2307 Pacific Ave., Alameda, CA 94501 Phone: 510-865-9503 Fax. 510-865-1889 E-mail: xtraoil@prodigy:net

Xtra Oil Company

RECEIVED

9:49 am, Jan 23, 2009

Alameda County Environmental Health

January 9, 2009

Mr. Steven Plunkett Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT CERTIFICATION County Case # RO 285 Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

Quarterly Groundwater Monitoring and Sampling Report (September Through November 2008) dated January 9, 2009 (document 0014.R72).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

.

Xtra Oil Company /

Keith Sins

0014.L159

Retail Fueling/Convenience Stores

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

January 9, 2009 Report 0014.R72

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT (SEPTEMBER THROUGH NOVEMBER 2008) County Case # RO 285 Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of both the on- and off-site wells for the subject property. This work was performed in accordance with P&D's proposal 020599.P1 dated February 5, 1999. Onsite wells MW1, MW3, MW4, and EW1, offsite observation wells OW1 and OW2, and offsite monitoring wells MW5 through MW12 were monitored on October 22, 2008 and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on October 22 and 23, 2008. The reporting period is for September through November 2008.

A Site Location Map (Figure 1), a Site Plan showing onsite well locations (Figure 2), and a Site Vicinity Map showing offsite well locations (Figure 3) are attached with this report. Figure 3 has been updated to show the correct location of OW2. Norbridge School shown on Figure 1 to the south of the subject site has been demolished and replaced with the Castro Valley BART station and associated parking lot.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November 1988. The fuel tanks were replaced during August 1992.

Three monitoring wells, designated MW1, MW2 and MW3, were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown on Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D).

TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10, and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentration of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photoionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively. A groundwater monitoring and sampling program was initiated at the site on February 20, 1990.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed associated with the widening of Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4, at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates methyl tertiary-butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), diisopropyl ether (DIPE), and tertiary-butyl alcohol (TBA), and lead scavengers ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site. Documentation of the well installation is provided in P&D's Monitoring Well Installation Report dated September 30, 1997 (document 0014.R25).

On May 31, 2005, P&D submitted an Interim Source Area Remediation Plan (ISARP) to ACDEH proposing free product removal at the site (document 0014.W9). P&D proposed using existing extraction well EW1 in the existing UST pit to dewater the existing pit and the previous UST pit.

Monitoring of existing wells MW1, MW3, and MW4 to evaluate the effectiveness of water table drawdown at the site for plume control and associated free product recovery was also proposed.

In January 2007, P&D installed a groundwater extraction system consisting of a pump in well EW1, associated piping for discharge of water from the well, and a carbon filtration system. System operation began in February 2007. Documentation of the system installation and operation is provided in P&D's Interim Source Area Remediation Plan Progress Evaluation Report dated October 25, 2007 (document 0014.R67).

In response to a February 6, 2007 letter request from the ACDEH, P&D submitted a Groundwater Monitoring Well Installation Work Plan (MW5 Through MW13) dated March 5, 2007 (document 0014.W10) to the ACDEH proposing the installation of nine offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW13. The ACDEH conditionally approved the work plan in an April 4, 2007 letter. P&D subsequently submitted a Groundwater Monitoring Well Installation Work Plan Amendment (MW5 Through MW12) dated May 3, 2007 (document 0014.W10A) to the ACDEH proposing the installation of eight offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW12) dated May 3, 2007 (document 0014.W10A) to the ACDEH proposing the installation of eight offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW12. Documentation of the implementation of the work plan and work plan amendment is provided in P&D's Groundwater Monitoring Well Installation Report (MW5 Through MW12) dated January 30, 2008 (document 0014.R68).

FIELD ACTIVITIES

Onsite wells MW1, MW3, MW4, and EW1, offsite observation wells OW1 and OW2, and offsite monitoring wells MW5 through MW12 were monitored on October 22, 2008 and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on July 22 and 23, 2008. The monitoring and sampling was performed in conjunction with monitoring and sampling by SOMA Environmental Engineering, Inc. of Pleasanton, California at the Former BP site at 3519 Castro Valley Boulevard.

The wells at the subject site were monitored for depth to water and the presence of free product or sheen. In well MW4 the depth to water and depth to free product were measured to the nearest 1/32-inch with a steel tape and water-finding and product-finding paste. The passive hydrocarbon collection device in well MW4 was removed by P&D personnel and placed in storage near MW1 during pressure transducer installation in well MW4 on November 2, 2006. In wells OW1, OW2, MW1, MW3, and EW1, the depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product and sheen was also evaluated using a transparent bailer in wells MW1, MW3, MW5 through MW12, and EW1. The measured free product thickness in well MW4 was 0.08 feet. Approximately 0.33 feet of free product was encountered in observation well OW1 located in Redwood Road. No water was present in OW1.

No sample was collected from MW4 due to the presence of free product in the well.

Prior to well sampling, onsite wells MW1, MW3, and EW1, and offsite wells MW5 through MW12 were purged of a minimum of three casing volumes of water or until the wells had been purged dry. Petroleum hydrocarbon odors were detected on the purge water from all three of the

onsite sampled wells (MW1, MW3 and EW1), and a petroleum hydrocarbon sheen was encountered on wells MW1 and MW3. Petroleum hydrocarbon odors were also detected for the samples collected from offsite wells MW6, MW8, and MW12 and petroleum hydrocarbon sheen was observed on the sample collected from offsite well MW6. Very strong petroleum hydrocarbon odors and free product were encountered on the electric water level indicator probe when monitoring well OW1 for water or free product.

During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored and recorded on a groundwater monitoring/well purging data sheet. Once the field parameters were observed to stabilize and a minimum of three casing volumes had been purged, or the wells had purged dry and partially recovered, water samples were collected using a clean, new disposable bailer. Records of the field parameters measured during well purging are included with this report.

The water samples were transferred to 40-milliliter glass VOA vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present. The VOA vials and bottles were then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory.

HYDROGEOLOGY

Water levels were measured in all of the wells once during the reporting period.

On January 7, 2008 Kier & Wright (State-licensed surveyors) surveyed the top of all of the wells, including onsite wells MW1, MW3, MW4 and EW1, and offsite observation wells OW1 and OW2. The new top of well casing elevations for the wells and the associated calculated groundwater surface elevations are shown in Table 1. Comparison of the previous top of well casing elevations for wells MW1, MW3 and MW4 with the January 7, 2008 elevations shows that the January 7, 2008 elevations are 2.85, 3.06, and 2.86 feet higher, respectively, than the previously surveyed elevations. The groundwater surface elevations and associated groundwater flow direction were calculated using the January 7, 2008 survey elevations for all of the wells.

On October 22, 2008, the measured depth to water in wells MW1, MW3, MW4, and EW1 was 8.80, 9.29, 8.46, and 11.40 feet, respectively. A separate phase hydrocarbon layer measuring approximately 0.08 feet in thickness was measured in well MW4. Using a specific gravity of 0.75, the corrected depth to water in well MW4 is 8.40 feet. Since the previous monitoring event on July 16, 2008, the groundwater elevations (corrected for the presence of any detected free product) have decreased in wells MW1, MW3, and MW4 by 0.40, 0.26, and 0.52 feet, respectively, and the groundwater elevation in well EW1 has remained the same. Since the previous monitoring and sampling event for the offsite wells on July 16, 2008 the groundwater elevations have decreased in offsite groundwater monitoring wells MW5, MW6, MW7, MW8, MW9, MW10, MW11, and MW12 by 0.54, 0.48, 0.18, 0.71, 0.39, 0.63, 0.49, and 0.55 feet, respectively. Although the measured change in the water level in well MW11 has been attributed to very slow recovery of the well during previous sampling episodes, the change in water level since the previous sampling event in well MW11 fo 0.49 feet is approximately comparable to the water level change in nearby

Page 4 of 8 **P&D ENVIRONMENTAL, INC.**

well MW7 of 0.18 feet. The measured depth to water in the wells and the separate phase layer thickness measured in monitoring well MW4 and observation well OW1are summarized in Table 1.

Based on the measured depth to groundwater (corrected for the presence of any detected free product) in the onsite groundwater monitoring wells MW1, MW3 and MW4, the apparent groundwater flow direction at the site on October 22, 2008 was calculated to be to the south-southeast with a gradient of 0.011. During the previous quarterly monitoring and sampling event on July 16, 2008, the groundwater flow direction was calculated to be to the south-southwest with a gradient of 0.013. The groundwater flow direction at the site on October 22, 2008 is shown on Figure 2. The groundwater flow direction and gradient are consistent with the flow direction and gradient observed at the site during the previous monitoring and sampling event on July 16, 2008. The current groundwater flow direction and gradient are different from historic values prior to 2007, and are considered to be the result of groundwater pumping at well EW1 in the former UST pit which began in February 2007.

Based on review of groundwater surface elevations in offsite groundwater monitoring wells MW5 through MW12, the groundwater flow direction in the vicinity of the site is southerly, ranging from the south-southeast with a gradient of 0.015 in the vicinity of Redwood Road to the south-southwest with a gradient of 0.013 in the vicinity of the west end of Redwood Court. These offsite groundwater flow directions and gradients are relatively consistent with groundwater flow directions and gradients are relatively consistent with groundwater flow directions and gradients and the approximate groundwater flow direction in the vicinity of the site based on October 22, 2008 water level measurements from the offsite wells are shown on Figure 3.

LABORATORY RESULTS

All of the groundwater samples collected on October 22 and 23, 2008 were analyzed for TPH Multirange (TPH-G, TPH-D, and TPH-MO) using EPA Methods 5030B and 3510C in conjunction with modified EPA Method 8015C; and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), fuel oxygenates (MTBE, TAME, ETBE, TAME, and TBA) and lead scavengers EDB and 1,2-DCA/EDC using EPA Method 5030B in conjunction with EPA Method 8260B.

The laboratory analytical results for the samples collected from onsite wells MW1, MW3, and EW1 show that TPH-D was detected at concentrations of 3.8, 7.8, and 7.6 milligrams per Liter (mg/L), respectively; TPH-G was detected at concentrations of 18, 87, and 21 mg/L, respectively; benzene was detected at concentrations of 0.18, 26, and 4.5 mg/L, respectively; and MTBE was detected in the groundwater samples collected from wells MW3 and EW1 at concentrations of 4.7 and 7.7 mg/L, respectively. No fuel oxygenates or lead scavengers were detected in the groundwater samples collected from onsite wells MW1, MW3, and EW1, with the exception of MTBE mentioned above and TBA, which was detected in the samples collected from wells MW3 and EW1 at concentrations of 8.0 and 10 mg/L, respectively.

The laboratory analytical results for the samples collected from offsite wells MW5 through MW12 shows that no analytes were detected in the sample collected from well MW9, and that only MTBE was detected in the samples collected from wells MW5 and MW10 at concentrations of 0.0012 and

0.0016 mg/L, respectively. No analytes were detected in the sample collected from offsite well MW11, with the exceptions of MTBE and TBA at concentrations of 0.031 and 0.0031 mg/L, respectively. In the samples collected from the remaining offsite wells (MW6, MW7, MW8 and MW12) TPH-D was detected at concentrations of 4.1, 0.066, 0.91, and 0.054 mg/L, respectively; and TPH-G was detected at concentrations of 82, 0.17, 4.8, and 0.20 mg/L, respectively. Benzene was detected in the samples collected from offsite wells MW6, MW7, and MW8 at concentrations of 7.8, 0.067, and 0.032 mg/L, respectively, and was not detected in the sample collected from well MW12. MTBE was detected in the samples collected from offsite wells MW7, MW8, and MW12 at concentrations of 0.0083, 0.0052, and 0.011 mg/L, respectively, and was not detected in the sample collected in the sample collected from offsite well MW6.

No other fuel oxygenates or lead scavengers were detected in any of the samples collected from any of offsite wells MW5 through MW12, except for TBA in the samples collected from wells MW8, MW11, and MW12 at concentrations of 0.0050, 0.0031, and 0.0023 mg/L, respectively.

Review of the laboratory analytical reports shows that the TPH-D results for the samples collected from wells MW3, EW1, and MW7 are described as consisting of both diesel- and gasoline-range compounds, and the TPH-D results for the samples collected from wells MW1, MW6, MW8, and MW12 are described as consisting of gasoline-range compounds.

The laboratory analytical results for the groundwater samples are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are included with this report.

DISCUSSION AND RECOMMENDATIONS

Onsite wells MW1, MW3, MW4, and EW1, offsite observation wells OW1 and OW2, and offsite monitoring wells MW5 through MW12 were monitored on October 22, 2008 and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on October 22 and 23, 2008. Separate phase hydrocarbons were measured in well MW4 at a thickness of 0.08 feet, and in observation well OW1 in Redwood Road at a thickness of approximately 0.33 feet. The passive hydrocarbon collection device in well MW4 was removed on November 2, 2006 by P&D personnel during pressure transducer installation associated with preparation for dewatering the former UST pit. Dewatering of the former UST pit began February 2007 in UST pit extraction well EW1. The increase in depth to water in EW1 relative to water level measurements prior to 2007 is associated with the dewatering of the UST pit, which began during the first quarter of 2007. Similarly, the change in the onsite groundwater flow direction from a historic southeasterly flow direction to a southerly flow direction with a higher gradient is attributed to the UST pit dewatering.

The groundwater surface elevations and associated groundwater flow direction were calculated using the January 7, 2008 survey elevations for all of the wells. Based on review of groundwater surface elevations in offsite groundwater monitoring wells MW5 through MW12, the groundwater flow direction in the vicinity of the site is southerly, ranging from the south-southeast with a gradient of 0.015 in the vicinity of Redwood Road to the south-southwest with a gradient of 0.013 in the vicinity of Redwood Court.

The UST pit dewatering pump is located in well EW1, and the increase in petroleum hydrocarbon concentrations in well EW1 when compared to water quality data prior to 2007 is attributed to groundwater with elevated concentrations of petroleum hydrocarbons moving into the UST pit as a result of the UST pit dewatering.

Review of changes in onsite water quality since the previous sampling event on July 16 and 17, 2008 shows that all analyte concentrations have either increased or remained the same with the exception of TPH-D and benzene in well MW1, TPH-D and MTBE in well MW3, and total xylenes and TBA in extraction well EW1.

Review of changes in offsite water quality since the previous sampling event on July 16 and 17, 2008 shows that all analytes have remained not detected in well MW9, all analyte concentrations have increased or remained not detected in wells MW10 and MW11, and decreased or remained not detected in wells MW6, MW7, MW8, and MW12, all analyte concentrations remained not detected or decreased, with the exceptions of benzene, toluene, and ethylbenzene in well MW6, MTBE, benzene, and ethylbenzene in well MW7, and MTBE and TBA in wells MW8 and MW12.

Based on the laboratory analytical results of the water samples collected from the monitoring wells, P&D recommends that groundwater monitoring and sampling be continued. In addition, P&D recommends that future monitoring and sampling efforts continue to be coordinated with the Former BP site located at 3519 Castro Valley Boulevard. In accordance with recent communications with ACDEH, although future monitoring and sampling events will be performed in conjunction with the consultant for the Former BP site located at 3519 Castro Valley Boulevard, the results obtained by the other consultant are not included in this current report and will not be included in future P&D reports because the information is readily available via the internet at both the county website and the GeoTracker website.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

and N. King

Paul H. King Professional Geologist #5901 Expires: 12/31/09

Attachments: Tables 1 & 2 Site Location Map (Figure 1) Site Plan (Figure 2) Site Vicinity Map (Figure 3) Well Monitoring and Purge Data Sheets Laboratory Analytical Reports and Chain of Custody Documentation

PHK/ sjc 0014.R72

TABLES

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MX71	10/22/08	180.22	8 80	171 42
	07/16/08	100.22++	8.00	171.42
	07/10/08		8.40	171.82
	01/17/08	177 37*	8.01	160.36
	10/16/07	177.37	8.65	168.72
	07/25/07		8.00	168.88
	07/23/07 04/17/07		8 30	169.07
	01/18/07		7.85	169.57
	11/14/06		7.33	169.92
	06/29/06		7.30	169.57
	02/03/06		6.65	170 72
	11/18/05		8.17	169.20
	07/28/05		7 98	169.39
	04/13/05		6.90	170.47
	01/31/05		7.20	170.17
	10/15/04		8.52	168.85
	07/13/04		8.33	169.04
	04/06/04		7.93	169.44
	12/18/03		7.65	169.72
	09/18/03		8.15	169.22
	06/19/03		8.13	169.24
	03/18/03		7.77	169.60
	12/21/02		5.74	171.63
	09/10/02		8.28	169.09
	03/30/02		7.43	169.94
	12/22/01		6.92	170.45
	09/23/01		8.53	168.84
	06/22/01		8.30	169.07
	04/22/01		7.77	169.60
	12/14/00		8.49	168.88
	09/18/00		8.56	168.81
	06/08/00		7.97	169.40
	03/09/00		6.68	170.69
	12/09/99		8.15	169.22
	08/31/99		8.36	169.01
	04/29/99		7.68	169.69

NOTES:

* = Surveyed on August 20, 1997

++= Surveyed on January 7, 2008

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW 1	01/20/00	177 27*	6.00	170.28
(Continued)	01/29/99	177.37	0.99	170.38
(Continued)	04/20/98		7.30	109.07
	01/24/98	177.07*	0.01	1/0./0
	11/06/97		8.79	168.58
	08/26/97	1//.3/*	8.51	168.86
	07/24/97		8.71	168.72
	04/25/97		7.98	169.45
	01/20/97		7.12	170.31
	07/26/96		8.39	169.04
	07/09/96		8.16	169.27
	04/23/96		7.47	169.96
	02/07/96		6.09	171.34
	01/29/96		6.17	171.26
	10/26/95		8.45	168.98
	07/28/95		8.27	169.16
	05/02/95		6.96	170.47
	02/23/95		7.72	169.71
	11/18/94		7.14	170.29
	08/22/94		8.67	168.76
	05/19/94	177.43**	8.05	169.38
	02/28/94		7 44	169.99
	11/24/93		8 74	168.69
	08/30/03		878	168.65
	05/18/03		8.12	160.05
	02/22/02		0.12 7 24	109.31
	$\frac{02}{23}\frac{93}{93}$	200 00***	7.34	170.09
	11/13/92	200.00	9.13	190.87
	05/29/92	1/5./3	8.59	167.14
	01/14/92		8.57	167.16
	12/23/91		9.65	166.08
	11/25/91		9.41	166.32
	10/10/91		9.70	166.03
	09/17/91		9.50	166.23
	08/19/91		9.31	166.42

NOTES:

* = Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

*** = Surveyed on December 5, 1992

Well	Date	Top of Casing	Depth to	Water Table			
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)			
MW2	NOT MEASURED (DESTROYED ON FEBRUARY 7, 1996)						
	02/07/96	176.04**	5.70	170.34			
	01/29/96		5.16	170.88			
	10/26/95		8.21	167.83			
	07/28/95		7.99	168.05			
	05/02/95		6.79	169.25			
	02/23/95		7.51	168.53			
	11/18/94		6.92	169.12			
	08/22/94		8.59	167.45			
	05/19/94		7.70	168.34			
	02/28/94		6.99	169.05			
	11/24/93		8.47	167.57			
	08/30/93		8.64	167.40			
	05/18/93		7.73	168.31			
	02/23/93		6.39	169.65			
	11/13/92	198.61***	8.70	189.91			
	05/29/92	175.45	9.31	166.14			
	01/14/92		8.97	166.48			
	12/23/91		10.39	165.06			
	11/25/91		9.81	165.64			
	10/10/91		10.39	165.06			
	09/17/91		10.23	165.22			
	08/19/91		9.60	165.85			

NOTES:

* = Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
	10/00/00			
MW3	10/22/08	179.46++	9.29	170.17
	07/16/08		9.03	170.43
	04/15/08		9.19	170.27
	01/17/08	176.40*	8.90	167.50
	11/16/07		9.43	166.97
	07/25/07		9.35	167.05
	04/17/07		8.88	167.52
	01/18/07		7.32	169.08
	11/14/06		7.53	168.87
	06/29/06		7.58	168.82
	02/03/06		6.10	170.30
	11/18/05		7.63	168.77
	07/28/05		7.58	168.82
	04/13/05		6.35	170.05
	01/31/05		6.79	169.61
	10/15/04		8.28	168.12
	07/13/04		8.11	168.29
	04/06/04		7.41	168.99
	12/18/03		6.99	169.41
	09/18/03		7.91	168.49
	06/19/03		7.60	168.80
	03/18/03		7.35	169.05
	12/21/02		5.43	170.97
	09/10/02		7.97	168.43
	03/30/02		6.97	169.43
	12/22/01		6.44	169.96
	09/23/01		8.17	168.23
	06/22/01		8.06	168.34
	04/22/01		7.50	168.90
	12/14/00		8.13	168.27
	09/18/00		7.83	168.57
	09/26/00		7.77	168.63
	06/08/00		7.50	168.90
	03/09/00		6.08	170.32
	12/09/99		7.90	168.50

NOTES:

* = Surveyed on August 20, 1997 ++ = Surveyed on January 7, 2008

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW3	08/31/99	176.41**	7.95	168.45
(Continued)	04/29/99		7.09	169.31
	01/29/99		6.42	169.98
	04/26/98		6.85	169.55
	01/24/98		5.90	170.50
	11/06/97		7.80	168.80
	08/26/97		7.67	168.93
	07/24/97	176.41**	7.90	168.51
	04/25/97		7.12	169.29
	01/20/97		6.35	170.06
	07/26/96		7.84	169.57
	07/09/96		7.61	168.80
	04/23/96		6.81	169.60
	02/07/96		5.05	170.36
	01/29/96		5.77	170.64
	10/26/95		7.72	168.69
	07/28/95		7.80	168.61
	05/02/95		6.50	169.91
	02/23/95		7.24	169.17
	11/18/94		6.05	170.36
	08/22/94	190.97***	7.65	168.76
	05/19/94		7.15	169.26
	02/24/94		6.68	169.73
	11/24/93		7.55	168.86
	08/30/93		7.64	168.77
	05/18/93		7.12	169.29
	02/23/93		8.01	168.40
	11/13/92		7.86	191.12
	05/29/92	175.00	8.45	166.55
	01/14/92		8.24	166.55
	12/23/91		9.37	165.63
	11/25/91		9.19	165.81
	10/10/91		9.43	165.57
	09/17/91		9.20	165.80
	08/19/91		8.95	166.05

NOTES:

* = Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

*** = Surveyed on December 5, 1992

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW4	10/22/08	179.21++	8.46(0.08)#	170.81
	07/16/08		8.04(0.21)#	171.33
	04/15/08		8.00(0.25)#	171.40
	01/17/08	176.35*	7.50(0.17)#	168.98
	10/16/07		8.50(0.25)#	168.04
	07/25/07		8.04(0.17)#	168.44
	04/17/07		7.94(0.19)#	168.55
	01/18/07		7.38(0.21)#	169.13
	11/14/06		7.36(0.25)#	169.18
	06/29/06		Unknown	Unknown
	02/03/06		5.86	170.49
	11/18/05		7.99 (0.51)#	168.36
	07/28/05		7.59	168.76
	04/13/05		6.78 (0.01)#	169.58
	01/31/05		7.34 (0.19)#	169.15
	10/15/04		8.73 (0.15)#	167.73
	07/13/04		8.44 (0.03)#	167.93
	04/06/04		9.58 (2.83)#	168.89
	02/11/04		9.43 (2.70)#	168.95
	12/18/03		9.75 (1.51)#	167.73
	09/18/03		9.13 (1.80)#	168.57
	06/19/03		8.56 (0.31)#	168.02
	03/18/03		7.49 (0.06)#	168.91
	12/21/02		8.58 (4.39)#	171.06

NOTES:

* = Surveyed on August 20, 1997

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

++= Surveyed on January 7, 2008.

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW4				
(Continued)				
	09/10/02		9.09 (1.60)#	168.46
	03/30/02		9.86 (2.49)#	168.36
	12/22/01		7.79 (1.75)#	169.87
	09/23/01		8.97 (1.17)#	168.26
	06/22/01		7.79	168.56
	04/22/01		9.07 (2.20)#	168.93
	12/14/00		8.87 (0.72)#	168.02
	09/18/00		8.50 (0.45)#	168.19
	06/08/00		7.34	169.01
	03/09/00		6.61 (0.46)#	170.08
	12/09/99		8.80	167.55
	08/31/99		8.28	168.07
	04/29/99		7.14	169.21
	01/29/99		6.68	169.67
	04/26/98		6.87	169.48
	01/24/98		6.61	169.74
	11/06/97		9.16	167.19
	08/26/97		8.92	167.43
	08/20/97		7.66 (prior to develop	ment)

NOTES:

* = Surveyed on August 20, 1997

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW5	10/22/08 07/16/08 04/15/08 12/17/07 12/13/07 12/12/07	176.02++	6.55 6.01 5.90 5.83 5.83 5.98\$	169.47 170.01 170.12 170.19 170.19 170.04

<u>Notes:</u> ++ = Surveyed on January 7, 2008.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW6	10/22/08 07/16/08 04/15/08	175.24++	6.36 5.88 5.00	168.88 169.36 170.24
	12/17/07 12/13/07 12/11/07		5.69 5.63 6.17\$	169.55 169.61 169.07

<u>Notes:</u> ++ = Surveyed on January 7, 2008.

Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
10/22/08	170.34++	4.24 4.06	166.10 166.28
04/15/08		3.60	166.74
12/17/07		3.68	166.66
12/13/07		4.74	165.60
12/12/07		5.49 5.98\$	164.85 164.36
	Date Monitored 10/22/08 07/16/08 04/15/08 12/17/07 12/13/07 12/12/07 12/11/07	Date Top of Casing Monitored Elev. (ft.) 10/22/08 170.34++ 07/16/08 170.34++ 04/15/08 12/17/07 12/13/07 12/12/07 12/11/07 12/11/07	Date MonitoredTop of Casing Elev. (ft.)Depth to Water (ft.) $10/22/08$ $170.34++$ 4.24 $07/16/08$ 4.06 $04/15/08$ 3.60 $12/17/07$ 3.68 $12/13/07$ 4.74 $12/12/07$ 5.49 $12/11/07$ 5.98 \$

Notes:

++ = Surveyed on January 7, 2008.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW8	10/22/08 07/16/08 04/15/08	176.00++	7.91 7.20 6.76	168.09 168.80 169.24
	12/17/07		6.73	169.27
	12/13/07		6.52	169.48
	12/12/07		6.56\$	169.44

Notes:

++ = Surveyed on January 7, 2008.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW9	10/22/08 07/16/08 04/15/08	175.09++	6.96 6.57 6.44	168.13 168.52 168.65
	12/17/07 12/13/07		6.35 6.31	168.74 168.78
	12/11/07		11.21\$	163.88

Notes:

++ = Surveyed on January 7, 2008.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW10	10/22/08 07/16/08	176.03++	6.46 5.83	169.57 170.20
	4/15/08		5.64	170.39
	12/17/07		5.77	170.26
	12/13/07		5.55	170.48
	12/12/07		5.70\$	170.33

Notes:

++ = Surveyed on January 7, 2008.

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW11	10/22/08 07/16/08 04/15/08 12/17/07 12/13/07 12/12/07 12/11/07	171.03++	4.87 4.38 3.70 10.19 12.72 12.99 11.94\$	166.16 166.65 167.33 160.84 158.31 158.04 159.09

Notes: ++ = Surveyed on January 7, 2008. \$ = Prior to well development.

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW12	10/22/08 07/16/08 04/15/08 12/17/07 12/13/07	173.98++	9.02 8.47 7.77 7.71 7.66	164.96 165.51 166.21 166.27 166.32
	12/12/07		7.67\$	166.31

Notes:

++ = Surveyed on January 7, 2008. \$ = Prior to well development.

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
EW1	10/22/08	179.27++	11.40	167.87
	07/16/08		11.40	
	04/15/08		11.40	
	01/17/08	Not Surveyed	11.41	
	11/16/07	·	11.95	
	07/25/07		11.57	
	04/17/07		11.35	
	01/18/07		6.60	
	11/14/06		6.11	
	06/29/06		6.88	
	02/03/06		5.23	
	11/18/05		6.63	
	07/28/05		6.94	
	04/13/05		5.23	
	01/31/05		6.25	
	10/15/04		7.65	
	07/13/04		7.51	
	04/06/04		6.63	
	12/18/03		6.72	
	09/18/03		7.29	

NOTES:

++ = Surveyed on January 7, 2008.

Well	Date	Top of Casing	Depth to	Total Well
No.	Monitored	Elev. (ft.)	Water (ft.)	Depth (ft.)
OW1	10/22/08	178.93++	No Water; (0.33)	7.17
	07/16/08		6.95	7.17
	04/15/08		7.11	7.17
	01/17/08	Not Surveyed	4.00 Not r	neasured
	11/16/07	•	No Water or Product	7.41
	07/25/07		No Water or Product	7.41
	04/17/07		No Water or Product	7.41
	01/18/07		No Water or Product	7.41
	11/14/06		No Water (sheen)	7.41
	06/29/06		7.13	7.42
	02/03/06		6.97	7.45
	11/18/05		7.43 (0.13)#	7.50
	07/28/05		7.06 (0.01)#	7.45
	04/13/05		6.99	7.44
	01/31/05		7.03	7.44
	10/15/04		7.19 (0.08)#	7.44
	07/14/04		7.02	7.44
	04/06/04		7.01	7.44
	02/11/04		7.01	7.44
	10/06/03		7.07 (0.01)#	7.44
	11/02/00		7.12,+	
	01/29/99		7.12	
	12/09/99		7.27	

NOTES:

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

+ = Petroleum hydrocarbon odor reported on probe for water level indicator.

++ = Surveyed on January 7, 2008.

Well	Date	Top of Casing	Depth to	Total Well
No.	Monitored	Elev. (ft.)	Water (ft.)	Depth (ft.)
OW2	10/22/08	176.03++	No Water or Product	7.28
	07/16/08		No Water or Product	7.28
	04/15/08		No Water or Product	7.28
	01/17/08	Not Surveyed	No Water or Product	Not measured
	11/16/07		No Water or Product	7.28
	07/25/07		No Water or Product	7.28
	04/17/07		No Water or Product	7.28
	01/18/07		No Water or Product	7.28
	11/14/06		7.27	7.28
	06/29/06		7.30	7.33
	02/03/06		7.08	7.35
	11/18/05		7.33	7.35
	07/28/05		7.27	7.32
	04/13/05		7.06	7.35
	01/31/05		7.29	7.37
	10/15/04		No Water or Product	7.35
	07/14/04		No Water or Product	7.35
	04/06/04		7.27	7.33
	02/11/04		7.19	7.33
	10/06/03		7.29	7.34
	11/02/00		7.19	
	01/29/99		7.19	
	12/09/99		7.17	

NOTES:

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

+ = Petroleum hydrocarbon odor reported on probe for water level indicator.

++= Surveyed on January 7, 2008.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/23/08	3.8, c	18	ND<0.05	0.18	0.20	1.4	1.9	ND
07/17/08	4.3, c	16	ND<0.025	0.21	0.16	1.0	1.6	ND
04/16/08	3.2, c	13	0.029	0.15	0.11	0.87	1.2	ND
01/17/08	3.8, b	22	0.074	0.31	0.22	1.2	1.7	ND
10/16/07	2.5, a, b	23, a	0.13	0.48	0.23	1.1	1.7	ND
07/25/07	3.9, b	15, f	0.13	0.25	0.023	ND<0.01	1.5	ND
04/17/07	6.2, b	23	0.26	0.78	0.32	1.1	2.0	ND<0.025, except TBA ND<0.25

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/18/07	6.4, b	29	ND<1.0	1.8	0.87	1.6	3.3	ND<0.05, except TBA ND<0.5
11/14/06	7.2, b	30	0.44	2.2	0.60	1.8	2.9	ND<0.05, except TBA ND<0.5, Ethanol ND<5.0, Methanol ND<50.0
06/29/06	22,b	45	1.2	3.1	0.94	2.0	3.9	ND<0.05, TBA ND<0.5
02/03/06	9.7,c	37	0.62	2.2	1.2	2.0	3.5	ND<0.05, TBA ND<0.5
11/18/05	4.3,b	25	0.14	1.6	0.43	1.8	2.7	ND<0.05, TBA ND<0.5
07/28/05	16,a,b	30,a	0.26,+	2.5	0.76	2.1	4.8	ND<0.05, TBA ND<0.5
04/13/05	9.3,b	30	0.3	1.9	0.6	1.7	3	ND<0.05, TBA ND<0.5

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2
SUMMARY OF LABORATORY ANALYTICAL RESULTS
Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/31/05	14,b	29	0.27	2.2	1.2	1.9	5.0	ND<0.05, TBA
10/15/04	16,a,b	36,a	ND<0.05	1.5	1.0	2.1	5.1	ND<0.5 ND<0.05, TBA
07/13/04	22a,b	34,a	0.053	2.1	0.59	2.1	4.4	ND<0.5 ND<0.5, TBA
04/6/04	18,a,b	28,a	0.11	2.3	0.8	0.99	4.5	ND<0.5 ND<0.1 TBA
12/18/03	13,b	33	0.038	2.1	0.77	1.8	4.4	ND<1 ND<0.005 TBA
09/18/03	15,a,b	32	0.052	2.2	0.62	1.8	3.8	ND<0.05 ND<0.017 , TBA ND<0.17

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives
06/06/02	67 1	4.5	NID -0.05	0.1	0.72	2.2		by 8260*
06/26/03	67,a,b	45	ND<0.05	2.1	0.72	2.3	5.5	ND
03/18/03	7.3,a,b	33	ND<0.05	2.4	0.9	1.6	1.0	ND
12/21/02	11,a,b	32	ND<0.1	2.6	0.98	2.2	5.5	ND
09/10/02	18,c	31	ND<0.25	2.2	0.65	1.7	4.8	
03/30/02	12,a,b	99	ND	4.1	1.2	2.5	6.4	
12/22/01	22,a,b	60	ND	3.2	1.9	2	6.2	
09/23/01	16,a,c	49	ND	4	1.4	2.2	6.2	
06/22/01	85,a,b	35	ND	3.1	0.75	1.2	4.0	
04/22/01	16,a	43	ND	3.6	1.2	1.6	5.8	
12/14/00	11,a,d	49	ND	5.8	1.6	2	6.9	
09/18/00	15,a,b	86	ND	7.2	2	3.2	13	
06/8/00	6.5,a,c	50	ND	5.7	1.5	1.8	7	
03/9/00	7.4,a,b	48	ND	5.3	3.1	1.6	8.1	
12/9/99	12,a,b	65	ND	9.3	2.9	2.2	8.8	
08/31/99	22,b	66	0.71	8.7	2.7	2.4	10	
04/29/99	22,b	48	ND	8.4	2.8	2.0	8.1	
01/29/99	9.1,b	47	ND	9.0	2.9	1.9	8.0	
04/26/98	7.8,c	60	ND	9.3	5.7	2.1	9.1	
01/24/98	24,b	57	ND	6.9	5.5	2.0	8.7	
11/6/97	17,c	63	ND	7.4	6.7	2.3	9.9	
07/27/97	28,c	66	1.8	8.6	8.1	2.2	10	
04/25/97	170,b	77	ND	7.4	7.9	2.1	9.8	
01/21/97	57,c	80	0.25	7.8	8.3	1.9	8.9	
07/26/96	11,c	76	ND	11	13	2.4	10	
04/23/96	5.7,c	73	ND	8.6	12	2.2	9.8	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

 $\label{eq:MTBE} MTBE = Methyl \ tert-Butyl \ Ether.$

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/29/96	6.6,c	81	0.25	7.6	13	1.9	8.9	
10/26/95	62,c	89	ND	7.8	12	2.4	11	
07/28/95	2.0,c	35		3.8	8.7	1.1	6.5	
05/2/95	6.5,c	86		8.9	14	2.3	11	
02/24/95	9.1	90		7.5	12	1.5	11	
11/18/94	10	96		9.3	14	2.5	11	
08/22/94	8.3	100		9.0	11	2.1	9.4	
05/19/94	30	100		12	14	3.5	17	
02/28/94	110	90		11	9.6	2.1	9.9	
11/24/93	8.2	66		8.3	8.9	2.0	121	
08/30/93	9.4	77		6.4	11	2.2	12	
05/18/93	30	92		4.0	11	2.5	15	
02/23/93	14	100		4.5	11	2.1	12	
11/13/92	4.4	120		5.8	10	2.1	13	
05/27/92	11	120		8.8	16	2.3	15	
01/24/92	19	39		7.3	8.7	1.3	8.9	
12/23/91	34	78		9.3	7.3	0.54	13	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/25/91	36	170		5.5	5.6	1.6	8.4	
10/10/91	19	28		4.1	4.7	1.0	4.8	
09/17/91	19	39		4.9	4.1	1.2	5.9	
08/19/91	47	48		13	8.4	0.99	29	
07/20/91	49	100		11	14	2.3	17	
06/20/91	42	76		4.7	7.1	1.5	9.8	
05/17/91	26	72		7.7	9.9	ND	11	
04/15/91		56		6.5	8.5	0.41	9.9	
03/21/91		36		4.5	5.7	0.087	7.3	
02/15/91		120		7.4	6.6	ND	13	
01/15/91		33		3.9	2.9	0.21	5.3	
09/27/90		28		3.7	3.5	0.01	6.5	
08/23/90		40		5.1	4.9	0.35	6.0	
07/20/90	44			5.1	4.2	ND	9.1	
03/19/90		40		3.7	1.1	ND	3.3	
02/20/90*		7.6		1.6	ND	ND	1.3	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/7/96				MW2 D	estroyed			·
1/29/96	4.6,c	38	0.0071	1.9	5.7	1.1	5.9	
10/26/95	900	74	ND	2.9	5.9	2.0	10	
7/28/95	2.0,c	15		1.4	2.3	0.62	3.2	
5/2/95	6.6,b	55		3.3	10	1.8	10	
2/24/95	22	67		4.9	11	1.8	11	
11/18/94	5.0	86		11	17	1.8	12	
8/22/94	4.1	91		10	13	1.5	9.0	
5/19/94	5.8	62		92	13	1.3	8.4	
2/28/94	13	91		13	16	1.5	9.0	
11/24/93	79	12		13	17	2.5	17	
8/30/93	110	110		11	14	1.8	11	
5/18/93	44	67		9.2	12	1.4	9.3	
2/23/93	7.0	76		12	17	1.6	9.6	
11/13/92	8.2	79		10	13	1.4	8.6	
5/27/92	130	89		18	19	1.7	14	
1/14/92	1600	59		17	14	1.8	15	
12/23/91	700	2100		36	130	79	560	
11/25/91	130	230		11	9.7	1.4	9.7	
10/10/91	360	85		21	25	2.1	14	
9/17/91	56	74		10	11	1.4	8.1	
8/19/91	19	69		26	22	2.1	18	
7/20/91	100	51		9.9	7.7	1.2	7.5	
6/20/91	69	87		8.1	8.4	1.1	8.9	
5/17/91	33	62		5.9	6.3	1.2	9.0	
4/15/91		82		5.3	7.4	1.0	9.4	
3/21/91		62		9.3	11	0.35	9.7	
2/15/91		200		12	12	1.7	14	
1/14/91		78		11	8.7	0.58	8.0	
9/27/90		59		8.4	12	0.88	9.0	
8/23/90		96		8.1	8.4	1.5	8.6	
7/20/90	86			9.1	14	0.94	13	
3/19/90		50		7.7	8.7	0.075	5.6	
2/20/90**		38		7.3	3.1	0.075	6.8	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

Results in milligrams per liter (mg/L), unless otherwise indicated.

Page 7 of 28

P&D ENVIRONMENTAL, INC.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/23/08	7.8, b	87	4.7	26	ND<0.5	ND<0.5	8.2	ND, except TBA= 8.0
07/17/08	19, a, b	63, a	5.1	24	ND<1.0	ND<1.0	4.1	ND, except TBA= 6.1
04/16/08	14, a, b	52, a	6.7	24	ND<0.5	ND<0.5	5.1	ND, except TBA= 6.7
01/17/08	9.9, a, b	110, a	9.3	34	ND<0.5	2.5	9.5	ND, except TBA= 8.0
10/16/07	13, a, b	69, a	13	18	ND<0.5	ND<0.5	5.0	ND, except TBA= 10
07/25/07	6.7, a, e	52, a	12	23	ND<0.25	ND<0.25	6.0	ND, except TBA= 8.6
04/17/07	7.9, a, b	92, a	14	23	ND<0.5	1.5	5.9	ND<0.5, except TBA = 8.0
01/18/07	6.4, b	94	22	29	1.3	2.1	9.6	ND<0.5, except TBA = 12
11/14/06	21, a, b	100, a	23	37	1.0	2.2	11	ND<0.5 except, TBA= 16, Ethanol ND<5.0, Methanol ND<50.0

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no

recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).
| Date | TPH-D | TPH-G | MTBE | Benzene | Toluene | Ethyl-
benzene | Total
Xylenes | Other Fuel
Additives
by 8260* |
|----------|--------|-------|------|---------|---------|-------------------|------------------|-------------------------------------|
| 06/29/06 | 12,b | 36 | 27 | 14 | ND<0.5 | ND<0.5 | ND<0.5 | ND < 0.5, except
TBA = 11 |
| 02/03/06 | 22,b | 86 | 24 | 26 | ND<0.5 | 1.7 | 6 | ND< 0.5 , except
TBA = 11 |
| 11/18/05 | 32,a,b | 87,a | 22 | 35 | ND<1 | 2 | 11 | ND<1.0, except
TBA ND<10 |
| 07/28/05 | 77,a,b | 100,a | 32,+ | 30 | 1.1 | 2.3 | 12 | ND < 0.5, except
TBA = 13 |
| 04/13/05 | 19,a,b | 96,a | 28 | 31 | 4 | 2.3 | 12 | ND < 0.5, except
TBA = 12 |
| 01/31/05 | 13,a,b | 93,a | 31 | 36 | 1.5 | 2.5 | 11 | ND<1, except
TBA = 24 |
| 10/15/04 | 13,a,b | 76,a | 24 | 28 | ND<0.5 | 1.1 | 3.6 | ND < 0.5, except
TBA - 18 |
| 07/13/04 | 57,a,b | 98,a | 15 | 28 | 2.9 | 1.7 | 8.9 | ND < 0.5, except
TBA = 11 |
| 04/6/04 | 32,a,b | 81,a | 17 | 34 | 5.9 | 1.5 | 9.9 | ND < 0.5, except |
| 12/18/03 | 32,a,b | 130,a | 32 | 33 | 5.4 | 0.72 | 11 | ND < 0.5, except
TBA = 17 |

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

***Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including TAME, DIPE, ETBE, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm.

TABLE 2
SUMMARY OF LABORATORY ANALYTICAL RESULTS
Well MW3 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
09/18/03	140,a,b	130	23	34	11	2.5	14	ND<0.5, except
								TBA = 10
06/26/03	27,a,b	96	21	29	5.2	2.0	10	ND, except TBA = 8.9
03/18/03	11,a,b	120	16	36	12	1.8	2.4	ND, except $TBA = 5.1$
12/21/02	21,a,b	110	33	34	9.3	2.0	13	ND, except TBA = 14
09/10/02	43,b	70	19	21	2.2	1.6	7.6	
03/30/02	8.5,a,b	170	26	40	17	2.6	16	
12/22/01	9.2,a,b	140	27	37	20	2.6	15	
09/23/01	47,a,b	130	26	32	9.1	2.4	12	
06/22/01	33,a,b	110	25	31	7.2	1.9	11	
04/22/01	61,a	140	24	25	5.4	1.7	11	
12/14/00	120,a,b	140	35	37	16	2.4	15	
09/18/00	43,a,b	130	33	39	91	2.3	14	
07/26/00			21					ND***,
								except tert-
								butanol =
								19
06/8/00	74,a,b	130	23	41	16	1.9	13	
03/9/00	14,a,b	180	24	39	22	2.5	16	
12/9/99	17,a,b	120	16	35	6.7	2.4	12	
08/31/99	22,b	120	4.7	35	3.7	2.4	14	
04/29/99	48,b	100	2.5	33	8.0	2.1	14	
01/29/99	240,b	84	1.3	31	2.8	1.8	12	
04/26/98	380,b	100	9.7	29	7.1	1.8	14	
01/24/98	77,b	97	ND	28	7.1	1.8	11	
11/6/97	120,b	140	ND	37	19	2.4	14	
07/24/97	91,c	120	1.4	33	17	2.2	12	
04/25/97	760,b	240	1.6	24	18	4.1	24	
01/21/97	34,c	150	1.3	40	14	2.6	12	
07/26/96	24,c	130	0.89	40	22	2.4	12	

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

Results in milligrams per liter (mg/L), unless otherwise indicated.

Page 10 of 28

P&D Environmental, Inc.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/23/96	280.c	170	0.72	34	22	2.2	14	
01/29/96	45,c	150	0.54	32	21	1.9	12	
10/26/95	33	130	0.69	37	21	0.21	11	
07/28/95	1.9,b	86		1.4	2.3	0.62	3.2	
05/2/95	9.7,b	170		43	30	2.5	14	
02/24/95	9.2	130		31	19	1.8	10	
11/18/94	23	140		38	22	2.0	11	
07/22/94	5.3	170		35	20	1.8	10	
05/19/94	30	150		38	25	2.4	14	
02/28/94	210	110		36	21	1.9	11	
11/24/93	24	160		48	26	2.2	12	
07/30/93	32	130		36	21	1.9	8.2	
05/18/93	7.2	130		36	21	2.1	12	
02/23/93	8.1	110		31	18	1.9	11	
11/13/92	4.7	140		38	24	2.0	12	
05/27/92	27	370		91	57	3.0	21	
07/14/92	270	130		76	30	3.4	21	
12/23/91	540	740		30	61	31	180	
11/25/91	74	150		65	31	3.4	18	
10/10/91	39	140		57	31	2.2	14	
09/17/91	140	180		47	25	2.6	15	
08/19/91	150	170		82	31	4.4	22	
07/20/91	270	450		46	29	3.5	21	
06/20/91	210	920		39	49	13	69	
05/17/91	70	170		32	22	2.2	18	
04/15/91		110		31	15	0.88	7.4	
03/21/91		87		30	14	0.69	5.4	
02/15/91		230		44	40	ND	31	
01/14/91		160		48	25	1.0	16	
09/27/90		25		7.2	6.4	0.42	3.4	
08/23/90		220		67	46	27	18	
07/20/90	86			9.1	14	0.94	13	
03/19/90		210		38	28	1.8	12	
02/20/90*		46		20	15	1.8	9.7	
*								

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

** Inorganic lead not detected in sample.

Results in milligrams per liter (mg/L), unless otherwise indicated.

Page 11 of 28

P&D ENVIRONMENTAL, INC.

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/22/08			Not S	ampled (Free l	Product Prese	ent in Well)		·
07/16/08			Not S	ampled (Free l	Product Prese	ent in Well)		
04/16/08			Not S	ampled (Free l	Product Prese	ent in Well)		
01/17/08			Not S	ampled (Free l	Product Prese	ent in Well)		
10/16/07			Not S	Sampled (Free	Product Pres	sent in Well)		
07/25/07			Not S	Sampled (Free	Product Pres	sent in Well)		
04/17/07			Not S	Sampled (Free	Product Pres	sent in Well)		
01/18/07			Not S	Sampled (Free	Product Pres	sent in Well)		
11/14/06			Not S	Sampled (Free	Product Pre	sent in Well)		
06/29/06	83,a,b	140,a	31	44	13	2.6	19	ND<1.0, except TBA
02/3/06	83,a,b	150,a	22	35	12	3.2	14	ND < 0.5, except TBA = 7
11/18/05			Not S	ampled (Free l	Product Prese	ent in Well)		,
11,10,00			1000		1000001100			ND<0.5, except
07/28/05	94,a,b	130,a	27,+	32	8.9	2.9	14	TBA = 8.4

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

 $b = Laboratory \ analytical \ report \ note: \ TPH-D \ results \ consist \ of \ both \ diesel-range \ and \ gasoline-range \ compounds.$

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/13/05			Not S	ampled (Free]	Product Prese	ent in Well)		~y 0200
01/31/05			Not S	ampled (Free]	Product Prese	ent in Well)		
10/15/04			Not S	ampled (Free]	Product Prese	ent in Well)		
07/13/04			Not S	ampled (Free]	Product Prese	ent in Well)		
02/11/04	Free P	roduct samp	led. Laborate s	ory fuel finger	print notes a pline-range p	pattern resen attern.	nbling diesel,	with a less
12/18/03			Not S	ampled (Free l	Product Prese	ent in Well)		
09/18/03			Not S	ampled (Free l	Product Prese	ent in Well)		
06/26/03			Not S	ampled (Free l	Product Prese	ent in Well)		
03/18/03			Not S	ampled (Free l	Product Prese	ent in Well)		
12/21/02			Not S	ampled (Free l	Product Prese	ent in Well)		
09/10/02			Not S	ampled (Free l	Product Prese	ent in Well)		
03/30/02			Not S	ampled (Free l	Product Prese	ent in Well)		
12/22/01			Not S	ampled (Free l	Product Prese	ent in Well)		
09/23/01			Not S	ampled (Free]	Product Prese	ent in Well)		
06/22/01	440,a,b	140	15	35	19	2.0	10	
04/22/01			Not S	ampled (Free l	Product Prese	ent in Well)		
12/14/00			Not S	ampled (Free l	Product Prese	ent in Well)		
09/18/00			Not S	ampled (Free l	Product Prese	ent in Well)		
06/8/00			Not S	ampled (Free l	Product Prese	ent in Well)		
03/9/00	2,100,a,b	130	6.9	35	13	2.1	11	
12/9/99	9,000,a,b	120	8.1	33	6	2.4	12	
08/31/99	9.4,b	190	4.4	46	30	2.8	15	
04/29/99	9.4,b	210	3.2	42	35	2.8	15	
01/29/99	7.3,b	190	2.4	44	40	3.1	17	
04/26/98	13,b	190	ND	49	37	3.2	18	
01/24/98	20,b	200	ND	50	40	3.1	17	
11/6/97	110,b	160	ND	48	30	2.8	16	
08/26/97	5.5,b	210	1.7	48	42	3.4	19	
08/15/97				MW4	Installed			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/23/08	ND<0.05	ND<0.05	0.0012	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
07/17/08	ND<0.05	ND<0.05	0.0022	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
04/16/08	ND<0.05	ND<0.05	0.0039	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
12/13/07	ND<0.05	0.11	0.004	0.0053	0.0005	ND<0.0005	0.0051	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/23/08	4.1, c	82	ND<0.12	7.8	4.2	3.4	16.0	ND
07/17/08	5.7, c	88	ND<0.25	6.1	3.4	2.5	16.0	ND
04/16/08	6.5, c	51	ND<0.17	4.8	3.3	2.4	16.0	ND
12/13/07	6.2, c	66	ND<0.12	7.9	3.6	2.6	16.0	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/22/08	0.066, b	0.17	0.0083	0.067	ND<0.0017	0.020	ND<0.0017	ND
07/16/08	0.078, b	0.28	0.0070	0.059	ND<0.001	0.0083	0.0013	ND
04/15/08	0.077, b	0.17	0.0048	0.048	0.0015	0.013	0.0050	ND
12/13/07	ND<0.050	ND<0.050	0.0093	ND<0.0005	ND<0.0005	ND<0.0005	0.00083	ND, except TBA = 0.014

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/22/08	0.91, c	4.8	0.0052	0.032	ND<0.001	0.041	0.0026	ND, except; TBA = 0.0050
07/16/08	1.5, c	7.0	ND<0.005	0.053	ND<0.005	0.14	0.0071	ND
04/15/08	2.0, c	4.3	0.0065	0.063	ND<0.0025	0.11	0.0091	ND
12/13/07	1.5, c	6.2	0.011	0.057	ND<0.005	0.16	0.018	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/22/08	ND<0.050	ND<0.050	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
07/17/08	ND<0.050	ND<0.050	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
04/16/08	ND<0.050	ND<0.050	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
12/13/07	ND<0.050	ND<0.050	ND<0.0005	0.001	ND<0.0005	ND<0.0005	0.0045	ND
<u>NOTES:</u> TPH-G = To TPH-D = To	otal Petroleum otal Petroleum	Hydrocarbons Hydrocarbons	as Gasoline. as Diesel.					

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Additives by 8260*
10/23/08	ND<0.050	ND<0.050	0.0016	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
07/17/08	ND<0.050	ND<0.050	0.0015	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
04/16/08	ND<0.050	ND<0.050	0.0017	ND<0.0005	ND<0.0005	0.00060	0.00056	ND
12/13/07	ND<0.050	ND<0.050	0.0019	ND<0.0005	ND<0.0005	0.0015	0.0018	ND

0.1

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/22/08	ND<0.050	ND<0.050	0.031	ND<0.0005	ND<0.0005	ND<0.000 5	ND<0.0005	ND, except; TBA = 0.0031
07/16/08	ND<0.050	ND<0.050	0.023	ND<0.0005	ND<0.0005	ND<0.000 5	ND<0.0005	ND
04/15/08	ND<0.050	ND<0.050	0.026	ND<0.0005	ND<0.0005	ND<0.000 5	ND<0.0005	ND
12/14/07	ND<0.050	ND<0.050	0.021	ND<0.0005	ND<0.0005	ND<0.000 5	ND<0.0005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/22/08	0.054, c	0.20, f	0.011	ND<0.0005	ND<0.0005	ND<0. 0005	ND<0.0005	ND, except; TBA = 0.0023
07/16/08	0.089, b	0.44, f	0.0082	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
04/15/08	0.076, b	0.18, f	0.0091	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
12/13/07	0.200, c	0.320, f	0.011	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2
SUMMARY OF LABORATORY ANALYTICAL RESULTS
Well EW1

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
10/23/08	7.6, b	21	7.7	4.5	ND<0.12	0.82	0.39	ND, except TBA = 10
07/17/08	6.9, b	16	7.6	4.1	ND<0.10	ND<0.10	0.65	ND, except TBA = 15
04/16/08	7.7, a, b	17, a	9.3	4.5	0.26	0.65	2.2	ND, except TBA = 15
01/17/08	13, b	24	16	4.6	1.2	0.52	3.7	ND, except TBA = 19
10/16/07	12, a, b	14, a	8.3	2.6	0.31	0.27	3.0	ND, except TBA = 15
07/25/07	7.7, a, e	11, a	14	3.2	ND<0.025	ND<0.025	2.6	ND, except TBA = 17
04/17/07	5.8, b	21	9.6	3.7	1.4	0.49	1.6	ND<0.1, except TBA = 18
01/18/07	0.93, b	0.93, d	0.60	0.0034	0.0050	ND< 0.0005	0.0041	ND< 0.050, except TBA= 6.8

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/14/06	1.8, b	0.87, d	0.17	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.025, except TBA= 5.9, Ethanol ND<2.5, Methanol ND<25.0
06/29/06	0.71,b	0.29	0.021	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01, Except
02/3/06	1.2,b	0.79	3.1	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 2.0 ND<0.05, Except
11/18/05	1.2,a	0.9	2	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 13 ND<0.05, Except
07/28/05	1.8,b	1.2	17,+	0.033	0.0051	0.00056	0.0059	TBA = 18 ND<0.25, except
04/13/05	2.2,b	0.38	2.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 22 ND<0.05, except TBA = 1.6

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

+ = Analyzed by EPA Method 8260.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: reporting limit raised due to high MTBE content

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/31/05	3.4,b	1.9	38	ND<1	ND<1	ND<1	ND<1	ND<1, except
10/15/04	4.1,a,b	ND<5.0,a,e	96	ND<1.7	ND<1.7	ND<1.7	ND<1.7	ND<1.7, except
07/13/04	3.3,a,b	2.6,a	73	ND<1.2	ND<1.2	ND<1.2	ND<1.2	TBA = 97 ND<1.2, except
04/6/04	3.4,a,b	2.6,a	72	ND<1	ND<1	ND<1	ND<1	TBA = 40 ND<1, except
12/18/03	3.0,b	ND<5.0,e	160	0.22	ND<50	ND<50	0.073	TBA = 34 ND<5, except
09/18/03	8.2,a,b	7.5	220	0.33	ND<0.05	ND<0.05	ND<0.05	TBA = 64 ND<2.5, except
02/22/02	0.6			14	0 5	1.4	0.9	TBA = 51
02/23/93	9.6	66		14	8.5	1.4	9.8	
11/13/92	13	62		11	9.2	1.1	9.6	
08/92				EW1 I	nstalled			

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1 (Continued)

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

+ = Analyzed by EPA Method 8260.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

e = Laboratory analytical report note: reporting limit raised due to high MTBE content

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	TPH-MO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
10/22/08				No samp	le recovered			
07/16/08				No samp	le recovered			
04/15/08				No samp	le recovered			
01/17/08	29, a,b	6.9, a, i	8.8	0.48	ND<0.01	0.041	0.023	ND, except TBA = 0.097
10/16/07				No sampl	le recovered			
07/25/07				No sample	e recovered			
04/17/07				No sample	e recovered			
01/18/07				No sample	e recovered			
11/14/06				No sample	e recovered			
06/29/06	290,b	24						
02/3/06	710a,g	31,a	210					
11/18/05	820,b	370		0.13	ND<0.025	0.4	0.29	ND<0.025
07/28/05	230,a,b	10,a		1.3	0.03	0.19	0.072	ND<0.05,
04/13/05	590a,b,d	35,a		2	ND<0.05	0.46	0.14	TBA ND<0.5 ND<0.05, TBA ND<0.5

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

g = Fuel oil.

** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1 (Continued)

Date	TPH-D	TPH-G	TPH-MO	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
01/31/05				No sampl	e recovered			
10/15/04				No sampl	e recovered			
07/14/04	240,a,b	66,a	ND<0.05	1.8	ND<0.05	1.8	0.056	ND<0.05, TBA ND<0.5
04/6/04	74,a,b	50,a		3.1	ND<0.1	0.21	0.14	ND<0.1, TBA ND<1
02/11/04	450,a,b	15,a	130	2.2	0.031	0.16	0.054	ND<0.025,
11/21/03	1,900,a,b	38,f	570	2.0	0.059	0.19	0.095	ND<0.05, TBA ND<0.5
06/10/98				OW1	Installed			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

g = Fuel oil.

** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**
10/22/08				No sa	ample recovered	ed		
07/16/08				No sa	ample recovered	ed		
04/15/08				No sa	ample recovered	ed		
01/17/08		0.14		ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, Except MTBE = 0.0022 TBA = 0.011
10/16/07				No sa	ample recovered	ed		
07/25/07				No sa	ample recovered	ed		
04/17/07				No sa	ample recovered	ed		
01/18/07				No sa	ample recovered	ed		
11/14/06				No sa	ample recover	ed		
06/29/06				No sa	ample recovered	ed		
02/3/06	0.37,b	0.14,h	ND<0.25					
11/18/05				No sa	ample recovered	ed		
07/28/05				No sa	ample recovered	ed		
04/13/05	0.22,b	0.065		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0097

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2 (Continued)

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**
01/31/05				No sa	mple recover	ed		
10/15/04				No sa	mple recover	ed		
07/14/04				No sa	mple recover	ed		
04/6/04		0.069,a		ND <0.00062	ND <0.00062	ND <0.00062	ND <0.00062	
02/11/04		0.21		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0064 TBA = 0.0070
11/21/03				No sa	mple recover	ed.		0.0070
06/10/98				0	W2 Installed			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

 $\label{eq:MTBE} MTBE = Methyl \ tert-Butyl \ Ether.$

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

* = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

FIGURES

P&D ENVIRONMENTAL, INC. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980

Figure 1 SITE LOCATION MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

WELL MONITORING AND PURGE DATA SHEETS

GROUNDWATER	MONITORING/WELL PUR	GING
site Nome Xtra Oil / Castrole ley	Well	NO. MW1
JOD NO. 0014	Date	10/22/08 + 10/23/08
TOC to Water (ft.) \$.80	Sheen	yes '
Well Depth (ft.) 20.0	Pree	Product Thickness
Well Diameter <u>4'(0.646)</u>	Sampl	e Collection Method
Gal./Casing Vol. 7.3	Dis	possible built -
31-21-9		OF BLECTRICAL
TIME GAL. PURGED DH	TEMPERATURE	CONDUCTIVITY MU/CM
1059 2.4 6.	82 21.4	
1100 4.8 6.	66 22.3	88
1102 7:3 6.	76 23.	0 815
1103 97 6.	71 23.2	8-38
1106 17.1 6.	70 23.5	854
1109 14 6	70 23,8	862
	$\frac{1}{\sqrt{9}}$	886
	$id - \frac{d}{d} \sqrt{d}$	- <u>000</u> - <u>000</u>
1115 19.7 6.0	$\frac{00}{01} \frac{\alpha}{01} \frac{1}{7}$	
1119 21.11 6.	<u> 19.7</u>	<u>897</u>
	ana dan dari saka di kasa di ka	
······································		
	en de la Contra de Co	
NOTES: Mod. phe	odor; Sheen	
Sam	le time = 1335hrs	

**,

P&D ENVIRONMENTAL

	GROUND	P&D ENVIRONATER MONITOR	NMENTAL ING/WBLL PURGING	
Site Name	Xtra Dil/Castio	Valky	Well No.	nw3
Job No.	0014	_~/	Date 10/20	-/08 +10/23/08
TOC to Water	r (fr.) 9.29		Sheen V	es
Well Depth	(ft.) 18.6		Pree Produc	t Thickness 💋
Well Diameto	er 4" (0.646)		Sample Coll	ection Method
Gal./Casing	vol. 6.1		Dis posal	bailer
	3001-18:2)	q	BLECTRICAL
TIME	GAL. PURGED	DH	TEMPERATURE	CONDUCTIVITY MS/CA
1205	-9.0	6.55	42,2	11651
1304	<u> </u>	6.59	125.3	472
1209	6.1	6:66	33.6	1,706
1211	<u> </u>	6.67	22,7	1774
1213	10.1	6.67	24.2	<u>1,799</u>
1912	- 12. A Wel	I dewatered &	a~ 10.559110n5	
	-H.JSK	1		
	16.3			
-the decision	18:3			
·			and and a second se	
<u></u>	-			والم والم الم الم الم الم الم الم الم الم الم
		ing a surface of the	an dia mandri ang kana kana kana kana kana kana kana	
a				
	••••••••••••••••••••••••••••••••••••••			
•	and a second			
				en Marine Lannan andre Marine Marine Statistica and a statistica and a statistica and a statistica and a statis
NOTES :	mod pho	Jodor She	20	
	Sample	etimes 135	shar	

			Sphi	
GROUN	P&D ENV DWATER MONI DATA	IRONMENTAL FORING/WBLL PURGING SHEET	, ⁻ (
site Name XtraOil/(ast	role May	Well No.	MWY	
JOB NO. 0014		Date	122/2008	
TOC to Water (ft.) 8.46		Sheen	N/A	
Well Depth (ft.)		Pree Pro	duct Thickness 0.06	
Well Diameter <u>4''</u>		Sample C	ollection Method	
Gal./Casing Vol. NA		Sphence	mitered; No sample (olle	cted
TIME GAL. PURGED	рн	TEMPERATURE	BLECTRICAL	
	Topot T	we = 9.0'		
			Martine Service Contraction	
top of 1				
SPK AN	6.5	" + Top of H20		
9'-75'= 8.38'		and the second		
9-6.5"= 8.46'				
Epthickness=0.08				
FP correction = 0,08 × 0.75=0,1	06			
Corrected Water level = 8.46.	- 0.06 = 8.4	oft ToC to Hz O		
NOTES :			Setting the same of the set of th	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

sice Name Axtra Oil Castro Valky D0 14 Job No. 6.55 TOC to Water (ft.)_ 21.8 Well Depth (ft.) Well Diameter 3" (0.16) 2.5 Gal./Casing Vol. 3001275 TIME GAL. PURGED DН 100 0.8 60 In. 6 1011 ١. 7.5 3 01 2 101 4 ጚ .

ム . \

5.8

6.6

7.5

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	DATA S	ass i	· · · · · ·
4 Date $10/22/08 \pm 10/23/08$ 6.55 Sheen 10 21.8 Pree Product Thickness 0 3.5 DIB Sample Collection Method 5.5 DIB Sample Collection Method 5.5 DIB Sample Collection Method 5.5 DIB Sample Collection Method $5.6.00$ DH $3.4.4$ $5.6.00$ DIA 5.975 $5.6.417$ DDIA 6.19 1.0 DIS 6.418 1.0 DIS 6.53 1.6 DIS 6.626 3.6 DIS 6.53 1.6 DIS 6.53 <	011/(astro	Valley	Well No	MWS
$ \begin{array}{c c} 6.55 \\ \hline 21.8 \\ \hline 0.16 \\ \hline 3.5 \\ \hline 0.16 \\ \hline 0.16 \\ \hline 3.5 \\ \hline 0.16 \\ \hline 0.17 \\ \hline 0$	4	, 	Date 10/2	108 +10/23/08
21.8Free Product Thickness \square (0.16)Sample Collection Method \square $\square \cdot S$ \square </td <td>6.55</td> <td></td> <td>Sheen Λ</td> <td>10</td>	6.55		Sheen Λ	10
(0.16) Sample Collection Method 2.5 $pisjoskble bailer 3.5 pisjoskble bailer 3.5 pisjoskble bailer 3.5 pisjoskble bailer 3.6 24.4 545 b 6.49 24.4 545 b 6.49 24.4 545 b 6.49 22.6 595 5 6.47 22.6 615 5 6.49 22.1 619 3.6 595 6.49 22.1 619 3.6 626 21.8 623 626 1.6 618 626 618 618 1.6 618 617 618 617 5 6.53 21.6 617 617 1.6 617 1030hrs 1030hrs $	21.8		Pree Produ	ct Thickness
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0.16)		Sample Col	lection Method
No sheen $random no odor. Sameli time > 1030hrs$	2.5		Disposab	le bailer
DH TEMPERATURE CONDUCTIVITY M/c_{n} 8 6.60 24.4 545 b 6.49 32.6 595 5 6.47 22.6 615 3 6.49 32.6 595 5 6.47 22.6 615 3 6.49 32.1 619 1 0.50 32.1 619 1 0.50 31.6 623 0 6.53 21.6 618 0 6.53 21.6 618 0 6.53 21.6 618 0 6.53 21.6 617 0 6.53 21.6 617 0 0.53 21.6 617 0 0.53 0.16 0.17 0 0.53 0.16 0.17 0 0.53 0.16 0.17 0 0.50 0.53 0.16 0.17 0.50 0.50	1001275		0,	BLECTRICAL
$\frac{8}{6} 6.60}{6.49} 24.4 545$ $\frac{6}{6.49} 33.6 595$ $\frac{6.47}{32.6} 615$ $\frac{6.49}{32.1} 619$ $\frac{1}{22.1} 619$ $\frac{1}{22.1} 619$ $\frac{1}{22.1} 623$ $\frac{1.6}{626} 626$ $\frac{1.5}{626} 21.5 618$ $\frac{1.6}{52} 21.6 618$ $\frac{1.6}{55} 618$ $\frac{1.6}{55} 618$ $\frac{1.6}{55} 617$ $\frac{1.6}{55} 617$ $\frac{1.6}{55} 617$	PURGED	DH	TEMPERATURE	CONDUCTIVITY W/cm
	8	6.60	24.4	595
$\frac{5}{3} = \frac{6.47}{6.49} = \frac{32.6}{32.1} = \frac{6.15}{6.19}$ $\frac{1}{3} = \frac{6.49}{32.1} = \frac{6.19}{6.19}$ $\frac{1}{3} = \frac{6.50}{31.6} = \frac{21.6}{6.26} = \frac{6.26}{6.52}$ $\frac{21.6}{6.52} = \frac{21.6}{6.17} = \frac{6.18}{6.53}$ $\frac{21.6}{6.53} = \frac{6.17}{21.6} = \frac{6.17}{6.53}$ $\frac{1}{31.6} = \frac{6.17}{6.53} = \frac{1}{30}$	6	6.49	\$ 23.6	595
$\frac{3}{6.49} = \frac{22.1}{6.50} = \frac{6.99}{6.33}$ $\frac{1.6}{6.53} = \frac{21.6}{6.5} = \frac{626}{6.53}$ $\frac{1.6}{6.53} = \frac{1.6}{6.17}$ $\frac{1.6}{6.53} = \frac{6.7}{21.6} = \frac{617}{6.17}$ $\frac{1.6}{6.53} = \frac{1.6}{6.17} = \frac{1.6}{6.17}$	5	6.47	22.6	615
No sheen α no odor. Sample time $\gg 1030hrs$	3	6.49	- 22.1	619
$\frac{0}{8} \frac{6.53}{6.52} \frac{21.6}{31.5} \frac{6.26}{618} \\ \frac{6}{5} \frac{6.52}{31.6} \frac{21.6}{617} \\ \frac{6}{5} \frac{6.53}{31.6} \frac{21.6}{617} \\ \frac{6}{17} \\ $	• \	6.50	22.21.8	623
$ \frac{8}{6.52} = \frac{31.5}{31.6} = \frac{618}{618} \\ \frac{618}{6.53} = \frac{31.6}{31.6} = \frac{618}{617} \\ =$.0	6.53	21.6	626
No sheen $raisedor. Sample time \Rightarrow 1030hrs$.4	6156	21.5	618
No sheen $raised or Sample time \Rightarrow 1030h/s$		6.52	21.4	618
No sheen $roodor. Sample time \Rightarrow 1030hrs$	<u> </u>	<u>vise</u> ({ 2	21 (617
No sheen & no odor. Sample time => 1030hrs		50,00		<u>017</u>
No sheen & no odor. Sample time => 1030hrs				
No sheen & no odor. Sameli time => 1030hrs				<u></u>
No sheen & no odor. Sameli time => 1030hrs				
No sheen & no odor. Sameli time => 1030hrs				
No sheen & no odor. Sample time => 1030hrs	<u></u>			·····
No sheen & no odor. Sample time => 1030hrs				and any second spatial second s
No sheen a noodor. Sample time => 1030hrs				
No sheen a noodor. Sample time => 1030hrs	<u> </u>		مىرىپىيە يەرىكە يىن مەرمەيدىن بىرىپى بىر ى الكە	
No sheen a noodor. Sample time => 1030hrs	ur (1970 - 1970 - 1977 - 197			
No sheen & no odor. Sample time => 1030hrs		1		1-17- Repairing to the second s
	Noshern	+ no odor	Sample time >>	1030hrs

PURGE10.92

NOTES:

1016

017

1020

1022

101

Ч

GROUND	P&D ENVIR	CONMENTAL DRING/WBLL PURGING	
sire Name Xtra Oil Kastro	Valle J	Well No /	nw 6
Job No. 0014	<u> </u>	Date 10/7	2/08+10/23/08
TOC to Water (ft.) 6.36		Sheen Ne	
Well Depth (ft.) 0.5		/ Pree Produc	ct Thickness
Well Diameter 3" (0.16)		Sample Coll	lection Method
Gal./Casing Vol. D.7		Disposa	ble bailer
302=2.1		00	BLECTRICAL H. C/
TIME GAL. PURGED	<u>ph</u> (1.2	TEMPERATURE	CONDUCTIVITY MAN
1500 0.2	6,0)	$\frac{\alpha 0.2}{280}$	1,030
$\frac{1502}{1502}$	6.0	27 4	1011
$\frac{130}{1504} \qquad 0.4$	6.61	17.4	105
	6.61	27.	$\frac{1}{1071}$
$\frac{1507}{1507}$ 1.4	6.62	26.9	1018
1508 16	642	26 8	1076
1509 18	664	24.7	1070
	6.62	367	1078
	0102		401-
			a a sua a
and an	and the second		
a a far an	den et anno inne i din e Char Albie		
		and and the same state of the	
		·····	an e e e e e e e e e e e e e e e e e e e
	·		1.111.111.111 .111.111.111.111.111.111.
NOTES: Link to moderate	phc odor ;	Sheen	
27 Sam,	ple time=) i	Sadhrs	

PURGE10.92

20

	P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING					
		Xto Dillast	DATA : DATA :	SHEET	MWF	
	Sice Name	DOIN	<u> </u>		122/08	
	JOD NO					
	TOC to Wat	er $(ft.)$ $\frac{1}{2}\sigma$		Sheen <u>7</u>	F.	
	Well Depth	(ft.) 10.0	<u>``</u>	Free Produ	uct Thickness	
	Well Diame	$ter = \frac{\lambda^{(1)}}{0}$)	Sample Co	llection Method	
	Gal./Casin	g Vol. 1.V		Pispose	ble Pailor	
	TTMP) Dimon	,U	TEMPERATURE	BLECTRICAL W/cm	
	1351	DZ	696	26.0	983	
	1212	<u> </u>	6.92	25.9	91.7	
	$\frac{1}{125}$		6-10	<u>- 2011</u>	<u> </u>	
	$\frac{1222}{1251}$	$\frac{1.0}{1.2}$	(9)	<u> </u>	<u> </u>	
	1376	<u> </u>	6.10	<u> </u>	490	
	12-0	1.0	0,11	25.4	991	
	1257	<u></u>	6.79	25.2	<u> </u>	
	1400	.9.5	6.73	<u>- 25.7</u>	$\frac{188}{266}$	
	1401	3.6	6.93 -	25.0	990	
	1403	3.0	6.74	25.3	79/	
					ومنيسية والأكانية فتترك والرواح	

		•••••••				
	and the second secon					
	<u></u>				97 <u>94 97.444 44.44.974 44.444 4</u> .4	
····	NOTES:	N-ь-с	had the A	Son of it and	0501 24	
		<u>/v o S</u>	MEEN 110 Od	v. swyle Time =		

	GROUNDW	P&D ENVIR	ONMENTAL PRING/WBLL PURGING	
Site Name	Xtra Dil /Castral	DATA : 4 1-1	Well No. /	nw8
Joh No.	0014		Date 10/2	80/08
TOC to Wate	7.91		sheen N	
Well Doorb	10. 14.4	<u></u>	Brea Produ	Thickness D
Well Deput	<u> </u>			it mickness
well blamet				alla builda
Gal./Casing	$\frac{1}{2}$ Vol. $\frac{1}{2}$			Libre Lail
TIME	GAL, PURGED	На	TEMPERATURE	BLECTRICAL CONDUCTIVITY MS/CA
1543	0.4	6.60	24.5	949
1544	0.8	6.60	24.0	846
1546	1.1	6.61	23.6	902
1547	1.5	6.62	23.5	956
1549	19	6.63	23.6	1,003
1550	$-\frac{1}{2}$	6,67	23.3	1,007
1552		6.65	73.1	ALT DIZ
1550		6.65	23,2	1.02)
1905	<u> </u>	6103	23/3	1,025
1351	<u> </u>	0.06		1005
	•			
				-
	•••••••••••••••••••••••••••••		- <u> </u>	
			-	and and the second s
				<u></u>
			and and a state of the state of	•
NOTES :	٨		and the share	
	<u>_</u>	vouhich of	rlight pre odo-	
		Sanp	12 th M. =) [600hg	

	GROUNDW	P&D ENVIRON ATER MONITORI DATA SHI	imental :Ng/wbl Eet	L PURGING	
site Name Xtr	u Oil/Castroll	alley		Well No. M	IW9
JOD NO. DO	4	- 1		Date 10/22	108
TOC to Water (ft	6.96			Sheen	No
Well Depth (ft.)	21.3			Free Produc	t Thickness Ø
Well Diameter	2"(0.16)			Sample Coll	ection Method
Gal./Casing Vol.	<u>d.3</u>			Pisposab	le bailer
TIME GAL	3v31=6.9	nH	TEMPEI	RATURE C	CONDUCTIVITY W/CA
1245 0	.8	6.31	24	.6	959
1247 1	.6	6.41	S	23.7	960
1248 3	2.3	6.60	ÚR.	5-22.8	1,008
1249 7	<u> </u>	6.62	6	22.4	996
1251	3.9	6.62	73	2,1	983
1253 1	1.6	6.62	22	2.1	986
1255 5		6.62	<u> </u>	2.0	978
1257 E	».Z	6.64	20	2.0	973
1259 6	, 9	6.66	22	4.0	961
	·····				44,-16,-16,-16,-16,-16,-16,-16,-16,-16,-16
	- <u> </u>		·····		
·····					
an a					<u></u>
		<u>a</u>	······		
n - an			<u></u>	<u></u>	en Langun dan Jawa dan Asmanlar baran dalam dari yakan dari yaka dari yaka dari yaka dari yaka dari yaka dari y
					VALUE - 11 11 11 11 11 11. - 11
NOTES :	Nosheen	+ No odor	sander	fire⊋ 1310h	<u>~</u>

Site Name	Xtru Oil/Carta	Valley	Well No.	MWID
Job No	0014		Date (9	123/08 +10/23/0
TOC to Wat	er (ft.) 6.46		Sheen	Vo
Well Depth	1 (ft.) 21.6		Pree Prod	luct Thickness
Well Diame	eter 2" (a16)		Sample Co	llection Method
Gal./Casir	ng Vol. <u>2,5</u>		Dispo	sable bailer
	3001=7.5		<u>२</u>	BLECTRICAL AS
TIME ANG	GAL. PURGED	DH (CY	TEMPERATURE	CONDUCTIVITY /
		$\frac{1000}{100}$	<u>342</u>	778
$\frac{29(11)}{6912}$	<u> </u>	6,10	$\frac{\alpha}{3}$	725
<u>0717</u>	<u> </u>	$\frac{0.12}{100}$	223	744
	<u> </u>	6.70	23.1	7/2
0911	<u> </u>	652	$\frac{\alpha}{230}$	70)
	$-\frac{5.0}{5.0}$	0.55	22.6	797
09.21	-2.1	$\frac{0.52}{1.52}$	22:1	705
09.25	<u> </u>	$\frac{6151}{179}$	20.1	788
0992	7.5	6151	20.1	<u>7 18</u>
				attention and the Fill Die Die To The State
	·	والتكاريش بتباريها ومشوعه		
·				<u></u>
				
				
				• ****

P&D ENVIRONMENTAL

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WEL	, J. PURGING
DATA SHEET	* 1
site Name AtraDil/CastroValley	Well No. MWII
JOD NO. 0014	Date 10/30/08
TOC to Water (ft.) 4,87	SheenO
Well Depth (ft.) 4.4	Pree Product Thickness
Well Diameter $\frac{\partial''(\partial,1b)}{\partial}$	Sample Collection Method
Gal./Casing Vol.	Disposable baile-
3001-4.8	C BLECTRICAL
TIME GAL PURGED DH TEMPE	$\frac{\text{RATURE}}{4} = \frac{\text{CONDUCTIVITY}}{859}$
$\frac{1220}{1321}$ $\frac{0.3}{197}$ $\frac{0.10}{197}$ $\frac{10}{197}$	2 944
$\frac{1}{1221}$	$\frac{1}{9}$ $\frac{0.10}{890}$
$\frac{1555}{1224} \xrightarrow{1.6} \xrightarrow{f_101} \xrightarrow{d_1}$	$\frac{1}{899}$
$\frac{1557}{221}$ $\frac{11}{2}$ $\frac{11}{2}$ $\frac{11}{24}$ $\frac{11}{24}$	2 gol well
$\frac{1556}{1217} \frac{1}{2} \frac{1}{2} $	1 april deviations
$\frac{1577}{1020} = \frac{3.2}{7} = \frac{7.10}{7.00} = \frac{3.1}{74}$	$\frac{1}{2}$
$\frac{1339}{233} \frac{3.7}{233} \frac{7.01}{233} \frac{3.7}{233} \frac{1339}{233} \frac{3.7}{233} \frac{3.7}{233}$	
1341 The Well devotered en	Telgallons
	and the star and the
	An and a second s
an a	and any second
NOTES: No Sheen & No odon Sampletime	21620
	nandia manana di kalenda ang kang kanana kana kana kana kana ka

	GROUN	P&D ENVIR DWATER MONITO DATA S	ONMENTAL RING/WBLL PURGING SHEET	
Site Name _	Xtra Oil/Castro	Valley	Well No	MW12
Job No	0014	, 	Date 10/2	80/08
TOC to Wate	er (ft.) <u>9.0</u> }	<u>`</u>	Sheen_No	<u>)</u>
Well Depth	(Et.) 12.5		Free Produ	uct Thickness
Well Diamet	er(_0.16))	Sample Co	llection Method
Gal./Casing	vol. 0.6		Pipa	suble bader
	3001=1.8	•	oC	BLECTRICAL
TIME	GAL. PURGED	Ha	TEMPERATURE	ZZI
1500	<u></u>	6.76		765
1501	0.1	$\frac{6.67}{6.67}$	$\frac{d}{\partial Y}$	280
icu		6.01	21.1	791
1511	<u> </u>	6.67	02 8	790
1510	1.0	6.68	- 27.0 - 73.9	710
1515		$\frac{0 \cdot 6T}{1}$)2 B	798
	<u> </u>	6.61		<u>710</u> 294
1216	1.6	$\frac{6.70}{1.00}$	731	711
(218		0161	A),0	7.12
<u></u>		<u></u>		
·				
			the state fraction of the strength of the state of the st	
<u></u>	antingen generation of the state of the stat			
			میں اور	
NOTES :	Nosh	eenj veryligh	t pheodo- Samplet	inc-> 1525

N
	GROUNDW	P&D ENVIRO ATER MONITOR	NMENTAL ING/WELL PURGING	
Sita Nama	Xtra Millaston	data si kulluz	HEBT	EW1
Job No.	00/4		Date 10/	122/08 210/23/08
TOC to Wate	r (fr.) 11.40	-	Sheen A	10
Well Depth	(ft.) 13.2		Free Prod	luct Thickness Ø
Well Diamet	er 8" (2,584)		Sample Co	llection Method
Gal./Casing	vol. 4.7		Dispe	sable bailer
	300 = 14.1		<u>ەر</u>	BLECTRICAL
	GAL. PURGED	DH 6.58	24.5	922
1142	2.2	652	$\frac{\sqrt{12}}{229}$	928
1143	4.7	6,50	22.4	894
1144	6.3	6.50	22.4	888
1145	7.9	6.49	27.3	881
1146	9.4	6.48	22,3	875
1147	11.0	6.49	22.2	864
1148	12.6	6.48	22.3	863
1149	14.1	6.48	22.4	861
				delay law dia dia 1990 ang ing tina dan 1990 ang ing tina
1 <u></u>				and the second
		ang da sa si da sa		
anga jila 1990 atau atau atau atau atau atau atau ata				
		and the second distance		
			Canal Bernet - The Black Instance of Constant	<u></u>
				Carbon Carbon C
<u></u>		<u></u>		and the second state of th
NOTES :	nod ø	headerin	nosheen	And Section of the Constant o
Hearsing	~ (~neins.	Sama	Ictime => 13-15	201
	+			

PURGE10.92

	GROUNDWA	P&D ENVIRON ATER MONITOR: DATA SH	NMENTAL ING/WBLL PURGING EET	
Site Name 🥖	Xtra Oil/Casta Va	lky	Well No.	ow1
Job No	0014	- /	Date 10/	22/08
TOC to Wate	r (ft.) 7.2		Sheen	1/A
Well Depth	(ft.) 7.7	-	Free Produ	ict Thickness 4
Well Diamet	er		Sample Col	lection Method
Gal./Casing	1 Vol. <u>N/A</u>	~	No Sampli	Collected -No HzO
TIME	GAL. PURGED	На	TEMPERATURE	BLECTRICAL CONDUCTIVITY
	Man dan dan kara kara dan dan dan dan dan dan da			
	<u> </u>			
	<u> </u>			an a
	<u> </u>			
<u></u>		<u> </u>		
			<u></u>	
	4866-5664999-849-869-869-869-989-989-989-	X	<u> </u>	
a lana ang Kantan tan			<u> </u>	
	**************************************		<u> </u>	

ayı altının kalını dilli bir bir yanın yaran yaşı	**************************************			
	••••••••••		9	
<u>e.,</u>	and the second			/
				/
NOTES: NO	o Water ; DTW ga	nge did n	ot beep, but	~ 4-5" of
produc	+- (brown very stro.	ng phe odor) on probe.	antalan
PURGE10.92		2.1	,	

	GROUNE	P&D ENVI WATER MONITO DATA	RONMENTAL ORING/WBLL PURGING SHEET		
Site Name	XtraQil/(astra	valley	Well No.	OWZ	
Job No.	0014	/	Date 10	39/08	
TOC to Wate	er (st.) 7.1		Sheen	Nja	
Well Depth	(ft.) 7.1'		Pree Prod	uct Thickness Ø	
Well Diamet) []		Sample Co	llection Method	
Gal /Casing	NIA NIA		Novete	-encountered No Samo	1
TIME	GAL. PURGED	рн	TEMPERATURE	ELECTRICAL CONDUCTIVITY	'C
		<u>S</u> re			
9		aligani, at a star discussion		<u> </u>	
······································					
NOTES: NG	Sample colle	sted; No	water encounte.	<u>red</u> .	

PURGE10.92

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell A "When Oua	Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0014;	Xtra Oil/Castro	Date Sampled:	10/22/08-10/23/08			
55 Santa Clara, Ste.240	vaney		Date Received:	10/24/08			
Oakland, CA 94610	Client Contact: Steve Car	mack	Date Reported:	10/31/08			
	Client P.O.:		Date Completed:	10/31/08			

WorkOrder: 0810669

October 31, 2008

Dear Steve:

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #0014; Xtra Oil/Castro Valley,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

PROJECT NUMBER:		,	RDJECT	Thame: (tra Castr	Oil/ Valley			ilen.	100		1/		1	/	
SAMPLED BY: (PRI) Steve Carma	NTED AND	SIGNAT	URE	UL			IER OF	INA TAN		11	11		CRVAN	RE	MARKS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCATIO	н .	CONT	1/2		11	//	Pag	/		
MW1	10/23/08	1335	H20	1			7	X	X	11	T	ICE	Nor	maltur	normal
MW3	1	1355					7	X	X						T
MWS	¥	1030					7	X	X						
MWG	Y	1520		Comp	osite Liters RM	or-to	7	X	X	\square	1				
MW7	10/22/08	1630				anappo	6	X	X	\square	1		11		1
MW8		1600					7	X	X	\square	1				
MW9	V	1310			·		7	X	X	++	+		1		
MWIO	10/23/08	0935					7	X	X	++	+		11		
MWII	10/22/08	1620					6	X	X	++	+	++	++		
FW1	10/02/08	1202					+	X	X	++	+-	11	1+		1-
- W -	1905/00	1342	-		· · · · · · · · · · · · · · · · · · ·		7	X	X	LICE	112/4	k'z	1 C		P
										-65		IDITIO		APPRO	TAINERS
					·					DEC	HLOR	NATED	HI LAB	PRI-PRI	SERVED
								H		PRE	SERV	TION	VOAS O	& G, META	LS OTHER
RELINQUISHED BY:	SICHATURE		DATE	TIME	RECEIVED BY: (S	IGNATURE)		. TOTA	L 140. 0F	SAMPLES	-		BORATO	DRY:	
ATPE	1		10/2408	337	100			TOTA	140. OF	CONTINUE	15 7	5 N	1. Can	obellA	relyficel
RELINQUISHED BY:	SIGNATURE	E) /9	DATE /	SOO	RECEIVED BY: (S	IGNATURE)	-	LAR	ORAT	DRY CI	UNTAC			DRY PHO	NE NUMB
RELINQUISHED BY: (SIGNATURE)/	DATE	TIME	RECEIVED FOR LA	BORATORY	8Y:	F	s	ATTA	ANA	LYSIS I	EQUES	T SHEET	

than theother.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2:	g, CA 94565-1701 52-9262					Work	Order	: 0810	669	(ClientC	ode: P	DEO				
			WriteOr	n 🗌 EDF	Γ	Excel		Fax	[🗸 Email		Hard	lCopy	🗌 Thi	rdParty	🗌 J-	flag
Report to:							Bill to:						Req	uested	TAT:	5	days
Steve Carm P & D Enviro 55 Santa Cl Oakland, CA (510) 658-69	ack onmental ara, Ste.240 A 94610 16 FAX 510-834-0152	Email: cc: PO: ProjectNo:	lab@pdenviro xtraoil@sbcg #0014; Xtra C	Accounts Payable Xtra Oil Company 2307 Pacific Avenue Oakland, CA 94501							Date Received: 10/24/20 Date Printed: 10/29/20					2008 2008	
									Req	uested	Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0810669-001	MW-1		Water	10/23/2008 13:35		Α	В										
0810669-002	MW3		Water	10/23/2008 13:55		А	В										
0810669-003	MW5		Water	10/23/2008 10:30		А	В										
0810669-004	MW6		Water	10/23/2008 15:20		А	В										
0810669-005	MW7		Water	10/22/2008 16:30		А	В										
0810669-006	MW8		Water	10/22/2008 16:00		А	В										
0810669-007	MW9		Water	10/22/2008 13:10		А	В										
0810669-008	MW10		Water	10/23/2008 9:35		А	В										
0810669-009	MW11		Water	10/22/2008 16:20		А	В										
0810669-010	MW12		Water	10/22/2008 15:25		А	В										
0810669-011	EW1		Water	10/23/2008 13:45		А	В										

Test Legend:

1	G-MBTEX_W		2	MBTEXOXY-8260B_W
6] [7	
11		1	2	

3			
8			

4	
9	

5					
10	1				

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Samantha Arbuckle

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal				Date a	and Time Received:	10/24/08 7	:53:29 PM
Project Name:	#0014; Xtra Oil/C	asto Valle	у			Check	klist completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0810669	Matrix <u>Wa</u>	ter			Carrie	r: <u>Rob Pringle (N</u>	IAI Courier)	
			<u>Chain c</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	present?			Yes	✓	No 🗆			
Chain of custody	signed when relinqui	shed and rec	eived?	Yes	✓	No 🗆			
Chain of custody	agrees with sample l	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	,	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes	✓	No 🗆			
			Sa	mple	Receipt	Information	<u>1</u>		
Custody seals int	tact on shipping conta	iner/cooler?		Yes	\checkmark	No 🗆		NA 🗆	
Shipping containe	er/cooler in good cond	lition?		Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?		Yes	✓	No 🗌			
		<u>Sampl</u>	e Preserv	ation	and Ho	old Time (HT) Information		
All samples recei	ved within holding time	e?		Yes	✓	No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	3.1°C		NA 🗆	
Water - VOA vial	s have zero headspa	ce / no bubb	les?	Yes	✓	No 🗆	No VOA vials subm	itted 🗆	
Sample labels ch	necked for correct pres	servation?		Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?		Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type:	WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comments	s below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Envi	ronmental	Client Project ID:	#0014; Xtra	Date Sampled: 10	0/22/08	8-10/2	3/08			
55 Santa Cla	ara, Ste.240	Oll/Casuo Valley		Date Received: 10	0/24/08	4/08				
		Client Contact: St	Client Contact: Steve Carmack Date Extracted: 10							
Oakland, CA	A 94610	Client P.O.:	0/29/08	9/08-10/31/08						
Extraction metho	Gasoline Ra d SW5030B	ange (C6-C12) Vola Analytical r	atile Hydrocarbons as G nethods SW8015Cm	asoline*	ork Orde	r: 081	0669			
Lab ID	Client ID	Matrix	TPH	(g)		DF	% SS			
001A	MW-1	W	18,000),d1		20	115			
002A	MW3	W	87,000),d1		20	87			
003A	MW5	W)		1	98				
004A	MW6	W		50	103					
005A	MW7	W	170,	d1		1	94			
006A	MW8	W	4800,d	1,b1		1	119			
007A	MW9	W	NI)		1	93			
008A	MW10	W	NI)		1	94			
009A	MW11	W	NI)		1	99			
010A	MW12	W	200,	d9		1	118			
011A	EW1	W	21,000),d1		50	101			
F	Reporting Limit for DF =1;	W	50)		μg	ŗ/L			
N	D means not detected at or above the reporting limit	S	NA	A		N	A			

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

d1) weakly modified or unmodified gasoline is significant

d9) no recognizable pattern

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610 Extraction Method: SW5030B Lab ID 0810	Client Pr Oil/Castr Client Co Client P.O Oxygen	oject ID: #001 o Valley ontact: Steve	4; Xtra Carmack	Date Sampled: Date Received: Date Extracted:	10/22/08-10 10/24/08	0/23/08					
55 Santa Clara, Ste.240 Oakland, CA 94610 Extraction Method: SW5030B Lab ID 0810	Oil/Castr Client Co Client P.0 Oxygen	o Valley ontact: Steve (D.:	Carmack	Date Received:	10/24/08						
55 Santa Clara, Ste.240 Oakland, CA 94610 Extraction Method: SW5030B Lab ID 0810	Client Co Client P.O	ontact: Steve	Carmack	Date Extracted							
Oakland, CA 94610 Extraction Method: SW5030B Lab ID 0810	Client P.(Oxygen	D.:	cumuen		Date Extracted: 10/27/08-11/03/08						
Extraction Method: SW5030B Lab ID 0810	Oxygen	J.:		Dete Analand	10/27/00 11/03/00						
Extraction Method: SW5030B Lab ID 0810	Oxygen										
Lab ID 0810	Oxygenates and BTEX by GC/MS*										
	Anal 669-001B	0810669-002F	3260B 3 0810669-003B	0810669-004B	work Order:	0810669					
Client ID	/W-1	MW3	MW5	MW6	-						
Client ID	1 W - 1	111115	141 44 5		Reporting Limit for DF =1						
Matrix	W	W	W	W		DF =1					
DF	100	1000	1	250	S	W					
Compound		Co	ncentration	·	ug/kg	μg/L					
tert-Amyl methyl ether (TAME)	ID<50	ND<500	ND	ND<120	NA	0.5					
Benzene	180	26,000	ND	7800	NA	0.5					
t-Butyl alcohol (TBA) N	D<200	8000	ND	ND<500	NA	2.0					
1,2-Dibromoethane (EDB)	JD<50	ND<500	ND	ND<120	NA	0.5					
1,2-Dichloroethane (1,2-DCA)	ID<50	ND<500	ND	ND<120	NA	0.5					
Diisopropyl ether (DIPE)	ID<50	ND<500	ND	ND<120	NA	0.5					
Ethylbenzene	1400	ND<500	ND	3400	NA	0.5					
Ethyl tert-butyl ether (ETBE)	ID<50	ND<500	ND	ND<120	NA	0.5					
Methyl-t-butyl ether (MTBE)	ID<50	4700	1.2	ND<120	NA	0.5					
Toluene	200	ND<500	ND	4200	NA	0.5					
Xylenes	1900	8200	ND	16,000	NA	0.5					
	Surr	ogate Recover	ies (%)								
%SS1:	81	102	82	85							
%882:	89	88	89	98							
%SS3:	87	76	88	102							

b1) aqueous sample that contains greater than ~1 vol. % sediment

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental		Client Pr	oject ID:	#0014;	Xtra	Date Sampled:	10/22/08-1	0/23/08			
		Oil/Castr	o Valley			Date Received:					
55 Santa Clara, Ste.240		Client Co	ontact: St	teve Ca	rmack	Date Extracted: 10/27/08-11/03/0					
Oakland, CA 94610	Client P(<u>.</u>			Date Analyzed:	10/27/08-1	1/03/08				
			<u> </u>			Dute / maryzea.	10/2//00 1	1/03/00			
Extraction Method: SW5030B		Oxygen	ates and B	STEX b	y GC/MS*		Work Order	0810669			
Lab ID	08106	69-005B	0810669·	-006B	0810669-007B	0810669-008B	work Order.	0810009			
Client ID	N	IW7	MW	8	MW9	MW10	-				
Chent ID		,		0	112.009		Reporting	Limit for			
Matrix		W	W		W	W		-1			
DF	3.3	2		1	1	S	W				
Compound				Conce	entration		ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	NI	D<1.7	ND<1	1.0	ND	ND	NA	0.5			
Benzene		67 32			ND	ND	NA	0.5			
t-Butyl alcohol (TBA)	NI	D<6.7	5.0		ND	ND	NA	2.0			
1,2-Dibromoethane (EDB)	NI	D <1.7	ND<1	1.0	ND	ND	NA	0.5			
1,2-Dichloroethane (1,2-DCA)	ND<1.7		ND<1	1.0	ND	ND	NA	0.5			
Diisopropyl ether (DIPE)	NI	ND<1.7		1.0	ND	ND	NA	0.5			
Ethylbenzene		20	41		ND	ND	NA	0.5			
Ethyl tert-butyl ether (ETBE)	NI	D<1.7	ND<1	1.0	ND	ND	NA	0.5			
Methyl-t-butyl ether (MTBE)		8.3	5.2		ND	1.6	NA	0.5			
Toluene	NI	D<1.7	ND<1	1.0	ND	ND	NA	0.5			
Xylenes	NI	D<1.7	2.6		ND	ND	NA	0.5			
		Surr	ogate Rec	overies	s (%)						
%SS1:		86	80		83	85					
%SS2:		93	92		98	97					
%SS3:		99	111		103	102					
Comments			b1								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reportin	μg/L, sc es in μg/ ng limit;	il/sludge/so wipe. N/A mean	olid samples s analyte no	in mg/kg ot applica	g, product/oil/non-a	queous liquid samples.	es and all TC	LP & SPLP			

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental		Client Pr	oject ID:	#0014;	Xtra	Date Sampled:	10/22/08-10)/23/08	
		Oil/Castr	o Valley			Date Received:	10/24/08		
55 Santa Clara, Ste.240		Client Co	ontact. St	teve Carmack Date Extracted: 10/27/08-11/07					
Oakland CA 94610		Client D	<u>.</u>			Date Analyzed	10/27/09 1	1/02/08	
			Date Analyzed:	10/2//08-1	1/03/08				
		Oxygen	ates and B	TEX by	y GC/MS*		WIGI	0010660	
Extraction Method: SW 5050B Analytical Method: SW 8200B Lab ID 0810669-009B 0810669-010B 0810669-011B								0810669	
	M	W11	MW	12	FW1		_		
Client ID	141	W 11	101 00 1	12	LWI		Reporting	Limit for	
Matrix		W W			W			-1	
DF	DF 1				250		S	W	
Compound			ug/kg	µg/L					
tert-Amyl methyl ether (TAME)]	ND	ND		ND<120		NA	0.5	
Benzene]	ND			4500		NA	0.5	
t-Butyl alcohol (TBA)	3.1		2.3		10,000		NA	2.0	
1,2-Dibromoethane (EDB)]	ND	ND		ND<120		NA	0.5	
1,2-Dichloroethane (1,2-DCA)]	ND	ND		ND<120		NA	0.5	
Diisopropyl ether (DIPE)]	ND	ND		ND<120		NA	0.5	
Ethylbenzene]	ND	ND		820		NA	0.5	
Ethyl tert-butyl ether (ETBE)]	ND	ND		ND<120		NA	0.5	
Methyl-t-butyl ether (MTBE)		31	11		7700		NA	0.5	
Toluene	1	ND	ND		ND<120		NA	0.5	
Xylenes	1	ND	ND		390		NA	0.5	
		Surr	ogate Rec	overies	s (%)				
%SS1:		85	84		85				
%SS2:		99	97		96				
%SS3: 103 110 100									
%SS2: %SS3: Comments * water and vapor samples are reported in	μg/L, so	99 103 il/sludge/so	97 110 lid samples) in mg/kş	96 100 g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP	
ND means not detected above the reportin # surrogate diluted out of range or coelute	ng limit; es with a	N/A means	s analyte no x; &) low su	t applica	uble to this analysis due to matrix inter	s. ference.			

b1) aqueous sample that contains greater than ~1 vol. % sediment

Angela Rydelius, Lab Manager

	Campbell Analyti	cal, Inc.	1534 Wille Web: www.mcc: Telephor	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environ	mental	Client Project ID	e: #0014; Xtra Oil/Castr	Date Sampled: 10/	22/08-10/	23/08				
55 Santa Clara	Sto 240	Valley	Date Received: 10/24/08							
55 Santa Clara,	Ste.240	Client Contact:	Steve Carmack	teve Carmack Date Extracted: 10/24/08						
Oakland, CA 94	4610	Client P.O.:		Date Analyzed: 10/	29/08-10/	31/08				
Extraction method:	T SW3510C	otal Extractable P Analytical n	Petroleum Hydrocarbons nethods: SW8015B	* Wo	rk Order: 0	810669				
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS				
0810669-001A	MW-1	W	3800,e4	ND	1	113				
0810669-002A	MW3	W	7800,e4,e2	570	1	120				
0810669-003A	MW5	W	ND	ND	1	112				
0810669-004A	MW6	W	4100,e4	ND	1	111				
0810669-005A	MW7	W	66,e4,e2	ND	1	112				
0810669-006A	MW8	W	910,e4,b1	ND	1	113				
0810669-007A	MW9	W	ND	ND	1	99				
0810669-008A	MW10	W	ND	ND	1	113				
0810669-009A	MW11	W	ND	ND	1	115				
0810669-010A	MW12	W	54,e4	ND	1	119				
0810669-011A	EW1	W	7600,e4,e1	1900	1	120				
·		· · ·			•	•				

Reporting Limit for $DF = 1$;	W	50	250	μg/L
ND means not detected at or	8	NΔ	NΔ	mg/Kg
above the reporting limit	5	1474	1171	ing/itg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

e1) unmodified or weakly modified diesel is significant

e2) diesel range compounds are significant; no recognizable pattern

e4) gasoline range compounds are significant.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water		QC Matrix: Water						BatchID: 39164 WorkC				69
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B				Spiked Sample ID: 0810669-003A					
Analyte	Sample	le Spiked MS MSD MS-MSD LC				LCS	LCSD	LCS-LCSD	SD Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	91.4	94	2.78	99.2	101	1.86	70 - 130	20	70 - 130	20
MTBE	ND	10	104	109	4.70	103	101	1.80	70 - 130	20	70 - 130	20
Benzene	ND	10	87.1	91.2	4.53	90	90.4	0.469	70 - 130	20	70 - 130	20
Toluene	ND	10	96.1	99.7	3.71	88.8	89.4	0.682	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.2	97.8	3.71	92.3	92.9	0.641	70 - 130	20	70 - 130	20
Xylenes	ND	30	104	108	3.27	103	104	0.651	70 - 130	20	70 - 130	20
%SS:	98	10	94	98	4.12	91	92	0.601	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 39164 SUMMARY Lab ID **Date Sampled** Date Extracted Date Analyzed Lab ID **Date Sampled** Date Extracted Date Analyzed 0810669-001A 10/23/08 1:35 PM 10/30/08 10/30/08 8:26 AM 0810669-002A 10/23/08 1:55 PM 10/29/08 10/29/08 5:44 AM 0810669-002A 0810669-003A 10/29/08 7:12 AM 10/23/08 1:55 PM 10/30/08 10/30/08 4:42 AM 10/23/08 10:30 AM 10/29/08 0810669-004A 10/23/08 3:20 PM 10/29/08 10/29/08 5:14 AM 0810669-005A 10/22/08 4:30 PM 10/30/08 10/30/08 2:27 AM 0810669-006A 0810669-007A 10/29/08 8:43 AM 10/22/08 4:00 PM 10/29/08 10/29/08 8:13 AM 10/22/08 1:10 PM 10/29/08 0810669-008A 10/23/08 9:35 AM 10/29/08 10/29/08 9:13 AM 0810669-009A 10/22/08 4:20 PM 10/31/08 10/31/08 1:45 PM 0810669-010A 10/22/08 3:25 PM 10/31/08 10/31/08 2:18 PM 0810669-011A 10/23/08 1:45 PM 10/29/08 10/29/08 4:14 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matri			BatchID: 39168 Work				Drder 08106	69		
EPA Method SW8260B	Extraction SW5030B Spiked Sample ID: 0810669-001)01B	
Analyte	Sample	Spiked MS MSD MS-MSD LCS					LCSD	LCS-LCSD Acceptance Cri			e Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND<50	10	91	93.5	2.72	96.4	96.8	0.424	70 - 130	30	70 - 130	30
Benzene	180	10	113	109	2.92	104	105	1.08	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND<200	50	81.2	82.4	1.51	75.1	86.1	13.7	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND<50	10	117	122	3.85	114	114	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND<50	10	101	101	0	95	102	6.71	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND<50	10	119	109	8.13	109	111	1.97	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND<50	10	106	106	0	112	113	1.47	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND<50	10	90.1	94.2	4.49	94.4	94.2	0.196	70 - 130	30	70 - 130	30
Toluene	200	10	116	115	1.09	114	113	1.67	70 - 130	30	70 - 130	30
%SS1:	81	25	81	83	2.95	83	84	1.43	70 - 130	30	70 - 130	30
%SS2:	89	25	80	81	0.972	84	81	3.88	70 - 130	30	70 - 130	30
%SS3:	87	2.5	78	79	1.97	87	93	7.36	70 - 130	30	70 - 130	30
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 39168 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0810669-001B	10/23/08 1:35 PM	10/27/08	10/27/08 3:25 PM	0810669-002B	10/23/08 1:55 PM	10/27/08	10/27/08 11:00 PM
0810669-003B	10/23/08 10:30 AM	10/27/08	10/27/08 4:43 PM	0810669-004B	10/23/08 3:20 PM	10/28/08	10/28/08 2:48 PM
0810669-005B	10/22/08 4:30 PM	10/27/08	10/27/08 11:43 PM	0810669-006B	10/22/08 4:00 PM	10/28/08	10/28/08 3:35 PM
0810669-007B	10/22/08 1:10 PM	10/27/08	10/27/08 3:49 PM	0810669-008B	10/23/08 9:35 AM	10/27/08	10/27/08 4:32 PM
0810669-009B	10/22/08 4:20 PM	10/27/08	10/27/08 5:14 PM	0810669-010B	10/22/08 3:25 PM	10/27/08	10/27/08 5:57 PM
0810669-011B	10/23/08 1:45 PM	10/28/08	10/28/08 5:42 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water	QC Matrix: Water						BatchID: 39160			WorkOrder 0810669			
EPA Method SW8015B	Extraction SW3510C							Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	98.3	97.5	0.757	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	121	113	6.89	N/A	N/A	70 - 130	30	
All target compounds in the Method E NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:				

BATCH 39160 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0810669-001A	10/23/08 1:35 PM	10/24/08	10/29/08 8:43 AM	0810669-002A	10/23/08 1:55 PM	10/24/08	10/29/08 8:20 PM
0810669-003A	10/23/08 10:30 AM	10/24/08	10/30/08 4:44 AM	0810669-004A	10/23/08 3:20 PM	10/24/08	10/30/08 5:52 AM
0810669-005A	10/22/08 4:30 PM	10/24/08	10/30/08 7:00 AM	0810669-006A	10/22/08 4:00 PM	10/24/08	10/30/08 8:09 AM
0810669-007A	10/22/08 1:10 PM	10/24/08	10/31/08 3:20 PM	0810669-008A	10/23/08 9:35 AM	10/24/08	10/30/08 1:21 PM
0810669-009A	10/22/08 4:20 PM	10/24/08	10/30/08 2:28 PM	0810669-010A	10/22/08 3:25 PM	10/24/08	10/30/08 5:48 PM
0810669-011A	10/23/08 1:45 PM	10/24/08	10/30/08 6:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer