RECEIVED

10:33 am, Jul 27, 2010

Alameda County Environmental Health

ECM group

July 22, 2010

Bob Legallet Telegraph Business Properties 1401 Griffith Street San Francisco, CA 94124

Groundwater Monitoring Report Second Quarter 2010 Telegraph Business Park 5427 Telegraph Avenue Oakland, California ECM Project #07-181-04

Dear Mr. Legallet:

This report provides the results of the semi-annual groundwater monitoring at Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California (Figure 1, Appendix A). On June 9 and 13, 2010, ECM personnel visited the site. Groundwater elevations were measured and groundwater samples were collected from the five monitoring wells (MW-1 through MW-5). Well locations are shown on Figure 2 (Appendix A).

Depth to groundwater was measured in each of the five wells. Free-phase hydrocarbons were not measured or observed in any of the wells. Water level data and well construction details are tabulated in Table 1 (Appendix B). A groundwater elevation contour map is included as Figure 2 (Appendix A). Groundwater flow was to the west and southwest at an approximate gradient of 0.015 - 0.04 ft/ft.

The samples were forwarded under chain of custody record to Torrent Laboratory Inc., of Milpitas, California, for analysis. Analytical results for groundwater are presented in Tables 2 and 3 (Appendix B). The chain of custody document and laboratory analytical reports are included in Appendix C. Groundwater samples were collected in accordance with ECM Standard Operating Procedure - Groundwater Sampling (Appendix E). The water sampling data sheets are included in Appendix D. Purge water and decon rinseate are stored onsite in DOT-approved 50-gallon drums pending transportation and disposal at an appropriate disposal facility.

Bob Legallet ECM Group #07-181-04

Second Quarter 2010 Groundwater Monitoring Results:

In accordance with a guidance letter from Alameda County dated October 27, 2008, samples from site wells were analyzed for Stoddard solvent, Total Petroleum Hydrocarbons as Gasoline (TPH[G]), benzene, toluene, ethylbenzene and xylenes (BTEX), for the oxygenates MTBE, ETBE, DIPE, TAME, and TBA, and for the lead scavengers EDB and EDC.

Analytic results for wells MW-1 through MW-3 were consistent with previous results. Wells MW-4 and MW-5 were installed in April 2010 and were sampled for the first time.

Source Area Well: MW-2

Monitoring well MW-2 is located near the former site USTs. Concentrations of TPH(G) and Stoddard solvent in MW-2 (5,000 and 69,000 ppb respectively) were higher than for any other well. Benzene was also detected at 17 ppb. Other BTEX constituents were not detected in the sample. No oxygenates or lead scavengers were detected in the second quarter 2010 sample from well MW-2.

Upgradient Well: MW-1

Well MW-1 is located upgradient of the former site USTs. Stoddard solvent was detected in MW-1 at 410 ppb. TPH(G) was detected at a concentration of 610 ppb. BTEX constituents, oxygenates, and lead scavengers were not detected in the second quarter 2010 sample from well MW-1.

Downgradient Well: MW-3

Well MW-3 is located downgradient of the former site USTs. TPH(G) and Stoddard solvent were detected in well MW-3 at 3,100 ppb and 990 ppb, respectively. Benzene was also detected in the sample at 5.5 ppb. No other analytes were detected in the second quarter 2010 sample from well MW-3.

Offsite Downgradient Wells: MW-4 and MW-5

Wells MW-4 and MW-5 are located offsite and downgradient of the former USTs. These wells were installed in April 2010 and this was the first monitoring event for these wells. No analytes were detected in the second quarter 2010 samples from wells MW-4 and MW-5.

Planned Future Activities:

Back Baslam

This site is currently scheduled for semi-annual monitoring. The next monitoring event is scheduled for December 2010.

Thank you for allowing ECM the opportunity to provide environmental services to you. Please contact us if you have questions or require additional information.

Sincerely, ECM Group

Zach Barbane Staff Scientist

Jim Green

Professional Engineer # C058482

Appendices:

A - Figures

B - Tables

C - Chain of Custody and Laboratory Analytical Report

D - Water Sampling Data Sheets

E - Standard Operating Procedures

F - Responsible Party Certification

cc: Barbara J. Jakub, Alameda County Health Care Services Agency Leroy Griffin, Oakland Fire Department

APPENDIX A FIGURES

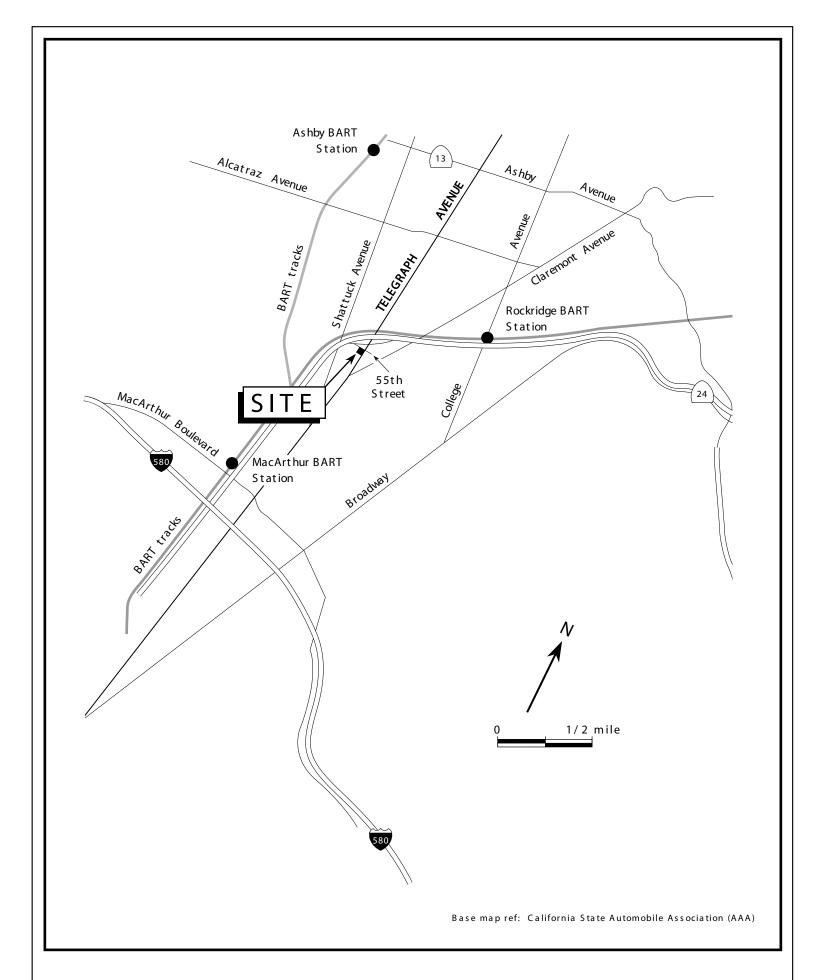


Figure 1. Site Location Map - Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California

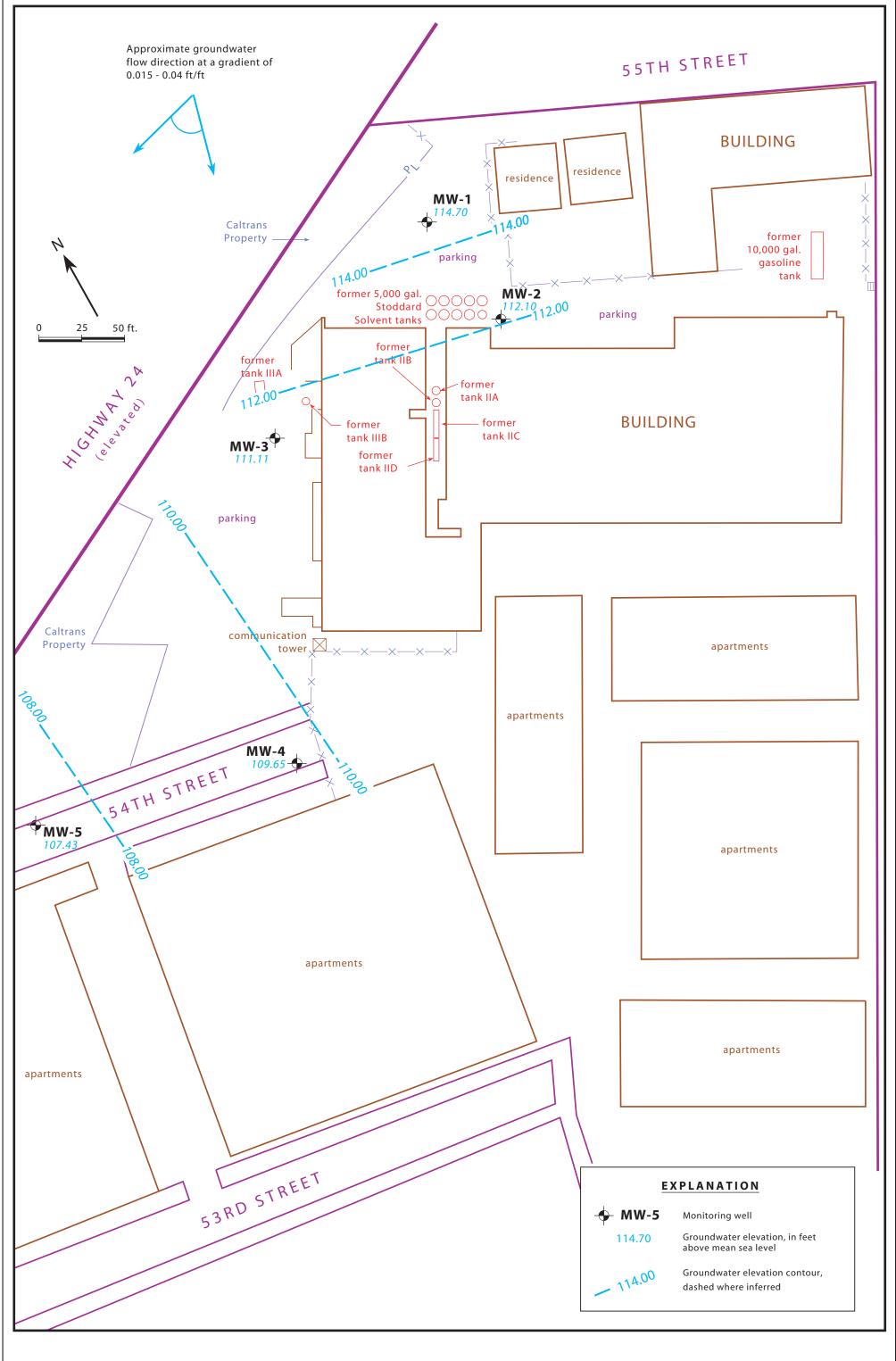


Figure 2. Monitoring Well Location and Groundwater Elevation Contour Map - June 9, 2010 - Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California

APPENDIX B

TABLES

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	2111 (10)	msl)	msl)	Interval	Interval	Interval	
MW-1	1/5/1994	6.40	115.05	108.65	5 - 20	4 - 20	0 - 4	
	2/1/1994	5.93		109.12				
	3/2/1994	5.09		109.96				
	4/6/1994	5.85		109.20				
	5/4/1994	6.37		108.68				
	6/3/1994	6.95		108.10				
	7/7/1994	7.00		108.05				
	8/3/1994	7.30		107.75				
	9/7/1994	7.70		107.35				
	10/11/1994	7.62		107.43				
	1/20/1995	4.78		110.27				
	4/7/1995	5.96		109.09				
	7/26/1995	7.19		107.86				
	10/25/1995	7.74		107.31				
	1/29/1996	4.67		110.38				
	4/26/1996	5.92		109.13				
	7/25/1996	7.10		107.95				
	10/28/1996	7.41		107.64				
	12/4/2008	7.10	120.65	113.55				See Note 1
	8/28/2009	7.65		113.00				
	12/1/2009	7.15		113.50				
	6/9/2010	5.95		114.70				
	ı	1	ī	1		ī	ı	
MW-2	1/5/1994	9.42	117.60	108.18	7 - 27	6 - 27	0 - 6	
	2/1/1994	9.15		108.45				
	3/2/1994	9.55		108.05				
	4/6/1994	9.09		108.51				
	5/4/1994	9.18		108.42				
	6/3/1994	9.44		108.16				
	7/7/1994	10.21		107.39				
	8/3/1994	10.96		106.64				
	9/7/1994	10.20		107.40				
	10/11/1994	10.18		107.42				
	1/20/1995	8.64		108.96				
	4/7/1995	9.84		107.76				

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
		msl)	msl)	Interval	Interval	Interval	
7/26/1995	10.55	117.60	107.05	7 - 27	6 - 27	0 - 6	
10/25/1995	10.15		107.45				
1/29/1996	9.35		108.25				
4/26/1996	8.57		109.03				
7/25/1996	10.73		106.87				
10/28/1996	10.16		107.44				
12/4/2008	10.84	123.36	112.52				See Note 1
8/28/2009	11.58		111.78				
12/1/2009	11.06		112.30				
6/9/2010	11.26		112.10				
		115.33		5 - 20	4 - 20	0 - 4	
3/2/1994	7.56	115.14	107.58				Note 2: Wells resurveyed on 3/4/94 by
							Ronald C. Miller, pls 15816
		120.91					See Note 1
6/9/2010	9.80		111.11				
	7/26/1995 10/25/1995 1/29/1996 4/26/1996 7/25/1996 10/28/1996 12/4/2008 8/28/2009 12/1/2009	7/26/1995 10.55 10/25/1995 10.15 1/29/1996 9.35 4/26/1996 8.57 7/25/1996 10.73 10/28/1996 10.16 12/4/2008 10.84 8/28/2009 11.58 12/1/2009 11.06 6/9/2010 11.26 1/5/1994 10.14 2/1/1994 8.92 3/2/1994 7.56 4/6/1994 10.24 5/4/1994 9.67 6/3/1994 10.38 7/7/1994 11.55 8/3/1994 11.76 9/7/1994 12.20 10/11/1994 12.02 1/20/1995 6.47 4/7/1995 7.98 7/26/1995 11.33 10/25/1995 12.29 1/29/1996 6.28 4/26/1996 9.09 7/25/1996 12.06 10/28/1996 12.32 12/4/2008 11.82 8/28/2009 13.16 12/1/2009 11.43	7/26/1995 10.55 117.60 10/25/1995 10.15 117.60 10/25/1996 9.35 4/26/1996 8.57 7/25/1996 10.73 10.16 12.4/2008 10.84 123.36 8/28/2009 11.58 12/1/2009 11.06 6/9/2010 11.26 1/5/1994 10.14 115.33 2/1/1994 8.92 3/2/1994 7.56 115.14 4/6/1994 10.24 5/4/1994 9.67 6/3/1994 10.38 7/7/1994 11.55 8/3/1994 11.76 9/7/1994 12.20 10/11/1994 12.02 1/20/1995 6.47 4/7/1995 7.98 7/26/1995 11.33 10/25/1995 12.29 1/29/1996 6.28 4/26/1996 9.09 7/25/1996 12.06 10/28/1996 12.32 12/4/2008 11.82 120.91 8/28/2009 13.16 12/1/2009 11.43 120.91	msl) msl) 7/26/1995 10.55 117.60 107.05 10/25/1995 10.15 107.45 107.45 1/29/1996 9.35 108.25 109.03 4/26/1996 8.57 109.03 106.87 10/28/1996 10.16 107.44 12/4/2008 10.84 123.36 112.52 8/28/2009 11.58 111.78 111.78 112.30 112.30 6/9/2010 11.26 115.33 105.19 106.41 3/2/1994 7.56 115.14 107.58 4/6/1994 10.24 104.90 105.47 6/3/1994 10.38 104.76 105.47 6/3/1994 10.38 104.76 103.38 7/7/1994 11.55 103.59 103.59 8/3/1994 11.76 103.38 104.76 1/20/1995 6.47 107.16 103.81 10/25/1995 12.29 102.85 108.86 4/26/1996 9.09 106.05	msl) msl) Interval 7/26/1995 10.55 117.60 107.05 7 - 27 10/25/1995 10.15 107.45 107.45 7 - 27 1/29/1996 9.35 108.25 109.03 7/25/1996 10.73 106.87 109.03 106.87 107.44 107.44 12/4/2008 10.84 123.36 112.52 8/28/2009 11.58 111.78 111.78 112.30 112.30 112.30 112.30 112.30 112.30 106.41 112.30 112.10 112.10 112.10 112.10 112.30 106.41 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.45 107.44 107.45 107.45 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44 107.44	msl	msl

Table 1. Monitoring Well Survey Data, Well Construction Details, and Depth to Groundwater - 5427 Telegraph Avenue, Oakland, California.

Well ID	Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Screen	Sand Pack	Bentonite/ Grout	Notes
			msl)	msl)	Interval	Interval	Interval	
MW-4	6/9/2010	6.79	116.44	109.65	5 - 20	4 - 20	0 - 4	well surveyed on 5/2/10 by Barry Kolstad, pls 5677
MW-5	6/9/2010	5.60	113.03	107.43	5 - 20	4 - 20	0 - 4	well surveyed on 5/2/10 by Barry Kolstad, pls 5677

Explanation:

DTW = Depth to Water

ft = feet

msl = Mean Sea Level

TOC = Top of Casing

GWE = Ground Water Elevation

Notes:

1 Well boxes were replaced, TOC elevations changed, and wells were resurveyed on 11/23/08 and 12/7/08 by Barry Kolstad, pls 5677

Table 2. Analytic Results for Groundwater - Hydrocarbons - 5427 Telegraph Avenue, Oakland, California

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
-	•	<		parts p	er billion		>	
MW-1	1/5/1994		1,000	3.3	1.6	< 0.3	6	
	4/6/1994		1,400	5.6	4.5	< 0.3	11	
	7/7/1994		1,200	1.5	0.80	< 0.3	1.9	
	10/11/1994		700	< 0.3	< 0.3	< 0.3	< 0.3	
	1/20/1995		1,500	3.9	2	< 0.3	3.9	
	4/7/1995		500	3.2	1.1	< 0.3	1.7	
	7/26/1995		1,500	3.1	3.2	12	16	
	10/25/1995		660	0.6	1.4	20	14	
	1/29/1996		2,500	1.8	0.7	8.0	13	
	4/26/1996		4,600	<2.5	<2.5	9.5	21	
	7/25/1996		2,200	1.6	1.6	11	51	
	10/28/1996		1,300	1.5	1.3	3.6	11	
	12/4/2008	540	841	< 0.50	6.55	< 0.50	<1.50	1
	8/28/2009	510	169	< 0.50	6.55	< 0.50	<1.50	2
	12/1/2009	<220	480	<2.2	<2.2	<2.2	<6.6	3
	6/9/2010	610	410	<2.2	<2.2	<2.2	<6.6	5
								T
MW-2	1/5/1994		35,000	12	38	<3.0	150	
	4/6/1994		94,000	21	22	<6.0	110	
	7/7/1994			16	16	<1.5	1,510	
	7/11/1994		43,000					
	10/11/1994		31,000	17	13	14	0.3	
	1/20/1995		26,000	18	13	12	50	
	4/7/1995		70,000	17.5	11	< 0.6	74.6	
	7/26/1995		21,000	17	<0.5	26	94	
	10/25/1995		38,000	63	70	440	1,100	
	1/29/1996		74,000	7.4	8.6	66	330	
	4/26/1996		81,000	<250	<250	3,100	15,000	
	7/25/1996		48,000	17	9.4	59	200	
	10/28/1996	 c 200	6,200	19	30	58	310	1
	12/4/2008	6,300	120,000	<22.0	<22.0	<22.0	<66.0	
	8/28/2009	3,600	19,500	16	0.69	<0.50	<1.50	2
	12/1/2009	440	4,000	12 17	<4.4 <4.4	<4.4 <4.4	13 <13.2	3 5
	6/9/2010	5,000	69,000					

Table 2. Analytic Results for Groundwater - Hydrocarbons - 5427 Telegraph Avenue, Oakland, California

			Stoddard			Ethyl-		
Sample ID	Sample Date	TPH-G	Solvent	Benzene	Toluene	benzene	Xylenes	Notes
		<	· 	parts p	er billion		>	
MW-3	1/5/1994		1,100	180	20	85	10	
	4/6/1994		1,000	140	13	60	<12	
	7/7/1994			120	7.5	8.0	<3.0	
	7/11/1994		1,000					
	10/11/1994		1,100	200	11	23	< 0.3	
	1/20/1995		2,100	36	3.5	4.8	< 0.3	
	4/7/1995		600	32.7	1.7	4.7	1.9	
	7/26/1995		1,200	98	3.2	12	16	
	10/25/1995		2,300	32	3.4	4.7	9.6	
	1/29/1996		1,100	22	1.2	6.4	12	
	4/26/1996		1,300	5.6	0.6	4.6	14	
	7/25/1996		2,900	120	6.4	23	36	
	10/28/1996		2,000	170	6.6	16	26	
	12/4/2008	1,600	708	1.15	< 0.50	0.720	<1.50	1
	8/28/2009	2,200	434	2.8	0.66	1.6	<1.50	2
	12/1/2009	3,900	<220	2.2	<2.2	<2.2	<6.6	2,4
	6/9/2010	3,100	990	5.5	<2.2	<2.2	<6.6	2
						•	·	
MW-4	6/13/2010	<50	<100	<0.50	< 0.50	<0.50	<1.50	
MW-5	6/9/2010	<50	<100	<0.50	<0.50	<0.50	<1.50	

Explanation:

TPH-G = Gasoline

--- = not analyzed

Notes:

- 1 TPH(G) was not reported prior to 2008. Samples were analyzed for TPH(D) and Oil&Grease prior to 2008. See report: Sierra Enironmental Services, 1996, Quarterly Monitoring Report, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California, December 26, 1996.
- 2 Sample chromatogram does not resemble gasoline standard pattern. Reported TPH value due to the presence of non-target heavy end hydrocarbons within range of C5-C12 quantified as gasoline.
- 3 The reporting limits were raised due to a high concentration of heavy end hydrocarbons within range quantified as Mineral Spirits.
- 4 The reporting limits were raised due to contribution of unidentified hydrocarbons within the C5-C12 range quantified as gasoline.
- 5 Results not typical of Gasoline standard pattern. Result reported as Gasoline but pattern best matches Mineral Spirits/Stoddard Solvent.

Table 3. Analytic Results for Groundwater - Oxygenates - 5427 Telegraph Avenue, Oakland, California

								EDC (1,2	
Sample ID	Sample Date	MTBE	DIPE	ETBE	TAME	TBA	EDB	,	Notes
		<			parts per bill	lion		>	
MW-1	1/5/1994							< 0.2	
	4/6/1994			ł				< 0.2	
	7/7/1994							< 0.5	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							0.5	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996							< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							< 0.5	
	12/4/2008	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	
	6/9/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	
MW-2	1/5/1994							2.7	
	4/6/1994							< 0.2	
	7/7/1994							0.60	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							1.4	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996			ł				< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							<2.5	
	12/4/2008	<22.0	<22.0	<22.0	<22.0	<440	<22.0	<22.0	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	
	6/9/2010	<4.4	<4.4	<4.4	<4.4	<44	<4.4	<4.4	

Table 3. Analytic Results for Groundwater - Oxygenates - 5427 Telegraph Avenue, Oakland, California

								EDC (1,2	
Sample ID	Sample Date		DIPE	ETBE	TAME	TBA	EDB	DCA)	Notes
		<			parts per bil	lion		>	
MW-3	1/5/1994							0.20	
	4/6/1994							< 0.2	
	7/7/1994							< 0.5	
	10/11/1994							<2	
	1/20/1995							<2	
	4/7/1995							0.7	
	7/26/1995							< 0.5	
	10/25/1995							< 0.5	
	1/29/1996							< 0.5	
	4/26/1996			ł				< 0.5	
	7/25/1996							< 0.5	
	10/28/1996							< 0.5	
	12/4/2008	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	1
	8/28/2009	< 0.50	< 0.50	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	
	12/1/2009	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	
	6/9/2010	<2.2	<2.2	<2.2	<2.2	<22	<2.2	<2.2	
MW-4	6/13/2010	<0.50	<0.50	<0.50	<0.50	<5.0	< 0.50	< 0.50	
MW-5	6/9/2010	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
	•				-		•		

Explanation:

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

Notes:

1 MTBE, DIPE, ETBE, TAME, TBA and EDB were not reported prior to 2008. Samples were analyzed for Halogenated Volatile Organic Compounds (HVOCs) and Volatile Organic Compounds (VOCs) prior to 2008. See report: Sierra Enironmental Services, 1996, Quarterly Monitoring Report, Telegraph Business Park, 5427 Telegraph Avenue, Oakland, California, December 26, 1996.

APPENDIX C

CHAIN OF CUSTODY AND LABORATORY ANALYTICAL REPORTS

ECM Group 290 West Channel Benicia, California 94510 Tel: 707-751-0655

Fax: 707-751-0653

Email: rguptel@ecmgrp.com

RE: 5427 Telegraph, Oakland, CA

Work Order No.: 1006103

Dear Rachel Guptel:

Torrent Laboratory, Inc. received 4 sample(s) on June 14, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Callosa	
	June 21, 2010
Patti Sandrock	Date

Total Page Count: 20 Page 1 of 20

Date: 6/21/2010

Client: ECM Group

Project: 5427 Telegraph, Oakland, CA

Work Order: 1006103

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 20 Page 2 of 20

Sample Result Summary

Report prepared for: Rachel Guptel Date Received: 06/14/10

ECM Group Date Reported: 06/21/10

MW-1 1006103-001A

MVV-1					1006	5103-001A
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
TPH as Stoddard	SW8015E	3 1	0.0287	0.10	0.41	mg/L
TPH(Gasoline)	8260TPH	I 4.4	95	220	610	ug/L
MW-2					1006	6103-002A
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	Results	<u>Unit</u>
TPH as Stoddard	SW8015E	3 50	1.44	5.0	69	mg/L
Benzene	SW8260E	8.8	2.9	4.4	17	ug/L
TPH(Gasoline)	8260TPH	l 8.8	190	440	5000	ug/L
MW-3					1006	6103-003A
Parameters:	Analysis Method	DF	MDL	PQL	Results	<u>Unit</u>
TPH as Stoddard	SW8015E	3 1	0.0287	0.10	0.99	mg/L
Benzene	SW8260E	3 4.4	1.5	2.2	5.5	ug/L
TPH(Gasoline)	8260TPH	1 4.4	95	220	3100	ug/L
MW-5					1006	6103-004A
Parameters:	Analysis Method	DF	MDL	PQL	Results	<u>Unit</u>

All compounds were non-detectable for this sample.

Total Page Count: 20 Page 3 of 20

Report prepared for:
Rachel Guptel
ECM Group
Date Received: 06/14/10
Date Reported: 06/21/10

Client Sample ID:MW-1Lab Sample ID:1006103-001AProject Name/Location:5427 Telegraph, Oakland, CASample Matrix:Groundwater

 Project Number:
 07-181-04

 Date/Time Sampled:
 06/09/10 / 12:04

 Tag Number:
 5427 Telegraph

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	1	0.0287	0.10	0.41		mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	1	53.3	124	88.4		%	401287	0581

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/17/10	4.4	1.5	2.2	ND	•	ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	4.4	0.84	2.2	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	4.4	0.68	2.2	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	4.4	0.88	4.4	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	4.4	0.56	2.2	ND		ug/L	401289	NA
MTBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	4.4	1.6	2.2	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	4.4	1.4	2.2	ND		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	4.4	6.6	22	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	4.4	1.2	2.2	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	4.4	0.86	2.2	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	4.4	61.2	131	92.9		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	4.4	75.1	127	81.2		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	4.4	64.1	120	81.5		%	401289	NA

NOTE: Reporting limit raised due to high level of heavy hydrocarbons.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/17/10	4.4	95	220	610	Х	ug/L	401293	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	4.4	58.4	133	86.9		%	401293	NA

NOTE: x-Not typical of Gasoline standard pattern. Result reported as Gasoline but pattern best matches Mineral Spirits/Stoddard Solvent.

Total Page Count: 20 Page 4 of 20

Report prepared for: Rachel Guptel Date Received: 06/14/10 ECM Group Date Reported: 06/21/10

Client Sample ID:MW-2Lab Sample ID:1006103-002AProject Name/Location:5427 Telegraph, Oakland, CASample Matrix:Groundwater

 Project Number:
 07-181-04

 Date/Time Sampled:
 06/09/10 / 14:26

 Tag Number:
 5427 Telegraph

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	50	1.44	5.0	69		mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	50	53.3	124	0.000	D	%	401287	0581

NOTE: D - Surrogates not recoverable due to dilution of the sample.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
i didilictoro.	Metriod	Dute	Analyzea					Qualifici		Buton	Buton
Benzene	SW8260B	NA	06/17/10	8.8	2.9	4.4	17		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	8.8	1.7	4.4	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	8.8	1.4	4.4	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	8.8	1.8	8.8	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	8.8	1.1	4.4	ND		ug/L	401289	NA
MTBE	SW8260B	NA	06/17/10	8.8	3.3	4.4	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	8.8	3.2	4.4	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	8.8	3.5	4.4	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	8.8	2.8	4.4	ND		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	8.8	13	44	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	8.8	2.4	4.4	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	8.8	1.7	4.4	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	8.8	61.2	131	92.8		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	8.8	75.1	127	88.3		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	8.8	64.1	120	0.000	S	%	401289	NA

NOTE: Reporting limit raised due to high level of heavy hydrocarbons. S - Low surrogate (BFB) recovery attributed to TPH interference (heavy hydrocarbons).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/17/10	8.8	190	440	5000		ug/L	401293	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	8.8	58.4	133	0.000	S	%	401293	NA

NOTE: x-Not typical of Gasoline standard pattern. Result reported as Gasoline but pattern best matches Mineral Spirits/Stoddard Solvent. S - Low surrogate recovery attributed to matrix interference.

Report prepared for: Rachel Guptel Date Received: 06/14/10 ECM Group Date Reported: 06/21/10

Client Sample ID:MW-3Lab Sample ID:1006103-003AProject Name/Location:5427 Telegraph, Oakland, CASample Matrix:Groundwater

 Project Number:
 07-181-04

 Date/Time Sampled:
 06/09/10 / 13:48

 Tag Number:
 5427 Telegraph

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	1	0.0287	0.10	0.99	Х	mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	1	53.3	124	111		%	401287	0581

NOTE: x- Not typical of Stoddard standard pattern (possibly aged stoddard or other fuel within the stoddard range).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/17/10	4.4	1.5	2.2	5.5		ug/L	401289	NA
Toluene	SW8260B	NA	06/17/10	4.4	0.84	2.2	ND		ug/L	401289	NA
Ethyl Benzene	SW8260B	NA	06/17/10	4.4	0.68	2.2	ND		ug/L	401289	NA
m,p-Xylene	SW8260B	NA	06/17/10	4.4	0.88	4.4	ND		ug/L	401289	NA
o-Xylene	SW8260B	NA	06/17/10	4.4	0.56	2.2	ND		ug/L	401289	NA
MTBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/17/10	4.4	1.6	2.2	ND		ug/L	401289	NA
ETBE	SW8260B	NA	06/17/10	4.4	1.7	2.2	ND		ug/L	401289	NA
TAME	SW8260B	NA	06/17/10	4.4	1.4	2.2	ND		ug/L	401289	NA
tert-Butanol	SW8260B	NA	06/17/10	4.4	6.6	22	ND		ug/L	401289	NA
1,2-Dichloroethane	SW8260B	NA	06/17/10	4.4	1.2	2.2	ND		ug/L	401289	NA
1,2-Dibromoethane	SW8260B	NA	06/17/10	4.4	0.86	2.2	ND		ug/L	401289	NA
(S) Dibromofluoromethane	SW8260B	NA	06/17/10	4.4	61.2	131	82.6		%	401289	NA
(S) Toluene-d8	SW8260B	NA	06/17/10	4.4	75.1	127	88.1		%	401289	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/17/10	4.4	64.1	120	87.8		%	401289	NA

NOTE: Reporting limit raised due to high level of heavy hydrocarbons.

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/17/10	4.4	95	220	3100	Х	ug/L	401293	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/17/10	4.4	58.4	133	95.4		%	401293	NA

NOTE: x - Not typical of Gasoline standard pattern. Hydrocarbons in the range of C5-C12 quantified as Gasoline (heavy end hydrocarbons possibly aged gasoline or aged fuel heavier than gasoline)

Report prepared for:
Rachel Guptel
ECM Group
Date Received: 06/14/10
Date Reported: 06/21/10

Client Sample ID:MW-5Lab Sample ID:1006103-004AProject Name/Location:5427 Telegraph, Oakland, CASample Matrix:Groundwater

 Project Number:
 07-181-04

 Date/Time Sampled:
 06/09/10 / 10:47

 Tag Number:
 5427 Telegraph

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/15/10	06/17/10	1	0.0287	0.10	ND		mg/L	401287	0581
Pentacosane (S)	SW8015B	6/15/10	06/17/10	1	53.3	124	107		%	401287	0581

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/18/10	1	0.33	0.50	ND		ug/L	401296	NA
Toluene	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
Ethyl Benzene	SW8260B	NA	06/18/10	1	0.15	0.50	ND		ug/L	401296	NA
m,p-Xylene	SW8260B	NA	06/18/10	1	0.20	1.0	ND		ug/L	401296	NA
o-Xylene	SW8260B	NA	06/18/10	1	0.13	0.50	ND		ug/L	401296	NA
MTBE	SW8260B	NA	06/18/10	1	0.38	0.50	ND		ug/L	401296	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/18/10	1	0.36	0.50	ND		ug/L	401296	NA
ETBE	SW8260B	NA	06/18/10	1	0.40	0.50	ND		ug/L	401296	NA
TAME	SW8260B	NA	06/18/10	1	0.32	0.50	ND		ug/L	401296	NA
tert-Butanol	SW8260B	NA	06/18/10	1	1.5	5.0	ND		ug/L	401296	NA
1,2-Dichloroethane	SW8260B	NA	06/18/10	1	0.28	0.50	ND		ug/L	401296	NA
1,2-Dibromoethane	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
(S) Dibromofluoromethane	SW8260B	NA	06/18/10	1	61.2	131	90.1		%	401296	NA
(S) Toluene-d8	SW8260B	NA	06/18/10	1	75.1	127	90.9		%	401296	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/18/10	1	64.1	120	86.1		%	401296	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/18/10	1	22	50	ND		ug/L	401297	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/18/10	1	58.4	133	97.2		%	401297	NA

Total Page Count: 20 Page 7 of 20

Work Order: 1006103 Prep Method: 3510_TPH 06/15/10 0581 Prep Date: Prep Batch: Matrix: Water Analytical SW8015B **Analyzed Date:** 06/15/10 Analytical 401241 Method: Batch: mg/L Units:

			I	1
Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
DRO	0.0287	0.10	ND	•
TPH as Bunker Oil	0.0920	0.20	ND	
TPH as Cutting Oil	0.0920	0.20	ND	
TPH as Diesel	0.0287	0.10	ND	
TPH as Heating Oil	0.0920	0.20	ND	
TPH as Hydraulic Oil	0.0920	0.20	ND	
TPH as Jet A	0.0287	0.10	ND	
TPH as Jet Fuel	0.0287	0.10	ND	
TPH as JP-4	0.0287	0.10	ND	
TPH as JP-5	0.0287	0.10	ND	
TPH as JP-7	0.0287	0.10	ND	
TPH as JP-8	0.0287	0.10	ND	
TPH as Kerosene	0.0287	0.10	ND	
TPH as Mineral Oil	0.0287	0.10	ND	
TPH as Motor Oil	0.0920	0.20	0.14	
TPH as Naphtha	0.0287	0.10	ND	
TPH as Oil	0.0920	0.20	ND	
TPH as Stoddard	0.0287	0.10	ND	
TPH as Transformer Oil	0.0920	0.20	ND	
Pentacosane (S)			100 %	

Total Page Count: 20 Page 8 of 20

Work Order: 1006103 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 06/17/10 Analytical 401289 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
2-Chloroethyl vinyl ether	0.91	2.0	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	0.34	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 9 of 20

Work Order: 1006103 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 06/17/10 Analytical 401289 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Chlorobenzene	0.14	0.50	ND	ı
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	
o-Xylene	0.13	0.50	ND	
Styrene	0.20	0.50	ND	
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	0.78	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
(S) Dibromofluoromethane			95.1 %	
(S) Toluene-d8			93.6 %	
(S) 4-Bromofluorobenzene			90.1 %	

Total Page Count: 20 Page 10 of 20

22

50

ND

69.9 %

TPH(Gasoline)

(S) 4-Bromofluorobenzene

MB Summary Report

Work Order:	1006103	Prep I	Prep Method:		Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		8260TPH	Anal	Analyzed Date:		Analytical	401293
Units:	ug/L	Method:						Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				

Work Order: 1006103 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 06/18/10 Analytical 401296 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	•
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
2-Chloroethyl vinyl ether	0.91	2.0	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	ND	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 12 of 20

Work Order: 1006103 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 06/18/10 Analytical 401296 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	
o-Xylene	0.13	0.50	ND	
Styrene	0.20	0.50	ND	
Bromoform	0.45	1.0	ND	
Isopropyl Benzene	0.28	0.50	ND	
Bromobenzene	0.39	0.50	ND	
1,1,2,2-Tetrachloroethane	0.26	0.50	ND	
n-Propylbenzene	0.30	0.50	ND	
2-Chlorotoluene	0.33	0.50	ND	
1,3,5-Trimethylbenzene	0.20	0.50	ND	
4-Chlorotoluene	0.32	0.50	ND	
tert-Butylbenzene	0.29	0.50	ND	
1,2,3-Trichloropropane	0.59	1.0	ND	
1,2,4-Trimethylbenzene	0.33	0.50	ND	
sec-Butyl Benzene	0.24	0.50	ND	
p-Isopropyltoluene	0.25	0.50	ND	
1,3-Dichlorobenzene	0.31	0.50	ND	
1,4-Dichlorobenzene	0.37	0.50	ND	
n-Butylbenzene	0.32	0.50	ND	
1,2-Dichlorobenzene	0.39	0.50	ND	
1,2-Dibromo-3-Chloropropane	0.45	1.0	ND	
Hexachlorobutadiene	0.22	0.50	ND	
1,2,4-Trichlorobenzene	0.48	1.0	ND	
Naphthalene	0.57	1.0	ND	
1,2,3-Trichlorobenzene	0.52	1.0	ND	
(S) Dibromofluoromethane			89.9 %	
(S) Toluene-d8			86.5 %	
(S) 4-Bromofluorobenzene			95.2 %	

Total Page Count: 20 Page 13 of 20

TPH(Gasoline)

(S) 4-Bromofluorobenzene

22

50

ND

59.1 %

MB Summary Report

Work Order:	1006103	Prep Method	i: NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	06/18/10	Analytical	401297
Units: ug/L		Method:				Batch:	
Parameters		MDL PQ	Method L Blank	Lab Qualifier			

Total Page Count: 20 Page 14 of 20

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1006103	Prep Method:	3510_TPH	Prep Date:	06/15/10	Prep Batch:	0581	
Matrix:	Water	Analytical Method:	SW8015B	Analyzed Date:	06/15/10	Analytical Batch:	401241	
Units:	mg/L	wethou.				Battii.		

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	% RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel	0.029	0.10	0.00	1	86.2	90.7	5.07	46.2 - 109	30	
Pentacosane (S)			0.00	100	98.1	103		53.3 - 124		

Work Order:	1006103	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	06/17/10	Analytical	401289
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	0.00	17.04	114	101	12.2	61.4 - 129	30	
Benzene	0.33	0.50	0.00	17.04	116	114	1.73	66.9 - 140	30	
Trichloroethylene	0.38	0.50	0.00	17.04	101	99.9	0.469	69.3 - 144	30	
Toluene	0.19	0.50	0.00	17.04	117	106	9.92	76.6 - 123	30	
Chlorobenzene	0.14	0.50	0.00	17.04	119	110	8.37	73.9 - 137	30	
(S) Dibromofluoromethane			0.00	11.36	91.5	111		61.2 - 131		
(S) Toluene-d8			0.00	11.36	83.4	98.2		75.1 - 127		
(S) 4-Bromofluorobenzene			0.00	11.36	93.7	81.7		64.1 - 120		

Work Order:	1006103	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	06/17/10	Analytical	401293
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	0.00	227.27	111	112	0.212	52.4 - 127	30	
(S) 4-Bromofluorobenzene			69.9	11.36	83.0	91.5		58.4 - 133		

Total Page Count: 20 Page 15 of 20

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1006103	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	SW8260B	Analyzed Date:	06/18/10	Analytical	401296
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50	0.00	17.04	85.4	78.9	8.20	61.4 - 129	30	
Benzene	0.33	0.50	0.00	17.04	99.1	90.0	9.68	66.9 - 140	30	
Trichloroethylene	0.38	0.50	0.00	17.04	95.2	93.1	2.12	69.3 - 144	30	
Toluene	0.19	0.50	0.24	17.04	104	93.7	10.8	76.6 - 123	30	
Chlorobenzene	0.14	0.50	0.00	17.04	108	94.0	13.8	73.9 - 137	30	
(S) Dibromofluoromethane			0.00	11.36	91.5	79.8		61.2 - 131		
(S) Toluene-d8			0.00	11.36	89.8	83.5		75.1 - 127		
(S) 4-Bromofluorobenzene			0.00	11.36	85.1	81.7		64.1 - 120		

Work Order:	1006103	Prep Method:	NA	Prep Date:	NA	Prep Batch:	NA
Matrix:	Water	Analytical	8260TPH	Analyzed Date:	06/18/10	Analytical	401297
Units:	ug/L	Method:				Batch:	

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50	0.00	227.27	112	113	0.191	52.4 - 127	30	
(S) 4-Bromofluorobenzene			59.1	11.36	101	68.7		58.4 - 133		

Total Page Count: 20 Page 16 of 20

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Total Page Count: 20 Page 17 of 20

Sample Receipt Checklist

Client Name: ECM Group Date and Time Received: 6/14/2010 16:15

Project Name: <u>5427 Telegraph</u>, <u>Oakland</u>, <u>CA</u> Received By: <u>NG</u>

Work Order No.: 1006103 Physically Logged By: NG

Checklist Completed By: NG

Carrier Name: Gold Bullet Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? Yes

Samples containers intact? <u>Yes</u>

Sufficient sample volume for indicated test? Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? <u>Yes</u> Temperature: <u>6</u> °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt?

pH Checked by: pH Adjusted by:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 18 of 20

Login Summary Report

Client ID: TL5158 ECM Group QC Level:

Project Name:5427 Telegraph, Oakland, CATAT Requested:5+ day:0Project #:07-181-04Date Received:6/14/2010

Report Due Date: 6/21/2010 Time Received: 16:15

Comments: 5 day TAT!!! Recv'd 4 groundwaters for TPHg; BTEX: Fuel Oxygenates; Lead Scavengers and Stoddard Solvent. Pls. email

an EDF result to rguptel@ecmgrp.com.

Work Order #: 1006103

WO Sample ID	Client Sample ID	Collec Date/T		<u>Matrix</u>	Scheduled Disposal	Sample On Hold	<u>Test</u> On Hold	Requested Tests	Subbed
1006103-001A	MW-1	06/09/10	12:04	Water	07/29/10			EDF W_8260PetWHA TEPHMaster_W W_GCMS-GRO	
Sample Note:	TPHg,BTEX,5oxys,lead sca	avengers, St	oddard	solvent for	all samples.				
1006103-001A4.4 x	MW-1	06/09/10	12:04	Water	07/29/10				
1006103-002A	MW-2	06/09/10	14:26	Water	07/29/10			W_8260PetWHA	
								W_8260PetWHA W_GCMS-GRO TEPHMaster_W	
1006103-002A8.8 x	MW-2	06/09/10	14:26	Water	07/29/10			_	
1006103-003A	MW-3	06/09/10	13:48	Water	07/29/10			W_8260PetWHA W_8260PetWHA	
1006103-003A4.4	MW-3	06/09/10	13:48	Water	07/29/10			W_GCMS-GRO TEPHMaster_W	
x 1006103-004A	MW-5	06/09/10	10· <i>4</i> 7	Water	07/29/10			W_8260PetWHA	
1000100-00 1 A	IVIVY O	30/03/10	10.71	vvaici	01/29/10			W_GCMS-GRO W_8260PetWHA TEPHMaster W	
1006103-004A4.4 x	MW-5	06/09/10	10:47	Water	07/29/10			W_8260PetWHA	

Total Page Count: 20 Page 19 of 20

Torrent LABORATORY, INC.	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.525 FAX: 408.263.8293 www.torrentlab.com	8 RESET	TE: SHAD	HAIN DED AREAS	ARE FO	OR TO	RRENT I	AB USE	Carlo Allanda	10. No. 10. 10.	AB WORK ORDER NO	
Company Name: ECM			Location	n of Samplin	54,	27	Telegi	myh,	Oakl	and.	CA	
Address: P6 Box 802			Purpose	e: ,				,		,		
. 00 1010		Zip Code: 94510	Special	Instructions	Comme	ents: B	ill dir	ed to	clien	+		
elephone: 707 751 0655 FAX	:707 751	6653		Special Instructions / Comments: Bill direct to client								
EPORT TO: Rachel Guptel	SAMPLER: Zue	h Barbane	P.O. #:	07-18	1-04	ŧ	EMA	ALL: rgu	ptel (@ ecm	Arp. Lom	
URNAROUND TIME:	SAMPLE TYPE:	REPORT F	ORMAT:			+	e l				1	
10 Work Days 3 Work Days Noon - No 7 Work Days 2 Work Days 2 - 8 Hou 5 Work Days 1 Work Day 0 Other	Wests Water	Air QC Level	DD .	TPH(6) BTEX	OXY	Stoddard Solvent	Stavens				ANALYSIS REQUESTED	
AB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX # OF CONT	CONT	7 7	6	Sta	Lead				REMARKS	
DIA MW-1	6/9/10 1204		WELL SAME	XX	X	X	X					
02A MW-2	1426											
03AMW-3 24AMW-5	1348											
4A MW-5	1647	1		1 1	4	A	V					
								-				
					-							
Relinquished By: Print: Seek Balance Zock B	arbane 614	Time:	9,	Received By:	Ws		Print:		Date:	4/10	Time: 3 9	
Relinquished By: Print:	Date:	10 Time:	_ F	Received By:		The same	Print: N	AYIN 6	Date:	14-10	Time: 16:15	
Were Samples Received in Good Condition?												

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 20 Page 20 of 20

ECM Group 290 West Channel Benicia, California 94510

Tel: 707-751-0655 Fax: 707-751-0653

Email: rguptel@ecmgrp.com RE: 5427 Telegraph, Oakland

Work Order No.: 1006110

Dear Rachel Guptel:

Torrent Laboratory, Inc. received 1 sample(s) on June 15, 2010 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Callos	
	June 22, 2010
Patti Sandrock	Date

Total Page Count: 12 Page 1 of 12

Date: 6/22/2010

Client: ECM Group

Project: 5427 Telegraph, Oakland

Work Order: 1006110

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Total Page Count: 12 Page 2 of 12

MW-4

Sample Result Summary

Report prepared for: Rachel Guptel Date Received: 06/15/10

> ECM Group Date Reported: 06/22/10

> > 1006110-001A

Analysis Method Parameters: <u>DF</u> MDL <u>PQL</u> Results <u>Unit</u>

All compounds were non-detectable for this sample.

Total Page Count: 12 Page 3 of 12

SAMPLE RESULTS

Report prepared for:Rachel GuptelDate Received:06/15/10ECM GroupDate Reported:06/22/10

Client Sample ID:MW-4Lab Sample ID:1006110-001AProject Name/Location:5427 Telegraph, OaklandSample Matrix:Groundwater

Project Name/Location: Project Number:

Date/Time Sampled: 06/13/10 / 13:10

Tag Number: 5427

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Stoddard	SW8015B	6/18/10	06/18/10	1	0.0287	0.10	ND		mg/L	401291	0603
Pentacosane (S)	SW8015B	6/18/10	06/18/10	1	53.3	124	93.3		%	401291	0603

		1						_			
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	06/18/10	1	0.33	0.50	ND		ug/L	401296	NA
Toluene	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
Ethyl Benzene	SW8260B	NA	06/18/10	1	0.15	0.50	ND		ug/L	401296	NA
m,p-Xylene	SW8260B	NA	06/18/10	1	0.20	1.0	ND		ug/L	401296	NA
o-Xylene	SW8260B	NA	06/18/10	1	0.13	0.50	ND		ug/L	401296	NA
MTBE	SW8260B	NA	06/18/10	1	0.38	0.50	ND		ug/L	401296	NA
Diisopropyl ether (DIPE)	SW8260B	NA	06/18/10	1	0.36	0.50	ND		ug/L	401296	NA
ETBE	SW8260B	NA	06/18/10	1	0.40	0.50	ND		ug/L	401296	NA
TAME	SW8260B	NA	06/18/10	1	0.32	0.50	ND		ug/L	401296	NA
tert-Butanol	SW8260B	NA	06/18/10	1	1.5	5.0	ND		ug/L	401296	NA
1,2-Dichloroethane	SW8260B	NA	06/18/10	1	0.28	0.50	ND		ug/L	401296	NA
1,2-Dibromoethane	SW8260B	NA	06/18/10	1	0.19	0.50	ND		ug/L	401296	NA
(S) Dibromofluoromethane	SW8260B	NA	06/18/10	1	61.2	131	70.8		%	401296	NA
(S) Toluene-d8	SW8260B	NA	06/18/10	1	75.1	127	104		%	401296	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	06/18/10	1	64.1	120	92.8		%	401296	NA

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	06/18/10	1	22	50	ND		ug/L	401297	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	06/18/10	1	58.4	133	63.9		%	401297	NA

Total Page Count: 12 Page 4 of 12

MB Summary Report

Work Order: 1006110 Prep Method: 3510_TPH 06/18/10 0603 Prep Date: Prep Batch: Matrix: Water Analytical SW8015B **Analyzed Date:** 06/18/10 Analytical 401291 Method: Batch: Units: mg/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
DRO	0.0287	0.10	ND	
TPH as Bunker Oil	0.0920	0.20	ND	
TPH as Cutting Oil	0.0920	0.20	ND	
TPH as Diesel	0.0287	0.10	ND	
TPH as Heating Oil	0.0920	0.20	ND	
TPH as Hydraulic Oil	0.0920	0.20	ND	
TPH as Jet A	0.0287	0.10	ND	
TPH as Jet Fuel	0.0287	0.10	ND	
TPH as JP-4	0.0287	0.10	ND	
TPH as JP-5	0.0287	0.10	ND	
TPH as JP-7	0.0287	0.10	ND	
TPH as JP-8	0.0287	0.10	ND	
TPH as Kerosene	0.0287	0.10	ND	
TPH as Mineral Oil	0.0287	0.10	ND	
TPH as Motor Oil	0.0920	0.20	ND	
TPH as Naphtha	0.0287	0.10	ND	
TPH as Oil	0.0920	0.20	ND	
TPH as Stoddard	0.0287	0.10	ND	
TPH as Transformer Oil	0.0920	0.20	ND	
Pentacosane (S)			89.2	

Total Page Count: 12 Page 5 of 12

MB Summary Report

Work Order: 1006110 Prep Method: NA Prep Date: NA Prep Batch: NA Matrix: Water Analytical SW8260B Analyzed Date: 06/18/10 Analytical 401296 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Lab Qualifier
Dichlorodifluoromethane	0.41	0.50	ND	•
Chloromethane	0.41	0.50	ND	
Vinyl Chloride	0.37	0.50	ND	
Bromomethane	0.37	0.50	ND	
Trichlorofluoromethane	0.34	0.50	ND	
1,1-Dichloroethene	0.29	0.50	ND	
Freon 113	0.38	0.50	ND	
Methylene Chloride	0.18	5.0	ND	
trans-1,2-Dichloroethene	0.31	0.50	ND	
MTBE	0.38	0.50	ND	
tert-Butanol	1.5	5.0	ND	
Diisopropyl ether (DIPE)	0.36	0.50	ND	
1,1-Dichloroethane	0.28	0.50	ND	
ETBE	0.40	0.50	ND	
cis-1,2-Dichloroethene	0.33	0.50	ND	
2,2-Dichloropropane	0.37	0.50	ND	
Bromochloromethane	0.34	0.50	ND	
Chloroform	0.29	0.50	ND	
Carbon Tetrachloride	0.26	0.50	ND	
1,1,1-Trichloroethane	0.32	0.50	ND	
1,1-Dichloropropene	0.40	0.50	ND	
Benzene	0.33	0.50	ND	
TAME	0.32	0.50	ND	
1,2-Dichloroethane	0.28	0.50	ND	
Trichloroethylene	0.38	0.50	ND	
Dibromomethane	0.21	0.50	ND	
1,2-Dichloropropane	0.37	0.50	ND	
Bromodichloromethane	0.23	0.50	ND	
2-Chloroethyl vinyl ether	0.91	2.0	ND	
cis-1,3-Dichloropropene	0.30	0.50	ND	
Toluene	0.19	0.50	ND	
Tetrachloroethylene	0.15	0.50	ND	
trans-1,3-Dichloropropene	0.20	0.50	ND	
1,1,2-Trichloroethane	0.20	0.50	ND	
Dibromochloromethane	0.21	0.50	ND	
1,3-Dichloropropane	0.18	0.50	ND	
1,2-Dibromoethane	0.19	0.50	ND	
Chlorobenzene	0.14	0.50	ND	
Ethyl Benzene	0.15	0.50	ND	
1,1,1,2-Tetrachloroethane	0.10	0.50	ND	
m,p-Xylene	0.20	1.0	ND	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 6 of 12

TPH(Gasoline)

(S) 4-Bromofluorobenzene

22

50

ND

59.1

MB Summary Report

Work Order:	1006110	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW8260B	Analy	zed Date:	06/18/10	Analytical	401296
Units:	ug/L	Metho	d:					Batch:	
				Method	Lab				
Parameters		MDL	PQL	Blank Conc.	Qualifier				
o-Xylene		0.13	0.50	ND					
Styrene		0.20	0.50	ND					
Bromoform		0.45	1.0	ND					
Isopropyl Benzer	ne	0.28	0.50	ND					
Bromobenzene		0.39	0.50	ND					
1,1,2,2-Tetrachlo		0.26	0.50	ND					
n-Propylbenzene		0.30	0.50	ND					
2-Chlorotoluene		0.33	0.50	ND					
1,3,5-Trimethylbe	enzene	0.20	0.50	ND					
4-Chlorotoluene		0.32	0.50	ND					
tert-Butylbenzene		0.29	0.50	ND					
1,2,3-Trichloropro		0.59	1.0	ND					
1,2,4-Trimethylbe		0.33	0.50	ND					
sec-Butyl Benzer		0.24	0.50	ND					
p-Isopropyltoluen		0.25	0.50	ND					
1,3-Dichlorobenz		0.31	0.50	ND					
1,4-Dichlorobenz	ene	0.37	0.50	ND					
n-Butylbenzene		0.32	0.50	ND					
1,2-Dichlorobenz		0.39	0.50	ND					
1,2-Dibromo-3-C		0.45	1.0	ND					
Hexachlorobutad		0.22	0.50	ND					
1,2,4-Trichlorobe	enzene	0.48	1.0	ND					
Naphthalene		0.57	1.0	ND					
1,2,3-Trichlorobe		0.52	1.0	ND					
(S) Dibromofluoro	omethane			89.9					
(S) Toluene-d8				86.5					
(S) 4-Bromofluor	obenzene			95.2					
Work Order:	1006110	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		8260TPH	Analyzed Date:		06/18/10	Analytical	401297
Units:	ug/L	Metho	a:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 7 of 12

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order: 1006110 Prep Method: 3510_TPH Prep Date: 06/18/10 Prep Batch: 0603 Matrix: 06/18/10 401291 Analytical SW8015B Analytical **Analyzed Date:** Water Method: Batch: Units: mg/L

Method LCS % LCSD % LCS/LCSD % Spike **Parameters** MDL **PQL Blank** Conc. Recovery Recovery % RPD Recovery % RPD Lab Conc. Limits Limits Qualifier TPH as Diesel 0.029 0.10 88.1 86.3 2.02 46.2 - 109 30 1 Pentacosane (S) 100 118 111 53.3 - 124

Work Order: 1006110 Prep Method: NA Prep Date: NΑ Prep Batch: NA Matrix: Water Analytical SW8260B **Analyzed Date:** 06/18/10 Analytical 401296 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethene	0.29	0.50		17.04	85.4	78.9	8.20	61.4 - 129	30	•
Benzene	0.33	0.50		17.04	99.1	90.0	9.68	66.9 - 140	30	
Trichloroethylene	0.38	0.50		17.04	95.2	93.1	2.12	69.3 - 144	30	
Toluene	0.19	0.50		17.04	104	93.7	10.8	76.6 - 123	30	
Chlorobenzene	0.14	0.50		17.04	108	94.0	13.8	73.9 - 137	30	
(S) Dibromofluoromethane				11.36	91.5	79.8		61.2 - 131		
(S) Toluene-d8				11.36	89.8	83.5		75.1 - 127		
(S) 4-Bromofluorobenzene				11.36	85.1	81.7		64.1 - 120		

Work Order: 1006110 Prep Method: Prep Batch: NA Prep Date: NA NA Matrix: Water Analytical 8260TPH **Analyzed Date:** 06/18/10 Analytical 401297 Method: Batch: Units: ug/L

Parameters	MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	22	50		227.27	112	113	0.191	52.4 - 127	30	
(S) 4-Bromofluorobenzene				11.36	101	68.7		58.4 - 133		

Total Page Count: 12 Page 8 of 12

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - **mg/L** and **mg/Kg** (equivalent to PPM - parts per million in **liquid** and **solid**), **ug/L** and **ug/Kg** (equivalent to PPB - parts per billion in **liquid** and **solid**), **ug/m3**, **mg.m3**, **ppbv** and **ppmv** (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), **ug/Wipe** (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

- B Indicates when the anlayte is found in the associated method or preparation blank
- **D** Surrogate is not recoverable due to the necessary dilution of the sample
- E Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.
- H- Indicates that the recommended holding time for the analyte or compound has been exceeded
- J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative
- NA Not Analyzed
- N/A Not Applicable
- NR Not recoverable a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added
- R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts
- S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case parrative
- **X** -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Total Page Count: 12 Page 9 of 12

Sample Receipt Checklist

Client Name: ECM Group Date and Time Received: 6/15/2010 13:17

Project Name: <u>5427 Telegraph</u>, <u>Oakland</u> Received By: <u>NG</u>

Work Order No.: 1006110 Physically Logged By: NG

Checklist Completed By: NG

Carrier Name: Gold Bullet Courier

Chain of Custody (COC) Information

Chain of custody present? <u>Yes</u>

Chain of custody signed when relinquished and received? Yes

Chain of custody agrees with sample labels? Yes

Custody seals intact on sample bottles? <u>Not Present</u>

Sample Receipt Information

Custody seals intact on shipping container/cooler?

Not Present

Shipping Container/Cooler In Good Condition? <u>Yes</u>

Samples in proper container/bottle? <u>Yes</u>

Samples containers intact? Yes

Sufficient sample volume for indicated test?

Yes

Sample Preservation and Hold Time (HT) Information

All samples received within holding time? Yes

Container/Temp Blank temperature in compliance? Yes Temperature: 4 °C

Water-VOA vials have zero headspace? Yes

Water-pH acceptable upon receipt?

pH Checked by: pH Adjusted by:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 10 of 12

Login Summary Report

Client ID: TL5158 ECM Group QC Level:

Project Name: 5427 Telegraph, Oakland TAT Requested: 5+ day:0

Project #: 5427 Telegraph, Oakland 5+ day:0

Report Due Date: 6/22/2010 **Time Received:** 13:17

Comments: 5 day TAT!!! Recv'd 1 groundwater for TPHg; BTEX ;Fuel Oxygenates Lead Scavenger and Stoddard Solvent.Pls. email to

rguptel@ecmgrp.com.

Work Order #: 1006110

WO Sample ID Client Collection Matrix Scheduled Sample Requested Subbed Test Sample ID Date/Time **Disposal** On Hold On Hold **Tests** 1006110-001A MW-4 06/13/10 13:10 Water 07/30/10

> TEPHMaster_W W_GCMS-GRO W_8260PetWHA

Sample Note: TPHg,BTEX,Oxys,Lead scav, Stoddard solvent.

Total Page Count: 12 Page 11 of 12

$\prod_{i=1}^{n}$	Torront	Milniton	lair Fronta		.	(CHA	ΔIN	OF	CL	JST	OD	Ϋ́			LAB WORK ORDER NO
Ē	Torrent LABORATORY, INC.		3.263.8293 entlab.cor	3		OTE: SHA	ADED A	REAS	ARE F	OR TO	RREN	IT LAB	USE	ONLY•		1006110
Compan	y Name: ECM Group					Locat	tion of S	ampling	g: 54	27	Tele	muh	_	Oak	land	
	P.O. Box 802					Purpo					,			·		
		State: CA	+	Zip Code	94510	Spec	ial Instru	ictions	/ Comm	ents:	Bill	derce	A t	o el	lent	
Telepho	ne: (707) 751 - 0655 FA	x: (707)	751-06	53												,
REPORT	TO: Ruhel Guptel	SAMPLE	R: Zach	Barba	ine	P.O.	#: 07	-181	04			EMAIL:	rgu	ptel	e ecm	ngrp.com
TURNAR	OUND TIME:	SAI	MPLE TYPE	: ,	REPORT	FORMAT:					+		0-			7
7 Worl	rk Days 3 Work Days Noon- c Days 2 Work Days 2 -8 Hi c Days 1 Work Day Other		Ground Water	Air Other	QC Le		TPH (G)	BTEX	0×7	Lead Scavengers	Stodand solvent					ANALYSIS REQUESTED
LAB ID	CLIENT'S SAMPLE I.D.		/ TIME	MATRIX	# OF CONT	CONT TYPE	+	12	50	Lead	340					REMARKS
∞ιA	MW-4	6/13/10	1310	Gund		4 × 40 mlvo 1 × 1 L amb		X	X	×	X					
		en - en - og	. ar	comi a	e .	,	. por e									
	1				:											
174																
19.1		 				1										
3 - 8		-					-							-		
7 (4)				-												
						,	1									40
															1	Jomp 4 C
1.7	,											,				
1.6																
1 300		Barbane		16	Time:	10	M	U MET SETTE	45 qu	50	Print:				5/10	Time:
2 Kelind	ruished By: Print:		Date:		Time:		Dr:	//	theo		Print:				5-10	
NOTE: S	mples Received in Good Condition? amples are discarded by the la		ays from da	Minister of the Park		er arrange		of Ship s are ma	_	Rald	Bull Da	prosec	S	ample se	eals intac Page	1? Yes NO NA

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Total Page Count: 12 Page 12 of 12

APPENDIX D WATER SAMPLING DATA SHEETS

WATER LEVEL & PRODUCT MEASUREMENTS

ECM Group

DATE:	1	9	10	_
	70			

PROJECT NAME & NUMBER: Telegraph

WELL ID	TIME MEASURED	DEPTH TO PRODUCT (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH	COMMENTS (well condition, odor, etc.)
MW-I			5.95	19.03	
MW-2			11.26	26.66	
MW-3		·	9.80	20.05	
MW-4		,	6.79	19.60	Car parted over well. Unable to sample. Retorn 6/13
MW-5		-	5.60	19.25	ě.
	14				
					1.00
				1	

Job Name Telegr	oph			Job Numbe	07-1	81-64	
Job Name	MW-1	_ Date	6 9 10		Time	1204	
Well Diameter Depth to Water (stat	2"	_ Well De	pth (spec.)	Wel	Depth (sounded) _	19.03
Depth to Water (stat	tio) 5.15	_ TOC ele	v				
3.W. Elev	Max	imum Drav	vdown Limit (if	applicable)		r = well radius h = ht of water vol. in cyl. = π	m fi col. in fi
nitial height of wate	er in casing _	13.08	Volume _	2.1 gallons 6.3 gallons		7.48 gal/fr' V ₂ " ensing = 0.	
Total to be evacuate	ed = 3 x Init	ial Volume	_	6.3 gallons	1	V," ensing = 11. V," ensing = 11. V _{4,1} " ensing = 1.	653 gal/fi I.B26 gal/fi
Stop Time	Start Time	2	Bailed	Pur	nped	V.* ensing = 1.	um. Gal.
							10.5 (0.5)
Pumped or Balled D	гу?Yе	5No	After	gallons	Reco	very Rate _	
Description of sedir							
Additional Commen	its:						
CHEMICAL DATA							
Reading No.	15/	1154	· 3 1158	4	5	6	7
Gallons	2.1	2.1	2.1	9			
Temp, (degree F)	68.4	67.4	10	•			it que
pН	6.69	6.55	6.59				
EC (umhos/cm)	1192	1262	1194				
Special Conditions							
SAMPLES COLLEC	CTED					+3	
Sample Bott		ltered	Preservative	Refrig.	Lab		Analysis
ID ml ca	p (s	ize, u)	(type)	(R, NR)	(Init)		Requested
					1		

Bottles: P = Polyethylene; Pp = Polypropylene; C or B = Clear/Brown Glass; O = Other (describe)
Cap Codes: Py = Polyseal; V = VOA/Teflon septa; M = Metal.

Job Name Teles	repl			Job Numbe	er 07-	181-64		
Well NumberM	W-2	Date	Job Number 67-181-64 Time 1426					
Well Diameter	2	Well De	pth (spec.)	We	ll Depth	(sounded) _	26.66	
Depth to Water (sta	tic)	L TOC ele	v					
G.W. Elev		,,				r = well ractions h = ht of water vol. in cyl. = π 7.48 μgl/fr	an fi r col. ar fi	
Initial height of wat	er in casing	15.9	Volume _	2.5 gallons 7.5 gallons		V ₃ " casing = 11		
Total to be evacuat	$ed = 3 \times 1$	nitial Volume	_	7.5 gallons		V," ensing = 11 V," ensing = 11 V," ensing = 1 V," ensing = 1	.653 gal/fi U.K26 gal/fi	
Stop Time	Start Tir	me	Bailed	Pu	mped		um. Gal.	
			4					
						I		
Pumped or Bailed [Water color) ry?'	YesNo	After	gallons	Reco	overy Rate .	-	
Vyater color		entoriol in one	Odor					
Description of sedi								
						17		
CHEMICAL DATA								
Reading No.	1410	1415	1419	4	5	6	7	
Gallons	2.5	2.5	2.5	-				
Temp, (degree F)	66.5	65.7	65.6					
pH	6.56	6.59	6.61					
EC (umhos/cm)	1456	1485	1441					
Special Condition	s	1000						
SAMPLES COLLE	CTED		A CONTRACTOR OF THE PARTY OF TH			29		
Sample Bot		Filtered (size, u)	Preservative . (type)	Refrig. (R, NR)	Lab (Init		Analysis Requested	
			70					
					-			

Bottles; P = Polyethylene; Pp = Polypropylene; C or B = Clear/Brown Glass; O = Other (describe)
Cap Codes; Py = Polyseal; V = VOA/Teflon septa; M = Metal.

ob Name - Telegre	ph		Job Number 67-111-04				
Vell NumberMW-	3	_ Date	6 9 16		Time	1348	
Vell Diameter 2	27	_ Well Dep	oth (spec.)	Well	Depth (sounded) _	20.65
epth to Water (stati	9.80	_ TOC ele	v				
6.W. Eley,	Мвх	imum Draw ,'				r = well radius h = ht of wate vol. in cyl. = n	in fi real in fi
nitial height of water	in casing _		Volume_	gallons		7.48 gal/fr' V," casing = 0	.163 gal/fi
otal to be evacuated	$d = 3 \times lnit$	ial Volume	_	5.0 gallons		V," ensing = 11 V," ensing = 11 V," ensing = 11	.653 gd/fi U.826 gd/fi
Stop Time	Start Time	2	Balled	<u>Pum</u>	ped	V," ensing = 1	um. Gal.
					. 4		
Pumped or Balled Dr Water color	y?Ye	sNo	After	gallons	Reco	very Rate .	
Description of sedim						13	
Additional Comment	s:						-
						-	-
CHEMICAL DATA		22					
Reading No.	1334	1338	1341	4	5	6	7
Gallons	1.7	1.7	1.7	* 5			
Temp. (degree F)	69.0	67.2	66.7				1
pН	6.59	6.61	6.6				
EC (umhos/cm)	1181	1176	680	<u></u>			
Special Conditions							
SAMPLES COLLECT	TED			1186			
Sample Bottle ID ml cap		ltered ize, u)	Preservative (type)	Refrig. (R, NR)	Lab (Init)	B 8	Analysis Requested
	-						

Bottles: P = Polysthylene; Pp = Polypropylene; C or B = Clear/Brown Glass; O = Other (describe)
Cap Codes: Py = Polyseal; V = VOA/Teflori septa; M = Metal.

ob Name Telegra			Job Numb	Job Number 07-181-04					
Vell Number ()		Time (310							
Vell Diameter Depth to Water (stati	2"	Well De	. We	ell Depth (sounded)	19.55			
epth to Water (stati	0) 6.9	5 TOC ele	ev						
S.W. Elev	Ma	ximum Drav	wdown Limit (if	applicable)		r = well radio			
						h = hrof war vol. in cyl. =			
nitial height of water	r in casing	12.6	Volume	2 gallons 7.4K gal/ft ³					
ntal to be evacuated	$d = 3 \times ln$	itial Volume	6 gallons		V ₂ " casing = 0.163 gal/ii . V ₁ " casing = 0.367 gal/ii				
otal to be evacuated	u - 0 x 11	ilitiai voiaiiio	_	V ₄ " ensing = 0.653 gal/fi V ₄₃ " ensing = 0.826 gal/fi					
Cton Time	Stort Tim	2.0	Bailed	Di	mped	V," casing =	1.47 grd/ft .		
Stop Time	Start Tin	16	Dalled		IIIbea		Cum. Gal.		
Pumped or Bailed Dr	v? Y	as No	After	gallons	Reco	verv Rate			
Pumped or Bailed Dr Water color	· ·		Odor						
Description of sedim									
Additional Comment									
, reditioner committee									
CHEMICAL DATA									
Reading No.	1	2	. 3	4	5	6	7		
Time	1258	1302	1305						
Gallons	2	2	2						
Temp. (degree F)	70.6	66.4	64.6				1,		
pH	6.68	6.38	6.47						
EC (umhos/cm)	606	601	620						
Special Conditions									
SAMPLES COLLEC	TED								
Sample Bottle		Filtered	Preservative	Refrig.	Lab		Applicate		
ID ml cap		(size, u)	(type)	(R, NR)	(Init)		Analysis Requested		
					,		nequested		
					1				

Bottles: P = Polyethylene; Pp = Polypropylene; C or B = Clear/Brown Glass; <math>O = Other (describe) Cap Codes: Py = Polyseal; V = VOA/Teflon septa; M = Metal

Joh Name Tolears	.oh			Job Numbe	07-	181-04	
Job Name	1.5	Date	6910		Time	1047	
Well Diameter	2"	Well Der	oth (spec.)	Well	Depth	(sounded) _	19.20
Depth to Water (statio					Г		
G.W. Elev	Ma	ximum Draw	down Limit (if	applicable)		r = well radius in h = ht of water	m ft
Initial height of water		10 1	110100000	2 2		vol. in cyl. = π: 7.48 gal/fr ³	r ^a h
Initial height of water	in casing	15,6	Volume _	gallons		V2" casing = 0.	
Total to be evacuated	= 3 x ln	itial Volume	-	6.6 gallons		V_4 " casing = 0. V_4 " casing = 0. V_{45} " casing = 0. V_4 " casing = 1.	653 gal/fi 8826 gal/fi
Stop Time	Start Tim	10	Bailed	Pur	nped		um. Gal.
Pumped or Bailed Dry	7Y	esNo	After	gallons	Reco	very Rate _	
Water color	: "		Odor				
Description of sedime	ents or ma	terial in sam	nple:			7	
Additional Comments							•
CHEMICAL DATA						u .	
Reading No.	1	2	. 3	4	5	6	7
Time	1134	1057	1041				
Gallons	2.2	2.2	2.2				
Temp. (degree F)	66.9	65.6	165.4	700			•
pH	6.58	1.67	(.70				
EC (umhos/cm)	841	882	920	20			
Special Conditions							
SAMPLES COLLECT	FD			93			
Sample Bottle/		iltered	Preservative	Refrig.	Lab		Analysis
ID ml cap		size, u)	(type)	(R, NR)	(Init)		Requested
	-			1			
						1	

Bottles: P = Polyethylene; Pp = Polypropylene; C or B = Clear/Brown Glass; O = Other (describe) Cap Codes: Py = Polyseal; V = VOA/Teflon septa; M = Metal.

APPENDIX E ECM STANDARD OPERATING PROCEDURE

ECM STANDARD OPERATING PROCEDURE GROUND WATER SAMPLING

The following describes sampling procedures used by ECM field personnel to collect and handle ground water samples. Before samples are collected, careful consideration is given to the type of analysis to be performed so that precautions are taken to prevent loss of volatile components or contamination of the sample, and to preserve the sample for subsequent analysis. Wells will be sampled no less than 24 hours after well development. Collection methods specific to ground water sampling are presented below.

Prior to sampling, each well is checked for the presence of free-phase hydrocarbons using an MMC flexi-dip interface probe. Product thickness (measured to the nearest 0.01 foot) is noted on the sampling form. Water level measurements are also made using either a water level meter or the interface probe. The water level measurements are also noted on the sampling form.

Prior to sampling, each well is purged of a minimum of three well casing volumes of water using a steam-cleaned PVC bailer, or a pre-cleaned pump. Temperature, pH and electrical conductivity are measured at least three times during purging. Purging is continued until these parameters have stabilized (i.e., changes in temperature, pH or conductivity do not exceed ± 0.5 F, 0.1 or 5%, respectively).

Ground water samples are collected from the wells with steam-cleaned or disposable Teflon bailers. The water samples are decanted into the appropriate container for the analysis to be performed. Pre-preserved sample containers may be used or the analytic laboratory may add preservative to the sample upon arrival. Duplicate samples are collected from each well as a back-up sample and/or to provide quality control. The samples are labeled to include the project number, sample ID, date, preservative, and the field person's initials. The samples are placed in polyethylene bags and in an ice chest (maintained at 4 C with blue ice or ice) for transport under chain of custody to the laboratory.

The chain of custody form includes the project number, analysis requested, sample ID, date analysis and the ECM field person's name. The form is signed and dated (with the transfer time) by each person who yields or receives the samples beginning with the field personnel and ending with the laboratory personnel.

APPENDIX F RESPONSIBLE PARTY CERTIFICATION

July 20, 2010

Bob Legallet Telegraph Business Properties 1401 Griffith Street San Francisco, CA 94214

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document is true and correct to the best of my knowledge.

Sincerely

Bob Legallet

Telegraph Business Properties