkOrder N°:	0706466	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	ofCu	<u>stody (C</u>	OC) Informa	ition		
Chain of custody	y present?		Yes	\checkmark	No 🗆			
Chain of custody	y signed when reling	uished and received?	Yes	✓	No 🗆			
Chain of custod	y agrees with sample	e labels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>S</u>	ample	Receipt	Information			
Custody seals in	itact on shippping co	ontainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good co	ndition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles	?	Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicate	ed test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT)	Information		
All samples rece	ived within holding t	ime?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	7.4°C		NA 🗆	
Water - VOA via	Ils have zero headsp	bace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels c	hecked for correct p	reservation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rec	ceipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality		cal, Inc.		Web: www.mccamp		. 94565-1701 @mccampbell.c 5-252-9269	com
P & D Environmental	counts	Client Project ID	: #0014;		Date Sampled:	06/18/07	
		Castro Valley	,		Date Received:		
55 Santa Clara, Ste.240			<u> </u>	1			
Oakland, CA 94610		Client Contact:	Steve Ca	rmack	Date Extracted:		
		Client P.O.:			Date Analyzed	06/19/07	
Ро	olychlor	rinated Biphenyls	(PCBs) A	Aroclors by GC-	ECD*		
Extraction Method: SW3510C	0706	Analytical Met	hod: SW808	32A		Work Order:	0706466
Lab ID		66-001C				-	
Client ID	EI	061807				Reporting DF	Limit for =1
Matrix		W					
DF		1				S	W
Compound		I	Conc	entration		ug/kg	μg/L
Aroclor1016		ND				NA	0.5
Aroclor1221		ND				NA	0.5
Aroclor1232		ND				NA	0.5
Aroclor1242		ND				NA	0.5
Aroclor1248		ND				NA	0.5
Aroclor1254		ND				NA	0.5
Aroclor1260		ND				NA	0.5
PCBs, total		ND				NA	0.5
		Surrogate R	ecoverie	s (%)			
%SS:		115					
Comments							
* water samples in μg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a ND means not detected above the reporti	re repor	ted in mg/L.				l/non-aqueou	s liquid

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

With McCampbell And "When Oualit		<u>cai, in</u>	<u>.</u>		Web: www.mcc Telephor	ampbell.com E-mail: mai ne: 877-252-9262 Fax: 92	n@mccampbell.o 25-252-9269	com	
2 & D Environmental		Client Pr	oject ID:	#0014;	XtreOil/	Date Sampled:	06/18/07		
		Castro V	alley			Date Received:	06/18/07		
55 Santa Clara, Ste.240		Client C	ontact: St	eve Ca	mack	Date Extracted:	06/18/07		
Dakland, CA 94610		Client P.	0·			Date Analyzed	06/20/07		
						Dutermaryzeu	00/20/07		
		<u> </u>	CAM / CCF	R 17 Me	tals*				
Lab ID	07064	66-001A					Reporting Lin	mit for DF =	
Client ID	E10	061807					ND means	not detected eporting limi	
Matrix		W					S	W	
Extraction Type	E	DISS.					mg/kg	μg/L	
		ICP-N	AS Metals	, Conce	ntration*	·		•	
nalvtical Method: E200.8		Extr	action Method	d: E200.8			Work Order:	0706466	
Dilution Factor		1					1	1	
Antimony		ND					NA	0.5	
Arsenic		1.8					NA	0.5	
Barium		720					NA	5.0	
Beryllium		ND					NA	0.5	
Cadmium		ND					NA	0.25	
Chromium		ND					NA	0.5	
Cobalt		ND					NA	0.5	
Copper		ND					NA	0.5	
Lead		ND					NA	0.5	
Mercury		.042					NA	0.012	
Molybdenum		ND					NA	0.5	
Nickel		3.1					NA	0.5	
Selenium		ND					NA	0.5	
Silver		ND					NA	0.19	
Thallium		ND					NA	0.5	
Vanadium		ND					NA	0.5	
Zinc		140					NA	5.0	
%SS:		N/A						0.0	

i) aqueous sample containing greater than ~ 1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Analyti "When Ouality Counts"	cal, Inc.	Web: www.mccam	Pass Road, Pittsburg, CA 94565-1701 pbell.com E-mail: main@mccampbell.com 877-252-9262 Fax: 925-252-9269	n
P & D Environmental	Client Project ID:	#0014; XtreOil/	Date Sampled: 06/18/07	
55 Santa Clara, Ste.240	Castro Valley		Date Received: 06/18/07	
Oakland, CA 94610	Client Contact: St	eve Carmack	Date Extracted: 06/20/07	
,	Client P.O.:		Date Analyzed 06/20/07	
Analytical Method: E420.2	Phen	olics*	Work Order: 0	0706466
Lab ID Client ID	Matrix	x	Phenolics	DF
0706466-001B E1061807	W		3.3	1

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

i) liquid sample that contains greater than 1 vol. % sediment.

"When Ouality Counts"

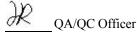
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0706466

EPA Method SW8082A	Extra	ction SW	3510C		BatchID: 28794 Spiked Sample I							
Analyte	Sample Spiked MS MSD				MS-MSD LCS L	LCSD	LCS-LCSD	Acceptance Criteria (%)				
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	N/A	3.75	N/A	N/A	N/A	130	130	0	N/A	N/A	70 - 130	20
%SS:	N/A	2.5	N/A	N/A	N/A	112	113	0.430	N/A	N/A	70 - 130	30


			<u>BATCH 28794 SL</u>	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706466-001C	06/18/07 10:50 AM	06/18/07	06/19/07 4:38 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NONE

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E200.8

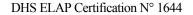
W.O. Sample Matrix: Water

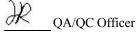
QC Matrix: Water

WorkOrder: 0706466

EPA Method E200.8	Extrac	tion E20	0.8		Bat	tchID: 28	793	Sp	iked Sam	ole ID:	0706474-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	10	97.5	96	1.52	94.5	95.8	1.31	75 - 125	20	85 - 115	20
Arsenic	ND	10	96.5	97.6	1.16	92	97.1	5.40	75 - 125	20	85 - 115	20
Barium	ND	100	96.8	96.3	0.465	94.9	95.2	0.326	75 - 125	20	85 - 115	20
Beryllium	ND	10	95.2	94.5	0.696	94.6	94.6	0	75 - 125	20	85 - 115	20
Cadmium	ND	10	96.6	96.2	0.457	95.2	96	0.827	75 - 125	20	85 - 115	20
Chromium	ND	10	98.3	95	3.38	94.9	95.7	0.913	75 - 125	20	85 - 115	20
Cobalt	ND	10	97	96	1.02	95.8	96.5	0.728	75 - 125	20	85 - 115	20
Copper	2.3	10	111	98.6	9.78	93.9	92.8	1.19	75 - 125	20	85 - 115	20
Lead	ND	10	99.2	95.9	3.25	94.5	93.9	0.595	75 - 125	20	85 - 115	20
Mercury	ND	0.25	93.9	93.4	0.513	93.2	91.5	1.82	75 - 125	20	85 - 115	20
Molybdenum	ND	10	91.2	92.2	1.16	90.7	91.1	0.506	75 - 125	20	85 - 115	20
Nickel	ND	10	95.6	95.6	0	95.7	94.8	0.976	75 - 125	20	85 - 115	20
Selenium	ND	10	92.3	91.7	0.652	91.7	93.1	1.50	75 - 125	20	85 - 115	20
Silver	ND	10	95.6	95.1	0.598	95	95.4	0.420	75 - 125	20	85 - 115	20
Thallium	ND	10	85.9	86.5	0.748	96.4	97.2	0.847	75 - 125	20	85 - 115	20
Vanadium	ND	10	98.2	96.1	2.11	96.5	95.1	1.50	75 - 125	20	85 - 115	20
Zinc	9.9	100	96.2	94.3	1.81	93.5	94.3	0.927	75 - 125	20	85 - 115	20
%SS:	96	750	96	98	1.45	96	96	0	70 - 130	20	70 - 130	20

BATCH 28793 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706466-001A	06/18/07 10:50 AM	06/18/07	06/20/07 1:17 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

QC SUMMARY REPORT FOR E420.2

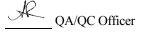
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0706466

EPA Method E420.2 Extraction E420.2					Bat	chID: 28	713	Spiked Sample ID: 0706362-001B					
Analyte	Sample	Sample Spiked		MSD	MS-MSD L		LCSD	LCS-LCSD	Acceptance Criteria (%)				
Analyte	μg/L μg/L % Rec. % Rec.			% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Phenolics	ND	40	113	110	2.39	99.4	99.3	0.0618	70 - 130	30	80 - 120	20	
Phenolics ND 40 113 110 2.39 99.4 99.3 0.0618 70 - 130 30 80 - 120 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 28713 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0706466-001B	06/18/07 10:50 AM	06/20/07	06/20/07 1:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0014; XtraOil/Castro	Date Sampled: 07/26/07
55 Santa Clara, Ste.240	Valley	Date Received: 07/30/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 08/06/07
	Client P.O.:	Date Completed: 08/06/07

WorkOrder: 0707685

August 06, 2007

Dear Steve:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; XtraOil/Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	0767	675			P	DEO										
Р	& D ENVIRON 55 Santa Clara A Oakland, C/ (510) 658-	MENTA ve, Suite 240 A 94610	l, Ing		CHAI	N OF C	USTOD	YF	RE	СО	RD	Sec. and	2.07L	1	PAGE	0F 1
	PROJECT NUMBER:			URE)		Castro Valley	/	NUMBER OF CONTAINERS	ANAL YSISIES.			(No VIE)	s s und race	"CSERVA THE	REA	ARKS
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCAT	лон		R	1	K	13	2 a			
F	MW1	7/2/07	1420	Water				7	X	×		-	ICE	Norm	1 Temero	witine
F	MW3		1430	×1				7	X	X		1	10	11	((<u>VI</u>
F	EW1	t	1405	×*				7	X	X		+	((N°	- Xi	X.I
P	E1072607	7/24/07	0915	Effluid	-			4		-	X	XX	CC	((i i
	Esample login as	NOH OT	5768	e pex	client r	equity - C	,			_		-	-			
										I I I I	CE/P_ GOOD TEAD DECHI PRESH	ONDI SPACE. ORINA RV/TI		B P		
	RELINQUISHED BY:	(SIGNATURE	77	DATE BATE 2262 DATE	TIME TIME 430 TIME	RECEIVED FOR (SIGNATURE)	(SIGNATURE)	BY:	LAB	ngela	DRY CONTAIN	E AN	ACT: LA	BORATOR	SO GO	E NUMBER:
	Results and billing t P&D Environmental, lab@pdenviro.com					REMARKS: please	Voas pres	serve	pol	Hec y's	prio	Ambi ir ti	- pres	15.3	HzSo	12

	SW)
6	3V
	-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

			WorkO	order: 070768	5 Clier	ntID: PDEO		
		EDF	Excel	Fax	Email	HardCopy	ThirdParty	
			В	Bill t		Re	quested TAT:	5 days
Email:	lab@pdenviro.c	om		Accounts Pa	yable			
TEL:	(510) 658-691	FAX: (510)	834-015	Xtra Oil Com	npany			
ProjectNo	: #0014; XtraOil/C	Castro Valley		2307 Pacific	Ave	Da	te Received	07/27/2007
PO:		-		Alameda, CA	A 94610	Da	te Printed:	08/06/2007
	TEL: ProjectNc	TEL: (510) 658-691 ProjectNo: #0014; XtraOil/C	Email: lab@pdenviro.com TEL: (510) 658-691 FAX: (510) ProjectNo: #0014; XtraOil/Castro Valley	EDF Excel Email: lab@pdenviro.com TEL: (510) 658-691 FAX: (510) 834-015 ProjectNo: #0014; XtraOil/Castro Valley	EDF Excel Fax Bill t Bill t Email: lab@pdenviro.com Accounts Pa TEL: (510) 658-691 FAX: (510) 834-015 Xtra Oil Com ProjectNo: #0014; XtraOil/Castro Valley 2307 Pacific	□ EDF □ Excel □ Fax ☑ Email Bill t Bill t Bill t Bill t TEL: (510) 658-691 FAX: (510) 834-015 Accounts Payable TrojectNo: #0014; XtraOil/Castro Valley 2307 Pacific Ave	□ EDF □ Excel □ Fax ☑ Email □ HardCopy Bill t Re Email: lab@pdenviro.com Accounts Payable TEL: (510) 658-691 FAX: (510) 834-015 Xtra Oil Company ProjectNo: #0014; XtraOil/Castro Valley 2307 Pacific Ave Date	□ EDF □ Excel □ Fax ☑ Email □ HardCopy □ ThirdParty Bill t Requested TAT: Email: lab@pdenviro.com Accounts Payable TEL: (510) 658-691 FAX: (510) 834-015 Xtra Oil Company ProjectNo: #0014; XtraOil/Castro Valley 2307 Pacific Ave Date Received

							Req	uested	Tests (See leg	gend be	elow)			
Sample ID	ClientSampID	Matrix	Collection Date Hole	d 1	2	3	4	5	6	7	8	9	10	11	12
0707685-001	E1072607	Water	7/26/2007 7:15:00	С	В	А	В								

Test Legend:

1 8082A_PCB_W	2 CAM17MS_DISS	3 PHENOLICS_W	4 PRDISSOLVED	5
6	7	8	9	10
11	12			

Prepared by: Chloe Lam

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

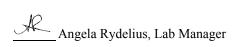
Sample Receipt Checklist

Client Name:	P & D Environm	ental			Date ar	nd Time Received:	7/27/2007	1:28:52 PM
Project Name:	#0014; XtraOil/	Castro Valley			Checkl	ist completed and r	eviewed by:	Chloe Lam
WorkOrder N°:	0707685	Matrix <u>Water</u>			Carrier	: Rob Pringle (M	Al Courier)	
		<u>Chain</u>	of Cu	stody (C	OC) Informat	tion		
Chain of custody	y present?		Yes	✓	No 🗆			
Chain of custody	y signed when relinq	uished and received?	Yes	\checkmark	No 🗆			
Chain of custod	y agrees with sample	e labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time o	f collection noted by (Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		Si	ample	Receipt	Information			
Custody seals in	itact on shipping con		Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cor	ndition?	Yes	✓	No 🗆			
Samples in prop	er containers/bottles	?	Yes		No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicate	d test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	ld Time (HT)	Information		
All samples rece	ived within holding ti		Yes	V	No 🗌			
	Blank temperature			er Temp:	14°C			
·	Ils have zero headsp	ace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
	hecked for correct pr		Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rec	eipt (pH<2)?	Yes	✓	No 🗆		NA 🗆	

Client contacted:

Date contacted:

Contacted by:


Comments:

McCampbell An "When Ouality		<u>cal, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environmental		Client Project ID:	#0014;		Date Sampled:	07/26/07			
55 Santa Clara, Ste.240		XtraOil/Castro Val	ley		Date Received: 07/30/07				
55 Santa Clara, Stc.240	-	Client Contact: S	eve Ca	mack	Date Extracted: 07/30/07				
Oakland, CA 94610	-	Client P.O.:			Date Analyzed				
		inated Biphenyls (I			-	00/02/07			
Extraction Method: SW3510C	Work Order:	0707685							
Lab ID	07076	85-001C							
Client ID	72607				Reporting	Limit for			
Matrix	W					1			
DF		1				S	W		
Compound		Conc	entration		ug/kg	μg/L			
Aroclor1016	١	ND				NA	0.5		
Aroclor1221	١	ND				NA	0.5		
Aroclor1232	١	ND				NA	0.5		
Aroclor1242	١	ND				NA	0.5		
Aroclor1248	١	ND				NA	0.5		
Aroclor1254	١	ND				NA	0.5		
Aroclor1260	١	ND				NA	0.5		
PCBs, total	١	ND				NA	0.5		
		Surrogate Ree	coverie	s (%)					
%SS:	1	04							
Comments									
* water samples in µg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a	re report	ed in mg/L.				l/non-aqueou	s liquid		

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains $>\sim 1$ vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell An "When Ouality		cal, In	<u>c.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA obell.com E-mail: mair 877-252-9262 Fax: 92	n@mccampbell.c	com	
P & D Environmental			roject ID:			Date Sampled:	07/26/07		
55 Santa Clara, Ste.240		XtraOil/	Castro Val	ley		Date Received:	07/30/07		
55 Santa Clara, Stc.240		Client C	ontact: St	eve Carmack Date Extracted			07/30/07		
Oakland, CA 94610		Client P.	O.:			Date Analyzed	08/04/07		
		C	CAM / CCR	. 17 Me	tals*				
Lab ID	07076	85-001B					Reporting Lir	nit for DF =1;	
Client ID	E10	072607					ND means r		
Matrix		W					S	W	
Extraction Type	D	DISS.					mg/kg	μg/L	
		ICP-N	AS Metals,	Conce	ntration*				
Analytical Method: E200.8		Extr	action Method	E200.8			Work Order:	0707685	
Dilution Factor		1					1	1	
Antimony		ND					NA	0.5	
Arsenic		2.4					NA	0.5	
Barium		750					NA	5.0	
Beryllium		ND					NA	0.5	
Cadmium		ND					NA	0.25	
Chromium		ND					NA	0.5	
Cobalt		ND					NA	0.5	
Copper).97					NA	0.5	
Lead		ND					NA	0.5	
Mercury		ND					NA	0.012	
Molybdenum).55					NA	0.5	
Nickel Selenium		2.7 ND					NA NA	0.5	
Silver		ND ND					NA	0.19	
Thallium		ND					NA	0.19	
Vanadium		ND					NA	0.5	
Zinc		95					NA	5.0	
%SS:		N/A					1177	5.0	
			•		•	•			
Comments									
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v						DISTLC / SPLP ext	racts are repo	rted in	
# means surrogate diluted out of range; N instrument.	D mean	s not detect	ed above the	e report	ng limit; N/A mea	ns not applicable to t	his sample or	r	
$TOTAL^{=}$ acid digestion.									
WET = Waste Extraction Test (STLC).									
DI WET = Waste Extraction Test using d	e-ionize	d water.							
i) aqueous sample containing greater than TOTAL [^] metals, a representative sedimer limit raised due to matrix interference; m) reported on a dry weight basis; p) see atta	nt-water estimat	mixture wa ed value du	s digested; j) report	ing limit raised due	e to insufficient samp	ole amount; k) reporting	

McCampbell An "When Ouality		ical, In	<u>c.</u>		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: main 877-252-9262 Fax: 92	@mccampbell.c	om	
P & D Environmental			roject ID:			Date Sampled:	07/26/07		
		XtraOil/	Castro Val	ley		Date Received:	07/30/07		
55 Santa Clara, Ste.240		Client C	ontact: St	eve Ca	rmack	Date Extracted:	07/30/07		
Oakland, CA 94610		Client P.	ient P.O.: Date Analyzed 08/04/07						
		(CAM / CCF	R 17 Me	tals*				
Lab ID	07076	685-001B							
Client ID)72607				ND mea		nit for DF =1; not detected eporting limit	
Matrix		W					S	W	
Extraction Type	D	DISS.					mg/kg	μg/L	
Analytical Method E200.8			MS Metals	, ,			Work Order:	0707685	
Dilution Factor		1					1	1	
Antimony		ND					NA	0.5	
Arsenic		2.4					NA	0.5	
Barium		750					NA	5.0	
Beryllium		ND					NA	0.5	
Cadmium		ND					NA	0.25	
Chromium		ND					NA	0.5	
Cobalt		ND					NA	0.5	
Copper		0.97					NA	0.5	
Lead		ND ND					NA	0.5	
Mercury		ND					NA	0.012	
Molybdenum Nickel		0.55 2.7					NA NA	0.5	
Selenium		<u>2.7</u> ND					NA	0.5	
Silver		ND ND					NA	0.19	
Thallium		ND					NA	0.5	
Vanadium		ND					NA	0.5	
Zinc		95					NA	5.0	
%SS:		N/A							
Comments									
*water samples are reported in µg/L, prod	uct/oil/r	ion-aqueou	s liquid sam	oles and	all TCLP / STLC /	DISTLC / SPLP ext	racts are repo	rted in	
mg/L, soil/sludge/solid samples in mg/kg,							fuels are repo	neu m	
# means surrogate diluted out of range; N instrument.	D mean	s not detec	ted above th	e report	ng limit; N/A mea	ns not applicable to t	this sample of	ŗ	
$TOTAL^{+} = acid digestion.$									
WET = Waste Extraction Test (STLC).									
DI WET = Waste Extraction Test using d	e-ionize	d water.							
i) aqueous sample containing greater than TOTAL^ metals, a representative sedimen limit raised due to matrix interference; m) reported on a dry weight basis: p) see atta	nt-water) estimat	mixture wa ted value du	as digested;	j) report	ing limit raised du	e to insufficient sam	ole amount; k) reporting	

McCampbell An "When Ouality		cal, In	<u>c.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA obell.com E-mail: mair 877-252-9262 Fax: 92	n@mccampbell.c	om
P & D Environmental			roject ID:			Date Sampled:	07/26/07	
55 Santa Clara, Ste.240		XtraOil/	Castro Val	ley		Date Received:	07/30/07	
55 Santa Clara, Ste.240		Client C	ontact: St	eve Ca	mack	Date Extracted:	07/30/07	
Oakland, CA 94610		Client P.	0.:			Date Analyzed	08/04/07	
		C	CAM / CCR	. 17 Me	tals*			
Lab ID	07076	85-001B					Reporting L ir	nit for DF =1;
Client ID	E10	072607					ND means r	
Matrix		W					S	W
Extraction Type	D	DISS.					mg/kg	μg/L
		ICP-N	AS Metals,	Conce	ntration*			
Analytical Method: E200.8		Extr	action Method	: E200.8			Work Order:	0707685
Dilution Factor		1					1	1
Antimony		ND					NA	0.5
Arsenic		2.4					NA	0.5
Barium		750					NA	5.0
Beryllium		ND					NA	0.5
Cadmium		ND					NA	0.25
Chromium		ND					NA	0.5
Cobalt		ND					NA	0.5
Copper	().97					NA	0.5
Lead		ND					NA	0.5
Mercury		ND					NA	0.012
Molybdenum).55					NA	0.5
Nickel		2.7					NA	0.5
Selenium		ND					NA	0.5
Silver		ND					NA	0.19
Thallium		ND					NA	0.5
Vanadium		ND					NA	0.5
Zinc		95					NA	5.0
<u>%SS:</u>		N/A						
Comments								
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v		-				DISTLC / SPLP ext	racts are repo	rted in
# means surrogate diluted out of range; N instrument.	D mean	s not detect	ed above th	e report	ng limit; N/A mea	ns not applicable to t	this sample of	r
$TOTAL^{+} = acid digestion.$								
WET = Waste Extraction Test (STLC).								
DI WET = Waste Extraction Test using d	e-ionize	d water.						
i) aqueous sample containing greater than TOTAL^ metals, a representative sedimer limit raised due to matrix interference; m reported on a dry weight basis; p) see atta	nt-water) estimat	mixture wa ed value du	s digested;) report	ing limit raised due	e to insufficient samp	ole amount; k) reporting

<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environm	ental	Client Project ID:		Date Sampled: 07/26/07				
55 Santa Clara, S	te.240	XtraOil/Castro Val	ney	Date Received: 07/30/07				
Oakland, CA 946	10	Client Contact: S	teve Carmack	Date Extracted: 08/02/07				
		Client P.O.:		Date Analyzed 08/02/07				
Analytical Method: E	420.2	Phen	iolics*	Work Order: 0	0707685			
Lab ID	Client ID	Matri	X	Phenolics	DF			
0707685-001A	E1072607	W		3.8	1			

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

Angela Rydelius, Lab Manager

*water samples are reported in ug/L.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	Campbell Analyti "When Ouality Counts"	ical, Inc.	Web: www.mccam	v Pass Road, Pittsburg, CA 94565-1701 pbell.com E-mail: main@mccampbell.com : 877-252-9262 Fax: 925-252-9269	n
55 Santa Clara, Ste.240 Date Received: 07/30/07 Oakland, CA 94610 Client Contact: Steve Carmack Date Extracted: 08/02/07 Client P.O.: Date Analyzed 08/02/07 Phenolics* Work Order: 07/7685 Lab ID Client ID Matrix Phenolics DF	P & D Environm	ental			Date Sampled: 07/26/07	
Oakland, CA 94610 Client P.O.: Date Analyzed 08/02/07 Client P.O.: Phenolics* Vork Order: 0707685 Analytical Method E420.2 Vork Order: 0707685 DF	55 Santa Clara, S	te.240	AtraOil/Castro Val	ley	Date Received: 07/30/07	
Client P.O.: Date Analyzed 08/02/07 Phenolics* Analytical Method E420.2 Work Order: 0707685 Lab ID Client ID Matrix Phenolics DF	Oakland, CA 946	510	Client Contact: St	teve Carmack	Date Extracted: 08/02/07	
Analytical Method E420.2 Work Order: 0707685 Lab ID Client ID Matrix Phenolics DF			Client P.O.:		Date Analyzed 08/02/07	
	Analytical Method E	420.2	Phen	olics*	Work Order: 0	707685
0707685-001A E1072607 W 3.8 1 Image: Constraint of the second se	Lab ID	Client ID	Matrix	x	Phenolics	DF
Image: second	0707685-001A	E1072607	W		3.8	1
Image: section of the section of th						
Image: second						
Image: section of the section of th						
Image: second						
Image: selection of the						
Image: second						
Image: second						
Image: second						
Image: second						
Image: state of the state						
Image: state of the state o						
Image: state of the state o						

Reporting Limit for DF = 1; ND means not detected at	W	2.0 μg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

<u> </u>	Campbell Analyti "When Ouality Counts"	ical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environme	ental	Client Project ID: XtraOil/Castro Val		Date Sampled: 07/26/07					
55 Santa Clara, St	te.240		ney	Date Received: 07/30/07					
Oakland, CA 946	10	Client Contact: S	teve Carmack	Date Extracted: 08/02/07					
		Client P.O.:		Date Analyzed 08/02/07					
Analytical Method: E-	420.2	Phen	olics*	Work Order: 0	707685				
Lab ID	Client ID	Matri	x	Phenolics	DF				
0707685-001A	E1072607	W		3.8	1				

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

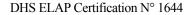
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0707685

EPA Method SW8082A	Extra		BatchID: 29638			Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	N/A	3.75	N/A	N/A	N/A	112	112	0	N/A	N/A	70 - 130	20
%SS:	N/A	2.5	N/A	N/A	N/A	109	109	0	N/A	N/A	70 - 130	30


BATCH 29638 SUMMARY									
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed		
0707685-001C	07/26/07 7:15 AM	07/30/07	08/02/07 7:06 PM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

K QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0707685

EPA Method E200.8	Extra	Extraction E200.8					BatchID: 29608			ole ID:	0707645-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD			LCS-LCSD Acceptance Criteria (%)				
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	20	10	99.4	94.1	2.06	99.6	100	0.890	70 - 130	20	80 - 120	20
Arsenic	32	10	129	127	0.513	93.8	94.1	0.277	70 - 130	20	80 - 120	20
Barium	ND	100	93.8	93.6	0.261	100	101	0.695	70 - 130	20	80 - 120	20
Beryllium	ND	10	106	105	1.14	82.6	90.2	8.78	70 - 130	20	80 - 120	20
Cadmium	0.34	10	90.3	88.8	1.63	99.4	99.8	0.432	70 - 130	20	80 - 120	20
Chromium	150	10	NR	NR	NR	96.5	97.8	1.37	70 - 130	20	80 - 120	20
Cobalt	0.73	10	77.1	76.7	0.499	100	101	0.892	70 - 130	20	80 - 120	20
Copper	85	10	NR	NR	NR	87.2	88.1	1.03	70 - 130	20	80 - 120	20
Lead	0.64	10	99.4	99.4	0	101	102	0.691	70 - 130	20	80 - 120	20
Mercury	0.014	0.25	108	104	2.87	95.6	97.9	2.40	70 - 130	20	80 - 120	20
Molybdenum	630	10	NR	NR	NR	89.2	89.6	0.503	70 - 130	20	80 - 120	20
Nickel	27	10	139, F1	134, F1	1.18	87.9	90.1	2.43	70 - 130	20	80 - 120	20
Selenium	8.1	10	96.3	86.7	5.57	96.3	94.2	2.16	70 - 130	20	80 - 120	20
Silver	ND	10	90.5	88.8	1.86	94	94.5	0.615	70 - 130	20	80 - 120	20
Thallium	ND	10	101	101	0	103	104	0.386	70 - 130	20	80 - 120	20
Vanadium	35	10	80.6	80.3	0.0703	98.3	99.4	1.11	70 - 130	20	80 - 120	20
Zinc	170	100	107	106	0.108	97.6	99.4	1.76	70 - 130	20	80 - 120	20
%SS:	89	750	91	89	2.04	94	93	1.16	70 - 130	20	70 - 130	20

NONE

F1 = MS / MSD exceed acceptance criteria. LCS - LCSD validate prep batch.

	BATCH 29608 SUMMARY												
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed						
0707685-001B	07/26/07 7:15 AM	07/30/07	08/04/07 10:07 AM										

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

QC SUMMARY REPORT FOR E420.2

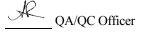
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0707685

EPA Method E420.2	EPA Method E420.2Extraction E420.2					chID: 29	535	Spiked Sample ID: 0707549-001B				
Analyte	Sample	Spiked	MS	MSD MS-MSD LCS LCSD			LCSD	LCS-LCSD	Acceptance Criteria (%)			1
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Phenolics	3.0	40	102	103	0.530	94.4	93.7	0.827	70 - 130	30	80 - 120	20
All target compounds in the Metho											80 - 120	

BATCH 29535 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0707685-001A	07/26/07 7:15 AM	08/02/07	08/02/07 1:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

McCampbell Analytical, Inc.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; Xtra Oil/ Castro	Date Sampled: 08/16/07
55 Santa Clara, Ste.240	Valley	Date Received: 08/16/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 08/22/07
	Client P.O.:	Date Completed: 08/22/07

WorkOrder: 0708485

August 22, 2007

Dear Steve:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; Xtra Oil/ Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	& D ENVIRON 55 Santa Clara A		l, Ind	с.		PDE	8070				1	20.5	/	1				
	Oakland, C. (510) 658	A 94610		C	HAI	N OF	CUSTO	DY F	RE	C	ÞF	p		/			PAGE	OF [
	PROJECT NUMBER: 0014 SAMPLED BY: (PRI Steven Came				NAME: OIL	Castro	Vulley	NUMBER OF CONTAINERS	ANAL TSICK			4 Ser	1	1	1	"RESERVATIVE	/	IARKS
ľ	SAMPLE NUMBER	DATE	тие	TYPE		SAMPLE L	NOITADO	NUM	k		B	7	/	/	1	E /	/	
İ	E1081607	8/16/07	1120	Water	GW	Tx Syste	n Effhient	6	X	X	X			1	100	=	Normal Tur	around Time
ŀ											_		+			+		
F																-		
ŀ												+	-			+		
											_			_		1		
┝									-	-	-	-	-	-		+		
ŀ																1		
-									10	17/40 4	4	10	_	Jøy		-		
									G	EAD	SPAC	E AB	SET	14	es	CDN	TAINERS	8
											R.V.	ma	Ve	DAS	0&0	ME	TALS OTHER	
-													-	_		•	1	
	RELINDUISHED BY:	SIGNATURE) 8	DATE/	TIME	RECEIVED	BY: (SIGNATURE)	>	TOTA	THES :	OF C	ONTAN		6			Campbell	fulytic
	RELINOUSHED BY:	SIGNATURE	3/8	DATE	TIME	RECEIVED	BY: (SIGNATURE)					RY O					ATORY PHONE 7) 257- 9	
	RELINQUISHED BY:	SICHATURE	.)	DATE	TIME	(SIGNATUR				1	SA	ATTA	E.	ED:	YSIS ()	REQ	UEST SHEET	
ŀ	Results and billing P&D Environmental, lab@pdenviro.com	to: Inc.				REMARKS:	Please fither of	2 ~	-6	ery	PI	rese	- 10	40	~/ 1	42	soy (man	head "

k

1

McCampbell Analytical, Inc.

Γ		1	JU	λ
4	<u>_</u>	3		Į
		-4		2
		- 30	-	ľ

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262		Work	Order: 0708485	Client	ID: PDEO		
		EDF Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:		I	Bill t		Red	quested TAT:	5 days
Steve Carmack Email:	lab@pdenviro.com		Accounts Paya	ble			
P & D Environmental TEL:	(510) 658-691 FAX	<: 510-834-0152	P & D Environn	nental			
55 Santa Clara, Ste.240 ProjectNo:	#0014; Xtra Oil/ Castro	o Valley	55 Santa Clara	, Ste.240	Da	te Received	08/16/2007
Oakland, CA 94610 PO:			Oakland, CA 94	4610	Da	te Printed:	08/16/2007

					Requested Tests (See legend below)										
Sample ID	ClientSampID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0708485-001	E1081607	Water	8/16/2007	С	В	А	В								

Test Legend:

1 8082A_PCB_W	2 CAM17MS_DISS	3 PHENOLICS_W	4 PRDISSOLVED	5
6	7	8	9	10
11	12	J		

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal			Date a	and Time Received:	8/16/2007	8:11:14 PM
Project Name:	# 0014; Xtra Oil/	Castro Valley			Check	list completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0708485	Matrix <u>Water</u>			Carrie	r: <u>Rob Pringle (M</u>	AI Courier)	
		Chain	of Cu	stody (C	OC) Informa	ition		
Chain of custody	y present?		Yes		No 🗆			
Chain of custody	y signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		S	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta		Yes		No 🗆		NA 🔽	
•	er/cooler in good cond		Yes		No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Ho	ld Time (HT	Information		
		<u>oumple i resei</u>	vatioi			<u>, momation</u>		
All samples rece	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	14.6°C		NA 🗆	
Water - VOA via	lls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels cl	hecked for correct pre	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An		cal, Inc.		Web: www.mccamp		94565-1701 @mccampbell.c 5-252-9269	com
P & D Environmental	counts	Client Project II): #0014		Date Sampled:	08/16/07	
		Castro Valley		,	Date Received:		
55 Santa Clara, Ste.240			<u> </u>	1	Date Extracted:		
Oakland, CA 94610		Client Contact:	Steve Ca	гтаск			
		Client P.O.:			Date Analyzed	08/18/07	
Ро	olychloi	rinated Biphenyl	s (PCBs) A	Aroclors by GC-	ECD*		
Extraction Method: SW3510C	07004	Analytical Me	thod: SW80	32A		Work Order:	0708485
Lab ID		85-001C				-	
Client ID	EI	081607				Reporting DF	Limit for =1
Matrix		W					
DF		1				s	W
Compound		·	Conc	entration	·	ug/kg	μg/L
Aroclor1016		ND				NA	0.5
Aroclor1221		ND				NA	0.5
Aroclor1232		ND				NA	0.5
Aroclor1242		ND				NA	0.5
Aroclor1248		ND				NA	0.5
Aroclor1254		ND				NA	0.5
Aroclor1260		ND				NA	0.5
PCBs, total		ND				NA	0.5
		Surrogate I	Recoverie	s (%)			
%SS:		105					
Comments							
* water samples in μg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a ND means not detected above the reporti	re repor	ted in mg/L.				l/non-aqueou	s liquid

The means not detected above the reporting mint, with means analyte not appreade to this

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains ≥ 1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell Ar "When Ouality		cal, Inc.			Web: www.mccar	v Pass Road, Pittsburg, C mpbell.com E-mail: ma :: 877-252-9262 Fax: 9	in@mccampbell.c	com	
P & D Environmental		Client Project I	ID: #	0014; 2	Xtra Oil/	Date Sampled:	08/16/07		
		Castro Valley				Date Received:			
55 Santa Clara, Ste.240		Clinet Contract			1				
		Client Contact	t: Stev	ve Carn	nack	Date Extracted: 08/16/07			
Oakland, CA 94610		Client P.O.:				Date Analyzed	08/18/07		
		CAM /	CCR 1	17 Meta	ıls*				
Lab ID	07084	85-001B					Reporting Li	nit for DF =1;	
Client ID	E10	81607					ND means	not detected porting limit	
Matrix		W					s	W	
Extraction Type	D	ISS.					mg/kg	μg/L	
		ICP-MS Me	etals (oncent	tration*				
Analytical Method: E200.8		Extraction M					Work Order:	0708485	
Dilution Factor		1					1	1	
Antimony	0	0.52					NA	0.5	
Arsenic		3.6					NA	0.5	
Barium	8	340					NA	5.0	
Beryllium]	ND					NA	0.5	
Cadmium]	ND					NA	0.25	
Chromium]	ND					NA	0.5	
Cobalt	1	ND					NA	0.5	
Copper		1.6					NA	0.5	
Lead]	ND					NA	0.5	
Mercury		ND					NA	0.012	
Molybdenum).67					NA	0.5	
Nickel		16					NA	0.5	
Selenium		ND					NA	0.5	
Silver		ND					NA	0.19	
Thallium		ND					NA	0.5	
Vanadium		ND					NA	0.5	
Zinc %SS:		200 N/A					NA	5.0	
/055.	1	N/23							
Comments									
*water samples are reported in μg/L, proc mg/L, soil/sludge/solid samples in mg/kg, # means surrogate diluted out of range; Ν	wipe sam	ples in µg/wipe, fi	ilter sar	nples in	μg/filter.		-		
instrument.			, e uie i	oportin	5 mm, 19/72 m	ans not appreable to	and sample 0		
$TOTAL^{+} = acid digestion.$									
WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using c	e-jonize	d water							
Di weli waste extraction rest using t	10-101112C	u water.							
i) aqueous sample containing greater thar TOTAL^ metals, a representative sedime limit raised due to matrix interference; m reported on a dry weight basis; p) see atta	nt-water) estimat	mixture was diges ed value due to lo	sted; j)	reportin	g limit raised d	ue to insufficient sam	ple amount; k) reporting	

When Ouality Counts"	ical, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565-1701 obell.com E-mail: main@mccampbell.co 877-252-9262 Fax: 925-252-9269	m
P & D Environmental	Client Project ID: Castro Valley	# 0014; Xtra Oil/	Date Sampled: 08/16/07	
55 Santa Clara, Ste.240			Date Received: 08/16/07	
Oakland, CA 94610	Client Contact: St	eve Carmack	Date Extracted: 08/20/07	
, 	Client P.O.:		Date Analyzed 08/20/07	
Analytical Method: E420.2	Phen	olics*	Work Order: 0	0708485
Lab ID Client ID	Matrix	x	Phenolics	DF
0708485-001A E1081607	W		ND	1

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

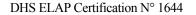
QC SUMMARY REPORT FOR SW8082A

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708485

EPA Method SW8082A	Extra	ction SW	/3510C		Bat	chID: 30	057	Sp	biked Sample ID: N/A			
Analyte	Sample Spiked MS MSD		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	N/A	3.75	N/A	N/A	N/A	118	116	1.72	N/A	N/A	70 - 130	20
%SS:	N/A	2.5	N/A	N/A	N/A	129	128	0.609	N/A	N/A	70 - 130	30


			BATCH 30057 SL	JMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708485-001C	08/16/07 11:20 AM	08/16/07	08/18/07 5:58 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

K QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0708485

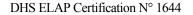
QA/QC Officer

EPA Method E200.8	Extrac	tion E20	0.8		Ba	tchID: 30	036	Sp	iked Sam	ole ID:	0708468-00	4C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
/ that yes	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	10	101	101	0	95.7	96.2	0.511	70 - 130	20	80 - 120	20
Arsenic	6.9	10	100	98.5	0.892	99	98.8	0.233	70 - 130	20	80 - 120	20
Barium	21	100	115	115	0	94	95.3	1.38	70 - 130	20	80 - 120	20
Beryllium	ND	10	122	123	0.409	107	107	0	70 - 130	20	80 - 120	20
Cadmium	ND	10	109	110	0.626	92.5	92.6	0.151	70 - 130	20	80 - 120	20
Chromium	1.2	10	102	102	0	97.8	97.9	0.123	70 - 130	20	80 - 120	20
Cobalt	3.1	10	118	118	0	94.7	93.6	1.21	70 - 130	20	80 - 120	20
Copper	52,000	10	NR	NR	NR	101	100	0.389	70 - 130	20	80 - 120	20
Lead	5.6	10	117	118	0.867	91.9	92.8	1.03	70 - 130	20	80 - 120	20
Mercury	ND	0.25	96.9	101	3.93	92.4	92.6	0.260	70 - 130	20	80 - 120	20
Molybdenum	ND	10	98.8	99.2	0.393	96.7	97.2	0.526	70 - 130	20	80 - 120	20
Nickel	390	10	NR	NR	NR	100	99.4	0.622	70 - 130	20	80 - 120	20
Selenium	2.8	10	115	117	1.18	97.2	97.2	0	70 - 130	20	80 - 120	20
Silver	0.26	10	113	115	1.46	93.1	94	0.951	70 - 130	20	80 - 120	20
Thallium	ND	10	110	112	0.991	90	90.9	0.984	70 - 130	20	80 - 120	20
Vanadium	2.4	10	133, F1	132, F1	0.191	99.1	99.5	0.403	70 - 130	20	80 - 120	20
Zinc	87	100	110	113	1.26	95.4	95.7	0.248	70 - 130	20	80 - 120	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions

NONE

F1 = MS / MSD outside of acceptance criteria. LCS - LCSD validate prep batch.


BATCH 30036 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0708485-001B	08/16/07 11:20 AM	08/16/07	08/18/07 12:48 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

QC SUMMARY REPORT FOR E420.2

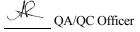
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0708485

EPA Method E420.2	Extra	ction E42	20.2		Bat	chID: 29	ole ID:	0708485-00	1 A			
Analyte	Sample	ple Spiked MS MSD MS-MSD I					LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Phenolics	ND	40	118	120	1.21	98.9	107	7.52	70 - 130	30	80 - 120	20
All target compounds in the Metho NONE	l Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	e following	exceptions:			

BATCH 29988 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0708485-001A	08/16/07 11:20 AM	08/20/07	08/20/07 1:22 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

McCampbell Analytical, Inc.

"When Ouality Counts"

P & D Environmental	Client Project ID: #0014; Xtra Oil/Castro	Date Sampled: 09/18/07
55 Santa Clara, Ste.240	Valley	Date Received: 09/19/07
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported: 09/26/07
	Client P.O.:	Date Completed: 09/26/07

WorkOrder: 0709457

September 26, 2007

Dear Steve:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0014; Xtra Oil/Castro Valley project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

P	& D ENVIRON 55 Santa Clara A Oakland, C. (510) 658-	ve, Suite 240 A 94610	l, Ing		НАІ	N OF CUST	OD	ΥF	RE	C	DR	D/	[]		PAGE 1 OF
	PROJECT NUMBER: 0014 SAMPLED BY: (PRI STEVE CAN SAMPLE NUMBER			ROJECT X+re URE) TYPE		Castro Valley L SAMPLE LOCATION		NUMBER OF CONTAINERS	AWAL TSISTen	in the second	the start	TERRET	7	PRESSEN	REMARKS
F	E1091807	9/18/07			(GW Tx System Effle	ert	6	X	X	X	1	Ĺ	ICE	Normal Turning
											+		-		
							_				+	+			
			-								+	+			
							_	ICE GO		SI	ARE	YOR	DR	CONTAI	TE LUS
								PRE	REP	VAT		OAS	O& G	PRESE	VED IN LAB
	RELINQUISHED BY:	SIGNATURE)	V /	TIME	RECEIVED BY: (SIGNAT	JRE)		1	THIS S	OF SAN	7	1		TORATORY: 1 Camp bell Analy
<	RELINDUISHED BY:	SIGNATURE	3/	DATE,	TIME	RECEIVED BY: (SIGNAT	JRE)	2	LAE	BOR		Y CO	NTA	CT: LAB	PORATORY PHONE NUM
	RELINQUISHED BY:	SIGNATURE	() ⁽	ØATE	TIME	RECEIVED FOR LABORA (SIGNATURE)	TORY 8	BY:		10	SAM	PLE	ANA	LYSIS R	EQUEST SHEET

McCampbell Analytical, Inc.

	AW.	λ
6	JE .	/
1		ì
	1	ľ

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262			WorkO	rder: 0709457	7 Clier	ntID: PDEO		
		EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	
Report to:			Bi	ll t		Re	quested TAT:	5 days
Steve Carmack E	Email: lab@pdenviro.co	om		Accounts Pag	yable			
P & D Environmental T	TEL: (510) 658-691	FAX: 510-8	34-0152	Xtra Oil Com	pany			
55 Santa Clara, Ste.240 P	ProjectNo: #0014; Xtra Oil/	Castro Valley		2307 Pacific	Avenue	Da	te Received	09/19/2007
Oakland, CA 94610 P	PO:	-		Alameda, CA	94610	Da	te Printed:	09/19/2007

								Req	uested	Tests (See leg	gend be	elow)			
Sample ID	ClientSampID	Matrix	Collection Date Ho	old	1	2	3	4	5	6	7	8	9	10	11	12
											1			1		1
0709457-001	E1091807	Water	9/18/2007		С	В	Α									

Test Legend:

1 8082A_PCB_W	2 CAM17(T)MS_W	3 PHENOLICS_W	4	5	
6	7	8	9	10	
11	12				

Prepared by: Kimberly Burks

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ental			Date a	and Time Received:	9/19/2007	9:00:48 PM
Project Name:	# 0014; Xtra Oil/	Castro Valley			Check	klist completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0709457	Matrix <u>Water</u>			Carrie	er: <u>Client Drop-In</u>		
		<u>Chair</u>	n of Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?		Yes		No 🗆			
Chain of custody	/ signed when relinqu	ished and received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		S	ample	Receipt	Information	1		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆	_	NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	ld Time (HT) Information		
All samples rece	ived within holding tim		Yes	✓	No 🗌	·		
	Blank temperature		Coole	er Temp:	15.1°C			
	ls have zero headspa	ice / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
	hecked for correct pre		Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗹		NA 🗆	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An		<u>cal, Inc.</u>			Web: www.mccamp		94565-1701 @mccampbell.o 5-252-9269	com
P & D Environmental	counts	Client Project	t ID: #0	014;		Date Sampled:	09/18/07	
55 Santa Clara, Ste.240		Oil/Castro Va				Date Received:	09/19/07	
55 Santa Clara, Ste.240		Client Conta	ct. Steve	Car	mack	Date Extracted:	09/19/07	
Oakland, CA 94610		Client P.O.:	et. Steve		maex	Date Analyzed		
							0)/21/07	
Extraction Method: SW3510C	olychloi	-	nyls (PCF l Method: S'	,	roclors by GC-I	LCD*	Work Order:	0709457
Lab ID	07094	-57-001C						
Client ID	E10	91807					Reporting	Limit for
Matrix		W						1
DF		1					S	W
Compound			С	once	ntration		ug/kg	μg/L
Aroclor1016		ND					NA	0.5
Aroclor1221		ND					NA	0.5
Aroclor1232		ND					NA	0.5
Aroclor1242		ND					NA	0.5
Aroclor1248		ND					NA	0.5
Aroclor1254		ND					NA	0.5
Aroclor1260		ND					NA	0.5
PCBs, total		ND					NA	0.5
		Surrogat	te Recov	eries	(%)			
%SS:		97						
Comments	-							
* water samples in μg/L, soil/sludge/solid samples and all TCLP & SPLP extracts a			amples in į	µg/wi	pe, filter samples ir	µg/filter, product/oi	l/non-aqueou	s liquid

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains ≥ 1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell Ar "When Ouality		cal, In	<u>c.</u>		Web: www.mccan	7 Pass Road, Pittsburg, CA npbell.com E-mail: mai : 877-252-9262 Fax: 92	n@mccampbell.c	com
P & D Environmental		Client Pr	oject ID:	# 0014	; Xtra	Date Sampled:	09/18/07	
		Oil/Castr				Date Received:		
55 Santa Clara, Ste.240		Client C	ontact: St	eve Ca	rmack	Date Extracted:	09/19/07	
Oakland, CA 94610		Client P.	D.:			Date Analyzed	09/24/07	
		С	AM / CCR	. 17 Me	tals*			
Lab ID	07094	57-001B					Dementine Lie	
Client ID	E10	91807					ND means	mit for DF =1; not detected eporting limit
Matrix		W					s	W
Extraction Type	ТС	DTAL					mg/kg	μg/L
		ICP-M	IS Metals,	Conce	ntration*			
Analvtical Method: E200.8			action Method				Work Order:	0709457
Dilution Factor		1					1	1
Antimony		ND					NA	0.5
Arsenic		6.0					NA	0.5
Barium	4	530					NA	5.0
Beryllium		ND					NA	0.5
Cadmium		ND					NA	0.25
Chromium		ND					NA	0.5
Cobalt		ND					NA	0.5
Copper		2.0					NA	0.5
Lead		ND					NA	0.5
Mercury		ND					NA	0.012
Molybdenum		1.0					NA	0.5
Nickel		2.1					NA	0.5
Selenium		ND					NA	0.5
Silver		ND					NA	0.19
Thallium		ND					NA	0.5
Vanadium		ND					NA	0.5
Zinc		18					NA	5.0
%SS:		99						
	1				1			
Comments								
 *water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, # means surrogate diluted out of range; N instrument. 	wipe sam	ples in μg/v	vipe, filter s	amples i	n μg/filter.			
TOTAL = acid digestion.								
WET = Waste Extraction Test (STLC).								
DI WET = Waste Extraction Test using d	le-ionize	d water.						
i) aqueous sample containing greater than TOTAL^ metals, a representative sedime detected below quantitation limits; k) rep caused by matrix interference; n) results a	nt-water orting lii	mixture wa nit raised d	s digested; j ue to matrix) report interfe	ing limit raised du rence; m) estimate	ue to insufficient sam ed value due to low/h	ple amount; J) analyte

<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environme	ental	Client Project ID:	# 0014; Xtr	a	Date Sampled:	09/18/07			
55 Santa Clara, St	te.240	Oil/Castro Valley			Date Received:	09/19/07			
Oakland, CA 946	10	Client Contact: S	Steve Carmad	ck	Date Extracted:	09/21/07			
		Client P.O.:			Date Analyzed	09/21/07			
Analytical Method: E4	420.2	Phe	nolics*			Work Order: 0'	709457		
Lab ID	Client ID	Matr	ix		Phenolics		DF		
0709457-001A	E1091807	W			3.3		1		

Reporting Limit for DF = 1; ND means not detected at	W	2.0 µg/L	
or above the reporting limit	S	NA	

*water samples are reported in ug/L.

QC SUMMARY REPORT FOR SW8082A

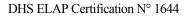
W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0709457

QA/QC Officer

EPA Method SW8082A Extraction SW3510C						tchID: 30	754	Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	N/A	3.75	N/A	N/A	N/A	119	120	0.697	N/A	N/A	70 - 130	20
%SS:	N/A	2.5	N/A	N/A	N/A	121	122	0.334	N/A	N/A	70 - 130	30


			<u>BATCH 30754 SL</u>	<u>JMMARY</u>			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0709457-001C	09/18/07 12:45 PM	09/19/07	09/21/07 7:46 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

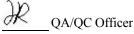
QC Matrix: Water

WorkOrder: 0709457

EPA Method E200.8	Extrac	tion E20	0.8		Ba	tchID: 30	747	Sp	iked Sam	ole ID:	0709457-00	1B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
/ there is a second s	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	10	99.1	98.9	0.198	92.2	94.5	2.51	70 - 130	20	80 - 120	20
Arsenic	6.0	10	94.9	92	1.89	87.2	93.8	7.31	70 - 130	20	80 - 120	20
Barium	530	100	96.8	103	0.942	92.2	93.6	1.56	70 - 130	20	80 - 120	20
Beryllium	ND	10	86.5	85.7	0.918	91.3	94	2.95	70 - 130	20	80 - 120	20
Cadmium	ND	10	95.7	95	0.755	93	94	0.995	70 - 130	20	80 - 120	20
Chromium	ND	10	95.1	91.7	3.62	90.3	93.5	3.48	70 - 130	20	80 - 120	20
Cobalt	ND	10	82.6	82.9	0.295	103	105	2.11	70 - 130	20	80 - 120	20
Copper	2.0	10	91.4	92.3	0.804	95	98.4	3.58	70 - 130	20	80 - 120	20
Lead	ND	10	97.3	97	0.298	92.7	94.6	2.00	70 - 130	20	80 - 120	20
Mercury	ND	0.25	92	90.6	1.58	89.2	91.2	2.26	70 - 130	20	80 - 120	20
Molybdenum	1.0	10	96.8	98	1.12	88.8	91.4	2.86	70 - 130	20	80 - 120	20
Nickel	2.1	10	95.2	90.1	4.50	94.2	96.6	2.49	70 - 130	20	80 - 120	20
Selenium	ND	10	99.8	99.6	0.221	89.7	99.7	10.5	70 - 130	20	80 - 120	20
Silver	ND	10	96.3	94.8	1.55	92.8	94.7	2.04	70 - 130	20	80 - 120	20
Thallium	ND	10	96.4	95.9	0.541	85.8	89.4	4.06	70 - 130	20	80 - 120	20
Vanadium	ND	10	98.2	95.3	2.96	93.4	97.6	4.39	70 - 130	20	80 - 120	20
Zinc	18	100	94	93.8	0.179	92.8	93.3	0.529	70 - 130	20	80 - 120	20
%SS:	99	750	98	98	0	91	91	0	70 - 130	20	70 - 130	20

NONE

BATCH 30747 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0709457-001B	09/18/07 12:45 PM	09/19/07	09/24/07 2:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

QC SUMMARY REPORT FOR E420.2

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0709457

Sa shite								Spiked Sample ID: 0709468-003B					
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCS			LCS-LCSD	Acceptance Criteria (%)				
,	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Phenolics	2.4	40	106	96.3	8.89	101	102	1.08	70 - 130	30	80 - 120	20	

BATCH 30753 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0709457-001A	09/18/07 12:45 PM	09/21/07	09/21/07 1:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.