2307 Facific Ave., Ainmada, CA 94301

Phone: 510-865-9503
Fax: 510-865-1889
E-mail: xtraoil@prodigy.net

Xtra Oil Company

June 13, 2008

RECEIVED

12:40 pm, Jul 14, 2008

Alameda County
Environmental Health

Mr. Sreven Plunkett

Alameda County Environmental Health Department

1431 Harbor Bay Parkway, Suite 200

Alameda, CA 94502

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(MARCH THROUGH MAY 2008) CERTIFICATION

County Case # RO 285 Xtra Oil Company

3495 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Plunkett:

P&D Environmental, Inc. has prepared the following document:

• Quarterly Groundwater Monitoring and Sampling Report (March Through May 2008) dated May 22, 2008 (document 0014.R70).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9506.

Sincerely,

Xtra Oil Company

Keith Simas

0014.L152

Retail Fueling/Convenience Stores

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

May 22, 2008 Report 0014.R70

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(MARCH THROUGH MAY 2008)

County Case # RO 285 Xtra Oil Company

3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of the most recent quarterly monitoring and sampling of both the on- and off-site wells for the subject property. This work was performed in accordance with P&D's proposal 020599.P1 dated February 5, 1999. Offsite observation wells OW1 and OW2, offsite monitoring wells MW5 through MW12, and onsite wells MW1, MW3, MW4, and EW1 were monitored and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on April 15 and 16, 2008. The reporting period is for March through May 2008. A Site Location Map (Figure 1), a Site Plan showing onsite well locations (Figure 2), and a Site Vicinity Map showing offsite well locations (Figure 3) are attached with this report. Figure 3 has been updated to show the correct location of OW2. Norbridge School shown on Figure 1 to the south of the subject site has been demolished and been replaced with the Castro Valley BART station and associated parking lot.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November 1988. The fuel tanks were replaced during August 1992.

Three monitoring wells, designated MW1, MW2 and MW3, were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown on Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D).

TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10, and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentration of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photoionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively. A groundwater monitoring and sampling program was initiated at the site on February 20, 1990.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed associated with the widening of Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4, at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates methyl tertiary-butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), diisopropyl ether (DIPE), and tertiary-butyl alcohol (TBA), and lead scavengers ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site. Documentation of the well installation is provided in P&D's Monitoring Well Installation Report dated September 30, 1997 (document 0014.R25).

On May 31, 2005, P&D submitted an Interim Source Area Remediation Plan (ISARP) to ACDEH proposing free product removal at the site (document 0014.W9). P&D proposed using existing extraction well EW1 in the existing UST pit to dewater the existing pit and the previous UST pit. Monitoring of existing wells MW1, MW3, and MW4 to evaluate the effectiveness of water table drawdown at the site for plume control and associated free product recovery was also proposed.

In January 2007, P&D installed a groundwater extraction system consisting of a pump in well EW1, associated piping for discharge of water from the well, and a carbon filtration system. System operation began in February 2007. Documentation of the system installation and operation is provided in P&D's Interim Source Area Remediation Plan Progress Evaluation Report dated October 25, 2007 (document 0014.R67).

In response to a February 6, 2007 letter request from the ACDEH, P&D submitted a Groundwater Monitoring Well Installation Work Plan (MW5 Through MW13) dated March 5, 2007 (document 0014.W10) to the ACDEH proposing the installation of nine offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW13. The ACDEH conditionally approved the work plan in an April 4, 2007 letter. P&D subsequently submitted a Groundwater Monitoring Well Installation Work Plan Amendment (MW5 Through MW12) dated May 3, 2007 (document 0014.W10A) to the ACDEH proposing the installation of eight offsite groundwater monitoring wells in the vicinity of the subject site designated as MW5 through MW12. Documentation of the implementation of the work plan and work plan amendment is provided in P&D's Groundwater Monitoring Well Installation Report (MW5 Through MW12) dated January 30, 2008 (document 0014.R68).

FIELD ACTIVITIES

Offsite observation wells OW1 and OW2, offsite monitoring wells MW5 through MW12, and onsite wells MW1, MW3, MW4, and EW1 were monitored and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on April 15 and 16, 2008. The monitoring and sampling was performed in conjunction with monitoring and sampling by SOMA Environmental Engineering, Inc. of Pleasanton, California at the Former BP site at 3519 Castro Valley Boulevard. Historic monitoring and sampling data for that site are attached with this report as Appendix A.

The wells at the subject site were monitored for depth to water and the presence of free product or sheen. In well MW4 the depth to water and depth to free product were measured to the nearest 1/32-inch with a steel tape and water-finding and product-finding paste. The passive hydrocarbon collection device in well MW4 was removed by P&D personnel and placed in storage near MW1 during pressure transducer installation in well MW4 on November 2, 2006. In wells OW1, OW2, MW1, MW3, and EW1, the depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product and sheen was also evaluated using a transparent bailer in wells MW1, MW3, MW5 through MW12, and EW1. The measured free product thickness in well MW4 was 0.25 feet.

No sample was collected from MW4 due to the presence of free product in the well.

Prior to well sampling, onsite wells MW1, MW3, and EW1, and offsite wells MW5 through MW12 were purged of a minimum of three casing volumes of water or until the wells had been purged dry. Petroleum hydrocarbon odors were detected from the purge water from all three of the onsite sampled wells (MW1, MW3 and EW1), however petroleum hydrocarbon sheen was not detected on the purge water from any of the onsite wells. Petroleum hydrocarbon odors were also detected for the samples collected from offsite wells MW6, MW8, and MW12, and petroleum hydrocarbon sheen was observed on the sample collected from offsite well MW6.

During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once the field parameters were observed to stabilize and a minimum of three casing volumes had been purged, or the wells had purged dry and partially recovered, water samples were collected using a clean, new disposable bailer. Records of the field parameters measured during well purging are included with this report.

The water samples were transferred to 40-milliliter glass VOA vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials and bottles were then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-accredited hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory.

HYDROGEOLOGY

Water levels were measured in all of the wells once during the reporting period.

On January 7, 2008, Kier & Wright surveyed the top of all of the wells, including onsite wells MW1, MW3, MW4 and EW1, and offsite observation wells OW1 and OW2. The new top of well casing elevations for the wells and the associated calculated groundwater surface elevations are shown in Table 1. Comparison of the previous top of well casing elevations for wells MW1, MW3 and MW4 with the January 7, 2008 elevations shows that the January 7, 2008 elevations are 2.85, 3.06, and 2.86 feet higher, respectively, than the previously surveyed elevations. The groundwater surface elevations and associated groundwater flow direction were calculated using the January 7, 2008 survey elevations for all of the wells.

On April 15, 2008, the measured depth to water in wells MW1, MW3, MW4, and EW1 was 8.41, 9.19, 8.00, and 11.40 feet, respectively. A separate phase hydrocarbon layer measuring approximately 0.25 feet in thickness was measured in well MW4. Using a specific gravity of 0.75, the corrected depth to water in well MW4 is 7.81 feet. Since the previous monitoring event on January 7, 2008, the groundwater elevations have increased in wells MW1, MW3, and MW4 by 2.45, 2.77 and 2.42 feet, respectively (the reported change in water level has been corrected for free product presence), and the groundwater elevation in well EW1 has increased by 0.01 feet. Since the previous monitoring and sampling event of the offsite wells on December 13, 2007, the groundwater elevations have decreased in offsite groundwater monitoring wells MW5, MW8, MW9, MW10, and MW12 by 0.07, 0.24, 0.13, 0.09, and 0.11 feet, respectively, and water levels have increased in offsite groundwater monitoring wells MW6, MW7 and MW11 by 0.63, 1.14 and 9.02 feet, respectively. The measured change in well MW11 is attributed to very slow recovery of the well after development and prior to sampling in December 2007. The measured depth to water in the wells and the separate phase layer thickness measured in well MW4 are summarized in Table 1.

Based on the measured depth to groundwater in the groundwater monitoring wells, the apparent groundwater flow direction at the site on April 15, 2008 was calculated to be to the south-southwest with a gradient of 0.014. During the previous quarterly monitoring and sampling event on December 16, 2007, the groundwater flow direction was calculated to be to the south-southwest

with a gradient of 0.022. The groundwater flow direction at the site on April 15, 2008 is shown on Figure 2. The groundwater flow direction and gradient are consistent with the flow direction and gradient observed at the site during the previous monitoring and sampling event on January 17, 2008. The current groundwater flow direction and gradient are different from historic values, and are considered to be the result of groundwater pumping at well EW1 in the former UST pit which began in February 2007.

Based on review of groundwater surface elevations in offsite groundwater monitoring wells MW5 through MW12, the groundwater flow direction in the vicinity of the site is southerly, with a gradient generally ranging from approximately 0.016 to 0.018. Groundwater surface contours and elevations and the approximate groundwater flow direction in the vicinity of the site based on April 15, 2008 water level measurements from the offsite wells are shown on Figure 3.

LABORATORY RESULTS

All of the groundwater samples collected on April 15 and 16, 2008 were analyzed for TPH Multirange (TPH-G, TPH-D, and TPH-MO) using EPA Methods 5030B and 3510C in conjunction with Modified EPA Method 8015C; and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), fuel oxygenates MTBE, TAME, ETBE, TAME, and TBA, and for lead scavengers EDB and 1,2-DCA/EDC using EPA Method 5030B in conjunction with EPA Method 8260B.

The laboratory analytical results for the samples from onsite wells MW1, MW3, and EW1 show that TPH-D was detected at concentrations of 3.2, 14, and 7.7 mg/L, respectively; TPH-G was detected at concentrations of 13, 52, and 17 mg/L, respectively; benzene was detected at concentrations of 0.15, 24, and 4.5 mg/L, respectively; and MTBE was detected at concentrations of 0.029, 6.7, and 9.3 mg/L, respectively.

The laboratory analytical results for the samples from offsite wells MW5 through MW12 shows that no analytes were detected in well MW9, and that only MTBE was detected in wells MW5 and MW11 at concentrations of 0.0039 and 0.026 mg/L, respectively. In offsite well MW10, the only analytes detected were MTBE, ethylbenzene and xylenes at concentrations of 0.0017, 0.00060 and 0.00056 mg/L, respectively. In the remaining offsite wells MW6, MW7, MW8 and MW12 TPH-D was detected at concentrations of 6.5, 0.077, 2.0, and 0.076 mg/L, respectively; and TPH-G was detected at concentrations of 51, 0.17, 4.3, and 0.18 mg/L, respectively. Benzene was detected in offsite wells MW6, MW7, and MW8 at concentrations of 4.8, 0.048, and 0.063 mg/L, respectively, and was not detected in well MW12. MTBE was detected in offsite wells MW7, MW8, and MW12 at concentrations of 0.0048, 0.0065, and 0.0091 mg/L, respectively.

No other fuel oxygenates or lead scavengers were detected in any of the wells except for TBA in wells MW3, and EW1 at concentrations of 6.7, and 15 mg/L, respectively.

Review of the laboratory analytical reports shows that the TPH-D results for the samples from wells MW3, EW1, MW7, and MW12 are described as consisting of both diesel- and gasoline-range compounds, and the TPH-D results for the samples from wells MW1, MW6 and MW8 are described as consisting of gasoline-range compounds.. In addition, the laboratory identified sheen on the samples collected from wells MW3 and EW1.

Since the previous sampling event on December 13, 2007 for offsite wells MW5 through MW12, and January 17, 2008 for onsite wells MW1, MW3, EW1 and offsite wells OW1 and OW2, all analyte concentrations have decreased in well MW1, and have decreased or remained not detected in wells MW5, MW9, MW10, and MW12. In wells MW3, EW1, MW6, MW8 and MW11, analyte concentrations have decreased or remained not detected with the exceptions of TPH-D in wells MW3 and MW6, ethylbenzene in well EW1, TPH-D and benzene in well MW8, and MTBE in well MW11, which all increased in concentration. The analyte concentrations in well MW7 all increased, with the exceptions of MTBE and TBA, which decreased. The laboratory analytical results for the groundwater samples are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are included with this report.

DISCUSSION AND RECOMMENDATIONS

Onsite wells MW1, MW3, MW4, and EW1, offsite observation wells OW1 and OW2, and offsite monitoring wells MW5 through MW12 were monitored and wells MW1, MW3, EW1, and MW5 through MW12 were sampled on April 15 and 16, 2008. Separate phase hydrocarbons were detected in well MW4 at a thickness of 0.25 feet. The passive hydrocarbon collection device in well MW4 was removed on November 2, 2006, by P&D personnel during pressure transducer installation associated with preparation for dewatering the former UST pit. Dewatering of the former UST pit began February 2007 in UST pit extraction well EW1. The increase in depth to water in EW1 relative to water level measurements prior to 2007 is associated with the dewatering of the UST pit, which began during the first quarter of 2007. Similarly, the change in the onsite groundwater flow direction from a historic southeasterly flow direction to a southwesterly flow direction with a higher gradient is attributed to the UST pit dewatering.

The groundwater surface elevations and associated groundwater flow direction were calculated using the January 7, 2008 survey elevations for all of the wells. Based on review of groundwater surface elevations in offsite groundwater monitoring wells MW5 through MW12, the groundwater flow direction in the vicinity of the site is southerly, with a gradient generally ranging from approximately 0.016 to 0.018.

Since the previous monitoring and sampling event, the majority of analyte concentrations either decreased or remained not detected for all of the wells with a few noted exceptions and well MW7 where the majority of analyte concentrations increased. The UST pit dewatering pump is located in well EW1, and the increase in petroleum hydrocarbon concentrations in well EW1 when compared to water quality data prior to 2007 is attributed to groundwater with elevated concentrations of petroleum hydrocarbons moving into the UST pit as a result of the UST pit dewatering.

Based on the laboratory analytical results of the water samples collected from the monitoring wells, P&D recommends that groundwater monitoring and sampling be continued. In addition, P&D recommends that future monitoring and sampling efforts continue to be coordinated with the Former BP site at 3519 Castro Valley Boulevard. A copy of the historic water level and water quality data and a site map showing the well locations for 3519 Castro Valley Boulevard are attached with this report as Appendix A.

Based on review of historic groundwater grab sample results identified in Figures 7, 8 and 9 of P&D's Groundwater Monitoring Well Installation Report (MW5 Through MW12) dated January 30, 2008 (document 0014.R68), in conjunction with the most recent groundwater monitoring and sampling results, P&D recommends that additional groundwater grab samples be collected to further define the locations where petroleum hydrocarbons appear to be moving in higher permeability zones. P&D recommends that boreholes be drilled at locations between the 1,000 ug/L benzene isoconcentration contours shown on Figure 9 of the January 30, 2008 report and adjacent to one another at 20 foot intervals at a total of four different locations as follows.

- A total of 11 boreholes on the south side of the two buildings located immediately south of the subject site (to the east and west of historic groundwater grab sample location P4). The proposed area of investigation is to only evaluate the western lobe of the plume.
- A total of 10 boreholes on the north side of the building located in the southern central portion of the property located directly to the south of the subject site (immediately to the south of historic groundwater grab sample locations P5 and P35).
- A total of 9 boreholes on the southernmost portion of the property located directly to the south of the subject site (between historic groundwater grab sample locations P6 and P41).
- A total of 6 boreholes at the west end of Redwood Court in the northern half of the court (between historic groundwater grab sample locations P10 and P13).

Because the higher permeability zones that result in the preferential movement of petroleum hydrocarbons can be very narrow, following review of the sample results additional drilling will be performed at locations along the proposed cross sections between the proposed boreholes to further define the presence or extent of petroleum in groundwater, as necessary. Based upon the sample results, a limited number of additional boreholes are also proposed at selected locations to evaluate the vertical extent of petroleum in groundwater at locations where the highest concentrations of petroleum are encountered. Once the higher permeability zones have been better defined, P&D recommends that a feasibility study be performed for reduction of subsurface petroleum hydrocarbons as necessary.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or

other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

and H. King

Expires: 12/31/09

Attachments: Tables 1 & 2

Site Location Map (Figure 1)

Site Plan (Figure 2)

Site Vicinity Map (Figure 3)

Well Monitoring and Purge Data Sheets

Laboratory Analytical Reports and Chain of Custody Documentation

PAUL H. KING

No. 5901

Appendix A - Historic Water Level and Water Quality Data

For 3519 Castro Valley Boulevard

PHK/ sjc 0014.R70

TABLES

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	04/15/08	180.22++	8.41	171.81
	01/17/08	177.37*	8.01	169.36
	10/16/07		8.65	168.72
	07/25/07		8.49	168.88
	04/17/07		8.30	169.07
	01/18/07		7.85	169.52
	11/14/06		7.38	169.99
	06/29/06		7.80	169.57
	02/03/06		6.65	170.72
	11/18/05		8.17	169.20
	07/28/05		7.98	169.39
	04/13/05		6.90	170.47
	01/31/05		7.20	170.17
	10/15/04		8.52	168.85
	07/13/04		8.33	169.04
	04/06/04		7.93	169.44
	12/18/03		7.65	169.72
	09/18/03		8.15	169.22
	06/19/03		8.13	169.24
	03/18/03		7.77	169.60
	12/21/02		5.74	171.63
	09/10/02		8.28	169.09
	03/30/02		7.43	169.94
	12/22/01		6.92	170.45
	09/23/01		8.53	168.84
	06/22/01		8.30	169.07
	04/22/01		7.77	169.60
	12/14/00		8.49	168.88
	09/18/00		8.56	168.81
	06/08/00		7.97	169.40
	03/09/00		6.68	170.69
	12/09/99		8.15	169.22
	08/31/99		8.36	169.01
	04/29/99		7.68	169.69

^{* =} Surveyed on August 20, 1997

⁺⁺ = Surveyed on January 7, 2008

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	01/29/99	177.37*	6.99	170.38
(Continued)	04/26/98		7.50	169.87
	01/24/98		6.61	170.76
	11/06/97		8.79	168.58
	08/26/97	177.37*	8.51	168.86
	07/24/97		8.71	168.72
	04/25/97		7.98	169.45
	01/20/97		7.12	170.31
	07/26/96		8.39	169.04
	07/09/96		8.16	169.27
	04/23/96		7.47	169.96
	02/07/96		6.09	171.34
	01/29/96		6.17	171.26
	10/26/95		8.45	168.98
	07/28/95		8.27	169.16
	05/02/95		6.96	170.47
	02/23/95		7.72	169.71
	11/18/94		7.14	170.29
	08/22/94		8.67	168.76
	05/19/94	177.43**	8.05	169.38
	02/28/94		7.44	169.99
	11/24/93		8.74	168.69
	08/30/93		8.78	168.65
	05/18/93		8.12	169.31
	02/23/93		7.34	170.09
	11/13/92	200.00***	9.13	190.87
	05/29/92	175.73	8.59	167.14
	01/14/92		8.57	167.16
	12/23/91		9.65	166.08
	11/25/91		9.41	166.32
	10/10/91		9.70	166.03
	09/17/91		9.50	166.23
	08/19/91		9.31	166.42

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW2	NOT MEASU	RED (DESTROYED C	ON FEBRUARY 7, 199	6)
	02/07/96	176.04**	5.70	170.34
	01/29/96		5.16	170.88
	10/26/95		8.21	167.83
	07/28/95		7.99	168.05
	05/02/95		6.79	169.25
	02/23/95		7.51	168.53
	11/18/94		6.92	169.12
	08/22/94		8.59	167.45
	05/19/94		7.70	168.34
	02/28/94		6.99	169.05
	11/24/93		8.47	167.57
	08/30/93		8.64	167.40
	05/18/93		7.73	168.31
	02/23/93		6.39	169.65
	11/13/92	198.61***	8.70	189.91
	05/29/92	175.45	9.31	166.14
	01/14/92		8.97	166.48
	12/23/91		10.39	165.06
	11/25/91		9.81	165.64
	10/10/91		10.39	165.06
	09/17/91		10.23	165.22
	08/19/91		9.60	165.85

^{*=} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993 *** = Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW3	04/15/08	179.46++	9.19	170.27
	01/17/08	176.40*	8.90	167.50
	11/16/07		9.43	166.97
	07/25/07		9.35	167.05
	04/17/07		8.88	167.52
	01/18/07		7.32	169.08
	11/14/06		7.53	168.87
	06/29/06		7.58	168.82
	02/03/06		6.10	170.30
	11/18/05		7.63	168.77
	07/28/05		7.58	168.82
	04/13/05		6.35	170.05
	01/31/05		6.79	169.61
	10/15/04		8.28	168.12
	07/13/04		8.11	168.29
	04/06/04		7.41	168.99
	12/18/03		6.99	169.41
	09/18/03		7.91	168.49
	06/19/03		7.60	168.80
	03/18/03		7.35	169.05
	12/21/02		5.43	170.97
	09/10/02		7.97	168.43
	03/30/02		6.97	169.43
	12/22/01		6.44	169.96
	09/23/01		8.17	168.23
	06/22/01		8.06	168.34
	04/22/01		7.50	168.90
	12/14/00		8.13	168.27
	09/18/00		7.83	168.57
	09/26/00		7.77	168.63
	06/08/00		7.50	168.90
	03/09/00		6.08	170.32
	12/09/99		7.90	168.50

^{* =} Surveyed on August 20, 1997 ++ = Surveyed on January 7, 2008

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
MW3	08/31/99	176.41**	7.95	168.45
(Continued)	04/29/99		7.09	169.31
	01/29/99		6.42	169.98
	04/26/98		6.85	169.55
	01/24/98		5.90	170.50
	11/06/97		7.80	168.80
	08/26/97		7.67	168.93
	07/24/97	176.41**	7.90	168.51
	04/25/97		7.12	169.29
	01/20/97		6.35	170.06
	07/26/96		7.84	169.57
	07/09/96		7.61	168.80
	04/23/96		6.81	169.60
	02/07/96		5.05	170.36
	01/29/96		5.77	170.64
	10/26/95		7.72	168.69
	07/28/95		7.80	168.61
	05/02/95		6.50	169.91
	02/23/95		7.24	169.17
	11/18/94		6.05	170.36
	08/22/94	190.97***	7.65	168.76
	05/19/94		7.15	169.26
	02/24/94		6.68	169.73
	11/24/93		7.55	168.86
	08/30/93		7.64	168.77
	05/18/93		7.12	169.29
	02/23/93		8.01	168.40
	11/13/92		7.86	191.12
	05/29/92	175.00	8.45	166.55
	01/14/92		8.24	166.55
	12/23/91		9.37	165.63
	11/25/91		9.19	165.81
	10/10/91		9.43	165.57
	09/17/91		9.20	165.80
	08/19/91		8.95	166.05

^{*=} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW4	04/15/08	179.21++	8.00(0.25)#	171. 40
	01/17/08	176.35*	7.50(0.17)#	168.98
	10/16/07		8.50(0.25)#	168.04
	07/25/07		8.04(0.17)#	168.44
	04/17/07		7.94(0.19)#	168.55
	01/18/07		7.38(0.21)#	169.13
	11/14/06		7.36(0.25)#	169.18
	06/29/06		Unknown	Unknown
	02/03/06		5.86	170.49
	11/18/05		7.99 (0.51)#	168.36
	07/28/05		7.59	168.76
	04/13/05		6.78 (0.01)#	169.58
	01/31/05		7.34 (0.19)#	169.15
	10/15/04		8.73 (0.15)#	167.73
	07/13/04		8.44 (0.03)#	167.93
	04/06/04		9.58 (2.83)#	168.89
	02/11/04		9.43 (2.70)#	168.95
	12/18/03		9.75 (1.51)#	167.73
	09/18/03		9.13 (1.80)#	168.57
	06/19/03		8.56 (0.31)#	168.02
	03/18/03		7.49 (0.06)#	168.91
	12/21/02		8.58 (4.39)#	171.06

^{* =} Surveyed on August 20, 1997

^{# =} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

⁺⁺ = Surveyed on January 7, 2008.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW4				
(Continued)				
	09/10/02		9.09 (1.60)#	168.46
	03/30/02		9.86 (2.49)#	168.36
	12/22/01		7.79 (1.75)#	169.87
	09/23/01		8.97 (1.17)#	168.26
	06/22/01		7.79	168.56
	04/22/01		9.07 (2.20)#	168.93
	12/14/00		8.87 (0.72)#	168.02
	09/18/00		8.50 (0.45)#	168.19
	06/08/00		7.34	169.01
	03/09/00		6.61 (0.46)#	170.08
	12/09/99		8.80	167.55
	08/31/99		8.28	168.07
	04/29/99		7.14	169.21
	01/29/99		6.68	169.67
	04/26/98		6.87	169.48
	01/24/98		6.61	169.74
	11/06/97		9.16	167.19
	08/26/97		8.92	167.43
	08/20/97		7.66 (prior to develop	ment)
NOTES			, I	,

 $[\]overline{*} =$ Surveyed on August 20, 1997

^{# =} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW5	04/15/08	176.02++	5.90	170.12
	12/17/07		5.83	170.19
	12/13/07		5.83	170.19
	12/12/07		5.98\$	170.04

Notes:

^{++ =} Surveyed on January 7, 2008. \$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing Elev. (ft.)	Depth to	Water Table
No.	Monitored		Water (ft.)	Elev. (ft.)
MW6	04/15/08 12/17/07 12/13/07 12/11/07	175.24++	5.00 5.69 5.63 6.17\$	170.24 169.55 169.61 169.07

Notes:
++ = Surveyed on January 7, 2008.
\$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing Elev. (ft.)	Depth to	Water Table
No.	Monitored		Water (ft.)	Elev. (ft.)
MW7	04/15/08 12/17/07 12/13/07 12/12/07 12/11/07	170.34++	3.60 3.68 4.74 5.49 5.98\$	166.74 166.66 165.60 164.85 164.36

Notes:

^{++ =} Surveyed on January 7, 2008. \$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW8	04/15/08	176.00++	6.76	169.24
	12/17/07		6.73	169.27
	12/13/07		6.52	169.48
	12/12/07		6.56\$	169.44

Notes:
++ = Surveyed on January 7, 2008.
\$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing Elev. (ft.)	Depth to	Water Table
No.	Monitored		Water (ft.)	Elev. (ft.)
MW9	04/15/08 12/17/07 12/13/07 12/11/07	175.09++	6.44 6.35 6.31 11.21\$	168.65 168.74 168.78 163.88

Notes:

++ = Surveyed on January 7, 2008.

\$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing Elev. (ft.)	Depth to	Water Table
No.	Monitored		Water (ft.)	Elev. (ft.)
MW10	04/15/08 12/17/07 12/13/07 12/12/07	176.03++	5.64 5.77 5.55 5.70\$	170.39 170.26 170.48 170.33

Notes:

++ = Surveyed on January 7, 2008.

\$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing Elev. (ft.)	Depth to	Water Table
No.	Monitored		Water (ft.)	Elev. (ft.)
MW11	04/15/08 12/17/07 12/13/07 12/12/07 12/11/07	171.03++	3.70 10.19 12.72 12.99 11.94\$	167.33 160.84 158.31 158.04 159.09

Notes:
++ = Surveyed on January 7, 2008.
\$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing Elev. (ft.)	Depth to	Water Table
No.	Monitored		Water (ft.)	Elev. (ft.)
MW12	04/15/08 12/17/07 12/13/07 12/12/07	173.98++	7.77 7.71 7.66 7.67\$	166.21 166.27 166.32 166.31

Notes:

^{++ =} Surveyed on January 7, 2008. \$ = Prior to well development.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
EW1	04/15/08 01/17/08 11/16/07 07/25/07 04/17/07 01/18/07 11/14/06 06/29/06 02/03/06 11/18/05 07/28/05 04/13/05 01/31/05 10/15/04 07/13/04 04/06/04 12/18/03 09/18/03	179.27++ Not Surveyed	11.40 11.41 11.95 11.57 11.35 6.60 6.11 6.88 5.23 6.63 6.94 5.23 6.25 7.65 7.51 6.63 6.72 7.29	167.87
	07/10/03		1.4)	

++ = Surveyed on January 7, 2008.

TABLE 1

WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
OW1	04/15/08 01/17/08 11/16/07 07/25/07 04/17/07 01/18/07 11/14/06 06/29/06 02/03/06 11/18/05 07/28/05 04/13/05 01/31/05 10/15/04 07/14/04 04/06/04 02/11/04 10/06/03 11/02/00	178.93++ Not Surveyed	7.11 4.00 Not r No Water or Product No Water or Product No Water or Product No Water or Product No Water (sheen) 7.13 6.97 7.43 (0.13)# 7.06 (0.01)# 6.99 7.03 7.19 (0.08)# 7.02 7.01 7.01 7.07 (0.01)# 7.12,+	7.17 measured 7.41 7.41 7.41 7.41 7.42 7.45 7.50 7.45 7.44 7.44 7.44 7.44 7.44 7.44 7.44
	01/29/99 12/09/99		7.12 7.27	

^{#=} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

^{+ =} Petroleum hydrocarbon odor reported on probe for water level indicator.

^{++ =} Surveyed on January 7, 2008.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
OW2	04/15/08 01/17/08 11/16/07 07/25/07 04/17/07	176.03++ Not Surveyed	No Water or Product No Water or Product No Water or Product No Water or Product No Water or Product	7.28 Not measured 7.28 7.28 7.28
	01/18/07 11/14/06 06/29/06 02/03/06 11/18/05 07/28/05 04/13/05		No Water or Product 7.27 7.30 7.08 7.33 7.27 7.06 7.29	7.28 7.28 7.33 7.35 7.35 7.32 7.35 7.37
	10/15/04 07/14/04 04/06/04 02/11/04 10/06/03 11/02/00 01/29/99 12/09/99		No Water or Product No Water or Product 7.27 7.19 7.29 7.19 7.19 7.17	7.35 7.35 7.33 7.33 7.34

^{#=} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

^{+ =} Petroleum hydrocarbon odor reported on probe for water level indicator.

⁺⁺ = Surveyed on January 7, 2008.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1

Date	ТРН-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08	3.2, c	13	0.029	0.15	0.11	0.87	1.2	ND
01/17/08	3.8, b	22	0.074	0.31	0.22	1.2	1.7	ND
10/16/07	2.5, a, b	23, a	0.13	0.48	0.23	1.1	1.7	ND
07/25/07	3.9, b	15, f	0.13	0.25	0.023	ND<0.01	1.5	ND
04/17/07	6.2, b	23	0.26	0.78	0.32	1.1	2.0	ND<0.025, except TBA ND<0.25

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.
- f = Laboratory analytical report note: TPH-G results have no recognizable pattern.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	ТРН-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/18/07	6.4, b	29	ND<1.0	1.8	0.87	1.6	3.3	ND<0.05, except TBA ND<0.5
11/14/06	7.2, b	30	0.44	2.2	0.60	1.8	2.9	ND<0.05, except TBA ND<0.5, Ethanol ND<5.0, Methanol ND<50.0
06/29/06	22,b	45	1.2	3.1	0.94	2.0	3.9	ND<0.05, TBA ND<0.5
02/03/06	9.7,c	37	0.62	2.2	1.2	2.0	3.5	ND<0.05, TBA ND<0.5
11/18/05	4.3,b	25	0.14	1.6	0.43	1.8	2.7	ND<0.05, TBA ND<0.5
07/28/05	16,a,b	30,a	0.26,+	2.5	0.76	2.1	4.8	ND<0.05, TBA ND<0.5
04/13/05	9.3,b	30	0.3	1.9	0.6	1.7	3	ND<0.05, TBA ND<0.5

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/31/05	14,b	29	0.27	2.2	1.2	1.9	5.0	ND<0.05, TBA
10/15/04	16,a,b	36,a	ND<0.05	1.5	1.0	2.1	5.1	ND<0.5 ND<0.05, TBA
07/13/04	22a,b	34,a	0.053	2.1	0.59	2.1	4.4	ND<0.5 ND<0.5, TBA
04/6/04	18,a,b	28,a	0.11	2.3	0.8	0.99	4.5	ND<0.5 ND<0.1 TBA
12/18/03	13,b	33	0.038	2.1	0.77	1.8	4.4	ND<1 ND<0.005 TBA
09/18/03	15,a,b	32	0.052	2.2	0.62	1.8	3.8	ND<0.05 ND<0.017 , TBA ND<0.17

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
06/26/03	67,a,b	45	ND<0.05	2.1	0.72	2.3	5.5	ND
03/18/03	7.3,a,b	33	ND<0.05	2.4	0.9	1.6	1.0	ND
12/21/02	11,a,b	32	ND<0.1	2.6	0.98	2.2	5.5	ND
09/10/02	18,c	31	ND<0.25	2.2	0.65	1.7	4.8	
03/30/02	12,a,b	99	ND	4.1	1.2	2.5	6.4	
12/22/01	22,a,b	60	ND	3.2	1.9	2	6.2	
09/23/01	16,a,c	49	ND	4	1.4	2.2	6.2	
06/22/01	85,a,b	35	ND	3.1	0.75	1.2	4.0	
04/22/01	16,a	43	ND	3.6	1.2	1.6	5.8	
12/14/00	11,a,d	49	ND	5.8	1.6	2	6.9	
09/18/00	15,a,b	86	ND	7.2	2	3.2	13	
06/8/00	6.5,a,c	50	ND	5.7	1.5	1.8	7	
03/9/00	7.4,a,b	48	ND	5.3	3.1	1.6	8.1	
12/9/99	12,a,b	65	ND	9.3	2.9	2.2	8.8	
08/31/99	22,b	66	0.71	8.7	2.7	2.4	10	
04/29/99	22,b	48	ND	8.4	2.8	2.0	8.1	
01/29/99	9.1,b	47	ND	9.0	2.9	1.9	8.0	
04/26/98	7.8,c	60	ND	9.3	5.7	2.1	9.1	
01/24/98	24,b	57	ND	6.9	5.5	2.0	8.7	
11/6/97	17,c	63	ND	7.4	6.7	2.3	9.9	
07/27/97	28,c	66	1.8	8.6	8.1	2.2	10	
04/25/97	170,b	77	ND	7.4	7.9	2.1	9.8	
01/21/97	57,c	80	0.25	7.8	8.3	1.9	8.9	
07/26/96	11,c	76	ND	11	13	2.4	10	
04/23/96	5.7,c	73	ND	8.6	12	2.2	9.8	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	ТРН-С	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/29/96	6.6,c	81	0.25	7.6	13	1.9	8.9	
10/26/95	62,c	89	ND	7.8	12	2.4	11	
07/28/95	2.0,c	35		3.8	8.7	1.1	6.5	
05/2/95	6.5,c	86		8.9	14	2.3	11	
02/24/95	9.1	90		7.5	12	1.5	11	
11/18/94	10	96		9.3	14	2.5	11	
08/22/94	8.3	100		9.0	11	2.1	9.4	
05/19/94	30	100		12	14	3.5	17	
02/28/94	110	90		11	9.6	2.1	9.9	
11/24/93	8.2	66		8.3	8.9	2.0	121	
08/30/93	9.4	77		6.4	11	2.2	12	
05/18/93	30	92		4.0	11	2.5	15	
02/23/93	14	100		4.5	11	2.1	12	
11/13/92	4.4	120		5.8	10	2.1	13	
05/27/92	11	120		8.8	16	2.3	15	
01/24/92	19	39		7.3	8.7	1.3	8.9	
12/23/91	34	78		9.3	7.3	0.54	13	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.
- + = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/25/91	36	170		5.5	5.6	1.6	8.4	
10/10/91	19	28		4.1	4.7	1.0	4.8	
09/17/91	19	39		4.9	4.1	1.2	5.9	
08/19/91	47	48		13	8.4	0.99	29	
07/20/91	49	100		11	14	2.3	17	
06/20/91	42	76		4.7	7.1	1.5	9.8	
05/17/91	26	72		7.7	9.9	ND	11	
04/15/91		56		6.5	8.5	0.41	9.9	
03/21/91		36		4.5	5.7	0.087	7.3	
02/15/91		120		7.4	6.6	ND	13	
01/15/91		33		3.9	2.9	0.21	5.3	
09/27/90		28		3.7	3.5	0.01	6.5	
08/23/90		40		5.1	4.9	0.35	6.0	
07/20/90	44			5.1	4.2	ND	9.1	
03/19/90		40		3.7	1.1	ND	3.3	
02/20/90*		7.6		1.6	ND	ND	1.3	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Results in milligrams per liter (mg/L), unless otherwise indicated.

.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2

Date	TPH-D	трн-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/7/96				MW2 D	estroyed			
1/29/96	4.6,c	38	0.0071	1.9	5.7	1.1	5.9	
10/26/95	900	74	ND	2.9	5.9	2.0	10	
7/28/95	2.0,c	15		1.4	2.3	0.62	3.2	
5/2/95	6.6,b	55		3.3	10	1.8	10	
2/24/95	22	67		4.9	11	1.8	11	
11/18/94	5.0	86		11	17	1.8	12	
8/22/94	4.1	91		10	13	1.5	9.0	
5/19/94	5.8	62		92	13	1.3	8.4	
2/28/94	13	91		13	16	1.5	9.0	
11/24/93	79	12		13	17	2.5	17	
8/30/93	110	110		11	14	1.8	11	
5/18/93	44	67		9.2	12	1.4	9.3	
2/23/93	7.0	76		12	17	1.6	9.6	
11/13/92	8.2	79		10	13	1.4	8.6	
5/27/92	130	89		18	19	1.7	14	
1/14/92	1600	59		17	14	1.8	15	
12/23/91	700	2100		36	130	79	560	
11/25/91	130	230		11	9.7	1.4	9.7	
10/10/91	360	85		21	25	2.1	14	
9/17/91	56	74		10	11	1.4	8.1	
8/19/91	19	69		26	22	2.1	18	
7/20/91	100	51		9.9	7.7	1.2	7.5	
6/20/91	69	87		8.1	8.4	1.1	8.9	
5/17/91	33	62		5.9	6.3	1.2	9.0	
4/15/91		82		5.3	7.4	1.0	9.4	
3/21/91		62		9.3	11	0.35	9.7	
2/15/91		200		12	12	1.7	14	
1/14/91		78		11	8.7	0.58	8.0	
9/27/90		59		8.4	12	0.88	9.0	
8/23/90		96		8.1	8.4	1.5	8.6	
7/20/90	86			9.1	14	0.94	13	
3/19/90		50		7.7	8.7	0.075	5.6	
2/20/90** NOTES:		38		7.3	3.1	0.075	6.8	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

^{-- =} Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

^{**} Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08	14, a, b	52, a	6.7	24	ND<0.5	ND<0.5	5.1	ND, except TBA= 6.7
01/17/08	9.9, a, b	110, a	9.3	34	ND<0.5	2.5	9.5	ND, except TBA= 8.0
10/16/07	13, a, b	69, a	13	18	ND<0.5	ND<0.5	5.0	ND, except TBA= 10
07/25/07	6.7, a, e	52, a	12	23	ND<0.25	ND<0.25	6.0	ND, except TBA= 8.6
04/17/07	7.9, a, b	92, a	14	23	ND<0.5	1.5	5.9	ND<0.5, except $TBA = 8.0$
01/18/07	6.4, b	94	22	29	1.3	2.1	9.6	ND<0.5, except TBA = 12
11/14/06	21, a, b	100, a	23	37	1.0	2.2	11	ND<0.5 except, TBA= 16, Ethanol
								ND<5.0, Methanol ND<50.0

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
06/29/06	12,b	36	27	14	ND<0.5	ND<0.5	ND<0.5	ND < 0.5, except $TBA = 11$
02/03/06	22,b	86	24	26	ND<0.5	1.7	6	ND<0.5, except $TBA = 11$
11/18/05	32,a,b	87,a	22	35	ND<1	2	11	ND<1.0, except TBA ND<10
07/28/05	77,a,b	100,a	32,+	30	1.1	2.3	12	ND<0.5, except $TBA = 13$
04/13/05	19,a,b	96,a	28	31	4	2.3	12	ND<0.5, except $TBA = 12$
01/31/05	13,a,b	93,a	31	36	1.5	2.5	11	ND<1, except $TBA = 24$
10/15/04	13,a,b	76,a	24	28	ND<0.5	1.1	3.6	ND < 0.5, except $TBA = 18$
07/13/04	57,a,b	98,a	15	28	2.9	1.7	8.9	ND<0.5, except $TBA = 11$
04/6/04	32,a,b	81,a	17	34	5.9	1.5	9.9	ND < 0.5, except TBA = 8.8
12/18/03	32,a,b	130,a	32	33	5.4	0.72	11	ND<0.5, except TBA = 17

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

***Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including TAME, DIPE, ETBE, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
09/18/03	140,a,b	130	23	34	11	2.5	14	ND<0.5, except TBA = 10
06/26/03	27,a,b	96	21	29	5.2	2.0	10	ND, except $TBA = 8.9$
03/18/03	11,a,b	120	16	36	12	1.8	2.4	ND, except $TBA = 5.1$
12/21/02	21,a,b	110	33	34	9.3	2.0	13	ND, except $TBA = 14$
09/10/02	43,b	70	19	21	2.2	1.6	7.6	
03/30/02	8.5,a,b	170	26	40	17	2.6	16	
12/22/01	9.2,a,b	140	27	37	20	2.6	15	
09/23/01	47,a,b	130	26	32	9.1	2.4	12	
06/22/01	33,a,b	110	25	31	7.2	1.9	11	
04/22/01	61,a	140	24	25	5.4	1.7	11	
12/14/00	120,a,b	140	35	37	16	2.4	15	
09/18/00	43,a,b	130	33	39	91	2.3	14	
07/26/00			21					ND***,
								except tert- butanol = 19
06/8/00	74,a,b	130	23	41	16	1.9	13	
03/9/00	14,a,b	180	24	39	22	2.5	16	
12/9/99	17,a,b	120	16	35	6.7	2.4	12	
08/31/99	22,b	120	4.7	35	3.7	2.4	14	
04/29/99	48,b	100	2.5	33	8.0	2.1	14	
01/29/99	240,b	84	1.3	31	2.8	1.8	12	
04/26/98	380,b	100	9.7	29	7.1	1.8	14	
01/24/98	77,b	97	ND	28	7.1	1.8	11	
11/6/97	120,b	140	ND	37	19	2.4	14	
07/24/97	91,c	120	1.4	33	17	2.2	12	
04/25/97	760,b	240	1.6	24	18	4.1	24	
01/21/97	34,c	150	1.3	40	14	2.6	12	
07/26/96	24,c	130	0.89	40	22	2.4	12	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

^{**} Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/23/96	280,c	170	0.72	34	22	2.2	14	
01/29/96	45,c	150	0.54	32	21	1.9	12	
10/26/95	33	130	0.69	37	21	0.21	11	
07/28/95	1.9,b	86		1.4	2.3	0.62	3.2	
05/2/95	9.7,b	170		43	30	2.5	14	
02/24/95	9.2	130		31	19	1.8	10	
11/18/94	23	140		38	22	2.0	11	
07/22/94	5.3	170		35	20	1.8	10	
05/19/94	30	150		38	25	2.4	14	
02/28/94	210	110		36	21	1.9	11	
11/24/93	24	160		48	26	2.2	12	
07/30/93	32	130		36	21	1.9	8.2	
05/18/93	7.2	130		36	21	2.1	12	
02/23/93	8.1	110		31	18	1.9	11	
11/13/92	4.7	140		38	24	2.0	12	
05/27/92	27	370		91	57	3.0	21	
07/14/92	270	130		76	30	3.4	21	
12/23/91	540	740		30	61	31	180	
11/25/91	74	150		65	31	3.4	18	
10/10/91	39	140		57	31	2.2	14	
09/17/91	140	180		47	25	2.6	15	
08/19/91	150	170		82	31	4.4	22	
07/20/91	270	450		46	29	3.5	21	
06/20/91	210	920		39	49	13	69	
05/17/91	70	170		32	22	2.2	18	
04/15/91		110		31	15	0.88	7.4	
03/21/91		87		30	14	0.69	5.4	
02/15/91		230		44	40	ND	31	
01/14/91		160		48	25	1.0	16	
09/27/90		25		7.2	6.4	0.42	3.4	
08/23/90		220		67	46	27	18	
07/20/90	86			9.1	14	0.94	13	
03/19/90		210		38	28	1.8	12	
02/20/90*		46		20	15	1.8	9.7	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

^{**} Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4

Date	TPH-D	ТРН-С	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08			Not Sa	ampled (Free	Product Prese	ent in Well)		
01/17/08			Not Sa	ampled (Free	Product Prese	ent in Well)		
10/16/07			Not S	Sampled (Free	Product Pres	sent in Well)		
07/25/07			Not S	Sampled (Free	Product Pres	sent in Well)		
04/17/07			Not S	Sampled (Free	Product Pres	sent in Well)		
01/18/07			Not S	Sampled (Free	Product Pres	sent in Well)		
11/14/06			Not S	Sampled (Free	e Product Pre	sent in Well)		
06/29/06	83,a,b	140,a	31	44	13	2.6	19	ND<1.0,
								except TBA
								= ND < 10
02/3/06	83,a,b	150,a	22	35	12	3.2	14	ND<0.5, except
								TBA = 7
11/18/05			Not Sa	ampled (Free	Product Prese	ent in Well)		
				-				ND<0.5, except
07/28/05	94,a,b	130,a	27,+	32	8.9	2.9	14	TBA = 8.4

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

 $MTBE = Methyl \ tert\text{-}Butyl \ Ether.$

ND = Not Detected.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

^{+ =} Analyzed by EPA Method 8260.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4 (Continued)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/13/05			Not S	ampled (Free l	Product Prese	ent in Well)		
01/31/05				ampled (Free 1				
10/15/04				ampled (Free)				
07/13/04			Not S	ampled (Free)	Product Prese	ent in Well)		
02/11/04	Free Pr	roduct samp		ory fuel finger			nbling diesel,	with a less
		-	S	ignificant gase	oline-range p	attern.		
12/18/03			Not S	ampled (Free)	Product Prese	ent in Well)		
09/18/03			Not S	ampled (Free)	Product Prese	ent in Well)		
06/26/03			Not S	ampled (Free	Product Prese	ent in Well)		
03/18/03			Not S	ampled (Free	Product Prese	ent in Well)		
12/21/02			Not S	ampled (Free l	Product Prese	ent in Well)		
09/10/02			Not S	ampled (Free l	Product Prese	ent in Well)		
03/30/02			Not S	ampled (Free 1	Product Prese	ent in Well)		
12/22/01			Not S	ampled (Free 1	Product Prese	ent in Well)		
09/23/01			Not S	ampled (Free 1	Product Prese	ent in Well)		
06/22/01	440,a,b	140	15	35	19	2.0	10	
04/22/01			Not S	ampled (Free l	Product Prese	ent in Well)		
12/14/00			Not S	ampled (Free l	Product Prese	ent in Well)		
09/18/00			Not S	ampled (Free l	Product Prese	ent in Well)		
06/8/00			Not S	ampled (Free l	Product Prese	ent in Well)		
03/9/00	2,100,a,b	130	6.9	35	13	2.1	11	
12/9/99	9,000,a,b	120	8.1	33	6	2.4	12	
08/31/99	9.4,b	190	4.4	46	30	2.8	15	
04/29/99	9.4,b	210	3.2	42	35	2.8	15	
01/29/99	7.3,b	190	2.4	44	40	3.1	17	
04/26/98	13,b	190	ND	49	37	3.2	18	
01/24/98	20,b	200	ND	50	40	3.1	17	
11/6/97	110,b	160	ND	48	30	2.8	16	
08/26/97	5.5,b	210	1.7	48	42	3.4	19	
08/15/97				MW ²	Installed			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

⁺ = Analyzed by EPA Method 8260.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives
							•	by 8260*
04/16/08	ND<0.05	ND < 0.05	0.0039	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
12/13/07	ND<0.05	0.11	0.004	0.0053	0.0005	ND<0.0005	0.0051	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08	6.5, c	51	ND<0.17	4.8	3.3	2.4	16.0	ND
12/13/07	6.2, c	66	ND<0.12	7.9	3.6	2.6	16.0	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

 $b = Laboratory \ analytical \ report \ note: \ TPH-D \ results \ consist \ of \ both \ diesel-range \ and \ gasoline-range \ compounds.$

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

Date	TPH-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/15/08	0.077, b	0.17	0.0048	0.048	0.0015	0.013	0.0050	ND
12/13/07	ND<0.050	ND<0.050	0.0093	ND<0.0005	ND<0.0005	ND<0.0005	0.00083	ND, except $TBA = 0.014$

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/15/08	2.0, c	4.3	0.0065	0.063	ND<0.0025	0.11	0.0091	ND
12/13/07	1.5, c	6.2	0.011	0.057	ND<0.005	0.16	0.018	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

 $MTBE = Methyl \ tert\text{-}Butyl \ Ether.$

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08	ND<0.050	ND<0.050	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
12/13/07	ND<0.050	ND<0.050	ND<0.0005	0.001	ND<0.0005	ND<0.0005	0.0045	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08	ND<0.050	ND<0.050	0.0017	ND<0.0005	ND<0.0005	0.00060	0.00056	ND
12/13/07	ND<0.050	ND<0.050	0.0019	ND<0.0005	ND<0.0005	0.0015	0.0018	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/15/08	ND<0.050	ND<0.050	0.026	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
12/14/07	ND<0.050	ND<0.050	0.021	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

DIFE, ETDE, and TDA) of lead scavengers (EDD, 1,2-DCA/EDC)

Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/15/08	0.076, b	0.18, f	0.0091	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
12/13/07	0.200, c	0.320, f	0.011	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results contain significant gasoline-range compounds.

d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds.

f = Laboratory analytical report note: TPH-G results have no recognizable pattern.

+ = Analyzed by EPA Method 8260.

* = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1

Date	TPH-D	ТРН-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
04/16/08	7.7, a, b	17, a	9.3	4.5	0.26	0.65	2.2	ND, except TBA = 15
01/17/08	13, b	24	16	4.6	1.2	0.52	3.7	ND, except TBA = 19
10/16/07	12, a, b	14, a	8.3	2.6	0.31	0.27	3.0	ND, except TBA = 15
07/25/07	7.7, a, e	11, a	14	3.2	ND<0.025	ND<0.025	2.6	ND, except TBA = 17
04/17/07	5.8, b	21	9.6	3.7	1.4	0.49	1.6	ND<0.1, except TBA = 18
01/18/07	0.93, b	0.93, d	0.60	0.0034	0.0050	ND< 0.0005	0.0041	ND< 0.050, except TBA= 6.8

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.
- d= Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- e = Laboratory analytical report note: TPH-D results consist of oil-, gas, and diesel-range compounds with no recognizable pattern.
- + = Analyzed by EPA Method 8260.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1 (Continued)

Date	TPH-D	ТРН-С	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
11/14/06	1.8, b	0.87, d	0.17	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.025, except TBA= 5.9, Ethanol ND<2.5, Methanol ND<25.0
06/29/06	0.71,b	0.29	0.021	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01, Except
02/3/06	1.2,b	0.79	3.1	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 2.0 ND<0.05, Except
11/18/05	1.2,a	0.9	2	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 13 ND<0.05, Except
07/28/05	1.8,b	1.2	17,+	0.033	0.0051	0.00056	0.0059	TBA = 18 ND<0.25, except
04/13/05	2.2,b	0.38	2.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 22 ND<0.05, except TBA = 1.6

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- + = Analyzed by EPA Method 8260.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- e = Laboratory analytical report note: reporting limit raised due to high MTBE content
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1 (Continued)

Date	TPH-D	ТРН-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
01/31/05	3.4,b	1.9	38	ND<1	ND<1	ND<1	ND<1	ND<1, except
10/15/04	4.1,a,b	ND<5.0,a,e	96	ND<1.7	ND<1.7	ND<1.7	ND<1.7	TBA = 32 ND<1.7, except TBA = 97
07/13/04	3.3,a,b	2.6,a	73	ND<1.2	ND<1.2	ND<1.2	ND<1.2	ND<1.2, except
04/6/04	3.4,a,b	2.6,a	72	ND<1	ND<1	ND<1	ND<1	TBA = 40 ND<1, except
12/18/03	3.0,b	ND<5.0,e	160	0.22	ND<50	ND<50	0.073	TBA = 34 ND<5, except
09/18/03	8.2,a,b	7.5	220	0.33	ND<0.05	ND<0.05	ND<0.05	TBA = 64 ND<2.5, except
02/23/93	9.6	66		14	8.5	1.4	9.8	TBA = 51
11/13/92	13	62		11	9.2	1.1	9.6	
08/92				EW1 I	nstalled			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- + = Analyzed by EPA Method 8260.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- e = Laboratory analytical report note: reporting limit raised due to high MTBE content
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME,

DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1

Date	TPH-D	трн-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
04/15/08				No sampl	e recovered			
01/17/08	29, a,b	6.9, a, i	8.8	0.48	ND<0.01	0.041	0.023	ND, except $TBA = 0.097$
10/16/07				No sampl	e recovered			
07/25/07				No sample	recovered			
04/17/07				No sample	recovered			
01/18/07				No sample	recovered			
11/14/06				No sample	recovered			
06/29/06	290,b	24						
02/3/06	710a,g	31,a	210					
11/18/05	820,b	370		0.13	ND<0.025	0.4	0.29	ND<0.025 TBA<0.25
07/28/05	230,a,b	10,a		1.3	0.03	0.19	0.072	ND<0.05, TBA ND<0.5
04/13/05	590a,b,d	35,a		2	ND<0.05	0.46	0.14	ND<0.05, TBA ND<0.5

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.

g = Fuel oil.

^{** =} This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1 (Continued)

Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
01/31/05				No sample	e recovered			
10/15/04				No sample	e recovered			
07/14/04	240,a,b	66,a	ND<0.05	1.8	ND<0.05	1.8	0.056	ND<0.05, TBA ND<0.5
04/6/04	74,a,b	50,a		3.1	ND<0.1	0.21	0.14	ND<0.1, TBA ND<1
02/11/04	450,a,b	15,a	130	2.2	0.031	0.16	0.054	ND<0.025, TBA ND<0.25
11/21/03	1,900,a,b	38,f	570	2.0	0.059	0.19	0.095	ND<0.05, TBA ND<0.5
06/10/98				OW11	Installed			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.
- f = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.
- g = Fuel oil.

^{** =} This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

Date	TPH-D	TPH- G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**
04/15/08				No sa	ample recovere	ed		
01/17/08		0.14		ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND, Except MTBE = 0.0022 TBA = 0.011
10/16/07				No sa	ample recovere	ed		
07/25/07				No sa	ample recovere	ed		
04/17/07				No sa	ample recovere	ed		
01/18/07				No sa	ample recovere	ed		
11/14/06				No sa	ample recovere	ed		
06/29/06				No sa	ample recovere	ed		
02/3/06	0.37,b	0.14,h	ND<0.25					
11/18/05				No sa	ample recovere	ed		
07/28/05				No sa	ample recovere	ed		
04/13/05	0.22,b	0.065		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0097

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

-- = Not Analyzed.

ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).

^{*} = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2 (Continued)

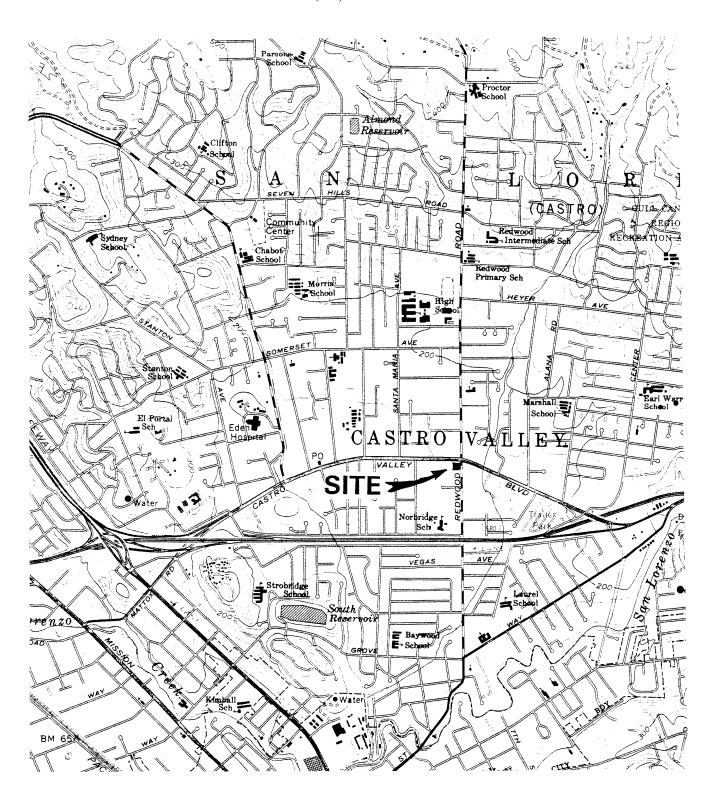
Date	TPH-D	TPH-G	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**
01/31/05				No sa	mple recovere	ed		
10/15/04				No sa	mple recovere	ed		
07/14/04				No sa	mple recover	ed		
04/6/04		0.069 , a		ND <0.00062	ND <0.00062	ND <0.00062	ND <0.00062	
02/11/04		0.21		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0064 TBA = 0.0070
11/21/03				No sa	mple recovere	ed.		
06/10/98				O,	W2 Installed			

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.


ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- h = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).
- * = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) or lead scavengers (EDB, 1,2-DCA/EDC).

FIGURES

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980

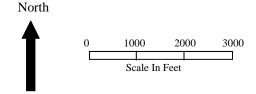
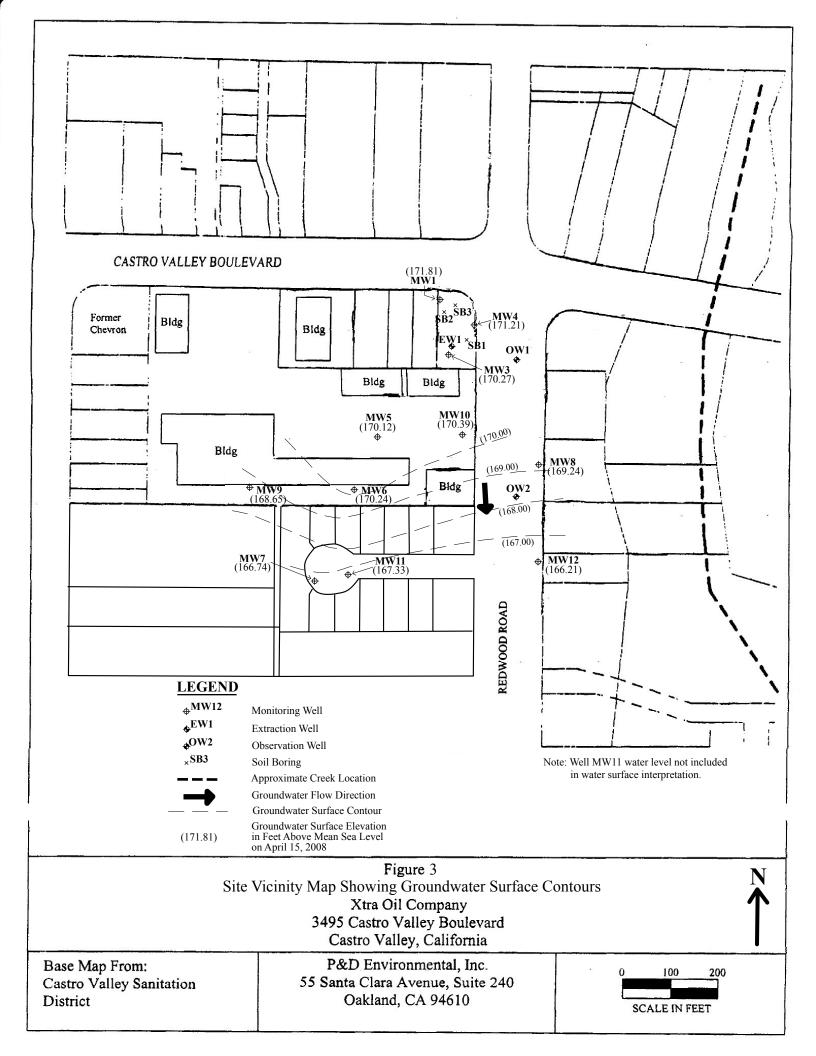



Figure 1 SITE LOCATION MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

P&D Environmental, Inc. 55 Santa Clara Avenue, Suite 240 CASTRO VALLEY BOULEVARD Oakland, CA 94610 (510) 658-6916 Sidewalk (171.81)MW1 Planter SB3 **UST Pit** Location 0 0 MW4 (171.40)* • Canopy 0 SB1 REDWOOD ROAD EW1 Sidewalk MW3 (170.27)Pump Island Building LEGEND Monitoring Well Location Groundwater Surface Elevation in Feet Above Mean Sea Level on April 15, 2008 Groundwater Flow Direction Groundwater Surface Elevation Corrected For Free Product Using a Specific Gravity of 0.75 North Soil Boring Location Base Map From: 20 Figure 2 SITE PLAN RHL Design Group, Inc. Xtra Oil Company June, 1997 3495 Castro Valley Blvd

Scale in Feet

Castro Valley, CA

WELL MONITORING AND PURGE DATA SHEETS

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

	1	DATA S	SHEBT	
Site Name	Xtra Oil/Castr	2 Valley	Well No	MW1
Job No	0014		Date 4/	5/046 +4/16/08
TOC to Wate	er (ft.) <u> </u>		Sheen^	Ja
Well Depth	(ft.) 20.0		Pree Produ	ct Thickness
Well Diames	ter 41 (0.646	<u>)</u>	Sample Col	lection Method
Gal./Casing			***************************************	Disposable bailer
	3001= 99	5	oc	ELECTRICAL MJ/cm
TIME	GAL. PURGED	DH ~	TEMPERATURE	CONDUCTIVITY
1244	2.5	7.09	Jo. 8	984
1346	5.0	7.02	30.0	893
1798	7.5	7.02	19.7	890
1249	10.0	7.00	19.4	889
1250	12.5	6.96	19.6	901
1251	15.0	6,95	19.7	920
1254	17.5	6.95	20:2	911
1257	20.0	6.45	21.1	920
1300	33.5	6.93	21.7	943
			and the state of t	

 			Control of the Control of Control	
				
	†			•
NOTES:	mod-stronyphe or Sampled	lor Nosh	re v	
	Sampled	late = 4/16/	08 sampletine	=> 1415
	`			

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

	v 10	DATA S	HEBT		7	
Site Name _	Xtra Oil/Castro	. Valley	Well !		[W3	
Job No	0014	<u>'</u>	Date_		8 44/16/2	8
TOC to Water			Sheen	Nο		
Well Depth			Pree 1	Product :	Thickness	<u></u>
Well Diamete	er 4" (0.64)	<u>2)</u>			tion Method_	-
Gal./Casing	· · · · · · · · · · · · · · · · · · ·			sposubl	e bailer	
MTMP	30.1-18.	3		ه ۱	LECTRICAL	ms/cm
TIME 1267	GAL. PURGED	6.75	TEMPERATURE 25.7		1,332	•
1359	7.0	6.90	32.0	_	1,756	•
1407		690	50.0 50.0	$\frac{1}{i}$	784	•
1404	6.1	109	20 1	' 4	707 .72/	•
1406	7	6.87	20.4	- +	776	•
1408	10.	6.85	21.4	<u>.</u>	170	•
1409	Maria Well		~13.75gall	- 	,801	•
1401	7.00	de contra de	10 177 Jan	<u>0</u> 1) _		•
	10.2			_		•
	18.7516				·	•
						-
,						•
						•
			***************************************	-		•
						•
		**************************************	 			•
						•
						•
						•
NOTES: Mod - 3	tory depha odor No	·				•
1. Havil	apricodor-1000	Sheen	J., i			
		Sample date	3 4/1 A Q	Sanple	Mm = 143	<u></u>

SphJ

P&D ENVIRONMENTAL
GROUNDWATER MONITORING/WELL PURGING

	· · · · · · · · · · · · · · · · · · ·	DATA	SHEET		
Site Name	Xtra Oil/Castr	o Valley	Well No.	MWY	-
Job No	0014		Date 4	MW4 115/08	
TOC to Wate	er (ft.) 8.00°	<i></i>	Sheen	NA	
Well Depth	(ft.)		Free Pro	duct Thickness O	.19
Well Diamet	er_ \'			ollection Method	
Gal./Casing	vol. Nofurge	Sample	NoSan	yle-Sph Encar	rterel
TIME	GAL. PURGED	HQ	TEMPERATURE	ELECTRICAL CONDUCTIVITY	
		-			. 107 "
		Topot To	pe=8.5°		93'=7.75
					96"= 8.0
				FP thickness =	
				FP corretion = 0	
Top of sph =	q.o"	Top of Woter = 6	"ontiple	Corrected water 1 8.0'-0.19:	edd = - 7 9 8 /
				8.0 - 0.11	Tocto Hz o
		•			
NOTES:	Sphlage-en	constered)	No Sample Col	lected	-
					

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

	VL -31 /c	DATA	SHERT	/. 11
Site Name	Xtra Oil/Cast	tro Valley	Well No	EW1
Job No	00/4	· · · · · ·	Date 4/1	5/04+4/16/08
TOC to Wat	er (ft.) 11.40		Sheen	10
Well Depth	· · · · · · · · · · · · · · · · · · ·	Militage	Pree Prod	uct Thickness
Well Diame	ter 811 (2.586	<u>1)</u>	Sample Co	llection Method
Gal./Casin	g vol. 4.7		<u> </u>	sposale bailer
	3101-14.		0 (ELECTRICAL MS/cm
TIME	GAL PURGED	0.82	TEMPERATURE -	CONDUCTIVITY
1364	1.5		23.5	4067
1324	3.0	6.68	21.1	1,031
1326	4.7	6.65	20,6	992
1327	6.2	6.66	20.4	976
1329	7.7	6.65	20.2	957
1330	9.4	6.65	20.0	940
1331	10.9	6.65	20.1	935
13:32	12.4	6.66	20,1	929
1202	141	6.65	2011	$\frac{1}{9}$
777		2103	4011	122

· 				

			·	
		49 1112 111 111 111 111 111 111 111 111 1		
NOTES:	hod-strong phoco	dor Nos	reen	
	Sampledate:	7 4/16/08	reen Sunglatine	21345

(12)

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

Site Name	Xtravil/CastroV.	May	Well No	ow1
Job No	0014		Date 4/	5/08
TOC to Water	r (st. 15477.11	•		v/A
Well Depth	(£c.) 7.2		Pree Produ	ict Thickness
Well Diamete	er	,	Sample Col	llection Method
Gal./Casing	vol. Notarge	,	None-	Inadequate westerannt.
TIME	GAL. PURGED	PH	TEMPERATURE	ELECTRICAL CONDUCTIVITY

		<u></u>		And the state of t
				
		\		
				Martin and Martin Control of the Con
	-			

				\
				
	•			
	-			
NOTES:	No Sample Coll	ected - in	adequate aman	tofuster
			Ÿ	

[13]

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING

Job No TOC to Wa Well Dept	ter (ft.) 7.3 th (ft.) 7.3 theter / 1		Sheen Pree Pro	OWZ /15/08 N/A duct Thickness collection Method collection Method collection Method
TIME	GAL. PURGED	рĦ	TEMPERATURE	ELECTRICAL CONDUCTIVITY

		$\frac{1}{}$		
			X	
NOTES:	NoWaterence	ountered	- No Sample	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

Site Name		VI 031 6	DATA SHE	BT	
Job No. 00 14 TOC to Water (ft.) 5.90 Well Depth (ft.) 21.8 Well Diameter 3 (0.16) Gal. /Casing Vol. 3.6 TIME GAL. FURGED DH TEMPERATURE CONDUCTIVITY 15/cr 0957 0.8 6.75 13.2 669 [coo 1.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 659 1010 6.0 6.73 19.3 659 1010 6.0 6.73 19.5 650 1014 7.8 6.68 19.5 6.52	Site Name	Atra UI/Castrol	<u>Valley</u>	Well No	MWS
TOC to Water (ft.) 5.90 Well Depth (ft.) 21.8 Well Diameter 3 (0.16) Gal./Casing Vol. 3.6 TIME GAL. PURGED DH CONDUCTIVITY MI/cr QOST 0.8 6.75 18.7 664 1000 1.6 6.73 19.0 665 1006 5.9 6.73 19.1 662 1008 5.9 6.73 19.3 659 1010 6.0 6.73 19.3 659 1010 6.0 6.73 19.5 650 1014 7.8 6.68 19.5 652	Job No	00 14	<u>'</u>	Date 4/15-	16/28
Well Diameter 3 (0.16) Gal./Casing Vol. 3.6 TIME GAL PURGED DH TEMPERATURE CONDUCTIVITY MI/cr QGS7 0.8 6.75 13.2 669 1000 1.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 660 1008 5.2 6.73 19.3 659 1010 6.0 6.73 19.5 650 1017 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 6.52			 -		1
Well Diameter 3 (0.16) Gal./Casing Vol. 3.6 TIME GAL PURGED DH TEMPERATURE CONDUCTIVITY MI/cr QGS7 0.8 6.75 13.2 669 1000 1.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 660 1008 5.2 6.73 19.3 659 1010 6.0 6.73 19.5 650 1017 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 6.52	Well Depth	(fe.) 21.8		Pree Produc	t Thickness
TIME GAL, PURGED DH TEMPERATURE CONDUCTIVITY MICES OPS 6.75 13.2 669 1000 1.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 654 1010 6.0 6.73 19.5 650 1014 78 6.68 19.5 652				Sample Coll	ection Method
TIME GAL, PURGED DH TEMPERATURE CONDUCTIVITY MICES OPS 6.75 13.2 669 1000 1.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 654 1010 6.0 6.73 19.5 650 1014 78 6.68 19.5 652	Gal./Casir	ig Vol. <u>3.6</u>		Pispo	ichle bailer
0957 0.8 6.75 18.2 669 1000 1.6 6.73 19.0 665 1001 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 659 1010 6.0 6.73 19.5 650 1017 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 652		3001=7.8		٥/	ELECTRICAL MI
1000 1.6 6.73 18.7 664 1002 7.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 654 1010 6.0 6.73 19.5 650 1014 7.8 6.68 19.5 652	· / · 7		DH I	. = .	CONDUCTIVITY
1002 3.6 6.73 19.0 665 1004 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 660 1010 6.0 6.73 19.5 650 1014 78 6.68 19.5 652	0457	8.0	6.45	13.2	669
1008 3.4 6.73 19.1 662 1008 5.2 6.73 19.3 654 1010 6.0 6.73 19.5 650 1017 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 652	1000	1.6	6.73	18.7	664
1006 4.7 6.77 19.3 660 1008 5.7 6.73 19.3 654 1010 6.0 6.73 19.5 650 1017 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 652	1005	<u> </u>	6.73	19.0	665
1008 5.2 6.73 19.3 654 1010 6.0 6.73 19.5 650 1011 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 652	1004	3.4	6.73	19.1	662
1010 6.0 6.73 19.5 650 1014 7.8 6.68 19.5 652 Notes: No sheer + no odor	1006	4.2	6.77	19.3	660
1017 6.8 6.71 19.5 650 1014 7.8 6.68 19.5 652	1008	5.2	6.73	19.3	654
NOTES: No sheen + no odds	1010	6.0	6.73	19,5	650
NOTES: No sheen + no odds	1017	6.8	6.71	19,5	650
NOTES: No sheer 4 no odor		7.8	6.68	19.5	652
No sheer + no odor					
No sheer + no odor		فالتنف التام التام التام والتي من التام والتي والتام التام			
No sheer + no odor					
No sheer + no odor		***************************************	-		
No sheer + no odor					
No sheer + no odor					<u> </u>
No sheer + no odor		- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
No sheer + no odor	(
No sheer + no odor					
No sheer + noodor					
No sheer + noodor			-		
	NOTES:	o sheer + noodo.	_		
				6/08 SAMPLET	ime = 10 LOhrs

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SUBET

	111	DATA	SHEET	. 4
Site Name	Straoil/Cast	ro Valley	Well No	MW6
Job No	0014		Date 4/15	
TOC to Wat	er (ft.) 5.00	<u></u>	Sheen	
Well Depth	(ft.) 10.5		Pree Produ	ct Thickness
Well Diame	ter_ 2" (0.16)		lection Method
Gal./Casin	g Vol. 0.9	- V-20-	70	suble builer
	3401=7.	7	0(
TIME	GAL. PURGED	<u>o</u>	TEMPERATURE	CONDUCTIVITY JUS/CA
1092	0.5	6.79	<u> 21.9</u>	1,007
1045	0.6	6.81	21,3	1,018
1047	0.9	6.83	21.4	1,020
1049	7/3	6.84	21.4	1,028
1050	1.5	6.86	21.4	1,033
1021	8.1	6.86	21.3	1,033
1057	3-1	6.87	21.2	1,036
1053	7.4	6:87	21.2	1,037
1054	- 2.7	6.89	21.0	1.03:2
		<u> </u>		7-77

	•			

	****		**************************************	

		•		
NOTES: <	honan	ho ode -		
	heen a mod-p	1/11/2	1.1 > 0. (1	4
	sample dore =)	1/1408 3	scapletime =) 11054	15

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

MOSKEEN TVODASA		Vx. ~ 1/1	DATA SHE		_
Job No	Site Name _	XTra Vil/Castro	Valley	Well No. Λ	1W7
Well Depth (ft.) 0.1	Job No	0014	<u>-</u>	.	
Well Depth (ft.) 0.1	TOC to Wate	er (ft.) 3.60		Sheen/V	0
Gal. / Casing vol. 1.1 Pisposdil beller 3 vol = 3,5 DH TEMPERATURE CONDUCTIVITY W/cm 15 13	Well Depth	(ft.) 10.2	·	Pree Produc	t Thickness
TIME GAL PURGED DH TEMPERATURE CONDUCTIVITY W/cm 1513 0.3 7.48 19.9 1,066 ISIS 0.6 7.39 19.6 1,059 ISIS 1.4 7.32 19.6 1,072 ISIS 1.4 7.32 19.6 1,072 ISIS 1.4 7.30 19.5 1,041 ISD2 2.2 7.27 19.3 1,042 ISD2 2.3 7.26 19.3 1,048 ISD2 2.3 1.048 ISD2 2.3 1.048 ISD2 2.3 1.048 ISD2 2.3 1.042 ISD2 2.3 1.042	Well Diamet	er 3" (0.16)			
TIME GAL PURGED DH TEMPERATURE CONDUCTIVITY MYCH 1513 0.3 7.48 19.9 1,066 ISIS 0.6 7.39 19.6 1,059 ISIT 1.1 7.37 19.7 1,055 ISI8 1.4 7.30 19.6 1,047 ISDO 1.7 7.30 19.5 1,041 ISDO 1.7 7.36 19.3 1,048 ISDO 2.8 7.26 19.3 1,048 ISDO 2.8 7.25 19.3 1,042 ISDO 2.8 7.25 19.3 1,042	Gal./Casing		ii.via	Disposal	de bader
1513 0.3 7.48 19.9 1,066 1515 0.6 7.39 19.6 1,059 1517 1.1 7.37 19.7 10.55 1518 1.4 7.32 19.6 1,047 1522 2.2 7.27 19.3 1,048 1523 2.5 7.26 19.3 1,048 1527 2.36 19.3 1,042 1527 2.36 19.3 1,042	07110	•		oC	ELECTRICAL W/cm
1515 1517 1517 1518 1518 1518 1519 1518 1519 1519 1519	TIME			TEMPERATURE	
1517 1518 1.4 7.37 19.7 1518 1.4 7.32 19.6 1,047 1520 1.7 7.30 19.5 19.3 1,048 1523 2.8 7.26 19.3 1,048 1527 23sicwaldewinted @ ~ 3.2 gallons	15.15	0.5.	7.48	19,9	1,066
1518 1.4 7.32 19.6 1,047 1520 1.7 7.30 19.5 1041 1522 2.2 7.27 19.3 1,042 1523 2.5 7.26 19.3 1,048 1527 2.35 19.3 1,042 1527 2.356 will dewinted @ 2.2.2 gallons NOTES: No Sheen + No odos	1515	0,6	7.39	19.6	1,059
1520 1.7 7.20 19.5 1.041 1522 1.52 1.53 1.55 7.26 19.3 1.048 1527 1527 2366 will demote a 2.2 gallons Notes: No Shein + no odos	1517	1.1	7.37	19.7	1,055
1522 2.2 7.27 19.3 1,042 1523 2.5 7.26 19.3 1,048 1525 2.8 7.25 19.3 1,042 1527 23siewelldewistrel @ ~ 3.2 gallons	1518	1.4	7.32	19.6	1,047
1523 3.5 7.26 19.3 1.048 1527 3.56 7.25 19.3 1.042 1527 3.56 well demoted @ 23.2 gallons NOTES: No Sheer + No o do st	1520	1.7	7.30	19.5	1041
1527 3.4 7.25 19.3 1,042 1527 3.5 icwell dewisted @ 23.2 gallons NOTES: No Sheen + no odos	1572	2.2	7.27	19.3	1.042
1527 3.4 7.25 19.3 1,042 1527 3.5 icwell dewisted @ 23.2 gallons NOTES: No Sheen + no odos	1523	2.5	7.26	19.3	1048
NOTES: No Shein + no odos		24		19.3	1,042
NOTES: No Sheen + po o dos		22.30.2011	or total 0	2 2 gallon	\(\frac{1}{2}\)
MOSKEEN TUODASA	10-1		ews c-are	<u> </u>	
MOSKEEN TUODASA					
MOSKEEN TUODASA					
MOSKEEN TUODASA		•			
MOSKEEN TUODASA					
MOSKEEN TUODASA					
MOSKEEN TUODASA					
MOSKEEN TUODASA					
MOSKEEN TUODASA					
MOSKEEN TUODASA					
MOSKEEN TVODASA					-
	NOTES:	Vosheen + no oc	dog		
sample date = 4/5/04 Sample time >17/5				15/04	Simple time >1715

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

Site Name		1	DATA	Shebt	•
Job No. 0014 Toc to Water (ft.) 6.76 Well Depth (ft.) 14.4 Well Diameter 2" (0.16) Gal./Casing Vol. 1.3 Jin-3.9 TIME GAL. PURGED DH 16.10 0.8 6.80 17.8 991 16.13 1.7 6.83 17.9 994 16.15 3.0 6.83 18.0 971 16.18 3.0 6.84 17.9 993 16.19 3.4 6.84 17.9 993 16.19 3.4 6.84 17.9 993 16.10 3.4 6.84 17.9 993 16.10 3.4 6.84 17.9 993 16.11 3.4 6.84 17.9 993 16.12 3.4 6.84 17.9 993 16.13 3.4 6.84 17.9 993 16.14 3.5 6.83 18.0 10.05	Site Name	Xtra Dil/Cast	ro Valley	Well No	MM8
Well Depth (ft.) 14.4			, 	Date_ 4/1	5/08
Well Depth (ft.) 14.4	TOC to Wate	er (ft.) 6.76		Sheen 📐	v
Well Diameter 2" (0.16) Sample Collection Method Disposable barler Disposable	Well Depth	(Et.) 14.4		Pree Produ	ct Thickness Ø
Gal./Casing Vol. 1.3 31.1-3.9 TIME GAL. PURGED DH TEMPERATURE CONDUCTIVITY MS/cm 1608 0.4 6.83 17.8 991 1613 1.7 6.84 17.9 994 1615 2.1 6.83 18.0 992 1617 2.6 6.84 18.0 992 1618 3.0 6.86 18.1 982 1619 3.4 6.84 17.9 993 1619 3.4 6.84 17.9 993 1619 3.4 6.88 17.9 993 1621 3.4 6.88 17.9 993 1621 3.4 6.88 17.9 993	Well Diamet	er 2" (0.16)	Sample Col	lection Method
TIME GAL. PURGED DH TEMPERATURE (CONDUCTIVITY MS/cm) 1608 0.4 6.87 18.2 991 1610 0.8 6.80 17.8 982 1613 1.7 6.83 18.0 974 1615 2.1 6.83 18.0 972 1616 3.0 6.86 18.1 982 1619 3.4 6.84 17.9 993 1619 3.4 6.84 17.9 993 1631 3.9 6.83 18.0 1,019				Pisc	osable bailer
1608		31-1-3.	9	٥٢	ELECTRICAL WYG
1610 0.8 6.80 17.8 982 1612 1.3 6.82 17.8 975 1613 1.7 6.84 17.9 994 1615 2.1 6.83 18.0 972 1617 2.16 6.84 18.0 992 1618 3.0 6.86 17.9 993 1619 3.4 6.84 17.9 993 1621 3.9 6.83 18.0 1,019		1	pH (TEMPERATURE	
1613 1.3 6.83 17.8 975 1613 1.7 6.84 17.9 994 1615 2.1 6.83 18.0 GF 1005 1617 3.1 6.84 18.0 992 1618 3.0 6.86 18.1 982 1619 3.4 6.84 17.9 993 1621 3.9 6.83 18.0 1,019		***************************************	6.87	18.2	791
1613		0.8	6,80	17.8	982
1613	1612	1.3	6.82	17.8	975
1615 2.1 6.83 18.0 GP 1005 1617 2.16 6.84 18.0 992 1618 3.0 6.86 18.1 982 1619 3.4 6.84 17.9 993 1621 3.9 6.83 18.0 1,019	1613	1.7	6.84	17.9	994
1617 3.6 6.84 18.0 992 1618 3.0 6.86 18.1 982 1619 3.4 6.84 17.9 993 1621 3.9 6.83 18.0 1,019	1615	1, 6		18.0	ciet 1005
1618 3.0 6.86 18.1 982 1619 3.4 6.84 17.9 993 1621 3.9 6.83 18.0 1,019	1617	3.6		18.0	992
1619 3.4 6.84 17.9 993 1621 3.9 6.83 18.0 1,019	1618	3.0		18.1	982
1631 3.9 6.83 19.0 1,019					993
		3 9			1019
Notes: No sheer; light-not phe oder Sample time = 1650			0 (0)		
Notes: No sheen; light-had the oder Sample time = 1650					
Notes: No sheen; light-And phe oder Sample time = 1650					
Notes: No sheen, light-mod phe oder Sample time = 1650		·	- الله شاعب الساسية		
Notes: No sheen; light-mod phe odor Sample time = 1650					
No sheen; light-mod phe oder Sample time = 1650	 				-
No sheen; light-mod phe oder Sample time = 1650			4		
Notes: No sheen; light-not phe oder Sample time => 1650		44			
No sheen; light-mad phe oder Sample time = 2 1650					
No sheen; light-mad phe oder Sample time = 2 1650					
No sheen; light-Mad phe oder Sample time = 1650					
Sample time = 1650	NOTES:	No Sheen:	light - Mod	phe oder	
			Sample f	ne = 1650	

ND

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

	1/1 - 1/	DATA S		
Site Name	Xtra Dil/Castro	Valley	Well No/	MW 9
Job No		/ 	Date_4/15-	
TOC to Wat	er (ft.) 6,44	-	Sheen / No	
Well Depth	(tt.) 21.3	Manager Tree	Pree Produc	t Thickness
Well Diame	ter <u>}" (0.16</u>		Sample Coll	ection Method
Gal./Casin	g Vol. 3.4		Disposable	bailer
	3401=7.7		0	ELECTRICAL MS/cm
TIME	GAL. PURGED	DH _	TEMPERATURE	CONDUCTIVITY'
1121	6.8	7.20	20.2	1,188
1133	1.6	7.16	19.8	1,187
1125	7.4	7.20	114,920.2	1,167
1177	3.2	7.18	1918	1,111
1139	4.0	7.13	19.5	1,028
1131	4.8	7.10	19,5	1,002
1133	5.6	7.04	19.4	988
1135	6.4	7.03	19.3	977
1137	7.2	7.00	19.4	982

	•	territoria de la compansión de la compan		
· · · · · · · · · · · · · · · · · · ·				
	• • • • • • • • • • • • • • • • • • • 			
				
NOTES:	vo then anood	- Sar & L	***************************************	
·	Sample date=7		sample time =>	1150
· · · · · · · · · · · · · · · · · · ·	School Mid C 3	417 0	7 (1,20)	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING DATA SUEET

		DATA S	Sheet	
Site Name	Xtra Oil/Castrol	Valley	Well No	MWID
Job No	0014	·	Date 4/15	+16/08
TOC to Wate	er (ft.) 5.64		Sheen N	2
Well Depth	(fc.) 21.6	-	Pree Produ	ct Thickness
Well Diames	ter	<u>6)</u>	Sample Col	lection Method
Gal./Casing	g vol. 2.6		Dispos	juble bailer
	3 vol = 7	2.8	هر-	BLECTRICAL MS/ca
TIME OCIU	GAL. PURGED	<u>ph</u> 9 7	TEMPERATURE	CONDUCTIVITY
0717	0.8	6.97	18.9	907
0916	1.6	6, 96	19.4	904
0418	3.6	6.94	19.7	909
0920	3.4	6,92	19.9	899
0922	4.2	<u>0.91</u>	70.1	887
0924	_5.a	6.88	20.1	881
0926	6.0	6,86	20.2	876
0978	6 8	6.83	20.1	8 77
0930	7 4	6,80	20. 0	8 75
	1-0	0100		
				distribution of the state of th
	-		•	
		· · · · · · · · · · · · · · · · · · ·	de 100 data librarii - Irania da	
NOTES:				
	No Sheen	+ noodo-		
		sample il	ate \$4/16/08.	sande time > 0940

NO

PAD ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SUPET

	VLa ailla	DATA S	HEET	441.61
Site Name	XtraOil/Casto	D Valley	Well No.	NWII
Job No	0014	<u> </u>	Date_4/15	5/08
TOC to Wat	er (ft.) 3.70	- 1.111	Sheen	V o
Well Depth			Pree Produ	ct Thickness
Well Diame	ter		Sample Col	lection Method
Gal./Casin	g Vol. <u>l'Ÿ</u>		Dispa	sable bailer
	3001-5,4		00	ELECTRICAL MS/cm
<u>TIME</u> . : 2.14 C î	GAL. PURGED	7.33	TEMPERATURE	CONDUCTIVITY 1922
1451	0.6		41,1	1,00
1454	1.2	7.31	20.2	1, 23+
1756	1.4	7.30	19.7	1,236
1458	24_	7.24	19.4	1,239
1500	5.0	7.22	19,1	1,232
1502	<u> 3.b</u>	7.23	19.0	1,238
1504	4.8	7.26	18:9	1,243
1506	4.8 Well	dewatered po	~4.75gallons	
	54512			dispersion that with the dispersion that the second
				
	direction del			
**************************************		<u></u>		
				
				
			Control of the Contro	
NOTES:		1	-	
	o odor thos		1.4	
	Sample da	te => 4/19	561	pletimed 1700

6

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WBLL PURGING DATA SHEET

DATA SHE	ET
sice Name Xtra Oil/Castrolley	Well No. MW/Z
Job No. 0014	Date 4/15/08
TOC to Water (ft.) 7.77	Sheen - NO
Well Depth (ft.) 12.5	Pree Product Thickness
Well Diameter 3" (0.16)	Sample Collection Method
Gal./Casing Vol. 0.8	Disposable bailer
Jvol = 2.4	TEMPERATURE CONDUCTIVITY MS/cm
الما المعالمة المعالم المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة	IMPERATURE SANGGRAFATA
1547 0.3 7.15	18.8 716
1549 0.6 - 7.04 1551 0.8 6.96	18.5 720
20.4	
1552 1.1 6.96 1554 1.4 6.95	$\frac{18.5}{18.5}$ $\frac{722}{725}$
	18.4 728
	18.3 7 43
1558 2.2 6.94	$\frac{18.3}{19.2}$ $\frac{7.44}{7.113}$
1559 2.4 6.93	18.3 743
ware-resourc	O 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	to the first the first the third the time to the time
	48-American April 1991
NOTES: No sheen, light-modphe odo-	- Sampletime > 1640
	

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0014; Xtra Oil/ 3495	Date Sampled:	04/15/08-04/16/08
55 Santa Clara, Ste.240	Castro Valley Blvd	Date Received:	04/17/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Reported:	04/24/08
ountaina, err 7 1010	Client P.O.:	Date Completed:	04/22/08

WorkOrder: 0804432

April 24, 2008

Enclosed within are:

- 1) The results of the 11 analyzed samples from your project: #0014; Xtra Oil/ 3495 Castro Valley
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

CHAIN OF CUSTODY RECORD PAGE __ OF __ P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Sulte 240
Onkland, CA 94610
(510) 658-6916

	PROJECT NUMBER: PROJECT NAME: Xtra Oil/			NAME:	Castro Vall	lay Blud.							//	_/	/				
	SAMPLED BY: (PRI STEVE CAN SAMPLE NUMBER		SIGNAT	URE)	JAG	SAMPLE LOCA	TION	NUMBER OF CONTAINERS	AWAL YSIGGE		The state of the s				TESOPWANE		REMAI	RKS	
A						370m EZ COON			1		4	+	1	-	1				
1	MW1	4/16/08		140				7	X	X	\perp	+	+	ICE	N	arpel	Turas	and To	4
1	MW3 EW1	11	1345					7	X	X	+	+	+	\vdash	+	+-	_		\vdash
	MW 5	,,,	1020	-				7	X	X	+	+	+	+	+	+-			\dashv
1	MW6	11	1105	-				7	√	× ×		+	+	\vdash	+	-	_		\dashv
ı	MW7	4/15/08	1715					7	~	Ŷ		\dagger	t	\vdash	+	-		_	\dashv
ı	MW8	11	1650					7	X	Ŷ	\forall	\top	T	\forall	+				
1	MW9	4/16/08	1150					7	X	X	\forall	\top	T	\Box	\top				
Ì	MWIO	11	0940					7	x	X			T		1				
I	MWII	4/15/08	1700					7	X	×									
I	MW12	15	1640	4				7	X	X			T	V		4	A		
I														1					
I						- Ta.						IC G	DOD C	ONDIT	ION	~	APPE	OPRIAT	R
I									Г			H		RINA		LAB		TAINER	
												707	I	LANGE	VO.	AS O	%G MET	ALS O	гне.
ŀ	RELINQUISHED BY:	SICNATURE	E)	DATE	TIME	RECEIVED BY:	(SIGNATURE)		lar.	L HO.	OF SA	MPUES M	T I	lu	BOR	TORY:			十
ı	1	Us		4/1408	198			1				TAMO	\$ 7	7 1	1c C	appel	Analy	that	
	RELINCUISHED BY:	SICNATURE	1/4	DATE	TIME 330	RECEIVED BY:	(SIGNATURE)		14	BOR	ATOR	Y CC	NTA	IT: U	BORA	TORY	PHONE 1	NUMBE	R:
	RELINQUISHED BY: (SICHATURE)/	DATE	TIME	RECEIVED FOR (SIGNATURE)	LABORATORY	BY:		,	SAI	MPLE	ANA	LYSIS	REQU	EST SI	HEET		
Results and billing to: P&D Environmental, Inc. lob@pdenviro.com				REMARKS: All bottles preserved by HCL															

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 52-9262					Worl	Order	: 08044	32	(Client	Code: PI	ЭEO				
			WriteOn	☐ EDF		Exce		Fax		✓ Email		☐ Hard0	Сору	☐ Thi	rdParty	☐ J-1	flag
Report to:							Bill to:						Req	uested	TAT:	5 c	days
Steve Carma	ack	Email:	lab@pdenviro	.com			Ac	counts F	Pavab	le			•				,
P & D Enviro	nmental	TEL:	(510) 658-6916		34-015	2		ra Oil Co	-								
55 Santa Cla		PO:						07 Oil C	•	•			Dat	e Rece	rived:	04/17/	2008
Oakland, CA	94610	ProjectNo:	#0014; Xtra Oi	il/ 3495 Castro Va	alley B	lvd	Ala	ameda, (CA 94	610			Dat	e Prin	ted:	04/17/2	2008
							CO	nstanza.	rodrig	uez@p	denvir	o.com					
									Rec	uested	Tests	(See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0804432-001	MW1		Water	4/16/2008 14:15		Α	В										
0804432-002	MW3		Water	4/16/2008 14:30		Α	В										
0804432-003	EW1		Water	4/16/2008 13:45		Α	В										
0804432-004	MW5		Water	4/16/2008 10:20		Α	В										
0804432-005	MW6		Water	4/16/2008 11:05		Α	В										
0804432-006	MW7		Water	4/15/2008 17:15		Α	В										
0804432-007	MW8		Water	4/15/2008 16:50		Α	В										
0804432-008	MW9		Water	4/16/2008 11:50		Α	В										
0804432-009	MW10		Water	4/16/2008 9:40		Α	В										
0804432-010	MW11		Water	4/15/2008 17:00		Α	В										
0804432-011	MW12		Water	4/15/2008 16:40		Α	В										
Test Legend:									_								
1 G-MBT	TEX_W 2	MBTEXOXY	′-8260B_W	3				4						5			
6	7			8				9						10			
11	12																
The following Sam	npIDs: 001A, 002A, 003A, 0	04A, 005A, 00	6A, 007A, 008A,	009A, 010A, 011A	contai	n testgi	oup.						Prep	ared by	: Ana V	Venegas	<u>s</u>

Comments:

Sample Receipt Checklist

Client Name:	P & D Environmental				Date a	and Time Received:	4/17/2008	4:17:19 PM
Project Name:	#0014; Xtra Oil/ 3495	Castro Valley	Blv	d	Check	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	0804432 Mat	rix <u>Water</u>			Carrie	r: Rob Pringle (M	IAI Courier)	
		<u>Chain (</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinquished	and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample labels	s?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by Client of	n COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	V	No 🗆			
		<u>Sa</u>	mple	Receipt	Information	<u>!</u>		
Custody seals int	tact on shipping container/	cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good condition?	?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	✓	No 🗌			
		Sample Preserv	/atior	n and Ho	old Time (HT)) Information		
All samples recei	ved within holding time?		Yes	✓	No 🗌			
Container/Temp B	Blank temperature		Coole	er Temp:	1.7°C		NA \square	
Water - VOA vial	ls have zero headspace / r	no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted \square	
Sample labels ch	necked for correct preserva	ation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (p	H<2)?	Yes		No 🗆		NA 🗹	
	=======			===		======		======
Client contacted:		Date contacte	ed:			Contacted	by:	
Comments:								

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0014; Xtra Oil/ 3495 Castro Valley Blvd	Date Sampled: 04/15/08-04/16/08
55 Santa Clara, Ste.240	Casuo vancy bivu	Date Received: 04/17/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Extracted: 04/18/08
	Client P.O.:	Date Analyzed 04/18/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

Analytical methods SW8015Cm Extraction method SW5030B Work Order: 0804432 Lab ID Client ID Matrix TPH(g) DF % SS 001A MW1 W 13,000,a 10 113 002A W 20 MW3 52,000,a,h 114 003A W 50 93 EW1 17,000,a,h 004A MW5 W ND 1 92 005A MW6 W 51,000,a 20 107 006A MW7 W 170,a 1 94 007A MW8 W 4300,a,i 10 123 008A MW9 W ND 1 92 MW10 009A W ND 1 010A MW11 W 101 ND 1 011A MW12 W 180,m,i 1 114 Reporting Limit for DF =1; μg/L ND means not detected at or NA NA above the reporting limit

acove the reporting innit	<u> </u>		
* water and vapor samples and all TCLP & SPLP extrac	ts are reported	in ug/L, soil/sludge/solid samples in mg/kg,	wipe samples in μg/wipe,
product/oil/non-aqueous liquid samples in mg/L.			

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

P & D Environmental	Client Project ID: #0014; Xtra Oil/ 3495	Date Sampled: 04/15/08-04/16/08
55 Santa Clara, Ste.240	Castro Valley Blvd	Date Received: 04/17/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Extracted: 04/19/08
ounumu, erry toro	Client P.O.:	Date Analyzed: 04/19/08
	•	•

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0804432

Extraction Method: SW5030B	Anal	Work Order: 0804432						
Lab ID	0804432-001B	0804432-002B	0804432-003B	0804432-004B				
Client ID	MW1	MW3	EW1	MW5	Reporting DF			
Matrix	W	W	W	W	DI -1			
DF	33	1000	200	1	S	W		
Compound		Concentration						
tert-Amyl methyl ether (TAME)	ND<17	ND<500	ND<100	ND	NA	0.5		
Benzene	150	24,000	4500	ND	NA	0.5		
t-Butyl alcohol (TBA)	ND<67	6700	15,000	ND	NA	2.0		
1,2-Dibromoethane (EDB)	ND<17	ND<500	ND<100	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<17	ND<500	ND<100	ND	NA	0.5		
Diisopropyl ether (DIPE)	ND<17	ND<500	ND<100	ND	NA	0.5		
Ethylbenzene	870	ND<500	650	ND	NA	0.5		
Ethyl tert-butyl ether (ETBE)	ND<17	ND<500	ND<100	ND	NA	0.5		
Methyl-t-butyl ether (MTBE)	29	6700	9300	3.9	NA	0.5		
Toluene	110	ND<500	260	ND	NA	0.5		
Xylenes	1200	5100	2200	ND	NA	0.5		
	Surr	ogate Recoverie	s (%)					
%SS1:	111	105	106	115				
%SS2:	94	93	94	94				
%SS3:	99	99	98	99				
Comments		h	h					

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

P & D Environmental	Client Project ID: #0014; Xtra Oil/ 3495	Date Sampled:	04/15/08-04/16/08
55 Santa Clara, Ste.240	Castro Valley Blvd	Date Received:	04/17/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Extracted:	04/19/08
	Client P.O.:	Date Analyzed: 04/19/08	

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0804432

Extraction Method: SW5030B	Anal		Work Order: 0804432				
Lab ID	0804432-005B	0804432-006B	0804432-007B	0804432-008B			
Client ID	MW6	MW7	MW8	MW9	Reporting Limit for DF =1		
Matrix	W	W	W	W	- Dr =1		
DF	330	2	5	1	S	W	
Compound		Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<170	ND<1.0	ND<2.5	ND	NA	0.5	
Benzene	4800	48	63	ND	NA	0.5	
t-Butyl alcohol (TBA)	ND<670	ND<4.0	ND<10	ND	NA	2.0	
1,2-Dibromoethane (EDB)	ND<170	ND<1.0	ND<2.5	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<170	ND<1.0	ND<2.5	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND<170	ND<1.0	ND<2.5	ND	NA	0.5	
Ethylbenzene	2400	13	110	ND	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND<170	ND<1.0	ND<2.5	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	ND<170	4.8	6.5	ND	NA	0.5	
Toluene	3300	1.5	ND<2.5	ND	NA	0.5	
Xylenes	16,000	5.0	9.1	ND	NA	0.5	
	Surr	ogate Recoveries	s (%)				
%SS1:	104	115	114	116			
%SS2:	96	94	94	95			
%SS3:	98	99	99	97			
Comments			i				

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

P & D Environmental	Client Project ID: #0014; Xtra Oil/ 3495	Date Sampled: 04/15/08-04/16/08
55 Santa Clara, Ste.240	Castro Valley Blvd	Date Received: 04/17/08
Oakland, CA 94610	Client Contact: Steve Carmack	Date Extracted: 04/19/08
	Client P.O.:	Date Analyzed: 04/19/08

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B	Anal	Work Order:	0804432		
Lab ID	0804432-009B	0804432-010B	0804432-011B		
Client ID	MW10	MW11	MW12	Reporting DF	
Matrix	W	W	W	Di	1
DF	1	1	1	S	W
Compound		Conce	entration	ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND	ND	ND	NA	0.5
Benzene	ND	ND	ND	NA	0.5
t-Butyl alcohol (TBA)	ND	ND	ND	NA	2.0
1,2-Dibromoethane (EDB)	ND	ND	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	NA	0.5
Diisopropyl ether (DIPE)	ND	ND	ND	NA	0.5
Ethylbenzene	0.60	ND	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	NA	0.5
Methyl-t-butyl ether (MTBE)	1.7	26	9.1	NA	0.5
Toluene	ND	ND	ND	NA	0.5
Xylenes	0.56	ND	ND	NA	0.5
	Surr	ogate Recoveries	s (%)		
%SS1:	116	114	101		
%SS2:	92	94	105		
%SS3:	98	99	105		
Comments			i		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	,	Date Sampled:	04/15/08-04/16/08
55 Santa Clara, Ste.240 Castro Valley Blvd Client Contact: Stev	Castro Valley Blvd	Date Received:	04/17/08
	Client Contact: Steve Carmack	Date Extracted:	04/17/08
Oakland, CA 94610	Client P.O.:	Date Analyzed:	04/18/08-04/23/08

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015C Work Order: 0804432

Extraction method: SV	on method: SW3510C Analytical methods: SW8015C Work Order:						
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	
0804432-001A	MW1	W	3200,d	ND	1	111	
0804432-002A	MW3	W	14,000,d,b,h	4900	5	110	
0804432-003A	EW1	W	7700,d,a,h	1800	1	87	
0804432-004A	MW5	W	ND	ND	1	96	
0804432-005A	MW6	W	6500,d	320	1	119	
0804432-006A	MW7	W	77,d,b	ND	1	107	
0804432-007A	MW8	W	2000,d,i	ND	1	118	
0804432-008A	MW9	W	ND	ND	1	110	
0804432-009A	MW10	W	ND	ND	1	117	
0804432-010A	MW11	W	ND	ND	1	118	
0804432-011A	MW12	W	76,d,b,i	ND	1	103	

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or	S	NΔ	NΔ	mg/Kg
above the renorting limit	Б	NA	1471	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant (cooking oil?); h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0804432

EPA Method SW8021B/8015Cm	EPA Method SW8021B/8015Cm Extraction SW5030B						BatchID: 35040 Spiked Sample ID: 0804408-00					1 A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btexf)	ND	60	102	84.2	19.0	109	102	6.98	70 - 130	20	70 - 130	20	
MTBE	ND	10	110	105	4.69	108	106	2.23	70 - 130	20	70 - 130	20	
Benzene	ND	10	95.2	96.2	1.11	98.5	92.8	5.97	70 - 130	20	70 - 130	20	
Toluene	ND	10	95.4	97.5	2.14	110	104	6.11	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	93.7	94.7	1.04	109	102	7.24	70 - 130	20	70 - 130	20	
Xylenes	ND	30	87.5	88.2	0.749	119	112	6.54	70 - 130	20	70 - 130	20	
%SS:	95	10	108	108	0	92	93	1.14	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

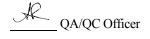
NONE

BATCH 35040 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804432-001A	04/16/08 2:15 PM	04/18/08	04/18/08 2:36 PM	0804432-002A	04/16/08 2:30 PM	04/18/08	04/18/08 12:10 AM
0804432-002A	04/16/08 2:30 PM	04/18/08	04/18/08 3:12 PM	0804432-003A	04/16/08 1:45 PM	04/18/08	04/18/08 4:22 PM
0804432-004A	04/16/08 10:20 AM	04/18/08	04/18/08 3:47 PM	0804432-005A	04/16/08 11:05 AM	04/18/08	04/18/08 1:46 AM
0804432-006A	04/15/08 5:15 PM	04/18/08	04/18/08 2:18 AM	0804432-007A	04/15/08 4:50 PM	04/18/08	04/18/08 3:21 AM
0804432-008A	04/16/08 11:50 AM	04/18/08	04/18/08 2:50 AM	0804432-009A	04/16/08 9:40 AM	04/18/08	04/18/08 3:53 AM
0804432-010A	04/15/08 5:00 PM	04/18/08	04/18/08 4:25 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0804432

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		BatchID: 35070 Sp				piked Sample ID: 0804413-014A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance Criteria (%)				
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	112	110	1.20	110	107	2.93	70 - 130	20	70 - 130	20
MTBE	ND	10	97.2	103	6.01	99.1	96.9	2.28	70 - 130	20	70 - 130	20
Benzene	ND	10	95.4	98	2.77	95.8	96.4	0.615	70 - 130	20	70 - 130	20
Toluene	ND	10	107	111	3.56	108	108	0	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	106	109	2.30	106	107	0.608	70 - 130	20	70 - 130	20
Xylenes	ND	30	116	119	2.63	117	117	0	70 - 130	20	70 - 130	20
%SS:	109	10	94	95	1.24	94	95	1.15	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

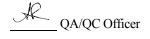
NONE

BATCH 35070 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804432-011A	04/15/08 4:40 PM	M 04/18/08	04/18/08 5:32 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0804432

EPA Method SW8015C Extraction SW3510C				BatchID: 35083 Spi				iked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	108	108	0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	101	107	6.30	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 35083 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804432-001A	04/16/08 2:15 PM	04/17/08	04/22/08 6:50 AM	0804432-002A	04/16/08 2:30 PM	04/17/08	04/23/08 6:42 PM
0804432-003A	04/16/08 1:45 PM	04/17/08	04/19/08 1:03 AM	0804432-004A	04/16/08 10:20 AM	04/17/08	04/19/08 2:09 AM
0804432-005A	04/16/08 11:05 AM	04/17/08	04/19/08 3:15 AM	0804432-006A	04/15/08 5:15 PM	04/17/08	04/22/08 5:01 AM
0804432-007A	04/15/08 4:50 PM	04/17/08	04/18/08 8:39 PM	0804432-008A	04/16/08 11:50 AM	04/17/08	04/21/08 10:51 PM
0804432-009A	04/16/08 9:40 AM	04/17/08	04/18/08 11:57 PM	0804432-010A	04/15/08 5:00 PM	04/17/08	04/19/08 1:03 AM
0804432-011A	04/15/08 4:40 PM	04/17/08	04/18/08 9:16 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0804432

EPA Method SW8260B	Extrac	tion SW	5030B		Ba	tchID: 34	994	Sp	iked Samp	ked Sample ID: 0804377-040D			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
Amaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	112	110	1.45	123	120	2.11	70 - 130	30	70 - 130	30	
Benzene	ND	10	109	103	5.30	121	120	1.04	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	74.4	80.5	7.86	82	78	4.97	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	102	101	0.874	113	109	3.68	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	113	111	1.85	126	123	2.77	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	109	105	3.73	120	118	1.21	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	113	112	1.61	125	124	0.676	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	114	112	1.58	124	121	2.30	70 - 130	30	70 - 130	30	
Toluene	ND	10	115	111	3.23	129	128	0.148	70 - 130	30	70 - 130	30	
%SS1:	109	10	99	99	0	100	99	0.491	70 - 130	30	70 - 130	30	
%SS2:	100	10	107	108	0.881	110	113	2.86	70 - 130	30	70 - 130	30	
%SS3:	95	10	81	79	2.67	76	75	2.15	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 34994 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0804432-001B	04/16/08 2:15 PM	I 04/19/08	04/19/08 3:21 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0804432

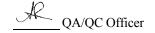
EPA Method SW8260B	Extrac	tion SW	5030B		Ba	tchID: 35	6071	Sp	iked Samp	iked Sample ID: 0804413-013C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
rilaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	99.8	104	4.16	122	119	2.87	70 - 130	30	70 - 130	30	
Benzene	ND	10	94.6	99.6	5.20	114	110	4.14	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	84.7	86.6	2.22	94	92.6	1.54	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	83.8	86.9	3.62	112	109	2.79	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	111	116	4.31	120	115	4.20	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	117	124	5.65	116	112	3.64	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	104	110	5.04	123	120	2.53	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	102	107	5.35	123	121	1.65	70 - 130	30	70 - 130	30	
Toluene	ND	10	73.3	76	3.40	126	120	4.71	70 - 130	30	70 - 130	30	
%SS1:	103	10	94	94	0	98	97	1.31	70 - 130	30	70 - 130	30	
%SS2:	103	10	88	89	1.14	114	115	0.849	70 - 130	30	70 - 130	30	
%SS3:	105	10	87	88	0.673	73	73	0	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 35071 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804432-002B	04/16/08 2:30 PM	1 04/19/08	04/19/08 4:05 AM	0804432-003B	04/16/08 1:45 PM	[04/19/08	04/19/08 4:48 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0804432

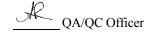
EPA Method SW8260B	Extrac	tion SW	5030B		Ba	tchID: 35	084	Sp	iked Samp	ked Sample ID: 0804432-008B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
rilaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	108	102	6.32	118	120	1.67	70 - 130	30	70 - 130	30	
Benzene	ND	10	95.4	92.4	3.09	110	111	0.343	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	97.3	84.3	14.3	91.5	87.5	4.47	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	86.6	84.7	2.11	108	108	0	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	118	111	5.91	115	118	2.61	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	128	119	7.06	111	114	2.58	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	113	106	5.65	118	121	2.02	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	110	103	5.93	118	121	1.84	70 - 130	30	70 - 130	30	
Toluene	ND	10	79.4	77.8	2.08	123	124	1.19	70 - 130	30	70 - 130	30	
%SS1:	116	10	95	93	1.37	97	97	0	70 - 130	30	70 - 130	30	
%SS2:	95	10	88	88	0	115	117	1.72	70 - 130	30	70 - 130	30	
%SS3:	97	10	88	85	3.29	73	72	0.826	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 35084 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804432-004B	04/16/08 10:20 AM	04/19/08	04/19/08 5:31 AM	0804432-005B	04/16/08 11:05 AM	04/19/08	04/19/08 6:15 AM
0804432-006B	04/15/08 5:15 PM	1 04/19/08	04/19/08 6:59 AM	0804432-007B	04/15/08 4:50 PM	1 04/19/08	04/19/08 7:42 AM
0804432-008B	04/16/08 11:50 AM	04/19/08	04/19/08 2:20 PM	0804432-009B	04/16/08 9:40 AM	04/19/08	04/19/08 9:10 AM
0804432-010B	04/15/08 5:00 PM	1 04/19/08	04/19/08 9:53 AM	0804432-011B	04/15/08 4:40 PM	1 04/19/08	04/19/08 7:22 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

APPENDIX A

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-1	10/5/1992	177.69	11.22	166.47	2100	370	150	17	110	NA
	10/5/1992	177.69	NM	NM	2300	370	160	16	110	NA
	4/1/1993	177.69	8.79	168.90	5900	1500	410	110	390	NA
	6/29/1993	177.69	10.34	167.35	7600	2900	390	130	460	NA
	9/23/1993	177.69	10.91	166.78	2000	490	40	20	56	600
	9/23/1993	177.69	NM	NM	1500	420	39	19	56	550
	12/10/1993	177.69	9.93	167.76	1800	480	42	19	66	921
	12/10/1993	177.69	NM	NM	1500	380	38	17	55	770
	2/17/1994	177.69	9.64	168.05	1900	380	48	24	80	585
	2/17/1994	177.69	NM	NM	2200	430	42	19	65	491
	8/8/1994	177.69	11.72	165.97	2100	450	46	16	50	760
	10/12/1994	177.69	10.48	167.21	760	240	16	51	39	230
	1/19/1995	177.69	7.77	169.92	840	600	120	22	58	NA
	5/2/1995	177.69	8.69	169.00	2000	640	67	24	98	NA
	7/28/1995	177.69	10.12	167.57	190	< 0.50	<0.50	< 0.50	<1.0	NA
	11/17/1995	177.69	10.57	167.12	200	3.4	<1.0	1	<2.0	600
	2/7/1996	177.69	7.41	170.28	750	370	23	21	64	680
	4/23/1996	177.69	9.12	168.57	310	100	<1.0	<1.0	<1.0	1500
	7/9/1996	177.69	10.12	167.57	730	230	74	13	63	750
	10/10/1996	177.69	10.80	166.89	420	26	1.6	7.3	12	430

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-1 cont.	1/20/1997	177.69	10.52	167.17	660	290	4.2	13	36	450
	4/25/1997	177.69	9.77	167.92	410	<0.5	<1.0	<1.0	<1.0	580
	7/18/1997	177.69	10.55	167.14	420	<0.5	<1.0	<1.0	<1.0	370
	10/27/1997	177.69	10.36	167.33	300	56	<1.0	6.5	<1.0	220
	1/22/1998	177.69	7.52	170.17	4200	440	9	15	17.7	1300
	4/23/1998	177.69	8.80	168.89	15000	3400	190	910	900	4900
	4/23/1998	177.69	NM	NM	15000	2800	140	730	730	4400
	7/29/1998	177.69	9.73	167.96	NA	NA	NA	NA	NA	NA
	7/30/1998	177.69	NM	NM	15000	<2.5	<5.0	<5.0	<5.0	15000
	12/17/1998	177.69	9.51	168.18	2400	73	1	2.8	4.6	2000
	3/19/1999	177.69	8.65	169.04	4700	58	<1.0	<1.0	<1.0	4700
	6/23/1999	177.69	10.51	167.18	600	170	<1.0	7.2	5	3900
	9/27/1999	177.69	10.32	167.37	920	200	<25	<25	<25	4900
	12/9/1999	177.69	10.24	167.45	460	130	1.2	5.2	1.5	5100
	3/9/2000	177.69	7.72	169.97	3000	1300	120	80	140	7300
	6/8/2000	177.69	9.40	168.29	2900	540	9.7	20	17	5200
	9/18/2000	177.69	10.05	167.64	890	3.4	< 0.5	1.4	<0.5	2800
	12/14/2000	177.69	8.20	169.49	1600	11.1	<0.5	<0.5	<0.5	2730
	3/21/2001	177.69	9.75	167.94	5700	2.28	<0.5	0.51	<1.5	6810
	6/18/2001	177.69	10.21	167.48	2000	152	0.669	3.62	2.34	1980
	9/18/2001	177.69	10.30	167.39	2500	57.1	<5.0	6.25	<15	2090
	12/13/2001	177.69	9.82	167.87	2800	208	6.05	8.54	9.66	2030
	3/14/2002	177.69	9.10	168.59	1800	140	6.31	4.5	9.41	1970
	6/19/2002	177.69	9.92	167.77	1100	220	2.02	4.23	3.8	1280
	9/10/2002	177.69	10.21	167.48	490	39	2.9	<2.0	4.9	670
	12/16/2002	177.69	8.56	169.13	730	140	6	3.2	9.1	670

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-1 cont.	3/11/2003	177.69	9.40	168.29	1700	490	21	22	41	530
	6/17/2003	177.69	9.86	167.83	1300	140	<10	<10	<10	480
	12/9/2003	177.69	9.32	168.37	1400	390	12	14	26.1	260
	2/26/2004	177.69	7.71	169.98	3200	880	50	44	89	200
	5/21/2004	177.69	10.19	167.50	1500	370	10	14	25.2	140
	8/10/2004	180.24	10.41	169.83	460	390	7	8.1	15.4	110
	10/19/2004	180.24	10.40	169.84	1600	490	13	12	25.3	110
	1/14/2005	180.24	8.26	171.98	790 Z	420	26	19	52	91
	4/14/2005	180.24	8.77	171.47	3020	766	25.6	21.3	25.26	88.2
	7/7/2005	180.24	9.94	170.30	1940	440	15.5	15.7	21	80.6
	11/15/2005	180.24	10.21	170.03	1260	259	6.2	8.2	10.81	45.8
	2/8/2006	180.24	9.01	171.23	1430	332	13.6	18.1	25.03	43
	4/27/2006	180.24	9.14	171.10	1,600	519	23.2	32.4	40.20	63.4
	8/1/2006	180.24	9.92	170.32	1,530	395	11.8	25.4	28.01	40
	10/19/2006	180.24	10.34	169.90	1,230	327	10.2	21.6	21.19	29.6
	1/12/2007	180.24	9.84	170.40	561	153	7.18	14.4	14.95	30.9
	4/17/2007	180.24	9.78	170.46	467	192	7.59	13.8	16.42	30.4
	7/17/2007	180.24	9.82	170.42	755	271	8.6	17.8	22.06	26.7
	10/16/2007	180.24	8.99	171.25	164	80.2	<2.0	5.24	2.47	16.6
	1/17/2008	180.24	9.35	170.89	70	10.8	<2.0	<0.50	<2.0	19.3
	4/17/2008	180.24	9.80	170.44	687	89.7	<2.0	4.01	5.30	8.79
ESE-2	10/5/1992	178.23	11.68	166.55	300	5.4	16	3.9	45	NA
	4/1/1993	178.23	9.17	169.06	240	27	<0.5	17	2.6	123
	6/29/1993	178.23	10.88	167.35	1700	260	24	110	23	NA
	6/29/1993	178.23	NM	NM	1300	240	17	110	25	NA
	9/23/1993	178.23	11.56	166.67	240	3.1	0.5	0.6	2.5	643
	12/10/1993	178.23	10.48	167.75	250	2.4	2.4	1.5	11	940

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-2 cont	2/17/1994	178.23	10.06	168.17	900	<0.5	<0.5	<0.5	<0.5	930
	8/8/1994	178.23	11.11	167.12	750	<0.5	< 0.5	<0.5	< 0.5	1400
	10/12/1994	178.23	11.31	166.92	1700	<0.5	<0.5	<0.5	<0.5	3000
	1/19/1995	178.23	8.25	169.98	300	2	0.9	0.7	1	NA
	5/2/1995	178.23	9.21	169.02	1200	4	<2.5	<2.5	<5	NA
	7/28/1995	178.23	10.64	167.59	2000	<2.5	<2.5	<2.5	<5	NA
	11/17/1995	178.23	11.13	167.10	3600	<25	<25	<25	<50	12000
	11/17/1995	178.23	NM	NM	3400	<25	<25	<25	<50	12000
	2/7/1996	178.23	7.94	170.29	450	<0.5	<1	<1	<1	2300
	4/23/1996	178.23	9.73	168.50	260	0.9	<1	<1	<1	8600
	7/9/1996	178.23	10.70	167.53	780	<2.5	<5	<5	<5	13393
	10/10/1996	178.23	11.39	166.84	2900	<0.5	<1	<1	<1	12000
	1/20/1997	178.23	9.04	169.19	<250	<2.5	<5	<5	<5	13000
	4/25/1997	178.23	10.31	167.92	2700	<0.5	<1	<1	<1	15000
	7/18/1997	178.23	11.02	167.21	11000	<5	<10	<10	<10	11000
	10/27/1997	178.23	10.93	167.30	6100	<2.5	<5.0	<5.0	<5.0	7100
	10/27/1997	178.23	NM	NM	6600	<2.5	<5.0	<5.0	<5.0	7400
	1/22/1998	178.23	7.93	170.30	13000	<0.5	<1	<1	<1	10000
	1/22/1998	178.23	NM	NM	13000	<0.5	<1	<1	<1	10000
	4/23/1998	178.23	9.34	168.89	19000	<5	<10	<10	<10	36000
	7/29/1998	178.23	10.29	167.94	NA	NA	NA	NA	NA	NA
	7/30/1998	178.23	NM	NM	19000	<5	<10	<10	<10	36000
	12/17/1998	178.23	10.20	168.03	12000	<5	<5	<5	<5	13000
	3/19/1999	178.23	9.02	169.21	18000	160	<1	<1	<1	18000
	6/23/1999	178.23	9.99	168.24	280	<1	<1	<1	<1	16000
	9/27/1999	178.23	10.69	167.54	<500	<25	<25	<25	<25	12000
	12/9/1999	178.23	11.26	166.97	<50	< 0.3	< 0.3	< 0.3	<0.6	12000

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-2 cont	3/9/2000	178.23	7.95	170.28	<50	1.6	<0.5	<0.5	< 0.5	7900
	6/8/2000	178.23	9.66	168.57	1600	<0.5	0.73	<0.5	2.2	9400
	12/14/2000	178.23	11.15	167.08	6000	0.75	<0.5	<0.5	<0.5	11200
	3/21/2001	178.23	10.35	167.88	6900	786	45.7	37.7	71.5	3790
	6/18/2001	178.23	11.24	166.99	6400	<2.5	<2.5	<2.5	<7.5	9320
	9/18/2001	178.23	11.35	166.88	4800	<12.5	<12.5	<12.5	<37.5	6960
	12/13/2001	178.23	10.97	167.26	59000	0.592	<0.5	<0.5	<1	5940
	3/14/2002	178.23	10.13	168.10	4500	76	<0.5	<0.5	<1	6660
	6/19/2002	178.23	10.91	167.32	250	<12.5	<12.5	<12.5	<25	4900
	9/10/2002	178.23	10.82	167.41	1500	<5	<5	<5	6.3	3100
	12/16/2002	178.23	7.87	170.36	1400	<5	<5	<5	<5	2400
	3/11/2003	178.23	10.24	167.99	2800	<10	<10	<10	<10	4800
	6/17/2003	178.23	10.19	168.04	10000	<100	<100	<100	<100	4400
	12/9/2003	178.23	9.97	168.26	<50	<0.5	<0.5	<0.5	<0.5	3400
	2/26/2004	178.23	7.89	170.34	<50	<0.5	<0.5	<0.5	< 0.5	3000
	5/21/2004	178.23	10.70	167.53	<50	<0.5	<0.5	<0.5	<0.5	1100
	8/10/2004	180.79	10.99	169.80	<50	<0.5	<0.5	<0.5	<0.5	550
	10/19/2004	180.79	10.46	170.33	<50	<0.5	<0.5	<0.5	<0.5	410
	1/14/2005	180.79	8.66	172.13	<50	<8.3	<8.3	<8.3	<8.3	1200
	4/14/2005	180.79	9.38	171.41	<860	<2.15	<2.15	<2.15	<4.30	1020
	7/7/2005	180.79	10.46	170.33	<860	<2.15	<8.60	<2.15	<4.30	378
	11/15/2005 2/8/2006	180.79 180.79	10.55 9.46	170.24 171.33	<50 <215	< 0.5	<2.0	< 0.5	<1.0	210 419
	4/27/2006	180.79	9.46 10.67	171.33 170.12	<215 <100	<2.15 1.71	<8.6 <4.0	<2.15	<4.3	419 432
	8/1/2006	180.79	10.67	170.12 170.50	<100 <100	2.83	<4.0 <4.0	<1.0 <1.0	<2.0 <2.0	432 222
	10/19/2006	180.79	10.65	170.50	<100 <50	0.8	<4.0 <2.0	<0.5	<2.0 <1.0	222 221

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-2 cont	1/12/2007	180.79	NM	NM	NA	NA	NA	NA	NA	NA
	4/17/2007	180.79	10.20	170.59	<50	3.17	<2.0	4.49	<2.0	158
	7/17/2007	180.79	10.31	170.48	<50	1.65	<2.0	<0.5	<2.0	105
	10/16/2007	180.79	9.22	171.57	<50	5.67	<2.0	<0.5	<2.0	73.9
	1/17/2008	180.79	9.88	170.91	<50.0	< 0.50	<2.0	< 0.50	<2.0	80.2
	4/17/2008	180.79	10.29	170.50	<50	<0.5	<2.0	<0.5	<2.0	45
ESE-3	10/5/1992	178.20	10.58	167.62	430	57	31	3.6	34	NA
	4/1/1993	178.20	8.14	170.06	2400	460	220	74	210	NA
	6/29/1993	178.20	9.72	168.48	280	56	14	15	13	NA
	9/23/1993	178.20	10.46	167.74	72	13	3.5	1.7	4.1	NA
	12/10/1993	178.20	9.30	168.90	270	71	32	6.1	33	NA
	2/17/1994	178.20	8.97	169.23	520	140	10	20	33	5.74
	8/8/1994	178.20	10.02	168.18	<50	8.8	1.6	1.6	2.3	<5.0
	10/12/1994	178.20	10.32	167.88	470	190	6.4	15	18	<5.0
	1/19/1995	178.20	7.40	170.80	330	260	27	21	20	NA
	5/2/1995	178.20	8.26	169.94	530	180	30	23	44	NA
	7/28/1995	178.20	9.54	168.66	<50	< 0.50	<0.50	< 0.50	<1	NA
	11/17/1995	178.20	10.04	168.16	<50	1.7	< 0.50	< 0.50	<1	<5.0
	2/7/1996	178.20	7.08	171.12	<50	8.6	<1	<1	<1	<10
	4/1/2396	178.20	8.79	169.41	<50	7.6	<1	<1	<1	65
	7/9/1996	178.20	10.09	168.11	<50	12	2.6	2	3.9	26
	10/10/1996	178.20	10.48	167.72	NA	NA	NA	NA	NA	NA
	10/11/1996	178.20	NM	NM	260	140	<1	<1	2.6	<10
	1/20/1997	178.20	8.65	169.55	<50	1.5	1.7	<1	<1	14
	4/25/1997	178.20	10.02	168.18	<50	<0.5	<1	<1	<1	14
	7/18/1997	178.20	10.66	167.54	10000	1400	1400	300	1280	<250
	10/27/1997	178.20	9.83	168.37	<250	<2.5	<5.0	<5.0	36	<50

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-3 cont.	1/22/1998	178.20	7.06	171.14	130	< 0.5	<1.0	<1.0	<1.0	120
	4/23/1998	178.20	8.44	169.76	4800	560	<10	15	<10	4000
	7/29/1998	178.20	9.27	168.93	NA	NA	NA	NA	NA	NA
	7/30/1998	178.20	NM	NM	1800	6.2	<5.0	<5.0	<5.0	1700
	12/17/1998	178.20	9.15	169.05	600	54	<1.0	2.1	4.9	340/480
	3/19/1999	178.20	8.14	170.06	2000	260	4.4	13	28	870
	6/23/1999	178.20	9.44	168.76	290	91	<1.0	8.3	16	240
	9/27/1999	178.20	9.69	168.51	130	35	<1.0	2.7	3.8	100
	12/9/1999	178.20	10.99	167.21	380	84	1.7	8.7	6.3	160
	3/9/2000	178.20	7.12	171.08	950	190	4.6	39	62	350
	6/8/2000	178.20	10.92	167.28	300	37	< 0.5	2.3	1.3	400
	9/18/2000	178.20	11.12	167.08	920	140	1.3	15	4.8	170
	12/14/2000	178.20	9.70	168.50	320	64	<0.5	6.24	1.76	201
	3/21/2001	178.20	10.07	168.13	680	80.5	0.546	21.1	18.2	398
	6/18/2001	178.20	11.42	166.78	380	47	< 0.5	3.11	<1.5	242
	9/18/2001	178.20	11.55	166.65	340	54.8	< 0.5	4.36	<1.5	79.7
	12/13/2001	178.20	10.12	168.08	270	31.4	<0.5	1.31	2.24	129
	3/14/2002	178.20	9.84	168.36	670	89.8	0.769	23.4	30.4	413
	6/19/2002	178.20	10.57	167.63	130	18.6	<0.5	<0.5	<1	166
	9/10/2002	178.20	9.90	168.30	88	12	< 0.5	< 0.5	<0.5	93
	12/16/2002	178.20	9.23	168.97	290	55	17	3.7	14	78
	3/11/2003	178.20	9.05	169.15	100	3.4	<0.5	0.54	<0.50	140
	6/17/2003	178.20	9.30	168.90	520	17	<5	5.3	<5	130

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-4	10/5/1992	177.73	10.33	167.40	98	7.2	1.3	1.1	6.1	NA
	4/1/1993	177.73	7.88	169.85	550	93	20	23	33	NA
	6/29/1993	177.66	8.33	169.33	150	23	0.6	5.4	0.5	54
	9/23/1993	177.66	10.05	167.61	110	14	1.7	3.2	4.6	NA
	12/10/1993	177.66	8.95	168.71	110	21	7.2	4.2	10	28.75
	2/17/1994	177.66	8.65	169.01	210	26	1.2	4.7	11	113
	8/8/1994	177.66	9.76	167.90	76	9.6	<0.5	2	< 0.5	62
	10/12/1994	177.66	9.62	168.04	<50	<0.5	<0.5	<0.5	<0.5	44
	1/19/1995	177.66	6.97	170.69	140	56	14	24	23	NA
	5/2/1995	177.66	7.85	169.81	130	21	2.8	8.6	8.2	NA
	7/28/1995	177.66	9.20	168.46	<50	<0.5	<0.5	<0.5	<1	NA
	11/17/1995	177.66	9.68	167.98	<50	<0.5	0.6	<0.5	<1	18
	2/7/1996	177.66	6.59	171.07	100	2.6	<1	1.6	4.1	42
	4/23/1996	177.66	8.30	169.36	160	37	15	16	31	43
	7/9/1996	177.66	9.21	168.45	60	17	1.5	6.8	11.6	27
	10/10/1996	177.66	9.97	167.69	NA	NA	NA	NA	NA	NA
	10/11/1996	177.66	NM	NM	<50	<0.5	<1.0	<1.0	<1.0	18
	1/20/1997	177.66	7.68	169.98	<50	<0.5	<1.0	<1.0	<1.0	130
	4/25/1997	177.66	9.15	168.51	<250	<2.5	<5.0	<5.0	<5.0	<50
	7/18/1997	177.66	9.71	167.95	<50	15	<10	<10	<10	<100
	10/27/1997	177.66	9.38	168.28	<250	<2.5	<5.0	<5.0	<5.0	<50
	1/22/1998	177.66	6.59	171.07	<50	< 0.5	<1.0	<1.0	<1.0	<10
	4/23/1998	177.66	7.90	169.76	<250	<2.5	<5.0	<5.0	<5.0	<50
	7/29/1998	177.66	8.96	168.70	NA	NA	NA	NA	NA	NA
	7/30/1998	177.66	NM	NM	<50	<0.5	<1.0	<1.0	<1.0	<10
	12/17/1998	177.66	8.32	169.34	NA	NA	NA	NA	NA	NA

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-4 cont.	3/19/1999	177.66	7.71	169.95	NA	NA	NA	NA	NA	NA
	6/23/1999	177.66	8.78	168.88	NA	NA	NA	NA	NA	NA
	9/27/1999	177.66	9.27	168.39	NA	NA	NA	NA	NA	NA
	12/9/1999	177.66	9.21	168.45	NA	NA	NA	NA	NA	NA
	3/9/2000	177.66	6.82	170.84	NA	NA	NA	NA	NA	NA
	6/8/2000	177.66	8.72	168.94	NA	NA	NA	NA	NA	NA
	9/18/2000	177.66	8.72	168.94	NA	NA	NA	NA	NA	NA
	12/14/2000	177.66	8.61	169.05	NA	NA	NA	NA	NA	NA
	3/21/2001	177.66	8.61	169.05	NA	NA	NA	NA	NA	NA
	6/18/2001	177.66	9.24	168.42	NA	NA	NA	NA	NA	NA
	9/18/2001	177.66	9.35	168.31	NA	NA	NA	NA	NA	NA
	12/13/2001	177.66	8.53	169.13	NA	NA	NA	NA	NA	NA
	3/14/2002	177.66	8.44	169.22	NA	NA	NA	NA	NA	NA
	6/19/2002	177.66	10.97	166.69	NA	NA	NA	NA	NA	NA
	9/10/2002	177.66	9.27	168.39	NA	NA	NA	NA	NA	NA
	12/16/2002	177.66	6.90	170.76	NA	NA	NA	NA	NA	NA
	3/11/2003	177.66	8.83	168.83	NA	NA	NA	NA	NA	NA
	6/17/2003	177.66	8.84	168.82	NA	NA	NA	NA	NA	NA
ESE-5	10/5/1992	176.08	9.22	166.86	1300	200	3.8	1.2	18	NA
	4/1/1993	176.08	7.02	169.06	13000	2200	26	730	1000	NA
	4/1/1993	176.08	NM	NM	13000	2500	25	740	1100	NA
	6/29/1993	176.08	10.21	165.87	7600	1500	9.3	170	100	NA
	9/23/1993	176.08	10.64	165.44	560	19	1.2	0.9	1.8	NA
	12/10/1993	176.08	9.42	166.66	1700	300	3	76	110	14.07

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-5 cont	2/7/1994	176.08	9.35	166.73	3500	640	7.8	90	130	45.13
	8/8/1994	176.08	8.76	167.32	2600	210	4.6	9.4	4.4	33
	8/8/1994	176.08	NM	NM	2500	230	4.6	13	4.8	32
	10/12/1994	176.08	8.95	167.13	5600	560	9.5	75	21	79.2
	10/12/1994	176.08	NM	NM	6000	550	10	78	22	77
	1/19/1995	176.08	5.40	170.68	1900	620	<5	95	15	NA
	1/19/1995	176.08	NM	NM	1600	620	<5	93	17	NA
	5/2/1995	176.08	6.48	169.60	5700	1100	<10	180	58	NA
	5/2/1995	176.08	NM	NM	5300	1100	<10	180	58	NA
	7/28/1995	176.08	7.97	168.11	520	15	< 0.50	1.7	1.3	NA
	7/28/1995	176.08	NM	NM	460	7.2	< 0.50	1.9	1.5	NA
	11/17/1995	176.08	8.39	167.69	850	39	1.8	7.6	2.7	24
	2/7/1996	176.08	4.71	171.37	4100	670	6	190	140	<50
	4/23/1996	176.08	7.35	168.73	3000	570	<5	79	100	84
	7/9/1996	176.08	9.40	166.68	620	150	1.7	9.3	6.4	25
	10/10/1996	176.08	9.04	167.04	1100	29	<5	<5	<5	<50
	10/10/1996	176.08	NM	NM	1100	31	<5	<5	<5	<50
	1/20/1997	176.08	5.82	170.26	2100	980	<25	280	80	<250
	1/20/1997	176.08	NM	NM	2700	910	8.8	280	84	180
	4/25/1997	176.08	7.24	168.84	NA	NA	NA	NA	NA	NA
	4/28/1997	176.08	NM	NM	<250	7.9	<5.0	<5.0	<5.0	<50
	7/18/1997	176.08	7.86	168.22	1200	<5	<10	<10	<10	<100
	7/18/1997	176.08	NM	NM	630	31	<5.0	<5.0	<5.0	130
	10/27/1997	176.08	7.91	168.17	<250	5.4	<5.0	<5.0	<5.0	<50

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (µg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-5 cont.	1/22/1998	176.08	4.64	171.44	170	7.7	<1.0	<1.0	<1.0	130
	4/23/1998	176.08	6.31	169.77	720	79	<5.0	9	<5.0	180
	7/29/1998	176.08	7.43	168.65	NA	NA	NA	NA	NA	NA
	7/30/1998	176.08	NM	NM	840	9.8	<1.0	4	<1.0	710
	12/17/1998	176.08	7.05	169.03	NA	NA	NA	NA	NA	NA
	3/19/1999	176.08	5.00	171.08	<250	<5.0	<5.0	<5.0	<5.0	<5.0
	6/23/1999	176.08	7.77	168.31	NA	NA	NA	NA	NA	NA
	9/27/1999	176.08	8.11	167.97	450	10	<5.0	6.3	<5.0	220
	12/9/1999	176.08	7.66	168.42	NA	NA	NA	NA	NA	NA
	3/9/2000	176.08	5.08	171.00	1700	170	2.5	45	6.4	140
	6/8/2000	176.08	7.36	168.72	NA	NA	NA	NA	NA	NA
	9/18/2000	176.08	7.71	168.37	130	0.65	<0.50	0.71	<0.50	51
	12/14/2000	176.08	2.36	173.72	NA	NA	NA	NA	NA	NA
	3/21/2001	176.08	7.42	168.66	1000	10.3	<2.5	11	<7.5	70.8
	6/18/2001	176.08	7.92	168.16	NA	NA	NA	NA	NA	NA
	9/18/2001	176.26	8.23	168.03	200	0.868	<0.50	0.55	<1.5	57.5
	12/13/2001	176.26	7.80	168.46	NA	NA	NA	NA	NA	NA
	3/14/2002	176.26	6.55	169.71	1300	17.1	1.35	15.4	1.42	37.4
	6/19/2002	176.26	7.83	168.43	NA	NA	NA	NA	NA	NA
	9/10/2002	176.26	8.22	168.04	680	9.9	<5.0	<5.0	<5.0	44
	12/16/2002	176.26	6.58	169.68	NA	NA	NA	NA	NA	NA
	3/11/2003	176.26	6.77	169.49	2100	14	<2.5	15	3	80
	6/17/2003	176.26	6.75	169.51	NA	NA	NA	NA	NA	NA
	9/17/2003	176.26	8.48	167.78	970	10 C	<0.5	<0.5	5.3	34
	12/9/2003	176.26	7.32	168.94	700	6.5	<0.5	3.1	2.7 C	34

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
ESE-5 cont.	2/26/2004	176.26	5.21	171.05	2400 H	41	2.8 C	18	2.4 C	29
	5/21/2004	176.26	7.50	168.76	1500	2.6 C	<0.5	2.1 C	2.1 C	25
	8/10/2004	178.80	8.28	170.52	680	<0.5	< 0.5	<0.5	< 0.5	33
	10/19/2004	178.80	8.26	170.54	380	<0.5	<0.5	<0.5	1.4	39
	1/14/2005	178.80	5.16	173.64	2400	18	1.4	22	2.1	26
	4/14/2005	178.80	6.13	172.67	4800	7.75	1.26	14.3	<1.0	23.1
	7/7/2005	178.80	7.52	171.28	3240	0.78	<2.0	1.18	<1.0	36.6
	11/15/2005	178.80	7.85	170.95	1190	0.51	<2.0	<0.5	<1.0	30
	2/8/2006	178.80	5.83	172.97	2510	1.91	<2.0	2.82	<1.0	20.7
	4/27/2006	178.80	5.71	173.09	4,700	2.76	<2.0	4.77	<1.0	28.3
	8/1/2006	178.80	7.71	171.09	1,890	0.7	<2.0	0.75	<1.0	24.7
	10/19/2006	178.80	8.00	170.80	474	< 0.5	<2.0	3.39	<1.0	29
	1/12/2007	178.80	7.41	171.39	868	2.18	<2.0	2.66	<2.0	16.3
	4/17/2007	178.80	7.51	171.29	1,240	10.2	<2.0	10.4	2.37	17.2
	7/17/2007	178.80	7.47	171.33	836	3.1	<2.0	4.91	2.35	25.8
	10/16/2007	178.80	6.26	172.54	2,120	2.5	<2.0	6.19	2.61	17.5
	1/17/2008	178.80	6.59	172.21	2,730	5.74	<2.0	14.3	<2.0	13.1
	4/17/2008	178.80	6.81	171.99	2,770	4.7	<2.0	15.9	<2.0	<0.5
MW-6	7/28/1995	179.24	10.00	169.24	<50	<0.50	<0.50	<0.50	<1.0	NA
	11/17/1995	179.24	10.44	168.80	<50	<0.50	<0.50	<0.50	<1.0	<5.0
	2/7/1996	179.24	7.68	171.56	<50	<0.5	<1.0	<1.0	<1.0	<10
	4/23/1996	179.24	9.33	169.91	<50	<0.5	<1.0	<1.0	<1.0	<10
	7/9/1996	179.24	10.10	169.14	<50 <50	<0.5	<1.0	<1.0	<1.0 <1.0	<10
		179.24		168.24					<1.0 <1.0	<10 <10
	10/10/1996	_	11.00		<50	<0.5	<1.0	<1.0		
	1/20/1997	179.24	8.70	170.54	<50	<0.5	<1.0	<1.0	<1.0	<10
	4/25/1997	179.24	10.16	169.08	<50	<0.5	<1.0	<1.0	<1.0	<10
	7/18/1997	179.24	10.66	168.58	<50	<0.5	<1.0	<1.0	<1.0	<10
	10/27/1997	179.24	10.25	168.99	<50	<0.5	<1.0	<1.0	<1.0	<10

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
MW-6 cont.	1/22/1998	179.24	7.76	171.48	<50	<0.5	<1.0	<1.0	<1.0	<10
	4/23/1998	179.24	9.10	170.14	<50	<0.5	<1.0	<1.0	<1.0	<10
	7/29/1998	179.24	10.40	168.84	NA	NA	NA	NA	NA	NA
	7/30/1998	179.24	NM	NM	<50	<0.5	<1.0	<1.0	<1.0	<10
	12/17/1998	179.24	9.40	169.84	NA	NA	NA	NA	NA	NA
	3/19/1999	179.24	9.10	170.14	NA	NA	NA	NA	NA	NA
	6/23/1999	179.24	9.79	169.45	NA	NA	NA	NA	NA	NA
	9/27/1999	179.24	10.10	169.14	NA	NA	NA	NA	NA	NA
	12/9/1999	179.24	9.97	169.27	NA	NA	NA	NA	NA	NA
	3/9/2000	179.24	8.56	170.68	NA	NA	NA	NA	NA	NA
	6/8/2000	179.24	9.11	170.13	NA	NA	NA	NA	NA	NA
	9/18/2000	179.24	9.77	169.47	NA	NA	NA	NA	NA	NA
	12/14/2000	179.24	9.17	170.07	NA	NA	NA	NA	NA	NA
	3/21/2001	179.24	9.82	169.42	NA	NA	NA	NA	NA	NA
	6/18/2001	179.24	10.19	169.05	NA	NA	NA	NA	NA	NA
	9/18/2001	179.24	10.25	168.99	NA	NA	NA	NA	NA	NA
	12/13/2001	179.24	9.75	169.49	NA	NA	NA	NA	NA	NA
	3/14/2002	179.24	9.53	169.71	NA	NA	NA	NA	NA	NA
	6/19/2002	179.24	9.87	169.37	NA	NA	NA	NA	NA	NA
	9/10/2002	179.24	9.49	169.75	NA	NA	NA	NA	NA	NA
	12/16/2002	179.24	8.39	170.85	NA	NA	NA	NA	NA	NA
	3/11/2003	179.24	9.40	169.84	NA	NA	NA	NA	NA	NA
	6/17/2003	179.24	9.71	169.53	NA	NA	NA	NA	NA	NA
	9/17/2003	179.24	10.21	169.03	<50	<0.5	<0.5	<0.5	<0.5	<2.0
	12/9/2003	179.24	9.66	169.58	<50	<0.5	<0.5	<0.5	< 0.5	<0.5

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
MW-6 cont.	2/26/2004	179.24	7.83	171.41	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
	5/21/2004	179.24	9.75	169.49	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
	8/10/2004	181.80	10.28	171.52	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
	10/19/2004	181.80	9.91	171.89	<50	<0.5	<0.5	<0.5	<0.5	<0.5
	1/14/2005	181.80	8.40	173.40	<50	0.6	<0.5	<0.5	<0.5	<0.5
	4/14/2005	181.80	9.04	172.76	<200	< 0.5	< 0.5	< 0.5	<1.0	<0.5
	7/7/2005	181.80	9.94	171.86	<200	< 0.5	<2.00	< 0.5	<1.00	<0.5
	11/15/2005	181.80	9.98	171.82	<50	<0.5	<2.0	<0.5	<1.0	<0.5
	2/8/2006	181.80	9.91	171.89	<50	<0.5	<2.0	<0.5	<1.0	<0.5
	4/27/2006	181.80	9.54	172.26	<50	< 0.5	<2.0	<0.5	<1.0	<0.5
	8/1/2006	181.80	9.61	172.19	<50	<0.5	<2.0	<0.5	<1.0	0.51
	10/19/2006	181.80	10.23	171.57	<50	<0.5	<2.0	<0.5	<1.0	0.63
	1/12/2007	181.80	10.13	171.67	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	4/17/2007	181.80	10.22	171.58	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	7/17/2007	181.80	9.76	172.04	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	10/16/2007	181.80	9.82	171.98	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	1/17/2008 4/17/2008	181.80 181.80	9.43 9.54	172.37 172.26	<50 <50	<0.50 <0.5	<2.0 <2.0	<0.50 <0.5	<2.0 <2.0	<0.5 <0.5
MW-7	7/28/1995	176.55	9.25	167.30	<50	0.54	0.54	<0.50	<1.0	NA
	11/17/1995	176.55	9.73	166.82	1100	<10	<10	<10	<20	4000
	2/7/1996	176.55	6.48	170.07	610	<0.50	<1.0	<1.0	<1.0	2500
	2/7/1996	176.55	NM	NM	280	<0.50	<1.0	<1.0	<1.0	2600
	4/23/1996	176.55	8.37	168.18	110	<0.50	<1.0	<1.0	<1.0	3500
	4/23/1996		o.s/ NM	166.16 NM	230					
	7/9/1996 7/9/1996	176.55		167.31	230	< 0.50	<1.0	<1.0 <1.0	<1.0	3500 4296
		176.55	9.24			< 0.50	<1.0	_	<1.0	
	7/9/1996	176.55	NM	NM	220	<0.50	<1.0	<1.0	<1.0	4400
	10/10/1996	176.55	10.05	166.50	NA	NA o 50	NA	NA	NA	NA
	10/11/1996	176.55	NM	NM	1600	<0.50	<1.0	<1.0	<1.0	3000

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
MW-7 cont.	1/20/1997	176.55	7.51	169.04	<50	0.63	<1.0	<1.0	<1.0	2600
	4/25/1997	176.55	8.79	167.76	NA	NA	NA	NA	NA	NA
	4/28/1997	176.55	NM	NM	1500	< 0.50	<1.0	<1.0	<1.0	3600
	4/28/1997	176.55	NM	NM	7700	3500	<25	74	37	<250
	7/18/1997	176.55	9.50	167.05	1400	< 0.50	<1.0	<1.0	<1.0	2600
	10/27/1997	176.55	9.19	167.36	420	< 0.50	<1.0	<1.0	<1.0	560
	1/22/1998	176.55	6.45	170.10	3100	< 0.50	<1.0	<1.0	1.4	2300
	4/23/1998	176.55	8.02	168.53	3800	< 0.50	<1.0	<1.0	<1.0	3800
	7/29/1998	176.55	8.88	167.67	NA	NA	NA	NA	NA	NA
	7/30/1998	176.55	NM	NM	500	<2.5	<5.0	<5.0	<5.0	<50
	7/30/1998	176.55	NM	NM	4700	<12	<25	<25	<25	4700
	12/17/1998	176.55	8.62	167.93	NA	NA	NA	NA	NA	NA
	3/19/1999	176.55	7.52	169.03	3800	<1.0	<1.0	<1.0	<1.0	3800
	6/23/1999	176.55	9.63	166.92	NA	NA	NA	NA	NA	NA
	9/27/1999	176.55	9.39	167.16	140	<10	<10	<10	<10	3800
	12/9/1999	176.55	9.94	166.61	NA	NA	NA	NA	NA	NA
	3/9/2000	176.55	6.72	169.83	<50	<0.50	<0.50	<0.50	<0.50	1400
	6/8/2000	176.55	7.38	169.17	NA	NA	NA	NA	NA	NA
	9/18/2000	176.55	9.18	167.37	190	< 0.50	< 0.50	< 0.50	< 0.50	580
	12/14/2000	176.55	8.13	168.42	NA	NA	NA	NA	NA	NA
	3/21/2001	176.55	8.98	167.57	1300	< 0.50	<0.50	< 0.50	<1.5	1460
	6/18/2001	176.55	9.68	166.87	NA	NA	NA	NA	NA	NA
	9/18/2001	176.55	9.80	166.75	<0.50	< 0.50	< 0.50	< 0.50	<1.5	94.9
	12/13/2001	176.55	9.26	167.29	NA	NA	NA	NA	NA	NA
	3/14/2002	176.55	8.69	167.86	800	<0.50	<0.50	<0.50	<1.0	952
	6/19/2002	176.55	9.06	167.49	NA	NA	NA	NA	NA	NA
	9/10/2002	176.55	9.23	167.32	260	<2.0	<2.0	<2.0	<2.0	580
	12/16/2002	176.55	7.77	168.78	NA	NA	NA	NA	NA	NA

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
MW-7 cont.	3/11/2003	176.55	8.30	168.25	620	<2.5	<2.5	<2.5	<2.5	1100
	6/17/2003	176.55	9.51	167.04	NA	NA	NA	NA	NA	NA
	9/17/2003	176.55	9.52	167.03	<50	<0.5	<0.5	<0.5	< 0.5	460
	12/9/2003	176.55	8.99	167.56	<50	<0.5	<0.5	<0.5	< 0.5	420
	2/26/2004	176.55	6.55	170.00	<50	<0.5	<0.5	<0.5	<0.5	330
	5/21/2004	176.55	8.90	167.65	<50	<0.5	<0.5	<0.5	<0.5	630
	8/10/2004	179.11	9.58	169.53	<50	<0.5	<0.5	<0.5	<0.5	750
	10/19/2004	179.11	9.20	169.91	<50	<0.5	<0.5	<0.5	<0.5	550
	1/14/2005	179.11	7.25	171.86	<50	<2.0	<2.0	<2.0	<2.0	250
	4/14/2005	179.11	7.94	171.17	<200	<0.5	<0.5	<0.5	<1.0	285
	7/7/2005	179.11	9.08	170.03	<400	<1.0	<4.0	<1.0	<2.0	452
	11/15/2005	179.11	9.14	169.97	<50	< 0.5	<2.0	< 0.5	<1.0	110
	2/8/2006	179.11	7.93	171.18	<50	<0.5	<2.0	<0.5	<1.0	101
	4/27/2006	179.11	8.40	170.71	<50	< 0.5	<2.0	< 0.5	<1.0	131
	8/1/2006	179.11	8.89	170.22	<50	<0.5	<2.0	<0.5	<1.0	68.6
	10/19/2006	179.11	9.44	169.67	<50	< 0.5	<2.0	< 0.5	<1.0	65.5
	1/12/2007	179.11	8.91	170.20	<50	< 0.5	<2.0	<0.5	<2.0	38
	4/17/2007	179.11	8.58	170.53	<50	<0.5	<2.0	< 0.5	<2.0	24.7
	7/17/2007	179.11	9.04	170.07	<50	2.07	<2.0	<0.5	<2.0	29.3
	10/6/2007	179.11	7.88	171.23	<50	0.88	<2.0	<0.5	<2.0	5.26
	1/17/2008	179.11	NM	NM	NA	NA	NA	NA	NA	NA
	4/17/2008	179.11	8.85	170.26	<50	1.87	<2.0	<0.5	<2.0	21.6
MANA/ O	7/00/4005	470.04	7.00	400.54	4.400	0.5	0.5	0.5	O	NΙΔ
MW-8	7/28/1995	176.34	7.80	168.54	1,100	<2.5	<2.5	<2.5	<5.0	NA 1.10
	11/17/1995	176.34	8.29	168.05	8,300	75	5.3	670	240	140
	2/7/1996	176.34	4.99	171.35	2,300	33	<10	190	216	<100
	4/23/1996	176.34	6.09	170.25	2,000	390	<10	150	26	<250

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (µg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
QC-2	4/1/1993	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	NA
	6/29/1993	NM	NM	NM	<50	<0.5	< 0.5	<0.5	<0.5	NA
	9/23/1993	NM	NM	NM	<50	<0.5	< 0.5	<0.5	<0.5	NA
	12/10/1993	NM	NM	NM	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
	2/17/1994	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	NA
	8/8/1994	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	NA
	10/12/1994	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	NA
	1/19/1995	NM	NM	NM	<50	<0.5	<0.5	<0.5	<1.0	NA
	5/2/1995	NM	NM	NM	<50	< 0.50	< 0.50	< 0.50	<1.0	NA
	7/28/1995	NM	NM	NM	<50	< 0.50	< 0.50	< 0.50	<1.0	NA
	11/17/1995	NM	NM	NM	<50	< 0.50	< 0.50	< 0.50	<1.0	<5.0
	2/7/1996	NM	NM	NM	<50	<0.5	<1.0	<1.0	<1.0	<10
	4/23/1996	NM	NM	NM	<50	<0.5	<1.0	<1.0	<1.0	<10
	7/9/1996	NM	NM	NM	<50	<0.5	<1.0	<1.0	<1.0	<10
SOMA-1	8/10/2004	180.95	11.53	169.42	84	<0.5	<0.5	1.5 C	2.2	2100
	10/19/2004	180.95	10.41	170.54	56	<0.5	<0.5	1.3 C	1.4 C	1600
	1/14/2005	180.95	9.68	171.27	58	<3.1	<3.1	<3.1	<3.1	330
	4/14/2005	180.95	9.37	171.58	<2200	<5.5	<5.5	<5.5	<11	668
	7/7/2005	180.95	10.21	170.74	<860	<2.15	<8.6	<2.15	<4.3	591
	11/15/2005	180.95	10.70	170.25	<50	<0.5	<2.0	1.1	<1.0	256
	2/8/2006	180.95	9.30	171.65	127	1.56	<2.0	3.23	3.12	176
	4/27/2006	180.95	9.64	171.31	81.6	1.14	<2.0	2.8	<1.0	189
	8/1/2006	180.95	10.25	170.70	<50	1.07	<2.0	1.46	<1.0	122
	10/19/2006	180.95	10.73	170.22	<50	0.68	<2.0	4.17	<1.0	116

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (µg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
SOMA-1 cont	1/12/2007	180.95	10.38	170.57	<50	< 0.5	<2.0	<0.5	<2.0	68.7
	4/17/2007	180.95	10.09	170.86	<50	5.76	<2.0	4.33	2.59	33.4
	7/17/2007	180.95	10.35	170.60	<50	14.8	<2.0	4.63	3.32	39.4
	10/16/2007	180.95	9.71	171.24	<50	5.7	<2.0	<0.5	<2.0	14.2
	1/17/2008	180.95	10.01	170.94	<50	1.02	<2.0	<0.5	<2.0	12.8
	4/17/2008	180.95	10.17	170.78	<50	3.13	<2.0	<0.5	<2.0	12.8
SOMA-2	8/10/2004	178.99	10.69	168.30	<50	< 0.5	<0.5	<0.5	< 0.5	0.8
	10/19/2004	178.99	10.75	168.24	<50	< 0.5	< 0.5	< 0.5	< 0.5	2.4
	1/14/2005	178.99	9.45	169.54	<50	< 0.5	<0.5	<0.5	<0.5	1.1
	4/14/2005	178.99	10.46	168.53	<200	< 0.5	< 0.5	< 0.5	<1.0	< 0.5
	7/7/2005	178.99	11.81	167.18	<200	< 0.5	<2.0	< 0.5	<1.0	< 0.5
	11/15/2005	178.99	12.02	166.97	<50	< 0.5	<2.0	<0.5	<1.0	1.61
	2/8/2006	178.99	11.88	167.11	<50	< 0.5	<2.0	<0.5	<1.0	<0.5
	4/27/2006	178.99	10.95	168.04	<50	< 0.5	<2.0	<0.5	<1.0	<0.5
	8/1/2006	178.99	11.85	167.14	<50	< 0.5	<2.0	<0.5	<1.0	1.11
	10/19/2006	178.99	10.62	168.37	<50	< 0.5	<2.0	<0.5	<1.0	1.36
	1/12/2007	178.99	10.26	168.73	<50	< 0.5	<2.0	<0.5	<2.0	<0.5
	4/17/2007	178.99	11.88	167.11	<50	<0.5	<2.0	<0.5	<2.0	0.87
	7/17/2007	178.99	10.84	168.15	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	10/16/2007	178.99	9.69	169.30	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	1/17/2008	178.99	9.62	169.37	<50	<0.5	<2.0	<0.5	<2.0	<0.5
	4/17/2008	178.99	10.06	168.93	<50	<0.5	<2.0	<0.5	<2.0	<0.5

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
SOMA-3	8/10/2004	176.81	9.97	166.84	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	10/19/2004	176.81	9.59	167.22	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	1/14/2005	176.81	8.23	168.58	<50	<0.5	<0.5	<0.5	< 0.5	<0.5
	4/14/2005	176.81	8.64	168.17	<200	< 0.5	<0.5	<0.5	<1.0	< 0.5
	7/7/2005	176.81	9.60	167.21	<200	<0.5	<2.0	<0.5	<1.0	<0.5
	11/15/2005	176.81	10.01	166.80	<50	<0.5	<2.0	<0.5	<1.0	5.1
	2/8/2006	176.81	8.80	168.01	<50	<0.5	<2.0	<0.5	<1.0	7.16
	4/27/2006	176.81	9.00	167.81	<50	<0.5	<2.0	<0.5	<1.0	14.2
	8/1/2006	176.81	9.91	166.90	<50	<0.5	<2.0	<0.5	<1.0	7.29
	10/19/2006	176.81	10.21	166.60	<50	< 0.5	<2.0	< 0.5	<1.0	41.4
	1/12/2007	176.81	9.73	167.08	<50	< 0.5	<2.0	<0.5	<2.0	20.9
	4/17/2007	176.81	9.81	167.00	<50	< 0.5	<2.0	<0.5	<2.0	32.1
	7/17/2007	176.81	10.06	166.75	<50	< 0.5	<2.0	<0.5	<2.0	23.6
	10/16/2007	176.81	9.54	167.27	<50	< 0.5	<2.0	< 0.5	<2.0	22.3
	1/17/2008	176.81	9.06	167.75	<50	<0.5	<2.0	<0.5	<2.0	11.1
	4/17/2008	176.81	9.57	167.24	<50	<0.5	<2.0	<0.5	<2.0	23.7
SOMA-4	8/10/2004	176.94	9.44	167.50	140	0.98	<0.5	7.8	<0.5	11
	10/19/2004	176.94	9.91	167.03	150	<0.5	<0.5	10	<0.5	8.8
	1/14/2005	176.94	8.36	168.58	500	3.7	<0.5	53	<0.5	7.6
	4/14/2005	176.94	7.89	169.05	<200	0.74	<0.5	3.21	<1.0	5.65
	7/7/2005	176.94	11.62	165.32	<200	<0.5	<2.0	0.56	<1.0	7.09
	11/15/2005	176.94	9.33	167.61	<50	<0.5	<2.0	<0.5	<1.0	8.6
	2/8/2006	176.94	9.18	167.76	55.8	<0.5	<2.0	0.85	<1.0	10.4
	4/27/2006	176.94	8.75	168.19	172	1.35	<2.0	8.83	<1.0	11.7
	8/1/2006	176.94	9.52	167.42	<50	0.52	<2.0	1.53	<1.0	14.1
	10/19/2006	176.94	9.51	167.43	<50	<0.5	<2.0	<0.5	<1.0	19.2
	1/12/2007	176.94	8.98	167.96	<50	<0.5	<2.0	<0.5	<2.0	20.4
	4/17/2007	176.94	8.96	167.98	<50	<0.5	<2.0	4.33	<2.0	15.8
	7/17/2007	176.94	9.31	167.63	<50	<0.5	<2.0	4.47	<2.0	13.3
	10/16/2007	176.94	8.96	167.98	<50	<0.5	<2.0	4.5	<2.0	8.57

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B	
	1/17/2008	176.94	8.84	168.10	<50	<0.5	<2.0	<0.5	<2.0	8.87]

Table 1

Historical Groundwater Elevations & Analytical Data TPH-g, BTEX, MtBE

3519 Castro Valley Blvd, Castro Valley, CA

Monitoring Well	Date	Top of casing elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (μg/L)	Total Xylenes (μg/L)	MtBE (μg/L) 8260B
SOMA-4 cont.	4/17/2008	176.94	9.44	167.50	<50	<0.5	<2.0	<0.5	<2.0	1.22
EB-PMP	1/17/2008				<50	<0.5	<2.0	<0.5	<2.0	<0.5
EB-PRB	1/17/2008				<50	<0.5	<2.0	<0.5	<2.0	<0.5
EB-PMP2	1/17/2008				<50	<0.5	<2.0	<0.5	<2.0	<0.5
EB-PRB2	1/17/2008				<50	<0.5	<2.0	<0.5	<2.0	<0.5

Notes:

- < : Not detected above laboratory reporting limit.
- 1 Top of Casing Elevations were resurveyed by Kier & Wright Engineers Surveyors of Pleasanton, CA on June 21, 2004.
- C: Presence confirmed, but RPD between columns exceeds 40%.
- H: Heavier hydrocarbons contributed to the quantitation.
- NA: Not Analyzed. Due to construction activities in the Third Quarter 2003, which consisted of the

replacement of the USTs and dispensers, wells ESE-1 & ESE-2 were inaccessible. Well ESE-2 also inaccessible during the First Quarter 2007.

Well MW-7 had a car parked over it and was inaccessible during the First Quarter 2008 monitoring event

NM: Not Measured

Well ESE-2 was covered over with dirt during the First Quarter 2007 monitoring event.

Well MW-7 had a car parked over it and was inaccessible during the First Quarter 2008 monitoring event.

Equipment Blanks (EB-PRB & EB-PMP) were done to make sure decon efforts were adequate.

Z: Sample exhibits unknown single peak or peaks.

The Third Quarter 2003 was the first time that SOMA analyzed groundwater samples at the site.

The Third Quarter 2004 was the first time that SOMA analyzed groundwater samples at wells SOMA-1 to SOMA-4.