


2307 PACIFIC AVENUE ALAMEDA, CA 94501 (510) 865-9503 FAX (510) 865-1889

### RECEIVED

10:37 am, Oct 20, 2010

Alameda County Environmental Health

October 11, 2010

Mr. Paresh Khatri Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT CERTIFICATION County Case # RO 285 Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Khatri:

P&D Environmental, Inc. has prepared the following document:

• Quarterly Groundwater Monitoring and Sampling Report (December 2008 Through February 2009) dated October 11, 2010 (document 0014.R74).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

## **P&D** ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

October 11, 2010 Report 0014.R74

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT (DECEMBER 2008 THROUGH FEBRUARY 2009) County Case # RO 285 Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the quarterly monitoring and sampling of both the on- and off-site wells for the subject property. This work was performed in accordance with P&D's proposal 020599.P1 dated February 5, 1999. Onsite wells MW1, MW3, MW4, and EW1, and offsite monitoring wells MW5 through MW12 were monitored on January 6, 2009, offsite observation wells OW1 and OW2 were monitored on January 7, 2009, and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on October 6 and 7, 2009. The reporting period is for December 2008 through February 2009.

A Site Location Map (Figure 1), a Site Plan showing onsite well locations (Figure 2), and a Site Vicinity Map showing offsite well locations (Figure 3) are attached with this report. Figure 3 has been updated to show the correct location of OW2. Norbridge School shown on Figure 1 to the south of the subject site has been demolished and replaced with the Castro Valley BART station and associated parking lot.

### BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November 1988. The fuel tanks were replaced during August 1992.

Three monitoring wells, designated MW1, MW2 and MW3, were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown on Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D).

TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10, and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentration of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photoionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively. A groundwater monitoring and sampling program was initiated at the site on February 20, 1990.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed associated with the widening of Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4, at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates methyl tertiary-butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), diisopropyl ether (DIPE), and tertiary-butyl alcohol (TBA), and lead scavengers ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site. Documentation of the well installation is provided in P&D's Monitoring Well Installation Report dated September 30, 1997 (document 0014.R25).

On May 31, 2005, P&D submitted an Interim Source Area Remediation Plan (ISARP) to ACDEH proposing free product removal at the site (document 0014.W9). P&D proposed using existing extraction well EW1 in the existing UST pit to dewater the existing pit and the previous UST pit.

Monitoring of existing wells MW1, MW3, and MW4 to evaluate the effectiveness of water table drawdown at the site for plume control and associated free product recovery was also proposed.

In January 2007, P&D installed a groundwater extraction system consisting of a pump in well EW1, associated piping for discharge of water from the well, and a carbon filtration system. System operation began in February 2007. Documentation of the system installation and operation is provided in P&D's Interim Source Area Remediation Plan Progress Evaluation Report dated October 25, 2007 (document 0014.R67).

In response to a February 6, 2007 letter request from the ACDEH, P&D submitted a Groundwater Monitoring Well Installation Work Plan (MW5 Through MW13) dated March 5, 2007 (document 0014.W10) to the ACDEH proposing the installation of nine offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW13. The ACDEH conditionally approved the work plan in an April 4, 2007 letter. P&D subsequently submitted a Groundwater Monitoring Well Installation Work Plan Amendment (MW5 Through MW12) dated May 3, 2007 (document 0014.W10A) to the ACDEH proposing the installation of eight offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW12). Documentation of the implementation of the work plan and work plan amendment is provided in P&D's Groundwater Monitoring Well Installation Report (MW5 Through MW12) dated January 30, 2008 (document 0014.R68).

### FIELD ACTIVITIES

Onsite wells MW1, MW3, MW4, and EW1, offsite observation wells OW1 and OW2, and offsite monitoring wells MW5 through MW12 were monitored on January 6, 2009 and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on January 6 and 7, 2009. The monitoring and sampling was performed in conjunction with monitoring and sampling by SOMA Environmental Engineering, Inc. of Pleasanton, California at the Former BP site at 3519 Castro Valley Boulevard.

The wells at the subject site were monitored for depth to water and the presence of free product or sheen. In well MW4 the depth to water and depth to free product were measured to the nearest 1/32-inch with a steel tape and water-finding and product-finding paste. The passive hydrocarbon collection device in well MW4 was removed by P&D personnel and placed in storage near MW1 during pressure transducer installation in well MW4 on November 2, 2006. In wells OW1, OW2, MW1, MW3, EW1, and MW5 through MW12 the depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product and sheen was also evaluated using a transparent bailer in wells MW1, MW3, MW5 through MW12, and EW1. The measured free product thickness in well MW4 was 0.19 feet. No water or free product was encountered in observation wells OW1 and OW2 located in Redwood Road.

No sample was collected from MW4 due to the presence of free product in the well.

Prior to well sampling, onsite wells MW1, MW3, and EW1, and offsite wells MW5 through MW12 were purged of a minimum of three casing volumes of water or until the wells had been purged dry. Petroleum hydrocarbon odors and petroleum hydrocarbon sheen were detected on the

purge water from all three of the onsite sampled wells (MW1, MW3 and EW1). Petroleum hydrocarbon odors were also detected for the samples collected from offsite wells MW6 and MW8 and petroleum hydrocarbon sheen was observed on the sample collected from offsite well MW6.

During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored and recorded on a groundwater monitoring/well purging data sheet. Once the field parameters were observed to stabilize and a minimum of three casing volumes had been purged, or the wells had purged dry and partially recovered, water samples were collected using a clean, new disposable bailer. Records of the field parameters measured during well purging are included with this report.

The water samples were transferred to 40-milliliter glass VOA vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present. The VOA vials and bottles were then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory.

### HYDROGEOLOGY

Water levels were measured in all of the wells once during the reporting period.

On January 7, 2008 Kier & Wright (State-licensed surveyors) surveyed the top of all of the wells, including onsite wells MW1, MW3, MW4 and EW1, and offsite observation wells OW1 and OW2. The new top of well casing elevations for the wells and the associated calculated groundwater surface elevations are shown in Table 1. Comparison of the previous top of well casing elevations for wells MW1, MW3 and MW4 with the January 7, 2008 elevations shows that the January 7, 2008 elevations are 2.85, 3.06, and 2.86 feet higher, respectively, than the previously surveyed elevations. The groundwater surface elevations and associated groundwater flow direction were calculated using the January 7, 2008 survey elevations for all of the wells.

On January 6, 2009, the measured depth to water in wells MW1, MW3, MW4, and EW1 was 8.42, 8.88, 8.00, and 11.41 feet, respectively. A separate phase hydrocarbon layer measuring approximately 0.19 feet in thickness was measured in well MW4. Using a specific gravity of 0.75, the corrected depth to water in well MW4 is 7.86 feet. Since the previous monitoring event on October 22, 2008, the groundwater elevations (corrected for the presence of any detected free product) have increased in wells MW1, MW3, and MW4 by 0.38, 0.41, and 0.54 feet, respectively, and the groundwater elevation in well EW1 decreased by 0.01 feet. Since the previous monitoring and sampling event for the offsite wells on October 22, 2008 the groundwater elevations have increased in offsite groundwater monitoring wells MW5, MW6, MW7, MW8, MW9, MW10, MW11, and MW12 by 0.64, 0.64, 0.62, 1.03, 0.64, 0.75, 0.83, and 1.41 feet, respectively. Although the measured change in the water level in well MW11 has been attributed to very slow recovery of the well during previous sampling episodes, the change in water level since the previous sampling event in well MW110f 0.83 feet is approximately comparable to the water level change in nearby well MW7 of 0.62 feet. The measured depth to water in the wells and the separate phase layer thickness measured in monitoring well MW4 are summarized in Table 1.

Based on the measured depth to groundwater (corrected for the presence of any detected free product) in the onsite groundwater monitoring wells MW1, MW3 and MW4, the apparent groundwater flow direction at the site on January 6, 2009 was calculated to be to the south-southwest with a gradient of 0.011. During the previous quarterly monitoring and sampling event on October 22, 2008, the groundwater flow direction was calculated to be to the south-southeast with a gradient of 0.011. The groundwater flow direction at the site on January 6, 2009 is shown on Figure 2. The groundwater flow direction and gradient are consistent with the flow direction and gradient observed at the site during the previous monitoring and sampling event on October 22, 2008. The current groundwater flow direction and gradient are different from historic values prior to 2007, and are considered to be the result of groundwater pumping at well EW1 in the former UST pit which began in February 2007. Rose diagrams showing historical groundwater flow directions at the site before and after groundwater pumping at well EW1 are shown on Figure 2.

Based on review of groundwater surface elevations in offsite groundwater monitoring wells MW5 through MW12, the groundwater flow direction in the vicinity of the site is southerly, ranging from the south-southeast with a gradient of 0.015 in the vicinity of Redwood Road to the south-southwest with a gradient of 0.013 in the vicinity of the west end of Redwood Court. These offsite groundwater flow directions and gradients are relatively consistent with groundwater flow directions and gradients are relatively consistent with groundwater flow directions and gradients observed during the previous monitoring and sampling episode. Groundwater surface elevations and contours and the approximate groundwater flow direction in the vicinity of the site based on October 22, 2008 water level measurements from the offsite wells are shown on Figure 3.

### LABORATORY RESULTS

All of the groundwater samples collected on January 6 and 7, 2009 were analyzed for TPH Multirange (TPH-G, TPH-D, and TPH-MO) using EPA Methods 5030B and 3510C in conjunction with modified EPA Method 8015C; and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), fuel oxygenates (MTBE, DIPE, ETBE, TAME, and TBA) and lead scavengers EDB and 1,2-DCA/EDC using EPA Method 5030B in conjunction with EPA Method 8260B.

The laboratory analytical results for the samples collected from onsite wells MW1, MW3, and EW1 show that TPH-D was detected at concentrations of 5.4, 13, and 7.9 milligrams per Liter (mg/L), respectively; TPH-G was detected at concentrations of 15, 50, and 33 mg/L, respectively; benzene was detected at concentrations of 0.14, 28, and 10 mg/L, respectively; and MTBE was detected in the groundwater samples collected from wells MW3 and EW1 at concentrations of 3.5 and 16 mg/L, respectively. No fuel oxygenates or lead scavengers were detected in the groundwater samples collected from onsite wells MW1, MW3, and EW1, with the exception of MTBE mentioned above and TBA, which was detected in the samples collected from wells MW3 and EW1 at concentrations of 5.7 and 16 mg/L, respectively.

The laboratory analytical results for the samples collected from offsite wells MW5 through MW12 shows that no analytes were detected in the sample collected from well MW9, and that only MTBE was detected in the samples collected from wells MW5, MW10, and MW11 at concentrations of 0.00097, 0.0011, and 0.032 mg/L, respectively. TPH-D was not detected in the sample collected from offsite well MW12. In the samples collected from the remaining offsite wells (MW6, MW7,

and MW8) TPH-D was detected at concentrations of 6.2, 0.087, and 1.0, mg/L, respectively. In the samples collected from offsite wells MW6, MW7, MW8, and MW12 TPH-G was detected at concentrations of 51, 0.052, 3.1, and 0.110 mg/L, respectively. Benzene was detected in the samples collected from offsite wells MW6, MW7, and MW8 at concentrations of 6.9, 0.018, and 0.036 mg/L, respectively, and was not detected in the sample collected from well MW12. MTBE was detected in the samples collected from offsite wells MW7, MW8, and MW12 at concentrations of 0.0032, 0.0038, and 0.0082 mg/L, respectively, and was not detected in the sample collected from offsite wells MW6.

No other fuel oxygenates or lead scavengers were detected in any of the samples collected from any of offsite wells MW5 through MW12, except for TBA in the sample collected from well MW12 at a concentration of 0.0027 mg/L.

Review of the laboratory analytical reports shows that the TPH-D results for the samples collected from wells MW1, MW3, and EW1 are described as consisting of both diesel- and gasoline-range compounds, and the TPH-D results for the samples collected from wells MW6 and MW8 are described as consisting of gasoline-range compounds.

The laboratory analytical results for the groundwater samples are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are included with this report.

### **DISCUSSION AND RECOMMENDATIONS**

Onsite wells MW1, MW3, MW4, and EW1, offsite observation wells OW1 and OW2, and offsite monitoring wells MW5 through MW12 were monitored on January 6, 2009 and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on January 6 and 7, 2009. Separate phase hydrocarbons were measured in well MW4 at a thickness of 0.19 feet. The passive hydrocarbon collection device in well MW4 was removed on November 2, 2006 by P&D personnel during pressure transducer installation associated with preparation for dewatering the former UST pit. Dewatering of the former UST pit began February 2007 in UST pit extraction well EW1. The increase in depth to water in EW1 relative to water level measurements prior to 2007 is associated with the dewatering of the UST pit, which began during the first quarter of 2007. Similarly, the change in the onsite groundwater flow direction from a historic southeasterly flow direction to a southerly flow direction with a higher gradient is attributed to the UST pit dewatering. Rose diagrams showing historical groundwater flow directions at the site before and after groundwater pumping at well EW1 are shown on Figure 2.

The groundwater surface elevations and associated groundwater flow direction were calculated using the January 7, 2008 survey elevations for all of the wells. Based on review of groundwater surface elevations in offsite groundwater monitoring wells MW5 through MW12, the groundwater flow direction in the vicinity of the site is southerly, ranging from the south-southeast with a gradient of 0.015 in the vicinity of Redwood Road to the south-southwest with a gradient of 0.013 in the vicinity of the west end of Redwood Court.

The UST pit dewatering pump is located in well EW1, and the increase in petroleum hydrocarbon concentrations in well EW1 when compared to water quality data prior to 2007 is attributed to groundwater with elevated concentrations of petroleum hydrocarbons moving into the UST pit as a result of the UST pit dewatering.

Review of changes in onsite water quality since the previous sampling event on October 22 and 23, 2008 shows that all analyte concentrations have decreased or remained the same with the exceptions of TPH-D in all of the wells, benzene in well MW3, ethylbenzene in well MW3, and all other analytes in well EW1, which increased.

Review of changes in offsite water quality since the previous sampling event on October 22 and 23, 2008 shows that all analytes have remained not detected in well MW9, all analyte concentrations have decreased or remained not detected in wells MW5 and MW10, and all analyte concentrations increased or remained not detected in well MW11, with the exception of TBA which decreased. In wells MW6 and MW7 all analyte concentrations decreased, with the exception of TPH-D which increased. In wells MW8 and MW12 all analyte concentrations remained not detected or decreased, with the exceptions of TPH-D, benzene, ethylbenzene, and total xylenes in well MW8 and TBA in well MW12, which increased.

Based on the laboratory analytical results of the water samples collected from the monitoring wells, P&D recommends that groundwater monitoring and sampling be continued. In addition, P&D recommends that future monitoring and sampling efforts continue to be coordinated with the Former BP site located at 3519 Castro Valley Boulevard. In accordance with recent communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with the consultant for the Former BP site located at 3519 Castro Valley Boulevard, the results obtained by the other consultant are not included in this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

P&D recommends that all future well monitoring be performed on a quarterly basis and sampling be performed on a semi-annual basis.

### DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

### **LIMITATIONS**

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future

subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King Professional Geologist #5901 Expires: 12/31/11



Attachments: Tables 1 & 2 Site Location Map (Figure 1) Site Plan (Figure 2) Site Vicinity Map (Figure 3) Well Monitoring and Purge Data Sheets Laboratory Analytical Reports and Chain of Custody Documentation

PHK/ sjc 0014.R74

## TABLES

| Well<br>No. | Date<br>Monitored | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.) | Water Table<br>Elev. (ft.) |
|-------------|-------------------|------------------------------|-------------------------|----------------------------|
| MW1         | 01/06/09          | 180.22++                     | 8.42                    | 171.80                     |
|             | 10/22/08          |                              | 8.80                    | 171.42                     |
|             | 07/16/08          |                              | 8.40                    | 171.82                     |
|             | 04/15/08          |                              | 8.41                    | 171.81                     |
|             | 01/17/08          | 177.37*                      | 8.01                    | 169.36                     |
|             | 10/16/07          |                              | 8.65                    | 168.72                     |
|             | 07/25/07          |                              | 8.49                    | 168.88                     |
|             | 04/17/07          |                              | 8.30                    | 169.07                     |
|             | 01/18/07          |                              | 7.85                    | 169.52                     |
|             | 11/14/06          |                              | 7.38                    | 169.99                     |
|             | 06/29/06          |                              | 7.80                    | 169.57                     |
|             | 02/03/06          |                              | 6.65                    | 170.72                     |
|             | 11/18/05          |                              | 8.17                    | 169.20                     |
|             | 07/28/05          |                              | 7.98                    | 169.39                     |
|             | 04/13/05          |                              | 6.90                    | 170.47                     |
|             | 01/31/05          |                              | 7.20                    | 170.17                     |
|             | 10/15/04          |                              | 8.52                    | 168.85                     |
|             | 07/13/04          |                              | 8.33                    | 169.04                     |
|             | 04/06/04          |                              | 7.93                    | 169.44                     |
|             | 12/18/03          |                              | 7.65                    | 169.72                     |
|             | 09/18/03          |                              | 8.15                    | 169.22                     |
|             | 06/19/03          |                              | 8.13                    | 169.24                     |
|             | 03/18/03          |                              | 7.77                    | 169.60                     |
|             | 12/21/02          |                              | 5.74                    | 171.63                     |
|             | 09/10/02          |                              | 8.28                    | 169.09                     |
|             | 03/30/02          |                              | 7.43                    | 169.94                     |
|             | 12/22/01          |                              | 6.92                    | 170.45                     |
|             | 09/23/01          |                              | 8.53                    | 168.84                     |
|             | 06/22/01          |                              | 8.30                    | 169.07                     |
|             | 04/22/01          |                              | 7.77                    | 169.60                     |
|             | 12/14/00          |                              | 8.49                    | 168.88                     |
|             | 09/18/00          |                              | 8.56                    | 168.81                     |
|             | 06/08/00          |                              | 7.97                    | 169.40                     |
|             | 03/09/00          |                              | 6.68                    | 170.69                     |
|             | 12/09/99          |                              | 8.15                    | 169.22                     |
|             | 08/31/99          |                              | 8.36                    | 169.01                     |
|             | 04/29/99          |                              | 7.68                    | 169.69                     |

NOTES:

\* = Surveyed on August 20, 1997 ++ = Surveyed on January 7, 2008

| Well<br>No.        | Date<br>Monitored                                                                                        | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.)                                              | Water Table<br>Elev. (ft.)                                                             |
|--------------------|----------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| MW1<br>(Continued) | 01/29/99<br>04/26/98<br>01/24/98<br>11/06/97                                                             | 177.37*                      | 6.99<br>7.50<br>6.61<br>8.79                                         | 170.38<br>169.87<br>170.76<br>168.58                                                   |
|                    | 08/26/97<br>07/24/97<br>04/25/97<br>01/20/97<br>07/26/96                                                 | 177.37*                      | 8.51<br>8.71<br>7.98<br>7.12<br>8.39<br>8.16                         | 168.86<br>168.72<br>169.45<br>170.31<br>169.04                                         |
|                    | 07/09/96<br>04/23/96<br>02/07/96<br>01/29/96<br>10/26/95<br>07/28/95<br>05/02/95<br>02/23/95<br>11/18/94 |                              | 8.16<br>7.47<br>6.09<br>6.17<br>8.45<br>8.27<br>6.96<br>7.72<br>7.14 | 169.27<br>169.96<br>171.34<br>171.26<br>168.98<br>169.16<br>170.47<br>169.71<br>170.29 |
|                    | 08/22/94<br>05/19/94<br>02/28/94<br>11/24/93<br>08/30/93<br>05/18/93<br>02/23/93                         | 177.43**                     | 8.67<br>8.05<br>7.44<br>8.74<br>8.78<br>8.12<br>7.34                 | 168.76<br>169.38<br>169.99<br>168.69<br>168.65<br>169.31<br>170.09                     |
|                    | 11/13/92<br>05/29/92<br>01/14/92<br>12/23/91<br>11/25/91<br>10/10/91<br>09/17/91<br>08/19/91             | 200.00***<br>175.73          | 9.13<br>8.59<br>8.57<br>9.65<br>9.41<br>9.70<br>9.50<br>9.31         | 190.87<br>167.14<br>167.16<br>166.08<br>166.32<br>166.03<br>166.23<br>166.42           |

### NOTES:

\* = Surveyed on August 20, 1997 \*\* = Surveyed on March 24, 1993

\*\*\* = Surveyed on December 5, 1992

| Well<br>No. | Date<br>Monitored | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.) | Water Table<br>Elev. (ft.) |
|-------------|-------------------|------------------------------|-------------------------|----------------------------|
| 110.        | Wontorea          |                              | Water (It.)             |                            |
| MW2         | NOT MEASU         | JRED (DESTROYED              | ON FEBRUARY 7, 19       | 96)                        |
|             | 02/07/96          | 176.04**                     | 5.70                    | 170.34                     |
|             | 01/29/96          |                              | 5.16                    | 170.88                     |
|             | 10/26/95          |                              | 8.21                    | 167.83                     |
|             | 07/28/95          |                              | 7.99                    | 168.05                     |
|             | 05/02/95          |                              | 6.79                    | 169.25                     |
|             | 02/23/95          |                              | 7.51                    | 168.53                     |
|             | 11/18/94          |                              | 6.92                    | 169.12                     |
|             | 08/22/94          |                              | 8.59                    | 167.45                     |
|             | 05/19/94          |                              | 7.70                    | 168.34                     |
|             | 02/28/94          |                              | 6.99                    | 169.05                     |
|             | 11/24/93          |                              | 8.47                    | 167.57                     |
|             | 08/30/93          |                              | 8.64                    | 167.40                     |
|             | 05/18/93          |                              | 7.73                    | 168.31                     |
|             | 02/23/93          |                              | 6.39                    | 169.65                     |
|             | 11/13/92          | 198.61***                    | 8.70                    | 189.91                     |
|             | 05/29/92          | 175.45                       | 9.31                    | 166.14                     |
|             | 01/14/92          |                              | 8.97                    | 166.48                     |
|             | 12/23/91          |                              | 10.39                   | 165.06                     |
|             | 11/25/91          |                              | 9.81                    | 165.64                     |
|             | 10/10/91          |                              | 10.39                   | 165.06                     |
|             | 09/17/91          |                              | 10.23                   | 165.22                     |
|             | 08/19/91          |                              | 9.60                    | 165.85                     |

NOTES:

\* = Surveyed on August 20, 1997 \*\* = Surveyed on March 24, 1993 \*\*\* = Surveyed on December 5, 1992

| Well<br>No. | Date<br>Monitored | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.) | Water Table<br>Elev. (ft.) |
|-------------|-------------------|------------------------------|-------------------------|----------------------------|
| MW3         | 01/06/09          | 179.46++                     | 8.88                    | 170.58                     |
|             | 10/22/08          |                              | 9.29                    | 170.17                     |
|             | 07/16/08          |                              | 9.03                    | 170.43                     |
|             | 04/15/08          |                              | 9.19                    | 170.27                     |
|             | 01/17/08          | 176.40*                      | 8.90                    | 167.50                     |
|             | 11/16/07          |                              | 9.43                    | 166.97                     |
|             | 07/25/07          |                              | 9.35                    | 167.05                     |
|             | 04/17/07          |                              | 8.88                    | 167.52                     |
|             | 01/18/07          |                              | 7.32                    | 169.08                     |
|             | 11/14/06          |                              | 7.53                    | 168.87                     |
|             | 06/29/06          |                              | 7.58                    | 168.82                     |
|             | 02/03/06          |                              | 6.10                    | 170.30                     |
|             | 11/18/05          |                              | 7.63                    | 168.77                     |
|             | 07/28/05          |                              | 7.58                    | 168.82                     |
|             | 04/13/05          |                              | 6.35                    | 170.05                     |
|             | 01/31/05          |                              | 6.79                    | 169.61                     |
|             | 10/15/04          |                              | 8.28                    | 168.12                     |
|             | 07/13/04          |                              | 8.11                    | 168.29                     |
|             | 04/06/04          |                              | 7.41                    | 168.99                     |
|             | 12/18/03          |                              | 6.99                    | 169.41                     |
|             | 09/18/03          |                              | 7.91                    | 168.49                     |
|             | 06/19/03          |                              | 7.60                    | 168.80                     |
|             | 03/18/03          |                              | 7.35                    | 169.05                     |
|             | 12/21/02          |                              | 5.43                    | 170.97                     |
|             | 09/10/02          |                              | 7.97                    | 168.43                     |
|             | 03/30/02          |                              | 6.97                    | 169.43                     |
|             | 12/22/01          |                              | 6.44                    | 169.96                     |
|             | 09/23/01          |                              | 8.17                    | 168.23                     |
|             | 06/22/01          |                              | 8.06                    | 168.34                     |
|             | 04/22/01          |                              | 7.50                    | 168.90                     |
|             | 12/14/00          |                              | 8.13                    | 168.27                     |
|             | 09/18/00          |                              | 7.83                    | 168.57                     |
|             | 09/26/00          |                              | 7.77                    | 168.63                     |
|             | 06/08/00          |                              | 7.50                    | 168.90                     |
|             | 03/09/00          |                              | 6.08                    | 170.32                     |
|             | 12/09/99          |                              | 7.90                    | 168.50                     |

### NOTES:

\* = Surveyed on August 20, 1997 ++ = Surveyed on January 7, 2008

| Well<br>No. | Date<br>Monitored | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.) | Water Table<br>Elev. (ft.) |
|-------------|-------------------|------------------------------|-------------------------|----------------------------|
| MW3         | 08/31/99          | 176.41**                     | 7.95                    | 168.45                     |
| (Continued) | 04/29/99          |                              | 7.09                    | 169.31                     |
|             | 01/29/99          |                              | 6.42                    | 169.98                     |
|             | 04/26/98          |                              | 6.85                    | 169.55                     |
|             | 01/24/98          |                              | 5.90                    | 170.50                     |
|             | 11/06/97          |                              | 7.80                    | 168.80                     |
|             | 08/26/97          |                              | 7.67                    | 168.93                     |
|             | 07/24/97          | 176.41**                     | 7.90                    | 168.51                     |
|             | 04/25/97          |                              | 7.12                    | 169.29                     |
|             | 01/20/97          |                              | 6.35                    | 170.06                     |
|             | 07/26/96          |                              | 7.84                    | 169.57                     |
|             | 07/09/96          |                              | 7.61                    | 168.80                     |
|             | 04/23/96          |                              | 6.81                    | 169.60                     |
|             | 02/07/96          |                              | 5.05                    | 170.36                     |
|             | 01/29/96          |                              | 5.77                    | 170.64                     |
|             | 10/26/95          |                              | 7.72                    | 168.69                     |
|             | 07/28/95          |                              | 7.80                    | 168.61                     |
|             | 05/02/95          |                              | 6.50                    | 169.91                     |
|             | 02/23/95          |                              | 7.24                    | 169.17                     |
|             | 11/18/94          |                              | 6.05                    | 170.36                     |
|             | 08/22/94          | 190.97***                    | 7.65                    | 168.76                     |
|             | 05/19/94          |                              | 7.15                    | 169.26                     |
|             | 02/24/94          |                              | 6.68                    | 169.73                     |
|             | 11/24/93          |                              | 7.55                    | 168.86                     |
|             | 08/30/93          |                              | 7.64                    | 168.77                     |
|             | 05/18/93          |                              | 7.12                    | 169.29                     |
|             | 02/23/93          |                              | 8.01                    | 168.40                     |
|             | 11/13/92          |                              | 7.86                    | 191.12                     |
|             | 05/29/92          | 175.00                       | 8.45                    | 166.55                     |
|             | 01/14/92          |                              | 8.24                    | 166.55                     |
|             | 12/23/91          |                              | 9.37                    | 165.63                     |
|             | 11/25/91          |                              | 9.19                    | 165.81                     |
|             | 10/10/91          |                              | 9.43                    | 165.57                     |
|             | 09/17/91          |                              | 9.20                    | 165.80                     |
|             | 08/19/91          |                              | 8.95                    | 166.05                     |

## NOTES:

\* = Surveyed on August 20, 1997 \*\* = Surveyed on March 24, 1993 \*\*\* = Surveyed on December 5, 1992

| Well | Date      | Top of Casing | Depth to     | Water Table |
|------|-----------|---------------|--------------|-------------|
| No.  | Monitored | Elev. (ft.)   | Water (ft.)  | Elev. (ft.) |
|      |           |               |              |             |
| MW4  | 01/06/09  | 179.21++      | 8.00(0.19)#  | 171.35      |
|      | 10/22/08  |               | 8.46(0.08)#  | 170.81      |
|      | 07/16/08  |               | 8.04(0.21)#  | 171.33      |
|      | 04/15/08  |               | 8.00(0.25)#  | 171.40      |
|      | 01/17/08  | 176.35*       | 7.50(0.17)#  | 168.98      |
|      | 10/16/07  |               | 8.50(0.25)#  | 168.04      |
|      | 07/25/07  |               | 8.04(0.17)#  | 168.44      |
|      | 04/17/07  |               | 7.94(0.19)#  | 168.55      |
|      | 01/18/07  |               | 7.38(0.21)#  | 169.13      |
|      | 11/14/06  |               | 7.36(0.25)#  | 169.18      |
|      | 06/29/06  |               | Unknown      | Unknown     |
|      | 02/03/06  |               | 5.86         | 170.49      |
|      | 11/18/05  |               | 7.99 (0.51)# | 168.36      |
|      | 07/28/05  |               | 7.59         | 168.76      |
|      | 04/13/05  |               | 6.78 (0.01)# | 169.58      |
|      | 01/31/05  |               | 7.34 (0.19)# | 169.15      |
|      | 10/15/04  |               | 8.73 (0.15)# | 167.73      |
|      | 07/13/04  |               | 8.44 (0.03)# | 167.93      |
|      | 04/06/04  |               | 9.58 (2.83)# | 168.89      |
|      | 02/11/04  |               | 9.43 (2.70)# | 168.95      |
|      | 12/18/03  |               | 9.75 (1.51)# | 167.73      |
|      | 09/18/03  |               | 9.13 (1.80)# | 168.57      |
|      | 06/19/03  |               | 8.56 (0.31)# | 168.02      |
|      | 03/18/03  |               | 7.49 (0.06)# | 168.91      |
|      | 12/21/02  |               | 8.58 (4.39)# | 171.06      |

### NOTES:

\* = Surveyed on August 20, 1997

# = Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75. ++ = Surveyed on January 7, 2008.

| Well<br>No. | Date<br>Monitored | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.) | Water Table<br>Elev. (ft.) |
|-------------|-------------------|------------------------------|-------------------------|----------------------------|
| MW4         |                   |                              |                         |                            |
| (Continued) | )                 |                              |                         |                            |
| . ,         | 09/10/02          |                              | 9.09 (1.60)#            | 168.46                     |
|             | 03/30/02          |                              | 9.86 (2.49)#            | 168.36                     |
|             | 12/22/01          |                              | 7.79 (1.75)#            | 169.87                     |
|             | 09/23/01          |                              | 8.97 (1.17)#            | 168.26                     |
|             | 06/22/01          |                              | 7.79                    | 168.56                     |
|             | 04/22/01          |                              | 9.07 (2.20)#            | 168.93                     |
|             | 12/14/00          |                              | 8.87 (0.72)#            | 168.02                     |
|             | 09/18/00          |                              | 8.50 (0.45)#            | 168.19                     |
|             | 06/08/00          |                              | 7.34                    | 169.01                     |
|             | 03/09/00          |                              | 6.61 (0.46)#            | 170.08                     |
|             | 12/09/99          |                              | 8.80                    | 167.55                     |
|             | 08/31/99          |                              | 8.28                    | 168.07                     |
|             | 04/29/99          |                              | 7.14                    | 169.21                     |
|             | 01/29/99          |                              | 6.68                    | 169.67                     |
|             | 04/26/98          |                              | 6.87                    | 169.48                     |
|             | 01/24/98          |                              | 6.61                    | 169.74                     |
|             | 11/06/97          |                              | 9.16                    | 167.19                     |
|             | 08/26/97          |                              | 8.92                    | 167.43                     |
|             | 08/20/97          |                              | 7.66 (prior to dev      | elopment)                  |
| 110 000     |                   |                              |                         |                            |

### NOTES:

\* = Surveyed on August 20, 1997

# = Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

| Well | Date                                                                             | Top of Casing | Depth to                                               | Water Table                                                        |
|------|----------------------------------------------------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------------------|
| No.  | Monitored                                                                        | Elev. (ft.)   | Water (ft.)                                            | Elev. (ft.)                                                        |
| MW5  | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/12/07 | 176.02++      | 5.91<br>6.55<br>6.01<br>5.90<br>5.83<br>5.83<br>5.98\$ | 170.11<br>169.47<br>170.01<br>170.12<br>170.19<br>170.19<br>170.04 |

## Notes:

++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                             | Top of Casing | Depth to                                               | Water Table                                                        |
|------|----------------------------------------------------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------------------|
| No.  | Monitored                                                                        | Elev. (ft.)   | Water (ft.)                                            | Elev. (ft.)                                                        |
| MW6  | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/11/07 | 175.24++      | 5.72<br>6.36<br>5.88<br>5.00<br>5.69<br>5.63<br>6.17\$ | 169.52<br>168.88<br>169.36<br>170.24<br>169.55<br>169.61<br>169.07 |

## Notes:

++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                                         | Top of Casing | Depth to                                                       | Water Table                                                                  |
|------|----------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| No.  | Monitored                                                                                    | Elev. (ft.)   | Water (ft.)                                                    | Elev. (ft.)                                                                  |
| MW7  | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/12/07<br>12/12/07 | 170.34++      | 3.62<br>4.24<br>4.06<br>3.60<br>3.68<br>4.74<br>5.49<br>5.98\$ | 166.72<br>166.10<br>166.28<br>166.74<br>166.66<br>165.60<br>164.85<br>164.36 |

<u>Notes:</u> ++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                             | Top of Casing | Depth to                                               | Water Table                                                        |
|------|----------------------------------------------------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------------------|
| No.  | Monitored                                                                        | Elev. (ft.)   | Water (ft.)                                            | Elev. (ft.)                                                        |
| MW8  | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/12/07 | 176.00++      | 6.88<br>7.91<br>7.20<br>6.76<br>6.73<br>6.52<br>6.56\$ | 169.12<br>168.09<br>168.80<br>169.24<br>169.27<br>169.48<br>169.44 |

Notes: ++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                             | Top of Casing | Depth to                                                | Water Table                                                        |
|------|----------------------------------------------------------------------------------|---------------|---------------------------------------------------------|--------------------------------------------------------------------|
| No.  | Monitored                                                                        | Elev. (ft.)   | Water (ft.)                                             | Elev. (ft.)                                                        |
| MW9  | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/11/07 | 175.09++      | 6.32<br>6.96<br>6.57<br>6.44<br>6.35<br>6.31<br>11.21\$ | 168.77<br>168.13<br>168.52<br>168.65<br>168.74<br>168.78<br>163.88 |

Notes: ++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                            | Top of Casing | Depth to                                               | Water Table                                                        |
|------|---------------------------------------------------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------------------|
| No.  | Monitored                                                                       | Elev. (ft.)   | Water (ft.)                                            | Elev. (ft.)                                                        |
| MW10 | 01/06/09<br>10/22/08<br>07/16/08<br>4/15/08<br>12/17/07<br>12/13/07<br>12/12/07 | 176.03++      | 5.71<br>6.46<br>5.83<br>5.64<br>5.77<br>5.55<br>5.70\$ | 170.32<br>169.57<br>170.20<br>170.39<br>170.26<br>170.48<br>170.33 |

<u>Notes:</u> ++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                                         | Top of Casing | Depth to                                                           | Water Table                                                                  |
|------|----------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|
| No.  | Monitored                                                                                    | Elev. (ft.)   | Water (ft.)                                                        | Elev. (ft.)                                                                  |
| MW11 | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/12/07<br>12/12/07 | 171.03++      | 4.04<br>4.87<br>4.38<br>3.70<br>10.19<br>12.72<br>12.99<br>11.94\$ | 166.99<br>166.16<br>166.65<br>167.33<br>160.84<br>158.31<br>158.04<br>159.09 |

## Notes:

++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well | Date                                                                             | Top of Casing | Depth to                                               | Water Table                                                        |
|------|----------------------------------------------------------------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------------------|
| No.  | Monitored                                                                        | Elev. (ft.)   | Water (ft.)                                            | Elev. (ft.)                                                        |
| MW12 | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>12/17/07<br>12/13/07<br>12/12/07 | 173.98++      | 7.61<br>9.02<br>8.47<br>7.77<br>7.71<br>7.66<br>7.67\$ | 166.37<br>164.96<br>165.51<br>166.21<br>166.27<br>166.32<br>166.31 |

## Notes:

++ = Surveyed on January 7, 2008. \$ = Prior to well development.

| Well<br>No. | Date<br>Monitored                                                                            | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.)                                         | Water Table<br>Elev. (ft.) |
|-------------|----------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|----------------------------|
| EW1         | 01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>01/17/08                                     | 179.27++<br>Not Surveyed     | 11.41<br>11.40<br>11.40<br>11.40<br>11.41                       | 167.86                     |
|             | 11/16/07<br>07/25/07<br>04/17/07<br>01/18/07<br>11/14/06<br>06/29/06<br>02/03/06<br>11/18/05 |                              | 11.95<br>11.57<br>11.35<br>6.60<br>6.11<br>6.88<br>5.23<br>6.63 |                            |
|             | 07/28/05<br>04/13/05<br>01/31/05<br>10/15/04<br>07/13/04<br>04/06/04<br>12/18/03<br>09/18/03 |                              | 6.94<br>5.23<br>6.25<br>7.65<br>7.51<br>6.63<br>6.72<br>7.29    |                            |

### NOTES:

++ = Surveyed on January 7, 2008.

| Well<br>No. | Date<br>Monitored                                                                                                                                                                                                                                                                 | Top of Casing<br>Elev. (ft.)            | Depth to<br>Water (ft.)                                 | Total Well<br>Depth (ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.<br>OW1  | Monitored<br>01/06/09<br>10/22/08<br>07/16/08<br>04/15/08<br>01/17/08<br>11/16/07<br>07/25/07<br>04/17/07<br>01/18/07<br>11/14/06<br>06/29/06<br>02/03/06<br>11/18/05<br>07/28/05<br>04/13/05<br>01/31/05<br>10/15/04<br>07/14/04<br>04/06/04<br>02/11/04<br>10/06/03<br>11/02/00 | Elev. (ft.)<br>178.93++<br>Not Surveyed | No Water or Product<br>No Water; (0.33)<br>6.95<br>7.11 | Depth (ft.)<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.17<br>7.41<br>7.41<br>7.41<br>7.42<br>7.45<br>7.50<br>7.45<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44<br>7.44 |
|             | 01/29/99<br>12/09/99                                                                                                                                                                                                                                                              |                                         | 7.12<br>7.27                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### NOTES:

# = Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

## = Petroleum hydrocarbon odor reported on probe for water level indicator.

++ = Surveyed on January 7, 2008.

| Well<br>No. | Date<br>Monitored    | Top of Casing<br>Elev. (ft.) | Depth to<br>Water (ft.) | Total Well<br>Depth (ft.) |
|-------------|----------------------|------------------------------|-------------------------|---------------------------|
|             |                      |                              | -                       |                           |
|             | 01/29/99<br>12/09/99 |                              | 7.19<br>7.17            |                           |

### NOTES:

# = Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

## = Petroleum hydrocarbon odor reported on probe for water level indicator.

++ = Surveyed on January 7, 2008.

| TABLE 2                                  |  |  |  |  |  |  |
|------------------------------------------|--|--|--|--|--|--|
| SUMMARY OF LABORATORY ANALYTICAL RESULTS |  |  |  |  |  |  |
| Well MW1                                 |  |  |  |  |  |  |

| Date     | TPH-D     | TPH-G | MTBE     | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|-----------|-------|----------|---------|---------|-------------------|------------------|-------------------------------------|
| 01/07/09 | 5.4, b    | 15    | ND<0.05  | 0.14    | 0.16    | 1.1               | 1.6              | ND                                  |
| 10/23/08 | 3.8, c    | 18    | ND<0.05  | 0.18    | 0.20    | 1.4               | 1.9              | ND                                  |
| 07/17/08 | 4.3, c    | 16    | ND<0.025 | 0.21    | 0.16    | 1.0               | 1.6              | ND                                  |
| 04/16/08 | 3.2, c    | 13    | 0.029    | 0.15    | 0.11    | 0.87              | 1.2              | ND                                  |
| 01/17/08 | 3.8, b    | 22    | 0.074    | 0.31    | 0.22    | 1.2               | 1.7              | ND                                  |
| 10/16/07 | 2.5, a, b | 23, a | 0.13     | 0.48    | 0.23    | 1.1               | 1.7              | ND                                  |
| 07/25/07 | 3.9, b    | 15, f | 0.13     | 0.25    | 0.023   | ND<0.01           | 1.5              | ND                                  |
| 04/17/07 | 6.2, b    | 23    | 0.26     | 0.78    | 0.32    | 1.1               | 2.0              | ND<0.025,<br>except TBA<br>ND<0.25  |

### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

| Date     | TPH-D  | TPH-G | MTBE   | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260*                                            |
|----------|--------|-------|--------|---------|---------|-------------------|------------------|--------------------------------------------------------------------------------|
| 01/18/07 | 6.4, b | 29    | ND<1.0 | 1.8     | 0.87    | 1.6               | 3.3              | ND<0.05,<br>except TBA<br>ND<0.5                                               |
| 11/14/06 | 7.2, b | 30    | 0.44   | 2.2     | 0.60    | 1.8               | 2.9              | ND<0.05,<br>except TBA<br>ND<0.5,<br>Ethanol<br>ND<5.0,<br>Methanol<br>ND<50.0 |
| 06/29/06 | 22,b   | 45    | 1.2    | 3.1     | 0.94    | 2.0               | 3.9              | ND<0.05,<br>TBA<br>ND<0.5                                                      |
| 02/03/06 | 9.7,c  | 37    | 0.62   | 2.2     | 1.2     | 2.0               | 3.5              | ND<0.05,<br>TBA<br>ND<0.5                                                      |
| 11/18/05 | 4.3,b  | 25    | 0.14   | 1.6     | 0.43    | 1.8               | 2.7              | ND<0.05,<br>TBA<br>ND<0.5                                                      |
| 07/28/05 | 16,a,b | 30,a  | 0.26,+ | 2.5     | 0.76    | 2.1               | 4.8              | ND<0.05,<br>TBA<br>ND<0.5                                                      |
| 04/13/05 | 9.3,b  | 30    | 0.3    | 1.9     | 0.6     | 1.7               | 3                | ND<0.05,<br>TBA<br>ND<0.5                                                      |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

| TABLE 2                                  |
|------------------------------------------|
| SUMMARY OF LABORATORY ANALYTICAL RESULTS |
| Well MW1 (Continued)                     |

~

| Date     | TPH-D  | TPH-G | MTBE    | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additives<br>by 8260* |
|----------|--------|-------|---------|---------|---------|-------------------|------------------|----------------------------------------|
| 01/31/05 | 14,b   | 29    | 0.27    | 2.2     | 1.2     | 1.9               | 5.0              | ND<0.05,<br>TBA<br>ND<0.5              |
| 10/15/04 | 16,a,b | 36,a  | ND<0.05 | 1.5     | 1.0     | 2.1               | 5.1              | ND<0.05,<br>TBA<br>ND<0.5              |
| 07/13/04 | 22a,b  | 34,a  | 0.053   | 2.1     | 0.59    | 2.1               | 4.4              | ND<0.5,<br>TBA<br>ND<0.5               |
| 04/6/04  | 18,a,b | 28,a  | 0.11    | 2.3     | 0.8     | 0.99              | 4.5              | ND<0.1<br>TBA<br>ND<1                  |
| 12/18/03 | 13,b   | 33    | 0.038   | 2.1     | 0.77    | 1.8               | 4.4              | ND<0.005<br>TBA<br>ND<0.05             |
| 09/18/03 | 15,a,b | 32    | 0.052   | 2.2     | 0.62    | 1.8               | 3.8              | ND<0.017<br>, TBA<br>ND<0.17           |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC). Results in milligrams per liter (mg/L), unless otherwise indicated.

|          |         |        |         |         |          |         |         | Other     |
|----------|---------|--------|---------|---------|----------|---------|---------|-----------|
| Date     | TPH-D   | TPH-G  | MTBE    | Benzene | Toluene  | Ethyl-  | Total   | Fuel      |
| Date     | II II-D | IIII-0 | MIDE    | Denzene | Tolucile | benzene | Xylenes | Additives |
|          |         |        |         |         |          |         |         | by 8260*  |
| 06/26/03 | 67,a,b  | 45     | ND<0.05 | 2.1     | 0.72     | 2.3     | 5.5     | ND        |
| 03/18/03 | 7.3,a,b | 33     | ND<0.05 | 2.4     | 0.9      | 1.6     | 1.0     | ND        |
| 12/21/02 | 11,a,b  | 32     | ND<0.1  | 2.6     | 0.98     | 2.2     | 5.5     | ND        |
| 09/10/02 | 18,c    | 31     | ND<0.25 | 2.2     | 0.65     | 1.7     | 4.8     |           |
| 03/30/02 | 12,a,b  | 99     | ND      | 4.1     | 1.2      | 2.5     | 6.4     |           |
| 12/22/01 | 22,a,b  | 60     | ND      | 3.2     | 1.9      | 2       | 6.2     |           |
| 09/23/01 | 16,a,c  | 49     | ND      | 4       | 1.4      | 2.2     | 6.2     |           |
| 06/22/01 | 85,a,b  | 35     | ND      | 3.1     | 0.75     | 1.2     | 4.0     |           |
| 04/22/01 | 16,a    | 43     | ND      | 3.6     | 1.2      | 1.6     | 5.8     |           |
| 12/14/00 | 11,a,d  | 49     | ND      | 5.8     | 1.6      | 2       | 6.9     |           |
| 09/18/00 | 15,a,b  | 86     | ND      | 7.2     | 2        | 3.2     | 13      |           |
| 06/8/00  | 6.5,a,c | 50     | ND      | 5.7     | 1.5      | 1.8     | 7       |           |
| 03/9/00  | 7.4,a,b | 48     | ND      | 5.3     | 3.1      | 1.6     | 8.1     |           |
| 12/9/99  | 12,a,b  | 65     | ND      | 9.3     | 2.9      | 2.2     | 8.8     |           |
| 08/31/99 | 22,b    | 66     | 0.71    | 8.7     | 2.7      | 2.4     | 10      |           |
| 04/29/99 | 22,b    | 48     | ND      | 8.4     | 2.8      | 2.0     | 8.1     |           |
| 01/29/99 | 9.1,b   | 47     | ND      | 9.0     | 2.9      | 1.9     | 8.0     |           |
| 04/26/98 | 7.8,c   | 60     | ND      | 9.3     | 5.7      | 2.1     | 9.1     |           |
| 01/24/98 | 24,b    | 57     | ND      | 6.9     | 5.5      | 2.0     | 8.7     |           |
| 11/6/97  | 17,c    | 63     | ND      | 7.4     | 6.7      | 2.3     | 9.9     |           |
| 07/27/97 | 28,c    | 66     | 1.8     | 8.6     | 8.1      | 2.2     | 10      |           |
| 04/25/97 | 170,b   | 77     | ND      | 7.4     | 7.9      | 2.1     | 9.8     |           |
| 01/21/97 | 57,c    | 80     | 0.25    | 7.8     | 8.3      | 1.9     | 8.9     |           |
| 07/26/96 | 11,c    | 76     | ND      | 11      | 13       | 2.4     | 10      |           |
| 04/23/96 | 5.7,c   | 73     | ND      | 8.6     | 12       | 2.2     | 9.8     |           |
|          |         |        |         |         |          |         |         |           |

### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

Results in milligrams per liter (mg/L), unless otherwise indicated.

~

041

| Date     | TPH-D | TPH-G | MTBE | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additives<br>by 8260* |
|----------|-------|-------|------|---------|---------|-------------------|------------------|----------------------------------------|
| 01/29/96 | 6.6,c | 81    | 0.25 | 7.6     | 13      | 1.9               | 8.9              |                                        |
| 10/26/95 | 62,c  | 89    | ND   | 7.8     | 12      | 2.4               | 11               |                                        |
| 07/28/95 | 2.0,c | 35    |      | 3.8     | 8.7     | 1.1               | 6.5              |                                        |
| 05/2/95  | 6.5,c | 86    |      | 8.9     | 14      | 2.3               | 11               |                                        |
| 02/24/95 | 9.1   | 90    |      | 7.5     | 12      | 1.5               | 11               |                                        |
| 11/18/94 | 10    | 96    |      | 9.3     | 14      | 2.5               | 11               |                                        |
| 08/22/94 | 8.3   | 100   |      | 9.0     | 11      | 2.1               | 9.4              |                                        |
| 05/19/94 | 30    | 100   |      | 12      | 14      | 3.5               | 17               |                                        |
| 02/28/94 | 110   | 90    |      | 11      | 9.6     | 2.1               | 9.9              |                                        |
| 11/24/93 | 8.2   | 66    |      | 8.3     | 8.9     | 2.0               | 121              |                                        |
| 08/30/93 | 9.4   | 77    |      | 6.4     | 11      | 2.2               | 12               |                                        |
| 05/18/93 | 30    | 92    |      | 4.0     | 11      | 2.5               | 15               |                                        |
| 02/23/93 | 14    | 100   |      | 4.5     | 11      | 2.1               | 12               |                                        |
| 11/13/92 | 4.4   | 120   |      | 5.8     | 10      | 2.1               | 13               |                                        |
| 05/27/92 | 11    | 120   |      | 8.8     | 16      | 2.3               | 15               |                                        |
| 01/24/92 | 19    | 39    |      | 7.3     | 8.7     | 1.3               | 8.9              |                                        |
| 12/23/91 | 34    | 78    |      | 9.3     | 7.3     | 0.54              | 13               |                                        |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

| Date       | TPH-D | TPH-G | MTBE | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additives<br>by 8260* |
|------------|-------|-------|------|---------|---------|-------------------|------------------|----------------------------------------|
| 11/25/91   | 36    | 170   |      | 5.5     | 5.6     | 1.6               | 8.4              |                                        |
| 10/10/91   | 19    | 28    |      | 4.1     | 4.7     | 1.0               | 4.8              |                                        |
| 09/17/91   | 19    | 39    |      | 4.9     | 4.1     | 1.2               | 5.9              |                                        |
| 08/19/91   | 47    | 48    |      | 13      | 8.4     | 0.99              | 29               |                                        |
| 07/20/91   | 49    | 100   |      | 11      | 14      | 2.3               | 17               |                                        |
| 06/20/91   | 42    | 76    |      | 4.7     | 7.1     | 1.5               | 9.8              |                                        |
| 05/17/91   | 26    | 72    |      | 7.7     | 9.9     | ND                | 11               |                                        |
| 04/15/91   |       | 56    |      | 6.5     | 8.5     | 0.41              | 9.9              |                                        |
| 03/21/91   |       | 36    |      | 4.5     | 5.7     | 0.087             | 7.3              |                                        |
| 02/15/91   |       | 120   |      | 7.4     | 6.6     | ND                | 13               |                                        |
| 01/15/91   |       | 33    |      | 3.9     | 2.9     | 0.21              | 5.3              |                                        |
| 09/27/90   |       | 28    |      | 3.7     | 3.5     | 0.01              | 6.5              |                                        |
| 08/23/90   |       | 40    |      | 5.1     | 4.9     | 0.35              | 6.0              |                                        |
| 07/20/90   | 44    |       |      | 5.1     | 4.2     | ND                | 9.1              |                                        |
| 03/19/90   |       | 40    |      | 3.7     | 1.1     | ND                | 3.3              |                                        |
| 02/20/90** |       | 7.6   |      | 1.6     | ND      | ND                | 1.3              |                                        |

### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

### TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2

| Date      | TPH-D | TPH-G | MTBE   | Benzene | Toluene  | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additives<br>by 8260* |
|-----------|-------|-------|--------|---------|----------|-------------------|------------------|----------------------------------------|
| 2/7/96    |       |       |        |         | estroyed |                   |                  |                                        |
| 1/29/96   | 4.6,c | 38    | 0.0071 | 1.9     | 5.7      | 1.1               | 5.9              |                                        |
| 10/26/95  | 900   | 74    | ND     | 2.9     | 5.9      | 2.0               | 10               |                                        |
| 7/28/95   | 2.0,c | 15    |        | 1.4     | 2.3      | 0.62              | 3.2              |                                        |
| 5/2/95    | 6.6,b | 55    |        | 3.3     | 10       | 1.8               | 10               |                                        |
| 2/24/95   | 22    | 67    |        | 4.9     | 11       | 1.8               | 11               |                                        |
| 11/18/94  | 5.0   | 86    |        | 11      | 17       | 1.8               | 12               |                                        |
| 8/22/94   | 4.1   | 91    |        | 10      | 13       | 1.5               | 9.0              |                                        |
| 5/19/94   | 5.8   | 62    |        | 92      | 13       | 1.3               | 8.4              |                                        |
| 2/28/94   | 13    | 91    |        | 13      | 16       | 1.5               | 9.0              |                                        |
| 11/24/93  | 79    | 12    |        | 13      | 17       | 2.5               | 17               |                                        |
| 8/30/93   | 110   | 110   |        | 11      | 14       | 1.8               | 11               |                                        |
| 5/18/93   | 44    | 67    |        | 9.2     | 12       | 1.4               | 9.3              |                                        |
| 2/23/93   | 7.0   | 76    |        | 12      | 17       | 1.6               | 9.6              |                                        |
| 11/13/92  | 8.2   | 79    |        | 10      | 13       | 1.4               | 8.6              |                                        |
| 5/27/92   | 130   | 89    |        | 18      | 19       | 1.7               | 14               |                                        |
| 1/14/92   | 1600  | 59    |        | 17      | 14       | 1.8               | 15               |                                        |
| 12/23/91  | 700   | 2100  |        | 36      | 130      | 79                | 560              |                                        |
| 11/25/91  | 130   | 230   |        | 11      | 9.7      | 1.4               | 9.7              |                                        |
| 10/10/91  | 360   | 85    |        | 21      | 25       | 2.1               | 14               |                                        |
| 9/17/91   | 56    | 74    |        | 10      | 11       | 1.4               | 8.1              |                                        |
| 8/19/91   | 19    | 69    |        | 26      | 22       | 2.1               | 18               |                                        |
| 7/20/91   | 100   | 51    |        | 9.9     | 7.7      | 1.2               | 7.5              |                                        |
| 6/20/91   | 69    | 87    |        | 8.1     | 8.4      | 1.1               | 8.9              |                                        |
| 5/17/91   | 33    | 62    |        | 5.9     | 6.3      | 1.2               | 9.0              |                                        |
| 4/15/91   |       | 82    |        | 5.3     | 7.4      | 1.0               | 9.4              |                                        |
| 3/21/91   |       | 62    |        | 9.3     | 11       | 0.35              | 9.7              |                                        |
| 2/15/91   |       | 200   |        | 12      | 12       | 1.7               | 14               |                                        |
| 1/14/91   |       | 78    |        | 11      | 8.7      | 0.58              | 8.0              |                                        |
| 9/27/90   |       | 59    |        | 8.4     | 12       | 0.88              | 9.0              |                                        |
| 8/23/90   |       | 96    |        | 8.1     | 8.4      | 1.5               | 8.6              |                                        |
| 7/20/90   | 86    |       |        | 9.1     | 14       | 0.94              | 13               |                                        |
| 3/19/90   |       | 50    |        | 7.7     | 8.7      | 0.075             | 5.6              |                                        |
| 2/20/90** |       | 38    |        | 7.3     | 3.1      | 0.075             | 6.8              |                                        |
| NOTES     |       | -     |        |         |          |                   |                  |                                        |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

\*\* Inorganic lead not detected in sample.

Results in milligrams per liter (mg/L), unless otherwise indicated.

**P&D** Environmental, Inc.

Other

| TABLE 2                                  |
|------------------------------------------|
| SUMMARY OF LABORATORY ANALYTICAL RESULTS |
| Well MW3                                 |

| Date     | TPH-D     | TPH-G  | MTBE | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260*                               |
|----------|-----------|--------|------|---------|---------|-------------------|------------------|-------------------------------------------------------------------|
| 01/07/09 | 13, a, b  | 50, a  | 3.5  | 28      | ND<0.5  | 1.3               | 3.2              | ND, except<br>TBA= 5.7                                            |
| 10/23/08 | 7.8, b    | 87     | 4.7  | 26      | ND<0.5  | ND<0.5            | 8.2              | ND, except<br>TBA= 8.0                                            |
| 07/17/08 | 19, a, b  | 63, a  | 5.1  | 24      | ND<1.0  | ND<1.0            | 4.1              | ND, except<br>TBA= 6.1                                            |
| 04/16/08 | 14, a, b  | 52, a  | 6.7  | 24      | ND<0.5  | ND<0.5            | 5.1              | ND, except<br>TBA= 6.7                                            |
| 01/17/08 | 9.9, a, b | 110, a | 9.3  | 34      | ND<0.5  | 2.5               | 9.5              | ND, except<br>TBA= 8.0                                            |
| 10/16/07 | 13, a, b  | 69, a  | 13   | 18      | ND<0.5  | ND<0.5            | 5.0              | ND, except<br>TBA= 10                                             |
| 07/25/07 | 6.7, a, e | 52, a  | 12   | 23      | ND<0.25 | ND<0.25           | 6.0              | ND, except<br>TBA= 8.6                                            |
| 04/17/07 | 7.9, a, b | 92, a  | 14   | 23      | ND<0.5  | 1.5               | 5.9              | ND<0.5, except<br>TBA = 8.0                                       |
| 01/18/07 | 6.4, b    | 94     | 22   | 29      | 1.3     | 2.1               | 9.6              | ND<0.5, except<br>TBA = 12                                        |
| 11/14/06 | 21, a, b  | 100, a | 23   | 37      | 1.0     | 2.2               | 11               | ND<0.5 except,<br>TBA= 16, Ethanol<br>ND<5.0,<br>Methanol ND<50.0 |

### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

| Date     | TPH-D  | TPH-G | MTBE | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|--------|-------|------|---------|---------|-------------------|------------------|-------------------------------------|
| 06/29/06 | 12,b   | 36    | 27   | 14      | ND<0.5  | ND<0.5            | ND<0.5           | ND<0.5, except<br>TBA = 11          |
| 02/03/06 | 22,b   | 86    | 24   | 26      | ND<0.5  | 1.7               | 6                | ND<0.5, except<br>TBA = 11          |
| 11/18/05 | 32,a,b | 87,a  | 22   | 35      | ND<1    | 2                 | 11               | ND<1.0, except<br>TBA ND<10         |
| 07/28/05 | 77,a,b | 100,a | 32,+ | 30      | 1.1     | 2.3               | 12               | ND<0.5, except<br>TBA = 13          |
| 04/13/05 | 19,a,b | 96,a  | 28   | 31      | 4       | 2.3               | 12               | ND<0.5, except<br>TBA = 12          |
| 01/31/05 | 13,a,b | 93,a  | 31   | 36      | 1.5     | 2.5               | 11               | ND<1, except<br>TBA = 24            |
| 10/15/04 | 13,a,b | 76,a  | 24   | 28      | ND<0.5  | 1.1               | 3.6              | ND<0.5, except<br>TBA = 18          |
| 07/13/04 | 57,a,b | 98,a  | 15   | 28      | 2.9     | 1.7               | 8.9              | ND<0.5, except<br>TBA = 11          |
| 04/6/04  | 32,a,b | 81,a  | 17   | 34      | 5.9     | 1.5               | 9.9              | ND<0.5, except<br>TBA = 8.8         |
| 12/18/03 | 32,a,b | 130,a | 32   | 33      | 5.4     | 0.72              | 11               | ND<0.5, except<br>TBA = 17          |

## TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

\*\*\*Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including TAME, DIPE, ETBE, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm.

| TABLE 2                                  |
|------------------------------------------|
| SUMMARY OF LABORATORY ANALYTICAL RESULTS |
| Well MW3 (Continued)                     |

| Date     | TPH-D   | TPH-G | MTBE | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260*<br>ND<0.5, |
|----------|---------|-------|------|---------|---------|-------------------|------------------|------------------------------------------------|
| 09/18/03 | 140,a,b | 130   | 23   | 34      | 11      | 2.5               | 14               | except<br>TBA = 10                             |
| 06/26/03 | 27,a,b  | 96    | 21   | 29      | 5.2     | 2.0               | 10               | ND, except<br>TBA = 8.9                        |
| 03/18/03 | 11,a,b  | 120   | 16   | 36      | 12      | 1.8               | 2.4              | ND, except $TBA = 5.1$                         |
| 12/21/02 | 21,a,b  | 110   | 33   | 34      | 9.3     | 2.0               | 13               | ND, except<br>TBA = 14                         |
| 09/10/02 | 43,b    | 70    | 19   | 21      | 2.2     | 1.6               | 7.6              |                                                |
| 03/30/02 | 8.5,a,b | 170   | 26   | 40      | 17      | 2.6               | 16               |                                                |
| 12/22/01 | 9.2,a,b | 140   | 27   | 37      | 20      | 2.6               | 15               |                                                |
| 09/23/01 | 47,a,b  | 130   | 26   | 32      | 9.1     | 2.4               | 12               |                                                |
| 06/22/01 | 33,a,b  | 110   | 25   | 31      | 7.2     | 1.9               | 11               |                                                |
| 04/22/01 | 61,a    | 140   | 24   | 25      | 5.4     | 1.7               | 11               |                                                |
| 12/14/00 | 120,a,b | 140   | 35   | 37      | 16      | 2.4               | 15               |                                                |
| 09/18/00 | 43,a,b  | 130   | 33   | 39      | 91      | 2.3               | 14               | <br>ND***,                                     |
| 07/26/00 |         |       | 21   |         |         |                   |                  | except tert-<br>butanol =<br>19                |
| 06/8/00  | 74,a,b  | 130   | 23   | 41      | 16      | 1.9               | 13               |                                                |
| 03/9/00  | 14,a,b  | 180   | 24   | 39      | 22      | 2.5               | 16               |                                                |
| 12/9/99  | 17,a,b  | 120   | 16   | 35      | 6.7     | 2.4               | 12               |                                                |
| 08/31/99 | 22,b    | 120   | 4.7  | 35      | 3.7     | 2.4               | 14               |                                                |
| 04/29/99 | 48,b    | 100   | 2.5  | 33      | 8.0     | 2.1               | 14               |                                                |
| 01/29/99 | 240,b   | 84    | 1.3  | 31      | 2.8     | 1.8               | 12               |                                                |
| 04/26/98 | 380,b   | 100   | 9.7  | 29      | 7.1     | 1.8               | 14               |                                                |
| 01/24/98 | 77,b    | 97    | ND   | 28      | 7.1     | 1.8               | 11               |                                                |
| 11/6/97  | 120,b   | 140   | ND   | 37      | 19      | 2.4               | 14               |                                                |
| 07/24/97 | 91,c    | 120   | 1.4  | 33      | 17      | 2.2               | 12               |                                                |
| 04/25/97 | 760,b   | 240   | 1.6  | 24      | 18      | 4.1               | 24               |                                                |
| 01/21/97 | 34,c    | 150   | 1.3  | 40      | 14      | 2.6               | 12               |                                                |
| 07/26/96 | 24,c    | 130   | 0.89 | 40      | 22      | 2.4               | 12               |                                                |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

\*\* Inorganic lead not detected in sample.

## TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

| Date                 | TPH-D | TPH-G | MTBE | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------------------|-------|-------|------|---------|---------|-------------------|------------------|-------------------------------------|
| 04/23/96             | 280,c | 170   | 0.72 | 34      | 22      | 2.2               | 14               |                                     |
| 01/29/96             | 45,c  | 150   | 0.54 | 32      | 21      | 1.9               | 12               |                                     |
| 10/26/95             | 33    | 130   | 0.69 | 37      | 21      | 0.21              | 11               |                                     |
| 07/28/95             | 1.9,b | 86    |      | 1.4     | 2.3     | 0.62              | 3.2              |                                     |
| 05/2/95              | 9.7,b | 170   |      | 43      | 30      | 2.5               | 14               |                                     |
| 02/24/95             | 9.2   | 130   |      | 31      | 19      | 1.8               | 10               |                                     |
| 11/18/94             | 23    | 140   |      | 38      | 22      | 2.0               | 11               |                                     |
| 07/22/94             | 5.3   | 170   |      | 35      | 20      | 1.8               | 10               |                                     |
| 05/19/94             | 30    | 150   |      | 38      | 25      | 2.4               | 14               |                                     |
| 02/28/94             | 210   | 110   |      | 36      | 21      | 1.9               | 11               |                                     |
| 11/24/93             | 24    | 160   |      | 48      | 26      | 2.2               | 12               |                                     |
| 07/30/93             | 32    | 130   |      | 36      | 21      | 1.9               | 8.2              |                                     |
| 05/18/93             | 7.2   | 130   |      | 36      | 21      | 2.1               | 12               |                                     |
| 02/23/93             | 8.1   | 110   |      | 31      | 18      | 1.9               | 11               |                                     |
| 11/13/92             | 4.7   | 140   |      | 38      | 24      | 2.0               | 12               |                                     |
| 05/27/92             | 27    | 370   |      | 91      | 57      | 3.0               | 21               |                                     |
| 07/14/92             | 270   | 130   |      | 76      | 30      | 3.4               | 21               |                                     |
| 12/23/91             | 540   | 740   |      | 30      | 61      | 31                | 180              |                                     |
| 11/25/91             | 74    | 150   |      | 65      | 31      | 3.4               | 18               |                                     |
| 10/10/91             | 39    | 140   |      | 57      | 31      | 2.2               | 14               |                                     |
| 09/17/91             | 140   | 180   |      | 47      | 25      | 2.6               | 15               |                                     |
| 08/19/91             | 150   | 170   |      | 82      | 31      | 4.4               | 22               |                                     |
| 07/20/91             | 270   | 450   |      | 46      | 29      | 3.5               | 21               |                                     |
| 06/20/91             | 210   | 920   |      | 39      | 49      | 13                | 69               |                                     |
| 05/17/91             | 70    | 170   |      | 32      | 22      | 2.2               | 18               |                                     |
| 04/15/91             |       | 110   |      | 31      | 15      | 0.88              | 7.4              |                                     |
| 03/21/91             |       | 87    |      | 30      | 14      | 0.69              | 5.4              |                                     |
| 02/15/91             |       | 230   |      | 44      | 40      | ND                | 31               |                                     |
| 01/14/91             |       | 160   |      | 48      | 25      | 1.0               | 16               |                                     |
| 09/27/90             |       | 25    |      | 7.2     | 6.4     | 0.42              | 3.4              |                                     |
| 08/23/90             |       | 220   |      | 67      | 46      | 27                | 18               |                                     |
| 07/20/90             | 86    |       |      | 9.1     | 14      | 0.94              | 13               |                                     |
| 03/19/90             |       | 210   |      | 38      | 28      | 1.8               | 12               |                                     |
| 02/20/90**<br>NOTES: |       | 46    |      | 20      | 15      | 1.8               | 9.7              |                                     |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

\*\* Inorganic lead not detected in sample.

| Date     | TPH-D  | TPH-G | MTBE  | Benzene        | Toluene       | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|--------|-------|-------|----------------|---------------|-------------------|------------------|-------------------------------------|
| 01/06/09 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  | ·                                   |
| 10/22/08 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 07/16/08 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 04/16/08 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 01/17/08 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 10/16/07 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 07/25/07 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 04/17/07 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
| 01/18/07 |        |       |       | ampled (Free l |               |                   |                  |                                     |
| 11/14/06 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
|          |        |       |       |                |               |                   |                  | ND<1.0,                             |
| 06/29/06 | 83,a,b | 140,a | 31    | 44             | 13            | 2.6               | 19               | except TBA                          |
|          |        |       |       |                |               |                   |                  | = ND<10                             |
|          |        |       |       |                |               |                   |                  | ND<0.5,                             |
| 02/3/06  | 83,a,b | 150,a | 22    | 35             | 12            | 3.2               | 14               | except                              |
|          |        |       |       |                |               |                   |                  | TBA = 7                             |
| 11/18/05 |        |       | Not S | ampled (Free l | Product Prese | ent in Well)      |                  |                                     |
|          |        |       |       |                |               |                   |                  | ND<0.5,                             |
| 07/28/05 | 94,a,b | 130,a | 27,+  | 32             | 8.9           | 2.9               | 14               | except                              |
|          |        |       |       |                |               |                   |                  | TBA = 8.4                           |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

## TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4 (Continued)

| Date     | TPH-D     | TPH-G       | MTBE        | Benzene          | Toluene        | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|-----------|-------------|-------------|------------------|----------------|-------------------|------------------|-------------------------------------|
| 04/13/05 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  | ·                                   |
| 01/31/05 |           |             | Not S       | Sampled (Free I  | Product Prese  | ent in Well)      |                  |                                     |
| 10/15/04 |           |             | Not S       | Sampled (Free I  | Product Prese  | ent in Well)      |                  |                                     |
| 07/13/04 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 02/11/04 | Free P    | roduct samp | ed. Laborat | tory fuel finger | print notes a  | pattern resen     | bling diesel,    | with a less                         |
| 02/11/04 |           | _           | :           | significant gase | oline-range pa | attern.           | -                |                                     |
| 12/18/03 |           |             | Not S       | Sampled (Free I  | Product Prese  | ent in Well)      |                  |                                     |
| 09/18/03 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 06/26/03 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 03/18/03 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 12/21/02 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 09/10/02 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 03/30/02 |           |             | Not S       | ampled (Free I   | Product Prese  | ent in Well)      |                  |                                     |
| 12/22/01 |           |             | Not S       | ampled (Free l   | Product Prese  | ent in Well)      |                  |                                     |
| 09/23/01 |           |             | Not S       | ampled (Free l   | Product Prese  | ent in Well)      |                  |                                     |
| 06/22/01 | 440,a,b   | 140         | 15          | 35               | 19             | 2.0               | 10               |                                     |
| 04/22/01 |           |             | Not S       | Sampled (Free I  | Product Prese  | ent in Well)      |                  |                                     |
| 12/14/00 |           |             |             | Sampled (Free I  |                | ,                 |                  |                                     |
| 09/18/00 |           |             |             | Sampled (Free I  |                | ,                 |                  |                                     |
| 06/8/00  |           |             | Not S       | Sampled (Free I  | Product Prese  | ent in Well)      |                  |                                     |
| 03/9/00  | 2,100,a,b | 130         | 6.9         | 35               | 13             | 2.1               | 11               |                                     |
| 12/9/99  | 9,000,a,b | 120         | 8.1         | 33               | 6              | 2.4               | 12               |                                     |
| 08/31/99 | 9.4,b     | 190         | 4.4         | 46               | 30             | 2.8               | 15               |                                     |
| 04/29/99 | 9.4,b     | 210         | 3.2         | 42               | 35             | 2.8               | 15               |                                     |
| 01/29/99 | 7.3,b     | 190         | 2.4         | 44               | 40             | 3.1               | 17               |                                     |
| 04/26/98 | 13,b      | 190         | ND          | 49               | 37             | 3.2               | 18               |                                     |
| 01/24/98 | 20,b      | 200         | ND          | 50               | 40             | 3.1               | 17               |                                     |
| 11/6/97  | 110,b     | 160         | ND          | 48               | 30             | 2.8               | 16               |                                     |
| 08/26/97 | 5.5,b     | 210         | 1.7         | 48               | 42             | 3.4               | 19               |                                     |
| 08/15/97 |           |             |             | MW4              | Installed      |                   |                  |                                     |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds. + = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D   | TPH-G   | MTBE    | Benzene   | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|---------|---------|---------|-----------|-----------|-------------------|------------------|-------------------------------------|
| 01/07/09 | ND<0.05 | ND<0.05 | 0.00097 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                  |
| 10/23/08 | ND<0.05 | ND<0.05 | 0.0012  | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                  |
| 07/17/08 | ND<0.05 | ND<0.05 | 0.0022  | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                  |
| 04/16/08 | ND<0.05 | ND<0.05 | 0.0039  | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND<0.0005                           |
| 12/13/07 | ND<0.05 | 0.11    | 0.004   | 0.0053    | 0.0005    | ND<0.0005         | 0.0051           | ND                                  |

0.1

. .

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D  | TPH-G | MTBE    | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|--------|-------|---------|---------|---------|-------------------|------------------|-------------------------------------|
| 01/06/09 | 6.2, c | 51    | ND<0.12 | 6.9     | 3.4     | 2.1               | 13               | ND                                  |
| 10/23/08 | 4.1, c | 82    | ND<0.12 | 7.8     | 4.2     | 3.4               | 16               | ND                                  |
| 07/17/08 | 5.7, c | 88    | ND<0.25 | 6.1     | 3.4     | 2.5               | 16               | ND                                  |
| 04/16/08 | 6.5, c | 51    | ND<0.17 | 4.8     | 3.3     | 2.4               | 16               | ND                                  |
| 12/13/07 | 6.2, c | 66    | ND<0.12 | 7.9     | 3.6     | 2.6               | 16               | ND                                  |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D    | TPH-G    | MTBE   | Benzene   | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|----------|----------|--------|-----------|-----------|-------------------|------------------|-------------------------------------|
| 01/06/09 | 0.087    | 0.052    | 0.0032 | 0.018     | ND<0.0005 | 0.0047            | ND<0.0005        | ND                                  |
| 10/22/08 | 0.066, b | 0.17     | 0.0083 | 0.067     | ND<0.0017 | 0.020             | ND<0.0017        | ND                                  |
| 07/16/08 | 0.078, b | 0.28     | 0.0070 | 0.059     | ND<0.001  | 0.0083            | 0.0013           | ND                                  |
| 04/15/08 | 0.077, b | 0.17     | 0.0048 | 0.048     | 0.0015    | 0.013             | 0.0050           | ND                                  |
| 12/13/07 | ND<0.050 | ND<0.050 | 0.0093 | ND<0.0005 | ND<0.0005 | ND<0.0005         | 0.00083          | ND, except<br>TBA = 0.014           |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D   | TPH-G | MTBE     | Benzene | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|---------|-------|----------|---------|-----------|-------------------|------------------|-------------------------------------|
| 01/07/09 | 1.0, c  | 3.1   | 0.0038   | 0.036   | ND<0.0017 | 0.074             | 0.0027           | ND                                  |
| 10/22/08 | 0.91, c | 4.8   | 0.0052   | 0.032   | ND<0.001  | 0.041             | 0.0026           | ND, except;<br>TBA = 0.0050         |
| 07/16/08 | 1.5, c  | 7.0   | ND<0.005 | 0.053   | ND<0.005  | 0.14              | 0.0071           | ND                                  |
| 04/15/08 | 2.0, c  | 4.3   | 0.0065   | 0.063   | ND<0.0025 | 0.11              | 0.0091           | ND                                  |
| 12/13/07 | 1.5, c  | 6.2   | 0.011    | 0.057   | ND<0.005  | 0.16              | 0.018            | ND                                  |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D    | TPH-G    | MTBE      | Benzene   | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additive<br>s<br>by 8260* |
|----------|----------|----------|-----------|-----------|-----------|-------------------|------------------|--------------------------------------------|
| 01/06/09 | ND<0.050 | ND<0.050 | ND<0.0005 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                         |
| 10/22/08 | ND<0.050 | ND<0.050 | ND<0.0005 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                         |
| 07/17/08 | ND<0.050 | ND<0.050 | ND<0.0005 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                         |
| 04/16/08 | ND<0.050 | ND<0.050 | ND<0.0005 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                         |
| 12/13/07 | ND<0.050 | ND<0.050 | ND<0.0005 | 0.001     | ND<0.0005 | ND<0.0005         | 0.0045           | ND                                         |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| TPH-D    | TPH-G                                        | MTBE                                         | Benzene                                                     | Toluene                                                                       | Ethyl-<br>benzene                                                                               | Total<br>Xylenes                                                                                    | Other Fuel<br>Additives<br>by 8260*                                                                                 |
|----------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| ND<0.050 | ND<0.050                                     | 0.0011                                       | ND<0.0005                                                   | ND<0.0005                                                                     | ND<0.0005                                                                                       | ND<0.0005                                                                                           | ND                                                                                                                  |
| ND<0.050 | ND<0.050                                     | 0.0016                                       | ND<0.0005                                                   | ND<0.0005                                                                     | ND<0.0005                                                                                       | ND<0.0005                                                                                           | ND                                                                                                                  |
| ND<0.050 | ND<0.050                                     | 0.0015                                       | ND<0.0005                                                   | ND<0.0005                                                                     | ND<0.0005                                                                                       | ND<0.0005                                                                                           | ND                                                                                                                  |
| ND<0.050 | ND<0.050                                     | 0.0017                                       | ND<0.0005                                                   | ND<0.0005                                                                     | 0.00060                                                                                         | 0.00056                                                                                             | ND                                                                                                                  |
| ND<0.050 | ND<0.050                                     | 0.0019                                       | ND<0.0005                                                   | ND<0.0005                                                                     | 0.0015                                                                                          | 0.0018                                                                                              | ND                                                                                                                  |
|          | ND<0.050<br>ND<0.050<br>ND<0.050<br>ND<0.050 | ND<0.050         ND<0.050           ND<0.050 | ND<0.050         ND<0.050         0.0011           ND<0.050 | ND<0.050         ND<0.050         0.0011         ND<0.0005           ND<0.050 | ND<0.050         ND<0.050         0.0011         ND<0.0005         ND<0.0005           ND<0.050 | IPH-D         IPH-G         MIBE         Benzene         Ioluene         benzene           ND<0.050 | IPH-D         IPH-G         MIBE         Benzene         Ioluene         benzene         Xylenes           ND<0.050 |

0.1

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

0.1

**.** .

| Date     | TPH-D    | TPH-G    | MTBE  | Benzene   | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|----------|----------|-------|-----------|-----------|-------------------|------------------|-------------------------------------|
| 01/06/09 | ND<0.050 | ND<0.050 | 0.032 | ND<0.0005 | ND<0.0005 | ND<0.000 5        | ND<0.0005        | ND                                  |
| 10/22/08 | ND<0.050 | ND<0.050 | 0.031 | ND<0.0005 | ND<0.0005 | ND<0.000 5        | ND<0.0005        | ND, except;<br>TBA = 0.0031         |
| 07/16/08 | ND<0.050 | ND<0.050 | 0.023 | ND<0.0005 | ND<0.0005 | ND<0.000 5        | ND<0.0005        | ND                                  |
| 04/15/08 | ND<0.050 | ND<0.050 | 0.026 | ND<0.0005 | ND<0.0005 | ND<0.000 5        | ND<0.0005        | ND                                  |
| 12/14/07 | ND<0.050 | ND<0.050 | 0.021 | ND<0.0005 | ND<0.0005 | ND<0.000 5        | ND<0.0005        | ND                                  |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D    | TPH-G    | MTBE   | Benzene   | Toluene   | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|----------|----------|--------|-----------|-----------|-------------------|------------------|-------------------------------------|
| 01/07/09 | ND<0.050 | 0.110, f | 0.0082 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND, except;<br>TBA = 0.0027         |
| 10/22/08 | 0.054, c | 0.20, f  | 0.011  | ND<0.0005 | ND<0.0005 | ND<0. 0005        | ND<0.0005        | ND, except;<br>TBA = 0.0023         |
| 07/16/08 | 0.089, b | 0.44, f  | 0.0082 | ND<0.0005 | ND<0.0005 | ND<0. 0005        | ND<0.0005        | ND                                  |
| 04/15/08 | 0.076, b | 0.18, f  | 0.0091 | ND<0.0005 | ND<0.0005 | ND<0.0005         | ND<0.0005        | ND                                  |
| 12/13/07 | 0.200, c | 0.320, f | 0.011  | ND<0.0005 | ND<0.0005 | ND<0. 0005        | ND<0.0005        | ND                                  |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| TABLE 2                                  |
|------------------------------------------|
| SUMMARY OF LABORATORY ANALYTICAL RESULTS |
| Well EW1                                 |

| Date     | TPH-D     | TPH-G   | MTBE | Benzene | Toluene  | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260* |
|----------|-----------|---------|------|---------|----------|-------------------|------------------|-------------------------------------|
| 01/07/09 | 7.9, a, b | 33, a   | 16   | 10      | 1.9      | 1.7               | 3.3              | ND, except<br>TBA = 16              |
| 10/23/08 | 7.6, b    | 21      | 7.7  | 4.5     | ND<0.12  | 0.82              | 0.39             | ND, except<br>TBA = 10              |
| 07/17/08 | 6.9, b    | 16      | 7.6  | 4.1     | ND<0.10  | ND<0.10           | 0.65             | ND, except<br>TBA = 15              |
| 04/16/08 | 7.7, a, b | 17, a   | 9.3  | 4.5     | 0.26     | 0.65              | 2.2              | ND, except<br>TBA = 15              |
| 01/17/08 | 13, b     | 24      | 16   | 4.6     | 1.2      | 0.52              | 3.7              | ND, except<br>TBA = 19              |
| 10/16/07 | 12, a, b  | 14, a   | 8.3  | 2.6     | 0.31     | 0.27              | 3.0              | ND, except<br>TBA = 15              |
| 07/25/07 | 7.7, a, e | 11, a   | 14   | 3.2     | ND<0.025 | ND<0.025          | 2.6              | ND, except<br>TBA = 17              |
| 04/17/07 | 5.8, b    | 21      | 9.6  | 3.7     | 1.4      | 0.49              | 1.6              | ND<0.1, except<br>TBA = 18          |
| 01/18/07 | 0.93, b   | 0.93, d | 0.60 | 0.0034  | 0.0050   | ND< 0.0005        | 0.0041           | ND< 0.050,<br>except TBA= 6.8       |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.

+ = Analyzed by EPA Method 8260.

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

## TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1 (Continued)

| Date     | TPH-D  | TPH-G   | MTBE  | Benzene  | Toluene  | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additives<br>by 8260*                                         |
|----------|--------|---------|-------|----------|----------|-------------------|------------------|--------------------------------------------------------------------------------|
| 11/14/06 | 1.8, b | 0.87, d | 0.17  | ND<0.025 | ND<0.025 | ND<0.025          | ND<0.025         | ND<0.025<br>, except<br>TBA= 5.9,<br>Ethanol<br>ND<2.5,<br>Methanol<br>ND<25.0 |
| 06/29/06 | 0.71,b | 0.29    | 0.021 | ND<0.01  | ND<0.01  | ND<0.01           | ND<0.01          | ND<0.01,<br>Except<br>TBA = 2.0                                                |
| 02/3/06  | 1.2,b  | 0.79    | 3.1   | ND<0.05  | ND<0.05  | ND<0.05           | ND<0.05          | ND<0.05,<br>Except<br>TBA = 13                                                 |
| 11/18/05 | 1.2,a  | 0.9     | 2     | ND<0.05  | ND<0.05  | ND<0.05           | ND<0.05          | ND<0.05,<br>Except<br>TBA = 18                                                 |
| 07/28/05 | 1.8,b  | 1.2     | 17,+  | 0.033    | 0.0051   | 0.00056           | 0.0059           | ND<0.25,<br>except<br>TBA = 22                                                 |
| 04/13/05 | 2.2,b  | 0.38    | 2.7   | ND<0.05  | ND<0.05  | ND<0.05           | ND<0.05          | ND<0.05,<br>except<br>TBA = 1.6                                                |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

+ = Analyzed by EPA Method 8260.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: reporting limit raised due to high MTBE content

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| TABLE 2                                  |
|------------------------------------------|
| SUMMARY OF LABORATORY ANALYTICAL RESULTS |
| Well EW1 (Continued)                     |

| Date     | TPH-D   | TPH-G      | MTBE | Benzene | Toluene  | Ethyl-<br>benzene | Total<br>Xylenes | Other<br>Fuel<br>Additives<br>by 8260* |
|----------|---------|------------|------|---------|----------|-------------------|------------------|----------------------------------------|
| 01/31/05 | 3.4,b   | 1.9        | 38   | ND<1    | ND<1     | ND<1              | ND<1             | ND<1,<br>except<br>TBA = 32            |
| 10/15/04 | 4.1,a,b | ND<5.0,a,e | 96   | ND<1.7  | ND<1.7   | ND<1.7            | ND<1.7           | ND<1.7,<br>except<br>TBA = 97          |
| 07/13/04 | 3.3,a,b | 2.6,a      | 73   | ND<1.2  | ND<1.2   | ND<1.2            | ND<1.2           | ND<1.2,<br>except<br>TBA = 40          |
| 04/6/04  | 3.4,a,b | 2.6,a      | 72   | ND<1    | ND<1     | ND<1              | ND<1             | ND<1,<br>except<br>TBA = 34            |
| 12/18/03 | 3.0,b   | ND<5.0,e   | 160  | 0.22    | ND<50    | ND<50             | 0.073            | ND<5,<br>except<br>TBA = 64            |
| 09/18/03 | 8.2,a,b | 7.5        | 220  | 0.33    | ND<0.05  | ND<0.05           | ND<0.05          | ND<2.5,<br>except<br>TBA = 51          |
| 02/23/93 | 9.6     | 66         |      | 14      | 8.5      | 1.4               | 9.8              |                                        |
| 11/13/92 | 13      | 62         |      | 11      | 9.2      | 1.1               | 9.6              |                                        |
| 08/92    |         |            |      | EW1 I   | nstalled |                   |                  |                                        |

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline. TPH-D = Total Petroleum Hydrocarbons as Diesel.

IPH-D = I otal Petroleum Hydrocarbons as

MTBE = Methyl tert-Butyl Ether. ND = Not Detected.

-- = Not Detected

+ = Analyzed by EPA Method 8260.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: reporting limit raised due to high MTBE content

\* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D    | TPH-G     | ТРН-МО | Benzene  | Toluene     | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260,<br>including<br>MTBE** |
|----------|----------|-----------|--------|----------|-------------|-------------------|------------------|------------------------------------------------------------|
| 01/07/09 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 10/22/08 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 07/16/08 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 04/15/08 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 01/17/08 | 29, a,b  | 6.9, a, i | 8.8    | 0.48     | ND<0.01     | 0.041             | 0.023            | ND, except<br>TBA = 0.097                                  |
| 10/16/07 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 07/25/07 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 04/17/07 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 01/18/07 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 11/14/06 |          |           |        | No sampl | e recovered |                   |                  |                                                            |
| 06/29/06 | 290,b    | 24        |        |          |             |                   |                  |                                                            |
| 02/3/06  | 710a,g   | 31,a      | 210    |          |             |                   |                  |                                                            |
| 11/18/05 | 820,b    | 370       |        | 0.13     | ND<0.025    | 0.4               | 0.29             | ND<0.025<br>TBA<0.25                                       |
| 07/28/05 | 230,a,b  | 10,a      |        | 1.3      | 0.03        | 0.19              | 0.072            | ND<0.05,<br>TBA ND<0.5                                     |
| 04/13/05 | 590a,b,d | 35,a      |        | 2        | ND<0.05     | 0.46              | 0.14             | ND<0.05,<br>TBA ND<0.5                                     |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

g = Fuel oil.

\*\* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

0.0

## TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1 (Continued)

| Date     | TPH-D     | TPH-G | ТРН-МО  | Benzene   | Toluene     | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260,<br>including<br>MTBE** |
|----------|-----------|-------|---------|-----------|-------------|-------------------|------------------|------------------------------------------------------------|
| 01/31/05 |           |       |         | No sample | e recovered |                   |                  |                                                            |
| 10/15/04 |           |       |         | No sample | e recovered |                   |                  |                                                            |
| 07/14/04 | 240,a,b   | 66,a  | ND<0.05 | 1.8       | ND<0.05     | 1.8               | 0.056            | ND<0.05,<br>TBA ND<0.5                                     |
| 04/6/04  | 74,a,b    | 50,a  |         | 3.1       | ND<0.1      | 0.21              | 0.14             | ND<0.1,<br>TBA ND<1                                        |
| 02/11/04 | 450,a,b   | 15,a  | 130     | 2.2       | 0.031       | 0.16              | 0.054            | ND<0.025,<br>TBA ND<0.25                                   |
| 11/21/03 | 1,900,a,b | 38,f  | 570     | 2.0       | 0.059       | 0.19              | 0.095            | ND<0.05,<br>TBA ND<0.5                                     |
| 06/10/98 |           |       |         | OW11      | nstalled    |                   |                  |                                                            |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

g = Fuel oil.

\*\* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

| Date     | TPH-D  | TPH-G  | TPH-MO  | Benzene       | Toluene             | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260,<br>incl. MTBE** |  |  |
|----------|--------|--------|---------|---------------|---------------------|-------------------|------------------|-----------------------------------------------------|--|--|
| 01/07/09 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 10/22/08 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 07/16/08 |        |        |         | No sa         |                     |                   |                  |                                                     |  |  |
| 04/15/08 |        |        |         | No sa         | No sample recovered |                   |                  |                                                     |  |  |
| 01/17/08 |        | 0.14   |         | ND<0.000<br>5 | ND<0.000<br>5       | ND<0.000<br>5     | ND<0.000<br>5    | ND, Except<br>MTBE =<br>0.0022<br>TBA = 0.011       |  |  |
| 10/16/07 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 07/25/07 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 04/17/07 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 01/18/07 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 11/14/06 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 06/29/06 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 02/3/06  | 0.37,b | 0.14,h | ND<0.25 |               |                     |                   |                  |                                                     |  |  |
| 11/18/05 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 07/28/05 |        |        |         | No sa         | ample recovere      | ed                |                  |                                                     |  |  |
| 04/13/05 | 0.22,b | 0.065  |         | ND<br><0.0005 | ND<br><0.0005       | ND<br><0.0005     | ND<br><0.0005    | ND<0.0005,<br>except MTBE<br>= 0.0097               |  |  |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

\* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

## TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2 (Continued)

| Date     | TPH-D | TPH-G                | ТРН-МО | Benzene        | Toluene        | Ethyl-<br>benzene | Total<br>Xylenes | Other Fuel<br>Additives<br>by 8260,<br>incl. MTBE** |  |  |  |
|----------|-------|----------------------|--------|----------------|----------------|-------------------|------------------|-----------------------------------------------------|--|--|--|
| 01/31/05 |       | No sample recovered  |        |                |                |                   |                  |                                                     |  |  |  |
| 10/15/04 |       | No sample recovered  |        |                |                |                   |                  |                                                     |  |  |  |
| 07/14/04 |       | No sample recovered  |        |                |                |                   |                  |                                                     |  |  |  |
| 04/6/04  |       | 0.069,a              |        | ND<br><0.00062 | ND<br><0.00062 | ND<br><0.00062    | ND<br><0.00062   | <br>ND<0.0005,                                      |  |  |  |
| 02/11/04 |       | 0.21                 |        | ND<br><0.0005  | ND<br><0.0005  | ND<br><0.0005     | ND<br><0.0005    | except<br>MTBE =<br>0.0064<br>TBA =<br>0.0070       |  |  |  |
| 11/21/03 |       | No sample recovered. |        |                |                |                   |                  |                                                     |  |  |  |
| 06/10/98 |       |                      |        | 0              | W2 Installed   |                   |                  |                                                     |  |  |  |

#### NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

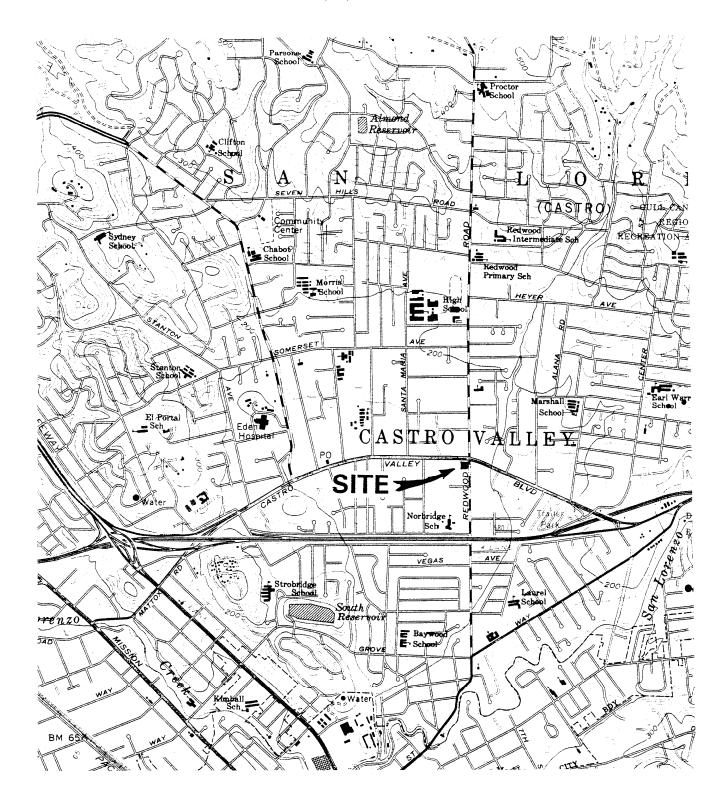
MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.


h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

\* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

FIGURES

### P&D ENVIRONMENTAL, INC. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916



Base Map From: U.S. Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980



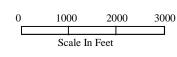
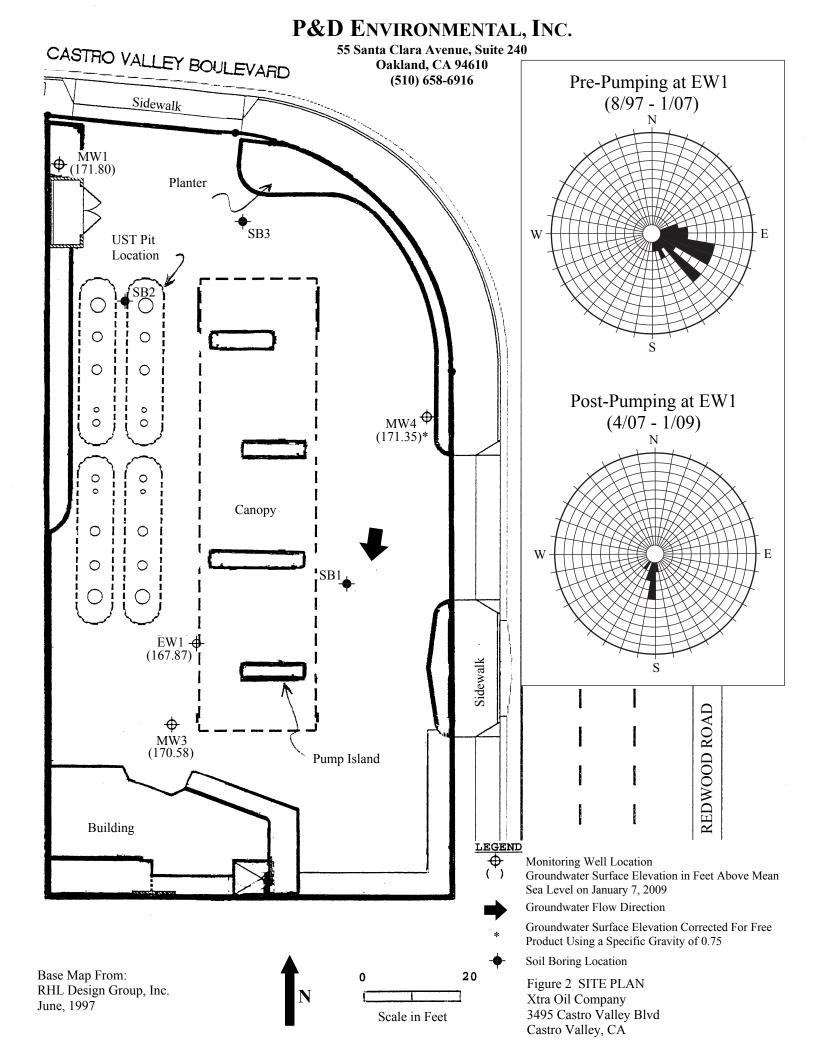
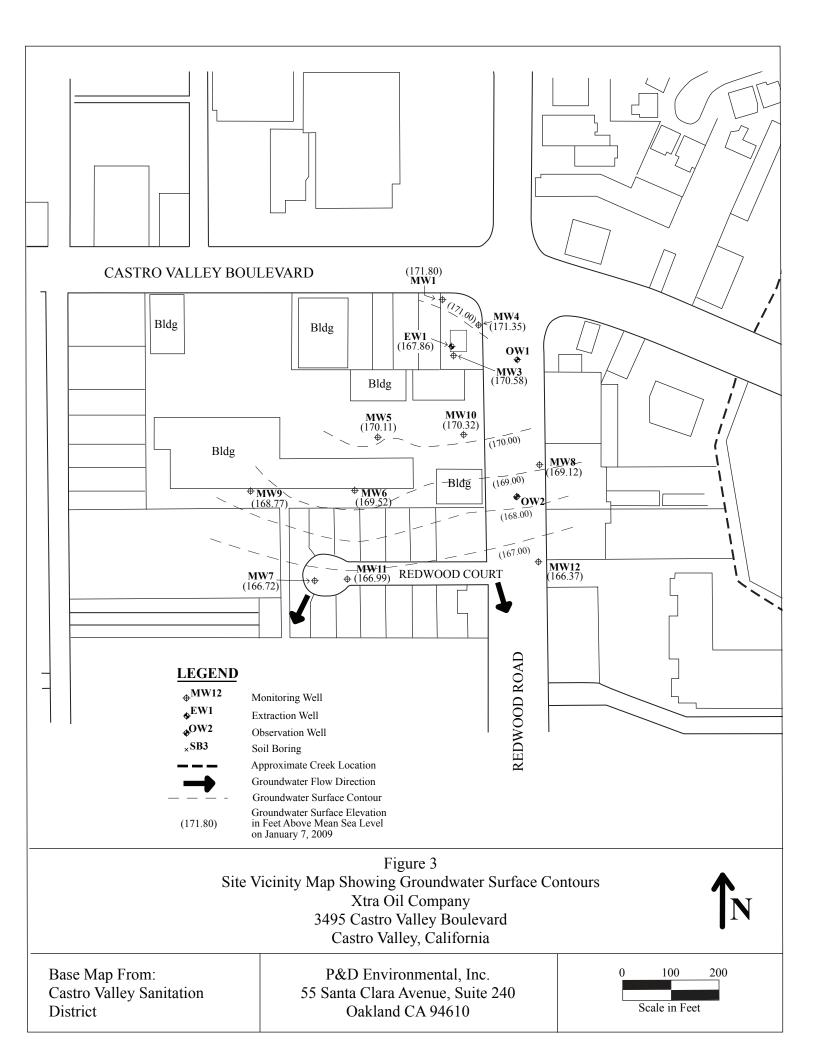





Figure 1 SITE LOCATION MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California





# WELL MONITORING AND PURGE DATA SHEETS

|             |                            |                            |                                                                                                                | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-------------|----------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|             | GROUNI                     | P&D ENVIR<br>DWATER MONITO | CONMENTAL<br>DRING/WELL PURGING                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|             | in a la                    | DATA                       | Shebt                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Site Name   | Xtra Oil /Costro           | <u>Vell</u> ey             | Well No                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Job No      | 0019                       | · · · ·                    | Date 1/6/1                                                                                                     | 109 + 17/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| TOC to Wate | er (ft.) 8.42              |                            | Sheen <u>Yes</u>                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Well Depth  | (ft.) <u>20.0</u>          |                            | Pree Produ                                                                                                     | ct Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Well Diame  | ter <u>4" (0.64</u>        | <u>6)</u>                  |                                                                                                                | lection_Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Gal./Casing | g Vol. 75                  |                            | Disposa                                                                                                        | ble barler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|             | 3101-27                    | 5                          | oc                                                                                                             | ELECTRICAL MS/CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| TIME        | GAL. PURGED                | DH                         | TEMPERATURE                                                                                                    | CONDUCTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1308        | 215                        | 6.96                       | 19.4                                                                                                           | 866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1309        | 5.0                        | 6.78                       | 20,4                                                                                                           | 864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1312        | 75                         | 6.77                       | 20,5                                                                                                           | \$858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 1314        | 10.0                       | 6.71                       | 20,9                                                                                                           | 867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1316        | 12.5                       | 6.64                       | 21.5                                                                                                           | 873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1318        | 15.0                       | 6.60                       | 22.5                                                                                                           | 880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1320        | 17.5                       | 6.58                       | 77.7                                                                                                           | 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1391        | 20. ORIC 1                 | sell dewater               | La ~ 19 callons                                                                                                | annan an a this Charles and a first an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|             | 22.5                       |                            |                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|             |                            |                            | <u></u>                                                                                                        | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|             | <u></u>                    |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|             | 1                          |                            |                                                                                                                | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| ••••••      |                            |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| <u></u>     |                            |                            |                                                                                                                | and a state of the |  |  |  |
| 4,          |                            | <u></u>                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| <u>a </u>   |                            |                            | Angelikke Miller Marco Marcola de Sala |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|             |                            |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|             |                            |                            |                                                                                                                | and the second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|             |                            | - <u></u>                  |                                                                                                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|             |                            | ·                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| NOTES: 5    | Mul-stre<br>her + pand phi | ido -                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|             |                            | amplitimes                 | > 1430                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|             |                            |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

 $\left( \begin{array}{c} \\ \end{array} \right)$ 

#### P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING , DATA SHEET

|             | Vi Dila                                             | DATA SH        |                                                                                                                | ~                                                      |
|-------------|-----------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Site Name _ | Xtra Dil/Cestro                                     | Valley         | Well No                                                                                                        | MWS                                                    |
| Job No      | 0014                                                | _ /            | Date 1/6/0                                                                                                     | 9 21/7/09                                              |
| TOC to Wate | er (ft.) 8.88                                       |                | Sheen <u>y</u> e                                                                                               | / ·                                                    |
| Well Depth  | (ft.) 18.6                                          |                | Pree Produc                                                                                                    | t Thickness                                            |
| Well Diamet | er 4" (0.64)                                        | <u>6)</u>      | Sample Coll                                                                                                    | ection Method                                          |
| Gal./Casing | 1 Vol. 6.3                                          |                | Disposed                                                                                                       | le bailer                                              |
| -           | 31-1=18,9                                           |                |                                                                                                                |                                                        |
| TIME        | GAL. PURGED                                         | pH             | TEMPERATURE                                                                                                    | ELECTRICAL W/cm                                        |
| 1452        | <u> </u>                                            | 6.53           | 18.6                                                                                                           | 1,657                                                  |
| 1457        | 4.2                                                 | 6,56           | 19.5                                                                                                           | 171,698                                                |
| 1459        | 6.3                                                 | 6.59           | 7017                                                                                                           | 1,697                                                  |
| 1501        | 8.4                                                 | 6.60           | 30.2                                                                                                           | 1,685                                                  |
| 1503        | 10,5                                                | 6.61           | 20.1                                                                                                           | 1,679                                                  |
| 1505        | 12.6                                                | 6.55           | J.).0                                                                                                          | 1,687                                                  |
| 1506        | +4.7 Wel                                            |                | @ ~ 14.0 jallon                                                                                                | s                                                      |
|             | 16.8                                                | ₩ <del>(</del> |                                                                                                                |                                                        |
|             | 48.9                                                | <del></del>    | ga an                                                                      | an a               |
|             |                                                     |                | winne an director of the second s |                                                        |
|             |                                                     |                |                                                                                                                | <b></b>                                                |
|             | 89 <sup>9</sup> 11111111111111111111111111111111111 |                |                                                                                                                |                                                        |
|             | ••••••••••••••••••••••••••••••••••••••              |                |                                                                                                                |                                                        |
|             |                                                     |                |                                                                                                                |                                                        |
|             | ••••                                                |                | <u>+</u>                                                                                                       |                                                        |
|             |                                                     |                | Anna d Ada a Malan a Tanan ang mang mang mang mang mang mang m                                                 | *******                                                |
| <del></del> |                                                     |                |                                                                                                                |                                                        |
|             | 1977/1011/1011/1011/101                             |                | ·                                                                                                              |                                                        |
|             |                                                     |                |                                                                                                                | with the day of party of party line in the standard of |
|             |                                                     | ·              |                                                                                                                | ••••••••••••••••••••••••••••••••••••••                 |
| NOTES: She  | on + It-mod                                         | phe pdor       |                                                                                                                |                                                        |
|             | len + It-mod<br>Sample                              | +1, 315        | 30hrs                                                                                                          |                                                        |
|             | <u> </u>                                            |                | <u> </u>                                                                                                       |                                                        |

Sph

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

| Site Name Xtra Oil/Castro Valley |
|----------------------------------|
| Job No. 00/                      |
| TOC to Water (ft.) 8,00          |
| Well Depth (ft.)                 |
| Well Diameter 4"                 |
| Gal./Casing Vol. N/A             |

Well NO. MWY 1/6/09 Date N/A ī4 1 Sheen

Free Product Thickness Or

Sample Collection Method\_ No Sample Collected; Sphenwartered

| TIME                                   | GAL. PURGED                   | Ha                                    | TEMPERATURE                                                                                                     | ELECTRICAL<br>CONDUCTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------|-------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                        |                               | ) Jupot                               | Tape = 8.50                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        |                               |                                       |                                                                                                                 | ang dang dang dang dan penghan penghan dan kelalah penghan |  |
| 8.25" - 0.69                           | = 10/SPL                      | 5                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        |                               | tropot -                              | 6"=0.50"                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        |                               |                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ······                                 |                               |                                       | general and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        |                               |                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| a s st                                 | 7.61                          | 7                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 8.50 - 1                               | 0.69 = 7.81'<br>0.50' = 8.00' | /                                     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                        | $u_{10} = 0.19'$              |                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1 ·                                    | Water Ledel =                 |                                       | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 8.00                                   | -0.14 = 7.86 To               | Cm Hz O                               |                                                                                                                 | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| NOTES :                                |                               | • • • • • • • • • • • • • • • • • • • |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| •••••••••••••••••••••••••••••••••••••• |                               |                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

|                | GROUNDW                   | P&D ENVIRON<br>ATER MONITOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ING/WELL PURGING                         |                            |          |
|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|----------|
| Site Name X    | ra Oil Carto              | DATA SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Well No                                  | MWS                        |          |
| Job No         | 0014                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date_1/46                                | 109 +1/7/0                 | <u>1</u> |
| TOC to Water ( |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sheen                                    | No                         | <u></u>  |
| Well Depth (ft |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Free Produ                               | ct Thickness               | <u>)</u> |
| Well Diameter_ | 2"(0,16)                  | )<br>~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1</b>                                 | lection Method_            |          |
| Gal./Casing Vo | $\frac{3.6}{3ucl} = 7.8$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | le bailer                  |          |
| TIME GA        | L. PURGED                 | DH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEMPERATURE                              | ELECTRICAL<br>CONDUCTIVITY | nus/cm   |
| 08017          | 0.8                       | 5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.0                                     | 613                        | _        |
| 03:0           | 1.7                       | <u>503 53</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1:148.4 19.0                             | 615                        | _        |
| 0813 -         | 2.6                       | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.3                                     | ET BA                      | . 612    |
| 0814 _         | 3.4                       | 6.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                 | 615                        |          |
| <u>n316</u>    | 4.3                       | 6:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                 |                            | 6 Pd     |
| 0318           | <u>5.2</u>                | 6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.1                                     | 617                        | •        |
| 0830 -         | <u>6.0</u>                | <u>6.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.2                                     | 60                         |          |
| 0322           | 6.9                       | 6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201                                      | 612                        | -        |
| 0327 _         | 7.8                       | 6Carto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.0                                     | 609                        | -        |
|                |                           | 6.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                            |          |
|                |                           | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                                        |                            |          |
|                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                            | -        |
|                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                            | •        |
| 4              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                            |          |
|                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e <del>, di tabin Penik, dani dana</del> | <u> </u>                   | •        |
|                | ······                    | and the second sec |                                          | <u></u>                    |          |
|                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                            |          |
|                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                            |          |
| NOTES :        |                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                            |          |
|                | Nochern + 1<br>Scimpletim | Vooder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                            |          |
|                | Scimpletim                | 1e=70840hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | `\                                       |                            | -        |

PURGE10.92

R.



Mala and a star

|                                                   |                                         | ከአሞአ ር                                                                                                          | RING/WELL PURGING                            |                                                    |
|---------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| Site Name                                         | Xtra Oil/Castro                         | Velley                                                                                                          | Well No.                                     | MW6                                                |
| Job No.                                           | 0014                                    | — /                                                                                                             | Date 1/6/                                    | 09                                                 |
| TOC to Wate                                       | er (ft.) 5:72                           |                                                                                                                 | Sheen Vé                                     |                                                    |
| Well Depth                                        | (ft.) 10.5                              |                                                                                                                 | Free Produc                                  | ct Thickness D                                     |
|                                                   | cer_ 7"(0.16)                           |                                                                                                                 | Sample Coll                                  | lection Method                                     |
| Gal./Casing                                       | y vol. 0,8                              | ******                                                                                                          | Disposad                                     |                                                    |
|                                                   | 3vol=2.4                                |                                                                                                                 |                                              | ELECTRICAL Justim                                  |
| TIME                                              | GAL. PURGED                             |                                                                                                                 | TEMPERATURE                                  | CONDUCTIVITY                                       |
| 1010                                              | 0.3                                     | 6.78                                                                                                            | <u> </u>                                     | 11061                                              |
| 1014                                              |                                         | 6.78                                                                                                            | 21.0                                         | 1,067                                              |
| <u>161 +</u>                                      | 0.9                                     | 6.81                                                                                                            | 21.3                                         | 1,056                                              |
| 1618                                              | 1.1                                     | 6.78                                                                                                            | 21.5                                         | 1,044                                              |
| 1620                                              | 1.4                                     | 6:75                                                                                                            | 21.7                                         | 1,062                                              |
| 1631                                              | 1.6                                     | 6.73                                                                                                            | 22.0                                         | 1,058                                              |
| 1623                                              | 1.9                                     | 6.71                                                                                                            | 23.1                                         | 1,060                                              |
| 1674                                              | <u> </u>                                | 6.71                                                                                                            | 22.0                                         | 1,055                                              |
| 1625                                              | 2.4                                     | 6.72                                                                                                            | 21.9                                         | 1,043                                              |
|                                                   |                                         |                                                                                                                 |                                              |                                                    |
|                                                   | <b></b>                                 |                                                                                                                 |                                              |                                                    |
|                                                   | •                                       | in a state in the state of the st | - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12      | . <u></u>                                          |
|                                                   |                                         |                                                                                                                 |                                              |                                                    |
| 4 <u>11-7-1-87-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-</u> |                                         |                                                                                                                 |                                              |                                                    |
|                                                   |                                         | Anne and a State State State                                                                                    | An 1994 Will Ton Tim Construction statements |                                                    |
| <del>n</del>                                      |                                         |                                                                                                                 |                                              | an <u>tana kana kana kana kana kana kana kana </u> |
|                                                   |                                         |                                                                                                                 | 100-000-000-000-000-000-000-000-000-000      |                                                    |
|                                                   |                                         |                                                                                                                 |                                              |                                                    |
|                                                   |                                         | · <u></u>                                                                                                       |                                              | •                                                  |
| NOTES: She                                        | end Mod_strong                          | phiodo.                                                                                                         |                                              |                                                    |
| ············                                      | ent Mod-strong<br>Sampletime=>160       | 10h-s                                                                                                           |                                              |                                                    |
|                                                   | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <u> </u>                                                                                                        |                                              |                                                    |

PURGE10.92

- - - --- -- -- --

|              |                                        |                                                   |                                              | (I)                                   |
|--------------|----------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------|
|              | aborne                                 | P&D ENVIE                                         |                                              |                                       |
|              |                                        | DATA :                                            | RING/WELL PURGING<br>SHEET                   | sic                                   |
| Site Name    | Ktra Oil/Carto                         | · Valley                                          | Well No. <u>7</u>                            | AWH-MW7                               |
| Job No       | 0014                                   |                                                   | Date_16/                                     | 109                                   |
| TOC to Wat   | er (ft.) 4.04                          | 3.62                                              | Sheen No                                     | )                                     |
| Well Depth   | (tt.) 14.4 1                           | <u>0.</u> 2                                       | Pree Produ                                   | ct Thickness_O_                       |
| Well Diame   | ter <u>2" (0.16)</u>                   | ¥                                                 | Sample Col                                   | lection Method                        |
| Gal./Casin   | 1 7                                    | 1.1                                               | 57                                           | sable bailer                          |
|              | 3101=5.4                               | 3.3                                               | 70                                           | ELECTRICAL M.C.                       |
| TIME         | GAL. PURGED                            | <u>p</u> H                                        | TEMPERATURE                                  | CONDUCTIVITY                          |
| 1502         | <u>0.504</u>                           | 7.22                                              | 18.8                                         | <u>977</u>                            |
| 1503         | K10.7                                  | 7.17                                              | 18,7                                         |                                       |
| 1504         | 1.7.1.1                                | 711                                               | 19.0                                         | 950                                   |
| 1506         | 221.5                                  | 7.10                                              | 19.2                                         | 947                                   |
| 1507         | 2.81.8                                 | 7.07                                              | 19.5                                         | 945                                   |
| 1508         | 3.722                                  | 7.07                                              | 19.7                                         | 948                                   |
| 1509         | 3.92.6                                 | 7.08                                              | 19.8                                         | 952                                   |
| 1511         | 452.9                                  | 7.09                                              | 19.8                                         | 954                                   |
| 1513         | 5.13.2                                 | 7/1                                               | 19,9                                         | 950                                   |
|              |                                        |                                                   | Well de Water                                |                                       |
|              |                                        |                                                   |                                              | <u> </u>                              |
|              |                                        |                                                   |                                              |                                       |
| ·····        | ************************************** |                                                   | an a     |                                       |
|              |                                        |                                                   |                                              |                                       |
| ·····        | ****                                   |                                                   |                                              |                                       |
|              |                                        |                                                   | tan dite tille Tandites tan inisianan dassar |                                       |
| <del>n</del> |                                        |                                                   |                                              |                                       |
|              |                                        | <u> </u>                                          |                                              |                                       |
|              |                                        |                                                   |                                              |                                       |
|              |                                        | ر میں میں اور |                                              | • • • • • • • • • • • • • • • • • • • |
| NOTES:       | Masherna No. 0.                        | dor                                               |                                              |                                       |
| <u></u>      | Mosheent Noe<br>Sample timez           | 165                                               | 5                                            |                                       |
|              | nriple time?                           |                                                   |                                              |                                       |

11

|                                    | GROUN                                                                 | P&D ENVIR<br>DWATER MONITO        |                                                                                  |                                                                                                                                                                                                          |
|------------------------------------|-----------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job No<br>TOC to Wat<br>Well Depth | Xtra Oil/Costr<br>0014<br>er (et.) 6.88<br>(et.) 14.4<br>ter 2" (0.16 | DWATER MONITO<br>DATA S<br>VG/ICY | RING/WBLL PURGING<br>SHEET<br>Well No<br>Date<br>Sheen<br>Free Prod<br>Sample Co | $\frac{MW8}{109 \rightarrow 1/7/09}$ No<br>uct Thickness $\underline{0}$<br>1) ection Method<br>adfe bailer<br>ELECTRICAL $\mu$ s/cm<br>$\frac{990}{995}$<br>995<br>991<br>988<br>9988<br>991<br>996<br> |
| <br>NOTES :                        |                                                                       |                                   |                                                                                  |                                                                                                                                                                                                          |
| 5                                  | light pheodor.<br>ample time => 12                                    | 3 Bhry                            |                                                                                  |                                                                                                                                                                                                          |

|             | GROUN                                 | P&D ENVIR                                                                                                       | ONMENTAL<br>RING/WBLL PURGING                                               |                                                                                                                 |
|-------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|             | Xtra Oil/Cas                          | ከአሞአ (                                                                                                          |                                                                             | 11 W 9                                                                                                          |
|             | 0014                                  | <u>no</u> verky                                                                                                 | Date 1/6                                                                    | 109                                                                                                             |
| TOC to Wat  | 1                                     |                                                                                                                 |                                                                             | 0                                                                                                               |
|             | n (ft.)_ <u>21.3</u>                  |                                                                                                                 | oneen                                                                       | uct Thickness                                                                                                   |
| well Deptr  | ster                                  | ()                                                                                                              |                                                                             |                                                                                                                 |
|             | 0 11                                  | 2                                                                                                               |                                                                             | ilection Method                                                                                                 |
| Gal./Casir  | ng vol. 4.7<br>3vol=7.                | $\overline{\lambda}$                                                                                            |                                                                             |                                                                                                                 |
| TIME        | GAL. PURGED                           | р <u>Н</u>                                                                                                      | TEMPERATURE                                                                 | ELECTRICAL MS/CM                                                                                                |
| 1527        | 0.8                                   | 7.19                                                                                                            | 19,3                                                                        | 704                                                                                                             |
| 1531        | 1.6                                   | 7.07                                                                                                            | 19.6                                                                        | 719                                                                                                             |
| 1533        | 2.4                                   | 6.97                                                                                                            | 20.0                                                                        | 902                                                                                                             |
| 1535        | 3.2                                   | 6.94                                                                                                            | 20.3                                                                        | 928                                                                                                             |
| 1537        | 4.0                                   | 6.93                                                                                                            | 20.4                                                                        | 951                                                                                                             |
| 1539        | 4.8                                   | 6.93                                                                                                            | 20.3                                                                        | 937                                                                                                             |
| 1541        | 5.6                                   | 6.93                                                                                                            | 20.3                                                                        | 929                                                                                                             |
| 1543        | 6.4                                   | 6,88                                                                                                            | 20,5                                                                        | 932                                                                                                             |
| 1545        | 7.2                                   | 6.84                                                                                                            | 20,6                                                                        | 941                                                                                                             |
|             |                                       |                                                                                                                 | <del>y can an dar be ar far in an an an</del>                               |                                                                                                                 |
| ·           |                                       |                                                                                                                 |                                                                             | <u></u>                                                                                                         |
| . <u></u>   | 4.5                                   | and the second descent in the second descent descent descent descent descent descent descent descent descent de |                                                                             |                                                                                                                 |
|             | •                                     |                                                                                                                 | California and the Martin Advanta Cardon                                    | м <del>андын алтын алтын алтын колонул алтын колонул алдыка</del> .<br>-                                        |
| <u></u>     |                                       |                                                                                                                 | agar may ni ingi ni ingi gan filo dan pangan aga naga naga naga naga naga n |                                                                                                                 |
| ·····       |                                       |                                                                                                                 | ander Alex Territor Constant and a second second second                     | a gayan yaya da dagan da karafan d |
| <del></del> |                                       | ·····                                                                                                           | <mark>dan dilik dilaka Banadilan Banadalan dalam dan dan ser</mark>         | <u></u>                                                                                                         |
|             |                                       |                                                                                                                 | ·····                                                                       |                                                                                                                 |
|             | ******                                |                                                                                                                 | ······································                                      |                                                                                                                 |
|             |                                       |                                                                                                                 |                                                                             |                                                                                                                 |
|             | · · · · · · · · · · · · · · · · · · · | ·                                                                                                               |                                                                             | <b></b>                                                                                                         |
| NOTES :     | Nosheen+1<br>Sampletin                | Voodar                                                                                                          |                                                                             |                                                                                                                 |
|             | Sampleting                            | ->1600                                                                                                          |                                                                             | 99                                                                                                              |
| PURGELO 93  |                                       | •                                                                                                               |                                                                             |                                                                                                                 |

## P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET o's to

|                                        | Mr. O'LLA           | DATA                                                      |             |                                                                                                                  |
|----------------------------------------|---------------------|-----------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|
| Site Name                              | Xtra Oil/Ces        | tro Velley                                                | Well No.    | MWID                                                                                                             |
| Jab No                                 |                     | /                                                         | Date_//     | 109+1/7/09                                                                                                       |
| TOC to Wat                             | er (ft.) 5.71       |                                                           | Sheen       | Ú.o                                                                                                              |
|                                        | 1 (ft.) <u>21.6</u> |                                                           | Free Prod   | uct Thickness O                                                                                                  |
| Well Diame                             | ster/               |                                                           | Sample Co   | llection_Method                                                                                                  |
| Gal./Casir                             | ng Vol. 7.6         |                                                           | Pispose     | de bailer                                                                                                        |
|                                        | 301-7:              |                                                           | oC          | ELECTRICAL MS/cm                                                                                                 |
| TIME                                   | GAL. PURGED         | <u>₽</u> Ħ<br>∕ / ⊔                                       | TEMPERATURE | ~                                                                                                                |
| 0854                                   |                     | 6.67                                                      | 18.7        | 209                                                                                                              |
| 0856                                   | <u> </u>            | 6,53                                                      |             |                                                                                                                  |
| 0858                                   | 2.6                 | 6.2                                                       | 20.7        | 430                                                                                                              |
| 0900                                   | 3.4                 | 6.58                                                      | 20.8        | 561                                                                                                              |
| 0907                                   | 4.3                 | 6.41                                                      | <u> </u>    | 676                                                                                                              |
| 0904                                   | _5.2                | 6.44                                                      | 20.9        | 699                                                                                                              |
| 0906                                   | 6.0                 | 6.47                                                      | 20.8        | 727                                                                                                              |
| 0908                                   | 6.9                 | 6.50                                                      | <u> </u>    | 739                                                                                                              |
| 0910                                   | 7.8                 | 6.57                                                      | 31.2        | 767                                                                                                              |
|                                        |                     |                                                           |             |                                                                                                                  |
|                                        |                     |                                                           |             | anton gangan dia dia dia mpikampikana                                                                            |
| ·····                                  | ••••••••            |                                                           |             | - and a superstant of the superstant of  |
|                                        |                     |                                                           |             |                                                                                                                  |
| •••••••••••••••••••••••••••••••••••••• | • • • • •           |                                                           |             | - Announ Balling and Announcements and a second                                                                  |
|                                        |                     | ·····                                                     | 4,          |                                                                                                                  |
| <b></b>                                |                     |                                                           | ·····       | an a                                                                         |
|                                        |                     |                                                           | ·····       |                                                                                                                  |
|                                        |                     |                                                           |             | and the second |
|                                        |                     | مراجع میں ایک میں ایک |             | 1. The design of the second  |
| NOTES:                                 | Nosheentho          | nder                                                      |             |                                                                                                                  |
|                                        | Sampletin = 70      | 920hai                                                    | <u></u>     |                                                                                                                  |
|                                        |                     |                                                           |             | an a                                                                         |

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET site Name Xtra OIL/Castro Valley MWIL AW Well No 0014 0 Job No. Date TOC to Water (ft.) ,04 Sheen Ð <del>o.s</del> Pree Product Thickness Well Depth (ft.) 10.16 ¢ Well Diameter Sample Collection Method\_ isposalle bailer 1.7 Gal./Casing Vol. 3 vol =7 5. BLECTRICAL W/cm CONDUCTIVITY TEMPERATURE TIME GAL. PURGED рH -65 0.4 434 9 9.4 45 0.7 80 12 820 24 4 825 1.5 9,6 123 440 . 8 831 9.7 · 21 1447 819 .D.C 16 816 20,5 7,09 1446 እ 6 818 0 20.6 447 マル 20.5 814 1449 っわ 、フフ 2 452 20.4 ili C de woitered @ -4.64allons se l  $\sim$ NOTES: No Shent No Ddor 2time = 1705 340

*thikm* 

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING /A DATA SHEET

|                                        | ter $(\mathbf{ft.}) = \frac{\mathbf{f} \cdot \mathbf{b}}{\mathbf{b}}$                                       |                                                                                                                 | Sheen/                                                                                                                | ]0                                     |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                        | $\frac{1}{2} \left( \frac{1}{2}, \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2}, \frac{1}{2} \right)$ | 5                                                                                                               |                                                                                                                       | uct Thickness                          |
| Well Diama                             |                                                                                                             |                                                                                                                 | ÷.                                                                                                                    | ilection Meth                          |
| Gal./Casin                             | 3vol=7.                                                                                                     | $\overline{\lambda}$                                                                                            | _ <u></u>                                                                                                             |                                        |
| TIME                                   | GAL. PURGED                                                                                                 | <u>рн</u>                                                                                                       | TEMPERATURE C                                                                                                         | CONDUCTIVI                             |
| 0943                                   | 6.2                                                                                                         | 6.96                                                                                                            | 18.4                                                                                                                  | \$ 810                                 |
| 0945                                   | 0.5                                                                                                         | 6.59                                                                                                            | 18.6                                                                                                                  | <u> </u>                               |
| 0947                                   | 0.8                                                                                                         | 6.84                                                                                                            | 19.0                                                                                                                  | 795                                    |
| 0948                                   | 1.0                                                                                                         | 6.80                                                                                                            | 19.1                                                                                                                  | 801                                    |
| 0949                                   | 1.3                                                                                                         | 6.73                                                                                                            |                                                                                                                       | 807                                    |
| 0950                                   | 1.6                                                                                                         | 6.71                                                                                                            | 19.3                                                                                                                  | 803                                    |
| 0951                                   | 1.8                                                                                                         | 6.70                                                                                                            | 19.4                                                                                                                  | 801                                    |
| 0157                                   | 2.1                                                                                                         | 6.71                                                                                                            | 19.1                                                                                                                  | 803                                    |
| 0953                                   | 2.4                                                                                                         | 6.69                                                                                                            | 18.9                                                                                                                  | 501                                    |
|                                        |                                                                                                             |                                                                                                                 | an a                                                                              |                                        |
|                                        | en e                                                                    |                                                                                                                 |                                                                                                                       |                                        |
| <u>,</u>                               |                                                                                                             |                                                                                                                 |                                                                                                                       |                                        |
| <u></u>                                | •                                                                                                           | ipantanan kana diska dika dika dika                                                                             | <del>of The Charles and The The Charles Conten</del>                                                                  |                                        |
|                                        | ····                                                                                                        |                                                                                                                 |                                                                                                                       |                                        |
| ······································ |                                                                                                             |                                                                                                                 | ale alle a state the state in the second state and a                                                                  |                                        |
|                                        | <u>, , , , , , , , , , , , , , , , , , , </u>                                                               | 4999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | <del>an bil din Tanin a an</del>                                                                                      | ,,,,,,,,,                              |
|                                        |                                                                                                             |                                                                                                                 |                                                                                                                       | ************************************** |
| <u></u>                                |                                                                                                             | <u></u>                                                                                                         | 9 <u>987 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u> |                                        |
|                                        |                                                                                                             |                                                                                                                 |                                                                                                                       |                                        |
|                                        | o sheen u neo do<br>Semple ti                                                                               | · <u></u>                                                                                                       |                                                                                                                       | <b></b>                                |

| Site Name <u>Ktru Dill/Castru Vickey</u><br>Job No. <u>DOIL</u><br>Job No. <u>DOIL</u><br>The <u>International States</u><br>Well Depth (fc.) <u>13.2</u><br>Well Depth (fc.) <u>13.2</u><br>Well Diameter <u>18"("0.58")</u><br>Gai./Casing Vol. <u>4.7</u><br>Job 256.06 bailer<br>Job 256.06 bailer<br><u>Job 256.06 bailer</u><br><u>Job 256.06 bailer</u><br><u>Job 256.06 bailer</u><br><u>State PURGED</u><br>DH <u>TEMPERATURE</u><br><u>CONDUCTIVIT</u><br><u>My alweys on when I have observed Edul, where there I<br/><u>Job 75</u><br/><u>Consistent</u> month to month, physical parameters<br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 79</u><br/><u>Job 70</u><br/><u>Job 70</u></u> | Groundwa                  | P&D ENVIRONMENTA<br>ATER MONITORING/WE<br>DATA SHEET |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JOD NO. <u>0014</u><br>JOC TO WATER (ft.) <u>11.41</u><br>TOC TO WATER (ft.) <u>13.2</u><br>Well Depth (ft.) <u>13.2</u><br>Well Diameter <u>8</u> ( $^{\prime}$ (2.584)<br>Gal. /Casing Vol. <u>4.7</u><br><u>3</u> Vd = 14.1<br>TIME <u>GAL. PURGER</u> <u>DH</u> <u>TEMPERATURE</u> <u>CONDUCTIVITY</u> <u>MyC</u> .<br>TIME <u>GAL. PURGER</u> <u>DH</u> <u>TEMPERATURE</u> <u>CONDUCTIVITY</u> <u>MyC</u> .<br><u>15</u> <u>Pump running</u> Contau-3-sly unless <u>Well</u> <u>deveters; then</u><br><u>71</u> <u>Straforanitrial</u> <del>othen contain</del> <u>pumping</u> .<br><u>71</u> <u>Straforanitrial</u> <del>othen contain</del> <u>pumping</u> .<br><u>71</u> <u>Straforanitrial</u> <u>othen contain</u> <u>pumping</u> .<br><u>72</u> <u>Consister</u> month to month, <del>p</del> /plysicl <u>parameters</u><br><u>73</u> <u>Cire puterp</u> <u>do not change</u> <u>m</u> <u>during</u><br><u>74</u> <u>additional</u> <u>purging</u> <u>Jup26</u><br><u>1335</u> <u>652</u> <u>1615</u> <u>Jp26</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | site Name Ktry Dil/Castro |                                                      | Well No.                                      | EWI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TOC to Water (tt.)       11.41       Sheen $yes$ Well Depth (tt.)       13.2       Pree Product Thickness         Well Diameter $13.2$ Pree Product Thickness         Gal./Casing Vol.       4.7       Dispose Leader         JUd = 14.1       Dispose Leader       Sample Collection Method         Gal./Casing Vol.       4.7       Dispose Leader         JUd = 14.1       Dispose Leader       Sample Collection Method         TIME       Gall. purper unnin (1) Contained Swell develops; then         The product month of Contained other contained purpers.       Purpe cluxys on when I have observed Eld purpers.         Image: Consistent month to month, physical parameters       Consistent month of purping.         Image: Consistent month of purping.       Galditional purging of well         Image: Consistent month of purging of well       Sample collection method.         Image: Consistent month of purging of well       Sample collection month of purging of well         Image: Consistent month of purging of well       Sample collection purging of well         Image: Construct month of the contained purging of well       Sample collection purging of well         Image: Construct month of the contained purging of well       Sample collection purging of well         Image: Construct month of the contained purging of well       Sample collection purging of w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JOD NO. 0014              | - /                                                  | Date 1/6/                                     | 09 21/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Well Diameter       #8"(2.584)       Sample Collection Method         Gal./Casing Vol.       4.7       Dise 35.6 ble bailer         JVd = 14.1       Dise 35.6 ble bailer         IME       GAL. PURGED       DH         TEMPERATURE       Control         Style for an intervel       Other Style for an intervel         Proprint       Style for an intervel         Office       Style for an intervel         Style for an intervel       Other Structure         Prop always on when I have observed EWI, worker level         Style for an intervel       Other Structure         Style for an intervel       Style for an intervel         Style for an intervel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOC to Water (ft.) 11.41  | -                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Well Diameter       #8"(2.584)       Sample Collection Method         Gal./Casing Vol.       4.7       Dise 35.6 ble bailer         JVd = 14.1       Dise 35.6 ble bailer         IME       GAL. PURGED       DH         TEMPERATURE       Control         Style for an intervel       Other Style for an intervel         Proprint       Style for an intervel         Office       Style for an intervel         Style for an intervel       Other Structure         Prop always on when I have observed EWI, worker level         Style for an intervel       Other Structure         Style for an intervel       Style for an intervel         Style for an intervel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well Depth (ft.) 13.2     | _ 、                                                  | Pree Produc                                   | Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IME       GALL PURGED       DH       TEMPERATURE       CORDUCTIVITY ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Well Diameter 78"(2.58    | (4)                                                  | Sample Coll                                   | ection Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IME       GALL PURGED       DH       TEMPERATURE       CORDUCTIVITY ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gal./Casing Vol. 4.7      | -                                                    | Dispose                                       | ble bailer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.5 Pump running continuously unless well deveters; then<br>Stepher an interval of then continues pumping.<br>Pump always on when I have observed EWI, writer level<br>consistent month to month, physical parameters<br>(ile - phyterp) do not change para during<br>9:49 additional purging of well<br>109<br>109<br>109<br>109<br>109<br>109<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                         |                                                      | °C                                            | ELECTRICAL INSUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Image: Style for an interval other continues prompting.       Image: Style for an interval other continues prompting.       Image: Style for an interval other is an interval other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                      | Second stand                                  | CONDUCTIVITY / CYC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Image: Pump cliverys on when I have observed Ewl, writer level       Image: Consistent month to month, #physical parameters       Image: Consistent month       Image: Construct month       Image: Construct month       Image: Construct month       Image: Construct month       Image: Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jumpr                     | [ - a sisterial title                                | Sty unless wer                                | A Diac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Image: Consistent month to month, * physical parameters       Image: Consistent month to month, * physical parameters       Image: Consistent month       Image: Consistent month <t< td=""><td></td><td>alweys on when</td><td>Thank ables</td><td>1 Flut waterland</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | alweys on when                                       | Thank ables                                   | 1 Flut waterland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wing                      | sixtent menth to                                     | month + Phy                                   | sich Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                  | additional                                           | Phrains of                                    | well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.9                      |                                                      | <del></del> )                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1005 125                  |                                                      |                                               | <del>an kan ding directory for the day day directory a</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | relit                     | <u></u>                                              | <u>ann allan allan aine a Ruin Bàire aine</u> | - Tony Tille - Claim Talan ( Trind Harm Harm Hale and and angle of <u>the</u> ages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1335 -                    | 6.52 10                                              |                                               | 1.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NOTES: Shein + It-nol. phe odor punptinning @ munitoring 1/6/09<br>Sample time = 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTES: Shein + It-nol- phe odor punptinning @ montoring 1/6/09<br>Sample time = 1340 & Gangling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                      |                                               | - Andrew Market and a state of the state of |
| NOTES: Shein + It-mod-phe odor pumpsinning @ montoring 1/6/09<br>Sample time = 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                      |                                               | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTES: Sheint It-nod-pheodor punptinning @ montoring 1/6/09<br>Sample time => 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTES: Sheint It-nod. Pheodor punptinning @ non-toring 1/6/09<br>Sample time => 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTES: Sheinz It-nod. Pheodor punptinning @ montoring 1/6/09<br>Sample time = 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTES: Sheins It-nod. Pheodor pumpinning @ montoring 1/6/09<br>Sample time = 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTES: Sheins It-nod. Phe odor punptinning @ montoring 1/6/09<br>Sample time = 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                      |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOTES: Sheins It-mod. Pheodor punptinning @ nontoing 1/6/09<br>Sample time = 1340 & campling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | • <del></del>                                        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample time = 1340 & sampling 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheens It-mod.            | pheodor pu                                           | ntinning @                                    | montaring 1/6/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample tim                | 2=1340                                               | à <u>canplini</u>                             | 1/7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

q

PURGE10.92

|                                                 | GROUNDW                                                                                                           | P&D ENVIRC<br>ATER MONITOR          | NMENTAL<br>ING/WBLL PURGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |          |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|
| Site Nama                                       | Xtra Gil/Castro                                                                                                   | וס גדגם                             | HEBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11                                               |          |
| Job No                                          | DAIN                                                                                                              |                                     | Well No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |          |
|                                                 |                                                                                                                   | -                                   | Date 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14/01                                              |          |
|                                                 | r (ft.) <u>7.1</u>                                                                                                |                                     | Sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                 |          |
| Well Depth                                      | (ft.) <u>7.1</u>                                                                                                  |                                     | Pree Produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Thickness 🤇                                      | <u>8</u> |
| Well Diamet                                     |                                                                                                                   | <del></del>                         | Sample Coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lection Method                                     |          |
| Gal./Casing                                     | Vol. N/A                                                                                                          |                                     | No Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lection Method<br><u>Collected</u> H<br>BLECTRICAL | icent-   |
| TIME                                            | GAL. PURGED                                                                                                       | на                                  | TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLECTRICAL<br>CONDUCTIVITY                         | Water    |
| <del></del>                                     |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 |                                                                                                                   |                                     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |          |
|                                                 | <u> </u>                                                                                                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 | <u> </u>                                                                                                          | ·                                   | and the second se |                                                    |          |
|                                                 | <u> </u>                                                                                                          | <del>م من بين بين بر السرا</del> قي |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
| ••••••••                                        |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 | - And an angelistic school and an an    | - Sic                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                            |          |
|                                                 |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 |                                                                                                                   | ``                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                            |          |
|                                                 | and an an and a second |                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |          |
| ₩,₩₩₩₩₩₩ <b>₩,₩₩₩₩₩₩₩₩₩₩₩₩₩₩</b> ₩              |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
| garninan tamahan yaya ya ya ya ya ya            |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ··                                                 |          |
|                                                 |                                                                                                                   | ••••••••                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |          |
|                                                 |                                                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                           |          |
| <del>•, *********************************</del> |                                                                                                                   | ·                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 |                                                                                                                   | <u></u>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
| NOTES:                                          |                                                                                                                   | · · · · · ·                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |
|                                                 | Vo Sample Cille                                                                                                   | ted j Insi                          | Aficient water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |          |
|                                                 | •                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |          |

PURGE10.92

| GROUND                                                                                                                                                       | WATER MONIT                                   | RONMENTAL<br>ORING/WELL PURGING          | 3                                                                                                                                                                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Site Name Xtra Oil/Castro<br>Job No. OO14<br>TOC to Water (ft.) 7-3<br>Well Depth (ft.) 7-3<br>Well Diameter 1''<br>Gal./Casing Vol. N/A<br>TIME GAL. PURGED | DATA<br><u>Va</u> lley<br>                    | Date<br>Sheen<br>Pree Prod<br>Sample Co  | <u>OW2</u><br><u><u>/7/09</u><br/><u>N/A</u><br/>duct Thickness<u></u><br/>pliection Method<u></u><br/><u>plie Celleifed jI A</u><br/><u>ELECTRICAL</u><br/><u>CONDUCTIVITY</u></u> |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              | 1 Sic                                         |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               | an a |                                                                                                                                                                                     |   |
|                                                                                                                                                              | `                                             | \                                        |                                                                                                                                                                                     |   |
|                                                                                                                                                              | <b></b>                                       | <u> </u>                                 |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              | agent das sets and the first set              |                                          | ······································                                                                                                                                              |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              |                                               |                                          |                                                                                                                                                                                     |   |
| ى يې يې د                                                                                                                      |                                               |                                          |                                                                                                                                                                                     |   |
|                                                                                                                                                              | <u>خنف بوه برکی ترسیمی</u>                    |                                          | <u> </u>                                                                                                                                                                            |   |
|                                                                                                                                                              | · <u>· · · · · · · · · · · · · · · · · · </u> |                                          |                                                                                                                                                                                     |   |
| NOTES: No sample collecti                                                                                                                                    | ed insuff                                     | ficient water.                           | <u> </u>                                                                                                                                                                            |   |
| · [                                                                                                                                                          |                                               |                                          |                                                                                                                                                                                     | - |

כם הותהקוות

# LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

|                         | <b>l Analytical, Inc.</b><br><sup>Ouality Counts"</sup> | Web: www.n      | illow Pass Road, Pittsburg,<br>accampbell.com E-mail: n<br>none: 877-252-9262 Fax: | nain@mccampbell.com |
|-------------------------|---------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|---------------------|
| P & D Environmental     | Client Project ID: #0014;                               | Xtra Oil/Castro | Date Sampled:                                                                      | 01/06/09-01/07/09   |
| 55 Santa Clara, Ste.240 | Valley                                                  |                 | Date Received:                                                                     | 01/08/09            |
| Oakland, CA 94610       | Client Contact: Steve Car                               | mack            | Date Reported:                                                                     | 01/14/09            |
| Uanianu, CA 74010       | Client P.O.:                                            |                 | Date Completed:                                                                    | 01/13/09            |

### WorkOrder: 0901122

January 14, 2009

Dear Steve:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #0014; Xtra Oil/Castro Valley,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

|   | ta Clara Ave, Suite 240<br>akland, CA 94610<br>(510) 658-6916            |           |        |            | (     | CHAIN O         | F CUS          | STOE                    | )Y             | Rŧ      | ECC               | R  | D   |              | PAG                                                                                                            | e _    | OF _ |
|---|--------------------------------------------------------------------------|-----------|--------|------------|-------|-----------------|----------------|-------------------------|----------------|---------|-------------------|----|-----|--------------|----------------------------------------------------------------------------------------------------------------|--------|------|
|   | PROJECT NUMBER:                                                          |           | P      | ROJECT     | NAME: |                 |                |                         |                |         | $\Box$            | 1  | 77  | 77           | /                                                                                                              | 1      |      |
|   | 0014                                                                     |           |        | X-         | ton ( | Valley          |                |                         |                |         |                   | 13 | //  | 11           |                                                                                                                | /      |      |
|   |                                                                          | 4         |        | N          | 14 0  | /               |                |                         |                |         | NA                | N  | 1   | 11           |                                                                                                                |        |      |
|   | 50                                                                       |           |        | 1          | asto  | Valley          |                |                         |                |         | 13                | 2  | 11  | 1            |                                                                                                                |        |      |
|   |                                                                          |           |        | C          | _60   | /               |                |                         | Į į            | 13      | 3/A               | 11 | 11  | 1            | /                                                                                                              |        |      |
|   | SAMPLED BY: (PR                                                          | NTED AND  | SIGNAT | Her T      |       |                 |                | 4.5                     | SIS            | N       | 34                | 1  | /   | 1 mil        | /                                                                                                              |        |      |
|   | Steve Ca                                                                 | rmick     | SIGNAT | L          | 4P    | K               |                | UNER C                  | ANAL YAISIFE   | X       | 14                | 1  |     | PRESERVATIVE | /                                                                                                              | REMA   | RKS  |
|   | SAMPLE NUMBER                                                            | DATE      | TIME   | TYPE       | 100   | SAMPLE LOCA     | אסוד           | NUMBER OF<br>CONTAINERS | Ta a           | 13      | 1                 | // | /   | BRE          |                                                                                                                |        |      |
| + | MWL                                                                      | 1/7/09    | 1430   | HO         |       | ******          |                | 7                       | X              | 1       | ++                | +  | lic | FIA          | Incom                                                                                                          | Turnar |      |
| + | MW3                                                                      | 11        | 1530   | 1          |       |                 |                | 7                       | X              | 2       | ++                | +  | 1 T | - 10         | 1                                                                                                              | Iwaa   | and  |
| + | MW5                                                                      | 11        | 0840   |            |       |                 |                | 7                       | X              | ×       | 11                | +  | 11  | -            |                                                                                                                |        |      |
| + | MW6                                                                      | 1/6/09    | 1640   |            |       |                 |                | 7                       | X              | X       | $\mathbf{H}$      | T  |     |              |                                                                                                                |        |      |
| + | MW7                                                                      | ii        | 1655   |            |       |                 |                | 6                       | X              | X       | 11                | T  | T   | 1            | 1                                                                                                              |        |      |
| + | MW8                                                                      | 1/7/09    | 1230   |            |       |                 |                | 7                       | X              | X       | 11                | 1  | 11  |              | 1                                                                                                              |        | -    |
| + | MW9                                                                      | 16/09     | 1600   |            |       |                 |                | 7                       | X              | X       |                   | T  | 11  | 1            | 1                                                                                                              |        | -    |
| f | MW 10                                                                    | 1/7/09    | 0920   |            |       |                 |                | 7                       | X              | X       | TT                | T  | 11  |              | 1                                                                                                              |        | 1    |
| H | MW II                                                                    | 16/09     | 1705   |            |       |                 |                | 6                       | X              | X       | TT                | T  | T   |              | T                                                                                                              |        | 1    |
| Ч | WWIG                                                                     | 1/7/09    | 1000   |            |       |                 |                | 7                       | X              | X       |                   |    |     |              |                                                                                                                |        |      |
| 4 | EWL                                                                      | 11        | 1340   | V          |       |                 |                | 7                       | X              | X       |                   |    |     | -            | V                                                                                                              | Y      | V    |
| 1 |                                                                          |           | -      |            |       | 106 1.0         |                |                         |                |         |                   |    |     |              |                                                                                                                |        |      |
| ŀ |                                                                          |           |        |            |       | CONDITION       | APPROPRIATE    |                         |                |         |                   |    |     |              |                                                                                                                |        |      |
|   |                                                                          |           |        |            |       | ORINATED IN LAB | CONTAINE       |                         |                |         | T                 |    |     |              |                                                                                                                |        |      |
| 1 |                                                                          |           |        |            |       | VOAS            | & G METALS OTH |                         |                |         | TT                | T  | T   |              |                                                                                                                |        |      |
| 1 |                                                                          | 1         |        |            | FRESE |                 |                |                         |                |         |                   |    |     |              |                                                                                                                | _      |      |
| l | RELINDUISHED BY:                                                         | SCNATURE  |        | DATE       | TIME  | RECEIVED BY:    | (SIGNATURE)    | 2                       | 1 0            | 145 347 | SAMPLES<br>NEIT)  | 11 | 1   | ABORA        | TORY:                                                                                                          |        | LA   |
| ł | MAL                                                                      |           |        | 18/07      | 192   | 1.5             |                |                         | TATOTAL<br>(1) | 140. OF | CONTURNE<br>MEHT) | ×7 | 5   | Mel          | ampb                                                                                                           | ellAn  | lyti |
| t | RELINQUISHED BY:                                                         | SIGNATURE | 2      | DATE       | TIME  | RECEIVED BY:    |                |                         |                |         | 0                 |    |     | ABORA        | TORY                                                                                                           | PHONE  | NUMB |
| F | RELINQUISHED BY: (                                                       | SIGNATURE | -1     | <i>707</i> | 500   | Mey             | pale           |                         | A              |         | K/d               |    |     |              | the second s | 7-97   | 62   |
| 1 | in through bit. (                                                        |           | 1/     | DATE       | TIME  | RECEIVED FOR    | LABORATORY     | 81:                     |                | S       |                   |    |     |              | EST SH                                                                                                         |        |      |
| F | Results and billing t<br>P&D Environmental,<br>lob <b>O</b> pdenviro.com |           |        |            | 1     |                 |                | fil both                | 1              |         |                   |    |     |              |                                                                                                                |        |      |

1534 Willow Pass Rd

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

|                                                                            | g, CA 94565-1701<br>52-9262         |                                    |                                               |                 |      | Work  | Order     | : 09011                                       | 22               | (        | Client | Code: I | PDEO   |                  |         |                  |      |
|----------------------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------------|-----------------|------|-------|-----------|-----------------------------------------------|------------------|----------|--------|---------|--------|------------------|---------|------------------|------|
|                                                                            |                                     |                                    | WriteOr                                       | n 🗌 EDF         |      | Excel |           | Fax                                           | F                | 🖌 Email  |        | Har     | dCopy  | 🗌 Thii           | rdParty | □ J-             | flag |
| Report to:                                                                 |                                     |                                    |                                               |                 |      |       | Bill to:  |                                               |                  |          |        |         | Req    | uested           | TAT:    | 5                | days |
| Steve Carma<br>P & D Enviro<br>55 Santa Cla<br>Oakland, CA<br>(510) 658-69 | onmental<br>ara, Ste.240<br>A 94610 | Email:<br>cc:<br>PO:<br>ProjectNo: | lab@pdenviro<br>xtraoil@sbcg<br>#0014; Xtra C |                 |      |       | Xtı<br>23 | counts F<br>a Oil Cc<br>07 Pacif<br>Ikland, C | mpany<br>ic Avei | /<br>nue |        |         |        | e Rece<br>e Prin |         | 01/08/<br>01/08/ |      |
|                                                                            |                                     |                                    |                                               |                 |      |       |           |                                               | Req              | uested   | Tests  | (See le | gend b | elow)            |         |                  |      |
| Lab ID                                                                     | Client ID                           |                                    | Matrix                                        | Collection Date | Hold | 1     | 2         | 3                                             | 4                | 5        | 6      | 7       | 8      | 9                | 10      | 11               | 12   |
| 0901122-001                                                                | MW1                                 |                                    | Water                                         | 1/7/2009 14:30  |      | А     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-002                                                                | MW3                                 |                                    | Water                                         | 1/7/2009 15:30  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-003                                                                | MW5                                 |                                    | Water                                         | 1/7/2009 8:40   |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-004                                                                | MW6                                 |                                    | Water                                         | 1/6/2009 16:40  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-005                                                                | MW7                                 |                                    | Water                                         | 1/6/2009 16:55  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-006                                                                | MW8                                 |                                    | Water                                         | 1/7/2009 12:30  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-007                                                                | MW9                                 |                                    | Water                                         | 1/6/2009 16:00  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-008                                                                | MW10                                |                                    | Water                                         | 1/7/2009 9:20   |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-009                                                                | MW11                                |                                    | Water                                         | 1/6/2009 17:05  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-010                                                                | MW12                                |                                    | Water                                         | 1/7/2009 10:00  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |
| 0901122-011                                                                | EW1                                 |                                    | Water                                         | 1/7/2009 13:40  |      | Α     | В         |                                               |                  |          |        |         |        |                  |         |                  |      |

### Test Legend:

| 1  | G-MBTEX_W | 2  | MBTEXOXY-8260B_W |
|----|-----------|----|------------------|
| 6  |           | 7  |                  |
| 11 |           | 12 |                  |

| 3 |  |  |
|---|--|--|
| 8 |  |  |

| 4 |  |
|---|--|
| 9 |  |

| 5  |  |  |  |  |
|----|--|--|--|--|
| 10 |  |  |  |  |

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

### Prepared by: Melissa Valles

"When Ouality Counts"

# Sample Receipt Checklist

| Client Name:      | P & D Environme         | ntal          |                 |      |              | [        | Date a       | and T         | ime Received:    | 1/8/09 4:10 | 6:50 PM        |
|-------------------|-------------------------|---------------|-----------------|------|--------------|----------|--------------|---------------|------------------|-------------|----------------|
| Project Name:     | #0014; Xtra Oil/C       | astro Valle   | ey              |      |              | (        | Check        | klist c       | completed and re | eviewed by: | Melissa Valles |
| WorkOrder N°:     | 0901122                 | Matrix Wat    | ter             |      |              | (        | Carrie       | er:           | Rob Pringle (M   | Al Courier) |                |
|                   |                         |               | <u>Chain of</u> | Cu   | stody (C     | OC) Inf  | orma         | ation         | <u>1</u>         |             |                |
| Chain of custody  | present?                |               | Y               | es   | ✓            | No       |              |               |                  |             |                |
| Chain of custody  | signed when relinqui    | shed and rec  | eived? Y        | es   | ✓            | No       |              |               |                  |             |                |
| Chain of custody  | agrees with sample I    | abels?        | Y               | es   | ✓            | No       |              |               |                  |             |                |
| Sample IDs noted  | by Client on COC?       |               | Y               | es   |              | No       |              |               |                  |             |                |
| Date and Time of  | collection noted by Cli | ient on COC?  | Y               | es   |              | No       |              |               |                  |             |                |
| Sampler's name r  | noted on COC?           |               | Y               | es   |              | No       |              |               |                  |             |                |
|                   |                         |               | <u>Sam</u>      | ple  | Receipt      | Inform   | ation        | <u>1</u>      |                  |             |                |
| Custody seals int | tact on shipping conta  | iner/cooler?  | Y               | es   |              | No       |              |               |                  | NA 🔽        |                |
| Shipping containe | er/cooler in good cond  | lition?       | Y               | es   |              | No       |              |               |                  |             |                |
| Samples in prope  | er containers/bottles?  |               | Y               | es   | ✓            | No       |              |               |                  |             |                |
| Sample containe   | rs intact?              |               | Y               | es   | $\checkmark$ | No       |              |               |                  |             |                |
| Sufficient sample | e volume for indicated  | test?         | Y               | es   |              | No       |              |               |                  |             |                |
|                   |                         | <u>Sampl</u>  | e Preserva      | tion | and Ho       | old Time | <u>e (HT</u> | <u>) Info</u> | ormation         |             |                |
| All samples recei | ved within holding tim  | e?            | Y               | es   |              | No       |              |               |                  |             |                |
| Container/Temp E  | Blank temperature       |               | С               | oole | r Temp:      | 1.8°C    |              |               |                  | NA 🗆        |                |
| Water - VOA vial  | ls have zero headspa    | ce / no bubbl | es? Y           | es   |              | No       |              | No            | VOA vials submi  | itted       |                |
| Sample labels ch  | necked for correct pres | servation?    | Y               | es   | ✓            | No       |              |               |                  |             |                |
| TTLC Metal - pH   | acceptable upon recei   | ipt (pH<2)?   | Y               | es   |              | No       |              |               |                  | NA 🗹        |                |
| Samples Receive   | ed on Ice?              |               | Y               | es   | ✓            | No       |              |               |                  |             |                |
|                   |                         |               | (Ice Type:      | WE   | TICE         | )        |              |               |                  |             |                |
| * NOTE: If the "N | lo" box is checked, se  | ee comments   | s below.        |      |              |          |              |               |                  |             |                |
|                   |                         | ·             |                 |      |              |          |              |               |                  |             |                |

Client contacted:

Date contacted:

Contacted by:

Comments:

|                       | Campbell Analyti<br>"When Ouality Counts"      | cal, Inc.                               | Web: www.mccamp         | Pass Road, Pittsburg, CA 94565-<br>bell.com E-mail: main@mccan<br>377-252-9262 Fax: 925-252-92 | pbell.com     |       |  |
|-----------------------|------------------------------------------------|-----------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|---------------|-------|--|
| P & D Environme       | ental                                          | Client Project ID:<br>Oil/Castro Valley | #0014; Xtra             | Date Sampled: 01/06                                                                            | /09-01/0      | 7/09  |  |
| 55 Santa Clara, St    | te.240                                         | On/Castro valley                        |                         | Date Received: 01/08                                                                           | /09           |       |  |
|                       |                                                | Client Contact: S                       | teve Carmack            | Date Extracted: 01/09                                                                          | 9/09-01/12/09 |       |  |
| Oakland, CA 946       | 10                                             | Client P.O.:                            |                         | Date Analyzed 01/09                                                                            | /09-01/1      | 2/09  |  |
| Extraction method SW5 |                                                | C .                                     | atile Hydrocarbons as G |                                                                                                | rder: 09      | 01122 |  |
| Lab ID                | Client ID                                      | Matrix                                  | ТРН                     | (g)                                                                                            | DF            | % SS  |  |
| 001A                  | MW1                                            | W                                       | 15,000                  | 0,d1                                                                                           | 10            | 118   |  |
| 002A                  | MW3                                            | W                                       | 50,000,                 | d1,b6                                                                                          | 33            | 108   |  |
| 003A                  | MW5                                            | W                                       | NI                      | )                                                                                              | 1             | 98    |  |
| 004A                  | MW6                                            | W                                       | 51,000                  | D,d1                                                                                           | 100           | 92    |  |
| 005A                  | MW7                                            | W                                       | 52,0                    | 11                                                                                             | 1             | 106   |  |
| 006A                  | MW8                                            | W                                       | 3100                    | ,d1                                                                                            | 1             | 110   |  |
| 007A                  | MW9                                            | W                                       | NI                      | 1                                                                                              | 97            |       |  |
| 008A                  | MW10                                           | W                                       | NI                      | )                                                                                              | 1             | 97    |  |
| 009A                  | MW11                                           | W                                       | NI                      | )                                                                                              | 1             | 107   |  |
| 010A                  | MW12                                           | W                                       | 110,                    | d9                                                                                             | 1             | 114   |  |
| 011A                  | EW1                                            | W                                       | 33,000,                 | d1,b6                                                                                          | 100           | 94    |  |
|                       |                                                |                                         |                         |                                                                                                |               |       |  |
|                       |                                                |                                         |                         |                                                                                                |               |       |  |
|                       |                                                |                                         |                         |                                                                                                |               |       |  |
|                       |                                                |                                         |                         |                                                                                                |               |       |  |
|                       |                                                |                                         |                         |                                                                                                |               |       |  |
|                       | ing Limit for DF =1;<br>ans not detected at or | W                                       | 50                      | )                                                                                              | μ             | g/L   |  |
|                       | ans not detected at or<br>the reporting limit  | S                                       | NA                      | A                                                                                              | NA            |       |  |

\* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b6) lighter than water immiscible sheen/product is present d1) weakly modified or unmodified gasoline is significant d9) no recognizable pattern

DHS ELAP Certification 1644



Angela Rydelius, Lab Manager

| "When Ouality                 | Counts"      |                               | Telephone: 8 | 877-252-9262 Fax: 92 | 5-252-9269         |         |
|-------------------------------|--------------|-------------------------------|--------------|----------------------|--------------------|---------|
| P & D Environmental           |              | roject ID: #0014<br>ro Valley | ; Xtra       | Date Sampled:        | 01/06/09-0         | 1/07/09 |
| 55 Santa Clara, Ste.240       |              |                               |              | Date Received:       | 01/08/09           |         |
|                               | Client C     | ontact: Steve Ca              | armack       | Date Extracted:      | 01/09/09           |         |
| Oakland, CA 94610             | Client P.    | 0.:                           |              | Date Analyzed:       | 01/09/09           |         |
|                               | Oxyger       | nates and BTEX                | by GC/MS*    |                      |                    |         |
| Extraction Method: SW5030B    | Ana          | lytical Method: SW82          | 60B          |                      | Work Order:        | 0901122 |
| Lab ID                        | 0901122-001B | 0901122-002B                  | 0901122-003B | 0901122-004B         |                    |         |
| Client ID                     | MW1          | MW3                           | MW5          | MW6                  | Reporting Limit fo |         |
| Matrix                        | W            | W                             | W            | W                    | - DF               | =1      |
| DF                            | 100          | 1000                          | 1            | 250                  | S                  | W       |
| Compound                      |              | Conc                          | entration    |                      | ug/kg              | μg/L    |
| tert-Amyl methyl ether (TAME) | ND<50        | ND<500                        | ND           | ND<120               | NA                 | 0.5     |
| Benzene                       | 140          | 28,000                        | ND           | 6900                 | NA                 | 0.5     |
| t-Butyl alcohol (TBA)         | ND<200       | 5700                          | ND           | ND<500               | NA                 | 2.0     |
| 1,2-Dibromoethane (EDB)       | ND<50        | ND<500                        | ND           | ND<120               | NA                 | 0.5     |
| 1,2-Dichloroethane (1,2-DCA)  | ND<50        | ND<500                        | ND           | ND<120               | NA                 | 0.5     |
| Diisopropyl ether (DIPE)      | ND<50        | ND<500                        | ND           | ND<120               | NA                 | 0.5     |
| Ethylbenzene                  | 1100         | 1300                          | ND           | 2100                 | NA                 | 0.5     |
| Ethyl tert-butyl ether (ETBE) | ND<50        | ND<500                        | ND           | ND<120               | NA                 | 0.5     |
| Methyl-t-butyl ether (MTBE)   | ND<50        | 3500                          | 0.97         | ND<120               | NA                 | 0.5     |
| Toluene                       | 160          | ND<500                        | ND           | 3400                 | NA                 | 0.5     |
| Xylenes                       | 1600         | 3200                          | ND           | 13,000               | NA                 | 0.5     |
|                               | Surr         | ogate Recoverie               | es (%)       |                      |                    |         |
| %SS1:                         | 91           | 90                            | 93           | 90                   |                    |         |
| %SS2:                         | 89           | 90                            | 87           | 90                   |                    |         |
| %SS3:                         | 105          | 106                           | 100          | 105                  |                    |         |
|                               |              | b6                            |              |                      |                    |         |

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Angela Rydelius, Lab Manager

| Xtra rmack rmack gGC/MS* 0B 0901122-007B MW9 U 1 U 1 C C C C C C C C C C C C C C C C                                  | Date Sampled:<br>Date Received:<br>Date Extracted:<br>Date Analyzed:<br>0901122-008B<br>MW10<br>MW10<br>W<br>1<br>MW10<br>MW10<br>MW10<br>MD<br>ND | 01/08/09<br>01/09/09<br>01/09/09<br>work Order:<br>Reporting<br>DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0901122<br>Limit for                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y GC/MS*<br>0B<br>0901122-007B<br>MW9<br>W<br>1<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Date Extracted:         Date Analyzed:         0901122-008B         MW10         W         1         ND         ND         ND                      | 01/09/09<br>01/09/09<br>Work Order:<br>Reporting<br>DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit for<br>=1<br>W<br>µg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                   |
| y GC/MS*<br>0B<br>0901122-007B<br>MW9<br>W<br>1<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Date Analyzed:         0901122-008B         MW10         W         1         ND         ND         ND                                              | 01/09/09<br>Work Order:<br>Reporting<br>DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit for<br>=1<br>W<br>µg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                   |
| 0B<br>0901122-007B<br>MW9<br>W<br>1<br>2<br>entration<br>ND<br>ND<br>ND                                               | 0901122-008B<br>MW10<br>W<br>1<br>1<br>ND<br>ND                                                                                                    | Work Order:<br>Reporting<br>DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit for<br>=1<br>W<br>µg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                   |
| 0B<br>0901122-007B<br>MW9<br>W<br>1<br>2<br>entration<br>ND<br>ND<br>ND                                               | MW10<br>W<br>1<br>ND<br>ND                                                                                                                         | Reporting<br>DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit for<br>=1<br>W<br>µg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                   |
| 0901122-007B<br>MW9<br>W<br>1<br>entration<br>ND<br>ND<br>ND                                                          | MW10<br>W<br>1<br>ND<br>ND                                                                                                                         | Reporting<br>DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit for<br>=1<br>W<br>µg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                   |
| MW9<br>W<br>1<br>entration<br>ND<br>ND<br>ND                                                                          | MW10<br>W<br>1<br>ND<br>ND                                                                                                                         | DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =1<br>W<br>μg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                |
| W<br>1<br>entration<br>ND<br>ND<br>ND                                                                                 | W<br>1<br>ND<br>ND                                                                                                                                 | DF<br>S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =1<br>W<br>μg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>entration<br>ND<br>ND<br>ND                                                                                      | 1<br>ND<br>ND                                                                                                                                      | S<br>ug/kg<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W<br>µg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                      |
| entration<br>ND<br>ND<br>ND                                                                                           | ND<br>ND                                                                                                                                           | B         Reporting Limit f           DF =1         DF =1           S         W           ug/kg         µg/           NA         0.5           NA         2.0           NA         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND<br>ND<br>ND                                                                                                        | ND                                                                                                                                                 | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND<br>ND                                                                                                              | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                       | ND                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                    |                                                                                                                                                    | INA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nd                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | 1.1                                                                                                                                                | 01/09/09<br>01/09/09<br>Work Order: 0901122<br>Reporting Limit f<br>DF =1<br>S W<br>ug/kg µg/l<br>NA 0.5<br>NA | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND                                                                                                                    | ND                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                   |
| s (%)                                                                                                                 | ·                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 103                                                                                                                   | 100                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 103                                                                                                                   | 99                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 86                                                                                                                    | 82                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                       | ND           ND           ND           ND           ND           103           103           86                                                    | ND         ND           ND         ND           ND         1.1           ND         ND           ND         ND           ND         ND           103         100           103         99           86         82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND         ND         NA           ND         ND         NA           ND         1.1         NA           ND         1.1         NA           ND         ND         NA           ND         ND         NA           ND         ND         NA           1.1         NA         NA           ND         ND         NA           ND         ND         NA           103         100         103           103         99 |

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b6) lighter than water immiscible sheen/product is present

Angela Rydelius, Lab Manager

| "When Ouality                                                                      | Counts"                |                               | Web: www.mccamp<br>Telephone: 8 | 377-252-9262 Fax: 92:                                      | @mccampbell.co<br>5-252-9269 |            |  |  |
|------------------------------------------------------------------------------------|------------------------|-------------------------------|---------------------------------|------------------------------------------------------------|------------------------------|------------|--|--|
| P & D Environmental                                                                | Client Pr<br>Oil/Castr | oject ID: #0014;<br>ro Valley | Xtra                            | Date Sampled: 01/06/09-01/07/09<br>Date Received: 01/08/09 |                              |            |  |  |
| 55 Santa Clara, Ste.240                                                            | Client C               | anta ati Staria Ca            |                                 |                                                            |                              |            |  |  |
| 0.11 1.01.04/(10                                                                   |                        | ontact: Steve Ca              | ппаск                           | Date Extracted:                                            |                              |            |  |  |
| Oakland, CA 94610                                                                  | Client P.              | 0.:                           |                                 | Date Analyzed:                                             | 01/09/09                     |            |  |  |
|                                                                                    | Oxygen                 | ates and BTEX b               | y GC/MS*                        |                                                            |                              |            |  |  |
| Extraction Method: SW5030B                                                         |                        | lytical Method: SW826         |                                 | 1                                                          | Work Order:                  | 0901122    |  |  |
| Lab ID                                                                             | 0901122-009B           | 0901122-010B                  | 0901122-011B                    |                                                            | -                            |            |  |  |
| Client ID                                                                          | MW11                   | MW12                          | EW1                             |                                                            | Reporting<br>DF              |            |  |  |
| Matrix                                                                             | W                      | W                             | W                               |                                                            |                              | =1         |  |  |
| DF                                                                                 | 1                      | 1                             | 1000                            |                                                            | S                            | W          |  |  |
| Compound                                                                           |                        | Conce                         | entration                       |                                                            | ug/kg                        | µg/L       |  |  |
| tert-Amyl methyl ether (TAME)                                                      | ND                     | ND                            | ND<500                          |                                                            | NA                           | 0.5        |  |  |
| Benzene                                                                            | ND                     | ND                            | 10,000                          |                                                            | NA                           | 0.5        |  |  |
| t-Butyl alcohol (TBA)                                                              | ND                     | 2.7                           | 16,000                          |                                                            | NA                           | 2.0        |  |  |
| 1,2-Dibromoethane (EDB)                                                            | ND                     | ND                            | ND<500                          |                                                            | NA                           | 0.5        |  |  |
| 1,2-Dichloroethane (1,2-DCA)                                                       | ND                     | ND                            | ND<500                          |                                                            | NA                           | 0.5        |  |  |
| Diisopropyl ether (DIPE)                                                           | ND                     | ND                            | ND<500                          |                                                            | NA                           | 0.5        |  |  |
| Ethylbenzene                                                                       | ND                     | ND                            | 1700                            |                                                            | NA                           | 0.5        |  |  |
|                                                                                    | ND                     | ND                            | ND<500                          |                                                            | NA                           | 0.5        |  |  |
| Ethyl tert-butyl ether (ETBE)                                                      |                        | 8.2                           | 16,000                          |                                                            | NA                           | 0.5        |  |  |
|                                                                                    | 32                     |                               | 10,000                          |                                                            |                              |            |  |  |
| Methyl-t-butyl ether (MTBE)                                                        | 32<br>ND               | ND                            | 1900                            |                                                            | NA                           | 0.5        |  |  |
| Methyl-t-butyl ether (MTBE)<br>Toluene                                             |                        |                               |                                 |                                                            | NA<br>NA                     | 0.5<br>0.5 |  |  |
| Ethyl tert-butyl ether (ETBE)<br>Methyl-t-butyl ether (MTBE)<br>Toluene<br>Xylenes | ND<br>ND               | ND                            | 1900<br>3300                    |                                                            |                              |            |  |  |
| Methyl-t-butyl ether (MTBE)<br>Toluene                                             | ND<br>ND               | ND<br>ND                      | 1900<br>3300                    |                                                            |                              |            |  |  |
| Methyl-t-butyl ether (MTBE)<br>Toluene<br>Xylenes                                  | ND<br>ND<br>Surr       | ND<br>ND<br>ogate Recoveries  | 1900<br>3300<br>s (%)           |                                                            |                              |            |  |  |

b6) lighter than water immiscible sheen/product is present

Angela Rydelius, Lab Manager

| <u> </u>                | "When Ouality Coun |                     | Web: www.mccam           | Pass Road, Pittsburg, CA 945<br>pbell.com E-mail: main@mc<br>877-252-9262 Fax: 925-252 | campbell.com | n      |
|-------------------------|--------------------|---------------------|--------------------------|----------------------------------------------------------------------------------------|--------------|--------|
| P & D Environment       | al                 |                     | : #0014; Xtra Oil/Castro | Date Sampled: 01/                                                                      | 06/09-01/    | 07/09  |
|                         | 10                 | Valley              |                          | Date Received: 01/                                                                     | 08/09        |        |
| 55 Santa Clara, Ste.2   | 240                | Client Contact:     | Steve Carmack            | Date Extracted: 01/                                                                    | 08/09        |        |
| Oakland, CA 94610       |                    | Client P.O.:        |                          | Date Analyzed: 01/                                                                     | 08/09-01/    | 09/09  |
|                         |                    | Total Extractable P | etroleum Hydrocarbons*   |                                                                                        |              |        |
| Extraction method: SW35 | 510C               | Analytical n        | nethods: SW8015B         | Wo                                                                                     | rk Order: 0  | 901122 |
| Lab ID                  | Client ID          | Matrix              | TPH-Diesel<br>(C10-C23)  | TPH-Motor Oil<br>(C18-C36)                                                             | DF           | % SS   |
| 0901122-001A            | MW1                | W                   | 5400,e4,e2               | ND                                                                                     | 1            | 104    |
| 0901122-002A            | MW3                | W                   | 13,000,e4,e1,b6          | 3400                                                                                   | 1            | 107    |
| 0901122-003A            | MW5                | W                   | ND                       | ND                                                                                     | 1            | 98     |
| 0901122-004A            | MW6                | W                   | 6200,e4                  | ND                                                                                     | 1            | 99     |
| 0901122-005A            | MW7                | W                   | 87,e2                    | ND                                                                                     | 1            | 100    |
| 0901122-006A            | MW8                | W                   | 1000,e4                  | ND                                                                                     | 1            | 98     |
| 0901122-007A            | MW9                | W                   | ND                       | ND                                                                                     | 1            | 98     |
| 0901122-008A            | MW10               | W                   | ND                       | ND                                                                                     | 1            | 97     |
| 0901122-009A            | MW11               | W                   | ND                       | ND                                                                                     | 1            | 100    |
| 0901122-010A            | MW12               | W                   | ND                       | ND                                                                                     | 1            | 108    |
| 0901122-011A            | EW1                | W                   | 7900,e4,e1,b6            | 1300                                                                                   | 1            | 107    |
|                         |                    |                     |                          |                                                                                        |              |        |
|                         |                    |                     |                          |                                                                                        |              |        |
|                         |                    |                     |                          |                                                                                        |              |        |
|                         |                    |                     |                          |                                                                                        |              |        |
|                         |                    |                     |                          |                                                                                        | •<br>        | •      |

| Reporting Limit for DF =1;                               | W | 50 | 250 | μg/L  | l |
|----------------------------------------------------------|---|----|-----|-------|---|
| ND means not detected at or<br>above the reporting limit | S | NA | NA  | mg/Kg |   |

\* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b6) lighter than water immiscible sheen/product is present

e1) unmodified or weakly modified diesel is significant

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.





McCampbell Analytical, Inc. "When Ouality Counts"

### QC SUMMARY REPORT FOR SW8015B

|                      | O. Sample Matrix: Water QC Matrix: Water |         |       |     |        |        |        |          |            | WorkC            | order 090112 | 22  |  |  |  |  |
|----------------------|------------------------------------------|---------|-------|-----|--------|--------|--------|----------|------------|------------------|--------------|-----|--|--|--|--|
| EPA Method SW8015B   | Extrac                                   | tion SW | 3510C |     |        |        |        | s        | Spiked San | nple ID:         | N/A          | %)  |  |  |  |  |
| Analyte              | Sample                                   | Spiked  | MS    | MSD | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce       | Acceptance Crite |              |     |  |  |  |  |
| ,                    | μg/L μg/L % Rec. 9                       |         |       |     | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD   | RPD              | LCS/LCSD     | RPD |  |  |  |  |
| TPH-Diesel (C10-C23) | N/A                                      | 1000    | N/A   | N/A | N/A    | 101    | 102    | 1.07     | N/A        | N/A              | 70 - 130     | 30  |  |  |  |  |
| %SS:                 | N/A                                      | 2500    | N/A   | N/A | N/A    | 111    | 112    | 0.949    | N/A        | N/A              | 70 - 130     | 30  |  |  |  |  |

### BATCH 40709 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed     | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|-------------------|--------------|-------------------|----------------|-------------------|
| 0901122-001A | 01/07/09 2:30 PM | 01/08/09       | 01/09/09 12:14 AM | 0901122-002A | 01/07/09 3:30 PM  | 01/08/09       | 01/09/09 1:25 AM  |
| 0901122-003A | 01/07/09 8:40 AM | 01/08/09       | 01/09/09 2:35 AM  | 0901122-004A | 01/06/09 4:40 PM  | 01/08/09       | 01/09/09 3:44 AM  |
| 0901122-005A | 01/06/09 4:55 PM | 01/08/09       | 01/09/09 9:17 PM  | 0901122-006A | 01/07/09 12:30 PM | 01/08/09       | 01/09/09 6:03 AM  |
| 0901122-007A | 01/06/09 4:00 PM | 01/08/09       | 01/09/09 7:13 AM  | 0901122-008A | 01/07/09 9:20 AM  | 01/08/09       | 01/09/09 8:23 AM  |
| 0901122-009A | 01/06/09 5:05 PM | 01/08/09       | 01/09/09 4:49 PM  | 0901122-010A | 01/07/09 10:00 AM | 01/08/09       | 01/08/09 11:53 PM |
| 0901122-011A | 01/07/09 1:40 PM | 01/08/09       | 01/09/09 1:01 AM  |              |                   |                |                   |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer



"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8021B/8015Cm

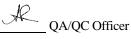
| W.O. Sample Matrix: Water               |               |            | QC Matri | x: Water  |            |          | Batch     | D: 40712      |             | WorkC   | order 09011  | 22   |
|-----------------------------------------|---------------|------------|----------|-----------|------------|----------|-----------|---------------|-------------|---------|--------------|------|
| EPA Method SW8015Cm                     | Extra         | ction SW   | 5030B    |           |            |          |           | s             | Spiked San  | nple ID | : 0901106-0  | 005A |
| Analyte                                 | Sample        | Spiked     | MS       | MSD       | MS-MSD     | LCS      | LCSD      | LCS-LCSD      | Acce        | eptance | Criteria (%) | 1    |
| , indigite                              | µg/L          | µg/L       | % Rec.   | % Rec.    | % RPD      | % Rec.   | % Rec.    | % RPD         | MS / MSD    | RPD     | LCS/LCSD     | RPD  |
| TPH(btex <sup>f</sup>                   | ND            | 60         | 97.7     | 110       | 12.1       | 98.5     | 97.5      | 1.06          | 70 - 130    | 20      | 70 - 130     | 20   |
| MTBE                                    | ND            | 10         | 88.1     | 93.5      | 5.98       | 84.5     | 91.1      | 7.49          | 70 - 130    | 20      | 70 - 130     | 20   |
| Benzene                                 | ND            | 10         | 91.2     | 93.6      | 2.60       | 89       | 91.6      | 2.83          | 70 - 130    | 20      | 70 - 130     | 20   |
| Toluene                                 | ND            | 10         | 90.5     | 94.3      | 4.14       | 88.6     | 91.8      | 3.56          | 70 - 130    | 20      | 70 - 130     | 20   |
| Ethylbenzene                            | ND            | 10         | 94.6     | 97.3      | 2.81       | 92.6     | 95.2      | 2.76          | 70 - 130    | 20      | 70 - 130     | 20   |
| Xylenes                                 | ND            | 30         | 105      | 108       | 2.47       | 102      | 106       | 3.08          | 70 - 130    | 20      | 70 - 130     | 20   |
| %SS:                                    | 93            | 10         | 92       | 94        | 1.27       | 92       | 93        | 0.574         | 70 - 130    | 20      | 70 - 130     | 20   |
| All target compounds in the Method NONE | Blank of this | extraction | batch we | re ND les | s than the | method R | L with th | e following o | exceptions: |         |              |      |

### BATCH 40712 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|------------------|
| 0901122-001A | 01/07/09 2:30 PM | 01/12/09       | 01/12/09 8:52 PM | 0901122-002A | 01/07/09 3:30 PM | 01/10/09       | 01/10/09 7:32 AM |
| 0901122-002A | 01/07/09 3:30 PM | 01/12/09       | 01/12/09 9:25 PM | 0901122-003A | 01/07/09 8:40 AM | 01/09/09       | 01/09/09 5:02 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.





<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

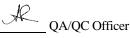
## QC SUMMARY REPORT FOR SW8021B/8015Cm

| W.O. Sample Matrix: Water |        |          | QC Matri | x: Water |        |        | Batch                       | ID: 40723 |          | WorkC   | Order 09011  | 22   |
|---------------------------|--------|----------|----------|----------|--------|--------|-----------------------------|-----------|----------|---------|--------------|------|
| EPA Method SW8015Cm       | Extra  | ction SW | 5030B    |          |        |        | Spiked Sample ID: 0901128-0 |           |          |         |              | 004A |
| Analyte                   | Sample | Spiked   | MS       | MSD      | MS-MSD | LCS    | LCSD                        | LCS-LCSD  | Acc      | eptance | Criteria (%) |      |
| Analyte                   | µg/L   | µg/L     | % Rec.   | % Rec.   | % RPD  | % Rec. | % Rec.                      | % RPD     | MS / MSD | RPD     | LCS/LCSD     | RPD  |
| TPH(btex <sup>£</sup>     | ND     | 60       | 109      | 106      | 2.53   | 99.7   | 107                         | 7.50      | 70 - 130 | 20      | 70 - 130     | 20   |
| MTBE                      | ND     | 10       | 98.7     | 103      | 4.10   | 96.3   | 81.5                        | 16.6      | 70 - 130 | 20      | 70 - 130     | 20   |
| Benzene                   | ND     | 10       | 86.3     | 93.9     | 8.42   | 88.5   | 84                          | 5.21      | 70 - 130 | 20      | 70 - 130     | 20   |
| Toluene                   | ND     | 10       | 89.1     | 94.9     | 6.32   | 94.2   | 87.4                        | 7.54      | 70 - 130 | 20      | 70 - 130     | 20   |
| Ethylbenzene              | ND     | 10       | 91.9     | 85.4     | 7.35   | 96.3   | 88.2                        | 8.84      | 70 - 130 | 20      | 70 - 130     | 20   |
| Xylenes                   | ND     | 30       | 102      | 110      | 7.57   | 108    | 99.8                        | 8.05      | 70 - 130 | 20      | 70 - 130     | 20   |
| %SS:                      | 96     | 10       | 99       | 99       | 0      | 103    | 100                         | 2.92      | 70 - 130 | 20      | 70 - 130     | 20   |

|              |                   |                | BATCH 40723 SL   | IMMARY       |                  |                |
|--------------|-------------------|----------------|------------------|--------------|------------------|----------------|
| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled     | Date Extracted |
| 0901122-004A | 01/06/09 4:40 PM  | 01/10/09       | 01/10/09 8:05 AM | 0901122-005A | 01/06/09 4:55 PM | 01/12/09       |
| 0901122-006A | 01/07/09 12:30 PM | 01/09/09       | 01/09/09 6:03 PM | 0901122-007A | 01/06/09 4:00 PM | 01/09/09       |
| 0901122-008A | 01/07/09 9:20 AM  | 01/09/09       | 01/09/09 7:04 PM | 0901122-009A | 01/06/09 5:05 PM | 01/09/09       |
| 0901122-010A | 01/07/09 10:00 AM | 01/09/09       | 01/09/09 8:04 PM | 0901122-011A | 01/07/09 1:40 PM | 01/10/09       |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.



Date Analyzed 01/12/09 5:58 PM 01/09/09 6:33 PM 01/09/09 7:34 PM

01/10/09 8:39 AM



"When Ouality Counts"

## QC SUMMARY REPORT FOR SW8260B

| W.O. Sample Matrix: Water     |        | QC Matrix: Water |        |        |        |        |        | D: 40724 |            | WorkC   | Order 09011  | 22   |
|-------------------------------|--------|------------------|--------|--------|--------|--------|--------|----------|------------|---------|--------------|------|
| EPA Method SW8260B            | Extra  | ction SW         | 5030B  |        |        |        |        | s        | Spiked San | nple ID | : 0901122-0  | )10B |
| Analyte                       | Sample | Spiked           | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce       | eptance | Criteria (%) | 1    |
| / that y to                   | µg/L   | µg/L             | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD   | RPD     | LCS/LCSD     | RPD  |
| tert-Amyl methyl ether (TAME) | ND     | 10               | 97.8   | 104    | 6.20   | 101    | 99.1   | 1.95     | 70 - 130   | 30      | 70 - 130     | 30   |
| Benzene                       | ND     | 10               | 120    | 122    | 2.13   | 114    | 109    | 4.12     | 70 - 130   | 30      | 70 - 130     | 30   |
| t-Butyl alcohol (TBA)         | 2.8    | 50               | 87.7   | 89.2   | 1.51   | 103    | 104    | 1.54     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dibromoethane (EDB)       | ND     | 10               | 117    | 124    | 5.37   | 113    | 110    | 2.84     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dichloroethane (1,2-DCA)  | ND     | 10               | 99.8   | 119    | 17.6   | 108    | 105    | 2.75     | 70 - 130   | 30      | 70 - 130     | 30   |
| Diisopropyl ether (DIPE)      | ND     | 10               | 107    | 113    | 5.32   | 107    | 104    | 2.50     | 70 - 130   | 30      | 70 - 130     | 30   |
| Ethyl tert-butyl ether (ETBE) | ND     | 10               | 115    | 123    | 7.01   | 121    | 118    | 2.65     | 70 - 130   | 30      | 70 - 130     | 30   |
| Methyl-t-butyl ether (MTBE)   | 8.0    | 10               | 91.4   | 87.6   | 2.25   | 111    | 108    | 3.05     | 70 - 130   | 30      | 70 - 130     | 30   |
| Toluene                       | ND     | 10               | 128    | 126    | 1.83   | 119    | 114    | 3.76     | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS1:                         | 100    | 25               | 89     | 95     | 6.60   | 91     | 91     | 0        | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS2:                         | 98     | 25               | 89     | 87     | 2.17   | 83     | 84     | 0.670    | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS3:                         | 88     | 2.5              | 110    | 85     | 25.3   | 92     | 91     | 0.178    | 70 - 130   | 30      | 70 - 130     | 30   |

#### BATCH 40724 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed     | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|-------------------|--------------|-------------------|----------------|------------------|
| 0901122-001B | 01/07/09 2:30 PM | 01/09/09       | 01/09/09 2:22 PM  | 0901122-002B | 01/07/09 3:30 PM  | 01/09/09       | 01/09/09 8:07 PM |
| 0901122-003B | 01/07/09 8:40 AM | 01/09/09       | 01/09/09 3:39 PM  | 0901122-004B | 01/06/09 4:40 PM  | 01/09/09       | 01/09/09 9:23 PM |
| 0901122-005B | 01/06/09 4:55 PM | 01/09/09       | 01/09/09 2:10 PM  | 0901122-006B | 01/07/09 12:30 PM | 01/09/09       | 01/09/09 5:47 PM |
| 0901122-007B | 01/06/09 4:00 PM | 01/09/09       | 01/09/09 3:37 PM  | 0901122-008B | 01/07/09 9:20 AM  | 01/09/09       | 01/09/09 4:20 PM |
| 0901122-009B | 01/06/09 5:05 PM | 01/09/09       | 01/09/09 10:03 PM | 0901122-010B | 01/07/09 10:00 AM | 01/09/09       | 01/09/09 5:03 PM |
| 0901122-011B | 01/07/09 1:40 PM | 01/09/09       | 01/09/09 10:42 PM |              |                   |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A \_ QA/QC Officer