

January 21, 2014

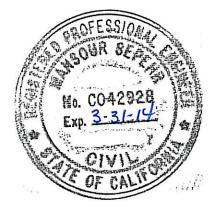
By Alameda County Environmental Health at 4:00 pm, Jan 21, 2014

Mr. Martin Musonge Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Subject: File No. 01-0098 (MYM) Site Located at 2844 Mountain Boulevard, Oakland, California

Dear Mr. Musonge:

Enclosed for your review is SOMA's "Multi-Phase Extraction Pilot Testing Report" for the subject property. It has been uploaded to the State's GeoTracker database and the Alameda County's FTP site.


Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

Enclosure

cc: Mr. Tejindar Singh w/enclosure

Multi-Phase Extraction Pilot Testing Report

2844 Mountain Boulevard Oakland, California

> Project 5084 RB File No. 01-0098

January 21, 2014

Prepared for

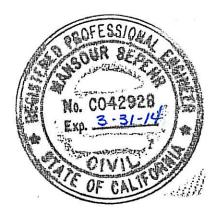
Mr. Tejindar P. Singh 6400 Dublin Blvd. Dublin, California

PERJURY STATEMENT

Site Location: 2844 Mountain Boulevard, Oakland, California

"I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge".

heidy


Tejindar Singh 6400 Dublin Boulevard Dublin, California 94568 Responsible Party

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this report on behalf of Mr. Tejindar P. Singh for the site located at 2844 Mountain Blvd., Oakland, California. The report was prepared in accordance with San Francisco Bay Regional Water Quality Control Board correspondence dated April 3, 2013.

i

Mansour Sepehr, PhD, PE Principal Hydrogeologist

Multi-Phase Extraction Pilot Testing Report

TABLE OF CONTENTS

CERTIFICATION	i						
TABLE OF CONTENTSii							
LIST OF FIGURES iii							
LIST OF TABLES	V						
LIST OF APPENDICES	V						
 INTRODUCTION 1.1 Site Location and Description 1.2 Geology and Hydrogeology 	1						
2. MULTI-PHASE EXTRACTION PILOT TESTING 2 2.1 MPE Pilot Test Summary 2 2.2 Pilot Test Objectives 2 2.3 Pre-Pilot Test Activities 2 2.4 Field Work and Procedures 2 2.5 Pilot Test Implementation 6 2.5.1 Extraction at MW-1 7 2.5.2 Extraction at RS-4 7 2.5.3 Extraction at RS-4 7 2.5.4 Extraction at RS-3 8 2.5.5 Extraction at MW-1 and MW-2 8 2.5.6 Extraction at MW-1, MW-2, and RS-4 6 2.6.1 Mass Removal at MW-1 6 2.6.2 Mass Removal at RS-3 10 2.6.3 Mass Removal at RS-3 10 2.6.4 Mass Removal at RS-3 10 2.6.5 Mass Removal at RS-3 10 2.6.6 Mass Removal at MW-1 and MW-2 10 2.6.7 Soil Vapor Analytical Laboratory Results 10 2.8 Pre- and Post- MPE Groundwater Sampling 11 2.9 Pilot Test Water Treatment and Disposal 12	33456777889999000001						
 OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS	2						

LIST OF FIGURES

Figure 1:	Site Vicinity Man
Figure 1.	Site Vicinity Map

- Figure 2: Site Map Showing Locations of Former USTs, Soil Borings, and Groundwater Monitoring Wells
- Figure 3: MTS Process Schematic
- Figure 4: Extent of Zone of Influence
- Figure 5a: Zone of Influence, Extraction at MW-1
- Figure 5b: Zone of Influence, Extraction at MW-2
- Figure 5c: Zone of Influence, Extraction at RS-4
- Figure 5d: Zone of Influence, Combined Extraction at MW-1 & MW-2
- Figure 6a: Drawdown Vs. Time Extraction at MW-1
- Figure 6b: Drawdown Vs. Time Extraction at MW-2
- Figure 6c: Drawdown Vs. Time Extraction at RS-4
- Figure 6d: Drawdown Vs. Time Extraction at RS-3
- Figure 6e: Drawdown Vs. Time Extraction at MW-1 & MW-2

iii

LIST OF TABLES

- Table 1:
 MPE Pilot Test December 2013 Operational Data
- Table 1a: MPE Pilot Test December 2013 Operational Data: MW-1
- Table 1b: MPE Pilot Test December 2013 Operational Data: MW-2
- Table 1c:
 MPE Pilot Test December 2013 Operational Data: RS-4
- Table 1d:
 MPE Pilot Test December 2013 Operational Data: RS-3
- Table 1e: MPE Pilot Test December 2013 Operational Data: MW-1 & MW-2
- Table 1f:MPE Pilot Test December 2013 Operational Data: MW-1, MW-2,
RS-4
- Table 2: MPE Event Extraction Data and VOC Mass Removal Rates
- Table 2a: Extraction Data and VOC Mass Removal Rate- MW-1
- Table 2b:Extraction Data and VOC Mass Removal Rate MW-2
- Table 2c: Extraction Data and VOC Mass Removal Rate RS-4
- Table 2d: Extraction Data and VOC Mass Removal Rate RS-3
- Table 2e:
 Extraction Data and VOC Mass Removal Rate MW-1 & MW-2
- Table 2f:Extraction Data and VOC Mass Removal Rate MW-1, MW-2, &
RS-4
- Table 3:MPE Pilot Test December 2013 Observation Wells Data
- Table 4: Soil Vapor Analytical Results
- Table 5:Dissolved-Phase Hydrocarbon Concentrations in GroundwaterPre- and Post MPE Pilot Test

LIST OF APPENDICES

- Appendix A: Site History
- Appendix B: BAAQMD and Groundwater Discharge Permits
- Appendix C: MPE Pilot Test Field Data Sheets
- Appendix D: Certified Laboratory Analytical Reports and Chain-Of-Custody Documentation

1. INTRODUCTION

SOMA Environmental Engineering, Inc. (SOMA) has prepared this report on behalf of Mr. Tejindar P. Singh for the site located at 2844 Mountain Blvd., Oakland, California. The site is located on the eastern corner of the intersection of Mountain Boulevard and Werner Court in a commercial/residential area (Figure 2). The Warren Freeway (freeway) is adjacent to Mountain Boulevard, and lies approximately 50 feet southwest of the site. This report presents results of multi-phase extraction (MPE) pilot testing, and documents SOMA's conclusions and recommendations.

This report was prepared in accordance with SOMA's workplan (dated December 26, 2012), as approved by San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) correspondence dated April 3, 2013.

1.1 Site Location and Description

The subject property is located in Alameda County, California. Figure 1 shows the location of the site and vicinity. The site is located on the eastern corner of the intersection of Mountain Boulevard and Werner Court in a commercial/residential area (Figure 2). The Warren Freeway is adjacent to Mountain Boulevard, and lies approximately 50 feet southwest of the site. The property was a historical retail gasoline station. A bookstore has been operating in the site building since May 2013. The historical underground storage tanks (USTs), installed in 1994, contained various grades of unleaded gasoline and diesel and had individual storage capacities of 3,000, 4,000, and 10,000 gallons. In August 2011, under SOMA's oversight, the two remaining USTs were removed and disposed of off-site. UST removal activities are documented in SOMA's report dated September 14, 2011. Site history is summarized in Appendix A.

1.2 Geology and Hydrogeology

The site is located in the eastern portion of the greater Oakland area approximately 6 miles inland from the San Francisco Bay. The site and the surrounding area is approximately one quarter mile southwest of Palo Seco Creek and is located on a slight gradient that slopes towards the southwest (Figure 1). Upper San Leandro reservoir is located approximately 3.5 mile east of the site. According to the USGS 7.S minute series quadrangle for the Oakland East area, the subject property is at an elevation of approximately 700 feet above mean sea level (msl).

The site lies east of the Alameda Bay Plain hydrologic subarea of the East San Francisco Bay Hydrologic study area. Small lenses of perched groundwater may lie beneath portions of this hydrologic area. Regional groundwater flow direction is expected to be southwesterly toward the Bay.

According to the Geologic Map of the San Francisco-San Jose Quadrangle (1990, Map 5A, California Division of Mines & Geology), the site is situated within the active Hayward Fault Zone (Figure 1A). The fault is part of a northwest trending zone locally consisting of "slivers" or small blocks of bedrock. The rocks include Jurassic and Cretaceous-age ultramafic crystalline rocks and rhyolite of the Coast Range Ophiolite, marine sandstone and shale, and Franciscan complex rocks. The weathering of these rocks typically yields clayey soil.

According to the RSI Corrective Action Plan report, dated February 3, 1995, the saturated sediments beneath the site are primarily comprised of fine-grained materials which are not capable of transmitting significant amount of water to the wells. According to the above referenced report, the maximum extraction rate for groundwater extraction was less than 0.32 gallons per minute (gpm). During the current MPE pilot testing flow rates of up to 0.16 gpm were observed.

According to historical site reports (1995), the nearest well utilized for beneficial use, is located approximately 2200 feet southwest from the site (4315 Lincoln Ave, Oakland, CA) and is installed to the total depth of 260 feet bgs (depth to water at 240 feet bgs); this well is utilized for irrigation. No updated sensitive receptor survey was conducted at this time since it was not within the scope of this report.

During the previous CPT/MIP investigation (March 2012) at least two water bearing zones (WBZs) were present beneath the site. All site wells (RS-1 through RS-4) were screened from 5 to 25 feet bgs in what was previously designated as Perched WBZ. During the CPT/MIP investigation, groundwater samples were also collected from approximately 48 feet bgs from a WBZ which was designated as First WBZ.

During the May 2013 investigation, while logging the soil from boring DPT-5, there was a section where "very moist to wet" sediments were encountered at approximately 13 feet bgs. SOMA's field geologist left the boring open at 15 feet in order to see if enough water would accumulate inside the boring for sampling. Water did accumulate inside the boring and the groundwater sample was called DPT-5W-1. Soil borings that were drilled during previous investigations had also been left open to see if water would accumulate at similar depths and no water accumulated inside those borings. During the previous investigation it was concluded that the shallow groundwater appears to be perched and somewhat discontinuous, so this shallow zone that was encountered is the perched and discontinuous zone.

2. MULTI-PHASE EXTRACTION PILOT TESTING

In December 2012, SOMA submitted a workplan for additional investigation, well replacement and (multi-phase extraction) MPE pilot testing. This workplan was approved by the San Francisco Bay regional water quality Control board (SF RWQCB) on April 3, 2013. In May 2013, two replacement wells (MW-1 and MW-2) were installed on-site to be utilized during the pilot test.

2.1 MPE Pilot Test Summary

Under SOMA's oversight, Golden Gate Remediation Technology (GGRT) performed MPE pilot testing between December 2, 2013 and December 16, 2013, utilizing existing site wells MW-1, MW-2, RS-3, and RS-4, as extraction and observation wells. Well locations are shown in Figure 2.

The pilot test was performed using a self-contained mobile treatment system (MTS), equipped with electrical generator, propane tank, liquid ring vacuum pump rated at 25-horsepower and 428-standard cubic feet per minute (scfm), air/water separator vessel, discharge hoses and traffic-rated hose ramps, downhole stingers, and a thermal oxidizer for vapor abatement (Figure 3). Both soil vapor and groundwater were extracted from the subsurface.

The liquid ring pump was selected for use during pilot testing as it can transfer both liquids and gases through the pump casing and they are the most commonly used vacuum pumps reported in the literature for MPE applications (AFCEE 1997; Hansen, et al. 1994; Suthersan 1997).

Physical and chemical parameters including applied vacuum, soil vapor extraction flow rates, oxidizer temperature, volume of groundwater extracted, volatile organic compound (VOC) concentrations, groundwater levels, and induced vacuum were monitored, measured and recorded. Induced vacuum in the observation wells was measured using magnehellic vacuum gauges fitted to airtight well caps and drawdown was measured utilizing standard water level meters. VOC concentrations in the extracted soil vapor stream were continuously monitored using a photo ionization detector (PID) calibrated to hexane. MPE pilot test operational data is presented in Tables 1a through 1f and 2a through 2f, along with field data sheets, in Appendix C. Extracted soil vapor samples were collected from influent and effluent gas streams during pilot testing (Figure 3 shows MTS sampling points).

2.2 Pilot Test Objectives

The overall objective of pilot testing was to evaluate whether MPE is sufficiently effective to justify full-scale implementation, and to evaluate its capability to remove contaminant mass in the most efficient and timely manner.

The first site-specific objective of MPE pilot testing was to lower the groundwater table to increase the volume of semi-saturated soil through which airflow and volatilization of constituents occur. The second objective was to remove soil vapor and groundwater from the impacted zone for treatment. The third objective was to evaluate effectiveness of the proposed technology and assess site conditions with regard to potential full-scale implementation.

Pilot test results were utilized to determine the following:

- 1. Mass Removal: Pilot testing results determine whether MPE can accomplish removal of contaminant mass at satisfactory rates. Mass removal rates will be evaluated using data obtained during pilot testing.
- 2. Zone of Influence Evaluation: pilot test results provide vadose and saturated zone response to the application of vacuum.
- 3. Subsurface Soil Properties/Parameters Evaluation: pilot test results provide information about the nature and variability of site-specific subsurface parameters and contaminant distribution.
- 4. Discharge Concentrations/Design Parameters: pilot test results establish initial levels of contaminants in extracted gas and liquid. This data will be used for future treatment system design and discharge permitting.
- 5. Cost Evaluation: pilot test results can aid in evaluating cost of full-scale system implementation and operation, as well as assessment of duration of soil and groundwater remediation.

2.3 **Pre-Pilot Test Activities**

SOMA prepared a site-specific Health and Safety Plan (HASP). The HASP is a requirement of the Occupational Safety and Health Administration (OSHA), "Hazardous Waste Operation and Emergency Response" guidelines (29 CFR 1910.120) and the California Occupational Safety and Health Administration (Cal/OSHA) "Hazardous Waste Operation and Emergency Response" guidelines (CCR Title 8, section 5192). The HASP is designed to address safety provisions during field activities and protect the field crew from physical and chemical hazards resulting from drilling, sampling, and remediation activities. It establishes personnel responsibilities, general safe work practices, field procedures, personal protective equipment standards, decontamination procedures, and emergency action plans. The HASP was reviewed and signed by field staff and contractors prior to beginning field operations.

In accordance with conditions of the various-locations Bay Area Air Quality Management District (BAAQMD) permit for the MTS, SOMA obtained a permit modification to include the subject site under the various locations air permit. The nearest school 'Growing Light Montessori' is less than 1,000 feet from the site, which triggered a public notification process. Upon receipt of the modified permit, SOMA notified BAAQMD of the location, date, and duration of the pilot test, and the vapor treatment to be utilized.

Prior to MPE operation, a Wastewater Special Discharge Permit was obtained from the East Bay Municipal Utility District (EBMUD) to allow discharge to the site sewer during MPE activities (copy of discharge permit is attached in Appendix F). In preparation for discharge activities, on July 3, 2013, SOMA collected three effluent groundwater samples (after groundwater had passed through new carbon drums). Samples were analyzed according to the EBMUD discharge requirements. Based on acceptable laboratory analytical results, EBMUD issued the discharge permit (No. 05928020) on July 24, 2013. Certified laboratory analytical reports and chain of custody documentation are included in Appendix D.

2.4 Field Work and Procedures

The MTS system was operated continuously throughout the pilot test, if any interruptions occurred they were noted in pertinent field notes; MTS operational data collected during the pilot test included the following (no data was collected overnight):

- Oxidizer temperature
- Pump/air temperature
- Total flow
- Dilution flow
- Total liquids removed by vacuum
- PID readings

Oxidizer temperature and pump/air temperature are displayed on the MTS control panel and total flow was calculated using the pump vacuum observation. Dilution flow was read directly from the gas flow gauge at the air dilution flow control valve before the liquid ring pump; flow is reported in standard cubic feet per minute. Total liquids removed were read from a totalizing flow meter ahead of the GAC drums. Appendix C includes field data sheets (GGRT, MTS Operational Data Sheets and MTS Monitoring Point Data Sheets) for recording data.

All equipment was calibrated in the field in accordance with manufacturer recommendations. All extraction wells and observation wells were placed under pressure and observed any evidence of air leakage around the cement/bentonite grout seal of the well. Shaving foam was used to detect leaks and no air leakage was observed at any of the wells. Groundwater elevations were measured at observation wells using a standard electrical water level meter graduated in tenths of inches. Flush-threaded Schedule 40 PVC well casings were used as stingers. Stingers were connected by flexible hose to the MTS and extended into

the extraction well to within a few inches from the bottom of the well, removing groundwater from the well casing/screen by vacuum. Prior to insertion of the stinger, depth to groundwater was measured. Piping between the stinger and manifold was limited to 1 inch in diameter. Piping was placed under traffic rated hose ramps where necessary, which accept a maximum diameter of 1-inch pipe or hose.

Groundwater levels were measured at all wells and induced vacuum was measured at all wells when not in use for extraction. Induced vacuum was measured using a magnehellic vacuum gauge (Dwyer), attached to a barbed fitting that was attached to an air tight well cap. Groundwater elevation was measured by removing the well cap and inserting a standard groundwater level probe. MPE wells (4-inch diameter) were fitted with compression caps that enable both vacuum and groundwater levels to be measured simultaneously. These compression caps remain air tight allowing a magnahellic gauge to be attached via hose barb and with a 10-foot-long, 1-inch diameter pipe inserted through the center of the cap until it is below groundwater level for insertion of a groundwater level probe. Vacuum gauges read a minimum range of 0.01 inches of water to 20 inches of water. Groundwater level probes read at graduations of 0.1 inches.

Extracted soil vapor concentrations were measured with a PID calibrated to hexane. Vapor samples were collected in Tedlar bags within the first 24 hours of extraction at each extraction well and throughout the pilot test. Influent soil vapor samples were collected through a sampling port located on the vacuum pump discharge manifold and thermal oxidizer stack vapor samples were collected through a sampling port located at the top of the stack.

Measurements were recorded at a minimum of every 1-1.5 hours, during daytime operating hours.

2.5 Pilot Test Implementation

The zone of influence (ZOI) for MPE pilot testing was estimated by determining pressure changes in observation wells versus distance from the extraction well at the end of the pilot test (EPA 1995). The effective ZOI is defined as the distance at which a pressure drop of 0.10 in-H₂0 is observed. The log of vacuum pressure measured in the observation well at the end of pilot testing is plotted against the distance from the MPE well. Figure 4 illustrates the lateral extents of the ZOIs utilizing data taken from observation wells, and Figures 5a through 5d show ZOI for each well or combination of wells. The data points describe straight lines and the lines intersect the pressure axis at 0.1 inches of water with the distance axis used to estimate the MPE ZOI. Summaries of pilot test implementation at each extraction well or well combination are listed below.

2.5.1 Extraction at MW-1

Pilot testing utilizing MW-1 began at 1:00 pm on December 2, 2013 and was terminated at 11:00 am on December 5, 2013; total test time was 4,200 minutes or 70 hours. Tables 1a and 2a show operational data during this period. Casing vacuum ranged from 22.5 to 23 inches of mercury and vapor extraction flow rate ranged from 68 to 74 scfm. VOC concentrations in the extracted soil vapor stream measured using a PID ranged from 2,150 ppmv as hexane to 8,780 ppmv (Table 2A). Thermal oxidizer temperatures ranged from 1,498 °F to 1,532 °F.

Induced vacuum was detected in observation wells MW-2 and RS-4 at 0.30 and 0.20 inches of water, respectively, at the end of extraction from this well (Table 3). ZOI ranged up to 60 feet for extraction at MW-1 (Figure 5a).

A total of 286 gallons of groundwater (Table 1a) was extracted at an average rate of 0.068 gpm. Once steady-state pumping was reached, a drawdown of 2.03 feet was observed in well MW-2 and 0.63 feet in RS-4. Figure 6a shows drawdown over time during extraction.

2.5.2 Extraction at MW-2

Pilot testing utilizing MW-2 began at 11:00 on December 5, 2013 and was terminated at 10:00 on December 9, 2013; total test time was 5,700 minutes or 95 hours. Tables 1b and 2b show operational data for this well. Casing vacuum ranged from 21.2 to 23.3 inches of mercury and vapor extraction flow rate ranged from 66 to 77 scfm. VOC concentrations in the extracted soil vapor stream measured using a PID ranged from 496 ppmv as hexane to 6,070 ppmv (Table 2B). Thermal oxidizer temperatures ranged from 1,487 °F to 1,540 °F.

Induced vacuum was detected in observation wells MW-1 and RS-4 at 0.25 and 0.60 inches of water, respectively, at the end of extraction from this well (Table 3). ZOI ranged up to 25 feet for extraction at MW-2 (Figure 5b).

A total of 530 gallons of groundwater (Table 1b) was extracted at an average rate of 0.093 gpm. Once steady-state pumping was reached, a drawdown of 1.43 feet was observed in well RS-4 and 0.65 feet in MW-1. Figure 6b shows drawdown over time during extraction.

2.5.3 Extraction at RS-4

Pilot testing for extraction at RS-4 began at 10:00am on December 9, 2013 and was terminated at 9:00am on December 12, 2013. Total test time was 4,260 minutes or 71 hours. Tables 1c and 2c show operational data for this period. Casing vacuum ranged from 21.3 to 22.5 inches of mercury and vapor extraction flow rate ranged from 62 scfm to 74 scfm. VOC concentrations in the extracted soil vapor stream measured using a PID ranged from 271 ppmv as hexane to

711 ppmv (Table 2c). Thermal oxidizer temperatures ranged from 1,498 °F to 1,512 °F.

Induced vacuum was detected in observation wells MW-1 and MW-2 at 0.2 inches of water in each well (Table 3). ZOI ranged up to 28 feet for extraction at RS-4 (Figure 5c).

A total of 377 gallons of groundwater (Table 1c) was extracted at an average rate of 0.089 gpm. A drawdown of 1.37 feet was observed in well MW-2. Figure 6c shows drawdown over time during extraction.

2.5.4 Extraction at RS-3

Pilot testing utilizing RS-3 began at 9:00am on December 12, 2013 and was terminated at 12:00pm on the same day; total test time was 180 minutes or 3 hours. Tables 1d and 2d show operational data for RS-3. Casing vacuum ranged from 24.7 to 25 inches of mercury and vapor extraction flow rate was 63 scfm. VOC concentrations in the extracted soil vapor stream measured using an PID ranged from 46 ppmv as hexane to 156 ppmv (Table 2d). Thermal oxidizer temperatures ranged from 1,499 °F to 1,509 °F.

Induced vacuum was detected only in MW-1 at 0.10 inches of water, at the end of extraction from this well (Table 3). No vacuum was observed in any other well.

A total of 11 gallons of groundwater (Table 1d) was extracted at an average rate of 0.061 gpm from RS-3. A drawdown of 0.12 feet was observed in well MW-2. Figure 6d shows drawdown over time during extraction.

2.5.5 Extraction at MW-1 and MW-2

Pilot testing for combined extraction at MW-1 and MW-2 began at 12:00pm on December 12, 2013 and was terminated at 9:00am on December 16, 2013; total test time was 5,550 minutes or 92.5 hours. Tables 1e and 2e show operational data for this period. Induced vacuum and groundwater levels were measured at observation wells RS-3 and RS-4. Casing vacuum was maintained between 16.9 and 19.6 inches of mercury and vapor extraction flow rate ranged from 100 to 136 scfm. VOC concentrations in the extracted soil vapor stream measured using a PID ranged from 578 ppmv to 2,700 ppmv as hexane (Table 2e). Thermal oxidizer temperatures ranged from 1,499 °F to 1,520 °F.

Induced vacuum was detected in observation wells RS-3 and RS-4 at 0.02 and 3.0 inches of water, respectively, at the end of extraction from these wells (Table 3). ZOI ranged up to 44 feet for combined extraction at MW-1 and MW-2 (Figure 5d).

A total of 876 gallons of groundwater (Table 1e) was extracted at an average rate of 0.158 gpm. A drawdown of 1.83 feet was observed in well RS-4. Figure 6e shows drawdown over time during extraction.

2.5.6 Extraction at MW-1, MW-2, and RS-4

Pilot testing for combined extraction at MW-1, MW-2, and RS-4 began at 9:00am on December 16, 2013 and was terminated at 12:00pm on December 16, 2013; total test time was 180 minutes or 3 hours. Tables 1f and 2f show operational data for this period. Casing vacuum was maintained between 16.9 and 17.1 inches of mercury and vapor extraction flow rate ranged from 135 to 139 scfm. VOC concentrations in the extracted soil vapor stream measured using a PID ranged from 482 ppmv to 617 ppmv as hexane (Table 2f). Thermal oxidizer temperatures ranged from 1,504 °F to 1,512 °F.

Induced vacuum was not detected in the only observation well RS-3 until the end of pilot testing (Table 3) and hence no ZOI could be calculated for this combined extraction. A total of 11 gallons of groundwater (Table 1f) was extracted at an average rate of 0.06 gpm.

2.6 Pilot Testing Results

Contaminant mass removed was estimated using flow rates and volume of air extracted during pilot testing, and VOC concentrations in ppmv as hexane measured by PID. VOC mass removal rate in lbs/day is estimated by dividing the estimated VOC mass removed during pilot testing by elapsed time.

The estimated total mass of VOCs removed from soil vapor extracted from extraction wells during this event was 497 lbs. The estimated average VOC mass removal rate was approximately 36 lbs/day. The highest VOC mass removal rate was observed in well MW-1 at approximately 87 lbs/day. Estimated VOC mass removal rates and VOC mass removed during each configuration are presented below and in Tables 2 and 2a through 2f.

2.6.1 Mass Removal at MW-1

The estimated mass of VOCs removed from soil vapor extracted from extraction well MW-1 was 253 lbs. The estimated total VOC mass removal rate was approximately 87 lbs/day with a median flow rate of 70 scfm. Testing at MW-1 occurred over a period of 4,200 minutes or 70 hours (Table 2a).

2.6.2 Mass Removal at MW-2

The estimated mass of VOCs removed from soil vapor extracted from extraction well MW-2 was 109 lbs. The estimated total VOC mass removal rate was

approximately 28 lbs/day with a median flow rate of 70 scfm. Testing at MW-2 occurred over a period of 5,700 minutes or 95 hours (Table 2b).

2.6.3 Mass Removal at RS-4

The estimated mass of VOCs removed from soil vapor extracted from extraction well RS-4 was 28 lbs. The estimated total VOC mass removal rate was approximately 10 lbs/day with a median flow rate of 70 scfm. Testing at RS-4 occurred over a period of 4,260 minutes or 71 hours (Table 2c).

2.6.4 Mass Removal at RS-3

The estimated mass of VOCs removed from soil vapor extracted from extraction at well RS-3 was 0.25 lbs. The estimated total VOC mass removal rate was approximately 2 lbs/day with a median flow rate of 63 scfm. Testing occurred over a period of 180 minutes, or 3 hours (Table 2d).

2.6.5 Mass Removal at MW-1 and MW-2

The estimated mass of VOCs removed from soil vapor extracted from combined extraction at wells MW-1 and MW-2 was 103 lbs. The estimated total VOC mass removal rate was approximately 27 lbs/day with a median flow rate of 117 scfm. Testing occurred over a period of 5,550 minutes or 92.5 hours (Table 2e).

2.6.6 Mass Removal at MW-1, MW-2, and RS-4

The estimated mass of VOCs removed from soil vapor extracted from combined extraction at wells MW-1, MW-2, and RS-4 was 2.74 lbs. The estimated total VOC mass removal rate was approximately 22 lbs/day with a median flow rate of 136 scfm. Testing occurred over a period of 180 minutes or 3 hours (Table 2f).

2.7 Soil Vapor Analytical Laboratory Results

Vapor samples were submitted under chain-of-custody documentation to Curtis and Tompkins of Berkeley, a California state-certified environmental laboratory, where they were analyzed for TPH-g using USEPA Analytical Method TO-3 and for BTEX, MtBE, and other VOCs using USEPA Analytical Method TO-15. Vapor samples were obtained from the oxidizer stack to demonstrate compliance with BAAQMD various-locations permit conditions to determine destruction efficiency of the extracted vapors. Soil vapor analytical results are presented in Table 4. Certified laboratory analytical reports and chain of custody documentation are included in Appendix D.

Estimated total mass of TPH-g and benzene removed using laboratory data is presented in Table 4.The mass of TPH-g and benzene removed by the pilot test

was estimated using soil vapor analytical results for the pilot test and the median flow rate. The estimated total mass removed from extracted soil vapor was 612.7 lbs of TPH-g and 5.7 lbs of benzene. The discrepancy between the estimated total mass of VOCs removed utilizing PID data and the total mass of TPH-g and benzene removed utilizing laboratory analysis data is a result of the difference between PID measurements as hexane and laboratory analyses of the extracted vapor stream. It appears that vapor sampling for laboratory analysis may have coincided with somewhat higher PID readings. These occurrences likely influenced the calculation of contaminant mass based on vapor analytical results, contributing to the difference between the mass derived from PID readings and mass derived from analytical results. Concentrations based on laboratory analysis are representative only of that moment in the pilot test at which the extracted vapor stream was sampled. Since laboratory analytical results are not representative of the entire length of the pilot test, unlike PID measurements that were collected continuously over the entire duration of the pilot test, the total mass of VOCs removed as measured by PID was used to estimate mass removals. Analytical results support compliance with the BAAQMD permit achieving an abatement efficiency of over 99%.

2.8 Pre- and Post- MPE Groundwater Sampling

Table 5 lists analytical results for groundwater samples collected before and after the MPE event; Third Quarter 2013 groundwater monitoring results were used as pre-MPE sampling data. Post-MPE groundwater sampling was conducted as part of the Fourth Quarter 2013 groundwater monitoring event and a certified laboratory analytical report and chain-of-custody documentation are included in Appendix D.

Upon comparison of pre and post MPE sampling results (Table 5) it was observed that, TPH-g decreased in RS-4 and remained below laboratory-reporting limit in RS-3 and MW-2, no comparison could be made for MW-1 due to raised dilution and reporting limit during pre-MPE sampling event; TPH-d decreased in RS-3, increased in RS-4 and MW-2, and remained unchanged in MW-1; benzene decreased in MW-1 and MW-2 and remained below laboratory reporting limits in RS-3 and RS-4; MtBE and TAME decreased in RS-4, MW-1, and MW-2 and increased in RS-3; and TBA decreased in RS-4 and MW-1, and increased in RS-3 and MW-2. Where post-MPE sampling exhibited higher COC concentrations than pre-MPE sampling, it indicates that due to vacuum influence on the subsurface lithology and on contaminant distribution, contamination has migrated toward the extraction wells resulting in increased concentrations around the extraction points. Concentration reduction indicates that a limited mass was present at that location and this pilot testing event was effective in removing the bulk of contamination in that area.

2.9 Pilot Test Water Treatment and Disposal

As mentioned in Section 2.3, extracted groundwater water was treated and discharge to the on-site sewer system. Approximately 2,091 gallons was produced during the MPE pilot test. Extracted groundwater was treated through two 55-gallon GAC drums prior to discharge. In order comply with discharge permit requirements SOMA has been submitting quarterly discharge reports to EBMUD for the duration of permit validity.

3. OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS

MPE pilot test results indicate that this technique was effective in removing lightweight PHCs from the smear zone. During the pilot test, 497 pounds of PHCs were removed from the subsurface with an average mass removal rate of 36 lbs/day. ZOI ranged from 25 to 60 feet, demonstrating the effectiveness of MPE. A total of 2,091 gallons of groundwater was removed from the subsurface. During Post-MPE sampling, significant concentration reduction of all COCs was observed. Based on above presented evidence, MPE appears to be viable technology for remediating residual contamination at this site.

3.1 Observations and Conclusions

Based on field and laboratory data collected during pilot testing, the following was determined:

- Approximately 497 pounds of volatile PHCs were removed during the MPE pilot test.
- The effective ZOI from extraction wells ranged from 25 to 60 feet.
- The average VOC mass removal rate was approximately 36 lbs/day.
- Maximum VOC mass removal rate was observed in MW-1 at 87 lbs/day; VOC mass removal rate from individual wells MW-2, RS-4, and RS-3 was estimated at 28 lbs/day, 10 lbs/day, and 2 lbs/day, respectively. These rates indicate that RS-3 and RS-4 were less effective during MPE operation. Combined extraction from MW-1 and MW-2 yielded a removal rate of 27 lbs/day.
- During the recent groundwater sampling event most contaminant concentrations decreased since the pre-MPE sampling event indicating the effectiveness of the MPE pilot test. In some cases, post-MPE sampling indicated higher COC concentrations than pre-MPE sampling, indicating that subsurface contamination was concentrated around the extraction points due to applied vacuum.

3.2 Recommendations

Based on the effectiveness of MPE pilot test conducted at the site during the month of December 2013, SOMA recommends conducting further MPE events utilizing MW-1, MW-2, and a combination of the two wells as extraction wells.

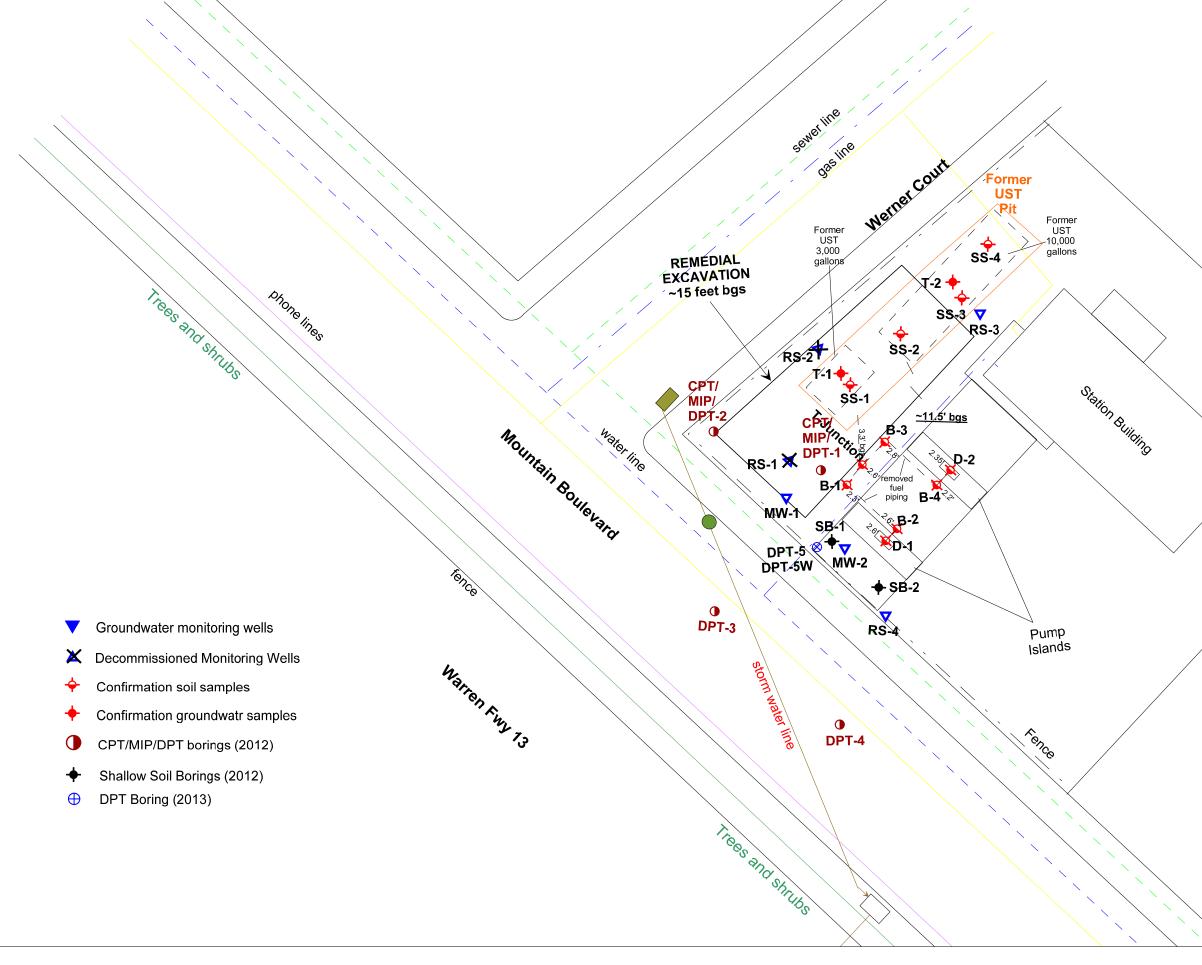
For further MPE operation at the site, a brief economical analysis was conducted to evaluate the cost effectiveness of two alternatives: continuous MPE operation using a permanent/fixed system installation versus intermittent MPE operation using rental equipment. Continuous MPE operation will require upfront costs of purchasing and installing the permanent system, installing three-phase power at the site, and applying for a new permit to operate with the BAAQMD to name a few. These upfront costs could add up to approximately \$250,000.

On the other hand, intermittent MPE option only has a rental cost of operation. Per our experience running MPE system on intermittent mode will increase the efficiency of its operation. Running through a prolong time span will deplete the soil vapor from the subsurface and reduce the mass removal rate. Therefore, pulsing the system gives the residual contaminant mass some time to revolatilize into the soil pores which can be removed by subsequent operation of the MPE system. In light of the above evaluation, intermittent MPE operation appears to be the appropriate alternative for contaminant mass removal. SOMA proposes to conduct two to three 30-day MPE events at the site in order to contaminant mitigate remaining mass from the subsurface.

FIGURES

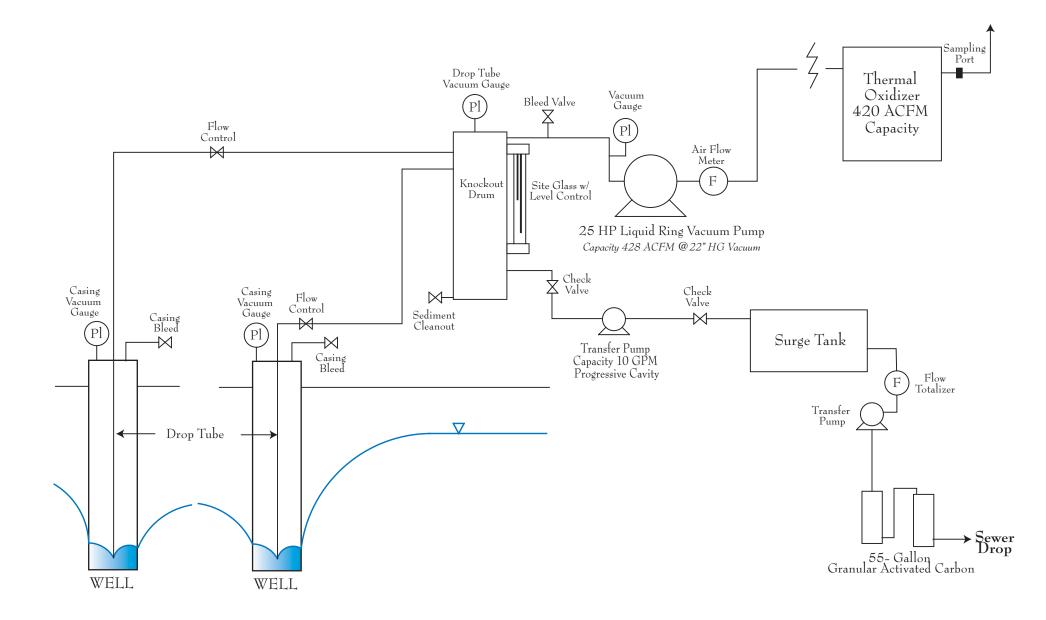
Multi-Phase Extraction Pilot Testing Report

Source: Google (R) 2012

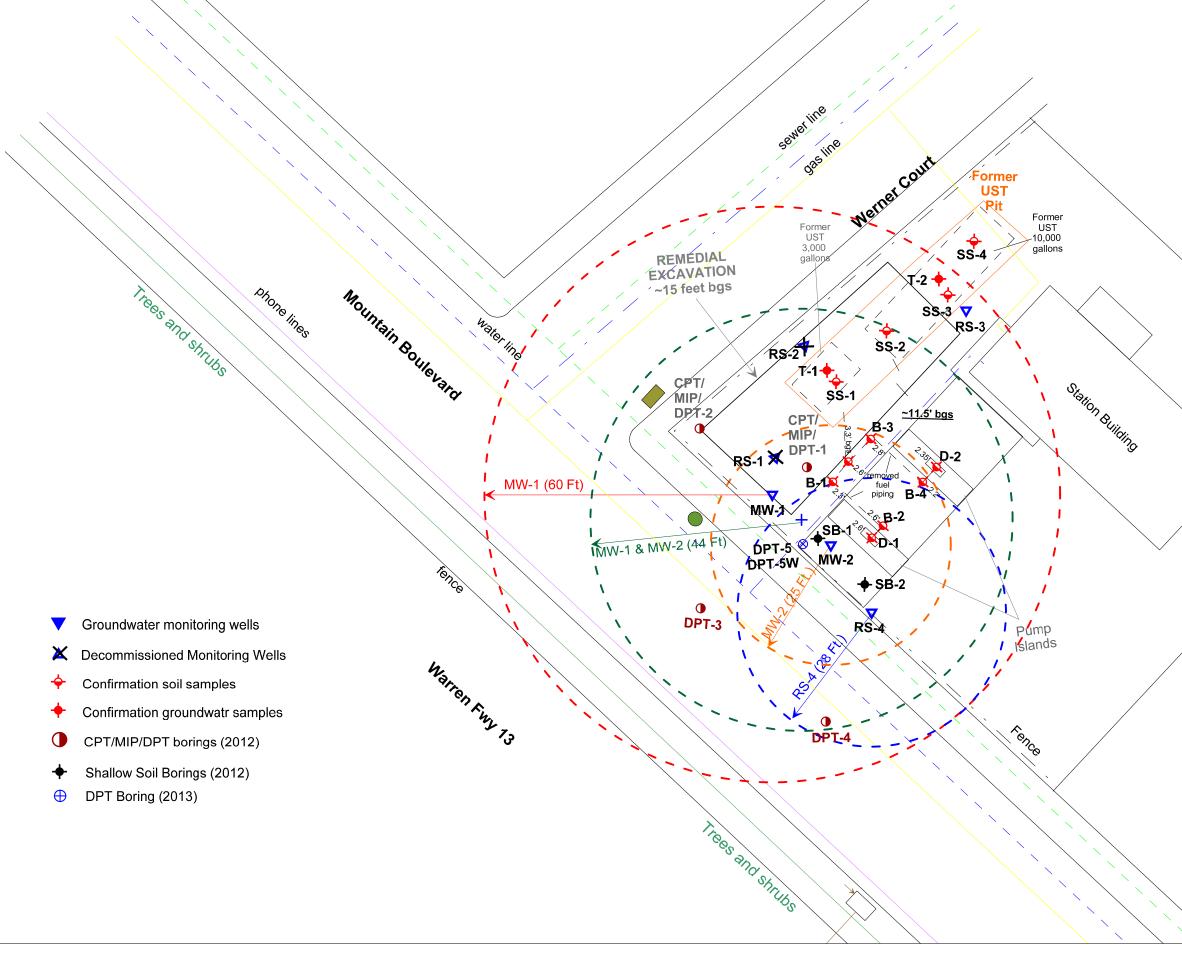

approximate scale in feet

0

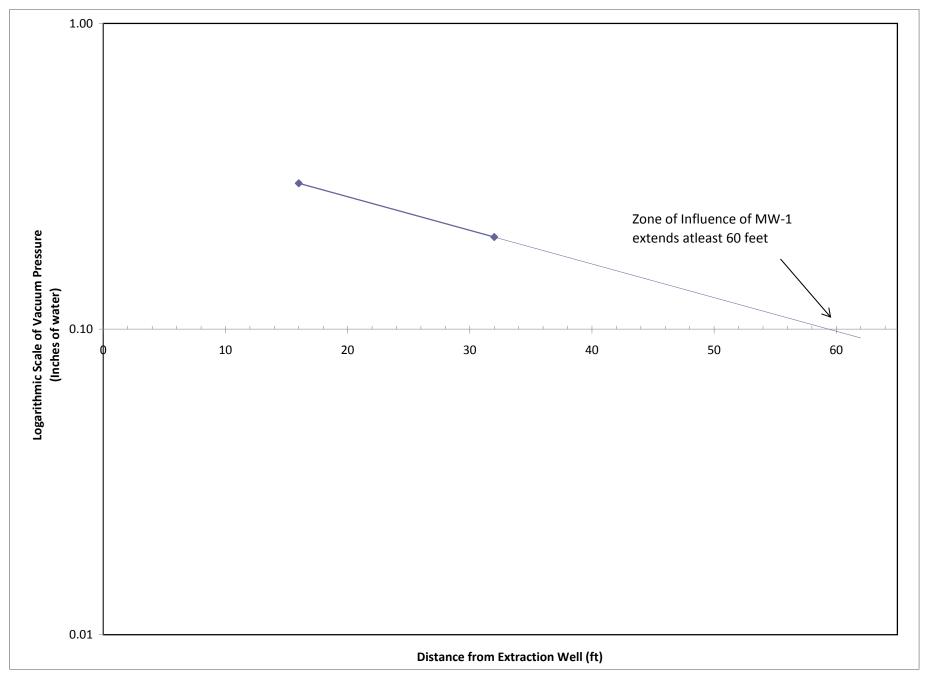
100 200


approximate scale in feet 20 40

0


Figure 2: Site Map Showing Locations of Former USTs, Soil Borings, and Groundwater Monitoring Wells

generalized groundwater flow direction



approximate scale in feet

Figure 4: Extent of Zone of Influence

generalized groundwater flow direction

Figure 5a: Zone of Influence, Extraction at MW-1

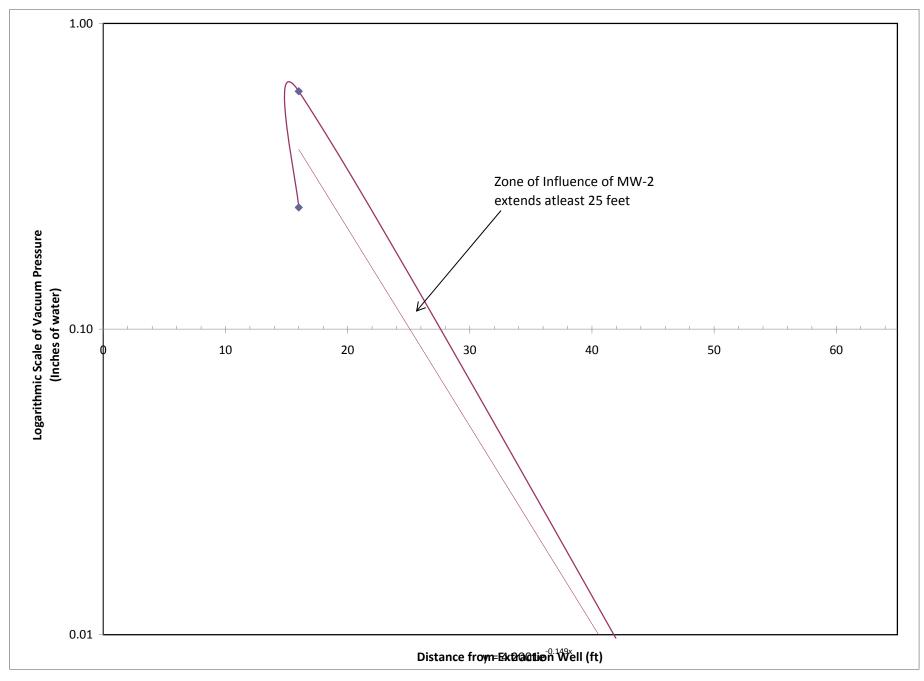
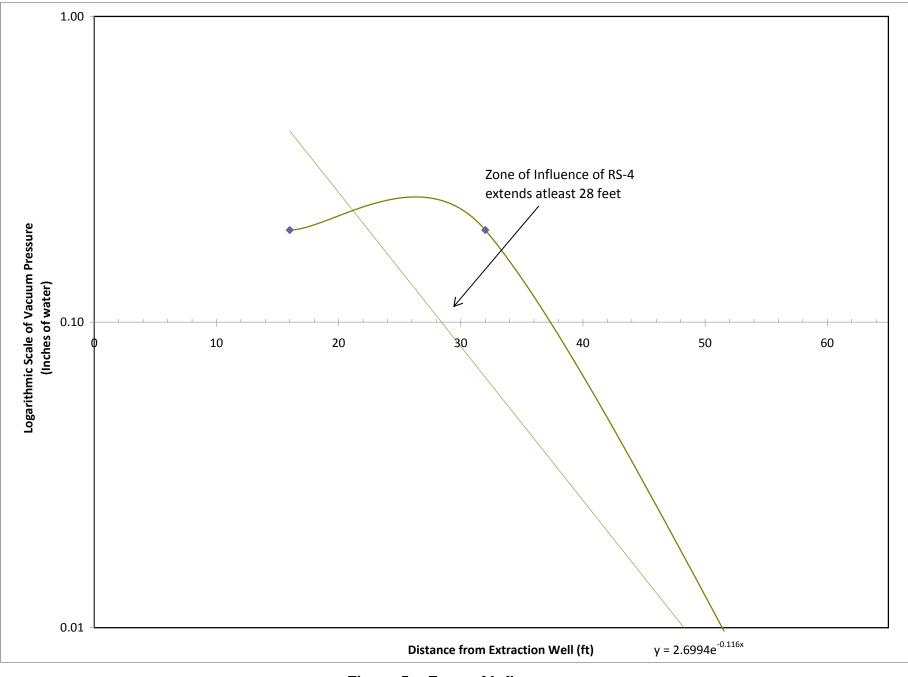
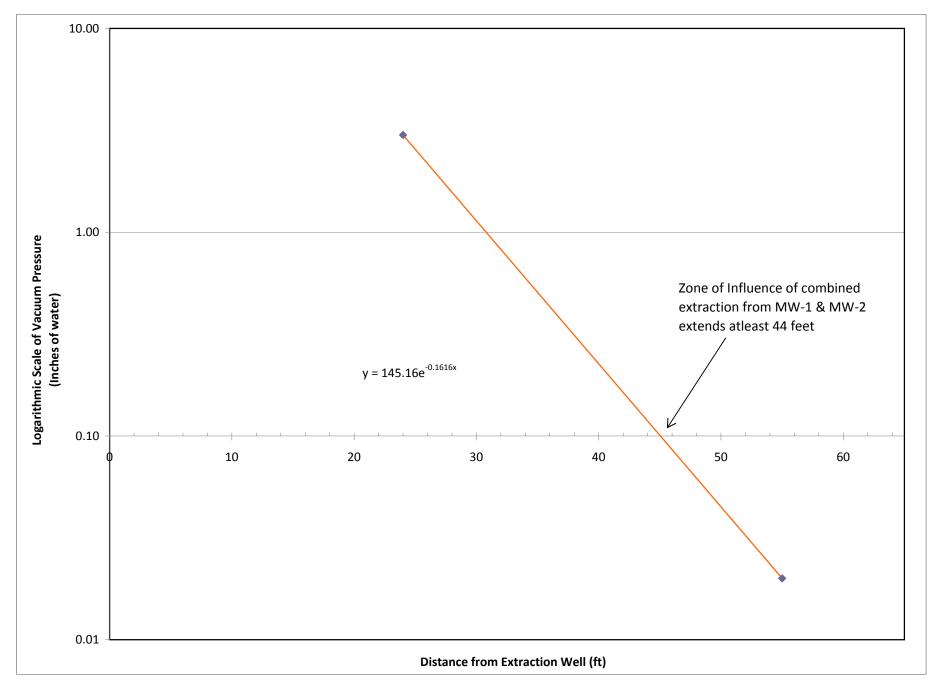
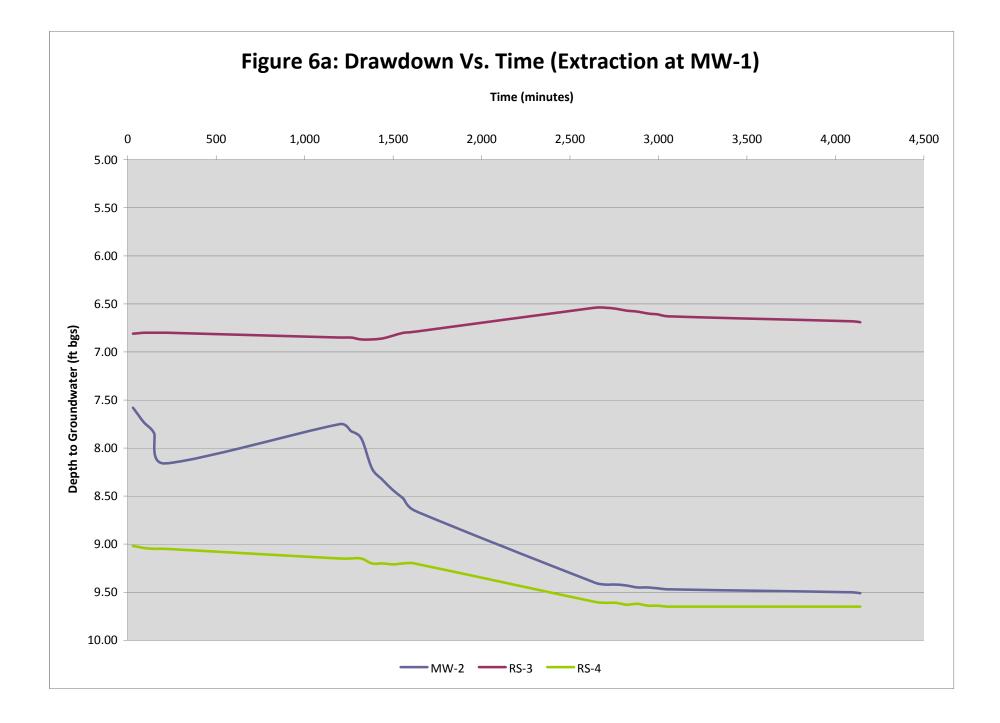
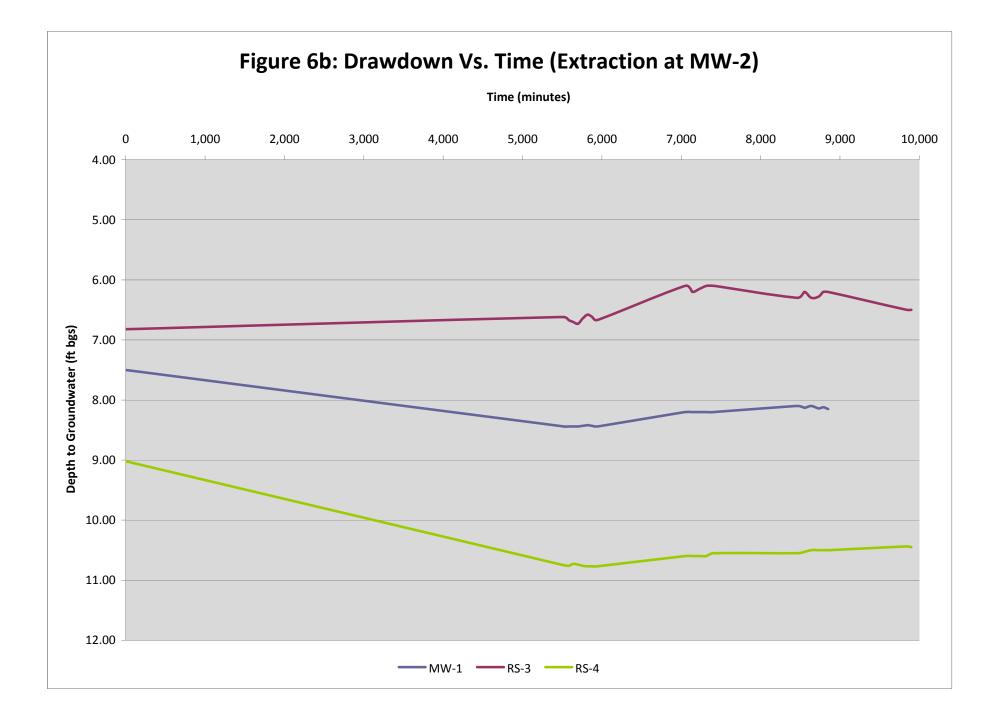
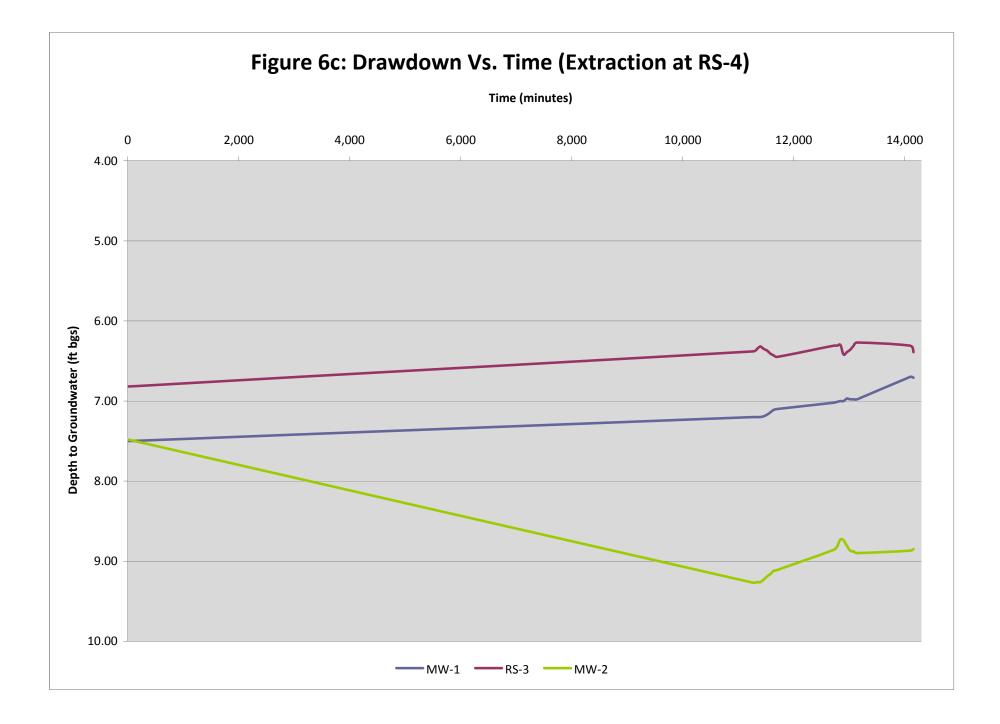
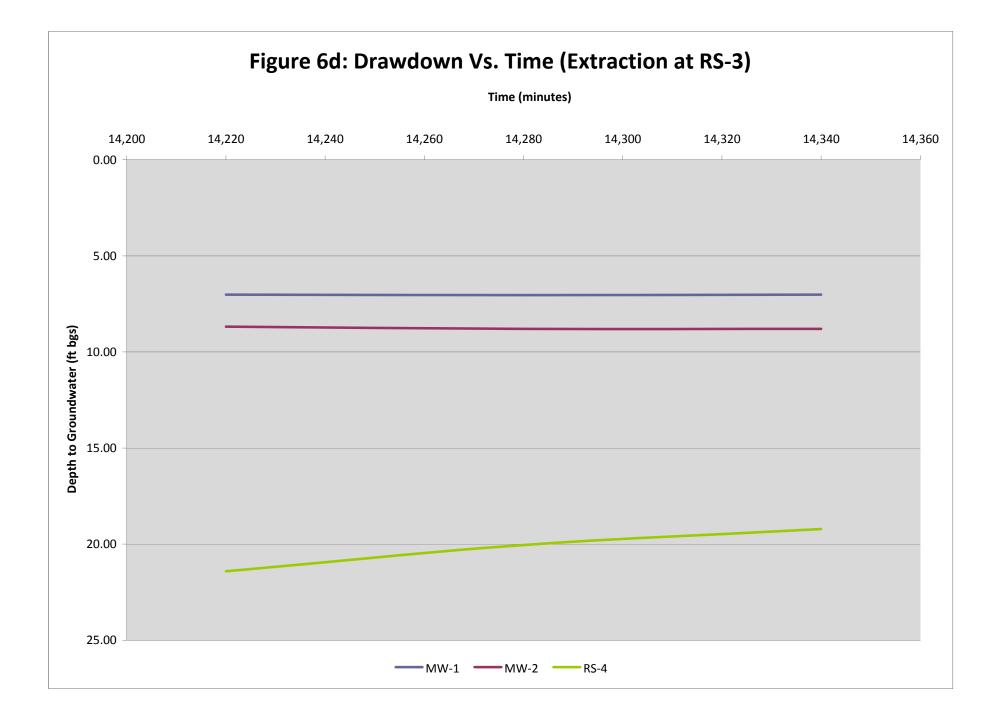
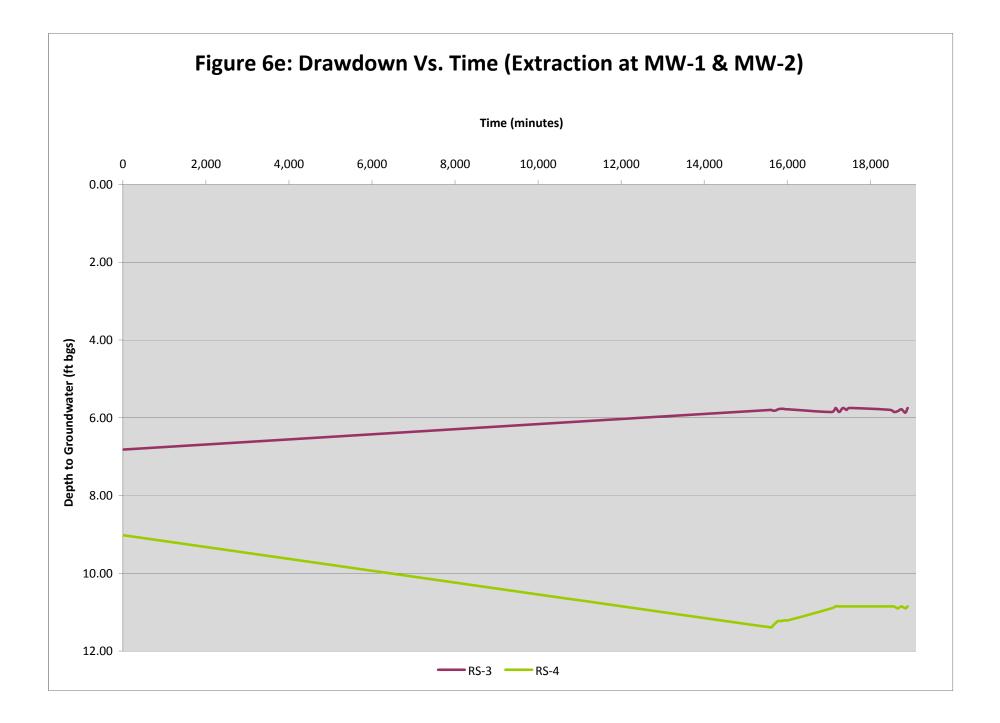


Figure 5b: Zone of Influence, Extraction at MW-2


Figure 5c: Zone of Influence, Extraction at RS-4



TABLES

Multi-Phase Extraction Pilot Testing Report

	Table 1											
	MPE Pilot Test December 2013 Operational Data											
	2844 Mountain Blvd. Oakland, California											
DATE	TIME	PID (ppmv)	WELL MANIFOLD VACUUM (In of Hg)	OXIDIZER TEMPERATURE (⁰ F)	WELL FIELD FLOW VAPOR RATE (scfm)	TOTAL SYSTEM VAPOR FLOW RATE (scfm)	DILUTION AIR FLOW RATE (scfm)	SYSTEM (BLOWER) VACUUM (In of Hg)	SYSTEM TOTALIZER READING (gallons)	COMMENTS		
12/2/2013	1300	0 700		4500	70	70	0	25		Begin extraction from MW-1		
	1330 1430	8,780 6,030	22.7 22.7	1520 1511	70 70	70 70	0 0	25 25	0			
	1530	inf=4,510;	22.9	1514	70	70	0	25				
	1630	eff=2 3,810	22.9	1507	70	70	0	25	23			
12/3/2013	900	7,470	22.7	1526	70	70	0	25	23			
	1000	6,720	22.7	1521	70	70	0	25				
	1100 1200	5,290 2,510	22.7 22.8	1515 1532	68 70	68 70	0 0	25.1 25				
	1300	2,310	22.8	1523	70 71	70	0	23				
	1400	2,910	22.6	1509	74	74	0	24.7				
	1500	2,720	22.6	1517	74	74	0	24.7				
12/4/2013	1600 900	2,430 2,390	22.5 22.5	1510 1505	71 71	71 71	0 0	24.9 24.9	177			
12/4/2010	1000	2,360	22.5	1509	71	71	Ő	24.9				
	1100	2,340	22.5	1515	70	70	0	25				
	1200 1300	2,320 2,300	22.7 22.7	1499 1506	70 70	70 70	0 0	25 25				
	1400	2,300	22.7	1508	70	70	0	25				
	1500	2,270	22.7	1501	73	73	0	24.8				
10/5/0010	1600	2,250	22.6	1498	73	73	0	24.8				
12/5/2013	900 1000	2,210 2,170	23 22.8	1520 1509	70 70	70 70	0 0	25 25	286			
	1100	2,150	22.8	1502	68	68	Ő	25.1				
	1200	6,070	23	1540	68	68	0	25.1		Extracting from MW-2		
	1300 1400	4,810 3,490	23 23	1495 1499	68 68	68 68	0 0	25.1				
	1400	3,490 3,150	23	1499	70	70	0	25.1 25				
	1600	2,720	23	1502	70	70	0	25				
12/6/2013	900	1,790	23	1505	68	68	0	25.1	403			
	1000 1100	1,720 1,560	22.9 23	1487 1503	70 70	70 70	0 0	25 25				
	1200	1,621	23	1499	70	70	0	25				
	1300	1,350	23.1	1495	73	73	0	24.8				
	1400 1500	1,324	22.8 22.9	1498 1502	77 77	77 77	0	24.5				
	1500 1600	1,305 1,392	22.9	1502	77	77	0	24.5 24.5				
12/7/2013	900	1,060	21.2	1520	70	70	0	25	521			
	1030	1,044	21.2	1505	68	68	0	25.1				
	1200 1330	955 982	22.2 22.2	1508 1502	68 68	68 68	0	25.1 25.1				
	1500	984	23	1499	70	70	0	25				
	1630	768	23	1501	70	70	0	25				
12/8/2013	900 1030	830 770	23.1 23.2	1509 1502	70 70	70 70	0 0	25 25	698			
	1200	540	23.2	1502	68	68	0	25 25.1				
	1330	496	23	1499	68	68	0	25.1				
	1500	712	23	1501	68	68	0	25.1				
	1630	695	22.8	1506	70	70	0	25				

							Table 1			
							Test December 2013 erational Data	i		
							44 Mountain Blvd. akland, California			
DATE	TIME	PID (ppmv)	WELL MANIFOLD VACUUM (In of Hg)	OXIDIZER TEMPERATURE (⁰ F)	WELL FIELD FLOW VAPOR RATE (scfm)	TOTAL SYSTEM VAPOR FLOW RATE (scfm)	DILUTION AIR FLOW RATE (scfm)	SYSTEM (BLOWER) VACUUM (In of Hg)	SYSTEM TOTALIZER READING (gallons)	COMMENTS
12/9/2013	900	684	21.8	1498	66	66	0	25.2	816	
	1000 1100 1200 1300 1400	651 588 679 711 692	21.8 22.3 22.2 22.2 21.5	1502 1509 1501 1498 1502	68 65 62 62 65	68 65 62 62 65	0 0 0 0	25.1 25.3 25.5 25.5 25.3		Extracting from RS-4
	1500	679	21.3	1499	63	63	0	25.4		
12/10/2013	1600 900 1000	632 515 499	21.4 22.3 22.3	1505 1499 1502	63 68 70	63 68 70	0 0 0	25.4 25.1 25	955	
	1100 1200 1300	502 485 446	22.3 22.3 22.2	1505 1501 1506	68 68 73	68 68 73	0 0 0	25.1 25.1 24.8		
	1400 1500 1600	435 432 419	22.5 22.4 22.4	1499 1504 1501	70 70 70	70 70 70	0 0 0	25 25 25		
12/11/2013	900 1000 1100	379 362 349	22.3 22.3 22.3	1499 1504 1501	74 74 73	74 74 73	0 0 0	24.7 24.7 24.8	1,071	
	1200 1300 1400 1500	338 331 345 336	22.3 22.3 22.1 22	1503 1498 1505 1509	73 73 73 73 73	73 73 73 73	0 0 0	24.8 24.8 24.8		
12/12/2013	1600 1600 800 900	335 335 291 271	22 22 22.1 23	1509 1512 1508 1501	73 74 73 70	73 74 73 70	0 0 0	24.8 24.7 24.8 25	1,193	
	1000 1100 1200	156 88 46	24.8 25 24.7	1509 1499 1504	63 63 63	63 63 63	0 0	25.4 25.4 25.4 25.4		Extracting from RS-3
	1300 1400 1500 1600	2,700 1,558 1,381 958	19.4 19.6 19.5 19.2	1507 1502 1506 1503	100 100 103 108	100 100 103 108	0 0 0	23.1 23.1 22.9 22.6	1,204	Extracting from MW-1 and MW-2
12/13/2013	900 1000 1100	646 621 651	19.1 19 19.2	1504 1507 1509	116 116 116	116 116 116	0 0 0	22.1 22.1 22.1	1,596	
	1200 1300 1400 1500	632 621 702 679	19.1 18.9 18.6 18.2	1502 1508 1499 1507	117 117 117 117 117	117 117 117 117	0 0 0	22 22 22 22 22		
12/14/2013	1600 930 1100	645 725 642	18.2 19 19.2	1505 1520 1520	117 117 114	117 117 114	0 0 0	22 22 22.2	1,720	
	1230 1400 1530 1630	630 607 648 590	19 19 19.3 19	1520 1520 1520 1520	114 117 114 114	114 117 114 114	0 0 0	22.2 22 22.2 22.2 22.2		

							Table 1							
							Test December 2013 erational Data	3						
	2844 Mountain Blvd. Oakland, California													
DATE	(ppmv) VACUUM (⁰ F) (scfm) (scfm) (scfm) (scfm) (scfm) (ln of Hg) (gallons)													
12/15/2013														
	1230 590 19 1520 117 117 0 22													
	1400 590 17.3 1520 128 128 0 21.3													
	1530	580	18	1520	128	128	0	21.3						
	1630	578	17.4	1520	131	131	0	21.1						
12/16/2013	900	617	16.9	1512	136	136	0	20.8	2,080	Extracting from MW-1, MW-2, RS-4				
	1000	482	16.9	1505	135	135	0	20.9						
	1100	504	17.1	1509	136	136	0	20.8						
	1200	482	17	1504	139	139	0	20.6	2,091					
										End Extraction				
Totalizer read	dings = 2,	091 gallons	= 0.104 gpm											
Total time of	test = 20	.070 minutes	s = 334.5 hours	= 13.94 days										
Notes														

ppmv parts per million vapor In of Hg inches of mercury

In of H₂0 inches of water

^oF degrees Fahrenheit scfm standard cubic feet per minute

	Table 1a MPE Pilot Test December 2013 Operational Data : MW-1													
						2844 Mountain Blvd. Oakland, California								
DATE	TIME	PID (ppmv)	WELL MANIFOLD VACUUM (In of Hg)	OXIDIZER TEMPERATURE (⁰ F)	WELL FIELD FLOW VAPOR RATE (scfm)	TOTAL SYSTEM VAPOR FLOW RATE (scfm)	DILUTION AIR FLOW RATE (scfm)	SYSTEM (BLOWER) VACUUM (In of Hg)	SYSTEM TOTALIZER READING (gallons)	COMMENTS				
12/2/2013	1300								_	Begin extraction from MW-1				
	1330 1430	8,780 6,030	22.7 22.7	1520 1511	70 70	70 70	0	25 25	0					
	1530	inf=4,510; eff=2	22.9	1514	70	70	0	25						
	1630	3,810	22.9	1507	70	70	0	25	23					
12/3/2013	900	7,470	22.7	1526	70	70	0	25						
	1000	6,720	22.7	1521	70	70	0	25						
	1100	5,290	22.7	1515	68	68	0	25.1						
	1200	2,510	22.8	1532	70	70	0	25						
	1300	2,310	22.9	1523	71	71 74	0	24.9 24.7						
	1400 1500	2,910 2,720	22.6 22.6	1509 1517	74 74	74 74	0	24.7						
	1600	2,720 2,430	22.6	1517	74 71	74 71	0	24.7						
12/4/2013	900	2,430	22.5	1505	71	71	0	24.9	177					
12/7/2013	1000	2,390	22.5	1509	71	71	0	24.9						
	1100	2,340	22.5	1515	70	70	0	25						
	1200	2,320	22.7	1499	70	70	Õ	25						
	1300	2,300	22.7	1506	70	70	0	25						
	1400	2,280	22.7	1502	70	70	0	25						
	1500	2,270	22.7	1501	73	73	0	24.8						
	1600	2,250	22.6	1498	73	73	0	24.8						
12/5/2013	900	2,210	23	1520	70	70	0	25	286					
	1000	2,170	22.8	1509	70	70	0	25						
	1100	2,150	22.8	1502	68	68	0	25.1		Switch ovtraction to MW/ 2				
	I'm an a		0.000					I		Switch extraction to MW-2				
	-		= 0.068 gpm s = 70 hours = 2											

ppmv parts per million vapor In of Hg inches of mercury

In of H_2^0 inches of water

٥F degrees Fahrenheit

standard cubic feet per minute scfm

						Table 1b				
					MPF Pil	ot Test December	2013			
						rational Data: MW-				
							-			
						2844 Mountain Blvd. Oakland, California				
			WELL	0)//01750		TOTAL SYSTEM		SYSTEM	SYSTEM	
D 4 7 5	TIL 15	PID	MANIFOLD	OXIDIZER TEMPERATURE	WELL FIELD FLOW	VAPOR FLOW	DILUTION AIR	(BLOWER)	TOTALIZER	
DATE	TIME	(ppmv)	VACUUM	-	VAPOR RATE	RATE	FLOW RATE	VACUUM	READING	COMMENTS
		,	(In of Hg)	(⁰ F)	(scfm)	(scfm)	(scfm)	(In of Hg)	(gallons)	
2/5/2013	1200	6,070	23	1540	68	68	0	25.1		Extracting from MW-2
	1300	4,810	23	1495	68	68	0	25.1		
	1400	3,490	23	1499	68	68	0	25.1		
	1500	3,150	23	1508	70	70	0	25		
	1600	2,720	23	1502	70	70	0	25		
2/6/2013	900	1,790	23	1505	68	68	0	25.1	403	
	1000	1,720	22.9	1487	70	70	0	25		
	1100 1200	1,560 1.621	23 23	1503 1499	70 70	70 70	0 0	25 25		
	1200	1,621	23	1499	70 73	70 73	0	25 24.8		
	1400	1,324	22.8	1495	73	73	0	24.5		
	1500	1,305	22.9	1502	77	77	0	24.5		
	1600	1,392	22.1	1501	77	77	0	24.5		
2/7/2013	900	1,060	21.2	1520	70	70	0	25	521	
	1030	1,044	21.2	1505	68	68	0	25.1	-	
	1200	955	22.2	1508	68	68	0	25.1		
	1330	982	22.2	1502	68	68	0	25.1		
	1500	984	23	1499	70	70	0	25		
	1630	768	23	1501	70	70	0	25		
2/8/2013	900	830	23.1	1509	70	70	0	25	698	
	1030	770	23.2	1502	70	70	0	25		
	1200	540	23.3	1505	68	68	0	25.1		
	1330	496	23	1499	68	68	0	25.1		
	1500 1630	712 695	23 22.8	1501 1506	68 70	68 70	0 0	25.1 25		
2/9/2013	900	695 684	22.8	1498	66	70 66	0	25 25.2	816	530 gallons
21312013	900 1000	651	21.8	1498	68	68	0	25.2	010	Job galions
	1000	001	21.0	1302	00	00	U	20.1		Switch extraction to RS-
lume of e	xtracted of	aroundwate	r = 530 gallons :	= 0.093 apm					• •	
			r = 530 gallons = s = 95 hours = 3							

ppmv parts per million vapor

In of Hg inches of mercury

In of H₂0 inches of water

٥F

degrees Fahrenheit standard cubic feet per minute scfm

1200 679 22.3 1501 62 62 0 25.5 1300 711 22.2 1498 62 62 0 25.5 1500 679 21.3 1499 63 63 0 25.4 1500 632 21.4 1505 68 68 0 25.1 1000 499 22.3 1502 70 70 0 25.1 1100 502 22.3 1505 68 68 0 25.1 1200 485 22.3 1501 68 68 0 25.1 1400 435 22.5 1499 70 70 0 25							Table 1c				
Operational Data: R54 Balance Caliboration DATE NUELL (ppm) OXIDIZER VACUUM (NACUUM (NACUUM) OXIDIZER (PLOW VAPOR (NACUUM) OXIDIZER (PLOW VAPOR (Stafm) OLIVION AIR VACUUM (NO H9) SYSTEM (NACUUM) SYSTEM (NACUUM) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Pilot Test Deceml</th><th>oer 2013</th><th></th><th></th><th></th></th<>							Pilot Test Deceml	oer 2013			
DATE TIME PID (ppmV) WELL MANIFOLD VACUUM (n of Hg) OXIDIZER TEMPERATURE (no f) WELL FIED FLOW VAPOR (s(cfm)) TOTAL SYSTEM FLOW PARTE (s(cfm)) DIUTION AIR FLOW PARTE (s(cfm)) SYSTEM FLOW PARTE (s(cfm)) SYSTEM FLOW PARTE (s(cfm)) COMMENTS 29/2013 1100 588 22.3 1509 65 65 0 25.3 Extracting from RS-4 1200 679 22.3 1501 62 62 0 25.5 Extracting from RS-4 1400 692 21.5 1502 65 65 0 25.4 1600 65 68 0 25.4 955 1600 632 21.4 1505 68 68 0 25.1 955 1000 485 22.3 1502 70 70 0 25 1 1300 446 22.2 1606 73 73 0 24.8 1 1300 446 22.2 1504 70 70 0 25 1											
DATE TIME PID (ppmV) WELL MANIFOLD VACUUM (n of Hg) OXIDIZER TEMPERATURE (n of Hg) WELL FIED FLOW VAPOR (n of Hg) TOTAL SYSTEM FLOW VAPOR (scfm) DILUTION AIR FLOW RATE (scfm) SYSTEM FLOW RATE (scfm) SYSTEM FLOW RATE (scfm) COMMENTS 29/2013 1100 588 22.3 1509 65 65 0 25.3 Extracting from RS-4 1200 679 22.3 1501 62 62 0 25.5 Extracting from RS-4 1400 692 21.5 1502 65 65 0 25.4 1600 632 21.4 1505 63 63 0 25.1 955 1000 485 22.3 1502 70 70 0 25.1 955 1000 485 22.3 1502 68 68 0 25.1 955 1000 485 22.3 1502 70 70 0 25 1 1000 363 22.4 1501											
DATE TIME PID (ppmv) WELL (MANIFOLD (n of Hg) OXIDIZER TEMPERATURE (n' Hg) WELL FIELD (°F) TOTAL SYSTEM RATE (scfm) DILUTION AIR (scfm) SYSTEM FLOW RATE (scfm) SYSTEM (blow RATE (scfm) SYSTEM (blow RATE (scfm) SYSTEM (slow RATE (scfm)											
DATE PID (ppmW) MANIFOLD VACUUM (In of Hg) OADISER TEMPERATURE (°F) FLOW VAPOR RATE (°F) VAPOR RATE (scfm) DID (NATE (scfm) (BLOWER) (un of Hg) TOTALIZER READING COMMENTS 29/2013 1100 588 22.3 1501 62 62 0 25.5 Extracting from RS-4 1200 679 22.3 1501 62 62 0 25.5 1400 692 21.5 1502 65 65 0 25.4 1600 632 21.4 1505 63 63 0 25.1 1000 499 22.3 1502 70 70 0 25 </th <th></th> <th></th> <th></th> <th>WELL</th> <th></th> <th>WELL FIELD</th> <th>-</th> <th></th> <th>SYSTEM</th> <th>SYSTEM</th> <th></th>				WELL		WELL FIELD	-		SYSTEM	SYSTEM	
DATE IMME (ppmv) VACUUM (in of Hg) IEMPERATORE (°F) RATE (scfm) RATE (scfm) PLOW RATE (scfm) VACUUM (in of Hg) READING (gallons) COMMENTS 29/2013 1100 679 22.3 1501 62 62 0 25.5 [gallons] Extracting from RS-4 1200 679 22.1 1502 65 65 0 25.5 [gallons] [find 67] 21.3 1499 63 63 0 25.4 [gallons] [gallons] [find 64] 22.3 1502 70 70 0 25 [gallons]			PID		-						
Image: Construction of the system o	DATE	TIME		-	-			-	()	-	COMMENTS
2/9/2013 1100 588 22.3 1509 65 65 0 25.3 0 1 Extracting from RS-4 1200 679 22.3 1501 62 62 0 25.5 0 25.5 1400 692 21.5 1502 65 65 0 25.4 0 25.4 1600 632 21.4 1505 63 63 0 25.1 955 1100 502 22.3 1502 70 70 0 25 1499 1000 499 22.3 1502 70 70 0 25 150 100 485 22.3 1505 68 68 0 25.1 955 100 485 22.2 1506 73 73 0 24.8 1400 435 22.4 1501 70 70 0 25 150 446 22.2 1501 73 73 0 24.8 100 342 22.3 1499 74 74 0 24.7 1,071			(ppint)		(⁰ F)			(scfm)			
1200 679 22.3 1501 62 62 0 25.5 5 1300 692 21.5 1502 65 66 0 25.3 1500 679 21.3 1499 63 63 0 25.4 1500 679 21.3 1499 68 68 0 25.4 900 515 22.3 1502 70 70 0 25.1 955 1000 499 22.3 1505 68 68 0 25.1 955 1100 502 22.3 1505 68 68 0 25.1 955 1200 485 22.3 1501 68 68 0 25.1 1200 485 22.3 1501 70 70 0 25 1300 446 22.2 1506 73 73 0 24.8 1400 435 22.3 1501 74 74 0 24.7 1,071 1000 362 22.	12/9/2013	1100	588	(0 /	1509	· · · ·	()	0	(6,	(guilerie)	Extracting from RS-4
1300 711 22.2 1498 62 62 0 25.5 1400 692 21.5 1502 65 665 0 25.3 1600 632 21.4 1505 63 63 0 25.4 1600 632 21.4 1505 63 63 0 25.4 1600 632 21.4 1505 63 63 0 25.1 1000 499 22.3 1505 68 68 0 25.1 1100 502 22.3 1506 73 73 0 24.8 1200 446 22.2 1506 73 73 0 24.8 1400 435 22.3 1504 70 70 0 25 1600 419 22.4 1501 70 70 0 24.7 1100 349 22.3 1504 74 74 0 24.7 1100 349 22.3 1504 73 73 0 24.	, 0, 2010										
1400 692 21.5 1502 665 665 0 25.3 1500 679 21.3 1499 63 63 0 25.4 900 515 22.3 1499 68 68 0 25.1 955 1000 499 22.3 1502 70 70 0 25 955 1100 502 22.3 1505 68 68 0 25.1 955 1200 485 22.3 1501 68 68 0 25.1 1300 446 22.2 1506 73 73 0 24.8 1300 446 22.2 1504 70 70 0 25 1500 432 22.4 1501 70 70 0 25 1600 419 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1501 73 73 0 24.8 1,071 1200 338 2											
1500 679 21.3 1499 63 63 0 25.4 1600 632 21.4 1505 63 63 0 25.4 1000 499 22.3 1502 70 70 0 25.1 955 1100 502 22.3 1505 68 68 0 25.1 955 1100 502 22.3 1505 68 68 0 25.1 955 1200 446 22.2 1506 73 73 0 24.8 140 435 22.5 1499 70 70 0 25 149 140 435 22.4 1501 70 70 0 25 149 140 446 22.3 1499 74 74 0 24.7 1,071 1,071 1600 432 22.3 1501 73 73 0 24.8 1 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,071 1,0			692								
1/10/2013 900 515 22.3 1499 68 68 0 25.1 955 1000 499 22.3 1502 70 70 0 25.1 955 1100 502 22.3 1505 68 68 0 25.1 955 1100 446 22.2 1506 73 73 0 24.8 955 1300 446 22.2 1504 70 70 0 25 955 1400 435 22.4 1501 70 70 0 25 955 1600 419 22.4 1501 70 70 0 25 955 1600 419 22.3 1504 74 74 0 24.7 1,071 1000 362 22.3 1504 73 73 0 24.8 96 1200 338 22.3 1503 73 73 0 24.8 96 1300 331 22.3 1505 73		1500	679	21.3	1499	63		0	25.4		
1000 499 22.3 1502 70 70 0 25 1100 502 22.3 1505 68 68 0 25.1 1200 485 22.3 1505 68 68 0 25.1 1300 446 22.2 1506 73 73 0 24.8 1400 435 22.5 1499 70 70 0 25 1500 432 22.4 1501 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1600 379 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1504 74 74 0 24.8 1 1100 349 22.3 1501 73 73 0 24.8 1 1200 338 22.3 1505 73 73 0 24.8 1 1400 345 22.1 1505		1600	632	21.4	1505	63	63	0	25.4		
1100 502 22.3 1505 68 68 0 25.1 1200 485 22.3 1501 68 68 0 25.1 1300 446 22.2 1506 73 73 0 24.8 1400 435 22.5 1499 70 70 0 25 1500 432 22.4 1504 70 70 0 25 1600 419 22.4 1504 70 70 0 25 1000 362 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1504 74 74 0 24.8 1200 338 22.3 1501 73 73 0 24.8 1200 338 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1500 336 22 1509 73 73 0	12/10/2013							0		955	
1200 485 22.3 1501 68 68 0 25.1 1300 446 22.2 1506 73 73 0 24.8 1400 435 22.5 1499 70 70 0 25 1500 432 22.4 1504 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1600 349 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1501 73 73 0 24.8 1200 388 22.3 1503 73 73 0 24.8 1300 331 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1600 335 22 1512 74 74 0											
1300 446 22.2 1506 73 73 0 24.8 1400 435 22.5 1499 70 70 0 25 1500 432 22.4 1504 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1000 362 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1501 73 73 0 24.8 1100 349 22.3 1503 73 73 0 24.8 1200 338 22.3 1503 73 73 0 24.8 1300 331 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1600 335 22 1512 74 74 0								-			
1400 435 22.5 1499 70 70 0 25 1500 432 22.4 1504 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1600 419 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1501 73 73 0 24.8 1 1200 338 22.3 1503 73 73 0 24.8 1 1300 331 22.3 1505 73 73 0 24.8 1 1400 345 22.1 1505 73 73 0 24.8 1								-			
1500 432 22.4 1504 70 70 0 25 1600 419 22.4 1501 70 70 0 25 1,071 900 379 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1504 74 74 0 24.7 1,071 1100 349 22.3 1504 74 74 0 24.8 1 1200 338 22.3 1503 73 73 0 24.8 1 1 1300 331 22.3 1498 73 73 0 24.8 1 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>			-					-			
1600 419 22.4 1501 70 70 0 25 1,071 900 379 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1504 74 74 0 24.7 1,071 1100 349 22.3 1501 73 73 0 24.8 1 1200 338 22.3 1503 73 73 0 24.8 1 1300 331 22.3 1498 73 73 0 24.8 1 1 1400 345 22.1 1505 73 73 0 24.8 1 1 1 1500 336 22 1509 73 73 0 24.8 1								-			
11/2013 900 379 22.3 1499 74 74 0 24.7 1,071 1000 362 22.3 1504 74 74 0 24.7 1,071 1100 349 22.3 1501 73 73 0 24.8 1 1200 338 22.3 1503 73 73 0 24.8 1 1300 331 22.3 1498 73 73 0 24.8 1 1 1400 345 22.1 1505 73 73 0 24.8 1 1 1 1500 336 22 1509 73 73 0 24.8 1			-								
1000 362 22.3 1504 74 74 0 24.7 1100 349 22.3 1501 73 73 0 24.8 1200 338 22.3 1503 73 73 0 24.8 1300 331 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1500 336 22 1509 73 73 0 24.8 1600 335 22 1512 74 74 0 24.7 /12/2013 800 291 22.1 1508 73 73 0 24.8 1,193 377 gallons 900 271 23 1501 70 70 0 25 Switch extraction to RS-3 Iume of extracted groundwater = 377 gallons = 0.089 gpm			-					-			
1100 349 22.3 1501 73 73 0 24.8 1200 338 22.3 1503 73 73 0 24.8 1300 331 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1500 336 22 1509 73 73 0 24.8 1600 335 22 1512 74 74 0 24.7 900 271 23 1501 70 70 0 25 Switch extraction to RS-3 Jume of extracted groundwater = 377 gallons = 0.089 gpm	12/11/2013							-		1,071	
1200 338 22.3 1503 73 73 0 24.8 1300 331 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1500 336 22 1509 73 73 0 24.8 1600 335 22 1512 74 74 0 24.7 1600 335 22 1512 74 74 0 24.8 900 271 23 1501 70 70 0 25 5 Image: symbolic extracted groundwater = 377 gallons = 0.089 gpm								-			
1300 331 22.3 1498 73 73 0 24.8 1400 345 22.1 1505 73 73 0 24.8 1500 336 22 1509 73 73 0 24.8 1600 335 22 1512 74 74 0 24.7 1600 291 22.1 1508 73 73 0 24.8 900 271 23 1501 70 70 0 24.8 1,193 377 gallons witch extracted groundwater = 377 gallons = 0.089 gpm 73 73 0 24.8 1,193 377 gallons								-			
1400 345 22.1 1505 73 73 0 24.8 1500 336 22 1509 73 73 0 24.8 1600 335 22 1512 74 74 0 24.7 1/12/2013 800 291 22.1 1508 73 73 0 24.8 1,193 377 gallons 900 271 23 1501 70 70 0 25 5witch extraction to RS-3 Iume of extracted groundwater = 377 gallons = 0.089 gpm								-			
1500 336 22 1509 73 73 0 24.8 1600 335 22 1512 74 74 0 24.7 1/12/2013 800 291 22.1 1508 73 73 0 24.8 900 271 23 1501 70 70 0 25 1,193 377 gallons Iume of extracted groundwater = 377 gallons = 0.089 gpm								-	-		
$ \frac{1600}{900} \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-		
$ \frac{1}{12} \frac{2}{2013} \begin{bmatrix} 800 \\ 900 \end{bmatrix} \frac{291}{271} \begin{bmatrix} 22.1 \\ 23 \end{bmatrix} \frac{1508}{1501} \begin{bmatrix} 73 \\ 70 \end{bmatrix} \frac{73}{70} \begin{bmatrix} 73 \\ 0 \end{bmatrix} \frac{0}{25} \begin{bmatrix} 24.8 \\ 25 \end{bmatrix} \frac{1,193}{5} \begin{bmatrix} 377 \\ 377 \\ 317$								-			
900 271 23 1501 70 70 0 25 Switch extraction to RS-3 Jume of extracted groundwater = 377 gallons = 0.089 gpm	12/12/2012							-		1 102	277 gallons
Iume of extracted groundwater = 377 gallons = 0.089 gpm Switch extraction to RS-3	12/12/2013							-		1,195	
lume of extracted groundwater = 377 gallons = 0.089 gpm		900	211	23	1501	10	70	U	20		Switch extraction to RS-3
		vtracted	aroundwa	tor - 277 coll	ans = 0.080 cmm			<u> </u>		1	
tal time of test = 4,260 minutes = 71 hours = 2.96 days											

Notes

ppmv parts per million vapor In of Hg inches of mercury

In of H_20 inches of water

٥F degrees Fahrenhei

standard cubic feet per minute scfm

	Table 1d													
	MPE Pilot Test December 2013 Operational Data: RS-3													
	2844 Mountain Blvd. Oakland, California													
DATE	DATE TIME PID WELL MANIFOLD VACUUM (In of Hg) (°F) WELL FIELD FLOW VAPOR RATE (°F) (°F) (°F) (°F) (°F) (°F) (°F) (°F)													
12/12/2013	(In of Hg) (°F) (scrm) (scrm) (ln of Hg) (gallons)													
Notes	of test = 1		= 3 hours = 0.13	days										

ppmv parts per million vapor In of Hg inches of mercury

In of H_20 inches of water

٥F

degrees Fahrenheit standard cubic feet per minute scfm

						Table 1e									
						ilot Test Decem	hor 2013								
					Operat	ional Data: MW-1									
						2844 Mountain Blvd. Oakland, California									
			WELL	1		TOTAL SYSTEM		SYSTEM	SYSTEM						
		PID	MANIFOLD	OXIDIZER	WELL FIELD FLOW	VAPOR FLOW	DILUTION AIR	(BLOWER)	TOTALIZER						
DATE	TIME		VACUUM	TEMPERATURE	VAPOR RATE	RATE	FLOW RATE	(BLOWER) VACUUM	READING	COMMENTS					
		(ppmv)		(⁰ F)	(scfm)		(scfm)		-						
0/40/0040	4000	0.700	(In of Hg)			(scfm)	0	(In of Hg)	(gallons)	Future stime to face as MANA and MANA a					
12/12/2013	1300 1400	2,700	19.4	1507 1502	100	100	0 0	23.1	1,204	Extracting from MW-1 and MW-2					
	1500 1,381 19.5 1506 103 103 0 22.9														
	1600 958 19.2 1503 108 108 0 22.6														
2/13/2013	900	646	19.1	1503	116	116	0	22.0	1,596						
2/13/2013	1000	621	19	1507	116	116	0	22.1	1,550						
	1100	651	19.2	1509	116	116	0	22.1							
	1200	632	19.1	1502	117	117	0	22							
	1300	621	18.9	1508	117	117	0	22							
	1400	702	18.6	1499	117	117	0	22							
	1500	679	18.2	1507	117	117	0	22							
	1600	645	18.2	1505	117	117	0	22							
2/14/2013	930	725	19	1520	117	117	0	22	1,720						
	1100	642	19.2	1520	114	114	0	22.2							
	1230	630	19	1520	114	114	0	22.2							
	1400	607	19	1520	117	117	0	22							
	1530	648	19.3	1520	114	114	0	22.2							
	1630	590	19	1520	114	114	0	22.2							
2/15/2013	930	641	18	1520	116	116	0	22.1	1,889						
	1100	603	19	1520	117	117	0	22							
	1230	590	19	1520	117	117	0	22							
	1400	590	17.3	1520	128	128	0	21.3							
	1530 1630	580	18	1520	128	128 131	0	21.3							
10/16/2012	1630 900	578 617	17.4	1520 1512	131		0	21.1	2,080						
12/16/2013	900	017	16.9	1512	136	136	0	20.8	2,080	876 gallons Switch extraction to MW-1, MW-2, RS-					
olume of ex	xtracted g	groundwate	r = 876 gallons	= 0.158 gpm											
			s = 92.5 hours =												

ppmv parts per million vapor In of Hg inches of mercury

In of H₂0 inches of water

٥F degrees Fahrenheit

standard cubic feet per minute scfm

	Table 1f													
	MPE Pilot Test December 2013 Operational Data: MW-1, MW-2, & RS-4													
	2844 Mountain Blvd. Oakland, California													
DATE	WELL OXIDIZER WELL FIELD FLOW VAPOR FLOW DILUTION AIR SYSTEM SYSTEM													
12/16/2013	900 1000 1100 1200	617 482 504 482	16.9 16.9 17.1 17	1512 1505 1509 1504	136 135 136 139	136 135 136 139	0 0 0 0	20.8 20.9 20.8 20.6	2,080 2,091	Extracting from MW-1, MW-2, RS-4 11 gallons End Extraction				
	otalizer readings = 11 gallons = 0.06 gpm otal time of test = 180 minutes = 3 hours = 0.13 days													

ppmv parts per million vapor In of Hg inches of mercury

In of H_20 inches of water

٥F

degrees Fahrenheit standard cubic feet per minute scfm

						Tabl	e 2						
				Extract	D	ecembe	C Mass Re er 2013	emoval Ra	ate				
						2844 Mount Oakland. C							
MPE WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME		Q		P	ID	MASS REM	IOVAL	
				minutes	minutes	SCFM	ft ³ of extracted air	Moles of extracted air	ppmv as hexane	VOC mole %	lb VOC mass removal as hexane	lbs/min	lbs/day
MW -1	START	12/2/2013	1300 1330	0 30	0 30	70	2,085	5.5013	8,780	0.0088	4.1636	0.1388	200
			1430 1530	60 60	90 150	70 70	4,170 4,170	11.0026 11.0026	6,030 4,510	0.0060 0.0045	5.7190 4.2774	0.0953 0.0713	137 103
		12/3/2013	1630 900 1000	60 990 60	210 1,200 1,260	70 70 70	4,170 68,805 4,170	11.0026 181.5435 11.0026	3,810 7,470 6.720	0.0038 0.0075 0.0067	3.6135 116.8984 6.3734	0.0602 0.1181 0.1062	87 170 153
			1100 1200	60 60	1,320 1,380	68 70	4,170 4,075 4,170	10.7514 11.0026	5,290 2,510	0.0053	4.9026 2.3806	0.0817	118 57
			1300 1400	60 60	1,440 1,500	71 74	4,265 4,456	11.2538 11.7563	2,310 2,910	0.0023 0.0029	2.2409 2.9490	0.0373 0.0491	54 71
		12/4/2013	1500 1600 900	60 60	1,560 1,620	74 71	4,456 4,265	11.7563 11.2538	2,720 2,430	0.0027	2.7564 2.3573	0.0459 0.0393	66 57
		12/4/2013	1000 1100	1020 60 60	2,640 2,700 2,760	71 71 70	72,509 4,265 4,170	191.3154 11.2538 11.0026	2,390 2,360 2,340	0.0024 0.0024 0.0023	39.4144 2.2894 2.2193	0.0386 0.0382 0.0370	56 55 53
			1200 1300	60 60	2,820 2,880	70 70	4,170 4,170	11.0026 11.0026	2,320 2,300	0.0023 0.0023	2.2004 2.1814	0.0367 0.0364	53 52
			1400 1500	60 60	2,940 3,000	70 73	4,170 4,360	11.0026 11.5051	2,280 2,270	0.0023 0.0023	2.1624 2.2512	0.0360 0.0375	52 54
		12/5/2013	1600 900	60 1020	3,060 4,080	73 70 70	4,360 70,890	11.5051 187.0449	2,250 2,210	0.0023	2.2314 35.6324	0.0372	54 50
MW-2			1000 1100 1200	60 60 60	4,140 4,200 4,260	70 68 68	4,170 4,075 4,075	11.0026 10.7514 10.7514	2,170 2,150 6.070	0.0022 0.0022 0.0061	2.0581 1.9926 5.6255	0.0343 0.0332 0.0938	49 48 135
			1300 1400	60 60	4,320 4,380	68 68	4,075 4,075	10.7514 10.7514 10.7514	4,810 3,490	0.0048	4.4578 3.2344	0.0743	107 78
			1500 1600	60 60	4,440 4,500	70 70	4,170 4,170	11.0026 11.0026	3,150 2,720	0.0032 0.0027	2.9875 2.5797	0.0498 0.0430	72 62

	Table 2 MPE Event														
						MPE E	vent								
				Extract	ion Data		C Mass Re	emoval Ra	ate						
						ecembe									
	2844 Mountain Blvd. Oakland, California														
	MPE WELL COMMENT DATE THIS INCREMENTAL ELAPSED O PID MASS REMOVAL														
MPE WELL	COMMENT	DATE					Q		P	D	MASS REM	IOVAI			
	COMMENT	DATE	TIME	TIME	TIME			M 1					-		
				minutes	minutes	SCFM	ft ³ of extracted air	Moles of extracted air	ppmv as hexane	VOC mole %	lb VOC mass removal as hexane	lbs/min	lbs/day		
		12/6/2013	900										· · · ·		
		12/0/2013	900 1000	1020 60	5,520 5,580	68 70	69,271 4,170	182.7743 11.0026	1,790 1,720	0.0018 0.0017	28.2017 1.6313	0.0276 0.0272	40 39		
			1100	60 60	5,580 5.640	70	4,170	11.0026	1,720	0.0017	1.6313	0.0272	39 36		
			1200	60 60	5,640 5.700	70 70	4,170 4,170	11.0026	1,560	0.0016	1.5374	0.0247	36 37		
			1200	60 60	5,700 5.760	70	4,170	11.5051	1,821	0.0018	1.3388	0.0256	37		
			1400	60	5,820	73	4,300	12.2587	1,330	0.0014	1.3991	0.0223	32		
			1500	60	5,820	77	4,646	12.2587	1,324	0.0013	1.3790	0.0233	33		
			1600	60	5,940	77	4,646	12.2587	1,392	0.0014	1.4709	0.0245	35		
		12/7/2013	900	1020	6,960	70	70,890	187.0449	1,060	0.0011	17.0907	0.0168	24		
			1030	90	7,050	68	6,112	16.1271	1,044	0.0010	1.4513	0.0161	23		
			1200	90	7,140	68	6,112	16.1271	955	0.0010	1.3276	0.0148	21		
			1330	90	7,230	68 70	6,112	16.1271	982	0.0010	1.3651	0.0152	22 22		
			1500 1630	90 90	7,320 7.410	70	6,255 6,255	16.5040 16.5040	984 768	0.0010 0.0008	1.3999 1.0926	0.0156 0.0121	22 17		
		12/8/2013	900	990	8.400	70	68,805	181.5435	830	0.0008	12.9887	0.0121	19		
		12/0/2010	1030	90	8,490	70	6,255	16.5040	770	0.0008	1.0954	0.0122	18		
			1200	90	8,580	68	6,112	16.1271	540	0.0005	0.7507	0.0083	12		
			1330	90	8,670	68	6,112	16.1271	496	0.0005	0.6895	0.0077	11		
			1500	90	8,760	68	6,112	16.1271	712	0.0007	0.9898	0.0110	16		
		40/0/2042	1630	90 990	8,850 9.840	70 66	6,255	16.5040	695	0.0007	0.9887 10.2152	0.0110 0.0103	16 15		
		12/9/2013	900 1000	990 60	9,840 9,900	68	65,663 4,075	173.2537 10.7514	684 651	0.0007 0.0007	0.6033	0.0103	15 14		
RS-4			1100	60	9,960 9,960	65	3,884	10.2490	588	0.0007	0.5195	0.0087	14		
			1200	60	10,020	62	3,694	9.7466	679	0.0007	0.5705	0.0095	14		
			1300	60	10,080	62	3,694	9.7466	711	0.0007	0.5974	0.0100	14		
			1400	60	10,140	65	3,884	10.2490	692	0.0007	0.6114	0.0102	15		
			1500	60	10,200	63	3,789	9.9978	679	0.0007	0.5852	0.0098	14		
		10/10/2012	1600	60 1020	10,260	63	3,789	9.9978	632 515	0.0006	0.5447	0.0091 0.0080	13 11		
		12/10/2013	900 1000	1020 60	11,280 11.340	68 70	69,271 4.170	182.7743 11.0026	515 499	0.0005 0.0005	8.1139 0.4733	0.0080	11		
			1100	60	11,400	68	4,075	10.7514	499 502	0.0005	0.4652	0.0078	11		
			1200	60	11,460	68	4,075	10.7514	485	0.0005	0.4495	0.0075	11		
			1300	60	11,520	73	4,360	11.5051	446	0.0004	0.4423	0.0074	11		
			1400	60	11,580	70	4,170	11.0026	435	0.0004	0.4126	0.0069	10		

	Table 2 MPE Event														
				Extract	tion Data		vent C Mass Re	moval Ra	oto						
				LAUAC		ecembe									
	2844 Mountain Blvd.														
						Oakland, C	alifornia								
MPE WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME		Q		Р	ID	MASS REM	IOVAL			
			TIME	TIME	TIME		ft ³ of	Moles of	ppmv as	VOC mole	lb VOC mass removal as				
				minutes	minutes	SCFM	extracted air		hexane	%	hexane	lbs/min	lbs/day		
			1500	60	11,640	70	4,170	11.0026	432	0.0004	0.4097	0.0068	10		
			1600	60	11,700	70	4,170	11.0026	419	0.0004	0.3974	0.0066	10		
		12/11/2013	900	1020	12,720	74	75,746	199.8565	379	0.0004	6.5293	0.0064	9		
			1000	60	12,780	74	4,456	11.7563	362	0.0004	0.3668	0.0061	9 8		
			1100 1200	60 60	12,840 12,900	73 73	4,360 4,360	11.5051 11.5051	349 338	0.0003 0.0003	0.3461 0.3352	0.0058 0.0056	8		
			1200	60	12,900	73	4,360	11.5051	338 331	0.0003	0.3283	0.0056	8 8		
			1400	60	13,020	73	4,360	11.5051	345	0.0003	0.3421	0.0057	8		
			1500	60	13,080	73	4,360	11.5051	336	0.0003	0.3332	0.0056	8		
			1600	60	13,140	74	4,456	11.7563	335	0.0003	0.3395	0.0057	8		
		12/12/2013	800	960	14,100	73	69,767	184.0809	291	0.0003	4.6175	0.0048	7		
			900	60	14,160	70	4,170	11.0026	271	0.0003	0.2570	0.0043	6		
RS-3			1000	60	14,220	63	3,789	9.9978	156	0.0002	0.1344	0.0022	3		
			1100	60	14,280	63	3,789	9.9978	88	0.0001	0.0758	0.0013	2		
			1200	60	14,340	63	3,789	9.9978	46	0.0000	0.0396	0.0007	1		
MW-1 & MW-2			1300	60	14,400	100	5,979	15.7756	2,700	0.0027	3.6716	0.0612	88		
			1400	60 60	14,460 14,520	100 103	5,979 6,169	15.7756 16.2780	1,558 1,381	0.0016 0.0014	2.1187 1.9378	0.0353 0.0323	51 47		
			1500 1600	60	14,520	103	6,169	17.0316	958	0.0014	1.4065	0.0323	34		
		12/13/2013	900	1020	15,600	116	117,828	310.8906	646	0.0006	17.3120	0.0234	24		
		12/10/2010	1000	60	15,660	116	6,931	18.2877	621	0.0006	0.9789	0.0163	23		
			1100	60	15,720	116	6,931	18.2877	651	0.0007	1.0262	0.0171	25		
			1200	60	15,780	117	7,026	18.5389	632	0.0006	1.0100	0.0168	24		
			1300	60	15,840	117	7,026	18.5389	621	0.0006	0.9924	0.0165	24		
			1400	60	15,900	117	7,026	18.5389	702	0.0007	1.1218	0.0187	27		
			1500	60	15,960	117	7,026	18.5389	679	0.0007	1.0851	0.0181	26		
		10/11/2012	1600	60	16,020	117	7,026	18.5389	645	0.0006	1.0307	0.0172	25		
		12/14/2013	930	1050	17,070	117	122,959	324.4306	725	0.0007	20.2753	0.0193	28		
			1100 1230	90 90	17,160 17,250	114 114	10,254 10,254	27.0547 27.0547	642 630	0.0006 0.0006	1.4972 1.4692	0.0166 0.0163	24 24		
			1230	90 90	17,250	114	10,254	27.0547	630 607	0.0006	1.4550	0.0163	24		
			1530	90	17,340	114	10,353	27.0547	648	0.0006	1.5112	0.0102	23		
			1630	60	17,490	114	6.836	18.0365	590	0.0006	0.9173	0.0153	22		

	Table 2													
	MPE Event Extraction Data and VOC Mass Removal Rate													
	December 2013 2844 Mountain Blvd. Oakland, California													
MPE WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME		Q		P	ID	MASS REM	IOVAL		
							ft ³ of	Moles of	ppmv as	VOC mole	lb VOC mass removal as			
	minutes minutes SCFM extracted air extracted air hexane % hexane lbs/min lbs/da													
		12/15/2013	930	990	18,480	116	114,362	301.7468	641	0.0006	16.6728	0.0168	24	
			1100	90	18,570	117	10,539	27.8083	603	0.0006	1.4454	0.0161	23	
			1230	90	18,660	117	10,539	27.8083	590	0.0006	1.4143	0.0157	23	
			1400	90	18,750	128	11,539	30.4460	590	0.0006	1.5484	0.0172	25	
			1530	90	18,840	128	11,539	30.4460	580	0.0006	1.5222	0.0169	24	
			1630	60	18,900	131	7,860	20.7388	578	0.0006	1.0333	0.0172	25	
MW-1, MW-2, RS-4		12/16/2013	900	990	19,890	136	134,784	355.6310	617	0.0006	18.9144	0.0191	28	
			1000	60	19,950	135	8,074	21.3022	482	0.0005	0.8851	0.0148	21	
			1100	60	20,010	136	8,169	21.5534	504	0.0005	0.9364	0.0156	22	
	STOP		1200	60	20,070	139	8,359	22.0558	482	0.0005	0.9164	0.0153	22	
	TOTAL				20,070	70	1,687,559	4,453	695	0.0007	497	0.0248	36	
Notes	MEDIAN					70			090	0.0007				

Q volumetric flow rate SCFM standard cubic feet per minute

ft³

cubic feet per minute VOC

volatile organic compounds PID photo-ionization detector

parts per million vapor ppmv

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole % ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as hexane

						Table	e 2a						
						MPE E							
				Extraction	Data and	VOC M	ass Remo	val Rate (MW-1)				
					D	ecembe	er 2013						
						2844 Mount							
						Oakland, C	alifornia						
MPE WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME		Q		P	ID	MASS REM	IOVAL	
			TIME	TIME	TIVE		ft ³ of	Moles of	ppmv as	VOC mole	lb VOC mass removal as	r	1
				minutes	minutes	SCFM	extracted air		hexane	%	hexane	lbs/min	lbs/dav
MW-1	START	12/2/2013	1300	0	0								Ó
			1330	30	30	70	2,085	5.5013	8,780	0.0088	4.1636	0.1388	200
			1430	60	90	70	4,170	11.0026	6,030	0.0060	5.7190	0.0953	137
			1530	60	150	70	4,170	11.0026	4,510	0.0045	4.2774	0.0713	103
			1630	60	210	70	4,170	11.0026	3,810	0.0038	3.6135	0.0602	87
		12/3/2013	900	990	1,200	70	68,805	181.5435	7,470	0.0075	116.8984	0.1181	170
			1000	60	1,260	70	4,170	11.0026	6,720	0.0067	6.3734	0.1062	153
			1100	60	1,320	68	4,075	10.7514	5,290	0.0053	4.9026	0.0817	118
			1200	60	1,380	70	4,170	11.0026	2,510	0.0025	2.3806	0.0397	57
			1300	60	1,440	71	4,265	11.2538	2,310	0.0023	2.2409	0.0373	54
			1400	60	1,500	74	4,456	11.7563	2,910	0.0029	2.9490	0.0491	71
			1500	60	1,560	74	4,456	11.7563	2,720	0.0027	2.7564	0.0459	66
			1600	60	1,620	71	4,265	11.2538	2,430	0.0024	2.3573	0.0393	57
		12/4/2013	900	1020	2,640	71	72,509	191.3154	2,390	0.0024	39.4144	0.0386	56
			1000	60	2,700	71	4,265	11.2538	2,360	0.0024	2.2894	0.0382	55
			1100	60	2,760	70	4,170	11.0026	2,340	0.0023	2.2193	0.0370	53
			1200	60	2,820	70	4,170	11.0026	2,320	0.0023	2.2004	0.0367	53
			1300	60	2,880	70	4,170	11.0026	2,300	0.0023	2.1814	0.0364	52
			1400	60	2,940	70	4,170	11.0026	2,280	0.0023	2.1624	0.0360	52
			1500	60	3,000	73	4,360	11.5051	2,270	0.0023	2.2512	0.0375	54
		40/5/0040	1600	60	3,060	73	4,360	11.5051	2,250	0.0023	2.2314	0.0372	54
		12/5/2013	900 1000	1020 60	4,080 4,140	70 70	70,890 4.170	187.0449 11.0026	2,210	0.0022	35.6324 2.0581	0.0349 0.0343	50 49
			1100	60 60	4,140 4.200	70 68	4,170 4,075	11.0026 10.7514	2,170 2.150	0.0022	2.0581	0.0343	49 48
			1100	00	4,200	00	4,075	10.7514	2,150	0.0022	1.9920	0.0332	40
	TOTAL MEDIAN				4,200	70	294,566	777	2,390	0.0024	253	0.0603	87

Q volumetric flow rate

SCFM standard cubic feet per minute

ft³ cubic feet per minute

VOC volatile organic compounds

PID photo-ionization detector

ppmv parts per million vapor

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole % ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air

(moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as

hexane

						Table	2b						
				Extraction			ass Remo	val Rate (MW-2)				
						December 2844 Mount Oakland, C	ain Blvd.						
MPE WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME		Q		P	ID	MASS REM	IOVAL	
				minutes	minutes	SCFM	ft ³ of extracted air	Moles of extracted air	ppmv as hexane	VOC mole %	lb VOC mass removal as hexane	lbs/min	lbs/da
MW-2		12/5/2013	1200 1300	60 60	60 120	68 68	4,075 4,075	10.7514 10.7514	6,070 4,810	0.0061 0.0048	5.6255 4.4578	0.0938 0.0743	135 107
			1400 1500	60 60	180 240	68 70	4,075 4,170	10.7514 11.0026	3,490 3,150	0.0035 0.0032	3.2344 2.9875	0.0539 0.0498	78 72
		12/6/2013	1600 900 1000	60 1020 60	300 1,320 1,380	70 68 70	4,170 69,271 4,170	11.0026 182.7743 11.0026	2,720 1,790 1.720	0.0027 0.0018 0.0017	2.5797 28.2017 1.6313	0.0430 0.0276 0.0272	62 40 39
			1100 1200	60 60	1,440 1,500	70 70 70	4,170 4,170 4.170	11.0026 11.0026 11.0026	1,720 1,560 1,621	0.0017 0.0016 0.0016	1.6313 1.4795 1.5374	0.0272	36 37
			1300 1400	60 60	1,560 1,620	73 77	4,360 4,646	11.5051 12.2587	1,350 1,324	0.0014 0.0013	1.3388 1.3991	0.0223 0.0233	32 34
		12/7/2013	1500 1600 900 1030 1200	60 60 1020 90 90	1,680 1,740 2,760 2,850 2,940	77 77 70 68 68	4,646 4,646 70,890 6,112 6,112	12.2587 12.2587 187.0449 16.1271 16.1271	1,305 1,392 1,060 1,044 955	0.0013 0.0014 0.0011 0.0010 0.0010	1.3790 1.4709 17.0907 1.4513 1.3276	0.0230 0.0245 0.0168 0.0161 0.0148	33 35 24 23 21
		12/8/2013	1330 1500 1630 900	90 90 90 990	3,030 3,120 3,210 4,200	68 70 70 70	6,112 6,255 6,255 68,805	16.1271 16.5040 16.5040 181.5435	982 984 768 830	0.0010 0.0010 0.0008 0.0008	1.3651 1.3999 1.0926 12.9887	0.0152 0.0156 0.0121 0.0131	22 22 17 19
			1030 1200 1330 1500	90 90 90 90	4,290 4,380 4,470 4,560	70 68 68 68	6,255 6,112 6,112 6,112	16.5040 16.1271 16.1271 16.1271	770 540 496 712	0.0008 0.0005 0.0005 0.0007	1.0954 0.7507 0.6895 0.9898	0.0122 0.0083 0.0077 0.0110	18 12 11 16
		12/9/2013	1630 900 1000	90 990 60	4,650 5,640 5,700	70 66 68	6,255 65,663 4,075	16.5040 173.2537 10.7514	695 684 651	0.0007 0.0007 0.0007	0.9887 10.2152 0.6033	0.0110 0.0103 0.0101	16 15 14
	TOTAL MEDIAN				5,700	70	391,770	1,034	1,060	0.0011	109	0.0192	28

Q volumetric flow rate SCFM standard cubic feet per minute

ft³

cubic feet per minute

volatile organic compounds VOC

PID photo-ionization detector ppmv

parts per million vapor

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole % ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as

hexane

						Table	e 2c						
						MPE E	vent						
				Extraction	Data and	I VOC N	lass Remo	oval Rate	RS-4				
						ecembe			_				
					_	2844 Mount							
						Oakland, C							
MPE WELL	COMMENT	DATE	CLOCK	INCREMENTAL	ELAPSED		Q		P	١D	MASS REM	IOVAI	
	COMMENT	DATE	TIME	TIME	TIME								-
							ft ³ of	Moles of	ppmv as	VOC mole	Ib VOC mass removal as		
				minutes	minutes	SCFM	extracted air	extracted air	hexane	%	hexane	lbs/min	lbs/da
RS-4		12/9/2013	1100	60	60	65	3,884	10.2490	588	0.0006	0.5195	0.0087	12
			1200	60	120	62	3,694	9.7466	679	0.0007	0.5705	0.0095	14
			1300	60	180	62	3,694	9.7466	711	0.0007	0.5974	0.0100	14
			1400	60	240	65	3,884	10.2490	692	0.0007	0.6114	0.0102	15
			1500	60	300	63	3,789	9.9978	679	0.0007	0.5852	0.0098	14
			1600	60	360	63	3,789	9.9978	632	0.0006	0.5447	0.0091	13
		12/10/2013	900	1020	1,380	68	69,271	182.7743	515	0.0005	8.1139	0.0080	11
			1000	60	1,440	70	4,170	11.0026	499	0.0005	0.4733	0.0079	11
			1100	60	1,500	68	4,075	10.7514	502	0.0005	0.4652	0.0078	11
			1200	60	1,560	68	4,075	10.7514	485	0.0005	0.4495	0.0075	11
			1300	60	1,620	73	4,360	11.5051	446	0.0004	0.4423	0.0074	11
			1400	60	1,680	70 70	4,170	11.0026	435	0.0004 0.0004	0.4126	0.0069 0.0068	10
			1500	60 60	1,740	70 70	4,170	11.0026 11.0026	432	0.0004	0.4097 0.3974	0.0068	10
		40/44/0040	1600	60 1020	1,800	70	4,170		419 379	0.0004		0.0066	10
		12/11/2013	900	1020	2,820	74 74	75,746	199.8565		0.0004	6.5293	0.0064	9
			1000 1100	60 60	2,880 2,940	74 73	4,456 4,360	11.7563 11.5051	362 349	0.0004	0.3668 0.3461	0.0061	9 8
			1200	60	2,940	73	4,360	11.5051	349 338	0.0003	0.3352	0.0058	о 8
			1200	60 60	3,000	73	4,360 4,360	11.5051	338	0.0003	0.3352	0.0056	8
			1300	60	3,060	73	4,360	11.5051	331	0.0003	0.3283	0.0055	о 8
			1400	60	3,120	73	4,360	11.5051	345 336	0.0003	0.3332	0.0057	о 8
			1600	60	3,180	73	4,360 4,456	11.7563	336	0.0003	0.3395	0.0056	о 8
		12/12/2013	800	960	4,200	74	4,450 69,767	184.0809	291	0.0003	4.6175	0.0037	0 7
		12/12/2013	900	60	4,200	70	4,170	11.0026	291	0.0003	0.2570	0.0048	6
					,		,						
	TOTAL MEDIAN				4,260	70	301,592	796	434	0.0004	28	0.0067	10

Q volumetric flow rate

standard cubic feet per minute SCFM

ft³ cubic feet per minute

volatile organic compounds VOC

PID photo-ionization detector

ppmv parts per million vapor

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole %

ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as

hexane

						Table	e 2d						
				Extractior	D	MPE E J VOC N ecembe 2844 Mount Oakland, C	lass Remo er 2013 tain Blvd.	oval Rate_	_RS-3				
MPE WELL	COMMENT DATE CLOCK INCREMENTAL ELAPSED Q PID MASS REMOVAL												
				minutes	minutes	SCFM	ft ³ of extracted air	Moles of extracted air		VOC mole %	lb VOC mass removal as hexane	lbs/min	lbs/day
RS-3	RS-3 12/12/2013 1000 60 60 63 3,789 9.9978 156 0.0002 0.1344 0.0022 3 1100 60 120 63 3,789 9.9978 156 0.0002 0.1344 0.0022 3										3.23 1.82 0.95		
Notos	TOTAL MEDIAN				180	63	11,368	30	88	0.0001	0.250	0.0014	2.00

Q volumetric flow rate

SCFM standard cubic feet per minute

ft³ cubic feet per minute

VOC volatile organic compounds

PID photo-ionization detector

parts per million vapor ppmv

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole % ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air

(moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as hexane

						Table	e 2e						
						MPE E	vent						
			F	xtraction Data	a and VO			Rate MW	-1 & MV	1-2			
			-			ecembe							
						2844 Mount							
						Oakland, C							
		DATE	CLOCK	INCREMENTAL	ELAPSED	,	0			ID	MASS REM		
MPE WELL	COMMENT	DATE	TIME	TIME	TIME		Q		۲		MASS REIV	IOVAL	
							ft ³ of	Moles of	ppmv as	VOC mole	lb VOC mass removal as		
				minutes	minutes	SCFM	extracted air		hexane	%	hexane	lbs/min	lbs/day
MW-1 & MW-2		12/12/2013	1300	60	60	100	5,979	15.7756	2,700	0.0027	3.6716	0.0612	88
			1400	60	120	100	5,979	15.7756	1,558	0.0016	2.1187	0.0353	51
			1500	60	180	103	6,169	16.2780	1,381	0.0014	1.9378	0.0323	47
			1600	60	240	108	6,455	17.0316	958	0.0010	1.4065	0.0234	34
		12/13/2013	900	1020	1,260	116	117,828	310.8906	646	0.0006	17.3120	0.0170	24
			1000	60	1,320	116	6,931	18.2877	621	0.0006	0.9789	0.0163	23
			1100	60	1,380	116	6,931	18.2877	651	0.0007	1.0262	0.0171	25
			1200	60 60	1,440	117	7,026	18.5389	632	0.0006	1.0100 0.9924	0.0168	24
			1300	60	1,500	117	7,026	18.5389	621	0.0006 0.0007	1.1218	0.0165 0.0187	24
			1400	60 60	1,560 1,620	117 117	7,026 7,026	18.5389 18.5389	702 679	0.0007	1.0851	0.0187	27 26
			1500 1600	60	1,620	117	7,026	18.5389	645	0.0007	1.0307	0.0181	20
		12/14/2013	930	1050	2,730	117	122,959	324.4306	725	0.0008	20.2753	0.0172	25
		12/14/2013	1100	90	2,730	114	10,254	27.0547	642	0.0007	1.4972	0.0193	20
			1230	90	2,820	114	10,254	27.0547	630	0.0006	1.4692	0.0163	24
			1400	90	3,000	117	10,234	27.8083	607	0.0006	1.4550	0.0162	23
			1530	90	3,090	114	10,254	27.0547	648	0.0006	1.5112	0.0168	24
			1630	60	3,150	114	6,836	18.0365	590	0.0006	0.9173	0.0153	22
		12/15/2013	930	990	4,140	116	114,362	301.7468	641	0.0006	16.6728	0.0168	24
		12/10/2010	1100	90	4,230	117	10,539	27.8083	603	0.0006	1.4454	0.0161	23
			1230	90	4,320	117	10,539	27.8083	590	0.0006	1.4143	0.0157	23
			1400	90	4,410	128	11,539	30.4460	590	0.0006	1.5484	0.0172	25
			1530	90	4,500	128	11,539	30.4460	580	0.0006	1.5222	0.0169	24
			1630	60	4,560	131	7,860	20.7388	578	0.0006	1.0333	0.0172	25
MW-1, MW-2, RS-4		12/16/2013	900	990	5,550	136	134,784	355.6310	617	0.0006	18.9144	0.0191	28
	TOTAL				5,550		663,662	1,751	644	0.0000	103	0.0186	27
Notes	MEDIAN					117			641	0.0006			

Q volumetric flow rate standard cubic feet per minute

SCFM

ft³ cubic feet per minute

VOC volatile organic compounds

PID photo-ionization detector

parts per million vapor ppmv

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole %

ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as

hexane

						Table	e 2f							
			Extra	action Data a		MPE E lass Rei Decembe	moval Rate	e_MW-1, I	MW-2, &	RS-4				
						2844 Mount Oakland, C								
MPE WELL														
				minutes	minutes	SCFM	ft ³ of extracted air	Moles of extracted air		VOC mole %	lb VOC mass removal as hexane	lbs/min	lbs/day	
MW-1, MW-2, RS-4	STOP	12/16/2013	900 1000 1100 1200	0 60 60 60	0 60 120 180	136 135 136 139	0 8,074 8,169 8,359	0.0000 21.3022 21.5534 22.0558	617 482 504 482	0.0006 0.0005 0.0005 0.0005	0.0000 0.8851 0.9364 0.9164	0.0148 0.0156 0.0153	21 22 22	
Notes	TOTAL MEDIAN				180	136	24,601	65	493	0.0005	2.74	0.0152	22	

Q volumetric flow rate

standard cubic feet per minute SCFM

ft³ cubic feet per minute

VOC volatile organic compounds

photo-ionization detector PID

ppmv parts per million vapor

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole %

ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as hexane (lbs of VOC mass removed as hexane)(elapsed time) = lbs/min of VOC removed as hexane (lbs/min of VOC removed as hexane)(60 min/1 hour)(24 hours/1 day) = lbs/day of VOC

removed as hexane

MPE Pilot Test December 2013

Observation Wells Data

2844 Mountain Blvd.,

DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL RS		WEL RS	
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)						
12/2/2013	1300	0	0	7.50		7.48		6.82		9.02	
				EXTRACT	ION WELL	Distance From MV	N-1=16 feet	Distance From MV	N-1=56 feet	Distance From MV	V-1=32 feet
	1330	30	30	7.55	-	7.58		6.81		9.02	
	1430	60	90	7.57	-	7.73		6.80		9.04	
	1530	60	150	7.58	-	7.85		6.80		9.05	
	1630	60	210	7.58	-	8.16		6.80		9.05	
12/3/2013	900	990	1,200	7.20	-	7.75	0.20	6.85	0.00	9.15	0.20
	1000	60	1,260	14.55	-	7.82	0.20	6.85	0.00	9.15	0.20
	1100	60	1,320	17.78	-	7.90	0.50	6.87	0.00	9.15	0.20
	1200	60	1,380	17.76	-	8.21	0.30	6.87	0.00	9.20	0.20
	1300	60	1,440	17.75	-	8.33	0.30	6.86	0.00	9.20	0.20
	1400	60	1,500	17.77	-	8.44	0.30	6.83	0.00	9.21	0.20
	1500	60	1,560	17.77	-	8.53	0.30	6.80	0.00	9.20	0.20
	1600	60	1,620	17.76	-	8.65	0.30	6.79	0.00	9.20	0.20
12/4/2013	900	1020	2,640	16.90	-	9.40	0.30	6.54	0.00	9.60	0.20
	1000	60	2,700	16.90	-	9.42	0.30	6.54	0.00	9.61	0.20
	1100	60	2,760	16.89	-	9.42	0.30	6.55	0.00	9.61	0.20
	1200	60	2,820	16.89	-	9.43	0.30	6.57	0.00	9.63	0.20
	1300	60	2,880	16.90	-	9.45	0.30	6.58	0.00	9.62	0.20
	1400	60	2,940	16.92	-	9.45	0.30	6.60	0.00	9.64	0.20
	1500	60	3,000	16.92	-	9.46	0.30	6.61	0.00	9.64	0.20
	1600	60	3,060	16.94	-	9.47	0.30	6.63	0.00	9.65	0.20
12/5/2013	900	1020	4,080	17.01	-	9.50	0.30	6.68	0.00	9.65	0.20
	1000	60	4,140	17.00	-	9.51	0.30	6.69	0.00	9.65	0.20
	1100	60	4,200	Added vacuum oil							
			4,200	Distance From MV	V-2=16 feet	EXTRACTI	ION WELL	Distance From MV	N-2=56 feet	Distance From M	N-2=16 feet
	1200	60	4,260	17.00	0.30	9.50	-	6.69	0.00	9.65	0.30
	1300	60	4,320	14.70	0.30	18.16	-	6.95	0.00	9.32	0.30

MPE Pilot Test December 2013

Observation Wells Data

2844 Mountain Blvd.,

DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL RS		WEL RS	
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATEF
12/5/2013	1400	60	4,380	14.73	0.30	18.16	-	6.98	0.00	9.38	0.30
	1500	60	4,440	13.79	0.30	18.17	-	6.91	0.00	9.44	0.30
	1600	60	4,500	12.27	0.20	18.17	-	6.82	0.00	9.58	0.30
12/6/2013	900	1020	5,520	8.44	0.20	18.18	-	6.62	0.00	10.75	0.30
	1000	60	5,580	8.44	0.20	18.19	-	6.67	0.00	10.76	0.20
	1100	60	5,640	8.44	0.20	18.20	-	6.70	0.00	10.73	0.20
	1200	60	5,700	8.44	0.20	18.21	-	6.73	0.00	10.74	0.20
	1300	60	5,760	8.43	0.20	18.21	-	6.64	0.00	10.76	0.20
	1400	60	5,820	8.42	0.20	18.21	-	6.58	0.00	10.77	0.20
	1500	60	5,880	8.43	0.20	18.22	-	6.62	0.00	10.77	0.20
	1600	60	5,940	8.44	0.20	18.22	-	6.67	0.00	10.77	0.20
12/7/2013	1030	1110	7,050	8.20	0.20	18.10	-	6.10	0.00	10.60	0.40
	1200	90	7,140	8.20	0.20	18.10	-	6.20	0.00	10.60	0.40
	1330	90	7,230	8.20	0.20	18.10	-	6.15	0.00	10.60	0.30
	1500	90	7,320	8.20	0.20	18.10	-	6.10	0.00	10.60	0.30
	1630	90	7,410	8.20	0.20	18.10	-	6.10	0.20	10.55	0.40
12/8/2013	1000	1050	8,460	8.10	0.20	18.10	-	6.30	0.20	10.55	0.40
	1130	90	8,550	8.13	0.20	18.10	-	6.20	0.20	10.53	0.40
	1300	90	8,640	8.10	0.20	18.10	-	6.30	0.20	10.50	0.40
	1430	90	8,730	8.14	0.20	18.14	-	6.28	0.20	10.50	0.40
	1530	60	8,790	8.12	0.20	18.14	-	6.20	0.20	10.50	0.40
	1630	60	8,850	8.15	0.20	18.15	-	6.20	0.00	10.50	0.40
12/9/2013	900	990	9,840		0.25	18.23	-	6.50	0.00	10.44	0.60
	1000	60	9,900		0.25	18.23	-	6.50	0.00	10.45	0.60
			9,900	Distance From RS	S-4=32 feet	Distance From RS	-4=16 feet	Distance From RS	6-4=65 feet	EXTRACT	ON WELL
	1100	60	9,960		0.20	16.92	0.50	6.35	0.00	20.44	-
	1200	60	10,020		0.20	16.28	0.40	6.33	0.00	20.79	-
	1300	60	10,080		0.20	15.62	0.40	6.31	0.00	21.17	_

MPE Pilot Test December 2013

Observation Wells Data

2844 Mountain Blvd.,

DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL		WEL RS	
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER
12/9/2013	1400	60	10,140		0.20	13.74	0.40	6.26	0.00	21.20	-
	1500	60	10,200		0.20	13.51	0.30	6.02	0.00	21.19	-
	1600	60	10,260		0.20	13.34	0.30	5.91	0.00	21.18	-
12/10/2013	900	1020	11,280	7.20	0.20	9.27	0.30	6.38	0.00	21.26	-
	1000	60	11,340	7.20	0.20	9.26	0.30	6.35	0.00	21.41	-
	1100	60	11,400	7.20	0.20	9.26	0.30	6.32	0.00	21.62	-
	1200	60	11,460	7.19	0.20	9.23	0.30	6.35	0.00	21.51	-
	1300	60	11,520	7.17	0.20	9.19	0.30	6.37	0.00	21.19	-
	1400	60	11,580	7.14	0.20	9.16	0.30	6.41	0.00	21.17	-
	1500	60	11,640	7.11	0.20	9.12	0.30	6.43	0.00	21.14	-
	1600	60	11,700	7.10	0.20	9.11	0.30	6.45	0.00	21.15	-
12/11/2013	900	1020	12,720	7.02	0.20	8.86	0.30	6.31	0.00	21.22	-
	1000	60	12,780	7.01	0.20	8.82	0.30	6.31	0.00	21.44	-
	1100	60	12,840	7.00	0.20	8.73	0.30	6.30	0.00	21.79	-
	1200	60	12,900	7.00	0.20	8.74	0.30	6.42	0.00	21.32	-
	1300	60	12,960	6.97	0.20	8.81	0.30	6.39	0.00	21.34	-
	1400	60	13,020	6.98	0.20	8.87	0.30	6.36	0.00	21.17	-
	1500	60	13,080	6.98	0.20	8.88	0.30	6.31	0.00	21.19	-
	1600	60	13,140	6.98	0.20	8.90	0.30	6.27	0.00	21.20	-
12/12/2013	800	960	14,100	6.70	0.20	8.87	0.20	6.31	0.00	21.18	-
	900	60	14,160	6.71	0.20	8.85	0.20	6.39	0.00	21.21	-
			14,160	Distance From RS	-3=56 feet	Distance From RS	6-3=56 feet	EXTRACT	ION WELL	Distance From RS	-3=65 feet
	1000	60	14,220	7.02	0.10	8.68	0.00	21.40	-	21.41	0.00
	1100	60	14,280	7.04	0.10	8.80	0.00	21.41	-	20.05	0.00
	1200	60	14,340	7.02	0.10	8.80	0.00	21.37	-	19.21	0.00
			14,340		EXTRACTI	ON WELLS		Distance from c MW-2 =		Distance from ce MW-2 =	
	1300	60	14,400	15.50	-	15.27	-	15.58	0.00	20.00	3.05
	1400	60	14.460	15.59	-	15.25	_	15.60	0.00	20.00	3.05

MPE Pilot Test December 2013

Observation Wells Data

2844 Mountain Blvd.,

DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MW		WEL		WEL RS	
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)						
12/12/2013	1500	60	14,520	15.67	-	15.24	-	10.52	0.00	18.65	3.05
	1600	60	14,580	15.68	-	15.25	-	10.51	0.00	18.92	3.05
12/13/2013	900	1020	15,600	15.70	-	15.32	-	5.80	0.00	11.39	3.00
	1000	60	15,660	15.62	-	15.26	-	5.82	0.00	11.34	3.00
	1100	60	15,720	15.61	-	15.27	-	5.81	0.00	11.28	3.00
	1200	60	15,780	15.61	-	15.25	-	5.78	0.00	11.23	3.00
	1300	60	15,840	15.60	-	15.25	-	5.77	0.00	11.23	3.00
	1400	60	15,900	15.63	-	15.25	-	5.77	0.00	11.22	3.00
	1500	60	15,960	15.61	-	15.24	-	5.78	0.00	11.21	3.00
	1600	60	16,020	15.62	-	15.25	-	5.78	0.00	11.21	3.00
12/14/2013	930	1050	17,070	15.50	-	15.15	-	5.85	0.01	10.90	3.00
	1100	90	17,160	15.55	-	15.20	-	5.75	0.01	10.85	3.00
	1230	90	17,250	15.50	-	15.20	-	5.85	0.01	10.85	3.00
	1400	90	17,340	15.55	-	15.20	-	5.75	0.01	10.85	3.00
	1530	90	17,430	15.45	-	15.20	-	5.80	0.01	10.85	3.00
	1630	60	17,490	15.50	-	15.20	-	5.75	0.02	10.85	3.00
12/15/2013	930	990	18,480	15.50	-	15.20	-	5.80	0.02	10.85	3.00
	1100	90	18,570	15.50	-	15.10	-	5.85	0.02	10.85	3.00
	1230	90	18,660	15.50	-	15.20	-	5.83	0.02	10.90	3.00
	1400	90	18,750	15.50	-	15.20	-	5.78	0.02	10.85	3.00
	1530	90	18,840	15.55	-	15.25	-	5.87	0.02	10.90	3.00
	1630	60	18,900	15.55	-	15.20	-	5.75	0.02	10.85	3.00
			18.900		EXTRACT	ON WELLS		Average distance wells =		EXTRACTI	
12/16/2013	900	990	19,890	15.56	-	15.26	-	5.74	0.00	20.92	-
.2,10,2010	1000	60	19,950	15.53	-	15.23	-	5.70	0.00	20.93	-
	1100	60	20,010	15.51	-	15.21	-	5.61	0.00	20.95	-
	1200	60	20,070	15.51	-	15.22	-	5.63	0.00	20.96	-
	1200		20,010	10.01		10.22			0.00	20.00	

Table 4 Soil Vapor Analytical Results December 2013 MPE Pilot Test

2844 Mountain Blvd, Oakland, California

Extraction	Vapor	Collection	USEPA TO-3 MODIFIED		-	SEPA TO-15 MODIFIED			Q	Mass Removal Rate	Total Test time	Total Mass Removed
Well	Well Sample ID	Date/Time	TPHg (ug/m³)	Benzene (ug/m³)	MtBE (ug/m³)	Toluene (ug/m³)	Ethyl benzene (ug/m ³)	Total Xylenes (ug/m ³)	(CFM)	(Ibs/day) (TPHg/benzene)	(minutes/days)	(lbs) (TPHg/benzene)
MW-1	Effluent	12/2/13 @ 1600	1200	1.6	9.1	14.0	4.0	23.8	70	NA	NA	612.71/5.69
	Influent	12/2/13 @ 1600	7,000,000 (b)	65,000 (a)	1,800,000 (a)	<19,000	140,000 (a)	280,000 (a)	70	43.96 (d)/ 0.41(d)	20,070/13.94	012.71/5.09
		REMOVAL EFFICIENCIES	99.98%	99.998%	99.999%	NA	99.997%	99.99%				

DERIVATION OF MASS REMOVAL RATE

(**ug/m³**) [(1mg/1000ug) (1m³/1000 L)] = **mg/L**

(mg/L) (28.32 L/1 ft³) ([Q) ft³/min) = mg/min (mg/min)(1g/1000mg)(1kg/1000g)(60min/1hr)(24hr/1day) = kg/day (kg/day)(2.2lbs/1kg) = lbs/day

DERIVATION OF TOTAL MASS REMOVED

Total time of test = days (Tables 2 - 5)

Notes

(d)

CFM cubic feet per minute

lbs/day pounds per day

ug/m³ micrograms per cubic meter

MtBE Methyl ter-butyl ether

- < not detected at or above laboratory detection limit
- (a) dilution factor 10,000

average value

(b) dilution factor 100

(c) dilution factor 500

(mass removal rate [Ibs/day])(total time of test [days]) = Total Removed (Ibs)

DERIVATION OF REMOVAL EFFICIENCIES

Influent sample concentration / STACK sample concentration

Table 5Dissolved-Phase Hydrocarbon Concentations in GroundwaterPre-and Post MPE Pilot Test2844 Mountain Blvd., Oakland, CA

Monitoring Well	Date	TPH-g (μg/L)	TPH-d (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE 8260B (μg/L)	TBA (μg/L)	TAME (μg/L)
RS-3	9/4/2013	<50	170 Y	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5
	12/30/2013	<50	61 Y	<0.5	<0.5	<0.5	<0.5	21	680	0.64
RS-4	9/4/2013	20,000	5,100	<100	<100	660	2,830	18,000	75,000	1,200
	12/30/2013	<13,000	9,900	<130	<130	<130	150	16,000	37,000	1,100
MW-1	9/4/2013	<50,000	13,000	2,000	<500	1,400	4,200	70,000	48,000	7,700
	12/30/2013	34,000	13,000	920	1,000	1,300	4,900	43,000	43,000	4,500
MW-2	9/4/2013	<25,000	3,900	860	<250	710	1,580	32,000	31,000	4,600
	12/30/2013	<13,000	6,300	180	<130	<130	330	18,000	53,000	1,800

Notes:

- TPH-g: Total hydrocarbons as gasoline
- TPH-d: Total hydrocarbons as diesel
- TBA: ter-Butyl Alcohol
- TAME: ter-Amyl Methyl Ether
- Y: Sample exhibits chromatographic pattern which does not resemble standard.
- <: Not detected above the laboratroy reporting limit.
- NA: Not Analyzed

APPENDIX A Site History

Multi-Phase Extraction Pilot Testing Report

Soil contamination was initially identified at the site in March 1989, during the replacement of the product lines by Diablo Tank and Equipment. Up to 8,400 mg/kg of total PHCs as gasoline (TPH-g) were identified in soil samples collected from the southern edge of the USTs.

In July 1989, On-Site Technologies excavated and disposed of between 90 and 150 cubic yards of contaminated soil from the southern end of the UST that then contained premium unleaded fuel. Up to 3,300 mg/kg of total PHCs as gasoline (TPH-g) were detected in samples collected from excavation sidewalls.

In May 1990, Remediation Service International (RSI) conducted a soil and groundwater assessment at the site including installation of four groundwater monitoring wells (RS-1 through RS-4). Hydrocarbons were detected in both soil and groundwater during this assessment.

In June 1991, soil remediation began at the site using soil vapor extraction (SVE). In October 1991, groundwater remediation began at the site using RSI's remedial system. Remediation was suspended in 1992, apparently due to Desert Petroleum's financial problems.

In 1994 a 280-gallon waste oil UST was removed along with approximately 40 cubic yards of contaminated soil and in 1998 the 4,000-gallon gasoline UST was removed along with approximately 40 cubic yards of contaminated soil.

Reportedly the site has been monitored on a quarterly basis since May 1990, monitoring was discontinued in 1999. A Corrective Action Plan for the site was prepared in February 1995.

Beginning in 1995, hydrocarbon concentrations started to rise and free hydrocarbons appeared in monitoring well RS-1. During interim free-product removal, between October and December 1996, 30.4 gallons of gasoline and 1,077 gallons of contaminated groundwater were removed from monitoring well RS-1.

In March 1999, Western Geo-Engineers of Woodland, California prepared a quarterly groundwater monitoring report and subsurface conduit study for the site. This subsurface conduit study identified a sewer line that was partially submerged below the typical depth to groundwater at the site. This sewer line could potentially act as a conduit for migration of groundwater contamination.

A Report for Soil and Groundwater Assessment was prepared by Agua Science Engineers, Inc in May 24, 2000 which documented further delineation of the soil and groundwater contamination extent in the off-site area.

"Out-of-compliance" correspondence dated June 18, 2009, was issued by Alameda County Environmental Health Services (ACEHS) for the site; this letter

was related to a workplan dated December 7, 2000 for installation of five monitoring wells in both on- and off-site areas where elevated concentrations of fuel hydrocarbons had been detected.

Between July 29 and August 18, 2011 two underground storage tanks (USTs), one 10,000-gallon and one 3,000-gallon capacity, were excavated and disposed of off-site. During this event, associated fuel piping was also excavated and disposed of off-site. Depth to the bottom of excavation pit was recorded at 11.5 feet bgs. The UST pit and trenches were not backfilled to grade with clean (imported) fill material or resurfaced because the owner indicated he intends to install new USTs and piping in the near future. The UST pit was lined and backfilled with existing material and concrete rubble. The site is currently fenced in, which limits public access to the property. Confirmation soil samples were collected from beneath removed USTs and associated piping. Two groundwater samples were collected from the UST pit. It appeared that soil and groundwater contamination still exists in the area of removed USTs, as illustrated by levels of chemicals of concern (COCs) in excess of Environmental Screening Levels (ESLs). Lesser soil contamination exists in the area beneath the removed fuel piping.

On March 15 and 16, 2012, under SOMA's oversight, Fisch Drilling (Fisch) advanced on-site borings CPT/MIP-1 and CPT/MIP-2, and borings DPT-1 through DPT-4. Borings DPT-1 and DPT-2 were advanced adjacent to CPT/MIP-1 and CPT/MIP-2. Boring DPT-1 was renamed CPT/DPT-1 and was continuously logged to verify the CPT obtained data. Based on results of this sampling it appeared that soil and groundwater contamination still exists in the area of removed USTs and in the explored downgradient (off-site) areas. In order to address residual soil contamination, SOMA proposed conducting a shallow soil excavation in the vicinity of former USTs.

In October 2012, based on chemical concentrations in soil, an interim remedial excavation to address the residual contamination in the area of the former USTs was implemented. As part of this remedial excavation an area of approximately 1,200 square feet was excavated to approximately 12 feet bgs and then deepened to approximately 15 feet bgs based on soil discoloration and field PID readings. Approximately 788.65 tons of excavated soils were disposed of at an approved disposal facility and excavation pit was backfilled with clean fill material. Prior to backfill placement confirmation soil samples were collected from the bottom and sidewalls of excavation (where feasible); once backfilled the area was resurfaced with asphalt and concrete, as appropriate. Two groundwater monitoring wells RS-1 and RS-2 were located near or inside the footprint of the excavation, and as required were decommissioned prior to the initiation of excavation activities at the site

In December 2012, SOMA submitted a workplan for additional investigation, well replacement and (multi-phase extraction) MPE pilot testing. This workplan was

approved by the San Francisco Bay regional water quality Control board (SF RWQCB) on April 3, 2013. In May 2013, two replacement wells (MW-1 and MW-2) and two soil borings next to each other (DPT-5 and DPT-5W) for collection of soil and groundwater samples were installed. Results were documented in SOMA's report 'Additional Investigation and Monitoring Wells Replacement Report' dated September 13, 2013.

APPENDIX B

BAAQMD and Groundwater Discharge Permits

Multi-Phase Extraction Pilot Testing Report

SANTA CLARA COUNTY

Ash Kalra

(Chairperson) Liz Kniss Jan Pepper Ken Yeager

SOLANO COUNTY James Spering

SONOMA COUNTY Teresa Barrett Shirlee Zane

Jack P. Broadbent

EXECUTIVE OFFICER/APCO

BAY AREA October 16, 2013 **AIR QUALITY** MANAGEMENT SOMA Environmental Engineering, Inc 6620 Owens Dr, Suite A DISTRICT Pleasanton, CA 94588 Attention: Erica Fisker ALAMEDA COUNTY Tom Bates Scott Haggerty Nate Miley Application Number: 25513 (Vice-Chairperson) Tim Sbranti Plant Number: 19396 Equipment Location: CONTRA COSTA COUNTY 335 So Norfolk Street John Gioia David Hudson San Mateo, CA 94403 Mary Piepho Mark Ross MARIN COUNTY Dear Applicant: Susan Adams NAPA COUNTY Brad Wagenknecht SUBJECT: CHANGE OF PERMIT CONDITIONS SAN FRANCISCO COUNTY John Avalos Edwin M. Lee This letter is to advise you that your application for changes in permit conditions for the following Eric Mar equipment has been approved: SAN MATEO COUNTY Carole Groom **Portable Soil Vapor Extraction System** S-1 (Secretary) Carol Klatt

Operation of this equipment will be subject to permit condition no. 23387 which is attached. If you have any questions regarding this matter, please call Flora W Chan, Air Quality Engineer II at (415) 749-4630.

Very truly yours

Jim Karas, P.E. Director of Engineering

Air Quality Engineering Manager

BGY:FWC Attachment: Permit Condition no. 23387 Plant No. 19396, SOMA Environmental Engineering, Inc

Source No. 1, Portable Soil Vapor Extraction System

Condition No. 23387 Application No. 25513

- The operator of this source shall notify the District at least 3 days prior to start-up of operation at any new location. The notification shall include:
 - a. Application Number (25513, 23258, 19214, 15435) and Plant Number (19396, 18119)
 - b. Street address, including zip code, for the location where the equipment will be operated.
 - c. The name and telephone number of a contact person where the equipment will be operated.
 - d. The date of initial start-up and estimated duration of operations at that location.
 - e. The distance from the source to the outer boundary of the nearest K-12 school, or indication that the distance is greater than 1500 feet.

In the event that the start-up is delayed less than 5 days, the operator may provide telephone notice of said change to the assigned Plant Engineer in the Permit Services Division. If the start-up is delayed more than 5 days, written notification must be resubmitted.

- 2. This equipment shall not remain at any single location for a period in excess of 12 consecutive months, following the date of initial operation except as allowed under Section 2-1-220.10. If this portable equipment remains at any fixed location for more than 12 months, the portable permit will automatically revert to a conventional permanent location permit and will lose its portability. [Basis: Regulation 2-1-220.2]
- 3. This portable equipment, S-1, shall operate at all times in conformance with the eligibility requirements set forth in Regulation 2-1-220 for portable equipment.
- 4. This equipment is not to be operated within 1000 feet of the outer boundary of any K-12 school. Such operation will require the submittal of an application for a revised permit to operate so that the applicable requirements of the California Health and Safety Code Section 42301.6 may be met. These notification requirements have been satisfied for operation at the 2001 Sir Francis Drake Boulevard in Fairfax and 2844 Mountain Boulevard, Oakland, CA 94602 [basis:reg 2-1-220.4]
- 5. This equipment shall be used exclusively for the removal of non-chlorinated volatile organic compounds associated with petroleum products from extracted soil vapor. This shall be demonstrated by onsite sampling required in condition 10 below.
- Precursor Organic Compound (POC) emissions from Source S-1 shall be abated by Abatement device A-1, Thermal Oxidizer, Catalytic Oxidizer or Carbon adsorption,

Plant No. 19396, SOMA Environmental Engineering, Inc Source No. 1, Portable Soil Vapor Extraction System Condition No. 23387 Application No. 25513

> during all periods of operation. Soil vapor flow rate shall not exceed 250 scfm. [Basis: Regulation 8-47-301.1,2]

- 7. The POC abatement efficiency of abatement device A-1 shall be maintained at a minimum of 98.5% by weight for inlet POC concentrations greater than or equal to 2000 ppmv (measured as hexane). For inlet concentrations below 2000 ppmv and greater than or equal to 200 ppmv, a minimum abatement efficiency of 97% shall be maintained. For inlet concentrations below 200 ppmv, a minimum abatement efficiency of 90% shall be maintained. The minimum abatement efficiency shall be waived if outlet POC concentrations are shown to be less than 10 ppmv (measured as hexane). In no event shall benzene emissions to the atmosphere exceed 0.250 pounds per day. Annual emissions of benzene shall not exceed 3.8 pounds per year.
- 8. While operating as a thermal oxidizer, the minimum operating temperature of A-1 shall not be less than 1400 degrees Fahrenheit. While operating as a catalytic oxidizer, the minimum operating temperature of A-1 shall not be less than 600 degrees Fahrenheit.
- 9. To determine compliance with Condition Number 8, the dual-mode oxidizer shall be equipped with continuous measuring and temperature recording instrumentation. The temperature data collected from the temperature recorder shall be maintained in a file which shall be available for District inspection for a period of at least 2 years following the date on which such data are recorded.
- 10. To determine compliance with Condition 7, within 24 hours after start-up of the thermal/catalytic oxidizer at any new location, and within 24 hours of conversion from thermal to catalytic mode at an existing location, the operator of this source shall:
 - a. Analyze the inlet gas to determine the vapor flow rate and concentration of POC present.
 - b. Analyze exhaust gas to determine the flow rate, and the concentration of benzene and POC present.
 - c. Calculate the benzene emission rate in pounds per day based on the exhaust gas analysis and the operating exhaust flow rate. The soil vapor flow rate shall be decreased, if necessary, to demonstrate compliance with Condition 7.
 - d. Calculate the POC abatement efficiency based on the inlet and outlet gas sampling analysis. For the purpose of determining compliance with condition 7, the POC concentration shall be reported as hexane.

Plant No. 19396, SOMA Environmental Engineering, Inc Source No. 1, Portable Soil Vapor Extraction System Condition No. 23387 Application No. 25513

- e. Submit to the District's Permit Services Division the test results and emission calculations within one month from the testing date. Samples shall be analyzed according to modified EPA test methods 8015 and 8021 or their equivalent to determine the concentrations of POC and benzene.
- 11. Within 30 days from the completion of each treatment operation at a given location, the operator of this source shall provide the assigned Plant Engineer in the Permit Services Division with a summary showing the following information:
 - a. The dates and total number of days that the equipment was at that location and the dates, and total number of days that the equipment was operated at that location.
 - b. A summary of the abatement efficiency and benzene emission rate as determined and reported in the start-up sampling report required by condition 10e above.
 - c. The results of any additionally performed emission test, analysis, or monitoring result logged in for the day of operation they were taken.
 - d. The total throughput of contaminated soil vapor processed by S-1 at that location (indicated in cubic feet).
 - e. The total emissions of benzene at that location based on the sampling results required by conditions 10 above (indicated in pounds).
- 12. During operation of the Activated Carbon Vessels, the operator of this source shall monitor with a photoionization detector (PID), flame-ionization detector (FID), or other method approved in writing by the District's Source Test Manager at the following locations:
 - a. At the inlet to the second to last Carbon vessel in series.
 - b. At the inlet to the last Carbon vessel in series.
 - c. At the outlet of the Carbon vessel that is last in series prior to venting to the atmosphere.

When using an FID to monitor breakthrough, readings may be taken with and without a Carbon filter tip fitted on the FID probe. Concentrations measured with the Carbon filter tip in place shall be considered methane for the purposes of these permit conditions.

13. These monitor readings shall be recorded in a monitoring log at the time they are taken. The monitoring results shall be used to estimate the frequency of Carbon change

c23387

Plant No. 19396, SOMA Environmental Engineering, Inc Source No. 1, Portable Soil Vapor Extraction System Condition No. 23387 Application No. 25513

11 TO THE REAL PROPERTY

> out necessary to maintain compliance with conditions number 14 and 15, and shall be conducted on a daily basis. The operator of this source may propose for District review, based on actual measurements taken at the site during operation of the source, that the monitoring schedule be changed based on the decline in organic emissions and/or the demonstrated breakthrough rates of the carbon vessels. Written approval by the District's Engineering Division must be received by the operator prior to a change to the monitoring schedule.

- 14. The second to last Carbon vessel shall be immediately changed out with unspent carbon upon breakthrough, defined as the detection at its outlet in excess of the higher of the following limits:
 - a. 10 % of the inlet stream concentration to the carbon bed.
 - b. 10 ppmv (measured as hexane).
- 15. The last Carbon vessel shall be immediately changed out with unspent Carbon upon detection at its outlet of 10 ppmv or greater (measured as hexane).
- 16. The operator of this source shall maintain the following information for each month of operation of the Activated Carbon Vessels:
 - a. Hours and time of operation.
 - b. Each emission test, analysis or monitoring results logged in for the day of operation they were taken.

c. The number of Carbon vessels removed from service. Such records shall be retained and made available for inspection by the District for two years following the date the data is recorded. [basis: Reg.523]

- 17. Within 30 days after the end of every calendar year, the operator of this source shall provide the assigned Plant Engineer in the Permit Services Division a year end summary showing the following information:
 - a. The location(s) at which the equipment was operated including the dates operated at each location.
 - b. The total throughput of contaminated soil vapor for the previous four quarters (indicated in cubic feet).
 - c. The total benzene emissions for the previous four quarters (indicated in pounds).
 [Basis: Regulation 1-523]
- 18. The operator shall maintain a file containing all measurements, records and other data that are required to be collected pursuant to the various provisions of this conditional Permit to Operate. All measurements, records and data required to be maintained by the

c23387

Plant No. 19396, SOMA Environmental Engineering, Inc Source No. 1, Portable Soil Vapor Extraction System Condition No. 23387 Application No. 25513

operator shall be retained for at least two years following the date the data is recorded. [Basis: Regulation 1-523]

19. Any non-compliance with these conditions shall be reported to the Compliance and Enforcement Division at the time that it is first discovered. The submittal shall detail the corrective action taken and shall include the data showing the exceedance as well as the time of occurrence.

End of Conditions

BAY AREA Air Quality

MANAGEMENT

DISTRICT

SOMA Environmental Engineering, Inc 6620 Owens Dr, Suite A Pleasanton, CA 94588

Attention: Ruchi Mathur

Application Number :25513 Plant No. :19396 Equipment Location : SOMA Environmental Engineering, Inc 335 So Norfolk Street San Mateo, CA 94403

-, ~--

Dear Applicant:

Subject: Portable Dual Phase Extraction System

We are pleased to inform you that the District has made a preliminary decision to approve your application. However, because this project is subject to the public notice requirements of Regulation 2-1-412, a final decision on your application cannot be made until the end of the Public Notice period and the District has had time to review and consider all comments.

Please include your application number with any correspondence with the District. If you have any questions on this matter, please call Flora W Chan at (415) 749-4630.

CC: FWC

August 14, 2013

CERTIFIED MAIL (Return Receipt Requested) Certified Mail No.7005 2570 0000 6630 3888

July 24, 2012

Mansour Sepehr President SOMA Environmental Engineering, Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

Dear Mr. Sepehr:

Re: Wastewater Special Discharge Permit No. 05928020 Discharge Location: 2844 Mountain Blvd., Oakland, CA

Enclosed is the Special Discharge Permit for SOMA Environmental Engineering, Inc. for your information and records. Please read the Permit terms and conditions and the enclosed *Special Discharge Permit Standard Terms and Conditions*, July 2010 Edition. As a Permit holder, you are legally responsible for complying with all Permit conditions and requirements. Your permit expires on July 31, 2014.

SOMA Environmental Engineering, Inc. shall report to the Wastewater Environmental Services Division any changes, permanent or temporary, to the premises or operations that significantly affect the quality or volume of the permitted discharge or deviate from the terms and conditions under which the Permit was granted.

If you have any questions regarding this Permit, please contact Laurice Brown of the Wastewater Environmental Services Division at (510) 287-1613.

Sincerely,

p.flm

SOPHIA D. SKODA Acting Manager of Wastewater Environmental Services

SDS:LLB:llb

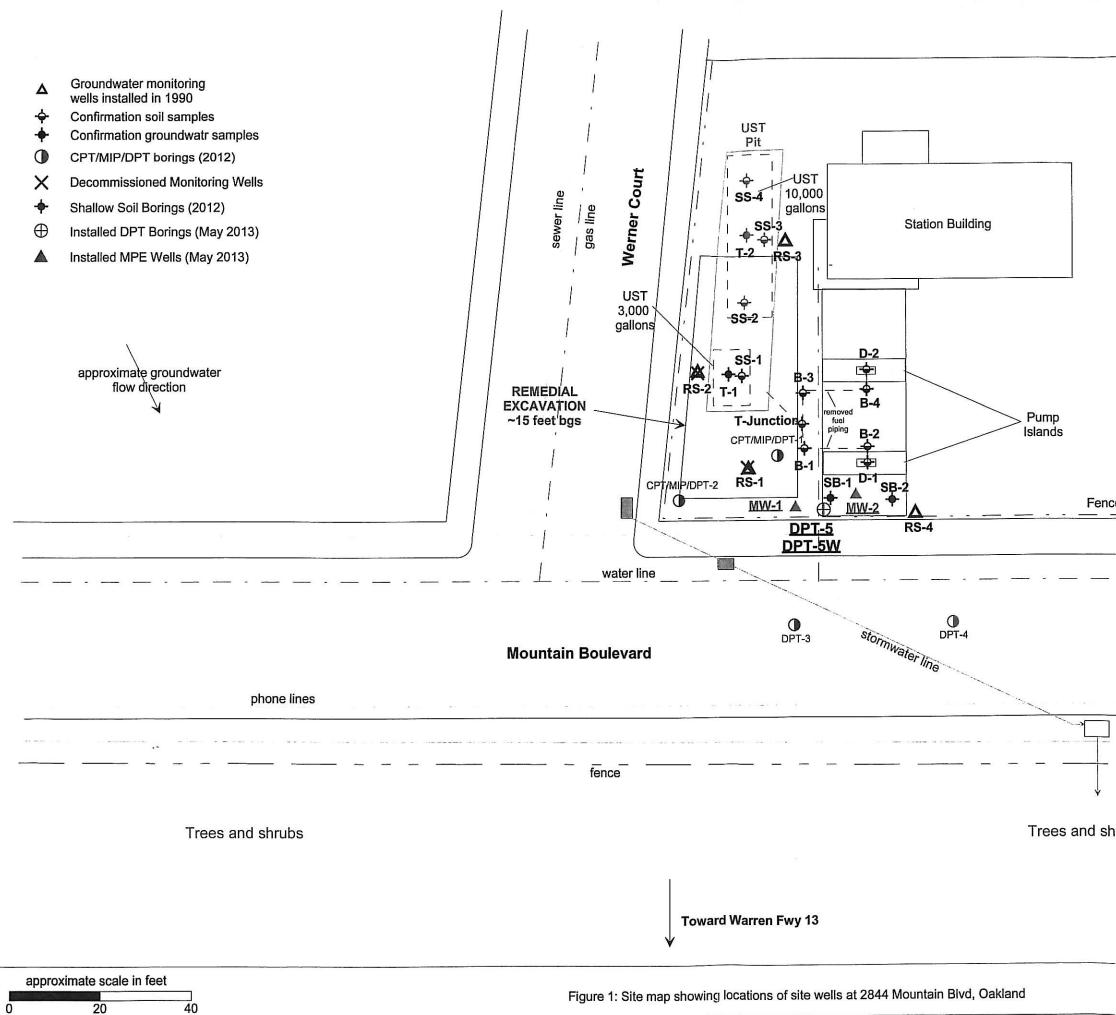
Enclosures

375 ELEVENTH STREET . OAKLAND . CA 94607-4240 . TOLL FREE 1-866-40-EBMUD

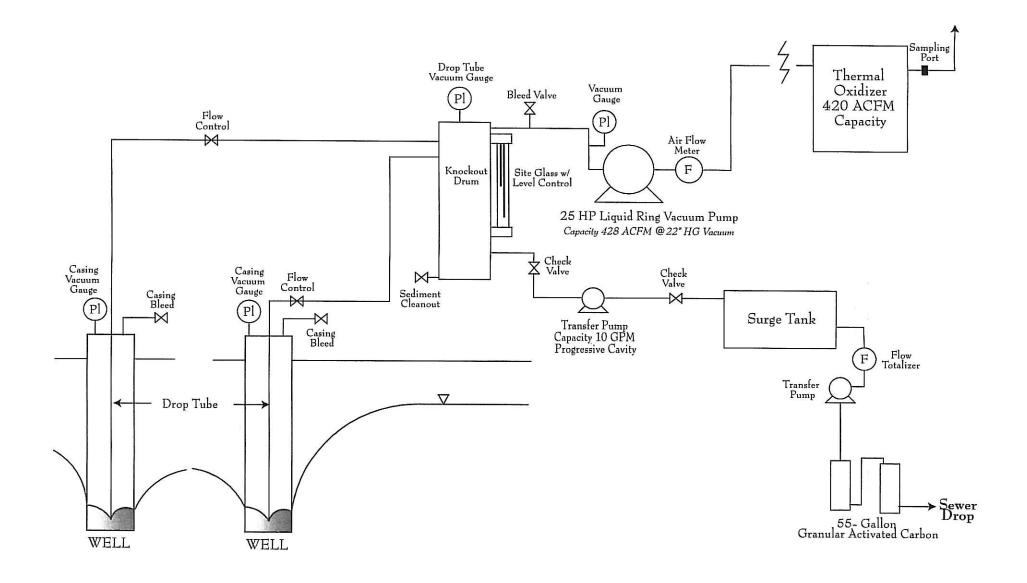
W:\NAB\IDS\Permits\Special Discharge\Permits\J.H. Fitzmaurice\Permit Cover Letter.doc

	5
EBN	IUD

SPECIAL DISCHARGE PERMIT


EBMUD PERMIT NUMBER 059	28020	APPLICANT FORM
APPLICANT BUSINESS NAME		SIC CODE
SOMA ENVIRONMENTAL ENGINEERING, INC.	ಕ್ರಮ ಮಾರ್ಷ (೧೯೯೯)	
ADDRESS OF SITE DISCHARGING WASTEWATER	APPLICANT MAILING ADDRE	SS
2844 MOUNTAIN BLVD.	6620 OWENS DR, SUITE	Δ
STREET ADDRESS	STREET ADDRESS	n
OAKLAND 94602	PLEASANTON	04500
CITY ZIP CODE	Спу	94588 Zip Code
CONTACT PERSONS		
Applicant		
RUCHI MATHUR	STAFF ENGINEER	925-734-6400
NAME	TITLE	PHONE NUMBER
CONSULTANT		
MANSOUR SEPEHR	PRESIDENT	925-734-6400
NAME	Тпе	PHONE NUMBER
CONTRACTOR		
Name	TITLE	PHONE NUMBER
СЕ	ERTIFICATION	
I understand that issuance of a Special Discharge Per Discharge Minimization or Pollution Prevention Perm		ity from being issued a
I understand that I am legally responsible for discharg	we of wastewater from the facility and for	complying with the
Terms and Conditions of this Special Discharge Permi	iit.	comprying with the
I certify under penalty of law that this document and a accordance with a system designed to assure that the a submitted. Based on my inquiry of the person or perso for gathering information, the information submitted is complete. I am aware that there are significant penalt fine and imprisonment for knowing violations.	qualified personnel properly gather and e ons who manage the system, or those pers is, to the best of my knowledge and belief,	evaluate the information sons directly responsible true, accurate, and
MANSOUR SEPEHR Name	PRESIDENT	_
And Det.	5/22/12	
SIGNATURE (SEE CERTIFICATION REQUIREMENTS ON INSTRUCTIONS)	<u>5/24/13</u> Date	
	1900,0000	

SPECIAL DISCHARGE PERMIT


PERMIT NUMBER 05928020 APPLICANT FORM

	-
Purpose: This information demonstrates the wastewater meets established criteria for a Special Discharge Permit. Check each statement that applies and supply required information.	
Reasonable and cost effective means of recycling and reuse of the wastewater are unavailable. Provide information describing what means were considered, and why they were not implemented.	
This site is funded by LUST cleanup fund and hence is under tight budget for groundwate	r
cleanup.	
The wastewater is unsuitable for discharge to the storm sewer. Provide explanation.	
This is a UST site where contaminated groundwater (GW) has been impacted by petroleum	
hydrocarbons. This is a remedial effort to extract, treat and discharge impacted GW.	
The wastewater is generated only within the SD-1 wastewater service area. Provide location. 2844 Mountain Blvd., Oakland - 94602	
2644 Mountain Bivu., Oakianu - 94602	
	2
The wastewater meets source criteria. Describe the source and operations generating the wastewater. Include the Wastewater Source Category from Special Discharge Permit Standard Terms and Conditions, Section A, II.	
Groundwater extracted during a 2-week multi-phase extraction(MPE) event at the site	
will be treated through two 55-gallon granular activated carbon (GAC) drums connected	
in series prior to discharge. Source category (f):Other Sources for temporary discharge The wastewater is discharged during a limited period of time. Maximum Discharge Duration 1 Year days Start Date: July2013 Hours of Discharge: 12 hrs/day Wastewater volume and flow will not exceed 100 gals/minute.	•
Total Discharge Volume: 40,000 gallons	
Discharge to the sanitary sewer during a rain even may be prohibited. Describe containment capacity during a 10- year rain event (3.16 inches of rainfall in a 24-hour period).	
No MPE event will be conducted during rain and hence no discharge will occur.	
The side sewer through which the wastewater is discharged has been identified. Applicant is responsible for obtaining local permits to use manholes or cleanouts for discharge. Attach a site diagram. Show facility location, property lines, wastewater source, drainage plumbing, the side	
sewer, and sampling location.	
Known and potential pollutants present in the wastewater are characterized. Attach a summarized list of all pollutant concentrations present in the wastewater. Also include the complete certified laboratory analytical report. See attached list, table and lab report.	
Treatment technology or best management practices have been identified that will result in the wastewater meeting discharge limits, and sediment or silt does not enter collection system.	
 Describe pretreatment or best management practices that will be used to ensure the wastewater discharge complies with Ordinance No. 311A-03 wastewater discharge limits or permit-specific limits as necessary. Extracted groundwater from site monitoring/remediation wells will be pretreated through 	two
55-gallon GAC drums connected in series. The final effluent from these drums will be	
 sampled and sent to the laboratory for analysis to demonstrate compliance. 2) Attach a schematic flow diagram of the pretreatment system. The diagram must accurately depict the pretreatment system as constructed. Field deviation from the diagram is not allowed, unless pretreatment system modifications are approved and the permit revised prior to the discharge. See attached Figure 2. 	

	X
nce	
]	
shrubs	

Permit Number 05928020 SOMA Environmental Engineering, Inc.

GENERAL CONDITIONS

- I. SOMA Environmental Engineering, Inc. shall comply with all items of the attached Special Discharge Permit Standard Terms and Conditions.
- II. SOMA Environmental Engineering, Inc. shall discharge Special Discharge wastewater only from the specific source described in the Special Discharge Permit Standard Terms & Conditions as other sources. This permit is for the discharge of wastewater generated from excavation and remediation activities located at 2844 Mountain Blvd., Oakland, CA.
- III. SOMA Environmental Engineering, Inc. shall immediately cease discharge of treated Special Discharge wastewater if not in compliance with any of the terms and conditions of this Special Discharge Permit.
- IV. This Special Discharge Permit is considered a waiver of EBMUD Ordinance No. 311, prohibiting:
 - o Discharge of wastewater directly into a manhole or other opening into the community sewer system.
 - o Discharge of stormwater, drainage water, and groundwater to the community sewer.
- V. SOMA Environmental Engineering, Inc. shall not discharge Special Discharge wastewater after this Permit expiration date.

COMPLIANCE REQUIREMENTS

- 1. SOMA Environmental Engineering, Inc. shall pretreat or manage all Special Discharge wastewater sufficient to achieve compliance with the limits established in this Special Discharge Permit. Pretreatment shall be according to Figure 2: MTS Process Schematic diagram submitted by SOMA Environmental Engineering, Inc.
- II. SOMA Environmental Engineering, Inc. shall post a sign in the discharge area stating, "All Wastewater Discharge must comply with the Special Discharge Permit."
- III. SOMA Environmental Engineering, Inc. shall not discharge to the sanitary sewer during a rain event or within 24-hours after a rain event, which is defined as any precipitation greater than a drizzle.
- IV. SOMA Environmental Engineering, Inc. shall not discharge wastewater at a flow rate greater than 100 gallons per minute.
- V. All discharge shall be through a totalizing flow meter and logged with date, time, and volume of each discharge and signed by Site Manager.
- VI. SOMA Environmental Engineering, Inc. is responsible for obtaining local permits or approval from the City of Oakland for the use of manholes, cleanouts, and/or side sewers for the discharge of Special Discharge wastewater.

WASTEWATER DISCHARGE LIMITS

SOMA Environmental Engineering, Inc. shall not discharge Special Discharge wastewater into the community sewer if the strength of the wastewater exceeds EBMUD Wastewater Control Ordinance Discharge Limits.

Permit Number 05928020

MONITORING AND REPORTING REQUIREMENTS

- Permit Holder shall monitor wastewater discharge operations to ensure compliance with the terms and conditions of this Special Discharge Permit. Sampling of discharge has been submitted and meets EBMUD limits. Data submitted includes analyses for Purgeable Organics (BTEX), Volatile Organics (VOCs), and Oil and Grease Hydrocarbon (HC). EBMUD reserves the right to require additional testing if the site work warrants.
- II. SOMA Environmental Engineering, Inc. shall submit discharge logs including dates, times, volumes and signature of Site Manager including the authorized signature and certification statement to EBMUD. The logs are due quarterly based on a calendar year.

INSPECTIONS

The District may conduct random, unannounced inspections to verify compliance with the terms and conditions of this Special Discharge Permit. SOMA Environmental Engineering, Inc. shall grant District personnel access to the facility and discharge logs to conduct inspections and collect Special Discharge Wastewater samples.

ENFORCEMENT AND PENALTIES

Failure to comply with the terms and conditions of this Special Discharge Permit and *Special Discharge Permit Standard Terms and Conditions* may result in enforcement actions, including violation follow-up fees, civil enforcement penalties, and administrative fines of up to \$5,000 per day.

RATES AND CHARGES

This Special Discharge Permit may be amended to include changes to rates and charges that may be established by the District during the term of this Special Discharge Permit. The discharge shall be charged \$0.02 per gallon for the entire volume of discharge and the permit fee is \$995.

AUTHORIZATION

Special Discharger SOMA Environmental Engineering, Inc. is hereby authorized to discharge Special Discharge Wastewater to the community sewer subject to compliance with EBMUD Wastewater Control Ordinance, Special Discharge Permit Terms and Conditions, and billing conditions.

Effective: <u>August 4, 2013</u> Expires: July 31, 2014

Director, Wastewater Department

Date

APPENDIX C MPE Pilot Test Field Data Sheets

Multi-Phase Extraction Pilot Testing Report

Golden G Remed	late /	Technology								
DDRESS:	2844 Mountain 5084									
				MTS OPE	RATIONAL I	DATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	PUMP/AIR TEMPERATURE (F)	STINGER VACUUM (IN-Hg)	PUMP VACUUM (IN-Hg)	TOTAL FLOW (SCFM)	DILUTION FLOW (SCFM)	WELL FLOW (SCFM)	INFLUENT CONCENTRATION (PPMV)	WATER TOTALIZE
12/2/2013	1300	Begin extraction from	MW-1							
	1330	1520	170	22.7	25	70	0	70	8,780	0
	1430	1511	170	22.7	25	70	0	70	6,030	
	1530	1514	170	22.9	25	70	0	70	inf=4,510; eff=2	
	1630	1507	170	22.9	25	70	0	70	3,810	23
12/3/2013	900	1526	170	22.7	25	70	0	70	7,470	
	1000	1521	170	22.7	25	70	0	70	6,720	
	1100	1515	170	22.7	25.1	68	0	68	5,290	
	1200	1532	170	22.8	25	70	0	70	2,510	
	1300	1523	170	22.9	24.9	71	0	71	2,310	
	1400	1509	170	22.6	24.7	74	0	74	2,910	
	1500	1517	170	22.6	24.7	74	0	74	2,720	
	1600	1510	171	22.5	24.9	71	0	71	2,430	
12/4/2013	900	1505	171	22.5	24.9	71	0	71	2,390	177
	1000	1509	171	22.5	24.9	71	0	71	2,360	
	1100	1515	171	22.5	25	70	0	70	2,340	
	1200	1499	171	22.7	25	70	0	70	2,320	
	1300	1506	171	22.7	25	70	0	70	2,300	
	1400	1502	171	22.7	25	70	0	70	2,280	
	1500	1501	170	22.7	24.8	73	0	73	2,270	
	1600	1498	170	22.6	24.8	73	0	73	2,250	<u> </u>
12/5/2013	900	1520	170	23	25	70	0	70	2,210	286
	1000	1509	170	22.8	25	70	0	70	2,170	
	1100	1502	170	22.8	25.1	68	0	68	2,170	
	.100	Extraction from MW-2					Ť		2,100	
	1200	1540	170	23	25.1	68	0	68	6,070	
	1300	1495	170	23	25.1	68	0	68	4,810	
	1400	1499	170	23	25.1	68	0	68	3,490	
	1500	1508	170	23	25	70	0	70	3,150	
	1600	1502	170	23	25	70	0	70	2,720	

	2844 Mountain	Technology								
	5084	Bivu., Oakialiu								
				MTS OPE	RATIONAL	ATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	PUMP/AIR TEMPERATURE (F)	STINGER VACUUM (IN-Hg)	PUMP VACUUM (IN-Hg)	TOTAL FLOW (SCFM)	DILUTION FLOW (SCFM)	WELL FLOW (SCFM)	INFLUENT CONCENTRATION (PPMV)	WATER TOTALIZ
12/6/2013	900	1505	170	23	25.1	68	0	68	1,790	403
	1000	1487	170	22.9	25	70	0	70	1,720	
	1100	1503	170	23	25	70	0	70	1,560	
	1200	1499	170	23	25	70	0	70	1,621	
	1300	1495	170	23.1	24.8	73	0	73	1,350	
	1400	1498	170	22.8	24.5	77	0	77	1,324	
	1500	1502	170	22.9	24.5	77	0	77	1,305	
	1600	1501	170	22.1	24.5	77	0	77	1,392	
12/7/2013	900	1520	170	21.2	25	70	0	70	1,060	521
	1030	1505	169	21.2	25.1	68	0	68	1,044	
	1200	1508	169	22.2	25.1	68	0	68	955	
	1330	1502	170	22.2	25.1	68	0	68	982	
	1500	1499	170	23	25	70	0	70	984	
	1630	1501	169	23	25	70	0	70	768	
12/8/2013	900	1509	169	23.1	25	70	0	70	830	698
	1030	1502	170	23.2	25	70	0	70	770	
	1200	1505	170	23.3	25.1	68	0	68	540	
	1330	1499	171	23	25.1	68	0	68	496	
	1500	1501	170	23	25.1	68	0	68	712	
	1630	1506	170	22.8	25	70	0	70	695	
12/9/2013	900	1498	170	21.8	25.2	66	0	66	684	816
	1000	1502	170	21.8	25.1	68	0	68	651	
		Extraction from RS-4								
	1100	1509	169	22.3	25.3	65	0	65	588	
	1200	1501	169	22.3	25.5	62	0	62	679	
	1300	1498	170	22.2	25.5	62	0	62	711	1
	1400	1502	171	21.5	25.3	65	0	65	692	
	1500	1499	170	21.3	25.4	63	0	63	679	
	1600	1505	170	21.4	25.4	63	0	63	632	
12/10/2013	900	1499	169	22.3	25.1	68	0	68	515	955
	1000	1502	169	22.3	25	70	0	70	499	1
	1100	1505	170	22.3	25.1	68	0	68	502	

		Technology Blvd., Oakland								
	5084									
				MTS OPE	RATIONAL D	ATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	PUMP/AIR TEMPERATURE (F)	STINGER VACUUM (IN-Hg)	PUMP VACUUM (IN-Hg)	TOTAL FLOW (SCFM)	DILUTION FLOW (SCFM)	WELL FLOW (SCFM)	INFLUENT CONCENTRATION (PPMV)	WATER TOTALIZ
	1200	1501	170	22.3	25.1	68	0	68	485	
	1300	1506	170	22.2	24.8	73	0	73	446	
	1400	1499	170	22.5	25	70	0	70	435	
	1500	1504	171	22.4	25	70	0	70	432	
	1600	1501	171	22.4	25	70	0	70	419	
12/11/2013	900	1499	169	22.3	24.7	74	0	74	379	1,071
	1000	1504	169	22.3	24.7	74	0	74	362	
	1100	1501	170	22.3	24.8	73	0	73	349	
	1200	1503	171	22.3	24.8	73	0	73	338	
	1300	1498	171	22.3	24.8	73	0	73	331	
	1400	1505	171	22.1	24.8	73	0	73	345	
	1500	1509	171	22	24.8	73	0	73	336	
	1600	1512	171	22	24.7	74	0	74	335	
12/12/2013	800	1508	170	22.1	24.8	73	0	73	291	1,193
	900	1501	171	23	25	70	0	70	271	
		Extraction from RS-3								
	1000	1509	169	24.8	25.4	63	0	63	156	
	1100	1499	170	25	25.4	63	0	63	88	
	1200	1504	170	24.7	25.4	63	0	63	46	
		Extraction from MW-1	and MW-2							
	1300	1507	172	19.4	23.1	100	0	100	2,700	
	1400	1502	172	19.6	23.1	100	0	100	1,558	
	1500	1506	171	19.5	22.9	103	0	103	1,381	
	1600	1503	171	19.2	22.6	108	0	108	958	
12/13/2013	900	1504	170	19.1	22.1	116	0	116	646	1,596
	1000	1507	170	19	22.1	116	0	116	621	
	1100	1509	171	19.2	22.1	116	0	116	651	
	1200	1502	172	19.1	22	117	0	117	632	
	1300	1508	172	18.9	22	117	0	117	621	
	1400	1499	173	18.6	22	117	0	117	702	
	1500	1507	172	18.2	22	117	0	117	679	
	1600	1505	172	18.2	22	117	0	117	645	

	2844 Mountain	Blvd., Oakland								
	5084									
				MTS OPE	RATIONAL D	ATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	PUMP/AIR TEMPERATURE (F)	STINGER VACUUM (IN-Hg)	PUMP VACUUM (IN-Hg)	TOTAL FLOW (SCFM)	DILUTION FLOW (SCFM)	WELL FLOW (SCFM)	INFLUENT CONCENTRATION (PPMV)	WATE TOTALIZ
12/14/2013	930	1520	171	19	22	117	0	117	725	1,720
	1100	1520	171	19.2	22.2	114	0	114	642	
	1230	1520	172	19	22.2	114	0	114	630	
	1400	1520	173	19	22	117	0	117	607	
	1530	1520	173	19.3	22.2	114	0	114	648	
	1630	1520	171	19	22.2	114	0	114	590	
12/15/2013	930	1520	171	18	22.1	116	0	116	641	1,889
	1100	1520	172	19	22	117	0	117	603	
	1230	1520	174	19	22	117	0	117	590	
	1400	1520	173	17.3	21.3	128	0	128	590	
	1530	1520	174	18	21.3	128	0	128	580	
	1630	1520	174	17.4	21.1	131	0	131	578	
		Extraction from MW-1	I, MW-2, and RS-4							
12/16/2013	900	1512	172	16.9	20.8	136	0	136	617	
	1000	1505	172	16.9	20.9	135	0	135	482	
	1100	1509	173	17.1	20.8	136	0	136	504	
	1200	1504	173	17	20.6	139	0	139	482	2,091
		End Extraction		İ 👘						Ī

					MTS MON	ITORING POINT DAT	A			-	
DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL		WEL RS	
			<u> </u>	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)						
12/2/2013	1300	0	0	7.50		7.48		6.82		9.02	
				EXTRACT	ON WELL						
	1330	30	30	7.55	-	7.58		6.81		9.02	
	1430	60	90	7.57	-	7.73		6.80		9.04	
	1530	60	150	7.58	-	7.85		6.80		9.05	
	1630	60	210	7.58	-	8.16		6.80		9.05	
12/3/2013	900	990	1,200	7.20	-	7.75	0.20	6.85	0.00	9.15	0.20
	1000	60	1,260	14.55	-	7.82	0.20	6.85	0.00	9.15	0.20
	1100	60	1,320	17.78	-	7.90	0.50	6.87	0.00	9.15	0.20
	1200	60	1,380	17.76	-	8.21	0.30	6.87	0.00	9.20	0.20
	1300	60	1,440	17.75	-	8.33	0.30	6.86	0.00	9.20	0.20
	1400	60	1,500	17.77	-	8.44	0.30	6.83	0.00	9.21	0.20
	1500	60	1,560	17.77	-	8.53	0.30	6.80	0.00	9.20	0.20
	1600	60	1,620	17.76	-	8.65	0.30	6.79	0.00	9.20	0.20
12/4/2013	900	1020	2,640	16.90	-	9.40	0.30	6.54	0.00	9.60	0.20
	1000	60	2,700	16.90	-	9.42	0.30	6.54	0.00	9.61	0.20
	1100	60	2,760	16.89	-	9.42	0.30	6.55	0.00	9.61	0.20
	1200	60	2,820	16.89	-	9.43	0.30	6.57	0.00	9.63	0.20
	1300	60	2,880	16.90	-	9.45	0.30	6.58	0.00	9.62	0.20
	1400	60	2,940	16.92	-	9.45	0.30	6.60	0.00	9.64	0.20
	1500	60	3,000	16.92	-	9.46	0.30	6.61	0.00	9.64	0.20
	1600	60	3,060	16.94	-	9.47	0.30	6.63	0.00	9.65	0.20
12/5/2013	900	1020	4,080	17.01	-	9.50	0.30	6.68	0.00	9.65	0.20
	1000	60	4,140	17.00	-	9.51	0.30	6.69	0.00	9.65	0.20
	1100	60	4,200	Added vacuum oil							

r			1		MTS MON	ITORING POINT DAT	Α			1	
DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL		WEL	
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER
			4,200			EXTRACT	ION WELL				
	1200	60	4,260	17.00	0.30	9.50	-	6.69	0.00	9.65	0.30
	1300	60	4,320	14.70	0.30	18.16	-	6.95	0.00	9.32	0.30
	1400	60	4,380	14.73	0.30	18.16	-	6.98	0.00	9.38	0.30
	1500	60	4,440	13.79	0.30	18.17	-	6.91	0.00	9.44	0.30
	1600	60	4,500	12.27	0.20	18.17	-	6.82	0.00	9.58	0.30
12/6/2013	900	1020	5,520	8.44	0.20	18.18	-	6.62	0.00	10.75	0.30
	1000	60	5,580	8.44	0.20	18.19	-	6.67	0.00	10.76	0.20
	1100	60	5,640	8.44	0.20	18.20	-	6.70	0.00	10.73	0.20
	1200	60	5,700	8.44	0.20	18.21	-	6.73	0.00	10.74	0.20
	1300	60	5,760	8.43	0.20	18.21	-	6.64	0.00	10.76	0.20
	1400	60	5,820	8.42	0.20	18.21	-	6.58	0.00	10.77	0.20
	1500	60	5,880	8.43	0.20	18.22	-	6.62	0.00	10.77	0.20
	1600	60	5,940	8.44	0.20	18.22	-	6.67	0.00	10.77	0.20
12/7/2013	1030	1110	7,050	8.20	0.20	18.10	-	6.10	0.00	10.60	0.40
	1200	90	7,140	8.20	0.20	18.10	-	6.20	0.00	10.60	0.40
	1330	90	7,230	8.20	0.20	18.10	-	6.15	0.00	10.60	0.30
	1500	90	7,320	8.20	0.20	18.10	-	6.10	0.00	10.60	0.30
	1630	90	7,410	8.20	0.20	18.10	-	6.10	0.20	10.55	0.40
12/8/2013	1000	1050	8,460	8.10	0.20	18.10	-	6.30	0.20	10.55	0.40
	1130	90	8,550	8.13	0.20	18.10	-	6.20	0.20	10.53	0.40
	1300	90	8,640	8.10	0.20	18.10	-	6.30	0.20	10.50	0.40
	1430	90	8,730	8.14	0.20	18.14	-	6.28	0.20	10.50	0.40
	1530	60	8,790	8.12	0.20	18.14	-	6.20	0.20	10.50	0.40
	1630	60	8,850	8.15	0.20	18.15	-	6.20	0.00	10.50	0.40
12/9/2013	900	990	9,840		0.25	18.23	-	6.50	0.00	10.44	0.60
	1000	60	9,900		0.25	18.23	-	6.50	0.00	10.45	0.60

					MTS MON	ITORING POINT DAT	A			•	
DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL			L ID 3-4
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)						
			9,900							EXTRACT	ON WELL
	1100	60	9,960		0.20	16.92	0.50	6.35	0.00	20.44	-
	1200	60	10,020		0.20	16.28	0.40	6.33	0.00	20.79	-
	1300	60	10,080		0.20	15.62	0.40	6.31	0.00	21.17	-
	1400	60	10,140		0.20	13.74	0.40	6.26	0.00	21.20	-
	1500	60	10,200		0.20	13.51	0.30	6.02	0.00	21.19	-
	1600	60	10,260		0.20	13.34	0.30	5.91	0.00	21.18	-
12/10/2013	900	1020	11,280	7.20	0.20	9.27	0.30	6.38	0.00	21.26	-
	1000	60	11,340	7.20	0.20	9.26	0.30	6.35	0.00	21.41	-
	1100	60	11,400	7.20	0.20	9.26	0.30	6.32	0.00	21.62	-
	1200	60	11,460	7.19	0.20	9.23	0.30	6.35	0.00	21.51	-
	1300	60	11,520	7.17	0.20	9.19	0.30	6.37	0.00	21.19	-
	1400	60	11,580	7.14	0.20	9.16	0.30	6.41	0.00	21.17	-
	1500	60	11,640	7.11	0.20	9.12	0.30	6.43	0.00	21.14	-
	1600	60	11,700	7.10	0.20	9.11	0.30	6.45	0.00	21.15	-
12/11/2013	900	1020	12,720	7.02	0.20	8.86	0.30	6.31	0.00	21.22	-
	1000	60	12,780	7.01	0.20	8.82	0.30	6.31	0.00	21.44	-
	1100	60	12,840	7.00	0.20	8.73	0.30	6.30	0.00	21.79	-
	1200	60	12,900	7.00	0.20	8.74	0.30	6.42	0.00	21.32	-
	1300	60	12,960	6.97	0.20	8.81	0.30	6.39	0.00	21.34	-
	1400	60	13,020	6.98	0.20	8.87	0.30	6.36	0.00	21.17	-
	1500	60	13,080	6.98	0.20	8.88	0.30	6.31	0.00	21.19	-
	1600	60	13,140	6.98	0.20	8.90	0.30	6.27	0.00	21.20	-
12/12/2013	800	960	14,100	6.70	0.20	8.87	0.20	6.31	0.00	21.18	-
	900	60	14,160	6.71	0.20	8.85	0.20	6.39	0.00	21.21	-

				-	MTS MON	ITORING POINT DAT	A				
DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MV		WEL MV		WEL		WEL RS	
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)						
			14,160					EXTRACT	ON WELL		
	1000	60	14,220	7.02	0.10	8.68	0.00	21.40	-	21.41	0.00
	1100	60	14,280	7.04	0.10	8.80	0.00	21.41	-	20.05	0.00
	1200	60	14,340	7.02	0.10	8.80	0.00	21.37	-	19.21	0.00
			14,340		EXTRACT	ON WELLS					
	1300	60	14,400	15.50	-	15.27	-	15.58	0.00	20.00	3.05
	1400	60	14,460	15.59	-	15.25	-	15.60	0.00	20.00	3.05
	1500	60	14,520	15.67	-	15.24	-	10.52	0.00	18.65	3.05
	1600	60	14,580	15.68	-	15.25	-	10.51	0.00	18.92	3.05
12/13/2013	900	1020	15,600	15.70	-	15.32	-	5.80	0.00	11.39	3.00
	1000	60	15,660	15.62	-	15.26	-	5.82	0.00	11.34	3.00
	1100	60	15,720	15.61	-	15.27	-	5.81	0.00	11.28	3.00
	1200	60	15,780	15.61	-	15.25	-	5.78	0.00	11.23	3.00
	1300	60	15,840	15.60	-	15.25	-	5.77	0.00	11.23	3.00
	1400	60	15,900	15.63	-	15.25	-	5.77	0.00	11.22	3.00
	1500	60	15,960	15.61	-	15.24	-	5.78	0.00	11.21	3.00
	1600	60	16,020	15.62	-	15.25	-	5.78	0.00	11.21	3.00
12/14/2013	930	1050	17,070	15.50	-	15.15	-	5.85	0.01	10.90	3.00
	1100	90	17,160	15.55	-	15.20	-	5.75	0.01	10.85	3.00
	1230	90	17,250	15.50	-	15.20	-	5.85	0.01	10.85	3.00
	1400	90	17,340	15.55	-	15.20	-	5.75	0.01	10.85	3.00
	1530	90	17,430	15.45	-	15.20	-	5.80	0.01	10.85	3.00
	1630	60	17,490	15.50	-	15.20	-	5.75	0.02	10.85	3.00
12/15/2013	930	990	18,480	15.50	-	15.20	-	5.80	0.02	10.85	3.00
	1100	90	18,570	15.50	-	15.10	-	5.85	0.02	10.85	3.00
	1230	90	18,660	15.50	-	15.20	-	5.83	0.02	10.90	3.00
	1400	90	18,750	15.50	-	15.20	-	5.78	0.02	10.85	3.00
	1530	90	18,840	15.55	-	15.25	-	5.87	0.02	10.90	3.00

	MTS MONITORING POINT DATA												
DATE	TIME	INCREMENTAL TIME	ELAPSED TIME	WEL MW		WEL MV	L ID V-2	WEL RS		WELL ID RS-4			
				GW ELEVATION (FEET BELOW TOC)	VACCUM (IN WATER)								
	1630	60	18,900	15.55	-	15.20	-	5.75	0.02	10.85	3.00		
			18,900		EXTRACTI	ON WELLS				EXTRACTIO	ON WELLS		
12/16/2013	900	990	19,890	15.56	-	15.26	-	5.74	0.00	20.92	-		
	1000	60	19,950	15.53	-	15.23	-	5.70	0.00	20.93	-		
	1100	60	20,010	15.51	-	15.21	-	5.61	0.00	20.95	-		
	1200	60	20,070	15.51	-	15.22	-	5.63	0.00	20.96	-		

APPENDIX D

Certified Laboratory Analytical Reports and Chain-Of-Custody Documentation

Laboratory Job Number 246706 ANALYTICAL REPORT

SOMA Environmental Engineering Inc.	Project	:	5084
6620 Owens Dr.	Location	:	2844 Mountain Blvd., Oakland
Pleasanton, CA 94588	Level	:	II

<u>Sample ID</u>	<u>Lab ID</u>
EFFLUENT	246706-001
EFFLUENT	246706-002
EFFLUENT	246706-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

The Belon

Signature:

Tracy Babjar Project Manager (510) 204-2226

Date: 07/11/2013

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 246706 SOMA Environmental Engineering Inc. 5084 2844 Mountain Blvd., Oakland 07/03/13 07/03/13

This data package contains sample and QC results for three water samples, requested for the above referenced project on 07/03/13. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

EFFLUENT (lab # 246706-001) had pH greater than 2.The samples were not compromised because the pH was taken after the analysis. No other analytical problems were encountered.

Total Oil & Grease (HEM) (EPA 1664A):

Matrix spikes were not performed for this analysis due to insufficient sample volume. No analytical problems were encountered.

15.1

CHAIN OF CUSTODY

Page __/__of _/__

Cu	rtis & Tompkins, Ltd																	Α	nal	yse	es					
Anal	ytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone						1670	6										:								
L	(510)486-0532 Fax Sam				Pa	ars	a Motavalli																			
Projec	et No: 5084		Repo	rt T	o :		Joyce Bobel	k					l eg	8												
Projec	t Name: 2844 Mountain Blvc	d., Oakland	Com	pany	y :		SOMA Envi	ron	men	tal			8260B	8260B												
Turna	round Time: Standard		Telep	hor	ie:		925-734-640	00						ates												
			Fax:				925-734-640	D1					Ŭ,	gen		grease										
	· · · · · · · · · · · · · · · · · · ·	-		N	latr	ix			Pres	serv	ative	,	L L L	lõ	15	& gre										
Lab No.	Sample ID.	Samplin Tim	•	Soil	Water	114310	# of Containers	HCL	H ₂ SO ₄	HNO3	ШO		TPH-g, BTEX, MtBE	Gasoline Oxvoenates	TPH-d 8015	TPH-oil 8										
	Effluent	1/2/13 /1); 0}	\square	*	T	3 VOAs	*			*		*	*		ľ							+			
2	Effluent	7/3/13 0			*		1-1 L Amber				*				*											
3	Effluent	7/3/13			*		1-1 L Amber	*			*					*							1			
																						_	\square			
				+	+	+		\vdash	\vdash				-	┢	+						-		\dashv	\dashv		
				+	+	_		-		ļ				-										\dashv		
					+	+			+					╈									+			
Notes	EDF OUTPUT REQUIRE	 ה					JISHED BY:						, RI				<u> </u> 2 V •			L						
	GasOx: DIPE, ETBE, TAME, TBA						rlen			3/12		<u>4,</u> '0_'3 E/TIM	3		2	+ ;	Д,	\sim	<u> </u>	Ļ	7	T3,		3		7:3 3 AM
											DAT	E/TIM	E							. /			DAT	E/TI	ME	
											DAT	E/TIM	E										DAT	E/TI	IME	

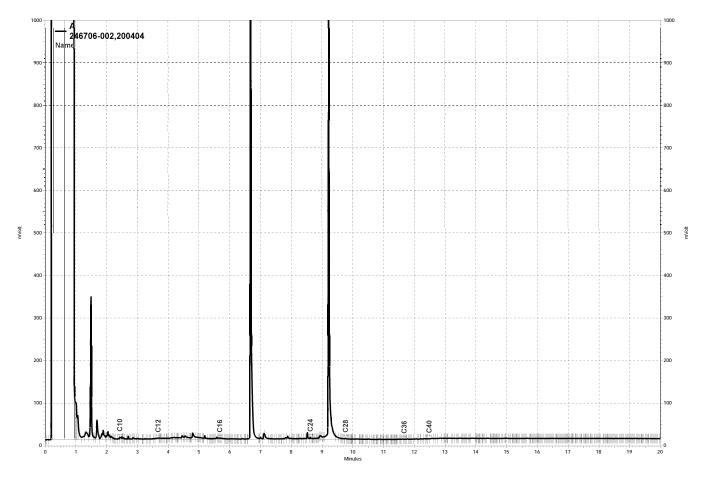
3 of 14

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # $\frac{246786}{\text{SoMA}}$ Date Received $\frac{7/3/13}{\text{Project } 2899 \text{Mcur}}$ Number	r of coolers O ntain <u>Bluch</u>
Date Opened 7/3// By (print) (sign) (sign)	fle
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler on a How many Name Date 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form 6. Indicate the packing in cooler: (if other, describe) 	YES NO NA
Cloth material Cardboard Styrofoam 7. Temperature documentation: * Notify PM if temperature exceeds 6	
Type of ice used: 🗌 Wet 🗌 Blue/Gel 🔄 None Temp	
 Samples Received on ice & cold without a temperature blank; te Samples received on ice directly from the field. Cooling process 	
 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 	YES NO
9. Did all bottles arrive unbroken/unopened?	YES NO
10. Are there any missing / extra samples?	YES NO
12. Are sample labels present, in good condition and complete?	TES NO
13. Do the sample labels agree with custody papers?	
14. Was sufficient amount of sample sent for tests requested?	YES NO
15. Are the samples appropriately preserved?	
16. Did you check preservatives for all bottles for each sample?	YES_NO N/A
	YES NO N/A YES NO MA
	YES NO MA YES NO MA
17. Did you document your preservative check?18. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO MA YES NO MA YES NO MA
 17. Did you document your preservative check?	YES NO MA YES NO MA YES NO MA YES NO MA
 17. Did you document your preservative check?	YES NO MA YES NO MA YES NO MA YES NO MA YES NO MA
 17. Did you document your preservative check?	YES NO MA YES NO MA YES NO MA YES NO MA YES NO MA

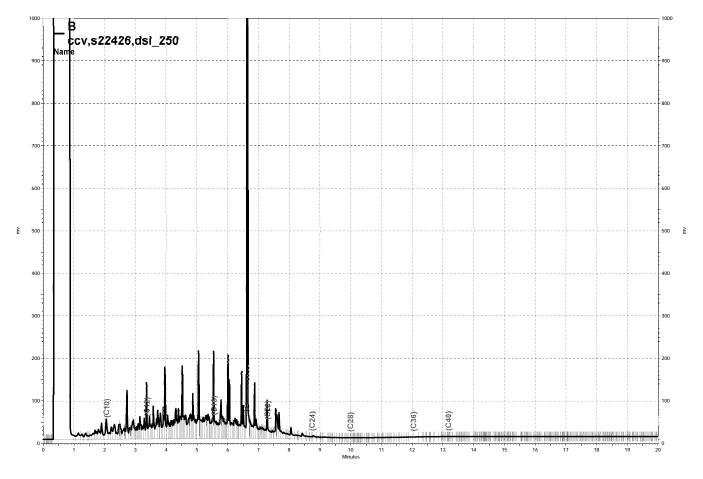
COMMENTS

Rev 10, 11/11

4 of 14



		Total I	Extracta	ble Hydroc	arbo	ns
Lab #:	246706			Location:		2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineer	ing Inc.	Prep:		EPA 3520C
Project#:	5084			Analysis:		EPA 8015B
Field ID:	EFFLUENT			Batch#:		200404
Matrix:	Water			Sampled:		07/03/13
Units:	ug/L			Received:		07/03/13
Diln Fac:	1.000			Prepared:		07/05/13
Type: Lab ID:	SAMPLE 246706-002			Analyzed:		07/08/13
	Analyte		Result		RL	
Diesel Cl(J-C24		100 Y		50	
	Surrogate	%REC	Limits			
o-Terpheny		94	62-133			
Type: Lab ID:	BLANK QC696613			Analyzed:		07/07/13
	Analyte		Result		RL	
Diesel ClO	—	NĽ)		50	
	Surrogate	%REC	Limits			
o-Terpheny	_	100	62-133			


Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1

		Total 1	Extracta	ble Hydrocarbo	ns			
Lab #:	246706			Location:	2844 Mountain	Blvd.,	Oakla	nd
Client:	SOMA Environmental	Engineer	ring Inc.	Prep:	EPA 3520C			
Project#:	5084			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	200404			
Units:	ug/L			Prepared:	07/05/13			
Diln Fac:	1.000			Analyzed:	07/08/13			
Type: Lab ID:	BS QC696614			Cleanup Method:	EPA 3630C			
Diesel C10	Analyte		Spiked	Result 2,132	85	Limits 59-120		
				_,				
	Surrogate	%REC	Limits					
o-Terpheny	71	104	62-133					
Type:	BSD			Cleanup Method:	FDA 3630C			
Lab ID:	QC696615				EIA JUJUC			
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel Cl(D-C24		2,500	2,303	92	59-120	8	46
	Surrogate	%REC	Limits					
o-Terpheny	y1	113	62-133					

-\\Lims\gdrive\ezchrom\Projects\GC26\Data\189a013, A

-\Lims\gdrive\ezchrom\Projects\GC15B\Data\188b004, B

Purgeable Organics by GC/MS

Lab #:	246706		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental En	ngineering Inc.	Prep:	EPA 5030B
Project#:	5084		Analysis:	EPA 8260B
Field ID:	EFFLUENT		Batch#:	200418
Lab ID:	246706-001		Sampled:	07/03/13
Matrix:	Water		Received:	07/03/13
Units:	ug/L		Analyzed:	07/08/13
Diln Fac:	1.000			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	98	77–134
1,2-Dichloroethane-d4	129	72-140
Toluene-d8	102	80-120
Bromofluorobenzene	113	80-120

	Purgeable Organics by GC/MS								
Lab #: Client: Project#:	246706 SOMA Environmental 5084	Engineering Inc.	Location: Prep: Analysis:	2844 Mountain Blvd., Oakland EPA 5030B EPA 8260B					
Matrix: Units: Diln Fac:	Water ug/L 1.000		Batch#: Analyzed:	200418 07/08/13					

Type: BS		Lab ID: QC	696675	
Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	116.4	93	37-144
Isopropyl Ether (DIPE)	25.00	21.95	88	52-123
Ethyl tert-Butyl Ether (ETBE)	25.00	24.11	96	57-120
Methyl tert-Amyl Ether (TAME)	25.00	24.27	97	59-120
MTBE	25.00	24.70	99	58-120
1,2-Dichloroethane	25.00	29.91	120	73-136
Benzene	25.00	23.37	93	78-125
Toluene	25.00	25.24	101	79-123
1,2-Dibromoethane	25.00	24.04	96	78-120
Ethylbenzene	25.00	26.60	106	80-126
m,p-Xylenes	50.00	49.54	99	80-123
o-Xylene	25.00	23.35	93	75-120
Gurrogato	%REC Limits			
Surrogate Dibromofluoromethane	100 77-134			
1,2-Dichloroethane-d4	124 72-140			
Toluene-d8	103 80-120			
Bromofluorobenzene	115 80-120			

Type: BSD	Lab ID	: QC6966	576			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	119.5	96	37-144	3	31
Isopropyl Ether (DIPE)	25.00	21.58	86	52-123	2	20
Ethyl tert-Butyl Ether (ETBE)	25.00	24.00	96	57-120	0	23
Methyl tert-Amyl Ether (TAME)	25.00	24.27	97	59-120	0	22
MTBE	25.00	24.92	100	58-120	1	23
1,2-Dichloroethane	25.00	29.42	118	73-136	2	20
Benzene	25.00	23.49	94	78-125	1	20
Toluene	25.00	25.11	100	79-123	1	20
1,2-Dibromoethane	25.00	24.35	97	78-120	1	20
Ethylbenzene	25.00	26.43	106	80-126	1	20
m,p-Xylenes	50.00	49.09	98	80-123	1	20
o-Xylene	25.00	23.13	93	75-120	1	20
Gummagata	%REC Limits					
Surrogate Dibromofluoromethane	99 77-134					
	123 $72-140$					
1,2-Dichloroethane-d4						
Toluene-d8	104 80-120					
Bromofluorobenzene	114 80-120					

Purgeable Organics by GC/MS							
Lab #:	246706		Location:	2844 Mountain Blvd., Oakland			
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B			
Project#:	5084		Analysis:	EPA 8260B			
Matrix:	Water		Batch#:	200418			
Units:	ug/L		Analyzed:	07/08/13			
Diln Fac:	1.000						

Type:

Bromofluorobenzene

BS

115

Lab ID:

QC696677

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	919.6	92	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	100	77-134
1,2-Dichloroethane-d4	128	72-140
Toluene-d8	106	80-120
Bromofluorobenzene	114	80-120

Туре:	BSD			Lab ID:	QC	2696678			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C	7-C12		1,000		889.1	89	80-120	3	20
	-	0.5.5.6							
	Surrogate	%REC	Limits						
Dibromoflue	oromethane	95	77-134						
1,2-Dichlor	roethane-d4	116	72-140						
Toluene-d8		107	80-120						

80-120

Purgeable Organics by GC/MS								
Lab #:	246706	Location:	2844 Mountain Blvd., Oakland					
Client:	SOMA Environmental Engineering Inc	. Prep:	EPA 5030B					
Project#:	5084	Analysis:	EPA 8260B					
Type:	BLANK	Diln Fac:	1.000					
Lab ID:	QC696679	Batch#:	200418					
Matrix:	Water	Analyzed:	07/08/13					
Units:	ug/L							

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	96	77–134
1,2-Dichloroethane-d4	113	72-140
Toluene-d8	108	80-120
Bromofluorobenzene	117	80-120

Total Oil & Grease (HEM)						
Lab #:	246706	Location:	2844 Mountain Blvd., Oakland			
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD			
Project#:	5084	Analysis:	EPA 1664A			
Analyte:	Oil & Grease (HEM)	Batch#:	200357			
Field ID:	EFFLUENT	Sampled:	07/03/13			
Matrix:	Water	Received:	07/03/13			
Units:	mg/L	Analyzed:	07/03/13			

Туре	Lab ID	Result	RL	Diln Fac	
SAMPLE	246706-003	ND	4.85	0.9700	
BLANK	QC696413	ND	5.00	1.000	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Total Oil & Grease (HEM)							
Lab #:	246706	Location:	2844 Mountain Blvd., Oakland				
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD				
Project#:	5084	Analysis:	EPA 1664A				
Analyte:	Oil & Grease (HEM)	Diln Fac:	1.000				
Matrix:	Water	Batch#:	200357				
Units:	mg/L	Analyzed:	07/03/13				
0111 00		Initial y Deta	01,00,10				

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC696414	40.00	36.40	91	78-114		
BSD	QC696415	40.00	39.80	100	78-114	9	18

Laboratory Job Number 251253 ANALYTICAL REPORT

6620 Owens Dr.LocationPleasanton, CA 94588Level	n	:	5084 2844 Mountain Blvd., Oak II	land
---	---	---	--	------

<u>Sample ID</u>	<u>Lab ID</u>
EFF MPE	251253-001
INF MPE	251253-002

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Trag

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>12/06/2013</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 251253 SOMA Environmental Engineering Inc. 5084 2844 Mountain Blvd., Oakland 12/02/13 12/02/13

This data package contains sample and QC results for two air samples, requested for the above referenced project on 12/02/13. The samples were received cold and intact.

Volatile Organics in Air by MS (EPA TO-15):

High response was observed for 2-hexanone in the ICV analyzed 12/04/13 08:12; affected data was qualified with "b". Low responses were observed for naphthalene and 1,2,4-trichlorobenzene in the CCV analyzed 12/04/13 20:32; affected data was qualified with "b". Low recoveries were observed for naphthalene and 1,2,4-trichlorobenzene in the BS for batch 205760; these low recoveries were not associated with any reported results. High RPD was also observed for naphthalene and 1,2,4-trichlorobenzene in the BS/BSD for batch 205760; the high RPD was not associated with any reported results. No other analytical problems were encountered.

Volatile Organics in Air GC (EPA TO-3):

No analytical problems were encountered.

CHAIN OF CUSTODY

Page	of	

Analyses

Cur	tis & Tompkins, Ltd.													ı	An	alys	ses				
Anal	ytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax					<u>25125</u>	53														
Duele a						ud Sepehr															
	t No: 5084	Repo				Joyce Bob															
Projec	t Name: 2844 Mountain Blvd	., Oakland, CA Com	pan	ıy :		SOMA Envi	ron	men	Ital												
Turna	round Time: Standard	Telep	sho	ne		925-734-64	00														
		Fax:				925-734-64	01														
				Ma	trix			Pre	serv	ativ	'e										
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	<u>Waste</u> Air	# of Containers	HCL	H ₂ SO ₄	HNO ₃	ICE	NONE	TO-3	TO-15								
1	EFF MPE	12,2,13,-4	+-		*	Tedlar bag				+	*	*	*						-	+	
2	INF MPE	1	T		*	Tedlar bag					*	*	*]
			+								 						┝──┾	\rightarrow		\downarrow	
			+				<u> </u>			-		-		-			\vdash	+	+	+	-
			┿				+	╆┈		+					\vdash		┢──╋	-+	+	┢	
										1]
			\bot														Ш			\square	4
Notes	EDF OUTPUT REQUIRE		╞																		4
						12,2,1			T	DA	TE/TIM	-			3,	5	7 <u>7</u>	-2- C	-/3 DATE/	Э /TIME	5 1
				2						DA	TE/TIM	E	ر 				<u> </u>	C	DATE/	/TIME	
										DA	TE/TIM	E						C			

3 of 25

COOLER RECEIPT CHECKLIST

ct	Curtis &	Tompkins,	Ltd.
----	----------	-----------	------

Login # 251253 Date Received 12/2/13 Number of coolers_ Client SOMA ENVIRONMENTAL Project 2844 MOUNTAIN BLVD, OAKLAND, CA 5084) Date Opened <u>12/13</u> By (print) <u>1/k</u> Date Logged in By (print) (sign) Jing Raika Date Logged in 📜 By (print) (sign) 1. Did cooler come with a shipping slip (airbill, etc) YES ÍNO Shipping info 2A. Were custody seals present? \Box YES (circle) on cooler on samples **X**NO How many _____ Name ____ Date ____ 2B. Were custody seals intact upon arrival? YES NO NA 3. Were custody papers dry and intact when received? VES NO 4. Were custody papers filled out properly (ink, signed, etc)? KES NO 5. Is the project identifiable from custody papers? (If so fill out top of form) KES NO 6. Indicate the packing in cooler: (if other, describe) 🗌 Bubble Wrap ☐ Foam blocks Bags X None Styrofoam Paper towels \Box Cloth material \Box Cardboard 7. Temperature documentation: * Notify PM if temperature exceeds 6°C Type of ice used: 🗌 Wet 🗌 Blue/Gel None Temp(°C) Samples Received on ice & cold without a temperature blank; temp. taken with IR gun □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? YES NO If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened?_____ VES NO 10. Are there any missing / extra samples? YES NO 11. Are samples in the appropriate containers for indicated tests? ______ TES NO 12. Are sample labels present, in good condition and complete? ______ NO 13. Do the sample labels agree with custody papers? KES NO 14. Was sufficient amount of sample sent for tests requested? YES NO 15. Are the samples appropriately preserved? ____YES NO NA 16. Did you check preservatives for all bottles for each sample? _____YES NO 17. Did you document your preservative check? YES NO 🔇 18. Did you change the hold time in LIMS for unpreserved VOAs? _____YES NO

 19. Did you change the hold time in LIMS for preserved terracores?
 YES
 NO

 20. Are bubbles > 6mm absent in VOA samples?
 YES
 NO

 21. Was the client contacted concerning this sample delivery? _____ YES If YES, Who was called? _____ By ____ Date: COMMENTS

Rev 10, 11/11

4 of 25

Lab #:	251253	Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	5084	Analysis:	EPA TO-15
Field ID:	EFF MPE	Diln Fac:	1.000
Lab ID:	251253-001	Batch#:	205704
Matrix:	Air	Sampled:	12/02/13
Units (V)	: ppbv	Received:	12/02/13
Units (M)	: ug/m3	Analyzed:	12/04/13

Analyte	Result (V)	RL	Result	(M) RL
Freon 12	ND	0.50	ND	2.5
Freon 114	ND	0.50	ND	3.5
Chloromethane	ND	0.50	ND	1.0
Vinyl Chloride	ND	0.50	ND	1.3
1,3-Butadiene	ND	0.50	ND	1.1
Bromomethane	ND	0.50	ND	1.9
Chloroethane	ND	0.50	ND	1.3
Trichlorofluoromethane	ND	0.50	ND	2.8
Acrolein	ND	2.0	ND	4.6
1,1-Dichloroethene	ND	0.50	ND	2.0
Freon 113	ND	0.50	ND	3.8
Acetone	31	2.0	74	4.8
Carbon Disulfide	ND	0.50	ND	1.6
Methylene Chloride	ND	0.50	ND	1.7
trans-1,2-Dichloroethene	ND	0.50	ND	2.0
MTBE	2.5	0.50	9.1	1.8
n-Hexane	ND	0.50	ND	1.8
1,1-Dichloroethane	ND	0.50	ND	2.0
Vinyl Acetate	ND	0.50	ND	1.8
cis-1,2-Dichloroethene	ND	0.50	ND	2.0
2-Butanone	23	0.50	68	1.5
Ethyl Acetate	0.75	0.50	2.7	1.8
Tetrahydrofuran	14	0.50	41	1.5
Chloroform	ND	0.50	ND	2.4
1,1,1-Trichloroethane	ND	0.50	ND	2.7
Cyclohexane	ND	0.50	ND	1.7
Carbon Tetrachloride	ND	0.50	ND	3.1
Benzene	0.50	0.50	1.6	1.6
1,2-Dichloroethane	ND	0.50	ND	2.0
n-Heptane	ND	0.50	ND	2.0
Trichloroethene	0.79	0.50	4.3	2.7
1,2-Dichloropropane	ND	0.50	ND	2.3
Bromodichloromethane	ND	0.50	ND	3.4
cis-1,3-Dichloropropene	ND	0.50	ND	2.3
4-Methyl-2-Pentanone	ND	0.50	ND	2.0

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 1 of 2

Lab #:	251253		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD
Project#:	5084		Analysis:	EPA TO-15
Field ID:	EFF MPE		Diln Fac:	1.000
Lab ID:	251253-001		Batch#:	205704
Matrix:	Air		Sampled:	12/02/13
Units (V)	: ppbv		Received:	12/02/13
Units (M)	ug/m3		Analyzed:	12/04/13

Analyte	Result (V)	RL	Result	(M) RL
Toluene	3.7	0.50	14	1.9
trans-1,3-Dichloropropene	ND	0.50	ND	2.3
1,1,2-Trichloroethane	ND	0.50	ND	2.7
Tetrachloroethene	1.1	0.50	7.7	3.4
2-Hexanone	ND	0.50	ND	2.0
Dibromochloromethane	ND	0.50	ND	4.3
1,2-Dibromoethane	ND	0.50	ND	3.8
Chlorobenzene	ND	0.50	ND	2.3
Ethylbenzene	0.93	0.50	4.0	2.2
m,p-Xylenes	4.2	0.50	18	2.2
o-Xylene	1.3	0.50	5.8	2.2
Styrene	ND	0.50	ND	2.1
Bromoform	ND	0.50	ND	5.2
1,1,2,2-Tetrachloroethane	ND	0.50	ND	3.4
4-Ethyltoluene	0.85	0.50	4.2	2.5
1,3,5-Trimethylbenzene	1.2	0.50	6.0	2.5
1,2,4-Trimethylbenzene	3.5	0.50	17	2.5
1,3-Dichlorobenzene	ND	0.50	ND	3.0
1,4-Dichlorobenzene	ND	0.50	ND	3.0
Benzyl chloride	ND	0.50	ND	2.6
1,2-Dichlorobenzene	ND	0.50	ND	3.0
1,2,4-Trichlorobenzene	ND	0.50	ND	3.7
Hexachlorobutadiene	ND	0.50	ND	5.3
Naphthalene	ND	2.0	ND	10

Surrogate	%REC	Limits
Bromofluorobenzene	94	70-130

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 2 of 2

Lab #:	251253	Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	5084	Analysis:	EPA TO-15
Field ID:	INF MPE	Units (M):	ug/m3
Lab ID:	251253-002	Diln Fac:	10,000
Matrix:	Air	Sampled:	12/02/13
Units (V)	: ppbv	Received:	12/02/13

Analyte	Result (V)	RL	Result (M)	RL	Batch# Analyzed
Freon 12	ND	5,000	ND	25,000	205760 12/05/13
Freon 114	ND	5,000	ND	35,000	205760 12/05/13
Chloromethane	ND	5,000	ND	10,000	205760 12/05/13
Vinyl Chloride	ND	5,000	ND	13,000	205760 12/05/13
1,3-Butadiene	ND	5,000	ND	11,000	205760 12/05/13
Bromomethane	ND	5,000	ND	19,000	205760 12/05/13
Chloroethane	ND	5,000	ND	13,000	205760 12/05/13
Trichlorofluoromethane	ND	5,000	ND	28,000	205760 12/05/13
Acrolein	ND	20,000	ND	46,000	205760 12/05/13
1,1-Dichloroethene	ND	5,000	ND	20,000	205760 12/05/13
Freon 113	ND	5,000	ND	38,000	205760 12/05/13
Acetone	ND	20,000	ND	48,000	205760 12/05/13
Carbon Disulfide	ND	5,000	ND	16,000	205760 12/05/13
Methylene Chloride	ND	5,000	ND	17,000	205760 12/05/13
trans-1,2-Dichloroethene	ND	5,000	ND	20,000	205760 12/05/13
MTBE	490,000	5,000	1,800,000	18,000	205760 12/05/13
n-Hexane	35,000	5,000	120,000	18,000	205760 12/05/13
1,1-Dichloroethane	ND	5,000	ND	20,000	205760 12/05/13
Vinyl Acetate	ND	5,000	ND	18,000	205760 12/05/13
cis-1,2-Dichloroethene	ND	5,000	ND	20,000	205760 12/05/13
2-Butanone	ND	5,000	ND	15,000	205760 12/05/13
Ethyl Acetate	ND	5,000	ND	18,000	205760 12/05/13
Tetrahydrofuran	ND	5,000	ND	15,000	205760 12/05/13
Chloroform	ND	5,000	ND	24,000	205760 12/05/13
1,1,1-Trichloroethane	ND	5,000	ND	27,000	205760 12/05/13
Cyclohexane	71,000	5,000	240,000	17,000	205760 12/05/13
Carbon Tetrachloride	ND	5,000	ND	31,000	205760 12/05/13
Benzene	20,000	5,000	65,000	16,000	205760 12/05/13
1,2-Dichloroethane	ND	5,000	ND	20,000	205760 12/05/13
n-Heptane	45,000	5,000	180,000	20,000	205760 12/05/13
Trichloroethene	ND	5,000	ND	27,000	205760 12/05/13
1,2-Dichloropropane	ND	5,000	ND	23,000	205760 12/05/13
Bromodichloromethane	ND	5,000	ND	34,000	205760 12/05/13
cis-1,3-Dichloropropene	ND	5,000	ND	23,000	205760 12/05/13
4-Methyl-2-Pentanone	ND	5,000	ND	20,000	205760 12/05/13
Toluene	ND	5,000	ND	19,000	205760 12/05/13

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 1 of 2

Lab #:	251253	Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	5084	Analysis:	EPA TO-15
Field ID:	INF MPE	Units (M):	ug/m3
Lab ID:	251253-002	Diln Fac:	10,000
Matrix:	Air	Sampled:	12/02/13
Units (V)	: ppbv	Received:	12/02/13

Analyte	Result (V)	RL	Result (M)) RL	Batch# Analyzed
trans-1,3-Dichloropropene	ND	5,000	ND	23,000	205760 12/05/13
1,1,2-Trichloroethane	ND	5,000	ND	27,000	205760 12/05/13
Tetrachloroethene	ND	5,000	ND	34,000	205760 12/05/13
2-Hexanone	ND	5,000	ND	20,000	205760 12/05/13
Dibromochloromethane	ND	5,000	ND	43,000	205760 12/05/13
1,2-Dibromoethane	ND	5,000	ND	38,000	205760 12/05/13
Chlorobenzene	ND	5,000	ND	23,000	205760 12/05/13
Ethylbenzene	32,000	5,000	140,000	22,000	205760 12/05/13
m,p-Xylenes	64,000	5,000	280,000	22,000	205760 12/05/13
o-Xylene	ND	5,000	ND	22,000	205760 12/05/13
Styrene	ND	5,000	ND	21,000	205760 12/05/13
Bromoform	ND	5,000	ND	52,000	205760 12/05/13
1,1,2,2-Tetrachloroethane	ND	5,000	ND	34,000	205760 12/05/13
4-Ethyltoluene	ND	5,000	ND	25,000	205760 12/05/13
1,3,5-Trimethylbenzene	ND	5,000	ND	25,000	205760 12/05/13
1,2,4-Trimethylbenzene	ND	5,000	ND	25,000	205760 12/05/13
1,3-Dichlorobenzene	ND	5,000	ND	30,000	205760 12/05/13
1,4-Dichlorobenzene	ND	5,000	ND	30,000	205760 12/05/13
Benzyl chloride	ND	5,000	ND	26,000	205760 12/05/13
1,2-Dichlorobenzene	ND	5,000	ND	30,000	205760 12/05/13
1,2,4-Trichlorobenzene	ND	5,000	ND	37,000	205704 12/04/13
Hexachlorobutadiene	ND	5,000	ND	53,000	205760 12/05/13
Naphthalene	ND	20,000	ND	100,000	205704 12/04/13

Surrogate	%REC	Limits	Batch# Analyzed
Bromofluorobenzene	101	70-130	205760 12/05/13

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 2 of 2

		Volatile Or	ganics in Air	
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD
Project#:	5084		Analysis:	EPA TO-15
Matrix:	Air		Batch#:	205704
Units (V):	ppbv		Analyzed:	12/03/13
Diln Fac:	1.000			

Type:

BS

Lab ID:

QC718647

Analyte	Spiked	Result (V)	%REC	Limits
Freon 12	10.00	9.796	98	70-130
Freon 114	10.00	9.982	100	70-130
Chloromethane	10.00	8.616	86	70-130
Vinyl Chloride	10.00	10.11	101	70-130
1,3-Butadiene	10.00	9.452	95	70-130
Bromomethane	10.00	9.712	97	70-130
Chloroethane	10.00	10.40	104	70-130
Trichlorofluoromethane	10.00	10.11	101	70-130
Acrolein	10.00	9.440	94	62-130
1,1-Dichloroethene	10.00	9.304	93	70-130
Freon 113	10.00	9.608	96	70-130
Acetone	10.00	10.31	103	67-130
Carbon Disulfide	10.00	8.775	88	70-130
Methylene Chloride	10.00	8.912	89	68-130
trans-1,2-Dichloroethene	10.00	10.41	104	70-130
MTBE	10.00	10.21	102	70-130
n-Hexane	10.00	9.420	94	70-130
1,1-Dichloroethane	10.00	9.975	100	70-130
Vinyl Acetate	10.00	12.31	123	70-130
cis-1,2-Dichloroethene	10.00	10.16	102	70-130
2-Butanone	10.00	10.49	105	70-130
Ethyl Acetate	10.00	10.41	104	70-130
Tetrahydrofuran	10.00	10.65	106	70-130
Chloroform	10.00	9.843	98	70-130
1,1,1-Trichloroethane	10.00	10.71	107	70-130
Cyclohexane	10.00	10.92	109	70-130
Carbon Tetrachloride	10.00	10.72	107	70-130
Benzene	10.00	10.24	102	70-130
1,2-Dichloroethane	10.00	11.38	114	70-130
n-Heptane	10.00	10.55	105	70-130
Trichloroethene	10.00	10.59	106	70-130
1,2-Dichloropropane	10.00	10.96	110	70-130
Bromodichloromethane	10.00	10.67	107	70-130
cis-1,3-Dichloropropene	10.00	11.29	113	70-130

RPD= Relative Percent Difference Result V= Result in volume units Page 1 of 4

		Volatile Or	ganics in Air	
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD
Project#:	5084		Analysis:	EPA TO-15
Matrix:	Air		Batch#:	205704
Units (V)	: ppbv		Analyzed:	12/03/13
Diln Fac:	1.000			

Analyte	Spiked	Result (V)	%REC	Limits
4-Methyl-2-Pentanone	10.00	12.00	120	70-130
Toluene	10.00	10.90	109	70-130
trans-1,3-Dichloropropene	10.00	11.72	117	70-130
1,1,2-Trichloroethane	10.00	10.89	109	70-130
Tetrachloroethene	10.00	10.47	105	70-130
2-Hexanone	10.00	11.72	117	70-130
Dibromochloromethane	10.00	11.00	110	70-130
1,2-Dibromoethane	10.00	10.93	109	70-130
Chlorobenzene	10.00	10.04	100	70-130
Ethylbenzene	10.00	10.06	101	70-130
m,p-Xylenes	20.00	19.43	97	70-130
o-Xylene	10.00	9.991	100	70-130
Styrene	10.00	10.87	109	70-130
Bromoform	10.00	10.82	108	70-130
1,1,2,2-Tetrachloroethane	10.00	10.67	107	70-130
4-Ethyltoluene	10.00	11.69	117	70-130
1,3,5-Trimethylbenzene	10.00	11.72	117	70-130
1,2,4-Trimethylbenzene	10.00	11.49	115	70-130
1,3-Dichlorobenzene	10.00	10.52	105	70-130
1,4-Dichlorobenzene	10.00	10.57	106	70-130
Benzyl chloride	10.00	11.38	114	70-130
1,2-Dichlorobenzene	10.00	10.39	104	70-130
1,2,4-Trichlorobenzene	10.00	11.53	115	62-130
Hexachlorobutadiene	10.00	10.78	108	68-130
Naphthalene	10.00	11.86	119	54-136

Surrogate	%REC	Limits
Bromofluorobenzene	113	70-130

RPD= Relative Percent Difference Result V= Result in volume units Page 2 of 4

		Volatile Or	ganics in Air	
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD
Project#:	5084		Analysis:	EPA TO-15
Matrix:	Air		Batch#:	205704
Units (V):	ppbv		Analyzed:	12/03/13
Diln Fac:	1.000			

Type:

BSD

Lab ID:

QC718648

Analyte	Spiked	Result (V)	%REC	Limits	RPD	Lim
Freon 12	10.00	9.772	98	70-130	0	20
Freon 114	10.00	10.01	100	70-130	0	20
Chloromethane	10.00	9.554	96	70-130	10	27
Vinyl Chloride	10.00	10.15	101	70-130	0	23
1,3-Butadiene	10.00	9.522	95	70-130	1	21
Bromomethane	10.00	9.738	97	70-130	0	20
Chloroethane	10.00	10.66	107	70-130	2	20
Trichlorofluoromethane	10.00	9.936	99	70-130	2	20
Acrolein	10.00	9.535	95	62-130	1	31
1,1-Dichloroethene	10.00	9.416	94	70-130	1	20
Freon 113	10.00	9.572	96	70-130	0	23
Acetone	10.00	10.48	105	67-130	2	20
Carbon Disulfide	10.00	8.807	88	70-130	0	20
Methylene Chloride	10.00	8.836	88	68-130	1	23
trans-1,2-Dichloroethene	10.00	10.76	108	70-130	3	20
MTBE	10.00	10.27	103	70-130	1	20
n-Hexane	10.00	9.715	97	70-130	3	20
1,1-Dichloroethane	10.00	10.23	102	70-130	3	20
Vinyl Acetate	10.00	12.56	126	70-130	2	21
cis-1,2-Dichloroethene	10.00	10.24	102	70-130	1	20
2-Butanone	10.00	10.55	106	70-130	1	20
Ethyl Acetate	10.00	10.66	107	70-130	2	20
Tetrahydrofuran	10.00	11.00	110	70-130	3	20
Chloroform	10.00	9.729	97	70-130	1	20
1,1,1-Trichloroethane	10.00	10.88	109	70-130	2	20
Cyclohexane	10.00	11.25	112	70-130	3	20
Carbon Tetrachloride	10.00	10.96	110	70-130	2	20
Benzene	10.00	10.89	109	70-130	6	20
1,2-Dichloroethane	10.00	11.87	119	70-130	4	20
n-Heptane	10.00	10.47	105	70-130	1	20
Trichloroethene	10.00	11.21	112	70-130	б	20
1,2-Dichloropropane	10.00	11.38	114	70-130	4	20
Bromodichloromethane	10.00	11.06	111	70-130	4	20
cis-1,3-Dichloropropene	10.00	12.31	123	70-130	9	20

RPD= Relative Percent Difference Result V= Result in volume units Page 3 of 4

	Volatile Organics in Air					
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD		
Project#:	5084		Analysis:	EPA TO-15		
Matrix:	Air		Batch#:	205704		
Units (V)	ppbv		Analyzed:	12/03/13		
Diln Fac:	1.000					

Analyte	Spiked	Result (V)	%REC	Limits	RPD	Lim
4-Methyl-2-Pentanone	10.00	12.74	127	70-130	б	20
Toluene	10.00	10.76	108	70-130	1	23
trans-1,3-Dichloropropene	10.00	12.43	124	70-130	б	20
1,1,2-Trichloroethane	10.00	11.64	116	70-130	7	20
Tetrachloroethene	10.00	11.17	112	70-130	6	20
2-Hexanone	10.00	11.54	115	70-130	2	21
Dibromochloromethane	10.00	11.74	117	70-130	7	20
1,2-Dibromoethane	10.00	11.60	116	70-130	6	20
Chlorobenzene	10.00	9.992	100	70-130	1	21
Ethylbenzene	10.00	9.551	96	70-130	5	20
m,p-Xylenes	20.00	18.64	93	70-130	4	20
o-Xylene	10.00	9.733	97	70-130	3	20
Styrene	10.00	10.32	103	70-130	5	21
Bromoform	10.00	11.42	114	70-130	5	20
1,1,2,2-Tetrachloroethane	10.00	11.28	113	70-130	6	24
4-Ethyltoluene	10.00	11.49	115	70-130	2	22
1,3,5-Trimethylbenzene	10.00	11.87	119	70-130	1	23
1,2,4-Trimethylbenzene	10.00	11.43	114	70-130	1	24
1,3-Dichlorobenzene	10.00	10.08	101	70-130	4	22
1,4-Dichlorobenzene	10.00	10.15	101	70-130	4	22
Benzyl chloride	10.00	11.03	110	70-130	3	21
1,2-Dichlorobenzene	10.00	9.931	99	70-130	5	22
1,2,4-Trichlorobenzene	10.00	11.74	117	62-130	2	28
Hexachlorobutadiene	10.00	10.56	106	68-130	2	27
Naphthalene	10.00	11.80	118	54-136	0	29

Surrogate	%REC	Limits
Bromofluorobenzene	113	70-130

RPD= Relative Percent Difference Result V= Result in volume units Page 4 of 4

Volatile Organics in Air						
Lab #:	251253	Location:	2844 Mountain Blvd., Oakland			
Client:	SOMA Environmental Engineering Inc.	. Prep:	METHOD			
Project#:	5084	Analysis:	EPA TO-15			
Type:	BLANK	Units (M):	ug/m3			
Lab ID:	QC718649	Diln Fac:	1.000			
Matrix:	Air	Batch#:	205704			
Units (V)	ppbv	Analyzed:	12/03/13			

Analyte	Result (V)	RL	Resul	
Freon 12	ND	0.50	ND	2.5
Freon 114	ND	0.50	ND	3.5
Chloromethane	ND	0.50	ND	1.0
Vinyl Chloride	ND	0.50	ND	1.3
1,3-Butadiene	ND	0.50	ND	1.1
Bromomethane	ND	0.50	ND	1.9
Chloroethane	ND	0.50	ND	1.3
Trichlorofluoromethane	ND	0.50	ND	2.8
Acrolein	ND	2.0	ND	4.6
1,1-Dichloroethene	ND	0.50	ND	2.0
Freon 113	ND	0.50	ND	3.8
Acetone	ND	2.0	ND	4.8
Carbon Disulfide	ND	0.50	ND	1.6
Methylene Chloride	ND	0.50	ND	1.7
trans-1,2-Dichloroethene	ND	0.50	ND	2.0
MTBE	ND	0.50	ND	1.8
n-Hexane	ND	0.50	ND	1.8
1,1-Dichloroethane	ND	0.50	ND	2.0
Vinyl Acetate	ND	0.50	ND	1.8
cis-1,2-Dichloroethene	ND	0.50	ND	2.0
2-Butanone	ND	0.50	ND	1.5
Ethyl Acetate	ND	0.50	ND	1.8
Tetrahydrofuran	ND	0.50	ND	1.5
Chloroform	ND	0.50	ND	2.4
1,1,1-Trichloroethane	ND	0.50	ND	2.7
Cyclohexane	ND	0.50	ND	1.7
Carbon Tetrachloride	ND	0.50	ND	3.1
Benzene	ND	0.50	ND	1.6
1,2-Dichloroethane	ND	0.50	ND	2.0
n-Heptane	ND	0.50	ND	2.0
Trichloroethene	ND	0.50	ND	2.7
1,2-Dichloropropane	ND	0.50	ND	2.3
Bromodichloromethane	ND	0.50	ND	3.4
cis-1,3-Dichloropropene	ND	0.50	ND	2.3
4-Methyl-2-Pentanone	ND	0.50	ND	2.0

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 1 of 2

Volatile Organics in Air						
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental Er	ngineering Inc.	Prep:	METHOD		
Project#:	5084		Analysis:	EPA TO-15		
Type:	BLANK		Units (M):	ug/m3		
Lab ID:	QC718649		Diln Fac:	1.000		
Matrix:	Air		Batch#:	205704		
Units (V):	ppbv		Analyzed:	12/03/13		

Analyte	Result (V)	RL	Result	(M) RL
Toluene	ND	0.50	ND	1.9
trans-1,3-Dichloropropene	ND	0.50	ND	2.3
1,1,2-Trichloroethane	ND	0.50	ND	2.7
Tetrachloroethene	ND	0.50	ND	3.4
2-Hexanone	ND	0.50	ND	2.0
Dibromochloromethane	ND	0.50	ND	4.3
1,2-Dibromoethane	ND	0.50	ND	3.8
Chlorobenzene	ND	0.50	ND	2.3
Ethylbenzene	ND	0.50	ND	2.2
m,p-Xylenes	ND	0.50	ND	2.2
o-Xylene	ND	0.50	ND	2.2
Styrene	ND	0.50	ND	2.1
Bromoform	ND	0.50	ND	5.2
1,1,2,2-Tetrachloroethane	ND	0.50	ND	3.4
4-Ethyltoluene	ND	0.50	ND	2.5
1,3,5-Trimethylbenzene	ND	0.50	ND	2.5
1,2,4-Trimethylbenzene	ND	0.50	ND	2.5
1,3-Dichlorobenzene	ND	0.50	ND	3.0
1,4-Dichlorobenzene	ND	0.50	ND	3.0
Benzyl chloride	ND	0.50	ND	2.6
1,2-Dichlorobenzene	ND	0.50	ND	3.0
1,2,4-Trichlorobenzene	ND	0.50	ND	3.7
Hexachlorobutadiene	ND	0.50	ND	5.3
Naphthalene	ND	2.0	ND	10

Surrogate	%REC	Limits
Bromofluorobenzene	116	70-130

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 2 of 2

Volatile Organics in Air					
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland	
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD	
Project#:	5084		Analysis:	EPA TO-15	
Matrix:	Air		Batch#:	205760	
Units (V):	ppbv		Analyzed:	12/04/13	
Diln Fac:	1.000				

Type:

BS

Lab ID:

QC718883

Analyte	Spiked	Result (V)	%REC	Limits
Freon 12	10.00	10.26	103	70-130
Freon 114	10.00	10.17	102	70-130
Chloromethane	10.00	9.996	100	70-130
Vinyl Chloride	10.00	9.913	99	70-130
1,3-Butadiene	10.00	9.762	98	70-130
Bromomethane	10.00	10.26	103	70-130
Chloroethane	10.00	8.698	87	70-130
Trichlorofluoromethane	10.00	10.07	101	70-130
Acrolein	10.00	7.902	79	62-130
1,1-Dichloroethene	10.00	9.181	92	70-130
Freon 113	10.00	9.505	95	70-130
Acetone	10.00	8.249	82	67-130
Carbon Disulfide	10.00	7.828	78	70-130
Methylene Chloride	10.00	8.209	82	68-130
trans-1,2-Dichloroethene	10.00	10.36	104	70-130
MTBE	10.00	10.41	104	70-130
n-Hexane	10.00	10.07	101	70-130
1,1-Dichloroethane	10.00	10.20	102	70-130
Vinyl Acetate	10.00	11.96	120	70-130
cis-1,2-Dichloroethene	10.00	9.731	97	70-130
2-Butanone	10.00	10.76	108	70-130
Ethyl Acetate	10.00	9.849	98	70-130
Tetrahydrofuran	10.00	9.920	99	70-130
Chloroform	10.00	10.01	100	70-130
1,1,1-Trichloroethane	10.00	10.19	102	70-130
Cyclohexane	10.00	10.65	107	70-130
Carbon Tetrachloride	10.00	10.10	101	70-130
Benzene	10.00	10.43	104	70-130
1,2-Dichloroethane	10.00	10.54	105	70-130
n-Heptane	10.00	11.04	110	70-130
Trichloroethene	10.00	10.54	105	70-130
1,2-Dichloropropane	10.00	11.01	110	70-130

*= Value outside of QC limits; see narrative b= See narrative RPD= Relative Percent Difference Result V= Result in volume units Page 1 of 4

Volatile Organics in Air					
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland	
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD	
Project#:	5084		Analysis:	EPA TO-15	
Matrix:	Air		Batch#:	205760	
Units (V)	: ppbv		Analyzed:	12/04/13	
Diln Fac:	1.000				

Analyte	Spiked	Result (V)	%REC	Limits
Bromodichloromethane	10.00	10.30	103	70-130
cis-1,3-Dichloropropene	10.00	11.11	111	70-130
4-Methyl-2-Pentanone	10.00	12.02	120	70-130
Toluene	10.00	10.03	100	70-130
trans-1,3-Dichloropropene	10.00	11.23	112	70-130
1,1,2-Trichloroethane	10.00	10.35	104	70-130
Tetrachloroethene	10.00	9.919	99	70-130
2-Hexanone	10.00	12.31 b	123	70-130
Dibromochloromethane	10.00	9.843	98	70-130
1,2-Dibromoethane	10.00	10.34	103	70-130
Chlorobenzene	10.00	9.972	100	70-130
Ethylbenzene	10.00	9.650	97	70-130
m,p-Xylenes	20.00	19.04	95	70-130
o-Xylene	10.00	9.228	92	70-130
Styrene	10.00	11.04	110	70-130
Bromoform	10.00	9.595	96	70-130
1,1,2,2-Tetrachloroethane	10.00	9.782	98	70-130
4-Ethyltoluene	10.00	10.57	106	70-130
1,3,5-Trimethylbenzene	10.00	9.333	93	70-130
1,2,4-Trimethylbenzene	10.00	9.655	97	70-130
1,3-Dichlorobenzene	10.00	9.681	97	70-130
1,4-Dichlorobenzene	10.00	9.412	94	70-130
Benzyl chloride	10.00	10.67	107	70-130
1,2-Dichlorobenzene	10.00	9.329	93	70-130
1,2,4-Trichlorobenzene	10.00	5.380 b	54 *	62-130
Hexachlorobutadiene	10.00	8.215	82	68-130
Naphthalene	10.00	5.074 b	51 *	54-136

Surrogate	%REC	Limits
Bromofluorobenzene	106	70-130

*= Value outside of QC limits; see narrative b= See narrative RPD= Relative Percent Difference Result V= Result in volume units Page 2 of 4

		Volatile Or	ganics in Air	
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD
Project#:	5084		Analysis:	EPA TO-15
Matrix:	Air		Batch#:	205760
Units (V):	ppbv		Analyzed:	12/04/13
Diln Fac:	1.000			

Type:

BSD

Lab ID: QC718884

Analyte	Spiked	Result (V)	%REC	Limits RPD	Lim
Freon 12	10.00	10.02	100	70-130 2	20
Freon 114	10.00	10.14	101	70-130 0	20
Chloromethane	10.00	9.849	98	70-130 1	27
Vinyl Chloride	10.00	9.653	97	70-130 3	23
1,3-Butadiene	10.00	9.600	96	70-130 2	21
Bromomethane	10.00	10.06	101	70-130 2	20
Chloroethane	10.00	8.476	85	70-130 3	20
Trichlorofluoromethane	10.00	9.809	98	70-130 3	20
Acrolein	10.00	7.864	79	62-130 0	31
1,1-Dichloroethene	10.00	9.025	90	70-130 2	20
Freon 113	10.00	9.587	96	70-130 1	23
Acetone	10.00	8.202	82	67-130 1	20
Carbon Disulfide	10.00	7.677	77	70-130 2	20
Methylene Chloride	10.00	8.077	81	68-130 2	23
trans-1,2-Dichloroethene	10.00	10.09	101	70-130 3	20
MTBE	10.00	10.21	102	70-130 2	20
n-Hexane	10.00	9.972	100	70-130 1	20
1,1-Dichloroethane	10.00	10.16	102	70-130 0	20
Vinyl Acetate	10.00	11.92	119	70-130 0	21
cis-1,2-Dichloroethene	10.00	9.704	97	70-130 0	20
2-Butanone	10.00	10.67	107	70-130 1	20
Ethyl Acetate	10.00	9.850	99	70-130 0	20
Tetrahydrofuran	10.00	9.799	98	70-130 1	20
Chloroform	10.00	9.925	99	70-130 1	20
1,1,1-Trichloroethane	10.00	10.34	103	70-130 1	20
Cyclohexane	10.00	10.58	106	70-130 1	20
Carbon Tetrachloride	10.00	10.11	101	70-130 0	20
Benzene	10.00	10.59	106	70-130 2	20
1,2-Dichloroethane	10.00	10.40	104	70-130 1	20
n-Heptane	10.00	11.02	110	70-130 0	20
Trichloroethene	10.00	10.53	105	70-130 0	20
1,2-Dichloropropane	10.00	11.26	113	70-130 2	20

*= Value outside of QC limits; see narrative b= See narrative RPD= Relative Percent Difference Result V= Result in volume units Page 3 of 4

Volatile Organics in Air					
Lab #:	251253		Location:	2844 Mountain Blvd., Oakland	
Client:	SOMA Environmental	Engineering Inc.	Prep:	METHOD	
Project#:	5084		Analysis:	EPA TO-15	
Matrix:	Air		Batch#:	205760	
Units (V)	: ppbv		Analyzed:	12/04/13	
Diln Fac:	1.000				

Analyte	Spiked	Result (V)	%REC	Limits RPD	Lim
Bromodichloromethane	10.00	10.30	103	70-130 0	20
cis-1,3-Dichloropropene	10.00	11.03	110	70-130 1	20
4-Methyl-2-Pentanone	10.00	12.26	123	70-130 2	20
Toluene	10.00	10.32	103	70-130 3	23
trans-1,3-Dichloropropene	10.00	11.27	113	70-130 0	20
1,1,2-Trichloroethane	10.00	10.64	106	70-130 3	20
Tetrachloroethene	10.00	9.846	98	70-130 1	20
2-Hexanone	10.00	13.04 b	130	70-130 6	21
Dibromochloromethane	10.00	10.39	104	70-130 5	20
1,2-Dibromoethane	10.00	10.73	107	70-130 4	20
Chlorobenzene	10.00	10.38	104	70-130 4	21
Ethylbenzene	10.00	9.891	99	70-130 2	20
m,p-Xylenes	20.00	19.99	100	70-130 5	20
o-Xylene	10.00	9.776	98	70-130 6	20
Styrene	10.00	11.31	113	70-130 2	21
Bromoform	10.00	9.974	100	70-130 4	20
1,1,2,2-Tetrachloroethane	10.00	10.15	102	70-130 4	24
4-Ethyltoluene	10.00	10.79	108	70-130 2	22
1,3,5-Trimethylbenzene	10.00	9.734	97	70-130 4	23
1,2,4-Trimethylbenzene	10.00	9.883	99	70-130 2	24
1,3-Dichlorobenzene	10.00	10.18	102	70-130 5	22
1,4-Dichlorobenzene	10.00	10.17	102	70-130 8	22
Benzyl chloride	10.00	11.10	111	70-130 4	21
1,2-Dichlorobenzene	10.00	9.844	98	70-130 5	22
1,2,4-Trichlorobenzene	10.00	10.86 b	109	62-130 67 *	28
Hexachlorobutadiene	10.00	10.42	104	68-130 24	27
Naphthalene	10.00	12.52 b	125	54-136 85 *	29

Bromofluorobenzene	99	0-130	

*= Value outside of QC limits; see narrative b= See narrative RPD= Relative Percent Difference Result V= Result in volume units Page 4 of 4

Volatile Organics in Air					
Lab #:	251253	Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental Engineering Inc	. Prep:	METHOD		
Project#:	5084	Analysis:	EPA TO-15		
Type:	BLANK	Units (M):	ug/m3		
Lab ID:	QC718885	Diln Fac:	1.000		
Matrix:	Air	Batch#:	205760		
Units (V)	ppbv	Analyzed:	12/04/13		

Analyte	Result (V)	RL	Resul	
Freon 12	ND	0.50	ND	2.5
Freon 114	ND	0.50	ND	3.5
Chloromethane	ND	0.50	ND	1.0
Vinyl Chloride	ND	0.50	ND	1.3
1,3-Butadiene	ND	0.50	ND	1.1
Bromomethane	ND	0.50	ND	1.9
Chloroethane	ND	0.50	ND	1.3
Trichlorofluoromethane	ND	0.50	ND	2.8
Acrolein	ND	2.0	ND	4.6
1,1-Dichloroethene	ND	0.50	ND	2.0
Freon 113	ND	0.50	ND	3.8
Acetone	ND	2.0	ND	4.8
Carbon Disulfide	ND	0.50	ND	1.6
Methylene Chloride	ND	0.50	ND	1.7
trans-1,2-Dichloroethene	ND	0.50	ND	2.0
MTBE	ND	0.50	ND	1.8
n-Hexane	ND	0.50	ND	1.8
1,1-Dichloroethane	ND	0.50	ND	2.0
Vinyl Acetate	ND	0.50	ND	1.8
cis-1,2-Dichloroethene	ND	0.50	ND	2.0
2-Butanone	ND	0.50	ND	1.5
Ethyl Acetate	ND	0.50	ND	1.8
Tetrahydrofuran	ND	0.50	ND	1.5
Chloroform	ND	0.50	ND	2.4
1,1,1-Trichloroethane	ND	0.50	ND	2.7
Cyclohexane	ND	0.50	ND	1.7
Carbon Tetrachloride	ND	0.50	ND	3.1
Benzene	ND	0.50	ND	1.6
1,2-Dichloroethane	ND	0.50	ND	2.0
n-Heptane	ND	0.50	ND	2.0
Trichloroethene	ND	0.50	ND	2.7
1,2-Dichloropropane	ND	0.50	ND	2.3
Bromodichloromethane	ND	0.50	ND	3.4
cis-1,3-Dichloropropene	ND	0.50	ND	2.3
4-Methyl-2-Pentanone	ND	0.50	ND	2.0

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 1 of 2

Volatile Organics in Air					
Lab #:	251253	Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental Engineering Inc	c. Prep:	METHOD		
Project#:	5084	Analysis:	EPA TO-15		
Type:	BLANK	Units (M):	ug/m3		
Lab ID:	QC718885	Diln Fac:	1.000		
Matrix:	Air	Batch#:	205760		
Units (V)	ppbv	Analyzed:	12/04/13		

Analyte	Result (V)	RL	Result	(M) RL
Toluene	ND	0.50	ND	1.9
trans-1,3-Dichloropropene	ND	0.50	ND	2.3
1,1,2-Trichloroethane	ND	0.50	ND	2.7
Tetrachloroethene	ND	0.50	ND	3.4
2-Hexanone	ND	0.50	ND	2.0
Dibromochloromethane	ND	0.50	ND	4.3
1,2-Dibromoethane	ND	0.50	ND	3.8
Chlorobenzene	ND	0.50	ND	2.3
Ethylbenzene	ND	0.50	ND	2.2
m,p-Xylenes	ND	0.50	ND	2.2
o-Xylene	ND	0.50	ND	2.2
Styrene	ND	0.50	ND	2.1
Bromoform	ND	0.50	ND	5.2
1,1,2,2-Tetrachloroethane	ND	0.50	ND	3.4
4-Ethyltoluene	ND	0.50	ND	2.5
1,3,5-Trimethylbenzene	ND	0.50	ND	2.5
1,2,4-Trimethylbenzene	ND	0.50	ND	2.5
1,3-Dichlorobenzene	ND	0.50	ND	3.0
1,4-Dichlorobenzene	ND	0.50	ND	3.0
Benzyl chloride	ND	0.50	ND	2.6
1,2-Dichlorobenzene	ND	0.50	ND	3.0
1,2,4-Trichlorobenzene	ND	0.50	ND	3.7
Hexachlorobutadiene	ND	0.50	ND	5.3
Naphthalene	ND	2.0	ND	10

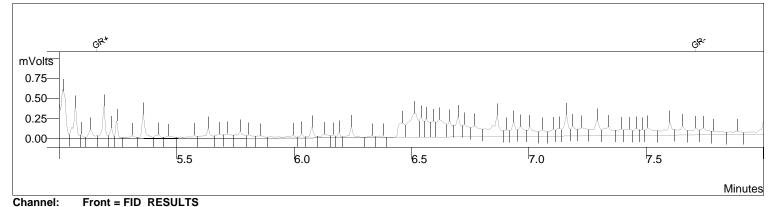
Surrogate	%REC	Limits
Bromofluorobenzene	110	70-130

ND= Not Detected RL= Reporting Limit Result M= Result in mass units Result V= Result in volume units Page 2 of 2

Aromatic / Petroleum Hydrocarbons in Air					
Lab #: 251253	Location:	2844 Mountain Blvd., Oakland			
Client: SOMA Environmental Engineering Inc.	Prep:	METHOD			
Project#: 5084	Analysis:	EPA TO-3			
Analyte: Gasoline Range Organics C6-C12	Batch#:	205673			
Matrix: Air	Sampled:	12/02/13			
Units (V): ppbv	Received:	12/02/13			
Units (M): ug/m3	Analyzed:	12/03/13			

Field ID	Type	Lab ID	Result (V)	RL	MDL	Result (M)	RL	MDL	Diln Fac
EFF MPE	SAMPLE	251253-001	300	25	5.6	1,200	100	23	1.000
INF MPE	SAMPLE	251253-002	1,700,000	2,500	560	7,000,000	10,000	2,300	100.0
	BLANK	QC718532	ND	25	5.6	ND	100	23	1.000

ND= Not Detected RL= Reporting Limit MDL= Method Detection Limit Result M= Result in mass units Result V= Result in volume units Page 1 of 1


Aromatic / Petroleu	m Hydrocarbons	in Air
251253	Location:	2844 Mountain Blvd., Oakland
SOMA Environmental Engineering Inc.	Prep:	METHOD
5084	Analysis:	EPA TO-3
Gasoline Range Organics C6-C12	Diln Fac:	1.000
Air	Batch#:	205673
ppbv	Analyzed:	12/03/13
	251253 SOMA Environmental Engineering Inc. 5084 Gasoline Range Organics C6-C12 Air	SOMA Environmental Engineering Inc.Prep:5084Analysis:Gasoline Range Organics C6-C12Diln Fac:AirBatch#:

Type	Lab ID	Spiked	Result (V)	%REC	Limits	RPD	Lim
BS	QC718530	2,100	2,378	113	70-130		
BSD	QC718531	2,100	2,444	116	70-130	3	25

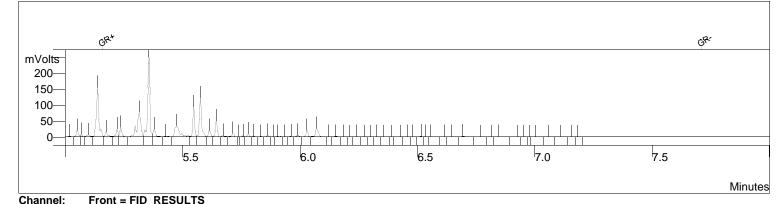
RPD= Relative Percent Difference Result V= Result in volume units Page 1 of 1

GRO by TO-3

Sample ID:	251253-001,205673			
Data File:	c:\varianws\data\120313\337_0	003.run		
Sample List:	c:\varianws\120313.smp			
Method:	c:\varianws\to3_081811.mth			
Acquisition Date:	12/03/2013 12:43:54			
Calculation Date:	12/03/2013 12:55:56			
Instrument ID:	MSAIR03	Operator:	TO-3	
Injection Notes:	1x			
Multiplier:	1.000	Divisor:	1.000	

					•
	Result (ppbv)	Area	Peak Name	RT (min)	#
Integration Parar	296.216	11020	GRO:6-12	6.432	1
Initial Tangent %: Initial Peak Width	296.216	11020	Totals		
IIIIIai Feak Wiulii					

ameters


Initial Tangent %:	0
Initial Peak Width (sec):	4
Initial Peak Reject Value:	50.000
Initial S/N Ratio:	3

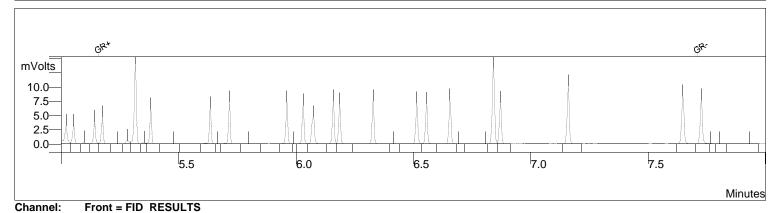
Data Handling Time Events

Time (min)	Event
0.009	II on
4.801	II off
5.157	GR on
7.708	GR off

GRO by TO-3

Sample ID:	251253-002,205673			
Data File:	c:\varianws\data\120313\337_006	5.run		
Sample List:	c:\varianws\120313.smp			
Method:	c:\varianws\to3_081811.mth			
Acquisition Date:	12/03/2013 14:47:00			
Calculation Date:	12/03/2013 14:59:03			
Instrument ID:	MSAIR03	Operator:	TO-3	
Injection Notes:	100x,c00005			
Multiplier:	1.000	Divisor:	1.000	

Unam					
#	RT (min)	Peak Name	Area	Result (ppbv)	
1	6.432	GRO:6-12	634416	17052.563	Integration Parameters
		Totals	634416	17052.563	Initial Tangent %:
		i otalo			Initial Peak Width (sec):


Initial Tangent %:	0
Initial Peak Width (sec):	4
Initial Peak Reject Value:	50.000
Initial S/N Ratio:	3

Data Handling Time Events

Time (min)	Event
5.157	II on II off GR on
7.708	GR off

GRO by TO-3

Sample ID: Data File:	ccv/bs,qc718530 c:\varianws\data\120313\337run								
Sample List:	c:\varianws\120313.smp								
Method:	c:\varianws\to3_081811.mth								
Acquisition Date:	12/03/2013 11:03:42								
Calculation Date:	12/03/2013 11:15:45								
Instrument ID:	MSAIR03	Operator:	TO-3						
Injection Notes:	205673,s23643,1x								
Multiplier:	1.000	Divisor:	1.000						

#	RT (min)	Peak Name	Area	Result (ppbv)
1	6.432	GRO:6-12	88452	2377.515
		Totals	88452	2377.515

Integration Parameters

Initial Tangent %:	0
Initial Peak Width (sec):	4
Initial Peak Reject Value:	50.000
Initial S/N Ratio:	3

Data Handling Time Events

Time (min)	Event
5.157	II on II off GR on GR off

Laboratory Job Number 251991 ANALYTICAL REPORT

SOMA Environmental Engineering Inc. 6620 Owens Dr. Pleasanton, CA 94588	2	: 2844 Mountain Blvd., Oakland
---	---	--------------------------------

<u>Sample ID</u>	<u>Lab ID</u>
RS-3	251991-001
RS-4	251991-002
MW-1	251991-003
MW-2	251991-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Trag

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>01/06/2014</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 251991 SOMA Environmental Engineering Inc. 5081 2844 Mountain Blvd., Oakland 12/30/13 12/30/13

This data package contains sample and QC results for four water samples, requested for the above referenced project on 12/30/13. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High recovery was observed for o-xylene in the BS for batch 206693; the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated samples. No other analytical problems were encountered.

CHAIN OF CUSTODY

Page	 f
•	

	rtis & Tompkins, Ltd	1																	A	nal	yse	S				
Anal	lytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax		LOGIN # <u>ころ(99)</u> Sampler: Lizzie Hightower																							
Projec	ct No: 5081		Re	port	: To	:	Jc	oyce Bobek						6	B											
Projec	ct Name: 2844 Mountain Blvd	I., Oaklan	id Co	mpa	iny	:		SOMA Enviro	<u>nm</u>	enta	al			8260B	8260B											
Turna	round Time: Standard		Tel	leph	one	»:	ę	925-734-6400	b						ates											
			Fax	<u>K:</u>			ę	925-734-6401	1					BTEX, MtBE	ygen											
r	1				Ma	atrix	$\overline{\mathbf{A}}$		\Box	Pres	serva	ativ	e	MTE	ŏ	015										
Lab No.	Sample ID.	-	ling Date ime	B = (Soil Water	Waste		# of Containers	НCГ	H2SO4	HNO3	ICE		TPH-g, E	Gasoline Oxygenates	TPH-d 8015										
	RS-3	12 30	13 12	;01	*	\Box		3 VOAs, 2-500 mL Ambers	*			*		*	*	*										
	RS-4		13.	:30	*		m	3 VOAs, 2-500 mL Ambers	*			*		*	*	*										
	MW-1		12	:35	*			3 VOAs, 2-500 mL Ambers	*			*		*	*	*										
	MW-2	\checkmark	13	:02	*			3 VOAs, 2-500 mL Ambers	*			*		*	*	*										
				+	+	+	╟			<u> </u>	<u> </u>	\vdash	H	┝			┝	+		$\left - \right $	┢──╋	+	+	+	+	
		<u> </u>		4	+	╞	LT.										 				ГÌ	4	_	1	_	_
				+	+	++	H		-	+-		$\left - \right $		┝		┢	┼─	┼─	$\left\{ - \right\}$	$\left - \right $	┝─╋	-+	+	+	+	
		<u> </u>		\neg	\mp	\square	\square			\square	\square	\square	\square			\square	\vdash	\square	F	\square	\square	\neg	\neg	\neg	\neg	
				\pm	\pm	┢	┢															\pm	\pm	\pm	\pm	
Notes	EDF OUTPUT REQUIRE	 ה	<u> </u>					ISHED BY:						RF				 ax//.								
	GasOx: DIPE, ETBE, TAME,	TBA			ال ام ماری	Ð	17	hol		4,1	12/ 48	30 DA			(\mathbb{Z}	<u> -</u>	1	\int		12]	bolle	3 DATI	4 <i>4</i> Е/тіі	hz ME
	ON BLUE	ice		-								DA'	TE/TIME	:		$\overline{}$				<u> </u>			[DATE	<u>=/TI</u>	ME
												DA.	TE/TIME										г	DATE	E/Tľ	ME

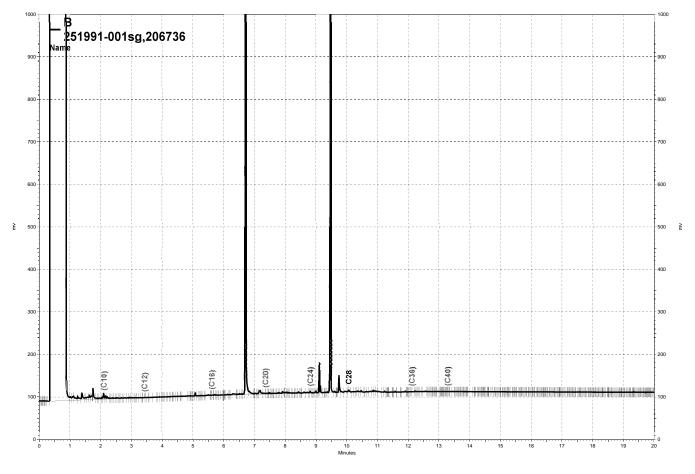
3 of 23

COOLER RECEIPT CHECKLIST

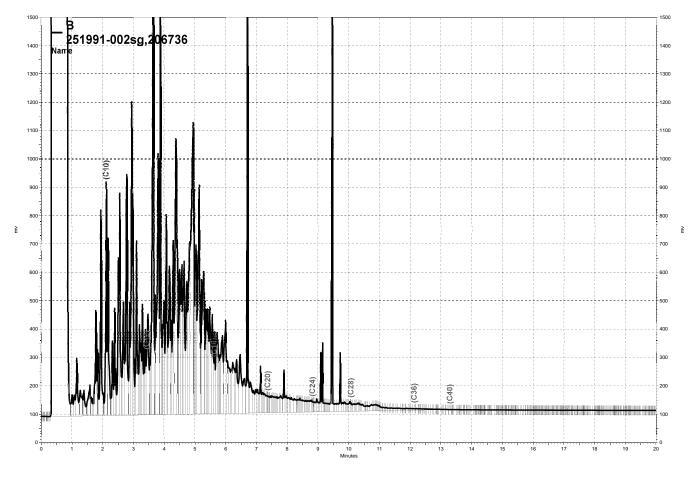
$\begin{array}{c c} \text{Login } \# & \underline{75149} \\ \text{Client} & \underline{50mA} \end{array} \\ \begin{array}{c c} \text{Date Received} & \underline{12/35/13} \\ \text{Project} & \underline{5753} \end{array} \\ \end{array} \\ \begin{array}{c c} \text{Nu} \\ \text{Nu} \\ \end{array}$	mber of coolers
Client <u>SOMA</u> Project <u>503</u>	· · · · · · · · · · · · · · · · · · ·
Date Opened12/30By (print)Image: mage (sign)Date Logged inLBy (print)L(sign)Image (sign)Image (sign)	5/2
Date Logged in <u>t</u> By (print) <u>t</u> (sign)	<u> </u>
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES DO
2A. Were custody seals present? □ YES (circle) on cooler How many Name	on samples QNO Date
 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of 16. Indicate the packing in cooler: (if other, describe) 	YES NO XXX
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation: * Notify PM if temperature excee	□ None □ Paper towels ds 6°C
Trans of the second second	mp(°C)
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling proc	
8. Were Method 5035 sampling containers present?	VER AID
9. Did all bottles arrive unbroken/unopened?	YES NO
11. Are samples in the appropriate containers for indicated tests?	YES O
12. Ale sample labels present, in good condition and complete?	THE NO
13. Do the sample labels agree with custody papers?	VER NO
14. Was sufficient amount of sample sent for tests requested?	
1). Are the samples appropriately programs 10	
15. Are the samples appropriately preserved?	KES NO
16. Did you check preservatives for all bottles for each sample?	VES NO N/A
 Did you check preservatives for all bottles for each sample? Did you document your preservative check? 	YES NO N/A YES NO N/A YES NO ATA
 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for uppreserved VOAs? 	YES NO N/A YES NO N/A YES NO A/A YES NO A/A
 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terresores? 	YES NO YES NO N/A YES NO A/A YES NO A/A YES NO A/A YES NO A/A
 16. Did you check preservatives for all bottles for each sample?	YES NO YES NO N/A YES NO A7A YES NO A7A YES NO A7A YES NO A7A
 16. Did you check preservatives for all bottles for each sample?	YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A
 16. Did you check preservatives for all bottles for each sample?	YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A
 16. Did you check preservatives for all bottles for each sample?	YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A
 16. Did you check preservatives for all bottles for each sample?	YES NO YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO YES NO YES NO Date:
 16. Did you check preservatives for all bottles for each sample?	YES NO YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO Date:

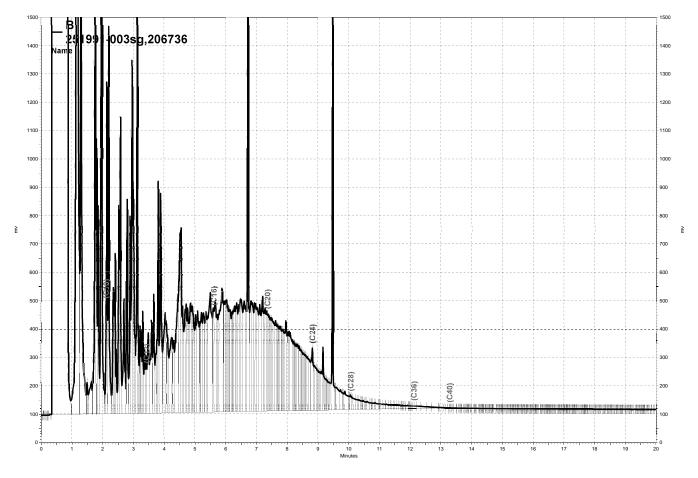
Rev 10; 11/11

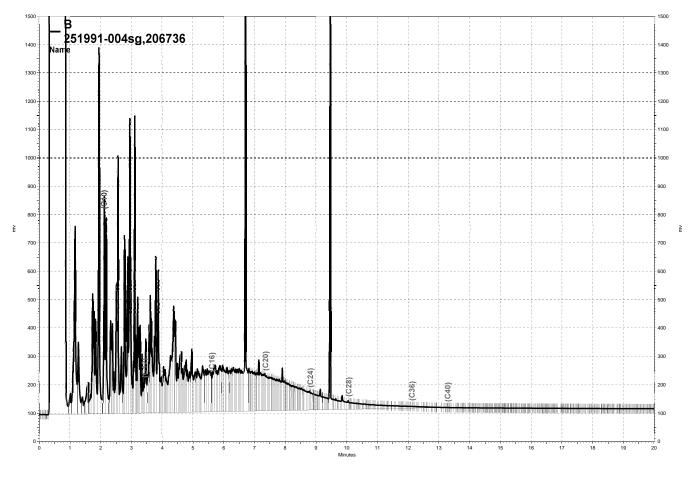
4 of 23

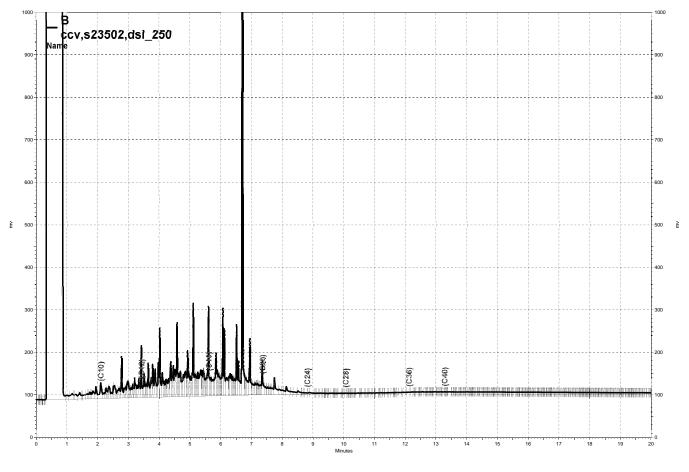


		Total I	Extracta	ble Hydrocarbo	ns
Lab #: 2519	991	J		Location:	2844 Mountain Blvd., Oakland
Client: SOMA Project#: 5081	Environmental	Engineer	ring Inc.	Prep: Analysis:	EPA 3520C EPA 8015B
Matrix: Units:	Water ug/L			Sampled: Received:	12/30/13 12/30/13
Diln Fac:	1.000 206736			Prepared:	01/02/14
Batch#:	200730			Analyzed:	01/03/14
Field ID:	RS-3			Lab ID:	251991-001
Type:	SAMPLE			Cleanup Method:	EPA 3630C
Ana Diesel C10-C24	lyte		Result 61 Y	RL 51	
	rogate	%REC	-		
o-Terphenyl	ogate	102	66-129		
Field ID:	RS-4			Lab ID:	251001 002
Type:	RS-4 SAMPLE			Cleanup Method:	EPA 3630C
Ana	lyte		Result	RL	
Diesel C10-C24			9,900	51	
o-Terphenyl	rogate	%REC 101	Limits 66-129		
Field ID:	MW-1			Lab ID:	251991-003
Type:	SAMPLE			Cleanup Method:	EPA 3630C
Ana Diazal (10, (2))	lyte	1	Result	RL	
Diesel C10-C24			13,000	51	
o-Terphenyl	rogate	%REC 99	Limits 66-129		
Field ID:	MW-2			Lab ID:	251991-004
Type:	SAMPLE			Cleanup Method:	EPA 3630C
Ana	lyte		Result	RL	
Diesel C10-C24			6,300	51	
o-Terphenyl	rogate	%REC 101	Limits 66-129		
Type:	BLANK			Cleanup Method:	EPA 3630C
Lab ID:	QC722815			eleanap neenou.	
Ana	lyte		Result	RL	
Diesel C10-C24		NE		50	
o-Terphenyl	rogate	%REC 88	Limits 66-129		


Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 1\ of\ 1}$


		Total 1	Extracta	ble Hydrocarbo	ns			
Lab #:	251991			Location:	2844 Mountain	Blvd.,	Oakla	nd
Client:	SOMA Environmental	Engineer	ring Inc.	Prep:	EPA 3520C			
Project#:	5081			Analysis:	EPA 8015B			
Matrix:	Water			Batch#:	206736			
Units:	ug/L			Prepared:	01/02/14			
Diln Fac:	1.000			Analyzed:	01/03/14			
Type: Lab ID:	BS 0C722816			Cleanup Method:	EPA 3630C			
Diesel C10	Analyte		Spiked	Result	* % REC	Limits		
Diesel Cit	J-C24		2,500	1,910	76	61-120		
	Surrogate	%REC	Limits					
o-Terpheny	7l	97	66-129					
Type:	BSD			Cleanup Method:	EPA 3630C			
Lab ID:	QC722817							
	Analyte		Spiked	Result	%REC	Limits	RPD	Lim
Diesel Cl(D-C24		2,500	1,986	79	61-120	4	45
	Surrogate	%REC	Limits					
o-Terpheny	/1	99	66-129					


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\003b014, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\003b015, B

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\003b016, B

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\003b017, B

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\003b007, B

Lab #:	251991		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental E	Ingineering Inc.	Prep:	EPA 5030B
Project#:	5081		Analysis:	EPA 8260B
Field ID:	RS-3		Batch#:	206693
Lab ID:	251991-001		Sampled:	12/30/13
Matrix:	Water		Received:	12/30/13
Units:	ug/L		Analyzed:	12/31/13
Diln Fac:	1.000			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	680	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	0.64	0.50	
MTBE	21	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	88	75-139
Toluene-d8	91	80-120
Bromofluorobenzene	96	80-120

Lab #:	251991		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	5081		Analysis:	EPA 8260B
Field ID:	RS-4		Batch#:	206693
Lab ID:	251991-002		Sampled:	12/30/13
Matrix:	Water		Received:	12/30/13
Units:	ug/L		Analyzed:	12/31/13
Diln Fac:	250.0			

Analyte	Result	RL
Gasoline C7-C12	ND	13,000
tert-Butyl Alcohol (TBA)	37,000	2,500
Isopropyl Ether (DIPE)	ND	130
Ethyl tert-Butyl Ether (ETBE)	ND	130
Methyl tert-Amyl Ether (TAME)	1,100	130
MTBE	16,000	130
Benzene	ND	130
Toluene	ND	130
Ethylbenzene	ND	130
m,p-Xylenes	150	130
o-Xylene	ND	130

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	87	75-139
Toluene-d8	85	80-120
Bromofluorobenzene	100	80-120

Lab #:	251991		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	5081		Analysis:	EPA 8260B
Field ID:	MW-1		Batch#:	206717
Lab ID:	251991-003		Sampled:	12/30/13
Matrix:	Water		Received:	12/30/13
Units:	ug/L		Analyzed:	01/02/14
Diln Fac:	500.0			

Analyte	Result	RL
Gasoline C7-C12	34,000	25,000
tert-Butyl Alcohol (TBA)	43,000	5,000
Isopropyl Ether (DIPE)	ND	250
Ethyl tert-Butyl Ether (ETBE)	ND	250
Methyl tert-Amyl Ether (TAME)	4,500	250
MTBE	43,000	250
Benzene	920	250
Toluene	1,000	250
Ethylbenzene	1,300	250
m,p-Xylenes	3,800	250
o-Xylene	1,100	250

Surrogate	%REC	Limits
Dibromofluoromethane	100	77-136
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	87	80-120
Bromofluorobenzene	98	80-120

Lab #:	251991		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	5081		Analysis:	EPA 8260B
Field ID:	MW-2		Batch#:	206717
Lab ID:	251991-004		Sampled:	12/30/13
Matrix:	Water		Received:	12/30/13
Units:	ug/L		Analyzed:	01/02/14
Diln Fac:	250.0			

Analyte	Result	RL
Gasoline C7-C12	ND	13,000
tert-Butyl Alcohol (TBA)	53,000	2,500
Isopropyl Ether (DIPE)	ND	130
Ethyl tert-Butyl Ether (ETBE)	ND	130
Methyl tert-Amyl Ether (TAME)	1,800	130
MTBE	18,000	130
Benzene	180	130
Toluene	ND	130
Ethylbenzene	ND	130
m,p-Xylenes	330	130
o-Xylene	ND	130

Surrogate %	%REC	Limits
Dibromofluoromethane 99	9	77-136
1,2-Dichloroethane-d4 94	4	75-139
Toluene-d8 90	0	80-120
Bromofluorobenzene 99	9	80-120

Purgeable Organics by GC/MS						
Lab #:	251991		Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B		
Project#:	5081		Analysis:	EPA 8260B		
Type:	BLANK		Diln Fac:	1.000		
Lab ID:	QC722651		Batch#:	206693		
Matrix:	Water		Analyzed:	12/31/13		
Units:	ug/L					

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	85	75-139
Toluene-d8	84	80-120
Bromofluorobenzene	99	80-120

Purgeable Organics by GC/MS							
Lab #: Client: Project#:	251991 SOMA Environmental 5081	Engineering Ir	Location: nc. Prep: Analysis:	2844 Mountain Blvd., Oakland EPA 5030B EPA 8260B			
Matrix: Units: Diln Fac:	Water ug/L 1.000		Batch#: Analyzed:	206693 12/31/13			

Type: BS	Lab	ID: QC722	2652	
Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	100.0	95.91	96	37-151
Isopropyl Ether (DIPE)	20.00	18.60	93	56-124
Ethyl tert-Butyl Ether (ETBE)	20.00	19.89	99	61-122
Methyl tert-Amyl Ether (TAME)	20.00	18.54	93	65-120
MTBE	20.00	20.27	101	64-121
Benzene	20.00	20.20	101	80-124
Toluene	20.00	21.47	107	80-122
Ethylbenzene	20.00	22.81	114	80-124
m,p-Xylenes	40.00	47.37	118	80-122
o-Xylene	20.00	24.45	122 *	77-120
Surrogate %	REC Limits			
Dibromofluoromethane 97	77-136			

Surrogate	%REC	LIMITS	
Dibromofluoromethane	97	77-136	
1,2-Dichloroethane-d4	88	75-139	
Toluene-d8	92	80-120	
Bromofluorobenzene	98	80-120	

Type: BSD			Lab ID:	QC7	22653			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		100.0		102.2	102	37-151	6	30
Isopropyl Ether (DIPE)		20.00		17.38	87	56-124	7	20
Ethyl tert-Butyl Ether (ETBE)		20.00		18.99	95	61-122	5	22
Methyl tert-Amyl Ether (TAME)		20.00		18.19	91	65-120	2	22
MTBE		20.00		20.26	101	64-121	0	20
Benzene		20.00		18.74	94	80-124	8	20
Toluene		20.00		18.92	95	80-122	13	20
Ethylbenzene		20.00		20.88	104	80-124	9	20
m,p-Xylenes		40.00		43.75	109	80-122	8	20
o-Xylene		20.00		22.37	112	77-120	9	20
	0.5.5.0							
Surrogate	%REC	Limits						
Dibromofluoromethane	97	77-136						
1,2-Dichloroethane-d4	90	75-139						
Toluene-d8	87	80-120						
Bromofluorobenzene	97	80-120						

*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Purgeable Organics by GC/MS						
Lab #:	251991		Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B		
Project#:	5081		Analysis:	EPA 8260B		
Matrix:	Water		Batch#:	206693		
Units:	ug/L		Analyzed:	12/31/13		
Diln Fac:	1.000					

Type:

Bromofluorobenzene

BS

Lab ID:

QC722654

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	800.0	843.6	105	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	95	77-136
1,2-Dichloroethane-d4	84	75-139
Toluene-d8	87	80-120
Bromofluorobenzene	97	80-120

Type: BSI)		Lab ID:	QC	722655			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline C7-C12		800.0		846.8	106	80-120	0	20
Surrogate	e %REC	Limits						
Dibromofluoromethar	ne 95	77-136						
1,2-Dichloroethane-	-d4 82	75-139						

80-120

95

		Purgeable	Organics by GC/MS	
Lab #: Client: Project#:	251991 SOMA Environmental E 5081	Engineering I	Location: nc. Prep: Analysis:	2844 Mountain Blvd., Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000		Batcĥ#: Analyzed:	206717 01/02/14

Type: BS	Lab	ID: QC722	2733	
Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	141.8	113	37-151
Isopropyl Ether (DIPE)	25.00	25.38	102	56-124
Ethyl tert-Butyl Ether (ETBE)	25.00	25.96	104	61-122
Methyl tert-Amyl Ether (TAME)	25.00	23.45	94	65-120
MTBE	25.00	27.14	109	64-121
Benzene	25.00	25.28	101	80-124
Toluene	25.00	25.38	102	80-122
Ethylbenzene	25.00	26.68	107	80-124
m,p-Xylenes	50.00	54.26	109	80-122
o-Xylene	25.00	29.01	116	77-120
Surrogate	%REC Limits			
	100 77-136			

Surrogale	3REC	
Dibromofluoromethane	100	77–136
1,2-Dichloroethane-d4	88	75–139
Toluene-d8	85	80-120
Bromofluorobenzene	96	80-120

Type: BSD			Lab ID:	QC7	22734			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		128.2	103	37-151	10	30
Isopropyl Ether (DIPE)		25.00		23.93	96	56-124	6	20
Ethyl tert-Butyl Ether (ETBE)		25.00		25.19	101	61-122	3	22
Methyl tert-Amyl Ether (TAME)		25.00		23.39	94	65-120	0	22
MTBE		25.00		26.01	104	64-121	4	20
Benzene		25.00		25.16	101	80-124	0	20 20
Toluene		25.00		26.50	106	80-122	4	20 20
Ethylbenzene		25.00		27.30	109	80-124	2	20
m,p-Xylenes		50.00		57.18	114	80-122	5	20
o-Xylene		25.00		30.06	120	77-120	4	20
Surrogate	%REC	Limits						
Dibromofluoromethane	96	77-136						
1,2-Dichloroethane-d4	85	75-139						
Toluene-d8	86	80-120						
Bromofluorobenzene	94	80-120						

		Purgeable Org	anics by GC/MS	
Lab #:	251991		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	5081		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC722735		Batch#:	206717
Matrix:	Water		Analyzed:	01/02/14
Units:	ug/L			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	94	77-136
1,2-Dichloroethane-d4	84	75-139
Toluene-d8	87	80-120
Bromofluorobenzene	95	80-120

		Purgeable Org	ganics by GC/MS	
Lab #:	251991		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	5081		Analysis:	EPA 8260B
Matrix:	Water		Batch#:	206717
Units:	ug/L		Analyzed:	01/02/14
Diln Fac:	1.000			

Type:

BS

Bromofluorobenzene

Lab ID:

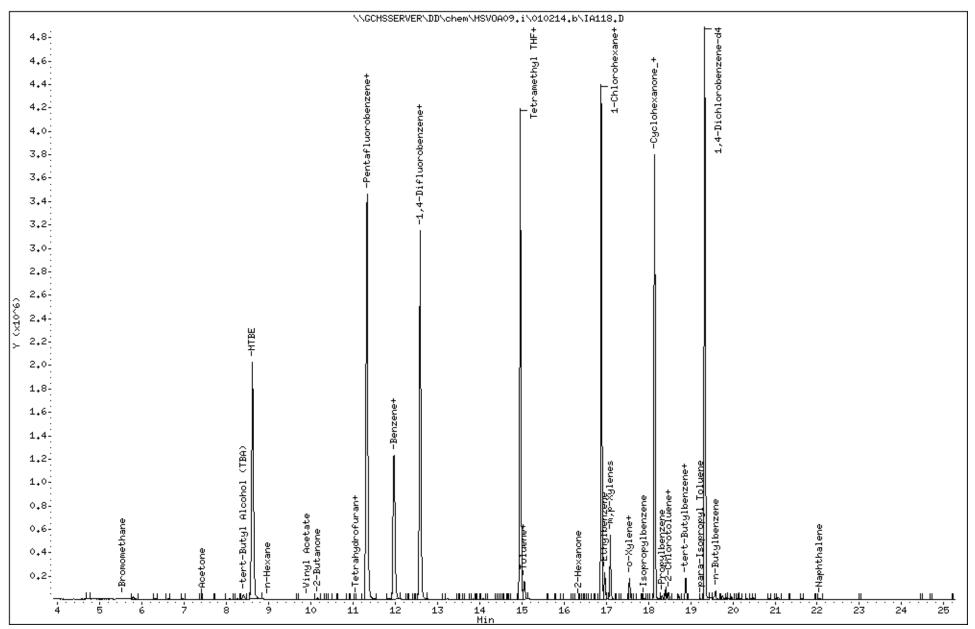
QC722736

Analyte	Spiked	Result	%REC]	Limits
Gasoline C7-C12	1,000	1,018		80-120

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	90	75-139
Toluene-d8	85	80-120
Bromofluorobenzene	97	80-120

Type: BSD		Lab ID: Spiked 1,000		QC				
Analyte				Result	%REC	Limits	RPD Lim	
Gasoline C7-C12				1,034	103	80-120	2	20
Surrogate	%REC	Limits						
Surrogate Dibromofluoromethane	%REC 94	Limits 77-136						
5								

80-120

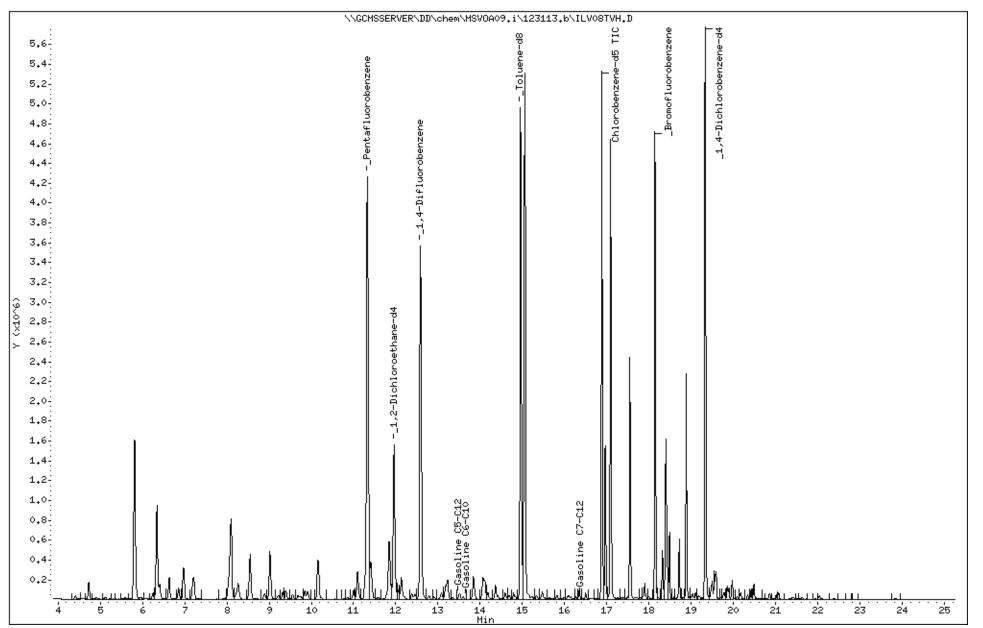

96

Data File: \\GCMSSERVER\DD\chem\MSVOA09.i\010214.b\IA118.D Date : 02-JAN-2014 20:40 Client ID: DYNA P&T Sample Info: S251991-003 Purge Volume: 5.0 Column phase: RTx Volatiles

Instrument: MSVOA09.i

Operator: VOC

Column diameter: 0,25



Data File: \\GCMSSERVER\DD\chem\MSVOA09.i\123113.b\ILV08TVH.D Date : 31-DEC-2013 14:06 Client ID: DYNA P&T

Instrument: MSVOA09.i

Operator: VOC

Column diameter: 2.00

23 of 23

Sample Info: BSD,QC722655,206693,S23229,.008/100

Column phase: