

By Alameda County Environmental Health at 4:34 pm, Apr 01, 2014

PERJURY STATEMENT

Site Location: 2844 Mountain Boulevard, Oakland, California

"I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge".

Tejindar Singh

6400 Dublin Boulevard Dublin, California 94568

Responsible Party

First Quarter 2014 Groundwater Monitoring Report

2844 Mountain Boulevard Oakland, California Regional Board File Number 01-0098

April 1, 2014

Project 5081

Prepared for

Tejindar Singh 6400 Dublin Blvd. Dublin, California, 94568

April 1, 2014

Mr. Martin Musonge Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Subject: File No. 01-0098 (MYM)

Site Located at 2844 Mountain Boulevard, Oakland, California

Dear Mr. Musonge:

Enclosed for your review is a copy of SOMA's "First Quarter 2014 Groundwater Monitoring Report" for the subject property. It has been uploaded to the State's GeoTracker database and Alameda County's FTP site.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

cc: Mr. Tejindar Singh w/enclosure

Ms. Donna Drogos - Alameda County Env. Health

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this report on behalf Tejindar Singh, property owner of 2844 Mountain Blvd., Oakland, California, to comply with requirements of the San Francisco Bay Regional Water Quality Control Board for the First Quarter 2014 groundwater monitoring event.

Mansour Sepehr, PhD, PE Principal Hydrogeologist

TABLE OF CONTENTS

CERTIFICATION	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	iii
LIST OF TABLES	iii
LIST OF APPENDICES	iii
1. INTRODUCTION	
1.1 Previous Activities1.2 Summary of Field Activities and Laboratory Analysis	
1.2.1 Field Activities	2
1.2.2 Laboratory Analysis	3
2. RESULTS	3
2.1 Field Measurements	3
2.2 Laboratory Analysis	3
3. CONCLUSIONS AND RECOMMENDATIONS	5
4 REPORT LIMITATIONS	5

LIST OF FIGURES

Figure 1	Site Vicinity Map
Figure 2	Site Map Showing Locations of Former USTs, Soil Borings, and Groundwater Monitoring Wells
Figure 3	Groundwater Elevation Contour Map in feet, March 10, 2014
Figure 4	Map Showing TPH-g and Benzene Concentrations in Groundwater, March 10, 2014
Figure 5	Contour Map Showing TPH-d Concentrations in Groundwater, March 10, 2014
Figure 6	Contour Map Showing MtBE Concentrations in Groundwater, March 10, 2014
Figure 7	Contour Map Showing TBA Concentrations in Groundwater, March 10, 2014
Figure 8	Contour Map Showing TAME Concentrations in Groundwater, March 10, 2014

LIST OF TABLES

Table 1 Historical Groundwater Analytical Results

LIST OF APPENDICES

- Appendix A Standard Operating Procedures for Conducting Groundwater Monitoring Activities

 Appendix B Tables of Elevations and Coordinates on Wells, Field Measurements of Physical and Chemical Parameters of the Groundwater Samples and Groundwater Gradient Calculations

 Appendix C Laboratory Report and Chain of Custody Form
- Appendix D Non-Hazardous Waste Manifest

1. INTRODUCTION

SOMA Environmental Engineering, Inc. (SOMA) has prepared this report on behalf of Mr. Tejindar Singh, property owner of 2844 Mountain Blvd., Oakland, California. The site is located east of Highway 13 and west of Joaquin Miller Park (Figure 1). Former underground storage tank (UST) locations and site features are shown in Figure 2.

This report summarizes results of the First Quarter 2014 groundwater monitoring event conducted at the site on March 10, 2014. It includes physical and chemical properties measured in the field for each groundwater sample and laboratory analytical results for groundwater samples.

1.1 Previous Activities

In March 1989 soil contamination was identified during replacement of product lines. Analytical results for a soil sample collected from the southern edge of a premium unleaded tank reported total petroleum hydrocarbons (TPHs) as gasoline (TPH-g) concentration of 8,400 mg/kg. Samples from beneath the lines near the pump islands reported TPH concentrations of less than 100 mg/kg.

In July 1989, contaminated soil was excavated and from the area of the southern end of the premium unleaded UST disposed of. Analysis of 12 soil samples collected from the sides of the excavation reported TPH concentrations ranging between ND to 3,300 mg/kg.

In May 1990, further site investigation including installation of four monitoring wells (RS-1 through RS-4) was conducted. Analysis of soil samples collected above the water table reported TPH concentrations ranging from 1 to 240 mg/kg. Hydrocarbons were detected in groundwater samples collected from all the wells; the highest concentration was found in a sample monitoring well RS-2.

In June 1991 soil vapor extraction began in June 1991. Groundwater remediation began in October 1992. Remediation was suspended in 1992, apparently due to responsible party financial issues.

In April 1994, one 280-gallon waste oil UST was removed with approximately 280 gallons of fluid and rinsate. The site operated as a retail gasoline station. Three USTs, two pump islands and an office/garage building were among the site features. The USTs contained various grades of unleaded gasoline and diesel with storage capacities of 3,000, 4,000, and 10,000 gallons.

In 1996 free product was reported in RS-1.

In July 1998, one 4,000-gallon gasoline UST was excavated and disposed of off-site.

Between July 29 and August 18, 2011, two USTs, one 10,000 gallon and one 3,000 gallon capacity, were excavated and disposed of off-site. The site is currently fenced in, which limits public access to the property.

Further soil and groundwater investigation was conducted at the site in March 2012. In October 2012, two wells (RS-1 and RS-2) were decommissioned in anticipation of excavation activities onsite. Excavation activities commenced on October 3, 2012, and an area of approximately 1,200 square feet was excavated to a depth of 15 feet. A total of 788.65 tons of waste soil was removed and replaced with clean fill material.

On May 9 and 10, 2013, two groundwater monitoring wells (MW-1 and MW-2) and soil and groundwater borings (DPT-5/5W) were installed as approved and requested by the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). All site wells were surveyed by a licensed surveyor on May 28, 2013.

As approved by SFRWQCB, a multi-phase extraction (MPE) event was conducted at the site from December 2 to December 16, 2013. Details and results of this event are documented in a separate pilot testing report.

1.2 Summary of Field Activities and Laboratory Analysis

1.2.1 Field Activities

On March 10, 2014, four monitoring wells (RS-3, RS-4, MW-1 and MW-2) were measured for depth to groundwater. Additional field measurements and groundwater samples were collected from RS-3, MW-1, and MW-2. Properties measured in the field were pH, temperature, and electrical conductivity (EC). Only a grab sample could be collected from RS-4 because of accessibility issues. This monitoring event was conducted in accordance with procedures and guidelines of SFBRWQCB.

Figure 2 shows well locations. Appendix A details groundwater monitoring procedures followed during this event.

Purged groundwater was temporarily stored on-site in a 55-gallon drum. Two drums generated during previous monitoring events (Third and Fourth Quarter 2013) were transported to an appropriate disposal facility on February 17, 2014. Appendix D includes the non-hazardous waste manifest.

1.2.2 Laboratory Analysis

Curtis and Tompkins Laboratories, a California state-certified laboratory, analyzed groundwater samples for the following: TPH-g, and TPH as diesel (TPH-d); BTEX (benzene, toluene, ethylbenzene, and total xylenes), MtBE, gasoline oxygenates. All samples except TPH-d were analyzed using EPA Method 8260. TPH-d samples were analyzed using EPA Method 8015B.

2. RESULTS

Results of field measurements and laboratory analyses for the groundwater monitoring event conducted on March 10, 2014 follow below.

2.1 Field Measurements

Monitoring wells MW-1, MW-2, RS-3 and RS-4 were measured for depth to groundwater (Table 1). Depths to groundwater ranged from 5.51 feet in MW-1 to 7.65 feet in RS-4. Groundwater elevations ranged from 667.62 feet in RS-4 to 670.40 feet in RS-3.

Figure 3 displays the groundwater elevation map. The groundwater flows southeasterly at a gradient of 0.057 ft/ft. Since the previous monitoring event (December 2013), the groundwater flow direction has remained southeasterly and the gradient has decreased. Groundwater gradient calculations are included in Appendix B.

2.2 Laboratory Analysis

Groundwater analytical data for this monitoring event is shown in Table 1. Appendix C includes the laboratory report and chain of custody form. No measurable floating product was observed during this monitoring event.

TPH-g was below laboratory-reporting limit in RS-3, RS-4, and MW-1 and was detected in MW-2 at 14,000 μ g/L. Since the previous monitoring event (December 2013), TPH-g concentration in MW-2 has increased, while concentration in MW-1 has decreased and remained below laboratory-reporting limits in RS-3 and RS-4. Figure 4 shows a map of TPH-g concentrations in groundwater.

TPH-d was below the laboratory-reporting limit in RS-3 and detected in concentrations ranging from 3,700 μ g/L in RS-4 to 11,000 μ g/L in MW-1 and MW-2. Since the previous monitoring event (December 2013), TPH-d has increased in MW-2 and decreased in RS-3, RS-4 and MW-1. Figure 5 shows a contour map of TPH-d concentrations in groundwater. TPH-d plume appears to be centered south of the pump islands in the vicinity of MW-1 and MW-2.

The following BTEX concentrations were observed during this monitoring event:

- All BTEX analytes were below laboratory-reporting limits in RS-3 and RS-4.
- Benzene was detected in MW-1 and MW-2 at 720 μg/L and 210 μg/L, respectively. Since the previous monitoring event (December 2013) benzene has decreased in MW-1 and increased in MW-2. Figure 4 shows a map of benzene concentrations in groundwater. The benzene plume appears to be centered to the southwest of the pump islands in the vicinity of MW-1.
- Toluene was below laboratory-reporting limit in MW-1 and MW-2. Since the previous monitoring event (December 2013) toluene has decreased in MW-1 and remained below the laboratory-reporting limit in other wells.
- Ethylbenzene was detected in MW-1 and MW-2 at 890 μg/L and 360 μg/L, respectively. Since the previous monitoring event (December 2013) ethylbenzene has decreased in MW-1, and increased in MW-2.
- Total xylenes was detected in MW-1 and MW-2 at 1,970 μg/L and 700 μg/L, respectively. Since the previous monitoring event (December 2013), total xylenes decreased in MW-1 and RS-4 and increased in MW-2.

Methyl tertiary-butyl ether (MtBE) concentrations ranged from 14 μ g/L in RS-3 to 25,000 μ g/L in MW-1. Since the previous monitoring event (December 2013), MtBE has decreased in RS-3, RS-4, MW-1 and MW-2. Figure 6 shows a contour map of MtBE concentrations in groundwater. The MtBE plume appears to be centered to the southwest of the pump islands in the vicinity of MW-1.

Tertiary-butyl alcohol (TBA) concentrations ranged from 320 μ g/L in RS-3 to 40,000 μ g/L in MW-2. Since the previous monitoring event (December 2013), TBA has increased in RS-4 and decreased in RS-3, MW-1 and MW-2. Figure 7 shows a contour map of TBA concentrations in groundwater. The highest TBA concentrations were detected in the vicinity of the pump islands around MW-2.

Tertiary amyl methyl ether (TAME) concentrations ranged from 0.61 μ g/L in RS-3 to 2,600 μ g/L in MW-1. Since the previous monitoring event (December 2013), TAME has decreased in RS-3, RS-4 and MW-1 and stayed the same in MW-2. Figure 8 shows a contour map of TAME concentrations in groundwater. The highest TAME concentrations were detected to the southwest of the pump islands in the vicinity of MW-1.

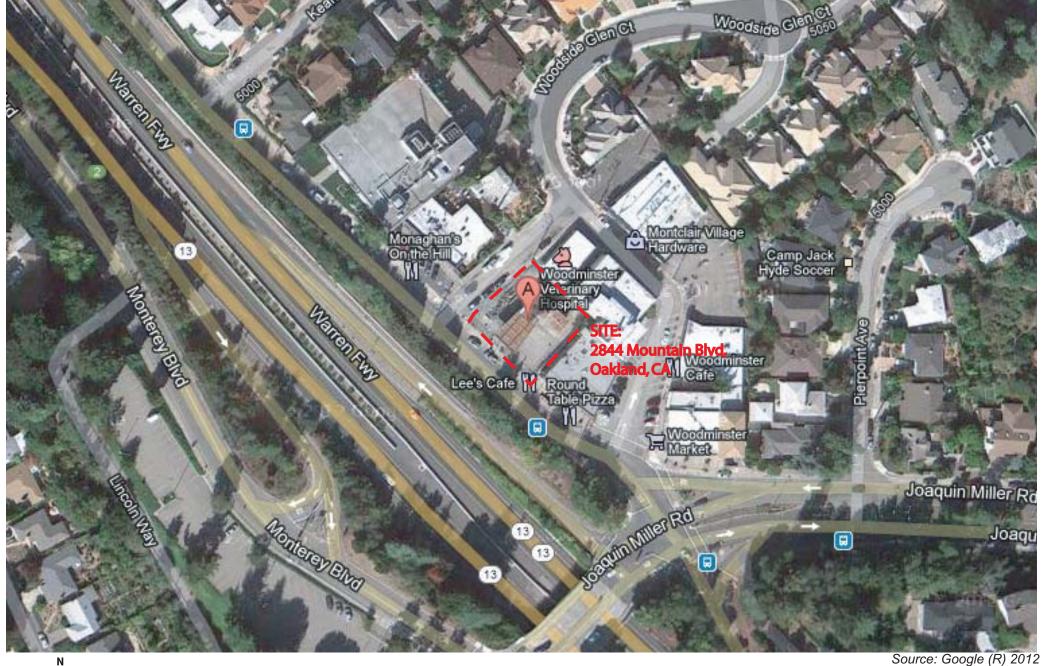
3. CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations based on results of First Quarter 2014 groundwater monitoring are summarized below.

- The groundwater flows southeasterly across the site.
- No free/floating product was observed in any monitoring wells during this monitoring event.
- Since the previous monitoring event in December 2013, TPH-g in MW-2 increased, decreased in MW-1 and remained below laboratory-reporting limits in RS-3 and RS-4; TPH-d increased in MW-2 and decreased in RS-3, RS-4 and MW-1; benzene increased in MW-2 and decreased in MW-1; MtBE decreased in RS-3, RS-4, MW-1 and MW-2; TBA increased in RS-4 and decreased in RS-3, MW-1 and MW-2; and TAME decreased in RS-3, RS-4 and MW-1 and remained the same in MW-2.
- The highest TPH-g, benzene, toluene, ethylbenzene, total xylenes, MtBE, and TAME concentrations were detected to the southwest of the pump islands around MW-1. The highest TBA concentrations were detected in the vicinity of pump islands around MW-2. The highest TPH-d concentrations were detected south of the pump islands around MW-1 and MW-2.
- SOMA will continue conducting quarterly groundwater monitoring events at the site.

SOMA submitted a report documenting installation of soil borings and monitoring wells dated September 13, 2013. The report recommended installing a groundwater monitoring well in close proximity of boring SS-1 in order to monitor elevated levels of chemicals in groundwater.

Based on SFBRWQCB's approval dated April 3, 2013, SOMA conducted a multiphase extraction (MPE) pilot test at the site from December 2 through December 16, 2013. During the pilot test, 497 pounds of PHCs were removed from the subsurface with an average mass removal rate of 36 lbs/day. Details of the pilot test were included in SOMA's 'Multi-Phase Extraction Pilot Testing Report' dated January 21, 2014. Based on the effectiveness of the pilot test, SOMA proposes to conduct two to three 30-day MPE events at the site in order to mitigate remaining contaminant mass from the subsurface.


4. REPORT LIMITATIONS

This report is the summary of work done by SOMA, including observations and descriptions of site conditions. It includes analytical results produced by Curtis

and Tompkins, Laboratories for the current groundwater monitoring event. Quantities and locations of wells were selected to provide the required information, but may not be completely representative of entire site conditions. All conclusions and recommendations are based on results of laboratory analysis. Conclusions beyond those specifically stated in this document should not be inferred from this report.

SOMA warrants that services were provided in accordance with generally accepted environmental engineering and consulting practices at the time of this sampling.

Figures

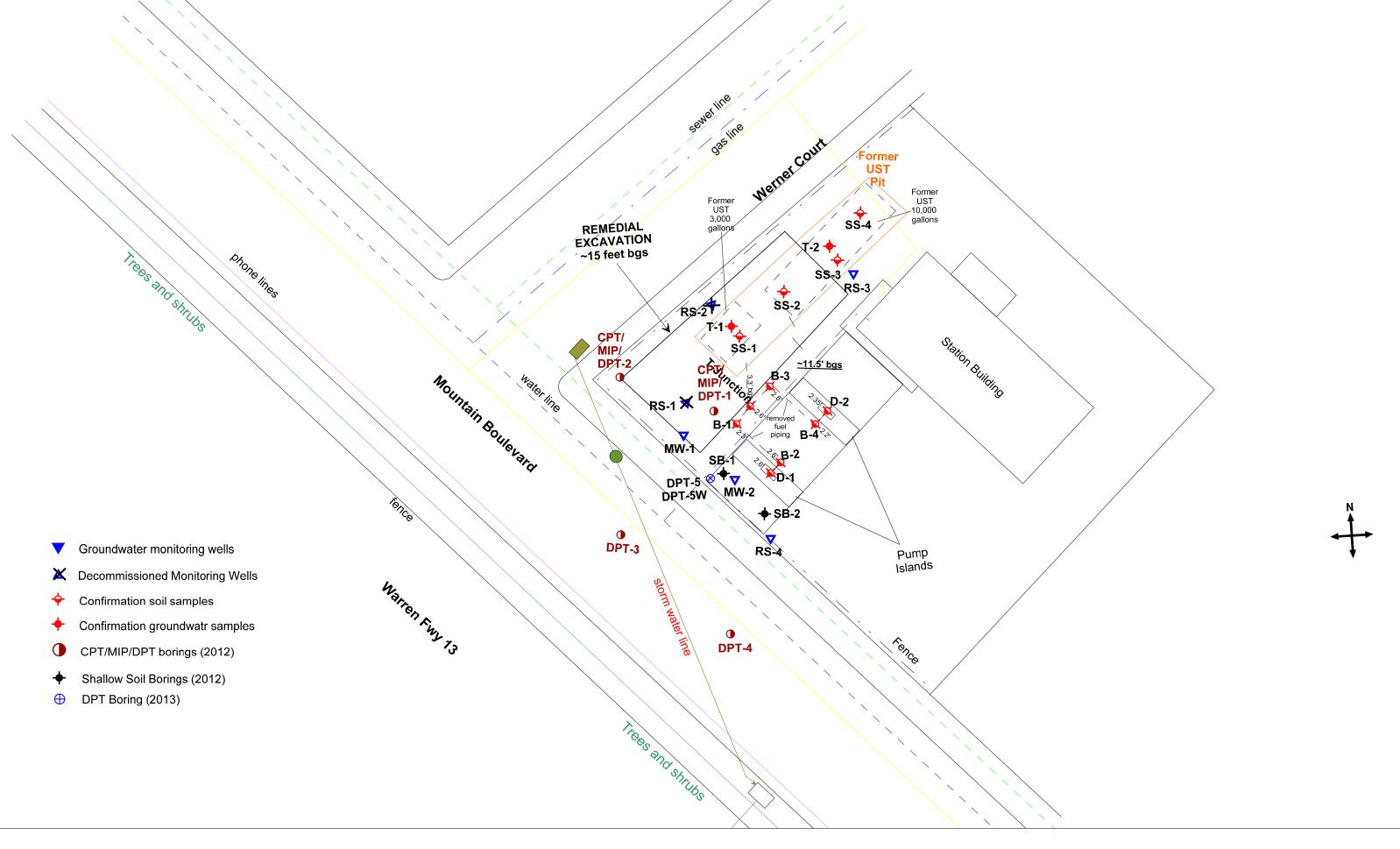


Figure 2: Site Map Showing Locations of Former USTs, Soil Borings, and Groundwater Monitoring Wells

Figure 3: Groundwater Elevation Contour Map in feet, March 10, 2014

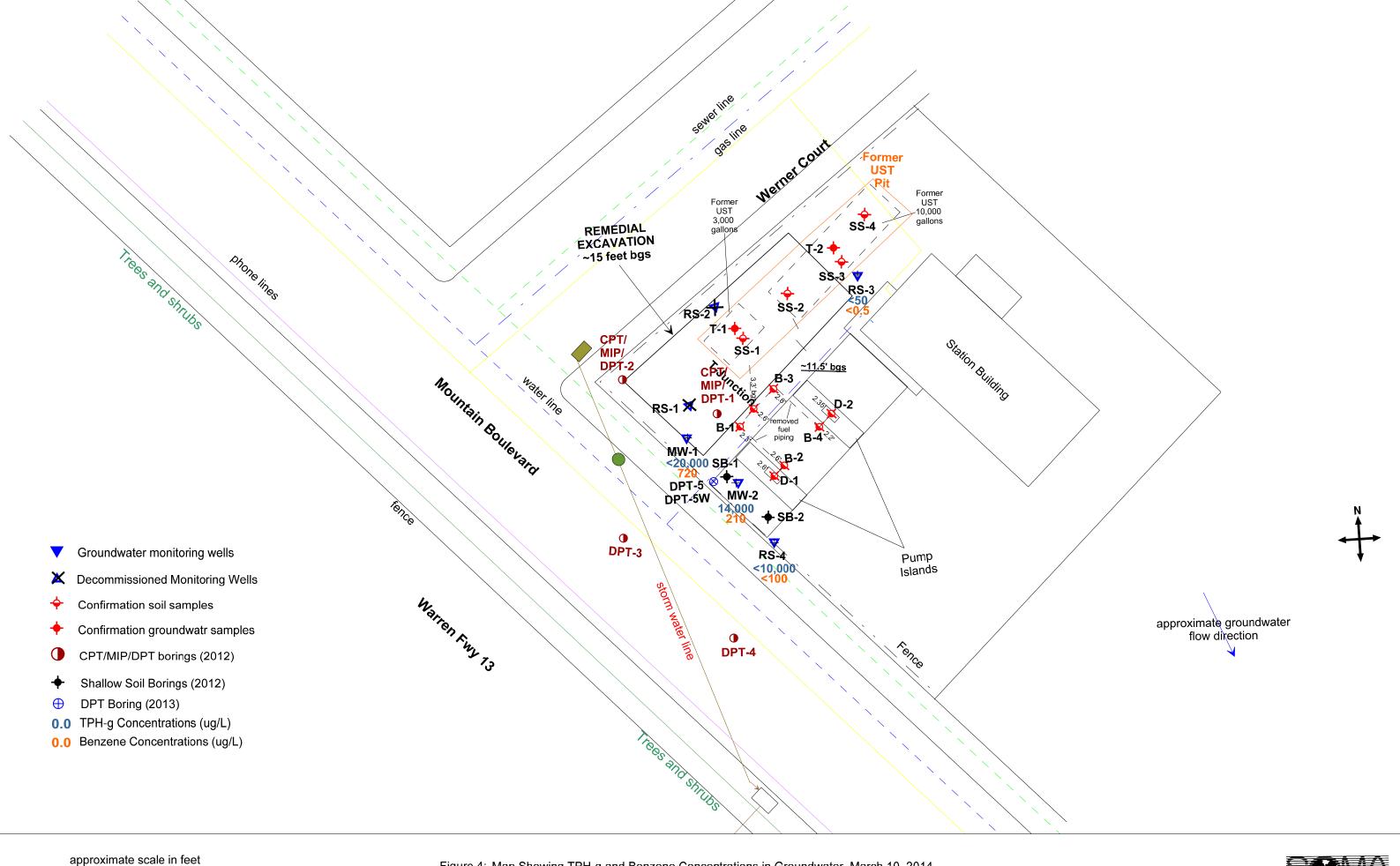


Figure 4: Map Showing TPH-g and Benzene Concentrations in Groundwater, March 10, 2014

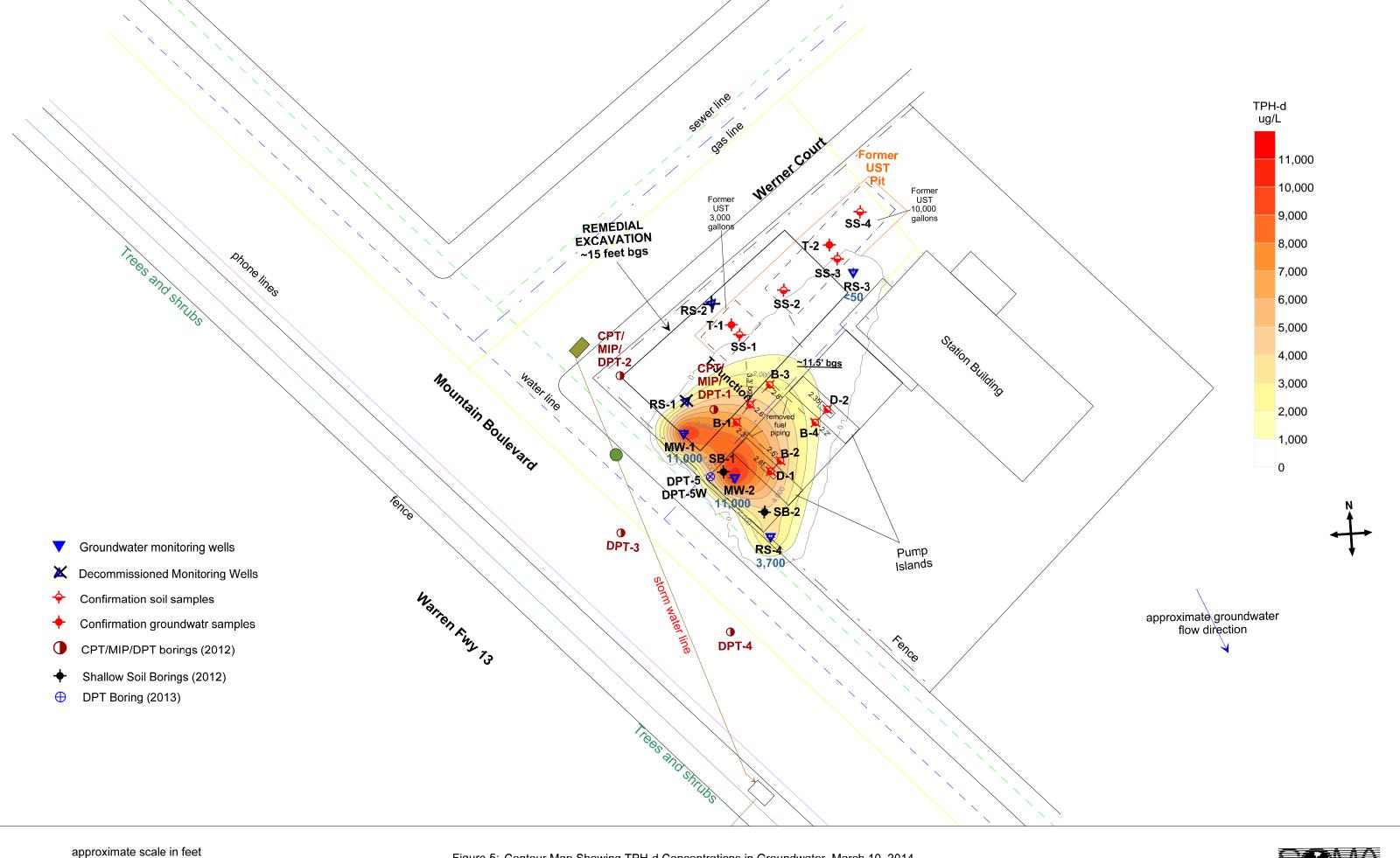


Figure 5: Contour Map Showing TPH-d Concentrations in Groundwater, March 10, 2014

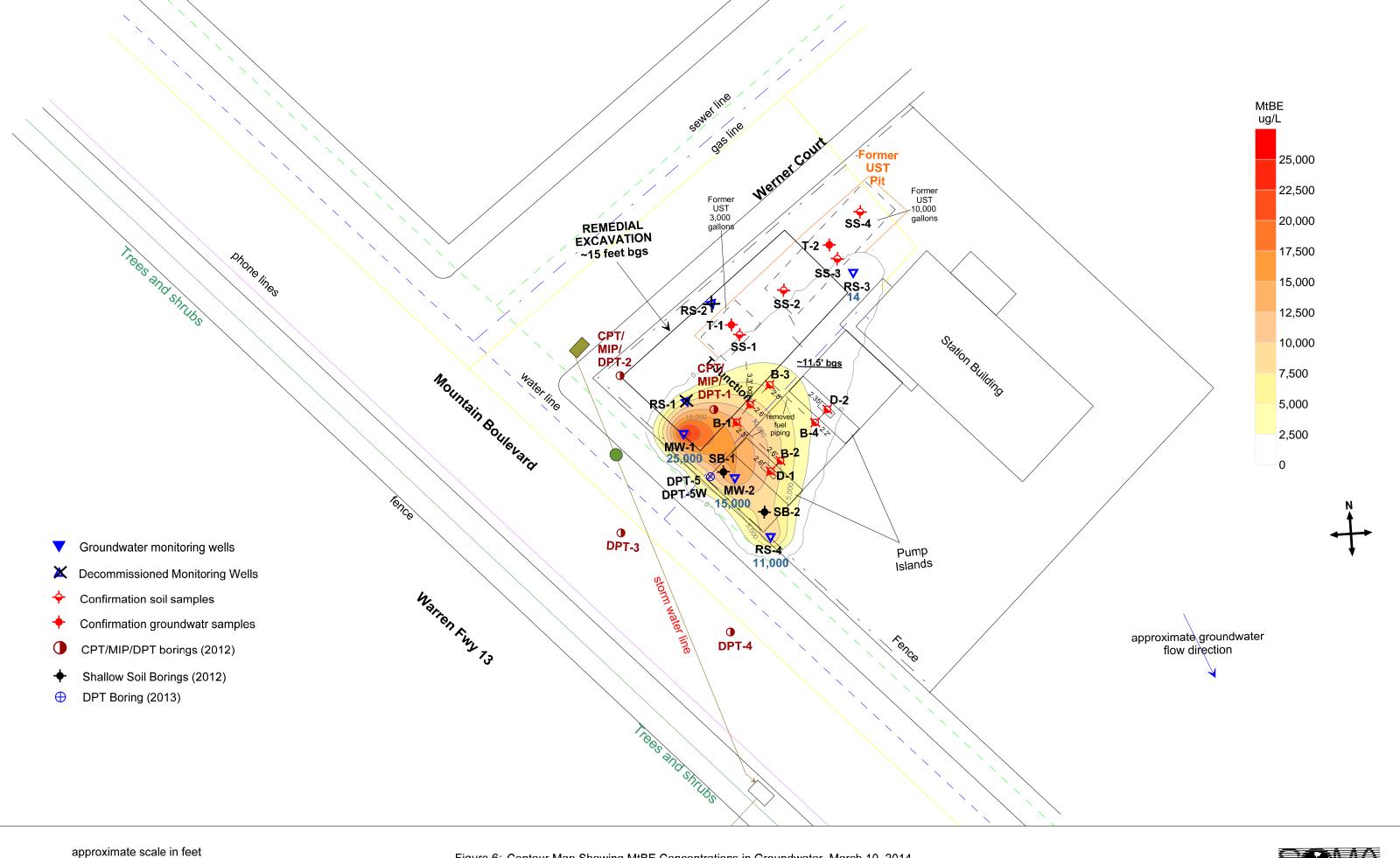


Figure 6: Contour Map Showing MtBE Concentrations in Groundwater, March 10, 2014

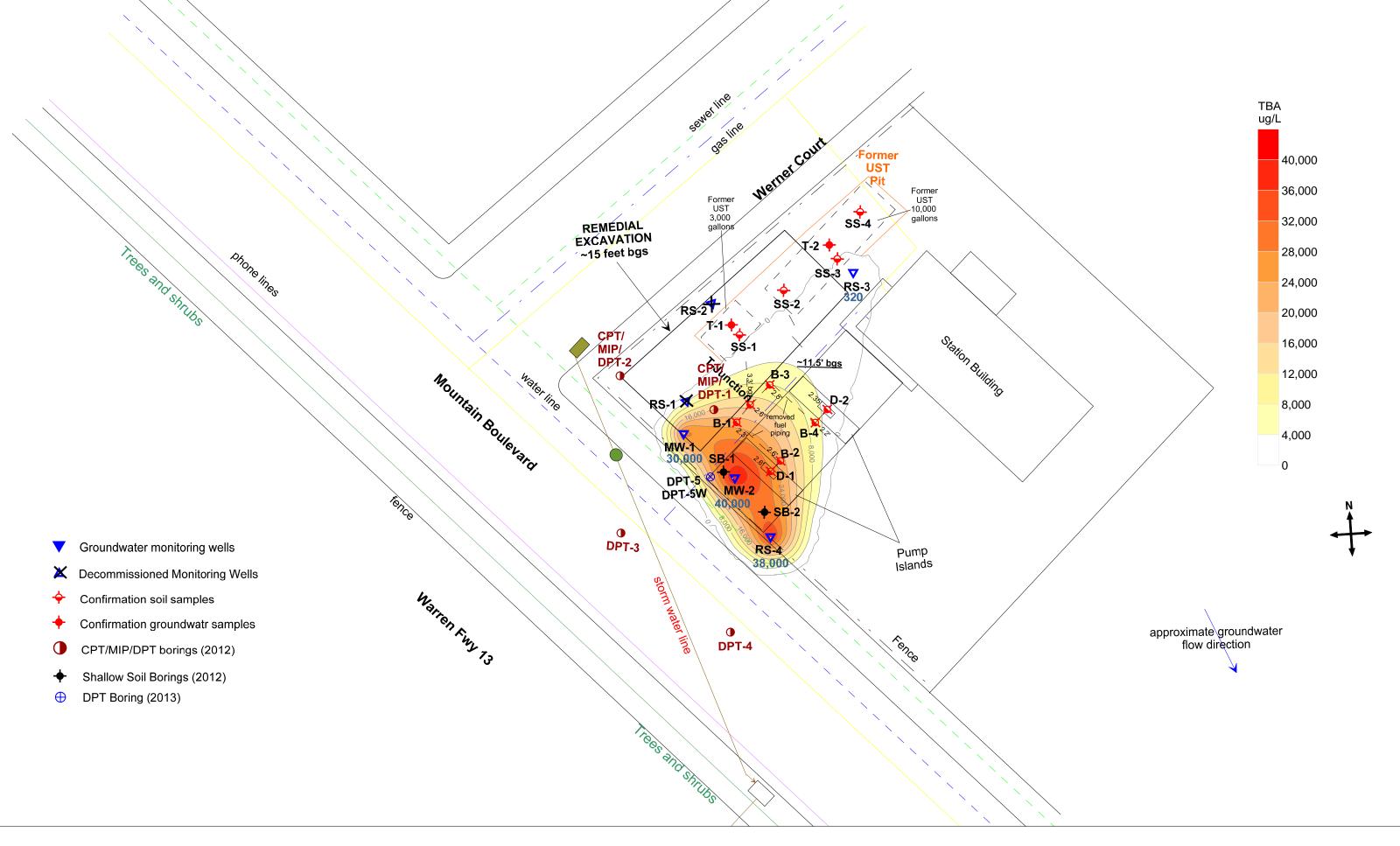


Figure 7: Contour Map Showing TBA Concentrations in Groundwater, March 10, 2014



Figure 8: Contour Map Showing TAME Concentrations in Groundwater, March 10, 2014

Tables

Table 1
Historical Groundwater Analytical Results
2844 Mountain Boulevard, Oakland, CA

		Casing	Depth to	Depth to												
NA i i NA/- II	D-4-	Elevation	Top Fluid	Groundwat	Free-Product	Groundwater	TPH-g	TPH-d	TPH-mo	Benzene	Toluene	Ethylbenz	Xylenes	MtBE	TBA	TAME
Monitoring Well	Date	(Ft.)	(Ft.)	er (Ft.)	Thickness	Elevation	μg/L	μg/L	μg/L	μg/L	μg/L	ene μg/L	μg/L	μg/L	μg/L	μg/L
RS-1	May-90	675.63	7.20	7.20	0.00	668.43	2,700			370	420	40	320			1
	May-91	675.63	8.35	8.35	0.00	667.28	1,300			580	130	62	240			
	Oct-91	675.63	10.22	10.22	0.00	665.41	1,100			140	100	45	210			
	Jan-92	675.63	8.06	8.06	0.00	667.57	1,700			9.9	31	9.7	170			1
	Jan-93	675.63	5.30	5.30	0.00	670.33	3,700			650	9.2	51	170			
	Aug-93	675.63	8.56	8.56	0.00	667.07	900			14	0.6	2.1	8			
	Nov-93	675.63	8.44	8.44	0.00	667.19	1,400			9.6	ND	0.9	5			
	Jan-94	675.63	6.88	6.88	0.00	668.75	4,200			95	3.1	58	130			
	May-94	675.63	7.87	7.87	0.00	667.76	7,500			270	11	37	96			
	Aug-94	675.63	16.28	16.28	0.00	659.35	130			12	0.5	2.6	5			
	Nov-94	675.63	8.02	8.02	0.00	667.61	270			4.7	0.7	0.6	15			
	Feb-95	675.63	6.51	6.51	0.00	669.12	12,000			81	2.3	1	12			
	Jun-95	675.63	7.34	7.34	0.00	668.29	37,000			460	ND	ND	ND	63,000		
	Nov-95	675.63	8.71	8.71	0.00	666.92	ND			660	16	140	330	31,000		
	Feb-96	675.63	6.95	6.95	0.00	668.68	66,000			110	ND	12	21	84,000		
	9/18/1996	675.63	8.44	8.52	0.08	667.17		ATING PRO	DUCT							
	12/11/1996	675.63	6.42	6.62	0.20	669.17	79,000			4,000	37,000	8,000	45,000	220,000		
	2/21/1997	675.63	6.88	6.92	0.04	668.74	1/2 INCH F	LOATING PR	ODUCT							
	5/28/1997	675.63	7.88	7.96	0.08	667.73	156,000			9,400	51,000	7,000	45,000	112,000		
	9/2/1997	675.63	8.34	8.38	0.04	667.28	1/2 INCH F	LOATING PR	ODUCT							
	11/24/1997	675.63	6.98	7.00	0.02	668.65	1/4 INCH F	LOATING PR	ODUCT							
	2/25/1998	675.63	3.51	3.52	0.01	672.12	1/8 INCH F	LOATING PR	ODUCT							
	5/27/1998	675.63	7.31	7.31	0.00	668.32	40,000			2,200	4,000	2,300	19,000	350,000		
	9/16/1998	675.63	8.10	8.10	0.00	667.53	62,000			2,400	2,300	2,100	14,000	250,000		
	11/23/1998	675.63	7.10	7.10	0.00	668.53	99,000			2,600	5,800	2,500	18,000	130,000		
	2/23/1999	675.67	4.82	4.87	0.05	670.84	5/8 INCH F	LOATING PR	ODUCT							
	5/5/1999	675.67	6.86	6.90	0.04	668.80	FLOATING	PRODUCT								
	8/24/1999	675.67	7.87	7.90	0.03	667.80	FLOATING	PRODUCT								
	2/8/2012	675.67	6.80	6.80	0.00	668.87	60,000 x	8,200 x	<936	790	<6.4	2,000	430	65,000	41,000	5,100
	5/4/2012	675.67	6.57	6.57	0.00	669.10	18,000	10,000	NA	600	<36	2,000	870	22,000	11,000	1,800
	8/6/2012	675.67	7.61	7.61	0.00	668.06	16,000	12,000	NA	940	<130	2,000	560	42,000	35,000	3,400
							Well Destro	yed Octobe	r 1, 2012							
RS-2	May-90	689.00	7.06	7.06	0.00	681.94	23,000			7,200	4,800	300	3,300			
	May-91	689.00	7.14	7.14	0.00	681.86	26,000			14,000	1,800	750	2,900			
	Oct-91	688.89	8.84	8.84	0.00	680.05	13,000			4,300	910	300	2,300			
	Jan-92	688.89	7.34	7.34	0.00	681.55	8,300			1,800	920	140	1,700			
	Jan-93	688.89	4.10	4.10	0.00	684.79	41,000			7,000	210	1,200	4,200			
	Aug-93	688.89	7.32	7.32	0.00	681.57	19,000			5,300	62	810	1,600			
	Nov-93	688.89	7.34	7.34	0.00	681.55	9,300			2,400	3.90	46	800			

Table 1
Historical Groundwater Analytical Results
2844 Mountain Boulevard, Oakland, CA

		Casing	Depth to	Depth to						_	l	l				
Monitoring Well	Date	Elevation (Ft.)	Top Fluid (Ft.)	Groundwat er (Ft.)	Free-Product Thickness	Groundwater Elevation	TPH-g μg/L	TPH-d μg/L	TPH-mo μg/L	Benzene μg/L	Toluene μg/L	Ethylbenz ene µg/L	Xylenes μg/L	MtBE μg/L	TBA μg/L	TAME μg/L
RS-2 cont.	Jan-94	688.89	5.52	5.52	0.00	683.37	30,000	F-0/ -	F-07 -	4,900	ND	880	2,600	F-0/ -	1-0/ -	F-6/ -
=	May-94	675.25	6.40	6.40	0.00	668.85	120,000			3,300	330	ND	2,200			
	Aug-94	675.25			0.00	675.25	510			7.30	3.80	3.50	32			
	Nov-94	675.25	9.82	9.82	0.00	665.43	620			6.60	3.90	1.10	47			
	Feb-95	675.25	4.81	4.81	0.00	670.44	22,000			228	80	2	463			l
	Jun-95	675.25	5.80	5.80	0.00	669.45	49,000			1,300	160	200	1,600	71,000		
	Nov-95	675.25	7.64	7.64	0.00	667.61	ND			670	25	150	360	65,000		l
	Feb-96	675.25	4.69	4.69	0.00	670.56	75,000			1,400	170	59	460	71,000		l
	9/18/1996	675.25	7.34	7.34	0.00	667.91	6,300			2,000	48	350	570	160,000		
	12/11/1996	675.25	5.08	5.08	0.00	670.17	16,000			2,000	840	200	3,200	180,000		l
	2/21/1997	675.25	5.42	5.42	0.00	669.83	22,000			2,100	1,300	600	5,100	56,000		
	5/28/1997	675.25	6.40	6.40	0.00	668.85	156,000			4,200	89	1,000	6,900	390,000		
	9/2/1997	675.25	6.93	6.93	0.00	668.32	<50			1,300	25	360	1,400	180,000		l
	11/24/1997	675.25	5.93	5.93	0.00	669.32	<50			600	ND	ND	ND	610,000		l
	2/25/1998	675.25	4.59	4.59	0.00	670.66	11,000			1,100	<50	320	2,400	330,000		l
	5/27/1998	675.25	5.61	5.61	0.00	669.64	13,000			2,000	150	600	2,700	380,000		
	9/16/1998	675.25	6.84	6.84	0.00	668.41	11,000			1,600	20	1,600	1,600	280,000		
	11/23/1998	675.25	6.24	6.24	0.00	669.01	12,000			1,200	84	< 5	960	140,000		l
	2/23/1999	675.28	4.62	4.62	0.00	670.66	8,800			1,500	650	640	1,500	450,000		
	5/5/1999	675.28	7.55	7.55	0.00	667.73	29,000			2,000	1,300	500	3,700	270,000		l
	8/24/1999	675.28	6.62	6.62	0.00	668.66	12,000			1,900	20	370	980	340,000		
	2/8/2012	675.28	5.52	5.52	0.00	669.76	18,000 x	6,800 x	<378	540	<6.4	120	710	2,800	64,000	420
	5/4/2012	675.28	5.18	5.18	0.00	670.10	16,000	13,000	NA	690	23	460	1,140	6,800	21,000	960
	8/6/2012	675.28	6.33	6.33	0.00	668.95	11,000	10,000	NA	810	<25	210	473	3,300	18,000	580
							Well Destro	yed Octobe	er 1, 2012							
RS-3	May-90	670.00	6.00	6.00	0.00	664.00	330			2	1	1	150			
	May-91	670.00	6.76	6.76	0.00	663.24	ND			0.40	ND	0.80	8			
	Oct-91	670.00	8.98	8.98	0.00	661.02	ND			ND	ND	ND	ND			
	Jan-92	670.00	6.81	6.81	0.00	663.19	ND			2.20	7.20	0.60	4			l
	Jan-93	670.00	4.05	4.05	0.00	665.95	ND			ND	ND	ND	ND -			l
	Aug-93	670.00	7.19	7.19	0.00	662.81	ND			30	6	2.40	5			
	Nov-93	670.00	7.12	7.12	0.00	662.88	ND			4.80	0.40	0.60	2			l
	Jan-94	670.00	5.42	5.42	0.00	664.58	330			25	3.20	3.90	12			İ
	May-94	676.20	5.78	5.78	0.00	670.42	670			34	4	28	70			İ
	Aug-94	676.20	5.86	5.86	0.00	670.34	ND			ND	ND	ND	ND			İ
	Nov-94	676.20	5.08	5.08	0.00	671.12	69			2.50	3.10	1	4			l
	Feb-95	676.20	4.51	4.51	0.00	671.69	ND			0.30	0.40	ND	1			İ
	Jun-95 Nov-95	676.20	5.29	5.29	0.00	670.91	ND			ND	ND	ND	ND	66		İ
	NOV-95	676.20	7.10	7.10	0.00	669.10	ND			ND	ND	ND	ND	44		

Table 1
Historical Groundwater Analytical Results
2844 Mountain Boulevard, Oakland, CA

Monitoring Well	Date	Casing Elevation (Ft.)	Depth to Top Fluid (Ft.)	Depth to Groundwat er (Ft.)	Free-Product Thickness	Groundwater Elevation	TPH-g μg/L	TPH-d μg/L	TPH-mo μg/L	Benzene μg/L	Toluene μg/L	Ethylbenz ene μg/L	Xylenes μg/L	MtBE μg/L	TBA μg/L	TAME μg/L
RS-3 cont.	Feb-96	676.20	4.48	4.48	0.00	671.72	120			ND	ND	ND	ND	110		
	9/18/1996	676.20	6.92	6.92	0.00	669.28	1,000			13	8.60	10	17	33		1
	12/11/1996	676.20	4.90	4.90	0.00	671.30	85			20	2	<0.5	14	4,700		
	2/21/1997	676.20	4.94	4.94	0.00	671.26	120			5	2	2	6	850		
	5/28/1997	676.20	7.92	7.92	0.00	668.28	<50			6	<0.5	<0.5	<2	2,400		i
	9/2/1997	676.20	6.60	6.60	0.00	669.60	<50			0.90	<0.5	<0.5	<2	8,600		i
	11/24/1997	676.20	5.89	5.89	0.00	670.31	140			13	2	1	12	3,600		
	2/25/1998	676.20	4.29	4.29	0.00	671.91	<50			<0.5	<0.5	<0.5	4	850		
	5/27/1998	676.20	5.01	5.01	0.00	671.19	<50			7	<0.5	<0.5	11	940		
	9/16/1998	676.20	6.21	6.21	0.00	669.99	<50			2	2	2	10	670		i
	11/24/1998	676.20	5.58	5.58	0.00	670.62	85			9	23	<0.5	19	180		i l
	2/24/1999	676.23	4.30	4.30	0.00	671.93	<50			<0.5	0.90	<0.5	<1.0	150		
	5/5/1999	676.23	4.92	4.92	0.00	671.31	<50			1	2	1	6	130		
	8/24/1999	676.23	6.64	6.64	0.00	669.59	80			0.80	<0.5	0.60	<1	300		
	2/8/2012	676.23	5.72	5.72	0.00	670.51	130 x	<42	<94	<0.13	0.59	2.90	18.1	7.9	<1.5	<0.17
	5/4/2012	676.23	5.25	5.25	0.00	670.98	<50	330 Y	NA	<0.5	<0.5	<0.5	<0.5	10	18	2.4
	8/6/2012	676.23	6.65	6.65	0.00	669.58	<50	390 Y	NA	<0.5	<0.5	<0.5	<0.5	13	<10	3.2
	3/29/2013	676.23	6.01	6.01	0.00	670.22	<50	90 ^Y	NA	<0.5	<0.5	<0.5	<0.5	3.6	<10	<0.5
	6/6/2013	676.08	6.45	6.45	0.00	669.63	<50	66 ^Y	NA	<0.5	<0.5	<0.5	<0.5	1.5	<10	<0.5
	9/4/2013	676.08	6.91	6.91	0.00	669.17	<50	170 ^Y	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5
	12/30/2013	676.08	7.21	7.21	0.00	668.87	<50	61 ^Y	NA	<0.5	<0.5	<0.5	<0.5	21	680	0.64
	3/10/2014	676.08	5.68	5.68	0.00	670.40	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	14	320	0.61
RS-4	May-90	675.38	8.34	8.34	0.00	667.04	440			9	11	9	49			i l
	May-91	675.38	9.50	9.50	0.00	665.88	ND			8	4	3	5			
	Oct-91	675.38	10.82	10.82	0.00	664.56	830			280	120	24	170			
	Jan-92	675.38	9.31	9.31	0.00	666.07	620			34	8.30	2.10	21			i l
	Jan-93	675.38	6.89	6.89	0.00	668.49	150			32	1.70	5.80	13			
	Aug-93	675.38	9.68	9.68	0.00	665.70	ND			0.90	0.70	ND	0			i l
	Nov-93	675.38	9.83 8.17	9.83	0.00	665.55	ND			ND	ND ND	ND 0.01	ND 2			
	Jan-94	675.38	8.17 8.69	8.17	0.00 0.00	667.21	ND ND			1.70 ND	ND ND	0.81 ND				i
	May-94 Aug-94	675.38 675.38	9.04	8.69 9.04	0.00	666.69 666.34	420			6.50	4.10	1.90	1 40			
	Nov-94	675.38	8.00	8.00	0.00	667.38	130			4.10	0.70	1.70	40 8			i l
	Feb-95	675.38	7.93	7.93	0.00	667.45	ND			6	1.20	3.50	13			
	Jun-95	675.38	8.61	8.61	0.00	666.77	ND ND			ND	ND	ND	ND	69		i l
	Nov-95	675.38	10.43	10.43	0.00	664.95	ND			ND	ND	ND ND	ND	47		
	Feb-96	675.38	7.44	7.44	0.00	667.94	960			ND	ND	0.60	ND	80		
	9/18/1996	675.38	9.58	9.58	0.00	665.80	<50			<0.5	<0.5	<0.5	<2	200		
	12/11/1996	675.38	7.50	7.50	0.00	667.88	75			<0.5	0.60	<0.5	<0.5	104		
	2/21/1997	675.38	8.26	8.26	0.00	667.12	<50			1	1	<0.5	1	190		
	5/28/1997	675.38	8.92	8.92	0.00	666.46	<50			6	<0.5	<0.5	<2	110		
	9/2/1997	675.38	9.39	9.39	0.00	665.99	100			3	<0.5	<0.5	<2	39		
	11/24/1997	675.38	8.22	8.22	0.00	667.16	41			<0.5	2	<0.5	<2	210		

Table 1
Historical Groundwater Analytical Results
2844 Mountain Boulevard, Oakland, CA

		Casing	Depth to	Depth to												
		Elevation	Top Fluid	Groundwat	Free-Product	Groundwater	TPH-g	TPH-d	TPH-mo	Benzene	Toluene	Ethylbenz		MtBE	TBA	TAME
Monitoring Well	Date	(Ft.)	(Ft.)	er (Ft.)	Thickness	Elevation	μg/L	μg/L	μg/L	μg/L	μg/L	ene μg/L	μg/L	μg/L	μg/L	μg/L
RS-4 cont.	2/25/1998	675.38	7.19	7.19	0.00	668.19	<50			3	<0.5	<0.5	<1	5,600		
	5/27/1998	675.38	8.40	8.40	0.00	666.98	<50			<0.5	<0.5	<0.5	<1	2,400		
	9/16/1998	675.38	9.26	9.26	0.00	666.12	<50			<0.5	<0.5	<0.5	<1	230		
	11/24/1998	675.38	8.50	8.50	0.00	666.88	<50			2	<0.5	<0.5	<1	100		
	2/24/1999	675.42	7.20	7.20	0.00	668.22	<50			2	3	0.80	5	670		
	5/5/1999	675.42	8.37	8.37	0.00	667.05	100			<0.5	<0.5	<0.5	<1	440		
	8/24/1999	675.42	8.36	8.36	0.00	667.06	<50			<0.5	<0.5	<0.5	<1	<500		
	2/8/2012	675.42	8.11	8.11	0.00	667.31	140,000	130,000 x	<9,360	120	2,600	4,700	28,200	28,000	100,000	1,800
	5/4/2012	675.42	8.31	8.31	0.00	667.11	67,000	12,000 Y	NA	61	900	2,100	9,700	32,000	69,000	1,700
	8/6/2012	675.42	9.01	9.01	0.00	666.41	49,000	8,900	NA	<130	350	1,700	8,100	19,000	90,000	1,300
	3/29/2013	675.42	8.49	8.49	0.00	666.93	14,000	14,000	NA	<100	<100	440	1,340	14,000	110,000	590
	6/6/2013	675.27	8.48	8.48	0.00	666.79	12,000	7,200	NA	11	<3.6	420	886	16,000	66,000	970
	9/4/2013	675.27	9.39	9.39	0.00	665.88	20,000	5,100	NA	<100	<100	660	2,830	18,000	75,000	1,200
	12/30/2013	675.27	9.57	9.57	0.00	665.70	<13,000	9,900	NA	<130	<130	<130	150	16,000	37,000	1,100
	3/10/2014	675.27	7.65	7.65	0.00	667.62	<10,000	3,700	NA	<100	<100	<100	<100	11,000	38,000	640
MW-1	6/6/13	674.92	6.03	6.03	0.00	668.89	<17,000	13,000	NA	930	370	470	1,760	55,000	32,000	7,200
	9/4/13	674.92	7.10	7.10	0.00	667.82	<50,000	13,000	NA	2,000	<500	1,400	4,200	70,000	48,000	7,700
	12/30/13	674.92	7.27	7.27	0.00	667.65	34,000	13,000	NA	920	1,000	1,300	4,900	43,000	43,000	4,500
	3/10/14	674.92	5.51	5.51	0.00	669.41	<20,000	11,000	NA	720	<200	890	1,970	25,000	30,000	2,600
MW-2	6/6/13	675.02	6.70	6.70	0.00	668.32	16,000	5,400	NA	910	<130	610	2,290	59,000	64,000	7,700
	9/4/13	675.02	7.79	7.79	0.00	667.23	<25,000	3,900	NA	860	<250	710	1,580	32,000	31,000	4,600
	12/30/13	675.02	8.05	8.05	0.00	666.97	<13,000	6,300	NA	180	<130	<130	330	18,000	53,000	1,800
	3/10/14	675.02	6.08	6.08	0.00	668.94	14,000	11,000	NA	210	<130	360	700	15,000	40,000	1,800
	Ground-						100	100	100	1.00	40	30	20	5.00	12	NL
ESLs (µg/L)	water						100	100	100	1.00	40	30	20	3.00	12	INL
LSLS (µg/L)	Vapor						NV	NV	NV	27	95,000	310	37,000	9,900	NV	NL
	Intrusion						INV	INV	INV	21	95,000	310	37,000	9,900	INV	INL

Note:

ESL: Environmental Screening Level by California Regional Water Quality Control Board San Francisco Bay Region

December 2013 (Table-F1a, groundwater is a current or potential drinking water source)

NL: Not Listed

NV: No Value

< : Below Laboratory Reporting Limit (Method Detection Limit)

x : Does not match pattern of reference Gasoline standard/ Not typical of diesel standard pattern (possibly fuel lighter than diesel)

Appendix A

Standard Operating Procedures for Conducting Groundwater Monitoring Activities

Standard Operating Procedures for Conducting Groundwater Monitoring Activities

Water Level Measurements

Prior to measurement of groundwater depth at each monitoring well, equalization with the surrounding aquifer must be achieved. Initially, the well cap is removed and the pressure is allowed to dissipate, creating a more stable water table level within the well. After about 10-15 minutes, once the water level in the well stabilizes, the depth to groundwater in each monitoring well is measured from the top of the casing to the nearest 0.01 foot using an electric sounder.

Purging and Field Measurements

Prior to sample collection, each monitoring well is purged using a battery-operated, 2-inch-diameter pump (Model ES-60 DC). To ensure that final samples are in equilibrium with, and representative of, the surrounding groundwater, during purging several samples are taken for field measurements of pH, temperature and electrical conductivity (EC). These parameters are measured with a Hanna pH, conductivity, and temperature meter. Equipment is calibrated on-site using standard solutions and procedures provided by the manufacturer.

The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of bacteria. The groundwater EC is directly related to the concentration of total dissolved solids (TDS) in solution.

Purging continues until these parameters stabilize or three casing volumes are purged.

Sampling

For sampling purposes, after purging a disposable polyethylene bailer is used to collect sufficient samples from each monitoring well for laboratory analyses. Groundwater samples are transferred to 40-mL VOA vials and preserved with hydrochloric acid. The vials are sealed to prevent air bubbles from forming within the headspace. For TPH-d and TPH-mo analysis, groundwater samples are collected using 1-L, amber, nonpreserved glass containers. Samples are placed in an ice-filled cooler and maintained at 4°C. A chain of custody form for all samples is prepared to accompany the samples, which are promptly delivered to a California state-certified analytical laboratory.

Appendix B

Tables of Elevations and Coordinates on Wells,
Field Measurements of Physical and Chemical
Parameters of the Groundwater Samples
and Groundwater Gradient Calculations

DATE: 5/28/2013 JOB# 13004

TABLE OF ELEVATIONS & COORDINATES ON MONITORING WELLS

SOMA ENVIRONMENTAL ENGINEERING 2844 MOUNTAIN BLVD OAKLAND, CA 94602

WELL ID #	NORTHING (FT.) / LATITUDE (D.DEG.)	EASTING (FT.) / LONGITUDE (D.DEG.)	ELEVATION (FT.)	DESCRIPTION
MW-1	2122404.169	6071174.709	674.92	SET NOTCH N. SIDE 4" PVC
	N37.81151896	W122.1980061	675.50	SET PUNCH N. SIDE
			675.49	NORTH SIDE AC
MW-2	2122393.627	6071186.912	675.02	SET NOTCH N. SIDE 4" PVC
	N37.81149062	W122.1979632	675.53	SET PUNCH N. SIDE
			675.51	
RS-3	2122442.569	6071215.114	676.08	SET NOTCH N. SIDE 4" PVC
	N37.81162641	W122.1978687	676.47	SET PUNCH N. SIDE
			676.38	NORTH SIDE AC
RS-4	2122379.611	6071195.421	675.27	TOP 4" PVC
	N37.81145256	W122.1979329	675.70	SET PUNCH N. SIDE
			675.59	NORTH SIDE AC

HORIZONTAL CONTROL: CALIFORNIA COORDINATE SYSTEM ZONE 3, NAD83.

ELLIPSOID: WGS 1984

EPOCH: NAD_83 (2011) 2010.0000

GEOID MODEL: GEOID12A

VERTICAL CONTROL: BENCH MARK: CITY OF OAKLAND BM 2806

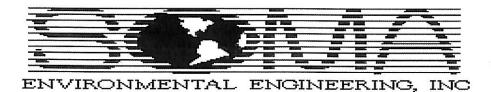
CINCH NAIL IN SOUTHWESTERLY CURB OF MOUNTAIN BLVD, 150' SOUTHEASTERLY FROM THE CENTERLINE OF KEARNEY AVE EXTENDED. NORTHING 2,122,547.687', EASTING 6,070,956.301'

ELEVATION= 674.892' NAVD 88 DATUM

EQUIPMENT USED: TRIMBLE GPS-R8 & TS S6, TOPCON AT-G2 LEVEL

EDGIS LAND SURVEYING LAND SURVEYING AND MAPPING

1374 Garland Avenue, Clovis, CA 93612 Phone (559) 803-2679 email: edgis@aol.com 6/03/13

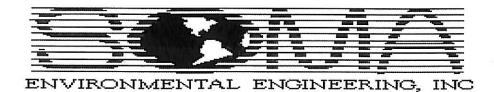

ENVIRONMENTAL ENGINEERING, INC

Well No.: Casing Diameter: Depth of Well: Top of Casing Elevation: Depth to Groundwater: Groundwater Elevation: Water Column Height: Purged Volume:	C C C C C C C C C C	Project No.: 5081 Address: 2844 Mountain Blvd. Oakland, CA Date: March / Ů , 2014 Sampler: Lizzie Hightower
Purging Method:	Bailer □	Pump 🖰
Color:	Yes □ No □	Describe:
Sheen:	Yes □ No ⊡	Describe:
Odor:	Yes □ No ⊞	Describe:

Field Measurements:

Time	Vol (gallons)	рН	Temp (° C)	E.C. (μs/cm)
100,57	Stava	d pu	giva we	el
20:58	3	6.92	1876	838
20:59	d	7.00	17.9	824
[10:00	9	7.04	17.6	826
10:01	12	7.06	17.4	825
10:06	Sampl	od		

Notes:



	20 20 10		
Well No.:	<u>KS-9</u>	Project No.:	5081
Casing Diameter:	inches	Address:	2844 Mountain Blvd.
Depth of Well:	25.54 feet		Oakland, CA
Top of Casing Elevation:	<u>675,27</u> feet	Date:	March (O , 2014
Depth to Groundwater:		Sampler:	Lizzie Hightower
Groundwater Elevation:	<u>667.62</u> feet		
Water Column Height:	17,89 feet		
Purged Volume:	yot puzza		
Purging Method:	Bailer 🗆	Pump 🗆	
Sampling Method:	Bailer 19	Pump	
Color:	Yes ☑ No □	Describe:	Slightly Cloudy
Sheen:	Yes □ No ☑	Describe:	
Odor:	Yes ☑ No □	Describe:	Petro odur

Field Measurements:

Time	Vol (gallons)	pН	Temp (° C)	E.C. (μs/cm)
12:20	Grabs	ample		
		·		

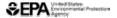
Notes: Cap left on well from mpE event. Unable to vemove because it is too tight. Only able to take a grab sample through the hole in the cap.

Well No.: Casing Diameter: Depth of Well: Top of Casing Elevation: Depth to Groundwater: Groundwater Elevation: Water Column Height: Purged Volume:	MW-1 4 inches 19.75 feet 614.92 feet 5.51 feet 661.41 feet 14.24 feet gallons	Project No.: Address: Date: Sampler:	5081 2844 Mountain Blvd. Oakland, CA March (0), 2014 Lizzie Hightower
Purging Method:	Bailer 🗆	Pump 🖫	
Sampling Method:	Bailer 🖒	Pump	
Color:	Yes □ No r	Describe:	
Sheen:	Yes □ No ☑	Describe:	
Odor:	Yes th No □	Describe:	Petro ods

Field Measurements:

Time	Vol (gallons)	рН	Temp (° C)	E.C. (μs/cm)
10:25	Starte	& purz	ingue	20
10:26	3	6.72	14.9	907
10:27	6	6.75	18.1	908
10:23	9	6.78	18.2	906
10:29	12	6.81	18.2	907
10:34	Sampl	ed		

Notes:


ENVIRONMENTAL ENGINEERING, INC

Well No.:	mw-2	Project No.: 5081
Casing Diameter:	inches	Address: 2844 Mountain Blvd.
Depth of Well:	19.74 feet	Oakland, CA
Top of Casing Elevation:	675.02 feet	Date: March 10, 2014
Depth to Groundwater:	6.08 feet	Sampler: Lizzie Hightower
Groundwater Elevation:	668.94 feet	
Water Column Height:	13,64 feet	
Purged Volume:	12 gallons	
Purging Method:	Bailer 🗆	Pump D
Sampling Method:	Bailer	Pump
Color:	Yes ty No 🗆	Describe: Govery
Sheen:	Yes □ No ☑	Describe:
Odor:	Yes □ No □	Describe: Petro Odur

Field Measurements:

Time	Vol (gallons)	pН	Temp (° C)	E.C. (μs/cm)
11:51	Started	lpur	ing we	ll
11:52	3	7.08	48.7	1110
11:52	b	7.10	8.81	1114
11:54	9	7.09	(8.8)	1113
11:55	12	7.12	18.7	1117
12:00	Sample	d	<u> </u>	

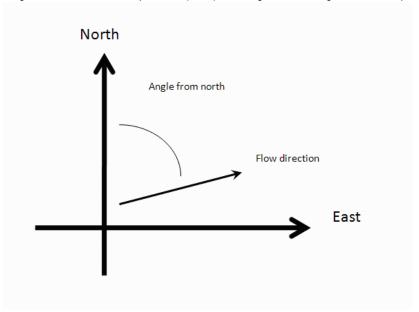
Notes:

EPA On-line Tools for Site Assessment Calculation

Hydraulic Gradient -- Magnitude and Direction

Gradient Calculation from fitting a plane to as many as thirty points

a $x_1 + b y_1 + c = h_1$ a $x_2 + b y_2 + c = h_2$ a $x_3 + b y_3 + c = h_3$... a $x_{30} + b y_{30} + c = h_{30}$


where $(\boldsymbol{x}_{i},\!\boldsymbol{y}_{i})$ are the coordinates of the well and

h_i is the head

i = 1,2,3, ..., 30

The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of (a² + b²) and the angle from the arctangent of a/b or b/a depending on the quadrant

Inputs Example Data Set 1 Example Data Set 2 Calculate Clear Save Data Recall Data Go Back Site Name 2844 Mountain Blvd., Oa Date March 10, 2014 Current Date Calculation basis Head Coordinates ft I.D. x-coordinate y-coordinate head ft 1) RS-3 6071215.111 2122442.671 670.40 2) RS-4 6071195.458 2122379.324 667.62 3) MW-1 6071174.931 2122404.178 669.41 4) MW-2 6071186.39 2122393.492 668.94 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17)

18)			
19)			
20)			
21)			
22)			
23)			
24)			
25)			
26)			
27)			
28)			
29)			
30)			
Res	ults		
Nun	nber of Points Us	ed in Calculation	4
Max. Difference Between Head Values			0.8473
Gradient Magnitude (i)			0.05669
Flow direction as degrees from North (positive y axis)			152.4
Coefficient of Determination (R2)			0.977
WCI	MS		
Last	updated on Thurse	day, January 10, 2013	

http://www.epa.gov/athens/learn2model/part-two/onsite/gradient4plus-ns.html

Appendix C

Laboratory Report and Chain of Custody Form

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 254304 ANALYTICAL REPORT

SOMA Environmental Engineering Inc. Project : 5081

6620 Owens Dr. Location: 2844 Mountain Blvd., Oakland

Pleasanton, CA 94588 Level : II

<u>Lab ID</u>
254304-001
254304-002
254304-003
254304-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@ctberk.com
(510) 204-2226

CA ELAP# 2896, NELAP# 4044-001

Date: <u>03/19/2014</u>

CASE NARRATIVE

Laboratory number: 254304

Client: SOMA Environmental Engineering Inc.

Project: 5081

Location: 2844 Mountain Blvd., Oakland

Request Date: 03/11/14
Samples Received: 03/11/14

This data package contains sample and QC results for four water samples, requested for the above referenced project on 03/11/14. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY

Page of

Analyses

Curtis & Tompkins, Ltd

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax

LOGIN#_254304

Sampler: Lizzie Hightower

Project No: 5081

Joyce Bobek

Project Name: 2844 Mountain Blvd., Oakland

Company:

Report To:

SOMA Environmental

Turnaround Time: Standard

Telephone:

925-734-6400

025 724 6404

					Fax:					925-734-6401						١×	l S						- [- 1
							Vla	trix				Pres	serva	ative		BTEX,	Ιõ	15			-						
Lab No.		Sample ID.	Sa	mpling Time		Soil	Water	Waste		# of Containers	HCL	H ₂ SO ₄	HNO3	ICE		TPH-q, B	Gasoline Oxyg	TPH-d 8015									
4	RS-3		3	10/14	11:06		*			3 VOAs, 2-500 mL Ambers	*			*		*	*	*									
2	RS-4				1220		*			3 VOAs, 2-500 mL Ambers	*			*		*	*	*									
ઉ	MW-1				11:34		*			3 VOAs, 2-500 mL Ambers	*			*		*	*	*									
4	MW-2		\	<u>V</u>	12:00		*			3 VOAs, 2-500 mL Ambers	*			*		*	*	*									
									+	PT- 5 U. U.						-					\dashv	+	+	\dashv	+	\dashv	+
							Н		4												4	#				_	\blacksquare
							Ц	\downarrow	\downarrow												寸	ightharpoons	1			\dashv	
																					\perp	\pm				$\frac{1}{2}$	
-							\prod														\dashv	\blacksquare	\dashv	\dashv	\exists	\dashv	
Notes:	EDF C	UTPUT REQUIRE	D			RI	EL	ING	วบ	ISHED BY:					1 05	RI	CE	ıy€	DΒ	Y :							

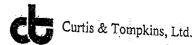
Notes:	EDF	Ol	JTPU	TF	REQ	UIRE	D
	GasO	x:	DIPE.	ET	BE. T	TAME.	TB

IZOO

na Rankar DATE/TIME

enates 8260B MtBE 8260B

> 3/11/14 1200 DATE/TIME


DATE/TIME

DATE/TIME

DATE/TIME

 ω 으

COOLER RECEIPT CHECKLIST

On 100h	ıa.
Login # 254304 Date Received 3/11/14 Number of and	
Villiant Collins I Villiant of coolers	
5081	AKLA
Date Opened 5/11/14 By (print) We (sign)	
Date Logged in By (print) (sign)	-
	•
1. Did cooler come with a shipping slip (airbill, etc)YES NO	
smpping into	
2A. Were custody seals present? YES (circle) on cooler on samples No.	-
How many Name Date	<i>)</i> ::
THE TOTAL DOMAN THE WAY TO THE TANK THE	
5. Were custody papers dry and intent when we is 10 INO (N/)	4
T. Wold dustody papers filled out proports. (inter-	
6. Indicate the packing in cooler: (if other, describe)	
Bubble Wrap	
Cloth material Comband Dags None	
7. Temperature documentation: * Notify DM: framework Paper towels	
* Notify PM if temperature exceeds 6°C	
Type of ice used: Wet □ Blue/Gel □ None Temp(°C)	•
	-
☐ Samples Received on ice & cold without a temperature blank; temp. taken with IR gu	'n
Samples received on ice directly from the field. Cooling process had become	-
o. Wele Menod 5035 sampling containers property	
11 LD, WIN TIME Ward those through the control of t	
THE THE TOTAL OF THE PROPERTY	
10. Ale there any missing / evtra sampled	
11. Are samples in the appropriate containing for the samples in the appropriate containing for the samples in the appropriate containing for the samples in the appropriate containing for the samples in the appropriate containing for the samples in the appropriate containing for the samples in the appropriate containing for the samples in the appropriate containing for the samples in the samples in the appropriate containing for the samples in the samples in the samples in the samples in the samples in the samples in the samples in the samples in the samples in the samples in the samples in the samples in the samples in the sample sample in the sample	
12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custodic name of the complete? NO	
13. Do the sample labels agree with custody papers?	
14. Was sufficient amount of comple cont for the	
15. Are the samples appropriately preserved? YES NO WA	
16. Did you check preservatives for all bottles for each and the YES NO WA	
The property of all bottles for each sample?	
18. Did you change the hold time in I TAG form	
19. Did you change the hold time in LIMS for unpreserved VOAs?YES NO NA	
20. Are bubbles > 6mm absent in VOA completed.	
21. Was the client contacted concerning this seconds delta to N/A	٠
If YES. Who was called? YES (NO)	•
By Date:	
COMMENTS	•
	•
	-
	-
	-

Total Extractable Hydrocarbons Lab #: 254304 Location: 2844 Mountain Blvd., Oakland Client: EPA 3520C SOMA Environmental Engineering Inc. Prep: Project#: 5081 Analysis: EPA 8015B 03/10/14 Matrix: Water Sampled: 03/11/14 Units: ug/L Received: Diln Fac: 1.000 03/12/14 Prepared: Batch#: 03/13/14 208898 Analyzed:

Field ID: RS-3 Lab ID: 254304-001

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 99 66-129

Field ID: RS-4 Lab ID: 254304-002

Type: SAMPLE

AnalyteResultRLDiesel C10-C243,70050

Surrogate %REC Limits
o-Terphenyl 103 66-129

Field ID: MW-1 Lab ID: 254304-003

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 11,000
 50

Surrogate %REC Limits
o-Terphenyl 104 66-129

Field ID: MW-2 Lab ID: 254304-004

Type: SAMPLE

 Analyte
 Result
 RL

 Diesel C10-C24
 11,000
 50

Surrogate %REC Limits
o-Terphenyl 105 66-129

Type: BLANK Lab ID: QC731404

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 101 66-129

ND= Not Detected RL= Reporting Limit

Page 1 of 1

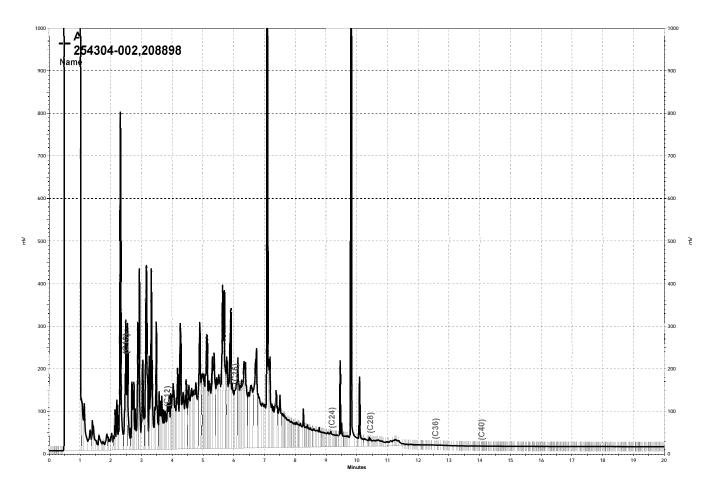
13.0

		Total Extracta	ble Hydrocarbo	ns
Lab #:	254304		Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 3520C
Project#:	5081		Analysis:	EPA 8015B
Matrix:	Water		Batch#:	208898
Units:	ug/L		Prepared:	03/12/14
Diln Fac:	1.000		Analyzed:	03/13/14

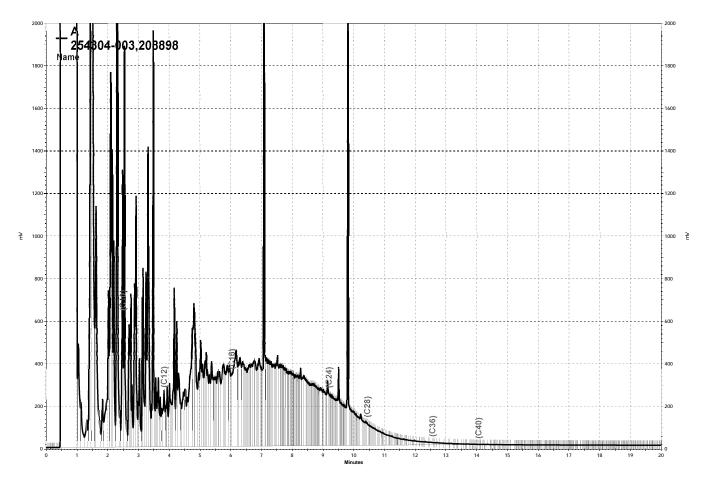
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC731405

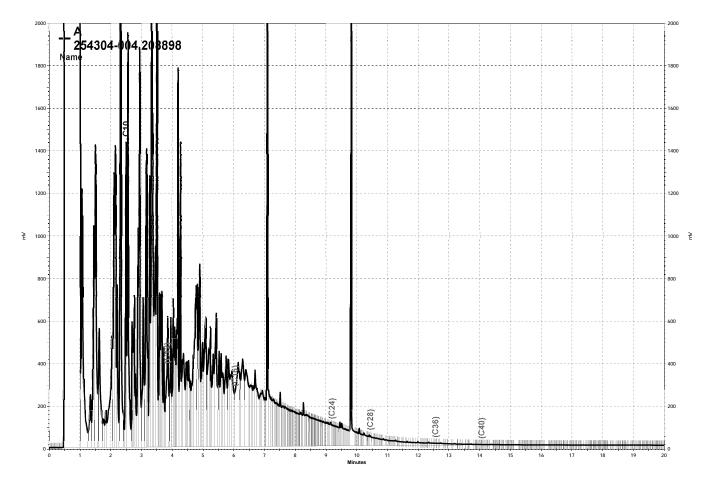
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	1,631	65	61-120

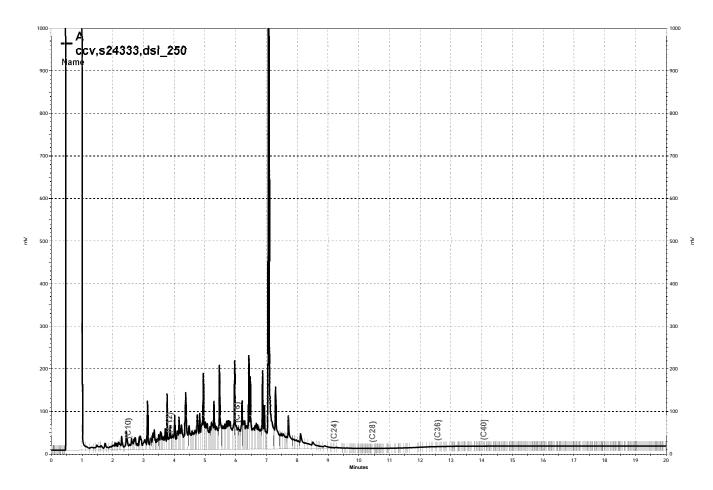

Surrogate	%REC	Limits
o-Terphenyl	98	66-129

Type: BSD Cleanup Method: EPA 3630C


Lab ID: QC731406

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	1,695	68	61-120	4	45


Surrogate	%REC	Limits	
o-Terphenyl	100	66-129	


\Lims\gdrive\ezchrom\Projects\GC17A\Data\072a021, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\072a022, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\072a023, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\072a004, A

	Purgeable (Organics by GC/N	MS
Lab #:	254304	Location:	2844 Mountain Blvd., Oakland
Client:	SOMA Environmental Engineering In	c. Prep:	EPA 5030B
Project#:	5081	Analysis:	EPA 8260B
Field ID:	RS-3	Batch#:	208888
Lab ID:	254304-001	Sampled:	03/10/14
Matrix:	Water	Received:	03/11/14
Units:	ug/L	Analyzed:	03/12/14
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	320	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	0.61	0.50	
MTBE	14	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	87	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	90	80-120

ge I or I

3.0

Purgeable Organics by GC/MS					
Lab #:	254304		Location:	2844 Mountain Blvd., Oakland	
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	5081		Analysis:	EPA 8260B	
Field ID:	RS-4		Batch#:	208888	
Lab ID:	254304-002		Sampled:	03/10/14	
Matrix:	Water		Received:	03/11/14	
Units:	ug/L		Analyzed:	03/12/14	
Diln Fac:	200.0				

Analyte	Result	RL	
Gasoline C7-C12	ND	10,000	
tert-Butyl Alcohol (TBA)	38,000	2,000	
Isopropyl Ether (DIPE)	ND	100	
Ethyl tert-Butyl Ether (ETBE)	ND	100	
Methyl tert-Amyl Ether (TAME)	640	100	
MTBE	11,000	100	
Benzene	ND	100	
Toluene	ND	100	
Ethylbenzene	ND	100	
m,p-Xylenes	ND	100	
o-Xylene	ND	100	

Surrogate	%REC	Limits
Dibromofluoromethane	97	77-136
1,2-Dichloroethane-d4	89	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	92	80-120

ge 1 of 1 4.0

Purgeable Organics by GC/MS						
Lab #:	254304	Location:	2844 Mountain Blvd., Oakland			
Client:	SOMA Environmental Engineering I	inc. Prep:	EPA 5030B			
Project#:	5081	Analysis:	EPA 8260B			
Field ID:	MW-1	Batch#:	209074			
Lab ID:	254304-003	Sampled:	03/10/14			
Matrix:	Water	Received:	03/11/14			
Units:	ug/L	Analyzed:	03/18/14			
Diln Fac:	400.0					

Analyte	Result	RL
Gasoline C7-C12	ND	20,000
tert-Butyl Alcohol (TBA)	30,000	4,000
Isopropyl Ether (DIPE)	ND	200
Ethyl tert-Butyl Ether (ETBE)	ND	200
Methyl tert-Amyl Ether (TAME)	2,600	200
MTBE	25,000	200
Benzene	720	200
Toluene	ND	200
Ethylbenzene	890	200
m,p-Xylenes	1,700	200
o-Xylene	270	200

Surrogate	%REC	Limits
Dibromofluoromethane	109	77-136
1,2-Dichloroethane-d4	102	75-139
Toluene-d8	104	80-120
Bromofluorobenzene	103	80-120

Purgeable Organics by GC/MS						
Lab #:	254304	Location:	2844 Mountain Blvd., Oakland			
Client:	SOMA Environmental Engineering In	nc. Prep:	EPA 5030B			
Project#:	5081	Analysis:	EPA 8260B			
Field ID:	MW-2	Batch#:	208888			
Lab ID:	254304-004	Sampled:	03/10/14			
Matrix:	Water	Received:	03/11/14			
Units:	ug/L	Analyzed:	03/12/14			
Diln Fac:	250.0					

Analyte	Result	RL
Gasoline C7-C12	14,000	13,000
tert-Butyl Alcohol (TBA)	40,000	2,500
Isopropyl Ether (DIPE)	ND	130
Ethyl tert-Butyl Ether (ETBE)	ND	130
Methyl tert-Amyl Ether (TAME)	1,800	130
MTBE	15,000	130
Benzene	210	130
Toluene	ND	130
Ethylbenzene	360	130
m,p-Xylenes	570	130
o-Xylene	130	130

Surrogate	%REC	Limits
Dibromofluoromethane	95	77-136
1,2-Dichloroethane-d4	87	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	90	80-120

Page 1 of 1

6.0

Purgeable Organics by GC/MS					
Lab #: Client: Project#:	254304 SOMA Environmental 5081	Engineering Inc.	Location: Prep: Analysis:	2844 Mountain Blvd., Oakland EPA 5030B EPA 8260B	
Matrix: Units: Diln Fac:	Water ug/L 1.000		Batch#: Analyzed:	208888 03/12/14	

Type: BS Lab ID: QC731350

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	93.57	75	37-151
Isopropyl Ether (DIPE)	25.00	21.57	86	56-124
Ethyl tert-Butyl Ether (ETBE)	25.00	20.45	82	61-122
Methyl tert-Amyl Ether (TAME)	25.00	19.62	78	65-120
MTBE	25.00	19.47	78	64-121
Benzene	25.00	24.23	97	80-124
Toluene	25.00	25.77	103	80-122
Ethylbenzene	25.00	25.02	100	80-124
m,p-Xylenes	50.00	51.05	102	80-122
o-Xylene	25.00	26.59	106	77-120

Surrogate	%REC	Limits	
Dibromofluoromethane	95	77-136	
1,2-Dichloroethane-d4	80	75-139	
Toluene-d8	95	80-120	
Bromofluorobenzene	94	80-120	

Type: BSD Lab ID: QC731351

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	107.3	86	37-151	14	30
Isopropyl Ether (DIPE)	25.00	22.69	91	56-124	5	20
Ethyl tert-Butyl Ether (ETBE)	25.00	21.50	86	61-122	5	22
Methyl tert-Amyl Ether (TAME)	25.00	21.42	86	65-120	9	22
MTBE	25.00	21.57	86	64-121	10	20
Benzene	25.00	25.88	104	80-124	7	20
Toluene	25.00	27.73	111	80-122	7	20
Ethylbenzene	25.00	27.26	109	80-124	9	20
m,p-Xylenes	50.00	55.24	110	80-122	8	20
o-Xylene	25.00	28.70	115	77-120	8	20

Surrogate	%REC	Limits
Dibromofluoromethane	94	77-136
1,2-Dichloroethane-d4	82	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	93	80-120

Purgeable Organics by GC/MS							
Lab #:	254304		Location:	2844 Mountain Blvd., Oakland			
Client:	SOMA Environmental Engir	neering Inc.	Prep:	EPA 5030B			
Project#:	5081		Analysis:	EPA 8260B			
Type:	BLANK		Diln Fac:	1.000			
Lab ID:	QC731352		Batch#:	208888			
Matrix:	Water		Analyzed:	03/12/14			
Units:	ug/L						

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	77-136
1,2-Dichloroethane-d4	88	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	93	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

8.0

Purgeable Organics by GC/MS						
Lab #:	254304		Location:	2844 Mountain Blvd., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B		
Project#:	5081		Analysis:	EPA 8260B		
Matrix:	Water		Batch#:	208888		
Units:	ug/L		Analyzed:	03/12/14		
Diln Fac:	1.000					

Type: BS Lab ID: QC731353

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	955.6	96	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	86	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	95	80-120

Type: BSD Lab ID: QC731354

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	982.6	98	80-120	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	95	77-136
1,2-Dichloroethane-d4	85	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	92	80-120

Purgeable Organics by GC/MS						
Lab #: Client: Project#:	254304 SOMA Environmental : 5081	Engineering Inc.	Location: Prep: Analysis:	2844 Mountain Blvd., Oakland EPA 5030B EPA 8260B		
Matrix: Units: Diln Fac:	Water ug/L 1.000		Batch#: Analyzed:	209074 03/18/14		

Type: BS Lab ID: QC732132

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	104.5	84	37-151
Isopropyl Ether (DIPE)	25.00	26.18	105	56-124
Ethyl tert-Butyl Ether (ETBE)	25.00	23.57	94	61-122
Methyl tert-Amyl Ether (TAME)	25.00	21.19	85	65-120
MTBE	25.00	21.78	87	64-121
Benzene	25.00	26.90	108	80-124
Toluene	25.00	25.98	104	80-122
Ethylbenzene	25.00	26.08	104	80-124
m,p-Xylenes	50.00	52.78	106	80-122
o-Xylene	25.00	26.46	106	77-120

Surrogate	%REC	Limits
Dibromofluoromethane	103	77-136
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	101	80-120
Bromofluorobenzene	102	80-120

Type: BSD Lab ID: QC732133

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	106.5	85	37-151	2	30
Isopropyl Ether (DIPE)	25.00	26.71	107	56-124	2	20
Ethyl tert-Butyl Ether (ETBE)	25.00	23.85	95	61-122	1	22
Methyl tert-Amyl Ether (TAME)	25.00	21.19	85	65-120	0	22
MTBE	25.00	22.15	89	64-121	2	20
Benzene	25.00	27.38	110	80-124	2	20
Toluene	25.00	27.55	110	80-122	6	20
Ethylbenzene	25.00	27.20	109	80-124	4	20
m,p-Xylenes	50.00	54.67	109	80-122	4	20
o-Xylene	25.00	27.54	110	77-120	4	20

Surrogate	%REC	Limits
Dibromofluoromethane	104	77-136
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	102	80-120
Bromofluorobenzene	101	80-120

Purgeable Organics by GC/MS								
Lab #:	254304	Location:	2844 Mountain Blvd., Oakland					
Client:	SOMA Environmental Engineering	Inc. Prep:	EPA 5030B					
Project#:	5081	Analysis:	EPA 8260B					
Type:	BLANK	Diln Fac:	1.000					
Lab ID:	QC732134	Batch#:	209074					
Matrix:	Water	Analyzed:	03/18/14					
Units:	ug/L							

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	106	77-136
1,2-Dichloroethane-d4	101	75-139
Toluene-d8	101	80-120
Bromofluorobenzene	101	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Purgeable Organics by GC/MS								
Lab #:	254304	Location:	2844 Mountain Blvd., Oakland					
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B					
Project#:	5081	Analysis:	EPA 8260B					
Matrix:	Water	Batch#:	209074					
Units:	ug/L	Analyzed:	03/18/14					
Diln Fac:	1.000							

Type: BS Lab ID: QC732178

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,001	100	80-120

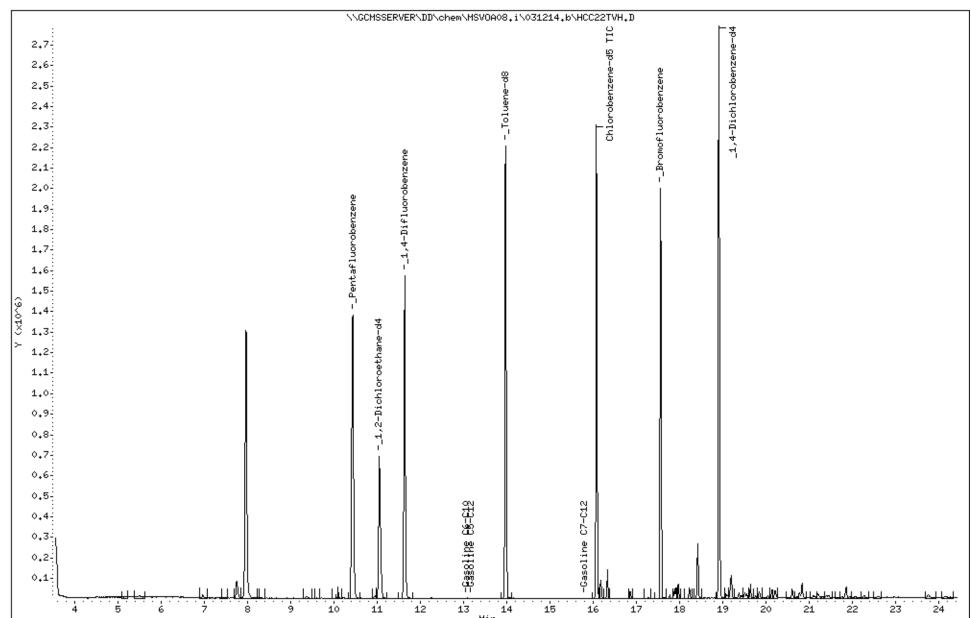
Surrogate	%REC	Limits
Dibromofluoromethane	105	77-136
1,2-Dichloroethane-d4	96	75-139
Toluene-d8	102	80-120
Bromofluorobenzene	102	80-120

Type: BSD Lab ID: QC732179

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	870.3	87	80-120	14	20

Surrogate	%REC	Limits
Dibromofluoromethane	104	77-136
1,2-Dichloroethane-d4	96	75-139
Toluene-d8	100	80-120
Bromofluorobenzene	91	80-120

Page 2


Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\031214.b\HCC22TVH.D

Date : 12-MAR-2014 21:37 Client ID: DYNA P&T Sample Info: S,254304-004

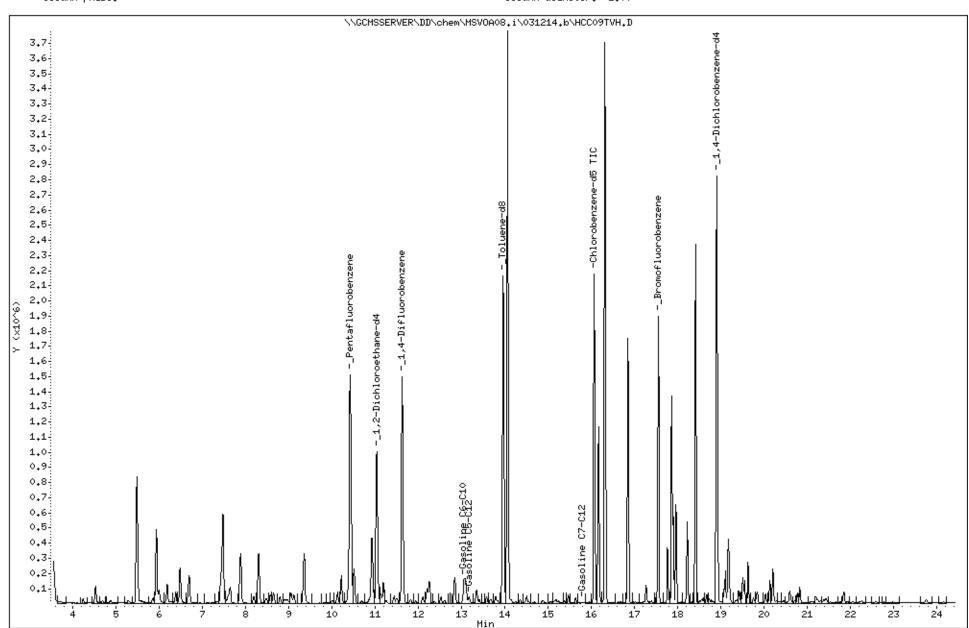
Instrument: MSVOA08.i

Operator: VOC

Column phase: Column diameter: 2.00

Page 2

Data File: \\GCMSSERVER\DD\chem\MSVOA08.i\031214.b\HCC09TVH.D


Date : 12-MAR-2014 14:01 Client ID: DYNA P&T

Sample Info: CCV/BS,QC731350,208888,S24352,0.01/100

Operator: VOC

Instrument: MSVOA08.i

Column phase: Column diameter: 2.00

Appendix D

Non-Hazardous Waste Manifest

NON-HAZARDOUS WASTE MANIFEST

Please print or type (Form designed for use on elite (12 pitch) typewriter) NON-HAZARDOUS WASTE MANIFEST 1. Generator's US EPA I	D No.	Manifest Documen	1NO. SOIG-DIG	2. Page 1			
3. Generator's Name and Mailing Address DESERT PE- Z844 Mount	TROLEMM TAIN BLVD.		SUMA ENV				
4. Generator's Phone () OAKLAND, CA			ransporter's ID				
	INSTRAT INC						
114	3. US EPA ID Number		B. Transporter (TPROTE) 274-293 (/				
			D. Transporter 2 Phone				
9. Designated Facility Name and Site Address INSTRAT, ING. 1105 C AIRPORT FD.	0. US EPA ID Number		acility's ID				
FIIO VISTA, CA 94571		F. Facility	(707) S74	-8884			
11. WASTE DESCRIPTION	2 747, 0	12. Containers No. Type	13. Total Quantity	14. Unit Wt./Vol.			
NON-HAZ MONITORING WE	IL WATER	2 Dam	90	GAL			
G b. E N E C.							
R c. A T O d.							
d.							
G. Additional Descriptions for Materials Listed Above							
C. Additional Descriptions for Materials Listed Above		n. nandin	g Codes for Wastes Listed Above				
		1		1903			
		8					
15. Special Handling Instructions and Additional Information				·			
16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this s in proper condition for transport. The materials described on this manifest and	shipment are fully and accurately described e not subject to federal hazardous waste req	and are in all respects gulations.		Date			
Printed/Typed Name	Signature		Monti				
T 17. Transporter 1 Acknowledgement of Receipt of Materials		1		Date			
A Printed/Typed Name	Signature		Monti	1 . /			
18. Transporter 2 Acknowledgement of Receipt of Materials	7 / may			14-14			
T Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Printed/Typed Name	Signature		Monti	Date h Day Year			
F A C			- ·				
20. Facility Owner or Operator, Certification of receipt of the waste materials cov	ered by this manifest, except as noted in ite	m 19.		Date			
Y Printed/Typed Name Y MICHAEL WHITEHEAD	Signature	NU	Month 2	Day Year			

