P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

RECEIVED

By dehloptoxic at 8:38 am, Oct 25, 2006

August 30, 2006 Letter 0014.L127

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(MARCH 2006 THROUGH JUNE 2006) TRANSMITTAL

Xtra Oil Company

3495 Castro Valley Blvd.

Castro Valley, CA

Gentlemen:

You will find enclosed two copies of the following document.

• Quarterly Groundwater Monitoring and Sampling Report (March 2006 Through June 2006) dated July 31, 2006 (Report 0014.R61).

One copy of the above document is enclosed for your use to include in a reimbursement request submittal to the California State Water Resources Control Board Underground Storage Tank Cleanup Fund. A second copy is for your records.

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted.

Submission of reports to the Alameda county FTP site is in addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. Submission of reports to the GeoTracker website does not fulfill the requirement to submit documents to the Alameda County FTP site.

The Alameda County Environmental Cleanup Oversight Program still requires a certification letter to accompany the submittal of the report. A copy of the suggested transmittal letter was sent to you by e-mail for your convenience (Letter 0014.L126).

P&D Environmental, Inc. will upload a PDF copy of the document with your certification letter to both the Alameda County FTP site as well as the SWRCB GeoTracker website within the next few business days.

August 30, 2006 Letter 0014.L126

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President

Professional Geologist #5901

Expires 12/31/07

Enclosures

PHK/eal 0014.L127

2307 Pacific Ave. Alameda, CA 94552 Phone: 510-865-9503 Fax: 510-865-1889

E-Mail: xtraoil@sbeglobal.net

Xtra Oil Company

August 17, 2006

Mr. Amir Gholami Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(MARCH 2006 THROUGH MAY 2006) CERTIFICATION

Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA

Dear Mr. Gholami:

You will find enclosed one copy of the following document prepared by P&D Environmental.

 Quarterly Groundwater Monitoring and Sampling Report (March through May 2006) dated July 31, 2006 (Report 0014,R61).

I declare under penalty of perjury that the contents and conclusions in the report are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 865-9503.

Sincerely,

Xtra Oil Company

Kelin Simas

Enclosures

0014.L126

Retail Fueling Convenience Stores

P & D Environmental, Inc.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

July 31, 2006 Report 0014.R61

Mr. Ted Simas Mr. Keith Simas Xtra Oil Company 2307 Pacific Ave. Alameda, CA 94501

SUBJECT:

QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT

(FEBRUARY THROUGH JUNE 2006)

Xtra Oil Company

3495 Castro Valley Blvd. Castro Valley, California

Gentlemen:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the results of quarterly monitoring and sampling of both the on- and off-site wells for the subject property. This work was performed in accordance with P&D's proposal 020599.P1 dated February 5, 1999. Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored and all of the wells except OW2 were sampled on June 29, 2006. The reporting period for this report is for February through June 2006. A Site Location Map (Figure 1), a Site Plan showing onsite well locations (Figure 2), and a Site Vicinity Map showing offsite observation well locations (Figure 3) are attached with this report.

BACKGROUND

The site is currently used as a gasoline station. Four 12,000 gallon underground fuel storage tanks are present at the site. Three of the tanks contain gasoline and the fourth tank contains diesel fuel. A 550 gallon waste oil tank was removed from the site in November 1988. The fuel tanks were replaced during August 1992.

Three monitoring wells, designated as MW1, MW2 and MW3 were installed at the site on February 14 and 15, 1990 by Western Geo-Engineers. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The locations of the monitoring wells are shown in Figure 2. Soil samples collected during drilling of the boreholes for the monitoring wells revealed the presence of total petroleum hydrocarbons as gasoline (TPH-G) and total petroleum hydrocarbons as diesel (TPH-D). TPH-G was encountered in borehole MW1 at depths of 5 and 10 feet below grade at concentrations of 40 and 1,400 mg/kg, respectively; in borehole MW2 at depths of 10 and 15 feet below grade at concentrations of 230 and 95 mg/kg, respectively; and in borehole MW3 at depths of 5, 10 and 15 feet at concentrations of 140, 250 and 25 mg/kg, respectively. In addition, 120 mg/kg TPH-D was detected in borehole MW3 at a depth of 5 feet. Soil samples collected at a depth of 20 feet in borehole MW1 and at a depth of 18 feet in boreholes in MW2 and MW3 did not show any detectable concentrations of TPH-G or TPH-D. Groundwater was encountered in the boreholes at depths of approximately 15 to 16 feet below grade.

July 31, 2006 Report 0014.R61

On February 15, 1990 Western Geo-Engineers drilled three exploratory boreholes at the site designated as SB1, SB2 and SB3. The subsurface materials encountered in the boreholes consisted primarily of silt and clay. The approximate locations of the boreholes are shown on Figure 2. It is P&D's understanding that soil samples were collected from the exploratory boreholes at depths of 10 and 12 feet and evaluated in the field using a photo ionization detector. In borehole SB1, TPH-G was detected at the depths of 10 and 12 feet at concentrations of 1,700 and 450 mg/kg, respectively. In boreholes SB2 and SB3, TPH-G was detected at the depths of 10 and 12 feet in both boreholes at concentrations of 800 mg/kg and greater than 2,000 mg/kg, respectively. A groundwater monitoring and sampling program was initiated at the site on February 20, 1990.

It is P&D's understanding that during fuel tank replacement activities in August, 1992 soil surrounding the tank pit was removed and disposed of offsite. An extraction well, designated as EW1, was designed and constructed in one corner of the new tank pit by K&B Environmental at the time of installation of the new tanks. The location of EW1 is shown on Figure 2.

On February 7, 1996 well MW2 was destroyed for the purpose of widening Redwood Road. The destruction was overseen by ACC Environmental Consultants of Oakland, California.

On August 15, 1997 P&D personnel oversaw the installation of one groundwater monitoring well, designated as MW4 at the subject site. The location of the monitoring well is shown on the attached Site Plan, Figure 2. This work was performed in accordance with P&D's work plan 0014.W4 dated June 27, 1997. The work plan was approved by the Alameda County Department of Environmental Health (ACDEH) in a telephone conversation with Mr. Scott Seery on August 14, 1997. During the conversation, Mr. Seery indicated that he would record his approval of the work plan in the county file for the site. In accordance with an October 25, 2002 letter from Mr. Seery, groundwater samples are to be analyzed for fuel oxygenates (MTBE, TAME, ETBE, TAME and TBA), and lead scavengers (EDB, 1,2-DCA/EDC) using EPA Method 8260; and data for observation wells OW1 and OW2, located in Redwood Road, are to be incorporated into monitoring and sampling reports for the subject site.

FIELD ACTIVITIES

Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored, and all of the wells except OW2 were sampled on June 29, 2006. It is unknown if the monitoring of the wells at the neighboring site on the southeast corner of the intersection of Redwood Road and Castro Valley Boulevard was conducted by others during the quarter.

The wells at the subject site were monitored for depth to water and the presence of free product or sheen. In wells OW1 and OW2 the depth to water and depth to free product was measured to the nearest 1/32-inch with a steel tape and water-finding or product-finding paste. In wells MW1, MW3, and EW1, the depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The measured depth to water and free product was not recorded in well MW4 due to field technician error. The measurements on the field sheet for well MW4 were recorded following removal of the passive hydrocarbon collection device from the well. The presence of free product and sheen was evaluated using a transparent bailer in wells MW1, MW3, and EW1. No free product was detected in wells OW1 or OW2. Before well purging, no petroleum hydrocarbon sheen was observed in any of the wells except in well MW3.

After monitoring, well OW1 was sampled on June 29, 2006 using a vacuum pump connected to a new 1-liter amber glass bottle and 0.25-inch diameter polyethylene tubing. The water sample was decanted to a 40-millilter Volatile Organic Analysis (VOA) and managed as described below. Only approximately 40 milliliters of fluid was recovered from each of observation well OW1, resulting in limited sample analysis as described below. Well OW2 was not purged because inadequate water was present in the well for sample collection.

Prior to well sampling on June 29, 2006, onsite wells MW1, MW3, MW4, and EW1 were purged of a minimum of three casing volumes of water, or until the wells had been purged dry. In well MW4, no free product was observed in the passive hydrocarbon collection device. Petroleum hydrocarbon odors were detected from the purge water from wells MW3 and OW1.

During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once the field parameters were observed to stabilize, a minimum of three casing volumes had been purged, or the wells had purged dry and partially recovered, water samples were collected using a clean Teflon bailer.

The water samples were transferred to 40-milliliter glass VOA vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The VOA vials and bottles were then transferred to a cooler with ice, until they were transported to McCampbell Analytical, Inc. in Pittsburg, California. McCampbell Analytical, Inc. is a State-certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels were measured in all of the wells once during the quarter. The measured depth to water at the site on June 29, 2006 in wells MW1, MW3, EW1, OW1 and OW2 was 7.80, 7.58, 6.88, 7.13 and 7.30 feet, respectively. As discussed above, the measured depth to water and free product was not recorded in well MW4 due to field technician error. No measurable separate phase hydrocarbon layers were encountered in any of the wells. Since the previous quarter, the groundwater levels have decreased in wells MW1, MW3, EW1, OW1 and OW2 by 1.15, 1.48, 1.65, 0.16 and 0.22 feet, respectively.

Based on the absence of water level information for well MW4, it was not possible to calculate the groundwater flow direction for the site. During the previous quarterly monitoring and sampling episode on February 3, 2006 the groundwater flow direction was calculated to be to the southeast with a gradient of 0.0035. The groundwater flow direction at the site on February 3, 2006 is shown on Figure 2.

LABORATORY RESULTS

All of the groundwater samples collected on June 29, 2006 were analyzed (with the exception of the sample from OW1) for TPH-D and TPH-G using EPA Methods 5030B and 3510C in conjunction

with Modified EPA Method 8015C; for benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 5030B in conjunction with EPA Method 8021B; and for fuel oxygenates (MTBE, TAME, ETBE, TAME, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC) using EPA Method 5030B in conjunction with EPA Method 8260B. Because of insufficient sample volume, EPA 8021B and EPA 8260B sample analysis was not performed for the sample collected from well OW1, and only TPH-G and TPH-D analysis was performed.

The laboratory analytical results of the sample from well OW1 shows TPH-D and TPH-G concentrations of 290 and 24 mg/L, respectively. Review of the laboratory analytical reports for sample OW1 indicates that the laboratory described the TPH-D results as consisting of both diesel- and gasoline-range compounds.

The laboratory analytical results of the samples from onsite wells MW1, MW3, MW4 and EW1 show TPH-D concentrations of 22, 12, 83 and 0.71 mg/L, respectively. Review of the laboratory analytical reports shows that the TPH-D results for all of these wells are described as consisting of both dieseland gasoline-range compounds. Laboratory results from wells MW1, MW3, MW4 and EW1 show TPH-G concentrations of 45, 36, 140 and 0.29 mg/L, respectively. Benzene was detected in wells MW1, MW3 and MW4 at concentrations of 3.1, 14 and 44 mg/L, respectively, and was not detected in well EW1. MTBE was detected in wells MW1, MW3, MW4 and EW1 at concentrations of 1.2, 27, 31 and 0.021 mg/L, respectively. No other fuel oxygenates or lead scavengers were detected except for t-butyl alcohol (TBA) in wells MW3 and EW1 at concentrations of 11 and 2.0 mg/L, respectively.

Since the previous sampling on February 3, 2006 concentrations of TPH-D, TPH-G, BTEX, and fuel oxygenates and lead scavenger concentrations have either remained unchanged or decreased in wells MW3 and EW1, with the exception of MTBE which increased in well MW3. In well OW1, TPH-D and TPH-G concentrations have decreased since the previous sampling. In well MW1, all analyte concentrations have increased with the exception of toluene which decreased. The laboratory analytical results for the groundwater samples are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Offsite observation wells OW1 and OW2 and onsite wells MW1, MW3, MW4, and EW1 were monitored, and all of the wells except OW2 were sampled on June 29, 2006. No measurable layers of separate phase hydrocarbons were detected in any of the wells. It is P&D's understanding that the hydrocarbon collection device in well MW4 is maintained by Xtra Oil Company personnel. P&D recommends that a log be maintained of product removed. P&D recommends that use of petroleum hydrocarbon absorbent socks in well MW1 be continued.

The laboratory analytical results for the groundwater samples from onsite wells MW1, MW3, MW4 and EW1 showed TPH-D concentrations ranging from 0.71 to 83 mg/L, TPH-G concentrations ranging from 0.29 to 140 mg/L, and benzene concentrations ranging from not detected to 44 mg/L. Review of the results for the fuel oxygenate and lead scavenger analysis shows that MTBE was detected in wells MW1, MW3 MW4 and EW1, with concentrations ranging from 0.021 to 31 mg/L, and TBA was detected in wells MW3 and EW1 at a concentrations of 2.0 and 11 mg/L, respectively. No other fuel oxygenates or lead scavengers were detected in any other wells. In well OW1, the TPH-D and TPH-G concentrations were 290 and 24 mg/L, respectively.

July 31, 2006 Report 0014.R61

Based on the laboratory analytical results of the water samples collected from the monitoring wells, P&D recommends that groundwater monitoring and sampling be continued. In addition, P&D recommends that future monitoring and sampling efforts be coordinated with other sites in the vicinity of the subject site that are presently being monitored and sampled.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database.

LIMITATIONS

This report was prepared solely for the use of Xtra Oil Company. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

July 31, 2006 Report 0014.R61

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President

Professional Geologist #5901

Expires: 12/31/07

PAUL H. KING
No. 5901

OF CALIFORNIE

Attachments:

Tables 1 & 2

and H. King

Site Location Map (Figure 1)

Site Plan (Figure 2)

Site Vicinity Map (Figure 3)

Field Parameter Forms

Laboratory Analytical Results Chain of Custody Documentation

PHK/efo 0014.R61

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	06/29/06	177.37*	7.80	169.57
	02/03/06		6.65	170.72
	11/18/05		8.17	169.20
	07/28/05		7.98	169.39
	04/13/05		6.90	170.47
	01/31/05		7.20	170.17
	10/15/04		8.52	168.85
	07/13/04		8.33	169.04
	04/06/04		7.93	169.44
	12/18/03		7.65	169.72
	09/18/03		8.15	169.22
	06/19/03		8.13	169.24
	03/18/03		7.77	169.60
	12/21/02		5.74	171.63
	9/10/02		8.28	169.09
	3/30/02		7.43	169.94
	12/22/01		6.92	170.45
	9/23/01		8.53	168.84
	6/22/01		8.30	169.07
	4/22/01		7.77	169.60
	12/14/00		8.49	168.88
	9/18/00		8.56	168.81
	6/08/00		7.97	169.40
	3/09/00		6.68	170.69
	12/09/99		8.15	169.22
	8/31/99		8.36	169.01
	4/29/99		7.68	169.69

^{*} = Surveyed on August 20, 1997

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	1/29/99	177.37*	6.99	170.38
(Continued)	4/26/98		7.50	169.87
,	1/24/98		6.61	170.76
	11/06/97		8.79	168.58
	8/26/97	177.37*	8.51	168.86
	7/24/97		8.71	168.72
	4/25/97		7.98	169.45
	1/20/97		7.12	170.31
	7/26/96		8.39	169.04
	7/09/96		8.16	169.27
	4/23/96		7.47	169.96
	2/07/96		6.09	171.34
	1/29/96		6.17	171.26
	10/26/95		8.45	168.98
	7/28/95		8.27	169.16
	5/02/95		6.96	170.47
	2/23/95		7.72	169.71
	11/18/94		7.14	170.29
	8/22/94		8.67	168.76
	5/19/94	177.43**	8.05	169.38
	2/28/94		7.44	169.99
	11/24/93		8.74	168.69
	8/30/93		8.78	168.65
	5/18/93		8.12	169.31
	2/23/93		7.34	170.09
	11/13/92	200.00***	9.13	190.87
	5/29/92	175.73	8.59	167.14
	1/14/92		8.57	167.16
	12/23/91		9.65	166.08
	11/25/91		9.41	166.32
	10/10/91		9.70	166.03
	9/17/91		9.50	166.23
	8/19/91		9.31	166.42

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW2	NOT MEASU	RED (DESTRO	YED ON FEBRUARY	7, 1996)
	2/07/96	176.04**	5.70	170.34
	1/29/96		5.16	170.88
	10/26/95		8.21	167.83
	7/28/95		7.99	168.05
	5/02/95		6.79	169.25
	2/23/95		7.51	168.53
	11/18/94		6.92	169.12
	8/22/94		8.59	167.45
	5/19/94		7.70	168.34
	2/28/94		6.99	169.05
	11/24/93		8.47	167.57
	8/30/93		8.64	167.40
	5/18/93		7.73	168.31
	2/23/93		6.39	169.65
	11/13/92	198.61***	8.70	189.91
	5/29/92	175.45	9.31	166.14
	1/14/92		8.97	166.48
	12/23/91		10.39	165.06
	11/25/91		9.81	165.64
	10/10/91		10.39	165.06
	9/17/91		10.23	165.22
	8/19/91		9.60	165.85

^{*} = Surveyed on August 20, 1997

^{** =} Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW3	06/29/06	176.40*	7.58	168.82
	02/03/06		6.10	170.30
	11/18/05		7.63	168.77
	07/28/05		7.58	168.82
	04/13/05		6.35	170.05
	01/31/05		6.79	169.61
	10/15/04		8.28	168.12
	07/13/04		8.11	168.29
	04/06/04		7.41	168.99
	12/18/03		6.99	169.41
	09/18/03		7.91	168.49
	06/19/03		7.60	168.80
	03/18/03		7.35	169.05
	12/21/02		5.43	170.97
	9/10/02		7.97	168.43
	3/30/02		6.97	169.43
	12/22/01		6.44	169.96
	9/23/01		8.17	168.23
	6/22/01		8.06	168.34
	4/22/01		7.50	168.90
	12/14/00		8.13	168.27
	9/18/00		7.83	168.57
	9/26/00		7.77	168.63
	6/08/00		7.50	168.90
	3/09/00		6.08	170.32
	12/09/99		7.90	168.50

^{* =} Surveyed on August 20, 1997 ** = Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)	
MW3	8/31/99	176.41**	7.95	168.45	
(Continued)	4/29/99		7.09	169.31	
,	1/29/99		6.42	169.98	
	4/26/98		6.85	169.55	
	1/24/98		5.90	170.50	
	11/06/97		7.80	168.80	
	8/26/97		7.67	168.93	
	7/24/97	176.41**	7.90	168.51	
	4/25/97		7.12	169.29	
	1/20/97		6.35	170.06	
	7/26/96		7.84	169.57	
	7/09/96		7.61	168.80	
	4/23/96		6.81	169.60	
	2/07/96		5.05	170.36	
	1/29/96		5.77	170.64	
	10/26/95		7.72	168.69	
	7/28/95		7.80	168.61	
	5/02/95		6.50	169.91	
	2/23/95		7.24	169.17	
	11/18/94		6.05	170.36	
	8/22/94	190.97***	7.65	168.76	
	5/19/94		7.15	169.26	
	2/24/94		6.68	169.73	
	11/24/93		7.55	168.86	
	8/30/93		7.64	168.77	
	5/18/93		7.12	169.29	
	2/23/93		8.01	168.40	
	11/13/92		7.86	191.12	
	5/29/92	175.00	8.45	166.55	
	1/14/92		8.24	166.55	
	12/23/91		9.37	165.63	
	11/25/91		9.19	165.81	
	10/10/91		9.43	165.57	
	9/17/91		9.20	165.80	
	8/19/91		8.95	166.05	

^{* =} Surveyed on August 20, 1997

^{** =} Surveyed on March 24, 1993

^{*** =} Surveyed on December 5, 1992

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW4	06/29/06	176.35*	Unknown	Unknown
	02/03/06		5.86	170.49
	11/18/05		7.99 (0.51)#	168.36
	07/28/05		7.59	168.76
	04/13/05		6.78 (0.01)#	169.58
	01/31/05		7.34 (0.19)#	169.15
	10/15/04		8.73 (0.15)#	167.73
	07/13/04		8.44 (0.03)#	167.93
	04/06/04		9.58 (2.83)#	168.89
	02/11/04		9.43 (2.70)#	168.95
	12/18/03		9.75 (1.51)#	167.73
	9/18/03		9.13 (1.80)#	168.57
	6/19/03		8.56 (0.31)#	168.02
	3/18/03		7.49 (0.06)#	168.91
	12/21/02		8.58 (4.39)#	171.06
	9/10/02		9.09 (1.60)#	168.46
	3/30/02		9.86 (2.49)#	168.36
	12/22/01		7.79 (1.75)#	169.87
	9/23/01		8.97 (1.17)#	168.26
	6/22/01		7.79	168.56
	4/22/01		9.07 (2.20)#	168.93
	12/14/00		8.87 (0.72)#	168.02
	9/18/00		8.50 (0.45)#	168.19
	6/08/00		7.34	169.01
	3/09/00		6.61 (0.46)#	170.08
	12/09/99		8.80	167.55
	8/31/99		8.28	168.07
	4/29/99		7.14	169.21
	1/29/99		6.68	169.67
	4/26/98		6.87	169.48
	1/24/98		6.61	169.74
	11/06/97		9.16	167.19
	8/26/97		8.92	167.43
	8/20/97		7.66 (prior to 6	development)

 $[\]overline{*} = \overline{\text{Surveyed}}$ on August 20, 1997

^{# =} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)
EW1	06/29/06 02/03/06 11/18/05 07/28/05 04/13/05 01/31/05 10/15/04 07/13/04 04/06/04 12/18/03	Not Surveyed	6.88 5.23 6.63 6.94 5.23 6.25 7.65 7.51 6.63 6.72
	09/18/03		7.29

TABLE 1 WELL MONITORING DATA

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Total Well Depth (ft.)
OW1	06/29/06	Not Surveyed	7.13	7.42
	02/03/06	,	6.97	7.45
	11/18/05		7.43 (0.13)#	7.50
	07/28/05		7.06 (0.01)#	7.45
	04/13/05		6.99	7.44
	01/31/05		7.03	7.44
	10/15/04		7.19 (0.08)#	7.44
	07/14/04		7.02	7.44
	04/06/04		7.01	7.44
	02/11/04		7.01	7.44
	10/06/03		7.07 (0.01)#	7.44
	11/02/00		7.12,+	
	12/09/99		7.27	
	01/29/99		7.12	
OW2	06/29/06	Not Surveyed	7.30	7.33
	02/03/06		7.08	7.35
	11/18/05		7.33	7.35
	07/28/05		7.27	7.32
	04/13/05		7.06	7.35
	01/31/05		7.29	7.37
	10/15/04		No Water or Product	7.35
	07/14/04		No Water or Product	7.35
	04/06/04		7.27	7.33
	02/11/04		7.19	7.33
	10/06/03		7.29	7.34
	11/02/00		7.19	
	12/09/99		7.17	
	01/29/99		7.19	

^{#=} Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a free product specific gravity of 0.75.

^{+ =} Petroleum hydrocarbon odor reported on probe for water level indicator.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
6/29/06	22,b	45	1.2	3.1	0.94	2.0	3.9	ND<0.05, TBA ND<0.5
02/03/06	9.7,c	37	0.62	2.2	1.2	2.0	3.5	ND<0.05, TBA ND<0.5
11/18/05	4.3,b	25	0.14	1.6	0.43	1.8	2.7	ND<0.05, TBA ND<0.5
7/28/05	16,a,b	30,a	0.26,+	2.5	0.76	2.1	4.8	ND<0.05, TBA ND<0.5
4/13/05	9.3, b	30	0.3	1.9	0.6	1.7	3	ND<0.05, TBA ND<0.5
1/31/05	14,b	29	0.27	2.2	1.2	1.9	5.0	ND<0.05, TBA ND<0.5
10/15/04	16,a,b	36,a	ND<0.05	1.5	1.0	2.1	5.1	ND<0.05, TBA ND<0.5
7/13/04	22a,b	34,a	0.053	2.1	0.59	2.1	4.4	ND<0.5, TBA ND<0.5
4/6/04	18,a,b	28,a	0.11	2.3	0.8	0.99	4.5	ND<0.1 TBA ND≤1
12/18/03	13, b	33	0.038	2.1	0.77	1.8	4.4	ND<0.005 TBA ND<0.05

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{+ =} Analyzed by EPA Method 8260.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
9/18/03	15,a,b	32	0.052	2.2	0.62	1.8	3.8	ND<0.017
27 10,03	15,4,0	3. 2	0.002					, TBA ND<0.17
6/26/03	67, a,b	45	ND<0.05	2.1	0.72	2.3	5.5	ND
3/18/03	7.3,a,b	33	ND<0.05	2.4	0.9	1.6	1.0	ND
12/21/02	11,a,b	32	ND<0.1	2.6	0.98	2.2	5.5	ND
9/10/02	18,c	31	ND<0.25	2.2	0.65	1.7	4.8	
3/30/02	12,a,b	99	ND	4.1	1.2	2.5	6.4	
12/22/01	22,a,b	60	ND	3.2	1.9	2	6.2	
9/23/01	16,a,c	49	ND	4	1.4	2.2	6.2	
6/22/01	85,a,b	35	ND	3.1	0.75	1.2	4.0	
4/22/01	16,a	43	ND	3.6	1.2	1.6	5.8	
12/14/00	11,a,d	49	ND	5.8	1.6	2	6.9	
9/18/00	15,a,b	86	ND	7.2	2	3.2	13	
6/8/00	6.5,a,c	50	ND	5.7	1.5	1.8	7	
3/9/00	7.4,a,b	48	ND	5.3	3.1	1.6	8.1	
12/9/99	12,a,b	65	ND	9.3	2.9	2.2	8.8	
8/31/99	22,b	66	0.71	8.7	2.7	2.4	10	
4/29/99	22,b	48	ND	8.4	2.8	2.0	8.1	
1/29/99	9.1,b	47	ND	9.0	2.9	1.9	8.0	
4/26/98	7.8,c	60	ND	9.3	5.7	2.1	9.1	
1/24/98	24,b	57	ND	6.9	5.5	2.0	8.7	
11/6/97	17,c	63	ND	7.4	6.7	2.3	9.9	
7/27/97	28,c	66	1.8	8.6	8.1	2.2	10	
4/25/97	170,b	77	ND	7.4	7.9	2.1	9.8	
1/21/97	57,c	80	0.25	7.8	8.3	1.9	8.9	
7/26/96	11,c	76	ND	11	13	2.4	10	
4/23/96	5.7,c	73	ND	8.6	12	2.2	9.8	
1/29/96	6.6,c	81	0.25	7.6	13	1.9	8.9	
10/26/95	62,c	89	ND	7.8	12	2.4	11	***

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

d = Laboratory analytical report note: TPH-D results consist of both oil-range and gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW1 (Continued)

Date	TPH-D	ТРН-G	МТВЕ	Benzene	Toluene	Ethyl benzene	Total Xylenes	Other Fuel Additives by 8260*
7/28/95	2.0,c	35		3.8	8.7	1.1	6.5	
5/2/95	6.5,c	86		8.9	14	2.3	11	
2/24/95	9.1	90		7.5	12	1.5	11	
11/18/94	10	96		9.3	14	2.5	11	
8/22/94	8.3	100		9.0	11	2.1	9.4	
5/19/94	30	100		12	14	3.5	17	
2/28/94	110	90		11	9.6	2.1	9.9	
11/24/93	8.2	66		8.3	8.9	2.0	121	
8/30/93	9.4	77		6.4	11	2.2	12	
5/18/93	30	92		4.0	11	2.5	15	
2/23/93	14	100		4.5	11	2.1	12	
11/13/92	4.4	120		5.8	10	2.1	13	
5/27/92	11	120		8.8	16	2.3	15	
1/24/92	19	39		7.3	8.7	1.3	8.9	
12/23/91	34	78		9.3	7.3	0.54	13	
11/25/91	36	170		5.5	5.6	1.6	8.4	
10/10/91	19	28		4.1	4.7	1.0	4.8	
9/17/91	19	39		4.9	4.1	1.2	5.9	
8/19/91	47	48	**	13	8.4	0.99	29	
7/20/91	49	100		11	14	2.3	17	
6/20/91	42	76		4.7	7.1	1.5	9.8	
5/17/91	26	72		7.7	9.9	ND	11	
4/15/91		56		6.5	8.5	0.41	9.9	
3/21/91		36		4.5	5.7	0.087	7.3	
2/15/91		120		7.4	6.6	ND	13	
1/15/91		33		3.9	2.9	0.21	5.3	
9/27/90		28		3.7	3.5	0.01	6.5	
8/23/90		40		5.1	4.9	0.35	6.0	
7/20/90	44			5.1	4.2	ND	9.1	
3/19/90		40		3.7	1.1	ND	3.3	
2/20/90**		7.6		1.6	ND	ND	1.3	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

^{**} Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW2

Date	ТРН-D	трн-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
2/7/96				MW2 D	estroyed			•
1/29/96	4.6,c	38	0.0071	1.9	5.7	1.1	5.9	
10/26/95	900	74	ND	2.9	5.9	2.0	10	
7/28/95	2.0,c	15		1.4	2.3	0.62	3.2	
5/2/95	6.6,b	55		3.3	10	1.8	10	
2/24/95	22	67		4.9	11	1.8	11	
11/18/94	5.0	86		11	17	1.8	12	
8/22/94	4.1	91		10	13	1.5	9.0	
5/19/94	5,8	62		. 92 .	. 13 -	1.3	8.4	
2/28/94	13	91		13	16	1.5	9.0	
11/24/93	79	12		13	17	2.5	17	
8/30/93	110	110		11	14	1.8	11	
5/18/93	44	67		9.2	12	1.4	9.3	
2/23/93	7.0	76		12	17	1.6	9.6	
11/13/92	8.2	79		10	13	1.4	8.6	
5/27/92	130	89		18	19	1.7	14	
1/14/92	1600	59		17	14	1.8	15	
12/23/91	700	2100		36	130	79	560	
11/25/91	130	230		11	9.7	1.4	9.7	
10/10/91	360	85		21	25	2.1	14	
9/17/91	56	74		10	11	1.4	8.1	
8/19/91	19	69		26	22	2.1	18	
7/20/91	100	51		9.9	7.7	1.2	7.5	
6/20/91	69	87		8.1	8.4	1.1	8.9	
5/17/91	33	62		5.9	6.3	1.2	9.0	
4/15/91		82		5.3	7.4	1.0	9.4	
3/21/91		62		9.3	11	0.35	9.7	
2/15/91		200		12	12	1.7	14	
1/14/91		78		11	8.7	0.58	8.0	
9/27/90		59		8.4	12	0.88	9.0	
8/23/90		96		8.1	8.4	1.5	8.6	
7/20/90	86			9.1	14	0.94	13	
3/19/90		50		7.7	8.7	0.075	5.6	
2/20/90** NOTES:		38		7.3	3.1	0.075	6.8	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

^{**} Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3

Date	TPH-D	трн-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
6/29/06	12,b	36	27	14	ND<0.5	ND<0.5	ND<0.5	ND < 0.5, except $TBA = 11$
02/03/06	22,b	86	24	26	ND<0.5	1.7	6	ND < 0.5, except $TBA = 11$
11/18/05	32,a,b	87,a	22	35	ND<1	2	11	ND<1.0, except TBA ND<10
7/28/05	77,a,b	100,a	32,+	30	1.1	2.3	12	ND<0.5, except $TBA = 13$
4/13/05	19,a,b	96,a	28	31	4	2.3	12	ND<0.5, except $TBA = 12$
1/31/05	13,a,b	93,a	31	36	1.5	2.5	11	ND < 1, except $TBA = 24$
10/15/04	13,a,b	76,a	24	28	ND<0.5	1.1	3.6	ND < 0.5, except $TBA = 18$
7/13/04	57,a,b	98,a	15	28	2.9	1.7	8.9	ND < 0.5, except $TBA = 11$
4/6/04	32,a,b	81,a	17	34	5.9	1.5	9.9	ND < 0.5, except $TBA = 8.8$
12/18/03	32,a,b	130,a	32	33	5.4	0.72	11	ND<0.5, except TBA = 17
9/18/03	140,a,b	130	23	34	11	2.5	14	ND < 0.5, except TBA = 10

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

^{+ =} Analyzed by EPA Method 8260.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
6/26/03	27,a,b	96	21	29	5.2	2.0	10	ND, except TBA = 8.9
3/18/03	11,a,b	120	16	36	12	1.8	2.4	ND, except TBA = 5.1
12/21/02	21,a,b	110	33	34	9.3	2.0	13	ND, except TBA = 14
9/10/02	43,b	70	19	21	2.2	1.6	7.6	
3/30/02	8.5,a,b	170	26	40	17	2.6	16	
12/22/01	9.2,a,b	140	27	37	··· 20	2.6	15	
9/23/01	47,a,b	130	26	32	9.1	2.4	12	**
6/22/01	33,a,b	110	25	31	7.2	1.9	11	
4/22/01	61,a	140	24	25	5.4	1.7	11	
12/14/00	120,a,b	140	35	37	16	2.4	15	
9/18/00	43,a,b	130	33	39	91	2.3	14	
7/26/00			21					ND***,
								except tert-butanol =
								19
6/8/00	74,a,b	130	23	41	16	1.9	13	
3/9/00	14,a,b	180	24	39	22	2.5	16	
12/9/99	17,a,b	120	16	35	6.7	2.4	12	
8/31/99	22,b	120	4.7	35	3.7	2.4	14	
4/29/99	48,b	100	2.5	33	8.0	2.1	14	
1/29/99	240,b	84	1.3	31	2.8	1.8	12	
4/26/98	3 8 0, b	100	9.7	29	7.1	1.8	14	
1/24/98	77,b	97	ND	28	7.1	1.8	11	
11/6/97	120,b	140	ND	37	19	2.4	14	
7/24/97	91,c	120	1.4	33	17	2.2	12	
4/25/97	760,b	240	1.6	24	18	4.1	24	**
1/21/97	34,c	150	1.3	40	14	2.6	12	*=
7/26/96	24,c	130	0.89	40	22	2.4	12	
4/23/96	280,c	170	0.72	34	22	2.2	14	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

^{***}Review of laboratory analytical reports indicate that oxygenated volatile organic compounds (including TAME, DIPE, ETBE, methanol, ethanol, EDB, and 1,2-DCA) were not detected except MTBE at 21 ppm and tert-butanol at 19 ppm. Results in milligrams per liter (mg/L), unless otherwise indicated.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW3 (Continued)

Date	TPH-D	трн-С	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
1/29/96	45,c	150	0.54	32	21	1.9	12	
10/26/95	33	130	0.69	37	21	0.21	11	
7/28/95	1.9, b	86		1.4	2.3	0.62	3.2	
5/2/95	9.7,b	170		43	30	2.5	14	
2/24/95	9.2	130		31	19	1.8	10	
11/18/94	23	140		38	22	2.0	11	
7/22/94	5.3	170		35	20	1.8	10	
5/19/94	30	150		38	25	2.4	14	
2/28/94	210	110		36	21	1.9	11	
11/24/93	24	160		48	26	2.2	12	
7/30/93	32	130		36	21	1.9	8.2	
5/18/93	7.2	130		36	21	2.1	12	
2/23/93	8.1	110		31	18	1.9	11	
11/13/92	4.7	140		38	24	2.0	12	
5/27/92	27	370		91	57	3.0	21	
7/14/92	270	130		76	30	3.4	21	
12/23/91	540	740		30	61	31	180	
11/25/91	74	150		65	31	3.4	18	
10/10/91	39	140		57	31	2.2	14	
9/17/91	140	180		47	25	2.6	15	
8/19/91	150	170		82	31	4.4	22	
7/20/91	270	450		46	29	3.5	21	
6/20/91	210	920		39	49	13	69	
5/17/91	70	170		32	22	2.2	18	
4/15/91		110		31	15	0.88	7.4	
3/21/91		87		30	14	0.69	5.4	
2/15/91		230		44	40	ND	31	
1/14/91		160		48	25	1.0	16	
9/27/90		25		7.2	6.4	0.42	3.4	
8/23/90		220		67	46	27	18	
7/20/90	86			9.1	14	0.94	13	
3/19/90		210		38	28	1.8	12	
2/20/90**		46		20	15	1.8	9.7	

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

ND = Not Detected.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

^{-- =} Not Analyzed.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

c = Laboratory analytical report note: TPH-D results consist of gasoline-range compounds.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

^{**} Inorganic lead not detected in sample.

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4

Date	ТРН-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
6/29/06	83,a,b	140,a	31	44	13	2.6	19	ND<1.0, except TBA
2/3/06	83,a,b	150,a	22	35	12	3.2	14	= ND<10 ND<0.5, except
11/18/05			Not Sa	impled (Free I	Product Prese	ent in Well)		TBA = 7
7/28/05	94,a,b	130,a	27,+	32	8.9	2.9	14	ND<0.5, except TBA = 8.4

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

^{+ =} Analyzed by EPA Method 8260.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well MW4 (Continued)

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
4/13/05			Not S	ampled (Free F	Product Prese	ent in Well)		·
1/31/05				ampled (Free I				
10/15/04				ampled (Free I				
7/13/04				ampled (Free I		,		
2/11/04	Free Pr	oduct sample		ory fuel finger			ibling diesel,	with a less
		•		ignificant gasc	•	-		
12/18/03			Not S	ampled (Free F	Product Prese	ent in Well)		
9/18/03			Not S	ampled (Free I	Product Prese	ent in Well)		
6/26/03				ampled (Free I				
3/18/03			Not S	ampled (Free F	Product Prese	ent in Well)		
12/21/02			Not S	ampled (Free F	Product Prese	ent in Well)		
9/10/02			Not S	ampled (Free I	Product Prese	ent in Well)		
3/30/02			Not S	ampled (Free I	Product Prese	ent in Well)		
12/22/01			Not Sa	ampled (Free I	Product Prese	ent in Well)		
9/23/01			Not S	ampled (Free I	Product Prese	ent in Well)		
6/22/01	440,a,b	140	15	35	19	2.0	10	
4/22/01			Not S	ampled (Free F	Product Prese	ent in Well)		
12/14/00			Not S	ampled (Free F	Product Prese	ent in Well)		
9/18/00			Not S	ampled (Free F	Product Prese	ent in Well)		
6/8/00			Not S	ampled (Free F	Product Prese	ent in Well)		
3/9/00	2,100,a,b	130	6.9	35	13	2.1	11	
12/9/99	9,000,a,b	120	8.1	33	6	2.4	12	
8/31/99	9.4,b	190	4.4	46	30	2.8	15	
4/29/99	9. 4,b	210	3.2	42	35	2.8	15	
1/29/99	7.3, b	190	2.4	44	40	3.1	17	
4/26/98	13, b	190	ND	49	37	3.2	18	
1/24/98	20,b	200	ND	50	40	3.1	17	
11/6/97	110, b	160	ND	48	30			
8/26/97	5.5,b	210	1.7	48	42	3.4	19	
8/15/97				MW4	Installed			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

^{-- =} Not Analyzed.

a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.

b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.

f = Laboratory analytical report note: liquid sample that contains more than ~1 vol. % sediment.

^{+ =} Analyzed by EPA Method 8260.

^{* =} This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1

Date	TPH-D	ТРН-G	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
6/29/06	0.71,b	0.29	0.021	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01, Except TBA = 2.0
2/3/06	1.2, b	0.79	3.1	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05, Except TBA = 13
11/18/05	1.2,a	0.9	2	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05, Except TBA = 18

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- + = Analyzed by EPA Method 8260.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE,

ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well EW1

Date	TPH-D	трн-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260*
7/28/05	1.8,b	1.2	17,+	0.033	0.0051	0.00056	0.0059	ND<0.25, except
4/13/05	2.2,b	0.38	2.7	ND<0.05	ND<0.05	ND<0.05	ND<0.05	TBA = 22 ND<0.05, except
1/31/05	3.4,b	1.9	38	ND<1	ND<1	ND<1	ND<1	TBA = 1.6 ND<1, except
10/15/04	4.1,a,b	ND<5.0,a,e	96	ND<1.7	ND<1.7	ND<1.7	ND<1.7	TBA = 32 ND<1.7, except
7/13/04	3.3,a,b	2.6,a	73	ND<1.2	ND<1.2	ND<1.2	ND<1.2	TBA = 97 ND<1.2, except
4/6/04	3.4,a,b	2.6,a	72	ND<1	ND<1	ND<1	ND<1	TBA = 40 ND < 1, except
12/18/03	3.0, b	ND<5.0,e	160	0.22	ND<50	ND<50	0.073	TBA = 34 ND<5, except
9/18/03	8.2,a,b	7.5	220	0.33	ND<0.05	ND<0.05	ND<0.05	TBA = 64 ND<2.5, except
2/23/93	9.6	66		14	8.5	1.4	9.8	TBA = 51
11/13/92	13	62		11	9.2	1.1	9.6	
8/92				EW1 I	nstalled			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- + = Analyzed by EPA Method 8260.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- e = Laboratory analytical report note: reporting limit raised due to high MTBE content
- * = This column summarizes results for analysis using EPA Method 8260 for non-MTBE fuel oxygenates (TAME, DIPE,

ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW1

Date	ТРН-D	ТРН-G	трн-мо	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, including MTBE**
6/29/06	290,b	24						
2/3/06	710a,f	31,a	210					
11/18/05	820,b	370		0.13	ND<0.025	0.4	0.29	ND<0.025 TBA<0.25
7/28/05	230,a,b	10,a		1.3	0.03	0.19	0.072	ND<0.05, TBA ND<0.5
4/13/05	590a,b,d	35,a		2	ND<0.05	0.46	0.14	ND<0.05, TBA ND<0.5
1/31/05				No sampl	le recovered			
10/15/04				No sampl	le recovered			
7/14/04	240,a,b	66,a	ND<0.05	1.8	ND<0.05	1.8	0.056	ND<0.05, TBA ND<0.5
4/6/04	74,a,b	50,a		3.1	ND<0.1	0.21	0.14	ND<0.1, TBA ND<1
2/11/04	450,a,b	15,a	130	2.2	0.031	0.16	0.054	ND<0.025, TBA ND<0.25
11/21/03	1,900,a,b	38,e	570	2.0	0.059	0.19	0.095	ND<0.05, TBA ND<0.5
6/10/98				OW1	Installed			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- d = Laboratory analytical report note: oil range compounds are significant.
- e = Laboratory analytical report note: unmodified or weakly modified gasoline is significant.
- f = Fuel oil.
- ** = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE,

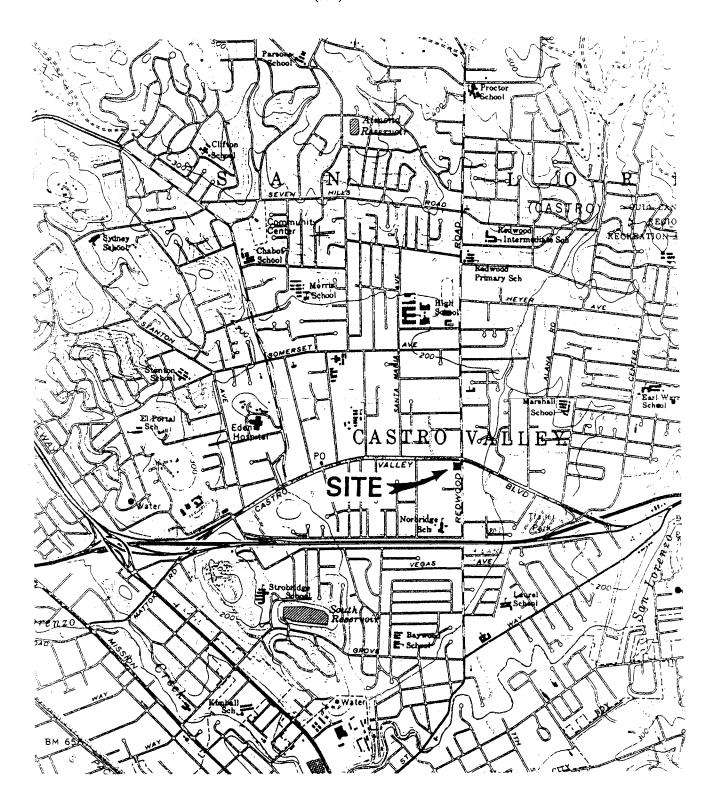
ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS Well OW2

Date	TPH-D	ТРН-С	ТРН-МО	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Other Fuel Additives by 8260, incl. MTBE**
6/29/06				No sa	mple recovere	ed		
2/3/06	0.37,b	0.14,c	ND<0.25					
11/18/05				No sa	mple recovere	ed		
7/28/05				No sa	imple recovere	ed		
4/13/05	0.22,b	0.065		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0097
1/31/05				No sa	mple recovere	ed		
10/15/04				No sa	mple recovere	ed		
07/14/04				No sa	mple recovere	ed		
4/6/04		0.069,a		ND <0.00062	ND <0.00062	ND <0.00062	ND <0.00062	
2/11/04		0.21		ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND<0.0005, except MTBE = 0.0064 TBA = 0.0070
11/21/03				No sa	mple recovere	ed.		
6/10/98				O,	W2 Installed			

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.


MTBE = Methyl tert-Butyl Ether.

ND = Not Detected.

- -- = Not Analyzed.
- a = Laboratory analytical report note: lighter than water immiscible sheen present on the sample.
- b = Laboratory analytical report note: TPH-D results consist of both diesel-range and gasoline-range compounds.
- c = Laboratory analytical report note: heavier gasoline range compounds are significant (aged gasoline?).
- * = This column summarizes results for analysis using EPA Method 8260 for fuel oxygenates (MTBE, TAME, DIPE, ETBE, and TBA) and lead scavengers (EDB, 1,2-DCA/EDC).

P & D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: U.S. Geological Survey Hayward, Calif. 7.5 Minute Quadrangle Photorevised 1980

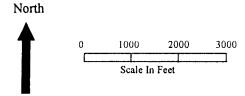
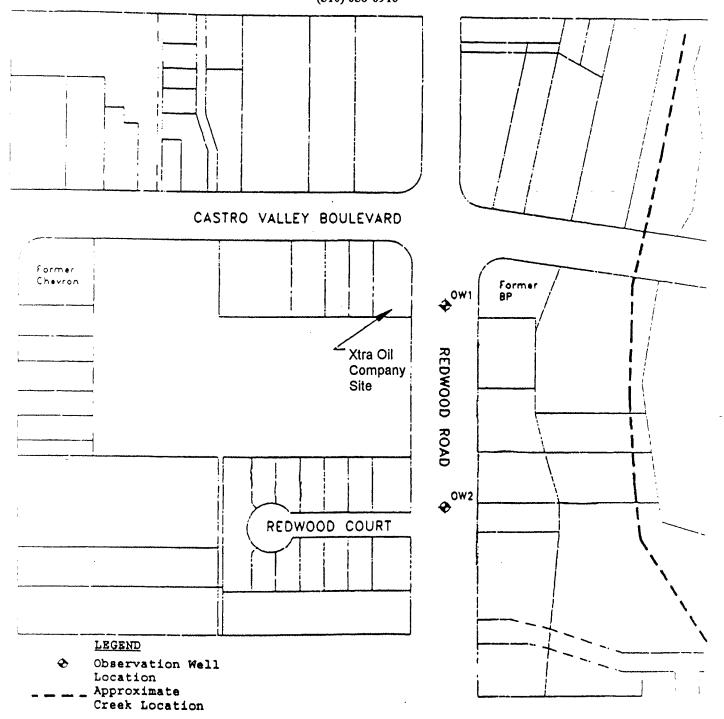



Figure 1 SITE LOCATION MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, California

P & D ENVIRONMENTAL A Division of Paul H. King, Inc. CASTRO VALLEY BOULEVARD 4020 Panama Court Oakland, CA 94611 (510) 658-6916 sidewalk (170.72)MW1 Planter UST Pit Location 0 0 0 MW4 (170.49)0 Canopy 0 0 0 0 REDWOOD ROAD gidewalk EW1 MW3 (170.30) Pump Island Building LEGEND **Monitoring Well Location** Groundwater Surface Elevation on February 3, 2006 **Groundwater Flow Direction** North Figure 2 Base Map From: 20 SITE PLAN RHL Design Group, Inc. Xtra Oil Company June, 1997 3495 Castro Valley Blvd Scale in Feet Castro Valley. CA

P & D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

Base Map From: Castro Valley Sanitation District Undated

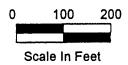


Figure 3 SITE VICINITY MAP Xtra Oil Company 3495 Castro Valley Blvd. Castro Valley, CA P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

			, DATA S	HEET	11.	
Site	Name 7	7.0 - Ca	sto Valley	Well No.	1911	
	No.	0014	<i></i>	Date_//	29/06	_
		er (ft.) 7	<u>60</u>	Sheen	10	
Well	l Depth	(ft.) <u>26</u>	7 (/	free Prod	duct Thickness U	2
Well	l Diamet	er 4in	4634	Sample Co	ollection Method	
Gal.	./Casing	y vol. 7,5	<u> </u>		flon bile	1
		X32	24		ELECTRICAL	
TIME	<u> </u>	GAL. PURGED	DH LG	TEMPERATURE	CONDUCTIVITY	
$\frac{7}{\tau}$	10	7	- (4,7)	70,7	30	
5'	4 (- 4-70 14-21	771	93	
5	<u> </u>	17	7,60	-		- D-Y
		16	4,15	1-1,5	106	Dumped
		$\frac{20}{2i}$				51x gr(5
		-64				atta
						July July
			Tande	the a		•
		<u>Opr</u>	1 Sample	11000		
						
	·····					
	NA AL-LONG WITH BARROW					
		4				
<u></u>						
		•				ę.
NOT	ES:	mige ho	Het mil	by white	, with sud	9
	Yam	oed di	ry often	112 991	5	
PUR	GE10.92				· · · · · · · · · · · · · · · · · · ·	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

VIII COLL DATA SHEET	10.
Site Name XU - Castro Val DATA SHEET Well	No. 1443
Job No. 0014 Date_	6/29/06
TOC to Water $(ft.)$ Sheen	w)'
Well Depth (ft.) 167 Free	Product Thickness \(\sum_{\text{0}} \)
Well Diameter 410, 6469a (f) Sampl	e Collection Method
Gal./Casing Vol. 7 18	et on Dailer
x3= Z(ELECTRICAL
TIME GAL. PURGED DH TEMPERATURE	CONDUCTIVITY 7 1,15
1:65	175
6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
11 Auge Tour	munted 6:501
	minated 6:59
	_O(V Y
	_ /
7601 11 11-19 7/-	7 -1-1-1
7:01 11 4.16	
measured from	bucket
	
·	
NOTES: RINGE MOTEN & Stal	1 contain
scum & ador	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

	DATA SHEET		113111		
Site Name		Well No/	MW4		
Job No. 0014	market de Market	Date		warene war	ž
TOC to Water (ft.)		Sheen			Mary .
Well Depth (ft.)		Free Product	t Thickness	Police familie en	
Well Diameter Zin		Sample Colle	ection Method		
Gal./Casing Vol	- Cr.				
TIME GAY PURGED		PERATURE	ELECTRICAL CONDUCTIVITY		
		100			
			***************************************	-	
1/0 - 1 1 1	1 1/2		b. a l. l		nt.
No Greepalnot absent	4 + 19	or producty	by product	Daniel	
	NOTOP	of water	by nonter	Guding	prete

	Bots	om o	F tape		
	1.30 inches	2		-	
		· · · · · · · · · · · · · · · · · · ·		-	
				-	
				-	
		Monto de la constanta de la co	***************************************	-	
		<u></u>			
				-	
NOTES:				rianistin-	

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

\sim	MW4
Job No. 2014	Well No. / / / / /
Job No	Date
TOC to Water (ft.)	Sheen
Well Depth (ft.) 5.3	Free Product Thickness
Well Depth (ft.) 151 Well Diameter 214 03 9	Sample Collection Method
Gal./Casing Vol. 15/3 x 163=2.49	
X3 7 7.5	ELECTRICAL
TIME GAL. PURGED DH TEMI	PERATURE CONDUCTIVITY
1.41	147
7:54 2 481	195 LM
3	
4 7:55 NP (XVV (0) Zad 5
5	
7	
	· · · · · · · · · · · · · · · · · · ·
	
	<u></u>
	<u> </u>
NOTES: DUNGE HOTEL GROVE	with suds
ino product in collect	Hor
	- MC I
PURGE10.92	

5.60

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

DATA SHEET	1-11
Site Name 10 - Castro Valley	Well No.
Job No. <u>6014</u>	Date 6/29/06
TOC to Water (ft.) 6.38	Sheen 10
Well Depth $(ft.)$ $\frac{13}{2}$	Free Product Thickness 17
Well Diameter 8 in 2584 ga fot	Sample Collection Method
Gal./Casing Vol. (6 33	teton miles
x3 = 49	ELECTRICAL
TIME GAL. PURGED DH TEMPE	RATURE CONDUCTIVITY 17 4 40
137 16 4.99 -1	7 6 39
4:42 3774 4.75 7	7.4 37
4:47 -40-32 3.85 7	3,6 37
14:90 48494 3 AD 75	7. 7 37
4:53 49 3.75 1	1.2 37
4 254 3.14 7	2.6 37
4:55	
ample time	5:15
· · · · · · · · · · · · · · · · · · ·	
NOTES: NO Sheel or ador	or Punge hatel

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

Site Name	\times \times \sim		Well No(DW1
Job No				
	(ft.)	_		
Well Depth	(ft.)	_	Free Produc	t Thickness
Well Diamete	er lin		Sample Coll	ection Method
Gal./Casing	Vol	_	Vacu	rum amp
TIME	GAL. PURGED	DH TEMPE	<u>ERATURE</u>	ELECTRICAL CONDUCTIVITY

				•
			<u> </u>	
*****		85	214	
	·····			
top of	product			
topot	H203214	3/21	<u> </u>	
		<u></u>		
1:30	Sample	Faten	· ·	
NOTES: W	ater asa	re toc	-had 40	ong PHC
-00/OV				\mathcal{U}

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

Site Name Of CL	alley	Well No	OWN
Job No. 0014			
TOC to Water (ft.)			
Well Depth (ft.)		Free Produ	ct Thickness
Well Diameter N		Sample Col	lection Method
Gal./Casing Vol			
TIME GAL. PURGED	DH 35 IN TE	MPERATURE	ELECTRICAL CONDUCTIVITY

		· · · · · · · · · · · · · · · · · · ·	
			-
2			
top oproduct			
top of the 1/211	+ 1		
		1 1	
- no y sample.	collect	ted	
nell dry			
/			
· **			***************************************
NOTES: No odor			-

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING

Site Name	XO (a	sho Valley		A11
Job No.	0111		Date	
	(ft.)		Sheen	
Well Depth	(ft.)	·	Free Pro	duct Thickness
	er			Collection Method
Gal./Casing	Vol	***************************************		
TIME	GAL. PURGED	рН	TEMPERATURE	ELECTRICAL CONDUCTIVITY
3:55	ALL	Wells	oper	\
15,20	MW	7.63	>	
152		7,80		
34	+W (6,99		
15:21	MW3	7,54		
32		7.53		
	MW4			

NOTES:				

"When Quality Counts'

1534 Willow Pass Road, Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com Web: www.mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Chemi i roject iz.	Date Sampled: 06/29/06			
55 Santa Clara, Ste.240	Castro Valley	Date Received: 06/30/06			
	Client Contact: Nick Mitchell	Date Extracted 07/08/06-07/13/06			
Oakland, CA 94610	Client P.O.:	Date Analyzed 07/08/06-07/13/06			

55 Santa Clara, Ste.240 Oakland, CA 94610		- Castro - array	Date Recei	ved: 06/30/06			
		Client Contact: Nick	Chefit Contact. 11101 1111111		d 07/08/06-07/13/06 d 07/08/06-07/13/06		
		Client P.O.:					
SW(2020)		Range (C6-C12) Volatile Analytical method	Hydrocarbons as Gasoline*	Work Order:	060671		
Lab ID SW5030	Client ID	Matrix	TPH(g)	DF	% SS		
001A	MW-I	W	45.000,a	10	106		
002A	MW-3	W	36,000.a	10	104		
003A	MW-4	W	140,000.a,h	100	105		
004A	EW-1	w	290,b,m	ĺ	100		
005A	OW-1	W	24,000,a	10	116		
		!					
		i i i i i i i i i i i i i i i i i i i					
			•				
Reporti	ng Limit for DF =1;	W	50	}	ıg/L		
ND mea	ns not detected at or	S	NA		NA		

Reporting Limit for DF =1;	. W	50	$\mu g/L$
ND means not detected at or		NI A	NA
above the reporting limit	5	INZS	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation; a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant, biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment, j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental	Client Project ID: #0014; Xtra Oil,	Date Sampled: 06/29/06
55 Santa Clara, Ste.240	Castro Valley	Date Received: 06/30/06
0.11 1.01.04/10	Client Contact: Nick Mitchell	Date Extracted: 06/30/06
Oakland, CA 94610	Client P.O.:	Date Analyzed: 07/06/06

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method: SW351	Work Order:	0606717			
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0606717-001A	MW-1	W	22,000,d,b	10	93
0606717-002A	MW-3	W	12,000,d,a	10	80
0606717-003A	MW-4	W	83,000,d,a,h	10	108
0606717-004A	EW-1	W	710,d,b	1	91
0606717-005A	OW-1	w	290,000,a,d	10	95
					:
					1
			and the second s		
:			and the second s		
<u> </u>					

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

P & D Environmental
Client Project ID: #0014; Xtra Oil,
Castro Valley
Date Sampled: 06/29/06

Date Received: 06/30/06

Client Contact: Nick Mitchell
Date Extracted: 07/06/06-07/07/06

Client P.O.:
Date Analyzed: 07/06/06-07/07/06

Oxygenates and BTEX by GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0606717

Extraction Method: SW5030B	Extraction Method: SW5030B Analytical Method: SW8260B						
Lab ID	0606717-001A	0606717-002A	0606717-003A	0606717-004A			
Client ID	MW-1	MW-3	MW-4	EW-1	Reporting	Limit for	
Matrix	W	W	W		DF	DF = }	
DF	100	1000	2000	20	S	W	
Compound		Conc	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<50	ND<500	ND<1000	ND<10	NA	0.5	
Benzene	3100	14,000	44,000	ND<10	NA	0.5	
t-Butyl alcohol (TBA)	ND<500	11,000	ND<10,000	2000	NA	5.0	
1,2-Dibromoethane (EDB)	ND<50	ND<500	ND<1000	ND<10	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<50	ND<500	ND<1000	ND<10	NA	0.5	
Diisopropyl ether (DIPE)	ND<50	ND<500	ND<1000	ND<10	NA	0.5	
Ethylbenzene	2000	ND<500	2600	ND<10	NA	0.5-	
Ethyl tert-butyl ether (ETBE)	ND<50	ND<500	ND<1000	ND<10	NA	0.5	
Methyl-t-butyl ether (MTBE)	1200	27,000	31,000	21	NA	0.5	
Toluene	940	ND<500	13,000	ND<10	NA	0.5	
Xylenes	3900	ND<500	19,000	ND<10	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS1:	92	99	97	100		**************************************	
%SS2:	99	98	98	99			
%SS3:	102	101	98	101			
Comments		 	h	I			
	1	:		<u> </u>	<u> </u>		

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com —E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

WorkOrder: 0606717

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water

EPA Method: SW8021B/	8015Cm E	xtraction	SW5030	В	Batc	hID: 22497		Spiked Sample ID: 0607001-005A			
A I A -	Sample	Sample Spiked		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	60	83.9	89.7	6.68	84.9	86.1	1.37	70 - 130	70 - 130	
MTBE	ND	10	91.2	88.5	2.99	91.2	92.9	1.77	70 - 130	70 - 130	
Benzene	ND	10	110	112	1.65	108	109	1.44	70 - 130	70 - 130	
Toluene	ND	10	109	111	1.95	107	109	1.37	70 - 130	70 - 130	
Ethylbenzene	ND	10	110	114	3.74	107	110	2.03	70 - 130	70 - 130	
Xylenes	ND	30	113	120	5.71	113	113	0	70 - 130	70 - 130	
%SS:	97	10	103	99	3.50	101	102	0.579	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22497 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606717-001A	6/29/06	7/08/06	7/08/06 8:58 AM	0606717-002A	6/29/06	7/11/06	7/11/06 4:37 AM
0606717-002A	6/29/06	7/13/06	7/13/06 4:22 AM	0606717-003A	6/29/06	7/11/06	7/11/06 2:46 PM
0606717-004A	6/29/06	7/13/06	7/13/06 2:45 AM	0606717-004A	6/29/06	7/13/06	7/13/06 9:32 AM
0606717-005A	6/29/06	7/13/06	7/13/06 1:24 PM	<u> </u>			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

WorkOrder: 0606717

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water

EPA Method: SW8015C	E	xtraction	SW3510	С	BatchID: 22507			Spiked Sample ID: N/A			
Analyte	Sample	Spiked	d MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Analyte	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE	
TPH(d)	N/A	1000	N/A	N/A	N/A	96.5	96.4	0.147	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	97	97	0	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22507 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606717-001A	6/29/06	6/30/06	7/06/06 12:54 PM	0606717-002A	6/29/06	6/30/06	7/06/06 2:02 PM
0606717-003A	6/29/06	6/30/06	7/06/06 5:37 PM	0606717-004A	6/29/06	6/30/06	7/06/06 12:54 PM
0606717-005A	6/29/06	6/30/06	7/06/06 7:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0606717

EPA Method: SW8260B	E	xtraction:	SW5030	В	BatchID: 22498			Spiked Sample ID: 0607001-005C			
Analyte	Sample Spiked MS MSD		MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Acceptance Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
tert-Amyl methyl ether (TAME)	ND	10	112	114	1.97	99.7	105	5.16	70 - 130	70 - 130	
Benzene	ND	10	118	120	2.22	106	112	5.57	70 - 130	70 - 130	
t-Butyl alcohol (TBA)	ND	50	95.3	99.3	4.11	90.9	90.2	0.702	70 - 130	70 - 130	
Diisopropyl ether (DIPE)	ND	10	128	129	0.279	109	119	8.18	70 - 130	70 - 130	
Ethyl tert-butyl ether (ETBE)	ND	10	113	118	4.68	100	107	6.09	70 - 130	70 - 130	
Methyl-t-butyl ether (MTBE)	1.2	10	117	116	0.825	120	128	6.48	70 - 130	70 - 130	
Toluene	0.98	10	89	92.1	3.12	95.6	95.4	0.214	70 - 130	70 - 130	
%SS1:	104	10	91	- 89	2.49 -	- 95	- 94	- 0.350	- 70 - 130	70 - 130	
%SS2:	102	10	94	93	0.832	100	97	2.55	70 - 130	70 - 130	
%SS3:	101	10	112	116	3.17	98	102	3.87	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22498 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606717-001A	6/29/06	7/06/06	7/06/06 12:31 AM	0606717-002A	6/29/06	7/07/06	7/07/06 12:51 PM
0606717-003A	6/29/06	7/07/06	7/07/06 1:35 PM	0606717-004A	6/29/06	7/07/06	7/07/06 2:20 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7
Pacheco, CA 94553-5560
(925) 798-1620

WorkOrder: 0606717

ClientID: PDEO

EDF: NO

Report to:

Nick Mitchell
P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

TEL: FAX: (510) 658-6916 510-834-0152

ProjectNo: #0014; Xtra Oil, Castro Valley

PO:

Accounts Payable

Xtra Oil Company

Bill to:

2307 Pacific Avenue Alameda, CA 94501

Date Printed:

Requested TAT:

Date Received:

06/30/2006

5 days

Printed: 07/05/2006

Prepared by: Kathleen Owen

Requested Tests (See legend below)																
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0606717-001	MW-1	Water	06/29/2006		Α	Α	Α									
0606717-002	MW-3	Water	06/29/2006		Α	Α	Α									
0606717-003	MW-4	Water	06/29/2006		Α	Α	Α									
0606717-004	EW-1	Water	06/29/2006		Α	Α	Α									
0606717-005	OW-1	Water	06/29/2006		Α		Α									

Test Legend:

1	G-MBTEX_W	2	MBTEXOXY-8260B_W	3	TPH(D)_W	4	5
6		7		8		9	10
11		12					

The following SampIDs: 0606717-001A, 0606717-002A, 0606717-003A, 0606717-004A, 0606717-005A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

CHAIN OF CUSTODY RECORDAND OFL PAGE ___ PROJERT NAME: PROJECT NUMBER: 0016 SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS TYPE SAMPLE LOCATION DATE TIME SAMPLE NUMBER 1/orma unaver 6/29/06 Norta + 41 15 ñ 25 14 'n 42 10 No Sample TOTAL HO OF SAMPLES LABORATORY: RELINQUISHED BY: (SIGNATURE) TIME DATE (THIS SHEWENT) TOTAL NO. OF CONTAINERS LABORATORY CONTACT: LABORATORY PHONE NUMBER: REHNOUSHED BY: (SICHATURE) RECEIVED BY: (SIGNATURE) SAMPLE ANALYSIS REQUEST SHEET RECEIVED FOR LABORATORY BY: RELINQUISHED BY: (SIGNATURE) ATTACHED: ()YES (X')NO (SIGNATURE) REMARKS: