

December 9, 2009

Mr. Jim McCann Diocese of Oakland 2121 Harrison, Suite 100 Oakland, California 94612

and

Mr. Aaron E. Costa Chevron Environmental Management 6111 Bollinger Canyon Road San Ramon, California 94583

Bureau Veritas Project No. 33106-006794.01

Main: (925) 426.2600

Fax: (925) 426.0106

www.us.bureauveritas.com

Subject: Limited Soil Vapor Investigation

Office Building 3014 Lakeshore Avenue Oakland, California

Dear Sirs:

On behalf of the Oakland Diocese, Bureau Veritas North America, Inc. is pleased to present this soil vapor investigation report for the above-referenced subject property. The investigation was designed to further evaluate gasoline odors detected by office staff in indoor air. The upgradient, adjacent east property has been an operating Chevron gasoline station for many decades with several documented fuel releases to the subsurface. The object of investigation was to evaluate the potential for health risks to future occupants/workers vapor intrusion to the subject building. The investigation found that shallow subsurface soil below the subject building is impacted with petroleum hydrocarbons and that soil vapor concentrations below the office floor slab are quite elevated.

Bureau Veritas is pleased to have had this opportunity to be of service to the Diocese and Chevron. If you have any questions, please contact me at 925.426.2679 or by email at Don.Ashton@us.bureauveritas.com.

Sincerely,

Donald A. Ashton, P.G., R.E.A.

Senior Geologist

Environmental Services

Enclosure

Bureau Veritas North America, Inc.

Health, Safety, and Environmental Services 2430 Camino Ramon, Suite 122 San Ramon, CA 94583

Office Building 3014 Lakeshore Avenue Oakland, California

> December 9, 2009 33106-006794.00

> > Prepared for

DIOCESE OF OAKLAND

Oakland, California

For the benefit of business and people

Bureau Veritas North America, Inc.

2430 Camino Ramon, Suite 122 San Ramon, California 94583 925.426.2600 www.us.bureauveritas.com

CONTENTS

Sect	<u>ion</u>		<u>Page</u>
1.0	INTR	RODUCTION	
	1.1	BACKGROUND	
2.0	SCO	OPE OF WORK	2
2.0	2.1	PRE-FIELD ACTIVITIES	
	2.1		
	۷.۷	2.2.1 Soil Borings	
		2.2.2 Soil Vapor Well Construction	
		2.2.3 Decontamination and Waste Generation	
3.0	CHE	EMICAL ANALYSIS	5
4.0	FIND	DINGS I	5
	4.1	SUBSURFACE CONDITIONS	5
	4.2	SOIL ANALYTICAL RESULTS	6
	4.3	SOIL VAPOR ANALYTICAL RESULTS	6
	4.4	QUALITY ASSURANCE/QUALITY CONTROL	6
		4.4.1 Leak Test Results	
		4.4.2 Data Validation Summary	7
5.0	CON	NCLUSIONS	7
6.0	REC	COMMENDATIONS	8
Tabl	es		
1		ummary of Soil Analytical Results – TPH and Lead	
2	Sui	ummary of Soil Vapor Analytical Results – TO-3 and TO-15	
Figu	<u>res</u>		
1	Site	ite Plan	
2	Site	te Plan with Sample Locations	
3	Sai	ample Locations with Soil and Soil Vapor Data	
App	endice	<u>ees</u>	
Α	Dri	rilling Permit	
В	Soi	oil Vapor Sampling Data Sheets	
С	l al	aboratory Analytical Results	

1.0 <u>INTRODUCTION</u>

Bureau Veritas North America, Inc. (Bureau Veritas) was retained to conduct a soil vapor investigation at the vacant Diocese of Oakland office building located at 3014 Lakeshore Avenue, Oakland, California (subject property). The investigation was to further evaluate gasoline odors detected indoor air by office staff, when Diocese staff occupied the building.

The upgradient, adjacent east property is and has been an operating Chevron gasoline station for many decades with several documented releases to the subsurface. The object of the soil vapor investigation was to provide data that would indicate if reuse of the building would present a potential elevated health risk to future occupants from vapor intrusion. The investigation found elevated concentrations of gasoline ranged organics in unsaturated soils below the building floor slab.

1.1 BACKGROUND

In June 2006, Diocese workers in the subject building noticed a distinct gasoline odor. An indoor air quality evaluation was conducted of the subject building by Clayton Group Services (now Bureau Veritas) on June 30, 2006, in which four separate air samples (three indoor and one outdoor) were collected. Clayton summarized its findings in a report entitled: *Indoor Air Quality Evaluation, Oakland Diocese 3014 Lakeshore Avenue, Oakland, California,* dated July 31, 2006. The building was generally found to be under negative pressure relative to the outdoor air. Low concentrations of toluene (an aromatic component in gasoline and a common solvent) were found in the air samples collected on the first and second floors, but not in the basement or roof air samples. Based on these findings and the gasoline like odors noted in the vicinity of the basement sump, additional investigation was proposed.

The adjacent (upgradient) Chevron station at 3026 Lakeshore Boulevard, Oakland, California, is being tracked as a leaking underground storage tank site (Geotracker Global ID No. T0600100328) by the California State Water Resources Control Board and the local oversight agency, Alameda County Environmental Health Services (ACEHS). The State Geotracker database contains a number of groundwater monitoring reports and subsurface investigation reports.

In 1967, a 2,000-gallon inventory (fuel) loss was reported at the Chevron station and soon after, the adjacent property owner (the subject property) complained of petroleum odors in the basement. Again in 1980, a tenant in the subject building complained of a gasoline odor emanating from the air conditioning system operated from the basement. In 1984, two USTs were discovered beneath the station sidewalk (location not specified) that were abandoned in place by filling them with grout. Tenants in the subject building again complained of petroleum odors in the building. Reportedly, Chevron sent a letter to the property owner that inspections of the subject basement in 1982 and 1983 did not find any evidence of hydrocarbons. Reportedly, in March 1985, a water sample from the basement of the subject building was found to contain aromatic compounds typical of gasoline products.

In August 2006, soil borings SB-8 and SB-9 were installed in the sidewalk in front of the subject property and in front of the adjacent west property to further characterize the soil and groundwater quality downgradient of the Chevron station. Grab-groundwater samples from SB-8 and SB-9 were found to contain petroleum hydrocarbon concentrations.

On May 30, 2007, Chevron again sampled the basement sump and found petroleum hydrocarbons in the water. In a letter dated July 27, 2007, ACEHS directed Chevron to remediate/prevent petroleum hydrocarbons from impacting the basement sump. In a letter report: *Response to Comments*, Connestoga-Rovers & Associates (CRA), August 31, 2007, Chevron agreed to sample the sump water on a biannual basis, first and third quarters of each year (providing access is granted) to better assess an appropriate remedial action.

Based on historical groundwater data, it appears that petroleum hydrocarbon releases at the adjacent Chevron station have migrated on to the subject property in groundwater, which is apparently the source of odors in the subject building. Groundwater monitoring well MW-1 (monitored since 1991) and MW-9 (monitored since 1999) are located less than 20 feet and 10 feet, respectively, from the subject property. Groundwater results from September 2008 (most recent available data) still contain elevated gasoline concentrations that include benzene and methyl tert-butyl ether (MTBE). In September 2008, the MTBE concentration in groundwater was 92 micrograms per liter (ug/L), which exceeds the ESL (environmental screening levels promulgated by the state Regional Water Quality Control Board) of 5 ug/L for MTBE. Petroleum hydrocarbon concentrations in the basement sump water appear to be below ESLs; however, the odor has reportedly resulted in the loss of the sale of the property on at least two separate occasions.

During a meeting held at the subject property on October 13, 2008, Chevron agreed to support a limited subsurface soil vapor investigation to evaluate if a potential health risk exposure exists to future occupants/workers in the subject building if the building is re-occupied. A summary of Bureau Veritas' investigation is outlined below.

2.0 SCOPE OF WORK

The scope of work consisted of the following tasks:

- Task 1: Conduct pre-field activities
- Task 2: Collect three soil-vapor samples from three boring locations
- Task 3: Submit soil-vapor samples for analytical testing
- Task 4: Prepare a report documenting the findings

2.1 PRE-FIELD ACTIVITIES

Bureau Veritas conducted a limited sampling of soil and soil vapors from three interior locations. Alameda County Public Works Agency (ACPWA) requires a drilling permit for soil borings when powered equipment is used to advance soil borings; therefore, prior to drilling, Bureau Veritas obtained a drilling permit and paid fees. Upon receiving an approved permit (Appendix A), Bureau Veritas scheduled a state licensed (C-57) driller and provided notification to ACPWA at least 48 hours prior to drilling.

Bureau Veritas prepared a Site Health and Safety Plan (SHSP) for the work proposed at the subject property in accordance with the requirements of the State of California General Industry Safety Order (GISO) 5192 and Title 29 of the Code of Federal Regulations, Section 1910.120 (29 CFR 1910.120). A copy of the SHSP was kept onsite during field activities. The SHSP detailed the work to be performed,

safety precautions, emergency response procedures, nearest hospital information, and onsite personnel responsible for managing emergency situations.

Prior to any drilling activities, Bureau Veritas visually assessed the selected sample locations for indications of subsurface utilities, as no as-built drawings were available from the Diocese of Oakland. Bureau Veritas marked the work area in white paint and contacted Underground Service Alert of Northern California (USAN) at least 48 hours prior to drilling, as did the drilling subcontractor, Environmental Control Associates, as required by law. Bureau Veritas also contracted with a professional private utility locating service, OHJ Locators of Oakland, California, and surveyed the work area prior to drilling to confirm that the work areas were clear of underground utilities.

2.2 SUBSURFACE INVESTIGATION

2.2.1 Soil Borings

Bureau Veritas retained a licensed C-57 drilling contractor, Environmental Control Associates (ECA) to core the cement floor slab, advance three (3) soil borings using hand-auger equipment, and install soil vapor probes at the three locations shown on Figure 2. Borings were advanced from 3.5 to 5.1 feet below the floor surface (bfs) to collect soil and soil vapor samples.

The three sample points were spaced in a triangular pattern across the older building footprint, the front portion of the building, which is constructed with a slab on grade floor. The sample area did not include the basement, which is a narrow, below-grade area along the western portion of the property. Two sample points were located adjacent to the east subject property boundary, points closest to the adjoining Chevron service station property, and one point was in the west-central portion of the subject building, adjacent to the basement area, as shown on Figure 2.

Borings were advanced by pulling back the carpet and then drilling the concrete floor slab with a rotating-hammer drill and 3-inch diameter bit. The floor slab was found to be approximately 3 inches thick, underlain by approximately three inches of base material consisting of a gravelly-sandy-silt. The total depths drilled were as follows:

Soils encountered during augering to the total depth of 5.1 feet bgs consisted of clay to silty clay, ranging in color from olive-brown to brown, and gray to black. At the depth of about 4.0 feet in SV-1 and about 3.5 feet in SV-3, the soil had a distinct petroleum hydrocarbon odor and staining ranged from gray to black. Saturated soil was encountered at 4.5 feet in SV-3 and at about 5.0 feet in SV-1; however, no free water collected in the borings. Saturated soil at the base of these two borings appeared to have a slight sheen and a strong petroleum hydrocarbon odor, suggesting residual petroleum hydrocarbon product.

A soil sample was collected from borings SV-1 and SV-3. The soil samples were collected using a core barrel sampler containing a clean metal liner and slide hammer to drive the sampler into native soil. The core barrel was removed and the metal liner was extracted, which contained a relatively undisturbed soil core. Two soil samples (SV-1 @ 4.5-5' and SV-3 @ 4.5-5') were retained for laboratory analysis. Soil samples from the base of borings SV-1 and SV-3 were field screened for volatile compounds using a photoionization detector (PID). The sample was placed into a sealed plastic bag for several minutes to

allow vapors to collect in the head space. The PID probe was then inserted into each bag. PID readings, were recorded for sample SV-1 at 452 parts per million (ppm) and for sample SV-3 at 798 ppm.

Soils encountered in boring SV-2 also consisted of silty clay to a depth of about 3.0 feet. Between 3.0 to 3.5 feet bgs the drill cuttings consisted of a gravelly material, which is interpreted to be fill material as the material was very porous and contained brick debris. Augering was terminated at 3.5 feet and a steel probe was hammered to a total depth of about 4.0 feet. Due to the resistance of the rod during hammering, the boring was terminated at 3.5 feet bgs. A soil sample from about 3.0 feet was screened by the PID with no indication of volatile vapors (PID reading 0.2 ppm). Screened auger cuttings in SV-2 had no apparent staining or petroleum hydrocarbon odor and no saturated soil was encountered.

2.2.2 Soil Vapor Well Construction

At the completion of drilling, the borings were prepared for the installation of soil vapor probes. The following table outlines the depth drilled at each sample location and construction information for each temporary soil vapor sample point:

Boring ID	Total Depth Drilled	Bottom Seal	Vapor Probe Sand Pack	Surface Seal
SV-1	5.1 Feet bfs	4.2 to 5.1' – bentonite	3.3 to 4.2'	3.3' to surface – hydrated bentonite
SV-2	3.5 Feet bfs	None	2.8 to 3.5'	2.8' to surface – hydrated bentonite
SV-3	5.0 Feet bfs	4.0 to 5.0' – bentonite	3.0 to 4.0'	3.0' to surface – hydrated bentonite

bfs = Below floor surface

Due to finding saturated soils at the base of borings SV-1 and SV-3, approximately one foot of dry bentonite pellets was placed in the bottom of each boring to keep groundwater from entering the soil vapor probe. Soil vapor probes were then constructed of Teflon tubing with particulate filter tips with a sand pack and hydrated bentonite annual space seals to the top of each borehole. The soil-vapor probes were sealed and allowed to equalize prior to sampling. Soil vapor samples were then collected using six-liter SUMMA canisters with one-hour flow controllers at each boring location. The soil vapor samples were collected from temporary probes constructed within the borings in accordance with the guidance provided in the Regional Water Quality Control Board (RWQCB) Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (RWQCB, 2005), California Department of Toxic Substances Control/Los Angeles RWQCB Advisory – Active Soil Gas Investigations (DTSC/LARWQCB, 2003), and DTSC's Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC, 2005). Bureau Veritas also reviewed Chevron's Soil Vapor Sampling Technical Toolkit, Version 1.6, February 7, 2006, which was also used as a guideline for the investigation. Based on the

review, Bureau Veritas selected 1,1-difluoroethane (Freon R-152a) as the leak detection compound for use during soil vapor sampling.

2.2.3 <u>Decontamination and Waste Generation</u>

Drilling equipment was clean and washed in a solution of non-phosphate detergent, double rinsed with tap water after each use, and allowed to dry. Vapor sampling equipment was new single-use equipment or laboratory supplied equipment and containers. Due to the limited nature of the investigation, it was assumed that waste material generated during the drilling phase would not be a regulated material. However, stained soils with a strong petroleum hydrocarbon odor were encountered between about 3.5 feet and 5.1 feet bgs in borings SV-1 and SV-3. The waste materials were placed into a bucket, which was sealed, labeled and left on site pending selection of an appropriate disposal method.

3.0 CHEMICAL ANALYSIS

Bureau Veritas submitted two (2) soil and three (3) soil vapor samples for chemical analysis. The collected samples were analyzed by the following US EPA Methods:

Soil Vapor Samples

- VOCs by Method TO-15
- TPH quantified as gasoline by Method TO-3

Soil Samples

- VOCs by Method 8260B
- TPH as gasoline, diesel, and motor oil by Method 8015B
- Total lead by Method 6010B

Samples submitted for chemical analyses were analyzed by Torrent Laboratories of Milpitas, California, a state certified laboratory.

4.0 FINDINGS I

4.1 SUBSURFACE CONDITIONS

Based on observations during drilling, the slab on grade portion of the building is built on clay to silty clay soils that are not impacted by petroleum hydrocarbons. However, soils along the east portion of the subject property at the approximate depth of 3.5 to 4.0 feet bfs to the maximum depth drilled of 5.1 feet were stained and had a distinct to strong petroleum hydrocarbon fuel odor. No soil staining or distinct petroleum odors were observed in soil cuttings from boring SV-2 at the more western portion of the property; however, the boring was only advanced to a total depth of 3.5 feet bfs and the soils appeared to very permeable fill debris and gravel.

4.2 SOIL ANALYTICAL RESULTS

Summaries of the detected concentrations in the soil samples are provided in Table 1. A copy of the analytical laboratory report is presented in Appendix C. Soil analytical data were compared to the California Environmental Protection Agency (Cal EPA) California Human Health Screening Levels (CHHSLs), and Environmental Screening Levels (ESLs), where applicable.

The two soil samples (SV-1 and SV-2 at a depth of 4.5 to 5 feet bfs) were submitted for chemical analysis for waste profiling due to the petroleum hydrocarbon impacts to the property. The soil was found to contain gasoline ranged organics that ranged from 54 to 190 milligrams per kilogram (mg/Kg), and diesel ranged organics that ranged from 8.21 to 41 mg/Kg. The TPH concentrations reported in soil sample SV-1 as gasoline (190 mg/Kg) exceeded the gasoline ESL of 83 mg/Kg, and the diesel concentration (24 mg/Kg) exceeded the TPH middle distillates ESL of 83 mg/Kg.

One soil sample (SV-1 at 4.5-5') was also analyzed for total lead, which was found to contain lead at 8.0 mg/Kg. This lead concentration is significantly below the CHHSL or ESL levels established by California EPA.

4.3 SOIL VAPOR ANALYTICAL RESULTS

A summary of the detected concentrations in the soil vapor samples is provided in Table 2. A copy of the soil vapor analytical laboratory report is presented in Appendix C.

Soil vapor analytical results for petroleum hydrocarbons (TO-3 results) were quite elevated for gasoline ranged organics, ranging from 97,000 to 23,000,000 ug/M³ in the three samples analyzed (SV-1, SV-2, and SV-3). The analytical results were compared to the ESLs and all three samples were found to exceed the gasoline ESL of 29,000 ug/M³ for shallow soil gas.

The three soil vapor samples were also analyzed for VOCs (Method TO-15). However, the soil vapor samples required dilution due to matrix interference created by the elevated gasoline ranged organics. The dilutions suppressed recovery of the laboratory internal standards to the point that no quantitation was possible. There was one exception, a low concentration of 1,1-difluoroethane (R-152a) was detected at a concentration of 150 ug/M3 in sample SV-2. .Difluoroethane was the leak tracer gas used during sampling.

4.4 QUALITY ASSURANCE/QUALITY CONTROL

The following is a summary of the QA/QC analytical results collected during this investigation.

4.4.1 <u>Leak Test Results</u>

As described above, a pre-purge vacuum test was conducted at each sample location by opening the purge canister for several minutes (20 to 55 minutes) to evaluate the manifold connections for pressure drops. No obvious leaks were indicated. A leak test gas (Dust Off) containing 1,1-difluoroethane (Difluoroethane) was used in shrouds covering the sampling train during the sample collection process. Difluoroethane was detected in only one of the three samples at 150 ug/M³. The reporting of

Difluoroethane at a low concentration does not significantly compromise the data. Soil vapor analytical results are presented in Appendix C.

4.4.2 <u>Data Validation Summary</u>

The analytical laboratory data was reviewed by Bureau Veritas to establish its validity and to ensure the laboratory data was complete and accurate. Bureau Veritas verified that holding times for each analytical method were achieved and that the laboratory achieved the specific data quality objectives for each selected analytical method. A review of the data validation process indicates that the laboratories completed the QA/QC activities required for the samples such as blanks, lab control samples, matrix spikes, and duplicates. No QA/QC issues were identified as noted in the laboratory reports presented in Appendix C. The QA/QC parameters for the samples were within acceptable limits and suggest that the data is useful for its intended purpose.

5.0 CONCLUSIONS

The following conclusions were based on the observations and data obtained during this LSI of the subject property:

- The finding of gasoline and diesel ranged organics with no reportable concentrations of benzene or MTBE in fringe zone soil samples, along with the documented historic releases of gasoline on the adjacent, upgradient gasoline station property, suggest an aged release(s) of petroleum hydrocarbons that likely migrated onto the subject property in groundwater. Field screening of shallow vadose zone (unsaturated) soil found no evidence to indicate on site releases of petroleum hydrocarbons in the areas sampled. Also, historic use of the property, at least since 1960 when the property was purchased by the Oakland Diocese, has been as an office building with no reported use of petroleum hydrocarbons on the property.
- The reported concentrations of gasoline ranged organics in all three shallow soil vapor samples with the highest concentration in SV-1 further suggests that gasoline and or gasoline vapors have migrated from the east adjacent gasoline station under the subject building. Gasoline in soil vapor samples exceed the gasoline ESL by up to four orders of magnitude. Evaluation of the potential exposure to benzene vapors could not be evaluated due to the elevated gasoline vapor concentrations. Based on this data, the potential for vapor intrusion into the subject building exists, with the greatest potential existing along the eastern and northeastern portions of the building.

6.0 **RECOMMENDATIONS**

The following conclusions were based on the observations and data obtained during this LSI of the subject property:

• The potential health risk to future users of the subject building from vapor intrusion of gasoline ranged organics present in shallow soil vapor requires mitigation and/or remedial action.

This report prepared by:

Donald A. Ashton, P.G, REA

Senior Geologist

Environmental Services

This report reviewed by:

Jon A. Rosso, P.E.

Regional Director

Environmental Services

December 9, 2009

Project No. 33106-006794.00

S:\ES\PROJECTS\2006\06794 Oakland Diocese\Soil Vapor Invst\eRprt SV Lakeshore fn.doc

- 8 -

TABLES

TABLE 1 Summary of Soil Sample Results - TPH and VOCs

Proposed Fresh and Easy Neighborhood Market Location NWC Carolyn West Boulevard and Manthey Road, Stockton, California

Analytical Method Units	Sample ID, Depth (ft.), and Date SV-1 @ 4.5-5' 9/15/2009 mg/Kg	BV-3 @ 4.5-5' 9/15/2009 mg/Kg	CHHSLs Table 1 Commercial	ESLs Table A Commercial	TTLC Table A Commercial
Total Petroleum Hydrocarbons Method 8015C					
TPH as diesel	241	8.21	NE	83	NE
TPH as motor oil	<20	4.6	NE	2,500	NE
Volatile Organic Compounds Method 8260B					
Gasoline Ranged Organics	190	54	NE	83	NE
Other VOCs	<5 to <25	<5 to <25	Varies	Varies	Varies
Total Metals Method 6010B					
Lead	8.0		3,500	750	1,000 / 300*

Legend

mg/Kg = Milligrams per kilogram

- < 1.0 = Laboratory detection limit as indicated
- -- = Not analyzed

CHHSLs = Values from Table 1 of the California Human Health Screening Levels (CHHSLs) for Soil

- California Environmental Protection Agency, Use of CHHSLs in Evaluation of Contaminated Properties - January 2005

ESLs = Environmental Screening Levels: Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Calif. Regional Water Control Board-SF Bay, Interin Final, Rev. 5-2008, Table A

TABLE 2
Summary of Soil Vapor Results - VOCs and Gasoline Ranged Organics
Commercial Proeprty, 3014 Lakeshore Avenue, Oakland, California

			VOCs by To	O-15 Analysi	s				(Units: ug/M ³)	Petroleum Hydrocarbons by TO-3 Analysis
Sample ID	Sample Depth (feet, bgs)	Sample Date	Benzene	Ethyl Benzene	m,p-Xylene	o-Xylene	Toluene	Methyl tert-butyl ether (MTBE)	1,1-Difluoroethane	Other VOCs	Gasoline Ranged Organics
SV-1	3.3-4.2'	9/17/2009	<8,000	<10,000	<11,000	<11,000	<9,400	<9,000	<9,000	ND	23,000,000
SV-2	2.8-3.5'	9/17/2009	<3.2	<4.3	<4.1	<4.3	<3.8	<3.6	150	ND	97,000
SV-3	3-4'	9/17/2009	<1,600	<2,200	<2,000	<2,200	<1,900	<1,800	<27,000	ND	6,500,000
СНН	SL Shallow Soil	Gas - Commercial	122		887,000	879,000	378,000	13,400		Varies	
E	SL Shallow Soil	Gas - Commercial	280	3,300.0	58,000*	58,000*	180,000	31,000		Varies	29,000

Notes:

ID = Identification

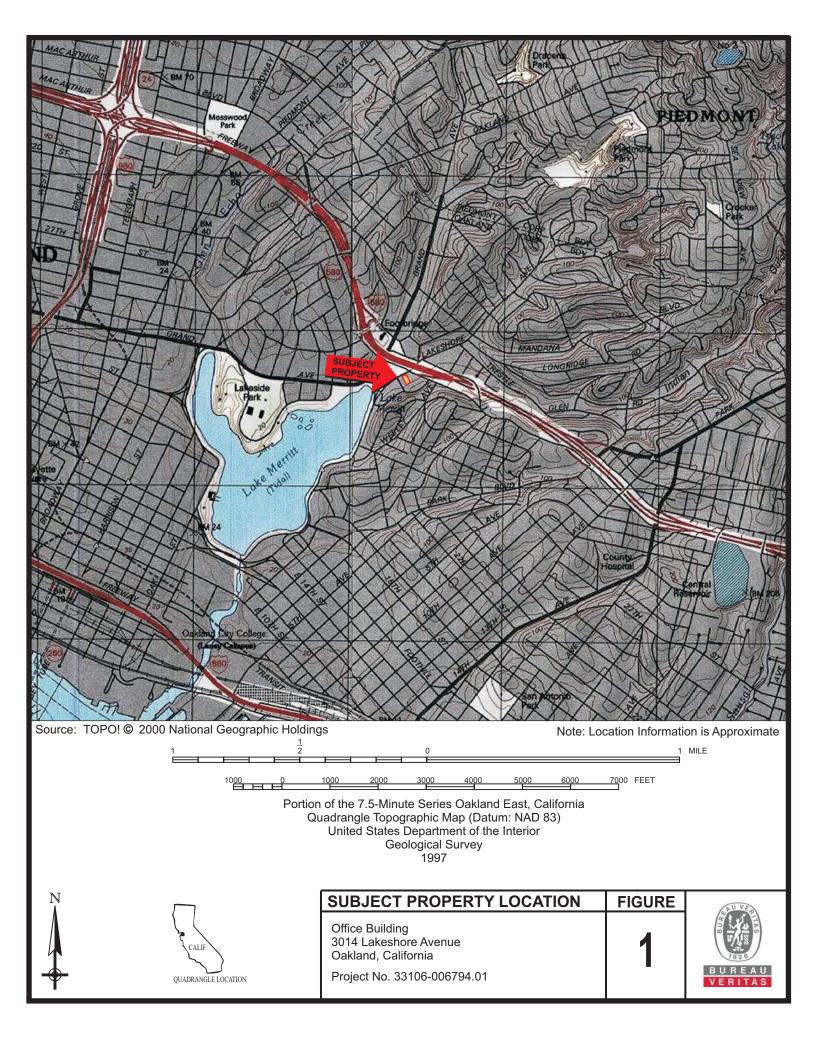
ug/M³ = Soil vapor results in micrograms per cubic meter

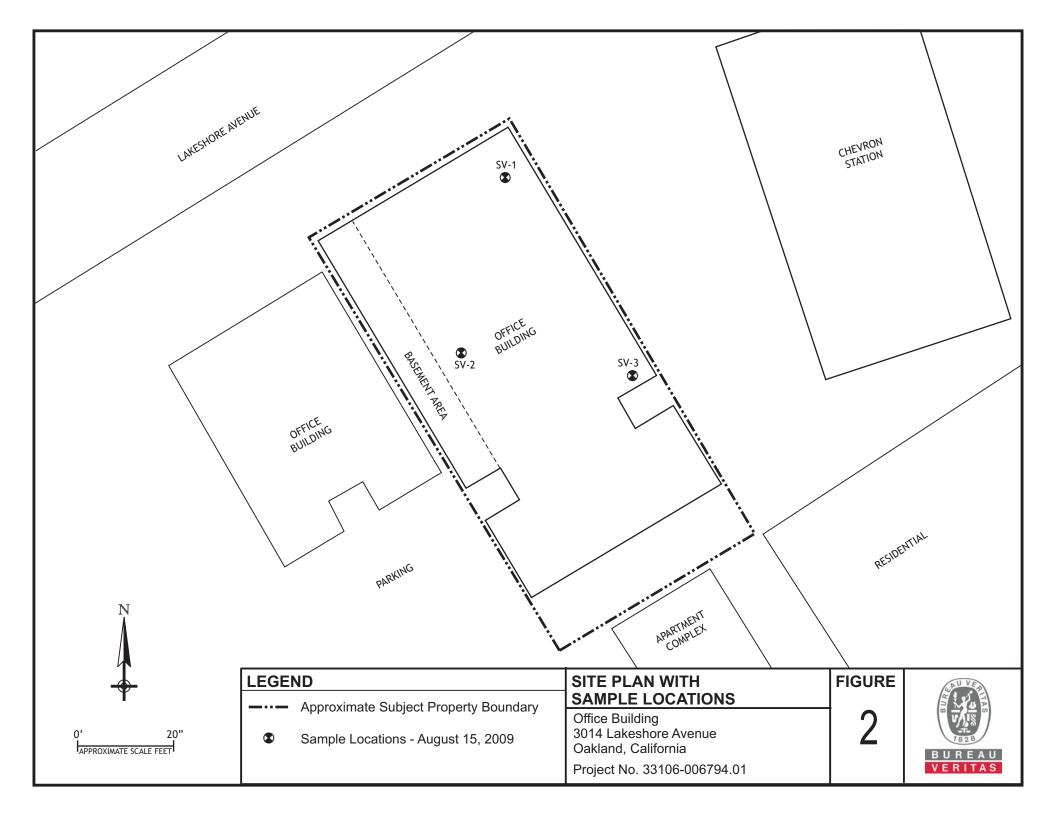
VOCs = Volatile organic compounds (Analytical Method TO-15)

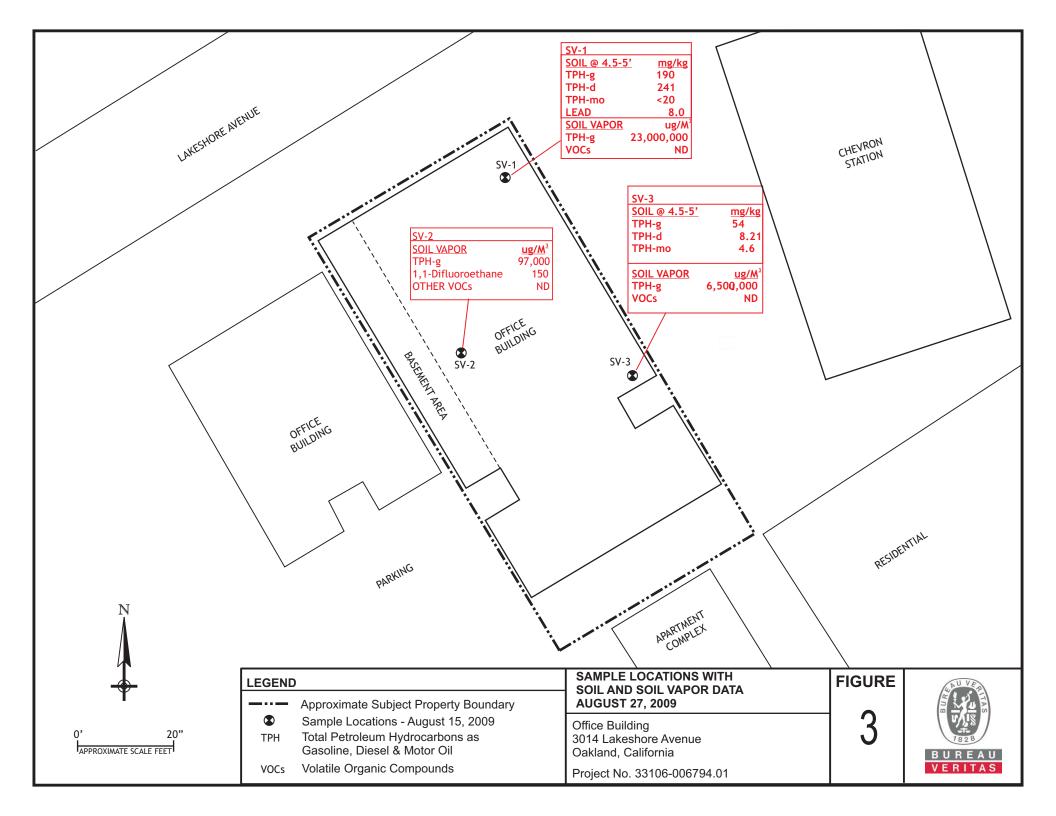
< 8,000 = Not detected at or above the indicated analytical laboratory reporting limit (Note: variations between samples due to laboratory dilutions)

CHHSLs = Values from Table 2 of the California Human Health Screening Levels (CHHSLs) for Indoor Air and Soil Gas

- California Environmental Protection Agency, Use of CHHSLs in Evaluation of Contaminated Properties - January 2005


ESLs = Environmental Screening Levels: Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Calif. Regional Water Control Board-SF Bay,


Interin Final, Rev. 5-2008, Table E


-- = Not established for the indicated analyte

FIGURES

APPENDIX A

DRILLING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/31/2009 By jamesy Permit Numbers: W2009-0779
Permits Valid from 09/10/2009 to 09/10/2009

Application Id: 1251331672468 City of Project Site:Oakland

Site Location: 3014 Lakeshore Avenue

APN: 023 -0418-020-00

Project Start Date: 09/10/2009 Completion Date:09/10/2009

Assigned Inspector: Contact John Shouldice at (510) 670-5424 or johns@acpwa.org

Applicant: Bureau Veritas North America, Inc. - Donald **Phone:** 925-426-2600

Ashton

2430 Camino Ramon #122, San Ramon, CA 94583

Property Owner: Bishop Roman Catholic Bishop of Oakland **Phone:** 510-267-8308

2121 Harrison St. #100, Oakland, CA 94612

Client: Phone: 510-267-8308

2121 Harrison St. #100, Oakland, CA 94612

Contact: Donald Ashton Phone: 925-426-2679

Cell: 925-260-3102

Total Due: \$265.00
Receipt Number: WR2009-0326 Total Amount Paid: \$265.00

Payer Name : Bureau Veritas North America Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 3 Boreholes

Driller: Environmental Control Associates - Lic #: 695970 - Method: DP Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2009-	08/31/2009	12/09/2009	3	2.00 in.	6.00 ft
0779					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters

Alameda County Public Works Agency - Water Resources Well Permit

generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

SOIL VAPOR SAMPLING DATA SHEETS

Soil Gas Sampling Field Form Page _/_ of _/_

Date: 9-17-09 Project # 33/06-006794. 0	
Sample location: NE OFFICE Sample ID: 5V-/	_
Site name: DIOCESE OFFICE Canister ID: # 482	_
Address: 30/4 LAKESHORE OAK Time: 16:01 - 17:23	_
Field staff: D. ASWTON Weather- Temp: CLEAR, ~77F	
Sample type: Indoor MAPOR Dutdoor	
Duration: ☐ Grab ☐ 8-hour ☐ 24-hour ☐ Other: 1-hour	-
Canister type: 1-Liter 6-Liter Other:	-
Purge Can - Initial Vacuum: -30" Sample Can - Final Vacuum: -30" Can ID: 1240 Sample Can - Initial Vacuum: -30" Sample Can - Final Vacuum: -4" Can ID: 482	
Fuel use in building: Natural gas Electric Other:	_
Indoor Mechanical Ventilation? Yes Notes: VACAWT BLDG - SYSTEM OFF	
Time Canister Vacuum Notes	
Leak Test 16:0130+ "Hg NO PRESSURE CHANGE	
-16:30 " SYSTEM TIGHT	
Line Purge 16:30 -30" + to START PURGE	
-16:39 -30 "Hy (~-4") PRUBE LINE CLEAR - END PURC	E
Sample 16:39 -30" START SAMPLE	
17:01 -16"	
17:20 -511	
17:23 <-4" END SAMPLE RUN	
SAMPLE TIME = 44)	MIN
-26	1/9
Location/comments: SHROUD USING DUST OFF DICHLORGETHANE AS LEAK TRACER	
Attachments: Initials	_

29

Soil Gas Sampling Field Form Page _____ of ____

Date: 9-17-09	Project # 33106 - 606794. 6/
Sample location: WORK Room	Sample ID: 5V-2
Site name: DIOCESE	Canister ID: # /23/
Address: 3014 LAKESHOLE	76:76 — Time: 17:15 — 17:49
Field staff: D. ASHTON	Weather- Temp: <u>CLEAR</u> , ~77°F
Sample type: Indoor VAPOR Soll	
Duration: ☐ Grab ☐ 8-hour ☐ 24-hou	r ⊠ Other: <u>1-hour</u>
Canister type: 1-Liter 6-Liter Other:	36'
Purge Can - Initial Vacuum: -36+ 19 Purge Car Sample Can - Initial Vacuum: -36	an - Final Vacuum (657 ~ 4-5") Can ID: 1222 Can ID: 1231 CERTIFIED CLN
Fuel use in building: Natural gas Electri	
Indoor Mechanical Yes	CANT BLDG-WORKROWM WEST SIDE
Ventilation?	
Time Canister Vacuum	Notes
Ventuation:	
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07	Notes
Time Canister Vacuum Leak Test 16:16 -30" + "Hg" 17:07	Notes No Pressure Loss TIGHT MANIFOLD START PURGE
Time Canister Vacuum Leak Test 16:16 -30" + "Hg" 17:07	No PRESSURE LOSS TIGHT MANIFOLD
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-30" +) 17:15	Notes No Pressure Loss TIGHT MANIFOLD START PURGE
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-30" +) 17:15	Notes No Pressure Loss TIGHT MANIFOLD START PURGE END PURGE (~4-5" Hg) CLEAR
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-30" +) 17:15	Notes No Pressure Loss TIGHT MANIFOLD START PURGE END PURGE (~4-5" Hg) CLEAR
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-36" +) 17:15	Notes No PRESSURE LOSS TIGHT MANIFOLD START PURGE END PURGE (~4-5" Hg) CLEAR START SAMPLE
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-36" +) 17:15	No PRESSURE LOSS TIGHT MANIFOLD START PURGE END PURGE (~4-5" Hg) CLEAR START SAMPLE END SAMPLE
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-36" +) 17:15	Notes No PRESSURE LOSS TIGHT MANIFOLD START PURGE END PURGE (~4-5" Hg) CLEAR START SAMPLE
Time Canister Vacuum Leak Test 16:1630" + "Hg" 17:07 Line Purge 17:07 - "Hg - (-36" +) 17:15	NO PRESSURE LOSS TIGHT MANIFOLD START PURGE END PURGE (~4-5" Hg) CLEAR START SAMPLE END SAMPLE SAMPLE RUN 34 MINS /26" UST-OFF AS LEAK TRACER

Date: 9-1	7-09		Project #33/06 - 00 6794	01
Sample location: Rm 106	- SE OFFICE		Sample ID: 5V-3	_
Site name: D/oc	<i>ESE</i>		Canister ID: #899	_
Address: <u>3014</u>	LAXESHORE	<u>.</u>	Time: 17:24 - 18:01	_
Field staff: ① . 🗡	ISHTON		Weather- Temp: CLEAR ~77° F	_
Sample type: Indoor	SO/L VAPOR ⊠ Outdo	oor-		
Duration: Grab	☐ 8-hour ☐ 24-ho	our 🛭 Oth	her: 1-hour	_
Canister type: ☐ 1-Liter	6-Liter	··		-
Purge Can - Initial Vacuu Sample Can - Initial Vacu	m:-30"+ Purge Ca num: -30" Sample (an - Final vacu Can - Final Va	uum: -26 " Can ID: #1238 acuum: -3" Can ID: #899	i,
Fuel use in building:	Natural gas X Elect	tric 🔲 O	Other:	
Indoor Mechanical Ventilation?			-DG- SYSTEM OFF	
Time	Canister Vacuum		Notes #	7
Leak Test /6:25 - 16:	30"+ "Hg/"	REPLACE	RESSURE CHANCE -10-30 119 (~ 6" MANIFOLD IFLOW CONTROLLED 7 3396	J 35
16:59-17:18		NO PRE	SSURE CHANGE - MANIFOLD TO	CH7
Line Purge 17:19 -	-30" 10	START 1	PURGE-	
-17:22	-26"	ENDP	URGE - PROBELINE CLEA	R
Sample /7:24	- 30"	START	SAMPLE	4
17:32	-24"	-		
17:40	-16"			
17:46	-11"	138		
18:01	-3"	END	SAMPLE	
			SAMPLE RUN= 27 mins/27	7"
Location/comments: 54	I POUD USED !	HAINES	7-OFF LEAK TRACER	
Attachments:	<u></u>		Initials	_

20

APPENDIX C

LABORATORY ANALYTICAL RESULTS

October 12, 2009 (Revision 2)

Don Ashton Bureau Veritas North America,Inc 2430 Camino Ramon, Suite #122 Pleasanton, CA 94566

TEL: 925-426-2600 FAX (925) 426-0106

RE: 33106-006794.01 - See narrative for revision details

Dear Don Ashton:

Order No.: 0909133

Torrent Laboratory, Inc. received 5 samples on 9/21/2009 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Nutan Kabir

PM

Torrent Laboratory, Inc.

CLIENT: Bureau Veritas North America,Inc

Project: 33106-006794.01 **CASE NARRATIVE**

Date: 12-Oct-09

Lab Order: 0909133

Report revised to expand comment for required TO-15 dilutions. No QC affected by this revision.

Rev 1 (10/6/09)

Per client request. Lead analysis was performed on sample -004A.

Rec 2 (10/12/09)

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Date Received: 9/21/2009

Lab Sample ID: 0909133-001

Date Prepared:

Report prepared for: Don Ashton

Bureau Veritas North America, Inc **Date Reported:** 10/12/2009

Client Sample ID: SV-1

Sample Location: 3014 Lakeshore, Oakland

Sample Matrix: AIR

Date/Time Sampled 9/17/2009 4:39:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	9/25/2009	1.99	5000	10000	ND	μg/m³	S21032
1,1,1,2-Tetrachloroethane	TO-15	9/25/2009	3.44	5000	17000	ND	μg/m³	S21032
1,1,1-Trichloroethane	TO-15	9/25/2009	2.73	5000	14000	ND	μg/m³	S21032
1,1,2,2-Tetrachloroethane	TO-15	9/25/2009	3.44	5000	17000	ND	μg/m³	S21032
1,1,2-Trichloroethane	TO-15	9/25/2009	2.73	5000	14000	ND	μg/m³	S21032
1,1-Dichloroethane	TO-15	9/25/2009	2.03	5000	10000	ND	μg/m³	S21032
1,1-Difluoroethane	TO-15	9/25/2009	27	5000	140000	ND	μg/m³	S21032
1,2,4-Trichlorobenzene	TO-15	9/25/2009	3.56	5000	18000	ND	μg/m³	S21032
1,2,4-Trimethylbenzene	TO-15	9/25/2009	2.46	5000	12000	ND	µg/m³	S21032
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/25/2009	3.84	5000	19000	ND	μg/m³	S21032
1,2-Dichlorobenzene	TO-15	9/25/2009	3.01	5000	15000	ND	µg/m³	S21032
1,2-Dichloroethane	TO-15	9/25/2009	2.03	5000	10000	ND	µg/m³	S21032
1,2-Dichloropropane	TO-15	9/25/2009	2.31	5000	12000	ND	μg/m³	S21032
1,3,5-Trimethylbenzene	TO-15	9/25/2009	2.46	5000	12000	ND	μg/m³	S21032
1,3-Butadiene	TO-15	9/25/2009	4.44	5000	22000	ND	μg/m³	S21032
1,3-Dichlorobenzene	TO-15	9/25/2009	3.01	5000	15000	ND	μg/m³	S21032
1,4-Dichlorobenzene	TO-15	9/25/2009	3.01	5000	15000	ND	μg/m³	S21032
1,4-Dioxane	TO-15	9/25/2009	1.8	5000	9000	ND	µg/m³	S21032
2-Butanone (MEK)	TO-15	9/25/2009	1.48	5000	7400	ND	µg/m³	S21032
2-Hexanone	TO-15	9/25/2009	2.05	5000	10000	ND	µg/m³	S21032
4-Ethyl Toluene	TO-15	9/25/2009	2.46	5000	12000	ND	µg/m³	S21032
4-Methyl-2-Pentanone (MIBK)	TO-15	9/25/2009	2.05	5000	10000	ND	µg/m³	S21032
Acetone	TO-15	9/25/2009	9.52	5000	48000	ND	µg/m³	S21032
Benzene	TO-15	9/25/2009	1.6	5000	8000	ND	µg/m³	S21032
Bromodichloromethane	TO-15	9/25/2009	3.35	5000	17000	ND	µg/m³	S21032
Bromoform	TO-15	9/25/2009	5.17	5000	26000	ND	µg/m³	S21032
Bromomethane	TO-15	9/25/2009	1.94	5000	9700	ND	µg/m³	S21032
Carbon Disulfide	TO-15	9/25/2009	1.56	5000	7800	ND	µg/m³	S21032
Carbon Tetrachloride	TO-15	9/25/2009	3.15	5000	16000	ND	μg/m³	S21032
Chlorobenzene	TO-15	9/25/2009	2.3	5000	12000	ND	μg/m³	S21032
Chloroethane	TO-15	9/25/2009	1.32	5000	6600	ND	μg/m³	S21032
Chloroform	TO-15	9/25/2009	2.44	5000	12000	ND	μg/m³	S21032
Chloromethane	TO-15	9/25/2009	1.04	5000	5200	ND	μg/m³	S21032
cis-1,2-dichloroethene	TO-15	9/25/2009	1.98	5000	9900	ND	μg/m³	S21032
cis-1,3-Dichloropropene	TO-15	9/25/2009	2.27	5000	11000	ND	μg/m³	S21032
Dibromochloromethane	TO-15	9/25/2009	4.26	5000	21000	ND	µg/m³	S21032

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Bureau Veritas North America, Inc

Date Received: 9/21/2009 **Date Reported:** 10/12/2009

SV-1 **Lab Sample ID:** 0909133-001

Sample Matrix: AIR

Client Sample ID:

Date/Time Sampled 9/17/2009 4:39:00 PM

Sample Location:	3014 Lakeshore.Oakland	Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Dichlorodifluoromethane	TO-15	9/25/2009	2.48	5000	12000	ND	μg/m³	S21032
Diisopropyl ether (DIPE)	TO-15	9/25/2009	2.09	5000	10000	ND	µg/m³	S21032
Ethyl Acetate	TO-15	9/25/2009	1.8	5000	9000	ND	µg/m³	S21032
Ethyl Benzene	TO-15	9/25/2009	2.17	5000	11000	ND	µg/m³	S21032
Ethyl tert-butyl ether (ETBE)	TO-15	9/25/2009	2.09	5000	10000	ND	µg/m³	S21032
Freon 113	TO-15	9/25/2009	3.83	5000	19000	ND	µg/m³	S21032
Hexachlorobutadiene	TO-15	9/25/2009	5.34	5000	27000	ND	µg/m³	S21032
Hexane	TO-15	9/25/2009	14.1	5000	70000	ND	µg/m³	S21032
Isopropanol	TO-15	9/25/2009	16.4	5000	82000	ND	µg/m³	S21032
m,p-Xylene	TO-15	9/25/2009	2.05	5000	10000	ND	µg/m³	S21032
Methylene Chloride	TO-15	9/25/2009	3.61	5000	18000	ND	µg/m³	S21032
MTBE	TO-15	9/25/2009	1.81	5000	9000	ND	µg/m³	S21032
Naphthalene	TO-15	9/25/2009	2.62	5000	13000	ND	µg/m³	S21032
o-xylene	TO-15	9/25/2009	2.17	5000	11000	ND	µg/m³	S21032
Styrene	TO-15	9/25/2009	2.13	5000	11000	ND	µg/m³	S21032
t-Butyl alcohol (t-Butanol)	TO-15	9/25/2009	6.06	5000	30000	ND	µg/m³	S21032
tert-Amyl methyl ether (TAME)	TO-15	9/25/2009	2.09	5000	10000	ND	µg/m³	S21032
Tetrachloroethene	TO-15	9/25/2009	3.39	5000	17000	ND	µg/m³	S21032
Toluene	TO-15	9/25/2009	1.89	5000	9400	ND	µg/m³	S21032
trans-1,2-Dichloroethene	TO-15	9/25/2009	1.98	5000	9900	ND	µg/m³	S21032
Trichloroethene	TO-15	9/25/2009	2.69	5000	13000	ND	µg/m³	S21032
Trichlorofluoromethane	TO-15	9/25/2009	2.48	5000	12000	ND	µg/m³	S21032
Vinyl Acetate	TO-15	9/25/2009	1.76	5000	8800	ND	µg/m³	S21032
Vinyl Chloride	TO-15	9/25/2009	1.28	5000	6400	ND	μg/m³	S21032
Surr: 4-Bromofluorobenzene	TO-15	9/25/2009	0	5000	65-135	122	%REC	S21032

TO-3(MOD) 9/24/2009 352 10000 3500000 23000000x M21032 Gasoline μg/m³

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Reported value due to unidentified hydrocarbons within range of C5-C12 quantified as Gasoline. (possibly heavily aged gasoline)

Bureau Veritas North America, Inc

Date Received: 9/21/2009 **Date Reported:** 10/12/2009

Date Prepared:

SV-2 **Client Sample ID: Lab Sample ID:** 0909133-002

Sample Location: 3014 Lakeshore, Oakland

Sample Matrix:

Date/Time Sampled 9/17/2009 5:15:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	9/25/2009	1.99	2	4.0	ND	μg/m³	S21032
1,1,1,2-Tetrachloroethane	TO-15	9/25/2009	3.44	2	6.9	ND	µg/m³	S21032
1,1,1-Trichloroethane	TO-15	9/25/2009	2.73	2	5.5	ND	µg/m³	S21032
1,1,2,2-Tetrachloroethane	TO-15	9/25/2009	3.44	2	6.9	ND	µg/m³	S21032
1,1,2-Trichloroethane	TO-15	9/25/2009	2.73	2	5.5	ND	µg/m³	S21032
1,1-Dichloroethane	TO-15	9/25/2009	2.03	2	4.1	ND	µg/m³	S21032
1,1-Difluoroethane	TO-15	9/25/2009	27	2	54	150	μg/m³	S21032
1,2,4-Trichlorobenzene	TO-15	9/25/2009	3.56	2	7.1	ND	µg/m³	S21032
1,2,4-Trimethylbenzene	TO-15	9/25/2009	2.46	2	4.9	ND	µg/m³	S21032
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/25/2009	3.84	2	7.7	ND	µg/m³	S21032
1,2-Dichlorobenzene	TO-15	9/25/2009	3.01	2	6.0	ND	μg/m³	S21032
1,2-Dichloroethane	TO-15	9/25/2009	2.03	2	4.1	ND	μg/m³	S21032
1,2-Dichloropropane	TO-15	9/25/2009	2.31	2	4.6	ND	µg/m³	S21032
1,3,5-Trimethylbenzene	TO-15	9/25/2009	2.46	2	4.9	ND	μg/m³	S21032
1,3-Butadiene	TO-15	9/25/2009	4.44	2	8.9	ND	µg/m³	S21032
1,3-Dichlorobenzene	TO-15	9/25/2009	3.01	2	6.0	ND	µg/m³	S21032
1,4-Dichlorobenzene	TO-15	9/25/2009	3.01	2	6.0	ND	µg/m³	S21032
1,4-Dioxane	TO-15	9/25/2009	1.8	2	3.6	ND	μg/m³	S21032
2-Butanone (MEK)	TO-15	9/25/2009	1.48	2	3.0	ND	µg/m³	S21032
2-Hexanone	TO-15	9/25/2009	2.05	2	4.1	ND	µg/m³	S21032
4-Ethyl Toluene	TO-15	9/25/2009	2.46	2	4.9	ND	µg/m³	S21032
4-Methyl-2-Pentanone (MIBK)	TO-15	9/25/2009	2.05	2	4.1	ND	µg/m³	S21032
Acetone	TO-15	9/25/2009	9.52	2	19	ND	µg/m³	S21032
Benzene	TO-15	9/25/2009	1.6	2	3.2	ND	µg/m³	S21032
Bromodichloromethane	TO-15	9/25/2009	3.35	2	6.7	ND	µg/m³	S21032
Bromoform	TO-15	9/25/2009	5.17	2	10	ND	µg/m³	S21032
Bromomethane	TO-15	9/25/2009	1.94	2	3.9	ND	µg/m³	S21032
Carbon Disulfide	TO-15	9/25/2009	1.56	2	3.1	ND	µg/m³	S21032
Carbon Tetrachloride	TO-15	9/25/2009	3.15	2	6.3	ND	µg/m³	S21032
Chlorobenzene	TO-15	9/25/2009	2.3	2	4.6	ND	µg/m³	S21032
Chloroethane	TO-15	9/25/2009	1.32	2	2.6	ND	µg/m³	S21032
Chloroform	TO-15	9/25/2009	2.44	2	4.9	ND	μg/m³	S21032
Chloromethane	TO-15	9/25/2009	1.04	2	2.1	ND	μg/m³	S21032
cis-1,2-dichloroethene	TO-15	9/25/2009	1.98	2	4.0	ND	µg/m³	S21032
cis-1,3-Dichloropropene	TO-15	9/25/2009	2.27	2	4.5	ND	µg/m³	S21032
Dibromochloromethane	TO-15	9/25/2009	4.26	2	8.5	ND	µg/m³	S21032
Dichlorodifluoromethane	TO-15	9/25/2009	2.48	2	5.0	ND	µg/m³	S21032
Diisopropyl ether (DIPE)	TO-15	9/25/2009	2.09	2	4.2	ND	µg/m³	S21032
Ethyl Acetate	TO-15	9/25/2009	1.8	2	3.6	ND	µg/m³	S21032
Ethyl Benzene	TO-15	9/25/2009	2.17	2	4.3	ND	μg/m³	S21032
Ethyl tert-butyl ether (ETBE)	TO-15	9/25/2009	2.09	2	4.2	ND	μg/m³	S21032
Freon 113	TO-15	9/25/2009	3.83	2	7.7	ND	μg/m³	S21032

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Hexachlorobutadiene

TO-15

9/25/2009

5.34

11

2

µg/m³

S21032

ND

Bureau Veritas North America, Inc

Date Received: 9/21/2009

Date Reported: 10/12/2009

Client Sample ID:

SV-2

3014 Lakeshore, Oakland

Lab Sample ID: 0909133-002 **Date Prepared:**

Sample Matrix:

Sample Location:

Gasoline

Date/Time Sampled 9/17/2009 5:15:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	9/25/2009	14.1	2	28	ND	μg/m³	S21032
Isopropanol	TO-15	9/25/2009	16.4	2	33	ND	µg/m³	S21032
m,p-Xylene	TO-15	9/25/2009	2.05	2	4.1	ND	μg/m³	S21032
Methylene Chloride	TO-15	9/25/2009	3.61	2	7.2	ND	µg/m³	S21032
MTBE	TO-15	9/25/2009	1.81	2	3.6	ND	µg/m³	S21032
Naphthalene	TO-15	9/25/2009	2.62	2	5.2	ND	µg/m³	S21032
o-xylene	TO-15	9/25/2009	2.17	2	4.3	ND	µg/m³	S21032
Styrene	TO-15	9/25/2009	2.13	2	4.3	ND	µg/m³	S21032
t-Butyl alcohol (t-Butanol)	TO-15	9/25/2009	6.06	2	12	ND	µg/m³	S21032
tert-Amyl methyl ether (TAME)	TO-15	9/25/2009	2.09	2	4.2	ND	µg/m³	S21032
Tetrachloroethene	TO-15	9/25/2009	3.39	2	6.8	ND	µg/m³	S21032
Toluene	TO-15	9/25/2009	1.89	2	3.8	ND	µg/m³	S21032
trans-1,2-Dichloroethene	TO-15	9/25/2009	1.98	2	4.0	ND	μg/m³	S21032
Trichloroethene	TO-15	9/25/2009	2.69	2	5.4	ND	μg/m³	S21032
Trichlorofluoromethane	TO-15	9/25/2009	2.48	2	5.0	ND	μg/m³	S21032
Vinyl Acetate	TO-15	9/25/2009	1.76	2	3.5	ND	µg/m³	S21032
Vinyl Chloride	TO-15	9/25/2009	1.28	2	2.6	ND	μg/m³	S21032
Surr: 4-Bromofluorobenzene	TO-15	9/25/2009	0	2	65-135	110	%REC	S21032

352

100

35000

97000x

µg/m³

M21032

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Reported value due to presence of heavy end hydrocarbons within range of C5-C12 quantified as Gasoline. (possibly heavily aged gasoline)

9/24/2009

TO-3(MOD)

Bureau Veritas North America, Inc

Date Received: 9/21/2009 **Date Reported:** 10/12/2009

Client Sample ID: SV-3

Lab Sample ID: 0909133-003

Sample Location: 3014 Lakeshore, Oakland

Date Prepared:

Sample Matrix: AIR

Date/Time Sampled 9/17/2009 5:24:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	9/25/2009	1.99	1000	2000	ND	μg/m³	S21032
1,1,1,2-Tetrachloroethane	TO-15	9/25/2009	3.44	1000	3400	ND	μg/m³	S21032
1,1,1-Trichloroethane	TO-15	9/25/2009	2.73	1000	2700	ND	μg/m³	S21032
1,1,2,2-Tetrachloroethane	TO-15	9/25/2009	3.44	1000	3400	ND	μg/m³	S21032
1,1,2-Trichloroethane	TO-15	9/25/2009	2.73	1000	2700	ND	μg/m³	S21032
1,1-Dichloroethane	TO-15	9/25/2009	2.03	1000	2000	ND	μg/m³	S21032
1,1-Difluoroethane	TO-15	9/25/2009	27	1000	27000	ND	μg/m³	S21032
1,2,4-Trichlorobenzene	TO-15	9/25/2009	3.56	1000	3600	ND	μg/m³	S21032
1,2,4-Trimethylbenzene	TO-15	9/25/2009	2.46	1000	2500	ND	µg/m³	S21032
1,2-Dibromoethane(Ethylene dibromide)	TO-15	9/25/2009	3.84	1000	3800	ND	μg/m³	S21032
1,2-Dichlorobenzene	TO-15	9/25/2009	3.01	1000	3000	ND	µg/m³	S21032
1,2-Dichloroethane	TO-15	9/25/2009	2.03	1000	2000	ND	µg/m³	S21032
1,2-Dichloropropane	TO-15	9/25/2009	2.31	1000	2300	ND	µg/m³	S21032
1,3,5-Trimethylbenzene	TO-15	9/25/2009	2.46	1000	2500	ND	µg/m³	S21032
1,3-Butadiene	TO-15	9/25/2009	4.44	1000	4400	ND	µg/m³	S21032
1,3-Dichlorobenzene	TO-15	9/25/2009	3.01	1000	3000	ND	µg/m³	S21032
1,4-Dichlorobenzene	TO-15	9/25/2009	3.01	1000	3000	ND	µg/m³	S21032
1,4-Dioxane	TO-15	9/25/2009	1.8	1000	1800	ND	µg/m³	S21032
2-Butanone (MEK)	TO-15	9/25/2009	1.48	1000	1500	ND	µg/m³	S21032
2-Hexanone	TO-15	9/25/2009	2.05	1000	2000	ND	µg/m³	S21032
4-Ethyl Toluene	TO-15	9/25/2009	2.46	1000	2500	ND	µg/m³	S21032
4-Methyl-2-Pentanone (MIBK)	TO-15	9/25/2009	2.05	1000	2000	ND	µg/m³	S21032
Acetone	TO-15	9/25/2009	9.52	1000	9500	ND	µg/m³	S21032
Benzene	TO-15	9/25/2009	1.6	1000	1600	ND	µg/m³	S21032
Bromodichloromethane	TO-15	9/25/2009	3.35	1000	3400	ND	µg/m³	S21032
Bromoform	TO-15	9/25/2009	5.17	1000	5200	ND	µg/m³	S21032
Bromomethane	TO-15	9/25/2009	1.94	1000	1900	ND	µg/m³	S21032
Carbon Disulfide	TO-15	9/25/2009	1.56	1000	1600	ND	µg/m³	S21032
Carbon Tetrachloride	TO-15	9/25/2009	3.15	1000	3200	ND	µg/m³	S21032
Chlorobenzene	TO-15	9/25/2009	2.3	1000	2300	ND	µg/m³	S21032
Chloroethane	TO-15	9/25/2009	1.32	1000	1300	ND	µg/m³	S21032
Chloroform	TO-15	9/25/2009	2.44	1000	2400	ND	µg/m³	S21032
Chloromethane	TO-15	9/25/2009	1.04	1000	1000	ND	µg/m³	S21032
cis-1,2-dichloroethene	TO-15	9/25/2009	1.98	1000	2000	ND	µg/m³	S21032
cis-1,3-Dichloropropene	TO-15	9/25/2009	2.27	1000	2300	ND	µg/m³	S21032
Dibromochloromethane	TO-15	9/25/2009	4.26	1000	4300	ND	µg/m³	S21032
Dichlorodifluoromethane	TO-15	9/25/2009	2.48	1000	2500	ND	μg/m³	S21032
Diisopropyl ether (DIPE)	TO-15	9/25/2009	2.09	1000	2100	ND	μg/m³	S21032
Ethyl Acetate	TO-15	9/25/2009	1.8	1000	1800	ND	μg/m³	S21032
Ethyl Benzene	TO-15	9/25/2009	2.17	1000	2200	ND	μg/m³	S21032
Ethyl tert-butyl ether (ETBE)	TO-15	9/25/2009	2.09	1000	2100	ND	μg/m³	S21032
Freon 113	TO-15	9/25/2009	3.83	1000	3800	ND	μg/m³	S21032
Hexachlorobutadiene	TO-15	9/25/2009	5.34	1000	5300	ND	µg/m³	S21032

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Bureau Veritas North America, Inc

Date Received: 9/21/2009

Date Reported: 10/12/2009

SV-3 Client Sample ID:

Lab Sample ID: 0909133-003

Sample Location: 3014 Lakeshore, Oakland **Date Prepared:**

Sample Matrix:

Date/Time Sampled

9/17/2009 5:24:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	9/25/2009	14.1	1000	14000	ND	μg/m³	S21032
Isopropanol	TO-15	9/25/2009	16.4	1000	16000	ND	μg/m³	S21032
m,p-Xylene	TO-15	9/25/2009	2.05	1000	2000	ND	μg/m³	S21032
Methylene Chloride	TO-15	9/25/2009	3.61	1000	3600	ND	µg/m³	S21032
MTBE	TO-15	9/25/2009	1.81	1000	1800	ND	µg/m³	S21032
Naphthalene	TO-15	9/25/2009	2.62	1000	2600	ND	µg/m³	S21032
o-xylene	TO-15	9/25/2009	2.17	1000	2200	ND	µg/m³	S21032
Styrene	TO-15	9/25/2009	2.13	1000	2100	ND	µg/m³	S21032
t-Butyl alcohol (t-Butanol)	TO-15	9/25/2009	6.06	1000	6100	ND	µg/m³	S21032
tert-Amyl methyl ether (TAME)	TO-15	9/25/2009	2.09	1000	2100	ND	µg/m³	S21032
Tetrachloroethene	TO-15	9/25/2009	3.39	1000	3400	ND	µg/m³	S21032
Toluene	TO-15	9/25/2009	1.89	1000	1900	ND	µg/m³	S21032
trans-1,2-Dichloroethene	TO-15	9/25/2009	1.98	1000	2000	ND	µg/m³	S21032
Trichloroethene	TO-15	9/25/2009	2.69	1000	2700	ND	µg/m³	S21032
Trichlorofluoromethane	TO-15	9/25/2009	2.48	1000	2500	ND	µg/m³	S21032
Vinyl Acetate	TO-15	9/25/2009	1.76	1000	1800	ND	µg/m³	S21032
Vinyl Chloride	TO-15	9/25/2009	1.28	1000	1300	ND	μg/m³	S21032
Surr: 4-Bromofluorobenzene	TO-15	9/25/2009	0	1000	65-135	129	%REC	S21032

required for quantitation. (see TO-3 comment).

TO-3(MOD) Gasoline 9/24/2009 352 10000 3500000 6500000x M21032 µg/m³

Note: x- Sample chromatogram does not resemble gasoline standard pattern. Reported value due to unidentified hydrocarbons within range of C5-C12 quantified as Gasoline. (possibly heavily aged gasoline)

Report prepared for: Don Ashton **Date Received:** 9/21/2009

Bureau Veritas North America,Inc Date Reported: 10/12/2009

Lab Sample ID: 0909133-004

Client Sample ID: SV-1@4.5-5'

3014 Lakeshore,Oakland **Date Prepared:** 10/8/2009

Sample Matrix: SOIL

Sample Location:

Date/Time Sampled 9/15/2009 4:15:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Lead	SW6010B	10/9/2009	1	1	1.0	8.0	mg/Kg	5666
TPH (Diesel-SG)	SW8015B	9/22/2009	2	5	10	241X	mg/Kg	R21035
TPH (Motor Oil-SG) Surr: Pentacosane	SW8015B SW8015B	9/22/2009 9/22/2009	4 0	5 5	20 61.5-133	ND 107	mg/Kg %REC	R21035 R21035

Note:X-Sample chromatogram does not resemble typical diesel pattern(possibly fuel lighter than diesel). Hydrocarbons within the diesel range quantitated as diesel.

Report prepared for: Don Ashton **Date Received:** 9/21/2009

Bureau Veritas North America, Inc **Date Reported:** 10/12/2009

Sample Matrix: SOIL

Date/Time Sampled 9/15/2009 4:15:00 PM

Client Sample ID:	SV-1@4.5-5'	Lab Sample ID:	0909133-004
Sample Location:	3014 Lakeshore,Oakland	Date Prepared:	10/8/2009

		1	T					
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
	Withou	Analyzed		ractor				Daten
1,1,1,2-Tetrachloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1,1-Trichloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1,2,2-Tetrachloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1,2-Trichloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1-Dichloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1-Dichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1-Dichloropropene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,3-Trichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,3-Trichloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,4-Trichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,4-Trimethylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dibromo-3-chloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dibromoethane (EDB)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dichloroethane (EDC)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dichloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,3,5-Trimethylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,3-Dichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,4-Dichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
2,2-Dichloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
2-Chloroethyl vinyl ether	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
2-Chlorotoluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
4-Chlorotoluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
4-Isopropyltoluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Benzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromochloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromodichloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromoform	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromomethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Carbon tetrachloride	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Chlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Chloroform	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Chloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
cis-1,2-Dichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg μg/Kg	R21064
cis-1,3-Dichloropropene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg μg/Kg	R21064
Dibromochloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg μg/Kg	R21064
Dibromomethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg μg/Kg	R21064
Dichlorodifluoromethane	SW8260B SW8260B	9/23/2009		500	5000	ND		
		9/23/2009	10 10				μg/Kg	R21064
Ethyl tert-butyl ether (ETBE)	SW8260B		10	500 500	5000	ND	μg/Kg	R21064
Ethylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Freon-113	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Hexachlorobutadiene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064

Report prepared for: Don Ashton

Bureau Veritas North America, Inc

Date Received: 9/21/2009 **Date Reported:** 10/12/2009

Lab Sample ID: 0909133-004

Date Prepared: 10/8/2009

Client Sample ID: SV-1@4.5-5'

Sample Location: 3014 Lakeshore, Oakland

Sample Matrix: SOIL

Date/Time Sampled 9/15/2009 4:15:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropyl Ether	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Isopropylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Methyl tert-butyl ether (MTBE)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Methylene chloride	SW8260B	9/23/2009	50	500	25000	ND	μg/Kg	R21064
Naphthalene	SW8260B	9/23/2009	20	500	10000	ND	μg/Kg	R21064
n-Butylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
n-Propylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
sec-Butylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Styrene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
t-Butyl alcohol (t-Butanol)	SW8260B	9/23/2009	50	500	25000	ND	μg/Kg	R21064
tert-Amyl methyl ether (TAME)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
tert-Butylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Tetrachloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Toluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
trans-1,2-Dichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
trans-1,3-Dichloropropene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Trichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Trichlorofluoromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Vinyl chloride	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Xylenes, Total	SW8260B	9/23/2009	15	500	7500	ND	μg/Kg	R21064
Surr: 4-Bromofluorobenzene	SW8260B	9/23/2009	0	500	55.8-141	95.5	%REC	R21064
Surr: Dibromofluoromethane	SW8260B	9/23/2009	0	500	59.8-148	99.8	%REC	R21064
Surr: Toluene-d8	SW8260B	9/23/2009	0	500	55.2-133	88.6	%REC	R21064
Note: Reporting limit raised due to sig	gnificant amount of heavy	hydrocarbons.						
TPH (Gasoline)	SW8260B(TPH)	9/22/2009	100	100	10000	190000x	μg/Kg	G21042
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	9/22/2009	0	100	56.9-133	82.0	%REC	G21042

Note: x - Result reported as gasoline but sample chromatogram does not match requested fuel standard pattern. TPH-Gasoline result due to a significant contribution from hydrocarbons heavier then requested fuel within range of C5-C12 quantified as Gasoline.

Report prepared for: Don Ashton **Date Received:** 9/21/2009

Bureau Veritas North America,Inc Date Reported: 10/12/2009

Client Sample ID: SV-3@4.5-5'

Lab Sample ID: 0909133-005

Sample Location: 3014 Lakeshore, Oakland

Date Prepared: 9/22/2009

Sample Matrix: SOIL

Date/Time Sampled 9/15/2009 5:40:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
TPH (Diesel-SG)	SW8015B	9/22/2009	2	1	2.0	8.21X	mg/Kg	R21035
TPH (Motor Oil-SG)	SW8015B	9/22/2009	4	1	4.0	4.6	mg/Kg	R21035
Surr: Pentacosane	SW8015B	9/22/2009	0	1	61.5-133	89.6	%REC	R21035

Note:X-Sample chromatogram does not resemble typical diesel pattern(possibly fuel lighter than diesel). Hydrocarbons within the diesel range quantitated as diesel.

Report prepared for: Don Ashton **Date Received:** 9/21/2009

Bureau Veritas North America,Inc **Date Reported:** 10/12/2009

Client Sample ID: SV-3@4.5-5'

Sample Location: 3014 Lakeshore,Oakland

Sample Matrix: SOIL

Date/Time Sampled 9/15/2009 5:40:00 PM

Lab Sample ID: 0909133-005 **Date Prepared:** 9/22/2009

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1,1,2-Tetrachloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1,1-Trichloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1,2,2-Tetrachloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1,2-Trichloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1-Dichloroethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1-Dichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,1-Dichloropropene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,3-Trichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,3-Trichloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,4-Trichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2,4-Trimethylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dibromo-3-chloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dibromoethane (EDB)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dichloroethane (EDC)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,2-Dichloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,3,5-Trimethylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,3-Dichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
1,4-Dichlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
2,2-Dichloropropane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
2-Chloroethyl vinyl ether	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
2-Chlorotoluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
4-Chlorotoluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
4-Isopropyltoluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Benzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromochloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromodichloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromoform	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Bromomethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Carbon tetrachloride	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Chlorobenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Chloroform	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Chloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
cis-1,2-Dichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
cis-1,3-Dichloropropene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Dibromochloromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Dibromomethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Dichlorodifluoromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Ethyl tert-butyl ether (ETBE)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Ethylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Freon-113	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Hexachlorobutadiene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Don Ashton

Bureau Veritas North America, Inc

Date Received: 9/21/2009 **Date Reported:** 10/12/2009

Date Prepared: 9/22/2009

Client Sample ID: SV-3@4.5-5'

5' **Lab Sample ID:** 0909133-005

Sample Location: 3014 Lakeshore,Oakland

Sample Matrix:

SOIL

Date/Time Sampled 9/15/2009 5:40:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Isopropyl Ether	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Isopropylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Methyl tert-butyl ether (MTBE)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Methylene chloride	SW8260B	9/23/2009	50	500	25000	ND	μg/Kg	R21064
Naphthalene	SW8260B	9/23/2009	20	500	10000	ND	μg/Kg	R21064
n-Butylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
n-Propylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
sec-Butylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Styrene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
t-Butyl alcohol (t-Butanol)	SW8260B	9/23/2009	50	500	25000	ND	μg/Kg	R21064
tert-Amyl methyl ether (TAME)	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
tert-Butylbenzene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Tetrachloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Toluene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
trans-1,2-Dichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
trans-1,3-Dichloropropene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Trichloroethene	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Trichlorofluoromethane	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Vinyl chloride	SW8260B	9/23/2009	10	500	5000	ND	μg/Kg	R21064
Xylenes, Total	SW8260B	9/23/2009	15	500	7500	ND	μg/Kg	R21064
Surr: 4-Bromofluorobenzene	SW8260B	9/23/2009	0	500	55.8-141	97.4	%REC	R21064
Surr: Dibromofluoromethane	SW8260B	9/23/2009	0	500	59.8-148	102	%REC	R21064
Surr: Toluene-d8	SW8260B	9/23/2009	0	500	55.2-133	86.6	%REC	R21064
Note: Reporting limit raised due to sign	gnificant amount of heavy	hydrocarbons.						
TPH (Gasoline)	SW8260B(TPH)	9/22/2009	100	100	10000	54000x	μg/Kg	G21042
Surr: 4-Bromofllurobenzene	SW8260B(TPH)	9/22/2009	0	100	56.9-133	76.0	%REC	G21042

Note: x - Result reported as gasoline but sample chromatogram does not match requested fuel standard pattern. TPH-Gasoline result due to a significant contribution from hydrocarbons heavier then requested fuel within range of C5-C12 quantified as Gasoline.

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Date: 12-Oct-09

CLIENT: Bureau Veritas North America, Inc

Work Order: 0909133

Project: 33106-006794.01

ANALYTICAL QC SUMMARY REPORT

BatchID: 5666

Sample ID: MB-5666 Client ID: ZZZZZ	SampType: MBLK Batch ID: 5666	TestCode: 6010B_S	g Prep Date: 10/8/2009 Analysis Date: 10/9/2009	RunNo: 21261 SeqNo: 306349
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	ND	1.0		
Sample ID: LCS-5666 Client ID: ZZZZZ	SampType: LCS Batch ID: 5666	TestCode: 6010B_S	g Prep Date: 10/8/2009 Analysis Date: 10/9/2009	RunNo: 21261 SeqNo: 306347
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	50.90	1.0 50 0.35	101 67.9 118	
Sample ID: LCSD-5666 Client ID: ZZZZZ	SampType: LCSD Batch ID: 5666	TestCode: 6010B_S	g Prep Date: 10/8/2009 Analysis Date: 10/9/2009	RunNo: 21261 SeqNo: 306348
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	50.95	1.0 50 0.35	101 67.9 118 50.9	0.0982 30

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits $Page\ 1\ of\ 13$

Work Order: 0909133

BatchID: G21042 **Project:** 33106-006794.01

Sample ID: MB_G21042	SampType: MBLK	TestCode: TPH_GAS_	S_ Units: μg/Kg		Prep Dat	te: 9/22/20	RunNo: 21042				
Client ID: ZZZZZ	Batch ID: G21042	TestNo: SW8260B(T	Р		Analysis Date: 9/22/2009				SeqNo: 303405		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)	ND	100									
Surr: 4-Bromofllurobenzene	33.00	0 50	0	66.0	56.9	133					
Sample ID: LCS_G21042	SampType: LCS	TestCode: TPH_GAS_S		Prep Dat	te: 9/22/20	09	RunNo: 21 0)42			
Client ID: ZZZZZ	Batch ID: G21042	TestNo: SW8260B(TP			Analysis Da	te: 9/22/20	SeqNo: 303	SeqNo: 303406			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)	996.0	100 1000	0	99.6	48.2	132					
Surr: 4-Bromofllurobenzene	42.00	0 50	0	84.0	56.9	133					
Sample ID: LCSD_G21042	SampType: LCSD	TestCode: TPH_GAS_S	S_ Units: µg/Kg		Prep Dat	te: 9/22/20	09	RunNo: 21 0)42		
Client ID: ZZZZZ	Batch ID: G21042	TestNo: SW8260B(T	P		Analysis Da	te: 9/22/20	09	SeqNo: 303407			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
TPH (Gasoline)	1062	100 1000	0	106	48.2	132	996	6.41	30		
Surr: 4-Bromofllurobenzene	34.00	0 50	0	68.0	56.9	133	0	0	0		

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page~2~of~13

Work Order: 0909133

BatchID: M21032 **Project:** 33106-006794.01

Sample ID: MBG-M21032	SampType: MBLK	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 9/23/2009	RunNo: 21032		
Client ID: ZZZZZ	Batch ID: M21032	TestNo: TO-3(MOD)	Analysis Date: 9/23/2009	SeqNo: 303546		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	ND	100				
Sample ID: LCSG-M21032	SampType: LCS	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 9/23/2009	RunNo: 21032		
Client ID: ZZZZZ	Batch ID: M21032	TestNo: TO-3(MOD)	Analysis Date: 9/23/2009	SeqNo: 303547		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	460.0	100 500 0	92.0 50 150			
Sample ID: LCSDG-M21032	SampType: LCSD	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 9/23/2009	RunNo: 21032		
Client ID: ZZZZZ	Batch ID: M21032	TestNo: TO-3(MOD)	Analysis Date: 9/23/2009	SeqNo: 303548		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	449.0	100 500 0	89.8 50 150 460	2.42 30		

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Work Order: 0909133

Project: 33106-006794.01

ANALYTICAL QC SUMMARY REPORT

BatchID: R21035

Sample ID: SDSG090922A-MB	SampType: MBLK	TestCode: TP	PHDOSG_S Units: mg/Kg		Prep Date	e: 9/22/2009	RunNo: 2103	5	
Client ID: ZZZZZ	Batch ID: R21035	TestNo: SW8015B			Analysis Date	e: 9/22/2009	SeqNo: 303340		
Analyte	Result	PQL SPK	K value SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qual	
TPH (Diesel-SG)	ND	2.0							
TPH (Motor Oil-SG)	ND	4.0							
Surr: Pentacosane	3.085	0	3.3 0	93.5	61.5	133			
Sample ID: SDSG090922A-LCS	SampType: LCS	TestCode: TP	PHDOSG_S Units: mg/Kg		Prep Date	e: 9/22/2009	RunNo: 2103	5	
Client ID: ZZZZZ	Batch ID: R21035	TestNo: SW8015B			Analysis Date	e: 9/22/2009	SeqNo: 3033	41	
Analyte	Result	PQL SPK	V value SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qual	
TPH (Diesel-SG)	36.76	2.0	33.33 0	110	50.8	111			
Surr: Pentacosane	2.773	0	3.3 0	84.0	61.5	133			
Sample ID: SDSG090922A-LCS	SampType: LCSD	TestCode: TP	PHDOSG_S Units: mg/Kg		Prep Date	e: 9/22/2009	RunNo: 2103	5	
Client ID: ZZZZZ	Batch ID: R21035	TestNo: SW	V8015B		Analysis Date	e: 9/22/2009	SeqNo: 3033	42	
Analyte	Result	PQL SPK	K value SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qual	
TPH (Diesel-SG)	35.65	2.0	33.33 0	107	50.8	111 36.76	3.05	30	
Surr: Pentacosane	2.883	0	3.3 0	87.4	61.5	133 0	0	0	

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits Page~4~of~13

Work Order: 0909133 ANALYTICAL QC SUMMARY REPORT

Project:	33106-006794.01	BatchID:	R21064

Sample ID: MB_R21064	SampType: MBLK	TestCode: 8260B_S Units: µg/Kg			Prep Date: 9/23/2009				RunNo: 21064		
Client ID: ZZZZZ	Batch ID: R21064	TestN	No: SW8260B			Analysis Da	te: 9/23/20	109	SeqNo: 303	3681	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	10									
1,1,1-Trichloroethane	ND	10									
1,1,2,2-Tetrachloroethane	ND	10									
1,1,2-Trichloroethane	ND	10									
1,1-Dichloroethane	ND	10									
1,1-Dichloroethene	ND	10									
1,1-Dichloropropene	ND	10									
1,2,3-Trichlorobenzene	ND	10									
1,2,3-Trichloropropane	ND	10									
1,2,4-Trichlorobenzene	ND	10									
1,2,4-Trimethylbenzene	ND	10									
1,2-Dibromo-3-chloropropane	ND	10									
1,2-Dibromoethane (EDB)	ND	10									
1,2-Dichlorobenzene	ND	10									
1,2-Dichloroethane (EDC)	ND	10									
1,2-Dichloropropane	ND	10									
1,3,5-Trimethylbenzene	ND	10									
1,3-Dichlorobenzene	ND	10									
1,3-Dichloropropene	ND	10									
1,4-Dichlorobenzene	ND	10									
2,2-Dichloropropane	ND	10									
2-Chloroethyl vinyl ether	ND	10									
2-Chlorotoluene	ND	10									
4-Chlorotoluene	ND	10									
4-Isopropyltoluene	ND	10									
Benzene	ND	10									
Bromobenzene	ND	10									
Bromochloromethane	ND	10									
Bromodichloromethane	ND	10									
Bromoform	ND	10									
Bromomethane	ND	10									

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 5 of 13

Work Order: 0909133

BatchID: R21064 **Project:** 33106-006794.01

Sample ID: MB_R21064	SampType: MBLK	TestCo	de: 8260B_S	Units: µg/Kg	Prep Date: 9/23/2009			009	RunNo: 21064		
Client ID: ZZZZZ	Batch ID: R21064	Test	No: SW8260B			Analysis Da	nte: 9/23/2 0	009	SeqNo: 30	3681	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon tetrachloride	ND	10									
Chlorobenzene	ND	10									
Chloroform	ND	10									
Chloromethane	ND	10									
cis-1,2-Dichloroethene	ND	10									
cis-1,3-Dichloropropene	ND	10									
Dibromochloromethane	ND	10									
Dibromomethane	ND	10									
Dichlorodifluoromethane	ND	10									
Ethyl tert-butyl ether (ETBE)	ND	10									
Ethylbenzene	ND	10									
Freon-113	ND	10									
Hexachlorobutadiene	ND	10									
Isopropyl Ether	ND	10									
Isopropylbenzene	ND	10									
Methyl tert-butyl ether (MTBE)	ND	10									
Methylene chloride	ND	50									
Naphthalene	ND	20									
n-Butylbenzene	ND	10									
n-Propylbenzene	ND	10									
sec-Butylbenzene	ND	10									
Styrene	ND	10									
t-Butyl alcohol (t-Butanol)	ND	50									
tert-Amyl methyl ether (TAME)	ND	10									
tert-Butylbenzene	ND	10									
Tetrachloroethene	ND	10									
Toluene	ND	10									
trans-1,2-Dichloroethene	ND	10									
trans-1,3-Dichloropropene	ND	10									
Trichloroethene	ND	10									
Trichlorofluoromethane	ND	10									

Qualifiers:

Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Spike Recovery outside accepted recovery limits $Page\ 6\ of\ 13$

Work Order: 0909133

BatchID: R21064 **Project:** 33106-006794.01

Sample ID: MB_R21064	SampType: MBLK	TestCo	de: 8260B_S	Units: µg/Kg		Prep Da	te: 9/23/20	009	RunNo: 21 0	064	
Client ID: ZZZZZ	Batch ID: R21064	Test	No: SW8260B			Analysis Da	te: 9/23/20	009	SeqNo: 303	3681	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	ND	10									
Xylenes, Total	ND	15									
Surr: 4-Bromofluorobenzene	43.42	0	50	0	86.8	55.8	141				
Surr: Dibromofluoromethane	53.79	0	50	0	108	59.8	148				
Surr: Toluene-d8	43.14	0	50	0	86.3	55.2	133				
Sample ID: LCS_R21064	SampType: LCS	TestCo	de: 8260B_S	Units: µg/Kg	Kg Prep Date: 9/23/2009			RunNo: 21 (064		
Client ID: ZZZZZ	Batch ID: R21064	Test	No: SW8260B		Analysis Date: 9/23/2009		SeqNo: 303682				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	59.12	10	50	0	118	53.7	139				
Benzene	55.31	10	50	0	111	66.5	135				
Chlorobenzene	49.12	10	50	0	98.2	57.5	150				
Toluene	43.77	10	50	0	87.5	56.8	134				
Trichloroethene	56.68	10	50	0	113	57.4	134				
Surr: 4-Bromofluorobenzene	40.29	0	50	0	80.6	55.8	141				
Surr: Dibromofluoromethane	53.39	0	50	0	107	59.8	148				
Surr: Toluene-d8	42.77	0	50	0	85.5	55.2	133				
Sample ID: LCSD_R21064	SampType: LCSD	TestCo	de: 8260B_S	Units: µg/Kg		Prep Da	te: 9/23/20	009	RunNo: 21 (064	
Client ID: ZZZZZ	Batch ID: R21064	Test	No: SW8260B			Analysis Da	te: 9/23/20	009	SeqNo: 303	3683	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	60.60	10	50	0	121	53.7	139	59.12	2.47	30	
Benzene	56.67	10	50	0	113	66.5	135	55.31	2.43	30	
Chlorobenzene	47.56	10	50	0	95.1	57.5	150	49.12	3.23	30	
Toluene	42.43	10	50	0	84.9	56.8	134	43.77	3.11	30	
Trichloroethene	59.78	10	50	0	120	57.4	134	56.68	5.32	30	
Surr: 4-Bromofluorobenzene	47.43	0	50	0	94.9	55.8	141	0	0	0	
Surr: Dibromofluoromethane	52.96	0	50	0	106	59.8	148	0	0	0	
Surr: Toluene-d8	40.88	0	50	0	81.8	55.2	133	0	0	0	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Spike Recovery outside accepted recovery limits

Page 7 of 13

33106-006794.01

Work Order:

Project:

0909133

BatchID: S21032

Sample ID: MB-S21032	SampType: MBLK	TestCod	le: TO-15	Units: ppbv	Prep Date: 9/24/2009		RunNo: 21032				
Client ID: ZZZZZ	Batch ID: \$21032	TestN	lo: TO-15			Analysis Da	te: 9/24/2 0	009	SeqNo: 303	3787	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	ND	0.50									
1,1,1,2-Tetrachloroethane	ND	0.50									
1,1,1-Trichloroethane	ND	0.50									
1,1,2,2-Tetrachloroethane	ND	0.50									
1,1,2-Trichloroethane	ND	0.50									
1,1-Dichloroethane	ND	0.50									
1,2,4-Trichlorobenzene	ND	0.50									
1,2,4-Trimethylbenzene	ND	0.50									
1,2-Dibromoethane(Ethylene dibrom	nide) ND	0.50									
1,2-Dichlorobenzene	ND	0.50									
1,2-Dichloroethane	ND	0.50									
1,2-Dichloropropane	ND	0.50									
1,3,5-Trimethylbenzene	ND	0.50									
1,3-Butadiene	ND	2.0									
1,3-Dichlorobenzene	ND	0.50									
1,4-Dichlorobenzene	ND	0.50									
1,4-Dioxane	ND	0.50									
2-Butanone (MEK)	ND	0.50									
2-Hexanone	ND	0.50									
4-Ethyl Toluene	ND	0.50									
4-Methyl-2-Pentanone (MIBK)	ND	0.50									
Acetone	ND	4.0									
Benzene	ND	0.50									
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50									
Bromomethane	ND	0.50									
Carbon Disulfide	ND	0.50									
Carbon Tetrachloride	ND	0.50									
Chlorobenzene	ND	0.50									
Chloroethane	ND	0.50									
Chloroform	ND	0.50									

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 8 of 13

Work Order: 0909133

BatchID: S21032 33106-006794.01 **Project:**

Sample ID: MB-S21032	SampType: MBLK	TestCod	de: TO-15	Units: ppbv		Prep Da	ite: 9/24/2 0	009	RunNo: 210)32	
Client ID: ZZZZZ	Batch ID: \$21032	TestN	lo: TO-15			Analysis Da	ite: 9/24/2 0	009	SeqNo: 303	3787	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.50									
cis-1,2-dichloroethene	ND	0.50									
cis-1,3-Dichloropropene	ND	0.50									
Dibromochloromethane	ND	0.50									
Dichlorodifluoromethane	ND	0.50									
Diisopropyl ether (DIPE)	ND	0.50									
Ethyl Acetate	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Freon 113	ND	0.50									
Hexachlorobutadiene	ND	0.50									
Hexane	ND	2.0									
Isopropanol	ND	4.0									
m,p-Xylene	ND	0.50									
Methylene Chloride	ND	1.0									
MTBE	ND	0.50									
Naphthalene	ND	0.50									
o-xylene	ND	0.50									
Styrene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	2.0									
tert-Amyl methyl ether (TAME)	ND	0.50									
Tetrachloroethene	ND	0.50									
Toluene	ND	0.50									
trans-1,2-Dichloroethene	ND	0.50									
Trichloroethene	ND	0.50									
Trichlorofluoromethane	ND	0.50									
Vinyl Acetate	ND	0.50									
Vinyl Chloride	ND	0.50									
Surr: 4-Bromofluorobenzene	25.43	0	20	0	127	65	135				

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Spike Recovery outside accepted recovery limits Page~9~of~13

Work Order: 0909133

BatchID: S21032 **Project:** 33106-006794.01

Sample ID: LCS-S21032	SampType: LCS	TestCod	de: TO-15	Units: ppbv	Prep Date: 9/24/2009		09	RunNo: 21032			
Client ID: ZZZZZ	Batch ID: \$21032	TestN	lo: TO-15			Analysis Da	te: 9/24/20	09	SeqNo: 303	3788	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	20.91	0.50	20	0	105	65	135				
1,1,1,2-Tetrachloroethane	18.98	0.50	20	0	94.9	65	135				
1,1,1-Trichloroethane	21.26	0.50	20	0	106	65	135				
1,1,2,2-Tetrachloroethane	17.80	0.50	20	0	89.0	65	135				
1,1,2-Trichloroethane	19.77	0.50	20	0	98.8	65	135				
1,1-Dichloroethane	21.27	0.50	20	0	106	65	135				
1,2,4-Trichlorobenzene	18.73	0.50	20	0	93.6	65	135				
1,2,4-Trimethylbenzene	19.57	0.50	20	0	97.8	65	135				
1,2-Dibromoethane(Ethylene dibron	nide) 18.96	0.50	20	0	94.8	65	135				
1,2-Dichlorobenzene	18.22	0.50	20	0	91.1	65	135				
1,2-Dichloroethane	21.70	0.50	20	0	108	65	135				
1,2-Dichloropropane	19.60	0.50	20	0	98.0	65	135				
1,3,5-Trimethylbenzene	18.17	0.50	20	0	90.8	65	135				
1,3-Butadiene	21.69	2.0	20	0	108	65	135				
1,3-Dichlorobenzene	18.10	0.50	20	0	90.5	65	135				
1,4-Dichlorobenzene	18.16	0.50	20	0	90.8	65	135				
1,4-Dioxane	26.20	0.50	20	0	131	65	135				
2-Butanone (MEK)	23.34	0.50	20	0	117	65	135				
2-Hexanone	19.89	0.50	20	0	99.4	65	135				
4-Ethyl Toluene	18.06	0.50	20	0	90.3	65	135				
4-Methyl-2-Pentanone (MIBK)	22.53	0.50	20	0	113	65	135				
Acetone	21.26	4.0	20	0	106	65	135				
Benzene	21.65	0.50	20	0	108	65	135				
Bromodichloromethane	18.81	0.50	20	0	94.1	65	135				
Bromoform	18.63	0.50	20	0	93.2	65	135				
Bromomethane	24.50	0.50	20	0	122	65	135				
Carbon Disulfide	21.37	0.50	20	0	107	65	135				
Carbon Tetrachloride	21.95	0.50	20	0	110	65	135				
Chlorobenzene	18.82	0.50	20	0	94.1	65	135				
Chloroethane	24.10	0.50	20	0	120	65	135				
Chloroform	21.14	0.50	20	0	106	65	135				
		3.00	_0	~			.00				

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Spike Recovery outside accepted recovery limits Page~10~of~13

Work Order: 0909133

BatchID: S21032 **Project:** 33106-006794.01

Sample ID: LCS-S21032	SampType: LCS	TestCod	de: TO-15	Units: ppbv		Prep Da	te: 9/24/2 0	009	RunNo: 21032		
Client ID: ZZZZZ	Batch ID: \$21032	TestN	lo: TO-15			Analysis Da	te: 9/24/20	009	SeqNo: 303	3788	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	21.80	0.50	20	0	109	65	135				
cis-1,2-dichloroethene	21.70	0.50	20	0	108	65	135				
cis-1,3-Dichloropropene	18.72	0.50	20	0	93.6	65	135				
Dibromochloromethane	19.10	0.50	20	0	95.5	65	135				
Dichlorodifluoromethane	16.42	0.50	20	0.15	81.4	65	135				
Diisopropyl ether (DIPE)	21.49	0.50	20	0	107	65	135				
Ethyl Acetate	23.40	0.50	20	0	117	65	135				
Ethyl Benzene	19.60	0.50	20	0	98.0	65	135				
Ethyl tert-butyl ether (ETBE)	22.71	0.50	20	0	114	65	135				
Freon 113	20.88	0.50	20	0	104	65	135				
Hexachlorobutadiene	17.73	0.50	20	0	88.6	65	135				
Hexane	22.02	2.0	20	0	110	65	135				
Isopropanol	24.55	4.0	20	0	123	65	135				
m,p-Xylene	36.81	0.50	40	0	92.0	65	135				
Methylene Chloride	22.15	1.0	20	0	111	65	135				
MTBE	22.21	0.50	20	0	111	65	135				
Naphthalene	18.10	0.50	20	0	90.5	65	135				
o-xylene	19.03	0.50	20	0	95.2	65	135				
Styrene	18.79	0.50	20	0	94.0	65	135				
t-Butyl alcohol (t-Butanol)	23.41	2.0	20	0	117	65	135				
tert-Amyl methyl ether (TAME)	19.26	0.50	20	0	96.3	65	135				
Tetrachloroethene	18.69	0.50	20	0	93.4	65	135				
Toluene	19.63	0.50	20	0	98.2	65	135				
trans-1,2-Dichloroethene	21.55	0.50	20	0	108	65	135				
Trichloroethene	19.80	0.50	20	0	99.0	65	135				
Trichlorofluoromethane	20.53	0.50	20	0	103	65	135				
Vinyl Acetate	22.33	0.50	20	0	112	65	135				
Vinyl Chloride	21.11	0.50	20	0	106	65	135				
Surr: 4-Bromofluorobenzene	18.87	0	20	0	94.4	65	135				

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

*Page 11 of 13**

Work Order: 0909133

BatchID: S21032 **Project:** 33106-006794.01

Sample ID: LCSD-S21032 Sample	pType: LCSD	TestCod	de: TO-15	Units: ppbv	·	Prep Da	te: 9/24/20	09	RunNo: 21 0)32	·
Client ID: ZZZZZ Bar	tch ID: \$21032	TestN	lo: TO-15			Analysis Da	te: 9/24/20	09	SeqNo: 303	789	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	21.17	0.50	20	0	106	65	135	20.91	1.24	30	
1,1,1,2-Tetrachloroethane	19.33	0.50	20	0	96.7	65	135	18.98	1.83	30	
1,1,1-Trichloroethane	20.90	0.50	20	0	104	65	135	21.26	1.71	30	
1,1,2,2-Tetrachloroethane	17.93	0.50	20	0	89.7	65	135	17.8	0.728	30	
1,1,2-Trichloroethane	20.06	0.50	20	0	100	65	135	19.77	1.46	30	
1,1-Dichloroethane	21.23	0.50	20	0	106	65	135	21.27	0.188	30	
1,2,4-Trichlorobenzene	18.32	0.50	20	0	91.6	65	135	18.73	2.21	30	
1,2,4-Trimethylbenzene	19.53	0.50	20	0	97.6	65	135	19.57	0.205	30	
1,2-Dibromoethane(Ethylene dibromide)	19.53	0.50	20	0	97.6	65	135	18.96	2.96	30	
1,2-Dichlorobenzene	18.15	0.50	20	0	90.8	65	135	18.22	0.385	30	
1,2-Dichloroethane	20.51	0.50	20	0	103	65	135	21.7	5.64	30	
1,2-Dichloropropane	19.65	0.50	20	0	98.2	65	135	19.6	0.255	30	
1,3,5-Trimethylbenzene	18.06	0.50	20	0	90.3	65	135	18.17	0.607	30	
1,3-Butadiene	20.94	2.0	20	0	105	65	135	21.69	3.52	30	
1,3-Dichlorobenzene	17.70	0.50	20	0	88.5	65	135	18.1	2.23	30	
1,4-Dichlorobenzene	17.68	0.50	20	0	88.4	65	135	18.16	2.68	30	
1,4-Dioxane	25.63	0.50	20	0	128	65	135	26.2	2.20	30	
2-Butanone (MEK)	22.81	0.50	20	0	114	65	135	23.34	2.30	30	
2-Hexanone	19.93	0.50	20	0	99.7	65	135	19.89	0.201	30	
4-Ethyl Toluene	17.94	0.50	20	0	89.7	65	135	18.06	0.667	30	
4-Methyl-2-Pentanone (MIBK)	22.59	0.50	20	0	113	65	135	22.53	0.266	30	
Acetone	21.09	4.0	20	0	105	65	135	21.26	0.803	30	
Benzene	21.49	0.50	20	0	107	65	135	21.65	0.742	30	
Bromodichloromethane	18.41	0.50	20	0	92.0	65	135	18.81	2.15	30	
Bromoform	19.64	0.50	20	0	98.2	65	135	18.63	5.28	30	
Bromomethane	24.69	0.50	20	0	123	65	135	24.5	0.773	30	
Carbon Disulfide	21.09	0.50	20	0	105	65	135	21.37	1.32	30	
Carbon Tetrachloride	21.53	0.50	20	0	108	65	135	21.95	1.93	30	
Chlorobenzene	18.43	0.50	20	0	92.2	65	135	18.82	2.09	30	
Chloroethane	24.47	0.50	20	0	122	65	135	24.1	1.52	30	
Chloroform	20.86	0.50	20	0	104	65	135	21.14	1.33	30	

Qualifiers:

Value above quantitation range

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 12 of 13

Work Order: 0909133

BatchID: S21032 **Project:** 33106-006794.01

Sample ID: LCSD-S21032	SampType: LCSD	TestCo	de: TO-15	Units: ppbv		Prep Da	te: 9/24/20	009	RunNo: 210		
Client ID: ZZZZZ	Batch ID: \$21032	TestN	lo: TO-15			Analysis Da	te: 9/24/20	009	SeqNo: 303	3789	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	21.59	0.50	20	0	108	65	135	21.8	0.968	30	
cis-1,2-dichloroethene	21.07	0.50	20	0	105	65	135	21.7	2.95	30	
cis-1,3-Dichloropropene	18.82	0.50	20	0	94.1	65	135	18.72	0.533	30	
Dibromochloromethane	19.62	0.50	20	0	98.1	65	135	19.1	2.69	30	
Dichlorodifluoromethane	16.09	0.50	20	0.15	79.7	65	135	16.42	2.03	30	
Diisopropyl ether (DIPE)	22.34	0.50	20	0	112	65	135	21.49	3.88	30	
Ethyl Acetate	22.86	0.50	20	0	114	65	135	23.4	2.33	30	
Ethyl Benzene	19.30	0.50	20	0	96.5	65	135	19.6	1.54	30	
Ethyl tert-butyl ether (ETBE)	22.93	0.50	20	0	115	65	135	22.71	0.964	30	
Freon 113	21.00	0.50	20	0	105	65	135	20.88	0.573	30	
Hexachlorobutadiene	17.69	0.50	20	0	88.4	65	135	17.73	0.226	30	
Hexane	21.47	2.0	20	0	107	65	135	22.02	2.53	30	
Isopropanol	24.45	4.0	20	0	122	65	135	24.55	0.408	30	
m,p-Xylene	37.21	0.50	40	0	93.0	65	135	36.81	1.08	30	
Methylene Chloride	20.97	1.0	20	0	105	65	135	22.15	5.47	30	
MTBE	21.45	0.50	20	0	107	65	135	22.21	3.48	30	
Naphthalene	17.92	0.50	20	0	89.6	65	135	18.1	0.999	30	
o-xylene	19.06	0.50	20	0	95.3	65	135	19.03	0.158	30	
Styrene	18.92	0.50	20	0	94.6	65	135	18.79	0.689	30	
t-Butyl alcohol (t-Butanol)	22.64	2.0	20	0	113	65	135	23.41	3.34	30	
tert-Amyl methyl ether (TAME)	19.21	0.50	20	0	96.0	65	135	19.26	0.260	30	
Tetrachloroethene	18.98	0.50	20	0	94.9	65	135	18.69	1.54	30	
Toluene	19.65	0.50	20	0	98.2	65	135	19.63	0.102	30	
trans-1,2-Dichloroethene	20.86	0.50	20	0	104	65	135	21.55	3.25	30	
Trichloroethene	19.66	0.50	20	0	98.3	65	135	19.8	0.710	30	
Trichlorofluoromethane	20.64	0.50	20	0	103	65	135	20.53	0.534	30	
Vinyl Acetate	22.15	0.50	20	0	111	65	135	22.33	0.809	30	
Vinyl Chloride	21.14	0.50	20	0	106	65	135	21.11	0.142	30	
Surr: 4-Bromofluorobenzene	18.57	0	20	0	92.8	65	135	0	0	30	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

*Page 13 of 13

Torrent Laboratory, Inc.

WORK ORDER Summary

22-Sep-09

Work Order 0909133

Client ID: BUREAU VERITAS

Project: 33106-006794.01 **QC Level:**

Comments: 10 day TAT!!! Recv'd 3 air and 2 soil samples

Sample ID	Client Sample ID	Collection Date	Date Received	Date Due	Matrix	Test Code	Hld MS SEL Sub Storage
0909133-001A	SV-1	9/17/2009 4:39:00 PM	9/21/2009	10/1/2009	Air	TO-15 UG/M3	ORG
				10/1/2009		TO-3GAS (MOD)	ORG
0909133-002A	SV-2	9/17/2009 5:15:00 PM		10/1/2009		TO-15 UG/M3	ORG
				10/1/2009		TO-3GAS (MOD)	ORG
0909133-003A	SV-3	9/17/2009 5:24:00 PM		10/1/2009		TO-15 UG/M3	ORG
				10/1/2009		TO-3GAS (MOD)	ORG
0909133-004A	SV-1@4.5-5'	9/15/2009 4:15:00 PM		10/1/2009	Soil	8260B_S	SR SR
				10/1/2009		TPH_GAS_S_GC	SR SR
				10/1/2009		TPHDOSG_S	SR SR
0909133-005A	SV-3@4.5-5'	9/15/2009 5:40:00 PM		10/1/2009		8260B_S	SR SR
				10/1/2009		TPH_GAS_S_GC	SR SR
				10/1/2009		TPHDOSG_S	SR

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293

CHAIN OF CUSTODY

• NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY •

0909/33

www.torrentiab.com								
Company Name: BURBAU VENLITAS	Location of Sampling: 3014 LAVIESHORK, OAKLAND							
Address: 2430 CAMINO RAMON #12Z	Purpose: SOIL VAPOR ASSESSMENT							
City: SAN RAMON State: CA Zip Code: 94583	3 Special Instructions / Comments: VOC. ANALY 745 TO INCLUDE							
Telephone: 925 -426-267 9FAX: 9:25 426-0106	* LEAK TRACER = DIGHUOROETHANE (1,1-01,2-)							
REPORT TO: DOW ASH TON SAMPLER: DOW ASH TON	P.O. #: 33/06-006794.01 EMAIL: DON, ASHTON @US, BURRAUVERITAS, COM							
TURNAROUND TIME: SAMPLE TYPE: REPORT F	FORMAT: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
3 Work Days 3 Work Days Noon - Nxt Day Storm Water Air QC Level Waste Water Other EDF Soil	EDD REQUESTED							
LAB ID CLIENT'S SAMPLE I.D. DATE / TIME SAMPLED MATRIX # OF CONT	CONT. TYPE Z Z Z Z Z Z Z Z REMARKS							
001A 5V-1 9-17-2009 501L 1 5 VAPUR 1	54mmA X X # 482 @ -4"mg							
002A 5V-2 17:15-17:49 1	1 × × × #1231 @ -4" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
003A 5V-3 17:24-18:01 V Y	# 899 @ -3" E							
004A SV-1 @4.5-5 16:15 SOIL	# 899 @ -3" H							
005A 5V-3 @4.5-5' 17:40 V	LI XXX X XPM							
	C E							
	2. Net							
	- Terminar							
	Chill deput							
Print: Date: 9-21-07 Time: 13:2	Received By: Print: Date: Time: 12 LU							
2 Relinguished By: Print: Date: 189 Time: 199	Received By: Print: NAVIN G Date: Time: 9-21-09 15:35							
Were Samples Received in Good Condition? The NO Samples on Ice? Yes NO Method of Shipment Good Bullet Sample seals intact? Yes NO NO N/A								
Log In By: Log In Revie	And in the filtration of the f							

Torrent Laboratory, Inc

Cn	ange Order I	rorm						
Date: 10 8 09		Time:						
Client: Bureau	<u>J</u>	Order ID:						
Project Number 0909133	P	roject Name: 3014 Lakesha						
Order Taken By: Helan		Ordered By: Don Ashton						
TAT Requested: 5 Lays	— Dat	Date Report Re-Issued						
Titi requested S Accept		e report re issued						
Laboratory ID	Client ID	Change Requested						
909138 No								
909133-004A S	2V-1@4.5	5-5' Total Pb (6010B)						
								
Remarks:								
Ple graly	re above	sample on a std						
tall	Due on	10 14 109.						
		ăn.						
Date Test(s) Added: ¶0	8 09	Test(s) Added By:						

Note: Original to be placed in client file (electronic and/or hardcopy)

Current Folder:		0 "	Ob H-l-	0-1	E-4-b	Sign Out
Compose Add	resses Folders	Options	Search Help	Calendar	Fetch	
[Previous Next]	Delete & Prev Dele	ete & Next]	[Message List]			
Reply Reply	All Forward	As Attac	hment Move	to: On trac		V
Delete	ypass Trash					Move
Fro Da	ect: Additional a om: don.ashton ate: Wed, Octol To: pm@torrer ons: View Full Hea	@us.burea per 7, 2009 tlab.com	auveritas.com 9 4:08 pm		ext Download this as a fil	<u>e</u>
	scussed on the ph @4.5-5'). I need				ve referenced soil sam	ole (my
BUREAU VERITAS	Bureau Verita 2430 Camino F San Ramon, C	s North Am Ramon, Suit A 94583 5.2679 Fas s.bureauver	e 122 x: 925.426.0106 itas.com			
party. If you are the intended red without the cons integrity of this r	not the intended r ipient of this mess ent of our compar	ecipient of t sage you sh ny. Our com n maintained	this message ple ould not disclose apany does not re d nor that the cor	ase delete it or distribute epresent, wa nmunication	copyright of our compa and destroy all copies. this message to third rrant and/or guarantee is free of virus, interceptors of Services.	If you are parties that the
Attachments:						
untitled-[1.1]		2.3 k	[text/plain]		Download View	
untitled-[1.3]		0 k	[text/plain]		Download View	
C7740116.jpg		4.6 k	[image/jpeg]		Download View	
Reply Reply	All Forward	☐ As Attac	hment Move	to: On trac		-
Delete B	ypass Trash					Move
[Previous Next]	Delete & Prev Dele	ete & Next]	[Message List]			
			Take Address			