RECEIVED

10:18 am, Jul 27, 2010

Alameda County Environmental Health

ECM group

July 20, 2010

Bob Legallet Telegraph Business Properties 1401 Griffith Street San Francisco, CA 94124

> Re: Subsurface Investigation/ Sub-slab Vapor Sampling Report Telegraph Business Park 5427 Telegraph Avenue, Oakland, CA ECM Group Project #07-181-10

Dear Mr. Legallet:

ECM has prepared this report documenting the subsurface investigation recently completed at the above referenced site (Figures 1 and 2, Appendix A). Two monitoring wells (MW-4 and MW-5) and one boring (B-31) were installed at the site on April , 2010. Two sub-slab vapor samples were collected from the onsite building on April 14, 2010. The monitoring wells were sampled, in accordance with the established monitoring program for the site, on June 9 and June 14, 2010. Locations of the monitoring wells, boring, and vapor sampling points are shown on Figure 2, Appendix A. Installation of the wells and the temporary sampling points were proposed in the February 12, 2009 Workplan for Subsurface Investigation.¹

The purpose of the additional monitoring wells is to assess current conditions downgradient of the site. The purpose of the temporary soil boring is to assess the vertical extent of impacts in the source area of the site. The purpose of the sub-slab vapor sampling is to evaluate potential exposure from soil vapor in the onsite building.

SCOPE OF WORK

The following describes the scope of work completed for this investigation:

- 1. A site-specific safety plan was prepared for the work.
- 2. MW-4 and MW-5 are located in the parking lane of 54th Street. Prior to installation, an encroachment permit was obtained from the City of Oakland.

1

^{2009,} Workplan for Subsurface Investigation, 5427 Telegraph Avenue, Oakland, CA, February 12, 2009, 6 pages, 3 appendices.

- 3. One boring (B-31) and two monitoring wells (MW-4 and MW-5) were installed in the locations shown on Figure 3 (Appendix A).
- 4. Soil samples were collected and field screened with an Organic Vapor Meter (OVM).
- 5. Selected soil samples were forwarded to the analytical laboratory and analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH(G)), Total Petroleum Hydrocarbons as Diesel (TPH(D)), Total Petroleum Hydrocarbons as Mineral Spirits (TPH (MS)), Stoddard solvent, benzene, toluene, ethylbenzene, and xylenes (BTEX), and fuel oxygenates.
- 6. The newly installed monitoring wells were developed and surveyed.
- 7. The newly installed monitoring wells were sampled, and the samples were analyzed in accordance with the existing monitoring program for site wells.
- 8. Two sub-slab vapor samples were collected beneath the slab of the onsite building. The vapor samples were anayzed for TPH(G), Stoddard solvent, BTEX, and oxygenates.
- 9. This summary report was prepared describing the investigation.

SITE HISTORY AND CURRENT USE

The following site history was taken from the 1997 Sierra Environmental Services (SES) Risk Screening Analysis.²

The site was formerly a large-scale dry-cleaning establishment. The on-site underground storage tanks (USTs) were used by previous occupants to store Stoddard solvent, Stoddard solvent waste, and gasoline.

Seventeen USTs were removed from the site in May 1992. Petroleum hydrocarbons as gasoline, Stoddard solvent, and BTEX compounds were detected in soil sidewall samples collected from the UST excavations.

²

SES, 1997, Risk Screening Analysis, Telegraph Business Park, 5427 Telegraph Avenue, Oakland CA, March 6, 1997, 24 pages and 3 appendices.

In several investigations between 1993 and 1996, 30 soil borings and 3 monitoring wells were installed at the site. Boring and well locations are shown on Figure 3, Appendix A. Well construction details and groundwater elevation measurements are tabulated in Table 1, Appendix B. Historical laboratory analytical results for groundwater samples from wells and borings are tabulated in Tables 2 and 3, Appendix B. Analytical laboratory results for soil are tabulated in Table 4, Appendix B.

A well survey was conducted by SES in January 1997 at the Department of Water Resources in Sacramento for all wells located within 1,500 ft of the business park. The survey indicated that no drinking water wells were present within the study area. The well survey was confirmed by inspecting all properties within the search radius for the possible presence of wells. One irrigation well was located at Children's Hospital, approximately 1,500 ft south fo the site. Other monitoring, industrial, and cathodic protection wells were noted in the study area.

RISK SCREENING ANALYSIS - 1996/1997

In 1996/1997, an investigation into the potential public health risks due to subsurface conditions at the site was conducted. The risk screening analysis evaluated potential exposure pathways for constituents of concern at the site. Three exposure pathways were identified as potentially 'complete': 1.) Direct exposure to contaminated groundwater which might be used as a drinking water source; 2.) Inhalation of contaminated soil vapor that has migrated into indoor air in buildings; and 3.) Direct contact with contaminated soil during future excavation.

Potential exposure pathway 1 was considered incomplete because the well survey indicated that no drinking water wells were present in the area. Potential exposure pathway 3 was not considered in the risk analysis because institutional controls can easily be put into place during any potential future excavation to effectively eliminate the exposure pathway.

In order to evaluate exposure pathway 2, two 8-hour indoor air samples were collected in the onsite commercial building. Analytical results are shown in Table 5, Appendix A. Benzene was detected in each of the air samples at 2.1 ppb, or 6.71 μ g/m³.

CHARACTERISTICS OF STODDARD SOLVENT

Stoddard solvent, a mixture of various hydrocarbon compounds in the C7 to C12 range, is often referred to as mineral spirits or white spirits. Several variations of Stoddard solvent, mineral spirits, or white spirits have been manufactured for use as solvents and dry cleaning solvents. For this investigation, results were reported as both mineral spirits and Stoddard solvent. The

standards used for Stoddard solvent and mineral spirits are similar but have slightly different chemical properties.³ Details regarding laboratory standards are available upon request.

WELL AND SUB-SLAB VAPOR SAMPLING POINT INSTALLATION

Two monitoring wells and one soil boring were installed on April 12, 2010 by Gregg Drilling and Testing Company of Martinez, CA. Two sub-slab vapor sampling points were installed on April 14, 2010. Well, boring, and sub-slab sampling point locations are shown on Figure 3, Appendix A. Prior to drilling, utilities were located by USA and a private underground utility detection company. All drilling equipment was steam-cleaned prior to use, and all sampling equipment was washed between samples using EPA-approved detergent (Liquinox) and rinsed with potable water.

Refusal was encountered in B-31 at 35 ft bgs. The two monitoring wells (MW-4 and MW-5) were each installed at a depth of 20 ft below ground surface (bgs) using an 8 inch rotary auger. The wells were installed in accordance with ECM Standard Operating Procedure - Monitoring Well Design and Construction (Appendix F). Well construction details are tabulated in Table 1, Appendix B, and are also shown on boring logs (Appendix D).

The two sub-slab sampling points (VS-1 and VS-2) were installed in accordance with ECM Standard Operating Procedures - Sub-Slab Vapor Sampling (Appendix F).

Borings were logged in accordance with ECM Standard Operating Procedure - Logging Method (Appendix F). Soil samples were collected in accordance with ECM Standard Operating Procedure - Soil Sampling, (Appendix F). Soil samples were field screened with an OVM in accordance with ECM Standard Operating Procedure - OVM Readings (Appendix F).

WELL DEVELOPMENT AND SAMPLING

The newly installed monitoring wells were developed on April 19, 2010, in accordance with ECM Standard Operating Procedure - Well Development (Appendix F). Well development notes are included in Appendix E. The top of casing elevations of the wells were surveyed by Barry Kolstad, P.L.S. 5677, on May 2, 2010. Top of casing elevation data, well completion details, and groundwater elevation data are tabulated in Table 1, Appendix B.

3

Verbal communication, Patti Sandrock, Torrent Laboratory, April 21, 2010.

The newly installed monitoring wells and existing monitoring wells were sampled on June 9 and June 14, 2010 in accordance with the existing site monitoring plan, and in accordance with ECM Standard Operating Procedure - Ground Water Sampling (Appendix F). The samples were forwarded under chain of custody to Torrent Laboratory, Inc. of Milpitas, California and analyzed for TPH(G), Stoddard solvent, BTEX, oxygenates, and the lead scavengers 1,2-dibromoethane (EDB) and 1,2-Dichloroethane (EDC or 1,2-DCA). Analytical results are tabulated in Tables 2 and 3, Appendix B.

Groundwater elevation contours calculated using measurements made during the June 9, 2010 monitoring event are shown on Figure 2, Appendix A. Groundwater flow was to the south and southwest at a gradient ranging from 0.015 to 0.04 ft/ft.

Samples were collected from sub-slab vapor sampling points VS-1 and VS-2 on April 14, 2010.

ANALYTIC RESULTS

Analytic Results for Soil

Soil samples were forwarded under chain of custody record to Torrent Laboratory, Inc., of Milpitas, California for analysis. The samples were analyzed for TPH(G), (TPH(D), TPH(MS), Stoddard solvent, BTEX, and fuel oxygenates. Analytical results are included in Table 4, Appendix B. The chain of custody document and laboratory analytical report are included in Appendix C.

Soil samples were collected from B-31 at 5-ft intervals from 5 ft to 35 ft bgs. Stoddard solvent/Mineral Spirits were detected in all of the soil samples collected. The most heavily impacted sample was from 10 ft bgs, in which TPH(MS) and Stoddard solvent were detected at 960 and 480 ppm respectively. The least impacted sample was from 20 ft bgs, in which TPH(MS) was detected at 0.4 ppm and Stoddard solvent was not detected. In the deepest sample collected (at 35 ft bgs) TPH(MS) and Stoddard solvent were detected at 95 and 99 ppm respectively. TPH(G), BTEX constituents, and oxygenates were not detected in any of the samples collected.

No analytes were detected in soil samples collected from MW-4 or MW-5.

Analytic Results for Groundwater

Groundwater samples from new and existing wells were analyzed for TPH(G), Stoddard solvent, BTEX, oxygenates, and lead scavengers. Results are tabulated in Tables 2 and 3, Appendix B.

p.o. box 802, benicia, ca. 94510-0802 » 707-751-0655 » 707-751-0653 (fax)

No analytes were detected in either of the newly installed monitoring wells. Analytes were detected in the existing monitoring wells (MW-1 through MW-3) at concentrations consistent with previous monitoring results. Well MW-2, located near the former USTs, was the most heavily impacted well. Well MW-1, the upgradient well, was the least impacted well. Stoddard solvent was detected in each of the three existing wells. TPH(G) was also detected, but footnotes included in the analytic laboratory report indicated the detections were due to hydrocarbon mixtures which were a atypical of gasoline. Detections from MW-1 and MW-2 best match Stoddard solvent/mineral spirits. The gasoline detection in MW-3 was due to non-target heavy-end hydrocarbon compounds within the range of C5-C12. Benzene was detected in MW-2 and

end hydrocarbon compounds within the range of C5-C12. Benzene was detected in MW-2 and MW-3 but was not detected in MW-1. No other BTEX compounds were detected in any of the groundwater samples. Oxygenates and lead scavengers were not detected in any of the groundwater samples.

Analytic Results for Sub-Slab Vapor Samples

Sub-slab vapor samples were analyzed for TPH(G), Stoddard solvent, BTEX, and oxygenates. Results are tabulated in Table 6, Appendix B. Benzene and TBA were detected in each of the samples. Stoddard solvent and toluene were detected in VS-2 but not in VS-1. Low concentrations of several other volatile organic compounds (VOCs) were detected in one or both of the samples. The VOCs detected were tetrachloroethylene (PCE) methylene chloride, acetone, 1,1,1-trichloroethane, and 2-butanone. Table 6 also lists Region 2 preliminary screening concentrations (residential and commercial) for soil gas.⁴ ESLs for shallow soil gas were not exceeded for any compound.

EVALUATION OF VAPOR MIGRATION PATHWAY IN B-15 AREA

The October 27, 2008 guidance letter from Alameda County directed that an evaluation be made of the vapor migration pathway in the area adjacent to B-15 (south and southwest of the site). An elevated concentration of Stoddard solvent, as well as benzene, was detected in a groundwater sample from B-15 in 1995.

The apartment building located adjacent to B-15 is constructed with an open-air parking garage occupying the entire ground level. The apartment building located approximately 120 ft east of

⁴ Preliminary screening concentrations are from Table E, Environmental Screening Levels (ESLs) Indoor Air and Soil Gas (Vapor Intrusion Concerns) Region 2 ESLs, Interim Final - November 2007 (Revised May 2008), Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612.

B-15 is constructed in the same manner. Potential for migration of impacted soil vapor to indoor air in these buildings is therefore extremely low or nonexistent. Another residential building is located approximately 150 ft southwest of B-15 on 54th Street.

No analytes were detected in soil or groundwater samples from either of the wells constructed in 54th Street, downgradient of the site. Due to the lack of analytes in soil or groundwater downgradient of the site, it is concluded that soil vapor migration does not pose a potential risk to indoor air in buildings downgradient of the site.

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this subsurface investigation, as directed in the October 27, 2008 guidance letter from Alameda County, was:

- 1.) To assess current conditions downgradient of the site, and to include an evaluation of the potential for a vapor migration pathway in that area;
- 2.) to assess the vertical extent of soil contamination at the site; and
- 3.) to collect sub-slab samples to evaluate potential risk from soil vapor in the site building.

Results from newly installed monitoring wells MW-4 and MW-5 indicate that there are no impacts to soil or groundwater downgradient of the site, and therefore no potential for risk from vapor migration in that area.

Results from B-31 indicate that residual impacts to soil near the release extend at least to 35 ft bgs. The only compound detected in soil during the recent investigation (and the only compound detected in soil in significant quantities in previous investigations) is Stoddard solvent/mineral spirits.

The 1996/1997 risk screening analysis concluded that exposure from indoor air was the only potentially complete exposure pathway at the site. Sub-slab vapor samples were collected to assess the potential for risk from soil vapor migration to indoor air in the site building.

Sample results show that Region 2 ESLs for shallow soil gas were not exceeded for any compound. An ESL has not been promulgated for Stoddard solvent. Stoddard solvent is similar in molecular weight to gasoline but has different toxicity characteristics because of its differing hydrocarbon composition. However, the Region 2 ESL for gasoline was not exceeded by Stoddard solvent. Stoddard solvent was detected in one of two soil gas samples. The residential

p.o. box 802, benicia, ca. 94510-0802 » 707-751-0655 » 707-751-0653 (fax)

ESL for gasoline exceeds the Stoddard solvent concentration by a factor of four. It is therefore inferred that there is no potential for risk from migration of Stoddard solvent to indoor air.

Case closure is recommended at this site for the following reasons:

- 1.) Results of this investigation and previous investigations demonstrate that all potential exposure pathways at this site are incomplete.
- 2.) Due to the lack of analytes in soil or groundwater downgradient of the site, there is no potential risk to indoor air in buildings downgradient of the site.
- 3.) Sub-slab samples demonstrate that ESLs for soil gas have not been exceeded in the onsite building, so there is no potential risk to indoor air in on-site buildings.
- 4.) The 1997 sensitive receptor survey indicated that groundwater in the area is not being used as a source of drinking water. Due to the heavily urban character of the surrounding area, the proximity of San Francisco Bay, and the availability of municipal water, the potential for future development of groundwater as a drinking water source is virtually nonexistent.
- 5.) Site conditions do not present a potential threat to human health or safety, or to the environment.
- 6.) Residual hydrocarbons in soil and groundwater will continue to degrade.

It is recommended that site monitoring wells be sampled one more time to verify the conclusions of this report. If results are consistent with previous results, this site should be closed. Accordingly, site monitoring wells are scheduled for sampling in December, 2010.

Page 8

Thank you for allowing ECM to provide environmental consulting services. Please call if you have questions or require additional information.

Sincerely, ECM Group

Jack Baslom

Zach Barbane Staff Scientist

Jim Green Professional Engineer #C58482

Attachments:

Appendix A - Figures Appendix B - Tables Appendix C - Chain of Custody Documents and Analytical Laboratory Results Appendix D - Boring Logs Appendix E - Field Notes Appendix F - Standard Operating Procedures Appendix G - Responsible Party Certification Form

cc: Barbara J. Jakub, Alameda County Health Care Services Agency Leroy Griffin, Oakland Fire Department **APPENDIX A**

FIGURES

Figure 1. Site Location Map – Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California

07-181-04 [Site loc] 4/07/10

Figure 3. Monitoring Well, Soil Sampling, Air Sampling and Grab Groundwater Sampling Locations - Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California

EXPLANATION

┝	MW-3	Monitoring well location
	B-30	Soil boring location (9/96 & 10/96)
D	A2	8-Hour air sampling location (1996)
٠	B-9	Groundwater sampling location (12/93)
•	B-17	Groundwater sampling location (11/94 & 1/95)
₽	MW-5	Newly installed monitoring well
2	B-31	Newly installed soil boring
	VS-2	Newly installed sub-slab vapor sampling point

APPENDIX B

TABLES

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
			msl)	msl)	Interval	Interval	Interval	
MW-1	1/5/1994	6.40	115.05	108.65	5 - 20	4 - 20	0 - 4	
	2/1/1994	5.93		109.12				
	3/2/1994	5.09		109.96				
	4/6/1994	5.85		109.20	•			
	5/4/1994	6.37		108.68				
	6/3/1994	6.95		108.10				
	7/7/1994	7.00		108.05				
	8/3/1994	7.30		107.75				
	9/7/1994	7.70	107.35					
	10/11/1994	7.62		107.43				
	1/20/1995	4.78	110.2	110.27				
	4/7/1995	5.96		109.09				
	7/26/1995	7.19		107.86				
	10/25/1995	7.74		107.31				
	1/29/1996	4.67		110.38				
	4/26/1996	5.92		109.13				
	7/25/1996	7.10		107.95				
	10/28/1996	7.41		107.64				
	12/4/2008	7.10	120.65	113.55				See Note 1
	8/28/2009	7.65		113.00				
	12/1/2009	7.15		113.50				
	6/9/2010	5.95		114.70				
	1/5/1004	0.42	117.00	100.10	7 07	()7	0 ([
IVI VV - 2	2/1/1004	9.42	117.00	108.18	1 - 21	0-27	0-0	
	2/1/1994	9.13		108.43				
	3/2/1994 1/6/1004	9.33		108.03				
	5/4/1004	9.09		108.51				
	6/3/100/	9.18		108.42				
	7/7/100/	10.21		103.10				
	8/3/100/	10.21		107.39				
	0/7/100/	10.90		100.04				
	10/11/100/	10.20		107.40	0 2 6			
	1/20/1995	8 64		107.42				
	4/7/1995	9.84		107.76				

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
			msl)	msl)	Interval	Interval	Interval	
MW-2	7/26/1995	10.55	117.60	107.05	7 - 27	6 - 27	0 - 6	
cont.	10/25/1995	10.15		107.45				
	1/29/1996	9.35		108.25				
	4/26/1996	8.57		109.03				
	7/25/1996	10.73		106.87				
	10/28/1996	10.16		107.44				
	12/4/2008	10.84	123.36	112.52				See Note 1
	8/28/2009	11.58		111.78				
	12/1/2009	11.06		112.30				
	6/9/2010	11.26		112.10				
MW-3	1/5/1994	10.14	115.33	105.19	5 - 20	4 - 20	0 - 4	
	2/1/1994	8.92		106.41				
	3/2/1994	7.56	115.14	107.58				Note 2: Wells resurveyed on 3/4/94 by
								Ronald C. Miller, pls 15816
	4/6/1994	10.24		104.90				
	5/4/1994	9.67		105.47				
	6/3/1994	10.38		104.76				
	7/7/1994	11.55		103.59				
	8/3/1994	11.76		103.38				
	9/7/1994	12.20		102.94				
	10/11/1994	12.02		103.12				
	1/20/1995	6.47		108.67				
	4/7/1995	7.98		107.16				
	7/26/1995	11.33		103.81				
	10/25/1995	12.29		102.85				
	1/29/1996	6.28		108.86				
	4/26/1996	9.09		106.05				
	7/25/1996	12.06		103.08				
	10/28/1996	12.32		102.82				
	12/4/2008	11.82	120.91	109.09				See Note 1
	8/28/2009	13.16		107.75				
	12/1/2009	11.43		109.48				
	6/9/2010	9.80		111.11				

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
			msl)	msl)	Interval	Interval	Interval	
MW-4	6/9/2010	6.79	116.44	109.65	5 - 20	4 - 20	0 - 4	well surveyed on 5/2/10 by Barry Kolstad, pls 5677
MW-5	6/9/2010	5.60	113.03	107.43	5 - 20	4 - 20	0 - 4	well surveyed on 5/2/10 by Barry Kolstad, pls 5677

DTW = Depth to Water ft = feet msl = Mean Sea Level TOC = Top of Casing GWE = Ground Water Elevation

Notes:

1 Well boxes were replaced, TOC elevations changed, and wells were resurveyed on 11/23/08 and 12/7/08 by Barry Kolstad, pls 5677. MW-4 and MW-5 were surveyed by Barry Kolstad, pls 5677, on May 2, 2010.

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
		<	• 	parts p	er billion		>	
MW-1	1/5/1994		1,000	3.3	1.6	< 0.3	6	
	4/6/1994		1,400	5.6	4.5	< 0.3	11	
	7/7/1994		1,200	1.5	0.80	< 0.3	1.9	
	10/11/1994		700	< 0.3	< 0.3	< 0.3	< 0.3	
	1/20/1995		1,500	3.9	2	< 0.3	3.9	
	4/7/1995		500	3.2	1.1	< 0.3	1.7	
	7/26/1995		1,500	3.1	3.2	12	16	
	10/25/1995		660	0.6	1.4	20	14	
	1/29/1996		2,500	1.8	0.7	8.0	13	
	4/26/1996		4,600	<2.5	<2.5	9.5	21	
	7/25/1996		2,200	1.6	1.6	11	51	
	10/28/1996		1,300	1.5	1.3	3.6	11	
	12/4/2008	540	841	< 0.50	6.55	< 0.50	<1.50	1
	8/28/2009	510	169	< 0.50	6.55	< 0.50	<1.50	2
	12/1/2009	<220	480	<2.2	<2.2	<2.2	<6.6	3
	6/9/2010	610	410	<2.2	<2.2	<2.2	<6.6	5
			1	1	-			1
MW-2	1/5/1994		35,000	12	38	<3.0	150	
	4/6/1994		94,000	21	22	<6.0	110	
	7/7/1994			16	16	<1.5	1,510	
	7/11/1994		43,000					
	10/11/1994		31,000	17	13	14	0.3	
	1/20/1995		26,000	18	13	12	50	
	4/7/1995		70,000	17.5	11	<0.6	74.6	
	7/26/1995		21,000	17	< 0.5	26	94	
	10/25/1995		38,000	63	70	440	1,100	
	1/29/1996		74,000	7.4	8.6	66	330	
	4/26/1996		81,000	<250	<250	3,100	15,000	
	7/25/1996		48,000	17	9.4	59	200	
	10/28/1996		6,200	19	30	58	310	
	12/4/2008	6,300	120,000	<22.0	<22.0	<22.0	<66.0	1
	8/28/2009	3,600	19,500	16	0.69	< 0.50	<1.50	2
	12/1/2009	440	4,000	12	<4.4	<4.4	13	3
	6/9/2010	5,000	69,000	17	<4.4	<4.4	<13.2	5
1								

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
_	_	<		parts p	er billion		>	
MW-3	1/5/1994		1,100	180	20	85	10	
	4/6/1994		1,000	140	13	60	<12	
	7/7/1994			120	7.5	8.0	<3.0	
	7/11/1994		1,000					
	10/11/1994		1,100	200	11	23	< 0.3	
	1/20/1995		2,100	36	3.5	4.8	< 0.3	
	4/7/1995		600	32.7	1.7	4.7	1.9	
	7/26/1995		1,200	98	3.2	12	16	
	10/25/1995		2,300	32	3.4	4.7	9.6	
	1/29/1996		1,100	22	1.2	6.4	12	
	4/26/1996		1,300	5.6	0.6	4.6	14	
	7/25/1996		2,900	120	6.4	23	36	
	10/28/1996		2,000	170	6.6	16	26	
	12/4/2008	1,600	708	1.15	< 0.50	0.720	<1.50	1
	8/28/2009	2,200	434	2.8	0.66	1.6	<1.50	2
	12/1/2009	3,900	<220	2.2	<2.2	<2.2	<6.6	2,4
	6/9/2010	3,100	990	5.5	<2.2	<2.2	<6.6	2
MW-4	6/14/2010	<50	<100	<0.50	<0.50	<0.50	<1.50	
				-				
MW-5	6/9/2010	<50	<100	<0.50	<0.50	<0.50	<1.50	
B-1	12/13/1993		93,000					
				-				
B-2	12/13/1993		1,400,000					
B-3	12/13/1993		780,000					
B-4	12/13/1993		15,000					
B-5	12/14/1993		1,600					
			-		-			
D 6								
D-0	12/14/1993		9,000					

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
		<		parts p	er billion		>	
B-7	12/14/1993		18,000					
			•					-
B-8	12/14/1993		<50					
					r	r	1	Γ
B-9	12/14/1993		60					
D 10	11/20/1004		120,000	.0.2	.0.2	.0.2	.0.2	1
B-10	11/30/1994		120,000	<0.3	<0.3	<0.3	<0.3	
D 11	11/20/1004		210	<0.3	<0.3	<0.3	<0.3	
D-11	11/30/1994		210	<0.5	<0.5	\0. 5	<0.5	
B-12	11/30/1994		150	<03	<03	<03	<03	
D 12	11/50/1777		150	10.5	<0.5	<0.5	(0.5	
B-13	11/30/1994		220	2.3	0.80	< 0.3	4	
_	•		•					ł
B-14	11/30/1994		150	< 0.3	< 0.3	< 0.3	0.80	
							•	•
B-15	1/23/1995		9,100	40	<3.0	60	<3.0	
			•					
B-16	1/23/1995		52	< 0.3	< 0.3	< 0.3	1.3	
								Γ
B-1 7	1/23/1995		<50	<0.3	<0.3	<0.3	<0.3	
D 10	0/24/1006		-50	-0.5	0.5	-0.5	-0.5	1
B-18	9/24/1990		<50	<0.5	0.5	<0.5	<0.5	
R-10	9/24/1996		<50	<0.5	0.7	<05	0.7	
D-17)/24/1))0		<50	<0.5	0.7	N0. 5	0.7	
B-20	9/24/1996		<50	<0.5	<0.5	<0.5	< 0.5	
2 20								
B-21	9/24/1996							
	-		•	·	·	·	•	·
B-22	9/24/1996							
B-23	9/25/1996		4,600	< 0.5	0.7	100	540	
			I		I	I	1	1
B-24	9/25/1996							

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
		<		parts p	er billion		>	
B-25	9/25/1996							
B-26	9/25/1996		<50	< 0.5	< 0.5	< 0.5	< 0.5	
B-27	9/25/1996		<50	< 0.5	0.5	< 0.5	< 0.5	
W-B28	10/31/1996		<50	< 0.5	< 0.5	< 0.5	< 0.5	
W-B29	10/31/1996		<50	< 0.5	< 0.5	< 0.5	< 0.5	
W-B30	10/31/1996		<50	1.4	0.6	3.0	5.1	

TPH-G = Gasoline

--- = not analyzed

Notes:

1 TPH(G) was not reported prior to 2008. Samples were analyzed for TPH(D) and Oil&Grease prior to 2008. See report: Sierra Enironmental

Services, 1996, Quarterly Monitoring Report, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California, December 26, 1996.

2 Sample chromatogram does not resemble gasoline standard pattern. Reported TPH value due to the presence of non-target heavy end hydrocarbons within range of C5-C12 quantified as gasoline.

3 The reporting limits were raised due to a high concentration of heavy end hydrocarbons within range quantified as Mineral Spirits.

4 The reporting limits were raised due to contribution of unidentified hydrocarbons within the C5-C12 range quantified as gasoline.

5 Results not typical of Gasoline standard pattern. Result reported as Gasoline but pattern best matches Mineral Spirits/Stoddard Solvent.

Table 3. Analytic Results for Groundwater	- Oxygenates - 5427	7 Telegraph Avenue, Oakland, California
---	---------------------	---

MTBE < 	DIPE	ETBE	TAME parts per bill 	TBA ion 	EDB 	DCA) > <0.2 <0.2 <0.5	Notes
<	 		parts per bill	ion 		<0.2 <0.2 <0.5	
 	 	 	 	 	 	<0.2 <0.2 <0.5	
 	 	 	 			<0.2 <0.5	
 	 	 				< 0.5	
 	 					<2	
 						<2	
 						0.5	
						< 0.5	
						< 0.5	
						< 0.5	
						< 0.5	
						< 0.5	
						< 0.5	
< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	1
< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	
<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	
		-	-	-	-	-	
						2.7	
						< 0.2	
						0.60	
						<2	
						<2	
						1.4	
						< 0.5	
						< 0.5	
						< 0.5	
						< 0.5	
						< 0.5	
						<2.5	
<22.0	<22.0	<22.0	<22.0	<440	<22.0	<22.0	1
100.0	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
<0.50	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	
<0.50	<4.4	<4.4	<4.4	<44	<4.4	<4.4	
	 <22.0 <0.50 <4.4 < 4.4	<22.0 <22.0 <0.50 <0.50 <4.4 <4.4 <4.4 <4.4	<22.0 <22.0 <22.0 <0.50 <0.50 <0.50 <4.4 <4.4 <4.4 <4.4 <4.4 <4.4	<22.0 <22.0 <22.0 <22.0 <0.50 <0.50 <0.50 <0.50 <4.4 <4.4 <4.4 <4.4 <4.4 <4.4 <4.4 <4.4		<th> </th>	

				-					
								EDC (1,2	
Sample ID	Sample Date	MTBE	DIPE	ETBE	TAME	TBA	EDB	DCA)	Notes
		<			parts per bill	ion		>	
MW-3	1/5/1994							0.20	
	4/6/1994							< 0.2	
	7/7/1994							< 0.5	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							0.7	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996							< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							< 0.5	
	12/4/2008	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	
	6/9/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	
								-	•
MW-4	6/14/2010	<0.50	<0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50	
								-	•
MW-5	6/9/2010	<0.50	<0.50	< 0.50	<0.50	<5.0	<0.50	<0.50	
								-	•
B-10	11/30/1994							<2	
	•		•		•	•	•	-	
B-11	11/30/1994							<2	
	•								
B-12	11/30/1994							<2	
	· · ·								
B-13	11/30/1994							<2	
	•								
B-14	11/30/1994							<2	
	1 1								
B-15	1/23/1995							<2	
-									
B-16	1/23/1995							<2	
				1					
L									

Table 3. Analytic Results for Groundwater - Oxygenates - 5427 Telegraph Avenue, Oakland, California

								EDC (1,2	
Sample ID	Sample Date	MTBE	DIPE	ETBE	TAME	TBA	EDB	DCA)	Notes
		<			parts per bill	ion		>	
B-17	1/23/1995							<2	
B-18	9/24/1996							<1	
B-19	9/24/1996							<1	
B-20	9/24/1996							<1	
B-21	9/24/1996								
B-22	9/24/1996								
B-23	9/25/1996							<1	
B-24	9/25/1996								
B-25	9/25/1996								
B-26	9/25/1996							<1	
B-27	9/25/1996							<1	
W-B28	10/31/1996							<1	
W-B29	10/31/1996							<1	
W-B30	10/31/1996							<1	

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

Notes:

1 MTBE, DIPE, ETBE, TAME, TBA and EDB were not reported prior to 2008. Samples were analyzed for Halogenated Volatile Organic Compounds (HVOCs) and Volatile Organic Compounds (VOCs) prior to 2008. See report: Sierra Enironmental Services, 1996, Quarterly Monitoring Report, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California, December 26, 1996.

											Oxygenate	
Sample		Depth			TPH	Stoddard			Ethyl-		s/Lead	
ID	Sample Date	feet, bgs	TPH (G)	TPH (D)	(MS)	Solvent	Benzene	Toluene	benzene	Xylenes	scavengers	Notes
			<			parts	per millio	on			>	
B-1	12/13/1993	2.5		<10		980						
		8.5		<10		2,000						
B-2	12/13/1993	5.5		<10		1,640						
		10.5		<10		3,060						
-												
B-3	12/13/1993	5.5		13		1,900						
	10/10/1000		1	10		100	1	1	1			
B-4	12/13/1993	5.5		<10		100						
		~ ~	1	1.0			1	1	1			
B-5	12/14/1993	5.5		<1.0		<1.0						
D (100		110						
B-0	12/14/1993	5.5		190		110						
		10.5		11		150						
D 7		5 5	1	11		1 200	1					
в-/	12/14/1993	3.3		11		1,380						
		10.5		14		920						
пο		5 5		<1.0		<1.0						
D-9		3.5		<1.0		<1.0						
	12/14/1993	10.5		<1.0		<1.0						
		20.5		<1.0		<1.0						
		20.5		<1.0		<1.0						
R-0		5 5		<1.0		<1.0						
D -7	12/14/1993	10.5		<1.0		<1.0						
		10.5	l	<1.0		<1.0	l					
MW-1		5 5				2 320						
1/1 // -1		9.5		<10		12						
	12/14/1993	15.5		<1.0		7.5						
		20.5		<1.0		<1.0						
		20.5	1	1.0		11.0	1				1	
MW-2		5.5		<10		2,780						
	12/14/1993	10.5		<10		6.500						
	12,1.,1993	15.5		<1.0		18						
L		10.0		1.0		10						

											Oxygenate	
Sample		Depth			TPH	Stoddard			Ethyl-		s/Lead	
ID	Sample Date	feet, bgs	TPH(G)	TPH (D)	(MS)	Solvent	Benzene	Toluene	benzene	Xylenes	scavengers	Notes
			<	(parts	per millio	on			>	
MW-2	12/14/1002	20.5		<1.0		<1.0						
cont.	12/14/1995	25.5		<10		200						
MW-3		5.5		2.9		2.6						
	12/14/1993	10.5		<10		260						
		15.5		2.5		34						
B-21	9/24/1996	16.0				<10	< 0.005	< 0.005	< 0.005	< 0.005		1
B-22	9/24/1996	15.5				<10	< 0.005	< 0.005	< 0.005	< 0.005		1
B-23	9/25/1996	10.5				<10	< 0.005	< 0.005	< 0.005	0.044		1
	•											
B-24	9/25/1996	16.0				<10	< 0.005	< 0.005	< 0.005	< 0.005		1
	•											
B-25	9/25/1996	16.0				<10	< 0.005	< 0.005	< 0.005	< 0.005		2
	•											
B-31		5.0	<13.0		190	22	< 0.015	< 0.015	< 0.015	< 0.015	ND	
		10.0	<94.0		960	480	< 0.94	< 0.94	< 0.94	< 0.94	ND	
	4/10/2010	15.0	<10.0		74	11	<1.0	<1.0	<1.0	<1.0	ND	
	4/12/2010	20.0	<0.11		0.4	< 3.3	<0.011	<0.011	<0.011	<0.011	ND ND	
		30.0	<10.0		20	<3.5 74	<0.0099	<0.0099	<0.0099	<0.0099	ND	
		35.0	<26.0		95	99	<1.1	<1.1	<1.1	<1.1	ND	
MW-4		6.0	< 0.098			<3.3	< 0.0098	< 0.0098	< 0.0098	< 0.0098	ND	
	4/12/2010	11.0	< 0.13			<3.3	< 0.013	< 0.013	< 0.013	< 0.013	ND	
		16.0	<0.12			<3.3	<0.012	<0.012	<0.012	<0.012	ND	
		20.0	<0.13			<3.3	<0.013	<0.013	<0.013	<0.013	ND	
MW 5	4/12/2010	11.0	<0.1			~3.3	<0.01	<0.01	<0.01	<0.01	ND	
1V1 VV - D	7/12/2010	11.0	\U.1			<u></u>	~0.01	<0.01	\0.01	<0.01	110	

TPH(G) = Gasoline

TPH(D) = Diesel

'PH (MS) = Mineral Spirits --- = not analyzed

ND = not detected

Notes:

¹ Volatile Organic Compounds (VOCs) not detected at detection limits ranging from 0.005 to 0.2 ppm.
 ² Sample contains 0.0052 ppm benzene. All other VOCs not detected at detection limits ranging from 0.005 to 0.2 ppm.

All values in Table 4 are taken from Sierra Environmental Services Risk Screening Analysis, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, CA,

Sample ID	Sample Date	Stoddard	Benzene	Toluene	Ethyl-	Xylenes	1,2,4-TMB	Notes
		Solvent			benzene			
		<		μ	g/m3		>	
A-1	11/19/1996	<4.6	6.8	26.8	9.3	12.3	6.0	1
							-	
A-2	11/19/1996	<5.2	6.8	16.0	<4.0	5.7	<4.5	2
Preliminary S	creening Concentration							
	Residential		0.0842 4	313 ⁴	210 ³	730 4		
	Commercial		0.141 4	438 4	290 ³	1,020 4		

1,2,4-TMB = 1,2,4-Trimethylbenzene

ppbv = parts per billion by volume

TICs = tentatively identified compounds

Notes:

- 1 Other Volatile Organic Compounds (VOCs) were not detected at a laboratory reporting limit of 0.88 ppbv. Sample A-1 is reported to contain six TICs: acetaldehyde, 2-propanone, dichloromethane, butanal, hexanal and octanal at concentrations of 6.7, 10, 6.3, 20, 6.0 and 4.6 ppbv, respectively.
- 2 Other Volatile Organic Compounds (VOCs) were not detected at a laboratory reporting limit of 0.90 ppbv. Sample A-2 is reported to contain two TICs: 2hydroxybenzaldehyde and (E)-4-dodecene at concentrations of 7.3 and 5.3 ppbv, respectively.
- 3 Preliminary screening concentration numbers are based on Region 2 ESLs (Interim Final May 2008) Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board - San Francisco Bay Region.
- 4 Preliminary screening concentration numbers are based on California Environmental Protection Agency, 2005, Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, January, 2005.

Results for A-1 and A-2 are taken from Sierra Environmental Services *Risk Screening Analysis*, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, CA, March 6, 1997. Concentrations have been converted from ppbv into µg/m3.

Table 6. Sub-Slab Vapor Sample Results - 5427 Telegraph Avenue, Oakland, California

Sample ID	Sample Date	TPH(G)	Stoddard	Benzene	Toluene	Ethyl-	Xylene	MTBE	TBA	DIPE	ETBE	TAME	PCE	IPA ⁴	Notes
			Solvent			benzene									
		•						$-\mu g/m^3$							
VS-1	4/14/2010	<120	<120	1.264	< 0.95	<1.1	<2.2	<0.9	114.744	<1.05	<1.05	<1.05	189.414	<5.0	2
VS-2	4/14/2010	<130	2,410	1.17	1.20	<1.1	<2.2	< 0.90	303	<1.1	<1.1	<1.1	191	12.5	3
Preliminary Screen	ning Concentrat	ion ¹													
	Residential	10,000		84	63,000	980	21,000	9,400					410		
	Commercial	29,000		280	180,000	3,300	58,000	31,000					1,400		

TBA	= t-Butyl alcohol
DIPE	= Diisopropyl ether
ETBE	= Ethyl t-butyl ether
TAME	= t-Amyl methyl ether
PCE	= Tetrachloroethylene
IPA	= isopropyl alcohol
$\mu g/m^3$	= micrograms per cubic meter
	= Not available

Notes:

- Preliminary screening concentration numbers are from Table E, Environmental Screening Levels (ESLs) Indoor Air and Soil Gas (Vapor Intrusion Concerns), Region 2 ESLs, Interim Final - November 2007 (Revised May, 2008), Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612.
- Sample VS-1 was analyzed for VOCs by ETO15. Other VOCs detected were: methylene chloride (8.82µg/m³); acetone (9.312 µg/m³); and 1,1,1-trichloroethane (1.43 µg/m³).
- 3.) VS-2 was analyzed for VOCs by ETO15. Other VOCs detected were: methylene chloride (1.35µg/m³); acetone (13.2 µg/m³); 1,1,1-trichloroethane (1.93 µg/m³); and 2-Butanone (2.10 µg/m³).

4.) IPA was introduced as tracer compound.

APPENDIX C

CHAIN OF CUSTODY AND LABORATORY ANALYTICAL REPORTS

ECM Group P.O. Box Benicia, California 94510 Tel: 707-751-0655 Fax: 707-751-0653 Email: rguptel@ecmgrp.com

RE: 5427 Telegraph Ave

Work Order No.: 1004051

Dear Jim Green:

Torrent Laboratory, Inc. received 4 sample(s) on April 13, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sz-

Patti Sandrock

April 20, 2010

Date

Date: 4/20/2010

Client: ECM Group Project: 5427 Telegraph Ave Work Order: 1004051

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Revision:

Report revised to correct reported units for TPH as Stoddard from mg/L to the correct units of mg/Kg.

No QC affected by this revision.

4/21/10

Sample Result Summary

Report prepared for:	Jim Green				Date	Received:	04/13/10
MW-4-d 6'	ECM Group				Date	Reported:	04/20/10 1004051-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-o MW-4-d 11'	detectable for this sample.						1004051-002
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o MW-4-d 16'	detectable for this sample.						1004051-003
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-o MW-4-d 20'	detectable for this sample.						1004051-004
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

Report prepared for:	Jim Green ECM Group							Da Da	te Rece te Repo	eived: 04/1	3/10 0/10
Client Sample ID:	MW-4-d 6'				Lab Sa	mple ID:	10040)51-001A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	02-181-10				-						
Date/Time Sampled:	04/12/10 / 13:4	5									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	1	2.5	9.8	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	20	49	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.1	9.8	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	2.4	9.8	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	1.5	9.8	ND		ug/Kg	400591	NA
TAME	SW8260B	NA	04/14/10	1	2.0	9.8	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	1.9	9.8	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	0.96	9.8	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	1.7	9.8	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	0.84	9.8	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	1.8	9.8	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.65	4.9	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	132		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	91.1		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	98.8		%	400591	NA
NOTE: Final result and PQL	(Reporting Limit) has b	een correc	cted for actua	al mas	s removed	I from Enco	pre containers.	Lab	Unit	Apolytical	Dron

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
TPH(Gasoline)	8260TPH	NA	04/14/10	1	17	98	ND		ug/Kg	400588	NA	
(S) 4-Bromofluorobenzene	8260TPH	NA	04/14/10	1	57	127	74.8		%	400588	NA	

NOTE: Final results and PQL (Reporting Limits) have been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	79.9		%	400590	0285

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	vived: 04/1 orted: 04/2	3/10 0/10
Client Sample ID:	MW-4-d 11'				Lab Sa	mple ID:	10040	51-002A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	02-181-10										
Date/Time Sampled:	04/12/10 / 13:5	60									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	04/14/10	1	3.4	13	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	27	66	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.9	13	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	3.2	13	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	2.0	13	ND		ug/Kg	400591	NA
ТАМЕ	SW8260B	NA	04/14/10	1	2.7	13	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.5	13	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	1.3	13	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	2.3	13	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	1.1	13	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	2.4	13	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.87	6.6	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	166	S	%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	121		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	147	S	%	400591	NA

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	04/14/10	1	22	130	ND		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	04/14/10	1	57	127	104		%	400588	NA

NOTE: Final results and PQL (Reporting Limits) have been corrected for actual mass removed from Encore containers. x-TPH result due to contribution from heavier hydrocarbons to range of C5-C12 quantified as gasoline (closest pattern match-mineral spirit).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	85.8		%	400590	0285

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	vived: 04/1 orted: 04/2	3/10 0/10
Client Sample ID:	MW-4-d 16'					mple ID:	10040)51-003A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	02-181-10										
Date/Time Sampled:	04/12/10 / 13:	55									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
MTBE	SW8260B	NA	04/14/10	1	3.1	12	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	24	59	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.6	12	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	2.8	12	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	1.8	12	ND		ug/Kg	400591	NA
ТАМЕ	SW8260B	NA	04/14/10	1	2.4	12	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.2	12	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	1.2	12	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	2.1	12	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	1.0	12	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	2.2	12	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.78	5.9	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	145		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	114		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	128		%	400591	NA
	(Poporting Limit) has h		atad for actur		romovod	from Enor	ra containara				

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	04/14/10	1	20	120	ND		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	04/14/10	1	57	127	99.3		%	400588	NA

NOTE: Final results and PQL (Reporting Limits) have been corrected for actual mass removed from Encore containers. x-TPH result due to contribution from heavier hydrocarbons to range of C5-C12 quantified as gasoline (closest pattern match-mineral spirit).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	80.6		%	400590	0285

Report prepared for:	Jim Green ECM Group					Date Received: 04/13/10 Date Reported: 04/20/10						
Client Sample ID:	MW-4-d 20'					mple ID:	10040)51-004A				
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil					
Project Number:	02-181-10											
Date/Time Sampled:	04/12/10 / 14:0	00										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
MTBE	SW8260B	NA	04/14/10	1	3.3	13	ND		ug/Kg	400591	NA	
tert-Butanol	SW8260B	NA	04/14/10	1	26	63	ND		ug/Kg	400591	NA	
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.8	13	ND		ug/Kg	400591	NA	
ETBE	SW8260B	NA	04/14/10	1	3.0	13	ND		ug/Kg	400591	NA	
Benzene	SW8260B	NA	04/14/10	1	1.9	13	ND		ug/Kg	400591	NA	
TAME	SW8260B	NA	04/14/10	1	2.6	13	ND		ug/Kg	400591	NA	
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.4	13	ND		ug/Kg	400591	NA	
Toluene	SW8260B	NA	04/14/10	1	1.2	13	ND		ug/Kg	400591	NA	
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	2.2	13	ND		ug/Kg	400591	NA	
Ethyl Benzene	SW8260B	NA	04/14/10	1	1.1	13	ND		ug/Kg	400591	NA	
m,p-Xylene	SW8260B	NA	04/14/10	1	2.3	13	ND		ug/Kg	400591	NA	
o-Xylene	SW8260B	NA	04/14/10	1	0.83	6.3	ND		ug/Kg	400591	NA	
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	157	S	%	400591	NA	
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	128		%	400591	NA	
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	142	S	%	400591	NA	
	(Poporting Limit) has h		atad for actur		romovod	from Enor	ro contoinoro					

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	04/14/10	1	21	130	ND		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	04/14/10	1	57	127	111		%	400588	NA

NOTE: Final results and PQL (Reporting Limits) have been corrected for actual mass removed from Encore containers. x-TPH result due to contribution from heavier hydrocarbons to range of C5-C12 quantified as gasoline (closest pattern match-mineral spirit).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	83.1		%	400590	0285

Work Order	1004051	Pren	Method:	NA	Prep Date:	NA	Pren Batch:	NA
Matrix:	Soil	Analy	tical	8260TPH	Analyzed Date:	04/14/10	Analytical	400588
		Metho	od:	02001111	Analyzed Date.		Batch:	400000
Units:	ug/Kg							
Parameters		MDL	PQL	Method Blank Conc.				
TPH(Gasoline) (S) 4-Bromofluorot	penzene	17	100	ND 94.5				
Work Order:	1004051	Prep I	Method:	3545_TPH	Prep Date:	04/15/10	Prep Batch:	0285
Matrix:	Soil	Analy	tical	SW8015B	Analyzed Date:	04/15/10	Analytical	400590
Units:	mg/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
TPH as Diesel		0.758	2.0	ND				
TPH as Motor Oil		1.8	4.0	ND				
TPH as Stoddard		0.758	3.3	ND				
Pentacosane (S)				86.4				
Work Order:	1004051	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	SW8260B	Analyzed Date:	04/14/10	Analytical	400591
Units:	ug/Kg	wethe	a:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
Dichlorodifluorome	thane	4.4	10	ND				
Chloromethane		4.6	10	ND				
Vinyl Chloride		2.6	10	ND				
Bromomethane		4.7	10	ND				
Trichlorofluoromet	hane	2.9	10	ND				
1,1-Dichloroethene	9	1.5	10	ND				
Freon 113		3.7	10	ND				
Methylene Chloride	e	2.0	10	ND				
trans-1,2-Dichloroe	ethene	1.1	10	ND				
MTBE		2.6	10	ND				
tert-Butanol		21	50	ND				
Diisopropyl ether (DIPE)	2.2	10	ND				
1,1-Dichloroethane	Э	1.3	10	ND				
ETBE		2.4	10	ND				
cis-1,2-Dichloroeth	iene	1.8	10	ND				
2,2-Dichloropropar	ne	1.2	10	ND				
Bromochlorometha	ane	2.3	10	ND				
		-	-					

Work Order:	1004051	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	SW8260B	Analyzed Date:	04/14/10	Analytical Batch:	400591
Units:	ug/Kg	Wetho					Daten.	
Parameters		MDL	PQL	Method Blank Conc.				
Chloroform		1.2	10	ND				
Carbon Tetrachloride	9	1.6	10	ND				
1,1,1-Trichloroethan	e	1.2	10	ND				
1,1-Dichloropropene		1.4	10	ND				
Benzene		1.5	10	ND				
TAME		2.1	10	ND				
1,2-Dichloroethane		1.9	10	ND				
Trichloroethylene		3.9	10	ND				
Dibromomethane		2.2	10	ND				
1,2-Dichloropropane		1.3	10	ND				
Bromodichlorometha	ane	1.1	10	ND				
2-Chloroethyl vinyl e	ther	4.5	10	ND				
cis-1,3-Dichloroprop	ene	1.4	10	ND				
Toluene		0.98	10	ND				
Tetrachloroethylene		1.8	10	ND				
trans-1,3-Dichloropro	opene	1.2	10	ND				
1,1,2-Trichloroethan	e	1.8	10	ND				
Dibromochlorometha	ane	1.1	10	ND				
1.3-Dichloropropane		2.1	10	ND				
1,2-Dibromoethane		1.7	10	ND				
Ethyl Benzene		0.86	10	ND				
Chlorobenzene		4.2	10	ND				
1,1,1,2-Tetrachloroe	thane	0.86	10	ND				
m,p-Xylene		1.9	10	ND				
o-Xylene		0.66	5.0	ND				
Styrene		0.77	10	ND				
Bromoform		1.9	10	ND				
Isopropyl Benzene		1.2	10	ND				
n-Propylbenzene		1.4	10	ND				
Bromobenzene		1.2	10	ND				
1,1,2,2-Tetrachloroe	thane	3.0	10	ND				
1,3,5-Trimethylbenze	ene	1.1	10	ND				
1,2,3-Trichloropropa	ne	3.3	10	ND				
4-Chlorotoluene		1.6	10	ND				
2-Chlorotoluene		1.6	10	ND				
tert-Butylbenzene		1.4	10	ND				
1,2,4-Trimethylbenzo	ene	1.1	10	ND				
sec-Butyl Benzene		1.6	10	ND				
p-lsopropyltoluene		1.5	10	ND				
1,3-Dichlorobenzene	9	1.8	10	ND				
1,4-Dichlorobenzene	9	1.5	10	ND				

Work Order:	1004051	Prep	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	SW8260B	Analyzed Date:	04/14/10	Analytical	400591
Units:	ug/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
n-Butylbenzene		2.2	10	ND				
1,2-Dichlorobenzen	e	1.3	10	ND				
1,2-Dibromo-3-Chlo	ropropane	4.2	10	ND				
Hexachlorobutadien	e	2.6	10	ND				
1,2,4-Trichlorobenze	ene	2.1	10	ND				
Naphthalene		2.8	10	ND				
1,2,3-Trichlorobenze	ene	2.9	10	ND				
(S) Dibromofluorom	ethane			130				
(S) Toluene-d8				92.4				
(S) 4-Bromofluorobe	enzene			105				

LCS/LCSD Summary Report

				LU3/	LC3D 3	ummary	Report	Raw value	es are used in	quality contro	ol assessment.
Work Order:	1004051		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Soil		Analytical	8260)TPH	Analyze	d Date:	04/14/10	Analytic	al 400	588
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline) (S) 4-Bromofluoro	benzene	17	100		1000 50	90.5 100	108	17.5	48.2 - 132 57 - 127	30	
Work Order:	1004051		Prep Meth	od: 3545	5_TPH	Prep Da	te:	04/15/10	Prep Ba	tch: 028	5
Matrix:	Soil		Analytical Method:	SW8	8015B	Analyze	d Date:	04/15/10	Analytic Batch:	al 400	590
Units:	mg/Kg										
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel		0.76	2.0		33.33	76.1	74.9	1.62	50.8 - 111	30	
Pentacosane (S)					100	90.2			61.5 - 133		
Work Order:	1004051		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Soil		Analytical Method:	SW8	260B	Analyze	d Date:	04/14/10	Analytic Batch:	al 400	591
Units:	ug/Kg										
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethen	е	1.5	10		50	95.9	102	6.04	53.7 - 139	30	•
Benzene		1.5	10		50	95.4	105	9.24	66.5 - 135	30	
Trichloroethylene		3.9	10		50	100	110	8.94	57.5 - 150	30	
Toluene		0.98	10		50	86.2	89.3	3.49	56.8 - 134	30	
Chlorobenzene		4.2	10		50	89.2	91.8	2.89	57.4 - 134	30	
(S) Dibromofluoro	methane				50	119			59.8 - 148		
(S) Toluene-d8					50	90.4			55.2 - 133		
(S) 4-Bromofluoro	benzene				50	81.1			55.8 - 141		

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1004051		Prep Metho	d: 354	5_TPH	Prep Date:	04/	15/10	Prep Batch:	0285	
Matrix:	Soil		Analytical	SW	3015B	Analyzed D	Date: 04/	15/10	Analytical	400590	
Spiked Sample:	1004051-001A		Method:						Batch:		
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel Pentacosane (S)		0.76	2.0	5.9259	33.33 100	70.9 85.8	67.9 82.0	4.24	50.8 - 111 61.5 - 133	30	

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Date and Time Received: 4/13/2010 15:30 Client Name: ECM Group Project Name: 5427 Telegraph Ave Received By: navin Physically Logged By: Work Order No.: 1004051 Checklist Completed By: Iorna Carrier Name: Gold Bullet Courier Chain of Custody (COC) Information Chain of custody present? Yes Chain of custody signed when relinquished and received? Yes Chain of custody agrees with sample labels? Yes Custody seals intact on sample bottles? Not Present **Sample Receipt Information** Custody seals intact on shipping container/cooler? Not Present Shipping Container/Cooler In Good Condition? Yes Samples in proper container/bottle? Yes Samples containers intact? Yes Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information All samples received within holding time? Yes Container/Temp Blank temperature in compliance? Yes Temperature: °C Water-VOA vials have zero headspace? Water-pH acceptable upon receipt? pH Checked by: pH Adjusted by:

Login Summary Report

Client ID:	TL5158	ECM Group				Q	C Level:			
Project Name:	5427 Telegra	ph Ave				TA	T Reques	ted: 5+ d	ay:0	
Project # :	02-181-10					Da	te Receive	ed: 4/13	/2010	
Report Due Date:	4/20/2010					Tiı	me Receiv	ed: 15:3	0	
Comments:	5 day TAT!!! R jgreen@ecmg	Recv'd 4 samples (sleev prp.com.	ve and e	ncores) fo	r TPHg; BTEX	; Fuel Oxy	genates a	nd Stoddard	Solvent.Pls.	email to
Work Order # :	1004051									
WO Sample ID	<u>Client</u> Sample ID	<u>Colle</u> Date/	<u>ction</u> Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	l	Subbed
1004051-001A	MW-4-d 6'	04/12/10	13:45	Soil	10/10/10			EDF En_8260Pe S_TEPH S_GCMS-0	et GRO	
Sample Note:	Received 1 slee	eve and 3 encores.Anal	yze for g	gas,btex a	nd oxys from e	ncores.				
1004051-002A	MW-4-d 11'	04/12/10	13:50	Soil	10/10/10			En_8260Pe S_GCMS-0 S_TEPH	et GRO	
Sample Note:	Received 1 slee	eve and 3 encores.								
1004051-003A	MW-4-d 16'	04/12/10	13:55	Soil	10/10/10			En_8260Pe S_TEPH S_GCMS-0	et GRO	
Sample Note:	Received 1 slee	eve and 3 encores.								
1004051-004A	MW-4-d 20'	04/12/10	14:00	Soil	10/10/10			S_GCMS-0 S_TEPH En_8260Pe	GRO	
Sample Note:	Received 1 slee	eve and 3 encores.								

	FAX: 408.263.829		• NO	TE: SHA	DED AI	REAS	ARE FO	OR TOP	RENTL	AB USE	ONLY .	10	10405
ompany Name: ECM	www.torrentlab.cor	1	**********	Locati	on of Sa	molino	. (11.)	energeneouron	an a		O.t.		,
Address: P.O.Box 802				Purpo	se:		101-	1 10	(and	1 Ave	. UAM	Q~~Ø	
City: Benicia Stat	e: CA	Zip Code	94510	Specia	al Instruc	ctions /	Comme	ents:					
elephone: 707 751 0655 FAX:	707 751 0653	G	00										
EPORT TO: '	SAMPLER: Doug	as West	-	P.O. #	: 07-	181-	-10		EMA	IL:_eems	TP@aol	som	
URNAROUND TIME: Standard	SAMPLE TYPE	:	REPORT	FORMAT:		101		-7					1
] 10 Work Days 3 Work Days Noon - Nxt	Day Storm Water	🗌 Air	QCLev	el IV			True and	00 0					ANALYSIS
7 Work Days 2 Work Days 2 - 8 Hours	Waste Water	C Other	EDF		10		Sam	ž.					REQUESTED
5 Work Days 1 Work Day Dther	Ground Wate		L Excel /	EDD	0	X	ters a	da					
	DATE / TIME	MATDIX	#OF	CONT	d	Ē	eco	Ster					REMARKS
LAD ID CLIENT S SAMPLE I.D.	SAMPLED	MATRIA	CONT	TYPE	5	Ê	5-1	,					
001A MW-4 d ('	4/12/10 1:45	5			V	V	V	\mathcal{V}					
-0024 MW-4 d 11	4/12/10 1:50	C				1	~	1					
DRA MILINI	1.40 1.30	ć				/	r	n /					
000m MW-9916	1/12/10-1:55	<u>د</u>				/							
004 mw-4 d 20	4/12/10 2.00	5			1	/	/	_					
	,												
	χ.									-			
	-												- AP
											-		ent
а. 											,		
Relinguished By: Print:	Date:	· · · · ·	Time:		Receiv	ed Bv:	I		Print:		Date:		Time:
Unon	4/13	10	1210	1	N	(. V	Asq	rt		V	411	3/10	1219
Keiinquished By: Print:	Date:	,10	J'Ine:	1	Receiv	ed By:	ih-	lasa	Print:		Date:		lime:
Vere Samples Received in Good Condition?		amples on la			Method	n of Shir	ment /	2.1.1	Rulle	+	Sample s	eals intac	

ECM Group P.O. Box Benicia, California 94510 Tel: 707-751-0655 Fax: 707-751-0653 Email: rguptel@ecmgrp.com RE: 5427 Telegraph, Oakland

Work Order No.: 1004055

Dear Jim Green:

Torrent Laboratory, Inc. received 1 sample(s) on April 14, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sz-

Patti Sandrock

April 21, 2010

Date

Date: 4/21/2010

Client: ECM Group Project: 5427 Telegraph, Oakland Work Order: 1004055

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Sample Result Summary

Parameters:			<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
MW-5 d 11'						Date	Reported: 0	04/21/10 4055-001A
	FCM Crown					Data	Domortod. (04/04/40
Report prepared for:	Jim Green					Date	Received:	04/14/10

All compounds were non-detectable for this sample.

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	vived: 04/1 orted: 04/2	4/10 1/10
Client Sample ID:	MW-5 d 11'				Lab Sa	mple ID:	10040)55-001A			
Project Name/Location:	5427 Telegrap	h, Oaklan	d		Sample	Matrix:	Soil				
Project Number:	02-181-10										
Date/Time Sampled:	04/13/10 / 12:2	20									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	1	2.7	10	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	22	52	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.3	10	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	2.5	10	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	1.6	10	ND		ug/Kg	400591	NA
ТАМЕ	SW8260B	NA	04/14/10	1	2.1	10	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.0	10	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	1.0	10	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	1.8	10	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	0.90	10	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	1.9	10	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.69	5.2	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	136		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	100		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	94.8		%	400591	NA
NOTE: Final result and POI	(Reporting Limit) has h		cted for actua	al mase	s removed	from Enco	re containers				

Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	04/14/10	1	18	100	ND		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	04/14/10	1	57	127	84.6		%	400588	NA

Final results and PQL (Reporting Limits) have been corrected for actual mass removed from Encore containers. x-TPH result due to contribution from heavier hydrocarbons to range of C5-C12 quantified as gasoline (closest pattern match-mineral spirit). NOTE:

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	93.7		%	400590	0285

Work Order:	1004055	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	8260TPH	Analyzed Date:	04/14/10	Analytical	400588
Units:	ug/Kg	Metho	od:		-		Batch:	
	0 0							
Parameters		MDL	PQL	Method Blank Conc.				
TPH(Gasoline) (S) 4-Bromofluorob	enzene	17	100	ND 94.5 %				
Work Order:	1004055	Prep I	Method:	3545_TPH	Prep Date:	04/15/10	Prep Batch:	0285
Matrix:	Soil	Analy	tical	SW8015B	Analyzed Date:	04/15/10	Analytical	400590
Units:	mg/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
TPH as Diesel		0.758	2.0	ND				
TPH as Motor Oil		1.8	4.0	ND				
TPH as Stoddard		0.758	3.3	ND				
Pentacosane (S)				86.4 %				
Work Order:	1004055	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	SW8260B	Analyzed Date:	04/14/10	Analytical	400591
		Metho	od:				Batch:	
Units:	ug/Kg							
Units: Parameters	ug/Kg	MDL	PQL	Method Blank Conc.				
Units: Parameters Dichlorodifluoromet	ug/Kg	MDL 4.4	PQL 10	Method Blank Conc. ND				
Units: Parameters Dichlorodifluoromet Chloromethane	ug/Kg	4.4 4.6	PQL 10 10	Method Blank Conc. ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride	thane	MDL 4.4 4.6 2.6	PQL 10 10	Method Blank Conc. ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometha	thane	4.4 4.6 2.6 4.7	PQL 10 10 10	Method Blank Conc. ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1 1-Dichloroethene	ug/Kg thane	4.4 4.6 2.6 4.7 2.9 1.5	PQL 10 10 10 10 10 10	Method Blank Conc. ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113	ug/Kg thane	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7	PQL 10 10 10 10 10 10 10 10	Method Blank Conc. ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride	ug/Kg thane	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0	PQL 10 10 10 10 10 10 10 10 10	Method Blank Conc. ND ND ND ND ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroet	ug/Kg thane hane	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1	PQL 10 10 10 10 10 10 10 10 10 10	Method Blank Conc. ND ND ND ND ND ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroet MTBE	ug/Kg thane hane	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1 2.6	PQL 10 10 10 10 10 10 10 10 10 10 10	Method Blank Conc. ND ND ND ND ND ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol	ug/Kg thane hane	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1 2.6 21	PQL 10 10 10 10 10 10 10 10 10 10 50	Method Blank Conc. ND ND ND ND ND ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol Diisopropyl ether (D	ug/Kg thane hane hane bithene	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1 2.6 21 2.2	PQL 10 10 10 10 10 10 10 10 10 10 50 10	Method Blank Conc. ND ND ND ND ND ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane	ug/Kg thane hane hane bithene	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1 2.6 21 2.2 1.3 0.4	PQL 10 10 10 10 10 10 10 10 10 10 10 10 10	Method Blank Conc. ND ND ND ND ND ND ND ND ND ND ND ND ND				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane ETBE	ug/Kg thane hane hane bithene DIPE)	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1 2.6 21 2.2 1.3 2.4 4 8	PQL 10 10 10 10 10 10 10 10 10 10	Method Blank Conc.				
Units: Parameters Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Trichlorofluorometh 1,1-Dichloroethene Freon 113 Methylene Chloride trans-1,2-Dichloroeth MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane ETBE cis-1,2-Dichloroethane 2,2-Dichloropropage	ug/Kg thane nane ethene DIPE) ene	MDL 4.4 4.6 2.6 4.7 2.9 1.5 3.7 2.0 1.1 2.0 1.1 2.6 21 2.2 1.3 2.4 1.8 1.2	PQL 10 10 10 10 10 10 10 10 10 10 10 10 10	Method Blank Conc.				

Work Order:	1004055	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy Metho	tical	SW8260B	Analyzed Date:	04/14/10	Analytical Batch:	400591
Units:	ug/Kg	metrie					Baton.	
Parameters		MDL	PQL	Method Blank Conc.				
Chloroform		1.2	10	ND				
Carbon Tetrachloride	e	1.6	10	ND				
1,1,1-Trichloroethane	е	1.2	10	ND				
1,1-Dichloropropene		1.4	10	ND				
Benzene		1.5	10	ND				
TAME		2.1	10	ND				
1,2-Dichloroethane		1.9	10	ND				
Trichloroethylene		3.9	10	ND				
Dibromomethane		2.2	10	ND				
1,2-Dichloropropane		1.3	10	ND				
Bromodichlorometha	ine	1.1	10	ND				
2-Chloroethyl vinyl e	ther	4.5	10	ND				
cis-1,3-Dichloroprope	ene	1.4	10	ND				
Toluene		0.98	10	ND				
Tetrachloroethylene		1.8	10	ND				
trans-1,3-Dichloropro	opene	1.2	10	ND				
1,1,2-Trichloroethane	е	1.8	10	ND				
Dibromochlorometha	ane	1.1	10	ND				
1,3-Dichloropropane		2.1	10	ND				
1,2-Dibromoethane		1.7	10	ND				
Ethyl Benzene		0.86	10	ND				
Chlorobenzene		4.2	10	ND				
1,1,1,2-Tetrachloroe	thane	0.86	10	ND				
m,p-Xylene		1.9	10	ND				
o-Xylene		0.66	5.0	ND				
Styrene		0.77	10	ND				
Bromoform		1.9	10	ND				
Isopropyl Benzene		1.2	10	ND				
n-Propylbenzene		1.4	10	ND				
Bromobenzene		1.2	10	ND				
1,1,2,2-Tetrachloroe	thane	3.0	10	ND				
1,3,5-Trimethylbenze	ene	1.1	10	ND				
1,2,3-Trichloropropa	ne	3.3	10	ND				
4-Chlorotoluene		1.6	10	ND				
2-Chlorotoluene		1.6	10	ND				
tert-Butylbenzene		1.4	10	ND				
1,2,4-Trimethylbenze	ene	1.1	10	ND				
sec-Butyl Benzene		1.6	10	ND				
p-lsopropyltoluene		1.5	10	ND				
1,3-Dichlorobenzene	•	1.8	10	ND				

Work Order:	1004055	Prep	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	SW8260B	Analyzed Date:	04/14/10	Analytical	400591
Units:	ug/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
1,4-Dichlorobenzen	е	1.5	10	ND				
n-Butylbenzene		2.2	10	ND				
1,2-Dichlorobenzene	е	1.3	10	ND				
1,2-Dibromo-3-Chlo	ropropane	4.2	10	ND				
Hexachlorobutadien	e	2.6	10	ND				
1,2,4-Trichlorobenze	ene	2.1	10	ND				
Naphthalene		2.8	10	ND				
1,2,3-Trichlorobenze	ene	2.9	10	ND				
(S) Dibromofluorom	ethane			130 %				
(S) Toluene-d8				92.4 %				
(S) 4-Bromofluorobe	enzene			105 %				

LCS/LCSD Summary Report

				LC3/	LC2D 2	ummary	Report	Raw value	es are used in	quality contro	ol assessment.
Work Order:	1004055		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Soil		Analytical	8260)TPH	Analyze	d Date:	04/14/10	Analytic	al 400	588
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		17	100		1000	90.5	108	17.5	48.2 - 132	30	
(S) 4-Bromofluor	obenzene				50	100			57 - 127		
Work Order:	1004055		Prep Meth	od: 3545	5_TPH	Prep Da	te:	04/15/10	Prep Ba	tch: 028	5
Matrix:	Soil		Analytical	SW8	8015B	Analyze	d Date:	04/15/10	Analytic Batch:	al 400	590
Units:	mg/Kg		wethou.						Daten.		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel		0.76	2.0		33.33	76.1	74.9	1.62	50.8 - 111	30	
Pentacosane (S)					100	90.2			61.5 - 133		
Work Order:	1004055		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Soil		Analytical	SW8	3260B	Analyze	d Date:	04/14/10	Analytic	al 400	591
Units:	ug/Kg		wethod:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	1.5	10		50	95.9	102	6.04	53.7 - 139	30	
Benzene		1.5	10		50	95.4	105	9.24	66.5 - 135	30	
Trichloroethylene		3.9	10		50	100	110	8.94	57.5 - 150	30	
l oluene		0.98	10		50	86.2	89.3	3.49	56.8 - 134	30	
		4.2	10		50	89.2	91.8	2.89	57.4 - 134	30	
(5) Dibromotiuoro	omethane				50	119			59.8 - 148		
(S) 4-Bromofluor	henzene				50 50	90.4 81 1			55 8 - 141		
(0) 4-DIOINOINUOI	DUCITZEITE				50	01.1			55.0 - 141		

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: ECM Group	Date and Time Received: 4/14/2010 10:05
Project Name: 5427 Telegraph, Oakland	Received By: <u>NG</u>
Work Order No.: <u>1004055</u>	Physically Logged By: <u>NG</u>
	Checklist Completed By: NG
	Carrier Name: Torrent Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Recei	pt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>3</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	
pH Checked by:	pH Adjusted by:

Login Summary Report

Client ID:	TL5158	ECM Group			QC	CLevel:		
Project Name:	5427 Telegraph	, Oakland			ТА	T Reques	ted: 5+ day:0	
Project # :	02-181-10				Da	te Receive	ed: 4/14/2010	
Report Due Date:	4/21/2010				Tir	ne Receiv	ed: 10:05	
Comments:	5 day TAT!!! Re jgreen@ecmgrp	cv'd 1 brass sleeve and .com.	3 encores for	TPHg ; BTEX ; I	Fuel Oxyge	enates and	Stoddard Solvent.P	ls. email to
Work Order # :	1004055							
WO Sample ID	<u>Client</u> Sample ID	<u>Collection</u> Date/Tin	on <u>Matrix</u> ne	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	Subbed
1004055-001A	MW-5 d 11'	04/13/10 12	2:20 Soil	10/11/10			S_TEPH En_8260Pet S_GCMS-GRO	
Sample Note:	Received 1 Brass	sleeve and 3 Encores (TPHg,8260Pe	et analyze from e	encores.)			

		483 Sincl	air Fronta	ige Road			1967) 1977 1977	a.) 	
1	Torren	Milpitas, C Phone: 4	CA 95035 08.263.52	58 <u>RESE</u>	<u>it</u>	· C	;HA	IN	OF	Cl	JST	'OE)Y			LABWO	NRK ORDER N	10
5	LABORATORY, IN	FAX: 408	.263.8293 entlab.com	n San San San San San San San San San Sa	•NO	TE: SHA	DED A	REAS	ARE F	OR TO	RREN	IT LAB	USE	DNLY •		00	405	5
Compan	y Name: ECM	,				Locati	on of S	ampling	g: 5	427	-	relei	d ray	the state	hat	(an	1	
Address	: P.O.Box 802	1		1		Purpo	se: 0	2-1	81-1	D		0			~			_
City: Be	nicia	State: CA		Zip Code:	94510	Specia	al Instru	Ictions	/ Comm	ients:								
Telephor	ne: 707 751 0655	FAX: 707 751	0653															-
REPORT	то:	SAMPLER	t: Dougi	as west	J.M. GRE	FI P.O. #	:07-	-181-	10		· /	EMAIL:	eemg	p@aol.	com j	green	~ ecm	grp.(
TURNAR	OUND TIME: Standard	(SAM	PLE TYPE	÷	REPORT	FORMAT:			X								,	
10 Wor 7 Work 5 Wori	k Days 3 Work Days N (Days 2 Work Days 2 k Days 1 Work Days 2	oon - Nxt Day	itorm Water Vaste Water Ground Water Soil	Air Other	QC Leve EDF Excel / f	silV EDD	H(C)	LEX	devetes	odolord "						R	NALYSIS EQUESTED	(_
LAB ID	CLIENT'S SAMPLE I.D	DATE	/ TIME PLED	MATRIX	# OF CONT	CONT TYPE	Ĩ	3	2 y	F.		·				R	EMARKS	
001A	MW-5d 11'	4/13/10	12!20	5	1/3		\checkmark	\checkmark	\checkmark	\checkmark								\$
4	I					ļ												
																		-
					<u> </u>									!				
					-													_
	· ·	~					1										30	·
																Ten	M'	
		· · ·			+				<u> </u>			-		+		1-		-
		·			· · · · ·							·	-	+'		<u> </u>		-
										ļ'	ļ							_
1 Reling	Pr	Int:	Date///	4/10	Time: '.()SAM	Receiv	red By:	hada	2.92	Print:			Date:	4-10	Tir	me: 10:05 A	m
2 Reling	Juished By: Pr	int:	Date:	<u> '</u>	Time:		Receiv	red By:	risian	<u> </u>	Print:	1		Date:	19. A 19.	Tir	me:	
Were Sar	mples Received in Good Condif	ion? Ves	NO S	Samples on F	ce? 1 Yes	s 🗍 NO	Metho	d of Shir	oment	ol	11	<u>, ,, ,, , , , , , , , , , , , , , , , </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	Sample sr	eals intac	ct? Yr		/ N/A
NOTE: Sa	amples are discarded by t	he laboratory 30 da	lys from da	ite of receipt	unless other	r arrange	-men	ts are m	ade.		<u>.</u>				Page	e (of	_
Log In By:	- Unna	Date:	4/14	10-1	Log In Revie	wed By: _	nin . The set		en pres proteça d	an a	Da	ite:	2.2 · · ·	4 2 10 1 21 10 1				_

ECM Group P.O. Box Benicia, California 94510 Tel: 707-751-0655 Fax: 707-751-0653 Email: rguptel@ecmgrp.com

RE: 5427 Telegraph Ave

Work Order No.: 1004050 Rev: 2

Dear Jim Green:

Torrent Laboratory, Inc. received 7 sample(s) on April 13, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sz-

Patti Sandrock

April 21, 2010

Date

Date: 4/21/2010

Client: ECM Group Project: 5427 Telegraph Ave Work Order: 1004050

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

REVISIONS:

Per client request, TPH as Mineral Spirits are reported where appropriate rather than "not typical" Gasoline. Because TPH as Mineral Spirits was not originally requested, the standard used for quatification was analyzed post sample analysis.

5/3/10

Sample Result Summary

Report prepared for: Jim Green				Date F	Received: (04/13/10
ECM Group				Date F	Reported: ()4/21/10
B-31d 5'					1004	4050-001A
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH as Stoddard	SW8015B	1	0.758	3.3	22	mg/Kg
TPH(Mineral Spirits)	TPH-GCMS	100	2200	13000	190000	ug/Kg
B-31d 10'					1004	4050-002A
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Stoddard	SW8015B	10	7.58	33	480	mg/Kg
TPH(Mineral Spirits)	TPH-GCMS	1000	16000	94000	960000	ug/Kg
B-31d 10'					1004050	-002A100×
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-detectable for this sample.						
B-31d 15'					1004	4050-003A
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Stoddard	SW8015B	1	0.758	3.3	11	mg/Kg
TPH(Mineral Spirits)	TPH-GCMS	100	1700	10000	74000	ug/Kg
B-31d 15'					1004050	-003A100×
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-detectable for this sample.						
B-31d 20'					1004	4050-004A
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH(Mineral Spirits)	TPH-GCMS	1	18	110	400	ug/Kg

Sample Result Summary

Report prepared for:	Jim Green				Date F	Received:	04/13/10
B-31d 25'	ECM Group				Date F	teported: 100	04/21/10 04050-005A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH(Mineral Spirits)		TPH-GCMS	100	2200	13000	20000	ug/Kg
B-31d 30'						100	04050-006A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH as Stoddard		SW8015B	1	0.758	3.3	7.4	mg/Kg
TPH(Mineral Spirits)		TPH-GCMS	100	1700	10000	27000	ug/Kg
B-31d 35'						100	04050-007A
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Stoddard		SW8015B	5	3.79	16.5	99	mg/Kg
TPH(Mineral Spirits)		TPH-GCMS	250	4500	26000	95000	ug/Kg
B-31d 35'						100405	0-007A100x
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

Report prepared for:	Jim Green ECM Group							Da Da	te Rece te Repo	eived: 04/1 orted: 04/2	3/10 1/10
Client Sample ID:	B-31d 5'				Lab Sa	mple ID:	10040	050-001A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	07-181-10				-						
Date/Time Sampled:	04/12/10 / 10:3	30									
Tag Number:	5427 Telegrap	h Ave									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
			-								
МТВЕ	SW8260B	NA	04/14/10	1	3.9	15	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	31	76	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	3.3	15	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	3.6	15	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	2.3	15	ND		ug/Kg	400591	NA
TAME	SW8260B	NA	04/14/10	1	3.1	15	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.9	15	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	1.5	15	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	2.6	15	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	1.3	15	ND		ug/Kg	400591	NA

1

1

1

1

 (S) 4-Bromofluorobenzene
 SW8260B
 NA
 04/14/10
 1
 55.8
 141
 0.000
 S
 %
 400591

 NOTE:
 Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers. S - Low surrogate (BFB) recovery attributed to TPH interference (heavy hydrocarbons).
 NA
 04/14/10
 1
 55.8
 141
 0.000
 S
 %
 400591

04/14/10

04/14/10

04/14/10

04/14/10

SW8260B

SW8260B

SW8260B

SW8260B

NA

NA

NA

NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	22	-	mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	88.6		%	400590	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	100	2200	13000	ND		ug/Kg	400588	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	100	2200	13000	190000		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	100	57	127	110		%	400588	NA

2.8

1.0

59.8

55.2

15

7.6

148

133

ND

ND

194

138

ug/Kg

ug/Kg

%

%

S

s

400591

400591

400591

400591

NA

NA

NA

NA

NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

m,p-Xylene

(S) Toluene-d8

(S) Dibromofluoromethane

o-Xylene

Report prepared for:	Jim Green ECM Group							Da Da	te Rece te Repo	eived: 04/1 orted: 04/2	3/10 1/10
Client Sample ID: Project Name/Location: Project Number: Date/Time Sampled: Tag Number:	B-31d 10' 5427 Telegrap 07-181-10 04/12/10 / 10:4 5427 Telegrap	h Ave 40 h Ave			Lab Sar Sample	mple ID: Matrix:	10040 Soil	950-002A			
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	100	240	940	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	100	2000	4700	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	100	210	940	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	100	230	940	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	100	140	940	ND		ug/Kg	400591	NA
TAME	SW8260B	NA	04/14/10	100	190	940	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	100	180	940	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	100	92	940	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	100	160	940	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	100	81	940	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	100	170	940	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	100	62	470	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	100	59.8	148	114		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	100	55.2	133	84.5		%	400591	NA

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers. Reporting limit raised due to significant amount of heavy hydrocarbons.

141

104

55.8

%

400591

04/14/10 100

NA

SW8260B

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	10	7.58	33	480	•	mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	10	53.3	124	82.7		%	400590	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	1000	16000	94000	ND	1	ug/Kg	400588	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	1000	16000	94000	960000		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	1000	57	127	84		%	400588	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

(S) Toluene-d8

(S) 4-Bromofluorobenzene

NA

Ethyl Benzene

(S) Toluene-d8

(S) Dibromofluoromethane

m,p-Xylene

o-Xylene

SAMPLE RESULTS

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	ived: 04/1 orted: 04/2	3/10 1/10
Client Sample ID:	B-31d 15'				Lab Sar	nple ID:	10040	50-003A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	07-181-10										
Date/Time Sampled:	04/12/10 / 11:0	00									
Tag Number:	5427 Telegrap	h Ave									
	Analysis	Prop	Date	DE	MDI	POI	Posults	Lah	Unit	Analytical	Prop
Parameters:	Method	Date	Analyzed	ы	MDE	1.42	Results	Qualifier	onit	Batch	Batch
MTBE	SW8260B	NA	04/14/10	100	260	1000	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	100	2100	5100	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	100	220	1000	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	100	240	1000	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	100	150	1000	ND		ug/Kg	400591	NA
TAME	SW8260B	NA	04/14/10	100	210	1000	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	100	190	1000	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	100	99	1000	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	100	180	1000	ND		ug/Kg	400591	NA

 (S) 4-Bromofluorobenzene
 SW8260B
 NA
 04/14/10
 100
 55.8
 141
 96.0
 %
 400591
 NA

 NOTE:
 Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers. Reporting limit raised due to significant amount of heavy hydrocarbons.
 NA

04/14/10 100

04/14/10 100

04/14/10 100

04/14/10 100

04/14/10 100

1000

1000

510

148

133

87

190

67

59.8

55.2

ND

ND

ND

127

91.6

SW8260B

SW8260B

SW8260B

SW8260B

SW8260B

NA

NA

NA

NA

NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	11		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	85.4		%	400590	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	100	1700	10000	ND		ug/Kg	400601	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	100	1700	10000	74000		ug/Kg	400601	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	100	57	127	100		%	400601	NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

400591

400591

400591

400591

400591

NA

NA

NA

NA

NA

ug/Kg

ug/Kg

ug/Kg

%

%

Report prepared for:	Jim Green ECM Group							Da Da	te Rece te Repo	eived: 04/1 orted: 04/2	3/10 1/10
Client Sample ID:	B-31d 20'				Lab Sa	mple ID:	10040	50-004A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	07-181-10										
Date/Time Sampled:	04/12/10 / 11:2	20									
Tag Number:	5427 Telegrap	h Ave									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	1	2.7	11	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	22	53	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.3	11	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	2.5	11	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	1.6	11	ND		ug/Kg	400591	NA
TAME	SW8260B	NA	04/14/10	1	2.2	11	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.0	11	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	1.0	11	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	1.8	11	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	0.91	11	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	1.9	11	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.69	5.3	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	139		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	95.5		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	88.4		%	400591	NA

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	79.8		%	400590	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	1	18	110	ND	1	ug/Kg	400588	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	1	18	110	400		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	1	57	127	92		%	400588	NA

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	ived: 04/1 orted: 04/2	3/10 1/10
Client Sample ID:	B-31d 25'				Lab Sa	mple ID:	10040	50-005A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	07-181-10										
Date/Time Sampled:	04/12/10 / 11:4	0									
Tag Number:	5427 Telegrap	h Ave.,Oa	kland								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	1	2.6	9.9	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	21	50	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	2.2	9.9	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	2.4	9.9	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	1.5	9.9	ND		ug/Kg	400591	NA
TAME	SW8260B	NA	04/14/10	1	2.0	9.9	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	1.9	9.9	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	0.97	9.9	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	1.7	9.9	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	0.85	9.9	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	1.8	9.9	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.65	5.0	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	126		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	88.6		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	112		%	400591	NA

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers. Reporting limit raised due to significant amount of heavy hydrocarbons.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	ND		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	86.0		%	400590	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	100	2200	13000	ND		ug/Kg	400588	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	100	2200	13000	20000		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	100	57	127	130	S	%	400588	NA

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	vived: 04/13	3/10 1/10
Client Sample ID:	B-31d 30'				Lab Sar	nple ID:	10040	50-006A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	07-181-10										
Date/Time Sampled:	04/12/10 / 12:0	0									
Tag Number:	5427 Telegrap	h Ave.,Oa	kland								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	1	3.7	15	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	1	30	73	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	1	3.2	15	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	1	3.5	15	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	1	2.2	15	ND		ug/Kg	400591	NA
ТАМЕ	SW8260B	NA	04/14/10	1	3.0	15	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	1	2.8	15	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	1	1.4	15	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	1	2.5	15	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	1	1.2	15	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	1	2.7	15	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	1	0.96	7.3	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	1	59.8	148	184	S	%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	1	55.2	133	131		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	1	55.8	141	206	S	%	400591	NA

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/15/10	1	0.758	3.3	7.4		mg/Kg	400590	0285
Pentacosane (S)	SW8015B	4/15/10	04/15/10	1	53.3	124	87.0		%	400590	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	100	1700	10000	ND		ug/Kg	400588	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	100	1700	10000	27000		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	100	57	127	100		%	400588	NA

Report prepared for:	Jim Green ECM Group							Dat Dat	te Rece te Repo	ived: 04/13 orted: 04/2	3/10 1/10
Client Sample ID:	B-31d 35'				Lab Sar	mple ID:	10040	50-007A			
Project Name/Location:	5427 Telegrap	h Ave			Sample	Matrix:	Soil				
Project Number:	07-181-10										
Date/Time Sampled:	04/12/10 / 12:3	80									
Tag Number:	5427 Telegrap	h Ave.,Oa	kland								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
МТВЕ	SW8260B	NA	04/14/10	100	270	1100	ND		ug/Kg	400591	NA
tert-Butanol	SW8260B	NA	04/14/10	100	2200	5300	ND		ug/Kg	400591	NA
Diisopropyl ether (DIPE)	SW8260B	NA	04/14/10	100	230	1100	ND		ug/Kg	400591	NA
ETBE	SW8260B	NA	04/14/10	100	250	1100	ND		ug/Kg	400591	NA
Benzene	SW8260B	NA	04/14/10	100	160	1100	ND		ug/Kg	400591	NA
ТАМЕ	SW8260B	NA	04/14/10	100	220	1100	ND		ug/Kg	400591	NA
1,2-Dichloroethane	SW8260B	NA	04/14/10	100	200	1100	ND		ug/Kg	400591	NA
Toluene	SW8260B	NA	04/14/10	100	100	1100	ND		ug/Kg	400591	NA
1,2-Dibromoethane	SW8260B	NA	04/14/10	100	180	1100	ND		ug/Kg	400591	NA
Ethyl Benzene	SW8260B	NA	04/14/10	100	91	1100	ND		ug/Kg	400591	NA
m,p-Xylene	SW8260B	NA	04/14/10	100	190	1100	ND		ug/Kg	400591	NA
o-Xylene	SW8260B	NA	04/14/10	100	69	530	ND		ug/Kg	400591	NA
(S) Dibromofluoromethane	SW8260B	NA	04/14/10	100	59.8	148	124		%	400591	NA
(S) Toluene-d8	SW8260B	NA	04/14/10	100	55.2	133	93.3		%	400591	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	04/14/10	100	55.8	141	112		%	400591	NA

NOTE: Final result and PQL (Reporting Limit) has been corrected for actual mass removed from Encore containers. Reporting limit raised due to significant amount of heavy hydrocarbons.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	4/15/10	04/19/10	5	3.79	16.5	99		mg/Kg	400607	0285
Pentacosane (S)	SW8015B	4/15/10	04/19/10	5	53.3	124	69.0		%	400607	0285
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	TPH-GCMS	NA	04/14/10	250	4500	26000	ND		ug/Kg	400588	NA
TPH(Mineral Spirits)	TPH-GCMS	NA	04/14/10	250	4500	26000	95000		ug/Kg	400588	NA
(S) 4-Bromofluorobenzene	TPH-GCMS	NA	04/14/10	250	57	127	90		%	400588	NA

Work Order:	1004050	Prep	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	8260TPH	Analyzed Date:	04/14/10	Analytical	400588
Uniter		Metho	od:	02001111	, mary rou balor	0 1/1 1/10	Batch:	100000
Units:	ug/Kg							
Parameters		MDL	PQL	Method Blank Conc.				
TPH(Gasoline) (S) 4-Bromofluorob	enzene	17	100	ND 94.5				
Work Order:	1004050	Prep I	Method:	3545_TPH	Prep Date:	04/15/10	Prep Batch:	0285
Matrix:	Soil	Analy	tical	SW8015B	Analyzed Date:	04/15/10	Analytical	400590
Units:	mg/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
TPH as Diesel		0.758	2.0	ND				
TPH as Motor Oil		1.8	4.0	ND				
TPH as Stoddard		0.758	3.3	ND				
Pentacosane (S)				86.4				
Work Order:	1004050	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	SW8260B	Analyzed Date:	04/14/10	Analytical Batabu	400591
Units:	ug/Kg	Weth	Ju.				Batch.	
Parameters		MDL	PQL	Method Blank Conc.				
Dichlorodifluoromet	hane	4.4	10	ND				
Chloromethane		4.6	10	ND				
Vinyl Chloride		2.6	10	ND				
Bromomethane		4.7	10	ND				
Trichlorofluorometh	ane	2.9	10	ND				
1,1-Dichloroethene		1.5	10	ND				
Freon 113		3.7	10	ND				
Methylene Chloride		2.0	10	ND				
Methylene Chloride trans-1,2-Dichloroet	thene	2.0 1.1	10 10	ND ND				
Methylene Chloride trans-1,2-Dichloroet MTBE	thene	2.0 1.1 2.6	10 10 10	ND ND ND				
Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol	thene	2.0 1.1 2.6 21	10 10 10 50	ND ND ND ND				
Methylene Chloride trans-1,2-Dichloroel MTBE tert-Butanol Diisopropyl ether (D	thene DIPE)	2.0 1.1 2.6 21 2.2	10 10 10 50 10	ND ND ND ND ND				
Methylene Chloride trans-1,2-Dichloroel MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane	thene NPE)	2.0 1.1 2.6 21 2.2 1.3	10 10 10 50 10 10	ND ND ND ND ND ND				
Methylene Chloride trans-1,2-Dichloroel MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane ETBE	thene DIPE)	2.0 1.1 2.6 21 2.2 1.3 2.4	10 10 50 10 10 10	ND ND ND ND ND ND ND				
Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane ETBE cis-1,2-Dichloroethe	thene DIPE) ene	2.0 1.1 2.6 21 2.2 1.3 2.4 1.8	10 10 50 10 10 10 10	ND ND ND ND ND ND ND ND				
Methylene Chloride trans-1,2-Dichloroet MTBE tert-Butanol Diisopropyl ether (D 1,1-Dichloroethane ETBE cis-1,2-Dichloroethe 2,2-Dichloropropane	thene DIPE) ene e	2.0 1.1 2.6 21 2.2 1.3 2.4 1.8 1.2	10 10 50 10 10 10 10 10	ND ND ND ND ND ND ND ND ND				

Work Order:	1004050	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy Metho	tical	SW8260B	Analyzed Date:	04/14/10	Analytical Batch:	400591
Units:	ug/Kg	Methe					Baten.	
Parameters		MDL	PQL	Method Blank Conc.				
Chloroform		1.2	10	ND				
Carbon Tetrachloride	Э	1.6	10	ND				
1,1,1-Trichloroethan	e	1.2	10	ND				
1,1-Dichloropropene		1.4	10	ND				
Benzene		1.5	10	ND				
TAME		2.1	10	ND				
1,2-Dichloroethane		1.9	10	ND				
Trichloroethylene		3.9	10	ND				
Dibromomethane		2.2	10	ND				
1,2-Dichloropropane		1.3	10	ND				
Bromodichlorometha	ane	1.1	10	ND				
2-Chloroethyl vinyl e	ther	4.5	10	ND				
cis-1,3-Dichloroprop	ene	1.4	10	ND				
Toluene		0.98	10	ND				
Tetrachloroethylene		1.8	10	ND				
trans-1,3-Dichloropro	opene	1.2	10	ND				
1,1,2-Trichloroethan	е	1.8	10	ND				
Dibromochlorometha	ane	1.1	10	ND				
1,3-Dichloropropane		2.1	10	ND				
1,2-Dibromoethane		1.7	10	ND				
Ethyl Benzene		0.86	10	ND				
Chlorobenzene		4.2	10	ND				
1,1,1,2-Tetrachloroe	thane	0.86	10	ND				
m,p-Xylene		1.9	10	ND				
o-Xylene		0.66	5.0	ND				
Styrene		0.77	10	ND				
Bromoform		1.9	10	ND				
Isopropyl Benzene		1.2	10	ND				
n-Propylbenzene		1.4	10	ND				
Bromobenzene		1.2	10	ND				
1,1,2,2-Tetrachloroe	thane	3.0	10	ND				
1,3,5-Trimethylbenze	ene	1.1	10	ND				
1,2,3-Trichloropropa	ne	3.3	10	ND				
4-Chlorotoluene		1.6	10	ND				
2-Chlorotoluene		1.6	10	ND				
tert-Butylbenzene		1.4	10	ND				
1,2,4-Trimethylbenze	ene	1.1	10	ND				
sec-Butyl Benzene		1.6	10	ND				
p-lsopropyltoluene		1.5	10	ND				
1,3-Dichlorobenzene	9	1.8	10	ND				
1.4-Dichlorobenzene	<u>,</u>	1.5	10	ND				

Work Order:	1004050	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analytical		SW8260B	Analyzed Date:	04/14/10	Analytical	400591
Units:	ug/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
n-Butylbenzene		2.2	10	ND				
1,2-Dichlorobenzene		1.3	10	ND				
1,2-Dibromo-3-Chloropropane		4.2	10	ND				
Hexachlorobutadiene		2.6	10	ND				
1,2,4-Trichlorobenzene		2.1	10	ND				
Naphthalene		2.8	10	ND				
1,2,3-Trichlorobenzene		2.9	10	ND				
(S) Dibromofluoromethane				130				
(S) Toluene-d8				92.4				
(S) 4-Bromofluorobenzene				105				
Work Order:	1004050	Prep Method:		NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	8260TPH	Analyzed Date:	04/14/10	Analytical	400601
Units:	ug/Kg	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
TPH(Gasoline) (S) 4-Bromofluorobenzene		17	100	ND 75.8				

LCS/LCSD Summary Report

								Raw value	es are used in	quality contro	o assessment.	
Work Order:	1004050		Prep Metho	od: NA		Prep Da	ate: NA Prep Batch: NA					
Matrix:	Soil		Analytical	8260TPH Analyzed Date:		04/14/10	Analytical 400588					
Units:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
TPH(Gasoline) (S) 4-Bromofluorobenzene		17	100		1000 50	90.5 100	108 89.1	17.5	48.2 - 132 57 - 127	30		
Work Order: 1004050			Prep Method: 3545_TPH			Prep Date: 04/15/10			Prep Batch: 0285			
Matrix: Units:	Soil mg/Kg		Analytical Method:	SW8	015B	5B Analyzed Date:		04/15/10	Analytical 400590 Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
TPH as Diesel		0.76	2.0		33.33	76.1	74.9	1.62	50.8 - 111	30	•	
Pentacosane (S)					100	90.2	87.2		61.5 - 133			
Work Order:	1004050		Prep Method: NA		Prep Date: N/		NA	Prep Batch: NA				
Matrix:	Soil		Analytical SW		260B	Analyzed Date:		04/14/10	Analytical 400591		591	
Units:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
1,1-Dichloroether	ie	1.5	10		50	95.9	102	6.04	53.7 - 139	30		
Benzene		1.5	10		50	95.4	105	9.24	66.5 - 135	30		
Trichloroethylene		3.9	10		50	100	110	8.94	57.5 - 150	30		
l oluene Chlorobonzono		0.98	10		50	86.2	89.3	3.49	56.8 - 134 57 4 124	30		
(S) Dibromofluoro	methane	4.2	10		50 50	09.2 110	91.0 128	2.09	50.8 - 148	30		
(S) Toluene-d8				50	90.4	91.9		55.2 - 133				
(S) 4-Bromofluoro	benzene				50	81.1	107		55.8 - 141			
Work Order:	1004050	_	Prep Method: NA		Prep Date:		NA	Prep Batch: NA				
Matrix: Units:	Soil ug/Kg		Analytical Method:	8260	TPH	Analyzed Date: 0		04/14/10	Analytical 400601 Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
TPH(Gasoline)		17	100		1000	119	93.8	24.0	48.2 - 132	30		
(S) 4-Bromofluoro	benzene				50	92.1	85.1		57 - 127			

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Date and Time Received: 4/13/2010 15:30 Client Name: ECM Group Project Name: 5427 Telegraph Ave Received By: navin Work Order No.: 1004050 Physically Logged By: Checklist Completed By: Iorna Carrier Name: Gold Bullet Courier Chain of Custody (COC) Information Chain of custody present? Yes Chain of custody signed when relinquished and received? Yes Chain of custody agrees with sample labels? Yes Custody seals intact on sample bottles? Not Present Sample Receipt Information Custody seals intact on shipping container/cooler? Not Present Shipping Container/Cooler In Good Condition? Yes Samples in proper container/bottle? Yes Samples containers intact? Yes Sufficient sample volume for indicated test? Yes Sample Preservation and Hold Time (HT) Information All samples received within holding time? Yes Container/Temp Blank temperature in compliance? Temperature: 2 °C Water-VOA vials have zero headspace? No VOA vials submitted Water-pH acceptable upon receipt? pH Checked by: pH Adjusted by:

Login Summary Report

Client ID:	TL5158	ECM Group				Q	CLevel:	П	
Project Name:	5427 Telegraph	Ave				ТА	T Reques	ted: 5+ day:0	
Project # :	07-181-10					Da	te Receive	ed: 4/13/2010	
Report Due Date:	4/20/2010					Tir	ne Receiv	ed: 15:30	
Comments:	5 day TAT!! Rec an EDF result to	cv'd 7 soil samples (s b jgreen@ecmgrp.cor	leeve an n.	d encores)	for TPHg; BT	EX ; Fuel (Oxygenate	s and Stoddard Solve	nt.Pls. email
Work Order # :	1004050								
WO Sample ID	<u>Client</u> Sample ID	<u>Colle</u> Date/	<u>ction</u> Time	Matrix	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	Subbed
1004050-001A	B-31d 5'	04/12/10	10:30	Soil	10/10/10			EDF S_YBGCMS-TPPH En_8260Pet CO S_TEPH	
Sample Note:	Added TPH as Mi	n Spirit - re-integrate	and rep	ort fro orig	inal run. Use f	flags if nec	essary		
1004050-002A	B-31d 10'	04/12/10	10:40	Soil	10/10/10			En_8260Pet S_YBGCMS-TPPH S_TEPH	
Sample Note:	Received 1 sleeve	e and 3 encores.							
1004050-003A	B-31d 15'	04/12/10	11:00	Soil	10/10/10			S_YBGCMS-TPPH S_TEPH En_8260Pet	
Sample Note:	Received 1 sieeve	e and 3 encores. $01/12/10$	11.20	Soil	10/10/10				
1004030-004A	D-310 20	04/12/10	11.20	301	10/10/10			S_YBGCMS-TPPH S_TEPH En_8260Pet	
Sample Note:	Received 1 sleeve	e and 3 encores.							
1004050-005A	B-31d 25'	04/12/10	11:40	Soil	10/10/10			S_YBGCMS-TPPH S_TEPH En_8260Pet	
Sample Note:	Received 1 sleeve	e and 3 encores.							
1004050-006A	B-31d 30'	04/12/10	12:00	Soil	10/10/10			S_YBGCMS-TPPH S_TEPH En_8260Pet	
Sample Note:	Received 1 sleeve	e and 3 encores.							
1004050-007A	B-31d 35'	04/12/10	12:30	Soil	10/10/10				

Login Summary Report

Client ID:	TL5158	ECM Group				Q	C Level:	П	
Project Name:	5427 Telegraph	Ave				Т	AT Request	ed: 5+ day:0	
Project # :	07-181-10					D	ate Receive	ed: 4/13/201	0
Report Due Date:	4/20/2010					Ti	me Receive	ed: 15:30	
Comments:	5 day TAT!! Rec an EDF result to	v'd 7 soil sam jgreen@ecm	ples (sleeve a grp.com.	nd encores)	for TPHg; BT	EX ; Fuel	Oxygenates	s and Stoddard S	olvent.Pls. email
Work Order # :	1004050								
WO Sample ID	<u>Client</u> Sample ID		Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	Subbed
								S_YBGCMS-TF S_TEPH En_8260Pet	'PH
Sample Note:	Received 1 sleeve	e and 3 encore	es.						

∏ ≡ Torrent	483 Sinclair Fronta Milpitas, CA 9503 Phone: 408.263.52	age Road 5 258 RESE	T	C	CH2	IN	OF	CL	ISTO	DY		LA	
LABORATORY, INC.	FAX: 408.263.829 www.torrentlab.com	m	• NO1	E: SHA	DED A	REAS	ARE F	OR TO	RRENT L	AB USE	ONLY •	100	4050
Company Name: ECM				Locati	on of Sa	ampling	: 54	27 '	Telegray	oh Ave	, Oa	kland	
Address: P.O.Box 802				Purpo	se:	67-1	81-1	0	•				
City: Benicia St	ate: CA	Zip Code	94510	Specia	al Instru	ctions /	Comm	ents:	۶.				
elephone: 707 751 0655 FAX	£ 707 751 0653					5							
REPORT TO: JIM GREEN	SAMPLER: Doug	tas West	JIN GRE	P.O. 1	# 07-	181-1	0	4	EMA	IL: _ecmg	rp@aol.	<u>و</u> ن سود	ena ecngrp.q
URNAROUND TIME: Sfc, C.r.q 10 Work Days 3 Work Days Noon - No 7 Work Days 2 Work Days 2-8 Hou 5 Work Days 1 Work Days 0 ther	xt Day	E: Air Other	CC Leve	ORMAT:	H(G)	TEX	ygenetes/	toddard Solve					ANALYSIS REQUESTED
LAB ID CLIENT'S SAMPLE I.D.	SAMPLED	MATRIX	# OF CONT	CONT	F	69	Lo	S					REMARKS
001A B-31 d 5'	10:30	S	1/3	ł	V	\checkmark	V	V,					`
1021A B-31 d 10'	10:40 4/12/1	95			\int	\checkmark	V	$\overline{\mathbf{A}}$					
203A B-31d 15'	11:00	5	3		\checkmark	[/	\checkmark	/					
0041× 3.31 d 20'	11:20	5	Ý		\checkmark	\checkmark	\checkmark	\checkmark					
10574 B-31 d 25'	11:40	S			~	1	\checkmark)			_		
006A B-31d 30'	12:00	3		:	\checkmark	1	V						
207A 3-30 35'	12:30 V	5	6		\vee	V				-			
												Tours	2.0
· · · ·													
Relinquished By: Print:	Date: 4 /13	10	Time: 12	- 19	Receiv	red By:	ique.	2	Print:		Date:	3/10	Time:
Relinquished By: Print: MARCH SHAH	Date:	3 -10	Time:	Ś	Receiv	red By:	hod	asar	Print: R	en de la composition an en de la composition	Date:		Time:
Were Samples Received in Good Condition? NOTE: Samples are discarded by the lab	$ \begin{array}{c c} Yes & \square NO \\ \hline \\ oralory 30 days from days \\ \hline \\ Date: & A \\ \hline \\ A \\ \hline \\ B \\ \hline \\ A \\ \hline \\ B \\ \hline \\ \hline$	Samples on I ate of receipt	ce? DYes unless other Log In Review	arrange wed By: _	Method -ment	d of Ship s are m	ade.	old .	Bullet Date:	e	Sample se	als intact?	Yes NO NA

ECM Group P.O. Box Benicia, California 94510 Tel: 707-751-0655 Fax: 707-751-0653 Email: rguptel@ecmgrp.com

RE: 5427 Telegraph

Work Order No.: 1004059 Rev: 2

Dear Jim Green:

Torrent Laboratory, Inc. received 2 sample(s) on April 15, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

gtp 52

Patti Sandrock

May 05, 2010

Date

Date: 5/5/2010

Client: ECM Group Project: 5427 Telegraph Work Order: 1004059

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Final results and PQL (Reporting Limit) reflect concentration factor applied when analyzing for Indoor Air.

Analytical Comments for A_TO3, 1004059-002A, Note: Per client request, TO-3 result is corrected for contribution from HVOC compounds not typically present in gasoline but are within the gasoline quantitation range. Where no TPH as Gasoline compounds (BTEX) are present TPH as Gasoline results are reports as "ND".

REVISIONS:

Report revised to include full list TO-15 results for both samples per client request.

5/3/10

Sample Result Summary

Report prepared for:	Jim Green				Date F	Received: 04/1	5/10
	ECM Group				Date F	Reported: 05/0	5/10
VS-2						1004059	9-001A
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u> ug/m3	
2-Propanol (Isopropyl Alcohol)		ETO15	1	0.49	5.0	12.5	
Methylene Chloride		ETO15	1	0.29	0.88	1.35	
Acetone		ETO15	1	0.44	4.8	13.2	
1,1,1-trichloroethane		ETO15	1	0.42	1.4	1.93	
2-Butanone (MEK)		ETO15	1	0.31	0.75	2.10	
Benzene		ETO15	1	0.34	0.80	1.17	
Toluene		ETO15	1	0.48	0.95	1.20	
Tetrachloroethylene		ETO15	1	0.79	1.7	191	
Stoddard Sol.		ETO3	1.28	64	128	2410	
VS-2						1004059-001	A10.0x
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u> ug/m3	
tert-Butanol		ETO15	10.0	9.1	21	303	
VS-1						1004059	9-002A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u> ug/m3	
Methylene Chloride		ETO15	1	0.29225	0.875	8.82	
Acetone		ETO15	1	0.4404	4.8	9.312	
tert-Butanol		ETO15	1	0.45591	1.05	114.744	
1,1,1-trichloroethane		ETO15	1	0.424325	1.375	1.43	
Benzene		ETO15	1	0.34272	0.8	1.264	
Tetrachloroethylene		ETO15	1	0.79254	1.7	189.414	

Report prepared for:	Jim Green ECM Group								Date Recei Date Repor	ved: 04/15 rted: 05/05	5/10 5/10
Client Sample ID: Project Name/Location:	VS-2 5427 Telegra	iph			Lab Sampl	ample ID: le Matrix:	1 S	004059-001 Soil Vapor	A		
Project Number:	07-181-10										
Date/Time Sampled:	04/14/10 / 14	:44			Certifie	ed Clean \	NO # :				
Canister/Tube ID:	864				Receiv	ed PSI :		13.0			
Collection Volume (L):					Correc	ted PSI :					
Tag Number:	5427 Telegra	ph									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
tert-Butanol	ETO15	NA	04/16/10	10.0	9.1	21	303	72.14		400604	NA
Dichlorodifluoromethane	ETO15	NA	04/16/10	1	0.76	2.5	ND	ND		400604	NA
1,1-Difluoroethane	ETO15	NA	04/16/10	1	0.25	0.68	ND	ND		400604	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	04/16/10	1	2.5	7.0	ND	ND		400604	NA
Chloromethane	ETO15	NA	04/16/10	1	0.16	0.53	ND	ND		400604	NA
Vinyl Chloride	ETO15	NA	04/16/10	1	0.33	1.3	ND	ND		400604	NA
1,3-Butadiene	ETO15	NA	04/16/10	1	0.22	0.55	ND	ND		400604	NA
Bromomethane	ETO15	NA	04/16/10	1	0.36	0.98	ND	ND		400604	NA
Chloroethane	ETO15	NA	04/16/10	1	0.25	0.65	ND	ND		400604	NA
Trichlorofluoromethane	ETO15	NA	04/16/10	1	0.90	2.8	ND	ND		400604	NA
1,1-Dichloroethene	ETO15	NA	04/16/10	1	0.31	1.0	ND	ND		400604	NA
Freon 113	ETO15	NA	04/16/10	1	0.42	1.9	ND	ND		400604	NA
Carbon Disulfide	ETO15	NA	04/16/10	1	0.41	1.6	ND	ND		400604	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	04/16/10	1	0.49	5.0	12.5	5.00		400604	NA
Methylene Chloride	ETO15	NA	04/16/10	1	0.29	0.88	1.35	0.39		400604	NA
Acetone	ETO15	NA	04/16/10	1	0.44	4.8	13.2	5.50		400604	NA
trans-1,2-Dichloroethene	ETO15	NA	04/16/10	1	0.32	1.0	ND	ND		400604	NA
Hexane	ETO15	NA	04/16/10	1	0.26	0.88	ND	ND		400604	NA
МТВЕ	ETO15	NA	04/16/10	1	0.43	0.90	ND	ND		400604	NA
Diisopropyl ether (DIPE)	ETO15	NA	04/16/10	1	0.44	1.1	ND	ND		400604	NA
1,1-Dichloroethane	ETO15	NA	04/16/10	1	0.38	1.0	ND	ND		400604	NA
ETBE	ETO15	NA	04/16/10	1	0.34	1.1	ND	ND		400604	NA
cis-1,2-Dichloroethene	ETO15	NA	04/16/10	1	0.27	1.0	ND	ND		400604	NA
Chloroform	ETO15	NA	04/16/10	1	0.62	2.5	ND	ND		400604	NA
Vinyl Acetate	ETO15	NA	04/16/10	1	0.28	0.88	ND	ND		400604	NA
Carbon Tetrachloride	ETO15	NA	04/16/10	1	0.43	1.6	ND	ND		400604	NA
1,1,1-trichloroethane	ETO15	NA	04/16/10	1	0.42	1.4	1.93	0.35		400604	NA
2-Butanone (MEK)	ETO15	NA	04/16/10	1	0.31	0.75	2.10	0.70		400604	NA
Ethyl Acetate	ETO15	NA	04/16/10	1	0.37	0.90	ND	ND		400604	NA
Tetrahydrofuran	ETO15	NA	04/16/10	1	0.15	0.75	ND	ND		400604	NA
Benzene	ETO15	NA	04/16/10	1	0.34	0.80	1.17	0.37		400604	NA
ТАМЕ	ETO15	NA	04/16/10	1	0.18	1.1	ND	ND		400604	NA
1,2-Dichloroethane (EDC)	ETO15	NA	04/16/10	1	0.49	1.0	ND	ND		400604	NA
Trichloroethylene	ETO15	NA	04/16/10	1	0.69	2.7	ND	ND		400604	NA
1,2-Dichloropropane	ETO15	NA	04/16/10	1	0.66	2.3	ND	ND		400604	NA
Bromodichloromethane	ETO15	NA	04/16/10	1	0.44	1.7	ND	ND		400604	NA

									Date Repo	rted: 05/05	»/10
Client Sample ID: Project Name/Location: Project Number:	VS-2 5427 Telegra 07-181-10	lph			Lab Sa Sampl	ample ID: le Matrix:		1004059-001/ Soil Vapor	A		
Date/Time Sampled:	04/14/10 / 14	:44			Certifie	ed Clean \	NO # :				
Canister/Tube ID:	864				Receiv	ed PSI :		13.0			
Collection Volume (L):					Correc	ted PSI					
Tag Number:	5427 Telegra	ph			001100						
	Analysis	Prep	Date	DF	MDL	PQL	Results	Results	Lab	Analytical	Prep
Parameters:	Method	Date	Analyzed		ug/m3	ug/m3	ug/m3	ppbv	Qualifier	Batch	Batch
1,4-Dioxane	ETO15	NA	04/16/10	1	0.62	1.8	ND	ND		400604	NA
rans-1,3-Dichloropropene	ETO15	NA	04/16/10	1	0.43	1.1	ND	ND		400604	NA
Foluene	ETO15	NA	04/16/10	1	0.48	0.95	1.20	0.32		400604	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	04/16/10	1	0.42	1.0	ND	ND		400604	NA
cis-1,3-Dichloropropene	ETO15	NA	04/16/10	1	0.56	1.1	ND	ND		400604	NA
Tetrachloroethylene	ETO15	NA	04/16/10	1	0.79	1.7	191	28.09		400604	NA
1,1,2-Trichloroethane	ETO15	NA	04/16/10	1	0.46	1.4	ND	ND		400604	NA
Dibromochloromethane	ETO15	NA	04/16/10	1	0.87	2.1	ND	ND		400604	NA
1,2-Dibromoethane (EDB)	ETO15	NA	04/16/10	1	1.0	3.9	ND	ND		400604	NA
2-Hexanone	ETO15	NA	04/16/10	1	0.56	2.1	ND	ND		400604	NA
Ethyl Benzene	ETO15	NA	04/16/10	1	0.50	1.1	ND	ND		400604	NA
Chlorobenzene	ETO15	NA	04/16/10	1	0.36	1.2	ND	ND		400604	NA
1,1,1,2-Tetrachloroethane	ETO15	NA	04/16/10	1	0.52	1.7	ND	ND		400604	NA
n,p-Xylene	ETO15	NA	04/16/10	1	0.81	2.2	ND	ND		400604	NA
o-Xylene	ETO15	NA	04/16/10	1	0.40	1.1	ND	ND		400604	NA
Styrene	ETO15	NA	04/16/10	1	0.34	1.1	ND	ND		400604	NA
Bromoform	ETO15	NA	04/16/10	1	0.55	2.5	ND	ND		400604	NA
1,1,2,2-Tetrachloroethane	ETO15	NA	04/16/10	1	0.35	1.7	ND	ND		400604	NA
4-Ethyl Toluene	ETO15	NA	04/16/10	1	0.41	1.2	ND	ND		400604	NA
1,3,5-Trimethylbenzene	ETO15	NA	04/16/10	1	0.38	1.2	ND	ND		400604	NA
1,2,4-Trimethylbenzene	ETO15	NA	04/16/10	1	0.34	1.2	ND	ND		400604	NA
1,4-Dichlorobenzene	ETO15	NA	04/16/10	1	0.32	1.5	ND	ND		400604	NA
1,3-Dichlorobenzene	ETO15	NA	04/16/10	1	0.42	1.5	ND	ND		400604	NA
Benzyl Chloride	ETO15	NA	04/16/10	1	0.31	1.3	ND	ND		400604	NA
1,2-Dichlorobenzene	ETO15	NA	04/16/10	1	0.45	1.5	ND	ND		400604	NA
Hexachlorobutadiene	ETO15	NA	04/16/10	1	1.2	2.8	ND	ND		400604	NA
1,2,4-Trichlorobenzene	ETO15	NA	04/16/10	1	1.7	3.7	ND	ND		400604	NA
Naphthalene	ETO15	NA	04/16/10	1	0.73	2.6	ND	ND		400604	NA
(S) 4-Bromofluorobenzene	ETO15	NA	04/16/10	1	65	135	131 %			400604	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
TPH-Gasoline	ETO3	NA	04/16/10	1.28	64	130	ND	ND		400612	NA
Stoddard Sol.	ETO3	NA	04/16/10	1.28	64	128	2410	684.66		400612	NA

Report prepared for:

Jim Green ECM Group **Date Received:** 04/15/10 **Date Reported:** 05/05/10

Report prepared for:	Jim Green								Date Recei	ived: 04/15	5/10
									Date Repo	rtea: 05/05	5/10
Client Sample ID:	VS-1				Lab Sa	mple ID:	1	004059-002/	4		
Project Name/Location:	5427 Telegra	ph			Sample	e Matrix:	S	Soil Vapor			
Project Number:	07-181-10										
Date/Time Sampled:	04/14/10 / 16	:20			Certifie	d Clean	WO # :				
Canister/Tube ID:	903				Receiv	ed PSI :		13.7			
Collection Volume (L):					Correc	ted PSI :					
Tag Number:	5427 Telegra	ph									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
Dichlorodifluoromethane	ETO15	NA	04/16/10	1	0.757	2.5	ND	ND		400604	NA
1,1-Difluoroethane	ETO15	NA	04/16/10	1	0.24921	0.675	ND	ND		400604	NA
1,2-Dichlorotetrafluoroethane	ETO15	NA	04/16/10	1	2.4668	7	ND	ND		400604	NA
Chloromethane	ETO15	NA	04/16/10	1	0.159075	0.525	ND	ND		400604	NA
Vinyl Chloride	ETO15	NA	04/16/10	1	0.33436	1.3	ND	ND		400604	NA
1,3-Butadiene	ETO15	NA	04/16/10	1	0.22286	0.55	ND	ND		400604	NA
Bromomethane	ETO15	NA	04/16/10	1	0.36036	0.975	ND	ND		400604	NA
Chloroethane	ETO15	NA	04/16/10	1	0.25077	0.65	ND	ND		400604	NA
Trichlorofluoromethane	ETO15	NA	04/16/10	1	0.90356	2.8	ND	ND		400604	NA
1,1-Dichloroethene	ETO15	NA	04/16/10	1	0.306	1	ND	ND		400604	NA
Freon 113	ETO15	NA	04/16/10	1	0.42427	1.925	ND	ND		400604	NA
Carbon Disulfide	ETO15	NA	04/16/10	1	0.405635	1.55	ND	ND		400604	NA
2-Propanol (Isopropyl Alcohol)	ETO15	NA	04/16/10	1	0.485	5	ND	ND		400604	NA
Methylene Chloride	ETO15	NA	04/16/10	1	0.29225	0.875	8.82	2.52		400604	NA
Acetone	ETO15	NA	04/16/10	1	0.4404	4.8	9.312	3.88		400604	NA
trans-1,2-Dichloroethene	ETO15	NA	04/16/10	1	0.3204	1	ND	ND		400604	NA
Hexane	ETO15	NA	04/16/10	1	0.263725	0.875	ND	ND		400604	NA
МТВЕ	ETO15	NA	04/16/10	1	0.43398	0.9	ND	ND		400604	NA
tert-Butanol	ETO15	NA	04/16/10	1	0.45591	1.05	114.744	27.32		400604	NA
Diisopropyl ether (DIPE)	ETO15	NA	04/16/10	1	0.43806	1.05	ND	ND		400604	NA
1,1-Dichloroethane	ETO15	NA	04/16/10	1	0.376585	1.025	ND	ND		400604	NA
ETBE	ETO15	NA	04/16/10	1	0.33894	1.05	ND	ND		400604	NA
cis-1,2-Dichloroethene	ETO15	NA	04/16/10	1	0.2684	1	ND	ND		400604	NA
Chloroform	ETO15	NA	04/16/10	1	0.61642	2.45	ND	ND		400604	NA
Vinyl Acetate	ETO15	NA	04/16/10	1	0.2828	0.875	ND	ND		400604	NA
Carbon Tetrachloride	ETO15	NA	04/16/10	1	0.43155	1.575	ND	ND		400604	NA
1,1,1-trichloroethane	ETO15	NA	04/16/10	1	0.424325	1.375	1.43	0.26		400604	NA
2-Butanone (MEK)	ETO15	NA	04/16/10	1	0.31425	0.75	ND	ND		400604	NA
Ethyl Acetate	ETO15	NA	04/16/10	1	0.37062	0.9	ND	ND		400604	NA
Tetrahydrofuran	ETO15	NA	04/16/10	1	0.1509	0.75	ND	ND		400604	NA
Benzene	ETO15	NA	04/16/10	1	0.34272	0.8	1.264	0.40		400604	NA
ТАМЕ	ETO15	NA	04/16/10	1	0.18102	1.05	ND	ND		400604	NA
1,2-Dichloroethane (EDC)	ETO15	NA	04/16/10	1	0.493025	1.025	ND	ND		400604	NA
Trichloroethylene	ETO15	NA	04/16/10	1	0.6939	2.7	ND	ND		400604	NA
1,2-Dichloropropane	ETO15	NA	04/16/10	1	0.65642	2.3	ND	ND		400604	NA
Bromodichloromethane	ETO15	NA	04/16/10	1	0.44488	1.675	ND	ND		400604	NA

Report prepared for:	Jim Green ECM Group								Date Recei Date Repo	ved: 04/15 rted: 05/05	5/10 5/10
Client Sample ID:	VS-1				Lab Sa	mple ID:	1(004059-002	A		
Project Name/Location:	5427 Telegrap	h			Sample	e Matrix:	S	oil Vapor			
Project Number:	07-181-10				-						
Date/Time Sampled:	04/14/10 / 16::	20			Certifie	d Clean \	NO # :				
Canister/Tube ID:	903				Receiv	ed PSI :		13.7			
Collection Volume (I)					Correc	ted PSI					
Tag Number:	5427 Telegrap	h			••••••						
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch
1,4-Dioxane	ETO15	NA	04/16/10	1	0.62334	1.8	ND	ND		400604	NA
trans-1,3-Dichloropropene	ETO15	NA	04/16/10	1	0.4347	1.125	ND	ND		400604	NA
Toluene	ETO15	NA	04/16/10	1	0.47671	0.95	ND	ND		400604	NA
4-Methyl-2-Pentanone (MIBK)	ETO15	NA	04/16/10	1	0.424965	1.025	ND	ND		400604	NA
cis-1,3-Dichloropropene	ETO15	NA	04/16/10	1	0.563625	1.125	ND	ND		400604	NA
Tetrachloroethylene	ETO15	NA	04/16/10	1	0.79254	1.7	189.414	27.86		400604	NA
1,1,2-Trichloroethane	ETO15	NA	04/16/10	1	0.464475	1.375	ND	ND		400604	NA
Dibromochloromethane	ETO15	NA	04/16/10	1	0.868275	2.125	ND	ND		400604	NA
1,2-Dibromoethane (EDB)	ETO15	NA	04/16/10	1	1.022945	3.85	ND	ND		400604	NA
NOTE: MRL and PQL (Rep	orting Limit) reflects co	ncentratio	n factor app	lied wł	nen analyzi	ng to Indo	or Air repor	ting limits.			
2-Hexanone	ETO15	NA	04/16/10	1	0.56	2.1	ND	ND		400604	NA
Ethyl Benzene	ETO15	NA	04/16/10	1	0.50	1.1	ND	ND		400604	NA
Chlorobenzene	ETO15	NA	04/16/10	1	0.36	1.2	ND	ND		400604	NA
1,1,1,2-Tetrachloroethane	ETO15	NA	04/16/10	1	0.52	1.7	ND	ND		400604	NA
m,p-Xylene	ETO15	NA	04/16/10	1	0.81	2.2	ND	ND		400604	NA
o-Xylene	ETO15	NA	04/16/10	1	0.40	1.1	ND	ND		400604	NA
Styrene	ETO15	NA	04/16/10	1	0.34	1.1	ND	ND		400604	NA
Bromoform	ETO15	NA	04/16/10	1	0.55	2.5	ND	ND		400604	NA
1,1,2,2-Tetrachloroethane	ETO15	NA	04/16/10	1	0.35	1.7	ND	ND		400604	NA
4-Ethyl Toluene	ETO15	NA	04/16/10	1	0.41	1.2	ND	ND		400604	NA
1,3,5-Trimethylbenzene	ETO15	NA	04/16/10	1	0.38	1.2	ND	ND		400604	NA
1,2,4-Trimethylbenzene	ETO15	NA	04/16/10	1	0.34	1.2	ND	ND		400604	NA
1,4-Dichlorobenzene	ETO15	NA	04/16/10	1	0.32	1.5	ND	ND		400604	NA
1,3-Dichlorobenzene	ETO15	NA	04/16/10	1	0.42	1.5	ND	ND		400604	NA
Benzyl Chloride	ETO15	NA	04/16/10	1	0.31	1.3	ND	ND		400604	NA
1,2-Dichlorobenzene	ETO15	NA	04/16/10	1	0.45	1.5	ND	ND		400604	NA
Hexachlorobutadiene	ETO15	NA	04/16/10	1	1.2	2.8	ND	ND		400604	NA
1,2,4-Trichlorobenzene	ETO15	NA	04/16/10	1	1.7	3.7	ND	ND		400604	NA
Naphthalene	ETO15	NA	04/16/10	1	0.73	2.6	ND	ND		400604	NA
(S) 4-Bromofluorobenzene	ETO15	NA	04/16/10	1	65	135	110 %			400604	NA

Report	prepared for:	Jim Green ECM Group	n Green Date Received: 04/15/ CM Group Date Reported: 05/05/										
Client Sa	ample ID:	VS-1				Lab Sa	ample ID:	1	004059-002A				
Project N	ame/Location:	5427 Telegra	bh			Sampl	e Matrix:	S	oil Vapor				
Project N	lumber:	07-181-10											
Date/Tim	e Sampled:	04/14/10 / 16:	20			Certified Clean WO # :							
Canister	/Tube ID:	903				Received PSI: 13.7							
Collectio	on Volume (L):					Correc	ted PSI :						
Tag Num	nber:	5427 Telegra	bh										
Paramete	ers:	Analysis Method	Prep Date	Date Analyzed	DF	MDL ug/m3	PQL ug/m3	Results ug/m3	Results ppbv	Lab Qualifier	Analytical Batch	Prep Batch	
TPH-Gaso	line	ETO3	NA	04/16/10	1.2	60	120	ND	ND		400612	NA	
Stoddard S	Sol.	ETO3	NA	04/16/10	1.2	60	120	ND	ND	0.00	400612	NA	
NOTE:	Results corrected for less than 3 TPH Ga	or HVOC compounds ne asoline compounds (BT	r present in g resent TPH a	asolin s Gas	e but that results are	are within e reports a	the gasolir is "ND".	e C5-C12 ran	ge (see TO	15 results). V	Vhere		

Work Order:	1004059	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy	tical	ETO15	Analyzed Date:	04/16/10	Analytical	400604
Units:	ppbv	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
2-Propanol (Isopro	pyl Alcohol)	0.19	2.00	ND				
MTBE		0.12	0.250	ND				
tert-Butanol		0.11	0.250	ND				
Diisopropyl ether (DIPE)	0.10	0.250	ND				
ETBE		0.081	0.250	ND				
Benzene		0.11	0.250	ND				
TAME		0.043	0.250	ND				
Toluene		0.13	0.250	ND				
Ethyl Benzene		0.12	0.250	ND				
m,p-Xylene		0.19	0.500	ND				
o-Xylene		0.094	0.250	ND				
(S) 4-Bromofluorot	penzene			103 %				
Work Order:	1004059	Prep I	Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Air	Analy	tical	ETO3	Analyzed Date:	04/16/10	Analytical	400612
Units:	ppbv	Metho	od:				Batch:	
Parameters		MDL	PQL	Method Blank Conc.				
TPH-Gasoline		50	100	ND				
Stoddard Sol.		50	100	ND				

LCS/LCSD Summary Report

								Raw value	es are used in	quality contro	ol assessment.
Work Order:	1004059		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Air		Analytical	ETO1	5	Analyze	d Date:	04/16/10	Analytic	al 400	604
Units:	ppbv		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethe	ene	0.15	0.500		20	110	119	8.38	65 - 135	30	
Benzene		0.21	0.500		20	129	115	11.7	65 - 135	30	
Trichloroethylen	e	0.26	1.00		20	116	118	1.41	65 - 135	30	
Toluene		0.25	0.500		20	123	120	2.60	65 - 135	30	
Chlorobenzene		0.15	0.500		20	113	107	5.65	65 - 135	30	
(S) 4-Bromofluor	robenzene				20	125	120		65 - 135		
Work Order:	1004059		Prep Meth	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Air		Analytical	ETO3		Analyze	d Date:	04/16/10	Analytic	al 400	612
Units:	ppbv		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH-Gasoline	1	50	100		500	117	106	9.88	50 - 150	30	•

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Client Name: ECM Group

Work Order No.: 1004059

Project Name: 5427 Telegraph

Sample Receipt Checklist

Date and Time Received: <u>4/15/2010</u> <u>11:50</u> Received By: <u>NG</u> Physically Logged By: <u>NG</u> Checklist Completed By: <u>NG</u> Carrier Name: <u>Gold Bullet Courier</u>

Chain of Custody (COC) Information

Chain of custody present?	Yes	
Chain of custody signed when relinquished and received?	Yes	
Chain of custody agrees with sample labels?	Yes	
Custody seals intact on sample bottles?	Not Present	
Sample Re	ceipt Information	
Custody seals intact on shipping container/cooler?	Not Present	
Shipping Container/Cooler In Good Condition?	Yes	
Samples in proper container/bottle?	Yes	
Samples containers intact?	Yes	
Sufficient sample volume for indicated test?	Yes	
Sample Preservation ar	d Hold Time (HT) Information	
All samples received within holding time?	Yes	
Container/Temp Blank temperature in compliance?	Temperature:	°C
Water-VOA vials have zero headspace?	No VOA vials submitted	
Water-pH acceptable upon receipt?		
pH Checked by:	pH Adjusted by:	

TO-15 for lowest detection limits.

Login Summary Report

Client ID:	TL5158	ECM Group				QC	CLevel:		II	
Project Name:	5427 Telegraph	I				ТА	T Reques	ted:	5+ day:0	
Project # :	07-181-10					Da	te Receive	ed:	4/15/2010	
Report Due Date:	4/22/2010					Tir	ne Receiv	ed:	11:50	
Comments:	5 day TAT!!! Re jgreen@ecmgrp	cv'd 2 air samples for b.com and info@ecmg	TPHg; \$ prp.com.	Stoddard s	solvent;BTEX;	Oxygenate	es;IPA Trac	er.Pls.	email to	
Work Order # :	1004059									
WO Sample ID	<u>Client</u> Sample ID	<u>Colle</u> Date/	<u>ction</u> Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requ</u> Tests	ested	Subbed
1004059-001A	VS-2	04/14/10	14:44	Air				A_TO A_TO CO A_TO)-3TPPH)-15Full-B)-15Full-A	
Sample Note:	TPHg,Stoddard,B	TEX,Oxy,IPA.Lowest	possible	e detectior	n limit.					
1004059-002A	VS-1	04/14/10	16:20	Air				A_TO A_TO CO A_TO)-3TPPH)-15Full-A)-15Full-B	
Sample Note:	TPHg,Stoddard,B	TEX,Oxy,IPA.Lowest	possible	e detectior	n limit.					

.....

	Torrent	483 Sinclai Milpitas, C. Phone: 408	r Frontag A 95035 8.263.52	ge Road 58 RESE	T AREAS	C	;H/	١N	OF	Cl	JST	OD	Y	VEXAM				DERNO	7
	LABORATORY, INC	www.torrer	tlab.com		• NC	DTE: SHA	DED	REAS	ARE F	OR TO	ORREN	TLAB	JSE OI	VLY•			070	759	
Company	Name: ECM	1		• .		Locati	on of S	ampling	:542	<u>1 7</u>	elegi	aph	0	ak	ind	ł	1		
Address:	P.O.Box 802					Purpo	se: C	7-13	1-10).	J								
City: Ber	nicia	State: CA		Zip Code:	94510	Specia	al Instr	uctions /	Comm	ents:						-			
Telephon	le: 707 751 0655	FAX: 707 751 0	653								,			GN	i ha	nto	Qecn	yrp.co	m
REPORT	TO: JIM GREEN	SAMPLER:	Doug	as West	JIMG	10- NP.O. 1	\$ 07	-181	-10		E	MAIL: d	emgrp	@aol.	tem J	919	ene e	my p	Con
TURNAR(DUND TIME: k Days 3 Work Days Noc Days 2 Work Days 2 - 1 Days 1 Work Day 0 Oth	n - Nxt Day	LE TYPE rm Water ste Water ound Water I	: Air Other	CEPORT	FORMAT:		PH(G)	olvert	EX	genetes	PA (tracer)	-				ANALY	(SIS STED	
LAB ID	CLIENT'S SAMPLE I.D.	DATE / SAMPI	rime .ed	MATRIX	# OF CONT	CONT TYPE		F	Sts	137	(xo	H	.				REMAR	ks	
001A	VS-2	4/14/10 2	:44	Arr	1	6/summa		X	Х	Х	X	X				T	0-15	for	
002A	V S-1	4/14/10	4:20	Alt	t	blsun	A.A	X	Х	Х	X	\succ				100	est p	oscible	
			(de	ection	limits	
																			,
								1					-						
	<u></u>																		
2						· · ·											~~~~~		
i.																			
												8							
8 . C.A							1		-										
· · ·	· · · · · · · · · · · · · · · · · · ·						· ·					·							
1 Relipe	alshed By: Prin		Date:	/10	Time:	55.	Recei	Ked By:	UAS	O MP 2	Print:			Date:	15-11	0	Time:	055	
2 Reling	uished-By: Prin	ıt:	Date:	110	Time:	0.	Recei	ved By:	st	A A	Print:	9° (1	. p.a.	Date:	15	10	Time:	: 500	
Were San NOTE: Sa Log In By:	nples Received in Good Condition mples are discarded by the	n? H-Yes I laboratory 30 day Date:	NO S s from dat	amples on lo	ce? Provention of the second sec	es 🕢 NO er arrange iewed By: _	Metho -mer	d of Ship Its are ma	ade.	(Jold Da	bu te:	Uetsa	mple se	eals intac Page	xt? 🚺 e	Yes [] N 0	10 🔽 N/A	ţ

ECM Group 290 West Channel Benicia, California 94510 Tel: 707-751-0655 Fax: 707-751-0653 Email: rguptel@ecmgrp.com RE: 5427 Telegraph, Oakland, CA

Work Order No.: 1006103

Dear Rachel Guptel:

Torrent Laboratory, Inc. received 4 sample(s) on June 14, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sz-

Patti Sandrock

June 21, 2010

Date

Date: 6/21/2010

Client: ECM Group Project: 5427 Telegraph, Oakland, CA Work Order: 1006103

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Sample Result Summary

Report prepared for:	Rachel Guptel				Date	Received: (06/14/10
MW-1	ECM Group				Date	Reported: 0 1006	06/21/10 6103-001A
Parameters:		Analysis Mothod	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Stoddard		SW8015B	1	0.0287	0.10	0.41	mg/L
TPH(Gasoline)		8260TPH	4.4	95	220	610	ug/L
MW-2						1006	6103-002A
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Stoddard		SW8015B	50	1.44	5.0	69	mg/L
Benzene		SW8260B	8.8	2.9	4.4	17	ug/L
TPH(Gasoline)		8260TPH	8.8	190	440	5000	ug/L
MW-3						1006	6103-003A
Parameters:		<u>Analysis</u> Method	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Stoddard		SW8015B	1	0.0287	0.10	0.99	mg/L
Benzene		SW8260B	4.4	1.5	2.2	5.5	ug/L
TPH(Gasoline)		8260TPH	4.4	95	220	3100	ug/L
MW-5						1006	6103-004A
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

Report prepared for:	Rachel Guptel ECM Group							Da Da	te Rece te Repo	eived: 06/1- orted: 06/2	4/10 1/10
Client Sample ID: Project Name/Location:	MW-1 5427 Telegrap	oh, Oakland	, CA		Lab Sar Sample	nple ID: Matrix:	10061 Groun	03-001A dwater			
Project Number:	07-181-04										
Date/Time Sampled:	06/09/10 / 12:0	04									
Tag Number:	5427 Telegrap	bh									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	1	0.0287	0.10	0.41		mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	1	53.3	124	88.4		%	401287	0581
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/17/10	4.4	1.5	2.2	ND		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	4.4	0.84	2.2	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	4.4	0.68	2.2	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	4.4	0.88	4.4	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	4.4	0.56	2.2	ND		ug/L	401289	NA
MTBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	4.4	1.6	2.2	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	4.4	1.4	2.2	ND		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	4.4	6.6	22	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	4.4	1.2	2.2	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	4.4	0.86	2.2	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	4.4	61.2	131	92.9		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	4.4	75.1	127	81.2		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	4.4	64.1	120	81.5		%	401289	NA
NOTE: Reporting limit raised	l due to high level of he	avy hydroc	arbons.								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/17/10	4.4	95	220	610	x	ug/L	401293	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	4.4	58.4	133	86.9		%	401293	NA
NOTE: x-Not typical of Gaso	line standard pattern. F	Result repor	ted as Gaso	oline b	ut pattern b	pest match	es Mineral Spi	irits/Stodda	rd Solve	nt.	

Report prepared for: R E	achel Guptel CM Group							Da Da	te Rece te Repo	eived: 06/1 orted: 06/2	4/10 1/10
Client Sample ID: Project Name/Location: Project Number: Date/Time Sampled: Tag Number:	MW-2 5427 Telegrap 07-181-04 06/09/10 / 14:2 5427 Telegrap	h, Oakland 26 h	, CA		Lab Sar Sample	nple ID: Matrix:	100610 Ground	03-002A dwater			
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	50	1.44	5.0	69		mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	50	53.3	124	0.000	D	%	401287	0581
NOTE: D - Surrogates not recov	erable due to dilutio	on of the sa	mple.								
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/17/10	8.8	2.9	4.4	17		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	8.8	1.7	4.4	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	8.8	1.4	4.4	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	8.8	1.8	8.8	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	8.8	1.1	4.4	ND		ug/L	401289	NA
МТВЕ	SW8260B	NA	06/17/10	8.8	3.3	4.4	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	8.8	3.2	4.4	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	8.8	3.5	4.4	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	8.8	2.8	4.4	ND		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	8.8	13	44	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	8.8	2.4	4.4	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	8.8	1.7	4.4	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	8.8	61.2	131	92.8		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	8.8	75.1	127	88.3		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	8.8	64.1	120	0.000	S	%	401289	NA
NOTE: Reporting limit raised due	e to high level of he	avy hydroc	arbons. S -	Low su	urrogate (E	BFB) recov	ery attributed to	o TPH inter	ference	(heavy hydro	carbons).
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch

Falameters.	Method	Dale	Analyzeu					Quaimer		Batch	Daton	
												Ĺ
TPH(Gasoline)	8260TPH	NA	06/17/10	8.8	190	440	5000		ug/L	401293	NA	
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	8.8	58.4	133	0.000	S	%	401293	NA	

NOTE: x-Not typical of Gasoline standard pattern. Result reported as Gasoline but pattern best matches Mineral Spirits/Stoddard Solvent. S - Low surrogate recovery attributed to matrix interference.

Pentacosane (S)

SAMPLE RESULTS

Report prepared for:	Rachel Guptel ECM Group							Da Da	te Rece te Repo	eived: 06/1 orted: 06/2	4/10 1/10	
Client Sample ID: Project Name/Location: Project Number: Date/Time Sampled: Tag Number:	MW-3 5427 Telegrap 07-181-04 06/09/10 / 13:4 5427 Telegrap	h, Oakland 18 h	I, CA		Lab Sar Sample	nple ID: Matrix:	10061 Groun	1006103-003A Groundwater				
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
TPH as Stoddard	SW8015B	6/15/10	06/17/10	1	0.0287	0.10	0.99	х	mg/L	401287	0581	

53.3

124

111

%

401287

0581

NOTE: x- Not typical of Stoddard standard pattern (possibly aged stoddard or other fuel within the stoddard range).

6/15/10 06/17/10 1

SW8015B

Parameters	Analysis Method	Prep	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
	method	Dute	Analyzeu					quamer		Daton	Baton
Benzene	SW8260B	NA	06/17/10	4.4	1.5	2.2	5.5		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	4.4	0.84	2.2	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	4.4	0.68	2.2	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	4.4	0.88	4.4	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	4.4	0.56	2.2	ND		ug/L	401289	NA
МТВЕ	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	4.4	1.6	2.2	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	4.4	1.4	2.2	ND		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	4.4	6.6	22	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	4.4	1.2	2.2	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	4.4	0.86	2.2	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	4.4	61.2	131	82.6		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	4.4	75.1	127	88.1		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	4.4	64.1	120	87.8		%	401289	NA

NOTE: Reporting limit raised due to high level of heavy hydrocarbons.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/17/10	4.4	95	220	3100	х	ug/L	401293	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	4.4	58.4	133	95.4		%	401293	NA

NOTE: x - Not typical of Gasoline standard pattern. Hydrocarbons in the range of C5-C12 quantified as Gasoline (heavy end hydrocarbons possibly aged gasoline or aged fuel heavier than gasoline)

Report prepared for: F	Rachel Guptel CM Group							Da Da	te Rece te Repo	eived: 06/1 orted: 06/2	4/10 1/10
Client Sample ID: Project Name/Location: Project Number: Date/Time Sampled: Tag Number:	MW-5 5427 Telegrap 07-181-04 06/09/10 / 10:4 5427 Telegrap	MW-5 5427 Telegraph, Oakland, CA 07-181-04 06/09/10 / 10:47 5427 Telegraph Analysis Prep Date DF					10061 Groun				
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	1	0.0287	0.10	ND		mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	1	53.3	124	107		%	401287	0581
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/18/10	1	0.33	0.50	ND		ug/L	401296	NA
Toluene	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
Ethyl Benzene	SW8260B	NA	06/18/10	1	0.15	0.50	ND		ug/L	401296	NA
m,p-Xylene	SW8260B	NA	06/18/10	1	0.20	1.0	ND		ug/L	401296	NA
o-Xylene	SW8260B	NA	06/18/10	1	0.13	0.50	ND		ug/L	401296	NA
МТВЕ	SW8260B	NA	06/18/10	1	0.38	0.50	ND		ug/L	401296	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/18/10	1	0.36	0.50	ND		ug/L	401296	NA
ETBE	SW8260B	NA	06/18/10	1	0.40	0.50	ND		ug/L	401296	NA
ТАМЕ	SW8260B	NA	06/18/10	1	0.32	0.50	ND		ug/L	401296	NA
tert-Butanol	SW8260B	NA	06/18/10	1	1.5	5.0	ND		ug/L	401296	NA
1,2-Dichloroethane	SW8260B	NA	06/18/10	1	0.28	0.50	ND		ug/L	401296	NA
1,2-Dibromoethane	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
(S) Dibromofluoromethane	SW8260B	NA	06/18/10	1	61.2	131	90.1		%	401296	NA
(S) Toluene-d8	SW8260B	NA	06/18/10	1	75.1	127	90.9		%	401296	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/18/10	1	64.1	120	86.1		%	401296	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/18/10	1	22	50	ND	•	ug/L	401297	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/18/10	1	58.4	133	97.2		%	401297	NA

Work Order:	1006103	Prep I	Method:	3510_TPH	Prep Date:		06/15/10	Prep Batch:	0581
Matrix:	Water	Analy	tical	SW8015B	Anal	yzed Date:	06/15/10	Analytical	401241
Units:	mg/L	Wetho	a:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
DRO		0.0287	0.10	ND					
TPH as Bunker Oil		0.0920	0.20	ND					
TPH as Cutting Oil		0.0920	0.20	ND					
TPH as Diesel		0.0287	0.10	ND					
TPH as Heating Oil		0.0920	0.20	ND					
TPH as Hydraulic O	il	0.0920	0.20	ND					
TPH as Jet A		0.0287	0.10	ND					
TPH as Jet Fuel		0.0287	0.10	ND					
TPH as JP-4		0.0287	0.10	ND					
TPH as JP-5		0.0287	0.10	ND					
TPH as JP-7		0.0287	0.10	ND					
TPH as JP-8		0.0287	0.10	ND					
TPH as Kerosene		0.0287	0.10	ND					
TPH as Mineral Oil		0.0287	0.10	ND					
TPH as Motor Oil		0.0920	0.20	0.14					
TPH as Naphtha		0.0287	0.10	ND					
TPH as Oil		0.0920	0.20	ND					
TPH as Stoddard		0.0287	0.10	ND					
TPH as Transformer	Oil	0.0920	0.20	ND					
Pentacosane (S)				100 %					

Work Order:	1006103	Prep N	lethod:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	SW8260B	Anal	yzed Date:	06/17/10	Analytical Batch:	401289
Units:	ug/L	Wetho	u .					Daten.	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorometh	nane	0.41	0.50	ND					
Chloromethane		0.41	0.50	ND					
Vinyl Chloride		0.37	0.50	ND					
Bromomethane		0.37	0.50	ND					
Trichlorofluorometha	ane	0.34	0.50	ND					
1,1-Dichloroethene		0.29	0.50	ND					
Freon 113		0.38	0.50	ND					
Methylene Chloride		0.18	5.0	ND					
trans-1,2-Dichloroet	hene	0.31	0.50	ND					
MTBE		0.38	0.50	ND					
tert-Butanol		1.5	5.0	ND					
Diisopropyl ether (D	IPE)	0.36	0.50	ND					
1,1-Dichloroethane		0.28	0.50	ND					
ETBE		0.40	0.50	ND					
cis-1,2-Dichloroethe	ne	0.33	0.50	ND					
2,2-Dichloropropane	•	0.37	0.50	ND					
Bromochloromethan	e	0.34	0.50	ND					
Chloroform		0.29	0.50	ND					
Carbon Tetrachlorid	е	0.26	0.50	ND					
1,1,1-Trichloroethan	e	0.32	0.50	ND					
1,1-Dichloropropene	•	0.40	0.50	ND					
Benzene		0.33	0.50	ND					
TAME		0.32	0.50	ND					
1,2-Dichloroethane		0.28	0.50	ND					
Trichloroethylene		0.38	0.50	ND					
Dibromomethane		0.21	0.50	ND					
1,2-Dichloropropane	•	0.37	0.50	ND					
Bromodichlorometha	ane	0.23	0.50	ND					
2-Chloroethyl vinyl e	ther	0.91	2.0	ND					
cis-1,3-Dichloroprop	ene	0.30	0.50	ND					
Toluene		0.19	0.50	ND					
Tetrachloroethylene		0.15	0.50	0.34					
trans-1,3-Dichloropr	opene	0.20	0.50	ND					
1,1,2-Trichloroethan	e	0.20	0.50	ND					
Dibromochlorometha	ane	0.21	0.50	ND					
1,3-Dichloropropane	•	0.18	0.50	ND					
1,2-Dibromoethane		0.19	0.50	ND					

Work Order:	1006103	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	SW8260B	SW8260B Analyzed Date:		06/17/10	Analytical	401289
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Chlorobenzene		0.14	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
1,1,1,2-Tetrachloroe	ethane	0.10	0.50	ND					
m,p-Xylene		0.20	1.0	ND					
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzene		0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachloroe	ethane	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbenz	ene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloropropa	ane	0.59	1.0	ND					
1,2,4-Trimethylbenz	ene	0.33	0.50	ND					
sec-Butyl Benzene		0.24	0.50	ND					
p-Isopropyltoluene		0.25	0.50	ND					
1,3-Dichlorobenzen	e	0.31	0.50	ND					
1,4-Dichlorobenzen	e	0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenzen	e	0.39	0.50	ND					
1,2-Dibromo-3-Chlo	oropropane	0.45	1.0	ND					
Hexachlorobutadier	ne	0.22	0.50	ND					
1,2,4-Trichlorobenz	ene	0.48	1.0	ND					
Naphthalene		0.57	1.0	0.78					
1,2,3-Trichlorobenz	ene	0.52	1.0	ND					
(S) Dibromofluorom	ethane			95.1 %					
(S) Toluene-d8				93.6 %					
(S) 4-Bromofluorobe	enzene			90.1 %					

Work Order: 1006103		Prep	Prep Method:		Prep	Prep Date:		Prep Batch:	NA
Matrix:	Water	Analy	Analytical Method:		Analyzed Date:		06/17/10	Analytical	401293
Units:	ug/L	Metho						Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluorobe	enzene	22	50	ND 69.9 %					

Work Order:	1006103	Prep N	lethod:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Water	Analy	Analytical SW8260B		Anal	yzed Date:	06/18/10	Analytical Batch:	401296
Units:	ug/L	Wetho	u .					Baten.	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorometh	nane	0.41	0.50	ND					
Chloromethane		0.41	0.50	ND					
Vinyl Chloride		0.37	0.50	ND					
Bromomethane		0.37	0.50	ND					
Trichlorofluorometha	ane	0.34	0.50	ND					
1,1-Dichloroethene		0.29	0.50	ND					
Freon 113		0.38	0.50	ND					
Methylene Chloride		0.18	5.0	ND					
trans-1,2-Dichloroet	hene	0.31	0.50	ND					
MTBE		0.38	0.50	ND					
tert-Butanol		1.5	5.0	ND					
Diisopropyl ether (D	IPE)	0.36	0.50	ND					
1,1-Dichloroethane		0.28	0.50	ND					
ETBE		0.40	0.50	ND					
cis-1,2-Dichloroethe	ne	0.33	0.50	ND					
2,2-Dichloropropane	•	0.37	0.50	ND					
Bromochloromethan	e	0.34	0.50	ND					
Chloroform		0.29	0.50	ND					
Carbon Tetrachlorid	е	0.26	0.50	ND					
1,1,1-Trichloroethan	e	0.32	0.50	ND					
1,1-Dichloropropene	•	0.40	0.50	ND					
Benzene		0.33	0.50	ND					
TAME		0.32	0.50	ND					
1,2-Dichloroethane		0.28	0.50	ND					
Trichloroethylene		0.38	0.50	ND					
Dibromomethane		0.21	0.50	ND					
1,2-Dichloropropane	•	0.37	0.50	ND					
Bromodichlorometha	ane	0.23	0.50	ND					
2-Chloroethyl vinyl e	ther	0.91	2.0	ND					
cis-1,3-Dichloroprop	ene	0.30	0.50	ND					
Toluene		0.19	0.50	ND					
Tetrachloroethylene		0.15	0.50	ND					
trans-1,3-Dichloropr	opene	0.20	0.50	ND					
1,1,2-Trichloroethan	e	0.20	0.50	ND					
Dibromochlorometha	ane	0.21	0.50	ND					
1,3-Dichloropropane	•	0.18	0.50	ND					
1.2-Dibromoethane		0.19	0.50	ND					

Work Order:	1006103	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	SW8260B	Anal	yzed Date:	06/18/10	Analytical	401296
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Chlorobenzene		0.14	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
1,1,1,2-Tetrachloro	pethane	0.10	0.50	ND					
m,p-Xylene		0.20	1.0	ND					
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzene	9	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachloro	pethane	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylber	nzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloroprop	pane	0.59	1.0	ND					
1,2,4-Trimethylber	nzene	0.33	0.50	ND					
sec-Butyl Benzene	e	0.24	0.50	ND					
p-Isopropyltoluene)	0.25	0.50	ND					
1,3-Dichlorobenze	ne	0.31	0.50	ND					
1,4-Dichlorobenze	ne	0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenze	ne	0.39	0.50	ND					
1,2-Dibromo-3-Ch	loropropane	0.45	1.0	ND					
Hexachlorobutadie	ene	0.22	0.50	ND					
1,2,4-Trichloroben	zene	0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichloroben	zene	0.52	1.0	ND					
(S) Dibromofluoror	methane			89.9 %					
(S) Toluene-d8				86.5 %					
(S) 4-Bromofluorol	benzene			95.2 %					

Work Order: 1006103		Prep	Prep Method:		Prep	Prep Date:		Prep Batch:	NA
Matrix:	Water	Analy	Analytical Method:		Analyzed Date:		06/18/10	Analytical	401297
Units:	ug/L	Metho						Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluorobo	enzene	22	50	ND 59.1 %					

LCS/LCSD Summary Report

				200/		unnu y	nopon	Raw value	es are used in	quality contro	l assessment.
Work Order:	1006103		Prep Methe	od: 3510	_TPH	Prep Da	te:	06/15/10	Prep Bat	t ch: 058 ⁻	1
Matrix:	Water		Analytical	SW8	015B	Analyze	d Date:	06/15/10	Analytic	al 4012	241
Units:	mg/L		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel		0.029	0.10	0.00	1	86.2	90.7	5.07	46.2 - 109	30	
Pentacosane (S)				0.00	100	98.1	103		53.3 - 124		
Work Order:	1006103		Prep Methe	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix: Units:	Water ug/L		Analytical Method:	SW8	260B	Analyze	d Date:	06/17/10	Analytic Batch:	al 4012	289
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	0.29	0.50	0.00	17.04	114	101	12.2	61.4 - 129	30	
Benzene		0.33	0.50	0.00	17.04	116	114	1.73	66.9 - 140	30	
Trichloroethylene		0.38	0.50	0.00	17.04	101	99.9	0.469	69.3 - 144	30	
Toluene		0.19	0.50	0.00	17.04	117	106	9.92	76.6 - 123	30	
Chlorobenzene		0.14	0.50	0.00	17.04	119	110	8.37	73.9 - 137	30	
(S) Dibromofluoro	omethane			0.00	11.36	91.5	111		61.2 - 131		
(S) Toluene-d8 (S) 4-Bromofluoro	obenzene			0.00 0.00	11.36 11.36	83.4 93.7	98.2 81.7		75.1 - 127 64.1 - 120		
Work Order:	1006103		Prep Methe	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix:	Water		Analytical Methods	8260	ТРН	Analyze	d Date:	06/17/10	Analytic	al 4012	293
Units:	ug/L		wiethoa:						Datch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		22	50	0.00	227.27	111	112	0.212	52.4 - 127	30	
(S) 4-Bromofluor	obenzene			69.9	11.36	83.0	91.5		58.4 - 133		

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1006103		Prep Metho	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA		
Matrix:	Water		Analytical	alytical SW8260B		Analyze	d Date:	06/18/10	Analytical 401296			
Units:	ug/L		Method:						Batch:	Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
1,1-Dichloroethene	e	0.29	0.50	0.00	17.04	85.4	78.9	8.20	61.4 - 129	30		
Benzene		0.33	0.50	0.00	17.04	99.1	90.0	9.68	66.9 - 140	30		
Trichloroethylene		0.38	0.50	0.00	17.04	95.2	93.1	2.12	69.3 - 144	30		
Toluene		0.19	0.50	0.24	17.04	104	93.7	10.8	76.6 - 123	30		
Chlorobenzene		0.14	0.50	0.00	17.04	108	94.0	13.8	73.9 - 137	30		
(S) Dibromofluoror	methane			0.00	11.36	91.5	79.8		61.2 - 131			
(S) Toluene-d8				0.00	11.36	89.8	83.5		75.1 - 127			
(S) 4-Bromofluorol	benzene			0.00	11.36	85.1	81.7		64.1 - 120			
Work Order:	1006103		Prep Metho	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA		
Matrix:	Water		Analytical	8260	ТРН	Analyze	d Date:	06/18/10	Analytical 401297			
Units:	ug/L		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
TPH(Gasoline)		22	50	0.00	227.27	112	113	0.191	52.4 - 127	30		
(S) 4-Bromofluorol	benzene			59.1	11.36	101	68.7		58.4 - 133			

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: ECM Group	Date and Time Received: 6/14/2010 16:15
Project Name: 5427 Telegraph, Oakland, CA	Received By: <u>NG</u>
Work Order No.: <u>1006103</u>	Physically Logged By: <u>NG</u>
	Checklist Completed By: NG
	Carrier Name: Gold Bullet Courier
Chain of Custo	dy (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Re	ceipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation an	d Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>6</u> °C
Water-VOA vials have zero headspace?	Yes
Water-pH acceptable upon receipt?	
pH Checked by:	pH Adjusted by:

Login Summary Report

el:	
uested:	5+ day:0
ceived:	6/14/2010
ceived:	16:15
	l: uested: :eived: ceived:

Comments: 5 day TAT!!! Recv'd 4 groundwaters for TPHg ; BTEX :Fuel Oxygenates; Lead Scavengers and Stoddard Solvent.Pls. email an EDF result to rguptel@ecmgrp.com.

Work Order # : 1006103

WO Sample ID	<u>Client</u> Sample ID	<u>Colle</u> Date/	<u>ction</u> Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1006103-001A	MW-1	06/09/10	12:04	Water	07/29/10			EDF W_8260PetWHA TEPHMaster_W W_GCMS-GRO	
Sample Note:	TPHg,BTEX,5oxys,lead sca	avengers, S	toddard	solvent for	all samples.				
1006103-001A4.4 x	MW-1	06/09/10	12:04	Water	07/29/10				
1006103-002A	MW-2	06/09/10	14:26	Water	07/29/10			W_8260PetWHA	
								W_8260PetWHA W_GCMS-GRO	
1006103-002A8.8 x	MW-2	06/09/10	14:26	Water	07/29/10			TEPHIMaster_vv	
1006103-003A	MW-3	06/09/10	13:48	Water	07/29/10			W_8260PetWHA	
								W_8260PetWHA W_GCMS-GRO	
1006103-003A4.4 x	MW-3	06/09/10	13:48	Water	07/29/10			TEPHMaster_W	
, 1006103-004A	MW-5	06/09/10	10:47	Water	07/29/10			W_8260PetWHA	
								W_GCMS-GRO W_8260PetWHA	
1006103-004A4.4	MW-5	06/09/10	10:47	Water	07/29/10			TEPHMaster_W	
X								W_8260PetWHA	

	483 Sincla Milpitas, C Phone: 40 FAX: 408. www.torre	air Frontage CA 95035 08.263.5258 263.8293 entlab.com	e Road 8 RESE	T •NO	(TE: SH/	CH/	AIN Areas		CL OR TO	JST		Y USE C	ONLY •		LAB WORK	ORDER NO
Company Name: ECM					Loca	tion of S	Sampling	j: 24	11	lela	graph		Oak	and,	CA	
Address: P6 Box 802					Purp	ose:										
City: Benicia St	ate: CA	2	Zip Code:	94510	Spec	ial Instr	uctions	Comm	ents:	3111 2	rect	to	clies	J.		
Telephone: 707 751 0655 FAX	: 707	751 0	653													
REPORT TO: Rachel Guptel	SAMPLER	: Zoel	h Bai	rbane	P.O.	#: 0	7-18	1-0	4	E	MAIL:	rgu	otel	@ ec	marp. L	om
TURNAROUND TIME:	SAM	PLE TYPE:		REPORT	ORMAT	:			ŧ	2					1	
10 Work Days 3 Work Days Noon - N 7 Work Days 2 Work Days 2 - 8 Hou 5 Work Days 1 Work Days Other	kt Day rs	torm Water Vaste Water round Water oil	Air Other	QC Lev EDF Excel / (el IV EDD	H(6)	LEX	7×0	ddaud Solve	SCAUGYEN					AN/ REQ	ALYSIS UESTED
LAB ID CLIENT'S SAMPLE I.D.	DATE / SAMP	TIME	MATRIX	# OF CONT	CONT TYPE	1 t	121	6	Ste	Led					REM	ARKS
001A MW-1 -	6/9/10	1204		6	1 × 40 ml	X	X	X	X	X						
002A MW-2		1426							ŀ							
003A MW-3		1348			{	Π.										
004 A MW-5	¥	1647		¥	*	¥	V.	¥	¥	V						
						1										
		, ¹									-					
Relinquished By: Print:		Date:		Time:	9,	Recei	ved By:	INC	anti	Print:			Date:	19/112	Time:	29
Relinquished By: Print: 2 N. M. Maruk 2	arbane	Date:	ID	Time:	5	Recei	ved By:	41	1.0	Print: /	VAYI	N G	Date:		Time:	215
Were Samples Received in Cond Condition?		NO SO) Matha	A of Shin	ment (211	Bull	t.	C.	mole se	inter	12 [] Vac [
NOTE: Samples are discarded by the lab	pratory 30 day	vs from date	of receipt u	unless other	arrange	-mer	nts are ma	ade.		Date			inpic se	Page	e	of
Log in By, prostation on relative values of the second s	, Daid, raine		18 .67.69	og in Nevie	nou by.		917-97-97-97 917-97-97-97 917-97-97		Lening, Add	Dale	A CONTRACTOR			24.54	· '	· .

ECM Group 290 West Channel Benicia, California 94510 Tel: 707-751-0655 Fax: 707-751-0653 Email: rguptel@ecmgrp.com RE: 5427 Telegraph, Oakland

Work Order No.: 1006110

Dear Rachel Guptel:

Torrent Laboratory, Inc. received 1 sample(s) on June 15, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sz-

Patti Sandrock

June 22, 2010

Date

Date: 6/22/2010

Client: ECM Group Project: 5427 Telegraph, Oakland Work Order: 1006110

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Sample Result Summary

Report prepared for:	Rachel Guptel				Date	Received:	06/15/10
	ECM Group				Date	Reported:	06/22/10
MW-4						100	06110-001A
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

SAMPLE RESULTS

Report prepared for:	Rachel Guptel ECM Group							Dat Dat	te Rece te Repo	eived: 06/1 orted: 06/2	5/10 2/10
Client Sample ID:	MW-4				Lab Sar	nple ID:	10061	10-001A			
Project Name/Location:	5427 Telegrap	h, Oakland			Sample	Matrix:	Groun	dwater			
Project Number:											
Date/Time Sampled:	06/13/10 / 13:1	0									
Tag Number:	5427										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/18/10	06/18/10	1	0.0287	0.10	ND		mg/L	401291	0603
Pentacosane (S)	SW8015B	6/18/10	06/18/10	1	53.3	124	93.3		%	401291	0603
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/18/10	1	0.33	0.50	ND		ug/L	401296	NA
Toluene	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
Ethyl Benzene	SW8260B	NA	06/18/10	1	0.15	0.50	ND		ug/L	401296	NA
m,p-Xylene	SW8260B	NA	06/18/10	1	0.20	1.0	ND		ug/L	401296	NA
o-Xylene	SW8260B	NA	06/18/10	1	0.13	0.50	ND		ug/L	401296	NA
МТВЕ	SW8260B	NA	06/18/10	1	0.38	0.50	ND		ug/L	401296	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/18/10	1	0.36	0.50	ND		ug/L	401296	NA
ETBE	SW8260B	NA	06/18/10	1	0.40	0.50	ND		ug/L	401296	NA
ТАМЕ	SW8260B	NA	06/18/10	1	0.32	0.50	ND		ug/L	401296	NA
tert-Butanol	SW8260B	NA	06/18/10	1	1.5	5.0	ND		ug/L	401296	NA
1,2-Dichloroethane	SW8260B	NA	06/18/10	1	0.28	0.50	ND		ug/L	401296	NA
1,2-Dibromoethane	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
(S) Dibromofluoromethane	SW8260B	NA	06/18/10	1	61.2	131	70.8		%	401296	NA
(S) Toluene-d8	SW8260B	NA	06/18/10	1	75.1	127	104		%	401296	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/18/10	1	64.1	120	92.8		%	401296	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/18/10	1	22	50	ND		ug/L	401297	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/18/10	1	58.4	133	63.9		%	401297	NA

MB Summary Report

Work Order:	1006110	Prep N	lethod:	3510_TPH	Prep Date:		06/18/10	Prep Batch:	0603
Matrix:	Water	Analyt	ical	SW8015B	Anal	yzed Date:	06/18/10	Analytical	401291
Units:	mg/L	Metho	d:				Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
DRO		0.0287	0.10	ND					
TPH as Bunker Oil		0.0920	0.20	ND					
TPH as Cutting Oil		0.0920	0.20	ND					
TPH as Diesel		0.0287	0.10	ND					
TPH as Heating Oil		0.0920	0.20	ND					
TPH as Hydraulic Oi	I	0.0920	0.20	ND					
TPH as Jet A		0.0287	0.10	ND					
TPH as Jet Fuel		0.0287	0.10	ND					
TPH as JP-4		0.0287	0.10	ND					
TPH as JP-5		0.0287	0.10	ND					
TPH as JP-7		0.0287	0.10	ND					
TPH as JP-8		0.0287	0.10	ND					
TPH as Kerosene		0.0287	0.10	ND					
TPH as Mineral Oil		0.0287	0.10	ND					
TPH as Motor Oil		0.0920	0.20	ND					
TPH as Naphtha		0.0287	0.10	ND					
TPH as Oil		0.0920	0.20	ND					
TPH as Stoddard		0.0287	0.10	ND					
TPH as Transformer	Oil	0.0920	0.20	ND					
Pentacosane (S)				89.2					

MB Summary Report

Work Order:	1006110	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy Metho	tical	SW8260B	Anal	yzed Date:	06/18/10	Analytical Batch:	401296
Units:	ug/L	Methe	a.					Daten.	
		1	<u> </u>						
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorometh	nane	0.41	0.50	ND					
Chloromethane		0.41	0.50	ND					
Vinyl Chloride		0.37	0.50	ND					
Bromomethane		0.37	0.50	ND					
Trichlorofluorometha	ane	0.34	0.50	ND					
1,1-Dichloroethene		0.29	0.50	ND					
Freon 113		0.38	0.50	ND					
Methylene Chloride		0.18	5.0	ND					
trans-1,2-Dichloroeth	nene	0.31	0.50	ND					
MTBE		0.38	0.50	ND					
tert-Butanol		1.5	5.0	ND					
Diisopropyl ether (DI	IPE)	0.36	0.50	ND					
1,1-Dichloroethane		0.28	0.50	ND					
ETBE		0.40	0.50	ND					
cis-1,2-Dichloroether	ne	0.33	0.50	ND					
2,2-Dichloropropane		0.37	0.50	ND					
Bromochloromethan	e	0.34	0.50	ND					
Chloroform		0.29	0.50	ND					
Carbon Tetrachloride	е	0.26	0.50	ND					
1,1,1-Trichloroethan	e	0.32	0.50	ND					
1,1-Dichloropropene		0.40	0.50	ND					
Benzene		0.33	0.50	ND					
TAME		0.32	0.50	ND					
1,2-Dichloroethane		0.28	0.50	ND					
Trichloroethylene		0.38	0.50	ND					
Dibromomethane		0.21	0.50	ND					
1,2-Dichloropropane		0.37	0.50	ND					
Bromodichlorometha	ane	0.23	0.50	ND					
2-Chloroethyl vinyl e	ther	0.91	2.0	ND					
cis-1,3-Dichloroprop	ene	0.30	0.50	ND					
Toluene		0.19	0.50	ND					
Tetrachloroethylene		0.15	0.50	ND					
trans-1,3-Dichloropro	opene	0.20	0.50	ND					
1,1,2-Trichloroethan	е	0.20	0.50	ND					
Dibromochlorometha	ane	0.21	0.50	ND					
1,3-Dichloropropane		0.18	0.50	ND					
1,2-Dibromoethane		0.19	0.50	ND					
Chlorobenzene		0.14	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
1,1,1,2-Tetrachloroe	thane	0.10	0.50	ND					
m,p-Xylene		0.20	1.0	ND					

MB Summary Report

Work Order:	1006110	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	SW8260B	Ana	yzed Date:	06/18/10	Analytical	401296
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzer	ne	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlo	roethane	0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene	9	0.29	0.50	ND					
1,2,3-Trichloropro	opane	0.59	1.0	ND					
1,2,4-Trimethylbe	enzene	0.33	0.50	ND					
sec-Butyl Benzer	ne	0.24	0.50	ND					
p-Isopropyltoluen	e	0.25	0.50	ND					
1,3-Dichlorobenz	ene	0.31	0.50	ND					
1,4-Dichlorobenz	ene	0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenz	ene	0.39	0.50	ND					
1,2-Dibromo-3-C	hloropropane	0.45	1.0	ND					
Hexachlorobutad	iene	0.22	0.50	ND					
1,2,4-Trichlorobe	nzene	0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobe	nzene	0.52	1.0	ND					
(S) Dibromofluoro	omethane			89.9					
(S) Toluene-d8				86.5					
(S) 4-Bromofluor	obenzene			95.2					
Work Order:	1006110	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy	tical	8260TPH	Ana	yzed Date:	06/18/10	Analytical	401297
Units:	ua/l	Metho	od:					Batch:	
onito.	ug/L								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline)		22	50	ND	4	1			
(S) 4-Bromofluor	obenzene			59.1					

LCS/LCSD Summary Report

						anninar y		Raw value	es are used in	quality contro	l assessment
Work Order:	1006110		Prep Meth	od: 3510	_TPH	Prep Da	te:	06/18/10	Prep Bat	t ch: 0603	3
Matrix:	Water		Analytical	SW8	015B	Analyze	d Date:	06/18/10	Analytic	Analytical 401291	
Units:	mg/L		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel		0.029	0.10		1	88.1	86.3	2.02	46.2 - 109	30	
Pentacosane (S)					100	118	111		53.3 - 124		
Work Order:	1006110		Prep Meth	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix: Units:	Water ug/L		Analytical Method:	SW8	260B	Analyze	d Date:	06/18/10	Analytic Batch:	al 4012	296
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethen	e	0.29	0.50		17.04	85.4	78.9	8.20	61.4 - 129	30	
Benzene		0.33	0.50		17.04	99.1	90.0	9.68	66.9 - 140	30	
Trichloroethylene		0.38	0.50		17.04	95.2	93.1	2.12	69.3 - 144	30	
Toluene		0.19	0.50		17.04	104	93.7	10.8	76.6 - 123	30	
Chlorobenzene		0.14	0.50		17.04	108	94.0	13.8	73.9 - 137	30	
(S) Dibromofluoro	methane				11.36	91.5	79.8		61.2 - 131		
(S) Toluene-d8					11.36	89.8	83.5		75.1 - 127		
(S) 4-Bromofluoro	benzene				11.36	85.1	81.7		64.1 - 120		
Work Order:	1006110		Prep Meth	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix:	Water		Analytical	8260	TPH	Analyze	d Date:	06/18/10	Analytic	al 4012	297
Units:	ug/L		Method:						Datch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		22	50		227.27	112	113	0.191	52.4 - 127	30	
(S) 4-Bromofluoro	benzene				11.36	101	68.7		58.4 - 133		

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: ECM Group	Date and Time Received: 6/15/2010 13:17
Project Name: 5427 Telegraph, Oakland	Received By: <u>NG</u>
Work Order No.: <u>1006110</u>	Physically Logged By: <u>NG</u>
	Checklist Completed By: NG
	Carrier Name: Gold Bullet Courier
Chain of Custody (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Receip	ot Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and H	old Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	Yes
Water-pH acceptable upon receipt?	
pH Checked by:	pH Adjusted by:

Login Summary Report

Client ID:	TL5158	ECM Group			QC	CLevel:		
Project Name:	5427 Telegraph	i, Oakland			ТА	T Reques	ted: 5+ day:0	
Project # :					Da	te Receive	ed: 6/15/2010	
Report Due Date:	6/22/2010				Tir	ne Receiv	ed: 13:17	
Comments:	5 day TAT!!! Re rguptel@ecmgrp	cv'd 1 groundwater for TPHg; p.com.	BTEX ;Fu	el Oxygenates	Lead Sca	venger and	d Stoddard Solvent.Pls	. email to
Work Order # :	1006110							
WO Sample ID	<u>Client</u> Sample ID	<u>Collection</u> Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	Subbed
1006110-001A	MW-4	06/13/10 13:10	Water	07/30/10			TEPHMaster_W W_GCMS-GRO W_8260PetWHA	
Sample Note:	TPHg,BTEX,Oxys	3,Lead scav, Stoddard solven	t.					

Cable A From p Location of Sampling: 5427 Telegraph, 04klaph ddress: P.0, Bax 802 Purpose: tity: Benicia State: C4 Zip Code: 94510 Special Instructions / Comments: Bill dread to elient elephone: (707) 751 - 0453 EPORT TO: Kachel Graphel SAMPLER: Zach Barbace P.0.#: 07-1\$1-04 EMAIL: rguptel @ ecmgrap.com JRNAROUND TIME: Ji Work Days [] 30 work Days [] Noon-Not Day Stom Water [] Other Other Other Doff Stom Water [] Other Stom Water [] Other Other Doff Doff Type Stom Water [] Other Doff Doff Doff Type Type REQU Stom Water [] Other Doff Count Type Type Type Type Type Type Type Stom Water [] Other Doff Doff Type	
Address: $P.6$, B_{0x} g_{0x} Purpose: City: B_{0x} g_{10} g_{10} g_{11} <td< td=""><td></td></td<>	
City: Benicia State: C.4 Zip Code: 44510 City: Benicia State: C.4 Zip Code: 44510 Telephone: $(707) 751 - 0455$ FAX: $(707) 751 - 0453$ REPORT TO: Kachel Gruptel SAMPLER: Zach Garbare P.O.#: $07 - 121 - 04$ TURNAROUND TIME: 10 Work Days 3 Work Days 2.8 Hours Sample TYPE: 10 Work Days 2 2Work Days 2.8 Hours Sample Def Soli State: C.4 Zip Code: 44510 Sample TYPE: 10 Work Days 2.2 Work Days 2.8 Hours Sample Def Soli State: C.4 Sample Def Soli State: C.4 Zip Code: 44510 State: C.4 Zip Code: 44510 Sample TYPE: 10 Work Days 2.2 B Hours Sample Def Soli State: C.4 Sample Sample Def Soli State: C.4 Sample Sample Def Soli State: C.4 Sample Sample Sample Def Soli State: C.4 Sample S	
Telephone: (707) 751 - 0655 FAX: (707) 751 - 0653 REPORT TO: Kackel Gruppel SAMPLER: Zack Barbake P.O.#: 07 - 181 - 04 EMAIL: rguptel @ ecmgrp.com TURNAROUND TIME: SAMPLE TYPE: SAMPLE TYPE: REPORT FORMAT: Clevel IV 10 Work Days 2 Work Days 2.2 BHous Software Other Clevel IV Clevel IV 7 Work Days 2 Work Days 2.2 BHous Software Other COLevel IV Content IV State Value Sta	ILYSIS JESTED
REPORT TO: KAchel Gruptel SAMPLER: Zach Barbane P.O. #: 07-181-04 EMAIL: rguptel @ ecingrp.con TURNAROUND TIME: SAMPLE TYPE: REPORT FORMAT: Top of the condition of the cond	
TURNAROUND TIME: SAMPLE TYPE: REPORT FORMAT: Image: Construction of the construle of the c	ALYSIS JESTED
LAB ID CLIENT'S SAMPLE I.D. DATE/TIME SAMPLED MATRIX CONT TYPE + 5 5 5 4 40 June X X X X X X X X X X X X X X X X X X X	
CoolA MW-4 Clisho ISIO Ginder 5 H x 4000 with the X X	ARKS
	- 0
	40
- Iom	
Relinquished By: 1 Gud Barbare Zach Barbare 0/15/10 Time: 1 Gud Barbare 2015/10 Time: 1 O:10 N: WAS QUEZ. Date: 0/15/10 IO	010.
Received By: Print: Date: Time: Received By: Print: Date: Time: 2 ill (1154) (15/10) [3] [3] [7] [3] [3]	3:17

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

E

APPENDIX D

SOIL CLASSIFICATION SYSTEM CHART and BORING LOGS

				<15%sand & gravel		Lean CLAY
			<30% sand & gravel		% sand \$ % gravel	Lean CLAY with Sand
				15-25% sand & gravel	% sand < % gravel	Lean CLAY with Gravel
	Low-Plasticity Clay	CL			<15% gravel	Sandy lean CLAY
			• 2007 1.0 1.	% sand \$ % gravel	\$15% gravel	Sandy lean CLAY with Gravel
			\$ 30% sand & gravel		<15% sand	Gravelly lean CLAY
				% sand < % gravel	\$15% sand	Gravelly lean CLAY with Sand
				>15% sand & gravel		SILT
			<30% sand & gravel		% sand \$ % gravel	SILT with Sand
ے 50% or More Fines ق م				15-25% sand & gravel	% sand < % gravel	Silt with Gravel
	Low-Permeability Silt	ML			<15% gravel	Sandy SILT
			•	% sand \$ % gravel	\$15% gravel	Sandy SILT with Gravel
			\$ 30% sand & gravel		<15% sand	Gravelly SILT
		CL ML CH OL/OH		% sand < % gravel	\$15% sand	Gravelly SILT with Sand
ıes				<15% sand & gravel		Fat CLAY
50% or More Fines			<30% sand & gravel		% sand \$ % gravel	Fat CLAY with Sand
				15-25% sand & gravel	% sand < % gravel	Fat CLAY wtih Gravel
	Plastic Clay	СН			<15% gravel	Sandy fat CLAY
			•	% sand \$ % gravel	\$15% gravel	Sandy fat CLAY with Gravel
% C			\$ 30% sand & gravel		<15% sand	Gravelly fat CLAY
20				% sand < % gravel	\$15% sand	Gravelly fat CLAY with Sand
50% or More Fines				<15% sand & gravel		Elastic SILT
			<30% sand & gravel		% sand \$ % gravel	Elastic SILT with Sand
				15-25% sand & gravel	% sand < % gravel	Elastic SILT with Gravel
	Plastic Silt	MH			<15% gravel	Sandy elastic SILT
				% sand \$ % gravel	\$15% gravel	Sandy elastic SILT with Gravel
			\$ 30% sand & gravel		<15% sand	Gravelly elastic SILT
				% sand < % gravel	\$15% sand	Gravelly elastic SILT with Sand
50% or More Fines				<15% sand & gravel		Organic SOIL
			<30% sand & gravel		% sand \$ % gravel	Organic SOIL with Sand
				15-25% sand & gravel	% sand < % gravel	Organic SOIL with Gravel
	Organics (Peat or Bay Mud)	OL/OH			<15% gravel	Sandy Organic SOIL
				% sand \$ % gravel	\$15% gravel	Sandy Organic SOIL with Gravel
			\$ 30% sand & gravel		<15% sand	Gravelly Organic SOIL
50% or More Fines				% sand < % gravel	\$15% sand	Gravelly Organic SOIL with Sand

					CW	<15% sand	Well-graded GRAVEL
			well-graded		GW	\$15% sand	Well-graded GRAVEL with Sand
Gravel		#5% fines			CD	<15% sand	Poorly graded GRAVEL
			Poorly graded		GP	\$15% sand	Poorly graded GRAVEL with Sand
/el					CW CM	<15% sand	Well-graded GRAVEL with Silt
>50% Sand & Grav				fines=ML or MH	GW-GM	\$15% sand	Well-graded GRAVEL with Silt and Sand
			Well -graded			<15% sand	Well-graded GRAVEL with Clay
				fines=CL or CH	GM-GC	\$15% sand	Well-graded GRAVEL with Clay and Sand
	GRAVEL % gravel	10% fines			CD CM	<15% sand	Poorly graded GRAVEL with Silt
	> % sanu			fines=ML or MH	GP-GM	\$15% sand	Poorly graded GRAVEL with Silt and Sand
			Poorly graded		CD CC	<15% sand	Poorly graded GRAVEL with Clay
				nnes=CL or CH	GP-GC	\$15% sand	Poorly graded GRAVEL with Clay and Sand
					CM	<15% sand	Silty GRAVEL
		¢1 =0/ 6in = =		lines=ML or MH	GM	\$15% sand	Silty GRAVEL with Sand
		\$ 15% lines		finas CL ar CU	66	<15% sand	Clayey GRAVEL
				Thes=CL of Ch	GC	\$15% sand	Clayey GRAVEL with Sand
			Well-graded		SW	<15% gravel	Well-graded SAND
		#5% fines			311	\$15% gravel	Well-graded SAND with Gravel
			Doorly graded		CD	<15% gravel	Poorly graded SAND
			roony graded		SP	\$15% gravel	Poorly graded SAND with Gravel
				finos-ML or MH	SW-SM	<15% gravel	Well-graded SAND with Silt
ave			Woll-graded	THIES-ME OF MIT	3 10 - 3101	\$15% gravel	Well-graded SAND with Silt and Gravel
Gr			wen-graueu	finos – CL or CH	SW-SC	<15% gravel	Well-graded SAND with Clay
l &	SAND % sand \$	10% fines			300-30	\$15% gravel	Well-graded SAND with Clay and Gravel
anc	% gravel			finos – ML or MH	SD-SM	<15% gravel	Poorly graded SAND with Silt
6 Si			Poorly graded		31-3141	\$15% gravel	Poorly graded SAND with Silt and Gravel
209			roony graded	fines-CL or CH	SD-SC	<15% gravel	Poorly graded SAND with Clay
$\overline{\wedge}$				Times=CL of CH	31-30	\$15% gravel	Poorly graded SAND with Clay and Gravel
				finos – ML or MH	SM	<15% gravel	Silty SAND
				THES = MIL OF MH	SM	\$15% gravel	Silty SAND with Gravel
		\$150/ fimos					
		\$15% fines		finos-CL or CU	50	<15% gravel	Clayey SAND

APPENDIX E

FIELD NOTES

Time	Depth to Water (ft)	Depth to Product (N)	Surged	Bailed	Pumped		Gallons removed	Temp. (F)	pH	EC (umhos)	Comments: (color. odor. product. est flow rate)
: 0905	4.58		X								
6120	0920			+ 11		4 <u>01</u>					
: 6926	0590			X				63.6	7.01	1650	
6925	6425						5	63.5	6.96	16.67	1
* 8925	04254.4		X							•	
: 0940	0940										
e : 0940	0.440			X				64.7	7.05	1632	
: 8945	0945						,	64.2	7.01	1758	3
1: 0945	034552	8	У								
. 1000	1000										
	1000	·		· X	$\langle $	Τ		630	6.83	1321	
p: [0]0	16-10		1	\uparrow				62.9	6.70	1 1345	5
LL DEVELOF oth to Water oth to Water	MENT SUMMA Before Develo Mier Develop	RY pment: ment:	58	5		Deve Total	lopmer Pump	nt Method	(min):	.):	Average Pumping Rate (gpm): Pumping Rate Range (gpm): Total H20 Injected (gals):

4

PROJECT NAME	& NUMBER:	07-181	-1	0	70	:69		۲.		Well ID Date: _	4-19-10
Time	f Depth to Water (ft)	Depth to Product (fl)	Surged	Balled	Pumped		Gallons removed	Temp. (F)	pH	EC (umhos)	Comments: (color, odor, product, est flow rate)
Start: 1015	5.63		X								
Stop: 1030											
Start: 10 30				Х				64.2	6.97	1173	
stop: 1040							5	63.2	6.84	1227	
Start: 1640	5.98	-	X								
Stop: 1055		8									
start: 1055				X				65.0	7.01	1061	
Stop: 1105			1					64.4	6.89	1122	
Start:											
Stop:					1						
Start:			1	•	1		-				
Stop:			+	+	-		1				
WELL DEVELOPM	L IENT SUMMA	 RY		1	<u> </u>					_1	
Depth to Water A	Sclore Develop	pmenl:	Average Pumping Rate (gpm): Pumping Rate Range (gpm):								

Sounded Depth Before Development: _____

Sounded Depth After Development:

Total Amount Excavated (gals): _____ Total H20 Injected (gals): _

ing

182

PROJECT NAME By:	& NUMBER:	07-181	- 1	0	Te	69	rappl	u t		Well ID Date: _	: <u>Mar-4</u> 4-19-10
Time	Depth to Water (ft)	Depth to Product (fl)	Surged	Balled	Pumped		Gallons removed	Temp.	рН	EC (umhos)	Comments: (color. odor. product. est flow rate)
Start: 10 5	5.12		Х								
Stop: /530	1										
Start: 1030				X			•	17.3	7.15	1194	
Stop: 1038								15.6	7.23	1200	
Start: 1040	7.53		X								
Stop: 1055		- A -								5	
Start: 1055				X				17.2	7.14	13/A	
Stop: //05								17.0	7.16	1414	the second se
Start: 1105	10,40	ور ا تو ت	X						, , , , , , , , , , , , , , , , , , ,	1	injected 1. 25 gd DI water
Stop: 1170					đ		<u> </u>			A.	J
Start: 1170			·	X			+	176	6 97	1139	
Stop: 125	2							17.4	6.99	12.80	
WELL DEVELOPM	I IENT SUMMAI	1 ?Y	1	L	.L	<u> </u>	1				
Depth to Water E	lefore Develop	ment: <u>5</u> ,	12		D	cvclo	ортеп	I Method:		<u></u>	Average Pumping Rate (gpm):
Depth to Water A	∫ter Developπ	tent: $\frac{19}{25}$.13		T	otal I	Pumpl	ng Time (i	min):		Pumping Rale Range (gpm):
Sounded Depth E	Sciore Develop	19	1		. 1	otal /	umour	it Excava	ieu (gais):		

PROJECT NAME & NUMBER: 07-181-10						Talo	gray.	L	Well ID: MW-4					
ву:	;									Date: _	4-19-10	•		
Time	f Depth to Water (ft)	Depth to Product (fl)	Surged	Balled	Pumped		Gallons removed	Temp.	pH	EC (umhos)	Comments: (color, odor, product, est flow rate)			
Start: 1130	13.27		K								Injected 2 sal DI wate	:b		
stop: 1145														
Start: 1145				X				17.8	7.07	858				
Stop: 1150								17.3	6.94	NL6				
Start: 1155	14.38		X								Trijected 2 gal DJ water			
Stop: 1210														
Start: 1210		- 28 -		X	<u> </u>			18.6	7.33	797	~			
Stop: 1215		, È						17.9	7.14	1005				
Start:	2. 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977													
Stop:														
Start:														
Stop:												<u></u>		
WELL DEVELOPM	ENT SUMMAR	RY	.	I	4	1	1		1,	I	ана на разли и дополните на состати на состати на состати и до состати на состати на состати на состати на сост			
Depth to Water B	clore Develop	ment:			D	evelo	pment	Method:			Average Pumping Rate (gpm):			
Depth to Water A	lter Developm	ent:			Тс	otal I	Pumplr	ng Time (i	min):		Pumping Rale Range (gpm):			
Sounded Depth B	efore Develop	ment:			To	otal A	Amoun	t Excaval	ed (gals):		Total H20 Injected (gals):			
Sounded Depth A	fter Developm													

282

APPENDIX F

ECM STANDARD OPERATING PROCEDURE

ECM STANDARD OPERATING PROCEDURE MONITORING WELL DESIGN AND CONSTRUCTION

Where possible, information from published and unpublished reports is reviewed prior to installation of monitoring wells. Relevant data includes highest and lowest anticipated ground water elevations, aquifer materials, aquifer yield and contaminants expected. This information is used to aid the field geologist rather than to predetermine how the wells will be constructed. Well construction is based on *site specific conditions* and is determined in the field after discussion with the senior geologist.

Monitoring wells are constructed with flush-threaded, 2-inch or 4-inch diameter, slotted PVC, stainless steel or teflon well screen and PVC, stainless steel or teflon blank casing. Number 3 or #212 sand is used in the annular space around the well screen. The sand is placed into the annular space around the well screen to approximately 2 feet above the top of the well screen. If high ground water conditions exist, the sand may be placed 0 to 1 foot above the top of the well screen. Two feet of bentonite pellets are used to separate the sand from the sanitary surface seal (grout). If high ground water conditions exist 1/2 foot of bentonite may be used to separate the sand from the sanitary surface seal.

The grout (Portland cement with approximately 3-5% bentonite powder) is poured into the annular space above the bentonite pellets. If the surface seal is greater than 5 feet thick, grout consisting of cement mixed with 3-5% bentonite powder will be tremied or pumped into the annular space above the bentonite pellets to prevent the infiltration of surface water into the well. If the surface seal is less than 5 feet thick, the grout will be poured from the surface. The resulting seal will be checked for shrinkage within 24 hours and additional grout will be added, if necessary. The surface seal is used to prevent infiltration of surface water into the well.

The monitoring well(s) is locked with a stovepipe or cap and covered with a traffic-rated vault if it is located in a developed area. The well ID is clearly marked on the cap or casing.

ECM STANDARD OPERATING PROCEDURE

INSTALLATION, CONSTRUCTION, AND DESTRUCTION OF TEMPORARY SAMPLING POINTS

The following describes the procedures used by ECM field personnel to install and construct temporary sampling points (TSPs). Temporary sampling point locations are selected based on regulatory requirements and objectives of the sampling program. Prior to drilling or installation of hydraulic-pushed borings, appropriate permits are obtained and utilities are located by USA, the client, and/or an underground utility location company. All drilling/hydraulic push equipment is steam-cleaned prior to use and all sampling equipment is washed between samples using an EPA-approved detergent such as Liquinox and rinsed with potable water. The TSPs are installed by a licensed drilling contractor using hollow-stem or solid flight augers, or by using hydraulic direct-push equipment. Borings are logged under the supervision of a California-certified professional engineer or California-registered geologist.

Soil samples are collected from the borings at intervals no greater than 5 feet in steam-cleaned or new brass/stainless steel or polyvinyl tubes in accordance with ECM Standard Operating Procedure - Soil Sampling. If possible, a soil sample is collected from immediately above the saturated zone. The soil samples are logged in accordance with ECM Standard Operating Procedure - Logging Method. The soil samples are field-screened with an organic vapor meter (OVM) in accordance with ECM Standard Operating - OVM Readings.

If augers are used, the field geologist will select either solid flight or hollow-stem augers for drilling, based on field observations. Borings with walls consisting primarily of fine-grained soils that remain stable following auger retrieval may be drilled using either auger type. Loose soils observed to cave in the boring are drilled using a hollow-stem auger.

Upon reaching the targeted boring depth, typically 3 to 5 ft below the first encountered ground water,

the auger is backed out and the appropriate length of 1- inch or 2-inch diameter 0.010-inch slotted and blank PVC casing is advanced into the ground water. When using a hollow-stem auger, the casing is placed in the center of the auger and the auger is backed out. If direct push equipment is used, the direct-push equipment is retracted sufficiently to expose casing which has been advanced with the direct-push equipment.

An MMC flexi-dip interface probe is used to measure depth to water from ground surface and to check for the presence of free-phase hydrocarbons in the boring. Product thickness (if present) and depth to water are measured to the nearest 0.010 ft. A disposable or steam-cleaned teflon bailer is lowered into the casing to collect a ground water sample. The water samples are poured into the appropriate container for the analysis to be performed. Pre-preserved sample containers may be used or the analytic laboratory may add preservative to the sample upon arrival. The samples are labeled to include the project number, sample ID, date, and preservative. The samples are placed in polyethylene bags and in an ice chest (maintained at 4 degrees C with blue ice or ice) for transport under chain of custody to the laboratory.

Upon completion of ground water sample collection, the temporary casing is lifted from the borehole and the boring is filled with bentonite hole plug chips and the appropriate amount of distilled water for hydration or grouted with Portland Cement and 3 to 5 % bentonite.

ECM STANDARD OPERATING PROCEDURE SOIL SAMPLING - HOLLOW STEM AUGER DRILLING METHOD OR HYDRAULIC DIRECT-PUSH METHOD

The following describes sampling procedures used by ECM field personnel to collect, handle, and transport soil samples. Before samples are collected, careful consideration is given to the type of analysis to be performed so that precautions are taken to prevent loss of volatile components or contamination of the sample, and to preserve the sample for subsequent analysis.

All drilling and sampling equipment is steam-cleaned between boreholes to prevent crosscontamination. The sampler is washed with an EPA approved detergent (such as liquinox or trisodium phosphate) between sample collection. Collection methods specific to soil sampling are presented below.

Soil samples are collected at pre-specified depth intervals or at a sediment/lithologic change for hydrogeologic description and possible chemical analysis. If hydraulic direct-push methods are used, the soil sample is collected using appropriate direct-push equipment. If hollow-stem augers are used, samples are collected using a modified California split-barrel sampler lined with 2- or 2.5-inch I.D. x 4- or 6-inch long steam-cleaned or new stainless steel or brass tubes or poly-vinyl liners. The sampler is lowered into the borehole and driven 18 inches, using a 140-pound hammer falling 30 inches. The drilling contractor provides the ECM field personnel with the number of blows required to drive the sampler for each 6 inches of penetration.

The sampler is then extracted from the borehole and the middle or bottom brass tube is carefully removed for possible analysis. The soil material is immediately trimmed flush with the tube ends, and sealed with Teflon tape beneath polyethylene end caps. If the sample is to be analyzed for volatile constituents using EPA Method 8260, the soil sample is collected in accordance with EPA Method 5035. In this case, soil is immediately removed from the middle or bottom brass tube, using a syringe-type sampling device such as the EncoreTM device, as described in section 6.2 of EPA

Method 5035. The sample is then labeled to include the date, boring number, depth of sample, project number, ECM, and the ECM field personnel's initials. The samples are put into a resealable plastic bag and placed into an ice chest maintained below 4°C with blue ice or dry ice, for transport under chain of custody to the laboratory. The chain-of-custody form includes the project number, analysis requested, sample ID, date analysis and the ECM field personnel's name. The form is signed, dated and timed by each person who yields or receives the samples beginning with the field personnel and ending with the laboratory personnel.

ECM STANDARD OPERATING PROCEDURE

OVM READINGS

ECM uses an organic vapor meter (OVM) to determine the presence or absence of volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes in soil samples chosen for field screening. The OVM uses a photoionization detector (PID) and is calibrated daily to 100 parts per million of 1-liter of isobutylene. The OVM, which measures in parts per million by volume (ppmv), is used for qualitative, not quantitative, assessment because the correlation between the volume measurements of the OVM and the weight measurements of the laboratory instruments is not well defined.

A field screen sample is obtained from the brass tube immediately above or below the brass tube containing the sample selected for possible analysis. The soil to be screened is removed from the brass tube, and is placed in a pre-cleaned brass tube with aluminum foil and a polyethylene cap on one end. The brass tube is loosely filled to approximately 1/2 full. Another square of aluminum foil is placed on the open end and a polyethylene cap with crossed slits is placed over it.

The field screen sample is allowed to temperature equilibrate for approximately 15 to 30 minutes in the sun, allowing any VOCs which might be present in the soil to volatilize out into the brass tube's headspace. The OVM nozzle is then placed inside the sealed brass tube, through the slits in the cap, in order to measure the VOCs present, if any, in the headspace. The nozzle should remain inside the brass tube for approximately 15 to 30 seconds or until the maximum reading has been recorded on the OVM readout panel.

The depth from which the sample came and the corresponding OVM reading is recorded on the original field log sheet. Field observations, OVM and (odor and staining) readings are used in determining which soil samples are to be analyzed in the laboratory.

ECM STANDARD OPERATING PROCEDURE

LOGGING METHOD

Unconsolidated soil is classified and described by trained ECM field personnel. All available information is used, including the following: soil recovered in the sampler, including the soil visible on both ends of the sample retained for possible analysis; soil cuttings generated during drilling; and the drilling contractor's observations of the drill rig's behavior.

Classification and description of unconsolidated soil is accomplished using the American Society of Testing and Materials (ASTM) Methods D2487-85 (Unified Soil Classification System (USCS)) and/or D2488-69 (Description and Identification of Soils (Visual-Manual Procedure)).

The soil classification and description is recorded on the field log sheet by ECM field personnel and includes the following information:

- 1) Soil type;
- 2) Soil classification;
- 3) Soil color, including mottling;
- 4) Moisture content;
- Plasticity and consistency (fine-grained material) or density (coarse-grained material);
- 6) Percentages of clay, silt, sand and gravel;
- 7) Grain size range of sands and gravels;
- 8) Angularity and largest diameter of gravel component;
- 9) Estimated permeability;
- 10) Odor; and
11)Any other observations which would assist in the interpretation of the depositional environment and/or differentiation between the various geologic units expected to be encountered.

In addition to the above, the ground water levels encountered during drilling and measured after the water stabilized is also recorded on the field log.

ECM STANDARD OPERATING PROCEDURE MONITORING WELL DESIGN AND CONSTRUCTION

Where possible, information from published and unpublished reports is reviewed prior to installation of monitoring wells. Relevant data includes highest and lowest anticipated ground water elevations, aquifer materials, aquifer yield and contaminants expected. This information is used to aid the field geologist rather than to predetermine how the wells will be constructed. Well construction is based on *site specific conditions* and is determined in the field after discussion with the senior geologist.

Monitoring wells are constructed with flush-threaded, 2-inch or 4-inch diameter, slotted PVC, stainless steel or teflon well screen and PVC, stainless steel or teflon blank casing. Number 3 or #212 sand is used in the annular space around the well screen. The sand is placed into the annular space around the well screen to approximately 2 feet above the top of the well screen. If high ground water conditions exist, the sand may be placed 0 to 1 foot above the top of the well screen. Two feet of bentonite pellets are used to separate the sand from the sanitary surface seal (grout). If high ground water conditions exist 1/2 foot of bentonite may be used to separate the sand from the sanitary surface seal.

The grout (Portland cement with approximately 3-5% bentonite powder) is poured into the annular space above the bentonite pellets. If the surface seal is greater than 5 feet thick, grout consisting of cement mixed with 3-5% bentonite powder will be tremied or pumped into the annular space above the bentonite pellets to prevent the infiltration of surface water into the well. If the surface seal is less than 5 feet thick, the grout will be poured from the surface. The resulting seal will be checked for shrinkage within 24 hours and additional grout will be added, if necessary. The surface seal is used to prevent infiltration of surface water into the well.

The monitoring well(s) is locked with a stovepipe or cap and covered with a traffic-rated vault if it is located in a developed area. The well ID is clearly marked on the cap or casing.

ECM STANDARD OPERATING PROCEDURE

WELL DEVELOPMENT

ECM develops ground water monitoring wells not less than 48 hours after the placement of the surface seal (grouting) to allow sufficient time for the cement grout to set. The wells are developed to restore the natural hydraulic conductivity of the formation(s) to be monitored and to remove all sand and as much fine-grained material as possible.

Prior to development, ECM field personnel measure the depth to water and the total depth of the well. The total depth measurement is compared to the well completion diagram shown on the field log and any discrepancies are noted.

Well development consists of several cycles of surging and evacuation of water in the well, each ending with measurements of temperature, pH, conductivity, and observation of turbidity. Surging takes place for several minutes to loosen fines from the screened interval. The vented surge block is placed block several feet below the water surface and pulled upward.

Development shall continue for a period of at least four hours or when ten well volumes have been removed, whichever occurs first, and until ground water removed from the well is clear and visibly free of suspended materials. Note the time and the approximate volume of water removed prior to each determination of the following parameters (and whether well is bailed or pumped dry): pH, temperature, and specific conductivity. These measurements should be made a minimum of five times during well development.

If micro wells (well diameter 3/4" or less) are installed, the well may not be surged. In this case, a minimum of twenty casing volumes will be removed.

If the water is still cloudy after the four hour period but these three parameters have stabilized, then the well will be considered developed regardless of the volume of water purged from the well. Stabilization of pH, temperature, and specific conductivity will be considered to have occurred when these parameters undergo changes not exceeding ± 0.1 , 0.5 degrees F, and 5 percent, respectively.

After development is completed, the depth to water and the total depth of the well are remeasured. The total depth of the well and the total depth noted on the field log should be approximately the same. All data measured during the procedures described herein are recorded on the ECM Well Development Form, which is part of the project file.

The ground water removed from the wells during development remains onsite in 55-gallon Department of Transportation-approved drums. The water is removed by a licensed hauler and taken to an approved disposal facility.

ECM STANDARD OPERATING PROCEDURE MONITORING WELL SAMPLING

The following describes sampling procedures used by ECM field personnel to collect and handle ground water samples from monitoring wells. Before samples are collected, careful consideration is given to the type of analysis to be performed so that precautions are taken to prevent loss of volatile components or contamination of the sample, and to preserve the sample for subsequent analysis. Wells will be sampled no less than 24 hours after well development. Collection methods specific to ground water sampling are presented below.

Prior to sampling, each well is purged of a minimum of three well casing volumes of water using a steam-cleaned PVC bailer, or a pre-cleaned pump. Temperature, pH and electrical conductivity are measured at least three times during purging. Purging is continued until these parameters have stabilized (i.e., changes in temperature, and conductivity do not exceed 10% and changes in pH do not exceed 1.0).

Ground water samples are collected from the wells with steam-cleaned or disposable Teflon bailers. The water samples are decanted into the appropriate container for the analysis to be performed. Pre-preserved sample containers may be used or the analytic laboratory may add preservative to the sample upon arrival. Duplicate samples are collected from each well as a back-up sample and/or to provide quality control. The samples are labeled to include the project number, sample ID, date, preservative, and the field person's initials. The samples are placed in polyethylene bags and in an ice chest (maintained at 4°C with blue ice or ice) for transport under chain-of-custody to the laboratory.

The chain-of-custody form includes the project number, analysis requested, sample ID, date of sampling, and the ECM field person's name. The form is signed and dated (with the transfer time) by each person who yields or receives the samples beginning with the field personnel and ending with the laboratory personnel.

ECM STANDARD OPERATING PROCEDURE SUB-SLAB VAPOR SAMPLING

This document describes standard operating procedures (SOPs) used by ECM field personnel to collect and handle sub-slab soil vapor samples. This SOP has been prepared in accordance with the following guidance documents:

Advisory - Active Soil Gas Investigations, Department of Toxic Substances Control and California Regional Water Quality Control Board, Los Angeles Region, January 28, 2003

Guidance For the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, Department of Toxic Substances Control and California Environmental Protection Agency, December 15, 2004, Revised February 7, 2005

Chevron Soil Vapor Sampling Technical Toolkit, Version 1.6, Chevron Energy Technology Company, February 8, 2007

Many different conditions and circumstances may be encountered during sub-slab vapor sample collection. The above documents should be consulted if situations arise that are not covered in this SOP.

Probe Installation

Prior to sampling, it must be determined if the slab has a vapor barrier. If so, the vapor barrier must be repaired afterward. Do not drill through tension slabs, which contain embedded steel cables under tension. Probes should not be installed above utility trenching or near where a utility penetrates the slab. Prior to installation, remove carpet, if present, by cutting a small $\frac{1}{2}$ inch flap which can be glued down afterwards, or by using other methods previously agreed upon with the building owner.

A rotary hammer drill is used to create a shallow (1-inch diameter) 'outer' hole that partially penetrates the slab. Next, the rotary hammer is used to drill an approximate 5/16-inch diameter 'inner' hole through the remainder of the slab and approximately 3 inches into sub-slab material.

Stainless steel or brass 1/4-inch outer diameter (approximately 0.18 inch inner diameter) tubing and stainless steel or brass compression to thread fittings are used to construct the probe. To avoid obstruction of the probe with sub-slab material, the tubing is cut to ensure it does not reach the bottom of the hole.

The probe is placed into the hole. The top of the probe is completed flush with the slab, such that it can be fitted with a plug so as not to interfere with day-to-day use of the building. Quickdrying Portland cement is mixed with water and used to seal the annular space between the probe and the outside of the 'outer' hole. Allow cement to cure for at least 24 hours prior to sampling.

Purging

Prior to collecting a soil vapor sample, the stagnant air in the sampling tubes must be removed. This ensures that the soil vapor sample that is collected is representative of actual soil vapor concentrations. Field notes containing information about the above-ground sampling equipment and below-ground tubing length and inner diameter should be used to calculate the "dead volume" to be purged. Three volumes will be purged unless a greater number of volumes are specified by the regulatory agency or other applicable guidance. A Summa canister evacuated by the lab to a pressure of -29.9 in Hg. is used to induce the flow for purging. A pressure gauge and flow control regulator with a flow gauge is used to control the flow. The flow rate and pressure for purging should be the same as the flow rate used for subsequent sampling (<200 ml/min at < 10 in Hg).

Leak Testing

Leakage during soil gas sampling may dilute samples with ambient air and produce results that underestimate actual site concentrations or contaminate the sample with external contaminants. Leak tests should be conducted at every soil gas probe. Various tracer compounds (i.e. pentane, isopropanol, isobutene, propane, or 1,1 Difluororoethane), may be used as leak check compounds. ECM uses 1,1 Difluoroethane in aerosol form (available in 'Dust-off' and other commonly available commercial products) unless another compound is specified for a site by the regulatory agency. During purging and sample collection, a containment shroud is assembled around the sampling equipment. The tracer compound is sprayed within the containment shroud to create an atmosphere containing the tracer compound. The soil vapor sample is then collected as specified below. Tracer compound detections are included on the analytic laboratory report.

Sample Collection

The soil vapor sample is collected in a Summa canister. The Summa cannister is supplied by the analytical lab and is evacuated by the lab to a pressure of -29.9 in Hg. A vacuum gauge and flow controller/flow gauge are used to monitor pressure and flow of formation air into the Summa canister. A low vacuum and low flow rate are used to aid in obtaining a representative soil vapor sample and to reduce the possibility of leakage of ambient air into the sampling equipment. The flow regulator is set by the lab to allow a flow volume of no greater than 200 ml/min.

Sample collection from a purged soil vapor probe should begin within 10 minutes of purging. Sample collection commences when all connections between the Summa canister, flow controller, and all other portions of the sampling equipment are tight. Leak testing should be performed concurrently with sampling as described above. To begin sampling, open the valve on the Summa Canister. As the canister fills, observe the pressure gauge on the flow controller to ensure that the vacuum in the canister is decreasing over time. Close the valve on the Summa canister when the pressure in the Summa canister has decreased to 5 in Hg.

All samples must be correctly and clearly labeled. The chain-of-custody form includes the final canister vacuums, canister serial number, analysis requested, project number, sample ID, date of sampling, and the ECM field person's name. The form is signed and dated (with the transfer time) by each person who yields or receives the samples beginning with the field personnel and ending with the laboratory personnel.

APPENDIX G RESPONSIBLE PARTY CERTIFICATION

July 20, 2010

Bob Legallet Telegraph Business Properties 1401 Griffith Street San Francisco, CA 94214

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document is true and correct to the best of my knowledge.

.

. . .

Sincerely

Bob Legallet Telegraph Business Properties