

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT KELLER PLAZA APARTMENTS 5321 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

<u>D3G PROJECT NUMBER:</u> 2011-0111

FINAL REPORT ISSUE DATE: JUNE 8, 2011

INSPECTION DATE: FEBRUARY 16 THROUGH 17, 2011

PREPARED FOR:
PNC MULTIFAMILY CAPITAL
575 MARKET STREET, 28TH FLOOR
SAN FRANCISCO, CALIFORNIA 94105

Chad Prevatte	Chud M. Muette			
Site Assessor/	Signature			
Environmental Professional				
Rachel Posner	Fachel Posner			
Project Manager/Geologist	Signature			
Akisha Bolton	Akisha Tobon			
Environmental Professional	Signature			

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	1
1.0	INTRODUCTION	3
2.0	SITE BACKGROUND	5
2.1	Site Description	5
2.2	Environmental Setting	6
_	.2.1 Topography and Regional Surface Water	
2.	.2.2 Soil Characteristics	
3.0	PREVIOUS ENVIRONMENTAL INVESTIGATIONS	6
4.0	LIMITED PHASE II SCOPE OF WORK	6
4.1	Soil Investigation	7
4.	.1.1 Field Methodology	
4.	.1.2 Field Observations	8
4.2	Groundwater Investigation	8
4.3	Quality Assurance/Quality Control Procedures	9
5.0	LIMITED PHASE II RESULTS	9
5.1	Evaluation Criteria	9
5.2	Soil Sampling Results	10
5.3	Groundwater Sampling Results	11
6.0	CONCLUSIONS AND RECOMMENDATIONS	12
7.0	REFERENCES	13
8.0	CERTIFICATION	14
9.0	APPENDICES	15

EXECUTIVE SUMMARY

Dominion Due Diligence Group (D3G) conducted a Limited Phase II Environmental Site Assessment (ESA) of the Keller Plaza Apartments located at 5321 Telegraph Road in Oakland, Alameda County, California (subject property), in accordance with D3G's proposal to PNC Multifamily Capital (Client) for the work, accepted by the Client on January 27, 2011. The subject property consists of five (5) three-story apartment structures with underground parking garages and a one-story leasing office building that were constructed in 1971. The subject property structures contain a total of 200 residential dwelling units and are situated on approximately 3.5 acres of land.

D3G performed the Limited Phase II ESA on February 16 through 17, 2011 which included the installation of seven (7) borings for soil and groundwater sampling and analysis. The purpose of the Limited Phase II ESA was to supplement the D3G Phase I ESA findings for the Keller Plaza Apartments. Photoionization measurements (PID) measurements were identified in one (1) of the borings at levels ranging between 0.0 and 0.7 parts per million (ppm). Boring locations were located in asphalt or grassy ground areas over highly variable deposits of sand and clay. Groundwater was encountered between seven (7) and twenty-four (24) feet below ground surface (bgs) in each of the borings.

Unsaturated soil samples were collected from the bottom of each boring in the capillary fringe. One (1) soil sample and one (1) groundwater sample were collected from seven (7) boring locations and submitted for laboratory analysis of volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B and polycyclic aromatic hydrocarbons (PAHs) by U.S. EPA Method 8270. In addition, soil and groundwater samples collected from soil borings B-1 through B-5 were analyzed for Stoddard solvents by U.S. EPA Method 8015B. All samples were sealed, labeled, and placed in a cooler with ice for shipment to Test America Laboratories of San Francisco, California under chain-of-custody protocol. A copy of the laboratory analytical report is included in Appendix G.

The California Regional Water Quality Control Board – San Francisco Bay Region has established screening levels for VOCs and PAHs in soil and groundwater. Soil and groundwater sample results were compared to *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Interim Final (Revised May 2008), Table C – Environmental Screening Levels (ESLs) for Deep Soils (>3 meters) where Groundwater is a Current or Potential Source of Drinking Water and Table D – Environmental Screening Levels (ESLs) for Deep Soils (>3 meters) where Groundwater is not a Current or Potential Source of Drinking Water. Copies of the California Regional Water Quality Control Board Tables C and D are included in Appendix F.

No concentrations of PAHs or Stoddard solvents were detected above laboratory reporting limits in any of the soil or groundwater samples collected during the Limited Phase II ESA. One (1) VOC, tetrachloroethene (PCE), was detected in the groundwater sample collected from soil boring B-2, at a concentration of 150 micrograms per liter (μ g/L) above the ESL for PCE (120 μ g/L) for "sites where groundwater is not a current or potential source of drinking water."

No other VOCs were detected above the respective ESLs for "sites where groundwater is not a current or potential source of drinking water" for any of the soil or groundwater samples collected during the Limited Phase II ESA.

According to the California State Water Resources Control Board GeoTracker web service, no concentrations of PCE were detected in any of the monitoring wells at the northern adjacent Telegraph Business Properties during the ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17, 2011. In addition, the ECM Group 2010 Fourth Quarterly Monitoring Report identifies groundwater flow direction is to the west-southwest at the northern adjacent Telegraph Business Properties site. According to Sanborn Fire Insurance Maps, Marshall Steel Cleaning Works including a Steam Laundry, Rug Building, Boiler Room, Cleaning Room, Curtain Department, Drying Room and Garage was previously located in the northern adjacent structure from approximately 1951 to at least 1969. Concentrations of PCE detected at the subject property are suspected to be relic from the previous operations at the northern adjacent property; however, the northern adjacent property is not listed in any environmental databases or in any State environmental regulatory program with the exception of the LUST incident identified at the Telegraph Business Properties. A copy of the ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17, 2011 is included in Appendix H.

In addition, the PCE concentration (150 μ g/L) is above the Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, Residential Land Use for PCE (120 μ g/L) as found in Table E-1 from the California Regional Water Quality Control Board – San Francisco Bay Region Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (Revised May 2008). A copy of Table E-1 is included in Appendix F. However, based on the fact that the subject property apartment structures are constructed above a one-story, open-air, lower level parking garage, the design of the buildings are considered intrinsically safe in regards to vapor intrusion and a VEC does not exist or is not likely to exist at the subject property. In addition, based on the absence of VOCs, PAHs, and Stoddard solvent concentrations in soil and groundwater samples adjacent to the slab-ongrade leasing office structure, a VEC does not exist or is not likely to exist at the slab-on-grade leasing office.

D3G contacted Mr. Cleet Carlton, Alameda County Representative for the California Environmental Protection Agency (Cal/EPA) San Francisco Bay Regional Water Quality Board Site Cleanup Program (510-622-2374) regarding the on-site concentrations. Mr. Carlton stated that the concentrations detected do not warrant regulatory enforcement and the Cal/EPA does not issue closure letters for sites not under their regulatory oversight. Therefore, a state closure letter is not reasonably ascertainable.

Although elevated concentrations of PCE remain at the subject property, they are limited to groundwater and a VEC does not exist or is not likely to exist at the subject property. The offsite contamination does not present a risk to the subject property or residents at the subject property; therefore, the subject property should be considered acceptable if an institutional control regarding the groundwater will be put in place prohibiting any and all uses of groundwater. In addition, a Health and Safety Plan should be prepared in the event

groundwater is encountered during future construction activities at the subject property. As stated above, a closure letter is not reasonably ascertainable for the subject property. In addition, D3G does not believe that a closure letter should be required based on the limited levels of contamination identified at the subject property.

1.0 INTRODUCTION

On behalf of PNC Multifamily Capital (Client), Dominion Due Diligence Group (D3G) conducted a Limited Phase II Environmental Site Assessment (ESA) of the Keller Plaza Apartments located at 5321 Telegraph Avenue in Oakland, Alameda County, California (subject property) on February 16 through 17, 2011. The purpose of the Limited Phase II ESA was to supplement the D3G Phase I ESA findings at the subject property.

The purpose of the Phase I ESA is to provide appropriate inquiry into the previous ownership and uses of the subject property and identify recognized environmental conditions (RECs), which are the presence or likely presence of any hazardous substances or petroleum products at the subject property under conditions that indicate an existing release, a past release, or a material threat of a release into structures, the ground, groundwater or surface water of the subject property. Based on the findings of this Phase I ESA, the following recognized environmental conditions (RECs) were identified in connection with the subject property:

Adjacent LUSTs/UST/Previous Property Uses/VEC

Telegraph Business Properties

The Telegraph Business Properties, which is located adjacent to the north, is listed in the Environmental FirstSearch Report as an open leaking underground storage tank (LUST) facility. According to the Environmental FirstSearch Report, one (1) 10,000-gallon gasoline underground storage tank (UST), one (1) 2,500-gallon diesel UST, and fifteen (15) Stoddard solvent USTs were removed from the site. Groundwater and soil were affected with benzene, gasoline, and solvents.

D3G performed a file review at the Alameda County Environmental Health Department on December 15, 2010. According to the Workplan for Subsurface Investigation produced by ECM Group (ECM) on February 12, 2009, the facility was formerly a large-scale dry-cleaning establishment with USTs used to store solvent, solvent waste and gasoline. In May 1992, seventeen (17) USTs were removed from the facility and gasoline, Stoddard solvent and benzene, toluene, ethylbenzene and xylene (BTEX) compounds were detected in the soil samples collected from the UST excavations. Three (3) monitoring wells were installed and groundwater gradient was observed to be in a southwesterly direction. See Appendix R of the Phase I ESA for a copy of the Workplan for Subsurface Investigation.

D3G reviewed the most recent Groundwater Monitoring Report produced by ECM on July 22, 2010, which states that the Telegraph Business Properties is currently scheduled for

semi-annual monitoring. Two (2) additional off-site monitoring wells located on 54th Street were installed in April 2010. According to the Groundwater Monitoring Report, total petroleum hydrocarbons (TPH) were detected in the groundwater at the facility at concentrations of up to 5,000 parts per billion (ppb), Stoddard solvent up to 69,000 ppb, and benzene up to 5.5 ppb. Additionally, the Groundwater Monitoring Report identifies groundwater gradient in a southeasterly and southwesterly direction, making the subject property directly down-gradient of the Telegraph Business Properties. See Appendix S of the Phase I ESA for a copy of the Groundwater Monitoring Report.

Based on the fact that the Telegraph Business Property is an Open LUST Case at the Alameda County Environmental Health Department, the identification of elevated levels of TPH, Stoddard solvent and benzene in the groundwater, and the topographic relationship, the adjacent LUST incident is considered a REC.

Autopro Facility

The Autopro facility, located up-gradient of the subject property across Telegraph Avenue to the east, is listed in the Environmental FirstSearch Report as an open LUST facility and a UST facility. According to the Environmental FirstSearch Report, five (5) USTs were removed from the site. Groundwater was impacted with gasoline.

D3G performed a file review at the Alameda County Environmental Health Department and reviewed the 2nd Semi-Annual 2010 Groundwater Monitoring Report produced by Professional Service Industries, Inc. (PSI) on October 27, 2010. According to the PSI Report, the Autopro facility, which currently operates as Smog Check, was developed as an automotive service station in 1973. Five (5) USTs were removed from the facility in December 1990 and collected soil and groundwater samples contained TPH-gasoline, TPH-diesel, BTEX, total lead and oil & grease. On September 23, 2010 PSI collected groundwater samples from the on-site wells and the results indicated that TPH-gasoline, TPH-diesel and TPH-Motor Oil were elevated above the regulatory levels. Additionally, PSI identified that the groundwater gradient is in a western direction, making the subject property directly down-gradient of this facility. PSI concluded that based on the analytical results, it appeared that petroleum hydrocarbon and volatile organic compound (VOC)-impacted groundwater is present in the area of the former UST excavations and recommended semi-annual groundwater monitoring. See Appendix T of the Phase I ESA for a copy of the 2nd Semi-Annual 2010 Groundwater Monitoring Report.

In addition, D3G reviewed a Phase II Subsurface Investigation Report produced by Schutze & Associates (Schutze) on May 11, 2007 of the southern adjacent property, which is currently a vacant retail building. The purpose of the report was to investigate potential contamination at the southern adjacent property which originated from off-site locations, including the Autopro facility. Three (3) soil borings were advanced using direct push technology and soil and groundwater samples were collected and analyzed for TPH-gasoline, BTEX, TPH-diesel and TPH-motor oil. TPH-gasoline was detected in groundwater samples at 17,000 ppb and 12,000 ppb, which exceeds the regulatory levels. Schutze concluded that the contamination originated from either the Autopro facility in a

migration pathway such as a utility trench or there was another reported fuel leak or spill along Telegraph Avenue. See Appendix U of the Phase I ESA for a copy of the Phase II Subsurface Investigation Report.

Based on the fact that the Autopro facility is an Open LUST Case at the Alameda County Environmental Health Department that it is located immediately up-gradient of the subject property, and that elevated levels of TPH-gasoline were reported in the groundwater on the immediately adjacent southern property, the adjacent LUST incident is considered a REC.

D3G reviewed Sanborn Fire Insurance Maps from 1903 through 1969. Various potentially detrimental activities have been previously located on the adjacent properties including the following: Marshall Steel Cleaning Works and the Gas & Oil station. Based on the likely hazardous material usage associated with these activities and lack of regulatory oversight, the previous vicinity property usage is considered a REC. The listings are discussed above as the Telegraph Business Properties and Autopro facility.

However, based on the fact that the subject property apartment structures are constructed above a one-story, open-air, lower level parking garage, the design of the buildings are considered intrinsically safe in regards to vapor intrusion and a VEC does not exist or is not likely to exist at the subject property from an off-site source for the apartment structures. However, the leasing office building is constructed slab on grade and a VEC cannot be ruled out from an off-site source for this structure.

The Limited Phase II ESA consisted of soil and groundwater sample collection and analysis. The soil and groundwater sampling was conducted in accordance with ASTM Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (Designation E 1903-97).

This report summarizes the project objectives, scope of work, procedures to complete the work, investigation results and conclusions and recommendations based on the Limited Phase II ESA findings.

2.0 SITE BACKGROUND

2.1 Site Description

The subject property consists of five (5) three-story apartment structures with underground parking garages and a one-story leasing office building that were constructed in 1971. The subject property structures contain a total of 200 residential dwelling units and are situated on approximately 3.5 acres of land. Additionally, the subject property contains a gross building area of approximately 207,304 square feet. In addition, a maintenance area and laundry facilities are located at the subject property. Exterior property improvements include

G

landscaped regions and a playground area. The subject property is serviced by electricity, natural gas, and municipally supplied water and sewer.

2.2 **Environmental Setting**

2.2.1 Topography and Regional Surface Water

TOPOGRAPHY AND REGIONAL SURFACE WATER					
ELEVATION (feet above mean sea level) 110					
SLOPE	West				
APPROXIMATE GROUNDWATER FLOW	West				
REGIONAL SURFACE WATER	The San Francisco Bay is located approximately three (3) miles to the west of the subject property.				
SOURCE - USGS Topographic Quadro	angle – Oakland West, California - 1993				

Located in Appendix A is a topographic map depicting subject property elevations and drainage patterns. Depth to groundwater fluctuates depending on hydrological and weather conditions.

2.2.2 Soil Characteristics

SOIL CHARACTERISTICS					
SOIL TYPE	Urban land-Danville complex (149): The Urban land map unit consists of nearly level to moderately sloping areas where more than 85 percent of the surface is covered by asphalt, concrete, buildings, or other impervious surfaces. The Danville complex consists of alluvium derived sedimentary rock that is well drained with a moderately low capacity to transmit water. This soil does not meet hydric criteria.				
SOURCE - Web S	Soil Survey accessed at http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx				

Based on the Limited Phase II ESA findings, soil was described to be sand and clay ranging from zero (0) to approximately thirty (30) feet below ground surface (bgs). Groundwater was encountered between seven (7) and twenty-four (24) feet bgs.

3.0 PREVIOUS ENVIRONMENTAL INVESTIGATIONS

D3G was not provided additional information from the Client. The findings of the D3G Phase I ESA for the Keller Plaza Apartments are discussed previously in Section 1.0.

4.0 LIMITED PHASE II SCOPE OF WORK

This section describes the Limited Phase II ESA activities conducted at the Keller Plaza Apartments. The activities were conducted in accordance with ASTM Standard Practice for

Phase II Environmental Site Assessment Keller Plaza Apartments Oakland, California D3G Project Number: 2011-0111

Page 6

Environmental Site Assessments: Phase II Environmental Site Assessment Process (Designation E 1903-97). Additionally, all manufacturer specifications were adhered to for operation and maintenance of field sampling and monitoring equipment.

This report has been prepared for, and can be relied upon by the Client. This report is not to be relied upon or reproduced, either in whole or in part, without written consent from D3G.

4.1 Soil Investigation

4.1.1 Field Methodology

On February 16 through 17, 2011, D3G installed seven (7) soil borings using hydraulically-driven direct-push sampling equipment (Geoprobe®) on the northern, southern, and eastern property boundaries and to the north and south of the leasing office in the center of the subject property in order to characterize the subsurface soil. The number and final placement of the boring locations were based on conditions observed in the field (i.e. underground utility locations and drill rig access). The Geoprobe® unit was operated by Vironex of Concord, California. Each soil boring was drilled to approximately nine (9) to thirty (30) feet bgs. Prior to drilling activities, private utilities were marked with a magnetometer and ground penetrating radar (GPR) by GeoTech Utility Locating of El Cerrito, California.

Continuous soil samples were collected using 4-foot-long and 5-foot long samplers fitted with new, clear acetate liners. Each soil sample was screened in the field for organic vapors using a photoionization detector (PID). PID readings and descriptive information for the subsurface soil samples were recorded on a field log. Upon retrieval, the soil was screened in the field, logged, and classified according to the Unified Soil Classification System. Soil boring logs were generated for each soil boring and are included in Appendix D.

Low readings on the PID were identified in three (3) of the seven (7) borings at concentrations ranging from 0.0 to 0.7 parts per million (ppm). None of the soils screened had any olfactory or visual evidence of petroleum contamination. Boring locations were completed in grassy and asphalt ground surfaces over highly variable deposits of sand and clay. The boreholes were backfilled with hydrated bentonite pellets and capped with the original surface material (i.e., asphalt or grass and topsoil).

Unsaturated soil samples were collected from the bottom of each boring in the capillary fringe. One (1) soil sample and one (1) groundwater sample were collected from seven (7) boring locations and submitted for laboratory analysis of volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B and polycyclic aromatic hydrocarbons (PAHs) by U.S. EPA Method 8270. In addition, soil and groundwater samples collected from soil borings B-1 through B-5 were analyzed for Stoddard solvents by U.S. EPA Method 8015B. All samples were sealed, labeled, and placed in a cooler with ice for shipment to Test America Laboratories of San Francisco, California under chain-of-custody protocol. A copy of the laboratory analytical report is included in Appendix G.

4.1.2 Field Observations

Table 1 summarizes the total boring depths, depths to groundwater, and depths at which soil samples were obtained. A site plan including soil boring locations is located in Appendix B.

TABLE 1 – BORING DEPTH SUMMARY						
BORING ID	TOTAL DEPTH (ft bgs)	DEPTH TO WATER (ft bgs)	SAMPLING DEPTH (ft bgs)			
B-1	15	10	9 to 10			
B-2	30	24	23 to 24			
B-3	20	15	13 to 14			
B-4	9	7	6 to 7			
B-5	15	11	10 to 11			
B-6	23	21	20 to 21			
B-7	30	23	22 to 23			

Soil borings B-1 through B-3 were advanced on the northern property boundary adjacent to "Telegraph Business Properties." Soil borings B-4 and B-5 were advanced in the center of the subject property to the north and south of the leasing office, respectively. Soil boring B-6 was advanced on the eastern property boundary on the south side of the property adjacent to Telegraph Avenue topographically down-gradient of the vicinity Autopro facility. Soil boring B-7 was advanced on the southern property boundary adjacent to the vacant retail and single-family residential structures.

No evidence of staining or odors were observed in any of the soil collected from the soil borings installed during the Limited Phase II ESA.

4.2 Groundwater Investigation

In situ groundwater samples were collected in each of the seven (7) on-site soil boring locations: B-1 through B-7. In situ groundwater sampling points were installed using five (5) to ten (10) feet of 1-inch polyvinyl chloride (PVC) 10-slot screen and the appropriate length of PVC riser pipe at each of the locations.

One (1) in situ groundwater sample was collected from each of the temporary piezometers on February 16 through 17, 2011 using polyethylene tubing equipped with a peristaltic pump. Samples were collected and analyzed for laboratory analysis of volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B and polycyclic aromatic hydrocarbons (PAHs) by U.S. EPA Method 8270. In addition, groundwater samples collected from soil borings B-1 through B-5 were analyzed for Stoddard solvents by U.S. EPA Method 8015B. All samples were sealed, labeled, and placed in a cooler with ice for shipment to Test America Laboratories of San Francisco, California under chain-of-custody protocol. A copy of the laboratory analytical report is included in Appendix G.

The temporary groundwater sampling point was removed at the completion of sampling, and the borehole was backfilled with hydrated bentonite pellets and capped with the original surface material (i.e., asphalt or grass and topsoil).

4.3 Quality Assurance/Quality Control Procedures

D3G adhered to industry standard procedures and processes for the collection and handling of environmental samples in accordance with those guidelines published by the U.S. EPA and the participating laboratory, Test America Laboratories. The quality assurance/quality control (QA/QC) process is designed to ensure the analytical precision, accuracy, and representativeness of the analytical results. The QA/QC plan consists of field samples, including trip blanks and field duplicates, and laboratory documentation and laboratory QC samples such as method blanks and laboratory control samples analyzed to ensure laboratory procedures and analyses were preformed properly.

Trip blanks are samples used to identify possible sample contamination originating from sample transport, shipping, or site conditions. One (1) trip blank sample consisting of two (2) preserved 40-milliliter glass vials provided by the laboratory, were submitted along with the Limited Phase II ESA samples. The trip blank sample was shipped with the sample containers to the field, stored with the sample containers, and returned with the sample containers for VOC analysis. The trip blanks were labeled, documented, and handled in the same manner as the other samples.

All samples were sealed, labeled, and placed in a cooler with ice for shipment to the laboratory under chain-of-custody protocol. The chain-of-custody forms and laboratory analytical results are provided in Appendix G.

5.0 LIMITED PHASE II RESULTS

5.1 Evaluation Criteria

The California Regional Water Quality Control Board – San Francisco Bay Region has established screening levels for VOCs and PAHs in soil and groundwater. Soil and groundwater sample results were compared to *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Interim Final (Revised May 2008), Table C – Environmental Screening Levels (ESLs) for Deep Soils (>3 meters) where Groundwater is a Current or Potential Source of Drinking Water and Table D – Environmental Screening Levels (ESLs) for Deep Soils (>3 meters) where Groundwater is not a Current or Potential Source of Drinking Water. Copies of the California Regional Water Quality Control Board Tables C and D are included in Appendix F.

Phase II Environmental Site Assessment Keller Plaza Apartments Oakland, California D3G Project Number: 2011-0111

Page 9

5.2 Soil Sampling Results

No evidence of sheen or free product was detected at any of the soil sampling locations during the Limited Phase II ESA. One VOC, tetracholorethene (PCE) was detected above laboratory reporting limits in the soil samples collected at three (3) of the soil boring locations; however, all concentrations of PCE were below the respective ESL. No concentrations of PAHs or Stoddard solvents were detected in any of the soil samples collected during the Limited Phase II ESA. Table 2 shows the soil sampling results with detections from the Limited Phase II ESA. Laboratory analytical reports with soil sampling results are included in Appendix G.

TABLE 2 – SOIL SAMPLING RESULTS								
	Reported in milligrams per kilogram (mg/kg)							
ANALYTE	ANALYTE SCREENING LEVEL* B-1 B-2 B-3							
PCE	0.7	0.0053	0.038	0.020				

^{*}Screening level from California Regional Water Quality Control Board – San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (Revised May 2008), Table C – Environmental Screening Levels (ESLs) for Deep Soils (>3 meters) where Groundwater is a Current or Potential Source of Drinking Water, Residential Land Use Screening Level

Page 10

5.3 Groundwater Sampling Results

Five (5) VOCs (cis, 1,2-dichcloroethene [DCE], tetrachloroethene [PCE], toluene, trichloroethene [TCE], and xylenes) were detected above laboratory reporting limits in the groundwater samples collected at four (4) of the seven (7) soil boring locations; however, all concentrations with the exception of PCE were below the respective ESL for Deep Soils (greater than three [3] meters) where Groundwater is not a Current or Potential Source of Drinking Water. No concentrations of PAHs or Stoddard solvents were detected in any of the groundwater collected during the Limited Phase II ESA. Table 3 shows the groundwater sampling results with detections from the Limited Phase II ESA. Laboratory analytical reports with groundwater sampling results are included in Appendix G.

TABLE 3 – GROUNDWATER SAMPLING RESULTS Reported in micrograms per liter (µg/L)								
ANALYTE	SCREENING LEVEL* (groundwater is a potential for drinking water)	SCREENING LEVEL** (groundwater is not a potential for drinking water)	B-1	B-2	В-3	B-6		
Cis-1,2- DCE	6	590	ND	20	ND	ND		
	TABLE 3 – GROUNDWATER SAMPLING RESULTS Reported in micrograms per liter (µg/L)							
PCE	5	120	16	<u>150</u>	120	ND		
Toluene	40	130	ND	0.93	ND	0.50		
TCE	5	360	ND	53	ND	ND		
Xylenes	20	100	ND	1.1	ND	ND		

^{*}Screening level from California Regional Water Quality Control Board Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (Revised May 2008), Table C – ESLs for Deep Soils (>3 meters) where Groundwater is a Current or Potential Source of Drinking Water, Groundwater Screening Level; **bold** indicates above the standard where groundwater is a current or potential source of drinking water

ND = NOI delected

^{**}Screening level from California Regional Water Quality Control Board Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (Revised May 2008), Table D – ESLs for Deep Soils (>3 meters) where Groundwater is not a Current or Potential Source of Drinking Water, Groundwater Screening Level; **bold and underlined** indicates above the standard where groundwater is not a current or potential source of drinking water ND = Not detected

6.0 CONCLUSIONS AND RECOMMENDATIONS

No concentrations of PAHs or Stoddard solvents were detected above laboratory reporting limits in any of the soil or groundwater samples collected during the Limited Phase II ESA. One (1) VOC, tetrachloroethene (PCE), was detected in the groundwater sample collected from soil boring B-2, at a concentration of 150 micrograms per liter (μ g/L) above the ESL for PCE (120 μ g/L) for "sites where groundwater is not a current or potential source of drinking water." No other VOCs were detected above the respective ESLs for "sites where groundwater is not a current or potential source of drinking water" for any of the soil or groundwater samples collected during the Limited Phase II ESA.

According to the California State Water Resources Control Board GeoTracker web service, no concentrations of PCE were detected in any of the monitoring wells at the northern adjacent Telegraph Business Properties during the ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17, 2011. In addition, the ECM Group 2010 Fourth Quarterly Monitoring Report identifies groundwater flow direction is to the west-southwest at the northern adjacent Telegraph Business Properties site. According to Sanborn Fire Insurance Maps, Marshall Steel Cleaning Works including a Steam Laundry, Rug Building, Boiler Room, Cleaning Room, Curtain Department, Drying Room and Garage was previously located in the northern adjacent structure from approximately 1951 to at least 1969. Concentrations of PCE detected at the subject property are suspected to be relic from the previous operations at the northern adjacent property; however, the northern adjacent property is not listed in any environmental databases or in any State environmental regulatory program with the exception of the LUST incident identified at the Telegraph Business Properties. A copy of the ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17, 2011 is included in Appendix H.

In addition, the PCE concentration (150 μ g/L) is above the Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, Residential Land Use for PCE (120 μ g/L) as found in Table E-1 from the California Regional Water Quality Control Board – San Francisco Bay Region Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (Revised May 2008). A copy of Table E-1 is included in Appendix F. However, based on the fact that the subject property apartment structures are constructed above a one-story, open-air, lower level parking garage, the design of the buildings are considered intrinsically safe in regards to vapor intrusion and a VEC does not exist or is not likely to exist at the subject property. In addition, based on the absence of VOCs, PAHs, and Stoddard solvent concentrations in soil and groundwater samples adjacent to the slab-ongrade leasing office structure, a VEC does not exist or is not likely to exist at the slab-on-grade leasing office.

D3G contacted Mr. Cleet Carlton, Alameda County Representative for the California Environmental Protection Agency (Cal/EPA) San Francisco Bay Regional Water Quality Board Site Cleanup Program (510-622-2374) regarding the on-site concentrations. Mr. Carlton stated that the concentrations detected do not warrant regulatory enforcement and the Cal/EPA does not issue closure letters for sites not under their regulatory oversight. Therefore, a state closure letter is not reasonably ascertainable.

Although elevated concentrations of PCE remain at the subject property, they are limited to groundwater and a VEC does not exist or is not likely to exist at the subject property. The off-site contamination does not present a risk to the subject property or residents at the subject property; therefore, the subject property should be considered acceptable if an institutional control regarding the groundwater will be put in place prohibiting any and all uses of groundwater. In addition, a Health and Safety Plan should be prepared in the event groundwater is encountered during future construction activities at the subject property. As stated above, a closure letter is not reasonably ascertainable for the subject property. In addition, D3G does not believe that a closure letter should be required based on the limited levels of contamination identified at the subject property.

7.0 REFERENCES

- NRCS Web Soil Survey accessed at http://websoilsurvey.nrcs.usda.gov/app/
- USGS Topographic Quadrangle Oakland West, California 1993
- Delorme Street Atlas USA® 2009
- Google Earth
- California.gov State Water Resources Control Board GeoTracker web service, ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17, 2011, accessed at http://geotracker.swrcb.ca.gov/esi/uploads/geo-report/4292130470/T0600100672.PD

8.0 CERTIFICATION

Data presented in this report is factual to the best of our knowledge. Available sources of data were comprehensively researched to provide a complete Limited Phase II ESA of the subject property. The Limited Phase II ESA consisted of soil and groundwater sample collection and analysis. The soil and groundwater sampling was conducted in accordance with ASTM Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (Designation E 1903-97).

D3G is employed under contract for this specific assignment and has no other side deals, agreements, or financial considerations with the Lender or others in connection with this transaction.

Chad Prevatte
Site Assessor/
Environmental Professional

Rachel Posner
Project Manager/Geologist

Akisha Bolton
Environmental Professional

Signature

Signature

Signature

Page 14

9.0 APPENDICES

Appendix A: Site Maps

Appendix B: Site Plan

Appendix C: Site Photographs

Appendix D: Soil Boring Logs

Appendix E: Qualifications for Environmental Professionals

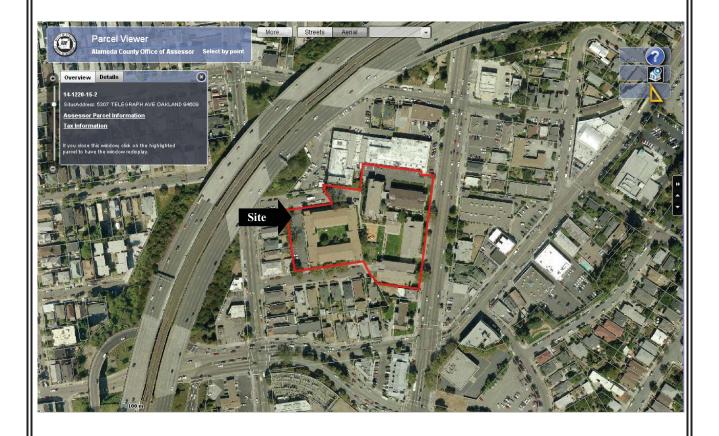
Appendix F: Tables from California Regional Water Quality Control Board - San

Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final (Revised May

2008)

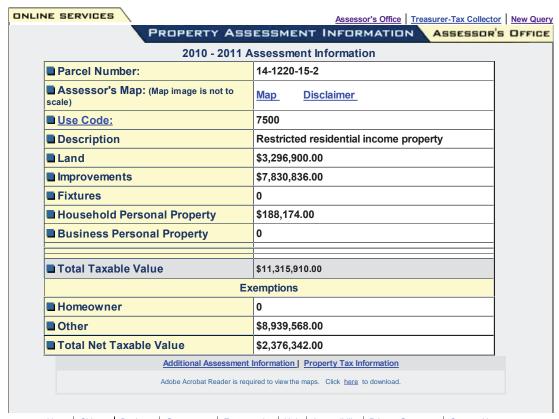
Appendix G: Laboratory Analytical Reports

Appendix H: ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17,


2011

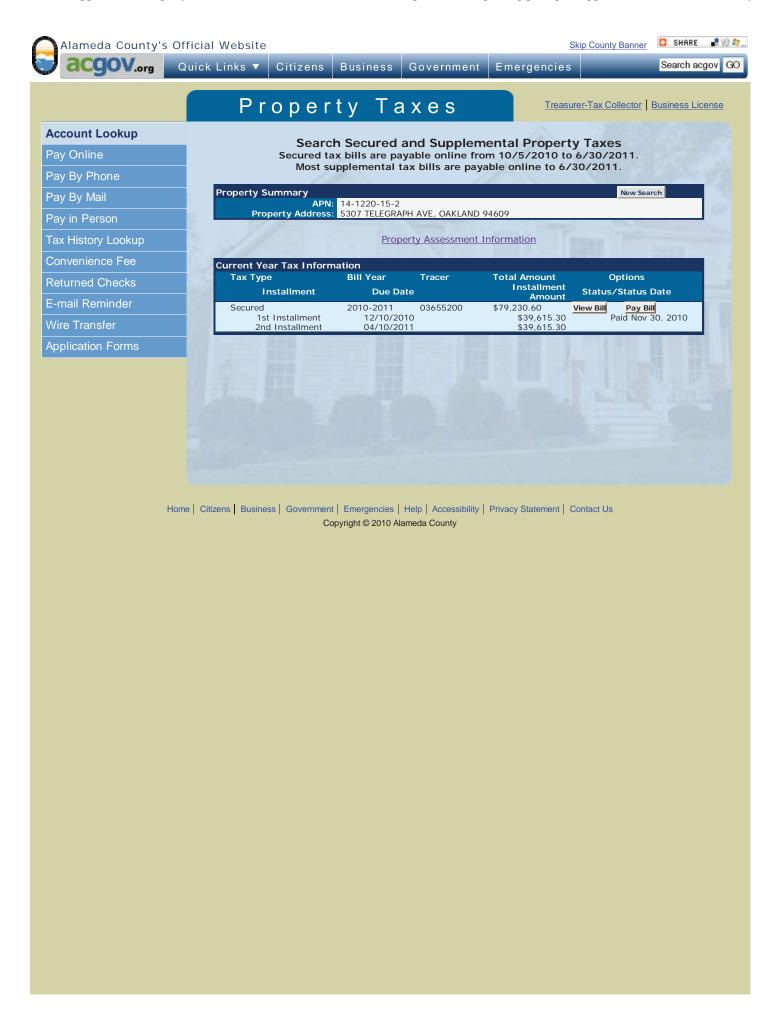
APPENDIX A

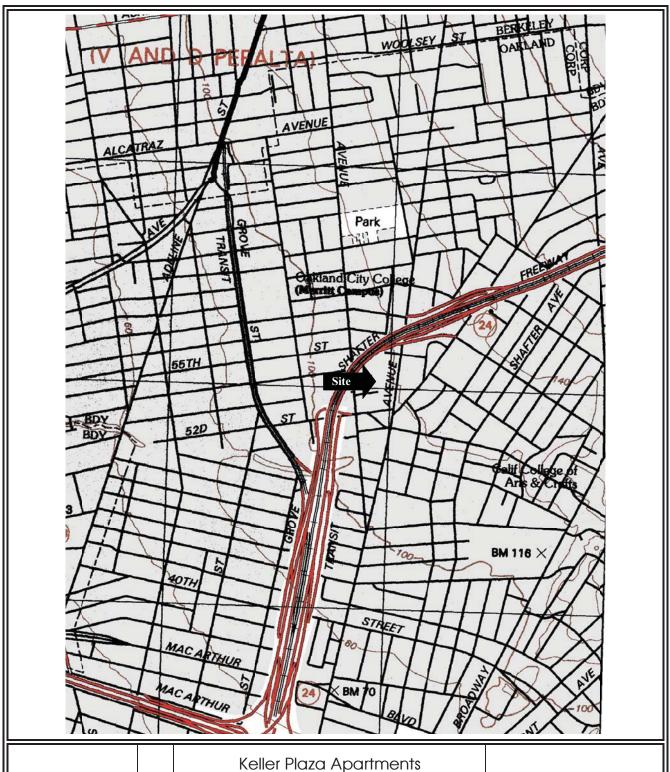
Site Maps



Appendix A
Tax Map

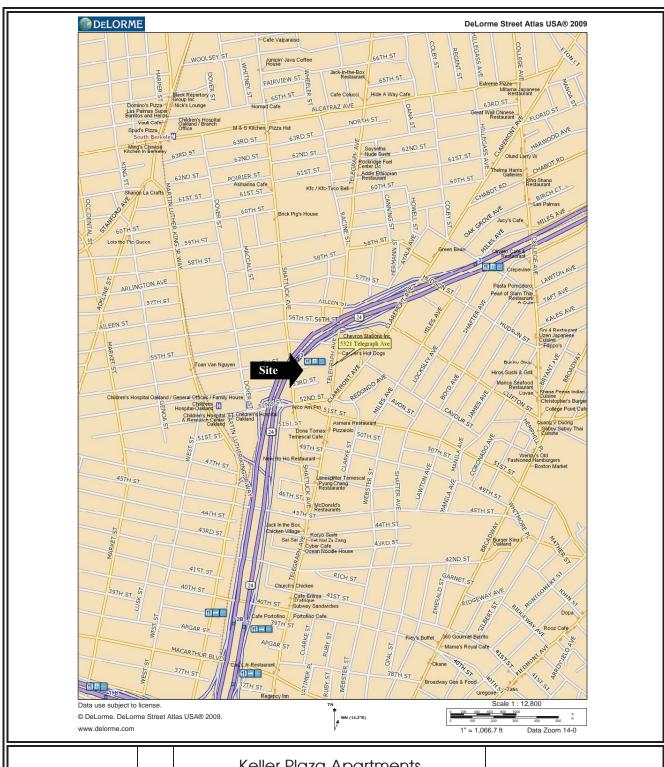
Keller Plaza Apartments 5321 Telegraph Avenue Oakland, California


Parcel #14-1220-15-2

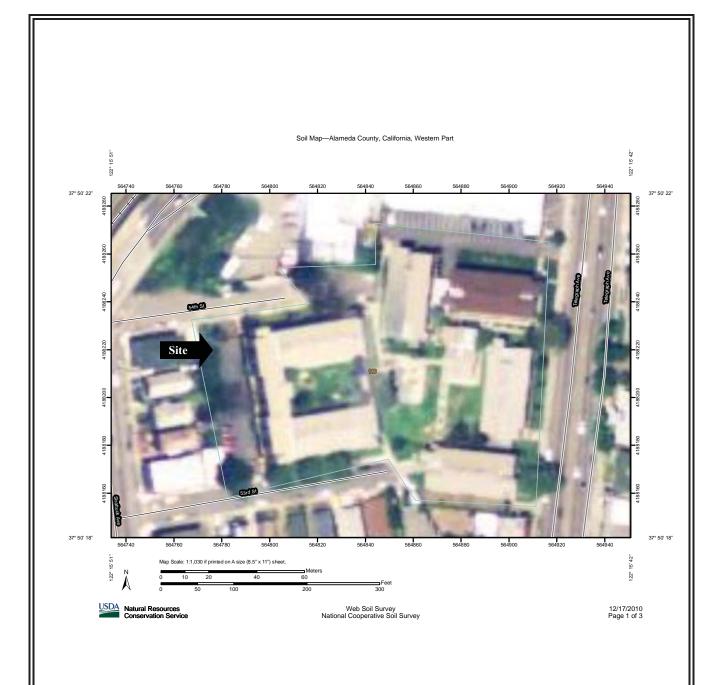

Home | Citizens | Business | Government | Emergencies | Help | Accessibility | Privacy Statement | Contact Us

Copyright ♦ 2010 Alameda County

1 of 1 12/15/2010 10:00 AM


1 of 1 12/15/2010 10:01 AM

Appendix A

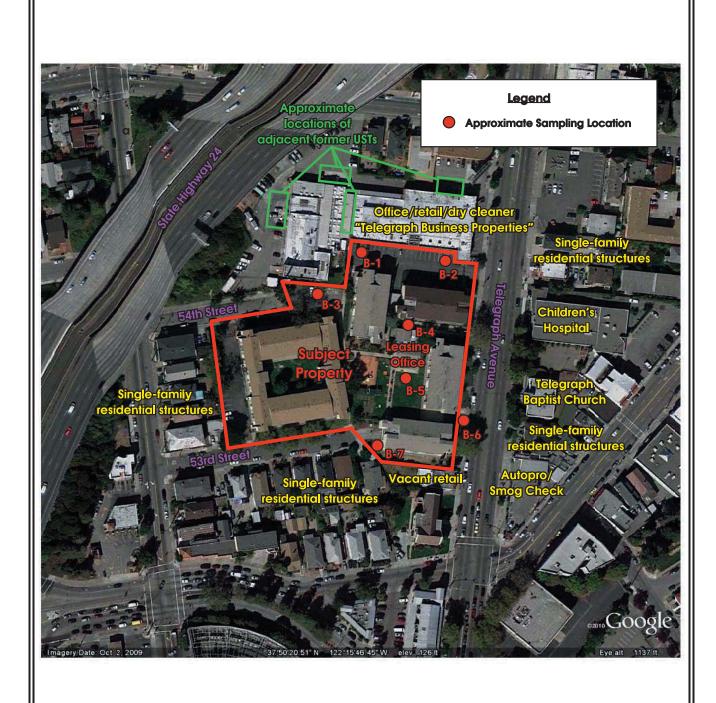

Site Topographic Map 个 N Keller Plaza Apartments 5321 Telegraph Avenue Oakland, California

Topographic Quadrangle Oakland West, California - 1993

Appendix A
Site Locator
Map

Λ N Keller Plaza Apartments 5321 Telegraph Avenue Oakland, California

Appendix A
Site Soils Map


Keller Plaza Apartments 5321 Telegraph Avenue Oakland, California

http://websoilsurvey.nrcs.usda.gov/app/

APPENDIX B

Site Plan

Appendix B Site Plan

Keller Plaza Apartments 5321 Telegraph Avenue Oakland, California

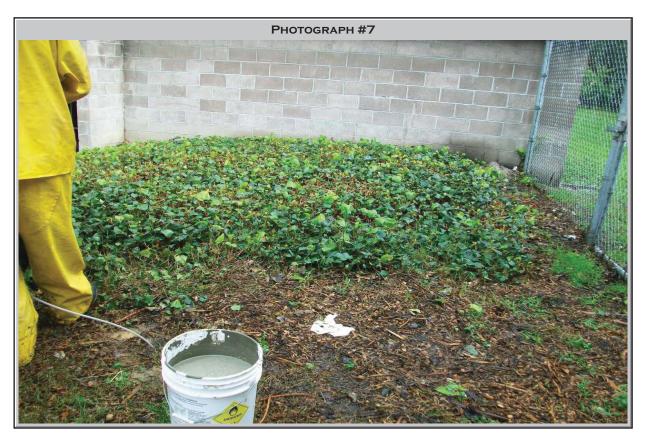
APPENDIX C

Site Photographs

Soil boring B-1 located on the northern property boundary of the subject property

Soil boring B-2 located on the northeastern property boundary of the subject property

Soil boring B-3 located on the northern property boundary of the subject property


Soil boring B-4 located in the center of the subject property to the north of the leasing office structure

Soil boring B-5 located in the center of the subject property to the south of the leasing office structure

Soil boring B-6 located on the eastern property boundary to the south of the subject property

Soil boring B-7 located on the southern property boundary of the subject property

APPENDIX D

Soil Boring Logs

	Project Name:	Drilling Meth	nod:	Drill Rig:		
Paris a Las	Keller Plaza Apts	Geoprobe [Geoprobe 6610DT		Sheet 1 of 1
Boring Log	Project Number:	Drilling Com	rilling Company: Logged By:		PID Used:	
	2011-0111	Vironex		Chad Prevatte		MiniRAE 2000
Boring Log ID:	•	Driller's Nam	ne:	Groundwater	Level:	Installation Date:
B-1		Justin Robinson		10 feet bgs		February 16, 2011
Lithologi	a Description:	USCS	Depth BG\$	Percent	PID Reading	Comments
Lithologic Description:		Symbol	(feet)	Recovery	(ppm)	Comments
Asphalt and fill			0.0	Į		
Light brown inorganic (clay of medium to high			ļ		
olasticity, trace subangular gravel, trace silt, moist.		CL-CH	2.0	100%	0.0	
	high plasticity, some fine-		4.0			
grained sand, moist be	ecoming wet at 10 feet bgs.			ļ		
			6.0	1000/	0.0	
				100%	0.0	
		011	8.0	ļ		
		СН	10.0			
			10.0	1		
			10.0	100%	0.0	
			12.0	100%	0.0	
			14.0	ļ		
			14.0			
			16.0	ł		
			10.0	ł		
			18.0	ł		
			10.0	t		
			20.0	t		
				İ		
			22.0	İ		
				İ		
			24.0	İ		
				İ		
			26.0	1		
				1		
			28.0]		
			30.0			
Boring Terminated at:			er Sampling N			
15 feet bgs		Slotted 0.010) screen instal	led from 10 to	15 feet bgs.	
Sample ID:	Sample Date/Time:	Sample Mat	rix:	Sample Meth		Sample Analyses:
B-1	2/16/2011 @ 1130	Groundwate	er	Screen point	sampler	8260B, 8270C, 8015B
Sample ID:	Sample Date/Time:	Sample Mat	rix:	Sample Meth	od:	Sample Analyses:
B-1 (10 feet bgs)	2/16/2011 @ 1130	Soil		Terracore		8260B, 8270C, 8015B
Comments:	•	<u>-</u>		-		

	Project Name:	Drilling Meth	nod:	Drill Rig:		01 14 (4
Davis I	Keller Plaza Apts	Geoprobe I		Geoprobe 66	610DT	Sheet 1 of 1
Boring Log	Project Number: Drilling Company: Logged By:			PID Used:		
	2011-0111	Vironex Chad Prevatte Driller's Name: Groundwater Level: Justin Robinson 24 feet bgs		te	MiniRAE 2000	
Boring Log ID:						Installation Date: February 16, 2011
3-2						
		USCS	Depth BG\$	Percent	PID Reading	
Lithologic Description:		Symbol	(feet)	Recovery	(ppm)	Comments
Asphalt and fill			0.0			
Dark brownish red to b	olack inorganic clay, trace					
silt, some red mottling	at 13 feet bgs, slightly moist.	t. 2.0	100%	0.0		
				ļ		
			4.0			
			6.0	F00/		
			0.0	50%	0.0	
			8.0			
			10.0			
			10.0	 		
			12.0	100%	0.0	
			12.0			
			14.0	t		
		CL	-			
			16.0			
				100% 0.0		
			18.0			
			20.0	ļ		
				ļ		
Dark brownish red to black inorganic clay with gravel, trace silt, moist becoming wet at 24 feet			22.0	100%	0.7	
ogs.			24.0			
			0/ 0	ļ		
			26.0	100%	0.0	
			28.0	100/6	0.0	
			20.0			
			30.0			
			30.0	†		
Boring Terminated at:		Groundwate	er Sampling N	otes:	1	
30 feet bgs			0 screen instal		30 feet bgs.	
Sample ID:	Sample Date/Time:	Sample Ma	rix:	Sample Meth	nod:	Sample Analyses:
B-2	02/16/2001 @ 1255	Groundwat		Screen point		8260B, 8270C, 8015B
Sample ID:	Sample Date/Time:	Sample Ma	rix:	Sample Meth	nod:	Sample Analyses:
B-2 (24 feet bgs)	02/16/2001 @ 1255	Soil		Terracore		8260B, 8270C, 8015B
Comments:		I				1

	Project Name:	Drilling Meth	nod:	Drill Rig:		01 14 (4	
D	Keller Plaza Apts	Geoprobe [Geoprobe Direct Push Geoprobe 6610DT		Sheet 1 of 1		
Boring Log	Project Number:	Vironex Driller's Name:		Logged By:		PID Used:	
	2011-0111			Chad Prevatte Groundwater Level: 15 feet bgs		MiniRAE 2000	
Boring Log ID:						Installation Date: February 16, 2011	
B-3							
		USCS Depth BGS		Percent PID Reading		-	
Lithologic Description:		Symbol	(feet)	Recovery	(ppm)	Comments	
Asphalt and fill			0.0	-			
Light brown to medium	brown inorganic clay of						
medium to high plasticity, trace subangular gravel, trace silt, moist.			2.0	100%	NA		
			4.0				
			6.0				
		CH		100%	NA		
İ			8.0				
			10.0				
			12.0	100%	NA		
Light brown gravelly clo	y, gravel is well-sorted	CL	14.0				
and subangular, moist b	pecoming wet.	OL					
Black inorganic clay of	high plasticity, some fine-		16.0				
grained sand, wet.		СН		100%	NA		
		0	18.0				
			20.0	1			
				1			
			22.0	1			
				1			
			24.0	1			
				1			
			26.0	1			
l				1			
l			28.0	1			
				1			
			30.0	1			
				<u> </u>			
Boring Terminated at:			er Sampling N		00 (
20 feet bgs	1.			lled from 15 to			
Sample ID:	Sample Date/Time:	Sample Mat		Sample Meth		Sample Analyses:	
B-3	02/16/2001 @ 0940	Groundwate		Screen point		8260B, 8270C, 8015B	
Sample ID:	Sample Date/Time:	Sample Mat	rix:	Sample Meth	od:	Sample Analyses:	
B-3 (13 to 14 feet bgs)	02/16/2001 @ 0940	Soil		Terracore		8260B, 8270C, 8015B	
Comments:					<u> </u>		
PID malfunctioning and	not used for this boring.						

Keller Plaza Apts Project Number: 2011-0111 Description: ow plasticity, some sand? feet bgs.	Geoprobe [Drilling Com Vironex Driller's Nam N. Ivanoff & USCS Symbol CL	ipany: ne:	Geoprobe Do Logged By: Chad Prevat Groundwater 7 feet bgs Percent Recovery 100%	te	Sheet 1 of 1 PID Used: MiniRAE 2000 Installation Date: February 17, 2011 Comments
Project Number: 2011-0111 Description: ow plasticity, some sand	Drilling Com Vironex Driller's Nam N. Ivanoff & USCS Symbol	Depth BGS (feet) 0.0 2.0	Logged By: Chad Prevat Groundwater 7 feet bgs Percent Recovery	PID Reading (ppm)	MiniRAE 2000 Installation Date: February 17, 2011
2011-0111 Description: ow plasticity, some sand	Vironex Driller's Nam N. Ivanoff & USCS Symbol	Depth BGS (feet) 0.0 2.0	Chad Prevat Groundwater 7 feet bgs Percent Recovery	PID Reading (ppm)	MiniRAE 2000 Installation Date: February 17, 2011
Description: ow plasticity, some sand	Driller's Nam N. Ivanoff & USCS Symbol	J. Garcia Depth BGS (feet) 0.0 2.0 4.0	Groundwater 7 feet bgs Percent Recovery	PID Reading (ppm)	Installation Date: February 17, 2011
ow plasticity, some sand	N. Ivanoff & USCS Symbol	J. Garcia Depth BGS (feet) 0.0 2.0 4.0	Percent Recovery	(ppm) 0.0	February 17, 2011
ow plasticity, some sand	USCS Symbol	Depth BGS (feet) 0.0 2.0 4.0	Percent Recovery	(ppm) 0.0	
ow plasticity, some sand	,	(feet) 0.0 2.0 4.0	Recovery 100%	(ppm) 0.0	Comments
		2.0			
7 feet bgs.	CL	4.0			
	CL	4.0	100%	0.0	
	CL		100%	0.0	
	CL		100%	0.0	1
		6.0			
		6.0	100%		
		1			
	-	<u></u>		0.0	
	1	8.0			
		10.0	<u> </u>		
		10.0	ļ		
		10.0	}		
		12.0	ł		
		14.0	ł		
		14.0	ł		
		16.0	ł		
		10.0	ł		
		18.0	ł		
		10.0	Ì		
		20.0	t		
		20.0	İ		
		22.0	1		
			İ		
		24.0	İ		
			İ		
		26.0	1		
			1		
		28.0	1		
		30.0			
				<u> </u>	
	Slotted 0.010	3 screen instal	led from 4 to 9	feet bgs.	
Sample Date/Time:			Sample Meth	od:	Sample Analyses:
	Groundwate	er	Screen point	sampler	8260B, 8270C, 8015B
02/17/2011 @ 0950	Sample Mat	rix:	Sample Meth	od:	Sample Analyses:
02/17/2011 @ 0950 Sample Date/Time:	Soil		Terracore		8260B, 8270C, 8015B
· · ·					
	02/17/2011 @ 0950 Sample Date/Time:	Sample Date/Time: Sample Mate Groundwate Gample Date/Time: Sample Mate Groundwate Gample Date/Time: Sample Mate Sample Mate Groundwate Gample Date/Time: Sample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Mate Groundwate Gample Gamp	Groundwater Sampling N Slotted 0.010 screen instal Gample Date/Time: Sample Matrix: Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater	Groundwater Sampling Notes: Slotted 0.010 screen installed from 4 to 9 Sample Date/Time: Sample Matrix: Sample Meth 02/17/2011 @ 0950 Groundwater Screen point Sample Date/Time: Sample Matrix: Sample Meth	Groundwater Sampling Notes: Slotted 0.010 screen installed from 4 to 9 feet bgs. Gample Date/Time: Sample Matrix: Groundwater Screen point sampler Gample Date/Time: Sample Matrix: Sample Method: Screen point sampler

	Project Name:	Drilling Meth	nod:	Drill Rig:		01 14 44	
	Keller Plaza Apts	Geoprobe [Geoprobe D	ollv Probe	Sheet 1 of 1	
Boring Log	Project Number:			Logged By:		PID Used:	
	2011-0111	Vironex	,	Chad Prevat	te	MiniRAE 2000	
Boring Log ID:	2011 0111	Driller's Name:		Groundwater Level:		Installation Date:	
B-5		N. Ivanoff & J. Garcia		11 feet bgs		February 16, 2011	
		USCS	Depth BGS	Percent	PID Reading		
Lithologic	Description:	Symbol	(feet)	Recovery	(ppm)	Comments	
Grass and topsoil		.,	0.0		q-p		
	, some fine-grained sand,	0.0		50%	0.0		
moist.		GP	2.0	İ			
Black inorganic clay of	high plasticity, some						
	3 to 9 feet bgs, some silt,		4.0	100%	0.0		
moist becoming wet at	-			İ			
•	•		6.0				
				100%	0.0		
		011	8.0	İ			
		CH					
			10.0	100%	0.0		
				İ			
			12.0				
				100%	0.0		
			14.0				
			16.0	Ī			
				I			
			18.0	I			
			20.0				
			22.0	Į			
				ļ			
			24.0	ļ			
			26.0	ļ			
l							
			28.0	<u> </u>			
				<u> </u>			
			30.0				
Boring Terminated at:			er Sampling N				
15 feet bgs	1			led from 10 to			
Sample ID:	Sample Date/Time:	Sample Mat		Sample Meth		Sample Analyses:	
B-5	02/17/2011 @0920	Groundwate		Screen point		8260B, 8270C, 8015B	
Sample ID:	Sample Date/Time:	Sample Mat	rix:	Sample Meth	od:	Sample Analyses:	
B-5 (10 to 11 feet bgs)	02/17/2011 @0920	Soil		Terracore		8260B, 8270C, 8015B	
Comments:							

	Project Name:	Drilling Meth	nod:	Drill Rig:		a	
	Keller Plaza Apts	Geoprobe I		Geoprobe 66	610DT	Sheet 1 of 1	
Boring Log	Project Number:	Drilling Company: Lo		Logged By:		PID Used:	
	2011-0111	Vironex		Chad Prevat	te	MiniRAE 2000	
Boring Log ID:	2011 0111	Driller's Name:		Groundwater Level:		Installation Date:	
3-6				21 feet bgs		February 16, 2011	
		USCS	Depth BG\$	Percent	PID Reading		
Lithologi	c Description:	Symbol	(feet)	Recovery	(ppm)	Comments	
Grass and topsoil		·	0.0	•	1		
Dark brown to light bro	wn inorganic clay of high						
plasticity, some subangular gravel from 9 to 11			2.0	60%	0.0		
eet bgs, moist.				Ì			
			4.0	Ī			
			6.0	Ì			
		СН		100%	0.2		
			8.0	Ī			
				Î			
			10.0	100%	0.3		
			12.0				
ight brown inorganic	clay of high plasticity, some		14.0	1			
sand from 14 to 15 fee	bgs, some subangular			100	0.0		
gravel from 20 to 23 fe	et bgs, moist becoming		16.0				
wet at 21 feet bgs.							
		CH-CL	18.0				
			20.0	100	0.0		
			22.0	Ì			
			24.0	Ì			
				Ì			
			26.0	Ī			
				Ī			
			28.0	Ī			
				Ī			
			30.0	Ī			
				Ī			
Boring Terminated at:		Groundwate	er Sampling N	otes:		-	
23 feet bgs		Slotted 0.01	O screen instal	led from 18 to	23 feet bgs.		
Sample ID:	Sample Date/Time:	Sample Ma	rix:	Sample Meth	nod:	Sample Analyses:	
3-6	02/16/2011 @ 1600	Groundwat	er	Screen point	sampler	8260B and 8270C	
Sample ID:	Sample Date/Time:	Sample Ma	rix:	Sample Meth	nod:	Sample Analyses:	
3-6 (20 to 21 feet bgs)	02/16/2011 @ 1600	Soil		Terracore		8260B and 8270C	
5-0 (20 10 21 1661 bgs)							

	Project Name:	Drilling Meth	nod:	Drill Rig:		Ob + 4 + 4
Davina Las	Keller Plaza Apts	Geoprobe [Geoprobe 66	510DT	Sheet 1 of 1
Boring Log	Project Number:	Drilling Company: Lo		Logged By:		PID Used:
	2011-0111	Vironex		Chad Prevat	te	MiniRAE 2000
Borina Loa ID:	Soring Log ID:		ne:	Groundwate		Installation Date:
B-7						February 17, 2011
		USCS	Depth BG\$	23 feet bgs Percent	PID Reading	
Litholog	ic Description:	Symbol	(feet)	Recovery	(ppm)	Comments
Dark brown sandy clo	y, medium plasticity, moist.		0.0			
			2.0	100%	0.0	
		CL	1.0	ļ		
			4.0			
			6.0			
ight brown inorganic	high plasticity clay, moist		0.0	100%	0.0	
pecoming wet at 23 f			8.0	10070	0.0	
, , , , , , , , , , , , , , , , , , ,			0.0			
			10.0			
				†		
			12.0	100%	0.0	
			14.0			
			16.0		0.0	
				100%		
		CH	18.0	 		
			20.0			
			20.0	 		
			22.0	100%	0.7	
			22.0	10070	0.7	
			24.0	<u>.</u> 		
			26.0		0.0	
				100%		
			28.0			
			30.0			
		-				
Boring Terminated at:			er Sampling N		20 fa at l	
30 feet bgs		_		led from 20 to		<u> </u>
Sample ID:	Sample Date/Time:	Sample Mat		Sample Meth		Sample Analyses:
3-7	02/17/2011 @ 1145	Groundwate		Screen point		8260B and 8270C
Sample ID:	Sample Date/Time:	Sample Mat	rix:	Sample Meth	nod:	Sample Analyses:
3-7 (22 feet bgs)	02/17/2011 @ 1145	Soil		Terracore		8260B and 8270C
Comments:						

Unified Soil Classification System (USCS)

	Major Divisions		Group	Typical Names	
Field Identification Procedures		Symbols	, production		
		Clean Gravels (little	Wide range of grain sizes and substantial amount of all intermediate particle sizes	GW	Well-graded gravels and gravel-sand mixtures, little or no fines
	Gravels .	to no fines)	Predominantly one size or a range of sizes with the same intermediate sizes missing	GP	Poorly-graded gravels and gravel-sand mixtures, little or no fines
		Gravels with	Non-plastic fines	GM	Silty gravels, gravel-sand-silt mixtures
Coarse- Grained		Fines	Plastic fines	GC	Clayey gravels, gravel-sand-clay mixtures
Soils		Clean Sands	Wide range of grain sizes and substantial amount of all intermediate particle sizes	SW	Well-graded sands and gravelly sands, little or no fines
	fines)	Predominantly one size or a range of sizes with the same intermediate sizes missing	SP	Poorly-graded sands, gravelly sands, little or no fines	
	Sands with	Non-plastic fines	SM	Silty sands, poorly-graded sand-silt mixtures	
	Fines	Plastic fines	\$C	Clayey sand, poorly graded sand-clay mixtures	
				ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands
	\$	Silts and Clays (low to medium plasticity)	CL	Inorganic clays of low- to medium- plasticity, gravelly clays, sandy clays, silty clays, lean clays
Fine Grained				OL	Organic silts and organic silty clays of low plasticity
Soils				МН	Inorganic silts, micaceous fine sands or silts, elastic silts
	Silts and Clays (medium to high plasticity)		СН	Inorganic clays of high plasticity, fat clays	
				ОН	Organic clays of medium to high plasticity
		Highly Orç	ganic Soils	PT	Peat and other organic soils

Source: ASTM D2487-10 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

APPENDIX E

Qualifications for Environmental Professionals

RACHEL POSNER PROJECT MANAGER

EDUCATION

James Madison University – B.S. Geology and Environmental Science

CERTIFICATIONS/REGISTRATIONS/TRAINING

OSHA 40-Hour Hazardous Waste Operations & Emergency Response (HAZWOPER) Certification
OSHA 8-Hour HAZWOPER Refresher, November 2009
Asbestos Awareness Training, WSP Environment & Energy, February 2007
TSA Transportation Worker Identification Credential (TWIC)

EXPERIENCE

Rachel Posner is a project manager for Dominion Due Diligence Group. Ms. Posner is directly responsible for coordinating, conducting and preparing Phase I and Phase II Environmental Site Assessments throughout the United States. Additionally, Ms. Posner is responsible for performance and management of field projects, client contact and comprehensive report writing. Prior to her work with D3G, Ms. Posner worked as a geologist for an environmental remediation and engineering firm, focusing primarily on groundwater and soil remediation and vapor intrusion assessments.

The following sites are examples of projects in which Ms. Posner has participated:

HUD MAP 220:

360° H Street Apartments – Washington, DC

HUD MAP 221(d)(4):

2 M Street, Northeast – Washington, DC Liverpool Fields – Liverpool Township, OH Proposed SLN 5100 Apartments – Newport News, VA Proposed Blue Stream Apartments – Elkridge, MD Proposed Patapsco Place – Brooklyn Park, MD Proposed Woodside Mill Apartments – Greenville, SC

HUD MAP 221(d)(3):

Mt. Sinai Homes - Fayetteville, NC

HUD LEAN 232/223(f)

Manokin Manor – Princess Anne, MD Hillside Terrace Assisted Living – Ann Arbor, MI

HUD LEAN 232 New Construction

Garden View at Jones Creek - Baton Rouge, LA

HUD MAP 223(f):

Burnt Mills Crossing I & II – Silver Spring, MD
Bradford House – Cambridge, MD
Brandywine Apartments – Indianapolis, IN
Deerfield Apartments II – Kendallville, IN
John Ganton's Countryside Retirement – Jackson, MI
Mill Pond Apartments – Charlotte, NC
Newfield Towers – Middletown, CT
Stoneycrest Apartments – Middletown, CT
Valley Brook Apartments – Birmingham, AL
Woodbury Apartments – Middletown, CT

Other/Phase II ESA:

Bradford House – Cambridge, MD
Colonial Village Apartments – Manchester, NH
Dill Building Apartments – Richmond, VA
John Ganton's Countryside Retirement – Jackson, MI
Willow Oaks Apartments – Richmond, VA
Proposed The Shores – Marina Del Rey, CA
Proposed Colony Village Apartments – Richmond, VA
Timber Wind Apartments – Independence, MO

AKISHA BOLTON ENVIRONMENTAL TEAM MANAGER ENVIRONMENTAL PROFESSIONAL

EDUCATION

Virginia Polytechnic Institute and State University
B.S. Environmental Science

CERTIFICATIONS/REGISTRATIONS/TRAINING

Virginia Licensed Asbestos Inspector # 3303003024
Virginia Licensed Lead Risk Assessor # 3356000853

LPA-1 XRF Lead Paint Detection Device Operator Training/ Radiation Safety Training
U.S. Green Building Council - LEEDS 101: Green Building Basics

Advisory Council on Historic Preservation: The Section 106 Essentials -2008 Training Course

HEC-RAS-Water Surface Profile Modeling Course

National Flood Insurance Program Training Course

Screening for Potential Vapor Intrusion Problems under the ASTM E 2600 Standard – Presented by

Anthony J. Buonicore, P.E., BCEE, QEP – November 2009

HUD Multifamily Accelerated Processing (MAP) Training - 2009 Washington, D.C.

EXPERIENCE

Ms. Bolton is the Environmental Team Manager for Dominion Due Diligence Group. Ms. Bolton is directly responsible for coordinating, conducting and reviewing Phase I/II Environmental Site Assessments (HUD, Freddie Mac, Fannie Mae, VHDA, SunAmerica and ASTM E 1527-05) throughout the United States as well as conducting and coordinating comprehensive lead-based paint and asbestos-containing material investigations. Ms. Bolton has additionally performed numerous HUD noise assessments throughout the United States. Ms. Bolton qualifies as an Environmental Professional as defined under ASTM E 1527-05 Section 4.2 and Appendix X2 with over five (5) years experience performing investigations of surface and subsurface environmental conditions. Ms. Bolton is additionally responsible for performance and management of field projects, client contact and comprehensive report writing. Ms. Bolton has also worked as an environmental scientist with environmental engineering firms focusing on hazardous waste issues and floodplain mapping.

The following sites are examples of projects in which Ms. Bolton has participated:

ASTM 1527-05:

Fieldstone Apartments - Mebane, NC
Proposed Arbours at Madison - Madison, FL
Proposed Waverly View Apts. - Fredericksburg, MD
Upton Farm - Suffolk, VA
Village Green - Floyd, VA
Village Square - Floyd, VA

HUD MAP 221 (d)(4) SR:

Chenault Creek Apartments - New Orleans, LA Hunter Ridge, et al - West Virginia Holly Lane Apartments - Baltimore, MD Valley Forge Apartments - Indianapolis, IN

AKISHA BOLTON ENVIRONMENTAL TEAM MANAGER ENVIRONMENTAL PROFESSIONAL

HUD LEAN 232/223f:

Park Manor of Cypress Station – Houston TX Wausau Manor & Applegate Terrace – Wausau, WI Hale Ku'ike – Honolulu, HI

HUD MAP 221 (d)(4) NC:

Proposed Sugarmill Apartments - Baton Rouge, LA Proposed Reserve at Squirrel Run - New Iberia, LA Parks at Whispering Pines - Daphne, AL Proposed Howard University Town Center - Washington, DC

HUD MAP 232/223(f):

Bradford Oaks Nursing & Rehab Center - Clinton, MD Guardian Angel Homes - Lewiston, ID Hearthstone Manor ALF - Spanish Fork, UT Kenwell Adult Home - Kenmore, NY Mingo Manor Nursing Home - Williamson, WV

HUD 242:

Caritas St. Elizabeth Hospital – Boston, MA Caritas St. Elizabeth Hospital – Methuen, MA Good Samaritan Medical – Brockton, MA

Other:

Golf Pointe - Galloway, OH – ESA for Freddie Mac
Janna Lee Village - Alexandria, VA – ESA for VHDA
Jefferson Villas Apartments - Medina, OH – Moisture Management Plan for Freddie Mac
Johnston Square Apartments - Baltimore, MD – ESA for SunAmerica
Knollwood Crossing I - Hamilton, OH – ESA for Freddie Mac
Knollwood Crossing II - Hamilton, OH – ESA for Freddie Mac
Rutledge Hills Apartments - Amherst, VA – ESA for VHDA
Sharp Leadenhall I and II - Baltimore, MD – ESA for SunAmerica

Indoor Air Quality:

Jefferson Trace Apartments - Richmond, VA Langley Air Force Base - VA Village at Stony Run - Newport News, VA Miller Farmstead, Antietam National Battlefield - Sharpsburg, MD Miller and Rhoads Building - Richmond, VA

Floodplain Mapping:

Successful completion of Conditional Letter of Map Amendment Submittal for Applewood Pointe HUD MAP 213 NC FEMA Map Coordination Contractor services for FEMA Region 5 (OH, IN, IL, MI, WI, and MN)

APPENDIX F

Tables from California Regional Water Quality
Control Board – San Francisco Bay Region,
Screening for Environmental Concerns at Sites with
Contaminated Soil and Groundwater, Interim Final
(Revised May 2008)

Table C. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs) Groundwater is a Current or Potential Source of Drinking Water

	¹ Dee	ep Soil	
Chemical	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L)
Acenaphthene	1.6E+01	1.6E+01	2.0E+01
Acenaphthylene	1.3E+01	1.3E+01	3.0E+01
Acetone	5.0E-01	5.0E-01	1.5E+03
Aldrin	1.5E+00	1.5E+00	2.0E-03
Anthracene	2.8E+00	2.8E+00	7.3E-01
Antimony	3.1E+02	3.1E+02	6.0E+00
Arsenic	1.5E+01	1.5E+01	3.6E+01
Barium	2.5E+03	2.6E+03	1.0E+03
Benzene	4.4E-02	4.4E-02	1.0E+00
Benzo(a)anthracene	1.2E+01	1.2E+01	2.7E-02
Benzo(b)fluoranthene	1.5E+01	1.5E+01	2.9E-02
Benzo(k)fluoranthene	2.7E+00	2.7E+00	2.9E-02
Benzo(g,h,i)perylene	2.7E+01	2.7E+01	1.0E-01
Benzo(a)pyrene	1.5E+00	1.5E+00	1.4E-02
Beryllium	9.8E+01	9.8E+01	5.3E-01
1,1-Biphenyl	6.5E-01	6.5E-01	5.0E-01
Bis(2-chloroethyl) ether	4.0E-04	4.0E-04	3.2E-02
Bis(2-chloroisopropyl) ether	1.5E-04	1.5E-04	1.4E-02
Bis(2-ethylhexyl) phthalate	7.8E+02	7.8E+02	4.0E+00
Boron	6.3E+04	6.3E+04	1.6E+00
Bromodichloromethane	1.9E+00	1.9E+00	1.0E+02
Bromoform (Tribromomethane)	2.2E+00	2.2E+00	1.0E+02
Bromomethane	3.9E-01	3.9E-01	9.8E+00
Cadmium	3.9E+01	3.9E+01	2.5E-01
Carbon tetrachloride	1.1E-01	1.1E-01	5.0E-01
Chlordane	1.5E+01	1.5E+01	4.0E-03
p-Chloroaniline	5.3E-02	5.3E-02	5.0E+00
Chlorobenzene	1.5E+00	1.5E+00	2.5E+01
Chloroethane	8.5E-01	8.5E-01	1.2E+01
Chloroform	2.1E+00	2.1E+00	7.0E+01
Chloromethane	6.4E+00	6.4E+00	4.1E+01
2-Chlorophenol	1.2E-02	1.2E-02	1.8E-01
Chromium (total)	2.5E+03	5.0E+03	5.0E+01
Chromium III	2.5E+03	5.0E+03	1.8E+02
Chromium VI	5.3E-01	5.3E-01	1.1E+01
Chrysene	2.3E+01	2.3E+01	3.5E-01
Cobalt	9.4E+01	9.4E+01	3.0E+00
Copper	2.5E+03	5.0E+03	3.1E+00
Cyanide	3.6E-03	3.6E-03	1.0E+00
Dibenz(a,h)anthracene	2.4E+00	2.4E+00	4.8E-03
Dibromochloromethane	8.3E+00	8.3E+00	1.0E+02
1,2-dibromo-3-chloropropane	4.5E-03	4.5E-03	2.0E-01
1,2-Dibromoethane	3.3E-04	3.3E-04	5.0E-02
1,2-Dichlorobenzene	1.1E+00	1.1E+00	1.0E+01

Table C. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs) Groundwater is a Current or Potential Source of Drinking Water

	¹ Dee	ep Soil	
Chemical	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L)
1,3-Dichlorobenzene	7.4E+00	7.4E+00	6.5E+01
1,4-Dichlorobenzene	5.9E-01	5.9E-01	5.0E+00
3.3-Dichlorobenzidine	7.7E-03	7.7E-03	2.9E-02
Dichlorodiphenyldichloroethane (DDD)	1.2E+02	1.2E+02	1.0E-03
Dichlorodiphenyldichloroethene (DDE)	8.7E+01	8.7E+01	1.0E-03
Dichlorodiphenyltrichloroethane (DDT)	4.3E+00	4.3E+00	1.0E-03
1.1-Dichloroethane	2.0E-01	2.0E-01	5.0E+00
1.2-Dichloroethane	4.5E-03	4.5E-03	5.0E-01
1.1-Dichloroethene	1.0E+00	1.0E+00	6.0E+00
cis -1,2-Dichloroethene	1.9E-01	1.9E-01	6.0E+00
trans -1,2-Dichloroethene	6.7E-01	6.7E-01	1.0E+01
2,4-Dichlorophenol	3.0E-01	3.0E-01	3.0E-01
1,2-Dichloropropane	1.2E-01	1.2E-01	5.0E+00
1,3-Dichloropropene	5.9E-02	5.9E-02	5.0E-01
Dieldrin	2.3E-03	2.3E-03	1.9E-03
Diethyl phthalate	3.5E-02	3.5E-02	1.5E+00
Dimethyl phthalate	3.5E-02	3.5E-02	1.5E+00
2,4-Dimethylphenol	6.7E-01	6.7E-01	1.0E+02
2,4-Dinietryphenol	4.2E-02	4.2E-02	1.5E+01
2.4-Dinitrophenoi	3.9E-04	3.9E-04	5.1E-02
1,4-Dinitroloidene	1.8E-03	1.8E-03	3.0E+00
	2.3E-04	2.3E-04	1.0E-06
Dioxin (2,3,7,8-TCDD)			
Endosulfan	4.6E-03	4.6E-03	8.7E-03
Endrin	6.5E-04	6.5E-04	2.3E-03
Ethylbenzene	3.3E+00	3.3E+00	3.0E+01
Fluoranthene	6.0E+01	6.0E+01	8.0E+00
Fluorene	8.9E+00	8.9E+00	3.9E+00
Heptachlor	1.3E-02	1.3E-02	3.6E-03
Heptachlor epoxide	1.4E-02	1.4E-02	3.6E-03
Hexachlorobenzene	1.6E+01	1.6E+01	1.0E+00
Hexachlorobutadiene	2.2E+00	2.2E+00	4.5E-01
γ-Hexachlorocyclohexane (Lindane)	9.8E-03	9.8E-03	1.6E-02
Hexachloroethane	3.0E+00	3.0E+00	9.0E-01
Indeno(1,2,3-c,d)pyrene	1.3E+01	1.3E+01	4.8E-02
Lead	7.5E+02	7.5E+02	2.5E+00
Mercury (elemental)	5.8E+01	5.8E+01	2.5E-02
Methoxychlor	1.9E+01	1.9E+01	3.0E-03
Methylene chloride	7.7E-02	7.7E-02	5.0E+00
Methyl ethyl ketone	3.9E+00	3.9E+00	4.2E+03
Methyl isobutyl ketone	2.8E+00	2.8E+00	1.2E+02
Methyl mercury	4.1E+01	4.1E+01	3.0E-03
2-Methylnaphthalene	2.5E-01	2.5E-01	2.1E+00
tert-Butyl methyl ether	2.3E-02	2.3E-02	5.0E+00
Molybdenum	2.5E+03	3.9E+03	3.5E+01

Table C. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs)

Groundwater is a Current or Potential Source of Drinking Water

	¹ Dee	ep Soil	
Chemical	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (ug/L)
Naphthalene	3.4E+00	3.4E+00	1.7E+01
Nickel	2.6E+02	2.6E+02	8.2E+00
Pentachlorophenol	9.9E+01	9.9E+01	1.0E+00
Perchlorate	5.4E+02	5.4E+02	6.0E+00
Phenanthrene	1.1E+01	1.1E+01	4.6E+00
Phenol	7.6E-02	7.6E-02	5.0E+00
Polychlorinated biphenyls (PCBs)	6.3E+00	6.3E+00	1.4E-02
Pyrene	8.5E+01	8.5E+01	2.0E+00
Selenium	2.5E+03	3.9E+03	5.0E+00
Silver	2.5E+03	3.9E+03	1.9E-01
Styrene	1.5E+00	1.5E+00	1.0E+01
tert-Butyl alcohol	7.5E-02	7.5E-02	1.2E+01
1,1,1,2-Tetrachloroethane	2.4E-02	2.4E-02	1.3E+00
1,1,2,2-Tetrachloroethane	1.8E-02	1.8E-02	1.0E+00
Tetrachloroethene	7.0E-01	7.0E-01	5.0E+00
Thallium	6.2E+01	6.2E+01	2.0E+00
Toluene	2.9E+00	2.9E+00	4.0E+01
Toxaphene	4.2E-04	4.2E-04	2.0E-04
TPH (gasolines)	8.3E+01	8.3E+01	1.0E+02
TPH (middle distillates)	8.3E+01	8.3E+01	1.0E+02
TPH (residual fuels)	5.0E+03	5.0E+03	1.0E+02
1,2,4-Trichlorobenzene	1.5E+00	1.5E+00	5.0E+00
1,1,1-Trichloroethane	7.8E+00	7.8E+00	6.2E+01
1,1,2-Trichloroethane	7.0E-02	7.0E-02	5.0E+00
Trichloroethene	4.6E-01	4.6E-01	5.0E+00
2,4,5-Trichlorophenol	1.8E-01	1.8E-01	1.1E+01
2,4,6-Trichlorophenol	2.3E-01	2.3E-01	7.0E-01
Vanadium	7.7E+02	7.7E+02	1.5E+01
Vinyl chloride	8.5E-02	8.5E-02	5.0E-01
Xylenes	2.3E+00	2.3E+00	2.0E+01
Zinc	2.5E+03	5.0E+03	8.1E+01

Notes:

- 1. Shallow soils defined as soils less than or equal to 3 meters (approximately 10 feet) below ground surface.
- 2. Category "Residential Land Use" generally considered adequate for other sensitive uses.
- 3. Assumes potential discharge of groundwater into a freshwater, marine or estuary surface water system.

Soil ESLs intended to address direct-exposure, groundwater protection, ecologic (urban areas) and nuisance concerns under noted land-use scenarios. Soil gas data should be collected for additional evaluation of potential indoor-air impacts at sites with areas of VOC-contaminated soil.

Groundwater ESLs intended to be address drinking water, surface water, indoor-air and nuisance concerns. **Use in conjunction** with soil gas screening levels to more closely evaluate potential impacts to indoor-air if groundwater screening levels for this concern approached or exceeded.

Aquatic habitat goals for bioaccumulation concerns not considered in selection of groundwater goals.

TPH -Total Petroleum Hydrocarbons. TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g., BTEX, PAHs, oxidizers, etc.).

Table D. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs) Groundwater is not a Current or Potential Source of Drinking Water

		Τ			
	¹ Dee	p Soil			
Chemical	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (μg/L)		
Acenaphthene	1.9E+01	1.9E+01	2.3E+01		
Acenaphthylene	1.3E+01	1.3E+01	3.0E+01		
Acetone	5.0E-01	5.0E-01	1.5E+03		
Aldrin	1.5E+00	1.5E+00	1.3E-01		
Anthracene	2.8E+00	2.8E+00	7.3E-01		
Antimony	3.1E+02	3.1E+02	3.0E+01		
Arsenic	1.5E+01	1.5E+01	3.6E+01		
Barium	2.5E+03	2.6E+03	1.0E+03		
Benzene	2.0E+00	2.0E+00	4.6E+01		
Benzo(a)anthracene	1.2E+01	1.2E+01	2.7E-02		
Benzo(b)fluoranthene	1.5E+01	1.5E+01	2.9E-02		
Benzo(k)fluoranthene	1.5E+01	1.5E+01	4.0E-01		
Benzo(g,h,i)perylene	2.7E+01	2.7E+01	1.0E-01		
Benzo(a)pyrene	1.5E+00	1.5E+00	1.4E-02		
Beryllium	9.8E+01	9.8E+01	5.3E-01		
1,1-Biphenyl	6.5E+00	6.5E+00	5.0E+00		
Bis(2-chloroethyl) ether	1.6E-01	1.6E-01	1.2E+01		
Bis(2-chloroisopropyl) ether	1.3E-01	1.3E-01	1.2E+01		
Bis(2-ethylhexyl) phthalate	7.8E+02	7.8E+02	3.2E+01		
Boron	6.3E+04	6.3E+04	1.6E+00		
Bromodichloromethane	3.2E+00	3.2E+00	1.7E+02		
Bromoform (Tribromomethane)	2.4E+01	2.4E+01	1.1E+03		
Bromomethane	6.4E+00	6.4E+00	1.6E+02		
Cadmium	3.9E+01	3.9E+01	2.5E-01		
Carbon tetrachloride	1.9E+00	1.9E+00	9.3E+00		
Chlordane	1.5E+01	1.5E+01	4.0E-03		
p-Chloroaniline	5.3E-02	5.3E-02	5.0E+00		
Chlorobenzene	1.5E+00	1.5E+00	2.5E+01		
Chloroethane	8.5E-01	8.5E-01	1.2E+01		
Chloroform	9.8E+00	9.8E+00	3.3E+02		
Chloromethane	6.4E+00	6.4E+00	4.1E+01		
2-Chlorophenol	1.2E-01	1.2E-01	1.8E+00		
Chromium (total)	2.5E+03	5.0E+03	1.8E+02		
Chromium III	2.5E+03	5.0E+03	1.8E+02		
Chromium VI	5.3E-01	5.3E-01	1.1E+01		
Chrysene	2.3E+01	2.3E+01	3.5E-01		
Cobalt	9.4E+01	9.4E+01	3.0E+00		
Copper	2.5E+03	5.0E+03	3.1E+00		
Cyanide	3.6E-03	3.6E-03	1.0E+00		
Dibenz(a,h)anthracene	2.4E+00	2.4E+00	2.5E-01		
Dibromochloromethane	2.4E+00 1.4E+01	1.4E+01	1.7E+02		
1,2-dibromo-3-chloropropane	4.5E-03	4.5E-03	2.0E-01		
1,2-Dibromoethane	1.0E+00	1.0E+00	1.5E+02		
1,2-Dichlorobenzene	1.6E+00	1.6E+00	1.4E+01		
1,3-Dichlorobenzene	7.4E+00	7.4E+00	6.5E+01		
1,4-Dichlorobenzene	1.8E+00	1.8E+00	1.5E+01		
1,4-010110100061126116	1.00+00	1.0⊑∓00	1.0ETU1		

Table D. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs) Groundwater is not a Current or Potential Source of Drinking Water

	¹ Dee	p Soil	
Chemical	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (μg/L)
3,3-Dichlorobenzidine	3.1E+01	3.1E+01	2.5E+02
Dichlorodiphenyldichloroethane (DDD)	1.2E+02	1.2E+02	1.0E-03
Dichlorodiphenyldichloroethene (DDE)	8.7E+01	8.7E+01	1.0E-03
Dichlorodiphenyltrichloroethane (DDT)	4.3E+00	4.3E+00	1.0E-03
1,1-Dichloroethane	1.9E+00	1.9E+00	4.7E+01
1,2-Dichloroethane	1.8E+00	1.8E+00	2.0E+02
1,1-Dichloroethene	4.3E+00	4.3E+00	2.5E+01
cis-1,2-Dichloroethene	1.8E+01	1.8E+01	5.9E+02
trans-1,2-Dichloroethene	3.9E+01	3.9E+01	5.9E+02
2,4-Dichlorophenol	3.0E+00	3.0E+00	3.0E+00
1,2-Dichloropropane	2.5E+00	2.5E+00	1.0E+02
1,3-Dichloropropene	2.9E+00	2.9E+00	2.4E+01
Dieldrin	2.3E-03	2.3E-03	1.9E-03
Diethyl phthalate	3.5E-02	3.5E-02	1.5E+00
Dimethyl phthalate	3.5E-02	3.5E-02	1.5E+00
2,4-Dimethylphenol	7.4E-01	7.4E-01	1.1E+02
2,4-Dinitrophenol	4.2E-02	4.2E-02	1.5E+01
2,4-Dinitrotoluene	8.6E-01	8.6E-01	1.2E+02
1,4-Dioxane	3.0E+01	3.0E+01	5.0E+04
Dioxin (2,3,7,8-TCDD)	2.3E-04	2.3E-04	1.0E-06
Endosulfan	4.6E-03	4.6E-03	8.7E-03
Endrin	6.5E-04	6.5E-04	2.3E-03
Ethylbenzene	4.7E+00	4.7E+00	4.3E+01
Fluoranthene	6.0E+01	6.0E+01	8.0E+00
Fluorene	8.9E+00	8.9E+00	3.9E+00
Heptachlor	1.3E-02	1.3E-02	3.6E-03
Heptachlor epoxide	1.4E-02	1.4E-02	3.6E-03
Hexachlorobenzene	1.6E+01	1.6E+01	3.7E+00
Hexachlorobutadiene	4.6E+00	4.6E+00	9.3E-01
γ-Hexachlorocyclohexane (Lindane)	9.8E-03	9.8E-03	1.6E-02
Hexachloroethane	4.1E+01	4.1E+01	1.2E+01
Indeno(1,2,3-c,d)pyrene	1.3E+01	1.3E+01	4.8E-02
Lead	7.5E+02	7.5E+02	2.5E+00
Mercury (elemental)	5.8E+01	5.8E+01	2.5E-02
Methoxychlor	1.9E+01	1.9E+01	3.0E-03
Methylene chloride	3.4E+01	3.4E+01	2.2E+03
Methyl ethyl ketone	1.3E+01	1.3E+01	1.4E+04
Methyl isobutyl ketone	3.9E+00	3.9E+00	1.7E+02
Methyl mercury	4.1E+01	4.1E+01	3.0E-03
2-Methylnaphthalene	2.5E-01	2.5E-01	2.1E+00
tert-Butyl methyl ether	8.4E+00	8.4E+00	1.8E+03
Molybdenum	2.5E+03	3.9E+03	2.4E+02

Table D. Environmental Screening Levels (ESLs) Deep Soils (>3m bgs)

Groundwater is not a Current or Potential Source of Drinking Water

	¹ Dee	ep Soil	
Chemical	² Residential Land Use (mg/kg)	Commercial/ Industrial Land Use Only (mg/kg)	³ Groundwater (μg/L)
Naphthalene	4.8E+00	4.8E+00	2.4E+01
Nickel	2.6E+02	2.6E+02	8.2E+00
Pentachlorophenol	9.9E+01	9.9E+01	7.9E+00
Perchlorate	5.4E+02	5.4E+02	6.0E+02
Phenanthrene	1.1E+01	1.1E+01	4.6E+00
Phenol	3.9E+00	3.9E+00	2.6E+02
Polychlorinated biphenyls (PCBs)	6.3E+00	6.3E+00	1.4E-02
Pyrene	8.5E+01	8.5E+01	2.0E+00
Selenium	2.5E+03	3.9E+03	5.0E+00
Silver	2.5E+03	3.9E+03	1.9E-01
Styrene	1.5E+01	1.5E+01	1.0E+02
tert-Butyl alcohol	1.1E+02	1.1E+02	1.8E+04
1,1,1,2-Tetrachloroethane	1.6E+01	1.6E+01	9.3E+02
1,1,2,2-Tetrachloroethane	3.4E+00	3.4E+00	1.9E+02
Tetrachloroethene	1.7E+01	1.7E+01	1.2E+02
Thallium	6.2E+01	6.2E+01	4.0E+00
Toluene	9.3E+00	9.3E+00	1.3E+02
Toxaphene	4.2E-04	4.2E-04	2.0E-04
TPH (gasolines)	1.8E+02	1.8E+02	2.1E+02
TPH (middle distillates)	1.8E+02	1.8E+02	2.1E+02
TPH (residual fuels)	5.0E+03	5.0E+03	2.1E+02
1,2,4-Trichlorobenzene	7.6E+00	7.6E+00	2.5E+01
1,1,1-Trichloroethane	7.8E+00	7.8E+00	6.2E+01
1,1,2-Trichloroethane	4.8E+00	4.8E+00	3.5E+02
Trichloroethene	3.3E+01	3.3E+01	3.6E+02
2,4,5-Trichlorophenol	1.8E-01	1.8E-01	1.1E+01
2,4,6-Trichlorophenol	3.2E+01	3.2E+01	9.7E+01
Vanadium	7.7E+02	7.7E+02	1.9E+01
Vinyl chloride	6.6E-01	6.6E-01	3.8E+00
Xylenes	1.1E+01	1.1E+01	1.0E+02
Zinc	2.5E+03	5.0E+03	8.1E+01

Notes:

- 1. Shallow soils defined as soils less than or equal to 3 meters (approximately 10 feet) below ground surface.
- 2. Category "Residential Land Use" generally considered adequate for other sensitive uses.
- 3. Assumes potential discharge of groundwater into a freshwater, marine or estuary surface water system.

Soil ESLs intended to address direct-exposure, groundwater protection, ecologic (urban areas) and nuisance concerns under noted land-use scenarios. Soil gas data should be collected for additional evaluation of potential indoor-air impacts at sites with areas of VOC-contaminated soil.

Groundwater ESLs intended to be address drinking water, surface water, indoor-air and nuisance concerns. **Use in conjunction** with soil gas screening levels to more closely evaluate potential impacts to indoor-air if groundwater screening levels for this concern approached or exceeded.

Aquatic habitat goals for bioaccumulation concerns not considered in selection of groundwater goals.

TPH -Total Petroleum Hydrocarbons. TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g., BTEX, PAHs, oxidizers, etc.).

Table E-1. Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns (volatile chemicals only)

	Residential Land Use	Commercial/Industrial Land Use			
Chemical		sical ate	(µg/L)	(μg/L)	
Acenaphthene	V	S	4.2E+03	4.2E+03	
Acenaphthylene	V	S	(Use soil gas)	(Use soil gas)	
Acetone	V	Ť	5.3E+07	1.5E+08	
Aldrin	NV	S	0.02101	1.02 100	
Anthracene	V	S	4.3E+01	4.3E+01	
Antimony	NV	S	1.02.101	1.02101	
Arsenic	NV	S			
Barium	NV	S			
Benzene	V	Ť	5.4E+02	1.8E+03	
Benzo(a)anthracene	NV	S	0.42102	1.02100	
Benzo(b)fluoranthene	NV	S			
Benzo(k)fluoranthene	NV	S		 	
Benzo(g,h,i)perylene	NV	S			
Benzo(a)pyrene	NV	S		 	
Beryllium	NV	S		 	
1,1-Biphenyl	V	S	(Use soil gas)	(Use soil gas)	
Bis(2-chloroethyl) ether	V	L	6.5E+01	2.2E+02	
Bis(2-chloroisopropyl) ether	V	Ė	(Use soil gas)	(Use soil gas)	
Bis(2-ethylhexyl) phthalate	NV	S	(USE SUII gas)	(Ose soil gas)	
Boron	NV	S			
Bromodichloromethane	V	-	4.75.00	F 6F 102	
		L	1.7E+02	5.6E+02	
Bromoform (Tribromomethane)	NV V	S	5.05.00	4.05.00	
Bromomethane		G	5.8E+02	1.6E+03	
Cadmium	NV	S	0.05.00	0.45.04	
Carbon tetrachloride	V	L	9.3E+00	3.1E+01	
Chlorogrillia	NV	S			
p-Chloroaniline	NV	S	105.01	0.75.04	
Chlorobenzene	V	L	1.3E+04	3.7E+04	
Chloroethane	V	G	8.2E+02	2.7E+03	
Chloroform	V	L	3.3E+02	1.1E+03	
Chloromethane	V	G	4.1E+01	1.4E+02	
2-Chlorophenol	V	L	5.3E+03	1.5E+04	
Chromium (total)	NV	S			
Chromium III	NV	S			
Chromium VI	NV	S	(1.11)	(11	
Chrysene	NV	S	(Use soil gas)	(Use soil gas)	
Cobalt	NV	S			
Copper	NV	S	(1.1 '1)	(1)	
Cyanide	NV	S	(Use soil gas)	(Use soil gas)	
Dibenz(a,h)anthracene	NV	S	4.75.00	5.75.00	
Dibromochloromethane	V	S	1.7E+02	5.7E+02	
1,2-dibromo-3-chloropropane	V	L	(Use soil gas)	(Use soil gas)	
1,2-Dibromoethane	V	S	1.5E+02	5.1E+02	
1,2-Dichlorobenzene	V	L	7.7E+04	1.6E+05	
1,3-Dichlorobenzene	V	L	(Use soil gas)	(Use soil gas)	
1,4-Dichlorobenzene	V	S	3.4E+02	1.1E+03	
3,3-Dichlorobenzidine	NV	S			
Dichlorodiphenyldichloroethane (DDD)	NV	S			
Dichlorodiphenyldichloroethene (DDE)	NV	S			
Dichlorodiphenyltrichloroethane (DDT)	NV	S			
1,1-Dichloroethane	V	L	1.0E+03	3.4E+03	
1,2-Dichloroethane	V	L	2.0E+02	6.9E+02	

Table E-1. Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns (volatile chemicals only)

Chemical	Physical State		(µg/L)	(µg/L)
1,1-Dichloroethene	V	L	6.3E+03	1.8E+04
cis -1,2-Dichloroethene	V	L	6.2E+03	1.7E+04
trans -1,2-Dichloroethene	V	L	6.7E+03	1.9E+04
2,4-Dichlorophenol	NV	S		
1,2-Dichloropropane	V	Ĺ	2.8E+02	9.3E+02
1,3-Dichloropropene	V	L	5.3E+01	1.8E+02
Dieldrin	NV	S		1.02.02
Diethyl phthalate	NV	S		1
Dimethyl phthalate	NV	S		1
2,4-Dimethylphenol	V	S	2.5E+06	7.1E+06
2,4-Dinitrophenol	NV	S	2.02.00	
2,4-Dinitrotoluene	NV	S		1
1,4-Dioxane	NV	L		
Dioxin (2,3,7,8-TCDD)	NV	S		
Endosulfan	NV	S		
Endrin	NV	S		†
Ethylbenzene	V	L	1.7E+05	1.7E+05
Fluoranthene	ŇV	S	1.7 = 100	1.72100
Fluorene	V	S	1.9E+03	1.9E+03
Heptachlor	NV	S	1.02100	1.32100
Heptachlor epoxide	NV	S		
Hexachlorobenzene	NV	S		
Hexachlorobutadiene	NV	S		1
γ-Hexachlorocyclohexane (Lindane)	NV	S		
Hexachloroethane	NV	S		
Indeno(1,2,3-c,d)pyrene	NV	S		1
Lead	NV	S		1
Mercury (elemental)	V	S	(Use soil gas)	(Use soil gas)
Methoxychlor	ŇV	S	(030 3011 gas)	(OSC SOII GAS)
Methylene chloride	V	L	2.4E+03	8.1E+03
Methyl ethyl ketone	V	Ī	2.4E+07	6.8E+07
Methyl isobutyl ketone	V	ī	3.0E+06	8.4E+06
Methyl mercury	ŇV	S	3.0L100	0.42100
2-Methylnaphthalene	V	S	2.6E+04	2.6E+04
tert -Butyl methyl ether	V	L	2.4E+04	8.0E+04
Molybdenum	NV	S	2.76104	0.02104
Naphthalene	V	S	3.2E+03	1.1E+04
Nickel	NV	S	0.22100	1.12104
Pentachlorophenol	NV	S		
Perchlorate	NV	S		
Phenanthrene	V	S	(Use soil gas)	(Use soil gas)
Phenol	NV	S	(030 3011 gas)	(OSC SOII GAS)
Polychlorinated biphenyls (PCBs)	NV	S		
Pyrene	V	S	1.4E+02	1.4E+02
Selenium	NV	S	1.76702	1.76702
Silver	NV	S		
Styrene	V	L	3.1E+05	3.1E+05
tert-Butyl alcohol	V	-	(Use soil gas)	(Use soil gas)
1,1,1,2-Tetrachloroethane	V	L	(Use soil gas)	(Use soil gas)
1,1,2,2-Tetrachloroethane	V	-	1.9E+02	6.4E+02
Tetrachloroethene	V	L		
Thallium	NV	S	1.2E+02	4.2E+02

Table E-1. Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns (volatile chemicals only)

			Residential Land Use	Commercial/Industrial Land Use
Chemical		sical ate	(µg/L)	(µg/L)
Toluene	V	L	3.8E+05	5.3E+05
Toxaphene	NV	S		
TPH (gasolines)	V	L	(Use soil gas)	(Use soil gas)
TPH (middle distillates)	V	L	(Use soil gas)	(Use soil gas)
TPH (residual fuels)	NV	L/S		
1,2,4-Trichlorobenzene	V	L	2.5E+03	7.1E+03
1,1,1-Trichloroethane	V	L	1.3E+05	3.6E+05
1,1,2-Trichloroethane	V	L	3.5E+02	1.2E+03
Trichloroethene	V	L	5.3E+02	1.8E+03
2,4,5-Trichlorophenol	V	S	8.3E+05	1.2E+06
2,4,6-Trichlorophenol	NV	S		
Vanadium	NV	S		
Vinyl chloride	V	G	3.8E+00	1.3E+01
Xylenes	V	L	1.6E+05	1.6E+05
Zinc	NV	S		

Notes:

High permeability soil: One meter dry sandy soil (92% sand, 5% silt, 3% clay) over one meter moist clayey loam (33% sand, 34% silt, 33% clay).

Screening levels calculated using spreadhseet provided with *User's Guide for the Johnson and Ettinger Indoor Air model (1991) for Subsurface Vapor Intrusion Into Buildings (USEPA 2003).* Assumed vadose-zone thickness/depth to groundwater three meters.

Physical state of chemical at ambient conditions (V - volatile, NV - nonvolatile, S -id, L - liquid, G - gas).

Chemical considered to be volatile if Henry's Law constant (atm m3/mole) >10⁻⁵ and molecular weight <200.

Dibromochloromethane, dibromochloropropane and pyrene considered volatile for purposes of modeling (USEPA 2004).

Target cancer risk = 1E-06, Target Hazard Quotient = 0.2

APPENDIX G

Laboratory Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-33463-1 Client Project/Site: Keller Telegraph

For:

Dominion Due Diligence Group 4121 Cox Rd Suite 200 Glen Allen, Virginia 23060

Attn: Rachel Posner

Authorized for release by: 2/25/2011 5:26 PM Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

Designee for Surinder Sidhu Customer Service Manager surinder.sidhu@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

4

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	39
QC Association	83
Chronicle	87
Certification Summary	91
Method Summary	92
Sample Summary	93
Chain of Custody	94
Sample Receipt Checklist	95

6

7

9

10

12

13

Qualifier Definition/Glossary

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
F	MS or MSD exceeds the control limits

Glossary

Glossary Description

Listed under the "D" column to designate that the result is reported on a dry weight basis.

6

•

4

Ę

6

7

8

10

11

13

Case Narrative

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Job ID: 720-33463-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-33463-1

Comments

No additional comments.

Receipt

One or more containers for the following sample B2 (2) broken ,B3 (1)broken ,B5 (2), B4 (3) broken, B7 (3) broken; were received broken or leaking: Sample was split from one liter bottle for B4, B7 for GAS/BTEX/MTBE.

No analysis marked for trip blank. Trip balnk was analyszed per client request.

Received only 1 unpreserved amber and 3 voas for B-6 water logged for vocs, DRO and 8270 Sim .

All other samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following sample submitted for volatiles analysis were received with insufficient preservation (pH >2): (720-33515-2 MS), (720-33515-2 MSD), GWTS-EFF-004 (720-33515-2). Batch 86641.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C SIM: The following sample(s) was diluted due to the abundance of non-target analytes: C3-5 (720-33471-8). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

GC Semi VOA

Method(s) 8015B: The matrix spike duplicate (MSD) recovery for batch 86590 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Organic Prep

Method(s) 3510C: Limited sample

Method(s) 3510C: limited sample due to extremely heavy sediment

Method(s) 3510C: Very limited sample provided and with heavy sedimentation.

No other analytical or quality issues were noted.

TestAmerica Job ID: 720-33463-1

3

0

0

_

4 4

12

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

					La	b Sample	ID: 720-33463-1
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
20		4.9		ug/Kg		8260B	Total/NA
					La	b Sample	ID: 720-33463-2
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
5.3		4.9		ug/Kg	1	8260B	Total/NA
					La	b Sample	ID: 720-33463-
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
38		4.8		ug/Kg	1	8260B	Total/NA
					La	b Sample	ID: 720-33463-4
					La	b Sample	ID: 720-33463-5
					La	b Sample	ID: 720-33463-6
					La	b Sample	ID: 720-33463-7
					La	b Sample	ID: 720-33463-8
					La	b Sample	ID: 720-33463-9
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Result 120	Qualifier	1.0	MDL	Unit ug/L	Dil Fac	Method 8260B	Prep Type Total/NA
	Qualifier		MDL		2	8260B	Total/NA
120	Qualifier		MDL	ug/L	Lab	8260B	
120		1.0		ug/L	Lab	8260B Sample II	Total/NA D: 720-33463-10
120		1.0		ug/L Unit	Lab Dil Fac	8260B Sample II Method 8260B	Total/NA D: 720-33463-10 Prep Type
Result Result		1.0 RL 0.50		Unit ug/L	Lab Dil Fac	Sample II Method 8260B Sample II D Method Method	Prep Type Total/NA 2: 720-33463-10 Prep Type Total/NA 2: 720-33463-11
Result 16	Qualifier	RL 0.50	MDL	Unit ug/L	Lab Dil Fac 1	Sample II Method 8260B Sample II	Prep Type Total/NA 2: 720-33463-10 Prep Type Total/NA 2: 720-33463-11
Result Result	Qualifier	1.0 RL 0.50	MDL	Unit ug/L	Lab Dil Fac 1 Lab Dil Fac	Sample II Method 8260B Sample II D Method Method	Prep Type Total/NA 2: 720-33463-10 Prep Type Total/NA 2: 720-33463-11
Result Result 20	Qualifier	RL 0.50	MDL	Unit ug/L Unit ug/L	Lab Dil Fac 1 Lab Dil Fac 1	Sample II Method 8260B Sample II Method 8260B	Prep Type Total/NA 2: 720-33463-10 Prep Type Total/NA 2: 720-33463-10 Prep Type Total/NA
Result 16 Result 20 150	Qualifier	RL 0.50 0.50 0.50	MDL	Unit ug/L Unit ug/L ug/L ug/L	Lab Dil Fac 1 Lab Dil Fac 1 1	8260B Sample II Method 8260B Sample II Method 8260B 8260B 8260B	Prep Type Total/NA 2: 720-33463-10 Prep Type Total/NA Prep Type Total/NA Total/NA
	Result Result	Result Qualifier 5.3 Result Qualifier 38	Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL MDL Unit ug/Kg Result Qualifier RL MDL Unit ug/Kg Result 38 4.8 Result ug/Kg Res	La Result Qualifier RL MDL Unit	Result Qualifier RL MDL Unit Ug/Kg 1 8260B

Detection Summary

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: B-6 (Continued)	(Continued) Lab Sample ID: 720-33				720-33463-12
Analyte	Posult Qualifier	DI	MDI Unit	Dil Fac D Mothod	Pron Typo

AnalyteResult
TolueneQualifierRLMDL
0.50UnitDil Fac
ug/LDMethod
8260BPrep TypeTotal/NA

Client Sample ID: B-4 Lab Sample ID: 720-33463-13

No Detections.

Client Sample ID: B-5 Lab Sample ID: 720-33463-14

No Detections.

Client Sample ID: B-7

Lab Sample ID: 720-33463-15

No Detections.

TestAmerica San Francisco 02/25/2011

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-1

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Client Sample ID: B-3
Date Collected: 02/16/11 09:40

Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Acetone	ND	49	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Benzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Dichlorobromomethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Bromobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Chlorobromomethane	ND	20	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Bromoform	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Bromomethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
2-Butanone (MEK)	ND	49	ug/Kg		02/24/11 08:30	02/24/11 19:21	
n-Butylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
sec-Butylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
ert-Butylbenzene	ND	4.9			02/24/11 08:30	02/24/11 19:21	
Carbon disulfide			ug/Kg		02/24/11 08:30	02/24/11 19:21	
Carbon tetrachloride	ND ND	4.9 4.9	ug/Kg			02/24/11 19:21	
			ug/Kg		02/24/11 08:30		
Chlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Chloroethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Chloroform	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Chloromethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
2-Chlorotoluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
-Chlorotoluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Chlorodibromomethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,2-Dichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,3-Dichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,4-Dichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,3-Dichloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,1-Dichloropropene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,2-Dibromo-3-Chloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
thylene Dibromide	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Dibromomethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Dichlorodifluoromethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,1-Dichloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,2-Dichloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
.1-Dichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
is-1,2-Dichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
rans-1,2-Dichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,2-Dichloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
is-1,3-Dichloropropene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
rans-1,3-Dichloropropene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
thylbenzene	ND	4.9				02/24/11 19:21	
			ug/Kg		02/24/11 08:30		
lexachlorobutadiene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
-Hexanone	ND	49	ug/Kg		02/24/11 08:30	02/24/11 19:21	
sopropylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
-Isopropyltoluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
Methylene Chloride	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
-Methyl-2-pentanone (MIBK)	ND	49	ug/Kg		02/24/11 08:30	02/24/11 19:21	
laphthalene	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 19:21	
I-Propylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
tyrene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	
,1,1,2-Tetrachloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 19:21	

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-3

Dibenz(a,h)anthracene

Lab Sample ID: 720-33463-1

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Date Collected: 02/16/11 09:40 Date Received: 02/17/11 17:10

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	20		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
Toluene	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,2,3-Trichlorobenzene	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,2,4-Trichlorobenzene	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,1,1-Trichloroethane	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,1,2-Trichloroethane	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
Trichloroethene	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
Trichlorofluoromethane	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,2,3-Trichloropropane	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,2,4-Trimethylbenzene	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
1,3,5-Trimethylbenzene	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
Vinyl acetate	ND		49		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
Vinyl chloride	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
Xylenes, Total	ND		9.8		ug/Kg		02/24/11 08:30	02/24/11 19:21	1
2,2-Dichloropropane	ND		4.9		ug/Kg		02/24/11 08:30	02/24/11 19:21	1

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	78	45 - 131	02/24/11 08:30	02/24/11 19:21	1
1,2-Dichloroethane-d4 (Surr)	108	60 - 140	02/24/11 08:30	02/24/11 19:21	1
Toluene-d8 (Surr)	92	58 - 140	02/24/11 08:30	02/24/11 19:21	1

Method: 8270C SIM - PAHs by	y GCMS (SIM)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Acenaphthene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Acenaphthylene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Fluorene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Phenanthrene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Anthracene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Benzo[a]anthracene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Chrysene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Benzo[a]pyrene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Benzo[b]fluoranthene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Benzo[k]fluoranthene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Benzo[g,h,i]perylene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Indeno[1,2,3-cd]pyrene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Fluoranthene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1
Pyrene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 13:46	1

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81	33 - 120	02/22/11 15:32	02/23/11 13:46	1
Terphenyl-d14	89	35 - 146	02/22/11 15:32	02/23/11 13:46	1

5.0

ug/Kg

ND

Method: 8015B - Nonhalogenat	ed Organics usi	ng GC/FID	-Modified (Dies	el Range	Organics)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		0.99		mg/Kg		02/22/11 15:34	02/23/11 12:23	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	100		31 - 114				02/22/11 15:34	02/23/11 12:23	1

02/23/11 13:46

02/22/11 15:32

3

7

9

10 4 4

12

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-2

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Client Sample ID: B-1 Date Collected: 02/16/11 11:30 Date Received: 02/17/11 17:10

Method: 8260B - Volatile Organi Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Acetone	ND	49	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Benzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Dichlorobromomethane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Bromobenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Chlorobromomethane	ND	20	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Bromoform	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Bromomethane	ND	9.8	ug/Kg		02/22/11 08:47	02/22/11 14:08	
2-Butanone (MEK)	ND	49	ug/Kg		02/22/11 08:47	02/22/11 14:08	
n-Butylbenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
sec-Butylbenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
tert-Butylbenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Carbon disulfide	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Carbon tetrachloride	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Chlorobenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Chloroethane	ND	9.8	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Chloroform	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Chloromethane	ND	9.8	ug/Kg		02/22/11 08:47	02/22/11 14:08	
2-Chlorotoluene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
4-Chlorotoluene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Chlorodibromomethane	ND	4.9	ug/Kg ug/Kg		02/22/11 08:47	02/22/11 14:08	
	ND				02/22/11 08:47	02/22/11 14:08	
1,2-Dichlorobenzene	ND ND	4.9	ug/Kg				
1,3-Dichlorobenzene		4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,4-Dichlorobenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,3-Dichloropropane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,1-Dichloropropene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,2-Dibromo-3-Chloropropane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Ethylene Dibromide	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Dibromomethane	ND	9.8	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Dichlorodifluoromethane	ND	9.8	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,1-Dichloroethane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,2-Dichloroethane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,1-Dichloroethene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
cis-1,2-Dichloroethene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
trans-1,2-Dichloroethene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,2-Dichloropropane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
cis-1,3-Dichloropropene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
trans-1,3-Dichloropropene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Ethylbenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Hexachlorobutadiene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
2-Hexanone	ND	49	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Isopropylbenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
4-Isopropyltoluene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Methylene Chloride	ND	9.8	ug/Kg		02/22/11 08:47	02/22/11 14:08	
4-Methyl-2-pentanone (MIBK)	ND	49	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Naphthalene	ND	9.5	ug/Kg		02/24/11 08:30	02/24/11 14:15	
N-Propylbenzene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
Styrene	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,1,1,2-Tetrachloroethane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	
1,1,2,2-Tetrachloroethane	ND	4.9	ug/Kg		02/22/11 08:47	02/22/11 14:08	

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-2

02/22/11 08:47

02/22/11 15:32

02/22/11 14:08

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Date Collected: 02/16/11 11:30 Date Received: 02/17/11 17:10

Client Sample ID: B-1

Toluene-d8 (Surr)

Terphenyl-d14

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Qualifier Dil Fac Analyte Result RL MDL Unit Prepared Analyzed Tetrachloroethene 5.3 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 Toluene ND 4.9 02/22/11 08:47 02/22/11 14:08 ug/Kg 1 1,2,3-Trichlorobenzene ND 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 1 1,2,4-Trichlorobenzene ND 4.9 02/22/11 08:47 02/22/11 14:08 ug/Kg 1,1,1-Trichloroethane ND 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 1,1,2-Trichloroethane ND 4.9 02/22/11 08:47 02/22/11 14:08 ug/Kg Trichloroethene ND 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 Trichlorofluoromethane ND 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 1,2,3-Trichloropropane ND 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 ND ug/Kg 1,1,2-Trichloro-1,2,2-trifluoroethane 4.9 02/22/11 08:47 02/22/11 14:08 ND 4.9 1,2,4-Trimethylbenzene 02/22/11 08:47 02/22/11 14:08 ug/Kg 1,3,5-Trimethylbenzene ND 4.9 02/22/11 14:08 ug/Kg 02/22/11 08:47 ND Vinyl acetate 49 02/22/11 14:08 02/22/11 08:47 ug/Kg Vinyl chloride ND 4.9 02/22/11 08:47 02/22/11 14:08 ug/Kg ND Xylenes, Total 9.5 ug/Kg 02/24/11 08:30 02/24/11 14:15 2,2-Dichloropropane ND 4.9 ug/Kg 02/22/11 08:47 02/22/11 14:08 Qualifier Dil Fac Surrogate % Recovery Limits Prepared Analyzed 4-Bromofluorobenzene 106 45 - 131 02/22/11 08:47 02/22/11 14:08 4-Bromofluorobenzene 82 45 - 131 02/24/11 08:30 02/24/11 14:15 1 1,2-Dichloroethane-d4 (Surr) 99 60 - 140 02/22/11 08:47 02/22/11 14:08 1,2-Dichloroethane-d4 (Surr) 94 60 - 140 02/24/11 08:30 02/24/11 14:15 1

Toluene-d8 (Surr)	89		58 - 140				02/24/11 08:30	02/24/11 14:15	1
- Method: 8270C SIM - PAHs	by GCMS (SIM)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Acenaphthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Acenaphthylene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Fluorene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Phenanthrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Benzo[a]anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Chrysene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Benzo[a]pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:09	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	60		33 - 120				02/22/11 15:32	02/23/11 14:09	1

58 - 140

114

89

Method: 8015B - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Stoddard Solvent Range Organics	ND ND	1.0	mg/Kg		02/22/11 15:34	02/23/11 12:48	1			
(C9-C13)										

Page 10 of 95

35 - 146

02/23/11 14:09

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-1 Lab Sample ID: 720-33463-2

Date Collected: 02/16/11 11:30 Matrix: Solid

Date Received: 02/17/11 17:10

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	91		31 - 114	02/22/11 15:34	02/23/11 12:48	1

Client Sample ID: B-2

Lab Sample ID: 720-33463-3

Date Collected: 02/16/11 12:55

Matrix: Solid

Date Received: 02/17/11 17:10

Analyte	Result Qualifie	er RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	4.8	ī	ug/Kg		02/22/11 08:47	02/22/11 19:52	-
Acetone	ND	48	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Benzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Dichlorobromomethane	ND	4.8	ı	ug/Kg		02/22/11 08:47	02/22/11 19:52	
Bromobenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Chlorobromomethane	ND	19	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Bromoform	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Bromomethane	ND	9.7	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
2-Butanone (MEK)	ND	48	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
n-Butylbenzene	ND	4.8	i	ug/Kg		02/22/11 08:47	02/22/11 19:52	
sec-Butylbenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
tert-Butylbenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Carbon disulfide	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
Carbon tetrachloride	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Chlorobenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Chloroethane	ND	9.7	i	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Chloroform	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Chloromethane	ND	9.7	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
2-Chlorotoluene	ND	4.8	ı	ug/Kg		02/22/11 08:47	02/22/11 19:52	
4-Chlorotoluene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Chlorodibromomethane	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
1,2-Dichlorobenzene	ND	4.8	ı	ug/Kg		02/22/11 08:47	02/22/11 19:52	
1,3-Dichlorobenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
1,4-Dichlorobenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
1,3-Dichloropropane	ND	4.8	i	ug/Kg		02/22/11 08:47	02/22/11 19:52	
1,1-Dichloropropene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
1,2-Dibromo-3-Chloropropane	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
Ethylene Dibromide	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
Dibromomethane	ND	9.7	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Dichlorodifluoromethane	ND	9.7	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
1,1-Dichloroethane	ND	4.8	i	ug/Kg		02/22/11 08:47	02/22/11 19:52	· · · · · · · ·
1,2-Dichloroethane	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
1,1-Dichloroethene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
cis-1,2-Dichloroethene	ND	4.8	ı	ug/Kg		02/22/11 08:47	02/22/11 19:52	
trans-1,2-Dichloroethene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
1,2-Dichloropropane	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
cis-1,3-Dichloropropene	ND	4.8	i	ug/Kg		02/22/11 08:47	02/22/11 19:52	
trans-1,3-Dichloropropene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
Ethylbenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Hexachlorobutadiene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	
2-Hexanone	ND	48	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	•
Isopropylbenzene	ND	4.8	ι	ug/Kg		02/22/11 08:47	02/22/11 19:52	1
4-Isopropyltoluene	ND	4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	

TestAmerica Job ID: 720-33463-1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-2

Lab Sample ID: 720-33463-3

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Date Collected: 02/16/11 12:55 Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		9.7		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
4-Methyl-2-pentanone (MIBK)	ND		48		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Naphthalene	ND		9.7		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
N-Propylbenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Styrene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,1,1,2-Tetrachloroethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,1,2,2-Tetrachloroethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Tetrachloroethene	38		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Toluene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,2,3-Trichlorobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,2,4-Trichlorobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,1,1-Trichloroethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,1,2-Trichloroethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Trichloroethene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Trichlorofluoromethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,2,3-Trichloropropane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,2,4-Trimethylbenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
1,3,5-Trimethylbenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Vinyl acetate	ND		48		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Vinyl chloride	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Xylenes, Total	ND		9.7		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
2,2-Dichloropropane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 19:52	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	85		45 - 131				02/22/11 08:47	02/22/11 19:52	1
1,2-Dichloroethane-d4 (Surr)	97		60 - 140				02/22/11 08:47	02/22/11 19:52	1
Toluene-d8 (Surr)	96		58 - 140				02/22/11 08:47	02/22/11 19:52	1

Toluene-d8 (Surr)	96	58 - 140				02/22/11 08:47	02/22/11 19:52	1
Method: 8270C SIM - PAHs	by GCMS (SIM)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Acenaphthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Acenaphthylene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Fluorene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Phenanthrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Anthracene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Benzo[a]anthracene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Chrysene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Benzo[a]pyrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Benzo[b]fluoranthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Benzo[k]fluoranthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Benzo[g,h,i]perylene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Indeno[1,2,3-cd]pyrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Fluoranthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Pyrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Dibenz(a,h)anthracene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 14:32	1
Surrogate	% Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	54	33 - 120				02/22/11 15:32	02/23/11 14:32	1
Terphenyl-d14	74	35 - 146				02/22/11 15:32	02/23/11 14:32	1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-2 Lab Sample ID: 720-33463-3

Date Collected: 02/16/11 12:55 Matrix: Solid

Date Received: 02/17/11 17:10

Method: 8015B - Nonhalogenate	ed Organics usi	ng GC/FID	-Modified (Dies	el Range Organic	s)			
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		1.0	mg/Kg		02/22/11 15:34	02/23/11 13:12	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
p-Terphenyl	101		31 - 114			02/22/11 15:34	02/23/11 13:12	1

Client Sample ID: B-6 Lab Sample ID: 720-33463-4

Date Collected: 02/16/11 16:00

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Received: 02/17/11 17:10

1,2-Dibromo-3-Chloropropane

Ethylene Dibromide

Dichlorodifluoromethane

Dibromomethane

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

Ethylbenzene

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Acetone	ND		48		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Benzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Dichlorobromomethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Bromobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Chlorobromomethane	ND		19		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Bromoform	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Bromomethane	ND		9.6		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
2-Butanone (MEK)	ND		48		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
n-Butylbenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
sec-Butylbenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
tert-Butylbenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Carbon disulfide	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Carbon tetrachloride	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Chlorobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Chloroethane	ND		9.6		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Chloroform	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Chloromethane	ND		9.6		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
2-Chlorotoluene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
4-Chlorotoluene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
Chlorodibromomethane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
1,2-Dichlorobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
1,3-Dichlorobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
1,4-Dichlorobenzene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
1,3-Dichloropropane	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1
1,1-Dichloropropene	ND		4.8		ug/Kg		02/22/11 08:47	02/22/11 20:21	1

4.8

4.8

9.6

9.6

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

4.8

Page 13 of 95

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

02/22/11 08:47

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

TestAmerica San Francisco 02/25/2011

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

02/22/11 20:21

.

TestAmerica Job ID: 720-33463-1

5

6

8

Matrix: Solid

9

11

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-6

Lab Sample ID: 720-33463-4

02/22/11 08:47

02/22/11 20:21

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Date Collected: 02/16/11 16:00 Date Received: 02/17/11 17:10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier Dil Fac RL MDL Unit Prepared Analyzed Hexachlorobutadiene ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 2-Hexanone ND 48 02/22/11 08:47 02/22/11 20:21 ug/Kg 1 Isopropylbenzene ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 4-Isopropyltoluene ND 4.8 02/22/11 08:47 02/22/11 20:21 ug/Kg Methylene Chloride ND 9.6 ug/Kg 02/22/11 08:47 02/22/11 20:21 4-Methyl-2-pentanone (MIBK) ND 48 02/22/11 08:47 02/22/11 20:21 ug/Kg ND 9.6 Naphthalene ug/Kg 02/22/11 08:47 02/22/11 20:21 N-Propylbenzene ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 Styrene ND 4.8 02/22/11 20:21 ug/Kg 02/22/11 08:47 ND 1,1,1,2-Tetrachloroethane 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 ND 1,1,2,2-Tetrachloroethane 4.8 02/22/11 08:47 02/22/11 20:21 ug/Kg ND Tetrachloroethene 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 Toluene ND 02/22/11 08:47 02/22/11 20:21 4.8 ug/Kg 1,2,3-Trichlorobenzene ND 4.8 02/22/11 08:47 02/22/11 20:21 ug/Kg ND 1,2,4-Trichlorobenzene 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 1,1,1-Trichloroethane ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 1,1,2-Trichloroethane ND 4.8 02/22/11 20:21 ug/Kg 02/22/11 08:47 1 Trichloroethene ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 Trichlorofluoromethane ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 ND 1,2,3-Trichloropropane 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 1,1,2-Trichloro-1,2,2-trifluoroethane ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 1,2,4-Trimethylbenzene ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 1,3,5-Trimethylbenzene ND 4.8 ug/Kg 02/22/11 08:47 02/22/11 20:21 Vinyl acetate ND 48 ug/Kg 02/22/11 08:47 02/22/11 20:21 Vinyl chloride ND 4.8 02/22/11 08:47 02/22/11 20:21 ug/Kg ND 9.6 Xylenes, Total 02/22/11 08:47 02/22/11 20:21 ug/Kg

l	Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene	96		45 - 131	02/22/11 08:47	02/22/11 20:21	1
ı	1,2-Dichloroethane-d4 (Surr)	108		60 - 140	02/22/11 08:47	02/22/11 20:21	1
	Toluene-d8 (Surr)	106		58 - 140	02/22/11 08:47	02/22/11 20:21	1

4.8

ug/Kg

ND

Method: 8270C SIM - PAHs by GCMS (SIM)

2,2-Dichloropropane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Acenaphthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Acenaphthylene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Fluorene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Phenanthrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Benzo[a]anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Chrysene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Benzo[a]pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 14:56	1

TestAmerica San Francisco 02/25/2011

3

67

10

12

15

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-6 Lab Sample ID: 720-33463-4

Date Collected: 02/16/11 16:00 Matrix: Solid

Date Received: 02/17/11 17:10

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74	<u> </u>	33 - 120	02/22/11 15:32	02/23/11 14:56	1
Terphenyl-d14	82		35 - 146	02/22/11 15:32	02/23/11 14:56	1

Method: 8015B - Nonl	halogenated Organics usi	ng GC/FID	-Modified (Dies	el Range	Organics	s)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Org (C9-C13)	ganics ND		1.0		mg/Kg		02/22/11 15:34	02/23/11 13:36	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	98		31 - 114				02/22/11 15:34	02/23/11 13:36	1

Lab Sample ID: 720-33463-5 Client Sample ID: B-4

Date Collected: 02/17/11 09:50 Matrix: Solid

Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Acetone	ND		48		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Benzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Dichlorobromomethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Bromobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Chlorobromomethane	ND		19		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Bromoform	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Bromomethane	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
2-Butanone (MEK)	ND		48		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
n-Butylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
sec-Butylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
tert-Butylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Carbon disulfide	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Carbon tetrachloride	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Chlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Chloroethane	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Chloroform	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Chloromethane	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
2-Chlorotoluene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
4-Chlorotoluene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Chlorodibromomethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2-Dichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,3-Dichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,4-Dichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,3-Dichloropropane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1-Dichloropropene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2-Dibromo-3-Chloropropane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Ethylene Dibromide	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Dibromomethane	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Dichlorodifluoromethane	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1-Dichloroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2-Dichloroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1-Dichloroethene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
cis-1,2-Dichloroethene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
trans-1,2-Dichloroethene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1

TestAmerica Job ID: 720-33463-1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-5

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Client Sample ID: B-4
Date Collected: 02/17/11 09:50
Date Received: 02/17/11 17:10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
cis-1,3-Dichloropropene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
trans-1,3-Dichloropropene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Ethylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Hexachlorobutadiene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
2-Hexanone	ND		48		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Isopropylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
4-Isopropyltoluene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Methylene Chloride	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
4-Methyl-2-pentanone (MIBK)	ND		48		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Naphthalene	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
N-Propylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Styrene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1,1,2-Tetrachloroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1,2,2-Tetrachloroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Tetrachloroethene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Toluene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2,3-Trichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2,4-Trichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1,1-Trichloroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1,2-Trichloroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Trichloroethene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Trichlorofluoromethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2,3-Trichloropropane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,2,4-Trimethylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
1,3,5-Trimethylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Vinyl acetate	ND		48		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Vinyl chloride	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Xylenes, Total	ND		9.6		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
2,2-Dichloropropane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 15:03	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	76		45 - 131				02/24/11 08:30	02/24/11 15:03	

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	76	45 - 131	02/24/11 08:30	02/24/11 15:03	1
1,2-Dichloroethane-d4 (Surr)	96	60 - 140	02/24/11 08:30	02/24/11 15:03	1
Toluene-d8 (Surr)	87	58 - 140	02/24/11 08:30	02/24/11 15:03	1

Method: 8270C SIM - PAHs by GCMS (SIM)

MICHIOG. 027 00 OIM - I ALIS D	y Colvio (Cilvi)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Acenaphthene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Acenaphthylene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Fluorene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Phenanthrene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Anthracene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Benzo[a]anthracene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Chrysene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Benzo[a]pyrene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Benzo[b]fluoranthene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Benzo[k]fluoranthene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Benzo[g,h,i]perylene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1

TestAmerica San Francisco 02/25/2011

4

_

1

9

11

13

Ш

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-4

Lab Sample ID: 720-33463-5

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Date Collected: 02/17/11 09:50 Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Fluoranthene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Pyrene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Dibenz(a,h)anthracene	ND		4.9		ug/Kg		02/22/11 15:32	02/23/11 15:19	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	59		33 - 120				02/22/11 15:32	02/23/11 15:19	1
Terphenyl-d14	86		35 - 146				02/22/11 15:32	02/23/11 15:19	1

Method: 8015B - Nonhalogenated Analyte	•	ng GC/FID - Qualifier	-Modified (Dies RL	ei Range MDL	Unit) D	Prepared	pared Analyzed		
Stoddard Solvent Range Organics (C9-C13)	ND		0.99		mg/Kg		02/22/11 15:34	02/23/11 14:00	1	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
p-Terphenyl	102		31 - 114				02/22/11 15:34	02/23/11 14:00	1	

Client Sample ID: B-5 Lab Sample ID: 720-33463-6 Date Collected: 02/17/11 09:20

Matrix: Solid Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Acetone	ND	49	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Benzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Dichlorobromomethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Bromobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Chlorobromomethane	ND	20	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Bromoform	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Bromomethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
2-Butanone (MEK)	ND	49	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
n-Butylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
sec-Butylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
tert-Butylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Carbon disulfide	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Carbon tetrachloride	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Chlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Chloroethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Chloroform	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Chloromethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
2-Chlorotoluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
4-Chlorotoluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Chlorodibromomethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2-Dichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,3-Dichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,4-Dichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,3-Dichloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1-Dichloropropene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2-Dibromo-3-Chloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Ethylene Dibromide	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Dibromomethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-5 Lab Sample ID: 720-33463-6

Date Collected: 02/17/11 09:20 Matrix: Solid

Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1-Dichloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2-Dichloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1-Dichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
cis-1,2-Dichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
trans-1,2-Dichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2-Dichloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
cis-1,3-Dichloropropene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
trans-1,3-Dichloropropene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Ethylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Hexachlorobutadiene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
2-Hexanone	ND	49	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Isopropylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
4-Isopropyltoluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Methylene Chloride	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
4-Methyl-2-pentanone (MIBK)	ND	49	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Naphthalene	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
N-Propylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Styrene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1,1,2-Tetrachloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1,2,2-Tetrachloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Tetrachloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Toluene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2,3-Trichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2,4-Trichlorobenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1,1-Trichloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1,2-Trichloroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Trichloroethene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Trichlorofluoromethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2,3-Trichloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,2,4-Trimethylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
1,3,5-Trimethylbenzene	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Vinyl acetate	ND	49	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Vinyl chloride	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Xylenes, Total	ND	9.8	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
2,2-Dichloropropane	ND	4.9	ug/Kg		02/24/11 08:30	02/24/11 15:31	1
Surrogate	% Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	75	45 - 131			02/24/11 08:30	02/24/11 15:31	1
1,2-Dichloroethane-d4 (Surr)	86	60 - 140			02/24/11 08:30	02/24/11 15:31	1
Toluene-d8 (Surr)	87	58 - 140			02/24/11 08:30	02/24/11 15:31	1

Surrogate	% Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
4-Bromofluorobenzene	75		45 - 131	02/24/1	1 08:30	02/24/11 15:31	1
1,2-Dichloroethane-d4 (Surr)	86		60 - 140	02/24/1	1 08:30	02/24/11 15:31	1
Toluene-d8 (Surr)	87		58 - 140	02/24/1	1 08:30	02/24/11 15:31	1

Method: 8270C SIM - PAHs by GCMS (SIM)	Method:	8270C	SIM -	PAHs by	v GCMS	(SIM)
--	---------	-------	-------	---------	--------	-------

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Acenaphthene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Acenaphthylene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Fluorene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Phenanthrene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Anthracene	ND	5.0	ug/Kg		02/22/11 15:32	02/23/11 15:42	1

TestAmerica Job ID: 720-33463-1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Date Collected: 02/17/11 09:20

Date Received: 02/17/11 17:10

Client Sample ID: B-5

Surrogate

2-Fluorobiphenyl

Terphenyl-d14

Lab Sample ID: 720-33463-6

Prepared

02/22/11 15:32

02/22/11 15:32 02/23/11 15:42

TestAmerica Job ID: 720-33463-1

Analyzed

02/23/11 15:42

Matrix: Solid

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Chrysene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Benzo[a]pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Fluoranthene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Pyrene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		02/22/11 15:32	02/23/11 15:42	1

Limits

33 - 120

35 - 146

% Recovery Qualifier

71

87

Method: 8015B - Nonhalogenate	d Organics usi	ng GC/FID -	Modified (Dies	el Range	Organics)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		1.0		mg/Kg		02/22/11 15:34	02/23/11 14:25	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	101		31 - 114				02/22/11 15:34	02/23/11 14:25	1

Client Sample ID: B-7 Lab Sample ID: 720-33463-7 Date Collected: 02/17/11 11:45 **Matrix: Solid** Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Acetone	ND		48		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Benzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Dichlorobromomethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Bromobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Chlorobromomethane	ND		19		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Bromoform	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Bromomethane	ND		9.5		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
2-Butanone (MEK)	ND		48		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
n-Butylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
sec-Butylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
tert-Butylbenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Carbon disulfide	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Carbon tetrachloride	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Chlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Chloroethane	ND		9.5		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Chloroform	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Chloromethane	ND		9.5		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
2-Chlorotoluene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
4-Chlorotoluene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
Chlorodibromomethane	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
1,2-Dichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1
1,3-Dichlorobenzene	ND		4.8		ug/Kg		02/24/11 08:30	02/24/11 16:00	1

Page 19 of 95

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-7

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Client Sample ID: B-7
Date Collected: 02/17/11 11:45

Date Received: 02/17/11 17:10

Analyte		Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,3-Dichloropropane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,1-Dichloropropene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,2-Dibromo-3-Chloropropane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Ethylene Dibromide	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Dibromomethane	ND		9.5	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Dichlorodifluoromethane	ND		9.5	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,1-Dichloroethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,2-Dichloroethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,1-Dichloroethene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
cis-1,2-Dichloroethene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
rans-1,2-Dichloroethene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,2-Dichloropropane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
cis-1,3-Dichloropropene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
trans-1,3-Dichloropropene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Ethylbenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Hexachlorobutadiene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
2-Hexanone	ND		48	ug/Kg	02/24/11 08:30	02/24/11 16:00	
sopropylbenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
I-Isopropyltoluene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Methylene Chloride	ND		9.5	ug/Kg	02/24/11 08:30	02/24/11 16:00	
I-Methyl-2-pentanone (MIBK)	ND		48	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Naphthalene	ND		9.5	ug/Kg	02/24/11 08:30	02/24/11 16:00	
N-Propylbenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Styrene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
,1,1,2-Tetrachloroethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
,1,2,2-Tetrachloroethane	ND		4.8		02/24/11 08:30	02/24/11 16:00	
	ND ND			ug/Kg	02/24/11 08:30		
Fetrachloroethene Foluene			4.8	ug/Kg		02/24/11 16:00	
	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,2,3-Trichlorobenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,2,4-Trichlorobenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,1,1-Trichloroethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,1,2-Trichloroethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Γrichloroethene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Trichlorofluoromethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,2,3-Trichloropropane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
,2,4-Trimethylbenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
,3,5-Trimethylbenzene	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
/inyl acetate	ND		48	ug/Kg	02/24/11 08:30	02/24/11 16:00	
/inyl chloride	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
(ylenes, Total	ND		9.5	ug/Kg	02/24/11 08:30	02/24/11 16:00	
2,2-Dichloropropane	ND		4.8	ug/Kg	02/24/11 08:30	02/24/11 16:00	
Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	82		45 - 131		02/24/11 08:30	02/24/11 16:00	
1,2-Dichloroethane-d4 (Surr)	92		60 - 140		02/24/11 08:30	02/24/11 16:00	
Toluene-d8 (Surr)	90		58 - 140		02/24/11 08:30	02/24/11 16:00	

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-7

Lab Sample ID: 720-33463-7

Date Collected: 02/17/11 11:45 Matrix: Solid

Date Received: 02/17/11 17:10

Method: 8270C SIM - PAHs	by GCMS (SIM)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Acenaphthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Acenaphthylene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Fluorene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Phenanthrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Anthracene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Benzo[a]anthracene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Chrysene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Benzo[a]pyrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Benzo[b]fluoranthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Benzo[k]fluoranthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Benzo[g,h,i]perylene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Indeno[1,2,3-cd]pyrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Fluoranthene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Pyrene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Dibenz(a,h)anthracene	ND	5.0		ug/Kg		02/22/11 15:32	02/23/11 16:05	1
Surrogate	% Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73	33 - 120				02/22/11 15:32	02/23/11 16:05	1

Method: 8015B - Nonhalogenate	•	•	•	•	•	_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		1.0		mg/Kg		02/22/11 15:34	02/23/11 14:49	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	102		31 - 114				02/22/11 15:34	02/23/11 14:49	1

35 - 146

80

Client Sample ID: TRIP BLANK

Date Collected: 02/16/11 00:00

Lab Sample ID: 720-33463-8

Matrix: Water

Date Received: 02/17/11 17:10

Terphenyl-d14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			02/23/11 13:46	1
Acetone	ND		50		ug/L			02/23/11 13:46	1
Benzene	ND		0.50		ug/L			02/23/11 13:46	1
Dichlorobromomethane	ND		0.50		ug/L			02/23/11 13:46	1
Bromobenzene	ND		1.0		ug/L			02/23/11 13:46	1
Chlorobromomethane	ND		1.0		ug/L			02/23/11 13:46	1
Bromoform	ND		1.0		ug/L			02/23/11 13:46	1
Bromomethane	ND		1.0		ug/L			02/23/11 13:46	1
2-Butanone (MEK)	ND		50		ug/L			02/23/11 13:46	1
n-Butylbenzene	ND		1.0		ug/L			02/23/11 13:46	1
sec-Butylbenzene	ND		1.0		ug/L			02/23/11 13:46	1
tert-Butylbenzene	ND		1.0		ug/L			02/23/11 13:46	1
Carbon disulfide	ND		5.0		ug/L			02/23/11 13:46	1
Carbon tetrachloride	ND		0.50		ug/L			02/23/11 13:46	1
Chlorobenzene	ND		0.50		ug/L			02/23/11 13:46	1
Chloroethane	ND		1.0		ug/L			02/23/11 13:46	1
Chloroform	ND		1.0		ug/L			02/23/11 13:46	1

TestAmerica San Francisco 02/25/2011

TestAmerica Job ID: 720-33463-1

02/22/11 15:32 02/23/11 16:05

2

3

5

7

9

11

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-8

TestAmerica Job ID: 720-33463-1

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 02/16/11 00:00 Date Received: 02/17/11 17:10

d: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND ND	1.0	ug/L			02/23/11 13:46	1
2-Chlorotoluene	ND	0.50	ug/L			02/23/11 13:46	1
4-Chlorotoluene	ND	0.50	ug/L			02/23/11 13:46	1
Chlorodibromomethane	ND	0.50	ug/L			02/23/11 13:46	1
1,2-Dichlorobenzene	ND	0.50	ug/L			02/23/11 13:46	1
1,3-Dichlorobenzene	ND	0.50	ug/L			02/23/11 13:46	1
1,4-Dichlorobenzene	ND	0.50	ug/L			02/23/11 13:46	1
1,3-Dichloropropane	ND	1.0	ug/L			02/23/11 13:46	1
1,1-Dichloropropene	ND	0.50	ug/L			02/23/11 13:46	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			02/23/11 13:46	1
Ethylene Dibromide	ND	0.50	ug/L			02/23/11 13:46	1
Dibromomethane	ND	0.50	ug/L			02/23/11 13:46	1
Dichlorodifluoromethane	ND	0.50	ug/L			02/23/11 13:46	1
1,1-Dichloroethane	ND	0.50	ug/L			02/23/11 13:46	1
1,2-Dichloroethane	ND	0.50	ug/L			02/23/11 13:46	1
1,1-Dichloroethene	ND	0.50	ug/L			02/23/11 13:46	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			02/23/11 13:46	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			02/23/11 13:46	1
1,2-Dichloropropane	ND	0.50	ug/L			02/23/11 13:46	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			02/23/11 13:46	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND	0.50	ug/L			02/23/11 13:46	1
Ethylbenzene	ND	0.50	ug/L			02/23/11 13:46	1
Hexachlorobutadiene	ND	1.0	ug/L ug/L			02/23/11 13:46	
2-Hexanone	ND	50	ug/L			02/23/11 13:46	1
Isopropylbenzene	ND	0.50	=			02/23/11 13:46	1
4-Isopropyltoluene	ND	1.0	ug/L ug/L			02/23/11 13:46	
Methylene Chloride	ND	5.0	=			02/23/11 13:46	1
•	ND ND	5.0	ug/L			02/23/11 13:46	1
4-Methyl-2-pentanone (MIBK)	ND		ug/L				
Naphthalene		1.0	ug/L			02/23/11 13:46	1
N-Propylbenzene	ND	1.0	ug/L			02/23/11 13:46	1
Styrene	ND	0.50	ug/L			02/23/11 13:46	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			02/23/11 13:46	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			02/23/11 13:46	1
Tetrachloroethene	ND	0.50	ug/L			02/23/11 13:46	
Toluene	ND	0.50	ug/L 			02/23/11 13:46	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			02/23/11 13:46	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			02/23/11 13:46	1
1,1,1-Trichloroethane	ND	0.50	ug/L			02/23/11 13:46	1
1,1,2-Trichloroethane	ND	0.50	ug/L			02/23/11 13:46	1
Trichloroethene	ND	0.50	ug/L			02/23/11 13:46	1
Trichlorofluoromethane	ND	1.0	ug/L			02/23/11 13:46	1
1,2,3-Trichloropropane	ND	0.50	ug/L			02/23/11 13:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			02/23/11 13:46	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			02/23/11 13:46	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			02/23/11 13:46	1
Vinyl acetate	ND	10	ug/L			02/23/11 13:46	1
Vinyl chloride	ND	0.50	ug/L			02/23/11 13:46	1
Xylenes, Total	ND	1.0	ug/L			02/23/11 13:46	1
2,2-Dichloropropane	ND	0.50	ug/L			02/23/11 13:46	1

6

8

10

12

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-8

TestAmerica Job ID: 720-33463-1

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 02/16/11 00:00

Date Received: 02/17/11 17:10

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		02/23/11 13:46	1
1,2-Dichloroethane-d4 (Surr)	103		67 - 130		02/23/11 13:46	1
Toluene-d8 (Surr)	99		70 - 130		02/23/11 13:46	1

Client Sample ID: B-3 Lab Sample ID: 720-33463-9 Date Collected: 02/16/11 09:40

Matrix: Water

Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND ND	1.0	ug/L		02/23/11 17:37	
Acetone	ND	100	ug/L		02/23/11 17:37	:
Benzene	ND	1.0	ug/L		02/23/11 17:37	:
Dichlorobromomethane	ND	1.0	ug/L		02/23/11 17:37	:
Bromobenzene	ND	2.0	ug/L		02/23/11 17:37	:
Chlorobromomethane	ND	2.0	ug/L		02/23/11 17:37	:
Bromoform	ND	2.0	ug/L		02/23/11 17:37	:
Bromomethane	ND	2.0	ug/L		02/23/11 17:37	:
2-Butanone (MEK)	ND	100	ug/L		02/23/11 17:37	:
n-Butylbenzene	ND	2.0	ug/L		02/23/11 17:37	:
sec-Butylbenzene	ND	2.0	ug/L		02/23/11 17:37	:
tert-Butylbenzene	ND	2.0	ug/L		02/23/11 17:37	
Carbon disulfide	ND	10	ug/L		02/23/11 17:37	:
Carbon tetrachloride	ND	1.0	ug/L		02/23/11 17:37	
Chlorobenzene	ND	1.0	ug/L		02/23/11 17:37	:
Chloroethane	ND	2.0	ug/L		02/23/11 17:37	
Chloroform	ND	2.0	ug/L		02/23/11 17:37	
Chloromethane	ND	2.0	ug/L		02/23/11 17:37	
2-Chlorotoluene	ND	1.0	ug/L		02/23/11 17:37	
4-Chlorotoluene	ND	1.0	ug/L		02/23/11 17:37	:
Chlorodibromomethane	ND	1.0	ug/L		02/23/11 17:37	
1,2-Dichlorobenzene	ND	1.0	ug/L		02/23/11 17:37	
1,3-Dichlorobenzene	ND	1.0	ug/L		02/23/11 17:37	
1,4-Dichlorobenzene	ND	1.0	ug/L		02/23/11 17:37	
1,3-Dichloropropane	ND	2.0	ug/L		02/23/11 17:37	
1,1-Dichloropropene	ND	1.0	ug/L		02/23/11 17:37	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		02/23/11 17:37	
Ethylene Dibromide	ND	1.0	ug/L		02/23/11 17:37	
Dibromomethane	ND	1.0	ug/L		02/23/11 17:37	
Dichlorodifluoromethane	ND	1.0	ug/L		02/23/11 17:37	
1,1-Dichloroethane	ND	1.0	ug/L		02/23/11 17:37	
1,2-Dichloroethane	ND	1.0	ug/L		02/23/11 17:37	
1,1-Dichloroethene	ND	1.0	ug/L		02/23/11 17:37	
cis-1,2-Dichloroethene	ND	1.0	ug/L		02/23/11 17:37	
trans-1,2-Dichloroethene	ND	1.0	ug/L		02/23/11 17:37	
1,2-Dichloropropane	ND	1.0	ug/L		02/23/11 17:37	
cis-1,3-Dichloropropene	ND	1.0	ug/L		02/23/11 17:37	
trans-1,3-Dichloropropene	ND	1.0	ug/L		02/23/11 17:37	
Ethylbenzene	ND	1.0	ug/L		02/23/11 17:37	
Hexachlorobutadiene	ND	2.0	ug/L		02/23/11 17:37	:
2-Hexanone	ND	100	ug/L		02/23/11 17:37	

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Date Collected: 02/16/11 09:40

Client Sample ID: B-3

Lab Sample ID: 720-33463-9

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND ND	1.0	ug/L		02/23/11 17:37	2
4-Isopropyltoluene	ND	2.0	ug/L		02/23/11 17:37	2
Methylene Chloride	ND	10	ug/L		02/23/11 17:37	2
4-Methyl-2-pentanone (MIBK)	ND	100	ug/L		02/23/11 17:37	2
Naphthalene	ND	2.0	ug/L		02/23/11 17:37	2
N-Propylbenzene	ND	2.0	ug/L		02/23/11 17:37	2
Styrene	ND	1.0	ug/L		02/23/11 17:37	2
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		02/23/11 17:37	2
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		02/23/11 17:37	2
Tetrachloroethene	120	1.0	ug/L		02/23/11 17:37	2
Toluene	ND	1.0	ug/L		02/23/11 17:37	2
1,2,3-Trichlorobenzene	ND	2.0	ug/L		02/23/11 17:37	2
1,2,4-Trichlorobenzene	ND	2.0	ug/L		02/23/11 17:37	2
1,1,1-Trichloroethane	ND	1.0	ug/L		02/23/11 17:37	2
1,1,2-Trichloroethane	ND	1.0	ug/L		02/23/11 17:37	2
Trichloroethene	ND	1.0	ug/L		02/23/11 17:37	2
Trichlorofluoromethane	ND	2.0	ug/L		02/23/11 17:37	2
1,2,3-Trichloropropane	ND	1.0	ug/L		02/23/11 17:37	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		02/23/11 17:37	2
1,2,4-Trimethylbenzene	ND	1.0	ug/L		02/23/11 17:37	2
1,3,5-Trimethylbenzene	ND	1.0	ug/L		02/23/11 17:37	2
Vinyl acetate	ND	20	ug/L		02/23/11 17:37	2
Vinyl chloride	ND	1.0	ug/L		02/23/11 17:37	2
Xylenes, Total	ND	2.0	ug/L		02/23/11 17:37	2
2,2-Dichloropropane	ND	1.0	ug/L		02/23/11 17:37	2
Surrogate	% Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103	67 - 130			02/23/11 17:37	2

Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103		67 - 130	_		02/23/11 17:37	2
1,2-Dichloroethane-d4 (Surr)	110		67 - 130			02/23/11 17:37	2
Toluene-d8 (Surr)	101		70 - 130			02/23/11 17:37	2

Method: 8270C	SIM - PAHs	by GCMS	(SIM)
---------------	------------	---------	-------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Acenaphthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Acenaphthylene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Fluorene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Phenanthrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Anthracene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Benzo[a]anthracene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Chrysene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Benzo[a]pyrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Benzo[b]fluoranthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Benzo[k]fluoranthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Benzo[g,h,i]perylene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Indeno[1,2,3-cd]pyrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Fluoranthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Pyrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1
Dibenz(a,h)anthracene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 13:13	1

Page 24 of 95

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-9

TestAmerica Job ID: 720-33463-1

Matrix: Water

Client Sample ID: B-3 Date Collected: 02/16/11 09:40 Date Received: 02/17/11 17:10

Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	46	-	29 - 120				02/22/11 11:51	02/23/11 13:13	1
Terphenyl-d14	63		45 - 120				02/22/11 11:51	02/23/11 13:13	1
- Method: 8015B - Diesel Range	Organics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND ND		54		ug/L		02/22/11 14:51	02/23/11 11:08	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	73		23 - 156				02/22/11 14:51	02/23/11 11:08	1

Client Sample ID: B-1 Lab Sample ID: 720-33463-10 Date Collected: 02/16/11 11:30

Date Received: 02/17/11 17:10

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L		02/22/11 15:29	1
Acetone	ND	50	ug/L		02/22/11 15:29	1
Benzene	ND	0.50	ug/L		02/22/11 15:29	1
Dichlorobromomethane	ND	0.50	ug/L		02/22/11 15:29	1
Bromobenzene	ND	1.0	ug/L		02/22/11 15:29	1
Chlorobromomethane	ND	1.0	ug/L		02/22/11 15:29	1
Bromoform	ND	1.0	ug/L		02/22/11 15:29	1
Bromomethane	ND	1.0	ug/L		02/22/11 15:29	1
2-Butanone (MEK)	ND	50	ug/L		02/22/11 15:29	1
n-Butylbenzene	ND	1.0	ug/L		02/22/11 15:29	1
sec-Butylbenzene	ND	1.0	ug/L		02/22/11 15:29	1
tert-Butylbenzene	ND	1.0	ug/L		02/22/11 15:29	1
Carbon disulfide	ND	5.0	ug/L		02/22/11 15:29	1
Carbon tetrachloride	ND	0.50	ug/L		02/22/11 15:29	1
Chlorobenzene	ND	0.50	ug/L		02/22/11 15:29	1
Chloroethane	ND	1.0	ug/L		02/22/11 15:29	1
Chloroform	ND	1.0	ug/L		02/22/11 15:29	1
Chloromethane	ND	1.0	ug/L		02/22/11 15:29	1
2-Chlorotoluene	ND	0.50	ug/L		02/22/11 15:29	1
4-Chlorotoluene	ND	0.50	ug/L		02/22/11 15:29	1
Chlorodibromomethane	ND	0.50	ug/L		02/22/11 15:29	1
1,2-Dichlorobenzene	ND	0.50	ug/L		02/22/11 15:29	1
1,3-Dichlorobenzene	ND	0.50	ug/L		02/22/11 15:29	1
1,4-Dichlorobenzene	ND	0.50	ug/L		02/22/11 15:29	1
1,3-Dichloropropane	ND	1.0	ug/L		02/22/11 15:29	1
1,1-Dichloropropene	ND	0.50	ug/L		02/22/11 15:29	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		02/22/11 15:29	1
Ethylene Dibromide	ND	0.50	ug/L		02/22/11 15:29	1
Dibromomethane	ND	0.50	ug/L		02/22/11 15:29	1
Dichlorodifluoromethane	ND	0.50	ug/L		02/22/11 15:29	1
1,1-Dichloroethane	ND	0.50	ug/L		02/22/11 15:29	1
1,2-Dichloroethane	ND	0.50	ug/L		02/22/11 15:29	1
1,1-Dichloroethene	ND	0.50	ug/L		02/22/11 15:29	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		02/22/11 15:29	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		02/22/11 15:29	1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-1

Lab Sample ID: 720-33463-10

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/16/11 11:30 Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND ND	0.50	ug/L		02/22/11 15:29	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		02/22/11 15:29	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		02/22/11 15:29	1
Ethylbenzene	ND	0.50	ug/L		02/22/11 15:29	1
Hexachlorobutadiene	ND	1.0	ug/L		02/22/11 15:29	1
2-Hexanone	ND	50	ug/L		02/22/11 15:29	1
Isopropylbenzene	ND	0.50	ug/L		02/22/11 15:29	1
4-Isopropyltoluene	ND	1.0	ug/L		02/22/11 15:29	1
Methylene Chloride	ND	5.0	ug/L		02/22/11 15:29	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		02/22/11 15:29	1
Naphthalene	ND	1.0	ug/L		02/22/11 15:29	1
N-Propylbenzene	ND	1.0	ug/L		02/22/11 15:29	1
Styrene	ND	0.50	ug/L		02/22/11 15:29	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		02/22/11 15:29	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		02/22/11 15:29	1
Tetrachloroethene	16	0.50	ug/L		02/22/11 15:29	1
Toluene	ND	0.50	ug/L		02/22/11 15:29	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		02/22/11 15:29	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		02/22/11 15:29	1
1,1,1-Trichloroethane	ND	0.50	ug/L		02/22/11 15:29	1
1,1,2-Trichloroethane	ND	0.50	ug/L		02/22/11 15:29	1
Trichloroethene	ND	0.50	ug/L		02/22/11 15:29	1
Trichlorofluoromethane	ND	1.0	ug/L		02/22/11 15:29	1
1,2,3-Trichloropropane	ND	0.50	ug/L		02/22/11 15:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		02/22/11 15:29	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		02/22/11 15:29	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		02/22/11 15:29	1
Vinyl acetate	ND	10	ug/L		02/22/11 15:29	1
Vinyl chloride	ND	0.50	ug/L		02/22/11 15:29	1
Xylenes, Total	ND	1.0	ug/L		02/22/11 15:29	1
2,2-Dichloropropane	ND	0.50	ug/L		02/22/11 15:29	1
Surrogate	% Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105	67 - 130			02/22/11 15:29	1
1,2-Dichloroethane-d4 (Surr)	104	67 - 130			02/22/11 15:29	1
Toluene-d8 (Surr)	100	70 - 130			02/22/11 15:29	1

Method: 82700	SIM - PAHs	by GCMS	(SIM)
---------------	------------	---------	-------

Method. 02700 Olivi - 1 Al 13 D	y Colvio (Cilvi)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Acenaphthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Acenaphthylene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Fluorene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Phenanthrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Anthracene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Benzo[a]anthracene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Chrysene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Benzo[a]pyrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Benzo[b]fluoranthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Benzo[k]fluoranthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Benzo[g,h,i]perylene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1

TestAmerica San Francisco 02/25/2011

Page 26 of 95

6

4

6

10

12

. .

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-1 Lab Sample ID: 720-33463-10

Date Collected: 02/16/11 11:30 **Matrix: Water**

Date Received: 02/17/11 17:10

Method: 8270C SIM - PAHs by C	, , ,	,							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Fluoranthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Pyrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Dibenz(a,h)anthracene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 13:37	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	51		29 - 120				02/22/11 11:51	02/23/11 13:37	1
Terphenyl-d14	73		45 - 120				02/22/11 11:51	02/23/11 13:37	1
- Method: 8015B - Diesel Range (Organics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		53		ug/L		02/22/11 14:51	02/23/11 13:45	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	83		23 - 156				02/22/11 14:51	02/23/11 13:45	1

Client Sample ID: B-2 Lab Sample ID: 720-33463-11 Date Collected: 02/16/11 12:55 Matrix: Water

Date Received: 02/17/11 17:10

Analyte	Result Qualifie	r RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L		02/22/11 17:02	1
Acetone	ND	50	ug/L		02/22/11 17:02	1
Benzene	ND	0.50	ug/L		02/22/11 17:02	1
Dichlorobromomethane	ND	0.50	ug/L		02/22/11 17:02	1
Bromobenzene	ND	1.0	ug/L		02/22/11 17:02	1
Chlorobromomethane	ND	1.0	ug/L		02/22/11 17:02	1
Bromoform	ND	1.0	ug/L		02/22/11 17:02	1
Bromomethane	ND	1.0	ug/L		02/22/11 17:02	1
2-Butanone (MEK)	ND	50	ug/L		02/22/11 17:02	1
n-Butylbenzene	ND	1.0	ug/L		02/22/11 17:02	1
sec-Butylbenzene	ND	1.0	ug/L		02/22/11 17:02	1
tert-Butylbenzene	ND	1.0	ug/L		02/22/11 17:02	1
Carbon disulfide	ND	5.0	ug/L		02/22/11 17:02	1
Carbon tetrachloride	ND	0.50	ug/L		02/22/11 17:02	1
Chlorobenzene	ND	0.50	ug/L		02/22/11 17:02	1
Chloroethane	ND	1.0	ug/L		02/22/11 17:02	1
Chloroform	ND	1.0	ug/L		02/22/11 17:02	1
Chloromethane	ND	1.0	ug/L		02/22/11 17:02	1
2-Chlorotoluene	ND	0.50	ug/L		02/22/11 17:02	1
4-Chlorotoluene	ND	0.50	ug/L		02/22/11 17:02	1
Chlorodibromomethane	ND	0.50	ug/L		02/22/11 17:02	1
1,2-Dichlorobenzene	ND	0.50	ug/L		02/22/11 17:02	1
1,3-Dichlorobenzene	ND	0.50	ug/L		02/22/11 17:02	1
1,4-Dichlorobenzene	ND	0.50	ug/L		02/22/11 17:02	1
1,3-Dichloropropane	ND	1.0	ug/L		02/22/11 17:02	1
1,1-Dichloropropene	ND	0.50	ug/L		02/22/11 17:02	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		02/22/11 17:02	1
Ethylene Dibromide	ND	0.50	ug/L		02/22/11 17:02	1
Dibromomethane	ND	0.50	ug/L		02/22/11 17:02	1

TestAmerica San Francisco 02/25/2011

TestAmerica Job ID: 720-33463-1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-2

Lab Sample ID: 720-33463-11

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/16/11 12:55 Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.50		ug/L			02/22/11 17:02	1
1,1-Dichloroethane	ND		0.50		ug/L			02/22/11 17:02	1
1,2-Dichloroethane	ND		0.50		ug/L			02/22/11 17:02	1
1,1-Dichloroethene	ND		0.50		ug/L			02/22/11 17:02	1
cis-1,2-Dichloroethene	20		0.50		ug/L			02/22/11 17:02	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			02/22/11 17:02	1
1,2-Dichloropropane	ND		0.50		ug/L			02/22/11 17:02	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			02/22/11 17:02	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			02/22/11 17:02	1
Ethylbenzene	ND		0.50		ug/L			02/22/11 17:02	1
Hexachlorobutadiene	ND		1.0		ug/L			02/22/11 17:02	1
2-Hexanone	ND		50		ug/L			02/22/11 17:02	1
Isopropylbenzene	ND		0.50		ug/L			02/22/11 17:02	1
4-Isopropyltoluene	ND		1.0		ug/L			02/22/11 17:02	1
Methylene Chloride	ND		5.0		ug/L			02/22/11 17:02	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			02/22/11 17:02	1
Naphthalene	ND		1.0		ug/L			02/22/11 17:02	1
N-Propylbenzene	ND		1.0		ug/L			02/22/11 17:02	1
Styrene	ND		0.50		ug/L			02/22/11 17:02	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			02/22/11 17:02	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			02/22/11 17:02	1
Tetrachloroethene	150		0.50		ug/L			02/22/11 17:02	1
Toluene	0.93		0.50		ug/L			02/22/11 17:02	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			02/22/11 17:02	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			02/22/11 17:02	1
1,1,1-Trichloroethane	ND		0.50		ug/L			02/22/11 17:02	1
1,1,2-Trichloroethane	ND		0.50		ug/L			02/22/11 17:02	1
Trichloroethene	53		0.50		ug/L			02/22/11 17:02	1
Trichlorofluoromethane	ND		1.0		ug/L			02/22/11 17:02	1
1,2,3-Trichloropropane	ND		0.50		ug/L			02/22/11 17:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/22/11 17:02	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			02/22/11 17:02	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			02/22/11 17:02	1
Vinyl acetate	ND		10		ug/L			02/22/11 17:02	1
Vinyl chloride	ND		0.50		ug/L			02/22/11 17:02	1
Xylenes, Total	1.1		1.0		ug/L			02/22/11 17:02	1
2,2-Dichloropropane	ND		0.50		ug/L			02/22/11 17:02	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130			_		02/22/11 17:02	1
1,2-Dichloroethane-d4 (Surr)	104		67 - 130					02/22/11 17:02	1
T / 10 /0 \	400		70 100					00/00/44 47:00	

Method: 8270C SIM - PAHs by GCMS (SIM)	Method:	8270C SIM -	- PAHs by	GCMS	(SIM)
--	---------	-------------	-----------	------	-------

100

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.11	ug/L		02/22/11 11:51	02/23/11 14:00	1
Acenaphthene	ND	0.11	ug/L		02/22/11 11:51	02/23/11 14:00	1
Acenaphthylene	ND	0.11	ug/L		02/22/11 11:51	02/23/11 14:00	1
Fluorene	ND	0.11	ug/L		02/22/11 11:51	02/23/11 14:00	1
Phenanthrene	ND	0.11	ug/L		02/22/11 11:51	02/23/11 14:00	1
Anthracene	ND	0.11	ug/L		02/22/11 11:51	02/23/11 14:00	1

70 - 130

02/22/11 17:02

5

3

5

6

9

10

12

13

Н

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Date Collected: 02/16/11 12:55

Date Received: 02/17/11 17:10

Client Sample ID: B-2

Lab Sample ID: 720-33463-11

TestAmerica Job ID: 720-33463-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Chrysene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Benzo[a]pyrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Benzo[b]fluoranthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Benzo[k]fluoranthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Benzo[g,h,i]perylene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Indeno[1,2,3-cd]pyrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Fluoranthene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Pyrene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Dibenz(a,h)anthracene	ND		0.11		ug/L		02/22/11 11:51	02/23/11 14:00	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	55		29 - 120				02/22/11 11:51	02/23/11 14:00	1
Terphenyl-d14	75		45 - 120				02/22/11 11:51	02/23/11 14:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND ND		61		ug/L		02/22/11 14:51	02/23/11 14:40	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	79		23 - 156				02/22/11 14:51	02/23/11 14:40	1

Client Sample ID: B-6 Lab Sample ID: 720-33463-12 Date Collected: 02/16/11 16:00 **Matrix: Water** Date Received: 02/17/11 17:10

Analyte	Result	Qualifier RL	MDL (Jnit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ι	ıg/L			02/23/11 18:35	1
Acetone	ND	50	ι	ıg/L			02/23/11 18:35	1
Benzene	ND	0.50	ι	ıg/L			02/23/11 18:35	1
Dichlorobromomethane	ND	0.50	l	ıg/L			02/23/11 18:35	1
Bromobenzene	ND	1.0	ι	ıg/L			02/23/11 18:35	1
Chlorobromomethane	ND	1.0	ι	ıg/L			02/23/11 18:35	1
Bromoform	ND	1.0	ι	ıg/L			02/23/11 18:35	1
Bromomethane	ND	1.0	ι	ug/L			02/23/11 18:35	1
2-Butanone (MEK)	ND	50	ι	ıg/L			02/23/11 18:35	1
n-Butylbenzene	ND	1.0	·	ıg/L			02/23/11 18:35	1
sec-Butylbenzene	ND	1.0	ι	ıg/L			02/23/11 18:35	1
tert-Butylbenzene	ND	1.0	ι	ug/L			02/23/11 18:35	1
Carbon disulfide	ND	5.0	l	ıg/L			02/23/11 18:35	1
Carbon tetrachloride	ND	0.50	ι	ug/L			02/23/11 18:35	1
Chlorobenzene	ND	0.50	ι	ug/L			02/23/11 18:35	1
Chloroethane	ND	1.0	·	ıg/L			02/23/11 18:35	1
Chloroform	ND	1.0	ι	ug/L			02/23/11 18:35	1
Chloromethane	ND	1.0	ι	ug/L			02/23/11 18:35	1
2-Chlorotoluene	ND	0.50	·	ıg/L			02/23/11 18:35	1
4-Chlorotoluene	ND	0.50	ι	ug/L			02/23/11 18:35	1
Chlorodibromomethane	ND	0.50	ι	ıg/L			02/23/11 18:35	1
1,2-Dichlorobenzene	ND	0.50	·	ıg/L			02/23/11 18:35	1
1,3-Dichlorobenzene	ND	0.50	ι	ıg/L			02/23/11 18:35	1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-6

Toluene-d8 (Surr)

Lab Sample ID: 720-33463-12

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/16/11 16:00 Date Received: 02/17/11 17:10

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND ND	0.50	ug/L		02/23/11 18:35	1
1,3-Dichloropropane	ND	1.0	ug/L		02/23/11 18:35	1
1,1-Dichloropropene	ND	0.50	ug/L		02/23/11 18:35	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		02/23/11 18:35	1
Ethylene Dibromide	ND	0.50	ug/L		02/23/11 18:35	1
Dibromomethane	ND	0.50	ug/L		02/23/11 18:35	1
Dichlorodifluoromethane	ND	0.50	ug/L		02/23/11 18:35	1
1,1-Dichloroethane	ND	0.50	ug/L		02/23/11 18:35	1
1,2-Dichloroethane	ND	0.50	ug/L		02/23/11 18:35	1
1,1-Dichloroethene	ND	0.50	ug/L		02/23/11 18:35	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		02/23/11 18:35	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		02/23/11 18:35	1
1,2-Dichloropropane	ND	0.50	ug/L		02/23/11 18:35	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		02/23/11 18:35	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		02/23/11 18:35	1
Ethylbenzene	ND	0.50	ug/L		02/23/11 18:35	1
Hexachlorobutadiene	ND	1.0	ug/L		02/23/11 18:35	1
2-Hexanone	ND	50	ug/L		02/23/11 18:35	1
Isopropylbenzene	ND	0.50	ug/L		02/23/11 18:35	1
4-Isopropyltoluene	ND	1.0	ug/L		02/23/11 18:35	1
Methylene Chloride	ND	5.0	ug/L		02/23/11 18:35	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		02/23/11 18:35	1
Naphthalene	ND	1.0	ug/L		02/23/11 18:35	1
N-Propylbenzene	ND	1.0	ug/L		02/23/11 18:35	1
Styrene	ND	0.50	ug/L		02/23/11 18:35	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		02/23/11 18:35	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		02/23/11 18:35	1
Tetrachloroethene	ND	0.50	ug/L		02/23/11 18:35	1
Toluene	0.50	0.50	ug/L		02/23/11 18:35	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		02/23/11 18:35	1
1.2.4-Trichlorobenzene	ND	1.0	ug/L		02/23/11 18:35	1
1,1,1-Trichloroethane	ND	0.50	ug/L		02/23/11 18:35	1
1,1,2-Trichloroethane	ND	0.50	ug/L		02/23/11 18:35	1
Trichloroethene	ND	0.50	ug/L		02/23/11 18:35	1
Trichlorofluoromethane	ND	1.0	ug/L		02/23/11 18:35	1
1,2,3-Trichloropropane	ND	0.50	ug/L		02/23/11 18:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		02/23/11 18:35	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		02/23/11 18:35	· · · · · · · · · · · · · · · · · · ·
1,3,5-Trimethylbenzene	ND	0.50	ug/L		02/23/11 18:35	1
Vinyl acetate	ND	10	ug/L		02/23/11 18:35	1
Vinyl chloride	ND	0.50			02/23/11 18:35	
Xylenes, Total	ND ND	1.0	ug/L ug/L		02/23/11 18:35	1
2,2-Dichloropropane	ND	0.50	ug/L		02/23/11 18:35	1
Surrogate	% Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104	67 - 130			02/23/11 18:35	
1,2-Dichloroethane-d4 (Surr)	114	67 - 130			02/23/11 18:35	1
-,- =		70 /70			02/20/// 10:00	

70 - 130

Page 30 of 95

102

02/23/11 18:35

4

5

7

9

11

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-6

Lab Sample ID: 720-33463-12

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/16/11 16:00 Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Acenaphthene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Acenaphthylene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Fluorene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Phenanthrene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Anthracene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Benzo[a]anthracene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Chrysene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Benzo[a]pyrene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Benzo[b]fluoranthene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Benzo[k]fluoranthene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Benzo[g,h,i]perylene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Indeno[1,2,3-cd]pyrene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Fluoranthene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Pyrene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Dibenz(a,h)anthracene	ND		0.40		ug/L		02/22/11 11:51	02/23/11 14:25	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	54		29 - 120				02/22/11 11:51	02/23/11 14:25	1
Terphenyl-d14	73		45 - 120				02/22/11 11:51	02/23/11 14:25	1

Analyte Stoddard Solvent Range Organics (C9-C13)	Result	Qualifier	200	MDL	Unit ug/L	<u>D</u>	Prepared 02/22/11 14:51	Analyzed 02/23/11 15:04	Dil Fac
Surrogate p-Terphenyl	% Recovery	Qualifier	23 - 156				Prepared 02/22/11 14:51	Analyzed 02/23/11 15:04	Dil Fac

Client Sample ID: B-4

Date Collected: 02/17/11 09:50

Lab Sample ID: 720-33463-13

Matrix: Water

Date Received: 02/17/11 17:10

Method: 8015B - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			02/22/11 17:30	1
Acetone	ND		50		ug/L			02/22/11 17:30	1
Benzene	ND		0.50		ug/L			02/22/11 17:30	1
Dichlorobromomethane	ND		0.50		ug/L			02/22/11 17:30	1
Bromobenzene	ND		1.0		ug/L			02/22/11 17:30	1
Chlorobromomethane	ND		1.0		ug/L			02/22/11 17:30	1
Bromoform	ND		1.0		ug/L			02/22/11 17:30	1
Bromomethane	ND		1.0		ug/L			02/22/11 17:30	1
2-Butanone (MEK)	ND		50		ug/L			02/22/11 17:30	1
n-Butylbenzene	ND		1.0		ug/L			02/22/11 17:30	1
sec-Butylbenzene	ND		1.0		ug/L			02/22/11 17:30	1
tert-Butylbenzene	ND		1.0		ug/L			02/22/11 17:30	1
Carbon disulfide	ND		5.0		ug/L			02/22/11 17:30	1
Carbon tetrachloride	ND		0.50		ug/L			02/22/11 17:30	1
Chlorobenzene	ND		0.50		ug/L			02/22/11 17:30	1
Chloroethane	ND		1.0		ug/L			02/22/11 17:30	1
Chloroform	ND		1.0		ug/L			02/22/11 17:30	1

Page 31 of 95

TestAmerica San Francisco 02/25/2011

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-13

TestAmerica Job ID: 720-33463-1

Matrix: Water

Client Sample ID: B-4
Date Collected: 02/17/11 09:50
Date Received: 02/17/11 17:10

Method: 8260B - Volatile Organic (Analyte	Result Quali		MDL Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	ND	1.0	ug/L			02/22/11 17:30	-
2-Chlorotoluene	ND	0.50	ug/L			02/22/11 17:30	
4-Chlorotoluene	ND	0.50	ug/L			02/22/11 17:30	
Chlorodibromomethane	ND	0.50	ug/L			02/22/11 17:30	
1,2-Dichlorobenzene	ND	0.50	ug/L			02/22/11 17:30	
I,3-Dichlorobenzene	ND	0.50	ug/L			02/22/11 17:30	
1,4-Dichlorobenzene	ND	0.50	ug/L			02/22/11 17:30	
1,3-Dichloropropane	ND	1.0	ug/L			02/22/11 17:30	
,1-Dichloropropene	ND	0.50	ug/L			02/22/11 17:30	
,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			02/22/11 17:30	
Ethylene Dibromide	ND	0.50	ug/L			02/22/11 17:30	
Dibromomethane	ND	0.50	ug/L			02/22/11 17:30	
Dichlorodifluoromethane	ND	0.50	ug/L			02/22/11 17:30	
I,1-Dichloroethane	ND	0.50	ug/L ug/L			02/22/11 17:30	
1,2-Dichloroethane	ND ND	0.50				02/22/11 17:30	
1,2-Dichloroethane	ND ND	0.50	ug/L ug/L			02/22/11 17:30	
			.				
cis-1,2-Dichloroethene	ND	0.50	ug/L			02/22/11 17:30	
rans-1,2-Dichloroethene	ND	0.50	ug/L			02/22/11 17:30	
,2-Dichloropropane	ND	0.50	ug/L			02/22/11 17:30	
is-1,3-Dichloropropene	ND	0.50	ug/L			02/22/11 17:30	
rans-1,3-Dichloropropene	ND	0.50	ug/L			02/22/11 17:30	
Ethylbenzene	ND	0.50	ug/L			02/22/11 17:30	
Hexachlorobutadiene	ND	1.0	ug/L			02/22/11 17:30	
2-Hexanone	ND	50	ug/L			02/22/11 17:30	
sopropylbenzene	ND	0.50	ug/L			02/22/11 17:30	
-Isopropyltoluene	ND	1.0	ug/L			02/22/11 17:30	
Methylene Chloride	ND	5.0	ug/L			02/22/11 17:30	
-Methyl-2-pentanone (MIBK)	ND	50	ug/L			02/22/11 17:30	
laphthalene	ND	1.0	ug/L			02/22/11 17:30	
N-Propylbenzene	ND	1.0	ug/L			02/22/11 17:30	
Styrene	ND	0.50	ug/L			02/22/11 17:30	
,1,1,2-Tetrachloroethane	ND	0.50	ug/L			02/22/11 17:30	
,1,2,2-Tetrachloroethane	ND	0.50	ug/L			02/22/11 17:30	
etrachloroethene	ND	0.50	ug/L			02/22/11 17:30	
oluene	ND	0.50	ug/L			02/22/11 17:30	
,2,3-Trichlorobenzene	ND	1.0	ug/L			02/22/11 17:30	
,2,4-Trichlorobenzene	ND	1.0	ug/L			02/22/11 17:30	
,1,1-Trichloroethane	ND	0.50	ug/L			02/22/11 17:30	
,1,2-Trichloroethane	ND	0.50	ug/L			02/22/11 17:30	
richloroethene	ND	0.50	ug/L			02/22/11 17:30	
richlorofluoromethane	ND	1.0	ug/L			02/22/11 17:30	
,2,3-Trichloropropane	ND	0.50	ug/L			02/22/11 17:30	
,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			02/22/11 17:30	
,2,4-Trimethylbenzene	ND	0.50	ug/L			02/22/11 17:30	
,3,5-Trimethylbenzene	ND	0.50	ug/L			02/22/11 17:30	
/inyl acetate	ND	10	ug/L			02/22/11 17:30	
/inyl chloride	ND	0.50	ug/L			02/22/11 17:30	
Kylenes, Total	ND	1.0	ug/L			02/23/11 19:04	
2,2-Dichloropropane	ND ND	0.50	ug/L			02/23/11 19:04	

4

6

8

10

12

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-4 Lab Sample ID: 720-33463-13

Date Collected: 02/17/11 09:50 **Matrix: Water**

Date Received: 02/17/11 17:10

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130		02/22/11 17:30	1
4-Bromofluorobenzene	102		67 - 130		02/23/11 19:04	1
1,2-Dichloroethane-d4 (Surr)	112		67 - 130		02/22/11 17:30	1
1,2-Dichloroethane-d4 (Surr)	115		67 - 130		02/23/11 19:04	1
Toluene-d8 (Surr)	102		70 - 130		02/22/11 17:30	1
Toluene-d8 (Surr)	101		70 - 130		02/23/11 19:04	1

Method: 8270C SIM - PAHs by GCMS (SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Acenaphthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Acenaphthylene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Fluorene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Phenanthrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Anthracene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Benzo[a]anthracene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Chrysene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Benzo[a]pyrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Benzo[b]fluoranthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Benzo[k]fluoranthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Benzo[g,h,i]perylene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Indeno[1,2,3-cd]pyrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Fluoranthene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Pyrene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
Dibenz(a,h)anthracene	ND		0.12		ug/L		02/22/11 11:51	02/23/11 14:48	1
I and the second									

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	51		29 - 120	02/22/11 11:51	02/23/11 14:48	1
Terphenyl-d14	64		45 - 120	02/22/11 11:51	02/23/11 14:48	1

Method: 8015B - Diesel Range Organics (DRO) (GC)

		()							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		62		ug/L		02/22/11 16:08	02/23/11 18:11	1
Surranata	9/ Bassyani	Qualifier	Limita				Dronorod	Analyzad	Dil Ess

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	78		23 - 156	02/22/11 16:08	02/23/11 18:11	1

Client Sample ID: B-5

Date Collected: 02/17/11 09:20 Date Received: 02/17/11 17:10 Lab Sample ID: 720-33463-14

Matrix: Water

Method: 8260B - Volatile Organic C	ompounas (C	JC/IVIO)							//11 18:00
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			02/22/11 18:00	1
Acetone	ND		50		ug/L			02/22/11 18:00	1
Benzene	ND		0.50		ug/L			02/22/11 18:00	1
Dichlorobromomethane	ND		0.50		ug/L			02/22/11 18:00	1
Bromobenzene	ND		1.0		ug/L			02/22/11 18:00	1
Chlorobromomethane	ND		1.0		ug/L			02/22/11 18:00	1
Bromoform	ND		1.0		ug/L			02/22/11 18:00	1
Bromomethane	ND		1.0		ug/L			02/22/11 18:00	1
2-Butanone (MEK)	ND		50		ug/L			02/22/11 18:00	1

TestAmerica San Francisco

Page 33 of 95

TestAmerica Job ID: 720-33463-1

02/25/2011

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-14

TestAmerica Job ID: 720-33463-1

Matrix: Water

Client Sample ID: B-5
Date Collected: 02/17/11 09:20
Date Received: 02/17/11 17:10

1,2,3-Trichloropropane

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
n-Butylbenzene	ND -	1.0	ug/L		02/22/11 18:00	
sec-Butylbenzene	ND	1.0	ug/L		02/22/11 18:00	
tert-Butylbenzene	ND	1.0	ug/L		02/22/11 18:00	
Carbon disulfide	ND	5.0	ug/L		02/22/11 18:00	
Carbon tetrachloride	ND	0.50	ug/L		02/22/11 18:00	
Chlorobenzene	ND	0.50	ug/L		02/22/11 18:00	
Chloroethane	ND	1.0	ug/L		02/22/11 18:00	
Chloroform	ND	1.0	ug/L		02/22/11 18:00	
Chloromethane	ND	1.0	ug/L		02/22/11 18:00	
2-Chlorotoluene	ND	0.50	ug/L		02/22/11 18:00	
4-Chlorotoluene	ND	0.50	ug/L		02/22/11 18:00	
Chlorodibromomethane	ND	0.50	ug/L		02/22/11 18:00	
1,2-Dichlorobenzene	ND	0.50	ug/L ug/L		02/22/11 18:00	
,	ND ND	0.50				
1,3-Dichlorobenzene			ug/L		02/22/11 18:00	
1,4-Dichlorobenzene	ND	0.50	ug/L		02/22/11 18:00 02/22/11 18:00	
1,3-Dichloropropane	ND	1.0	ug/L			
1,1-Dichloropropene	ND	0.50	ug/L		02/22/11 18:00	
1,2-Dibromo-3-Chloropropane	ND NB	1.0	ug/L		02/22/11 18:00	
Ethylene Dibromide	ND	0.50	ug/L		02/22/11 18:00	
Dibromomethane	ND	0.50	ug/L		02/22/11 18:00	
Dichlorodifluoromethane	ND	0.50	ug/L		02/22/11 18:00	
1,1-Dichloroethane	ND	0.50	ug/L		02/22/11 18:00	
1,2-Dichloroethane	ND	0.50	ug/L		02/22/11 18:00	
1,1-Dichloroethene	ND	0.50	ug/L		02/22/11 18:00	
cis-1,2-Dichloroethene	ND	0.50	ug/L		02/22/11 18:00	
trans-1,2-Dichloroethene	ND	0.50	ug/L		02/22/11 18:00	
1,2-Dichloropropane	ND	0.50	ug/L		02/22/11 18:00	
cis-1,3-Dichloropropene	ND	0.50	ug/L		02/22/11 18:00	
trans-1,3-Dichloropropene	ND	0.50	ug/L		02/22/11 18:00	
Ethylbenzene	ND	0.50	ug/L		02/22/11 18:00	
Hexachlorobutadiene	ND	1.0	ug/L		02/22/11 18:00	
2-Hexanone	ND	50	ug/L		02/22/11 18:00	
Isopropylbenzene	ND	0.50	ug/L		02/22/11 18:00	
4-Isopropyltoluene	ND	1.0	ug/L		02/22/11 18:00	
Methylene Chloride	ND	5.0	ug/L		02/22/11 18:00	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		02/22/11 18:00	
Naphthalene	ND	1.0	ug/L		02/22/11 18:00	
N-Propylbenzene	ND	1.0	ug/L		02/22/11 18:00	
Styrene	ND	0.50	ug/L		02/22/11 18:00	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		02/22/11 18:00	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		02/22/11 18:00	
Tetrachloroethene	ND	0.50	ug/L		02/22/11 18:00	
Toluene	ND	0.50	ug/L		02/22/11 18:00	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		02/22/11 18:00	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		02/22/11 18:00	
1,1,1-Trichloroethane	ND	0.50	ug/L ug/L		02/22/11 18:00	
1,1,2-Trichloroethane	ND	0.50	ug/L		02/22/11 18:00	
Trichloroethene	ND	0.50	ug/L		02/22/11 18:00	
Trichlorofluoromethane	ND ND	1.0	ug/L ug/L		02/22/11 18:00	

5

7

9

10

12

10

02/22/11 18:00

0.50

ug/L

ND

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-5

Acetone

Lab Sample ID: 720-33463-14

Matrix: Water

TestAmerica Job ID: 720-33463-1

Date Collected: 02/17/11 09:20 Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/22/11 18:00	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			02/22/11 18:00	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			02/22/11 18:00	1
Vinyl acetate	ND		10		ug/L			02/22/11 18:00	1
Vinyl chloride	ND		0.50		ug/L			02/22/11 18:00	1
Xylenes, Total	ND		1.0		ug/L			02/22/11 18:00	1
2,2-Dichloropropane	ND		0.50		ug/L			02/22/11 18:00	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130			_		02/22/11 18:00	1
1,2-Dichloroethane-d4 (Surr)	109		67 - 130					02/22/11 18:00	1
Toluene-d8 (Surr)	101		70 - 130					02/22/11 18:00	1

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Acenaphthene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Acenaphthylene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Fluorene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Phenanthrene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Anthracene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Benzo[a]anthracene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Chrysene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Benzo[a]pyrene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Benzo[b]fluoranthene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Benzo[k]fluoranthene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Benzo[g,h,i]perylene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Indeno[1,2,3-cd]pyrene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Fluoranthene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Pyrene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1
Dibenz(a,h)anthracene	ND	0.11		ug/L		02/22/11 11:51	02/23/11 15:12	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	44		29 - 120	02/22/11 11:51	02/23/11 15:12	1
Terphenyl-d14	46		45 - 120	02/22/11 11:51	02/23/11 15:12	1

Method: 8015B - Diesel Range (,	(GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics (C9-C13)	ND		60		ug/L		02/22/11 16:08	02/23/11 18:34	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	87		23 - 156				02/22/11 16:08	02/23/11 18:34	1

Client Sample ID: B-7

Date Collected: 02/17/11 11:45

Date Received: 02/17/11 17:10

Lab Sample ID: 720-33463-15

Matrix: Water

Date Neceived. 02/11/11 17.10							
Method: 8260B - Volatile Organic (Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND —	0.50	ua/L			02/22/11 18:31	1

ND

02/22/11 18:31

50

ug/L

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-7

Lab Sample ID: 720-33463-15

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/17/11 11:45 Date Received: 02/17/11 17:10

Method: 8260B - Volatile Organi Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.50	ug/L	<u> </u>	02/22/11 18:31	1
Dichlorobromomethane	ND	0.50	ug/L		02/22/11 18:31	1
Bromobenzene	ND	1.0	ug/L		02/22/11 18:31	1
Chlorobromomethane	ND	1.0	ug/L		02/22/11 18:31	1
Bromoform	ND	1.0	ug/L		02/22/11 18:31	1
Bromomethane	ND	1.0	ug/L		02/22/11 18:31	1
2-Butanone (MEK)	ND	50	ug/L		02/22/11 18:31	1
n-Butylbenzene	ND	1.0	ug/L		02/22/11 18:31	1
sec-Butylbenzene	ND	1.0	ug/L		02/22/11 18:31	1
tert-Butylbenzene	ND	1.0	ug/L		02/22/11 18:31	1
Carbon disulfide	ND	5.0	ug/L		02/22/11 18:31	1
Carbon tetrachloride	ND	0.50	ug/L		02/22/11 18:31	1
Chlorobenzene	ND	0.50	ug/L		02/22/11 18:31	1
Chloroethane	ND	1.0	ug/L		02/22/11 18:31	1
Chloroform	ND	1.0	ug/L		02/22/11 18:31	1
Chloromethane	ND	1.0	ug/L		02/22/11 18:31	1
2-Chlorotoluene	ND	0.50	ug/L		02/22/11 18:31	· · · · · · · · · · · · · · · · · · ·
4-Chlorotoluene	ND	0.50	ug/L		02/22/11 18:31	1
Chlorodibromomethane	ND	0.50	ug/L		02/22/11 18:31	1
1,2-Dichlorobenzene	ND	0.50	ug/L		02/22/11 18:31	1
1,3-Dichlorobenzene	ND	0.50	ug/L		02/22/11 18:31	1
1,4-Dichlorobenzene	ND	0.50	ug/L		02/22/11 18:31	1
1,3-Dichloropropane	ND	1.0	ug/L ug/L		02/22/11 18:31	· · · · · · · · · · · · · · · · · · ·
1,1-Dichloropropene	ND	0.50	ug/L		02/22/11 18:31	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		02/22/11 18:31	1
Ethylene Dibromide	ND	0.50	ug/L ug/L		02/22/11 18:31	1
Dibromomethane	ND	0.50			02/22/11 18:31	1
Dichlorodifluoromethane	ND ND	0.50	ug/L			1
	ND ND		ug/L		02/22/11 18:31 02/22/11 18:31	1
1,1-Dichloroethane	ND ND	0.50	ug/L			
1,2-Dichloroethane		0.50	ug/L		02/22/11 18:31	1
1,1-Dichloroethene	ND	0.50	ug/L		02/22/11 18:31	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		02/22/11 18:31	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		02/22/11 18:31	1
1,2-Dichloropropane	ND	0.50	ug/L		02/22/11 18:31	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		02/22/11 18:31	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		02/22/11 18:31	1
Ethylbenzene	ND	0.50	ug/L		02/22/11 18:31	1
Hexachlorobutadiene	ND	1.0	ug/L		02/22/11 18:31	1
2-Hexanone	ND	50	ug/L		02/22/11 18:31	1
Isopropylbenzene	ND	0.50	ug/L		02/22/11 18:31	1
4-Isopropyltoluene	ND	1.0	ug/L		02/22/11 18:31	1
Methylene Chloride	ND	5.0	ug/L		02/22/11 18:31	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		02/22/11 18:31	1
Naphthalene	ND	1.0	ug/L		02/22/11 18:31	1
N-Propylbenzene	ND	1.0	ug/L		02/22/11 18:31	1
Styrene	ND	0.50	ug/L		02/22/11 18:31	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		02/22/11 18:31	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		02/22/11 18:31	1
Tetrachloroethene	ND	0.50	ug/L		02/22/11 18:31	1
Toluene	ND	0.50	ug/L		02/24/11 15:36	1

2

3

5

7

9

10

10

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-7

Lab Sample ID: 720-33463-15

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/17/11 11:45 Date Received: 02/17/11 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND		1.0		ug/L			02/22/11 18:31	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			02/22/11 18:31	1
1,1,1-Trichloroethane	ND		0.50		ug/L			02/22/11 18:31	1
1,1,2-Trichloroethane	ND		0.50		ug/L			02/22/11 18:31	1
Trichloroethene	ND		0.50		ug/L			02/22/11 18:31	1
Trichlorofluoromethane	ND		1.0		ug/L			02/22/11 18:31	1
1,2,3-Trichloropropane	ND		0.50		ug/L			02/22/11 18:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/22/11 18:31	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			02/22/11 18:31	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			02/22/11 18:31	1
Vinyl acetate	ND		10		ug/L			02/22/11 18:31	1
Vinyl chloride	ND		0.50		ug/L			02/22/11 18:31	1
Xylenes, Total	ND		1.0		ug/L			02/22/11 18:31	1
2,2-Dichloropropane	ND		0.50		ug/L			02/22/11 18:31	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130			-		02/22/11 18:31	1
4-Bromofluorobenzene	104		67 - 130					02/24/11 15:36	1
1,2-Dichloroethane-d4 (Surr)	108		67 - 130					02/22/11 18:31	1
1,2-Dichloroethane-d4 (Surr)	116		67 - 130					02/24/11 15:36	1
Toluene-d8 (Surr)	102		70 - 130					02/22/11 18:31	1
Toluene-d8 (Surr)	100		70 - 130					02/24/11 15:36	1

-									
Method: 8270C SIM - PAHs Analyte	• '	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Acenaphthene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Acenaphthylene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Fluorene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Phenanthrene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Anthracene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Benzo[a]anthracene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Chrysene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Benzo[a]pyrene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Benzo[b]fluoranthene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Benzo[k]fluoranthene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Benzo[g,h,i]perylene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Indeno[1,2,3-cd]pyrene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Fluoranthene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Pyrene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Dibenz(a,h)anthracene	ND		0.15		ug/L		02/22/11 11:51	02/23/11 15:35	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	53	-	29 - 120				02/22/11 11:51	02/23/11 15:35	1
Terphenyl-d14	64		45 - 120				02/22/11 11:51	02/23/11 15:35	1

Method: 8015B - Diesel Range Org	ganics (DRO) (GC	()					
Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Stoddard Solvent Range Organics	ND	62	ug/L		02/22/11 16:08	02/23/11 18:58	1
(C9-C13)							

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: B-7

Lab Sample ID: 720-33463-15

Date Collected: 02/17/11 11:45 Matrix: Water

Date Received: 02/17/11 17:10

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl	62	23 - 156	02/22/11 16:08	02/23/11 18:58	1

1

4

5

6

8

10

46

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: MB 720-86547/5

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 720-86547/5 Matrix: Water

	MB	MR						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			02/22/11 10:39	1
Acetone	ND		50	ug/L			02/22/11 10:39	1
Benzene	ND		0.50	ug/L			02/22/11 10:39	1
Dichlorobromomethane	ND		0.50	ug/L			02/22/11 10:39	1
Bromobenzene	ND		1.0	ug/L			02/22/11 10:39	1
Chlorobromomethane	ND		1.0	ug/L			02/22/11 10:39	1
Bromoform	ND		1.0	ug/L			02/22/11 10:39	1
Bromomethane	ND		1.0	ug/L			02/22/11 10:39	1
2-Butanone (MEK)	ND		50	ug/L			02/22/11 10:39	1
n-Butylbenzene	ND		1.0	ug/L			02/22/11 10:39	1
sec-Butylbenzene	ND		1.0	ug/L			02/22/11 10:39	1
tert-Butylbenzene	ND		1.0	ug/L			02/22/11 10:39	1
Carbon disulfide	ND		5.0	ug/L			02/22/11 10:39	1
Carbon tetrachloride	ND		0.50	ug/L			02/22/11 10:39	1
Chlorobenzene	ND		0.50	ug/L			02/22/11 10:39	1
Chloroethane	ND		1.0	ug/L			02/22/11 10:39	1
Chloroform	ND		1.0	ug/L			02/22/11 10:39	1
Chloromethane	ND		1.0	ug/L			02/22/11 10:39	1
2-Chlorotoluene	ND		0.50	ug/L			02/22/11 10:39	1
4-Chlorotoluene	ND		0.50	ug/L			02/22/11 10:39	1
Chlorodibromomethane	ND		0.50	ug/L			02/22/11 10:39	1
1,2-Dichlorobenzene	ND		0.50	ug/L			02/22/11 10:39	1
1,3-Dichlorobenzene	ND		0.50	ug/L			02/22/11 10:39	1
1,4-Dichlorobenzene	ND		0.50	ug/L			02/22/11 10:39	1
1,3-Dichloropropane	ND		1.0	ug/L			02/22/11 10:39	1
1,1-Dichloropropene	ND		0.50	ug/L			02/22/11 10:39	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			02/22/11 10:39	1
Ethylene Dibromide	ND		0.50	ug/L			02/22/11 10:39	1
Dibromomethane	ND		0.50	ug/L			02/22/11 10:39	1
Dichlorodifluoromethane	ND		0.50	ug/L			02/22/11 10:39	1
1,1-Dichloroethane	ND		0.50	ug/L			02/22/11 10:39	1
1,2-Dichloroethane	ND		0.50	ug/L			02/22/11 10:39	1
1,1-Dichloroethene	ND		0.50	ug/L			02/22/11 10:39	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			02/22/11 10:39	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			02/22/11 10:39	1
1,2-Dichloropropane	ND		0.50	ug/L			02/22/11 10:39	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			02/22/11 10:39	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			02/22/11 10:39	1
Ethylbenzene	ND		0.50	ug/L			02/22/11 10:39	1
Hexachlorobutadiene	ND		1.0	ug/L			02/22/11 10:39	
2-Hexanone	ND		50	ug/L			02/22/11 10:39	1
Isopropylbenzene	ND		0.50	ug/L			02/22/11 10:39	1
4-Isopropyltoluene	ND		1.0	ug/L			02/22/11 10:39	' 1
Methylene Chloride	ND ND		5.0	ug/L			02/22/11 10:39	1
4-Methyl-2-pentanone (MIBK)	ND ND		50	=			02/22/11 10:39	
Naphthalene	ND		1.0	ug/L			02/22/11 10:39	1
N-Propylbenzene	ND ND		1.0	ug/L			02/22/11 10:39	1
· ·				ug/L				
Styrene 1,1,1,2-Tetrachloroethane	ND ND		0.50 0.50	ug/L ug/L			02/22/11 10:39 02/22/11 10:39	1

Page 39 of 95

5

7

0

10

Client: Dominion Due Diligence Group

Lab Sample ID: MB 720-86547/5

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: Keller Telegraph

Matrix: Water

Analysis Batch: 86547

TestAmerica Job ID: 720-33463-1

Client Sample ID: MB 720-86547/5

02/22/11 10:39

Client Sample ID: LCS 720-86547/6

Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			02/22/11 10:39	1
Tetrachloroethene	ND		0.50		ug/L			02/22/11 10:39	1
Toluene	ND		0.50		ug/L			02/22/11 10:39	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			02/22/11 10:39	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			02/22/11 10:39	1
1,1,1-Trichloroethane	ND		0.50		ug/L			02/22/11 10:39	1
1,1,2-Trichloroethane	ND		0.50		ug/L			02/22/11 10:39	1
Trichloroethene	ND		0.50		ug/L			02/22/11 10:39	1
Trichlorofluoromethane	ND		1.0		ug/L			02/22/11 10:39	1
1,2,3-Trichloropropane	ND		0.50		ug/L			02/22/11 10:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/22/11 10:39	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			02/22/11 10:39	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			02/22/11 10:39	1
Vinyl acetate	ND		10		ug/L			02/22/11 10:39	1
Vinyl chloride	ND		0.50		ug/L			02/22/11 10:39	1
m-Xylene & p-Xylene	ND		1.0		ug/L			02/22/11 10:39	1
o-Xylene	ND		0.50		ug/L			02/22/11 10:39	1
Xylenes, Total	ND		1.0		ug/L			02/22/11 10:39	1
1									

MB MB Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 785 13 - 708 85255277/78 0: 795-, Dcloroehct ne-a4/d urrS 783 13 - 708 85255277/78 0: 7) oluene-a6/d/ urrS 788 38 - 708 85255277/78 0:

0.50

ug/L

Lab Sample ID: LCS 720-86547/6

ND

Matrix: Water

2,2-Dichloropropane

Analysis Batch: 86547

Analysis Batch: 86547							
	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Methyl tert-butyl ether	25.0	26.3		ug/L		105	62 - 130
Acetone	125	79.4		ug/L		64	26 - 180
Benzene	25.0	23.9		ug/L		96	82 - 127
Dichlorobromomethane	25.0	27.9		ug/L		112	70 - 130
Bromobenzene	25.0	25.2		ug/L		101	79 - 127
Chlorobromomethane	25.0	24.4		ug/L		98	70 - 130
Bromoform	25.0	27.1		ug/L		108	68 - 136
Bromomethane	25.0	23.1		ug/L		93	43 - 151
2-Butanone (MEK)	125	99.8		ug/L		80	66 - 149
n-Butylbenzene	25.0	26.6		ug/L		106	79 - 142
sec-Butylbenzene	25.0	25.0		ug/L		100	81 - 134
tert-Butylbenzene	25.0	26.2		ug/L		105	82 - 135
Carbon disulfide	25.0	22.4		ug/L		90	68 - 137
Carbon tetrachloride	25.0	25.6		ug/L		102	77 - 146
Chlorobenzene	25.0	25.2		ug/L		101	70 - 130
Chloroethane	25.0	23.6		ug/L		94	62 - 138
Chloroform	25.0	25.2		ug/L		101	70 - 130
Chloromethane	25.0	18.9		ug/L		76	52 - 175
2-Chlorotoluene	25.0	26.4		ug/L		106	70 - 130

TestAmerica San Francisco 02/25/2011

Client: Dominion Due Diligence Group TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86547/6

Matrix: Water

Analysis Batch: 86547

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

2,2-Dichloropropane

Vinyl acetate

Vinyl chloride

o-Xylene

1,1,2-Trichloro-1,2,2-trifluoroetha

Client Sample ID: LCS 720-86547/6

Prep Type: Total/NA

Allalysis Batcii. 00341					
	Spike		LCS	5 % 5	% Rec.
Analyte	Added		Qualifier Unit	D % Rec	Limits
4-Chlorotoluene		26.3	ug/L	105	70 - 130
Chlorodibromomethane	25.0	27.9	ug/L	112	78 - 145
1,2-Dichlorobenzene	25.0	25.5	ug/L	102	70 - 130
1,3-Dichlorobenzene	25.0	25.6	ug/L	102	70 - 130
1,4-Dichlorobenzene	25.0	24.5	ug/L	98	87 - 118
1,3-Dichloropropane	25.0	25.3	ug/L	101	82 - 128
1,1-Dichloropropene	25.0	24.4	ug/L	98	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	26.1	ug/L	105	72 - 136
Ethylene Dibromide	25.0	25.9	ug/L	104	70 - 130
Dibromomethane	25.0	25.6	ug/L	102	70 - 130
Dichlorodifluoromethane	25.0	14.0	ug/L	56	33 - 125
1,1-Dichloroethane	25.0	24.2	ug/L	97	70 - 130
1,2-Dichloroethane	25.0	25.4	ug/L	102	70 - 126
1,1-Dichloroethene	25.0	22.7	ug/L	91	64 - 128
cis-1,2-Dichloroethene	25.0	27.5	ug/L	110	70 - 130
trans-1,2-Dichloroethene	25.0	21.3	ug/L	85	75 - 131
1,2-Dichloropropane	25.0	23.7	ug/L	95	70 - 130
cis-1,3-Dichloropropene	25.0	27.4	ug/L	110	88 - 137
trans-1,3-Dichloropropene	25.0	29.0	ug/L	116	83 - 140
Ethylbenzene	25.0	25.3	ug/L	101	86 - 135
Hexachlorobutadiene	25.0	25.0	ug/L	100	70 - 130
2-Hexanone	125	115	ug/L	92	60 - 164
Isopropylbenzene	25.0	26.5	ug/L	106	70 - 130
4-Isopropyltoluene	25.0	25.7	ug/L	103	70 - 130
Methylene Chloride	25.0	22.9	ug/L	92	73 - 147
4-Methyl-2-pentanone (MIBK)	125	123	ug/L	99	63 - 165
Naphthalene	25.0	26.2	ug/L	105	78 - 135
N-Propylbenzene	25.0	24.9	ug/L	100	70 - 130
Styrene	25.0	28.2	ug/L	113	70 - 130
1,1,1,2-Tetrachloroethane	25.0	27.1	ug/L	108	70 - 130
1,1,2,2-Tetrachloroethane	25.0	24.0	ug/L	96	70 - 130
Tetrachloroethene	25.0	24.5	ug/L	98	70 - 130
Toluene	25.0	25.8	ug/L	103	83 - 129
1,2,3-Trichlorobenzene	25.0	26.2	ug/L	105	70 - 130
1,2,4-Trichlorobenzene	25.0	26.2	ug/L	105	70 - 130
1,1,1-Trichloroethane	25.0	26.3	ug/L	105	70 - 130
1,1,2-Trichloroethane	25.0	24.9	ug/L	99	82 - 128
Trichloroethene	25.0	24.8	ug/L	99	70 - 130
T2-11	20.0	24.0	აფ, ∟		74 440

97

98

91

111

107

113

105

108

104

74 - 146

70 - 130

42 - 162

70 - 132

70 - 130

43 - 163

65 - 156

70 - 142

89 - 136 70 - 140

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

24.3

24.4

22.9

27.8

26.8

28.1

21.6

52.6

26.9

26.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86547/6

Matrix: Water

Analysis Batch: 86547

Client Sample ID: LCS 720-86547/6

Prep Type: Total/NA

TestAmerica Job ID: 720-33463-1

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene			13 - 708
795-, Dcloroelct ne-a4/d urrS	78:		13 - 708
) oluene-a6/ď urrS	780		38 - 708

Lab Sample ID: LCSD 720-86547/7

Matrix: Water

Analysis Batch: 86547

Client Sample ID: LCSD 720-86547/7

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	27.4		ug/L		109	62 - 130	4	20
Acetone	125	83.9		ug/L		67	26 - 180	6	30
Benzene	25.0	24.5		ug/L		98	82 - 127	3	20
Dichlorobromomethane	25.0	28.7		ug/L		115	70 - 130	3	20
Bromobenzene	25.0	25.8		ug/L		103	79 - 127	2	20
Chlorobromomethane	25.0	25.1		ug/L		101	70 - 130	3	20
Bromoform	25.0	28.2		ug/L		113	68 - 136	4	20
Bromomethane	25.0	23.2		ug/L		93	43 - 151	0	20
2-Butanone (MEK)	125	109		ug/L		87	66 - 149	8	20
n-Butylbenzene	25.0	26.8		ug/L		107	79 - 142	1	20
sec-Butylbenzene	25.0	25.3		ug/L		101	81 - 134	1	20
tert-Butylbenzene	25.0	26.5		ug/L		106	82 - 135	1	20
Carbon disulfide	25.0	22.8		ug/L		91	68 - 137	2	20
Carbon tetrachloride	25.0	26.2		ug/L		105	77 - 146	2	20
Chlorobenzene	25.0	25.8		ug/L		103	70 - 130	2	20
Chloroethane	25.0	23.8		ug/L		95	62 - 138	1	20
Chloroform	25.0	25.9		ug/L		104	70 - 130	3	20
Chloromethane	25.0	19.0		ug/L		76	52 - 175	0	20
2-Chlorotoluene	25.0	26.7		ug/L		107	70 - 130	1	20
4-Chlorotoluene	25.0	26.8		ug/L		107	70 - 130	2	20
Chlorodibromomethane	25.0	28.8		ug/L		115	78 - 145	3	20
1,2-Dichlorobenzene	25.0	25.9		ug/L		103	70 - 130	1	20
1,3-Dichlorobenzene	25.0	26.1		ug/L		104	70 - 130	2	20
1,4-Dichlorobenzene	25.0	25.0		ug/L		100	87 - 118	2	20
1,3-Dichloropropane	25.0	25.9		ug/L		103	82 - 128	2	20
1,1-Dichloropropene	25.0	24.8		ug/L		99	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	27.0		ug/L		108	72 - 136	3	20
Ethylene Dibromide	25.0	26.6		ug/L		106	70 - 130	3	20
Dibromomethane	25.0	26.5		ug/L		106	70 - 130	4	20
Dichlorodifluoromethane	25.0	13.7		ug/L		55	33 - 125	2	20
1,1-Dichloroethane	25.0	24.7		ug/L		99	70 - 130	2	20
1,2-Dichloroethane	25.0	26.4		ug/L		106	70 - 126	4	20
1,1-Dichloroethene	25.0	22.9		ug/L		91	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	28.3		ug/L		113	70 - 130	3	20
trans-1,2-Dichloroethene	25.0	21.9		ug/L		87	75 - 131	3	20
1,2-Dichloropropane	25.0	24.4		ug/L		98	70 - 130	3	20
cis-1,3-Dichloropropene	25.0	28.3		ug/L		113	88 - 137	3	20
trans-1,3-Dichloropropene	25.0	30.0		ug/L		120	83 - 140	3	20
Ethylbenzene	25.0	25.7		ug/L		103	86 - 135	2	20
Hexachlorobutadiene	25.0	25.3		ug/L		101	70 - 130	1	20

Client: Dominion Due Diligence Group

Lab Sample ID: LCSD 720-86547/7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Prep Type: Total/NA

Client Sample ID: LCSD 720-86547/7

Matrix: Water Analysis Batch: 86547

-	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
2-Hexanone	125	122		ug/L		98	60 - 164	6	20
Isopropylbenzene	25.0	27.0		ug/L		108	70 - 130	2	20
4-Isopropyltoluene	25.0	25.8		ug/L		103	70 - 130	1	20
Methylene Chloride	25.0	24.0		ug/L		96	73 - 147	4	20
4-Methyl-2-pentanone (MIBK)	125	130		ug/L		104	63 - 165	5	20
Naphthalene	25.0	27.4		ug/L		110	78 - 135	5	20
N-Propylbenzene	25.0	25.3		ug/L		101	70 - 130	1	20
Styrene	25.0	29.0		ug/L		116	70 - 130	3	20
1,1,1,2-Tetrachloroethane	25.0	27.8		ug/L		111	70 - 130	3	20
1,1,2,2-Tetrachloroethane	25.0	24.5		ug/L		98	70 - 130	2	20
Tetrachloroethene	25.0	24.9		ug/L		100	70 - 130	2	20
Toluene	25.0	25.4		ug/L		101	83 - 129	2	20
1,2,3-Trichlorobenzene	25.0	27.2		ug/L		109	70 - 130	4	20
1,2,4-Trichlorobenzene	25.0	26.9		ug/L		108	70 - 130	3	20
1,1,1-Trichloroethane	25.0	26.9		ug/L		108	70 - 130	2	20
1,1,2-Trichloroethane	25.0	25.6		ug/L		103	82 - 128	3	20
Trichloroethene	25.0	25.5		ug/L		102	70 - 130	3	20
Trichlorofluoromethane	25.0	24.3		ug/L		97	74 - 146	0	20
1,2,3-Trichloropropane	25.0	25.3		ug/L		101	70 - 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.1		ug/L		93	42 - 162	1	20
ne		07.0					70 400		
1,2,4-Trimethylbenzene	25.0	27.9		ug/L		111	70 - 132	0	20
1,3,5-Trimethylbenzene	25.0	27.2		ug/L		109	70 - 130	1	20
Vinyl acetate	25.0	26.9		ug/L		108	43 - 163	5	20
Vinyl chloride	25.0	21.5		ug/L		86	65 - 156	0	20
m-Xylene & p-Xylene	50.0	52.9		ug/L		106	70 - 142	1	20
o-Xylene	25.0	27.2		ug/L		109	89 - 136	1	20
2,2-Dichloropropane	25.0	26.9		ug/L		107	70 - 140	3	20

LCSD	LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	784		13 - 708
795-, Dcloroehct ne-a4/d(urrS	78:		13 - 708
) oluene-a6/ď urrS	785		38 - 708

Lab Sample ID: MB 720-86550/4

Matrix: Water

Analysis Batch: 86550

Client	Sample	ID:	MB	720	-86550/4	Ļ
			T		T - 4 - 1/N L A	

Prep Type: Total/NA

•	IB MB							
Analyte Res	ılt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ID	0.50		ug/L			02/22/11 11:09	1
Acetone	ID	50		ug/L			02/22/11 11:09	1
Benzene !	ID	0.50		ug/L			02/22/11 11:09	1
Dichlorobromomethane !	ID	0.50		ug/L			02/22/11 11:09	1
Bromobenzene	ID	1.0		ug/L			02/22/11 11:09	1
Chlorobromomethane !	ID	1.0		ug/L			02/22/11 11:09	1
Bromoform I	ID	1.0		ug/L			02/22/11 11:09	1
Bromomethane !	ID	1.0		ug/L			02/22/11 11:09	1
2-Butanone (MEK)	ID	50		ug/L			02/22/11 11:09	1
n-Butylbenzene !	ID	1.0		ug/L			02/22/11 11:09	1
sec-Butylbenzene !	ID	1.0		ug/L			02/22/11 11:09	1

TestAmerica San Francisco 02/25/2011

Page 43 of 95

RL

1.0

5.0

0.50

0.50

1.0

1.0

1.0

0.50

0.50

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Client: Dominion Due Diligence Group

Lab Sample ID: MB 720-86550/4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

мв мв Result

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

Qualifier

Project/Site: Keller Telegraph

Analysis Batch: 86550

Matrix: Water

tert-Butylbenzene

Carbon tetrachloride

Carbon disulfide

Chlorobenzene

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

1,2,4-Trimethylbenzene

Chloroethane

Chloroform

TestAmerica Job ID: 720-33463-1

Client Sample ID: MB 720-86550/4

Analyzed

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

02/22/11 11:09

Prepared

Dil Fac

Prep Type: Total/NA

		0.00	~g/ =	02.22
Chlorodibromomethane	ND	0.50	ug/L	02/22/11 11:09
1,2-Dichlorobenzene	ND	0.50	ug/L	02/22/11 11:09
1,3-Dichlorobenzene	ND	0.50	ug/L	02/22/11 11:09
1,4-Dichlorobenzene	ND	0.50	ug/L	02/22/11 11:09
1,3-Dichloropropane	ND	1.0	ug/L	02/22/11 11:09
1,1-Dichloropropene	ND	0.50	ug/L	02/22/11 11:09
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	02/22/11 11:09
Ethylene Dibromide	ND	0.50	ug/L	02/22/11 11:09
Dibromomethane	ND	0.50	ug/L	02/22/11 11:09
Dichlorodifluoromethane	ND	0.50	ug/L	02/22/11 11:09
1,1-Dichloroethane	ND	0.50	ug/L	02/22/11 11:09
1,2-Dichloroethane	ND	0.50	ug/L	02/22/11 11:09
1,1-Dichloroethene	ND	0.50	ug/L	02/22/11 11:09
cis-1,2-Dichloroethene	ND	0.50	ug/L	02/22/11 11:09
trans-1,2-Dichloroethene	ND	0.50	ug/L	02/22/11 11:09
1,2-Dichloropropane	ND	0.50	ug/L	02/22/11 11:09
cis-1,3-Dichloropropene	ND	0.50	ug/L	02/22/11 11:09
trans-1,3-Dichloropropene	ND	0.50	ug/L	02/22/11 11:09
Ethylbenzene	ND	0.50	ug/L	02/22/11 11:09
Hexachlorobutadiene	ND	1.0	ug/L	02/22/11 11:09
2-Hexanone	ND	50	ug/L	02/22/11 11:09
Isopropylbenzene	ND	0.50	ug/L	02/22/11 11:09
4-Isopropyltoluene	ND	1.0	ug/L	02/22/11 11:09
Methylene Chloride	ND	5.0	ug/L	02/22/11 11:09
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	02/22/11 11:09
Naphthalene	ND	1.0	ug/L	02/22/11 11:09
N-Propylbenzene	ND	1.0	ug/L	02/22/11 11:09
Styrene	ND	0.50	ug/L	02/22/11 11:09
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	02/22/11 11:09
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	02/22/11 11:09
Tetrachloroethene	ND	0.50	ug/L	02/22/11 11:09
Toluene	ND	0.50	ug/L	02/22/11 11:09
1,2,3-Trichlorobenzene	ND	1.0	ug/L	02/22/11 11:09
1,2,4-Trichlorobenzene	ND	1.0	ug/L	02/22/11 11:09
1,1,1-Trichloroethane	ND	0.50	ug/L	02/22/11 11:09
1,1,2-Trichloroethane	ND	0.50	ug/L	02/22/11 11:09
Trichloroethene	ND	0.50	ug/L	02/22/11 11:09
Trichlorofluoromethane	ND	1.0	ug/L	02/22/11 11:09
1,2,3-Trichloropropane	ND	0.50	ug/L	02/22/11 11:09
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	02/22/11 11:09

02/22/11 11:09

0.50

ug/L

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86550/4

Matrix: Water

Analysis Batch: 86550

Client Sample ID: MB 720-86550/4

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND		0.50		ug/L			02/22/11 11:09	1
Vinyl acetate	ND		10		ug/L			02/22/11 11:09	1
Vinyl chloride	ND		0.50		ug/L			02/22/11 11:09	1
m-Xylene & p-Xylene	ND		1.0		ug/L			02/22/11 11:09	1
o-Xylene	ND		0.50		ug/L			02/22/11 11:09	1
Xylenes, Total	ND		1.0		ug/L			02/22/11 11:09	1
2,2-Dichloropropane	ND		0.50		ug/L			02/22/11 11:09	1

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	787		13 - 708		85255277/77 8:	7
795-, Dcloroelict ne-a4/d(urrS	787		13 - 708		85255277/77 8:	7
) oluene-a6/ď urrS	787		38 - 708		85 <i>2</i> 55 <i>2</i> 77/77 8:	7

Lab Sample ID: LCS 720-86550/5

Matrix: Water

Analysis Batch: 86550

Client	Sample	ID: I	_cs	720)-865	50/5
		Pre	T _V	pe:	Tota	I/NA

Analysis Batch. 00000	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Methyl tert-butyl ether	25.0	25.7	-	ug/L		103	62 - 130
Acetone	125	85.3		ug/L		68	26 - 180
Benzene	25.0	26.6		ug/L		107	82 - 127
Dichlorobromomethane	25.0	27.2		ug/L		109	70 - 130
Bromobenzene	25.0	26.5		ug/L		106	79 - 127
Chlorobromomethane	25.0	27.2		ug/L		109	70 - 130
Bromoform	25.0	25.8		ug/L		103	68 - 136
Bromomethane	25.0	24.3		ug/L		97	43 - 151
2-Butanone (MEK)	125	112		ug/L		90	66 - 149
n-Butylbenzene	25.0	26.9		ug/L		108	79 - 142
sec-Butylbenzene	25.0	26.1		ug/L		104	81 - 134
tert-Butylbenzene	25.0	25.9		ug/L		104	82 - 135
Carbon disulfide	25.0	26.6		ug/L		106	68 - 137
Carbon tetrachloride	25.0	27.2		ug/L		109	77 - 146
Chlorobenzene	25.0	26.0		ug/L		104	70 - 130
Chloroethane	25.0	24.2		ug/L		97	62 - 138
Chloroform	25.0	26.4		ug/L		105	70 - 130
Chloromethane	25.0	20.9		ug/L		84	52 - 175
2-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130
4-Chlorotoluene	25.0	25.3		ug/L		101	70 - 130
Chlorodibromomethane	25.0	27.5		ug/L		110	78 - 145
1,2-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130
1,3-Dichlorobenzene	25.0	25.7		ug/L		103	70 - 130
1,4-Dichlorobenzene	25.0	25.1		ug/L		101	87 - 118
1,3-Dichloropropane	25.0	26.3		ug/L		105	82 - 128
1,1-Dichloropropene	25.0	27.1		ug/L		108	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	23.9		ug/L		96	72 - 136
Ethylene Dibromide	25.0	27.9		ug/L		112	70 - 130
Dibromomethane	25.0	26.3		ug/L		105	70 - 130
Dichlorodifluoromethane	25.0	15.6		ug/L		63	33 - 125
1,1-Dichloroethane	25.0	26.1		ug/L		104	70 - 130

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86550/5

Matrix: Water

Analysis Batch: 86550

Client Sample ID: LCS 720-86550/5

Prep Type: Total/NA

	Spike	LCS	LCS		% Rec.
Analyte	Added	Result	Qualifier Unit	D % Rec	Limits
1,2-Dichloroethane	25.0	25.7	ug/L	103	70 - 126
1,1-Dichloroethene	25.0	25.9	ug/L	104	64 - 128
cis-1,2-Dichloroethene	25.0	30.3	ug/L	121	70 - 130
trans-1,2-Dichloroethene	25.0	23.5	ug/L	94	75 - 131
1,2-Dichloropropane	25.0	25.9	ug/L	103	70 - 130
cis-1,3-Dichloropropene	25.0	27.3	ug/L	109	88 - 137
trans-1,3-Dichloropropene	25.0	28.1	ug/L	112	83 - 140
Ethylbenzene	25.0	26.7	ug/L	107	86 - 135
Hexachlorobutadiene	25.0	25.5	ug/L	102	70 - 130
2-Hexanone	125	111	ug/L	89	60 - 164
Isopropylbenzene	25.0	27.2	ug/L	109	70 - 130
4-Isopropyltoluene	25.0	26.4	ug/L	106	70 - 130
Methylene Chloride	25.0	25.5	ug/L	102	73 - 147
4-Methyl-2-pentanone (MIBK)	125	119	ug/L	95	63 - 165
Naphthalene	25.0	24.8	ug/L	99	78 - 135
N-Propylbenzene	25.0	25.4	ug/L	101	70 - 130
Styrene	25.0	27.2	ug/L	109	70 - 130
1,1,1,2-Tetrachloroethane	25.0	26.9	ug/L	108	70 - 130
1,1,2,2-Tetrachloroethane	25.0	24.1	ug/L	96	70 - 130
Tetrachloroethene	25.0	26.9	ug/L	108	70 - 130
Toluene	25.0	27.1	ug/L	108	83 - 129
1,2,3-Trichlorobenzene	25.0	26.6	ug/L	106	70 - 130
1,2,4-Trichlorobenzene	25.0	26.0	ug/L	104	70 - 130
1,1,1-Trichloroethane	25.0	27.3	ug/L	109	70 - 130
1,1,2-Trichloroethane	25.0	25.4	ug/L	102	82 - 128
Trichloroethene	25.0	26.7	ug/L	107	70 - 130
Trichlorofluoromethane	25.0	25.4	ug/L	102	74 - 146
1,2,3-Trichloropropane	25.0	25.1	ug/L	101	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	26.9	ug/L	107	42 - 162
1,2,4-Trimethylbenzene	25.0	25.4	ug/L	102	70 - 132
1,3,5-Trimethylbenzene	25.0	26.5	ug/L	106	70 - 130
Vinyl acetate	25.0	28.1	ug/L	112	43 - 163
Vinyl chloride	25.0	21.8	ug/L	87	65 - 156
m-Xylene & p-Xylene	50.0	54.0	ug/L	108	70 - 142
o-Xylene	25.0	26.7	ug/L	107	89 - 136
2,2-Dichloropropane	25.0	30.1	ug/L	120	70 - 140

LCS LCS

Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	787	13 - 708
795-, Dcloroelict ne-a4/d urrS	: T	13 - 708
) oluene-a6/ď urrS	787	38 - 708

Lab Sample ID: LCSD 720-86550/6

Matrix: Water

Analysis Batch: 86550

Alialysis Dalcil. 00000									
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.6		ug/L		106	62 - 130	4	20
Acetone	125	97.9		ug/L		78	26 - 180	14	30

Page 46 of 95

TestAmerica San Francisco 02/25/2011

Prep Type: Total/NA

Client Sample ID: LCSD 720-86550/6

TestAmerica Job ID: 720-33463-1

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86550/6

Matrix: Water

Analysis Batch: 86550

Client Sample ID: LCSD 720-86550/6

Prep Type: Total/NA

Analyte	Spike Added		LCSD Qualifier	Unit	D	% Rec	% Rec. Limits	RPD	RPD Limit
Benzene		26.6	Qualifier	ug/L		106	82 - 127	<u> </u>	20
Dichlorobromomethane	25.0	27.2		ug/L		109	70 - 130	0	20
Bromobenzene	25.0	26.5		ug/L ug/L		106	70 - 130 79 - 127	0	20
Chlorobromomethane	25.0	27.2		ug/L		109	70 - 130	0	20
Bromoform	25.0	26.6		ug/L		106	68 - 136	3	20
Bromomethane	25.0	24.5		ug/L		98	43 - 151	1	20
2-Butanone (MEK)	125	126		ug/L		101	66 - 149	12	20
n-Butylbenzene	25.0	27.5		ug/L		110	79 - 142	2	20
sec-Butylbenzene	25.0	26.5		ug/L		106	81 - 134	1	20
tert-Butylbenzene	25.0	26.3		ug/L		105	82 - 135	1	20
Carbon disulfide	25.0	26.9		ug/L		107	68 - 137	······i	20
Carbon tetrachloride	25.0	27.5		ug/L		110	77 - 146	1	20
Chlorobenzene	25.0	26.1		ug/L		104	70 - 130	1	20
Chloroethane	25.0	24.5		ug/L		98	62 - 138	·····i	20
Chloroform	25.0	26.2		ug/L		105	70 - 130	1	20
Chloromethane	25.0	21.2		ug/L		85	52 - 175	1	20
2-Chlorotoluene	25.0	26.4		ug/L		105	70 - 130	0	20
4-Chlorotoluene	25.0	25.6		ug/L		102	70 - 130	1	20
Chlorodibromomethane	25.0	27.8		ug/L		111	78 - 145	1	20
1,2-Dichlorobenzene	25.0	25.4		ug/L		102	70 - 130	<u>:</u> -	20
1,3-Dichlorobenzene	25.0	25.9		ug/L		104	70 - 130	1	20
1,4-Dichlorobenzene	25.0	25.6		ug/L		102	87 - 118	2	20
1,3-Dichloropropane	25.0	26.6		ug/L		107	82 - 128	- -	20
1,1-Dichloropropene	25.0	27.2		ug/L		109	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	27.3		ug/L		109	72 - 136	13	20
Ethylene Dibromide	25.0	28.6		ug/L		114	70 - 130	2	20
Dibromomethane	25.0	26.8		ug/L		107	70 - 130	2	20
Dichlorodifluoromethane	25.0	16.0		ug/L		64	33 - 125	2	20
1,1-Dichloroethane	25.0	26.0		ug/L		104	70 - 130	0	20
1,2-Dichloroethane	25.0	25.8		ug/L		103	70 - 126	0	20
1,1-Dichloroethene	25.0	26.2		ug/L		105	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	30.2		ug/L		121	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.3		ug/L		93	75 - 131	1	20
1,2-Dichloropropane	25.0	25.9		ug/L		103	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	27.2		ug/L		109	88 - 137	1	20
trans-1,3-Dichloropropene	25.0	28.5		ug/L		114	83 - 140	2	20
Ethylbenzene	25.0	26.8		ug/L		107	86 - 135	0	20
Hexachlorobutadiene	25.0	26.4		ug/L		106	70 - 130	3	20
2-Hexanone	125	126		ug/L		101	60 - 164	13	20
Isopropylbenzene	25.0	27.5		ug/L		110	70 - 130	1	20
4-Isopropyltoluene	25.0	26.8		ug/L		107	70 - 130	· · · · · · · · · · · · · · · · · · ·	20
Methylene Chloride	25.0	25.4		ug/L		102	73 - 147	0	20
4-Methyl-2-pentanone (MIBK)	125	131		ug/L		105	63 - 165	10	20
Naphthalene (MIBIS)	25.0	27.1		ug/L		109	78 - 135	9	20
N-Propylbenzene	25.0	25.5		ug/L ug/L		102	70 - 130	1	20
Styrene	25.0	27.3		ug/L ug/L		102	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	26.9		ug/L ug/L		108	70 - 130	0	20
1,1,2,2-Tetrachioroethane	25.0	25.2		ug/L ug/L		101	70 - 130 70 - 130	4	20
Tetrachloroethene	25.0	27.3		ug/L ug/L		101	70 - 130 70 - 130	2	20
Toluene	25.0	27.3		ug/L ug/L		109	83 - 129	1	20

TestAmerica San Francisco 02/25/2011

Page 47 of 95

6

7

8

10

12

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86550/6

Matrix: Water

Analysis Batch: 86550

Client Sample ID: LCSD 720-86550/6

Prep Type: Total/NA

Client Sample ID: B-1

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
1,2,3-Trichlorobenzene	25.0	27.5		ug/L		110	70 - 130	4	20
1,2,4-Trichlorobenzene	25.0	26.7		ug/L		107	70 - 130	3	20
1,1,1-Trichloroethane	25.0	27.4		ug/L		110	70 - 130	0	20
1,1,2-Trichloroethane	25.0	25.7		ug/L		103	82 - 128	1	20
Trichloroethene	25.0	26.8		ug/L		107	70 - 130	0	20
Trichlorofluoromethane	25.0	25.5		ug/L		102	74 - 146	0	20
1,2,3-Trichloropropane	25.0	26.4		ug/L		105	70 - 130	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	27.2		ug/L		109	42 - 162	1	20
1,2,4-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	26.6		ug/L		107	70 - 130	0	20
Vinyl acetate	25.0	29.7		ug/L		119	43 - 163	6	20
Vinyl chloride	25.0	22.0		ug/L		88	65 - 156	1	20
m-Xylene & p-Xylene	50.0	54.6		ug/L		109	70 - 142	1	20
o-Xylene	25.0	26.8		ug/L		107	89 - 136	1	20
2,2-Dichloropropane	25.0	30.5		ug/L		122	70 - 140	1	20

 Surrogate
 % Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 787
 13 - 708

 795-, Dcloroefct ne-a4/d urrS
 : T
 13 - 708

) oluene-a6/d urrS
 788
 38 - 708

Lab Sample ID: 720-33463-10 MS

Matrix: Water

Analysis Batch: 86550

Analysis Batch: 86550										
	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Methyl tert-butyl ether	ND		25.0	30.6		ug/L		121	60 - 138	
Acetone	ND		125	88.5		ug/L		71	60 - 140	
Benzene	ND		25.0	28.8		ug/L		115	60 - 140	
Dichlorobromomethane	ND		25.0	30.6		ug/L		122	60 - 140	
Bromobenzene	ND		25.0	28.3		ug/L		113	60 - 140	
Chlorobromomethane	ND		25.0	30.9		ug/L		124	60 - 140	
Bromoform	ND		25.0	28.6		ug/L		114	56 - 140	
Bromomethane	ND		25.0	25.1		ug/L		100	23 - 140	
2-Butanone (MEK)	ND		125	128		ug/L		102	60 - 140	
n-Butylbenzene	ND		25.0	27.1		ug/L		109	60 - 140	
sec-Butylbenzene	ND		25.0	26.2		ug/L		105	60 - 140	
tert-Butylbenzene	ND		25.0	26.3		ug/L		105	60 - 140	
Carbon disulfide	ND		25.0	27.5		ug/L		110	38 - 140	
Carbon tetrachloride	ND		25.0	27.9		ug/L		112	60 - 140	
Chlorobenzene	ND		25.0	27.5		ug/L		110	60 - 140	
Chloroethane	ND		25.0	25.1		ug/L		100	51 - 140	
Chloroform	ND		25.0	28.8		ug/L		115	60 - 140	
Chloromethane	ND		25.0	22.1		ug/L		88	52 - 140	
2-Chlorotoluene	ND		25.0	27.2		ug/L		109	60 - 140	
4-Chlorotoluene	ND		25.0	26.4		ug/L		106	60 - 140	
Chlorodibromomethane	ND		25.0	31.4		ug/L		126	60 - 140	
1,2-Dichlorobenzene	ND		25.0	26.8		ug/L		107	60 - 140	
1,3-Dichlorobenzene	ND		25.0	27.0		ug/L		108	60 - 140	

TestAmerica San Francisco 02/25/2011

Page 48 of 95

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-33463-10 MS

Matrix: Water

Client Sample ID: B-1 Prep Type: Total/NA

Analysis Batch: 86550	Sample Sample	Spike	MS	MS		% Rec.
Analyte	Result Qualifier	Added	Result	Qualifier Unit	D % Rec	Limits
1,4-Dichlorobenzene	ND	25.0	26.7	ug/L		60 - 140
1,3-Dichloropropane	ND	25.0	30.4	ug/L	122	60 - 140
1,1-Dichloropropene	ND	25.0	28.2	ug/L	113	60 - 140
1,2-Dibromo-3-Chloropropane	ND	25.0	27.4	ug/L	110	60 - 140
Ethylene Dibromide	ND	25.0	32.5	ug/L	130	60 - 140
Dibromomethane	ND	25.0	30.2	ug/L	121	60 - 140
Dichlorodifluoromethane	ND	25.0	17.5	ug/L	70	38 - 140
1,1-Dichloroethane	ND	25.0	28.2	ug/L	113	60 - 140
1,2-Dichloroethane	ND	25.0	29.1	ug/L	116	60 - 140
1,1-Dichloroethene	ND	25.0	27.0	ug/L	108	60 - 140
cis-1,2-Dichloroethene	ND	25.0	33.4	ug/L	133	60 - 140
trans-1,2-Dichloroethene	ND	25.0	24.7	ug/L	99	60 - 140
1,2-Dichloropropane	ND	25.0	28.6	ug/L	114	60 - 140
cis-1,3-Dichloropropene	ND	25.0	30.5	ug/L	122	60 - 140
trans-1,3-Dichloropropene	ND	25.0	31.7	ug/L	127	60 - 140
Ethylbenzene	ND	25.0	27.5	ug/L	110	60 - 140
Hexachlorobutadiene	ND	25.0	25.5	ug/L	102	60 - 140
2-Hexanone	ND	125	133	ug/L	106	60 - 140
Isopropylbenzene	ND	25.0	27.7	ug/L	111	60 - 140
4-Isopropyltoluene	ND	25.0	26.5	ug/L	106	60 - 140
Methylene Chloride	ND	25.0	28.2	-	113	40 - 140
4-Methyl-2-pentanone (MIBK)	ND	125	145	ug/L	116	60 - 140
Naphthalene	ND	25.0	28.0	ug/L	112	56 - 140
N-Propylbenzene	ND	25.0	25.6	ug/L	102	60 - 140
Styrene	ND	25.0	28.4	ug/L	114	60 - 140
1,1,1,2-Tetrachloroethane	ND	25.0	29.0	ug/L	116	60 - 140
1,1,2,2-Tetrachloroethane	ND	25.0	27.3	ug/L	109	60 - 140
Tetrachloroethene	16	25.0	44.4	ug/L	113	60 - 140
Toluene	ND	25.0	28.4	ug/L	112	60 - 140
1,2,3-Trichlorobenzene	ND	25.0	28.8	ug/L	115	60 - 140
1,2,4-Trichlorobenzene	ND	25.0	28.1	ug/L	112	60 - 140
1,1,1-Trichloroethane	ND	25.0	28.3	ug/L	113	60 - 140
1,1,2-Trichloroethane	ND	25.0	29.2	ug/L	117	60 - 140
Trichloroethene	ND	25.0	28.4	ug/L	113	60 - 140
Trichlorofluoromethane	ND	25.0	25.2		101	60 - 140
1,2,3-Trichloropropane	ND	25.0	28.2	ug/L	113	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	25.0	27.7	ug/L	111	60 - 140
ne	110	20.0	L 1.1	ug/L		30 1.0
1,2,4-Trimethylbenzene	ND	25.0	26.3	ug/L	105	60 - 140
1,3,5-Trimethylbenzene	ND	25.0	26.9	ug/L	108	60 - 140
Vinyl acetate	ND	25.0	32.1	ug/L	128	40 - 140
Vinyl chloride	ND	25.0	22.5	ug/L	90	58 - 140
m-Xylene & p-Xylene	ND	50.0	56.2	ug/L	112	60 - 140
o-Xylene	ND	25.0	28.2	ug/L	112	60 - 140
2,2-Dichloropropane	ND	25.0	30.4	ug/L	122	60 - 140

MS MS

Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	785	13 - 708
795-, Dcloroelct ne-a4/d urrS	784	13 - 708
) oluene-a6/ď urrS	787	38 - 708

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-33463-10 MSD

Matrix: Water

Analysis Batch: 86550										tai/IVA
	Sample Sample	Spike	MSD					% Rec.		RPD
Analyte	Result Qualifier	Added		Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND	25.0	27.8		ug/L		110	60 - 138	10	20
Acetone	ND	125	78.8		ug/L		63	60 - 140	12	20
Benzene	ND	25.0	27.1		ug/L		108	60 - 140	6	20
Dichlorobromomethane	ND	25.0	28.2		ug/L		113	60 - 140	8	20
Bromobenzene	ND	25.0	26.3		ug/L		105	60 - 140	7	20
Chlorobromomethane	ND	25.0	28.2		ug/L		113	60 - 140	9	20
Bromoform	ND	25.0	26.3		ug/L		105	56 - 140	8	20
Bromomethane	ND	25.0	23.1		ug/L		92	23 - 140	8	20
2-Butanone (MEK)	ND	125	113		ug/L		91	60 - 140	12	20
n-Butylbenzene	ND	25.0	26.0		ug/L		104	60 - 140	4	20
sec-Butylbenzene	ND	25.0	25.1		ug/L		101	60 - 140	4	20
tert-Butylbenzene	ND	25.0	25.1		ug/L		100	60 - 140	5	20
Carbon disulfide	ND	25.0	26.2		ug/L		105	38 - 140	5	20
Carbon tetrachloride	ND	25.0	26.7		ug/L		107	60 - 140	4	20
Chlorobenzene	ND	25.0	26.0		ug/L		104	60 - 140	6	20
Chloroethane	ND	25.0	22.9		ug/L		91	51 - 140	9	20
Chloroform	ND	25.0	27.0		ug/L		108	60 - 140	6	20
Chloromethane	ND	25.0	19.7		ug/L		79	52 - 140	11	20
2-Chlorotoluene	ND	25.0	25.7		ug/L		103	60 - 140	6	20
4-Chlorotoluene	ND	25.0	24.9		ug/L		99	60 - 140	6	20
Chlorodibromomethane	ND	25.0	29.1		ug/L		116	60 - 140	8	20
1,2-Dichlorobenzene	ND	25.0	25.2		ug/L		101	60 - 140	6	20
					-					
1,3-Dichlorobenzene	ND	25.0	25.3		ug/L		101 100	60 - 140	6 6	20
1,4-Dichlorobenzene	ND ND	25.0 25.0	25.1 27.7		ug/L		111	60 - 140 60 - 140	9	20
1,3-Dichloropropane					ug/L					
1,1-Dichloropropene	ND	25.0	26.8		ug/L		107	60 - 140	5	20
1,2-Dibromo-3-Chloropropane	ND	25.0	24.5		ug/L		98	60 - 140	11	20
Ethylene Dibromide	ND	25.0	29.9		ug/L		119	60 - 140	8	20
Dibromomethane	ND	25.0	27.9		ug/L 		112	60 - 140	8	20
Dichlorodifluoromethane	ND	25.0	15.0		ug/L		60	38 - 140	15	20
1,1-Dichloroethane	ND	25.0	26.6		ug/L		106	60 - 140	6	20
1,2-Dichloroethane	ND	25.0	27.0		ug/L		108	60 - 140	8	20
1,1-Dichloroethene	ND	25.0	25.5		ug/L		102	60 - 140	6	20
cis-1,2-Dichloroethene	ND	25.0	31.3		ug/L		124	60 - 140	7	20
trans-1,2-Dichloroethene	ND	25.0	23.4		ug/L		94	60 - 140	5	20
1,2-Dichloropropane	ND	25.0	26.8		ug/L		107	60 - 140	7	20
cis-1,3-Dichloropropene	ND	25.0	28.3		ug/L		113	60 - 140	7	20
trans-1,3-Dichloropropene	ND	25.0	29.5		ug/L		118	60 - 140	7	20
Ethylbenzene	ND	25.0	26.2		ug/L		105	60 - 140	5	20
Hexachlorobutadiene	ND	25.0	24.7		ug/L		99	60 - 140	3	20
2-Hexanone	ND	125	118		ug/L		94	60 - 140	12	20
Isopropylbenzene	ND	25.0	26.6		ug/L		107	60 - 140	4	20
4-Isopropyltoluene	ND	25.0	25.5		ug/L		102	60 - 140	4	20
Methylene Chloride	ND	25.0	26.4		ug/L		105	40 - 140	7	20
4-Methyl-2-pentanone (MIBK)	ND	125	129		ug/L		103	60 - 140	12	20
Naphthalene	ND	25.0	25.7		ug/L		103	56 - 140	9	20
N-Propylbenzene	ND	25.0	24.3		ug/L		97	60 - 140	5	20
Styrene	ND	25.0	26.6		ug/L		106	60 - 140	7	20
1,1,1,2-Tetrachloroethane	ND	25.0	27.1		ug/L		108	60 - 140	7	20

3

Δ

Client Sample ID: B-1

Prep Type: Total/NA

5

7

10

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-33463-10 MSD

Matrix: Water

Analysis Batch: 86550

Client Sample ID: B-1 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	ND		25.0	24.6		ug/L		98	60 - 140	11	20
Tetrachloroethene	16		25.0	42.8		ug/L		106	60 - 140	4	20
Toluene	ND		25.0	26.9		ug/L		106	60 - 140	5	20
1,2,3-Trichlorobenzene	ND		25.0	27.0		ug/L		108	60 - 140	6	20
1,2,4-Trichlorobenzene	ND		25.0	26.4		ug/L		106	60 - 140	6	20
1,1,1-Trichloroethane	ND		25.0	27.0		ug/L		108	60 - 140	5	20
1,1,2-Trichloroethane	ND		25.0	26.9		ug/L		108	60 - 140	8	20
Trichloroethene	ND		25.0	26.8		ug/L		107	60 - 140	6	20
Trichlorofluoromethane	ND		25.0	23.4		ug/L		93	60 - 140	7	20
1,2,3-Trichloropropane	ND		25.0	25.2		ug/L		101	60 - 140	12	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		25.0	26.3		ug/L		105	60 - 140	5	20
1,2,4-Trimethylbenzene	ND		25.0	24.7		ug/L		99	60 - 140	6	20
1,3,5-Trimethylbenzene	ND		25.0	25.5		ug/L		102	60 - 140	5	20
Vinyl acetate	ND		25.0	28.5		ug/L		114	40 - 140	12	20
Vinyl chloride	ND		25.0	20.6		ug/L		82	58 - 140	9	20
m-Xylene & p-Xylene	ND		50.0	53.3		ug/L		106	60 - 140	5	20
o-Xylene	ND		25.0	26.5		ug/L		106	60 - 140	6	20
2,2-Dichloropropane	ND		25.0	29.1		ug/L		116	60 - 140	4	20

MSD MSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	780		13 - 708
795-, Dcloroelct ne-a4/d urrS	785		13 - 708
) oluene-a6/ď urrS	785		38 - 708

Lab Sample ID: MB 720-86641/5

Matrix: Water

Analysis Batch: 86641

Client Sample ID: MB 720-86641/5

Prep Type: Total/NA

Analyte Result Qualifier RL	MDL Unit	D Prepa	red Analyzed	Dil Fac
Methyl tert-butyl ether ND 0.50	=		02/23/11 09:09	1
Acetone ND 50	ug/L		02/23/11 09:09	1
Benzene ND 0.50	ug/L		02/23/11 09:09	1
Dichlorobromomethane ND 0.50	ug/L		02/23/11 09:09	1
Bromobenzene ND 1.0	ug/L		02/23/11 09:09	1
Chlorobromomethane ND 1.0	ug/L		02/23/11 09:09	1
Bromoform ND 1.0	ug/L		02/23/11 09:09	1
Bromomethane ND 1.0	ug/L		02/23/11 09:09	1
2-Butanone (MEK) ND 50	ug/L		02/23/11 09:09	1
n-Butylbenzene ND 1.0	ug/L		02/23/11 09:09	1
sec-Butylbenzene ND 1.0	ug/L		02/23/11 09:09	1
tert-Butylbenzene ND 1.0	ug/L		02/23/11 09:09	1
Carbon disulfide ND 5.0	ug/L		02/23/11 09:09	1
Carbon tetrachloride ND 0.50	ug/L		02/23/11 09:09	1
Chlorobenzene ND 0.50	ug/L		02/23/11 09:09	1
Chloroethane ND 1.0	ug/L		02/23/11 09:09	1
Chloroform ND 1.0	ug/L		02/23/11 09:09	1
Chloromethane ND 1.0	ug/L		02/23/11 09:09	1
2-Chlorotoluene ND 0.50	ug/L		02/23/11 09:09	1
4-Chlorotoluene ND 0.50	ug/L		02/23/11 09:09	1

02/25/2011

Page 51 of 95

RL

MDL Unit

Client: Dominion Due Diligence Group TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

мв мв

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: MB 720-86641/5

Matrix: Water

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

2,2-Dichloropropane

1,1,2-Trichloro-1,2,2-trifluoroethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

o-Xylene

Analyte

Analysis Batch: 86641

Client Sample ID: MB 720-86641/5

Prepared

Analyzed

	Total/NA	
•		

Dil Fac

Chlorodibromomethane	ND	0.50	ug/L	02/23/11 09:09	1
1,2-Dichlorobenzene	ND	0.50	ug/L	02/23/11 09:09	1
1,3-Dichlorobenzene	ND	0.50	ug/L	02/23/11 09:09	1
1,4-Dichlorobenzene	ND	0.50	ug/L	02/23/11 09:09	1
1,3-Dichloropropane	ND	1.0	ug/L	02/23/11 09:09	1
1,1-Dichloropropene	ND	0.50	ug/L	02/23/11 09:09	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	02/23/11 09:09	1
Ethylene Dibromide	ND	0.50	ug/L	02/23/11 09:09	1
Dibromomethane	ND	0.50	ug/L	02/23/11 09:09	1
Dichlorodifluoromethane	ND	0.50	ug/L	02/23/11 09:09	1
1,1-Dichloroethane	ND	0.50	ug/L	02/23/11 09:09	1
1,2-Dichloroethane	ND	0.50	ug/L	02/23/11 09:09	1
1,1-Dichloroethene	ND	0.50	ug/L	02/23/11 09:09	1
cis-1,2-Dichloroethene	ND	0.50	ug/L	02/23/11 09:09	1
trans-1,2-Dichloroethene	ND	0.50	ug/L	02/23/11 09:09	1
1,2-Dichloropropane	ND	0.50	ug/L	02/23/11 09:09	1
cis-1,3-Dichloropropene	ND	0.50	ug/L	02/23/11 09:09	1
trans-1,3-Dichloropropene	ND	0.50	ug/L	02/23/11 09:09	1
Ethylbenzene	ND	0.50	ug/L	02/23/11 09:09	1
Hexachlorobutadiene	ND	1.0	ug/L	02/23/11 09:09	1
2-Hexanone	ND	50	ug/L	02/23/11 09:09	1
Isopropylbenzene	ND	0.50	ug/L	02/23/11 09:09	1
4-Isopropyltoluene	ND	1.0	ug/L	02/23/11 09:09	1
Methylene Chloride	ND	5.0	ug/L	02/23/11 09:09	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	02/23/11 09:09	1
Naphthalene	ND	1.0	ug/L	02/23/11 09:09	1
N-Propylbenzene	ND	1.0	ug/L	02/23/11 09:09	1
Styrene	ND	0.50	ug/L	02/23/11 09:09	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	02/23/11 09:09	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	02/23/11 09:09	1
Tetrachloroethene	ND	0.50	ug/L	02/23/11 09:09	1
Toluene	ND	0.50	ug/L	02/23/11 09:09	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	02/23/11 09:09	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	02/23/11 09:09	1
1,1,1-Trichloroethane	ND	0.50	ug/L	02/23/11 09:09	1

TestAmerica San Francisco 02/25/2011

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

02/23/11 09:09

0.50

0.50

1.0

0.50

0.50

0.50

0.50

10

0.50

1.0

0.50

0.50

1.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86641/5

Matrix: Water

Analysis Batch: 86641

Client Sample ID: MB 720-86641/5

Prep Type: Total/NA

Analyzed

85250277/8: 8:

Prepared

Dil Fac

7

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	788		13 - 708
705- Doloroelet ne-24/d urrS	78T		13 - 708

MB MB

13 - 708 85250277/8: 8: 795-, Dcloroehct ne-a4/d urrS 788 38 - 708 85250277/8: 8:) oluene-a6/d/ urrS

Lab Sample ID: LCS 720-86641/6

Matrix: Water

Analysis Batch: 86641

Client Sample	ID: LCS 720-86641/6
	Prep Type: Total/NA

	Spike	LCS	LCS		% Rec.
Analyte	Added	Result	Qualifier Unit	D % Rec	Limits
Methyl tert-butyl ether	25.0	28.3	ug/L		62 - 130
Acetone	125	99.3	ug/L	79	26 - 180
Benzene	25.0	27.1	ug/L	109	82 - 127
Dichlorobromomethane	25.0	29.0	ug/L	116	70 - 130
Bromobenzene	25.0	26.6	ug/L	106	79 - 127
Chlorobromomethane	25.0	28.8	ug/L	115	70 - 130
3romoform	25.0	27.4	ug/L	110	68 - 136
2-Butanone (MEK)	125	128	ug/L	103	66 - 149
n-Butylbenzene	25.0	26.6	ug/L	106	79 - 142
sec-Butylbenzene	25.0	25.2	ug/L	101	81 - 134
tert-Butylbenzene	25.0	25.0	ug/L	100	82 - 135
Carbon disulfide	25.0	25.3	ug/L	101	68 - 137
Carbon tetrachloride	25.0	27.1	ug/L	108	77 - 146
Chlorobenzene	25.0	26.3	ug/L	105	70 - 130
Chloroform	25.0	27.1	ug/L	108	70 - 130
2-Chlorotoluene	25.0	25.8	ug/L	103	70 - 130
1-Chlorotoluene	25.0	25.0	ug/L	100	70 - 130
Chlorodibromomethane	25.0	29.6	ug/L	119	78 - 145
1,2-Dichlorobenzene	25.0	25.7	ug/L	103	70 - 130
1,3-Dichlorobenzene	25.0	25.5	ug/L	102	70 - 130
1,4-Dichlorobenzene	25.0	25.3	ug/L	101	87 - 118
1,3-Dichloropropane	25.0	28.6	ug/L	115	82 - 128
1,1-Dichloropropene	25.0	26.9	ug/L	107	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.8	ug/L	103	72 - 136
Ethylene Dibromide	25.0	30.6	ug/L	122	70 - 130
Dibromomethane	25.0	28.5	ug/L	114	70 - 130
1,1-Dichloroethane	25.0	26.6	ug/L	106	70 - 130
1,2-Dichloroethane	25.0	27.8	ug/L	111	70 - 126
1,1-Dichloroethene	25.0	26.2	ug/L	105	64 - 128
cis-1,2-Dichloroethene	25.0	31.1	ug/L	124	70 - 130
trans-1,2-Dichloroethene	25.0	23.4	ug/L	94	75 - 131
1,2-Dichloropropane	25.0	27.2	ug/L	109	70 - 130
cis-1,3-Dichloropropene	25.0	28.9	ug/L	115	88 - 137
trans-1,3-Dichloropropene	25.0	30.3	ug/L	121	83 - 140
Ethylbenzene	25.0	26.5	ug/L	106	86 - 135
Hexachlorobutadiene	25.0	25.5	ug/L	102	70 - 130
2-Hexanone	125	133	ug/L	106	60 - 164
sopropylbenzene	25.0	27.2	ug/L	109	70 - 130
1-Isopropyltoluene	25.0	25.7	ug/L	103	70 - 130
Methylene Chloride	25.0	26.6	ug/L	107	73 - 147

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86641/6

Matrix: Water

Analysis Batch: 86641

Client Sample ID: LCS 720-86641/6 Prep Type: Total/NA

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
4-Methyl-2-pentanone (MIBK)	125	139		ug/L		111	63 - 165	
Naphthalene	25.0	26.9		ug/L		108	78 - 135	
N-Propylbenzene	25.0	24.5		ug/L		98	70 - 130	
Styrene	25.0	27.7		ug/L		111	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	27.9		ug/L		111	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	25.5		ug/L		102	70 - 130	
Tetrachloroethene	25.0	27.1		ug/L		108	70 - 130	
Toluene	25.0	27.0		ug/L		108	83 - 129	
1,2,3-Trichlorobenzene	25.0	28.1		ug/L		112	70 - 130	
1,2,4-Trichlorobenzene	25.0	27.3		ug/L		109	70 - 130	
1,1,1-Trichloroethane	25.0	27.0		ug/L		108	70 - 130	
1,1,2-Trichloroethane	25.0	27.6		ug/L		111	82 - 128	
Trichloroethene	25.0	26.7		ug/L		107	70 - 130	
1,2,3-Trichloropropane	25.0	26.4		ug/L		106	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	26.8		ug/L		107	42 - 162	
1,2,4-Trimethylbenzene	25.0	25.1		ug/L		100	70 - 132	
1,3,5-Trimethylbenzene	25.0	25.8		ug/L		103	70 - 130	
m-Xylene & p-Xylene	50.0	54.1		ug/L		108	70 - 142	
o-Xylene	25.0	27.0		ug/L		108	89 - 136	
2,2-Dichloropropane	25.0	28.1		ug/L		112	70 - 140	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	780		13 - 708
795-, Dcloroehct ne-a4/d(urrS	785		13 - 708
) oluene-a6/ď urrS	788		38 - 708

Lab Sample ID: LCSD 720-86641/7

Matrix: Water

Analysis Batch: 86641

Client Sample ID: LCSD 720	-86641/7
Prep Type: 7	Γotal/NA

7 maryolo Batom 60011	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added		Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	27.9		ug/L		112	62 - 130		20
Acetone	125	95.7		ug/L		77	26 - 180	4	30
Benzene	25.0	28.1		ug/L		112	82 - 127	4	20
Dichlorobromomethane	25.0	29.5		ug/L		118	70 - 130	2	20
Bromobenzene	25.0	27.8		ug/L		111	79 - 127	5	20
Chlorobromomethane	25.0	28.8		ug/L		115	70 - 130	0	20
Bromoform	25.0	27.2		ug/L		109	68 - 136	1	20
2-Butanone (MEK)	125	122		ug/L		97	66 - 149	5	20
n-Butylbenzene	25.0	27.9		ug/L		112	79 - 142	5	20
sec-Butylbenzene	25.0	26.9		ug/L		107	81 - 134	6	20
tert-Butylbenzene	25.0	26.8		ug/L		107	82 - 135	7	20
Carbon disulfide	25.0	26.3		ug/L		105	68 - 137	4	20
Carbon tetrachloride	25.0	28.4		ug/L		113	77 - 146	5	20
Chlorobenzene	25.0	27.1		ug/L		108	70 - 130	3	20
Chloroform	25.0	27.8		ug/L		111	70 - 130	2	20
2-Chlorotoluene	25.0	27.3		ug/L		109	70 - 130	5	20
4-Chlorotoluene	25.0	26.4		ug/L		106	70 - 130	5	20
Chlorodibromomethane	25.0	29.7		ug/L		119	78 - 145	0	20

TestAmerica San Francisco 02/25/2011

Page 54 of 95

2

4

7

0

10

12

Client: Dominion Due Diligence Group TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86641/7

Matrix: Water

Analysis Batch: 86641

Client Sample ID: LCSD 720-86641/7

Prep	Type:	Total/NA	

Analyte	Spike Added	LCSD LCSD Result Qualifie	r Unit	D % Rec	% Rec. Limits	RPD	RPD Limit
1,2-Dichlorobenzene	25.0	26.5	ug/L	106	70 - 130	3	20
1,3-Dichlorobenzene	25.0	26.6	ug/L	107	70 - 130	5	20
1,4-Dichlorobenzene	25.0	26.3	ug/L	105	87 - 118	4	20
1,3-Dichloropropane	25.0	28.3	ug/L	113	82 - 128	1	20
1,1-Dichloropropene	25.0	27.9	ug/L	112	70 - 130	4	20
1,2-Dibromo-3-Chloropropane	25.0	25.5	ug/L	102	72 - 136	1	20
Ethylene Dibromide	25.0	30.3	ug/L	121	70 - 130	1	20
Dibromomethane	25.0	28.2	ug/L	113	70 - 130	1	20
1,1-Dichloroethane	25.0	27.4	ug/L	109	70 - 130	3	20
1,2-Dichloroethane	25.0	27.9	ug/L	111	70 - 126	0	20
1,1-Dichloroethene	25.0	27.1	ug/L	108	64 - 128	3	20
cis-1,2-Dichloroethene	25.0	31.9	ug/L	128	70 - 130	3	20
trans-1,2-Dichloroethene	25.0	24.3	ug/L	97	75 - 131	4	20
1,2-Dichloropropane	25.0	27.5	ug/L	110	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	29.2	ug/L	117	88 - 137	1	20
trans-1,3-Dichloropropene	25.0	30.5	ug/L	122	83 - 140	1	20
Ethylbenzene	25.0	27.6	ug/L	110	86 - 135	4	20
Hexachlorobutadiene	25.0	26.6	ug/L	106	70 - 130	4	20
2-Hexanone	125	126	ug/L	101	60 - 164	5	20
Isopropylbenzene	25.0	28.1	ug/L	112	70 - 130	3	20
4-Isopropyltoluene	25.0	27.1	ug/L	108	70 - 130	5	20
Methylene Chloride	25.0	27.1	ug/L	108	73 - 147	2	20
4-Methyl-2-pentanone (MIBK)	125	132	ug/L	106	63 - 165	5	20
Naphthalene	25.0	27.3	ug/L	109	78 - 135	2	20
N-Propylbenzene	25.0	26.0	ug/L	104	70 - 130	6	20
Styrene	25.0	28.4	ug/L	114	70 - 130	3	20
1,1,1,2-Tetrachloroethane	25.0	28.2	ug/L	113	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	25.6	ug/L	102	70 - 130	0	20
Tetrachloroethene	25.0	28.1	ug/L	112	70 - 130	4	20
Toluene	25.0	27.9	ug/L	112	83 - 129	3	20
1,2,3-Trichlorobenzene	25.0	28.6	ug/L	115	70 - 130	2	20
1,2,4-Trichlorobenzene	25.0	28.1	ug/L	113	70 - 130	3	20
1,1,1-Trichloroethane	25.0	28.1	ug/L	112	70 - 130	4	20
1,1,2-Trichloroethane	25.0	27.3	ug/L	109	82 - 128	1	20
Trichloroethene	25.0	27.8	ug/L	111	70 - 130	4	20
1,2,3-Trichloropropane	25.0	26.3	ug/L	105	70 - 130	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	27.5	ug/L	110	42 - 162	3	20
1,2,4-Trimethylbenzene	25.0	26.4	ug/L	106	70 - 132	5	20
1,3,5-Trimethylbenzene	25.0	27.4	ug/L	110	70 - 130	6	20
m-Xylene & p-Xylene	50.0	56.0	ug/L	112	70 - 142	3	20
o-Xylene	25.0	27.8	ug/L	111	89 - 136	3	20

LCSD	LCSD

Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	787	13 - 708
795-, Dcloroehct ne-a4/d urrS	::	13 - 708
) oluene-a6/ď urrS	787	38 - 708

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86644/5

Matrix: Water

Client Sample ID: MB 720-86644/5

Prep	Type:	Total/NA

	МВ								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			02/23/11 09:36	1
Acetone	ND		50		ug/L			02/23/11 09:36	1
Benzene	ND		0.50		ug/L			02/23/11 09:36	
Dichlorobromomethane	ND		0.50		ug/L			02/23/11 09:36	1
Bromobenzene	ND		1.0		ug/L			02/23/11 09:36	•
Chlorobromomethane	ND		1.0		ug/L			02/23/11 09:36	
Bromoform	ND		1.0		ug/L			02/23/11 09:36	1
Bromomethane	ND		1.0		ug/L			02/23/11 09:36	
2-Butanone (MEK)	ND		50		ug/L			02/23/11 09:36	•
n-Butylbenzene	ND		1.0		ug/L			02/23/11 09:36	•
sec-Butylbenzene	ND		1.0		ug/L			02/23/11 09:36	1
tert-Butylbenzene	ND		1.0		ug/L			02/23/11 09:36	1
Carbon disulfide	ND		5.0		ug/L			02/23/11 09:36	
Carbon tetrachloride	ND		0.50		ug/L			02/23/11 09:36	
Chlorobenzene	ND		0.50		ug/L			02/23/11 09:36	,
Chloroethane	ND		1.0		ug/L			02/23/11 09:36	
Chloroform	ND		1.0		ug/L			02/23/11 09:36	
Chloromethane	ND		1.0		ug/L			02/23/11 09:36	
2-Chlorotoluene	ND		0.50		ug/L			02/23/11 09:36	
4-Chlorotoluene	ND		0.50		ug/L			02/23/11 09:36	
Chlorodibromomethane	ND		0.50		ug/L			02/23/11 09:36	
1,2-Dichlorobenzene	ND		0.50		ug/L			02/23/11 09:36	
1,3-Dichlorobenzene	ND		0.50		ug/L			02/23/11 09:36	
1,4-Dichlorobenzene	ND		0.50		ug/L			02/23/11 09:36	
1,3-Dichloropropane	ND		1.0		ug/L			02/23/11 09:36	
1,1-Dichloropropene	ND		0.50		ug/L			02/23/11 09:36	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			02/23/11 09:36	
Ethylene Dibromide	ND		0.50		ug/L			02/23/11 09:36	
Dibromomethane	ND		0.50		ug/L			02/23/11 09:36	
Dichlorodifluoromethane	ND		0.50		ug/L			02/23/11 09:36	
1,1-Dichloroethane	ND		0.50		ug/L			02/23/11 09:36	
1,2-Dichloroethane	ND		0.50		ug/L			02/23/11 09:36	
1,2-Dichloroethane	ND		0.50					02/23/11 09:36	
	ND ND				ug/L			02/23/11 09:36	
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND		0.50		ug/L				
,			0.50		ug/L			02/23/11 09:36	•
1,2-Dichloropropane	ND		0.50		ug/L			02/23/11 09:36	
cis-1,3-Dichloropropene	ND		0.50		ug/L			02/23/11 09:36	
trans-1,3-Dichloropropene	ND		0.50		ug/L			02/23/11 09:36	•
Ethylbenzene	ND		0.50		ug/L			02/23/11 09:36	
Hexachlorobutadiene	ND		1.0		ug/L			02/23/11 09:36	•
2-Hexanone	ND		50		ug/L			02/23/11 09:36	•
Isopropylbenzene	ND		0.50		ug/L			02/23/11 09:36	
4-Isopropyltoluene	ND		1.0		ug/L			02/23/11 09:36	•
Methylene Chloride	ND		5.0		ug/L			02/23/11 09:36	•
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			02/23/11 09:36	
Naphthalene	ND		1.0		ug/L			02/23/11 09:36	1
N-Propylbenzene	ND		1.0		ug/L			02/23/11 09:36	1
Styrene	ND		0.50		ug/L			02/23/11 09:36	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			02/23/11 09:36	1

Client: Dominion Due Diligence Group

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: MB 720-86644/5

Client Sample ID: LCS 720-86644/6

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 720-86644/5

Matrix: Water

Analysis Batch: 86644

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			02/23/11 09:36	1
Tetrachloroethene	ND		0.50		ug/L			02/23/11 09:36	1
Toluene	ND		0.50		ug/L			02/23/11 09:36	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			02/23/11 09:36	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			02/23/11 09:36	1
1,1,1-Trichloroethane	ND		0.50		ug/L			02/23/11 09:36	1
1,1,2-Trichloroethane	ND		0.50		ug/L			02/23/11 09:36	1
Trichloroethene	ND		0.50		ug/L			02/23/11 09:36	1
Trichlorofluoromethane	ND		1.0		ug/L			02/23/11 09:36	1
1,2,3-Trichloropropane	ND		0.50		ug/L			02/23/11 09:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			02/23/11 09:36	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			02/23/11 09:36	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			02/23/11 09:36	1
Vinyl acetate	ND		10		ug/L			02/23/11 09:36	1
Vinyl chloride	ND		0.50		ug/L			02/23/11 09:36	1
m-Xylene & p-Xylene	ND		1.0		ug/L			02/23/11 09:36	1
o-Xylene	ND		0.50		ug/L			02/23/11 09:36	1
Xylenes, Total	ND		1.0		ug/L			02/23/11 09:36	1
2,2-Dichloropropane	ND		0.50		ug/L			02/23/11 09:36	1

MB MB Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 787 13 - 708 85250277/8: 01 795-, Dcloroehct ne-a4/d/ urrS 784 13 - 708 85250277/8: 01 7) oluene-a6/d urrS 787 38 - 708 85250277/8: 01

Lab Sample ID: LCS 720-86644/6

Matrix: Water

Analysis Batch: 86644								
	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Methyl tert-butyl ether	25.0	24.4		ug/L		98	62 - 130	
Acetone	125	87.0		ug/L		70	26 - 180	
Benzene	25.0	24.9		ug/L		99	82 - 127	
Dichlorobromomethane	25.0	27.4		ug/L		110	70 - 130	
Bromobenzene	25.0	27.2		ug/L		109	79 - 127	
Chlorobromomethane	25.0	25.0		ug/L		100	70 - 130	
Bromoform	25.0	26.3		ug/L		105	68 - 136	
Bromomethane	25.0	24.7		ug/L		99	43 - 151	
2-Butanone (MEK)	125	108		ug/L		87	66 - 149	
n-Butylbenzene	25.0	29.8		ug/L		119	79 - 142	
sec-Butylbenzene	25.0	29.2		ug/L		117	81 - 134	
tert-Butylbenzene	25.0	30.2		ug/L		121	82 - 135	
Carbon disulfide	25.0	23.3		ug/L		93	68 - 137	
Carbon tetrachloride	25.0	28.4		ug/L		114	77 - 146	
Chlorobenzene	25.0	25.1		ug/L		100	70 - 130	
Chloroethane	25.0	24.0		ug/L		96	62 - 138	
Chloroform	25.0	25.3		ug/L		101	70 - 130	
Chloromethane	25.0	21.2		ug/L		85	52 - 175	
2-Chlorotoluene	25.0	27.6		ug/L		111	70 - 130	

Page 57 of 95

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86644/6

Matrix: Water

Client Sample ID: LCS 720-86644/6
Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 86644	Spike	LCS	LCS		% Rec.	
Analyte	Added	Result	Qualifier Un	it D %R	ec Limits	
4-Chlorotoluene	25.0	26.9	ug/	L 1	08 70 - 130	
Chlorodibromomethane	25.0	28.2	ug/	L 1	13 78 - 145	
1,2-Dichlorobenzene	25.0	25.2	ug/	L 1	01 70 - 130	
1,3-Dichlorobenzene	25.0	26.3	ug/		05 70 - 130	
1,4-Dichlorobenzene	25.0	25.6	ug/	L 1	02 87 - 118	
1,3-Dichloropropane	25.0	25.3	ug/	L 1	01 82 - 128	
1,1-Dichloropropene	25.0	27.2	ug/	L 1	09 70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	26.4	ug/	L 1	06 72 - 136	
Ethylene Dibromide	25.0	26.8	ug/	L 1	07 70 - 130	
Dibromomethane	25.0	24.7	ug/		99 70 - 130	
Dichlorodifluoromethane	25.0	19.1	ug/		76 33 - 125	
1,1-Dichloroethane	25.0	24.6	ug/		98 70 - 130	
1,2-Dichloroethane	25.0	24.7	ug/		99 70 - 126	
1,1-Dichloroethene	25.0	24.7	ug/		99 64 - 128	
cis-1,2-Dichloroethene	25.0	27.8	ug/		11 70 - 130	
trans-1,2-Dichloroethene	25.0	21.8	ug/		87 75 - 131	
1,2-Dichloropropane	25.0	24.4	ug/		98 70 - 130	
cis-1,3-Dichloropropene	25.0	27.0	ug/		08 88 - 137	
trans-1,3-Dichloropropene	25.0	25.6	ug/		02 83 - 140	
Ethylbenzene	25.0	27.0	ug/		08 86 - 135	
Hexachlorobutadiene	25.0	30.7	ug/ ug/		23 70 - 130	
2-Hexanone	125	116	ug/		93 60 - 164	
Isopropylbenzene	25.0	30.4	ug/ ug/		21 70 - 130	
4-Isopropyltoluene	25.0	29.2	ug/ ug/		17 70 - 130 17 70 - 130	
Methylene Chloride	25.0	23.1			92 73 - 147	
4-Methyl-2-pentanone (MIBK)	125	117	ug/		92 73 - 147 94 63 - 165	
			ug/			
Naphthalene	25.0	28.8	ug/		15 78 - 135	
N-Propylbenzene	25.0	27.6	ug/		11 70 - 130	
Styrene	25.0	29.4	ug/		18 70 - 130	
1,1,1,2-Tetrachloroethane	25.0	29.1	ug/		17 70 - 130	
1,1,2,2-Tetrachloroethane	25.0	23.5	ug/		94 70 - 130	
Tetrachloroethene	25.0	27.0	ug/		08 70 - 130	
Toluene	25.0	24.8	ug/		99 83 - 129	
1,2,3-Trichlorobenzene	25.0	29.5	ug/		18 70 - 130	
1,2,4-Trichlorobenzene	25.0	29.8	ug/		19 70 - 130	
1,1,1-Trichloroethane	25.0	28.4	ug/		14 70 - 130	
1,1,2-Trichloroethane	25.0	24.7	ug/		99 82 - 128	
Trichloroethene	25.0	26.4	ug/		05 70 - 130	
Trichlorofluoromethane	25.0	25.7	ug/		03 74 - 146	
1,2,3-Trichloropropane	25.0	25.0	ug/		00 70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.7	ug/	L 1	07 42 - 162	
ne 1,2,4-Trimethylbenzene	25.0	29.1	ug/		16 70 - 132	
1,3,5-Trimethylbenzene	25.0	30.3	ug/		21 70 - 130	
Vinyl acetate	25.0	28.4	ug/		14 43 - 163	
Vinyl chloride	25.0	24.5	ug/ ug/		98 65 - 156	
m-Xylene & p-Xylene	50.0	56.6	ug/ ug/		13 70 - 142	
o-Xylene	25.0	28.2	ug/ ug/		13 70 - 142 13 89 - 136	
0-VAICHE	20.0	20.2	ug/	L !	10 09-130	

4

5

7

9

10

12

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86644/6

Matrix: Water

Analysis Batch: 86644

Client Sample ID: LCS 720-86644/6 Prep Type: Total/NA

TestAmerica Job ID: 720-33463-1

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	787		13 - 708
795-, Dcloroelict ne-a4/d(urrS	787		13 - 708
) oluene-a6/ď urrS	780		38 - 708

Lab Sample ID: LCSD 720-86644/7

Matrix: Water

Analysis Batch: 86644

Client Sample ID: LCSD 720-86644/7

Prep Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RP
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Lim
Methyl tert-butyl ether	25.0	25.2		ug/L		101	62 - 130	3	2
Acetone	125	86.6		ug/L		69	26 - 180	1	3
Benzene	25.0	25.7		ug/L		103	82 - 127	3	2
Dichlorobromomethane	25.0	28.2		ug/L		113	70 - 130	3	2
Bromobenzene	25.0	28.1		ug/L		113	79 - 127	3	2
Chlorobromomethane	25.0	25.8		ug/L		103	70 - 130	3	2
Bromoform	25.0	26.7		ug/L		107	68 - 136	1	2
Bromomethane	25.0	25.4		ug/L		102	43 - 151	3	2
2-Butanone (MEK)	125	109		ug/L		87	66 - 149	0	2
n-Butylbenzene	25.0	30.2		ug/L		121	79 - 142	1	2
sec-Butylbenzene	25.0	29.7		ug/L		119	81 - 134	2	2
tert-Butylbenzene	25.0	31.1		ug/L		124	82 - 135	3	2
Carbon disulfide	25.0	23.8		ug/L		95	68 - 137	2	2
Carbon tetrachloride	25.0	29.0		ug/L		116	77 - 146	2	2
Chlorobenzene	25.0	25.6		ug/L		102	70 - 130	2	2
Chloroethane	25.0	24.3		ug/L		97	62 - 138	1	2
Chloroform	25.0	26.1		ug/L		104	70 - 130	3	2
Chloromethane	25.0	21.3		ug/L		85	52 - 175	1	2
2-Chlorotoluene	25.0	28.4		ug/L		114	70 - 130	3	2
4-Chlorotoluene	25.0	27.8		ug/L		111	70 - 130	3	2
Chlorodibromomethane	25.0	28.9		ug/L		116	78 - 145	3	2
1,2-Dichlorobenzene	25.0	26.1		ug/L		104	70 - 130	3	2
1,3-Dichlorobenzene	25.0	27.0		ug/L		108	70 - 130	3	2
1,4-Dichlorobenzene	25.0	26.3		ug/L		105	87 - 118	3	2
1,3-Dichloropropane	25.0	25.7		ug/L		103	82 - 128	2	2
1,1-Dichloropropene	25.0	27.4		ug/L		110	70 - 130	1	2
1,2-Dibromo-3-Chloropropane	25.0	26.9		ug/L		108	72 - 136	2	2
Ethylene Dibromide	25.0	27.4		ug/L		110	70 - 130	2	2
Dibromomethane	25.0	25.0		ug/L		100	70 - 130	1	2
Dichlorodifluoromethane	25.0	19.1		ug/L		77	33 - 125	0	2
1,1-Dichloroethane	25.0	25.4		ug/L		101	70 - 130	3	2
1,2-Dichloroethane	25.0	25.5		ug/L		102	70 - 126	3	2
1,1-Dichloroethene	25.0	25.2		ug/L		101	64 - 128	2	2
cis-1,2-Dichloroethene	25.0	28.9		ug/L		116	70 - 130	4	2
trans-1,2-Dichloroethene	25.0	22.1		ug/L		88	75 - 131	1	2
1,2-Dichloropropane	25.0	25.0		ug/L		100	70 - 130	2	2
cis-1,3-Dichloropropene	25.0	27.8		ug/L		111	88 - 137	3	2
trans-1,3-Dichloropropene	25.0	26.1		ug/L		104	83 - 140	2	2
Ethylbenzene	25.0	27.5		ug/L		110	86 - 135	2	2
Hexachlorobutadiene	25.0	31.0		ug/L		124	70 - 130	<u>-</u> 1	2

Client: Dominion Due Diligence Group

Lab Sample ID: LCSD 720-86644/7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: LCSD 720-86644/7

Prep Type: Total/NA

Matrix: Water Analysis Batch: 86644

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
2-Hexanone	125	116		ug/L		93	60 - 164	0	20
Isopropylbenzene	25.0	30.7		ug/L		123	70 - 130	1	20
4-Isopropyltoluene	25.0	29.9		ug/L		120	70 - 130	2	20
Methylene Chloride	25.0	24.0		ug/L		96	73 - 147	4	20
4-Methyl-2-pentanone (MIBK)	125	116		ug/L		93	63 - 165	1	20
Naphthalene	25.0	29.5		ug/L		118	78 - 135	2	20
N-Propylbenzene	25.0	28.5		ug/L		114	70 - 130	3	20
Styrene	25.0	29.8		ug/L		119	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	29.9		ug/L		120	70 - 130	3	20
1,1,2,2-Tetrachloroethane	25.0	24.0		ug/L		96	70 - 130	2	20
Tetrachloroethene	25.0	27.4		ug/L		110	70 - 130	2	20
Toluene	25.0	25.4		ug/L		102	83 - 129	2	20
1,2,3-Trichlorobenzene	25.0	30.4		ug/L		122	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	30.5		ug/L		122	70 - 130	2	20
1,1,1-Trichloroethane	25.0	29.1		ug/L		116	70 - 130	2	20
1,1,2-Trichloroethane	25.0	25.0		ug/L		100	82 - 128	1	20
Trichloroethene	25.0	26.9		ug/L		108	70 - 130	2	20
Trichlorofluoromethane	25.0	25.7		ug/L		103	74 - 146	0	20
1,2,3-Trichloropropane	25.0	25.2		ug/L		101	70 - 130	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	27.2		ug/L		109	42 - 162	2	20
1,2,4-Trimethylbenzene	25.0	29.8		ug/L		119	70 - 132	3	20
1,3,5-Trimethylbenzene	25.0	31.1		ug/L		124	70 - 130	3	20
Vinyl acetate	25.0	28.0		ug/L		112	43 - 163	1	20
Vinyl chloride	25.0	24.8		ug/L		99	65 - 156	1	20
m-Xylene & p-Xylene	50.0	57.4		ug/L		115	70 - 142	1	20
o-Xylene	25.0	28.8		ug/L		115	89 - 136	2	20
2,2-Dichloropropane	25.0	31.5		ug/L		126	70 - 140	3	20

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	787		13 - 708
795-, Dcloroelct ne-a4/d urrS	787		13 - 708
) oluene-a6/ď urrS	780		38 - 708

Lab Sample ID: MB 720-86708/1-A

Matrix: Solid

Analysis Batch: 86549

Prep Type: Total/NA Prep Batch: 86708

M	В МВ							
Analyte Resu	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether N	<u> </u>	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Acetone 58.	7	50		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Benzene N)	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Dichlorobromomethane N)	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Bromobenzene N)	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Chlorobromomethane)	20		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Bromoform N)	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Bromomethane N)	10		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
2-Butanone (MEK))	50		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
n-Butylbenzene N)	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
sec-Butylbenzene N)	5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1

TestAmerica San Francisco 02/25/2011

Page 60 of 95

Client: Dominion Due Diligence Group TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86708/1-A

Matrix: Solid

Client Sample ID: MB 720-86708/1-A

Prep Type: Total/NA

Analysis Batch: 86549								Prep Batcl	
, , , , , , , , , , , , , , , , , , , ,	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butylbenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Carbon disulfide	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Carbon tetrachloride	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Chlorobenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Chloroethane	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Chloroform	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Chloromethane	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
2-Chlorotoluene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
4-Chlorotoluene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Chlorodibromomethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,2-Dichlorobenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,3-Dichlorobenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
1,3-Dichloropropane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,1-Dichloropropene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Ethylene Dibromide	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Dibromomethane	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
Dichlorodifluoromethane	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,1-Dichloroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
1.2-Dichloroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
1,1-Dichloroethene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
cis-1,2-Dichloroethene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
trans-1,2-Dichloroethene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	,
1,2-Dichloropropane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
cis-1,3-Dichloropropene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	<i>.</i>
trans-1,3-Dichloropropene	ND ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Ethylbenzene	ND ND		5.0				02/22/11 08:47	02/22/11 10:37	
Hexachlorobutadiene	ND				ug/Kg		02/22/11 08:47	02/22/11 10:37	
			5.0		ug/Kg				
2-Hexanone	ND		50 5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37 02/22/11 10:37	1
Isopropylbenzene	ND		5.0		ug/Kg		02/22/11 08:47		
4-Isopropyltoluene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Methylene Chloride	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/Kg		02/22/11 08:47	02/22/11 10:37	· · · · · · · ·
Naphthalene	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
N-Propylbenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Styrene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,1,1,2-Tetrachloroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
1,1,2,2-Tetrachloroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
Tetrachloroethene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Toluene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
1,2,3-Trichlorobenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
1,2,4-Trichlorobenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,1,1-Trichloroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
1,1,2-Trichloroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
Trichloroethene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
Trichlorofluoromethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	
1,2,3-Trichloropropane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
1,2,4-Trimethylbenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1

TestAmerica San Francisco 02/25/2011

Page 61 of 95

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86708/1-A

Matrix: Solid

Analysis Batch: 86549

Client Sample ID: MB 720-86708/1-A

Prep Type: Total/NA

Prep Batch: 86708

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Vinyl acetate	ND		50		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Vinyl chloride	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
m-Xylene & p-Xylene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
o-Xylene	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
Xylenes, Total	ND		10		ug/Kg		02/22/11 08:47	02/22/11 10:37	1
2,2-Dichloropropane	ND		5.0		ug/Kg		02/22/11 08:47	02/22/11 10:37	1

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	: 4		4T - 707	852527/86 43	85255277/78 03	7
795-, Dcloroelct ne-a4/d urrS	780		18 - 748	852527/86 43	8525527778 03	7
) oluene-a6/ď urrS	780		T6 - 748	85 <i>2</i> 5 <i>2</i> 77/86 43	85255277/78 03	7

Lab Sample ID: LCS 720-86708/2-A

Matrix: Solid

Client Sample	ID: LCS 720-86708/2-A
	Prep Type: Total/NA

Analysis Batch: 86549						Prep Batch: 86708
	Spike	LCS	LCS			% Rec.
Analyte	Added	Result	Qualifier	Unit	D % Rec	Limits
Methyl tert-butyl ether	50.0	58.6		ug/Kg	117	71 - 144
Acetone	250	235		ug/Kg	94	30 - 162
Benzene	50.0	54.8		ug/Kg	110	82 - 124
Dichlorobromomethane	50.0	56.2		ug/Kg	112	86 - 131
Bromobenzene	50.0	54.3		ug/Kg	109	86 - 112
Chlorobromomethane	50.0	55.5		ug/Kg	111	81 - 116
Bromoform	50.0	57.1		ug/Kg	114	59 - 158
Bromomethane	50.0	33.5		ug/Kg	67	59 - 132
2-Butanone (MEK)	250	266		ug/Kg	106	61 - 150
n-Butylbenzene	50.0	56.0		ug/Kg	112	80 - 142
sec-Butylbenzene	50.0	50.9		ug/Kg	102	85 - 136
tert-Butylbenzene	50.0	56.4		ug/Kg	113	71 - 130
Carbon disulfide	50.0	47.4		ug/Kg	95	60 - 136
Carbon tetrachloride	50.0	55.3		ug/Kg	111	81 - 138
Chlorobenzene	50.0	49.5		ug/Kg	99	87 - 113
Chloroethane	50.0	43.4		ug/Kg	87	69 - 141
Chloroform	50.0	50.3		ug/Kg	101	77 - 127
Chloromethane	50.0	42.2		ug/Kg	84	60 - 149
2-Chlorotoluene	50.0	54.7		ug/Kg	109	80 - 138
4-Chlorotoluene	50.0	54.3		ug/Kg	109	79 - 136
Chlorodibromomethane	50.0	58.2		ug/Kg	116	75 - 146
1,2-Dichlorobenzene	50.0	50.2		ug/Kg	100	84 - 130
1,3-Dichlorobenzene	50.0	51.6		ug/Kg	103	84 - 131
1,4-Dichlorobenzene	50.0	48.4		ug/Kg	97	85 - 125
1,3-Dichloropropane	50.0	55.2		ug/Kg	110	79 - 140
1,1-Dichloropropene	50.0	60.7		ug/Kg	121	70 - 130
1,2-Dibromo-3-Chloropropane	50.0	47.0		ug/Kg	94	68 - 145
Ethylene Dibromide	50.0	57.8		ug/Kg	116	79 - 140
Dibromomethane	50.0	54.8		ug/Kg	110	80 - 139
Dichlorodifluoromethane	50.0	33.2		ug/Kg	66	37 - 158
1,1-Dichloroethane	50.0	49.3		ug/Kg	99	85 - 124

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: LCS 720-86708/2-A

Prep Type: Total/NA

Prep Batch: 86708

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86708/2-A

Matrix: Solid

Analysis Batch: 86549

Allalysis Batch. 00343	Spike	LCS	LCS		% Rec.
Analyte	Added		Qualifier Unit	D % Rec	Limits
1,2-Dichloroethane	50.0	53.2	ug/Kg		72 - 130
1,1-Dichloroethene	50.0	49.6	ug/Kg	99	84 - 120
cis-1,2-Dichloroethene	50.0	60.1	ug/Kg	120	87 - 138
trans-1,2-Dichloroethene	50.0	46.2	ug/Kg	92	72 - 116
1,2-Dichloropropane	50.0	55.0	ug/Kg	110	73 - 127
cis-1,3-Dichloropropene	50.0	60.2	ug/Kg	120	68 - 147
trans-1,3-Dichloropropene	50.0	57.9	ug/Kg	116	84 - 136
Ethylbenzene	50.0	53.8	ug/Kg	108	80 - 137
Hexachlorobutadiene	50.0	54.9	ug/Kg	110	72 - 132
2-Hexanone	250	256	ug/Kg	103	60 - 161
Isopropylbenzene	50.0	54.6	ug/Kg	109	88 - 128
4-Isopropyltoluene	50.0	53.3	ug/Kg	107	85 - 133
Methylene Chloride	50.0	50.1	ug/Kg	100	72 - 134
4-Methyl-2-pentanone (MIBK)	250	256	ug/Kg	102	69 - 160
Naphthalene	50.0	54.7	ug/Kg	109	70 - 147
N-Propylbenzene	50.0	51.0	ug/Kg	102	72 - 125
Styrene	50.0	54.0	ug/Kg	108	89 - 126
1,1,1,2-Tetrachloroethane	50.0	54.5	ug/Kg	109	90 - 130
1,1,2,2-Tetrachloroethane	50.0	47.8	ug/Kg	96	82 - 146
Tetrachloroethene	50.0	57.4	ug/Kg	115	78 - 132
Toluene	50.0	51.7	ug/Kg	103	83 - 128
1,2,3-Trichlorobenzene	50.0	59.2	ug/Kg	118	74 - 136
1,2,4-Trichlorobenzene	50.0	56.2	ug/Kg	112	70 - 131
1,1,1-Trichloroethane	50.0	55.0	ug/Kg	110	80 - 127
1,1,2-Trichloroethane	50.0	55.2	ug/Kg	110	82 - 125
Trichloroethene	50.0	56.4	ug/Kg	113	81 - 133
Trichlorofluoromethane	50.0	49.0	ug/Kg	98	71 - 139
1,2,3-Trichloropropane	50.0	49.5	ug/Kg	99	76 - 146
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	49.7	ug/Kg	99	70 - 130
1,2,4-Trimethylbenzene	50.0	57.5	ug/Kg	115	84 - 130
1,3,5-Trimethylbenzene	50.0	54.2	ug/Kg	108	82 - 131
Vinyl acetate	50.0	60.2	ug/Kg	120	38 - 176
Vinyl chloride	50.0	44.3	ug/Kg	89	63 - 140
m-Xylene & p-Xylene	100	105	ug/Kg	105	79 - 146
o-Xylene	50.0	52.5	ug/Kg	105	84 - 140
2,2-Dichloropropane	50.0	58.5	ug/Kg	117	73 - 162

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	784		4T - 707
795-, Dcloroelict ne-a4/d urrS	785		18 - 748
) oluene-a6/ď urrS	786		T6 - 748

Lab Sample ID: LCSD 720-86708/3-A

Matrix: Solid

Analysis Batch: 86549						Prep Batch: 86708			
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	57.8		ug/Kg		116	71 - 144	1	20
Acetone	250	244		ug/Kg		98	30 - 162	4	30

TestAmerica San Francisco 02/25/2011

Prep Type: Total/NA

Client Sample ID: LCSD 720-86708/3-A

Page 63 of 95

TestAmerica Job ID: 720-33463-1 Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86708/3-A

Matrix: Solid

Analysis Batch: 86549

Client Sample ID: LCSD 720-86708/3-A

Prep Type: Total/NA

Prep Batch: 86708

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

	Spike	LCSD LC	CSD		% Rec.		RPD
Analyte	Added	Result Q	ualifier Unit	D % Rec	Limits	RPD	Limit
Benzene	50.0	55.5	ug/Kg		82 - 124	1	20
Dichlorobromomethane	50.0	57.0	ug/Kg	114	86 - 131	1	20
Bromobenzene	50.0	55.6	ug/Kg	111	86 - 112	2	20
Chlorobromomethane	50.0	5/18	ua/Ka	110	81 - 116	1	20

Chlorobromomethane ug/Kg 2 Bromoform 50.0 58.1 ug/Kg 116 59 - 158 Bromomethane 50.0 33.9 ug/Kg 68 59 - 132 1 2-Butanone (MEK) 250 260 ug/Kg 104 61 - 150 2 2 n-Butylbenzene 50.0 57.3 115 80 - 142 ug/Kg ug/Kg 105 85 - 136 3 50.0 52.4

20 sec-Butylbenzene 20 2 50.0 57.8 116 20 tert-Butylbenzene ug/Kg 71 - 130Carbon disulfide 50.0 48.8 ug/Kg 98 60 - 136 3 20 56.8 Carbon tetrachloride 50.0 ug/Kg 114 81 - 138 3 20 Chlorobenzene 50.0 51.1 ug/Kg 102 87 - 113 3 20 Chloroethane 50.0 43.4 ug/Kg 87 69 - 141 0 20 2 Chloroform 50.0 51.3 ug/Kg 103 77 - 127 20

Chloromethane 50.0 45.6 ug/Kg 91 60 - 149 8 2 2-Chlorotoluene 50.0 55.7 ug/Kg 111 80 - 138 4-Chlorotoluene 50.0 55.3 ug/Kg 111 79 - 136 2 Chlorodibromomethane 50.0 58.9 ug/Kg 118 75 - 146 1 1,2-Dichlorobenzene 50.0 50.8 ug/Kg 102 84 - 130 1.3-Dichlorobenzene 50.0 52.7 105 84 - 131 2 ug/Kg 1,4-Dichlorobenzene 50.0 49.1 ug/Kg 98 85 - 125 50.0 109 1 1,3-Dichloropropane 54.5 ug/Kg 79 - 140

1,1-Dichloropropene 50.0 62.9 ug/Kg 126 70 - 130 4 1,2-Dibromo-3-Chloropropane 50.0 48.4 ug/Kg 97 68 - 145 3 Ethylene Dibromide 50.0 58.0 ug/Kg 116 79 - 140 0 Dibromomethane 50.0 54 2 ug/Kg 108 80 - 139 1 Dichlorodifluoromethane 50.0 32.6 ug/Kg 65 37 - 158 2 1,1-Dichloroethane 50.0 50.3 ug/Kg 101 85 - 124 2 2 1,2-Dichloroethane 50.0 54.4 ug/Kg 109 72 - 130

1,1-Dichloroethene 50.0 51.3 ug/Kg 103 84 - 120 3 1 cis-1,2-Dichloroethene 50.0 60.7 ug/Kg 121 87 - 138 3 trans-1,2-Dichloroethene 50.0 47.8 ug/Kg 96 72 - 116 1,2-Dichloropropane 50.0 55.5 ug/Kg 111 73 - 127 cis-1,3-Dichloropropene 50.0 61.1 ug/Kg 122 68 - 147 2 trans-1,3-Dichloropropene 50.0 57.8 116 84 - 136 0 ug/Kg 50.0 55.4 ug/Kg 111 80 - 137 3 Ethylbenzene 50.0 56.5 3 Hexachlorobutadiene ug/Kg 113 72 - 132

2-Hexanone 250 258 ug/Kg 103 60 - 161 1 20 Isopropylbenzene 50.0 56.0 112 88 - 128 2 20 ug/Kg 4-Isopropyltoluene 50.0 54.7 ug/Kg 109 85 - 133 2 20 Methylene Chloride 50.0 50.9 ug/Kg 102 72 - 134 2 20 0 4-Methyl-2-pentanone (MIBK) 250 255 ug/Kg 102 69 - 160 20 Naphthalene 50.0 56.9 ug/Kg 114 70 - 147 4 20 N-Propylbenzene 20 50.0 52.6 ug/Kg 105 72 - 125 3

50.0 55.7 ug/Kg 89 - 126 3 20 Styrene 111 55.5 2 1,1,1,2-Tetrachloroethane 50.0 ug/Kg 111 90 - 130 20 1,1,2,2-Tetrachloroethane 50.0 48.0 ug/Kg 96 82 - 146 20 Tetrachloroethene 50.0 59 2 ug/Kg 118 78 - 132 3 20 Toluene 50.0 52.8 ug/Kg 106 83 - 128 20

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Lab Sample ID: LCSD 720-86708/3-A

Matrix: Solid

Analysis Batch: 86549

Client Sample ID: LCSD 720-86708/3-A

Prep Type: Total/NA

Prep Batch: 86708 RPD

	Spike	LCSD	LCSD				% Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
1,2,3-Trichlorobenzene	50.0	61.1		ug/Kg		122	74 - 136	3	20	
1,2,4-Trichlorobenzene	50.0	56.9		ug/Kg		114	70 - 131	1	20	
1,1,1-Trichloroethane	50.0	56.1		ug/Kg		112	80 - 127	2	20	
1,1,2-Trichloroethane	50.0	56.2		ug/Kg		112	82 - 125	2	20	
Trichloroethene	50.0	57.1		ug/Kg		114	81 - 133	1	20	
Trichlorofluoromethane	50.0	49.9		ug/Kg		100	71 - 139	2	20	
1,2,3-Trichloropropane	50.0	50.2		ug/Kg		100	76 - 146	1	20	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	50.9		ug/Kg		102	70 - 130	2	20	
ne										
1,2,4-Trimethylbenzene	50.0	58.5		ug/Kg		117	84 - 130	2	20	
1,3,5-Trimethylbenzene	50.0	55.1		ug/Kg		110	82 - 131	2	20	
Vinyl acetate	50.0	59.4		ug/Kg		119	38 - 176	1	20	
Vinyl chloride	50.0	45.8		ug/Kg		92	63 - 140	3	20	
m-Xylene & p-Xylene	100	107		ug/Kg		107	79 - 146	2	20	
o-Xylene	50.0	53.7		ug/Kg		107	84 - 140	2	20	

50.0

59.1

ug/Kg

LCSD LCSD

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	786		4T - 707
795-, Dcloroehct ne-a4/d/ urrS	785		18 - 748
) oluene-a6/ď urrS	778		T6 - 748

Lab Sample ID: 720-33463-2 MS

Matrix: Water

2,2-Dichloropropane

Analysis Batch: 86549

Client Sample ID: B-1	
Prep Type: Total/NA	
Prep Batch: 86708	

20

73 - 162

118

Spike MS MS % Rec. Sample Sample Result Qualifier Added Result Qualifier Analyte Unit % Rec Limits Methyl tert-butyl ether ND 49.0 55.8 ug/Kg 110 69 - 130 Acetone ND 245 159 65 37 - 150 ug/Kg Benzene ND 49.0 52.8 ug/Kg 103 70 - 130 Dichlorobromomethane ND 49.0 49.6 ug/Kg 101 64 - 135 Bromobenzene ND 49.0 52.5 ug/Kg 107 70 - 130 Chlorobromomethane ND 49.0 50.6 ug/Kg 103 65 - 130 ND Bromoform 49.0 48.6 99 58 - 132 ug/Kg ND Bromomethane 49.0 27.5 ug/Kg 56 56 - 130 2-Butanone (MEK) ND 245 218 ug/Kg 89 41 - 150 n-Butylbenzene ND 49.0 50.4 ug/Kg 101 60 - 145 ND 49.0 64 - 137 sec-Butylbenzene 47.0 ug/Kg 96 tert-Butylbenzene ND 49.0 53.3 ug/Kg 109 63 - 134 Carbon disulfide ND 49.0 42.9 ug/Kg 88 10 - 150 Carbon tetrachloride ND 49.0 47.5 ug/Kg 97 54 - 130 Chlorobenzene ND 49.0 45.4 ug/Kg 93 70 - 130 78 ND Chloroethane 49.0 38.5 ug/Kg 61 - 130 Chloroform ND 49.0 45.1 ug/Kg 92 67 - 130 Chloromethane ND 49.0 35.9 ug/Kg 73 50 - 131 ND 2-Chlorotoluene 49.0 51.6 ug/Kg 105 70 - 130 4-Chlorotoluene ND 49.0 50.5 ug/Kg 103 70 - 130 ND 49.0 49.5 ug/Kg 101 60 - 141 Chlorodibromomethane ND 49.0 44.5 91 70 - 130 1.2-Dichlorobenzene ug/Kg 1,3-Dichlorobenzene ND 49.0 46.7 ug/Kg 70 - 130

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-33463-2 MS

Matrix: Water

o-Xylene

2,2-Dichloropropane

Analysis Batch: 86549

Client Sample ID: B-1 Prep Type: Total/NA Prep Batch: 86708

Analyte	Sample Sar Result Qu	•	MS Result	MS Qualifier Unit	D % Rec	% Rec. Limits
1,4-Dichlorobenzene	ND	49.0	43.6	ug/Kg		70 - 130
1,3-Dichloropropane	ND	49.0	48.8	ug/Kg	100	70 - 130
1,1-Dichloropropene	ND	49.0	56.2	ug/Kg	115	67 - 130
1,2-Dibromo-3-Chloropropane	ND	49.0	41.2	ug/Kg	84	57 - 130
Ethylene Dibromide	ND	49.0	50.4	ug/Kg	103	66 - 135
Dibromomethane	ND	49.0	47.3	ug/Kg	96	65 - 131
Dichlorodifluoromethane	ND	49.0	24.3	ug/Kg	50	38 - 130
1,1-Dichloroethane	ND	49.0	46.5	ug/Kg	95	67 - 130
1,2-Dichloroethane	ND	49.0	46.0	ug/Kg	94	70 - 130
1,1-Dichloroethene	ND	49.0	45.3	ug/Kg	93	64 - 130
cis-1,2-Dichloroethene	ND	49.0	55.1	ug/Kg	112	68 - 131
trans-1,2-Dichloroethene	ND	49.0	43.7	ug/Kg	89	70 - 130
1,2-Dichloropropane	ND	49.0	52.7	ug/Kg	108	65 - 133
cis-1,3-Dichloropropene	ND	49.0	55.5	ug/Kg	113	46 - 139
trans-1,3-Dichloropropene	ND	49.0	52.4	ug/Kg	107	55 - 131
Ethylbenzene	ND	49.0	50.1	ug/Kg	100	65 - 130
Hexachlorobutadiene	ND	49.0	46.6	ug/Kg	95	58 - 132
2-Hexanone	ND	245	214	ug/Kg	85	44 - 150
Isopropylbenzene	ND	49.0	49.3	ug/Kg	99	65 - 130
4-Isopropyltoluene	ND	49.0	49.0	ug/Kg	100	69 - 134
Methylene Chloride	ND	49.0	46.1	ug/Kg	94	63 - 130
4-Methyl-2-pentanone (MIBK)	ND	245	226	ug/Kg	90	51 - 140
Naphthalene	110	49.0	74.2	F ug/Kg	-78	45 - 146
N-Propylbenzene	ND	49.0	48.4	ug/Kg	97	70 - 130
Styrene	ND	49.0	51.0	ug/Kg	100	58 - 135
1,1,1,2-Tetrachloroethane	ND	49.0	48.4	ug/Kg	99	64 - 133
1,1,2,2-Tetrachloroethane	ND	49.0	43.2	ug/Kg	88	70 - 131
Tetrachloroethene	5.3	49.0	56.6	ug/Kg	105	67 - 130
Toluene	ND	49.0	50.8	ug/Kg	98	70 - 130
1,2,3-Trichlorobenzene	ND	49.0	46.6	ug/Kg	95	58 - 138
1,2,4-Trichlorobenzene	ND	49.0	46.0	ug/Kg	93	49 - 144
1,1,1-Trichloroethane	ND	49.0	48.2	ug/Kg	98	57 - 133
1,1,2-Trichloroethane	ND	49.0	49.9	ug/Kg	102	68 - 132
Trichloroethene	ND	49.0	51.6	ug/Kg	105	66 - 130
Trichlorofluoromethane	ND	49.0	41.0	ug/Kg	84	61 - 130
1,2,3-Trichloropropane	ND	49.0	44.5	ug/Kg	91	62 - 150
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND	49.0	44.0	ug/Kg	90	52 - 130
1,2,4-Trimethylbenzene	ND	49.0	55.1	ug/Kg	105	64 - 140
1,3,5-Trimethylbenzene	ND	49.0	51.4	ug/Kg	102	67 - 134
Vinyl acetate	ND	49.0	ND	ug/Kg	78	52 - 150
Vinyl chloride	ND	49.0	36.8	ug/Kg	75	62 - 130
m-Xylene & p-Xylene	6.7	98.0	98.2	ug/Kg	93	70 - 130

MS MS

ND

ND

Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	6:	4T - 707
795-, Dcloroelct ne-a4/d urrS	60	18 - 748
) oluene-a6/ď urrS	: 1	T6 - 748

68 - 130

63 - 130

104

48.6

50.9

ug/Kg

ug/Kg

49.0

49.0

Client: Dominion Due Diligence Group TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-33463-2 MSD

Matrix: Water

Ciletit Sample ID. B-1
Prep Type: Total/NA
Prep Batch: 86708
0/ Dec DDD

Client Sample ID: B 1

Analysis Batch: 86549 Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier Unit D % Rec Limits **RPD** Limit Analyte ND 48.5 55.1 20 Methyl tert-butyl ether ug/Kg 109 69 - 1301 Acetone ND 243 163 ug/Kg 67 37 - 150 3 20 ND 52.2 103 70 - 130 20 Benzene 48.5 ug/Kg 1 Dichlorobromomethane ND 48.5 49.8 ug/Kg 103 64 - 135 0 20 ND 20 Bromobenzene 48.5 50.8 ug/Kg 105 70 - 130 3 Chlorobromomethane ND 48.5 49.4 ug/Kg 102 65 - 130 2 20 Bromoform ND 48.5 47.6 ug/Kg 98 58 - 132 2 20 Bromomethane ND 48.5 27.9 ug/Kg 57 56 - 130 1 20 41 - 150 2-Butanone (MEK) ND 243 220 ug/Kg 91 20 ND 50.5 103 0 20 n-Butylbenzene 48.5 ug/Kg 60 - 145 sec-Butylbenzene ND 48.5 47.5 ug/Kg 98 64 - 137 1 20 tert-Butylbenzene ND 48.5 63 - 134 20 53.7 ug/Kg 111 4 Carbon disulfide ND 48.5 44.5 ug/Kg 92 10 - 150 20 Carbon tetrachloride ND 48.5 48.2 ug/Kg 99 54 - 130 1 20 ND 48.5 44.8 ug/Kg 92 70 - 130 20 Chlorobenzene Chloroethane NΠ 48.5 38.6 ug/Kg 79 61 - 130 0 20 Chloroform ND 48.5 45.5 ug/Kg 94 67 - 130 1 20 48.5 ug/Kg 73 20 Chloromethane ND 35 4 50 - 131 1 2-Chlorotoluene ND 48.5 50.8 ug/Kg 105 70 - 130 2 20 4-Chlorotoluene ND 48.5 50.1 ug/Kg 103 70 - 130 20 1 Chlorodibromomethane ND 48.5 49.2 ug/Kg 101 60 - 141 1 20 1,2-Dichlorobenzene ND 48.5 43.5 ug/Kg 90 70 - 130 2 20 1,3-Dichlorobenzene ND 48.5 45.8 ug/Kg 94 70 - 130 2 20 1,4-Dichlorobenzene ND 48.5 42.5 ug/Kg 88 70 - 130 3 20 ND 48.5 48.5 100 70 - 130 1 20 1,3-Dichloropropane ug/Kg 1,1-Dichloropropene ND 48.5 57.5 ug/Kg 118 67 - 130 2 20 ND 48.5 85 O 20 1,2-Dibromo-3-Chloropropane 41.2 ug/Kg 57 - 130 Ethylene Dibromide ND 48.5 50.2 ug/Kg 103 66 - 135 0 20 ND 48.5 46.9 20 Dibromomethane ug/Kg 97 65 - 1311 Dichlorodifluoromethane ND 48.5 23.0 ug/Kg 47 38 - 130 6 20 ND 48.5 96 67 - 130 0 20 1 1-Dichloroethane 46.6 ug/Kg 1,2-Dichloroethane ND 48.5 45.9 ug/Kg 95 70 - 130 0 20 1,1-Dichloroethene ND 48.5 47.8 98 5 20 ug/Kg 64 - 130 ND 0 cis-1,2-Dichloroethene 48.5 55.2 ug/Kg 114 68 - 131 20 trans-1,2-Dichloroethene ND 48.5 45.0 ug/Kg 93 70 - 130 3 20 ND 1,2-Dichloropropane 48.5 52.6 ug/Kg 108 65 - 133 0 20 ND 20 cis-1,3-Dichloropropene 48.5 55.2 ug/Kg 114 46 - 139 107 trans-1,3-Dichloropropene ND 48.5 55 - 131 20 51.8 ug/Kg 1 ND Ethylbenzene 48.5 49.5 ug/Kg 99 65 - 130 20 97 Hexachlorobutadiene ND 48.5 47 1 58 - 132 1 20 ug/Kg ND 85 44 - 150 20 2-Hexanone 243 213 ug/Kg ND 49.5 20 Isopropylbenzene 48.5 ug/Kg 101 65 - 130 0 4-Isopropyltoluene ND 48.5 49.6 102 69 - 134 20 ug/Kg Methylene Chloride ND 48.5 46.3 95 20 ug/Kg 63 - 1301 4-Methyl-2-pentanone (MIBK) ND 243 226 ug/Kg 91 51 - 140 0 20 Naphthalene 110 48.5 62.3 F 45 - 146 17 20 ug/Kg -104 ND N-Propylbenzene 48.5 48.3 ug/Kg 98 70 - 130 0 20 ND 48.5 49.8 ug/Kg 99 58 - 135 2 20 Styrene 1,1,1,2-Tetrachloroethane ND 48.5 48.5 ug/Kg 100 64 - 133 0 20

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-33463-2 MSD

Matrix: Water

Analysis Batch: 86549

Client Sample ID: B-1 **Prep Type: Total/NA** Prep Batch: 86708

	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	ND		48.5	43.1		ug/Kg		89	70 - 131	0	20
Tetrachloroethene	5.3		48.5	56.1		ug/Kg		105	67 - 130	1	20
Toluene	ND		48.5	49.6		ug/Kg		96	70 - 130	2	20
1,2,3-Trichlorobenzene	ND		48.5	46.2		ug/Kg		95	58 - 138	1	20
1,2,4-Trichlorobenzene	ND		48.5	45.1		ug/Kg		92	49 - 144	2	20
1,1,1-Trichloroethane	ND		48.5	49.1		ug/Kg		101	57 - 133	2	20
1,1,2-Trichloroethane	ND		48.5	49.6		ug/Kg		102	68 - 132	1	20
Trichloroethene	ND		48.5	52.2		ug/Kg		108	66 - 130	1	20
Trichlorofluoromethane	ND		48.5	40.9		ug/Kg		84	61 - 130	0	20
1,2,3-Trichloropropane	ND		48.5	44.1		ug/Kg		91	62 - 150	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		48.5	46.0		ug/Kg		95	52 - 130	5	20
1,2,4-Trimethylbenzene	ND		48.5	53.8		ug/Kg		103	64 - 140	2	20
1,3,5-Trimethylbenzene	ND		48.5	51.0		ug/Kg		102	67 - 134	1	20
Vinyl acetate	ND		48.5	ND		ug/Kg		72	52 - 150	9	20
Vinyl chloride	ND		48.5	35.8		ug/Kg		74	62 - 130	3	20
m-Xylene & p-Xylene	6.7		97.1	95.1		ug/Kg		91	70 - 130	3	20
o-Xylene	ND		48.5	47.4		ug/Kg		93	68 - 130	2	20
2,2-Dichloropropane	ND		48.5	51.8		ug/Kg		107	63 - 130	2	20

MSD MSD

Surrogate	% Recovery Quality	fier Limits
4-Bromofluorobenzene	66	4T - 707
795-, Dcloroelct ne-a4/d(urrS	67	18 - 748
) oluene-a6/ď urrS	· .3	T6 - 748

Lab Sample ID: MB 720-86752/4

Matrix: Water

Analysis Batch: 86752

Client Sample ID: MB 720-86752/4

Prep Type: Total/NA

Allalysis Batch. 00732										
Analyte		MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND	Qualifier	0.50	WIDL			Prepareu	02/24/11 10:27	————	
•					ug/L					
Acetone	ND		50		ug/L			02/24/11 10:27	1	
Benzene	ND		0.50		ug/L			02/24/11 10:27	1	
Dichlorobromomethane	ND		0.50		ug/L			02/24/11 10:27	1	
Bromobenzene	ND		1.0		ug/L			02/24/11 10:27	1	
Chlorobromomethane	ND		1.0		ug/L			02/24/11 10:27	1	
Bromoform	ND		1.0		ug/L			02/24/11 10:27	1	
Bromomethane	ND		1.0		ug/L			02/24/11 10:27	1	
2-Butanone (MEK)	ND		50		ug/L			02/24/11 10:27	1	
n-Butylbenzene	ND		1.0		ug/L			02/24/11 10:27	1	
sec-Butylbenzene	ND		1.0		ug/L			02/24/11 10:27	1	
tert-Butylbenzene	ND		1.0		ug/L			02/24/11 10:27	1	
Carbon disulfide	ND		5.0		ug/L			02/24/11 10:27	1	
Carbon tetrachloride	ND		0.50		ug/L			02/24/11 10:27	1	
Chlorobenzene	ND		0.50		ug/L			02/24/11 10:27	1	
Chloroethane	ND		1.0		ug/L			02/24/11 10:27	1	
Chloroform	ND		1.0		ug/L			02/24/11 10:27	1	
Chloromethane	ND		1.0		ug/L			02/24/11 10:27	1	
2-Chlorotoluene	ND		0.50		ug/L			02/24/11 10:27	1	
4-Chlorotoluene	ND		0.50		ug/L			02/24/11 10:27	1	

Page 68 of 95

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86752/4

MR MR

ND

ND

Matrix: Water

Analysis Batch: 86752

4-Methyl-2-pentanone (MIBK)

1,1,2,2-Tetrachloroethane

Client Sample ID: MB 720-86752/4 Prep Type: Total/NA

Dil Fac

Qualifier RL MDL Unit D Prepared Analyzed Result ND 0.50 02/24/11 10:27 Chlorodibromomethane ug/L 1,2-Dichlorobenzene ND 0.50 ug/L 02/24/11 10:27 ND 0.50 02/24/11 10:27 1.3-Dichlorobenzene ug/L 0.50 1,4-Dichlorobenzene ND ug/L 02/24/11 10:27

ug/L 1,3-Dichloropropane ND 1.0 02/24/11 10:27 1,1-Dichloropropene ND 0.50 ug/L 02/24/11 10:27 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 02/24/11 10:27 ND

Ethylene Dibromide 0.50 02/24/11 10:27 ug/L ND 0.50 02/24/11 10:27 Dibromomethane ug/L ND 0.50 Dichlorodifluoromethane ug/L 02/24/11 10:27 1,1-Dichloroethane ND 0.50 02/24/11 10:27 ug/L

 1,2-Dichloroethane
 ND
 0.50
 ug/L
 02/24/11 10:27

 1,1-Dichloroethene
 ND
 0.50
 ug/L
 02/24/11 10:27

 cis-1,2-Dichloroethene
 ND
 0.50
 ug/L
 02/24/11 10:27

 trans-1,2-Dichloroethene
 ND
 0.50
 ug/L
 02/24/11 10:27

 1,2-Dichloropropane
 ND
 0.50
 ug/L
 02/24/11 10:27

 cis-1,3-Dichloropropene
 ND
 0.50
 ug/L
 02/24/11 10:27

 titrans-1,3-Dichloropropene
 ND
 0.50
 ug/L
 02/24/11 10:27

 Ethylbenzene
 ND
 0.50
 ug/L
 02/24/11 10:27

 Hexachlorobutadiene
 ND
 1.0
 ug/L
 02/24/11 10:27

2-Hexanone ND 02/24/11 10:27 50 ug/L Isopropylbenzene ND 0.50 ug/L 02/24/11 10:27 ND 02/24/11 10:27 4-Isopropyltoluene 1.0 ug/L Methylene Chloride ND 5.0 ug/L 02/24/11 10:27

50

0.50

ug/L

ug/L

Naphthalene ND 1.0 ug/L 02/24/11 10:27 ug/L N-Propylbenzene ND 1.0 02/24/11 10:27 Styrene ND 0.50 ug/L 02/24/11 10:27 1,1,1,2-Tetrachloroethane ND 0.50 ug/L 02/24/11 10:27

 Tetrachloroethene
 ND
 0.50
 ug/L
 02/24/11 10:27

 Toluene
 ND
 0.50
 ug/L
 02/24/11 10:27

 1,2,3-Trichlorobenzene
 ND
 1.0
 ug/L
 02/24/11 10:27

1,2,4-Trichlorobenzene ND 1.0 ug/L 02/24/11 10:27 1,1,1-Trichloroethane ND 0.50 ug/L 02/24/11 10:27 ND 0.50 1.1.2-Trichloroethane ug/L 02/24/11 10:27 Trichloroethene ND 0.50 02/24/11 10:27 ug/L

 Trichlorofluoromethane
 ND
 1.0
 ug/L
 02/24/11 10:27

 1,2,3-Trichloropropane
 ND
 0.50
 ug/L
 02/24/11 10:27

 1,1,2-Trichloro-1,2,2-trifluoroethane
 ND
 0.50
 ug/L
 02/24/11 10:27

1,2,4-Trimethylbenzene ND 0.50 ug/L 02/24/11 10:27 1,3,5-Trimethylbenzene ND 0.50 ug/L 02/24/11 10:27 ND Vinyl acetate 10 ug/L 02/24/11 10:27 ug/L Vinyl chloride ND 0.50 02/24/11 10:27 ND m-Xylene & p-Xylene 1.0 ug/L 02/24/11 10:27

o-Xylene ND 0.50 ug/L 02/24/11 10:27 Xylenes, Total ND 1.0 ug/L 02/24/11 10:27 2,2-Dichloropropane ND 0.50 ug/L 02/24/11 10:27

Page 69 of 95

02/24/11 10:27

02/24/11 10:27

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86752/4

Matrix: Water

Analysis Batch: 86752

Client Sample ID: MB 720-86752/4

Prep Type: Total/NA

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	785		13 - 708		85254277/78 53	7
795-, Dcloroehct ne-a4/d urrS	775		13 - 708		85254277/78 53	7
) oluene-a6/ď urrS	787		38 - 708		85254277/78 53	7

Client Sample ID: LCS 720-86752/38

Prep Type: Total/NA

Lab Sample ID: LCS 720-86752/38

Matrix: Water

Analysis Batch: 86752	Spike	LCS	LCS		% Rec.
Analyte	Added		Qualifier Unit	D % Rec	Limits
Methyl tert-butyl ether	25.0	28.5	ug/L		62 - 130
Acetone	125	100	ug/L	80	26 - 180
Benzene	25.0	25.4	ug/L	102	82 - 127
Dichlorobromomethane	25.0	27.3	ug/L	109	70 - 130
Bromobenzene	25.0	24.6	ug/L	98	79 - 127
Chlorobromomethane	25.0	27.3	ug/L	109	70 - 130
Bromoform	25.0	25.1	ug/L	100	68 - 136
Bromomethane	25.0	27.1	ug/L	108	43 - 151
2-Butanone (MEK)	125	121	ug/L	97	66 - 149
n-Butylbenzene	25.0	23.5	ug/L	94	79 - 142
sec-Butylbenzene	25.0	21.3	ug/L	85	81 - 134
tert-Butylbenzene	25.0	21.9	ug/L	87	82 - 135
Carbon disulfide	25.0	21.5	ug/L	86	68 - 137
Carbon tetrachloride	25.0	25.1	ug/L	100	77 - 146
Chlorobenzene	25.0	24.2	ug/L	97	70 - 130
Chloroethane	25.0	25.8	ug/L	103	62 - 138
Chloroform	25.0	25.2	ug/L	101	70 - 130
Chloromethane	25.0	24.9	ug/L	100	52 - 175
2-Chlorotoluene	25.0	23.1	ug/L	92	70 - 130
4-Chlorotoluene	25.0	23.0	ug/L	92	70 - 130
Chlorodibromomethane	25.0	29.0	ug/L	116	78 - 145
1,2-Dichlorobenzene	25.0	24.5	ug/L	98	70 - 130
1,3-Dichlorobenzene	25.0	24.0	ug/L	96	70 - 130
1,4-Dichlorobenzene	25.0	24.5	ug/L	98	87 - 118
1,3-Dichloropropane	25.0	27.7	ug/L	111	82 - 128
1,1-Dichloropropene	25.0	23.6	ug/L	94	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	21.7	ug/L	87	72 - 136
Ethylene Dibromide	25.0	29.3	ug/L	117	70 - 130
Dibromomethane	25.0	27.4	ug/L	110	70 - 130
Dichlorodifluoromethane	25.0	18.9	ug/L	76	33 - 125
1,1-Dichloroethane	25.0	24.2	ug/L	97	70 - 130
1,2-Dichloroethane	25.0	26.5	ug/L	106	70 - 126
1,1-Dichloroethene	25.0	23.0	ug/L	92	64 - 128
cis-1,2-Dichloroethene	25.0	28.8	ug/L	115	70 - 130
trans-1,2-Dichloroethene	25.0	21.2	ug/L	85	75 - 131
1,2-Dichloropropane	25.0	25.8	ug/L	103	70 - 130
cis-1,3-Dichloropropene	25.0	28.9	ug/L	116	88 - 137
trans-1,3-Dichloropropene	25.0	29.1	ug/L	117	83 - 140
Ethylbenzene	25.0	23.1	ug/L	93	86 - 135
Hexachlorobutadiene	25.0	22.8	ug/L	91	70 - 130

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86752/38

Matrix: Water

Analysis Batch: 86752

Client Sample ID: LCS 720-86752/38

Prep Type: Total/NA

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
2-Hexanone	125	138	-	ug/L		110	60 - 164
sopropylbenzene	25.0	23.2		ug/L		93	70 - 130
4-Isopropyltoluene	25.0	22.5		ug/L		90	70 - 130
Methylene Chloride	25.0	20.2		ug/L		81	73 - 147
4-Methyl-2-pentanone (MIBK)	125	141		ug/L		112	63 - 165
Naphthalene	25.0	26.5		ug/L		106	78 - 135
N-Propylbenzene	25.0	21.2		ug/L		85	70 - 130
Styrene	25.0	26.1		ug/L		104	70 - 130
1,1,1,2-Tetrachloroethane	25.0	25.8		ug/L		103	70 - 130
1,1,2,2-Tetrachloroethane	25.0	25.2		ug/L		101	70 - 130
Tetrachloroethene	25.0	25.7		ug/L		103	70 - 130
Foluene	25.0	24.0		ug/L		96	83 - 129
1,2,3-Trichlorobenzene	25.0	28.2		ug/L		113	70 - 130
1,2,4-Trichlorobenzene	25.0	27.3		ug/L		109	70 - 130
,1,1-Trichloroethane	25.0	23.9		ug/L		95	70 - 130
1,1,2-Trichloroethane	25.0	27.7		ug/L		111	82 - 128
Trichloroethene	25.0	24.9		ug/L		100	70 - 130
Frichlorofluoromethane	25.0	24.3		ug/L		97	74 - 146
1,2,3-Trichloropropane	25.0	23.8		ug/L		95	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	22.9		ug/L		92	42 - 162
1,2,4-Trimethylbenzene	25.0	23.3		ug/L		93	70 - 132
1,3,5-Trimethylbenzene	25.0	23.2		ug/L		93	70 - 130
/inyl acetate	25.0	36.6		ug/L		146	43 - 163
/inyl chloride	25.0	23.5		ug/L		94	65 - 156
m-Xylene & p-Xylene	50.0	47.4		ug/L		95	70 - 142
p-Xylene	25.0	24.5		ug/L		98	89 - 136
2,2-Dichloropropane	25.0	23.6		ug/L		94	70 - 140

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	::		13 - 708
795-, Dcloroelct ne-a4/d urrS	781		13 - 708
) oluene-a6/ď urrS	785		38 - 708

Lab Sample ID: LCSD 720-86752/37

Matrix: Water

Analysis Batch: 86752

Client Sample I	D: LCSD 720-86752/37
	Pren Type: Total/NA

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	29.9		ug/L		120	62 - 130	5	20
Acetone	125	107		ug/L		85	26 - 180	6	30
Benzene	25.0	25.4		ug/L		102	82 - 127	0	20
Dichlorobromomethane	25.0	27.6		ug/L		110	70 - 130	1	20
Bromobenzene	25.0	24.4		ug/L		98	79 - 127	1	20
Chlorobromomethane	25.0	28.1		ug/L		112	70 - 130	3	20
Bromoform	25.0	26.4		ug/L		106	68 - 136	5	20
Bromomethane	25.0	26.7		ug/L		107	43 - 151	2	20
2-Butanone (MEK)	125	131		ug/L		104	66 - 149	8	20
n-Butylbenzene	25.0	22.9		ug/L		92	79 - 142	2	20
sec-Butylbenzene	25.0	21.1		ug/L		84	81 - 134	1	20

TestAmerica San Francisco 02/25/2011

Page 71 of 95

TestAmerica Job ID: 720-33463-1 Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86752/37

Matrix: Water

Ethylene Dibromide

Dibromomethane

Ethylbenzene

Analysis Batch: 86752

Client Sample ID: LCSD 720-86752/37

Prep Type: Total/NA

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

4

Spike	LCSD	LCSD				% Rec.		RPD
Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
25.0	21.4		ug/L		86	82 - 135	2	20
25.0	21.3		ug/L		85	68 - 137	1	20
25.0	24.7		ug/L		99	77 - 146	1	20
25.0	24.1		ug/L		97	70 - 130	0	20
25.0	25.7		ug/L		103	62 - 138	0	20
25.0	25.1		ug/L		100	70 - 130	1	20
25.0	24.0		ug/L		96	52 - 175	4	20
25.0	22.7		ug/L		91	70 - 130	2	20
25.0	22.6		ug/L		90	70 - 130	2	20
25.0	30.0		ug/L		120	78 - 145	3	20
25.0	24.6		ug/L		99	70 - 130	1	20
	Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 21.4 25.0 21.3 25.0 24.7 25.0 24.1 25.0 25.7 25.0 25.1 25.0 22.7 25.0 22.7 25.0 22.6 25.0 30.0	Added Result Qualifier 25.0 21.4 25.0 21.3 25.0 24.7 25.0 24.1 25.0 25.7 25.0 25.1 25.0 24.0 25.0 22.7 25.0 22.6 25.0 30.0	Added Result Qualifier Unit 25.0 21.4 ug/L 25.0 21.3 ug/L 25.0 24.7 ug/L 25.0 24.1 ug/L 25.0 25.7 ug/L 25.0 25.1 ug/L 25.0 24.0 ug/L 25.0 22.7 ug/L 25.0 22.6 ug/L 25.0 30.0 ug/L	Added Result Qualifier Unit D 25.0 21.4 ug/L ug/L 25.0 21.3 ug/L ug/L 25.0 24.7 ug/L ug/L 25.0 25.7 ug/L ug/L 25.0 25.1 ug/L ug/L 25.0 24.0 ug/L ug/L 25.0 22.7 ug/L ug/L 25.0 30.0 ug/L ug/L	Added Result Qualifier Unit D % Rec 25.0 21.4 ug/L 86 25.0 21.3 ug/L 85 25.0 24.7 ug/L 99 25.0 24.1 ug/L 97 25.0 25.7 ug/L 103 25.0 25.1 ug/L 100 25.0 24.0 ug/L 96 25.0 22.7 ug/L 91 25.0 22.6 ug/L 90 25.0 30.0 ug/L 120	Added Result Qualifier Unit D % Rec Limits 25.0 21.4 ug/L 86 82 - 135 25.0 21.3 ug/L 85 68 - 137 25.0 24.7 ug/L 99 77 - 146 25.0 24.1 ug/L 97 70 - 130 25.0 25.7 ug/L 103 62 - 138 25.0 25.1 ug/L 100 70 - 130 25.0 24.0 ug/L 96 52 - 175 25.0 22.7 ug/L 91 70 - 130 25.0 22.6 ug/L 90 70 - 130 25.0 30.0 ug/L 120 78 - 145	Added Result Qualifier Unit D % Rec Limits RPD 25.0 21.4 ug/L 86 82 - 135 2 25.0 21.3 ug/L 85 68 - 137 1 25.0 24.7 ug/L 99 77 - 146 1 25.0 24.1 ug/L 97 70 - 130 0 25.0 25.7 ug/L 103 62 - 138 0 25.0 25.1 ug/L 100 70 - 130 1 25.0 24.0 ug/L 96 52 - 175 4 25.0 22.7 ug/L 91 70 - 130 2 25.0 22.6 ug/L 90 70 - 130 2 25.0 30.0 ug/L 90 70 - 130 2

1,3-Dichlorobenzene 25.0 24.2 ug/L 97 70 - 130 1 1,4-Dichlorobenzene 25.0 24.2 ug/L 97 87 - 118 1 1,3-Dichloropropane 25.0 28.9 ug/L 116 82 - 128 4 1,1-Dichloropropene 25.0 23.4 ug/L 94 70 - 130 1 ug/L 1,2-Dibromo-3-Chloropropane 25.0 23.2 93 72 - 136 7 70 - 130 25.0 5

25.0

25.0

25.0 Dichlorodifluoromethane 18.5 ug/L 74 33 - 125 3 1,1-Dichloroethane 25.0 24.2 ug/L 97 70 - 130 0 1.2-Dichloroethane 25.0 26.9 108 70 - 126 ug/L 1,1-Dichloroethene 25.0 22.8 ug/L 91 64 - 128 cis-1,2-Dichloroethene 25.0 28.5 70 - 130 1 ug/L 114 trans-1,2-Dichloroethene 25.0 21.0 ug/L 84 75 - 131 ug/L 25.0 26.2 105 70 - 130 1,2-Dichloropropane cis-1,3-Dichloropropene 25.0 29.4 ug/L 118 88 - 137 trans-1,3-Dichloropropene 25.0 29.9 ug/L 120 83 - 140 3

30.9

28.6

23.0

ug/L

ug/L

ug/L

123

114

92

70 - 130

86 - 135

Hexachlorobutadiene 25.0 22.6 ug/L 90 70 - 130 20 2-Hexanone 125 149 ug/L 119 60 - 164 8 20 Isopropylbenzene 25.0 23.1 ug/L 92 70 - 130 20 2 4-Isopropyltoluene 25.0 22.0 ug/L 88 70 - 130 20 82 73 - 147 Methylene Chloride 25.0 20.5 ug/L 20 4-Methyl-2-pentanone (MIBK) 125 151 ug/L 120 63 - 165 7 20 Naphthalene 25.0 28.3 ug/L 113 78 - 135 7 N-Propylbenzene 25.0 20.7 83 70 - 130 2 20

ug/L 25.0 26.3 ug/L 105 70 - 130 20 Styrene 1,1,1,2-Tetrachloroethane 25.0 25.8 103 0 20 70 - 130 ug/L 1,1,2,2-Tetrachloroethane 25.0 26.3 ug/L 105 70 - 130 4 20 ug/L Tetrachloroethene 25.0 25.2 101 70 - 130 2 20 Toluene 25.0 23.8 ug/L 95 83 - 129 1 20 1,2,3-Trichlorobenzene 25.0 29.0 ug/L 116 70 - 130 3 20 20

25.0 0 1,2,4-Trichlorobenzene 27.3 ug/L 109 70 - 130 1,1,1-Trichloroethane 25.0 23.7 ug/L 95 70 - 130 1 20 20 1,1,2-Trichloroethane 25.0 28.7 ug/L 115 82 - 128 3 Trichloroethene 25.0 24.6 99 70 - 130 20 ug/L 20

74 - 146 2 Trichlorofluoromethane 25.0 23.9 ug/L 95 1,2,3-Trichloropropane 25.0 25.2 ug/L 101 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 22.6 ug/L 90 42 - 162

Page 72 of 95

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Client Sample ID: LCSD 720-86752/37

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86752/37

Ma

An

/latrix: Water							Prep Type: Total/NA					
Analysis Batch: 86752												
	Spike	LCSD	LCSD				% Rec.		RPD			
nalyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit			
0 4 T 2 Us Us					_		70 400					

Analyte	Added	Result	Qualifier Unit	D	% Rec	Limits	RPD	Limit
1,2,4-Trimethylbenzene	25.0	23.0	ug/L		92	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	22.9	ug/L		91	70 - 130	2	20
Vinyl acetate	25.0	37.7	ug/L		151	43 - 163	3	20
Vinyl chloride	25.0	23.2	ug/L		93	65 - 156	1	20
m-Xylene & p-Xylene	50.0	46.8	ug/L		94	70 - 142	1	20
o-Xylene	25.0	24.5	ug/L		98	89 - 136	0	20
2,2-Dichloropropane	25.0	23.4	ug/L		93	70 - 140	1	20

LCSD LCSD % Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 787 13 - 708 795-, Dcloroehct ne-a4/d urrS 78: 13 - 708 38 - 708 785) oluene-a6/d(urrS

Client Sample ID: MB 720-86852/1-A Lab Sample ID: MB 720-86852/1-A

Matrix: Solid Analysis Batch: 86729

•	·	
Prep Type: Total/NA		
Pren Batch: 86852		

Analysis Batch: 86729	МВ	МВ						Prep Batch	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Acetone	ND		50		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Benzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Dichlorobromomethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Bromobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Chlorobromomethane	ND		20		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Bromoform	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Bromomethane	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
2-Butanone (MEK)	ND		50		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
n-Butylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
sec-Butylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
tert-Butylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Carbon disulfide	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Carbon tetrachloride	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Chlorobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Chloroethane	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Chloroform	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Chloromethane	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
2-Chlorotoluene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
4-Chlorotoluene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Chlorodibromomethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2-Dichlorobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,3-Dichlorobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,3-Dichloropropane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1-Dichloropropene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Ethylene Dibromide	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Dibromomethane	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Dichlorodifluoromethane	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1-Dichloroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-86852/1-A

Matrix: Solid

Analysis Batch: 86729

Client Sample ID: MB 720-86852/1-A

TestAmerica Job ID: 720-33463-1

Prep Type: Total/NA

Prep Batch: 86852

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1-Dichloroethene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
cis-1,2-Dichloroethene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
trans-1,2-Dichloroethene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2-Dichloropropane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
trans-1,3-Dichloropropene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Ethylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Hexachlorobutadiene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
2-Hexanone	ND		50		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Isopropylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
4-Isopropyltoluene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Methylene Chloride	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Naphthalene	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
N-Propylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Styrene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1,1,2-Tetrachloroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Tetrachloroethene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Toluene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2,3-Trichlorobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2,4-Trichlorobenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1,1-Trichloroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1,2-Trichloroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Trichloroethene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Trichlorofluoromethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2,3-Trichloropropane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,2,4-Trimethylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
1,3,5-Trimethylbenzene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Vinyl acetate	ND		50		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Vinyl chloride	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
m-Xylene & p-Xylene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
o-Xylene	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
Xylenes, Total	ND		10		ug/Kg		02/24/11 08:30	02/24/11 10:25	1
2,2-Dichloropropane	ND		5.0		ug/Kg		02/24/11 08:30	02/24/11 10:25	1

Lab Sample ID: LCS 720-86852/2-A

Matrix: Solid

) oluene-a6/d(urrS

Surrogate

4-Bromofluorobenzene 795-, Dcloroehct ne-a4/d/ urrS

Analysis Batch: 86729

Client Sample ID: LCS 720-86852/2-A

MB MB

% Recovery Qualifier

: T

78T

780

Prep Batch: 86852

Prep Type: Total/NA

Analyzed

85254277/78 5T

85254277/78 5T

85254277/86 08 85254277/78 5T

Dil Fac

7

7

7

Prepared

85254277/86 08

85254277/86 08

	Spike	LUS	LUS			/o Nec.	
Analyte	Added	Result	Qualifier Unit	D	% Rec	Limits	
Methyl tert-butyl ether	50.0	60.7	ug/Kg		121	71 - 144	_

Limits

4T - 707

18 - 748

T6 - 748

Page 74 of 95

Client: Dominion Due Diligence Group

TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-86852/2-A

Matrix: Solid

Analysis Batch: 86729

Client Sample ID: LCS 720-86852/2-A

Prep Type: Total/NA
Prep Batch: 86852
0/ 5

Analysis Batch: 86729	Snika	1.00	LCS				Prep Batch: 00052
Analyto	Spike Added		Qualifier	Unit	D	% Rec	% Rec.
Acetone Acetone		212	Qualifier	Unit	— -	% Rec 85	30 - 162
Benzene	50.0	53.1		ug/Kg		65 106	30 - 162 82 - 124
Dichlorobromomethane	50.0			ug/Kg		112	
Bromobenzene	50.0	56.1 52.8		ug/Kg		106	86 - 131 86 - 112
				ug/Kg			
Chlorobromomethane	50.0	51.8		ug/Kg		104	81 - 116
Bromoform	50.0 50.0	56.2		ug/Kg		112	59 - 158
Bromomethane	250	33.3 278		ug/Kg		67	59 - 132
2-Butanone (MEK)				ug/Kg		111	61 - 150
n-Butylbenzene	50.0	53.6		ug/Kg		107	80 - 142
sec-Butylbenzene	50.0	48.3		ug/Kg		97	85 - 136 74 - 130
tert-Butylbenzene	50.0	54.0		ug/Kg		108	71 - 130
Carbon disulfide	50.0	44.5		ug/Kg		89	60 - 136
Carbon tetrachloride	50.0	54.7		ug/Kg		109	81 - 138
Chlorothera	50.0	47.7		ug/Kg		95	87 - 113
Chloroethane	50.0	43.6		ug/Kg		87	69 - 141
Chloroform	50.0	49.8		ug/Kg		100	77 - 127
Chloromethane	50.0	47.9		ug/Kg		96	60 - 149
2-Chlorotoluene	50.0	52.3		ug/Kg		105	80 - 138
4-Chlorotoluene	50.0	52.1		ug/Kg		104	79 - 136
Chlorodibromomethane	50.0	57.8		ug/Kg		116	75 - 146
1,2-Dichlorobenzene	50.0	48.3		ug/Kg		97	84 - 130
1,3-Dichlorobenzene	50.0	49.7		ug/Kg		99	84 - 131
1,4-Dichlorobenzene	50.0	46.8		ug/Kg		94	85 - 125
1,3-Dichloropropane	50.0	55.0		ug/Kg		110	79 - 140
1,1-Dichloropropene	50.0	59.9		ug/Kg		120	70 - 130
1,2-Dibromo-3-Chloropropane	50.0	47.8		ug/Kg		96	68 - 145
Ethylene Dibromide	50.0	57.3		ug/Kg		115	79 - 140
Dibromomethane	50.0	54.1		ug/Kg		108	80 - 139
Dichlorodifluoromethane	50.0	38.9		ug/Kg		78	37 - 158
1,1-Dichloroethane	50.0	48.6		ug/Kg		97	85 - 124
1,2-Dichloroethane	50.0	53.6		ug/Kg		107	72 - 130
1,1-Dichloroethene	50.0	48.3		ug/Kg		97	84 - 120
cis-1,2-Dichloroethene	50.0	58.3		ug/Kg		117	87 - 138
trans-1,2-Dichloroethene	50.0	45.7		ug/Kg		91	72 - 116
1,2-Dichloropropane	50.0	53.6		ug/Kg		107	73 - 127
cis-1,3-Dichloropropene	50.0	59.3		ug/Kg		119	68 - 147
trans-1,3-Dichloropropene	50.0	58.2		ug/Kg		116	84 - 136
Ethylbenzene	50.0	52.1		ug/Kg		104	80 - 137
Hexachlorobutadiene	50.0	52.6		ug/Kg		105	72 - 132
2-Hexanone	250	271		ug/Kg		109	60 - 161
Isopropylbenzene	50.0	52.2		ug/Kg		104	88 - 128
4-Isopropyltoluene	50.0	51.3		ug/Kg		103	85 - 133
Methylene Chloride	50.0	48.7		ug/Kg		97	72 - 134
4-Methyl-2-pentanone (MIBK)	250	271		ug/Kg		108	69 - 160
Naphthalene	50.0	56.1		ug/Kg		112	70 - 147
N-Propylbenzene	50.0	48.8		ug/Kg		98	72 - 125
Styrene	50.0	52.3		ug/Kg		105	89 - 126
1,1,1,2-Tetrachloroethane	50.0	52.8		ug/Kg		106	90 - 130
1,1,2,2-Tetrachloroethane	50.0	48.1		ug/Kg		96	82 - 146
Tetrachloroethene	50.0	57.2		ug/Kg		114	78 - 132

TestAmerica San Francisco 02/25/2011

Spike

Added

100

50.0

50.0

Client: Dominion Due Diligence Group

Lab Sample ID: LCS 720-86852/2-A

Project/Site: Keller Telegraph

Analysis Batch: 86729

Matrix: Solid

Analyte

Toluene

TestAmerica Job ID: 720-33463-1

Client Sample ID: LCS 720-86852/2-A

Prep Type: Total/NA

Prep Batch: 86852

		Fieh	Dattii.
		% Rec.	
D	% Rec	Limits	
_	100	83 - 128	

101

101

114

Toluene	50.0	50.2	ug/Kg	100	83 - 128	
1,2,3-Trichlorobenzene	50.0	57.8	ug/Kg	116	74 - 136	
1,2,4-Trichlorobenzene	50.0	54.4	ug/Kg	109	70 - 131	
1,1,1-Trichloroethane	50.0	54.3	ug/Kg	109	80 - 127	
1,1,2-Trichloroethane	50.0	55.5	ug/Kg	111	82 - 125	
Trichloroethene	50.0	55.2	ug/Kg	110	81 - 133	
Trichlorofluoromethane	50.0	53.1	ug/Kg	106	71 - 139	
1,2,3-Trichloropropane	50.0	50.4	ug/Kg	101	76 - 146	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.0	ug/Kg	96	70 - 130	
ne						
1,2,4-Trimethylbenzene	50.0	54.9	ug/Kg	110	84 - 130	
1,3,5-Trimethylbenzene	50.0	51.8	ug/Kg	104	82 - 131	
Vinyl acetate	50.0	65.6	ug/Kg	131	38 - 176	
Vinyl chloride	50.0	47.5	ug/Kg	95	63 - 140	

101

50.5

56.9

LCS LCS

Result Qualifier

Unit

ug/Kg

ug/Kg

ug/Kg

LCS LCS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	785	4T - 707
795-, Dcloroelict ne-a4/d(urrS	785	18 - 748
) oluene-a6/ď urrS	781	T6 - 748

Lab Sample ID: LCSD 720-86852/3-A

Matrix: Solid

m-Xylene & p-Xylene

2,2-Dichloropropane

o-Xylene

Analysis Batch: 86729

Client	Sample	ID:	LCSD	720-86852/3-A

79 - 146

84 - 140

73 - 162

Prep Type: Total/NA Prep Batch: 86852

Analysis Batch: 86729							Prep Batch		86852
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	61.6		ug/Kg		123	71 - 144	1	20
Acetone	250	212		ug/Kg		85	30 - 162	0	30
Benzene	50.0	53.9		ug/Kg		108	82 - 124	1	20
Dichlorobromomethane	50.0	57.1		ug/Kg		114	86 - 131	2	20
Bromobenzene	50.0	53.6		ug/Kg		107	86 - 112	2	20
Chlorobromomethane	50.0	51.0		ug/Kg		102	81 - 116	2	20
Bromoform	50.0	57.3		ug/Kg		115	59 - 158	2	20
Bromomethane	50.0	32.4		ug/Kg		65	59 - 132	3	20
2-Butanone (MEK)	250	278		ug/Kg		111	61 - 150	0	20
n-Butylbenzene	50.0	54.0		ug/Kg		108	80 - 142	1	20
sec-Butylbenzene	50.0	48.7		ug/Kg		97	85 - 136	1	20
tert-Butylbenzene	50.0	54.5		ug/Kg		109	71 - 130	1	20
Carbon disulfide	50.0	44.9		ug/Kg		90	60 - 136	1	20
Carbon tetrachloride	50.0	54.8		ug/Kg		110	81 - 138	0	20
Chlorobenzene	50.0	48.1		ug/Kg		96	87 - 113	1	20
Chloroethane	50.0	42.2		ug/Kg		84	69 - 141	3	20
Chloroform	50.0	50.3		ug/Kg		101	77 - 127	1	20
Chloromethane	50.0	49.1		ug/Kg		98	60 - 149	3	20
2-Chlorotoluene	50.0	53.3		ug/Kg		107	80 - 138	2	20
4-Chlorotoluene	50.0	52.9		ug/Kg		106	79 - 136	2	20
Chlorodibromomethane	50.0	58.9		ug/Kg		118	75 - 146	2	20
1,2-Dichlorobenzene	50.0	49.1		ug/Kg		98	84 - 130	2	20

TestAmerica San Francisco 02/25/2011

Page 76 of 95

TestAmerica Job ID: 720-33463-1 Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86852/3-A

Matrix: Solid

Hexachlorobutadiene

1.1.1.2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Trichlorofluoromethane

o-Xylene

Analysis Batch: 86729

Client Sample ID: LCSD 720-86852/3-A

Prep Type: Total/NA

Prep Batch: 86852

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

1

1

5

O

Analysis Batch. 00725							i icp Batcii. 00002					
	Spike	LCSD	LCSD				% Rec.		RPD			
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit			
1,3-Dichlorobenzene	50.0	49.7		ug/Kg		99	84 - 131	0	20			
1,4-Dichlorobenzene	50.0	47.4		ug/Kg		95	85 - 125	1	20			
1,3-Dichloropropane	50.0	55.6		ug/Kg		111	79 - 140	1	20			

0 1,1-Dichloropropene 50.0 59.8 ug/Kg 120 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 48.5 ug/Kg 97 68 - 145 2 Ethylene Dibromide 50.0 57.9 ug/Kg 116 79 - 140 1 Dibromomethane 50.0 54.1 ug/Kg 108 80 - 139 0 50.0 Dichlorodifluoromethane 36.6 ug/Kg 73 37 - 158 6 1,1-Dichloroethane 50.0 48.8 98 85 - 124 0 ug/Kg 1,2-Dichloroethane 108 50.0 54.0 ug/Kg 72 - 1301

1,1-Dichloroethene 50.0 48.1 ug/Kg 96 84 - 120 0 cis-1.2-Dichloroethene 50.0 59.3 ug/Kg 119 87 - 138 2 trans-1,2-Dichloroethene 50.0 45.7 ug/Kg 91 72 - 116 0 1,2-Dichloropropane 50.0 55.0 ug/Kg 110 73 - 127 3 2 cis-1,3-Dichloropropene 50.0 60.3 ug/Kg 121 68 - 147 trans-1,3-Dichloropropene 50.0 58.5 ug/Kg 117 84 - 136 1 Ethylbenzene 50.0 52.3 ug/Kg 105 80 - 137 0

53.3

53.5

47.9

50.3

50.8

56.6

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

107

107

96

101

102

113

72 - 132

90 - 130

82 - 146

71 - 139

84 - 140

73 - 162

2-Hexanone 250 275 ug/Kg 110 60 - 161 1 Isopropylbenzene 50.0 52.5 ug/Kg 105 88 - 128 4-Isopropyltoluene 50.0 51.7 103 85 - 133 ug/Kg Methylene Chloride 50.0 49.1 ug/Kg 98 72 - 134 250 272 109 69 - 160 O 4-Methyl-2-pentanone (MIBK) ug/Kg Naphthalene 50.0 58.7 ug/Kg 117 70 - 147 5 N-Propylbenzene 50.0 49.4 72 - 125 ug/Kg 99 1 Styrene 50.0 53.1 ug/Kg 106 89 - 126

50.0

50.0

50.0

50.0

50.0

ug/Kg Tetrachloroethene 50.0 57.8 ug/Kg 116 78 - 132 20 0 Toluene 50.0 50.4 ug/Kg 101 83 - 128 20 1,2,3-Trichlorobenzene 50.0 60.2 ug/Kg 120 74 - 136 4 20 3 1,2,4-Trichlorobenzene 50.0 55.8 ug/Kg 112 70 - 131 20 0 1,1,1-Trichloroethane 50.0 54.4 ug/Kg 109 80 - 127 20 1,1,2-Trichloroethane 50.0 55.6 ug/Kg 111 82 - 125 0 20 Trichloroethene 50.0 55.9 ug/Kg 112 81 - 133 20

1,2,3-Trichloropropane 50.0 52.1 ug/Kg 104 76 - 146 3 20 1,1,2-Trichloro-1,2,2-trifluoroetha 50.0 47.7 ug/Kg 95 70 - 130 20 1 1,2,4-Trimethylbenzene 50.0 55.8 ug/Kg 112 84 - 130 2 20 1,3,5-Trimethylbenzene 50.0 52.7 ug/Kg 105 82 - 131 2 20 Vinyl acetate 50.0 65.0 ug/Kg 130 38 - 176 1 20 92 50.0 45.9 20 Vinyl chloride ug/Kg 63 - 140 4 m-Xylene & p-Xylene 100 101 ug/Kg 101 79 - 146 0 20

50.0 2,2-Dichloropropane LCSD LCSD Surrogate % Recovery Qualifier Limits 4T - 707 4-Bromofluorobenzene 78T 18 - 748 795-, Dcloroehct ne-a4/d urrS 784

> TestAmerica San Francisco 02/25/2011

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-86852/3-A

Matrix: Solid

Analysis Batch: 86729

LCSD LCSD

% Recovery Qualifier Limits Surrogate T6 - 748) oluene-a6/d urrS 78:

Client Sample ID: LCSD 720-86852/3-A

Prep Type: Total/NA

Prep Batch: 86852

Method: 8270C SIM - PAHs by GCMS (SIM)

Lab Sample ID: MB 720-86576/1-A

Analysis Batch: 86654

Matrix: Water

Client	Sample	ID:	MB	720	-8657	76/1	-A

Prep Type: Total/NA

Prep Batch: 86576

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Acenaphthene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Acenaphthylene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Fluorene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Phenanthrene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Anthracene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Benzo[a]anthracene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Chrysene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Benzo[a]pyrene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Benzo[b]fluoranthene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Benzo[k]fluoranthene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Fluoranthene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Pyrene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		02/22/11 11:51	02/23/11 11:14	1

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
5-Fluorob@cenyl	4:		5: - 758	852527/77 T7	85250277/77 74	7
) erpcenyl-a74	68		4T - 758	85 <i>2</i> 552/7/77 T7	85250277/77 74	7

Lab Sample ID: LCS 720-86576/2-A

Matrix: Water

Analysis Batch: 86654

Client Sample	ID: LCS 720-86576/2-A
	Prep Type: Total/NA

Prep Batch: 86576

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Naphthalene	10.0	5.21		ug/L		52	33 - 120	
Acenaphthene	10.0	5.37		ug/L		54	37 - 120	
Acenaphthylene	10.0	5.09		ug/L		51	36 - 120	
Fluorene	10.0	6.34		ug/L		63	39 - 120	
Phenanthrene	10.0	5.91		ug/L		59	44 - 120	
Anthracene	10.0	6.61		ug/L		66	45 - 120	
Benzo[a]anthracene	10.0	8.01		ug/L		80	48 - 120	
Chrysene	10.0	8.77		ug/L		88	52 - 120	
Benzo[a]pyrene	10.0	8.22		ug/L		82	50 - 120	
Benzo[b]fluoranthene	10.0	8.53		ug/L		85	48 - 120	
Benzo[k]fluoranthene	10.0	8.32		ug/L		83	50 - 120	
Benzo[g,h,i]perylene	10.0	8.03		ug/L		80	49 - 120	
Indeno[1,2,3-cd]pyrene	10.0	8.25		ug/L		83	48 - 120	
Fluoranthene	10.0	7.30		ug/L		73	46 - 120	

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Lab Sample ID: LCS 720-86576/2-A

Matrix: Water

Analysis Batch: 86654

Client Sample ID: LCS 720-86576/2-A

Prep Type: Total/NA

Prep Batch: 86576

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Pyrene	10.0	7.72		ug/L		77	50 - 120	
Dibenz(a,h)anthracene	10.0	7.81		ug/L		78	48 - 101	

LCS LCS % Recovery Qualifier Limits 5: - 758 *T7*

60

Lab Sample ID: LCSD 720-86576/3-A Client Sample ID: LCSD 720-86576/3-A

4T - 758

Matrix: Water

5-Fluoroblacenyl

) erpcenyl-a74

Surrogate

Analysis Batch: 86654

Prep Type: Total/NA

Prep Batch: 86576

•	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Naphthalene	10.0	5.51	-	ug/L		55	33 - 120	6	35
Acenaphthene	10.0	5.86		ug/L		59	37 - 120	9	35
Acenaphthylene	10.0	5.58		ug/L		56	36 - 120	9	35
Fluorene	10.0	6.76		ug/L		68	39 - 120	6	35
Phenanthrene	10.0	5.96		ug/L		60	44 - 120	1	35
Anthracene	10.0	6.51		ug/L		65	45 - 120	1	35
Benzo[a]anthracene	10.0	7.77		ug/L		78	48 - 120	3	35
Chrysene	10.0	8.59		ug/L		86	52 - 120	2	35
Benzo[a]pyrene	10.0	7.88		ug/L		79	50 - 120	4	35
Benzo[b]fluoranthene	10.0	8.18		ug/L		82	48 - 120	4	35
Benzo[k]fluoranthene	10.0	7.98		ug/L		80	50 - 120	4	35
Benzo[g,h,i]perylene	10.0	7.63		ug/L		76	49 - 120	5	35
Indeno[1,2,3-cd]pyrene	10.0	7.77		ug/L		78	48 - 120	6	35
Fluoranthene	10.0	6.78		ug/L		68	46 - 120	7	35
Pyrene	10.0	7.20		ug/L		72	50 - 120	7	35
Dibenz(a,h)anthracene	10.0	7.40		ug/L		74	48 - 101	5	35

	LCSD	LCSD	
Surrogate	% Recovery	Qualifier	Limits
5-Fluorob p cenyl			5: - 758
) erpcenyl-a74	68		4T - 758

Lab Sample ID: MB 720-86591/1-A

Matrix: Solid

Analysis Batch: 86671

Prep Type: Total/NA

Prep Batch: 86591

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Acenaphthene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Acenaphthylene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Fluorene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Phenanthrene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Anthracene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Benzo[a]anthracene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Chrysene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Benzo[a]pyrene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1

TestAmerica San Francisco 02/25/2011

Page 79 of 95

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Lab Sample ID: MB 720-86591/1-A

Lab Sample ID: LCS 720-86591/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 86671

Client Sample ID: MB 720-86591/1-A

Prep Type: Total/NA

Prep Batch: 86591

	IVID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Fluoranthene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Pyrene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		02/22/11 13:07	02/23/11 12:37	1

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
5-Fluorob@cenyl	60		00 - 758	8525277/70 83	85250277/75 03	7
) erpcenyl-a74	: 5		0T - 741	85 <i>2</i> 5 <i>2</i> 7/70 83	85250277/75 03	7

Client Sample ID: LCS 720-86591/2-A

Prep Type: Total/NA

							and the same of th
Analysis Batch: 86671	Spike	LCS	LCS				Prep Batch: 86591 % Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Naphthalene	330	261	-	ug/Kg		79	46 - 120
Acenaphthene	330	278		ug/Kg		84	49 - 120
Acenaphthylene	330	287		ug/Kg		87	52 - 120
Fluorene	330	279		ug/Kg		84	52 - 120
Phenanthrene	330	295		ug/Kg		89	48 - 120
Anthracene	330	292		ug/Kg		88	52 - 120
Benzo[a]anthracene	330	286		ug/Kg		87	52 - 120
Chrysene	330	266		ug/Kg		80	54 - 120
Benzo[a]pyrene	330	303		ug/Kg		92	54 - 120
Benzo[b]fluoranthene	330	295		ug/Kg		89	51 - 120
Benzo[k]fluoranthene	330	306		ug/Kg		93	56 - 120
Benzo[g,h,i]perylene	330	312		ug/Kg		95	48 - 120
Indeno[1,2,3-cd]pyrene	330	310		ug/Kg		94	48 - 120
Fluoranthene	330	309		ug/Kg		94	57 - 120
Pyrene	330	304		ug/Kg		92	53 - 120
Dibenz(a,h)anthracene	330	295		ug/Kg		89	50 - 120

LCS LCS

Surrogate	™ Recovery	Qualifier	LIIIIII
5-Fluoroblacenyl	63		00 - 758
) erpcenyl-a74	6:		0T - 741

Lab Sample ID: LCSD 720-86591/3-A Client Sample ID: LCSD 720-86591/3-A **Matrix: Solid**

Analysis Batch: 86671

Spike LCSD LCSD % Rec. RPD Analyte Added Result Qualifier Limits RPD Limit Unit % Rec Naphthalene 329 251 4 ug/Kg 76 46 - 120 20 ug/Kg Acenaphthene 329 269 82 49 - 120 20 3 Acenaphthylene 329 278 ug/Kg 85 52 - 120 3 20 Fluorene 329 268 ug/Kg 82 52 - 120 20 Phenanthrene 329 291 ug/Kg 88 48 - 120 20 Anthracene 329 285 ug/Kg 87 52 - 120 2 20 Benzo[a]anthracene 329 286 ug/Kg 87 52 - 120 0 20 Chrysene 329 260 ug/Kg 79 54 - 120 20

TestAmerica San Francisco

Page 80 of 95

02/25/2011

Prep Type: Total/NA

Prep Batch: 86591

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Lab Sample ID: LCSD 720-86591/3-A

Matrix: Solid

Analysis Batch: 86671

Client Sample ID: LCSD 720-86591/3-A

TestAmerica Job ID: 720-33463-1

Prep Type: Total/NA

Prep Batch: 86591

	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzo[a]pyrene	329	303		ug/Kg		92	54 - 120	0	20
Benzo[b]fluoranthene	329	301		ug/Kg		92	51 - 120	2	20
Benzo[k]fluoranthene	329	296		ug/Kg		90	56 - 120	3	20
Benzo[g,h,i]perylene	329	314		ug/Kg		95	48 - 120	1	20
Indeno[1,2,3-cd]pyrene	329	310		ug/Kg		94	48 - 120	0	20
Fluoranthene	329	306		ug/Kg		93	57 - 120	1	20
Pyrene	329	301		ug/Kg		91	53 - 120	1	20
Dibenz(a,h)anthracene	329	298		ug/Kg		90	50 - 120	1	20

LCSD LCSD

Surrogate % Recovery Qualifier Limits 00 - 758 5-Fluorob@cenyl 60 : 8 0T - 741) erpcenyl-a74

Method: 8015B - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Lab Sample ID: MB 720-86590/1-A

Matrix: Solid

Analysis Batch: 86642

Client Sample ID: MB 720-86590/1-A

Prep Type: Total/NA

Prep Batch: 86590

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		0.99		mg/Kg		02/22/11 13:04	02/23/11 11:50	1
Stoddard Solvent Range Organics	ND		0.99		mg/Kg		02/22/11 13:04	02/23/11 11:50	1
(C9-C13)									

MB MB

MB MB

Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac p-) erpcenyl 778 07 - 774 8525277/70 84 85250277/77 T8

Lab Sample ID: LCS 720-86590/2-A

Matrix: Solid

Analysis Batch: 86642

Client Sample ID: LCS 720-86590/2-A Prep Type: Total/NA

Prep Batch: 86590

Spike LCS LCS % Rec. Added Result Qualifier Unit % Rec Limits Diesel Range Organics 83.3 82.3 mg/Kg 59 - 134 [C10-C28]

LCS LCS

Surrogate % Recovery Qualifier Limits 07 - 774 p-) erpcenyl

Lab Sample ID: LCSD 720-86590/3-A Client Sample ID: LCSD 720-86590/3-A

Matrix: Solid

Analysis Batch: 86642

Prep Type: Total/NA

Prep Batch: 86590

LCSD LCSD Spike RPD % Rec. Added Result Qualifier Analyte Unit % Rec Limits RPD Limit Diesel Range Organics 82.2 79.5 mg/Kg 97 59 - 134 35

[C10-C28]

LCSD LCSD

Surrogate % Recovery Qualifier Limits p-) erpcenyl 785 07 - 774

02/25/2011

Client: Dominion Due Diligence Group TestAmerica Job ID: 720-33463-1

Project/Site: Keller Telegraph

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID	: MB	720-86604/1-A
---------------	------	---------------

Matrix: Water

Analysis Batch: 86640

Diesel Range Organics [C10-C28]

Client Sample ID: MB 720-86604/1-A

Analyzed

02/23/11 10:45

Prep Type: Total/NA

Prep Batch: 86604

Dil Fac

1

(C9-C13)	ND		50	ug/L	02/22/11 14:51	02/23/11 10:45	1
	MB	MB					
Surrogate	% Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
p-) erpcenyl	: 7		50 - 7T1		852527/74 T7	85250277/78 4T	7

Spike

Added

2500

Spike

Added

2500

RL

50

MDL Unit

LCS LCS

LCSD LCSD

1360

Result Qualifier

Unit

ug/L

1700

ug/L

Lab Sample ID: LCS 720-86604/2-A

Matrix: Water

Analysis Batch: 86640

Analyte Diesel Range Organics

[C10-C28]

Surrogate p-) erpcenyl LCS LCS

% Recovery Qualifier Limits 50 - 7T1

MB MB Result Qualifier

ND

Lab Sample ID: LCSD 720-86604/3-A

Matrix: Water

Analysis Batch: 86640

Analyte

Diesel Range Organics [C10-C28]

LCSD LCSD Surrogate % Recovery Qualifier p-) erpcenyl 60

Client Sample ID: LCS 720-86604/2-A

Prep Type: Total/NA

Prep Batch: 86604 % Rec.

Result Qualifier Unit % Rec Limits ug/L 68 40 - 150

Prepared

02/22/11 14:51

Client Sample ID: LCSD 720-86604/3-A

Prep Type: Total/NA

Prep Batch: 86604

% Rec. RPD % Rec Limits RPD Limit 54 40 - 150 22 35

Limits 50 - 7T1

> TestAmerica San Francisco 02/25/2011

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

GC/MS VOA

Analysis Batch: 86547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-13	B-4	Total/NA	Water	8260B	
720-33463-14	B-5	Total/NA	Water	8260B	
720-33463-15	B-7	Total/NA	Water	8260B	
MB 720-86547/5	MB 720-86547/5	Total/NA	Water	8260B	
LCS 720-86547/6	LCS 720-86547/6	Total/NA	Water	8260B	
LCSD 720-86547/7	LCSD 720-86547/7	Total/NA	Water	8260B	

Analysis Batch: 86549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-2	B-1	Total/NA	Solid	8260B	86708
720-33463-2 MS	B-1	Total/NA	Water	8260B	86708
720-33463-2 MSD	B-1	Total/NA	Water	8260B	86708
720-33463-3	B-2	Total/NA	Solid	8260B	86708
720-33463-4	B-6	Total/NA	Solid	8260B	86708
MB 720-86708/1-A	MB 720-86708/1-A	Total/NA	Solid	8260B	86708
LCS 720-86708/2-A	LCS 720-86708/2-A	Total/NA	Solid	8260B	86708
LCSD 720-86708/3-A	LCSD 720-86708/3-A	Total/NA	Solid	8260B	86708

Analysis Batch: 86550

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-10	B-1	Total/NA	Water	8260B	
720-33463-10 MS	B-1	Total/NA	Water	8260B	
720-33463-10 MSD	B-1	Total/NA	Water	8260B	
720-33463-11	B-2	Total/NA	Water	8260B	
MB 720-86550/4	MB 720-86550/4	Total/NA	Water	8260B	
LCS 720-86550/5	LCS 720-86550/5	Total/NA	Water	8260B	
LCSD 720-86550/6	LCSD 720-86550/6	Total/NA	Water	8260B	

Analysis Batch: 86641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-8	TRIP BLANK	Total/NA	Water	8260B	
MB 720-86641/5	MB 720-86641/5	Total/NA	Water	8260B	
LCS 720-86641/6	LCS 720-86641/6	Total/NA	Water	8260B	
LCSD 720-86641/7	LCSD 720-86641/7	Total/NA	Water	8260B	

Analysis Batch: 86644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-33463-9	B-3	Total/NA	Water	8260B	
720-33463-12	B-6	Total/NA	Water	8260B	
720-33463-13	B-4	Total/NA	Water	8260B	
MB 720-86644/5	MB 720-86644/5	Total/NA	Water	8260B	
LCS 720-86644/6	LCS 720-86644/6	Total/NA	Water	8260B	
LCSD 720-86644/7	LCSD 720-86644/7	Total/NA	Water	8260B	

Prep Batch: 86708

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-86708/1-A	MB 720-86708/1-A	Total/NA	Solid	5030B	
720-33463-2 MSD	B-1	Total/NA	Water	5030B	
LCS 720-86708/2-A	LCS 720-86708/2-A	Total/NA	Solid	5030B	
720-33463-3	B-2	Total/NA	Solid	5030B	
720-33463-4	B-6	Total/NA	Solid	5030B	
LCSD 720-86708/3-A	LCSD 720-86708/3-A	Total/NA	Solid	5030B	

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

GC/MS VOA (Continued)

Prep Batch: 86708 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-2	B-1	Total/NA	Solid	5030B	
720-33463-2 MS	B-1	Total/NA	Water	5030B	

Analysis Batch: 86729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 720-86852/3-A	LCSD 720-86852/3-A	Total/NA	Solid	8260B	86852
720-33463-2	B-1	Total/NA	Solid	8260B	86852
720-33463-5	B-4	Total/NA	Solid	8260B	86852
720-33463-6	B-5	Total/NA	Solid	8260B	86852
720-33463-7	B-7	Total/NA	Solid	8260B	86852
720-33463-1	B-3	Total/NA	Solid	8260B	86852
MB 720-86852/1-A	MB 720-86852/1-A	Total/NA	Solid	8260B	86852
LCS 720-86852/2-A	LCS 720-86852/2-A	Total/NA	Solid	8260B	86852

Analysis Batch: 86752

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-15	B-7	Total/NA	Water	8260B	
LCSD 720-86752/37	LCSD 720-86752/37	Total/NA	Water	8260B	
LCS 720-86752/38	LCS 720-86752/38	Total/NA	Water	8260B	
MB 720-86752/4	MB 720-86752/4	Total/NA	Water	8260B	

Prep Batch: 86852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-86852/1-A	MB 720-86852/1-A	Total/NA	Solid	5030B	
720-33463-1	B-3	Total/NA	Solid	5030B	
LCS 720-86852/2-A	LCS 720-86852/2-A	Total/NA	Solid	5030B	
LCSD 720-86852/3-A	LCSD 720-86852/3-A	Total/NA	Solid	5030B	
720-33463-2	B-1	Total/NA	Solid	5030B	
720-33463-5	B-4	Total/NA	Solid	5030B	
720-33463-6	B-5	Total/NA	Solid	5030B	
720-33463-7	B-7	Total/NA	Solid	5030B	

GC/MS Semi VOA

Prep Batch: 86576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-86576/1-A	MB 720-86576/1-A	Total/NA	Water	3510C	
720-33463-14	B-5	Total/NA	Water	3510C	
720-33463-15	B-7	Total/NA	Water	3510C	
LCS 720-86576/2-A	LCS 720-86576/2-A	Total/NA	Water	3510C	
LCSD 720-86576/3-A	LCSD 720-86576/3-A	Total/NA	Water	3510C	
720-33463-9	B-3	Total/NA	Water	3510C	
720-33463-10	B-1	Total/NA	Water	3510C	
720-33463-11	B-2	Total/NA	Water	3510C	
720-33463-12	B-6	Total/NA	Water	3510C	
720-33463-13	B-4	Total/NA	Water	3510C	

Prep Batch: 86591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
MB 720-86591/1-A	MB 720-86591/1-A	Total/NA	Solid	3550B	
720-33463-1	B-3	Total/NA	Solid	3550B	
720-33463-2	B-1	Total/NA	Solid	3550B	

Л

6

8

9

11

16

IC

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

GC/MS Semi VOA (Continued)

Prep Batch: 86591 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-3	B-2	Total/NA	Solid	3550B	
720-33463-4	B-6	Total/NA	Solid	3550B	
720-33463-5	B-4	Total/NA	Solid	3550B	
720-33463-6	B-5	Total/NA	Solid	3550B	
720-33463-7	B-7	Total/NA	Solid	3550B	
LCS 720-86591/2-A	LCS 720-86591/2-A	Total/NA	Solid	3550B	
LCSD 720-86591/3-A	LCSD 720-86591/3-A	Total/NA	Solid	3550B	

Analysis Batch: 86654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-9	B-3	Total/NA	Water	8270C SIM	86576
720-33463-10	B-1	Total/NA	Water	8270C SIM	86576
720-33463-11	B-2	Total/NA	Water	8270C SIM	86576
720-33463-12	B-6	Total/NA	Water	8270C SIM	86576
720-33463-13	B-4	Total/NA	Water	8270C SIM	86576
720-33463-14	B-5	Total/NA	Water	8270C SIM	86576
720-33463-15	B-7	Total/NA	Water	8270C SIM	86576
LCS 720-86576/2-A	LCS 720-86576/2-A	Total/NA	Water	8270C SIM	86576
LCSD 720-86576/3-A	LCSD 720-86576/3-A	Total/NA	Water	8270C SIM	86576
MB 720-86576/1-A	MB 720-86576/1-A	Total/NA	Water	8270C SIM	86576

Analysis Batch: 86671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-4	B-6	Total/NA	Solid	8270C SIM	86591
720-33463-5	B-4	Total/NA	Solid	8270C SIM	86591
720-33463-6	B-5	Total/NA	Solid	8270C SIM	86591
720-33463-7	B-7	Total/NA	Solid	8270C SIM	86591
LCS 720-86591/2-A	LCS 720-86591/2-A	Total/NA	Solid	8270C SIM	86591
LCSD 720-86591/3-A	LCSD 720-86591/3-A	Total/NA	Solid	8270C SIM	86591
MB 720-86591/1-A	MB 720-86591/1-A	Total/NA	Solid	8270C SIM	86591
720-33463-1	B-3	Total/NA	Solid	8270C SIM	86591
720-33463-2	B-1	Total/NA	Solid	8270C SIM	86591
720-33463-3	B-2	Total/NA	Solid	8270C SIM	86591

GC Semi VOA

Prep Batch: 86590

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-86590/1-A	MB 720-86590/1-A	Total/NA	Solid	3550B	
720-33463-1	B-3	Total/NA	Solid	3550B	
720-33463-2	B-1	Total/NA	Solid	3550B	
720-33463-3	B-2	Total/NA	Solid	3550B	
720-33463-4	B-6	Total/NA	Solid	3550B	
720-33463-5	B-4	Total/NA	Solid	3550B	
LCS 720-86590/2-A	LCS 720-86590/2-A	Total/NA	Solid	3550B	
720-33463-6	B-5	Total/NA	Solid	3550B	
720-33463-7	B-7	Total/NA	Solid	3550B	
LCSD 720-86590/3-A	LCSD 720-86590/3-A	Total/NA	Solid	3550B	

Prep Batch: 86604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-86604/1-A	MB 720-86604/1-A	Total/NA	Water	3510C	

2

3

4

6

8

10

12

13

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

GC Semi VOA (Continued)

Prep Batch: 86604 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33463-13	B-4	Total/NA	Water	3510C	
720-33463-14	B-5	Total/NA	Water	3510C	
720-33463-15	B-7	Total/NA	Water	3510C	
LCS 720-86604/2-A	LCS 720-86604/2-A	Total/NA	Water	3510C	
LCSD 720-86604/3-A	LCSD 720-86604/3-A	Total/NA	Water	3510C	
720-33463-9	B-3	Total/NA	Water	3510C	
720-33463-10	B-1	Total/NA	Water	3510C	
720-33463-11	B-2	Total/NA	Water	3510C	
720-33463-12	B-6	Total/NA	Water	3510C	

Analysis Batch: 86640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 720-86604/3-A	LCSD 720-86604/3-A	Total/NA	Water	8015B	86604
MB 720-86604/1-A	MB 720-86604/1-A	Total/NA	Water	8015B	86604
720-33463-9	B-3	Total/NA	Water	8015B	86604
720-33463-10	B-1	Total/NA	Water	8015B	86604
720-33463-11	B-2	Total/NA	Water	8015B	86604
720-33463-12	B-6	Total/NA	Water	8015B	86604
720-33463-13	B-4	Total/NA	Water	8015B	86604
720-33463-14	B-5	Total/NA	Water	8015B	86604
720-33463-15	B-7	Total/NA	Water	8015B	86604
LCS 720-86604/2-A	LCS 720-86604/2-A	Total/NA	Water	8015B	86604

Analysis Batch: 86642

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 720-86590/3-A	LCSD 720-86590/3-A	Total/NA	Solid	8015B	86590
MB 720-86590/1-A	MB 720-86590/1-A	Total/NA	Solid	8015B	86590
720-33463-1	B-3	Total/NA	Solid	8015B	86590
720-33463-2	B-1	Total/NA	Solid	8015B	86590
720-33463-3	B-2	Total/NA	Solid	8015B	86590
720-33463-4	B-6	Total/NA	Solid	8015B	86590
720-33463-5	B-4	Total/NA	Solid	8015B	86590
720-33463-6	B-5	Total/NA	Solid	8015B	86590
720-33463-7	B-7	Total/NA	Solid	8015B	86590
LCS 720-86590/2-A	LCS 720-86590/2-A	Total/NA	Solid	8015B	86590

3

4

Ω

9

10

11

13

Lab Chronicle

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-1

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Client Sample ID: B-3 Date Collected: 02/16/11 09:40 Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			86852	02/24/11 08:30	AC	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86729	02/24/11 19:21	AC	TestAmerica San Francisco
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 13:46	ML	TestAmerica San Francisco
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86642	02/23/11 12:23	DH	TestAmerica San Francisco

Lab Sample ID: 720-33463-2

Client Sample ID: B-1 Date Collected: 02/16/11 11:30 Matrix: Solid

Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			86708	02/22/11 08:47	YB	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86549	02/22/11 14:08	YB	TestAmerica San Francisco
Total/NA	Prep	5030B			86852	02/24/11 08:30	AC	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86729	02/24/11 14:15	AC	TestAmerica San Francisco
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 14:09	ML	TestAmerica San Francisco
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86642	02/23/11 12:48	DH	TestAmerica San Francisco

Client Sample ID: B-2 Lab Sample ID: 720-33463-3

Date Collected: 02/16/11 12:55 Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			86708	02/22/11 08:47	YB	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86549	02/22/11 19:52	YB	TestAmerica San Francisco
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 14:32	ML	TestAmerica San Francisco
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86642	02/23/11 13:12	DH	TestAmerica San Francisco

Client Sample ID: B-6 Lab Sample ID: 720-33463-4 Date Collected: 02/16/11 16:00

Date Received: 02/17/11 17:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			86708	02/22/11 08:47	YB	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86549	02/22/11 20:21	YB	TestAmerica San Francisco
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 14:56	ML	TestAmerica San Francisco
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86642	02/23/11 13:36	DH	TestAmerica San Francisco

Matrix: Solid

Matrix: Solid

TestAmerica San Francisco 02/25/2011

Lab Chronicle

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID: 720-33463-5

TestAmerica Job ID: 720-33463-1

Matrix: Solid

Date Collected: 02/17/11 09:50 Date Received: 02/17/11 17:10

Client Sample ID: B-4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			86852	02/24/11 08:30	AC	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86729	02/24/11 15:03	AC	TestAmerica San Francisco
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 15:19	ML	TestAmerica San Francisco
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86642	02/23/11 14:00	DH	TestAmerica San Francisco

Client Sample ID: B-5 Lab Sample ID: 720-33463-6

Date Collected: 02/17/11 09:20

Date Received: 02/17/11 17:10

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			86852	02/24/11 08:30	AC	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86729	02/24/11 15:31	AC	TestAmerica San Francisco
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 15:42	ML	TestAmerica San Francisco
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86642	02/23/11 14:25	DH	TestAmerica San Francisco

Client Sample ID: B-7

Date Collected: 02/17/11 11:45

Lab Sample ID: 720-33463-7

Matrix: Solid

Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab	
Total/NA	Prep	5030B			86852	02/24/11 08:30	AC	TestAmerica San Francisco	
Total/NA	Analysis	8260B		1	86729	02/24/11 16:00	AC	TestAmerica San Francisco	
Total/NA	Prep	3550B			86591	02/22/11 15:32	AM	TestAmerica San Francisco	
Total/NA	Analysis	8270C SIM		1	86671	02/23/11 16:05	ML	TestAmerica San Francisco	
Total/NA	Prep	3550B			86590	02/22/11 15:34	AM	TestAmerica San Francisco	
Total/NA	Analysis	8015B		1	86642	02/23/11 14:49	DH	TestAmerica San Francisco	

Client Sample ID: TRIP BLANK

Lab Sample ID: 720-33463-8

Date Collected: 02/16/11 00:00 Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	86641	02/23/11 13:46	AC	TestAmerica San Francisco

Client Sample ID: B-3

Lab Sample ID: 720-33463-9

Matrix: Water

Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	 -	2	86644	02/23/11 17:37	YB	TestAmerica San Francisco
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco

Page 88 of 95

TestAmerica San Francisco 02/25/2011

Matrix: Water

Lab Chronicle

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-3

Lab Sample ID: 720-33463-9

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/16/11 09:40 Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 13:13	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 14:51	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 11:08	DH	TestAmerica San Francisco

Client Sample ID: B-1 Lab Sample ID: 720-33463-10

Date Collected: 02/16/11 11:30 Matrix: Water Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	86550	02/22/11 15:29	YB	TestAmerica San Francisco
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 13:37	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 14:51	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 13:45	DH	TestAmerica San Francisco

Client Sample ID: B-2 Lab Sample ID: 720-33463-11

Date Collected: 02/16/11 12:55 **Matrix: Water** Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	86550	02/22/11 17:02	YB	TestAmerica San Francisco
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 14:00	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 14:51	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 14:40	DH	TestAmerica San Francisco

Client Sample ID: B-6 Lab Sample ID: 720-33463-12

Date Collected: 02/16/11 16:00 **Matrix: Water** Date Received: 02/17/11 17:10

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared Or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 14:25	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 14:51	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 15:04	DH	TestAmerica San Francisco

Client Sample ID: B-4 Lab Sample ID: 720-33463-13

Date Collected: 02/17/11 09:50 **Matrix: Water** Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	86547	02/22/11 17:30	AC	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86644	02/23/11 19:04	YB	TestAmerica San Francisco
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco

Page 89 of 95

TestAmerica San Francisco 02/25/2011

Lab Chronicle

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Client Sample ID: B-4

Lab Sample ID: 720-33463-13

TestAmerica Job ID: 720-33463-1

Matrix: Water

Date Collected: 02/17/11 09:50 Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 14:48	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 16:08	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 18:11	DH	TestAmerica San Francisco

Client Sample ID: B-5 Lab Sample ID: 720-33463-14

Matrix: Water

Date Collected: 02/17/11 09:20 Date Received: 02/17/11 17:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	86547	02/22/11 18:00	AC	TestAmerica San Francisco
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 15:12	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 16:08	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 18:34	DH	TestAmerica San Francisco

Client Sample ID: B-7 Lab Sample ID: 720-33463-15

Metrica Weter

Matrix: Water

Date Collected: 02/17/11 11:45 Date Received: 02/17/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	-	1	86547	02/22/11 18:31	AC	TestAmerica San Francisco
Total/NA	Analysis	8260B		1	86752	02/24/11 15:36	AC	TestAmerica San Francisco
Total/NA	Prep	3510C			86576	02/22/11 11:51	JRM	TestAmerica San Francisco
Total/NA	Analysis	8270C SIM		1	86654	02/23/11 15:35	ML	TestAmerica San Francisco
Total/NA	Prep	3510C			86604	02/22/11 16:08	RU	TestAmerica San Francisco
Total/NA	Analysis	8015B		1	86640	02/23/11 18:58	DH	TestAmerica San Francisco

Certification Summary

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

TestAmerica Job ID: 720-33463-1

Laboratory	Authority	Program	EPA Region	Certification ID	* Expiration Date
TestAmerica San Francisco	California	State Program	9	2496	01/31/12

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

1

3

4

5

6

9

10

11

^{*} Any expired certifications in this list are currently pending renewal and are considered valid.

Method Summary

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Method **Method Description** Protocol Laboratory 8260B Volatile Organic Compounds (GC/MS) SW846 TAL SF PAHs by GCMS (SIM) SW846 TAL SF 8270C SIM 8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics) SW846 TAL SF Diesel Range Organics (DRO) (GC) 8015B SW846 TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

1

TestAmerica Job ID: 720-33463-1

3

4

6

7

Ö

11

40

13

Sample Summary

Client: Dominion Due Diligence Group

Project/Site: Keller Telegraph

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-33463-1	B-3	Solid	02/16/11 09:40	02/17/11 17:10
720-33463-2	B-1	Solid	02/16/11 11:30	02/17/11 17:10
720-33463-3	B-2	Solid	02/16/11 12:55	02/17/11 17:10
720-33463-4	B-6	Solid	02/16/11 16:00	02/17/11 17:10
720-33463-5	B-4	Solid	02/17/11 09:50	02/17/11 17:10
720-33463-6	B-5	Solid	02/17/11 09:20	02/17/11 17:10
720-33463-7	B-7	Solid	02/17/11 11:45	02/17/11 17:10
720-33463-8	TRIP BLANK	Water	02/16/11 00:00	02/17/11 17:10
720-33463-9	B-3	Water	02/16/11 09:40	02/17/11 17:10
720-33463-10	B-1	Water	02/16/11 11:30	02/17/11 17:10
720-33463-11	B-2	Water	02/16/11 12:55	02/17/11 17:10
720-33463-12	B-6	Water	02/16/11 16:00	02/17/11 17:10
720-33463-13	B-4	Water	02/17/11 09:50	02/17/11 17:10
720-33463-14	B-5	Water	02/17/11 09:20	02/17/11 17:10
720-33463-15	B-7	Water	02/17/11 11:45	02/17/11 17:10

1

TestAmerica Job ID: 720-33463-1

6

4

5

Ω

0

10

11

13

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA san Francisco Charles Cystolic Reference #:

TESTAMERICA can Francisco Clarico Costo 1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002

Date 2/16/11 Page / of /

Attn: Chad Prevate Company: Dominion Die Diligence Group Address: 4121 (ox Road #250,61en Ailen VA 2340 Phone 304-2448-2020 Email: C. prevate @ d.3g.bi2 Bill To: Dominion Attn: Phone: 303-960-1990 B-3 2/16/11 0940 5/w htt. B-1 2/16/11 1/30 B-2 2/16/11 1/30 B-2 2/16/11 1/30 B-4 2/16/11 1/30 B-7 2/16/11 1/30 B-7 2/16/11 1/30 B-7 2/16/11 1/30 B-7 2/16/11 1/30 B-7 2/16/11 1/30 B-7 2/16/11 1/30 B-7 2/16/11 1/30	TPH EPA - C 8260B	K Diesel D Motor Oil D Other D Silva Cell C Diesel D Motor Oil D Other D C Diesel D Motor Oil D Other D C D D Overnates D D C A FDRIT Fithand	(HVOCs) EPA 8021 by 8260B	Volatile Organics GC/MS (VOCs)	Semivolatiles GC/MS	Oil and Grease D Petroleum (EPA 1664) D Total	Pesticides D EPA 8081 D 608 PCBs D EPA 8082 D 608	PNAs by D 8270 D 8310	CAM17 Metals (SA (6PA 6010/74701) (SA 6010/74701)	Metals: II Lead II LUFT II RCRA II Other.	Low Level Metals by EPA 200.8/6020 (ICP-MS):	U WET (STLC)	☐ Hexavalent Chromium ☐ PH (24h hold time for H₂O)	☐ Spec. Cond. ☐ Alkalinity ☐ TSS ☐ TDS	Anions: CI CI CI SO ₄ CI NO ₃ CI F		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Number of Containers	Page 94 of 95
Project Info Sample Receipt Project Name: # of Containers: Project#: Head Space: PO#: Temp 60 5.3 0 Credit Card#: Conforms to record: T 5 3 2 1 T Day Day Day Day Day Other: Report: □ Routine □ Level 3 □ Level 4 □ EDD □ State Ta	Sig Pri Co	Relinquish Anature Inted Name Both The Control of the Control The Control of the	S// Val	n He	2/	Time, 77/1 (Date	<i>150</i> 0	Signa Printe	d Name	arhi	orki rey	Time	17-11	Sign Prin Con	Relinquis nature ted Nar npany Received		Time Date	-	
Fund EDF Special Instructions / Comments: Global ID See Terms and Conditions on reverse TestAmerica SF reports 8015M from C9-C24 (industry norm). Default for 8015B is C10-C	Pri	nted Name	1	pric	ekr a	Date	<i>[17]</i> }		d Name	T7.	H SF) 2/17 Date	7/11	Prin	ted Nan	ne	Date Rev09	- //09	

Login Sample Receipt Check List

Client: Dominion Due Diligence Group

Job Number: 720-33463-1

Login Number: 33463 List Source: TestAmerica San Francisco

Creator: Hoang, Julie List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	False
s the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	False
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True

APPENDIX H

ECM Group 2010 Fourth Quarterly Monitoring Report dated January 17, 2011

ECM group

January 17, 2011

Bob Legallet Telegraph Business Properties 1401 Griffith Street San Francisco, CA 94124

Groundwater Monitoring Report and Case Closure Proposal Fourth Quarter 2010 Telegraph Business Park 5427 Telegraph Avenue Oakland, California ECM Project #07-181-04

Dear Mr. Legallet:

This report provides the results of the semi-annual groundwater monitoring at Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California (Figure 1, Appendix A). On December 7 and 20, 2010, ECM personnel visited the site. Groundwater elevations were measured and groundwater samples were collected from the five monitoring wells (MW-1 through MW-5). During the initial visit on December 7 well MW-2 was inaccessible due to a parked car above the well. On December 20 ECM personnel returned to the site to obtain a sample from well MW-2. Well locations are shown on Figure 2 (Appendix A).

Depth to groundwater was measured in each of the five wells. Free-phase hydrocarbons were not measured or observed in any of the wells. Water level data and well construction details are tabulated in Table 1 (Appendix B). A groundwater elevation contour map is included as Figure 2 (Appendix A). Groundwater flow was to the west and southwest at an approximate gradient of 0.016 - 0.03 ft/ft, consistent with previous monitoring events.

The samples were forwarded under chain of custody record to Torrent Laboratory Inc., of Milpitas, California, for analysis. Analytical results for groundwater are presented in Tables 2 and 3 (Appendix B). The chain of custody document and laboratory analytical reports are included in Appendix C. Groundwater samples were collected in accordance with ECM Standard Operating Procedure - Groundwater Sampling (Appendix E). The water sampling data sheets are included in Appendix D. Purge water and decon rinseate are stored onsite in DOT-approved 50-gallon drums pending transportation and disposal at an appropriate disposal facility.

Fourth Quarter 2010 Groundwater Monitoring Results:

In accordance with a guidance letter from Alameda County dated October 27, 2008, samples from site wells were analyzed for Stoddard solvent, Total Petroleum Hydrocarbons as Gasoline (TPH[G]), benzene, toluene, ethylbenzene and xylenes (BTEX), for the oxygenates MTBE, ETBE, DIPE, TAME, and TBA, and for the lead scavengers EDB and EDC.

A Five-Year-Review by the State Water Resources Control Board (SWRCB), dated December 28, 2010, recommended the site be considered for low-risk closure. The SWRCB also recommended one round of groundwater monitoring using EPA method 8260B (Full Suite) to identify any chlorinated solvents. The analytical laboratory analyzed samples from the December 2010 monitoring event by EPA method 8260B (Full Suite).

Source Area Well: MW-2

Monitoring well MW-2 is located near the former site USTs. Concentrations of TPH(G) and Stoddard solvent (1,600 and 12,000 ppb respectively) in well MW-2 were consistent with previous results. Benzene was also detected at 13 ppb. Other BTEX constituents were not detected in the sample. No oxygenates or lead scavengers were detected in the fourth quarter 2010 sample from well MW-2.

Up-gradient Well: MW-1

Well MW-1 is located up-gradient of the former site USTs. Stoddard solvent, although typically detected in well MW-1, was not detected in the fourth quarter 2010 sample. TPH(G) was detected at a concentration of 610 ppb. BTEX constituents, oxygenates, and lead scavengers were not detected in the fourth quarter 2010 sample from well MW-1.

Down-gradient Well: MW-3

Well MW-3 is located down-gradient of the former site USTs. TPH(G) and Stoddard solvent were detected in well MW-3 at 2,000 ppb and 330 ppb, respectively. Benzene was also detected in the sample at 4.4 ppb. No other analytes were detected in the fourth quarter 2010 sample from well MW-3.

Offsite Down-gradient Wells: MW-4 and MW-5

Wells MW-4 and MW-5 are located offsite and down-gradient of the former USTs. These wells were installed in April 2010 to verify the horizontal extent of the plume. No analytes were detected in the fourth quarter 2010 samples from wells MW-4 and MW-5.

Case Closure Proposal

Case closure was recommended in the July 20, 2010 Subsurface Investigation Report for the following reasons:

- 1.) Results of site investigations demonstrate that all potential exposure pathways at this site are incomplete.
- 2.) Due to the lack of analytes in soil or groundwater downgradient of the site, there is no potential risk to indoor air in buildings downgradient of the site.
- 3.) Sub-slab samples demonstrate that ESLs for soil gas have not been exceeded in the onsite building, so there is no potential risk to indoor air in on-site buildings.
- 4.) The 1997 sensitive receptor survey indicated that groundwater in the area is not being used as a source of drinking water. Due to the heavily urban character of the surrounding area, the proximity of San Francisco Bay, and the availability of municipal water, the potential for future development of groundwater as a drinking water source is virtually nonexistent.
- 5.) Site conditions do not present a potential threat to human health or safety, or to the environment.
- 6.) Residual hydrocarbons in soil and groundwater will continue to degrade.

The July 20, 2010 Subsurface Investigation Report recommended that site monitoring wells be sampled one more time prior to closure. In a five year site review dated December 28, 2010, SWRCB staff concurred with the closure recommendation. SWRCB staff recommended that, prior to closure, one additional round of groundwater monitoring be performed, and that samples be analyzed by EPA Method 8260 B to identify any chlorinated solvents. Samples collected during the December 2010 monitoring event were analyzed by EPA Method 8260 B, and no chlorinated compounds were detected. Accordingly, case closure is once again recommended for the site.

Thank you for allowing ECM the opportunity to provide environmental services to you. Please contact us if you have questions or require additional information.

Bob Legallet ECM Group #07-181-04 Page 4

Sincerely, ECM Group

Rachel Guptel Staff Scientist

Jim Green

Professional Engineer # C058482

Kachel Guptel

Appendices:

A - Figures

B - Tables

C - Chain of Custody and Laboratory Analytical Report

D - Water Sampling Data Sheets

E - Standard Operating Procedures

F - Responsible Party Certification

cc: Barbara J. Jakub, Alameda County Health Care Services Agency Leroy Griffin, Oakland Fire Department

APPENDIX A FIGURES

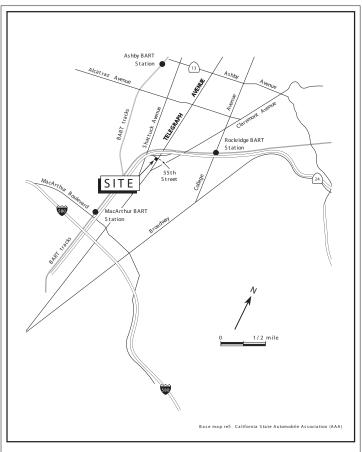
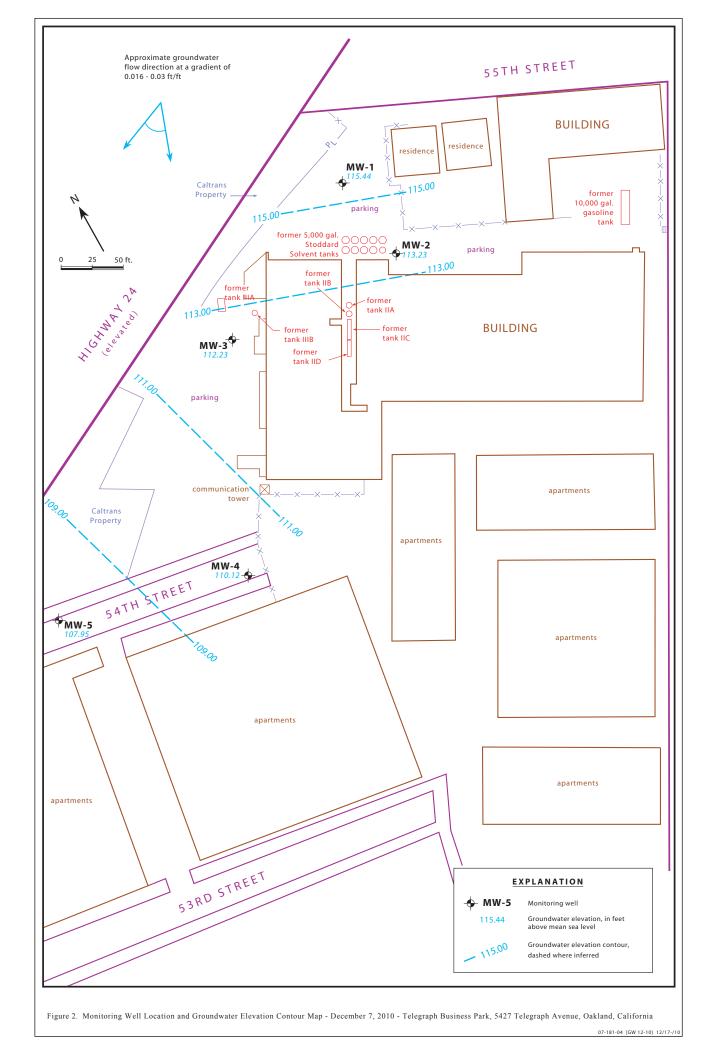



Figure 1. Site Location Map - Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California

07-181-04 [Site loc] 1/19/09

APPENDIX B

TABLES

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
		, ,	msl)	msl)	Interval	Interval	Interval	
MW-1	1/5/1994	6.40	115.05	108.65	5 - 20	4 - 20	0 - 4	
	2/1/1994	5.93		109.12				
	3/2/1994	5.09		109.96				
	4/6/1994	5.85		109.20				
	5/4/1994	6.37		108.68				
	6/3/1994	6.95		108.10				
	7/7/1994	7.00		108.05				
	8/3/1994	7.30		107.75				
	9/7/1994	7.70		107.35				
	10/11/1994	7.62		107.43				
	1/20/1995	4.78		110.27				
	4/7/1995	5.96		109.09				
	7/26/1995	7.19		107.86				
	10/25/1995	7.74		107.31				
	1/29/1996	4.67		110.38				
	4/26/1996	5.92		109.13				
	7/25/1996	7.10		107.95				
	10/28/1996	7.41		107.64				
	12/4/2008	7.10	120.65	113.55				See Note 1
	8/28/2009	7.65		113.00				
	12/1/2009	7.15		113.50				
	6/9/2010	5.95		114.70				
	12/7/2010	5.21		115.44				
MW-2	1/5/1994	9.42	117.60	108.18	7 - 27	6 - 27	0 - 6	
	2/1/1994	9.15		108.45				
	3/2/1994	9.55		108.05				
	4/6/1994	9.09		108.51				
	5/4/1994	9.18		108.42				
	6/3/1994	9.44		108.16				
	7/7/1994	10.21		107.39				
	8/3/1994	10.96		106.64				
	9/7/1994	10.20		107.40				
	10/11/1994	10.18		107.42				
	1/20/1995	8.64		108.96				

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
			msl)	msl)	Interval	Interval	Interval	
MW-2	4/7/1995	9.84	117.60	107.76	7 - 27	6 - 27	0 - 6	
cont.	7/26/1995	10.55		107.05				
	10/25/1995	10.15		107.45				
	1/29/1996	9.35		108.25				
	4/26/1996	8.57		109.03				
	7/25/1996	10.73		106.87				
	10/28/1996	10.16		107.44				
	12/4/2008	10.84	123.36	112.52				See Note 1
	8/28/2009	11.58		111.78				
	12/1/2009	11.06		112.30				
	6/9/2010	11.26		112.10				
	12/7/2010	10.13		113.23				
MW-3	1/5/1994	10.14	115.33	105.19	5 - 20	4 - 20	0 - 4	
	2/1/1994	8.92		106.41				
	3/2/1994	7.56	115.14	107.58				Note 2: Wells resurveyed on 3/4/94 by Ronald C. Miller, pls 15816
	4/6/1994	10.24		104.90				, <u> </u>
	5/4/1994	9.67		105.47				
	6/3/1994	10.38		104.76				
	7/7/1994	11.55		103.59				
	8/3/1994	11.76		103.38				
	9/7/1994	12.20		102.94				
	10/11/1994	12.02		103.12				
	1/20/1995	6.47		108.67				
	4/7/1995	7.98		107.16				
	7/26/1995	11.33		103.81				
	10/25/1995	12.29		102.85				
	1/29/1996	6.28		108.86				
	4/26/1996	9.09		106.05				
	7/25/1996	12.06		103.08				
	10/28/1996	12.32		102.82				
	12/4/2008	11.82	120.91	109.09				See Note 1
	8/28/2009	13.16		107.75				
	12/1/2009	11.43		109.48				

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
			msl)	msl)	Interval	Interval	Interval	
MW-3	6/9/2010	9.80	120.91	111.11	5 - 20	4 - 20	0 - 4	
	12/7/2010	8.68	1	112.23				
MW-4	6/9/2010	6.79	116.44	109.65	5 - 20	4 - 20	0 - 4	well surveyed on 5/2/10 by Barry Kolstad, pls 5677
	12/7/2010	6.32		110.12				
MW-5	6/9/2010	5.60	113.03	107.43	5 - 20	4 - 20	0 - 4	well surveyed on 5/2/10 by Barry Kolstad, pls 5677
	12/7/2010	5.08		107.95				

Explanation:

DTW = Depth to Water

ft = feet

msl = Mean Sea Level

TOC = Top of Casing

GWE = Ground Water Elevation

Notes:

1 Well boxes were replaced, TOC elevations changed, and wells were resurveyed on 11/23/08 and 12/7/08 by Barry Kolstad, pls 5677

Table 2. Analytic Results for Groundwater - Hydrocarbons - 5427 Telegraph Avenue, Oakland, California

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
		<		parts p	er billion		>	
MW-1	1/5/1994		1,000	3.3	1.6	< 0.3	6	
	4/6/1994		1,400	5.6	4.5	< 0.3	11	
	7/7/1994		1,200	1.5	0.80	< 0.3	1.9	
	10/11/1994		700	< 0.3	< 0.3	< 0.3	< 0.3	
	1/20/1995		1,500	3.9	2	< 0.3	3.9	
	4/7/1995		500	3.2	1.1	< 0.3	1.7	
	7/26/1995		1,500	3.1	3.2	12	16	
	10/25/1995		660	0.6	1.4	20	14	
	1/29/1996		2,500	1.8	0.7	8.0	13	
	4/26/1996		4,600	<2.5	<2.5	9.5	21	
	7/25/1996		2,200	1.6	1.6	11	51	
	10/28/1996		1,300	1.5	1.3	3.6	11	
	12/4/2008	540	841	< 0.50	6.55	< 0.50	<1.50	1
	8/28/2009	510	169	< 0.50	6.55	< 0.50	<1.50	2
	12/1/2009	<220	480	<2.2	<2.2	<2.2	<6.6	3
	6/9/2010	610	410	<2.2	<2.2	<2.2	<6.6	5
	12/7/2010	610	<100	<2.2	<2.2	<2.2	<6.6	6,8
	4/5/4004		27.000	40	20	2.0	1.70	1
MW-2	1/5/1994		35,000	12	38	<3.0	150	
	4/6/1994		94,000	21	22	<6.0	110	
	7/7/1994		42.000	16	16	<1.5	1,510	
	7/11/1994		43,000	177	10	1.4	0.2	
	10/11/1994		31,000	17	13	14	0.3	
	1/20/1995		26,000	18	13 11	12	50	
	4/7/1995 7/26/1995		70,000 21,000	17.5 17	<0.5	<0.6 26	74.6 94	
	10/25/1995		38,000	63	<0.5 70	440	1,100	
	1/29/1996		74,000	7.4	8.6	66	330	
	4/26/1996		81,000	<250	<250	3,100	15,000	
	7/25/1996		48,000	17	9.4	59	200	
	10/28/1996		6,200	19	30	58	310	
	12/4/2008	6,300	120,000	<22.0	<22.0	<22.0	<66.0	1
	8/28/2009	3,600	19,500	16	0.69	<0.50	<1.50	2
	12/1/2009	440	4,000	12	<4.4	<4.4	13	3
	6/9/2010	5,000	69,000	17	<4.4	<4.4	<13.2	5
	0/9/2010	2,000	02,000	1 /	\4.4	\4.4	<13.∠	J

Table 2. Analytic Results for Groundwater - Hydrocarbons - 5427 Telegraph Avenue, Oakland, California

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
	_	<		parts p	er billion		>	>
MW-2	12/20/2010	1,600	12,000	13	<2.2	<2.2	<6.6	5,8
MW-3	1/5/1994		1,100	180	20	85	10	
	4/6/1994		1,000	140	13	60	<12	
	7/7/1994			120	7.5	8.0	< 3.0	
	7/11/1994		1,000					
	10/11/1994		1,100	200	11	23	< 0.3	
	1/20/1995		2,100	36	3.5	4.8	< 0.3	
	4/7/1995		600	32.7	1.7	4.7	1.9	
	7/26/1995		1,200	98	3.2	12	16	
	10/25/1995		2,300	32	3.4	4.7	9.6	
	1/29/1996		1,100	22	1.2	6.4	12	
	4/26/1996		1,300	5.6	0.6	4.6	14	
	7/25/1996		2,900	120	6.4	23	36	
	10/28/1996		2,000	170	6.6	16	26	
	12/4/2008	1,600	708	1.15	< 0.50	0.720	<1.50	1
	8/28/2009	2,200	434	2.8	0.66	1.6	<1.50	2
	12/1/2009	3,900	<220	2.2	<2.2	<2.2	<6.6	2,4
	6/9/2010	3,100	990	5.5	<2.2	<2.2	<6.6	2
	12/7/2010	2,000	330	4.4	<4.4	<4.4	<13.2	6,7,8
								1
MW-4	6/14/2010	< 50	<100	< 0.50	< 0.50	< 0.50	<1.50	
	12/7/2010	<50	<100	< 0.50	< 0.50	< 0.50	<1.50	8
MW-5	6/9/2010	<50	<100	< 0.50	< 0.50	< 0.50	<1.50	1
141 44 -2		<50	<100	<0.50	<0.50	<0.50	<1.50	8
	12/7/2010	<50	<100	<0.50	<0.50	<0.50	<1.50	0

Table 2. Analytic Results for Groundwater - Hydrocarbons - 5427 Telegraph Avenue, Oakland, California

			Stoddard			Ethyl-					
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes			
		<> parts per billion>									

Explanation:

TPH-G = Gasoline --- = not analyzed

Notes:

- 1 TPH(G) was not reported prior to 2008. Samples were analyzed for TPH(D) and Oil&Grease prior to 2008. See report: Sierra Enironmental Services, 1996, Quarterly Monitoring Report, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California, December 26, 1996.
- 2 Sample chromatogram does not resemble gasoline standard pattern. Reported TPH value due to the presence of non-target heavy end hydrocarbons within range of C5-C12 quantified as gasoline.
- 3 The reporting limits were raised due to a high concentration of heavy end hydrocarbons within range quantified as Mineral Spirits.
- 4 The reporting limits were raised due to contribution of unidentified hydrocarbons within the C5-C12 range quantified as gasoline.
- 5 Results not typical of Gasoline standard pattern. Result reported as Gasoline but pattern best matches Mineral Spirits/Stoddard Solvent.

- Hydrocarbons within C5-C12 range quantified as gasoline but pattern does not match reference gasoline standard (possibly heavily aged gasoline).
- 7 Not typical of stoddard standard pattern (possibly aged stoddard).
- 8 Sample analyzed for VOCs by EPA method 8260B. No chlorinated solvents detected. See analytical laboratory report (Appendix C) for reporting limits.

Table 3. Analytic Results for Groundwater - Oxygenates - 5427 Telegraph Avenue, Oakland, California

								EDC (1,2	
Sample ID	Sample Date	MTBE	DIPE	ETBE	TAME	TBA	EDB		Notes
Sumple 13	ватрте Висе				parts per bill	11000			
MW-1	1/5/1994							<0.2	
1.2.,	4/6/1994							<0.2	
	7/7/1994							< 0.5	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							0.5	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996							< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							< 0.5	
	12/4/2008	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	
	6/9/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	
	12/7/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	2
MW-2	1/5/1994							2.7	
	4/6/1994							< 0.2	
	7/7/1994							0.60	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							1.4	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996							< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							<2.5	
	12/4/2008	<22.0	<22.0	<22.0	<22.0	<440	<22.0	<22.0	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	
	6/9/2010	<4.4	<4.4	<4.4	<4.4	<44	<4.4	<4.4	

Table 3. Analytic Results for Groundwater - Oxygenates - 5427 Telegraph Avenue, Oakland, California

								EDC (1,2	
Sample ID	Sample Date	MTBE	DIPE	ETBE	TAME	TBA	EDB	DCA)	Notes
•	•	<			parts per bill				
MW-2	12/7/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	2
MW-3	1/5/1994							0.20	
	4/6/1994							< 0.2	
	7/7/1994							< 0.5	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							0.7	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996							< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							< 0.5	
	12/4/2008	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	
	6/9/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	
	12/7/2010	<4.4	<4.4	<4.4	<4.4	<44	<4.4	<4.4	2
MW-4	6/14/2010	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	
	12/7/2010	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	2
3 #337 F	6/0/2010	0.50	0.50	0.70	0.50	7.0	0.50	0.50	
MW-5	6/9/2010	<0.50	< 0.50	< 0.50	< 0.50	<5.0	<0.50	< 0.50	
	12/7/2010	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	2

Table 3. Analytic Results for Groundwater - Oxygenates - 5427 Telegraph Avenue, Oakland, California

								EDC (1,2	
Sample ID	Sample Date	MTBE	DIPE	ETBE	TAME	TBA	EDB	DCA)	Notes
		<			parts per bill				

Explanation:

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

Notes:

1 MTBE, DIPE, ETBE, TAME, TBA and EDB were not reported prior to 2008. Samples were analyzed for Halogenated Volatile Organic Compounds (HVOCs) and Volatile Organic Compounds (VOCs) prior to 2008. See report: Sierra Enironmental Services, 1996, Quarterly Monitoring Report, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California, December 26, 1996.

2

Sample analyzed for VOCs by EPA method 8260B. No chlorinated solvents detected. See analytical laboratory report (Appendix C) for reporting limits.