

Keith Nowell, P.G., C.HG Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway Alameda, California 94502

TRANSMITTAL LETTER & CERTIFICATION STATEMENT Subject:

Former Exxon Station, 3055 35th Avenue, Oakland Location:

RO-0000271; GeoTracker #: T0600100538; ACEH LOP#:

Date of Report	Title of Report
June 9, 2016	Focused Feasibility Study and Corrective Action Plan – Revision 1

As the legally authorized representative for the responsible party, I certify the following statement to satisfy regulatory requirements for technical report submittals:

 I declare, under penalty of perjury, that the information and/or recommendations contained in the aforementioned report, prepared on my behalf by WEBER, HAYES AND ASSOCIATES, are true and correct to the best of my knowledge.

Sincerely,

Lynn Worthington

Golden Empire Properties, Inc. **C:** 5942 MacArthur Blvd # B Oakland, California 94605-1698

WEBER, HAYES & ASSOCIATES Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 // www.weber-hayes.com

FOCUSED FEASIBILITY STUDY AND CORRECTIVE ACTION PLAN

Site: Former Exxon Station 3055 35th Avenue Oakland, California

Fuel Leak Case RO 271

San Francisco Bay Regional Water Quality Control Board Case #: 01-0585

GeoTracker Global ID: T0600100538

WHA PROJECT: 2X103.C

REVISION 1 JUNE 9, 2016

Prepared for Submittal to:

ALAMEDA COUNTY ENVIRONMENTAL HEALTH Attn: Keith Nowell 1131 Harbor Bay Parkway Alameda, CA 94502-6577

	TABLE OF CONTENTS				
1.0	EXECUTIVE SUMMARY1				
2.0	INTRODUCTION	2			
3.0	PROPOSED CLEANUP GOALS	3			
4.0	 3.1 LTCP General Criteria 3.2 LTCP Media-Specific Criteria 3.2.1 Groundwater-Specific Criteria 3.2.2 Petroleum Vapor Intrusion to Indoor Air Media-Specific Criteria 3.2.3 Direct Contact and Outdoor Air Exposure Media-Specific Criteria SUMMARY OF SITE CHARACTERIZATION DATA 	4 4 5 6			
5.0	 4.1 Hydrocarbon Concentrations in Soil Compared to Cleanup Goals 4.2 Hydrocarbon Concentrations in Soil Gas Compared to Cleanup Goals 4.3 Hydrocarbon Concentrations in Groundwater Compared to Cleanup Goals 4.4 Summary of Site Characterization data EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS 	11 12 14			
6.0	 5.1 COC Transport 5.2 Exposure Pathways/Point of Exposure/Potential Receptors 5.3 Other Sensitive Receptors/ Potential Groundwater Receptors FOCUSED FEASIBILITY STUDY: REMOVAL OF SECONDARY SOURCE HYDROCARBONS 	15 16			
7.0	 6.1 Focused Excavation Below the Removed USTs 6.2 Focused Excavation Using Large Diameter Augers 6.3 Dual Phase Extraction SELECTED REMEDIAL ALTERNATIVE –FOCUSED EXCAVATION BELOW REMOVED USTS 	19 20			
8.0	IMPLEMENTATION SCHEDULE	22			
9.0	SUMMARY AND RECOMMENDATIONS				
10.0					
10.0					
TT'O	REFERENCES				

FIGURES

FIGURE 1	Location	Мар
	Location	inap

- FIGURE 2 Vicinity Map
- FIGURE 3 Hydrocarbon Plume July 2015
- FIGURE 4 Soil Sample Analytical Results Phase II Hydrocarbon Concentrations in Soil CRA 2008
- FIGURE 5 Phase I Hydrocarbon Concentrations in Soil CRA 2007
- FIGURE 6 Phase II Hydrocarbon Concentrations in Soil CRA 2008
- FIGURE 7 Phase I & II Hydrocarbon Concentrations in Soil Gas CRA 2007 & 2008

- FIGURE 8 Groundwater Hydrocarbon Concentrations, Phase I/II CRA
- FIGURE 9 Hydrocarbon Concentrations in Groundwater and Shallow Soil Gas 2007-2008
- FIGURE 10 Hydrocarbon Plume 2000
- FIGURE 11 Hydrocarbon Plume 2007-2008
- FIGURE 12 TPH and Benzene Concentration Trends Well MW-1
- FIGURE 13 TPH and Benzene Concentration Trends Well MW-2
- FIGURE 14 TPH and Benzene Concentration Trends Well MW-3
- FIGURE 15 TPH and Benzene Concentration Trends Well MW-4
- FIGURE 16 TPH and Benzene Concentration Trends Well RW-5
- FIGURE 17 TPH and Benzene Concentration Trends Well RW-9
- FIGURE 18 Geologic Cross Section AA'
- FIGURE 19 Geologic Cross Section BB'
- FIGURE 20 Conceptual Site Model
- FIGURE 21 Focused Excavation Below Former USTs
- FIGURE 22 Soil Removal by Large Diameter Augers
- FIGURE 23 Dual Phase Extraction

TABLES

- TABLE 1Soil Analytical Data, 1991-2008
- TABLE 2Soil Gas Analytical Data
- TABLE 3Grab-Groundwater Analytical Data
- TABLE 4Soil Sample Analytical Results, May 8 & 9, 2012
- TABLE 5
 Current and Historic Groundwater Elevation and Analytical Data Monitoring Wells
- TABLE 6Estimated Cost for Focused Excavation of Secondary Source Hydrocarbons Below USTs
- TABLE 7Estimated Cost for Excavation of Secondary Source Hydrocarbons by Large Diameter Auger
- TABLE 8Estimated Cost for Dual Phase Extraction at Former USTs

APPENDICES

- APPENDIX A Physical And Chemical Characteristics Of the Chemicals Of Concern
- APPENDIX B Site Description and Summary of Previous Investigations
- APPENDIX C Updated Conceptual Site Model 2015
- APPENDIX D 2012 Laboratory Analytical Reports with Naphthalene Data for Soil Samples

ABBREVIATIONS AND ACRONYMS

bgs	Below Ground Surface	ppb	Parts Per Billion
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes	ppm	Parts Per Million
ESL	Environmental Screening Level	μg/L	Micrograms per Liter
LTCP	Low-Threat UST Case Closure Policy	TPH-g	Total Petroleum Hydrocarbons as gasoline
mg/Kg	Milligrams per kilogram	ТВА	Tert Butanol
MTBE	Methyl tert Butyl Ether	UST	Underground Storage Tank
NFA	No Further Action (de minimis Condition)	VOC	Volatile Organic Compound

1.0 EXECUTIVE SUMMARY

This report presents a Focused Feasibility Study and Corrective Action Plan (FS-CAP) for the underground storage tank (UST) fuel release at 3055 35th Avenue in Oakland, California (the Site). The FS-CAP was prepared in response to Alameda County Environmental Health's (ACEH's) July 30, 2015 directive.

Four gasoline USTs and one waste oil UST were removed from the Site in 1991. Subsequent soil, soil gas, and groundwater investigations confirmed there was a release of gasoline at the Site.

Based on the State Water Resources Control Board's *Low-Threat UST Case Closure Policy* (LTCP), proposed cleanup goals for soil, soil gas, and groundwater at the Site are presented in Section 3.0.

Evaluation of soil, soil gas, and groundwater analytical data from the Site in accordance with the LTCP guidelines / Proposed Cleanup Goals indicates there is no risk from residual hydrocarbons in shallow soil, soil gas, or groundwater, and that the presence of residual secondary source hydrocarbons in soil at the Site is the only impediment to closure of the Site. Data indicate hydrocarbons are migrating on to the site in groundwater from upgradient sources, and the hydrocarbon plume beneath the site is part of a larger regional plume. This fact does not alter the LTCP risk assessment for the site.

A Focused Feasibility Study of three remedial alternatives for removal of residual secondary source hydrocarbons at the Site is presented. The remedial alternatives are:

- Focused excavation below the removed USTs, including removal and re-use of the pea gravel backfill currently in the former UST excavation
- Focused excavation at the periphery of the former UST location using large diameter augers, and
- Dual Phase Extraction with extraction wells spaced close enough together to create overlapping cones of influence for removal of soil vapor/soil gas and groundwater over the entire site

The most cost-effective remedial action/Corrective Action Plan for removal of secondary source hydrocarbons is focused excavation beneath the removed USTs. An implementation schedule for this selected remedial alternative is presented, including post-excavation groundwater monitoring and soil gas sampling near the remaining "hot spot" encountered in previous soil gas sampling, SV-5.

2.0 INTRODUCTION

This report presents a Focused Feasibility Study and Corrective Action Plan (FS-CAP) for the underground storage tank (UST) fuel release site at 3055 35th Avenue in Oakland, California (the Site, Figures 1 and 2). The FS-CAP was prepared in accordance with a meeting held on July 29, 2015 at Alameda County Environmental Health's (ACEH's) offices with ACEH staff, representatives of the Responsible Party, and Weber, Hayes and Associates; the ACEH's July 30, 2015 directive; and the provisions of section 2725 of the UST regulations (CCR, Title 23, Chapter 16, Section 2600, et seq.).

The FS-CAP includes:

- The proposed cleanup goals and the basis for the cleanup goals the State Water Resources Control Board's *Low-Threat UST Case Closure Policy* (LTCP, SWRCB, 2012) was used to establish the cleanup goals for the Site (Section 3.0)
- A summary of site characterization data (Section 4.0)
- Receptor information including likely future land use scenarios, adjacent land use and sensitive receptors, and potential groundwater receptors (Section 5.0)
- An evaluation of three remedial alternatives including a discussion of the technical feasibility and cost effectiveness (Section 6.0)
- A description of the selected remedial alternative excavation of residual secondary source hydrocarbons below the removed USTs (Section 7.0)
- A schedule for implementation of the proposed remedial alternative, including post-excavation soil gas and groundwater sampling (Section 9.0)

A review of the site characterization data indicates the Site meets all of the General and Media-Specific Criteria for closure under the LTCP, except for General Criteria f, removal of secondary source hydrocarbons in soil. The selected remedial alternative of focused excavation below the removed UTSs removes secondary source hydrocarbons to the maximum extent practicable. Upon completion of the remedial excavation and post-excavation soil gas and groundwater sampling, the Site will be evaluated for closure based on LTCP guidelines.

3.0 PROPOSED CLEANUP GOALS

The proposed cleanup goals for the site are based on the State Water Resources Control Board's *Low-Threat UST Case Closure Policy* (LTCP, SWRCB, 2012). The LTCP specifies that in the absence of unique attributes of a case or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents, sites that meet the eight general and three media-specific criteria described in the LTCP pose a low threat to human health, safety or the environment and are appropriate for closure pursuant to Health and Safety Code section 25296.10.

The Chemicals of Concern (COCs) at a UST gasoline release site, per the LTCP, are: benzene, ethylbenzene, Methyl tert Butyl Ether (MTBE, in groundwater), and naphthalene. The physical and chemical characteristics of the COCs are summarized in Appendix A.

The LTCP General and Media-Specific Criteria for site closure are presented below. **The Media-Specific Criteria of the LTCP are the numeric cleanup goals proposed for the site**.

3.1 LTCP GENERAL CRITERIA

The General Criteria that must be satisfied by all UST release sites that are candidates for closure under the *Low-Threat UST Case Closure Policy* are listed below, *along with site specific information regarding that criteria*:

- a. The unauthorized release is located within the service area of a public water system Yes, potable water in the City of Oakland is supplied from the Mokelumne River in the Sierra Nevada Mountains by the East Bay Municipal Utilities District
- b. The unauthorized release consists only of petroleum Yes, confirmed by site soil, soil gas, and groundwater investigations
- c. The unauthorized ("primary") release from the UST system has been stopped Yes, the primary source USTs and associated product piping and dispensers were removed in January 1991
- d. Free product has been removed to the maximum extent practicable Yes, free product was observed at the site on only one occasion, February 3, 2002 in MW-3. A sheen has been observed In MW-1, 2, 3, and 4 and in RW-5 and 9 (last observed in MW-2 on September 28, 2012)
- A Conceptual Site Model (CSM) that assesses the nature, extent, and mobility of the release has been developed – Yes, a CSM stand-alone report, dated June 24, 2011, was posted on GeoTracker. An updated CSM is presented in Appendix C of this report.
- f. Secondary source has been removed to the extent practicable *No. Dual Phase Extraction* from 2000 to 2004 removed some secondary source petroleum hydrocarbons, but secondary

source hydrocarbons remain in soil from approximately 10 to 20 feet below the ground surface (bgs) primarily below the removed USTs. This is the only impediment to closure of this UST release case

- g. Soil or groundwater has been tested for methyl tert-butyl ether (MTBE) and results reported in accordance with Health and Safety Code section 25296.15; *Yes*
- h. Nuisance as defined by Water Code section 13050 does not exist at the site *There are no nuisance conditions at the site*

3.2 LTCP MEDIA-SPECIFIC CRITERIA

Releases from USTs can impact human health and the environment through contact with any or all of the following contaminated media: groundwater, surface water, soil, and soil vapor/soil gas (we use the terms interchangeably). Although this contact can occur through ingestion, dermal contact, or inhalation of the various media, the most common drivers of health risk are ingestion of groundwater from drinking water wells, inhalation of vapors accumulated in buildings, contact with near surface contaminated soil, and inhalation of vapors in the outdoor environment. To simplify implementation of the LTCP, these media and pathways have been evaluated and the most common exposure scenarios have been combined into three media-specific criteria:

- 1. Groundwater
- 2. Vapor Intrusion to Indoor Air
- 3. Direct Contact and Outdoor Air Exposure

UST release sites that are candidates for closure under the LTCP must satisfy the eight general and all three media-specific criteria. The Media-Specific criteria in the Low-Threat Closure Policy provide the numeric cleanup goals for hydrocarbons in soil, soil gas, and groundwater at the Site.

3.2.1 Groundwater-Specific Criteria

If groundwater with a designated beneficial use is affected by an unauthorized release of petroleum hydrocarbons, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent to satisfy the Media-Specific criteria for groundwater, and meet all of the additional characteristics of one of the five classes of sites presented in the LTCP. There are no *designated* beneficial uses for groundwater in the immediate vicinity of the site as drinking water at the site and in the vicinity is provided by the East Bay Municipal Utilities District from the Mokelumne River in the Sierra Nevada Mountains.

In addition, over twenty years of groundwater monitoring data from the Site indicates the plume *from the Site* is decreasing in concentration and stable, so the site meets the primary Groundwater-Specific Criteria of the LTCP.

The hydrocarbon plume in groundwater does not meet any of the additional characteristics of Classes 1-4 presented in the LTCP due to its' size and the concentration of benzene in the plume. However, the Site does meet Class 5 characteristics: under current and reasonably anticipated near-term future scenarios, the contaminant plume poses a low threat to human health and safety and to the environment and water quality objectives will be achieved within a reasonable time frame. This conclusion is based on the following site specific conditions:

- The extent of the dissolved hydrocarbon plume (extending approximately 650 feet from the Site, see Figure 3)
- The low to non-detectable concentrations of hydrocarbons in soil gas above the dissolved hydrocarbon plume (See Figures 8 and 9), and
- The distance from the Site to Peralta Creek along the groundwater flow direction (1,150 feet, Figure 1), and the maximum extent of the hydrocarbon plume that exceeds groundwater quality objectives is 650 feet from the site

The accumulated data indicate the fuel release case at the Site can be closed under current conditions in accordance with Groundwater-Specific Criteria Class 5 of the LTCP. Site characterization data is summarized in Section 4.0 and compared to groundwater specific screening criteria/cleanup goals in Section 4.3.

3.2.2 Petroleum Vapor Intrusion to Indoor Air Media-Specific Criteria

Exposure to petroleum vapors migrating from soil or groundwater to indoor air may pose unacceptable human health risks. The LTCP describes conditions; including bio-attenuation zones, which if met will assure that exposure to petroleum vapors in indoor air will not pose unacceptable health risks. In many petroleum release cases, potential human exposures to vapors are mitigated by bio-attenuation processes as vapors migrate toward the ground surface. The LTCP defines bio-attenuation zones as an area of soil with conditions that support bio-degradation of petroleum hydrocarbon vapors, in these zones Total Petroleum Hydrocarbons in soil from the ground surface to five feet bgs are less than 100 milligrams per kilogram (mg/kg) and the oxygen concentration of the soil gas at 5 feet bgs is greater than four percent (LTCP, Appendix 4).

We propose the media-specific soil gas criteria from the LTCP, summarized in the following Table, as the cleanup goals for petroleum hydrocarbons in soil vapor/soil gas at the site.

Concentrations of Petroleum Constituents in Soil Gas That Will Have No Significant Risk of
Adversely Affecting Human Health

Chemical of Concern	Residential	Commercial/Industrial	
	No Bio-Attenuation Zone		
Benzene	85 μg/m³	280 μg/m³	
Ethylbenzene	1,100 μg/m ³	3,600 μg/m³	
Naphthalene	93 μg/m³	310 μg/m³	
	With Bio-Attenuation Zone		
Benzene	85,000 μg/m ³	280,000 μg/m ³	
Ethylbenzene	1,100,000 μg/m³	3,600,000 μg/m ³	
Naphthalene	93,000 μg/m³	310,000 μg/m ³	

 μ g/m³ = micrograms per cubic meter. Bio-Attenuation Zone = Oxygen content greater than 4 percent.

Site data indicate that the residual petroleum hydrocarbon COCs in soil gas at the Site are below commercial LTCP screening levels, allowing closure of the Site in accordance with Soil Gas-Specific Criteria of the LTCP. Concern with the one on-site soil gas sample near the property boundary (SV-5), where benzene exceeded the *residential* soil gas screening level (the site is zoned for commercial use), suggest an additional sample in this area is appropriate, see Section 4.2 and the recommendation in Section 9. Site characterization data is summarized in Section 4.0 and compared to soil gas-specific screening criteria/cleanup goals in Section 4.2.

3.2.3 Direct Contact and Outdoor Air Exposure Media-Specific Criteria

The Low-Threat UST Case Closure Policy describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses a low threat to human health. Release sites where human exposure may occur satisfy the media-specific criteria for direct contact and outdoor air exposure and shall be considered low-threat if concentrations of COCs are below the screening levels specified in the LTCP. These screening levels are summarized in the table below. We propose these LTCP screening levels as the cleanup goals for COCs in soil between the ground surface and 10 feet bgs at the site as shown in the Table below.

	Residential		Commercial/ Industrial		Utility Worker
Chemical of Concern	0 to 5 feet bgs (mg/kg) ¹	Volatilization to outdoor air (5 to 10 feet bgs) (mg/kg)	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) (mg/kg)	0 to 10 feet bgs (mg/kg)
Benzene	1.9	2.8	8.2	12	14
Ethylbenzene	21	32	89	134	314
Naphthalene	9.7	9.7	45	45	219

Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health

Notes: ¹ mg/kg = milligrams per kilogram

The concentration limits for 0 to 5 feet bgs protect from ingestion of soil, dermal contact with soil, and inhalation of volatile soil emissions and inhalation of particulate emissions. The five to 10 feet bgs concentration limits protect from inhalation of volatile soil emissions. The concentration limits for Utility Worker are protective for both dermal contact and inhalation for workers who are on-site for a limited time. The LTCP does not present a numeric cleanup goal for hydrocarbons in soil greater than 10 feet bgs in depth, implying that these hydrocarbons can safely be left in place - as long as LTCP General Criteria f that requires secondary source hydrocarbons beneath the source be removed to the maximum extent practicable is also met. Site characterization data indicates hydrocarbons are present in soil at many locations on the site at depths greater than 10 feet bgs. We propose to use the concentration limits for soil from five to 10 feet bgs as the cleanup goals for soil deeper than 10 feet bgs.

Site data indicate that the residual petroleum hydrocarbon COCs in soil between the ground surface and 10 feet bgs at the Site are below residential LTCP screening levels, allowing closure of the Site in accordance with Soil-Specific Criteria of the LTCP, once secondary source hydrocarbons below the removed USTs are removed to the maximum extent practicable. Site characterization data is summarized in Section 4.0 and compared to soil-specific screening criteria/cleanup goals in Section 4.1.

The proposed cleanup goals for the Site are summarized in the table below by Chemical of Concern and environmental media. Any residual risks identified after removal of secondary source hydrocarbons can be addressed by deed restrictions and/or site management plans.

Chemical		Benzene	Ethylbenzene	Naphthalene	MTBE
Media	Land Use				
Soil Gas (µg/m ³)	Residential	85	1,100	93	NR
No Bio-attenuation	Commercial	280	3,600	310	NR
Soil Gas (µg/m3)	Residential	85,000	1,100,000	93,000	NR
w/Bio-attenuation	Commercial	280,000	3,600,000	310,000	NR
Soil (mg/kg) 0-5 feet bgs	Residential	1.9	21	9.7	NR
	Commercial	8.2	32	9.7	NR
Soil (mg/kg) 5-10 feet bgs	Residential	2.8	89	45	NR
	Commercial	12	34	45	NR
Soil (mg/kg) 0-10 feet bgs	Utility Worker	14	314	219	NR
Soil >10 feet bgs	Any	12, MEP in source area	34, MEP in source area	45, MEP in source area	NR
Groundwater (ug/L)*	Any	1,000-3,000	NR	NR	1,000

Proposed Cleanup Goals for 3055 35th Avenue, Oakland, CA

Bio-attenuation = Bio-attenuation zone (as described in Appendix 4, Scenario 4 of the LTCP for direct measurement of soil gas concentrations) is present

NR = Not Regulated MEP = Remove Hydrocarbons to Maximum Extent Practicable

*= Acceptable concentrations of hydrocarbons in groundwater depend on the size of dissolved hydrocarbon plume and distance to nearest surface water and/or production well as described in the State Water Board's *Low-Threat UST Case Closure Policy* (LTCP)

We reviewed all of the data related to the UST release at this site in the framework provided by the LTCP

by comparing site data to the cleanup goals presented above in Section 4.0.

4.0 SUMMARY OF SITE CHARACTERIZATION DATA

The site description, background on the UST release, and a summary of site characterization investigations and corrective actions are presented as Appendix B. The Updated Conceptual Site Model is presented as Appendix C. A summary of site characterization data is presented below, followed by a comparison of site characterization data to the proposed cleanup goals for hydrocarbons in soil, soil gas, and groundwater.

On-site soil sample locations and analytical results are shown on Figure 4. Conestoga Rovers and Associates (CRA's) Phase I and II work in 2007 and 2008 provided the most comprehensive picture of the extent of hydrocarbons at and downgradient of the site. CRA's Phase I off-site soil sample locations and analytical results are shown on Figure 5; Phase II soil sample locations and analytical results are shown on Figure 5; Phase II soil sample locations and analytical results are shown on Figure 6; Phase I and II soil gas sample locations and analytical results are shown on Figure 7; Phase I and II groundwater sample locations and analytical results are shown on Figure 8. CRA's Soil, soil gas, and groundwater sample analytical results are presented in Tables 1, 2, and 3, respectively. CRA's Phase I and II soil gas AND groundwater sample locations and analytical results are shown together on Figure 9. This key Figure shows there are low concentrations (below LTCP guidelines) of hydrocarbons in soil gas even when there are significant concentrations of dissolved hydrocarbons in groundwater (exceeding LTCP Groundwater-Specific Criteria for Classes 1-4) and in deep smear zone soil (greater than 10 feet bgs).

Weber, Hayes and Associates (WHA) became the consultant for the site in 2011. Soil sample analytical data from WHA's May 2012 *Data Gap Assessment* is summarized on Table 4 and Figure 4. Naphthalene data was obtained from the laboratory for these soil samples and added to Table 4 and Figure 4. The revised laboratory report is presented as Appendix D.

The most recent groundwater analytical data (July 2015) and the extent of the dissolved hydrocarbon plume that exceeds water quality objectives in are presented on Figure 3; Figures 10 and 11 show the extent of the dissolved hydrocarbon plume in December 2000 and 2007-2008, respectively. Historical groundwater elevation and analytical data, including those by previous consultants, are summarized on Table 5. Charts showing the concentration of Total Petroleum Hydrocarbons as gasoline (TPH-g) and benzene over time in monitoring wells MW-1 through 4 and remediation wells RW-5 and 9 are presented on Figures 12 through 17. Note that the concentration axis on these charts is logarithmic.

Two geologic cross sections (AA' along the direction of groundwater flow; BB' perpendicular to AA') show the lithology at the site and in the vicinity on Figures 18 and 19.

4.1 HYDROCARBON CONCENTRATIONS IN SOIL COMPARED TO CLEANUP GOALS

Soil sample analytical results indicate:

- Only non-detect to trace levels of hydrocarbons, at concentrations below LTCP guidelines, were detected in the top ten feet of soil on- and off-site indicating there is no risk from residual hydrocarbons in soil and the Site meets the Soil-Specific Criteria for closure in the LTCP (data is summarized in Tables 1 and 4 and Figures 4, 5 and 6)
- Residual hydrocarbons are present on-site from 10 to 21 feet bgs, but only exceed the cleanup goal of 12 mg/kg benzene at three locations: at boring B-1 at 20 feet bgs (56 mg/kg in November 1991), at boring B-7 at 15 feet bgs (28 mg/kg in November 1991), and at boring DP-6 at 21 feet (36 mg/kg in May 2012 see Figure 4). Data from nearby boring DP-4 indicates the benzene contamination in B-1 at 20 feet has likely degraded due to natural attenuation processes. Data from boring SB-G/MW-1 (benzene not detected in May 1994), which is near B-7, indicates the benzene contamination in B-7 at 15 feet has likely degraded due to natural attenuation processes and it is not cost effective to try to remove this possible isolated residual benzene contamination. The highest concentrations of residual secondary source hydrocarbons in soil at the site are located beneath the removed USTs. This secondary source should be removed from the site.
- Hydrocarbons were present in soil from 10 to 20 feet bgs in the off-site first transect/Phase I borings, likely due to advective transport by groundwater in the smear zone. Only the concentration of benzene in boring B-16 at 12 feet bgs (41 mg/kg) exceeds the cleanup goal for deep soil. Soil gas data from nearby SV-9 indicate there is no threat of vapor intrusion in this area (see Figures 5, 7, and 9). This contamination is inaccessible, and these deep; residual hydrocarbons do not pose a threat to human health or the environment and are not an impediment to closure.
- No hydrocarbons were detected in the samples from the off-site second transect/Phase II borings, indicating advective transport of hydrocarbons did not reach the second transect, located about 375 feet downgradient of the site
- Based on the absence of hydrocarbons in the transect 2/Phase II soil samples, we estimate the maximum extent of hydrocarbons in soil in the smear zone is approximately 235 feet from the

site. Natural attenuation should reduce the concentrations of hydrocarbons in the off-site smear zone, especially if the secondary source is removed at the Site. These residual hydrocarbons do not pose a threat to human health or the environment and are not an impediment to closure.

4.2 HYDROCARBON CONCENTRATIONS IN SOIL GAS COMPARED TO CLEANUP GOALS

Soil gas sample analytical results from the Phase I and II investigations (Figures 7 and 9) indicate:

- The concentration of benzene in on-site soil gas samples from a depth of 5 feet bgs was below commercial LTCP screening levels for a site without a bio-attenuation zone. In five of the six on-site soil gas samples (all except SV-5) the concentration of benzene was also below the residential LTCP screening level. On-site soil gas samples were not analyzed for ethylbenzene or naphthalene, the other COCs at the Site, or for oxygen content to determine if a bio-attenuation zone exists. Based on the concentration of benzene in these soil gas samples and the usual ratios of benzene to ethylbenzene to naphthalene at UST release sites, the Site meets the Soil Gas-Specific Criteria of the LTCP for closure. Due to the location of soil gas sample SV-5 near the north property line, the adjacent residence to the north near this location, and the concentration of benzene in SV-5 exceeding the *residential* soil gas screening level, we recommend that a verification soil gas sample be collected at this location to confirm soil gas concentrations have been reduced below screening levels. This sample should be analyzed for TPH-g, benzene, toluene, ethylbenzene and xylenes (BTEX), MTBE and percent oxygen for evaluation in accordance with LTCP guidelines.
- Neither benzene nor ethylbenzene were detected in the off-site soil gas samples. The oxygen concentration in the off-site samples ranged from 16 to 19 percent, indicating a bio-attenuation zone for hydrocarbons in soil gas exists off-site. Off-site soil gas samples were not analyzed for naphthalene. Based on the absence of benzene and ethylbenzene in the off-site soil gas samples, the usual ratios of benzene to ethylbenzene to naphthalene at UST release sites, and the presence of a bio-attenuation zone for hydrocarbons in off-site soil gas, there is not a risk of vapor intrusion from hydrocarbons in residual soil gas to the residences downgradient of the Site, and the Site meets the Soil Gas-Specific Criteria of the LTCP for closure at the off-site residences.

4.3 HYDROCARBON CONCENTRATIONS IN GROUNDWATER COMPARED TO CLEANUP GOALS

Groundwater analytical data from 2008 is presented on Figures 8 and 11. The 2008 groundwater data are the most extensive and fully define the extent of the dissolved hydrocarbon plume that exceeds water quality objectives. We believe this data is representative of overall site conditions. Figures 3 and 10 present the extent of the dissolved hydrocarbon plume in 2015 and 2000, respectively. The groundwater data indicate:

- TPH-g and BTEX were not detected in any of the downgradient, Phase II transect borings, indicating the TPH-g/BTEX plume did not extend to this transect, approximately 375 feet from the Site
- The lack of TPH-g and benzene in the Phase II samples indicate the dissolved hydrocarbon plume is stable and that TPH-g and BTEX are attenuating and limited to a distance between the two transects (approximately 250 feet from the Site)
- MTBE was detected on-site and in all first transect borings (concentrations ranged from 12 to 3,500 micrograms per liter [μg/L, parts per billion, ppb], with the maximum in B-14)
- MTBE was detected in five of the seven downgradient, Phase II transect borings, but primarily at trace to non-detectable concentrations (concentrations ranged from "not detected" to 150 ppb, with the maximum in B-27 which was downgradient of B-14), indicating the MTBE plume did just extend to the second transect, approximately 375 feet west of the Site, and may be following a specific transport pathway.
- Based on the attenuation with distance demonstrated in this investigation we estimate the maximum extent of the MTBE / dissolved hydrocarbon plume is likely 650 feet downgradient of the Site. The nearest surface water body, Peralta Creek, is located approximately 1,150 feet downgradient of the Site along the groundwater flow direction (see Figure 1). The data indicates the dissolved hydrocarbon plume is stable and will never reach surface water.
- The complete set of groundwater data to date suggests at least two mingling sources of hydrocarbons in groundwater at the site itself, because the analytical results of groundwater collected from upgradient property line wells (RW-13 and 14) did not contain MTBE, while midsite and downgradient property line wells (MW-1 through MW-3 and RW-6 and RW-9) did contain MTBE. These differing fuel fingerprints indicate one source originates on-site and a

second plume is migrating onto the Site from upgradient sources. The dissolved hydrocarbon plume mapped on Figure 3 is part of a larger regional plume, but the LTCP risk analysis is still valid – this plume does <u>NOT</u> pose a risk to human health or the environment.

The low concentrations of hydrocarbons in the Phase I soil gas samples and the absence of hydrocarbons in the Phase II off-site soil gas samples, despite the concomitant high concentrations of benzene in groundwater at nearby sampling locations (see Figure 9), indicates that off-gassing of hydrocarbons from the dissolved plume to soil gas and subsequent exposure to hydrocarbons either outdoors or indoors via the vapor intrusion exposure pathway is an incomplete exposure pathway. This means there is not a risk to the residences downgradient of the Site or to future commercial site users from residual benzene in groundwater. The following Table compares the concentrations of benzene in shallow soil gas with the concentration in nearby groundwater (see Figure 9):

Benzene in Soil Gas	Benzene in nearby Groundwater		
SV-2: 38 μg/m ³	MW-3: 4,100 μg/L		
SV-3: 14 μg/m ³	MW-4: 630 μg/L		
SV-9: < 6.5 μg/m ³ B-16: 7,700 μg/L			
85 μg/m ³⁼ Residential LTCP Soil Gas Screening Level			

Groundwater monitoring data through July 2015 show hydrocarbon concentrations generally decreased over time at the Site, indicating the residual hydrocarbon plume is stable, but **recent data indicates hydrocarbons are migrating on-site from upgradient sources – the** *active* **QuikStop station across 35**th **Avenue and/or the** *abandoned* **Texaco station across School Street**. **Hydrocarbons from these upgradient sources are raising the concentration of hydrocarbons in groundwater at the Site**. The observed increase of benzene in Site monitoring wells since 2009 and TPH-g since 2012 can be attributed to these off-site releases (see Figures 12 through 17). The hydrocarbon plume associated with the site is part of a larger regional plume, but the LTCP risk analysis is still valid – this plume does <u>NOT</u> pose a risk to human health or the environment, and **the Site meets Class 5 of the Groundwater-Specific Criteria for Low-Threat UST Case Closure**.

4.4 SUMMARY OF SITE CHARACTERIZATION DATA

In summary, the analytical data indicate:

- There is no risk from residual hydrocarbons in soil and the Site meets the Soil-Specific Criteria for closure in the LTCP (data is summarized in Tables 1 and 4 and Figures 4, 5 and 6)
- The Site meets the Soil Gas-Specific Criteria of the LTCP for closure
- Soil gas data indicate the volatile components of the groundwater hydrocarbon plume cannot reach the surface or the interior of overlying buildings where possible receptors may be exposed to them
- The dissolved hydrocarbon plume *from the Site* is limited in extent to approximately 650 from the Site and is stable it will not reach the nearest surface water which is 1,150 feet from the site in the downgradient direction.
- There are no water supply wells downgradient of the site that could be impacted by the dissolved hydrocarbon plume.

Our review of all the data related to the UST release at this site in the framework provided by the LTCP and the cleanup goals presented above (Section 3.0) indicates the concentrations of residual COCs in shallow soil, soil gas, and groundwater are below Cleanup Goals. The only remaining impediment to closure of the Site is the removal of secondary source petroleum hydrocarbons is soil below the removed USTs to the maximum extent practicable, as required by LTCP General Criteria f. The selected remedial alternative of focused excavation beneath the former UST excavation removes residual secondary source hydrocarbons to the maximum extent practicable in the most economic manner (see below, Section 6.0). Implementation of this alternative should allow closure of the Site under the LTCP after verification soil gas and groundwater sampling.

5.0 EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

Contaminant transport and exposure pathways are the mechanisms by which a Chemical of Concern (COC) from the fuel release at a site may contact a receptor. A receptor is a human or other living organism with the potential to be exposed to and adversely affected by a COC from the Site.

A complete exposure pathway consists of (1) a source of COCs (described above), (2) COC transport or the physical migration of the COCs, (3) a point of exposure where a receptor may come in contact with COCs, and (4) an exposure route, such as dermal contact, inhalation, and/or ingestion. If any part of the exposure pathway is *incomplete*, a receptor cannot be exposed to the COC. COC transport and exposure pathways for the Site are presented diagrammatically on Figure 20 and discussed below.

5.1 COC TRANSPORT

The COC transport pathways at the Site that are complete are:

- Hydrocarbon contamination of soil greater than 10 feet bgs (deep soil) from the source/UST release (confirmed by soil sampling)
- Leaching of hydrocarbons to groundwater (confirmed by groundwater sampling)
- Dissolved phase migration of hydrocarbons in groundwater (confirmed by off-site soil and groundwater sampling)

The contaminant transport pathways at the Site that are *incomplete* are:

- Hydrocarbon contamination of soil less than 10 feet bgs (shallow soil) (confirmed by soil sampling)
- Vapor migration of hydrocarbons from soil or groundwater to soil gas and potentially to indoor or outdoor air (incomplete - concentrations of hydrocarbons in 5-foot bgs soil gas samples are below LTCP screening levels)
- Hydrocarbon contamination of groundwater for potable use (incomplete based on potable water source in the Sierra Nevada via EBMUD), and
- Migration of hydrocarbons with groundwater and discharging of hydrocarbons to surface water (incomplete based on plume length and distance to nearest surface water along the groundwater flow path)

5.2 EXPOSURE PATHWAYS/POINT OF EXPOSURE/POTENTIAL RECEPTORS

Exposure pathways are the mechanisms by which receptors may come into contact with a COC. A "point of exposure" is where a receptor comes into contact with a COC. Exposure pathways leading to **potential** points of exposure for receptors at the Site and in the vicinity are:

- Site construction workers coming in contact with hydrocarbon contaminated soil or soil gas at the site
- Future Site users or workers (the Site is zoned for commercial use) being exposed to volatile vapors from residual hydrocarbons in soil and / or groundwater
- Nearby residents (adjacent to and downgradient of the Site, along 35th Avenue, School Street and Bartlett Street), and/or off-site construction workers being exposed to volatile vapors from residual hydrocarbons in soil and / or groundwater

Analytical data collected at the site and in the vicinity, as described in Section 4.0, and evaluated using Site Cleanup Goals based on the State Water Board's Low-Threat UST Case Closure guidelines as described in Section 3.0, indicate all of these potential exposure pathways at the site are *incomplete*, as shown on Figure 20.

5.3 OTHER SENSITIVE RECEPTORS/ POTENTIAL GROUNDWATER RECEPTORS

A 2,000-ft radius, sensitive receptor survey was completed in 2006 (Cambria, 2006) to identify other potential sensitive receptors, such as potable supply or irrigation wells, schools, churches, hospitals, and known daycare facilities. The survey determined that within the target radius, no potable supply wells existed and the residual dissolved gasoline plume was not likely to impact the three identified irrigation wells (the closest well is located 750 feet away in a sidegradient direction [north]). Additionally, there are no other potential sensitive receptors (schools, churches, parks, or daycare centers) located downgradient of the plume, and therefore **none of these potential sensitive receptors are likely to be impacted by the residual dissolved hydrocarbon plume**.

The nearest surface water body is west-flowing Peralta Creek, located approximately 600 feet northwest of the site, **but 1,150 feet west of the site in the downgradient groundwater flow direction** (see Figure 1). It is extremely unlikely that dissolved gasoline plume compounds could reach Peralta Creek based on the downgradient distance to the Creek and the attenuated plume limits (maximum 650 feet from the site).

Groundwater quality is considered a sensitive receptor that must be protected from degradation by hydrocarbons (all groundwater in the State of California is considered a potential water supply resource). Active remediation of groundwater impacted by hydrocarbons was undertaken with the goal of removing hydrocarbons to a point where natural processes would restore groundwater quality to

what it was prior to degradation by hydrocarbons. Removal of secondary source hydrocarbons from the site and natural attenuation will restore groundwater quality in a reasonable amount of time at this site, protecting future groundwater resources.

6.0 FOCUSED FEASIBILITY STUDY: REMOVAL OF SECONDARY SOURCE HYDROCARBONS

Based on the July 29, 2015 meeting with ACEH staff, the ACEH's July 30, 2015 directive; and in accordance with the provisions of section 2725 of the California UST regulations (CCR, Title 23, Chapter 16, Section 2600, et seq.), we evaluated three corrective action options/remedial alternatives to remove residual secondary source hydrocarbons from the Site. Removal of residual secondary source hydrocarbons from the Site. Removal of residual secondary source hydrocarbons from the Site closure in accordance with the State Water Resources Control Board's *Low-Threat UST Case Closure Policy*.

We screened three corrective action options/remedial alternatives for removal of secondary source hydrocarbons:

- Focused excavation below the removed USTs, including removal and re-use of the pea gravel backfill currently in the former UST excavation
- Focused excavation at the periphery of the former UST location using large diameter augers, and
- Dual Phase Extraction

Each remedial alternative is evaluated for technical feasibility, cost and effectiveness below:

6.1 FOCUSED EXCAVATION BELOW THE REMOVED USTS

This remedial alternative entails (see Figure 21):

- Drilling four direct push borings through the UST pea gravel backfill and collecting soil samples below the backfill / former USTs to characterize the soil for direct loading and hauling to the landfill during the excavation (see Figure 16)
- Pre-arranging for landfill acceptance of the hydrocarbon contaminated soil beneath the former USTs based on the characterization samples
- Removing the remediation system electrical power connection and treated water disposal connection to the sanitary sewer

- Properly destroying (under permit) all of the monitoring and remediation wells at the site as they would likely be damaged during excavation
- Excavating the pea gravel currently in the former UST excavation and the hydrocarbon contaminated secondary source soil beneath the excavation to approximately 21 feet bgs. The area of the excavation will be approximately 35 feet by 50 feet; the total volume of the excavation will be approximately 1,400 cubic yards (cy). The pre-characterized soil would be "hot" loaded directly onto trucks for transport to the appropriate landfill as it is excavated.
- Backfilling the excavation: segregated pea gravel (estimated to be 75% of the existing 700 cy, or 550 cy) and clean imported engineered fill (approximately 850 cy) would be used to backfill the excavation. The pea gravel will be wrapped in a geotextile at the bottom of the excavation. The engineered fill will be placed on top of the pea gravel and geotextile and compacted. Compaction tests will be made in the top five feet of fill.
- Collecting post-excavation groundwater samples at four locations on-site via direct push/hydropunch sampling and analyzing the samples for TPH-g, BTEX, MTBE, and tert Butanol (TBA) by EPA Method 8260
- Collecting a post-excavation soil gas sample near SV-5 to assess the current soil gas concentration on-site at the location with the highest concentration of benzene in soil gas. The soil gas sample will be analyzed at a state-certified laboratory for TPH-g, BTEX, MTBE, TBA, naphthalene and percent oxygen by EPA Methods TO-15 and 3C.
- Preparing a technical report describing the remedial excavation and summarizing excavation and landfill volumes and landfill acceptance sample analytical results and post-excavation groundwater and soil gas analytical data

This remedial alternative is technically feasible. Shoring is not necessary, but the excavation may have to be benched in the uncontaminated upper ten feet of soil surrounding the former UST location. If benching is necessary, the uncontaminated soil removed for the bench would be replaced at the end of the project.

The estimated cost for this remedial alternative is \$419,250, see Table 6.

This remedial alternative if very effective, it removes 700 cubic yards of the residual secondary source hydrocarbon-contaminated soil with the highest concentrations of hydrocarbons.

6.2 FOCUSED EXCAVATION USING LARGE DIAMETER AUGERS

This remedial alternative entails (see Figure 22):

- Drilling eight direct push borings in the area around the former USTs (the large diameter augers cannot drill through the pea gravel backfill in the UST excavation) and collecting soil samples to characterize the residual secondary source hydrocarbon-contaminated soil for direct loading and hauling to the landfill during excavation (see the Large Diameter Auger locations on Figure 17)
- Pre-arranging for landfill acceptance of the secondary source hydrocarbon contaminated soil based on the characterization samples
- Removing the remediation system electrical power connection and treated water disposal connection to the sanitary sewer
- Properly destroying (under permit) all of the monitoring and remediation wells at the site as they would likely be damaged during Large Diameter Auger excavation
- Removing hydrocarbon-contaminated secondary source soil at the periphery of the former UST excavation to a depth of approximately 21 feet bgs using 6-foot diameter Large Diameter Augers (18 LDA holes). The total volume of the removed soil will be will be approximately 400 cy. The pre-characterized soil would be "hot" loaded directly onto trucks for transport to the appropriate landfill
- To allow continued work by the LDA rig, each hole will be backfilled with 2-sack sand slurry. The LDA rig will drill every other hole to allow time for the slurry to set up, then come back and drill the remaining holes
- A technical report describing the remedial excavation and summarizing excavation and landfill volumes and landfill acceptance sample analytical results will be prepared
- Collecting post-excavation groundwater samples at four locations on-site via direct push/hydropunch sampling and analyzing the samples for TPH-g, BTEX, MTBE, and tert Butanol (TBA) by EPA Method 8260
- Collecting a post-excavation soil gas sample near SV-5 to assess the current soil gas concentration on-site at the location with the highest concentration of benzene in soil gas. The

soil gas sample will be analyzed at a state-certified laboratory for TPH-g, BTEX, MTBE, TBA, naphthalene and percent oxygen by EPA Methods TO-15 and 3C.

This remedial alternative is technically feasible.

The estimated cost for this remedial alternative is \$439,560, see Table 7.

This remedial alternative, though higher in cost, is less effective than alternative 1. It removes only 400 cubic yards of residual secondary source hydrocarbon-contaminated soil, but the secondary source soil with the highest concentrations of hydrocarbons is left in place below the pea gravel fill in the former UST excavation because this soil is not accessible by LDA, which cannot drill through gravel. This remedial alternative is not recommended.

6.3 DUAL PHASE EXTRACTION

Dual Phase Extraction (DPE) is an in situ remediation technique that uses a high vacuum blower to simultaneously extract soil gas/vapor and groundwater containing hydrocarbons from the subsurface via remediation wells. At the surface the extracted soil gas and groundwater are separated and treated prior to discharge. This technique has been used at the site with limited success due to improperly screened and too widely spaced wells. DPE wells need to be properly screened in similar permeability zones and spaced close enough together to create overlapping cones of depression in groundwater and movement of subsurface air and soil gas at the maximum distance between wells.

This remedial alternative entails (see Figure 23):

- Conducting a pilot test of DPE to determine zones of influence for both groundwater extraction and soil gas extraction in both lower permeability and higher permeability zones at the site (see Figure 19 for site lithology). This data would be used to determine remediation well spacing, remediation well screen intervals, and the number of remediation wells necessary.
- Designing and engineering the DPE system including number and location of DPE remediation wells, remediation well screen intervals, and specifying DPE and treatment equipment
- Reconnecting the existing remediation system electrical power, obtaining building and air discharge permits, and re-permitting the treated water disposal connection to the sanitary sewer

- Installing new properly screened remediation wells at the location of the removed USTs. We calculate that, at a minimum, 12 remediation wells will be necessary. The final determination of the number of remediation wells will depend on the results of pilot testing.
- Connecting the remediation wells to the remediation equipment compound.
- Obtaining and installing DPE remediation equipment including High Vacuum Liquid Ring Blower, Air-Water Separator, water transfer pump, Air Pollution Control Device, and Water Treatment System
- Commissioning the Remediation System including start up sampling and reporting
- Operating and maintaining the DPE remediation system
- Remedial evaluation groundwater sampling of TPH-g, BTEX, MTBE, and TBA semi-annually with reporting
- Performing annual remediation progress assessments with a technical report of findings
- Post remediation groundwater and soil gas sampling and reporting. Soil gas sampling will be near SV-5 to assess the current soil gas concentration on-site at the location with the highest concentration of benzene in soil gas. The soil gas sample will be analyzed at a state-certified laboratory for TPH-g, BTEX, MTBE, TBA, naphthalene and percent oxygen by EPA Methods TO-15 and 3C.
- Remediation System Removal and Site Restoration

This remedial alternative is technically feasible.

The estimated cost for this remedial alternative is \$490,000, see Table 8.

This remedial alternative is more expensive than the other alternatives and its' effectiveness is unknown at this point. This remedial alternative is not recommended.

Focused excavation beneath the former USTs is the most cost-effective remedial option for removal of secondary source hydrocarbons at the Site. We recommend this alternative be implemented to move the site toward closure.

7.0 SELECTED REMEDIAL ALTERNATIVE – FOCUSED EXCAVATION BELOW REMOVED USTs

The most cost-effective remedial alternative is focused excavation beneath the former UST excavation.

This alternative removes residual secondary source hydrocarbons (with the highest concentrations) to the maximum extent practicable in the most cost-effective manner. We recommend that this alternative be selected as the corrective action for the Site.

8.0 IMPLEMENTATION SCHEDULE

The proposed implementation schedule is:

• FS-CAP review and approval:

Third Quarter 2016

First Quarter 2017

- Public Comments and Final approval of FS-CAP / Pre-Field Planning / Characterization Soil Sampling for Disposal /Well Destruction / Remove remediation system electrical power and treated water disposal connections / Remedial Permitting / Contractor Coordination: Third Quarter 2016
- On-site excavation of residual secondary source hydrocarbons: Late Third/Early Fourth Quarter 2016
- Post-Excavation soil gas and groundwater sampling Fourth Quarter 2016
- Technical Reporting and Site Closure:

9.0 SUMMARY AND RECOMMENDATIONS

- Four gasoline USTs and one waste oil UST were removed from the Site in 1991. Subsequent soil, soil gas, and groundwater investigations confirmed there was a release of gasoline at the Site.
- Proposed cleanup goals for soil, soil gas, and groundwater at the Site are presented in Section 3.0 based on the State Water Resources Control Board's *Low-Threat UST Case Closure Policy* (LTCP).

Site characterization data indicates it is appropriate to close the UST Release Case at the site under the *Low-Threat UST Case Closure Policy* following removal of residual secondary source hydrocarbons in soil at the Site from 10 to 20 feet bgs below the removed USTs:

- Non-detectable to trace amounts of hydrocarbons (at concentrations below LTCP closure guidelines) were detected in shallow soil samples (less than 10 feet below the ground surface [bgs]) on- and off-site, indicating there is no risk from residual hydrocarbons in soil on-and off-site.
- Secondary source hydrocarbons remain in soil from 10 to 20 feet bgs at the Site, primarily beneath the former UST excavation. These secondary source hydrocarbons are the primary impediment to closure of the Site and should be removed by excavation to the maximum extent practicable as recommended in Section 6. 0.
- Hydrocarbons were transported by advective flow of groundwater up to 235 feet downgradient
 of the site in deeper soil /smear zone soil (greater than 10 feet bgs). Natural attenuation should
 reduce the concentrations of hydrocarbons in the off-site smear zone soil, especially if the
 secondary source is removed at the Site.
- The concentration of hydrocarbons in on-site shallow (5 feet bgs) soil gas samples was below commercial LTCP screening levels, indicating there is no risk from residual hydrocarbons in soil gas on-site. In five of the six on-site soil gas samples the concentration of benzene was below the residential LTCP screening level also. Due to the location of soil gas sample SV-5 near the north property line, the adjacent residence to the north near this location, and the concentration of benzene in SV-5 exceeding the *residential* soil gas screening level (Figures 7 and 9), we recommend that a verification soil gas sample be collected at this location to confirm soil gas concentrations have been reduced below screening levels. This sample should be analyzed for TPH-g, BTEX, MTBE and percent oxygen for evaluation in accordance with LTCP guidelines.
- Hydrocarbons were not detected in the off-site soil gas samples, and the oxygen concentration indicated there is a bio-attenuation zone for hydrocarbons off-site. There is not a risk of vapor intrusion from hydrocarbons in residual soil gas to the residences downgradient of the Site.
- Groundwater monitoring data through July 2015 show hydrocarbon concentrations generally decreased over time at the Site, indicating the residual hydrocarbon plume is stable
- A round of post-excavation groundwater verification samples should be collected and analyzed
- Recent data indicates hydrocarbons are migrating on-site from upgradient sources the active QuikStop station across 35th Avenue and apparently to a lesser extent from the abandoned Texaco station across School Street. The dissolved hydrocarbon plume at the site is part of a

larger regional plume, but the LTCP risk assessment is still valid - – this plume does <u>NOT</u> pose a risk to human health or the environment. Natural attenuation will restore groundwater quality at and downgradient of the site in a reasonable time frame.

Removal of residual secondary source hydrocarbons from the Site is the last impediment to site closure in accordance with the State Water Resources Control Board's *Low-Threat UST Case Closure Policy*. Three corrective action options/remedial alternatives to remove residual levels of secondary source hydrocarbons from the Site were evaluated:

- Focused excavation below the removed USTs, including removal and re-use of the pea gravel backfill currently in the former UST excavation
- Focused excavation at the periphery of the former UST location using large diameter augers, and
- Dual Phase Extraction

The most cost-effective remedial alternative is focused excavation beneath the former UST excavation. We recommend that this alternative be implemented as the Corrective Action Plan for the Site.

10.0 LIMITATIONS

Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic principles and practices. This warranty is in lieu of all others, either expressed or implied. The analysis and conclusions in this report are based on sampling and testing, some of which have been conducted by others, all of which are necessarily limited. Additional data from future work may lead to modifications of the options expressed herein. All work was conducted under the direct supervision of a Professional Engineer and/or Geologist, Registered in the state of California, and experienced in environmental assessment and remediation.

Thank you for this opportunity to participate in the environmental assessment of your site. If you have any questions or comments regarding this project, please contact us at our offices at 831-722-3580.

Sincerely yours,

WEBER, HAYES AND ASSOCIATES

A California Corporation

By:

Jered Chaney, PG Project Geologist

D No. C 54081 And: Exp. <u>12/31/2017</u> Craig B. Drizin, PE Senior Engineer CIVI CAL

K:\AJOB\AJOB\2X103.Oakland-35th WP\Reports (& QM)\FS-CAP\2016-06 FS-CAP R1.docx

11.0 REFERENCES

Alameda County Environmental Health directives for: 3055 35th Avenue, Oakland:

- Upload/download website (site ID#:RO-0000271): <u>http://ehgis.acgov.org/adeh/lop_results.jsp?trigger=2&enterd_search=RO0000271&searchfield</u> =RECORD_ID
- 2005, December: Electronic Report Upload (ftp) Instructions, revision
- 2006, May 16: Response to Cambria February 2006 "Revised Remediation Work Plan".
- 2007, March 1: Approval of Cambria January 12, 2007 "Off-site and Soil Gas Work Plan".
- 2008, April 7: Request to Present Phase I Results and Submit a Soil Vapor Work Plan
- 2008, August 13: Approval of Conestoga-Rovers and Associates (CRA) April 11, 2008: "Work Plan Addendum for Additional Characterization and Soil Vapor Sampling"
- 2009, July 24: Groundwater Monitoring Requirements: Reduction to Semi-Annual Monitoring.
- 2011, January 21: Request for Updated Site Conceptual Model, electronic directive
- 2011, September 20: Request for Work Plan
- 2012, May 3: Work Plan Approval
- 2012, October 26: Data Gap Investigation Report Deadline Extension Approval
- 2015, July 30: Request for Focused Feasibility Study/Corrective Action Plan

California Environmental Protection Agency

– 1995-July: Guidelines for Hydrogeologic Characterization of Hazardous-Substance Release Sites

Cambria Environmental Technology (Cambria) reports for 3055 35th Avenue, Oakland:

- 1996, June 20: Investigation Work Plan
- 1997, June 27: *Risk-Based Corrective Action Analysis*
- 1998, April 8: Corrective Action Plan
- 1998, May 28: Corrective Action Plan Addendum
- 1998, December 7: Well Installation and Supplemental Subsurface Investigation Report
- 1999, August 14: Second Quarter 1999 Monitoring and Interim Remedial Action Report
- 2004, October 29: Groundwater Monitoring and System Progress Report
- 2005, February 22: *Remediation Work Plan*
- 2006, January 30: Revised Remediation Work Plan
- 2006, July 13: Site Conceptual Model and Off-site Work Plan
- 2007, January 12: Offsite Soil Gas Workplan

REFERENCES (Continued)

Conestoga-Rovers and Associates (CRA) reports for: 3055 35th Avenue, Oakland:

- 2008, April 11: Workplan for Additional Characterization and Soil Vapor Sampling
- 2009, February 28: Site Characterization Report
- 2010, October 18: Semi-Annual Groundwater Monitoring Report (dry season)
- 2011, May 5: Semi-Annual Groundwater Monitoring Report (wet season).

Consolidated Technologies reports for: 3055 35th Avenue, Oakland:

- 1991: Results for Preliminary Subsurface Site Investigation
- 1992, September: Work Plan for a Subsurface Petroleum Hydrocarbon Contamination Assessment

State Water Resources Control Board:

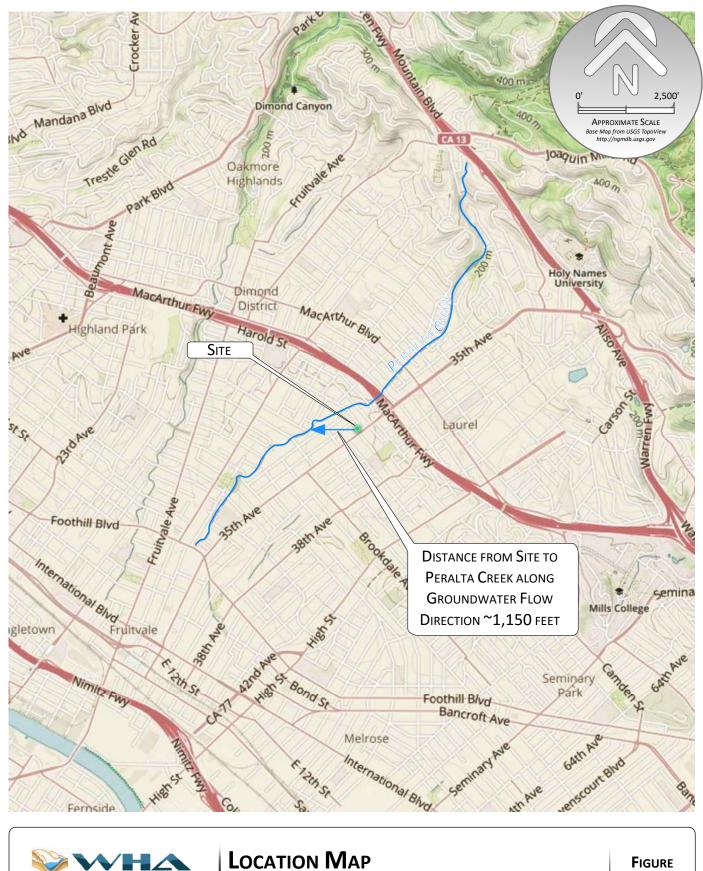
- Upload/download website (site ID#:T0600100538): <u>http://geotracker.swrcb.ca.gov/profile_report.asp?global_id=T0600100538</u>
- 1989: Leu, D. J., et al., Leaking Underground Fuel Tank Field (LUFT) Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure
- 2010, December 28: Division of Financial Assistance *Preliminary 5-Year Review For Claim #* 1275
- 2012, August 17: Low-Threat UST Case Closure Policy
- 2012, September: Leaking Underground Fuel Tank Guidance Manual, Sullivan International Group, Inc.

San Francisco Bay Regional Water Quality Control Board:

 Interim Final November 2007, Revised May 2008: Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater

Weber, Hayes and Associates reports for: 3055 35th Avenue, Oakland:

- 2011, June 24: Updated Site Conceptual Model Fuel Release Investigation
- 2012, February 21: Workplan for Limited Soil and Groundwater Data Gap Assessment
- 2012, February 21: Semi-Annual Groundwater Monitoring Report (sampled September 2011)
- 2012, August 8: Semi-Annual Groundwater Monitoring Report (sampled March 2012)
- 2012, October 29: Semi-Annual Groundwater Monitoring Report (sampled September 2012)
- 2012, December 31: Limited Soil & Groundwater Data Gap Assessment
- 2013, May 14: Quarterly Groundwater Monitoring Report (Sampled March 2013)
- 2013, August 22: Quarterly Groundwater Monitoring Report (Sampled June 2013)
- 2014, March 31: Annual Groundwater Monitoring Report (Sampled September 2013 & Jan 2014)

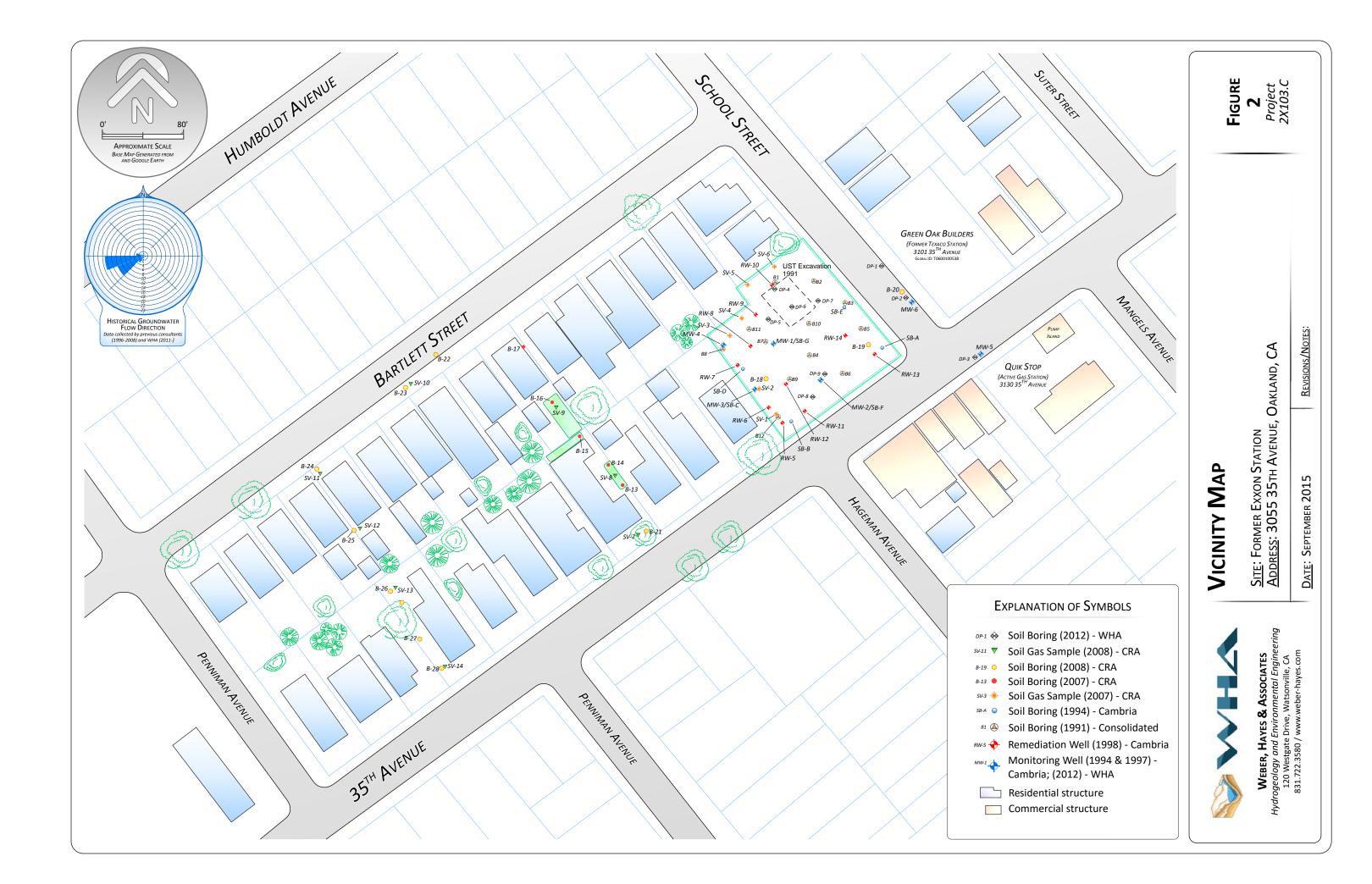

27

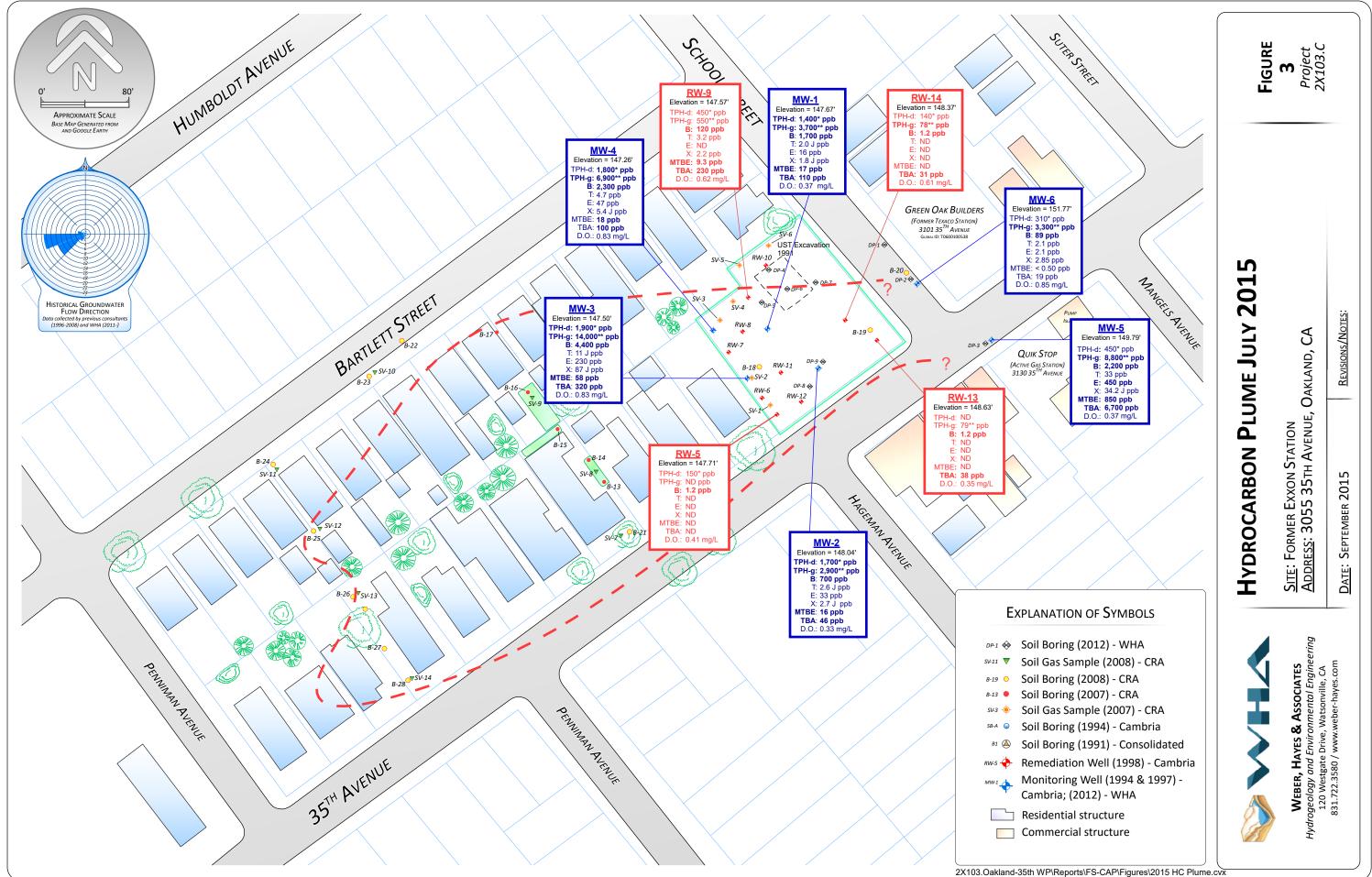
– 2015, August 18: Annual Groundwater Monitoring Report (sampled July 15, 2015)

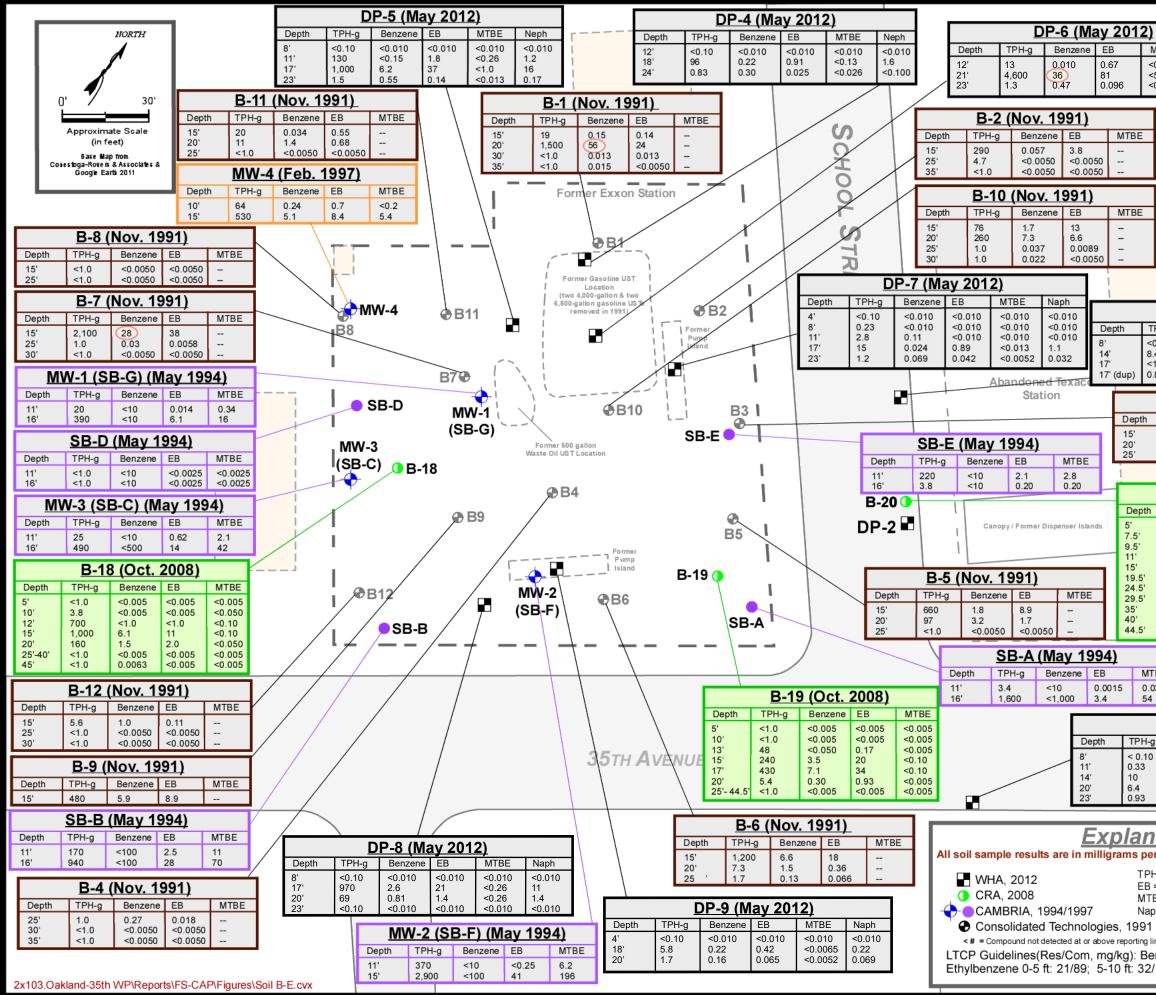
Weber, Hayes and Associates

FIGURES

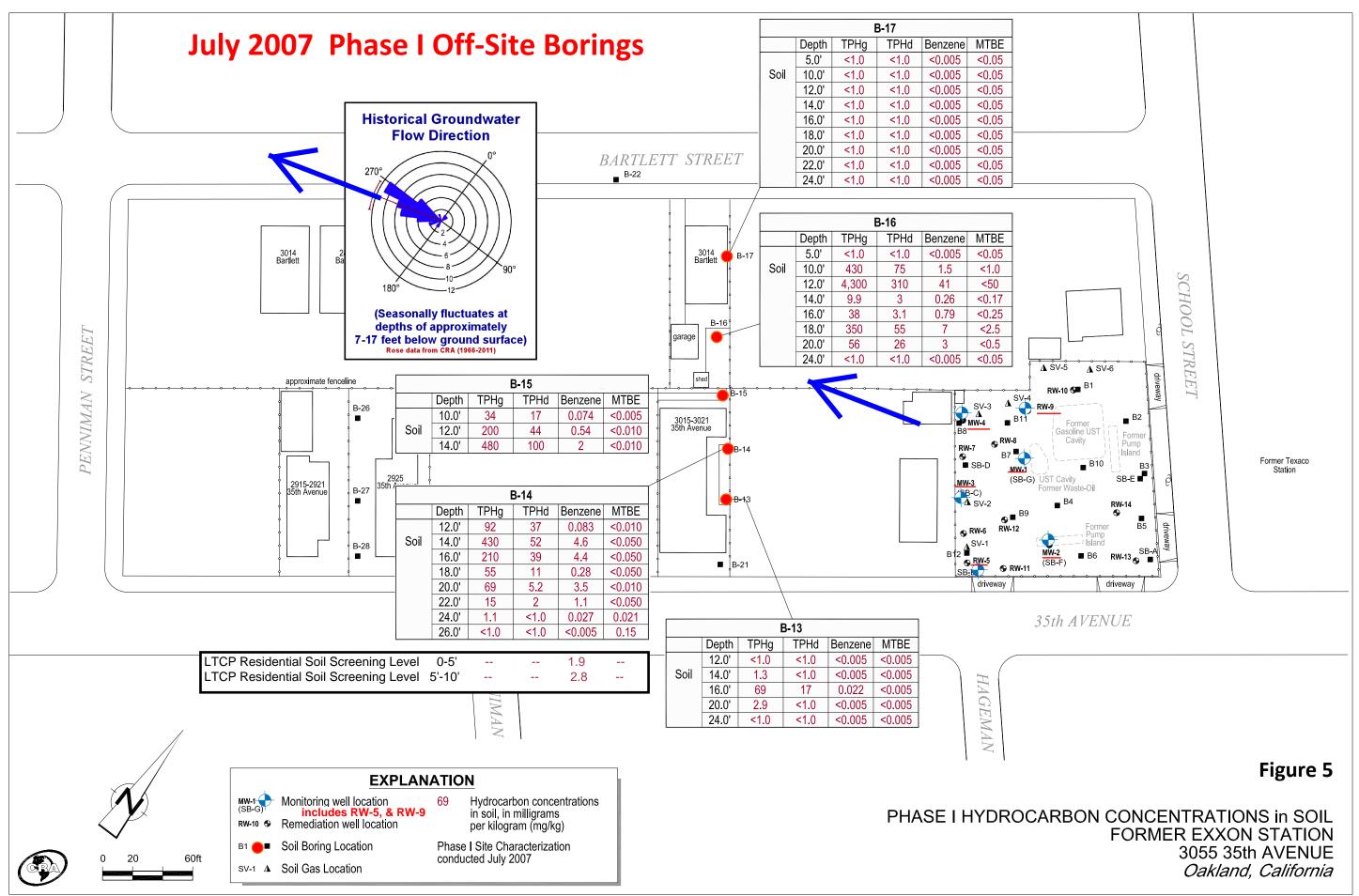
WEBER, HAYES & ASSOCIATES Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 831.722.3580 / www.weber-hayes.com

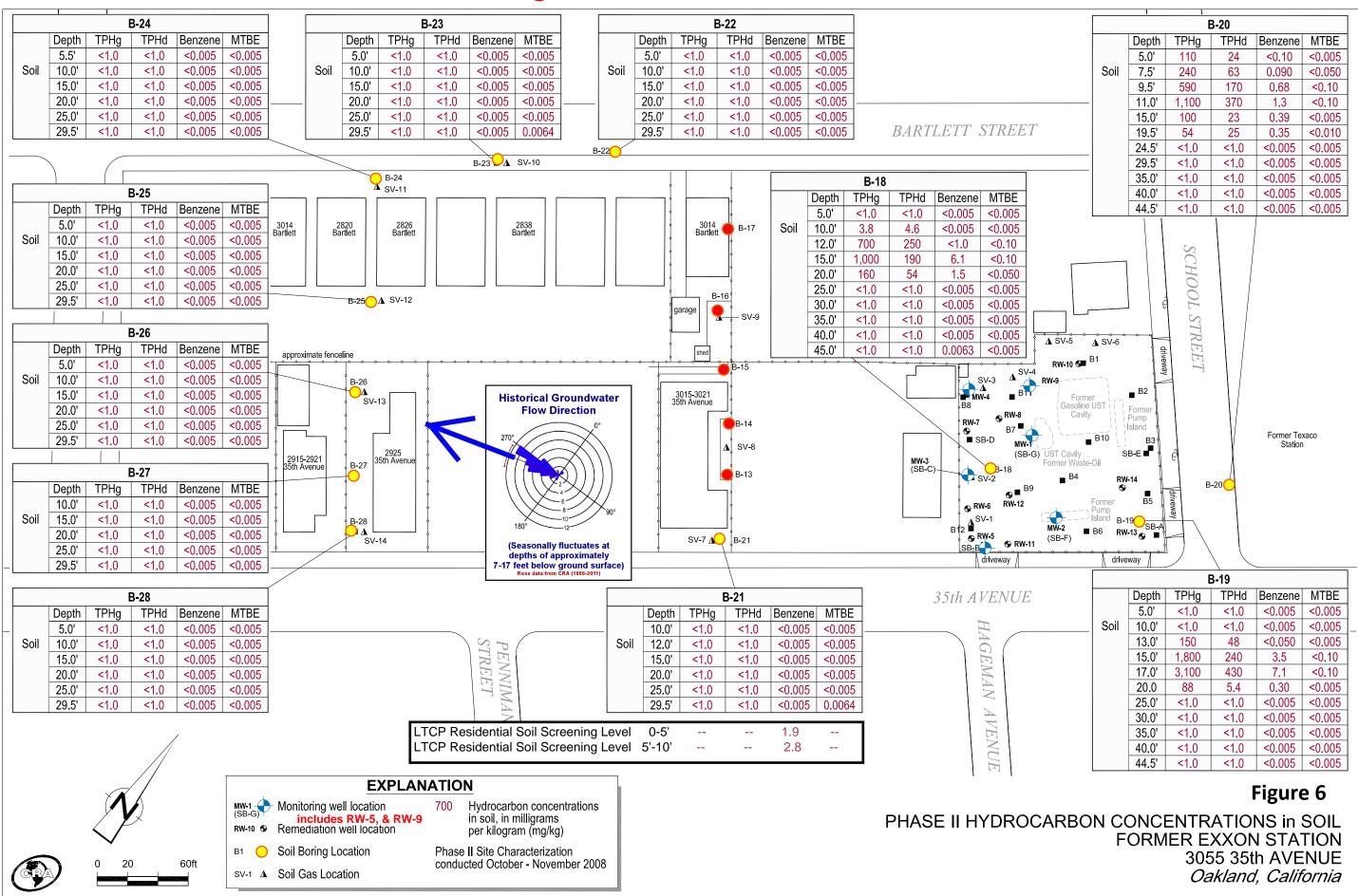

Site: Former Exxon Station


<u>Address</u>: 3055 35th Avenue, Oakland, CA

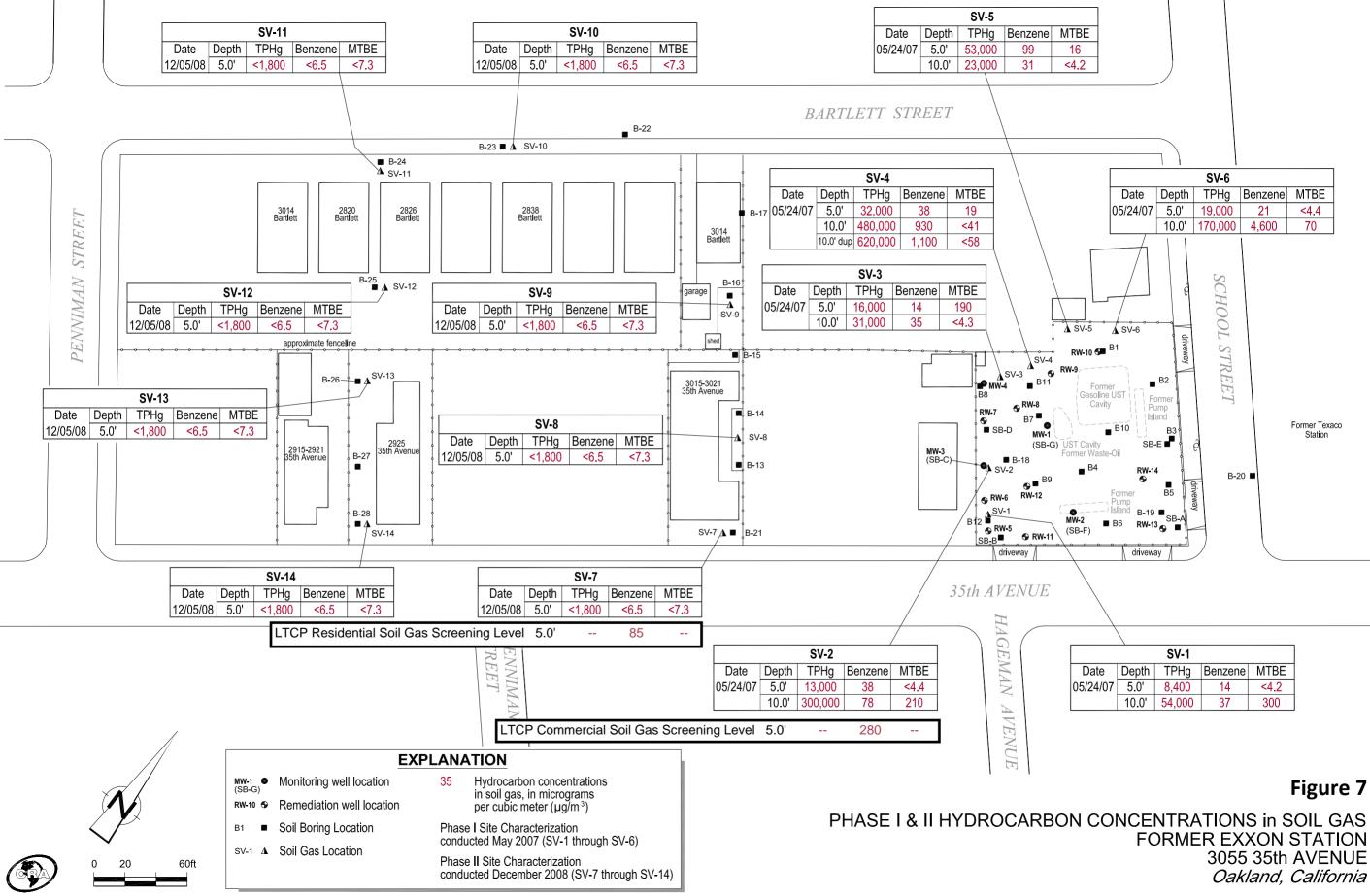

DATE: SEPTEMBER 2015

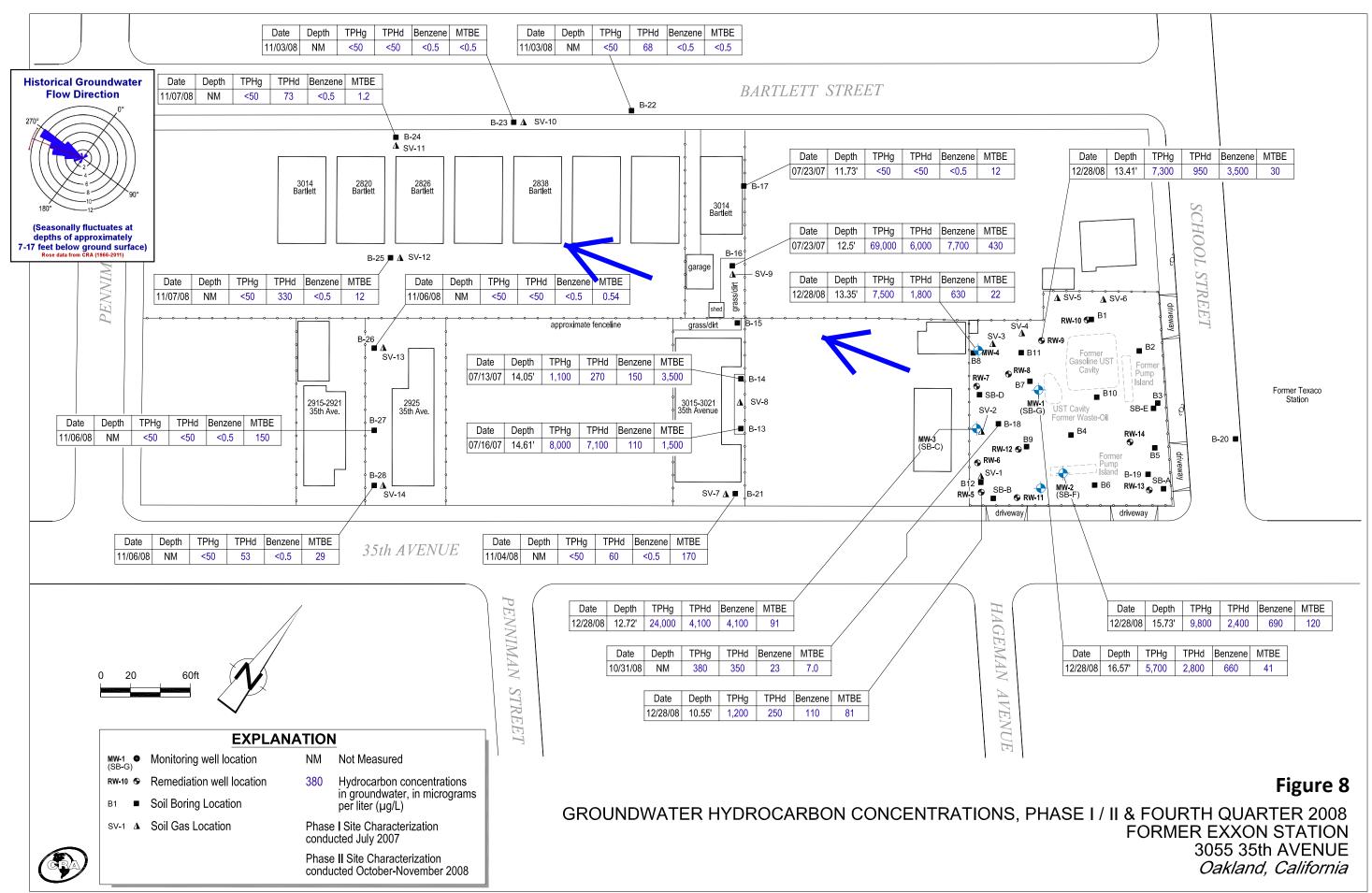
REVISIONS/NOTES:



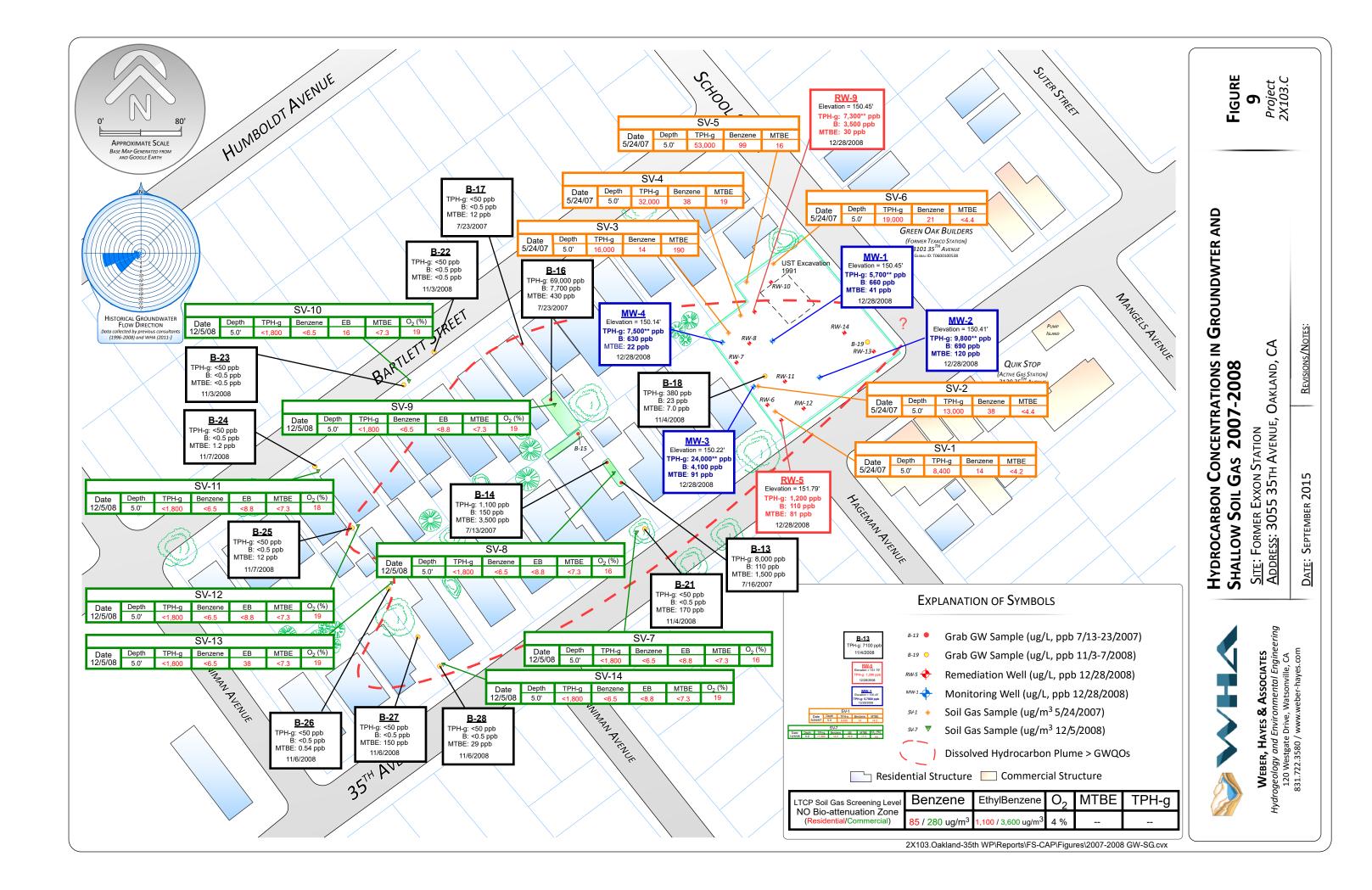


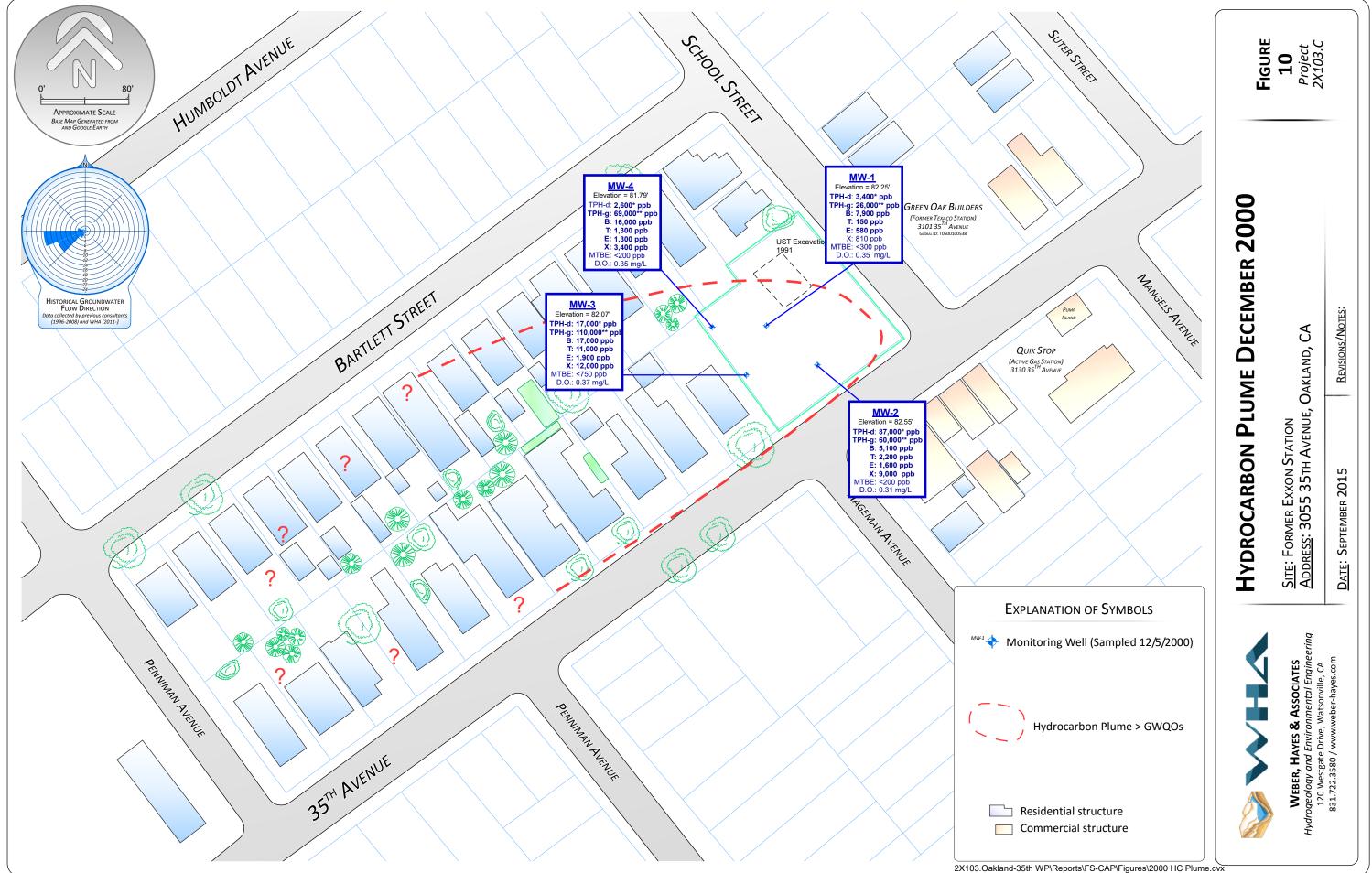
) <0.0 <5.2 <0.0	13	Nat 0.55 25 0.12	5	270°		X	6°		Figure 4 Project 2X103
TPH <0.11 8.4 <100 0.80	0	Ben <0.0	2ene 010 0075 010		D12) MT 10 <0. 043 <0. 10 <0.	BE 010 013	Na <0. <0.	ction	Soil Sample Analytical Results Former Exxon Station 3055 35th Avenue Oakland, Califomia
	<u>В</u> -	<u>`</u>	Nov Beni	. 19 zene	91) EB	МТЕ	BE		ner E 3055 Oakla
	45 130 <1.0		3.4 1.9 <0.0	050	1.2 2.4 <0.0050	 			l San For
	P	20	(2008				Soi
h		H-g	·	ZA -	EB) МТ	BE		••
	110 240 590 1,10 100 54 <1.0 <1.0)) 00)	<0.1 0.09 0.68 1.3 0.39 0.39 <0.0 <0.0	10 90 3 9 5 5 005	<0.10 1.4 4.9 10 0.52 0.11 <0.005 <0.005	<0.0 <0.0 <0.7 <0.7 <0.0 <0.0 <0.0 <0.0	005 050 10 10 005 010 005		
	<1.0 <1.0 <1.0	0 0	<0.0 <0.0 <0.0	005 005	<0.005 <0.005 <0.005	<0.0 <0.0 <0.0	005 005		s s
1TBE .031 4									Weber, Hayes & Associates Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, Ca. 95076 (831) 722 - 3580 Fax (831) 722 - 1159 www.weber-hayes.com
D)P-(3 (N	lay	201	<u>2)</u>			1	A : sonvi 831) /es.c
-g	-	enzene	EB		MTBE	Na	-		iror Nats ax ({ -hay
0	<0.			2	<0.010 <0.010 <0.013 <0.013 0.0080	<0. 0.0 0.0			Hayes & Ass y and Environmenta gate Drive, Watsonville, 722 - 3580 Fax (831) 72: www.weber-hayes.com
		0 1 ram (mg/k	g, pa	rts per m	illion	, pp	m)	(eber, Irogeoloç (831) ; (831)
3 = E TBE	Ethylk = Me	benze	ne Tert Bu	ım Hyo utyl Etl	drocarbon her	s as g	asoli	ne	≤ ^A f
	ene				; 5-10 ff -10 ft: 9.1		12;		S
_				-					

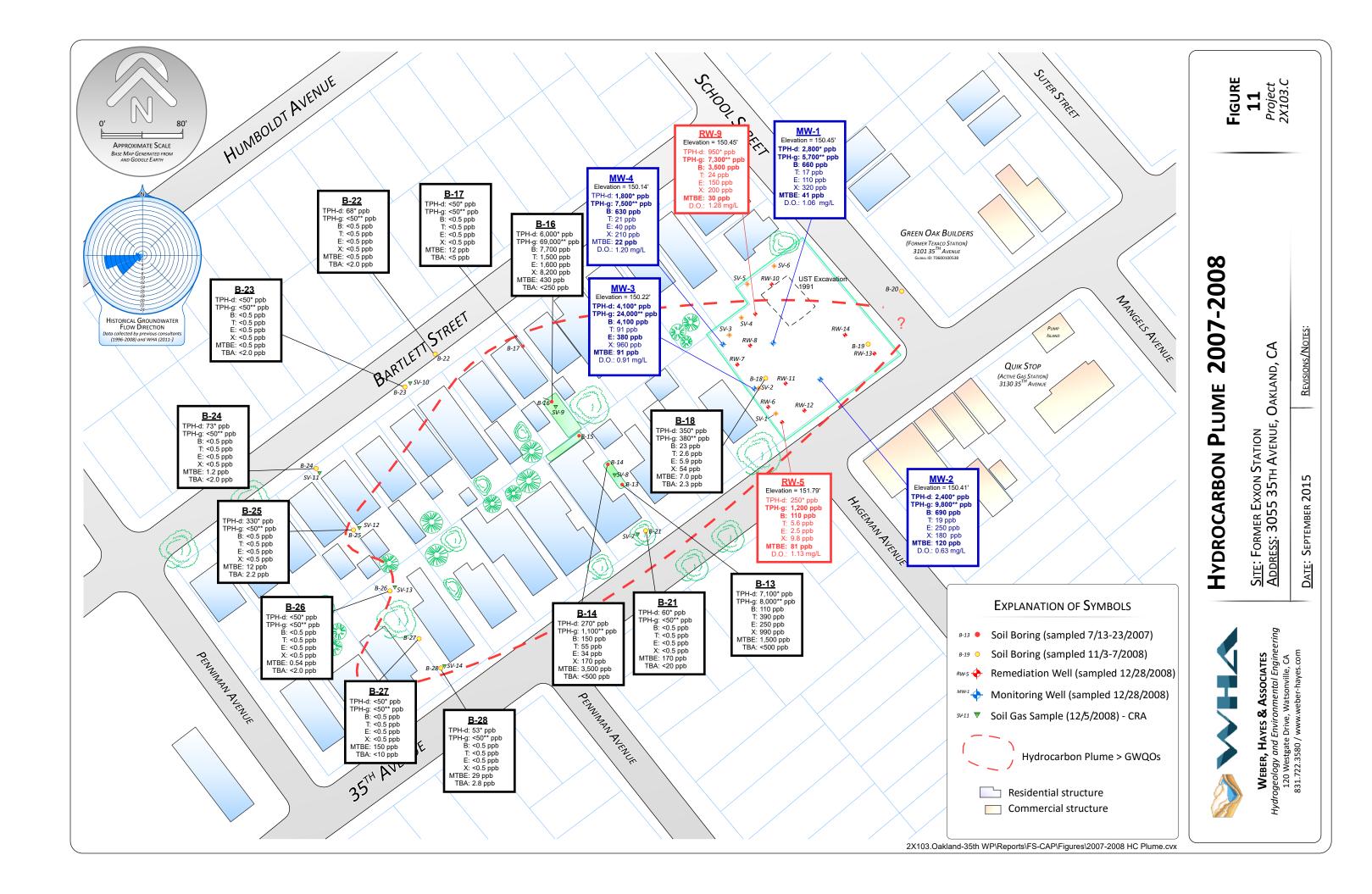



I:\IR\130105\GOLDEN EMPIRE PROPERTIES\FIGURES\130105-002_PHASE-I-HC.DWG

October-2008 Phase II Off-Site Borings




I:\IR\130105\GOLDEN EMPIRE PROPERTIES\FIGURES\130105-002_PHASE-II-HC(7).DWG



I:\IR\130105\GOLDEN EMPIRE PROPERTIES\FIGURES\130105-002_HCGW(5).DWG

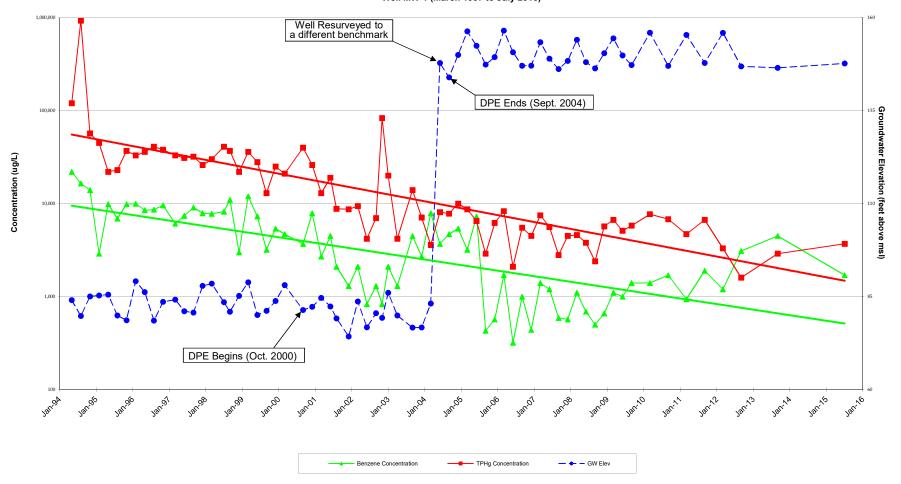


Figure 12 TPHg and Benzene Concentration Trends Well MW-1 (March 1997 to July 2015)

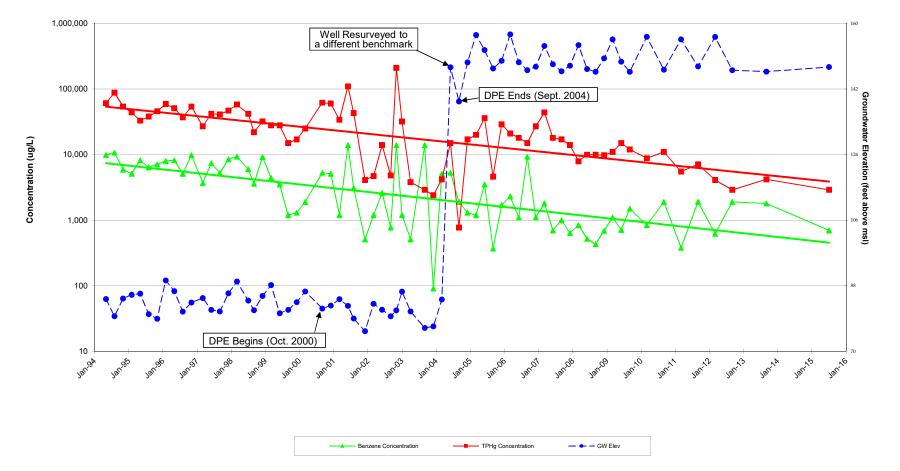


Figure 13 TPHg and Benzene Concentration Trends Well MW-2 (March 1997 to July 2015)

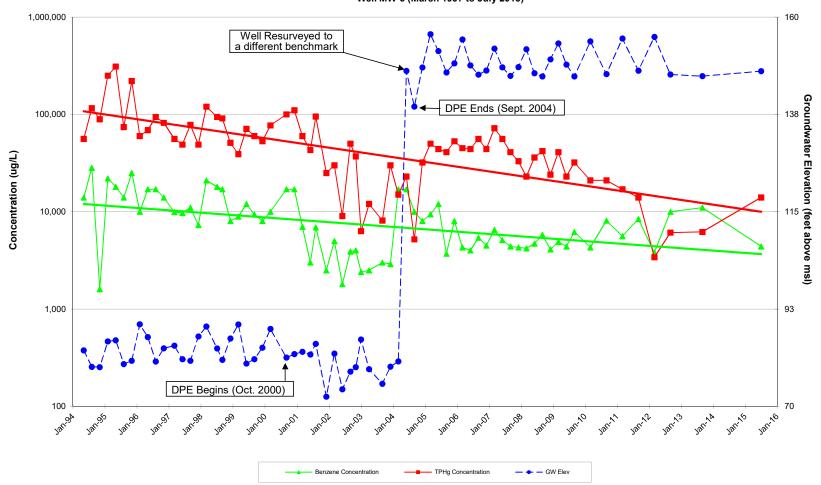
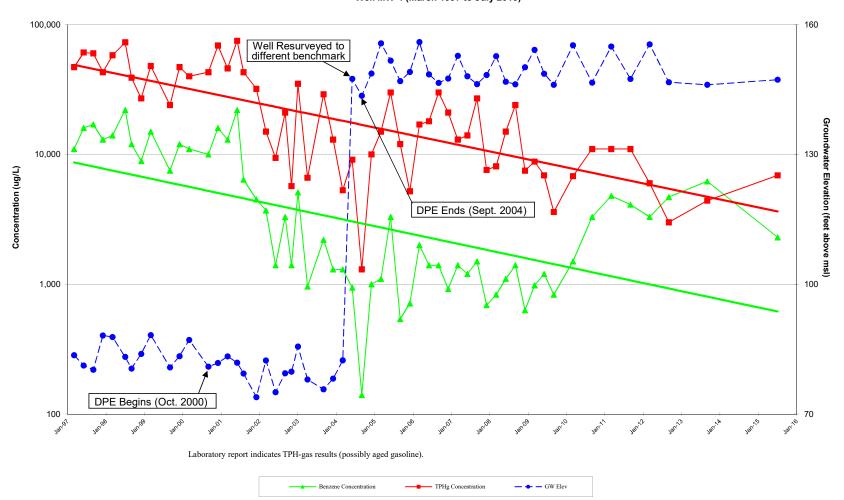
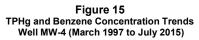
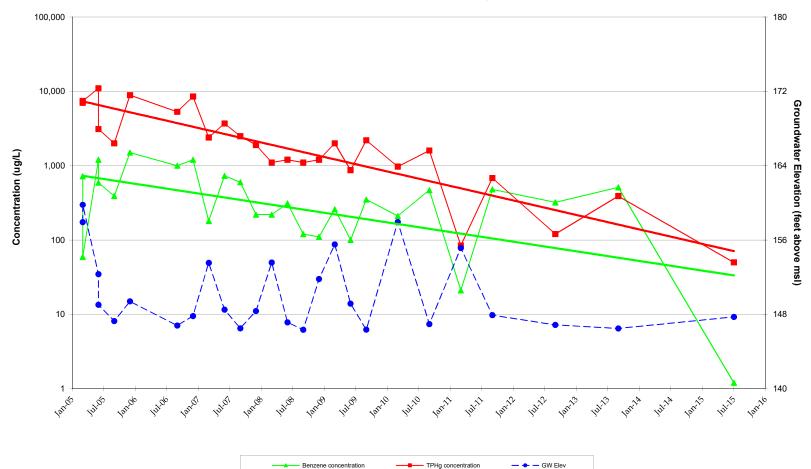
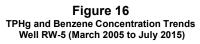
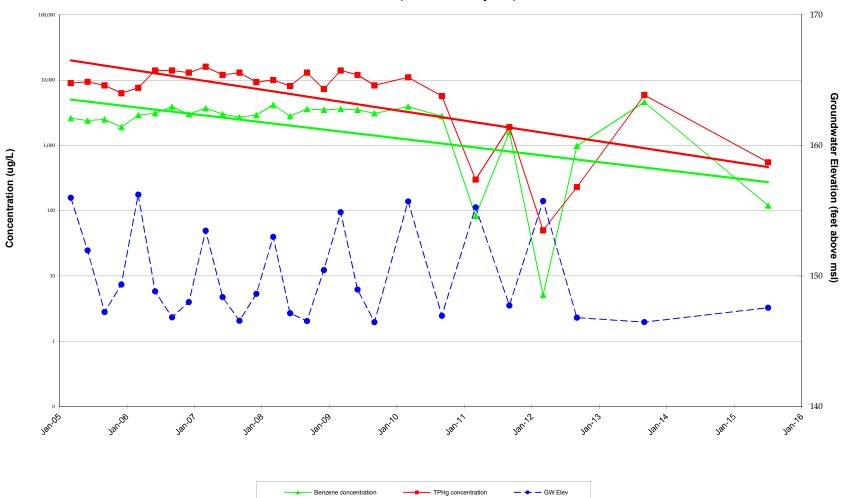
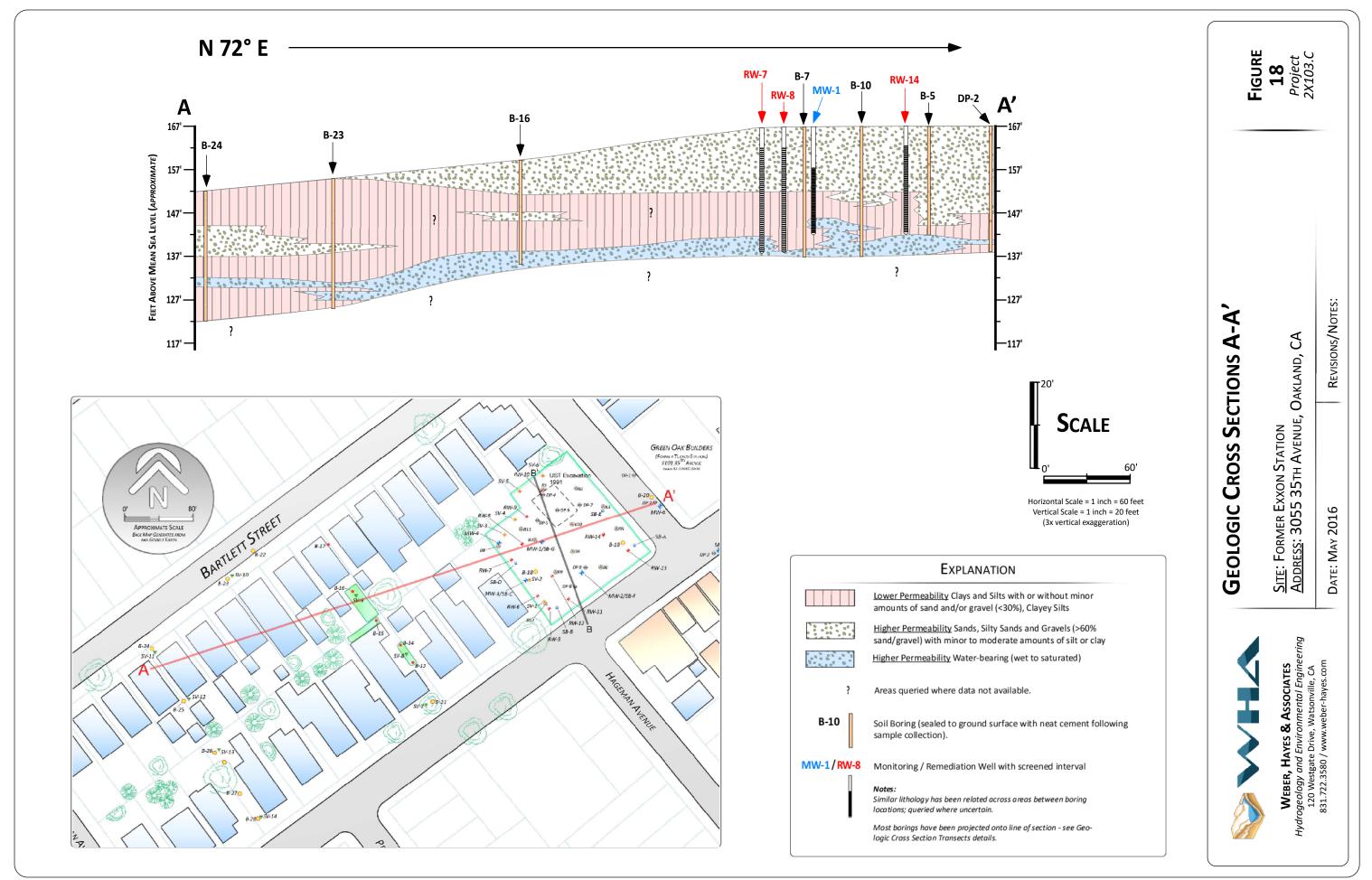
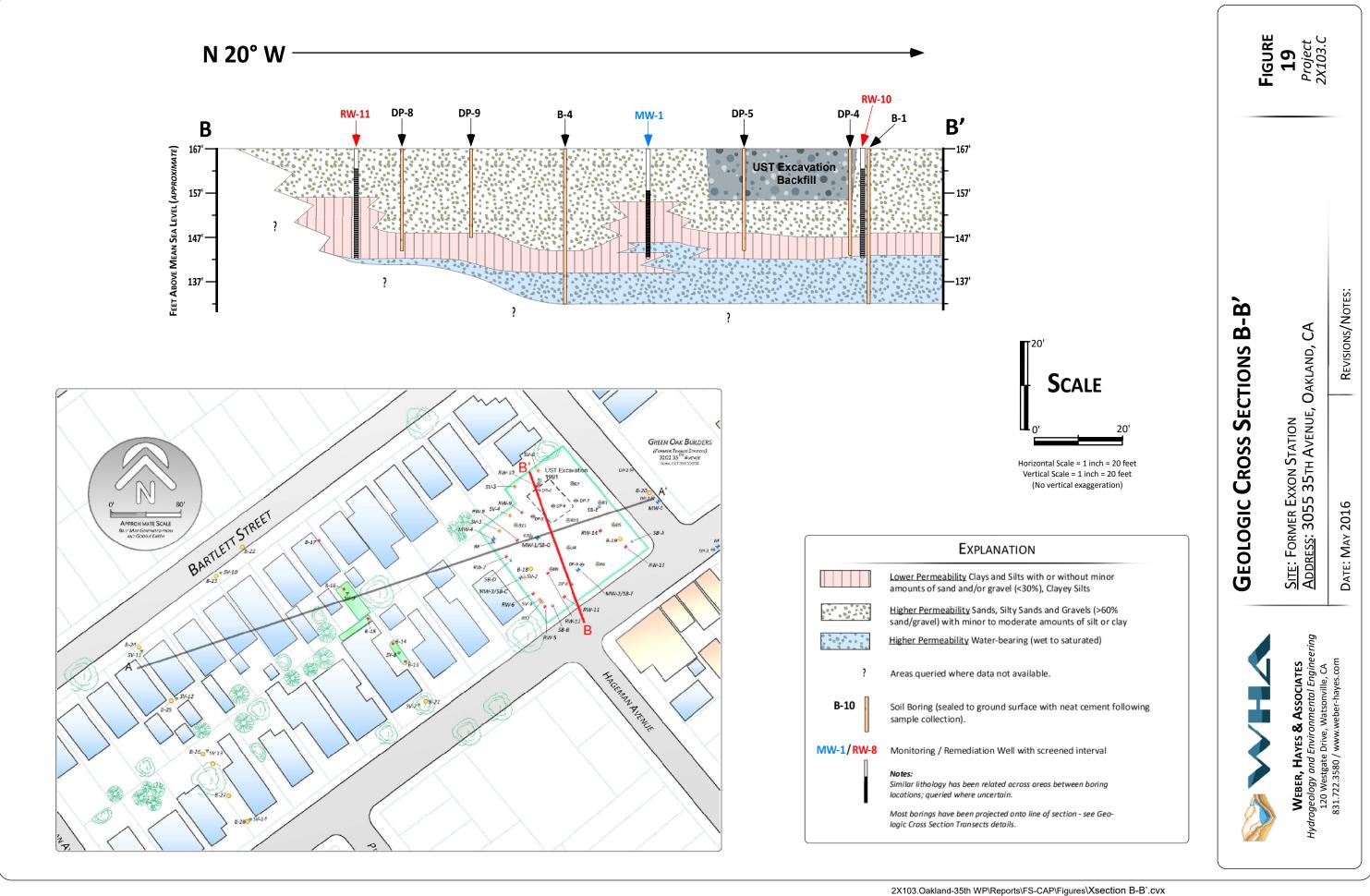
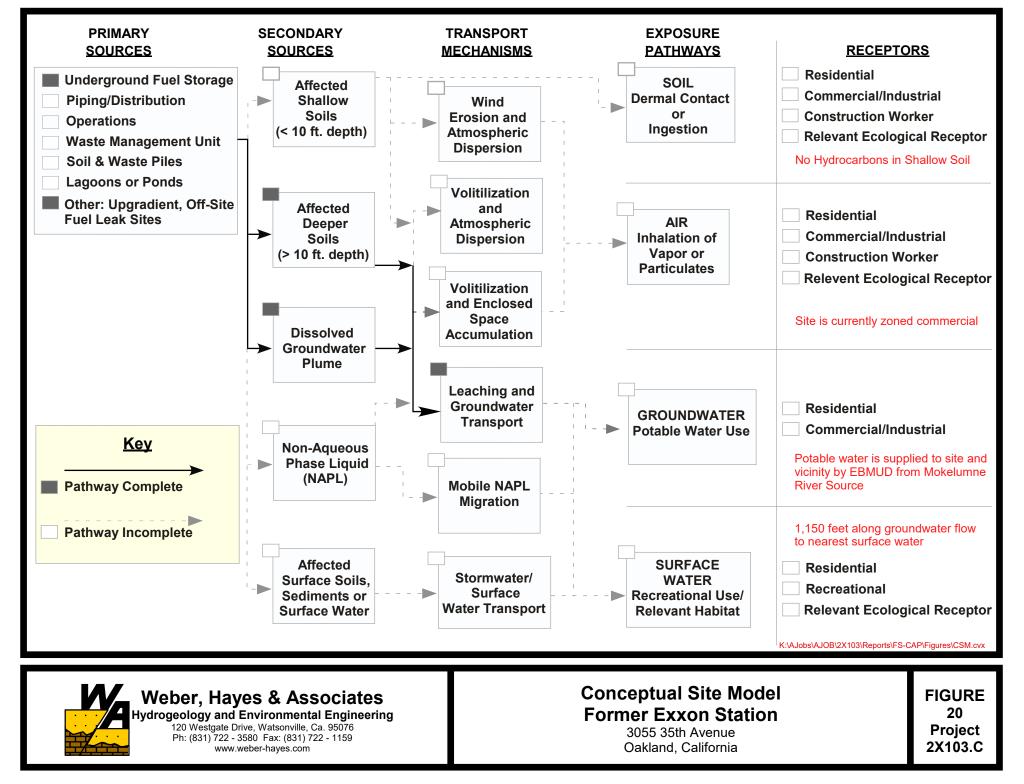






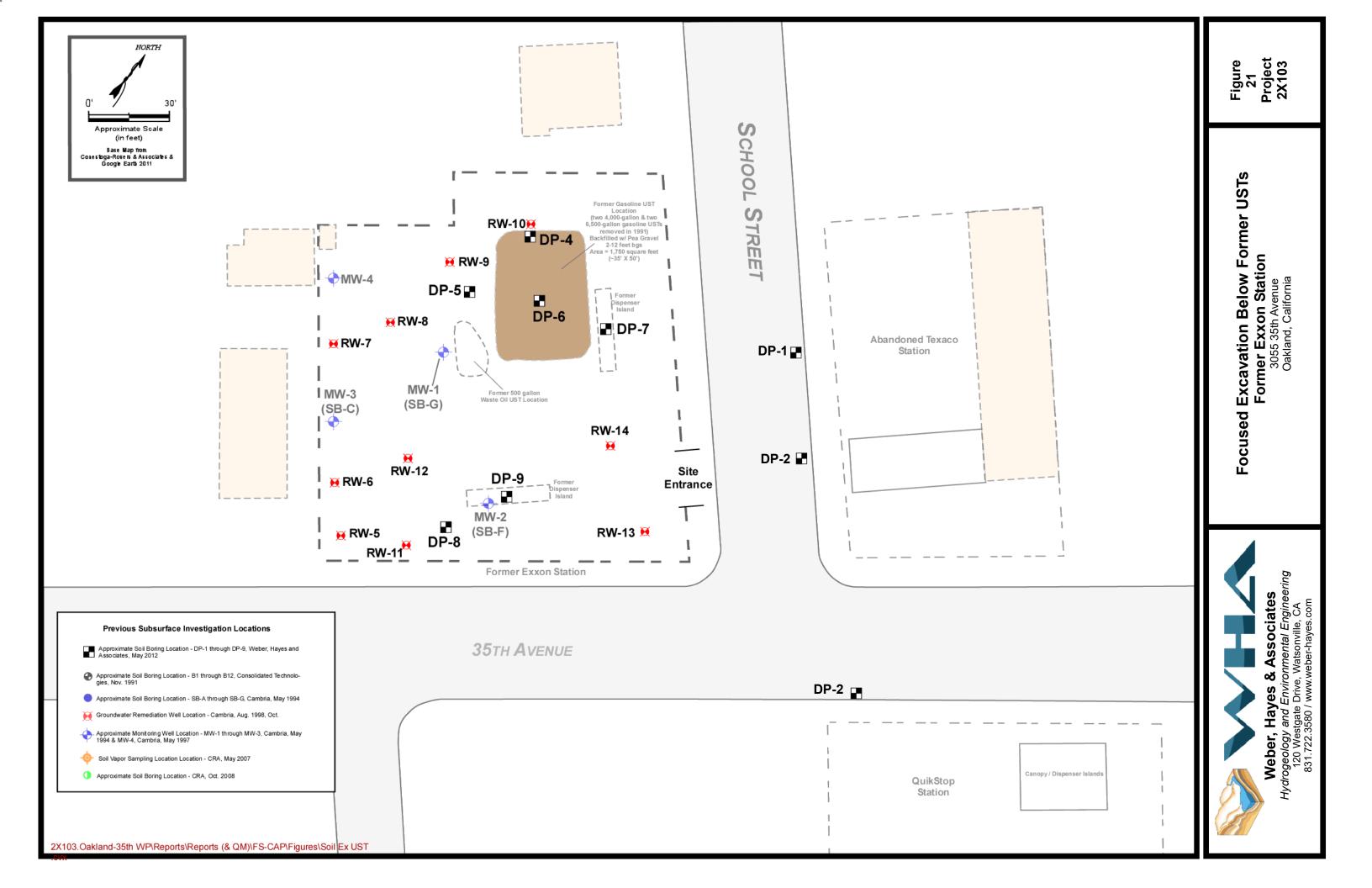
Figure 14 TPHg and Benzene Concentration Trends Well MW-3 (March 1997 to July 2015)

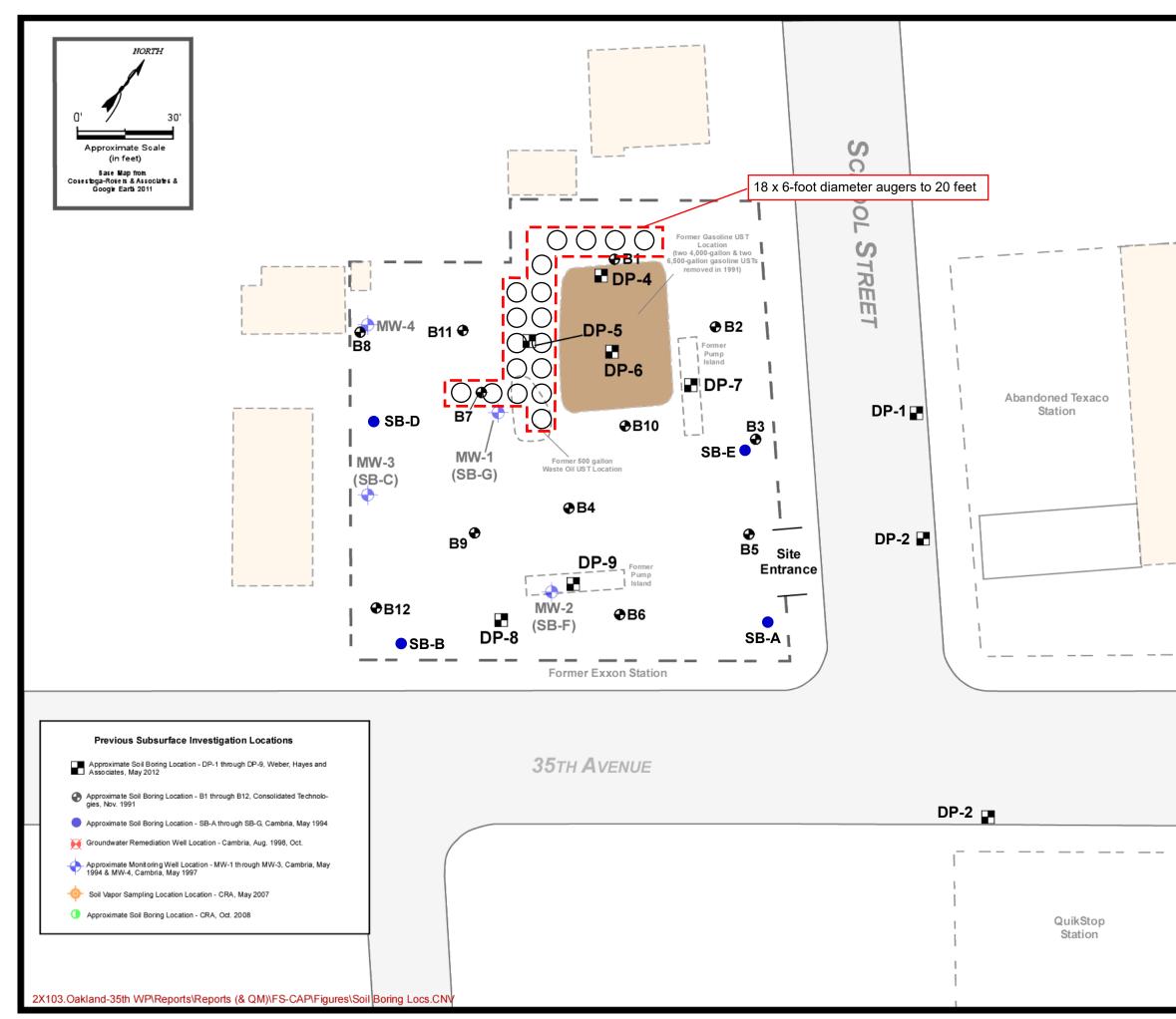


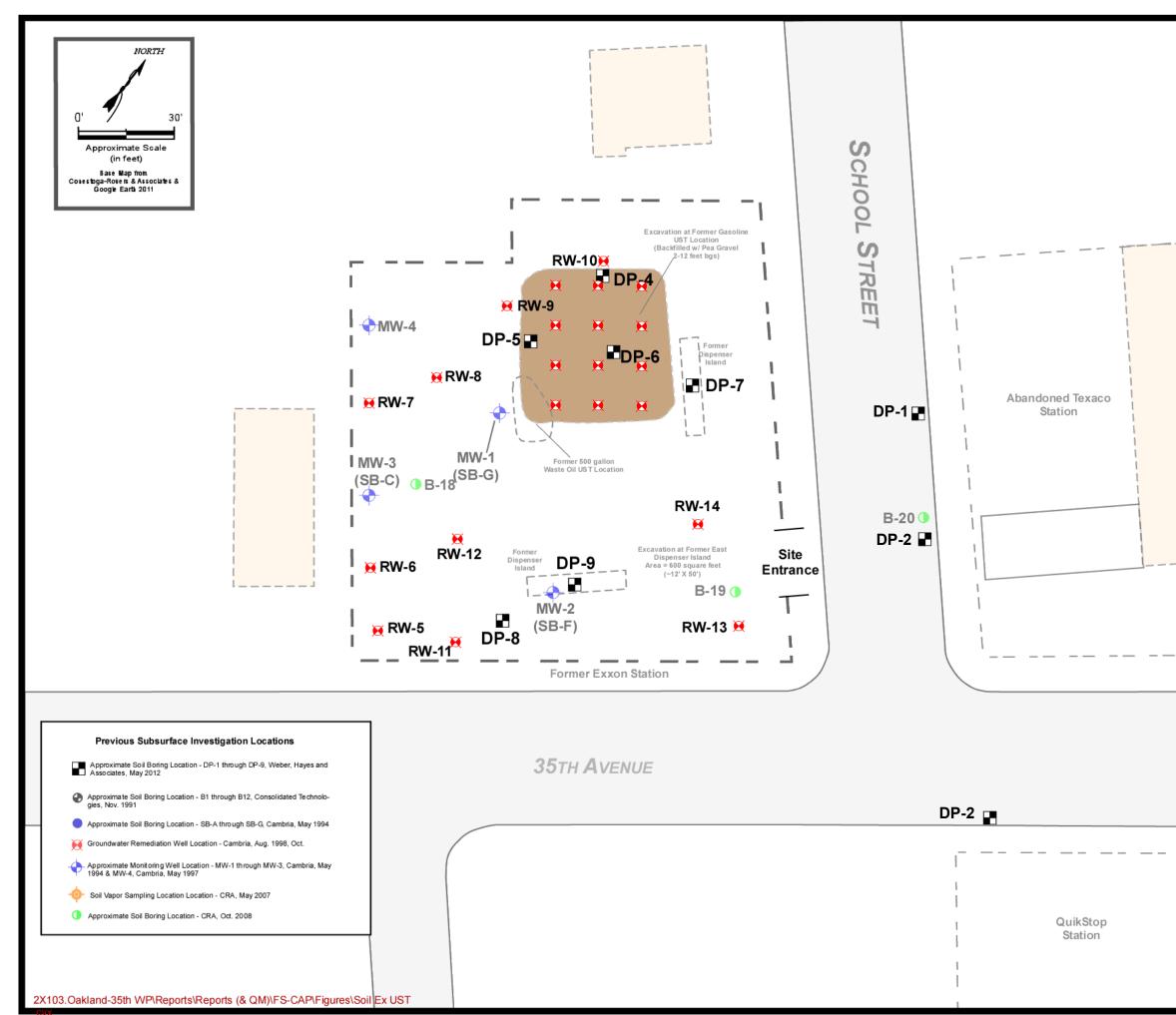





Weber, Hayes Associates




Figure 17 TPHg and Benzene Concentration Trends Well RW-9 (March 2005 to July 2015)



Canopy / Dispenser Islands		
Weber, Hayes & Associates	Dual Phase Extraction Well Layout	Figure
Hydrogeology and Environmental Engineering	Former Exxon Station	23
120 Westgate Drive, Watsonville, CA	3055 35th Avenue	Project
831.722.3580 / www.weber-hayes.com	Oakland, California	2X103

TABLES

Sample ID	Date	Sample	GW	TPHg	TPHd	Benzene		Ethylbenzen		MTBE	Notes
	Sampled	Depth (ft)	Depth (ft)	<		Conce	ntrations ir	n mg/kg		>	
B1	11/5/1991	15		19		0.15	0.34	0.14	1.6		
B1	11/5/1991	20		1500		56	44	24	140		
B1	11/5/1991	30		<1.0		0.013	0.013	0.013	0.015		
B1	11/5/1991	35		<1.0		0.015	< 0.0050	< 0.0050	0.026		
B2	11/5/1991	15		290		0.057	1.3	3.8	17		
B2	11/5/1991	25		4.7		< 0.0050	< 0.0050	< 0.0050	0.12		
B2	11/5/1991	35		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B3	11/6/1991	15		45		3.4	3.6	1.2	7.5		
B3	11/6/1991	20		130		1.9	4.7	2.4	19		
B3	11/6/1991	25		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B4	11/6/1991	25		1.0		0.27	0.18	0.018	0.17		
B4	11/6/1991	30		<1.0		< 0.0050	0.0083	< 0.0050	0.038		
B4	11/6/1991	35		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B5	11/6/1991	15		660		1.8	4.1	8.9	29		
B5	11/6/1991	20		97		3.2	1.2	1.7	4.6		
B5	11/6/1991	25		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B6	11/6/1991	15		1200		6.6	21	18	98		
B6	11/6/1991	20		7.3		1.5	1.5	0.36	1.8		
B6	11/6/1991	25		1.7		0.13	0.22	0.066	0.43		
B7	11/6/1991	15		2100	<1.0	28	100	38	290		ND VOCs/SVO
B7	11/6/1991	25		1.0		0.03	0.018	0.0058	0.06		
B7	11/6/1991	30		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B8	11/6/1991	15		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B8	11/6/1991	25		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B9	11/6/1991	15		480		5.9	23	8.9	72		
B10	11/6/1991	15		76		1.7	5.1	1.3	13		
B10	11/6/1991	20		260		7.3	21	6.6	54		
B10	11/6/1991	25		1.0		0.037	0.059	0.0089	0.064		

Sample ID	Date	Sample	GW	TPHg	TPHd	Benzene		Ethylbenzen	2	MTBE	Notes
	Sampled	Depth (ft)	Depth (ft)	<		Conce	ntrations ir	n mg/kg		>	
B10	11/6/1991	30		1.0		0.022	0.017	< 0.0050	0.011		
B11	11/6/1991	15		20		0.034	0.033	0.55	1.0		
B11	11/6/1991	20		11		1.4	0.15	0.68	1.8		
B11	11/6/1991	25		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B12	11/6/1991	15		5.6		1.0	0.75	0.11	0.91		
B12	11/6/1991	25		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
B12	11/6/1991	30		<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		
SB-A	5/5/94	11	14.5	3.4	4.2	<10	0.0072	0.0015	0.015	0.031	а
SB-A	5/5/94	16		1,600	620	<1,000	1.8	3.4	17	54	а
SB-B	5/6/94	11	15.0	170	52	<100	0.45	2.5	1.7	11	а
SB-B	5/6/94	16		940	120	<100	6.3	28	12	70	а
SB-C	5/6/94	11	13.9	25	6.7	<10	0.22	0.62	0.49	2.1	а
(MW-3)	5/6/94	16		490	280	<500	1.9	14	7.4	42	а
SB-D	5/6/94	11	19.5	<1	5.2	<10	< 0.0025	< 0.0025	< 0.0025	< 0.0025	
SB-D	5/6/94	16		<1	<1	<10	< 0.0025	< 0.0025	< 0.0025	< 0.0025	
SB-E	5/9/94	11	dry boring	220	56	<10	0.55	2.1	1.7	2.8	а
SB-E	5/9/94	16		3.8	1.4	<10	0.19	0.20	0.059	0.20	а
SB-F	5/9/94	11	13.3	370	57	<10	< 0.25	< 0.25	3.9	6.2	а
(MW-2)	5/9/94	15		2,900	450	<100	24	41	48	196	а
SB-G	5/9/94	11	14.5	20	18	<10	0.061	0.014	0.093	0.34	а
(MW-1)	5/9/94	15		390	52	<10	1.4	6.1	3.9	16	b
MW-4-10	2/26/97	10		64	62	0.24	1.1	0.7	2.6	<0.2	c,d
MW-4-15	2/26/97	15		530	150	5.1	18	8.4	39	5.4	c,d
B-18-5	10/29/08	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-18-10	10/29/08	10		3.8	4.6	< 0.005	< 0.005	< 0.005	0.023	(<0.005)	g,h
B-18-12	10/29/08	12		700	250	<1.0	1.2	<1.0	38	(<0.10)	j,f,g,d
B-18-15	10/29/08	15		1,000	190	6.1	4.3	11	53	(<0.10)	j,c,d

Sample ID	Date	Sample	GW	TPHg	TPHd	Benzene		Ethylbenzene	2	MTBE	Notes
	Sampled	Depth (ft)	Depth (ft)	<		Conce	ntrations i	n mg/kg		>	
B-18-20	10/29/08	20		160	54	1.5	0.50	2.0	9.7	(<0.050)	j,c,d
B-18-25	10/29/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-18-30	10/29/08	30		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-18-35	10/29/08	35		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-18-40	10/29/08	40		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-18-45	10/29/08	45		<1.0	<1.0	0.0063	< 0.005	< 0.005	< 0.005	(<0.005)	
B-19-5	10/31/08	5		<1.0	<1.0	< 0.005	< 0.005	<0.005	< 0.005	<0.05 (<0.005)	
B-19-10	10/31/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.05 (<0.005)	
B-19-13	10/31/08	13		150	48	< 0.050	0.23	0.17	0.39	<0.50 (<0.005)	g,e,i
B-19-15	10/31/08	15		1,800	240	3.5	4.9	20	2.6	1.4 (<0.10)	j,c,d
B-19-17	10/31/08	17		3,100	430	7.1	4.3	34	58	<5.0 (<0.10)	j,c,d
B-19-20	10/31/08	20		88	5.4	0.30	0.15	0.93	0.61	<0.1 (<0.005)	c,i
B-19-25	10/31/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.05 (<0.005)	
B-19-30	10/31/08	30		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.05 (<0.005)	
B-19-35	10/31/08	35		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.05 (<0.005)	
B-19-40	10/31/08	40		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.05 (<0.005)	
B-19-44.5	10/31/08	44.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<0.05 (<0.005)	
Offsite Soil Borings	5 - 2007										
B-13-12'	7/13/07	12		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-13-14'	7/13/07	14		1.3	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	g
B-13-16'	7/13/07	16		69	17	0.022	0.49	0.27	0.074	(<0.005)	c,d,e,h
B-13-20'	7/13/07	20		2.9	<1.0	< 0.005	0.034	0.017	0.077	(<0.005)	c,e
B-13-24'	7/13/07	24		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-14-12'	7/13/07	12		92	37	0.083	0.55	1.0	0.69	(<0.010)	d,e,f,h
B-14-14'	7/13/07	14		430	52	4.6	1.8	6.4	28	(<0.050)	c,d
B-14-16'	7/13/07	16		210	39	4.4	5.4	3	18	(<0.050)	c,d,h
B-14-18'	7/13/07	18		55	11	0.28	0.34	0.46	3.4	(<0.005)	c,d
B-14-20'	7/13/07	20		69	5.2	3.5	1.8	1.1	6.7	(<0.010)	c,d,h
B-14-22'	7/13/07	22		15	2	1.1	0.19	0.25	0.65	(<0.005)	c,d,h
B-14-24'	7/13/07	24		1.1	<1.0	0.027	0.0071	0.0073	0.013	(0.021)	С
B-14-26'	7/13/07	26		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(0.15)	

Sample ID	Date	Sample	GW	TPHg	TPHd	Benzene		Ethylbenzen	2	MTBE	Notes
	Sampled	Depth (ft)	Depth (ft)	<		Conce	ntrations i	in mg/kg		>	
B-15-10'	7/12/07	10		34	17	0.074	0.20	0.21	0.08	(<0.005)	c,d,e,h
B-15-12'	7/12/07	12		200	44	0.54	0.95	2.5	5.4	(<0.010)	c,d
B-15-14'	7/12/07	14		480	100	2	1.9	8	26	(<0.010)	d,e,f,h
B-16-5'	7/20/07	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-16-10'	7/20/07	10		430	75	1.5	2.1	4.4	21	(<1.0)	d,f,e
B-16-12'	7/20/07	12		4300	310	41	23	59	320	(<50)	c,d
B-16-14'	7/20/07	14		9.9	3	0.26	0.044	0.24	1.2	(<0.17)	c,d
B-16-16'	7/20/07	16		38	3.1	0.79	0.2	0.4	2.7	(<0.25)	c,d,e
B-16-18'	7/20/07	18		350	55	7	9.6	5.3	31	(<2.5)	c,d
B-16-20'	7/20/07	20		56	2.6	3	1.8	0.75	4.4	(<0.5)	c,d
B-16-24'	7/20/07	24		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-5'	7/20/07	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-10'	7/20/07	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-12'	7/20/07	12		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-14'	7/20/07	14		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-16'	7/20/07	16		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-18'	7/20/07	18		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-20'	7/20/07	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-22'	7/20/07	22		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
B-17-24'	7/20/07	24		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.05)	
fsite Soil Borings	- 2008										
B-20-5	10/30/08	5		110	24	< 0.10	< 0.10	< 0.10	0.27	(<0.005)	e,i
B-20-7.5	10/30/08	7.5		240	63	0.090	0.058	1.4	0.94	(<0.050)	j,c,i
B-20-9.5	10/30/08	9.5		590	170	0.68	0.22	4.9	2.9	(<0.10)	j,c,i
B-20-11	10/30/08	11		1,100	370	1.3	1.5	10	10	(<0.10)	j,f,g,i
B-20-15	10/30/08	15		100	23	0.39	0.13	0.52	0.25	(<0.005)	c,i
B-20-19.5	10/30/08	19.5		54	25	0.35	< 0.017	0.11	0.068	(<0.010)	j,c,i
B-20-24.5	10/30/08	24.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	-
B-20-29.5	10/30/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-20-35	10/30/08	35		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-20-40	10/30/08	40		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-20-44.5	10/30/08	44.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-21-10	11/4/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	

Sample ID	Date	Sample	GW	TPHg	TPHd	Benzene		Ethylbenzene		MTBE	Notes
	Sampled	Depth (ft)	Depth (ft)	<		Conce	ntrations i	n mg/kg		>	
B-21-12	11/4/08	12		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-21-15	11/4/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-21-20	11/4/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-21-25	11/4/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-21-29.5	11/4/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(0.0064)	
B-22-5	11/3/08	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-22-10	11/3/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-22-15	11/3/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-22-20	11/3/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-22-25	11/3/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-22-29.5	11/3/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-23-5	11/3/08	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-23-10	11/3/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-23-15	11/3/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-23-20	11/3/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-23-25	11/3/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-23-29.5	11/3/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-24-5.5	11/6/08	5.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-24-10	11/6/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-24-15	11/6/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-24-20	11/6/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-24-25	11/6/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-24-29.5	11/6/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-25-5	11/6/08	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-25-10	11/7/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-25-15	11/7/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-25-22	11/7/08	22		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-25-25	11/7/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-25-29.5	11/7/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-26-5	11/5/08	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-26-10	11/6/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-26-15	11/6/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	

Sample ID	Date	Sample	GW	TPHg	TPHd	Benzene		Ethylbenzen	2	MTBE	Notes
	Sampled	Depth (ft)	Depth (ft)	<		Conce	ntrations in	1 mg/kg		>	
B-26-20	11/6/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-26-25	11/6/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-26-29.5	11/6/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-27-10	11/5/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-27-15	11/5/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-27-20	11/5/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-27-25	11/5/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-27-29.5	11/5/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-28-5	11/4/08	5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-28-10	11/5/08	10		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-28-15	11/5/08	15		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-28-20	11/5/08	20		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-28-25	11/5/08	25		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	
B-28-29.5	11/5/08	29.5		<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	(<0.005)	

Abbreviations:

ft = feet

mg/kg = milligrams per kilogram

< x = Not detected above detection limit.

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method 8020/8021B MTBE = Methyl Tertiary Butyl Ether by EPA Method 8020, or by EPA

Method 8260 in paratheses

B7-15 Metals: Cadmium 3.51 mg/kg, Chromium 25.1 mg/kg, Lead 3.19 mg/kg,

Zinc 47.7 mg/kg, Nickel 34.3 mg/kg

B7-15 Oil & Grease: ND (10 mg/kg)

Notes:

(a) The positive TPHd response appears to be a lighter hydrocarbon than diesel

(b) The positive TPHd result has an atypical chromatographic pattern

(c) Unmodified or weakly modified gasoline is significant (TPHg)

(d) Gasoline range compounds are significant (TPHd)

(e) No recognizable pattern

(f) Heavier gasoline range compounds are significant (aged gasoline?)

(g) Strongly aged gasoline or diesel range compounds are significant

(h) Diesel range compounds are significant; no recognizable pattern

(i) Stoddard solvent/mineral spirit

(j) Sample diluted due to high organic content

SOIL GAS ANALYTICAL DATA 3055 35TH AVENUE OAKLAND, CA

Sample ID	Date	Sample	TPHg	Benzene		Ethyl- benzene	Xylenes	MTBE	Carbon Dioxide		Methane	Butane	Isobutane	-	Butane as Hexane	Isobutane as Hexane	Propane as Propene
	Sampled	Depth (ft)	•		μg	/m ³				— μL/L —		•	— ppbV –			μg/L	→
Onsite Soil Gas																	
SV-1-5A	05/24/07	5	8,400	14				<4.2				ND	48 j	ND			
SV-1-10	05/24/07	10	54,000	37				300				ND	39 j	ND			
SV-2-5	05/24/07	5	13,000	38				<4.4				ND	83 j	ND			
SV-2-10	05/24/07	10	300,000	78				210				ND	ND	ND			
SV-3-5	05/24/07	5	16,000	14				190				ND	30 j	ND			
SV-3-10	05/24/07	10	31,000	35				<4.3				500 j	97 j	ND			
SV-4-5A	05/24/07	5	32,000	38				19				ND	57 j	ND			
SV-4-10	05/24/07	10	480,000	930				<41				ND	ND	ND			
SV-5-5	05/24/07	5	53,000	99				16				1,400 j	300 j	ND			
SV-5-10	05/24/07	10	23,000	31				<4.2				240 j	89 j	ND			
SV-6-5	05/24/07	5	19,000	21				<4.4				330 j	61 j	ND			
SV-6-10	05/24/07	10	170,000	4,600				70				1,700 j	360 j	ND			
SV-4-10 Duplicate	5/24/07	10	620,000	1,100				<58				ND	ND	ND			
Trip Blank	5/24/07		ND	ND				ND				ND	ND	ND			
Offiste Soil Gas																	
SV-7	12/5/08	5	<1,800	<6.5	7.9	<8.8	29	<7.3	32,000	160,000	<5.0				<10	<10	<10
SV-8	12/5/08	5	<1,800	<6.5	<7.7	<8.8	<27	<7.3	33,000	160,000	<5.0				<10	<10	<10
SV-9	12/5/08	5	<1,800	<6.5	<7.7	<8.8	<27	<7.3	27,000	190,000	<5.0				<10	<10	<10
SV-10	12/5/08	5	<1,800	<6.5	23	16	79	<7.3	28,000	190,000	<5.0				<10	<10	<10
SV-11	12/5/08	5	<1,800	<6.5	<7.7	<8.8	<27	<7.3	18,000	180,000	<5.0				<10	<10	<10
SV-12	12/5/08	5	<1,800	<6.5	<7.7	<8.8	<27	<7.3	6,500	190,000	<5.0				<10	<10	<10
SV-13	12/5/08	5	<1,800	<6.5	33	38	210	<7.3	14,000	190,000	<5.0				<10	<10	<10
SV-14	12/5/08	5	<1,800	<6.5	<7.7	<8.8	<27	<7.3	22,000	190,000	<5.0				<10	<10	<10
SV-13-Duplicate	12/5/08	5	<1,800	<6.5	33	40	220	<7.3	11,000	180,000	<5.0				<10	<10	<10

SOIL GAS ANALYTICAL DATA 3055 35TH AVENUE OAKLAND, CA

Sample ID	Date Sampled	Sample Depth (ft)	TPHg ◀─	Benzene	Toluene µs	Ethyl- benzene z/m ³	Xylenes	MTBE →	Carbon Dioxide ◀	Oxygen — µL/L —	Methane •	Butane	Isobutane — ppbV –	Propane	Butane as Hexane	Isobutane as Hexane — µg/L —	Propane as Propene
Abbreviations:ft = feet $\mu g/m^3$ = microgram $\mu g/L$ = micrograms $\mu L/L$ = microliters p <x detec<="" nd:="" not="" or="" td="">See Analytical LaborTPHg = Total petrolBenzene by modifiedMTBE = Methyl Tert Not analyzed, notND = Not detectedButane as Hexane foIsobutane as HexanePropane as Propene</x>	s per cubic mo per liter er liter ted above lab atory report f eum hydrocar I EPA Methoc iary Butyl Eth applicable or r SV-7 throug for SV-7 throug	eter oratory detect or notes bons as gasol i TO-15 eer by modifie not available h SV-14; repo ugh SV-14; rep	ine by mo ed EPA Ν rted in με ported ir	odified EP4 Aethod TO- g/L 1 µg/L	A Method T		j - Estimate e - Exceeds s - Saturate q - Exceeds u - Compo uj - Non-de	ed value instrume ed peak quality c und analy etected co	ent in labora ent calibratio control limit vzed for but mpound as: n is based or	tory blank on range s not detecte sociated wi	ed above th ith low bias	e reportin	g limit				

GRAB GROUNDWATER ANALYTICAL DATA FORMER EXXON SERVICE STATION 3055 35TH AVENUE OAKLAND, CALIFORNIA

Sample ID	Date	Boring	GW	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Xylenes		TAME	TBA	EDB	1,2 - DCA	DIPE	ETBE	Methanol	Ethanol	Notes
		Depth (ft)	Depth (ft)	•					- Conce	entrations a	in microgr	ams per la	iter (µg/I	.) —					
Offsite Boring	gs - 2007																		
B-13	7/16/2007	30	14.61	8,000	7,100	110	390	250	990	(1,500)	<50	<500	<50	<50	<50	<50		<5,000	a,b,d,g
B-14	7/13/2007	30	14.05	1,100	270	150	55	34	170	(3,500)	<50	<500	<50	<50	<50	<50		<5,000	a,d,f
B-16	7/23/2007	24	12.50	69,000	6,000	7,700	1,500	1,600	8,200	(430)	<25	<250	<25	<25	<25	<25		<2500	a,d
B-17	7/23/2007	24	11.73	<50	<50	<0.5	<0.5	<0.5	<0.5	(12)	<0.5	<5	<0.5	<0.5	<0.5	<0.5		<50	
Offsite Boring	gs - 2008																		
B-21-30	11/4/2008	30	NM	<50	60	<0.5	< 0.5	<0.5	< 0.5	(170)	<5.0	<20	<5.0	<5.0	<5.0	<5.0		<500	e2
B-22-30	11/3/2008	30	NM	<50	68	<0.5	<0.5	< 0.5	<0.5	(<0.5)	<0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	<500	<50	e2
B-23-30	11/3/2008	30	NM	<50	<50	<0.5	<0.5	< 0.5	<0.5	(<0.5)	<0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	<500	<50	
B-24-30	11/7/2008	30	NM	<50	73	< 0.5	<0.5	< 0.5	< 0.5	(1.2)	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5		600	e2
B-25-30	11/7/2008	30	NM	<50	330	< 0.5	< 0.5	< 0.5	< 0.5	(12)	<0.5	2.2	< 0.5	< 0.5	< 0.5	< 0.5		<50	b1, e7, e2, e6
B-26-30	11/6/2008	30	NM	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	(0.54)	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5		<50	b1
B-27-30	11/6/2008	30	NM	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	(150)	<2.5	<10	<2.5	3.5	<2.5	<2.5		<250	
B-28-30	11/6/2008	30	NM	<50	53	<0.5	<0.5	<0.5	<0.5	(29)	<0.5	2.8	<0.5	3.9	<0.5	<0.5		<50	b1, e2
Onsite Boring	gs - 2008																		
B-18A-30	10/31/2008	45	30	380	350	23	2.6	5.9	54	<10 (7.0)	< 0.5	2.3	< 0.5	<0.5	<0.5	< 0.5		<50	d1, e4
	d Abbroviatio								Notes										

Methods and Abbreviations:

 $GW \ Depth = Groundwater \ depth \ measured \ in \ feet \ below \ ground \ surface$

ft = Measured in feet

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method SW8015C TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method SW8015C

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method SW8015C

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method SW8021B

MTBE = Methyl tertiary-butyl ether by EPA Method SW8021B; in parantheses by SW8260B

 μ g/L = Micrograms per liter, equivalent to parts per billion in water

--- = Not observed/not analyzed

NM = Not Measured

Notes:

a = unmodified or weakly modified gasoline is significant

b = diesel range compounds are significant; no recognizable pattern

d = gasoline range compounds are significant

f = one to a few isolated peaks present

g = oil range compounds are significant

b1 = aqueous sample that contains greater than \sim 1vol. % sediment

d1 = weakly modified or unmodified gasoline is significant

e2 = diesel range compounds are significant; no recognizable pattern

e4 = gasoline range compounds are significant

e6 = one to a few isolated peaks present in the TPH(d/mo) chromatogram

e7 = oil range compounds are significant

Table 4: Soil Sample Analytical Results - May 8 & 9, 2012

Former Exxon Station 3055 35th Avenue, Oakland, CA

All soil sample analytical results are in milligrams per kilogram (mg/kg, parts per million, ppm)

Soil Sam	pling Information			La	boratory Anal	ytical Results														
		Total Petroleum Hydr	rocarbons		Volatile	e Organic Compo	ounds (VOC	's by EPA 8	260)											
Sample Location	Sample Depth (feet, bgs)	Extractable (w/ silica gel cleanup) Diesel	Gasoline	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	ТВА	Naphthalene										
	8'		<0.10	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	< 0.010										
DP-1	14'	< 2.0	8.4*	< 0.0075	< 0.0049	< 0.0043	< 0.0126	< 0.013	< 0.10	< 0.050										
(Off-site)	17'		<100	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	< 0.010										
	★17B'		0.80**	<0.010	<0.010	0.064	<0.015	<0.010	<0.050	< 0.010										
	8'		<0.10	<0.010	<0.010	<0.010	<0.15	<0.010	<0.050	< 0.010										
	11'		0.33**	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010										
DP-3 (Off-site)	14'		10**	< 0.0075	< 0.0049	0.30	< 0.0126	< 0.013	< 0.10	0.024 ^J										
	20'		6.4	0.060	< 0.0049	0.22	0.17	< 0.013	< 0.10	0.094										
	23'		0.93*	0.17	< 0.0025	0.046	< 0.038	0.0080 ^J	< 0.052	< 0.025										
	12'		<0.10	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	< 0.010										
DP-4 (On-site)	18'	12≭	96*	0.22	< 0.0049	0.91	1.446	< 0.13	< 0.10	1.6										
	24'		0.83*	0.30	< 0.0098	0.025J	< 0.0256	< 0.026	< 0.21	< 0.100										
	8'		<0.10	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	< 0.010										
DP- 5	11'		130*	< 0.15	< 0.098	1.8	3.1	< 0.26	< 2.1	1.2										
(On-site)	17'		1,000*	6.2	2.1 ^J	37	197	< 1.0	< 8.3	16										
	23'		1.5*	0.55	0.015 ^J	0.14	0.5	< 0.013	< 0.10	0.17										
	12'		13*	0.010 ^J	0.020 ^J	0.67	1.33	< 0.013	< 0.10	0.55										
DP-6 (On-site)	21'		4,600*	36	37	81	450	< 5.2	< 42	25										
	23'		1.3★	0.47	0.064	0.096	0.246	< 0.013	< 0.10	0.12										
	al Quantitation Limit (PQL):	2.0	0.10		0.010		0.015	0.010	0.050											
(Residential/Comme	CA Low-Threat Closure Policy (0- 5 ft bgs) ⁽¹⁾ rcial-Industrial/Utility Worker)			1.9/8.2/ <mark>14</mark>		21/89/ <mark>314</mark>	-			9.7/45/219										
1	CA Low-Threat Closure Policy (5- 0 ft bgs) ⁽¹⁾ rcial-Industrial/ <mark>Utility Worker)</mark>			2.8/12/14		32/134/ <mark>314</mark>				9.7/45/219										
	n <mark>tial / Commercial</mark> creening Levels (ESLs) ⁽²⁾ :	100		0.044	2.9	3.3	2.3	0.023	0.075	1.2										

Table 4: Soil Sample Analytical Results - May 8 & 9, 2012

Former Exxon Station 3055 35th Avenue, Oakland, CA

All soil sample analytical results are in milligrams per kilogram (mg/kg, parts per million, ppm)

Soil Sam	pling Information		Laboratory Analytical Results													
		Total Petroleum Hydi	rocarbons		Volatile	e Organic Compo	ounds (VOC	s by EPA 8	260)							
Sample Location	Sample Depth (feet, bgs)	Extractable (w/ silica gel cleanup)	Gasoline	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	TBA	Naphthalene						
		Diesel														
	4'		<0.10	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010						
	8'		0.23**	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010						
DP-7 (On-site)	11'	5.8 *	2.8**	0.11	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010						
	17'		15*	0.024 ^J	0.043 ^J	0.89	1.568	< 0.013	< 0.10	1.1						
	23'		1.2*	0.069	< 0.0020	0.042	0.0039J	< 0.0052	< 0.042	0.032						
	8'		ND	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010						
DP-8	17'		970*	2.6	0.63 ^J	21	63	< 0.26	< 2.1	11						
(On-site)	20'		69*	0.81 ^J	< 0.098	1.4	5.5	< 0.26	< 2.1	1.4						
	23'		<0.10	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010						
	4'		<0.10	<0.010	<0.010	<0.010	<0.015	<0.010	<0.050	<0.010						
DP-9 (On-site)	18'	4.8 [*]	5.8*	0.22	0.013 ^J	0.42	0.111 ^J	< 0.0065	< 0.052	0.22						
	20'		1.7*	0.16	< 0.0020	0.065	0.0437 ^J	< 0.0052	< 0.042	0.069						
Laboratory Practic	al Quantitation Limit (PQL):	2.0	0.10		0.010		0.015	0.010	0.050	0.010						
	CA Low-Threat Closure Policy (0- 5 ft bgs) ⁽¹⁾ rcial-Industrial/Utility Worker)			1.9/8.2/ <mark>14</mark>		21/89/314				9.7/45/219						
1	CA Low-Threat Closure Policy (5- 0 ft bgs) ⁽¹⁾ rcial-Industrial/Utility Worker)			2.8/12/14		32/134/ <mark>314</mark>				9.7/45/219						
	ential / Industrial creening Levels (ESLs) ⁽²⁾ :	100 0.044 2.9 3.3 2.3 0.023						0.023	0.075	1.2						

Notes:

1 = Low-Threat UST Case Closure Policy, California State Water Resources Control Board, August 17, 2012 - from Table 1 - Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health

2 = Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final, November 2007, Revised December 2013), San Francisco Bay Regional Water Quality Control Board

Bold Font = Concentration exceeds Residential LTCP Screening Level

ND = Not detected at or above the laboratory's Practical Quantitation Limit

- < # = Not detected at or above the laboratory's Practical Quantitation Limit, #</pre>
- = Sample not analyzed for this compound(s), data not available, or no screening level for this chemical/compound
- * = Laboratory reports sample does not match pattern of reference Gasoline standard. Reported TPH value includes contribution from heavy end hydrocarbons (possibly aged gasoline)
- ** = Laboratory reports sample does not match pattern of reference Gasoline standard. Hydrocarbons in the range of C5-C12 quantified as Gasoline
- Laboratory reports result does not match pattern of reference gasoline standard. Reported value is the result of discrete peak and contribution from non-fuel hydrocarbon to range of C5-C12 quantified as Gasoline
- J = Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather than quantitative
- ★ = DP-1 17B ft is a duplicate sample
- 🗱 = Laboratory reports result not typical of TPH as Diesel standard pattern (lighter than diesel). Hydrocarbons with TPH as Diesel range are quantified as Diesel

	Monitoring Point Information					Depth to	Groundwater		Ре	troleum Hyd	rocarbon Co	ncentration	Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petroleu	ım Hydrocarb	ons				Volatil	e Organic (Compound	ls	-		Dissolved Oxygen	Reduction Potential
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
MW-1 4-inch	10 - 25	167.02																			
			7/15/2015			19.35	147.67	1,400***		3,700*	1,700	2.0J	16	1.8J	17	110	< 4.2	< 4.2	< 4.2	0.37	-126
			1/9/2014			20.49	146.53													0.89	-110
			9/20/2013			20.51	146.51	1,500***		2,900★	4,500	9.6	150	6.8J	< 1.4	98	< 0.57	< 0.95	< 0.80 - 1.3	0.77	-88
			6/25/2013			19.58	147.44													0.74	-100
			3/13/2013			16.84	150.18													1.28	-79
			11/9/2012			18.58	148.44														
			9/28/2012			20.14	146.88	1,800***		1,600*	3,100	9	110	9.4J	< 1.5	210	< 0.59	< 0.99	< 0.84 - 1.4	0.85	-109
			3/30/2012			11.10	155.92	1,400***		3,300★	1,200	3.6J	82	8.7J	< 1.5	< 14	< 0.59	< 0.99	< 0.84 - 1.4	2.39	-100
			9/22/2011			19.22	147.80	690**		6,700*	1,900	< 8.4	140	< 14.4	23					0.72	-91
			3/17/2011			11.65	155.37	1,100 °		4,700 ^d	940	17	5.7	55	(34)					0.69	Not operating
			9/10/2010		(Z^{TPHd})	19.99	147.03	1,700 ^{e,f} (790) ^{e,f}		6,800 ^d	1,700	17	150	150	(28)					0.65	Not operating
			3/14/2010		(Z^{TPHd})	11.08	155.94	2,100 ^{e,f} (2,000) ^{e,f}		7,700 ^d	1,400	22	10	210	(42)					1.64	Not operating
			9/5/2009		(Z^{TPHd})	19.78	147.24	1500 ^{e,f,k} (1,200) ^{e,k}		5,800 ^d	1,400	21	60	150	(37)					1.22	Not operating
			6/7/2009	Sheen Field	(Z ^{TPHd})	17.17	149.85	1,400 ^{e,f,m} (690) ^e		5,100 ^d	1,000	9.2	35	71	(42)					0.95	Not operating
			3/14/2009	Sheen Field	(Z^{TPHd})	12.57	154.45	2,000 ^{e,f,k} (860 ^e)		6,700 ^d	1,100	23	100	180	(35)					1.19	Not operating
			12/28/2008	Sheen Field	(Z ^{TPHd})	16.57	150.45	(2,800 °)	< 250	5,700 ^d	660	17	110	320	(41)					1.06	Not operating
			9/6/2008		(Z^{TPHd})	20.66	146.36	(420 °)		2,400 ^d	500	11	30	67	< 75					1.20	Not operating
			6/14/2008		(Z)	18.98	148.04	(410 °)	(< 250)	(3,800 ^d)	(690)	(12)	(64)	(240)	(< 80)					1.95	Not operating
			3/9/2008	Sheen Field	(Z)	12.98	154.04	(470 °)	(< 250)	(4,600 ^d)	(1,100)	(23)	(82)	(140)	(< 50)					1.17	Not operating
			12/8/2007	Sheen Field		18.66	148.36	520 ^{e,f}		4,500 ^d	570	13	57	200	< 120					1.24	Not operating
			9/6/2007			20.84	146.18	690 ^{e,f}		2,800 ^d	590	17	35	100	< 80					0.90	Not operating
			6/15/2007	Sheen Field		18.07	148.95	1,500 e,k,f		5,600 ^d	1,200	29	84	190	56					0.74	Not operating
			3/16/2007			13.62	153.40	1,800 e,f		7,500 ^d	1,400	30	100	270	< 150					0.58	Not operating
			12/6/2006	Sheen Lab		19.92	147.10	760 ^{e,g}		4,500 ^{d,g}	440	13	42	190	< 60					0.55	Not operating
			9/5/2006	Sheen Lab		19.96	147.06	1,500 ^{e,f,k,g}		5,500 ^{d,g}	1,000	45	81	310	< 120					0.38	Not operating
			6/30/2006	Sheen Field		16.33	150.69	1,500 ^{m,k,l}		2,100 ^{d,1}	320	6.1	< 1.0	77	< 90					0.66	Not operating
			3/22/2006	Sheen Field		10.52	156.50	1,100 ^{e,f,k}		8,300 ^d	1,700	100	190	660	< 150					0.84	Not operating
			12/14/2005	Sheen Field		17.63	149.39	4,000 ^{e,f,k}		6,200 ^d	570	32	72	420	< 110					1.08	Not operating
			9/21/2005			19.64	147.38	860 ^{e,k,f}		2,900 ^d	430	19	46	150	< 50	< 66	< 8.6	< 12	< 14 - 17	1.14	Not operating
			6/21/2005			14.60	152.42	930 ^{e,k}		6,500 ^d	820	26	57	110	< 250						Not operating
			3/7/2005			10.73	156.29	1,300 ^{e,f,k}		8,700 ^d	1,200	99	140	770	< 500					0.91	Not operating
		100.85	12/27/2004			17.04	83.81	1,400 ^e		10,000 ^d	2,400	170	170	1,500	< 120					0.41	Not operating
			9/27/2004			23.07	77.78	1,700 ^e		7,800 ^d	1,800	110	120	670	< 180					0.28	Not operating
			6/16/2004			19.20	81.65	2,300 ^{e,f}		8,100 ^d	1,500	69	22	1,000	< 100						Not operating
			3/18/2004			17.70	83.15	1,100 ^{e,f}		3,600 ^d	650	59	38	370	< 90						Operating
			12/2/2003	Sheen Lab		24.12	76.73	9,300 ^{e,f,g}		7,100 ^{d,g}	1,400	230	160	820	< 100						Operating
			9/3/2003			24.16	76.69	36,000 ^{e,f}		14,000 ^d	300	50	33	480	< 50						Operating
		Laboratory	Detection Limit:					<u>10</u> <u>20</u> <u>50</u> <u>0.5</u> <u>0.5</u> <u>0.5</u> <u>1.5</u> <u>5</u> <u>0.5</u> <u>0.5</u> <u>0.5</u> <u>0.5</u> <u>0.5</u>					Field Inst	trument							
	Water Quality Objectives (WQOs): ¹								,000		1	150	300	1,750	5	12	0.05	0.5			

	Monitoring Point Information					Depth to	Groundwater .	Petroleum Hydrocarbon Concentration Data											Field Measurements	Oxidation	
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrol	eum Hydrocarbo	ons		1	1	Volatil	e Organic (Compound	ls	1	1	Dissolved Oxygen	Reduction Potential (mV)
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(IIIV)
Continued			5/30/2003			16.65	84.20														Not operating
MW-1			4/25/2003			20.90	79.95	320°		4,200 ^d	580	81	59	470	< 50						Operating
			1/13/2003			14.80	86.05	5,300 ^{e,f}		20,000 ^d	2,300	480	300	2,100	< 500					0.33	Not operating
			11/21/2002			21.55	79.30	200,000 ^{e,g}		83,000 ^{d,g}	7,100	1,700	3,000	13,000	< 1,000					0.49	Operating
			9/26/2002			20.30	80.55	1,300 ^{e,f,k}		7,000 ^d	1,300	190	200	760	< 100					0.70	Operating
			6/10/2002			24.10	76.75	900 ^{e,k}		4,200 ^d	830	170	110	460	< 100						Operating
			3/11/2002			17.13	83.72	1,400 ^e		9,400 ^d	2,100	200	74	470	< 20					0.39	Operating
			12/7/2001			26.55	74.30	1,900 ^{e,f}		8,700 ^d	1,300	160	38	730	< 20					0.59	Operating
			8/30/2001			21.70	79.15	1,400 ^d		8,800 ^a	2,100	45	91	240	< 130					0.27	Operating
			6/6/2001		_	18.47	82.38	4,000		19,000	4,500	130	270	430	< 400					0.39	Not operating
			3/7/2001		_	16.19	84.66	2,400		13,000	2,700	43	69	300	< 100					0.49	Not operating
			12/5/2000		_	18.60	82.25	3,400 ^e		26,000 ^a	7,900	150	580	810	< 300					0.35	Not operating
			9/7/2000			19.45	81.40	12,000 ^{e,g}		40,000 ^{d,g}	3,700	1,400	910	4,900	< 50					0.17	
			3/23/2000		_	12.76	88.09	3,300 ^f		21,000 ^d	4,700	140	470	1,100	< 350						
			12/10/1999			17.02	83.83	2,900 ^{e,f}		25,000 ^d	5,400	130	620	1,400	< 1,000					1.03	
			9/28/1999			19.68	81.17	3,600 ^{e,f}		13,000 ^d	3,200	130	320	1,100	< 210					0.55	
			6/29/1999			20.77	80.08	3,500 ^e		28,000 ^d	7,300	420	810	1,700	< 1,300					0.10	
			3/29/1999			11.98	88.87	6,800 ^e		36,000 ^d	12,000	750	1,300	2,400	950					0.50	
			12/8/1998			15.62	85.23	3,700		22,000	3,000	1,200	730	3,100	< 900						
			9/30/1998			19.90	80.95	3,300		37,000	11,000	950	1,200	2,800	< 20					2.0	
			7/14/1998			17.34	83.51	8,900 ^{e,f}		41,000 ^d	8,200	1,100	1,200	3,000	< 200					1.8	
			3/18/1998	Sheen		12.34	88.51	4,200 ^{e,f}		30,000 ^d	7,800	820	840	2,000	< 1,100					1.3	
			12/22/1997			12.95	87.90	5,800 ^e		26,000 ^d	7,900	370	920	1,500	< 790					0.7	
			9/17/1997			20.12	80.73	3,500 ^e		32,000 ^d	9,100	550	1,000	2,000	< 1,000					2.1	
			6/25/1997			19.77	81.08	7,400 ^a		31,000	7,400	440	890	1,800	< 400					3.7	
			3/20/1997			16.65	84.20	10,000		33,000	6,100	560	970	2,200	< 400					8.5	
			11/27/1996	Sheen		17.24	83.61	6,100		38,000	9,600	950	1,600	3,100	< 400					5.6	
			8/22/1996			22.30	78.55	6,200		41,000	8,600	1,300	1,500	2,900	< 200					8.0	
			5/21/1996			14.62	86.23	8,500		36,000	8,500	1,400	1,300	2,800	1,900						
			2/21/1996			11.69	89.16	4,300		33,000	10,000	480	1,000	1,800	3,300						
			11/29/1995			22.19	78.66			37,000	9,900	530	1,600	2,900							
			8/22/1995			20.90	79.95			23,000	6,900	340	1,200	1,900							<u> </u>
			5/23/1995			15.29	85.56			22,000	9,900	990	790	2,000							
			2/27/1995			15.53	85.32			45,000	2,900	2,500	760	4,100							<u> </u>
			11/11/1994			15.80	85.05			57,000	14,000	4,400	1,400	6,400							_
			8/18/1994	Sheen		21.04	79.81			925,000	16,500	6,200	1,000	9,400							_
			7/19/1994			20.77															_
			5/25/1994	Sheen		16.79	84.06	25,000	< 50,000	120,000	22,000	17,000	2,800	16,000							
		Laboratory	Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	trument
		Water Quality	Objectives (WQOs):	:1				1,000 1 150 300 1,750 5 12 0.05 0.5													

	Monitoring Point Information					Depth to	Groundwater		Pe	troleum Hydi	ocarbon Co	ncentration	Data							Field Measurements	Oxidation
Vell Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petroleu	m Hydrocarb	ons				Volatil	e Organic (Compoun	ds			Dissolved Oxygen	Reduction Potential (mV)
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mv)
MW-2 4-inch	10 - 25	166.14																			
			7/15/2015			18.10	148.04	1,700***		2,900*	700	2.6J	33	2.7J	16	46	< 4.2	< 4.2	< 4.2	0.33	-113
			1/9/2014			19.37	146.77													1.17	-78
			9/20/2013			19.35	146.79	2,300***		4,200★	1,800	11	300	8.7	< 1.4	120	< 0.57	< 0.95	< 0.80 - 1.3	0.44	-100
			6/25/2013			18.47	147.67													1.56	-94
			3/13/2013			15.58	150.56													1.41	-82
			11/9/2012			17.41	148.73														
			9/28/2012	Sheen Field		18.95	147.19	1,500***		2,900*	1,900	12	270	12J	42	300	< 0.59	< 0.99	< 1.1 - 1.5	4.27	-101
			3/30/2012			9.84	156.30	1,800***		4,100 ×	620	5.0	140	8.6J	21	< 9.7	< 0.43	< 0.71	< 6.0 - 0.97	2.66	-104
			9/22/2011			17.94	148.20	690**		7,100*	1,900	< 8.4	350	< 14.4	39	< 66	< 8.6	< 12	< 14 - 17	0.76	-106
			3/17/2011			10.51	155.63	2,200 ^{e,f}		5,500 ^d	380	12	1.8	15	(35)					0.68	Not opera
			9/10/2010		(Z ^{TPHd})	18.84	147.30	2,400 ^{e,f} (2,200) ^{e,f}		11,000 ^d	1,900	40	380	110	(81)					0.40	Not opera
			3/14/2010	Sheen Lab	(Z ^{TPHd})	9.82	156.32	20,000 e,f,k,g (2,900) e,f		8,800 ^{d,g}	840	18	67	92	(65)					0.81	Not opera
			9/5/2009	Sheen Lab	(Z^{TPHd})	19.41	146.73	11,000 e,f,k,g (4,800) e,f,k		12,000 ^{d,g}	1,500	30	170	220	(77)					0.95	Not oper
			6/7/2009	Sheen Field & Lab	(Z^{TPHd})	16.64	149.50	13,000 ^{m,f} (2,500) ^e		15,000 ^d	710	37	210	180	(88)					0.71	Not open
			3/14/2009	Sheen Field	(Z ^{TPHd})	10.52	155.62	3,300 ^{e,f,k} (2,700 ^e)		11,000 ^d	1,100	23	23	250	(120)					0.67	Not ope
			12/28/2008	Sheen Field	(Z ^{TPHd})	15.73	150.41	(2,400 °)	< 250	9,800 ^d	690	19	250	180	(120)					0.63	Not oper
			9/6/2008	Sheen Field & Lab	(Z^{TPHd})	19.41	146.73	(2,500 ^{e,g})		10,000 ^{d,g}	430	17	270	370	< 180					0.81	Not open
			6/14/2008	Sheen Field	(Z)	18.66	147.48	(2,500 °)	(< 250)	(10,000 ^d)	(520)	(18)	(200)	(370)	(< 350)					0.97	Not oper
			3/9/2008	Sheen Field	(Z)	12.09	154.05	(3,100 °)	(< 250)	(7 ,900 ^d)	(840)	(24)	(280)	(380)	(< 380)					0.68	Not open
			12/8/2007	Sheen Field & Lab		17.72	148.42	3,600 ^{e,f,g}		14,000 ^{d,g}	640	13	220	520	< 300					0.80	Not open
			9/6/2007	Sheen Field & Lab		19.28	146.86	8,400 ^{e,f,g}		17,000 ^{a,h}	1,000	53	450	1,100	< 700					0.72	Not oper
			6/15/2007	Sheen Field & lab		17.31	148.83	21,000 ^{e,k,f,g}		18,000 ^{d,g}	700	22	290	740	< 650					0.68	Not ope
			3/16/2007	Sheen Field & Lab		12.31	153.83	49,000 e,f,k,g		44,000 ^{d,g}	1,800	71	670	2,200	< 900					0.52	Not oper
			12/6/2006	Sheen Field & Lab		18.01	148.13	31,000 e,f,k,g		27,000 ^{d,g}	1,100	51	420	1,600	< 900					0.48	Not oper
			9/5/2006	Sheen Lab		18.96	147.18	19,000 ^{e,f,k,g}		15,000 ^{d,g}	680	70	260	1,400	< 1,000					0.79	Not oper
			6/30/2006	Sheen Field & Lab		16.78	149.36	55,000 ^{e,f,k,g}		18,000 ^{d,g}	1,100	71	270	1,400	1,200					0.84	Not oper
			3/22/2006	Sheen Lab		9.15	156.99	23,000 ^{e,f,k,g}		21,000 ^{d,g}	2,300	200	550	2,800	1,200					0.91	Not oper
			12/14/2005	Sheen Field & Lab		16.40	149.74	49,000 ^{e,f,k,g}		29,000 ^{d,g}	1,700	260	600	3,700	1,000					0.99	Not oper
			9/21/2005	Sheen Field		18.50	147.64	1,100 ^{e,f}		4,600 ^d	370	62	110	740	1,100					0.86	Not open
			6/21/2005	Sheen Lab		13.42	152.72	15,000 ^{e,f,g}		36,000 ^{d,g}	1,700	310	460	3,100	1,200						Not ope
			3/7/2005	Sheen Field & Lab		9.31	156.83	8,300 ^{e,f,k,g}		20,000 ^{d,g}	1,400	330	430	2,600	1,100					0.88	Not ope
			12/27/2004			16.81	149.33	3,800 ^{e,f}		17,000 ^d	1,300	370	540	3,800	620					0.94	Not ope
			9/27/2004		**	27.55	138.59	1,000 ^{e,f,k}		770 ^d	20	7.9	10	140	1,600					0.79	Operat
			6/16/2004			18.15	147.99	9,800 ^{e,f}		15,000 ^d	800	210	290	1,800	2,000						Not oper
Well box)		100.00	3/18/2004			15.78	84.22	870 ^{e,f}		4,200 ^d	730	89	< 5.0	480	2,300						Operat
(Monument			12/2/2003	Sheen Lab		23.17	76.83	3,300 ^{e,f,g}		2,400 ^{d,g}	91	20	14	250	890						Operati
			9/3/2003			23.57	76.43	2,300 ^e		2,900 ^d	240	57	68	380	770						Operati
			5/30/2003			15.23	84.77														Not operation
		Laborato	ry Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	y Objectives (WQO	s): ¹				1	,000		1	150	300	1,750	5	12	0.05	0.5			

	Monitoring Point Information				Note	Depth to	Groundwater	Petroleum Hydrocarbon Concentration Data												Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrole	um Hydrocarbo	ons		_		Volatil	e Organic (Compound	s			Dissolved Oxygen	Reduction Potential
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
Continued			4/25/2003			19.05	80.95	310 ^e		3,800 ^d	460	78	72	410	310						Operating
MW-2			1/13/2003	Sheen Lab		13.60	86.40	14,000 ^{e,f,g,k}		32,000 ^{d,g}	4,500	1,600	920	3,600	< 1000					0.39	Not operating
			11/21/2002			18.75	81.25	350,000 ^{e,g}		210,000 ^{d,g}	14,000	23,000	4,400	28,000	< 1,700					0.43	Operating
			9/26/2002			20.39	79.61	660 ^e		4,800 ^d	770	200	140	740	< 50					0.29	Operating
			6/10/2002		-	18.59	81.41	2,000 ^e		14,000 ^d	2,600	710	150	2,000	< 800						Operating
			3/11/2002		_	16.95	83.05	590°		4,700 ^d	1,200	150	30	310	< 50					0.24	Operating
			12/7/2001 8/30/2001			24.45 21.00	75.55 79.00	750 ^{c,f}		4,100 ^d	510	88	8.2 980	580	< 20						Operating
			6/6/2001		-	17.51	82.49	15,000 ^{d,h} 48,000		43,000 ^{a,h} 110,000	3,100 14,000	720 9,000	980	5,500 12,000	< 950					0.24	Operating Not operating
			3/7/2001			15.68	84.32	3,900		34,000	14,000	9,000 770	620	4,300	< 200					0.44	Not operating
			12/5/2000			17.45	82.55	87,000 ^{e,f,g}		60.000 ^{d,g}	5,100	2,200	1,600	9,000	< 200					0.31	Not operating
			9/7/2000			18.25	81.75	32,000 ^{e,g}		62,000 ^{d,g}	5,300	2,300	1,500	8,400	< 100					0.39	The operating
			3/23/2000			13.56	86.44	32,000 3.100 ⁱ		25.000 ^d	1,900	1,100	660	3,700	< 500						
			12/10/1999		-	16.53	83.47	2,500 ^{e,f}		25,000 17,000 ^d	1,300	780	420	2,700	< 40					0.17	
			9/28/1999		-	18.61	81.39	3.400 ^{e,f}		17,000 ^d	1,200	540	230	2,300	< 36					1.18	
			6/29/1999			19.54	80.46	3,300°		28.000 ^d	3,500	1,100	690	3,100	< 1,000					0.41	<u> </u>
			3/29/1999		-	11.81	88.19	7,500 ^{e,f}		28,000 ^d	4,400	1,600	950	4,100	410					1.86	
			12/8/1998			14.80	85.20	3,100		32,000	9,200	680	1,100	2,300	< 2,000						
			9/30/1998			18.71	81.29	2,400		22,000	3,600	1,300	720	3,200	< 30					1.8	
			7/14/1998			16.07	83.93	5,300 ^{e,f}		42,000 ^d	6,000	3,000	1,000	4,800	< 200					1.5	<u> </u>
			3/18/1998	Sheen		10.83	89.17	7,000 ^{e,f}		58,000 ^d	9,300	6,100	1,800	8,200	< 1,100					1.1	
			12/22/1997			14.09	85.91	6.100 ^e		47.000 ^d	8,500	4,600	1,800	8,400	< 1,200					1.2	
			9/17/1997	Sheen		19.05	80.95	8,900 ^e		41,000 ^d	5,200	3,400	1,300	5,900	< 700					1.2	
			6/25/1997			18.62	81.38	7,800 ^b		42,000	7,400	3,800	1,200	5,700	< 200					0.9	
			3/20/1997			15.39	84.61	6,100		27,000	3,700	2,300	580	2,800	< 400					8.1	
			11/27/1996	Sheen		16.61	83.39	10,000		54,000	9,800	7,000	1,800	7,900	< 2,000					3.1	
			8/22/1996			19.12	80.88	5,700		37,000	5,100	3,500	960	4,500	< 200					3.0	
			5/21/1996			13.47	86.53	3,400		51,000	8,200	5,200	1,300	6,600	2,400						
			2/21/1996			10.53	89.47			59,000	8,000	6,000	1,800	8,900	4,500						
			11/29/95			21.05	78.95			46,000	7,100	5,300	1,300	6,000							
			8/22/1995			19.80	80.20			38,000	6,400	5,000	1,100	5,600							
			5/23/1995			14.17	85.83			33,000	8,200	5,600	900	6,600							
			2/27/1995	Sheen		14.46	85.54			44,000	5,100	5,300	930	6,400							<u> </u>
			11/11/94			15.52	84.48			54,000	5,900	6,700	1,300	7,500							<u> </u>
			8/18/1994			20.37	79.63			88,000	10,750	10,500	1,850	9,600							<u> </u>
			7/19/1994			19.81	80.19														
			5/25/1994			15.65	84.35	6,900	< 5,000	61,000	9,900	7,400	960	4,600							
		Laboratory	Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
	Water Quality Objectives (WQOs): ¹							1,000 1 150 300 1,750 5 12 0.05 0.5													

	Monitoring Point Information					Depth to	Groundwater			troleum Hyd			Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petroleur	m Hydrocarb	ons				Volatile	e Organic (Compound	ls			Dissolved Oxygen	Reduction Potential
Casing Diameter	(feet)	(feet)				(,,	()	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
MW-3 2-inch	10 - 25	162.94																			
			7/15/2015			15.44	147.50	1,900***		14,000*	4,400	11J	230	87J	58	320	< 21	< 21	< 21	0.83	-100
			1/9/2014			16.50	146.44													0.69	-85
			9/20/2013			16.61	146.33	3,000***		6,200 ★	11,000	37	990	118.1J	< 7.2	350	< 2.8	< 4.7	< 4.0 - 6.4	0.39	-79
			6/25/2013			15.65	147.29													0.59	-92
			3/13/2013			12.89	150.05													2.11	-95
			11/9/2012			14.69	148.25														
			9/28/2012			16.22	146.72	2,700***		6,100*	10,000	36	860	104J	87	650	< 3.0	< 5.0	< 4.2-6.8	0.75	-98
			3/30/2012			7.51	155.43	2,200***		3,400▲	3,800	14J	360	57.3	63J	< 68	< 3.0	< 5.0	< 4.2 - 6.8	7.23	-113
			9/22/2011			15.34	147.60	1,500**		14,000*	8,400	< 17	790	130	89	< 130	< 17	< 24	< 28 - 35	1.04	-82
			3/17/2011			7.90	155.04	2,400 °		17,000 ^d	5,600	43	660	210	(83)					0.83	Not operating
			9/10/2010		(Z^{TPHd})	16.14	146.80	2,500 ^{e,f} (2,200) ^{e,f}		21,000 ^d	8,100	59	800	300	(100)					0.91	Not operating
			3/14/2010	Sheen Lab	(Z^{TPHd})	8.56	154.38	19,000 ^{e,f,g,k} (4,300) ^e		21,000 ^{d,g}	4,300	76	530	710	(97)					1.07	Not operating
			9/5/2009	Sheen Lab	(Z^{TPHd})	16.67	146.27	31000 ^{e,f,k,m,g} (11,000) ^{e,f,k}		32,000 ^{d,g}	6,200	120	590	1,000	(80)					0.98	Not operating
			6/7/2009	Sheen Field & Lab	(Z ^{TPHd})	13.94	149.00	6,900 ^{e,f,m} (3,700) ^e		23,000 ^d	4,400	81	710	670	(97)					1.02	Not operating
			3/14/2009	Sheen Field & lab	(Z^{TPHd})	9.02	153.92	8,700 e,f,k,g (8,100 e,g)		41,000 ^{d,g}	4,900	140	940	1,600	(97)					1.14	Not operating
			12/28/2008	Sheen Field & Lab	(Z^{TPHd})	12.72	150.22	(4,100 ^{e,g})	< 250	24,000 ^{d,g}	4,100	91	380	960	(91)					0.91	Not operating
			9/6/2008	Sheen Field & Lab	(Z^{TPHd})	16.65	146.29	(7,900 ^{e,f,g})		42,000 ^{d,g}	5,800	190	1,100	2,400	< 800					1.03	Not operating
			6/14/2008	Sheen Field	(Z)	15.92	147.02	(4,900 °)	(600)	(36,000 ^d)	(4,700)	(140)	(830)	(1,600)	(< 500)					1.05	Not operating
			3/9/2008	Sheen Field	(Z)	10.40	152.54	(3,400 ^e)	(310)	(23,000 ^d)	(4,200)	(120)	(650)	(1,600)	(< 250)					0.71	Not operating
			12/8/2007	Sheen Field & Lab		14.49	148.45	4,000 ^{e,f,g}		33,000 ^{d,g}	4,300	120	370	2,200	< 250					0.77	Not operating
			9/6/2007	Sheen Field & Lab		16.55	146.39	14,000 ^{e,f,g}		41,000 ^{d,g}	4,400	180	1,000	3,800	< 700					0.70	Not operating
			6/15/2007	Sheen Field & Lab		14.57	148.37	25,000 e,k,f,g		56,000 ^{d,g}	5,100	200	1,100	3,200	< 1000					0.48	Not operating
			3/16/2007	Sheen Field & Lab		10.25	152.69	5,300 ^{e,f,k,g}		72,000 ^{d,g}	6,500	420	1,200	3,900	< 1,000					0.61	Not operating
			12/6/2006	Sheen Field & Lab		15.25	147.69	19,000 ^{e,f,k,g}		44,000 ^{d,g}	4,500	110	930	3,600	< 500					0.70	Not operating
			9/5/2006	Sheen Field & Lab		16.25	146.69	16,000 ^{e,f,k,g}		56,000 ^{d,g}	5,400	300	1,200	6,200	< 500					0.55	Not operating
			6/30/2006	Sheen Field & Lab		14.10	148.84	15,000 ^{e,f,k,g}		44,000 ^{d,g}	4,000	160	550	4,000	< 450					0.81	Not operating
			3/22/2006	Sheen Field & Lab		8.10	154.84	15,000 ^{e,f,k,g}		45,000 ^{d,g}	4,300	390	1,100	5,300	< 1,000					0.88	Not operating
			12/14/2005	Sheen Field & Lab		13.65	149.29	19,000 ^{e,f,k,g}		53,000 ^{d,g}	4,700	350	1,100	7,400	< 1,000					0.95	Not operating
			9/21/2005	Sheen Field & Lab		15.73	147.21	16,000 ^{e,f,k,g}		41,000 ^{d,g}	3,700	480	930	5,700	< 500					0.90	Not operating
			6/21/2005	Sheen Field & Lab		10.79	152.15	12,000 ^{e,g}		44,000 ^{d,g}	4,900	870	1,100	6,500	< 1,200						Not operating
			3/7/2005	Sheen Field & Lab		6.91	156.03	14,000 ^{e,f,g}		50,000 ^{d,g}	6,100	2,100	1,300	7,400	< 500					0.62	Not operating
			12/27/2004	Sheen Lab		14.58	148.36	24,000 ^{e,f,g,k}		32,000 ^{d,g}	4,400	2,800	650	4,800	< 250					0.71	Not operating
			9/27/2004			23.65	139.29	1,700 ^{e,f}		5,200 ^d	430	220	100	680	250					0.55	Operating
		96.87	6/16/2004			15.40	81.47	8,800 ^{e,f}		23,000 ^d	2,100	1,300	360	2,800	< 1,000						Operating
			3/18/2004			16.49	80.38	2,300 ^{e,f}		15,000 ^d	2,600	990	260	1,700	< 300						Operating
			12/2/2003	Sheen Lab		17.70	79.17	8,400 ^{e,f,g}		30,000 ^{d,g}	2,900	2,100	530	3,600	< 500						Operating
			9/3/2003			21.65	75.22	3,300 ^e		8,100 ^d	220	170	66	560	< 50						Operating
			5/30/2003			13.30	83.57														Not operating
			4/25/2003			18.30	78.57	1,200 ^e		12,000 ^d	1,800	850	150	1,200	< 500						Operating
			1/13/2003	Sheen Lab		11.43	85.44	6,300 ^{e,f,g,k}		21,000 ^{d,g}	2,400	2,300	390	3,000	< 500					0.31	Not operating
			Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	Objectives (WQO	s):1				1,	000		1	150	300	1,750	5	12	0.05	0.5			

	Monitoring Point Information					Depth to	Groundwater		Pe	troleum Hyd	ocarbon Co	oncentration	ı Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrole	um Hydrocarb	ons				Volatil	e Organic (Compound	5			Dissolved Oxygen	Reduction Potential
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
Continued			11/21/2002	0.05		17.85	79.02	120,000 ^{e,g}		37,000 ^{d,g}	4,000	660	1,200	5,100	< 1,700					0.28	Operating
MW-3			9/26/2002			18.85	78.02	130,000 ^{e,g}		50,000 ^{d,g}	3,900	5,400	820	6,600	< 500					0.19	Operating
			6/10/2002			22.94	73.93	990 ^{e,k}		9,000 ^d	1,800	1,300	96	1,000	< 300						Operating
			3/11/2002			14.69	82.18	2,800 ^{f,e,k}		30,000 ^d	5,000	2,400	190	1,800	< 1,300					0.30	Operating
			12/7/2001			24.65	72.22	3,900 ^{e,f}		25,000 ^d	2,500	1,700	64	2,200	< 200					0.19	Operating
			8/30/2001			12.43	84.44	190,000 ^{d,h}		95,000 ^{a,h}	6,900	10,000	2,700	15,000	< 250					0.24	Operating
			6/6/2001			14.88	81.99	12,000		43,000	3,000	1,000	770	5,200	< 400					1.71	Not operating
			3/7/2001			14.27	82.60	13,000		60,000	7,000	4,600	900	7,100	< 350					0.49	Not operating
			12/5/2000			14.80	82.07	17,000 ^{e,g}		110,000 ^{d,g}	17,000	11,000	1,900	12,000	< 750					0.37	Not operating
			9/7/2000			15.61	81.26	19,000 ^{e,f,g}		100,000 ^{d,g}	17,000	12,000	1,600	11,000	< 500						
			3/23/2000			8.98	87.89	11,000 ^{g,j}		77,000 ^{d,g}	10,000	9,400	1,600	11,000	< 430						
			12/10/1999			13.31	83.56	5,300 ^{e,f}		53,000 ^d	8,000	6,400	1,100	8,100	< 200					0.48	
			9/28/1999			15.99	80.88	7,800 ^e		60,000 ^d	9,400	9,200	1,000	9,900	200					0.53	
			6/29/1999			16.98	79.89	6,900 ^e		71,000 ^d	12,000	7,300	1,400	8,400	< 1,700					0.19	
			3/29/1999			7.95	88.92	4,600 ^e		39,000 ^d	8,900	4,400	940	4,500	810					0.56	
			12/8/1998			11.20	85.67	4,200		51,000	8,000	6,800	1,400	7,500	< 1,100						
			9/30/1998			16.14	80.73	9,800		91,000	17,000	13,000	2,100	12,000	< 1300					2.0	
			7/14/1998			13.51	83.36	65,000 ^{e,f,g}		94,000 ^{d,g}	18,000	14,000	1,900	11,000	< 1,400					1.8	
			3/18/1998	Sheen		8.41	88.46	20,000 ^{e,f}		120,000 ^d	21,000	19,000	2,600	15,000	< 1,600					1.6	
			12/22/1997	Sheen		10.71	86.16	14,000 ^e		49,000 ^d	7,300	5,300	1,400	7,500	< 1,100					3.1	
			9/17/1997	Sheen		16.34	80.53	15,000 ^e		78,000 ^d	11,000	9,900	1,800	10,000	< 1,200					0.7	
			6/25/1997			15.98	80.89	7,700 ^b		49,000	9,700	7,100	1,300	7,000	220					5.8	
			3/20/1997			12.86	84.01	11,000		56,000	9,900	6,900	1,300	8,000	3,500					9.0	
			11/27/1996	Sheen		13.47	83.40	24,000		82,000	14,000	13,000	2,400	13,000	< 1,000					2.4	
			8/22/1996			16.50	80.37	16,000		94,000	17,000	15,000	2,100	12,000	330					2.0	
			5/21/1996	Sheen		10.86	86.01	13,000		69,000	17,000	9,400	1,700	9,400	2,600						
			2/21/1996			7.92	88.95			60,000	10,000	7,800	1,500	8,800	3,400						
			11/29/1995			16.34	80.53			220,000	25,000	25,000	3,500	19,000							
			8/22/1995			17.10	79.77			74,000	14,000	13,000	1,900	11,000							
			5/23/1995	Sheen	-	11.60	85.27			310,000	18,000	17,000	4,500	2,800							
			2/27/1995	Sheen		11.86	85.01			250,000	22,000	26,000	7,800	21,000							
			11/11/94		-	17.80	79.07			89,000	1,600	1,900	1,900	14,000							
			8/18/1994			17.75	79.12			116,000	28,300	26,000	2,400	15,000							
			7/19/1994			17.04	79.83														
			5/25/1994	Sheen	<u> </u>	13.93	82.94	14,000	< 50,000	56,000	14,000	14,000	1,300	11,000							
			y Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	trument
		Water Quality	Objectives (WQOs	s): ¹					1,000		1	150	300	1,750	5	12	0.05	0.5			

Well Identification # Casing Diameter MW-4 2-inch	Screen Interval (feet) 10 - 30	TOC Elevation (feet)	Date	SPH (feet)	Note	Depth to	Groundwater													Measurements	Oxidation
MW-4						Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petroleu	um Hydrocarbo	ons		1	1	Volatile	Organic (Compound	s			Dissolved Oxygen	Reduction Potential (mV)
	10 - 30							Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(111)
		163.49																			
			7/15/2015			16.23	147.26	1,800***		6,900*	2,300	4.7	47	5.4J	18	100	<4.2	<4.2	< 4.2	0.83	-104
			1/9/2014			17.39	146.10													1.12	-31
			9/20/2013			17.39	146.10	2,200***		4,400★	6,200	24	420	62	< 1.4	160	< 0.57	< 0.95	< 0.57 - 13	0.32	-89
			6/25/2013			16.48	147.01													0.73	-99
			3/13/2013			13.85	149.64													1.98	-72
			11/9/2012			15.37	148.12														
			9/28/2012			17.01	146.48	2,100***	_	3,000*	4,700	13	200	67	34	220	< 0.59	< 0.99	< 0.84 - 1.4	0.66	-108
			3/30/2012			8.05	155.44 147.44	1,900***		6,000 ×	3,300	5.0J	95	28J	40	< 68	< 3.0	< 5.0	< 4.2 - 6.8	6.41	-101
			9/22/2011 3/17/2011			8.55	147.44	2,000***		11,000*	4,100 4,800	< 17 17	160 190	100 110	< 33 (59)	< 130	< 17	< 24	< 28 - 35	0.69	-98
			3/1//2011 9/10/2010		(Z ^{TPHd})	8.55	154.94	1,900 ° 2,200 °,f (2,000) °,f		11,000 ^d	4,800	24	190	330	(59)					0.75	Not operating Not operating
			3/14/2010		(Z ^{TPHd})	8.25	146.60	2,200 ° (2,000) ° 2.400 ° (1.800) °		11,000 ^d 6,800 ^d	3,300	24 21	53	120	(33)					1.13	Not operating
			9/5/2009	Sheen Lab	(Z ^{TPHd})	17.39	135.24	1,200 ^{e,f,m} (1,600) ^{e,f}		6,800 ^d	830	17	13	53	(30)					1.15	Not operating
			6/7/2009	Sheen Field & Lab	(Z ^{TPHd})	14.83	148.66	4,200 ^{e,f,m} (2,000) ^e		5,600 ^d	1,200	23	41	190	(30)					1.05	Not operating
			3/14/2009	Sheen Field	(Z ^{TPHd})	9.30	154.19	$\frac{4,200}{2,800} (2,000)$		8,800 ^d	980	23	61	220	(23)					1.05	Not operating
			12/28/2008	Sheen Field & Lab	(Z ^{TPHd})	13.35	150.14	(1,800 ^{e,g})	< 250	7,500 ^{d,g}	630	23	40	210	(22)					1.20	Not operating
			9/6/2008	Sheen Field & Lab	(Z ^{TPHd})	17.27	146.22	(1,800 ^{e,g})		24.000 ^{d,g}	1,400	65	130	2,300	< 250					1.28	Not operating
			6/14/2008	Sheen Field	(Z)	16.68	146.81	(4,200 °)	(< 250)	(15,000 ^d)	(1,100)	(50)	(86)	(1,300)	(< 150)					1.2	Not operating
			3/9/2008	Sheen Field	(Z)	10.77	152.72	(3,000 °)	(< 250)	(8.100 ^d)	(830)	(7.7)	(55)	(310)	(< 50)					0.79	Not operating
			12/8/2007	Sheen Field & Lab		15.15	148.34	790 ^{e,f,g}		7.600 ^{d,g}	690	27	39	570	< 80					0.72	Not operating
			9/6/2007	Sheen Field & Lab		17.25	146.24	8,400 e,f,k,g		27,000 ^{d,g}	1,500	150	120	4,500	< 250					0.55	Not operating
			6/15/2007	Sheen Field & Lab		15.43	148.06	7,200 ^{e,g}		14,000 d,g	1,200	46	63	850	< 110					0.61	Not operating
			3/16/2007	Sheen Field & Lab		10.71	152.78	2,700 e,f,k,g		13,000 ^{d,g}	1,400	32	93	740	< 100					0.65	Not operating
			12/6/2006	Sheen Field & Lab		15.95	147.54	22,000 e,f,g		21,000 d,g	920	56	73	1,500	< 100					0.71	Not operating
			9/5/2006	Sheen Field & Lab		16.96	146.53	9,400 ^{e,f,k,g}		30,000 ^{d,g}	1,400	180	110	4,300	< 500					0.75	Not operating
			6/30/2006	Sheen Field & Lab		15.00	148.49	19,000 ^{e,f,g}		18,000 ^{d,g}	1,400	50	60	1,300	< 100					0.85	Not operating
			3/22/2006	Sheen Field & Lab		7.52	155.97	9,300 ^{e,f,k,g}		17,000 ^{d,g}	2,000	230	150	1,900	< 50					0.80	Not operating
			12/14/2005	Sheen Field & Lab		14.43	149.06	9,800 ^{e,f,k,g}		5,200 ^{d,g}	710	41	91	540	< 50					0.91	Not operating
			9/21/2005	Sheen Field & Lab		16.55	146.94	15,000 ^{e,f,k,g}		12,000 ^{d,g}	540	100	54	1,800	< 50					0.89	Not operating
			6/21/2005	Sheen Field & Lab		11.82	151.67	12,000 ^{e,g}		30,000 ^{d,g}	3,300	270	250	2,800	< 500						Not operating
			3/7/2005	Sheen Field & Lab		7.81	155.68	9,300 ^{e,f,g}		15,000 ^{d,g}	1,100	140	88	1,900	< 100					0.65	Not operating
			12/27/2004	Sheen Lab		14.79	148.70	5,300 ^{e,f,g,k}		10,000 ^{d,g}	1,000	99	34	1,600	< 50					0.74	Not operating
			9/27/2004			19.93	143.56	980 ^{e,f,k}		1,300 ^d	140	10	11	81	< 50					0.68	Not operating
			6/16/2004			16.02	147.47	3,400 ^{e,f}		9,100 ^d	940	96	120	800	< 50						Not operating
		97.34	3/18/2004			14.92	82.42	1,500 ^e		5,300 ^d	1,300	55	37	440	< 180						Operating
			12/2/2003			19.17	78.17	5,800 ^{e,f}		13.000 ^d	1,300	180	120	1,900	< 250						Operating
			9/3/2003			21.65	75.69	27.000 ^{e,f}		29.000 ^d	2,200	380	280	2,300	-						Operating
			5/30/2003			13.56	83.78														Not operating
			4/25/2003			19.37	77.97	2,200 ^{e,f}		6,600 ^d	960	130	100	560	< 170						Operating
		Laborator	y Detection Limit:	L	1	17.51		10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	
			Objectives (WQO	× 1					20 1,000	30	1	150	300	1,750	5	12	0.05	0.5	0.5	Ficia filst	

	Monitoring Point Information					Depth to	Groundwater		Pe	troleum Hydı	ocarbon Co	ncentration	Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrole	ım Hydrocarb	ons				Volatile	Organic (Compound	s			Dissolved	Reduction Potential
Casing Diameter	(feet)	Elevation (feet)				(100)	(recų mol)	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Oxygen (mg/L)	(mV)
Continued			1/13/2003	Sheen Lab		11.75	85.59	15,000 ^{e,f,g,k}		35,000 ^{d,g}	5,100	1,500	510	4,500	< 800					0.28	Not operating
MW-4			11/21/2002			17.55	79.79	2,400 ^{e,k}		5,700 ^d	1,400	290	63	640	550						Operating
			9/26/2002			17.93	79.41	800 ^e		21,000 ^d	3,300	1,300	450	2,900	< 500					0.24	Operating
			6/10/2002			22.30	75.04	3,400 ^e		9,400 ^d	1,400	50	< 5.0	690	< 200						Operating
			3/11/2002			14.95	82.39	1,600 ^{e,f,k}		15,000 ^d	3,700	500	92	790	< 500					0.30	Operating
			12/7/2001			23.45	73.89	11,000 ^{e,f,g}		32,000 ^{d,g}	4,500	740	310	2,300	< 200					0.21	Operating
			8/30/2001			18.00	79.34	3,200 ^d		43,000 ^a	6,400	630	510	2,600	< 200					0.32	Operating
			6/6/2001			15.49	81.85	5,400		75,000	22,000	1,800	1,900	6,400	< 1,200					2.22	Not operating
			3/20/2001			14.03	83.31			46,000	13,000	1,000	900	2,800	< 350					0.39	Not operating
			12/5/2000			15.55	81.79	2,600 ^{e,g}		69,000 ^{d,g}	16,000	1,300	1,300	3,400	< 200					0.35	Not operating
			9/7/2000			16.40	80.94	5,900°		43,000 ^d	10,000	1,100	1,100	3,400	< 450					1.04	
			3/23/2000			10.22	87.12	3,100 ^{e,f}		40,000 ^d	11,000	1,600	910	3,100	690						
			12/10/1999			13.99	83.35	3,100 ^{e,f}		47,000 ^d	12,000	1,800	1,000	4,400	< 100					0.62	
			9/28/1999			16.58	80.76	3,200 ^{e,f}		24,000 ^d	7,500	1,200	190	2,200	210					14.29#	
			* 6/29/1999 3/29/1999			9.10	88.24	2.400 ^{e,f,h}			15.000	3,000	1,300	5,000	1,300					1.32	
			3/29/1999			13.45	83.89	2,400		48,000 ^d 27,000	8,900	3,000	730	2,300	< 1,500						<u> </u>
			9/30/1998			16.84	80.50	2,100		39,000	12,000	2,700	1,000	3,400	510					1.1	<u> </u>
			7/14/1998			14.15	83.19	2,100 2,900 ^{e,f}		73,000 ^d	22,000	2,700	1,800	7,300	< 200					1.0	+
			3/18/1998			9.54	87.80	5,500 ^{e,f}		73,000 58,000 ^d	14,000	4,700	1,400	5,700	< 1,200					0.8	
			12/22/1997			9.21	88.13	3,100 ^e		43.000 ^d	13,000	3,900	1,400	4,200	< 960					3.7	
			9/17/1997			17.10	80.24	3,100 4,400 ^e		43,000 60,000 ^d	13,000	4,900	1,500	4,200 5,700	< 1,500					1.5	+
			6/25/1997			16.15	81.19	4,400 5,800 ^b		61,000	16,000	4,900 6,100	1,500	5,900	780°					1.4	
			3/20/1997			13.75	83.59	3,100		47,000	11,000	4,500	1,500	5,200	3,400					8.4	
MW-5 2-inch	20 - 30	165.74																			
2-inch			7/15/2015			15.95	149.79	450***		8.800*	2,200	33	450	34.2J	850	6,700	<11	<11	<11	0.37	-57
			1/9/2014			17.12	149.79	1,100*		8,800* 13,000**	1,700	33	740	34.2J 32 J	640	1,300	< 1.4	< 2.4	<2.0 - 3.2	1.21	-42
			9/20/2013			17.12	148.43	540***		4,400★	2,200	47	1,200	50.1J	790	1,300	< 1.4	< 2.4	< 2.0 - 3.2	0.50	-42
			6/25/2013			16.21	149.53	760^		5,200*	2,200	41	860	50.2 J	980	7,800	< 1.5	< 2.5	< 8.3	3.82	-26
			3/13/2013			13.89	151.85	1,000***			2,700		1,200			,	< 1.5	< 2.5	< 8.3	2.09	
								,		18,000* 3000*		54		116.1 J	410	< 34					11
			11/9/2012			15.11	150.63	340***		3000*	1,300	16	340	35.2	390	2,300	< 0.30	< 0.50	< 0.68	1.7	90
MW-6 2-inch	20 - 30	164.3																			
			7/15/2015			12.53	151.77	310***		3,300*	89	2.1	2.1	2.85	<0.5	19	< 0.50	2.2	< 0.50	0.85	-60
			1/9/2014			16.18	148.12	190*		3,700 ⁺	67	< 0.25	3.8	1.1 J	< 0.72	< 6.5	< 0.28	< 0.47	< 0.40 - 0.64	1.24	-75
			9/20/2013			16.46	147.84	470***		1,700★	130	0.66J	4.6	< 1.74	< 1.4	< 13	< 0.57	< 0.95	< 0.80 - 1.3	0.61	-68
			6/25/2013			14.78	149.52	520^		3.400*	250	2.1 J	6	1.9 J	< 1.5	88	< 0.59	< 0.99	< 3.34	3.39	-63
			3/13/2013			13.05	151.25	710***		1,800*	230	2.5 J	15	1.6 J	< 1.5	< 14	< 0.59	< 0.99	< 1.66	6.39	20
			11/9/2012			14.61	149.69														
			11/2/2012			14.23	150.07	120#		540 *	44	0.74	7.5	2.3	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	6.63	62
	·	Laboratory	Detection Limit:	·	·		<u> </u>	10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Ouality	Objectives (WQO	s): ¹				1	1,000		1	150	300	1,750	5	12	0.05	0.5			

FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

	Monitoring Point Information					Depth to	Groundwater		Pe	troleum Hydi	rocarbon Co	ncentration	Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrol	eum Hydrocarb	ons				Volatil	e Organic (Compound	s			Dissolved Oxygen	Reduction Potential (mV)
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(1111)
RW-5 4-inch	5 - 25.7	162.34																			
4 inch			7/15/2015		-	14.63	147.71	150***		< 50	1.2	< 0.50	< 0.50	< 1.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	0.41	-44
			1/9/2014			15.69	146.65													1.07	-52
			9/20/2013			15.87	146.47	160***		390 *	510	3.9	11	7.28J	< 0.72	< 6.5	< 0.28	< 0.47	< 0.40 - 0.64	0.68	-49
			6/25/2013			14.81	147.53													0.76	-67
			3/13/2013			11.93	150.41													1.24	22
			11/9/2012			14.46	147.88														
			9/28/2012			15.49	146.85	120^		120^{∇}	320	1.3	0.98	1.4	0.80	5.7	< 0.5	< 0.5	< 0.5	0.73	-78
			ф <u>3/30/2012</u>			0.40	161.94	< 100		< 50	< 0.50	< 0.50	< 0.50	< 1.50	< 0.50	< 5.0	< 0.5	< 0.5	< 0.5	7.31	-3
			9/22/2011			14.44	147.90	120**		680*	480	< 2.1	< 1.7	16	< 4.1	< 17	< 2.1	< 3.0	< 3.5 - 4.4	0.66	-65
			3/17/2011			7.20	155.14	< 50		84 ^d	21	< 0.5	3.9	1.2	(< 0.5)				-	0.79	Not operating
			9/10/2010		(Z^{TPHd})	15.40	146.94	270 ° (200) °		1,600 ^d	470	5.1	19	21	(3.6)					0.54	Not operating
			3/14/2010		(Z^{TPHd})	4.40	157.94	480 ^{e,f,k} (340) ^e		970 ^d	210	5.2	12.0	13.0	(41)					1.03	Not operating
			9/5/2009		(Z ^{TPHd})	16.00	146.34	1,700 ^{f,k,m} (600) ^{f,m}		2,200 ^{n,p}	350	8.5	4.6	13.0	(50)					1.05	Not operating
			6/7/2009	Sheen Field	(Z ^{TPHd})	13.19	149.15	720 ^{m,f} (210) ^e		870 ^d	100	4.4	1.3	2.8	(110)					1.13	Not operating
			3/14/2009	Sheen Field	(Z^{TPHd})	6.82	155.52	2,000 ^{f,k,m} (750 ^e)		2,000 ^d	260	9.8	9.5	18.0	(38)					1.15	Not operating
			12/28/2008	Sheen Field	(Z ^{TPHd})	10.55	151.79	(250 ^m)	< 250	1,200 ^{d,n}	110	5.6	2.5	9.8	(81)					1.13	Not operating
			9/6/2008	Sheen Field	(Z^{TPHd})	16.01	146.33	(220 °)		1,100 ^d	120	2.6	2.2	13	120					1.42	Not operating
			6/14/2008	Sheen Field	(Z)	15.21	147.13	(190 °)	(< 250)	(1,200 ^d)	(310)	(5.8)	(3.5)	(25)	(< 250)					1.73	Not operating
			3/9/2008	Sheen Field	(Z)	8.77	153.57	(90°)	(< 250)	(1,100 ^d)	(220)	(5.3)	(4.9)	(10)	(< 90)					0.92	Not operating
			12/8/2007	Sheen Field Sheen Field		13.99 15.85	148.35 146.49	370 ^{e,f}		1,900 ^d	220 600	4.0	10	38 92	500					0.74	Not operating
			9/6/2007 6/15/2007	Sheen Field & Lab	-	13.85	146.49	2,000 ^{e,k,f,g}		2,500 ^d 3,700 ^{d,g}	730	12 14	24	92 80	180 < 150					0.65	Not operating Not operating
				Sheen Field & Lab		8.81	153.53	2,000 • 55g			180	3.3	7.3							0.62	1 0
			3/16/2007					,		2,400 ^{d,g}				10	< 17						Not operating
			12/6/2006	Sheen Field & Lab		14.53	147.81	5,500 ^{e,f,g}		8,500 ^{d,g}	1,200	24	91	250	< 900					0.79	Not operating
			9/5/2006	Sheen Field & Lab	_	15.55	146.79	3,200 ^{e,f,k,g}		5,300 ^{d,g}	1,000	31	61	230	370					0.81	Not operating
			6/30/2006	Sheen Field		13.32	149.02	3,100 ^{e,f,k}		3,100 ^d	590	15	27	88	410					0.89	Not operating
			3/22/2006	Sheen Field	_	2.55	159.79	2,700 ^{e,f,k}		7,400 ^d	59	76	20	120	< 50					1.10	Not operating
			12/14/2005	Sheen Field & Lab Sheen Field & Lab		12.95	149.39	6,200 ^{e,f,k,g}		8,900 ^{d,g}	1,500	92	180	750	2,300					1.03	Not operating
			9/21/2005			15.07	147.27	2,500 ^{e,f,k,g}		2,000 ^{d,g}	390	16	24	170	1,300					0.99	Not operating
			6/21/2005 3/7/2005	Sheen Field Sheen Field		10.02 4.42	152.32 157.92	490° 6.100°,f,k		11,000 ^d 7.000 ^d	1,200 720	67 63	68 97	690 670	< 500 < 400					0.93	Not operating Not operating
			12/27/2004		+	10.45	151.89			1					< 400						Not operating
			9/27/2004			25.55	136.79														Operating
			6/16/2004			14.73	147.61														Not operating
			3/18/2003		-	14.48				12,000	2,000	380	190	1,500	830						The operating
			1/13/2003			10.20		3.000		12,000	2,000	750	300	1,500	950					0.17	
		Laborato	ry Detection Limit:			13.20	1	10	20	50	0.5	0.5	0.5	1,000	5	5	0.5	0.5	0.5	Field Inst	trument
			v Objectives (WQO	s)• ¹					1,000		1	150	300	1,750	5	12	0.05	0.5	0.0		

FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

	Monitoring Point Information					Depth to	Groundwater		Pe	troleum Hyd	rocarbon Co	ncentration	n Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petro	leum Hydrocarb	ons				Volatile	e Organic (Compound	s		1	Dissolved Oxygen	Reduction Potential (mV)
Casing Diameter	(feet)	(feet)						Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mv)
RW-6 4-inch	5 - 25.5	162.36																			
			7/15/2015			14.72	147.64													1.42	-43
			1/9/2014			15.84	146.52													0.55	-85
			9/20/2013			15.96	146.40													0.78	-79
			6/25/2013			14.92	147.44													0.57	-87
			3/13/2013			12.15	150.21													1.18	61
			11/9/2012			14.31	148.05														
			9/28/2012			15.57	146.79														
			3/30/2012			6.50	155.86													3.54	70
			9/22/2011			14.52	147.84													0.83	-86
			3/17/2011			7.18	155.18														Not operating
			9/10/2010			15.47	146.89														Not operating
			3/14/2010			6.45	155.91														Not operating
			9/5/2009			16.04	146.32														Not operating
			6/7/2009			13.21	149.15														Not operating
			3/14/2009			7.16	155.20														Not operating
			12/28/2008			12.02	150.34														Not operating
			9/6/2008			16.08	146.28														Not operating
			6/14/2008			15.28	147.08														Not operating
			3/9/2008			8.93	153.43														Not operating
			12/8/2007			14.21	148.15														Not operating
			9/6/2007			15.92	146.44														Not operating
			6/15/2007			13.90	148.46														Not operating
			3/16/2007			8.89	153.47														Not operating
			12/6/2006			14.63	147.73														Not operating
			9/5/2006			15.63	146.73														Not operating
			6/30/2006			13.44	148.92														Not operating
			3/22/2006			5.85	156.51														Not operating
			12/14/2005			13.02	149.34														Not operating
			9/21/2005			15.13	147.23														Not operating
			6/21/2005			10.13	152.23														Not operating
			3/7/2005			6.05	156.31														Not operating
			12/27/2004			9.82	152.54														Not operating
			9/27/2004			18.46	143.90														Not operating
			6/16/2004			14.80	147.56														Not operating
			3/18/2004			11.47				8,500	1,300	260	71	990	1,300						<u></u>
			1/13/2003			10.35		2,900		15,000	2,200	1,200	130	2,200	440					0.24	<u></u>
			3/11/2002					3,100		14,000	970	520	170	2,200	< 130						<u> </u>
		Laborator	ry Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	Objectives (WQO	s): ¹					1,000		1	150	300	1,750	5	12	0.05	0.5			

	Monitoring Point Information					Depth to	Groundwater			troleum Hyd			Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petro	leum Hydrocarb	ons				Volatil	e Organic (Compound	ls			Dissolved	Reduction Potential
Casing Diameter	(feet)	Elevation (feet)				(1000, 100)	(1000, 1102)	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Oxygen (mg/L)	(mV)
RW-7 4-inch	5 - 29.5	162.72																			
			7/15/2015			15.35	147.37													0.79	-173
			1/9/2014			16.43	146.29													1.02	-112
			9/20/2013			16.61	146.11													0.52	-83
			6/25/2013			15.54	147.18													0.64	-95
			3/13/2013			12.84	149.88													1.72	77
			11/9/2012			14.77	147.95														
			9/28/2012 (5) 3/30/2012			18.23	144.49														
			5				147.57														
			9/22/2011			15.15														1.16	-69
			3/17/2011			7.75 16.04	154.97														Not operating
			9/10/2010				146.68														Not operating
			3/14/2010			8.70	154.02														Not operating
			9/5/2009			16.55	146.17														Not operating
			6/7/2009		-	13.91	148.81														Not operating
			3/14/2009			7.94	154.78												-		Not operating
			12/28/2008		-	12.62	150.10														Not operating
			9/6/2008			16.51	146.21														Not operating
			6/14/2008			15.80	146.92														Not operating
			3/9/2008			9.69	153.03														Not operating
			12/8/2007			14.46	148.26														Not operating
			9/6/2007			16.42	146.30														Not operating
			6/15/2007			14.54	148.18														Not operating
			3/16/2007			9.69	153.03														Not operating
			12/6/2006			15.13	147.59														Not operating
			9/5/2006			16.12	146.60														Not operating
			6/30/2006		_	14.05	148.67														Not operating
			3/22/2006			5.75	156.97														Not operating
			12/14/2005			13.58	149.14														Not operating
			9/21/2005			15.70	147.02														Not operating
			6/21/2005			10.85	151.87														Not operating
			3/7/2005			5.82	156.90														Not operating
			12/27/2004			9.85	152.87														Not operating
			9/27/2004			18.98	143.74														Not operating
			6/16/2004			15.22	147.50														Not operating
			3/18/2004			15.33				250	66	4.8	3.2	10	< 15						
			1/13/2003			10.95		67		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					0.22	
			3/11/2002					< 50		< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0						
		Laborato	ry Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	y Objectives (WQO	s): ¹					1,000		1	150	300	1,750	5	12	0.05	0.5			

	Monitoring Point Information					Depth to	Groundwater		Pe	troleum Hyd	rocarbon Co	ncentration	n Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrol	eum Hydrocarb	ons				Volatile	e Organic (Compound	ls			Dissolved	Reduction Potential
Casing Diameter	(feet)	(feet)				(, ,	(,	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Oxygen (mg/L)	(mV)
RW-8 4-inch	5 - 29.5	164.13																			
			7/15/2015			16.59	147.54													1.18	-33
			1/9/2014			17.69	146.44													1.33	-68
			9/20/2013			17.95	146.18													0.52	-41
			6/25/2013 3/13/2013			16.88 14.29	147.25 149.84													0.91	-59
			3/13/2013			14.29	149.84														
			9/28/2012			17.38	148.52														
			3/30/2012			8.49	155.64													0.74	-45
			9/22/2011			16.40	147.73													1.22	-58
			3/17/2011			8.92	155.21														Not operating
			9/10/2010			17.25	146.88														Not operating
			9/10/2010			17.25	146.88														Not operating
			3/14/2010			8.43	155.70														Not operating
			9/5/2009			17.80	146.33														Not operating
			6/7/2009			15.20	148.93														Not operating
			3/14/2009			9.25	154.88														Not operating
			12/28/2008			13.80	150.33														Not operating
			9/6/2008			17.70	146.43														Not operating
			6/14/2008			17.07	147.06														Not operating
			3/9/2008			11.05	153.08														Not operating
			12/8/2007			15.60	148.53														Not operating
			9/6/2007			17.63	146.50														Not operating
			6/15/2007			15.81	148.32														Not operating
			3/16/2007			11.04	153.09														Not operating
			12/6/2006			16.37	147.76														Not operating
			9/5/2006			17.38	146.75														Not operating
			6/30/2006			15.31	148.82														Not operating
			3/22/2006			7.88	156.25														Not operating
			12/14/2005			14.80	149.33														Not operating
			9/21/2005			16.90	147.23														Not operating
			6/21/2005			12.15	151.98														Not operating
			3/7/2005			8.10	156.03														Not operating
			12/27/2004			12.32	151.81														Not operating
			9/27/2004			19.74	144.39														Not operating
			6/16/2004			16.41	147.72														Not operating
			3/18/2004			15.34				760	310	9.9	11	16	< 25						<u> </u>
			1/13/2003			12.80		56		390	150	11	4.1	4.1	13					0.31	<u></u>
			3/11/2002					80		1,300	620	11	15	14	< 60						<u> </u>
			y Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	Objectives (WQOs	s): ¹					1,000		1	150	300	1,750	5	12	0.05	0.5			

FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

	Monitoring Point Information					Depth to	Groundwater		Pet	troleum Hyd	rocarbon Co	oncentratior	n Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrole	um Hydrocarbo	ons				Volatil	e Organic (Compound	ls			Dissolved Oxygen	Reduction Potential
Casing Diameter	(feet)	(feet)					. , ,	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
RW-9 4-inch	5 - 25	163.86																			
			7/15/2015			16.29	147.57	450***		550*	120	3.2	< 0.50	2.2	9.3	230	< 0.50	< 0.50	< 0.50	0.62	-95
			1/9/2014			17.38	146.48													0.87	-64
			9/20/2013			17.39	146.47	370***		5,900 ×	4,600	40	8.4J	8.7J	< 7.2	< 65	< 2.8	< 4.7	< 4.0 - 6.4	0.49	-72
			6/25/2013			16.49	147.37													0.80	-89
			3/13/2013			13.90	149.96													2.12	37
			11/9/2012			15.47	148.39														
			9/28/2012			17.05	146.81	230^		230 ^{\nabla}	980	5.6	2.2	2.5	7.4	110	< 0.5	< 0.5	< 0.5	0.37	-133
			3/30/2012			8.12	155.74	< 100		< 50	5.1	< 0.50	< 0.50	< 1.50	< 0.50	< 5.0	< 0.5	< 0.5	< 0.5	6.13	20
			9/22/2011			16.12	147.74	230**		1,900*	1,600	8.4	12	ND	8.3	< 17	< 2.1	< 3.0	< 3.5 - 4.4	1.03	-123
			3/17/2011			8.60	155.26	< 50		300 ^d	83	1.6	< 0.5	< 0.5	(1.9)					0.88	Not operating
			9/10/2010		(Z^{TPHd})	16.91	146.95	310 ^{e,f} (210) ^{e,f}		5,700 ^d	2,800	16	< 2.5	37	(20)					0.70	Not operating
			3/14/2010		(Z^{TPHd})	8.15	155.71	770 [°] (700) [°]		11,000 ^d	3,900	80	120.0	450	(31)					1.10	Not operating
			9/5/2009		(Z^{TPHd})	17.40	146.46	3,000 ^{f,m} (1,100) ^{e,f,m}		8,300 ^d	3,100	32	5.5	69	(25)					1.02	Not operating
			6/7/2009	Sheen Field & Lab	(Z ^{TPHd})	14.90	148.96	4,800 ^{m,f} (910) ^e		12,000 ^d	3,500	87	150	330	(30)					1.19	Not operating
			3/14/2009	Sheen Field	(Z ^{TPHd})	8.97	154.89	450 ° (440 °)		14,000 ^d	3,600	71	190	380	(31)					1.21	Not operating
			12/28/2008	Sheen Field	(Z ^{TPHd})	13.41	150.45	(950 °)	< 250	7,300 ^d	3,500	24	150	200	(30)					1.28	Not operating
			9/6/2008	Sheen Lab	(Z^{TPHd})	17.31	146.55	(1,600 ^{e,g})		13,000 ^{d,g}	3,600	52	170	220	< 350					1.22	Not operating
			6/14/2008		(Z)	16.71	147.15	(610)	(< 250)	(8,100 ^d)	(2,800)	(33)	(100)	(220)	(< 210)					1.29	Not operating
			3/9/2008	 Diald	(Z)	10.86	153.00	(570 °)	(< 250)	(10,000 ^d)	(4,200)	(71)	(180)	(380)	(< 35)					0.86	Not operating
			12/8/2007	Sheen Field		15.22	148.64	1,000 e,f		9,300 ^d	2,900	24	150	170	< 250					0.89	Not operating
			9/6/2007	Sheen Field & Lab		17.29	146.57	2,200 ^{e,f,g}		13,000 ^{d,g}	2,700	61	240	350	< 400					0.66	Not operating
			6/15/2007	 I ab	_	15.48	148.38	670 °		12,000 ^d	3,000	44	170	220	< 250					0.68	Not operating
			3/16/2007	Sheen Lab		10.83	153.03	1,200 °		16,000 ^{d,g}	3,700	76	230	340	< 350					0.71	Not operating
			12/6/2006	Sheen Lab		16.04	147.82	660 ^{e,g}		13,000 ^{d,g}	3,000	29	180	260	< 250					0.74	Not operating
			9/5/2006			17.02	146.84	1,100 ^e		14,000 ^d	3,900	39	200	230	< 330					0.69	Not operating
			6/30/2006		_	15.04	148.82	1,400 ^e		14,000 ^d	3,100	53	130	260	< 300					0.73	Not operating
			3/22/2006			7.63	156.23	680 ^e		7,600 ^d	2,900	59	190	310	< 200					0.95	Not operating
			12/14/2005		_	14.52	149.34	1,100 ^{e,f}		6,300 ^d	1,900	29	150	260	< 50					0.98	Not operating
			9/21/2005	Sheen Lab	_	16.62	147.24	820 ^{e,f,g}		8,300 ^{d,g}	2,500	36	190	310	< 170					1.04	Not operating
			6/21/2005			11.90	151.96	630°		9,400 ^d	2,400	69	210	470	< 350						Not operating
			3/7/2005			7.87	155.99	510 ^e		9,000 ^d	2,600	69	200	550	< 500					0.91	Not operating
			12/27/2004			24.88	138.98														Not operating
			9/27/2004		_	19.83	144.03														Not operating
			6/16/2004		_	16.03	147.83														Not operating
			3/18/2004		_	13.69				2,300	770	32	15	200	< 50						
			1/13/2003		_	11.85		2,000		23,000	7,700	610	310	310	< 500					0.39	
			3/11/2002					880		12,000	3,400	230	78	1,300	< 240						<u> </u>
		Laborator	y Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	Objectives (WQO	s): ¹				1	1,000		1	150	300	1,750	5	12	0.05	0.5			

FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

	Monitoring Point Information			(T) 1	Depth to	Groundwater		Pet	troleum Hydi	ocarbon Co	ncentration	n Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrol	eum Hydrocarbo	ons				Volatil	e Organic (Compound	ls			Dissolved Oxygen	Reduction Potential
Casing Diameter	(feet)	(feet)					Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
RW-10 4-inch	5 - 25	163.02																		
			7/15/2015		15.22	147.80													1.29	-123
			1/9/2014		16.33	146.69													1.01	-115
			9/20/2013		16.53	146.49													0.71	-102
			6/25/2013		15.41	147.61													0.75	-126
			3/13/2013		12.81	150.21													0.91	-12
			11/9/2012		14.52	148.50														
			9/28/2012		16.01	147.01														
			3/30/2012		7.02	156.00													0.79	-43
			9/22/2011		15.11	147.91			1,900*	1,600	8.4	12	< 3.6	< 4.1				< 3.5 - 4.4	0.77	-104
			3/17/2011		7.64	155.38														Not operating
			9/10/2010		15.87	147.15														Not operating
			3/14/2010		6.32	156.70														Not operating
			9/5/2009		16.36	146.66														Not operating
			6/7/2009		13.96 8.02	149.06 155.00														Not operating
			3/14/2009 12/28/2008		12.42	150.60														Not operating Not operating
			9/6/2008		12.42	146.79														Not operating
			6/14/2008		15.64	140.79														Not operating
			3/9/2008		9.96	153.06											1			
			3/9/2008		14.23	148.79													-	Not operating
			9/6/2007		14.23	148.79														Not operating Not operating
			6/15/2007		14.52	148.50														Not operating
			3/16/2007		9.91	153.11														Not operating
			12/6/2006		15.02	148.00														Not operating
			9/5/2006		15.98	147.04														Not operating
			6/30/2006		14.13	148.89														Not operating
			3/22/2006		6.53	156.49														Not operating
			12/14/2005		13.37	149.65														Not operating
			9/21/2005		15.51	147.51														Not operating
			6/21/2005		10.95	152.07														Not operating
			3/7/2005		6.40	156.62														Not operating
			12/27/2004		19.39	143.63														Not operating
			9/27/2004		18.35	144.67														Not operating
			6/16/2004		15.03	147.99														Not operating
			3/18/2004		13.13				5,800	2,400	11	< 10	110	< 300						
			1/13/2003		10.75		330		4,300	1,500	43	98	98	< 100					0.41	<u> </u>
			3/11/2002				740		12,000	3,900	150	110	1,100	< 270						<u> </u>
		Laboratory	Detection Limit:				10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	trument
		Water Quality (Objectives (WQO	b s): ¹				1,000		1	150	300	1,750	5	12	0.05	0.5			

	Monitoring Point Information				Depth to	Groundwater		Pe	troleum Hydı	rocarbon Co	ncentration	ı Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrol	eum Hydrocarb	ons				Volatil	e Organic (Compound	ls			Dissolved	Reduction Potential
Casing Diameter	(feet)	(feet)					Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Oxygen (mg/L)	(mV)
RW-11 4-inch	5 - 25	162.67																		
			7/15/2015		14.68	147.99													1.39	-126
			1/9/2014		15.85	146.82													0.85	-72
			9/20/2013		15.89	146.78													0.90	-77
			6/25/2013		14.98	147.69													0.68	-85
			3/13/2013		12.31	150.36													2.13	-31
			11/9/2012 9/28/2012		13.91 15.61	148.76 147.06														
			3/30/2012		6.51	156.16														
			9/22/2011		14.50	148.17													0.94	-96
			3/17/2011		7.10	155.57														Not operating
			9/10/2010		15.42	147.25														Not operating
			3/14/2010		6.50	156.17														Not operating
			9/5/2009		16.02	146.65														Not operating
			6/7/2009		13.21	149.46														Not operating
			3/14/2009		7.14	155.53														Not operating
			12/28/2008		12.01	150.66														Not operating
			9/6/2008		15.99	146.68														Not operating
			6/14/2008		15.26	147.41														Not operating
			3/9/2008		8.81	153.86														Not operating
			12/8/2007		13.83	148.84														Not operating
			9/6/2007		15.84	146.83														Not operating
			6/15/2007		13.90	148.77														Not operating
			3/16/2007		8.85	153.82														Not operating
			12/6/2006 9/5/2006		14.55	148.12 147.11														Not operating Not operating
			6/30/2006		13.36	147.11														Not operating Not operating
			3/22/2006		5.70	156.97														Not operating
			12/14/2005		12.96	149.71														Not operating
			9/21/2005		15.09	147.58														Not operating
			6/21/2005		9.96	152.71														Not operating
			3/7/2005		5.95	156.72														Not operating
			12/27/2004		10.07	152.60														Not operating
			9/27/2004		18.44	144.23														Not operating
			6/16/2004		14.75	147.92														Not operating
			3/18/2004		12.45				9,300	980	120	180	770	2,000						
			1/13/2003		9.80		2,700		5,300	490	110	120	120	180					0.24	
			3/11/2002				< 50		260	34	5.3	8.1	48	< 5.0						<u> </u>
		Laboratory	Detection Limit:				10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument
		Water Quality	Objectives (WQC) s): ¹				1,000		1	150	300	1,750	5	12	0.05	0.5			

FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

	Monitoring Point Information					Depth to	Groundwater		Ре	troleum Hydı	rocarbon Con	ncentration	n Data							Field Measurements	Oxidation
Well Identification #	Screen Interval	TOC	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrol	eum Hydrocarb	ons				Volatile	e Organic (Compound	s			Dissolved	Reduction Potential
Casing Diameter	(feet)	Elevation (feet)				(100)	(leet, MDE)	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Oxygen (mg/L)	(mV)
RW-12 4-inch	5 - 27	163.06																			
			7/15/2015			15.27	147.79													1.15	-87
			1/9/2014			16.35	146.71													1.37	-81
			9/20/2013			16.36	146.70													0.85	-90
			6/25/2013			15.46	147.60													1.17	-48
			3/13/2013			12.83	150.23													1.96	38
			11/9/2012			14.98	148.08														
			9/28/2012			15.94	147.12														
			3/30/2012			7.06	156.00													1.09	-8
			9/22/2011			15.01	148.05													0.75	-77
			3/17/2011			7.68	155.38														Not operating
			9/10/2010			15.93	147.13														Not operating
			3/14/2010			6.29	156.77														Not operating
			9/5/2009			16.59	146.47														Not operating
			6/7/2009			13.70	149.36														Not operating
			3/14/2009			7.77	155.29														Not operating
			12/28/2008			12.80	150.26														Not operating
			9/6/2008			16.58	146.48														Not operating
			6/14/2008			15.74	147.32														Not operating
			3/9/2008			9.43	153.63														Not operating
			12/8/2007			14.87	148.19														Not operating
			9/6/2007			16.42	146.64														Not operating
			6/15/2007			14.44	148.62														Not operating
			3/16/2007			9.52	153.54														Not operating
			3/16/2007			9.52	153.54														Not operating
			12/6/2006			15.11	147.95														Not operating
			9/5/2006			16.11	146.95														Not operating
			6/30/2006			13.95	149.11														Not operating
			3/22/2006			6.35	156.71														Not operating
			12/14/2005			13.43	149.63														Not operating
			9/21/2005			15.63	147.43														Not operating
			6/21/2005			10.58	152.48														Not operating
			3/7/2005			6.59	156.47														Not operating
			12/27/2004			10.85	152.21														Not operating
			9/27/2004			19.09	143.97														Not operating
			6/16/2004			15.30	147.76														Not operating
			3/18/2004			13.63				17,000	2,700	960	230	1,500	1,400						
			1/13/2003			10.90		1,800		4,100	1,000	130	99	99	< 100					0.21	
			3/11/2002					900		13,000	4,500	130	130	270	< 5.0						
			Detection Limit:	1				10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	trument
		Water Quality	Objectives (WQOs	s):1					1,000		1	150	300	1,750	5	12	0.05	0.5			

FORMER EXXON SERVICE STATION 3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

			GDU	CDU	CDU		Depth to	Groundwater	Petroleum Hydrocarbon Concentration Data												Field Measurements	Oxidation
Well Identification #	Screen Interval (feet)	тос	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petro	leum Hydrocarbo	ons				Volatile	e Organic (Compound	s			Dissolved	Reduction Potential	
Casing Diameter		(feet)	Elevation (feet)				(100)	(leet, MSL)	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Oxygen (mg/L)	(mV)
RW-13 4-inch	5 - 25	164.34																				
<i>4-incn</i>			7/15/2015			15.71	148.63	< 100		79*	1.2	< 0.5	< 0.5	< 1.5	< 0.5	38	< 0.50	< 0.50	< 0.50	0.35	-107	
			1/9/2014			17.01	147.33	110*		440**	43	< 0.50	2.5	< 1.5	5.2	200	< 0.5	< 0.5	< 1.5	0.74	-67	
		(Split)	1/9/2014			17.01	147.33	< 100		150**	12	< 0.50	< 0.50	< 1.5	5.2	60	< 0.5	< 0.5	< 1.5	0.27	-61	
			9/20/2013			17.01	147.33	< 100		390 *	84	1.1	2.1	1.1	< 0.5	10	< 0.5	< 0.5	< 1.5	0.18	-55	
			6/25/2013			16.01	148.33	< 100		210*	86	1.7	5.3	3.1	5.9	110	< 0.5	< 0.5	< 1.5	0.12	-86	
			3/26/2013			13.92	150.42	< 100		< 50	< 0.5	< 0.5	< 0.5	< 1.5	< 0.5	< 5	< 0.5	< 0.5	< 1.5	1.95	70	
			3/13/2013			13.22	151.12													1.13	97	
			11/9/2012			15.11	149.23															
			9/28/2012			16.39	147.95															
			3/30/2012			7.45	156.89													3.65	43	
			9/22/2011			15.55	148.79													0.78	-78	
			3/17/2011			8.19	156.15														Not operating	
			9/10/2010			16.45	147.89														Not operating	
			3/14/2010			7.49	156.85														Not operating	
			9/5/2009			17.10	147.24														Not operating	
			6/7/2009			14.31	150.03														Not operating	
			3/14/2009			8.16	156.18														Not operating	
			12/28/2008			13.26	151.08														Not operating	
			9/6/2008			17.10	147.24														Not operating	
			6/14/2008			16.32	148.02														Not operating	
			3/9/2008			9.85	154.49														Not operating	
			12/8/2007			14.97	149.37														Not operating	
			9/6/2007			16.95	147.39														Not operating	
			6/15/2007			14.98	149.36														Not operating	
			3/16/2007			9.93	154.41														Not operating	
			12/6/2006			15.70	148.64														Not operating	
			9/5/2006			16.62	147.72														Not operating	
			6/30/2006			14.44	149.90														Not operating	
			3/22/2006			6.65	157.69														Not operating	
			12/14/2005			14.11	150.23														Not operating	
			9/21/2005			16.20	148.14														Not operating	
			6/21/2005			11.05	153.29														Not operating	
			3/7/2005			6.90	157.44														Not operating	
			12/27/2004			18.12	146.22														Not operating	
			9/27/2004			19.55	144.79														Not operating	
			6/16/2004			15.83	148.51														Not operating	
			3/18/2004			13.45				150	47	1.0	2.1	1.5	< 5.0							
			1/13/2003			11.20		92		210	54	2.0	2.7	2.7	< 5.0					0.35		
			3/11/2002		1			79		830	190	13	13	34	< 5.0							
		Laborator	y Detection Limit:					10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	trument	
		Water Quality	Objectives (WQOs	s): ¹					1,000	1	1	150	300	1,750	5	12	0.05	0.5				

	Monitoring Point Information			Depth to Groundwater							Field Measurements	Oxidation										
Well Identification #	Screen Interval	TOC Elevation	Date	SPH (feet)	Note	Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrole	ım Hydrocarb	ons				Volatil	e Organic (Compoun	ds		_	Dissolved Oxygen	Reduction Potential	
Casing Diameter	(feet)	(feet)						· / /	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	(mg/L)	(mV)
RW-14 4-inch	5 - 25	163.76																				
			7/15/2015			15.39	148.37	140***		78*	1.2	< 0.5	< 0.5	< 1.5	< 0.5	31	< 0.50	< 0.50	< 0.50	0.61	-122	
			1/9/2014			16.53	147.23	360*		1,200**	470	6.1	3.4	1.2	< 0.50	98	< 0.50		DIPE = 0.71	0.63	-102	
		(Split)	1/9/2014			16.53	147.23	1.200*		720**	130	< 0.50	1.2	2.2	< 0.50	85	< 0.50	-	DIPE = 0.83	0.24	-87	
		(01-11)	9/20/2013			16.64	147.12	150***		170*	83	1.6	2.4	1.1	5.5	34	< 0.50	_	< 1.5	0.15	-88	
			6/25/2013			15.64	148.12	280^		560 [*]	65	0.93	2.4	< 1.5	< 0.50	34	< 0.50	< 0.50	< 1.5	0.24	-92	
			3/26/2013			13.49	148.12	< 100		560 < 50	1.5	< 0.5	< 0.5	< 1.5	< 0.5	< 5	< 0.50	< 0.5	< 1.5	1.34	23	
			3/13/2013			12.90	150.86			< 50	1.5			~ 1.5			< 0.50	< 0.5		1.34	62	
			11/9/2012		-	14.72	149.04															
			9/28/2012			16.12	147.64															
			3/30/2012			7.11	156.65													1.43	10	
			9/22/2011			15.22	148.54													0.80	-108	
			3/17/2011			7.82	155.94														Not operating	
			9/10/10			16.10	147.66														Not operating	
			3/14/10			7.10	156.66														Not operating	
			9/5/09			16.71	147.05														Not operating	
			6/7/09			13.97	149.79														Not operating	
			3/14/09			7.88	155.88														Not operating	
			12/28/08			12.82	150.94														Not operating	
			9/6/08			16.68	147.08														Not operating	
			6/14/08			15.90	147.86														Not operating	
			3/9/2008			9.60	154.16														Not operating	
			12/8/2007			14.57	149.19														Not operating	
			9/6/2007			16.54	147.22														Not operating	
			6/15/2007			14.61	149.15														Not operating	
			3/16/2007		1	9.66	154.10														Not operating	
			12/6/2006			15.31	148.45														Not operating	
			9/5/2006			16.21	147.55														Not operating	
			6/30/2006			14.10	149.66														Not operating	
			3/22/2006		_	6.43	157.33														Not operating	
			12/14/2005			13.73	150.03														Not operating	
			9/21/2005		_	15.82	147.94														Not operating	
			6/21/2005 3/7/2005			10.80 6.61	152.96														Not operating Not operating	
		Laboratow	3/7/2005 Detection Limit:			0.01	157.15			50		0.5	0.5	1.5			0.5	0.5		 Field Instr	1 0	
				-).1				10	20	50	0.5	0.5	0.5 300	1.5	5	5	0.5	0.5	0.5	Field Inst	untit	
		water Quality	Objectives (WQOs	5):					,000		1	150	500	1,750	5	12	0.05	0.5				

FORMER EXXON SERVICE STATION

3055 35th AVENUE, OAKLAND, CALIFORNIA

All groundwater results are micrograms per liter (ug/L, parts per billion, ppb)

Monitoring Point Information						Depth to	Groundwater	Petroleum Hydrocarbon Concentration Data											Field Measurements	Oxidation	
Well Identification #	Screen Interval	тос	Date SPH (feet) No			Groundwater (feet, TOC)	Elevation (feet, MSL)	Total Petrole	ım Hydrocarbo	ons				Volatile	e Organic (Compound	s			Dissolved	Reduction Potential
Casing Diameter	(feet)	Elevation (feet)				(100)	(Ret, MSL)	Diesel	Fuel Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	ТВА	EDB	1,2-DCE	DIPE,ETBE,TAME (µg/L)	Dissolved Oxygen (mg/L) Reduc Poten (mV Not ope Not ope Not ope Not ope Not ope	(mV)
Continued			12/27/2004			12.62	151.14														Not operating
RW-14			9/27/2004			19.20	144.56														Not operating
			6/16/2004			15.41	148.35														Not operating
			3/18/2004			12.81				220	42	1.4	0.99	5.2	< 5.0						
			1/13/2003			11.00		6,800		3,700	230	77	91	91	< 50					0.38	
			3/11/2002					82		270	44	0.99	< 0.5	4.2	< 5.0						
Laboratory Detection Limit:						10	20	50	0.5	0.5	0.5	1.5	5	5	0.5	0.5	0.5	Field Inst	rument		
		Water Quality (bjectives (WQOs	Water Quality Objectives (WOOs): ¹							1	150	300	1,750	5	12	0.05	0.5			

Notes:

c = There is a >40% difference between primary and confirmation analysis

i = Medium boiling point pattern does not match diesel (stoddard solvent)

n = Strongly aged gasoline or diesel range compounds are significant in the TPHg chromatogram.

** = No water in well due to system operating in well, value reflects total well depth.

-- = Not sampled; not analyzed ; not applicable; or no SPH measured or observed

f = Diesel range compounds are significant; no recognizable pattern

d = Unmodified or weakly modified gasoline is significant

g = Lighter than water immiscible sheen/product is present

1 = Liquid sample that contains greater than ~1 vol. % sediment

= abnormally high reading due to added hydrogen peroxide

e = Gasoline range compounds are significant

h = One to a few isolated peaks present

k = Oil range compounds are significant

m = Stoddard solvent/mineral spirit

o = MTBE by EPA Method SW8260B

* = Well inaccessible during site visit

j = Aged diesel is significant

p = No recognizable pattern

Notes

Tabulated data prior to September 22, 2011 was provided by Conestoga-Rovers & Associates (CRA) Notes for Previously Collected Data

All site wells were re-surveyed by Virgil Chavez Land Surveying on June 2, 2004 to the CA State

Coordinate System, Zone III (NAD83). Benchmark elevation = 177.397 feet (NGVD 29)

SPH = Separate-phase hydrocarbons depth measured from TOC

(Z) = Laboratory used Zemo Gravity Separation Protocol for Extractables & Purgeables

(Z^{TPHd}) = Laboratory used Zemo Gravity Separation Protocol for Extractables (TPHd)

() = Zero Gravity Separation Protocol Use Prior to Analysis

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method SW8015C

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method SW8015C; with Dawn Zemo Separation in (parentheses)

TPHmo = Total petroleum hydrocarbons as motor oil by modified EPA Method SW8015C

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method SW8021B

MTBE = Methyl tertiary butyl ether by EPA Method SW8021B, or by SW8260B (designated by parentheses)

Sheen = A sheen was observed on the water's surface.

Field = Observed in field

Lab = Observed in analytical laboratory

Notes:

a = Result has an atypical pattern for diesel analysis b = Result appears to be a lighter hydrocarbon than diesel

Weber, Haves and Associates Notes:

Newly installed wells MW-5 and MW-6 were professionally surveyed and tied into the existing well network by Mid-Coast Engineers on November 2, 2012.

- 1 = Water Quality Objectives: Based on Maximum Contaminant Levels (Department of Health Services) or taste & odor threshold limits.
- BOLD = Above WQO Threshold Limits.

2 = "Split" sample was collected by traditional purging and sampling technique (i.e., submersible pump purging at 1 gpm; sample upon sufficient well recovery) rather than low-flow sampling technique in order to compare/contrast analytical results as a function of sample technique.

TAME (Tert-amyl-methyl ether), TBA (tert-Butyl alcohol), EDB (1,2-Dibromoethane), 1,2-DCE (1,2-Dichloroethene), DIPE, (Diisopropyl ether), ETBE (Ethyl Tert-Butyl Ether).

Bold Font = Detected concentration exceeds Water Quality Objectives

* = Laboratory report indicates that although TPH-gas results are present, sample chromatogram does not resemble pattern of reference Gasoline standard (possibly aged gasoline)

- ** = Laboratory reports that result not typical of Diesel #2 standard pattern (possibly aged diesel or other fuel within the diesel quantification range such as diesel #4 or fuel oil).
- *** = Laboratory report indicates that the sample chromatographic pattern does not resemble typical diesel standard pattern; unknown fuel pattern lighter than diesel possibly a type of naptha or weathered gasoline.
- ^ = Sample chromatographic pattern does not resemble typical diesel standard pattern; unknown organics within diesel range quantified as diesel.
- ∇ = Not typical of Gasoline standard pattern. Result due to discrete peak (Benzene).
- J = Laboratory indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative.

* = Laboratory report indicates although TPH Gasoline compounds are present, the sample pattern does not match pattern of reference Gasoline standard. Hydrocarbons within range of C5-C12 quantified as Gasoline.

▲ = Laboratory reports result does not match pattern of reference Gasoline standard. Reported TPH value includes amount due to discrete peaks and non-target hydrocarbons within range of C5-C12 quantified as Gasoline.

TOC = Top of Casing

= Diesel result due to discrete unknown peaks within quantified range

+ = Does not match pattern of reference Gasoline standard. Reported value is the result of extractable hydrocarbons overlap.

💠 = Wells RW-5 and RW-7 exhibited anomalously high water levels on March 30, 2012; analytical results from well RW-5 are likely not representative.

Table 6: Estimated Cost for Focused Excavation of Secondary Source Hydrocarbons Below Former USTsFormer Exxon Station, 3055 35th Avenue, Oakland, CAWeber, Hayes and Associates Project 2X103

ITEM / DESCRIPTION	UNIT	UNIT COST	NUMBER OF UNITS	ITEM COST	тот
Refer to Figure 21					
4 Direct Push Borings with Soil Samples & Laboratory Analyses and Landfill Acceptance Coordination	Lump	\$12,100	1	\$12,100	
Properly Destroy All Monitoring and Remediation Wells (including Permits, assume pressure grout)	Lump	\$10,750	1	\$10,750	
Soil Excavation Contractor - Excavate, Segregate, & Load Contaminated Soil. Place Gravel/Backfill & Compact	cubic yard	\$160	1,400	\$224,000	
Backfill for Contaminated Soil/Non-Reusable Pea Gravel (Assume 850 Cubic Yards = 1,200 tons)	ton	\$12	1,200	\$14,400	
Compaction Testing	Lump	\$6,500	1	\$6,500	
Trucking/Hauling Soil to Kirby Landfill	ton	\$20	850	\$17,000	
Soil Disposal	ton	\$85	850	\$72,250	
Post-Excavation Soil Gas and Groundwater Sampling	Lump	\$12,250	1	\$12,250	
Project Management, Documentation and Technical Reporting	Lump	\$50,000	1	\$50,000	

Total: \$419,250

Table 7: Estimated Cost for Excavation of Secondary Source Hydrocarbons by Large Diameter AugerFormer Exxon Station, 3055 35th Avenue, Oakland, CAWeber, Hayes and Associates Project 2X103

ITEM / DESCRIPTION	UNIT	UNIT	NUMBER	ITEM	TOTAL	
		COST	OF UNITS	COST		
Refer to Figure 22						
8 Direct Push Borings with Soil Samples & Laboratory Analyses and Landfill Acceptance Coordination	Lump	\$14,300	1	\$14,300		
Properly Destroy All Monitoring and Remediation Wells (including Permits, assume pressure grout)	Lump	\$10,750	1	\$10,750		
Large Diameter Auger Contractor - Excavate Contaminated Soil: 18 6-ft dia. Holes to 20 feet = 670 cubic yards	Lump	\$98,000	1	\$98,000		
On-Site Soil Management / Load Contaminated Soil	Cubic Yard	\$55	670	\$36,850		
2-Sack Sand Slurry Backfill to Allow LDA	Cubic Yard	\$180	670	\$120,600		
Backfill for op two Feet of Each Hole (Assume 70 Cubic Yards = 100 tons)	ton	\$12	100	\$1,200		
Compaction Testing	Lump	\$6,500	1	\$6,500		
Trucking/Hauling Soil to Kirby Landfill	ton	\$20	938	\$18,760		
Soil Disposal	ton	\$75	938	\$70,350		
Post-Excavation Soil Gas and Groundwater Sampling	Lump	\$12,250	1	\$12,250		
Project Management, Documentation and Technical Reporting	Lump	\$50,000	1	\$50,000		

Total: \$439,560

Table 8: Estimated Cost for Dual Phase Extraction at Former USTsFormer Exxon Station, 3055 35th Avenue, Oakland, CAWeber, Hayes and Associates Project 2X103

ITEM / DESCRIPTION	UNIT	UNIT	NUMBER	ITEM	ΤΟΤΑΙ	
		COST	OF UNITS	COST		
Refer to Figure 23						
Dual Phase Extraction Pilot Test to Determine zones of influence	Lump	\$17,500	1	\$17,500		
DPE System Design and Engineering	Lump	\$45,000	1	\$45,000		
Reconnect Electrical Service, Obtain Building, Air, and Treated Water Disposal Permits	Lump	\$25,000	1	\$25,000		
Install 12 new, properly screened Remediation Wells and connect wells to remediation system compound	Lump	\$38,000	1	\$38,000		
Remediation System Equipment and Installation	Lump	\$125,000	1	\$125,000		
Remediation System Commissioning including start up samples and report	Lump	\$15,000	1	\$15,000		
Remediation System Operations and Maintenance including electrical power costs	Month	\$5,500	24	\$132,000		
Semi-Annual Groundwater Monitoring	Each	\$5,000	4	\$20,000		
One-Year Remediation Progress Assessment and Report	Lump	\$5,000	1	\$5,000		
Post-Remediation Groundwater Monitoring and Soil Gas Sampling - Request for Closure (as appropriate)	Lump	\$7,500	1	\$7,500		
Remediation System Demobilization, Well Destruction and Site Restoration	Lump	\$60,000	1	\$60,000		

Total: \$490,000

APPENDIX A

PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE CHEMICALS OF CONCERN

Weber, Hayes and Associates

Appendix A

Physical and Chemical Characteristics of the Chemicals of Concern

This appendix describes the physical and chemical characteristics of the Chemicals of Concern (COCs) at the fuel release site at 3055 35th Avenue, Oakland, California.

The Chemicals of Concern at the site are: benzene, ethylbenzene, methyl tert butyl ether (MTBE), and naphthalene. The physical and chemical characteristics of these substances, including their toxicity, persistence, and potential for migration in water, soil, and air are described below.

A release of petroleum hydrocarbons or other chemicals to the environment can result in an acute (immediate) or a chronic (long-term) hazard to life or health (Lessenger, 1996). In general, chronic hazards are associated with long-term exposure to relatively low levels of chemicals, whereas acute hazards involve high concentrations sufficient to pose an immediate risk of fire, explosion or health impairment.

Protection from chronic health hazards associated with long term ingestion of a chemical via drinking water is regulated by Maximum Contaminant Level Goals (MCLGs) and Maximum Contaminant Levels (MCLs). Maximum Contaminant Level Goals are non-enforceable levels, based solely on possible health risks and exposure, such that consumption of a chemical at concentrations below these levels throughout one's lifetime will cause no adverse health effects. The Safe Drinking Water Act requires the U.S. Environmental Protection Agency (EPA) to determine MCLGs for chemicals in drinking water, which do or may cause health problems.

Maximum Contaminant Levels (MCLs) are enforceable standards set as close to the MCLGs as possible, considering the ability of public water systems to detect and remove contaminants using suitable treatment technologies. The EPA sets national MCLs based on health and economic criteria (the cost of meeting the MCLs). States may set more rigid (lower) MCLs.

BENZENE

Benzene is a clear, colorless aromatic liquid. It is highly flammable. The greatest use of benzene is as a building block for making plastics, rubber, resins and synthetic fabrics like nylon and polyester. Other uses include: as a solvent in printing, paints, dry cleaning, etc. Benzene is found in crude oil and is a constituent of gasoline, which is refined from crude oil. Gasoline usually contains two to seven percent benzene.

A-1

Drinking Water Standards

The MCLG for benzene has been set at zero because EPA believes this level of protection would not cause any of the health effects described below.

The U.S. MCL for benzene has been set at 5 micrograms per liter (μ g/L, parts per billion, ppb) because EPA believes, given present technology and resources, this is the lowest level to which water systems can reasonably be required to remove this contaminant should it occur in drinking water.

The state of California (Department of Public Health [DPH]) has set the MCL for benzene in drinking water in California of 1 ppb. The Central Coast Regional Water Quality Control Board's Basin Plan has identified all groundwater in the Central Coast Region as a potential source of drinking water, and the groundwater quality objective for benzene is 1 ppb.

Health Effects

Short-term: EPA has found benzene to potentially cause the following health effects when people are exposed to it at levels above the MCL for relatively short periods of time: temporary nervous system disorders, immune system depression, and anemia.

Breathing very high levels of benzene can result in death, while high levels can cause drowsiness, dizziness, rapid heart rate, headaches, tremors, confusion, and unconsciousness. Eating or drinking foods containing high levels of benzene can cause vomiting, irritation of the stomach, dizziness, sleepiness, convulsions, rapid heart rate, and death.

Long-term: Benzene has the potential to cause the following effects from a lifetime exposure at levels above the MCL: chromosome aberrations, cancer.

The major effect of benzene from long-term exposure is on the blood. Benzene causes harmful effects on the bone marrow and can cause a decrease in red blood cells leading to anemia. It can also cause excessive bleeding and can affect the immune system, increasing the chance for infection.

Animal studies have shown low birth weights, delayed bone formation, and bone marrow damage when pregnant animals breathed benzene.

The U.S. Department of Health and Human Services (DHHS) has determined that benzene is a known human carcinogen. Long-term exposure to high levels of benzene in the air can cause leukemia, cancer of the blood-forming organs.

The Occupational Safety and Health Administration (OSHA) has set a permissible exposure limit of 1 part of benzene per million parts of air (1 ppm) in the workplace during an 8-hour workday, 40-hour workweek.

Movement / Persistence in the Environment

Air: If benzene is released to the atmosphere it will exist primarily in the vapor phase. Vapor phase benzene is not subject to direct photolysis, but will react with photochemically produced hydroxyl radicals. Because benzene is soluble in water, it will be removed from the atmosphere by rain.

Soil: If benzene is released to soil, it will either evaporate or leach to groundwater because it is extremely mobile in soil. Microbes in soil may degrade benzene, but this is a slow process.

Surface Water: If benzene is released to surface water, most of it should evaporate within a few hours. Though it does not degrade by reacting with water, microbes may degrade it. It is not likely to accumulate in aquatic organisms.

Groundwater: Benzene moves with the advective flow of groundwater, but its' movement is retarded by interaction with soil particles and organic material in the subsurface. Hence, benzene does not move at the full advective velocity of groundwater. Microbes in groundwater can break down benzene. However, it has been found to persist for years in groundwater.

ETHYLBENZENE

Ethylbenzene is a colorless organic liquid with a sweet, gasoline-like odor. The greatest use - over 99 percent - of ethylbenzene is to make styrene, another organic liquid used as a building block for many plastics. It is also used as a solvent for coatings, and in making rubber and plastic wrap.

Drinking Water Standards

The U.S. MCLG for ethylbenzene is 700 ppb.

The U.S. MCL for ethylbenzene has been set at 700 ppb.

The state of California (DPH) has set the MCL for ethylbenzene in drinking water in California of 700 ppb. The Central Coast Regional Water Quality Control Board's Basin Plan has identified all groundwater in the Central Coast Region as a potential source of drinking water, and the groundwater quality objective for ethylbenzene is 700 ppb.

Health Effects

Short-term: EPA has found ethylbenzene to potentially cause drowsiness, fatigue, headache and mild eye and respiratory irritation from short-term exposures at levels above the MCL.

Long-term: Ethylbenzene has the potential to cause damage to the liver, kidneys, central nervous system and eyes from long-term exposure at levels above the MCL.

Cancer: There is inadequate evidence to state whether or not ethylbenzene has the potential to cause cancer from a lifetime exposure in drinking water.

Movement / Persistence in the Environment

Air: If ethylbenzene is released to the atmosphere it will exist primarily in the vapor phase. Vapor phase ethylbenzene is not subject to direct photolysis, but will react with photochemically produced hydroxyl radicals at a moderate rate. Because ethylbenzene is soluble in water, it will be removed from the atmosphere by rain.

Soil: If ethylbenzene is released to soil, it will either evaporate or leach to groundwater because it is mobile in soil. Ethylbenzene may be degraded by microbes in soil, but this is a slow process.

Surface Water: If ethylbenzene is released to surface water, it will evaporate within a few days. Though ethylbenzene does not degrade by reacting with water (hydrolysis), it is degraded by microbes. It is not likely to accumulate in aquatic organisms.

Groundwater: Ethylbenzene moves with the advective flow of groundwater, but its' movement is retarded by interaction with soil particles and organic material in the subsurface. Hence, ethylbenzene does not move at the full advective velocity of groundwater. Ethylbenzene can be broken down by microbes in groundwater.

METHYL TERT BUTYL ETHER (MTBE)

MTBE is a member of a group of chemicals commonly known as fuel oxygenates. Oxygenates are added to fuel to increase its oxygen content. MTBE is used in gasoline throughout the United States to reduce carbon monoxide and ozone levels caused by auto emissions. MTBE replaces the use of lead as an octane enhancer since 1979.

Drinking Water Standards

The EPA has not set an MCLG for MTBE. MTBE is on the EPA drinking water Contaminant Candidate List (CCL) for further evaluation to determine whether or not regulation with a National Primary Drinking Water Regulation (NPDWR) is necessary. The CCL divided the contaminants among those which are priorities for additional research, those which need additional occurrence data, and those which are priorities for consideration for rulemaking. The Agency determined that MTBE needs more health effects research and occurrence data before a regulatory determination can be made.

The EPA has not set an MCL for MTBE.

The state of California Department of Public Health (DPH) has set a primary MCL for MTBE in drinking water in California of 13 ppb. The DPH has set a secondary MCL of 5 ppb for MTBE based on taste and odor criteria.

Health Effects

Short-term: MTBE has been found to cause headaches, nausea, dizziness, and breathing difficulties. Existing studies of the acute health risks do not support claims that the use of MTBE in gasoline causes significant increases in acute symptoms.

Some research shows that humans can begin to smell MTBE in water at concentrations less than 20 ppb, and to taste MTBE in water at concentrations of about 40 ppb.

Long-term: There are no studies of MTBE's carcinogenicity in humans, but studies indicate that MTBE is a carcinogen in rats and mice. The EPA has classified MTBE as a group C Chemical, a possible human carcinogen.

Movement / Persistence in the Environment

Air: If MTBE is released to the atmosphere it will exist primarily in the vapor phase. Vapor phase MTBE is not subject to direct photolysis, but will react with photochemically produced hydroxyl radicals at a moderate rate (estimated at 4 to 11 days). Because MTBE is extremely soluble in water, it will be removed from the atmosphere by rain.

Soil: If MTBE is released to soil, it will either evaporate or leach to groundwater because it is extremely mobile in soil. MTBE may be degraded by microbes in soil, but this is a very slow process.

Surface Water: If MTBE is released to surface water, it will evaporate, but the evaporation process depends heavily on the movement and turbulence of the water. MTBE may remain in a deep slow moving body of water for several months, while it may be removed within a few days from fast moving shallow water

Groundwater: MTBE moves with the advective flow of groundwater, and its' movement is not significantly retarded by interaction with soil particles and organic material in the subsurface. Hence, MTBE moves at the full advective velocity of groundwater. MTBE may be broken down by microbes in groundwater.

NAPHTHALENE

Naphthalene is a white crystalline solid. It is the simplest polycyclic aromatic hydrocarbon (PAH). Naphthalene is the most abundant single component of coal tar. Naphthalene is naturally present in fossil fuels such as petroleum and coal. Most of the naphthalene produced in the United States comes from petroleum by the dealkylation of methylnaphthalenes in the presence of hydrogen at high temperature and pressure. Another common production method is the distillation and fractionation of coal tar.

Drinking Water Standards

The California Drinking Water Notification Level for naphthalene is 17 ppb.

Health Effects

Short-term: Exposure to naphthalene has the potential to cause eye irritation, gastrointestinal affects (nausea and diarrhea), and headaches from short-term exposures.

Long-term: Naphthalene has the potential to cause cataracts and hemolytic anemia from long-term exposure at levels above the MCL.

Cancer: There is inadequate evidence to state whether or not naphthalene has the potential to cause cancer from a lifetime exposure in drinking water.

Movement / Persistence in the Environment

Direct releases to the air account for more than 90% of the naphthalene entering environmental media (ATSDR, 1997). The primary discharge source is residential combustion of wood and fossil fuels. Other residential sources of naphthalene include tobacco smoke and the vaporization of moth repellants.

Naphthalene may also be released to air during coal tar production and distillation, aeration processes in water treatment plants, and from use of naphthalene during chemical manufacturing (ATSDR, 1997).

About 5% of environmental naphthalene is released into water, primarily from coal tar production and distillation processes (ATSDR, 1997). Other contributors to water releases include effluents from wood preserving facilities and oil spills. More than half of these releases are to surface water (ATSDR, 1997). According to ATSDR (1997), only about 2.7% of naphthalene releases are discharged to land, but that number increased to 37% in the most recent year for which data are available (Table 3-1). Sources for release to land include coal tar production, naphthalene production, publicly operated treatment works (POTWs) sludge disposal, and the use of naphthalene-containing organic chemicals.

The primary removal process for naphthalene in air is through reactions with hydroxyl radicals. Naphthalene will also react with atmospheric N_2O_5 , nitrate radicals, and ozone. The major products of these reactions are 1- and 2-naphthol and 1- and 2-nitronaphthalene. The half-life of atmospheric naphthalene is less than 1 day (ATSDR, 1997).

Naphthalene is lost from surface water via several mechanisms. Volatilization into the air is the most important route of loss from surface water (ATSDR, 1997).

A small fraction (less than 10%) of naphthalene in water will be associated with particulate matter and will settle into sediments (ATSDR, 1997). Naphthalene that remains in surface water will be degraded through photolysis and biodegradation processes. Naphthalene undergoing photolysis has a half-life of about 71 hours (ATSDR, 1997). Biodegradation of this chemical also occurs quite rapidly, although degradation time will vary with naphthalene concentration, water temperature, and the availability of nutrients (U.S. EPA, 1986d). In general, the rate of biodegradation increases as the concentration of naphthalene increases. The half-life Naphthalene — February 2003 3-4 of naphthalene in oil-polluted water versus unpolluted water is approximately 7 and 1,700 days, respectively (ATSDR, 1997).

Volatilization from soil surfaces and biodegradation are important processes for the removal of naphthalene from soil (U.S. EPA, 1986). The estimated volatilization half-lives for naphthalene from soil containing 1.25% were 1.1 day from soil 1 cm deep and 14 days from soil 10 cm deep. Maximum biodegradation is reported to occur at a pH of 8 and in the presence of a positive redox potential (U.S. EPA, 1986). Naphthalene is degraded to carbon dioxide and salicylate by aerobic microorganisms (ATSDR, 1997). Therefore, soil aerobic conditions strongly influence the half-life of the chemical. In

addition, soil organic matter is an important factor in degradation time because the adsorption of naphthalene to organic matter significantly decreases its bioavailability to microorganisms.

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR), 1997. *Toxicological Profile for Benzene, Toluene, Ethylbenzene and Xylenes*, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Howard, Phillip H, Handbook of Environmental Fate and Exposure Data, Lewis Publishers, Chelsea Michigan, 1991, 546 pp.

Jacobs, James, Jacques Guertin, Christy Herron, *MTBE: Effects on Soil and Groundwater Resources*, Lewis Publishers, CRC Press, Boca Raton, Florida, 2001, 245 pp.

Lessenger, James E., M.D., *Petroleum Poisoning in Two Rural Families*, Journal of the American Board of Family Practitioners, Vol. 9, No. 4, July - August 1996

National Primary Drinking Water Regulations, U.S. EPA <u>www.epa.gov/safewater/mcl.html</u>

U.S. EPA 1986, *Health and Environmental Effects Profile for Naphthalene*, Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, D.C. EPA/600/X-86/241

APPENDIX B

SITE DESCRIPTION AND SUMMARY OF PREVIOUS INVESTIGATIONS AND CORRECTIVE ACTIONS

Weber, Hayes and Associates

Appendix B: Site Description and Summary of Previous Investigations and Corrective Actions

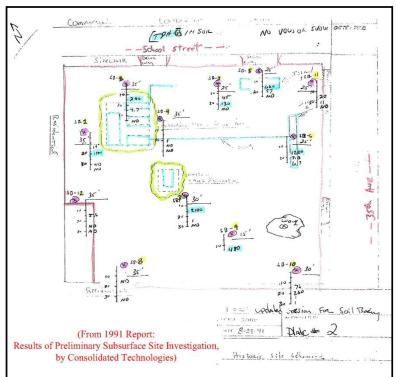
Site Description and Surrounding Land Use

The Site is a vacant, undeveloped lot located at the northeast corner of 35th Avenue and School Street, in Oakland, California (see aerial photo, right). The Site is flat-lying, but the regional topography generally slopes southwestward from the Oakland hills towards the San Francisco Bay (see Location Map, Figure 1). The Site was occupied by an Exxon fuel dispensing and automotive service station between 1970 and 1991.

Historical aerial photographs dated 1959, 1980, and 2000, agree with reports stating the

Site's fuel dispensing station was constructed around 1970 and was decommissioned in 1991, when the Site's five (5) underground storage tanks (USTs) were removed and the gasoline fuel release was first discovered. The Site has remained an undeveloped, unpaved vacant lot since the Exxon station was demolished.

The general area surrounding the Site is a mixture of commercial businesses along the main thoroughfares and residential neighborhoods beyond the thoroughfares. An abandoned, former Texaco gas station is located immediately upgradient of the Site, across School Street to the east. Previous reports indicate the UST's from this station were removed in approximately 1984, but there is no record that closure soil samples were collected. An active Quick Stop fueling station is operating east of the site, on the other side of 35th Street. A Vicinity Map is presented on Figure 2.


Site information is summarized in the Table below.

Site Information Details											
Site Address:	3055 35th Avenue, Oakland	APN No. 027-0890-006-02									
	currently a vacant lot										
Owner:	Golden Empire Properties, Inc	Mr. Lynn Worthington									
Agency Contacts:	Alameda County Environmental Health	Keith Nowell									
	(Case #RO 0000271 ¹)	keith.nowell@acgov.org									
	San Francisco Bay RWQCB	Cherie McCaulou									
	(Case #: 01-0585 ²)	cmccaulou@waterboards.ca.gov									

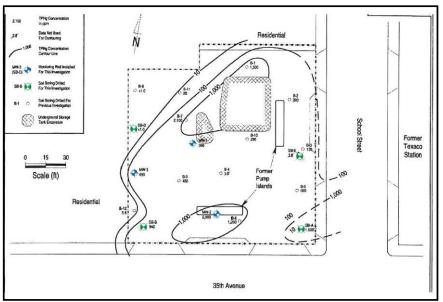
Summary of Previous Soil and Groundwater Investigations and Corrective Actions

1991, Fuel Tank Removals: In January 1991, Pacific Excavators is reported to have removed two (2) 4,000-gallon, and two (2) 6,500-gallon gasoline USTs, and one (1) 500-gallon waste oil UST from the Site. While there are some figures indicating soil stockpiles were present on-site, there is no record of UST pit over-excavation or off-site disposal. Figure 2 shows the location of the UST excavation. Subsequent environmental reports indicated that <u>no</u> UST closure samples were analyzed.

1991, Initial Soil Sampling Investigation: In November 1991, Consolidated Technologies installed twelve (12) soil borings (B-1 to B-12) via hollow stem auger and collected soil samples from depths of 15 to 35 feet below ground surface (bgs). Boring locations are shown in figure clip to the right. A gasoline release was confirmed based on field observations of moderate-to-strong petroleum odors in eleven of the twelve soil borings, generally encountered at depths of approximately 12-to-22 feet (in the groundwater fluctuation, or "smear" zone). Laboratory analyses confirmed the presence of Total Petroleum Hydrocarbons as gasoline (TPHg) in samples collected from eleven of the twelve soil borings. The maximum concentration of

¹: ACEH Site website: <u>http://ehgis.acgov.org/dehpublic/dehpublic.jsp</u>

²: RWQCB Site website: <u>http://geotracker.swrcb.ca.gov/profile_report.asp?global_id=T0600100538</u>



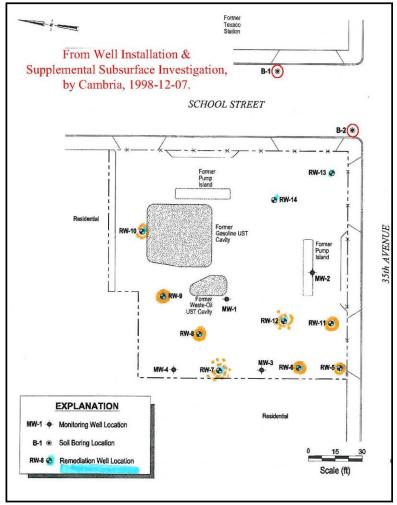
TPH-g was detected at a depth of 15 feet bgs in boring B-7: 2,100 milligrams per kilogram (mg/kg, parts per million, ppm).

The highest concentrations of TPH-g and the volatile constituent compounds of gasoline -- benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in soil samples collected at 15 and 20 feet bgs. We note that samples from the boring installed near the removed waste oil UST (B7), did not contain any of the additional contaminants of concern for a waste oil release: TPH-diesel, petroleum oil and grease, semi volatile organic compounds (analysis by EPA Method 8270), or other volatile solvent compounds beside BTEX (analysis by EPA Method 8010). This data indicated there was not a release from the waste oil UST. Also of note was that only limited petroleum hydrocarbon contamination was observed in the two downgradient borings, B-8 and 12.

1994, Follow-up Subsurface Investigation and Monitoring Well Installation: In May 1994, Cambria Environmental Technology, Inc. (Cambria) supervised the installation of seven (7) at hollow-stem auger

borings at the site, SB-A through SB-G, at the locations shown on the figure at right (see Figure 2 also). Two soil samples from each boring were analyzed for petroleum hydrocarbons. Three of the borings (SB-G, F, and C) were converted into monitoring wells (MW-1 through 3, respectively, each screened from 10 to 25 feet bgs). Groundwater samples were collected from the three newly installed wells. Grab groundwater samples were also collected from three other borings (SB-A, B and D). Boring logs indicated

hydrocarbons were not observed in the top ten feet of soil and moderate to very strong weathered gasoline odors were observed in all the borings at depths from approximately 10 to 20 feet bgs.

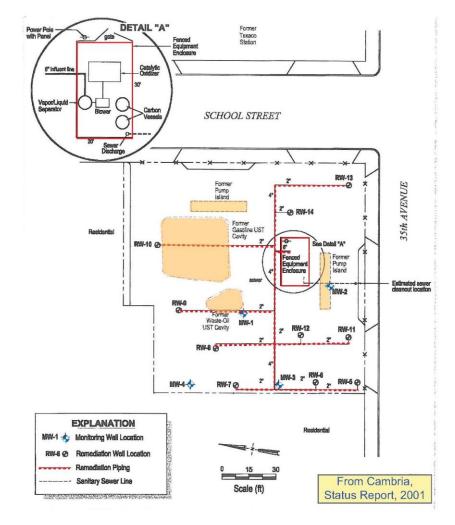

- <u>Soil Sample Analytical Results</u>: TPH-g was detected in soil samples collected from six of the seven soil borings. The maximum concentration detected was 2,900 ppm in SB-F/MW-2 at a depth of 15 feet bgs.
- <u>Groundwater Sample Analytical Results</u>: TPH-g and benzene were detected in all six groundwater samples. The maximum TPH-g/benzene concentrations detected in grab groundwater samples were 120,000/10,000 micrograms per liter (μg/L, parts per billion, ppb) in SB-B at 15 feet bgs. The maximum TPH-g/benzene concentrations detected in a developed monitoring well were similar, 120,000/22,000 ppb in MW-1.

1996, Remediation Feasibility Testing: In July 1996, Cambria conducted a series of remediation feasibility tests for soil vapor extraction (SVE), SVE combined with air sparging, and SVE combined with groundwater extraction (Dual Phase Extraction, DPE). SVE vacuums of up to 150 inches-of-water were applied to the three monitoring wells for 20 to 45 minutes (approximately 5-feet of well screen was available for SVE above groundwater). The TPH-g concentrations in soil vapor samples collected from each well at the end of the SVE test ranged from less than 250 parts per million by volume (ppm_v) in test wells MW-1 and MW-2, to greater than 10,000 ppm_v in test well MW-3 at the western/downgradient end of the Site. Cambria did not note any significant increases in air flow or TPH-g concentrations in extracted soil vapor when SVE was combined with air sparging.

The generally low air and groundwater flow rates observed by Cambria during remediation tests are indicative of low permeability soils. Results of the remedial feasibility testing indicated that SVE, either alone or combined with air sparging, would not be effective in removing hydrocarbons from the subsurface. However, Cambria believed that DPE was a promising remedial alternative.

1997, Additional Downgradient, Monitoring Well: In February 1997, Cambria installed one additional on-site monitoring well via hollow-stem auger (MW-4, screened from 10-30 feet bgs) at the downgradient (west) corner of the parcel. Soil samples for logging were obtained on 5-foot intervals but no field measurements (photoionization meter) or contaminant observations were included on the log. Two soil samples from the boring that were analyzed contained TPH-g; the maximum concentration, 530 ppm, was detected at a depth of 15 feet bgs. TPH-g and benzene were detected in a groundwater sample collected from the new well at concentrations of 47,000 and 11,000 ppb, respectively.

1998, Remediation Well Installation (see adjacent figure): In August 1998 Cambria installed ten (10), 4-inch diameter, DPE remediation wells (RW-5 through RW-14) at the Site. Soil samples for logging were obtained from the hollow-stem augers on 5-foot intervals (5 borings) or directly from augured drill cuttings (5 borings). The majority of borings had very similar subsurface


logs (low permeability clayey sands/gravels, and sandy clays having strong to moderate petroleum hydrocarbon odors in the groundwater fluctuation, smear zone). No soil samples were submitted to a laboratory for analyses.

In addition to the 10 installed remediation wells, an attempt was made to obtain upgradient, hydropunch-type, grab groundwater samples (two geoprobe borings, B-1 and B-2), on School Street. Sampling rods were advanced directly to depths of 28 and 38 feet (no soil cores were collected). Apparently, the low permeability soils encountered at those depths did not produce groundwater, so no water samples were collected.

1999, Interim Remedial Action - Injection of Hydrogen Peroxide: In August 1999, Cambria poured a limited volume (7-12 gallons) of 7.5% hydrogen peroxide solution into each of the four monitoring wells and ten remediation wells in an attempt to oxygenate impacted groundwater to stimulate bio-

degradation of hydrocarbons while DPE remediation system planning and construction was underway. Dissolved oxygen concentrations in groundwater did significantly increase not nor did contaminant concentrations decrease following the placement of hydrogen peroxide into the on-site wells. The results did not change ongoing plans for installing a DPE remediation system.

2000-2004, Site Remediation by Dual-Phase Vacuum Extraction: In October 2000, Cambria initiated remediation by DPE at the Site using a 200 cubic foot per minute (cfm) positive-displacement blower. The vacuum generated by the blower simultaneously extracted soil vapor and groundwater containing hydrocarbons from the remediation wells and pulled them to a centrally located treatment compound where the extracted air and water streams were separated. Vapor phase hydrocarbons were destroyed using a catalytic oxidizer, and dissolved phase hydrocarbons were

removed from the extracted groundwater by two, 1,000-lb carbon canisters prior to discharging the

treated water to the sanitary sewer. In August 2002, the positive-displacement blower was replaced by a more powerful 20-horsepower liquid ring pump capable of generating higher vacuums. The upgraded system was designed to simultaneously extract soil vapor and groundwater from the four monitoring wells (MW-1 though MW-4) and the ten remediation wells (RW-5 through RW-14) using 1-inch diameter suction hose "stingers" lowered to depths typically ranging from 16-20 feet bgs in each well.

The DPE remediation system operated from October 2000 to September 2004. Approximately 6,545 pounds of vapor-phase hydrocarbons were removed during 13,965 hours of DPE at the Site. Approximately 11 pounds of dissolved-phase hydrocarbons were removed from 1,447,419 gallons of groundwater extracted from the Site (equal to an average groundwater extraction rate of 1.7 gallons per minute). In September 2004, the DPE system was dismantled due to asymptotically low hydrocarbon removal rates.

2006, Proposed Additional Remedial Actions (January), and Off-site Delineation Workplan (July): Following the cessation of active remediation by DPE, Alameda County Environmental Health (ACEH) requested that a *Workplan* be prepared to implement an alternative remedial technique (December 2004). Post-remediation monitoring (2005) of six on-site wells (MW-1 through 4, and RW-5 and 9) showed sheen was present in each of the wells along with elevated concentrations of residual dissolved gasoline hydrocarbons, primarily TPH-g, benzene, and MTBE. The concentrations detected in 2005 in these 6 monitoring wells ranged from 9,400 to 53,000 ppb TPH-g, 1,200 to 6,100 ppb benzene, and non-detect to 2,300 ppb MTBE.

Cambria's *Revised Remediation Workplan* proposed completing interim remedial pilot testing of seven (7) sparge/injection points in order to confirm the ability and cost-effectiveness of *In-Situ Chemical Oxidation* (ISCO) as an option for cleanup of residual, fuel-impacted groundwater in a low-permeability, shallow aquifer. Gaseous ozone was selected as the ISCO oxidizer because of: 1) ozone gas' reported ability to transfer though fine-grained, saturated soils, and 2) ozone's ability to destroy hydrocarbons on contact.

ACEH believed that previous DPE remediation at the Site (2000-2004) was not successful due to the low permeability restrictions that Site soils have on air and groundwater flow, and those same restrictions would likely limit the distribution of sparged/injected ozone from coming into contact with residual hydrocarbon contamination (ACEH, May 2006). ACEH instead requested that: 1) the original *Corrective Action Plan* (dated 1996) be updated with new understandings of the subsurface conditions in order to better evaluate proposed remedial options, and 2) an *Off-site Soil and Groundwater Investigation Workplan/Site Conceptual Model* be submitted to delineate extent of off-site soil contamination, the extent of groundwater plume migration, and a survey of wells within 2,000 feet and other sensitive receptors.

Cambria's *Well and Sensitive Receptor Survey* (July 2006) concluded there were no potable supply wells, and that none of the active irrigation wells identified within a 2,000-foot radius of the Site were likely to

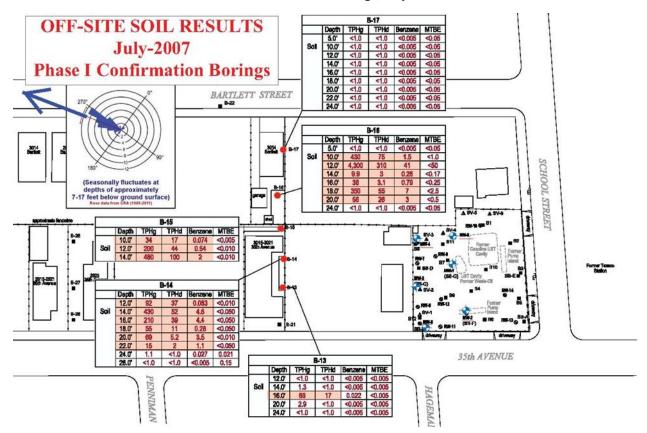
be impacted based on their relative upgradient/sidegradient locations. A review of other potential sensitive receptors (schools, churches, and surface water bodies) concluded there were negligible direct risks from impacted groundwater but there did exist a potential risk for plume off-gassing (vapor intrusion) if the residual hydrocarbon plume extended under residences (an identified "data gap"). Cambria's proposed data gap sampling plan called for off-site soil and groundwater sampling of six (6) downgradient borings installed at distances ranging between approximately 300 and 600 feet off-site.

ACEH's response opinion was that the distance between the proposed boring locations and the source was such that collected data would not be useful for Site characterization or delineation of the dissolved plume. In addition to requesting new proposed boring locations, ACEH requested completion of a soil gas investigation in the vicinity of the western property boundary.

2007 and **2008**, **On-Site Soil and Soil Gas, and Off-Site Soil, Soil Gas, and Groundwater Investigations**: In May and July 2007, and November and December 2008 Conestoga-Rovers and Associates (CRA, which had merged with Cambria) collected on-site soil gas and off-site soil, soil gas and groundwater samples to:

- Determine the extent of hydrocarbons in soil on- and off-site due to advective transport and seasonal groundwater fluctuation
- Identify whether subsurface soil gas concentrations indicated a potential vapor intrusion risk
- Investigate the extent of the dissolved petroleum hydrocarbon plume in groundwater

The Phase I investigation included:


- Collecting soil and groundwater samples from a transect of five (5) downgradient, continuously cored driven probe locations (B-13 through B-17, see figure below), and
- Collecting soil gas samples from six (6) on-site locations (SV-1 through 6)

Phase I Soil Sampling Results

Off-site, smear zone gasoline contamination was observed during continuous core logging of the Phase I borings from approximately 12 to 20 feet bgs, which were placed at accessible locations in a transect approximately perpendicular to the dominant groundwater flow direction 150 feet downgradient (west) of the Site. Laboratory analyses of soil samples from the Phase I transect borings confirmed field observations as elevated concentrations of gasoline constituents were detected in the samples collected from the smear zone, while no significant amounts of hydrocarbons were detected in shallow soil samples from 0 to 10 feet bgs (see shaded results, below). These results indicated hydrocarbons had likely been transported by advective groundwater flow from the Site.

Laboratory analytical results from <u>off-site groundwater</u> grab samples from the initial Phase I transect borings showed elevated concentrations of gasoline, benzene, and MTBE were present approximately

150 feet downgradient of the site, indicating that the dissolved gasoline plume extended to this point off-site. Phase I, <u>on-site soil gas</u> samples along the property line indicated that concentrations of hydrocarbons in shallow (5 feet bgs) soil gas were below commercial Low-Threat UST Case Closure Policy (LTCP) screening levels. Elevated concentrations of hydrocarbons were detected in deeper (10 feet bgs) soil gas samples. Phase I soil gas and groundwater sample results are discussed in more detail with Phase II results, below.

Phase I Off-Site Soil Borings, July 2007

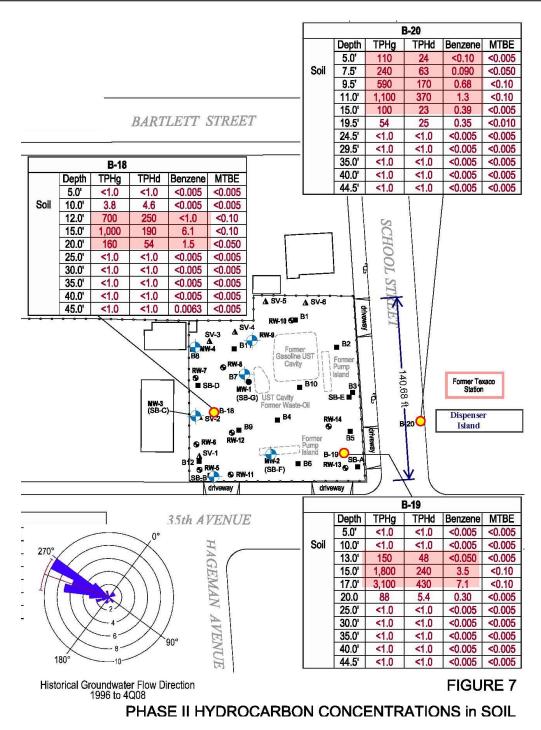
2008, **Phase II Additional Off-Site Characterization and Limited On-Site Investigations**: In October and November 2008, a follow-up round of *Phase II Off-site Characterization Sampling* was completed by CRA to address previous detections of elevated gasoline constituent concentrations in soil, groundwater, and soil gas. The follow-up, Phase II investigation included:

 Drilling eight (8), continuously cored step-out soil borings (off-site), one installed as an infill boring at the south end of transect 1 (B-21) and the remaining seven (B-22 to B-28) positioned in a transect downgradient of the Phase I transect (the second transect was placed at accessible locations generally about 240 feet downgradient of the initial Phase I transect, about 375 feet from the Site)

- Drilling one upgradient (off-site, B-20) and two on-site continuously-cored soil borings (B-18 and 19) to a depth of 45 feet bgs to: 1) inspect for potential upgradient contribution from an abandoned gas station site across School Street to the north (Texaco), and 2) inspect postremediation, on-site soil conditions
- Collecting eight (8), grab groundwater samples from on-site boring B-18, and off-site borings B-21 through B-28

Phase II Soil Sampling Results

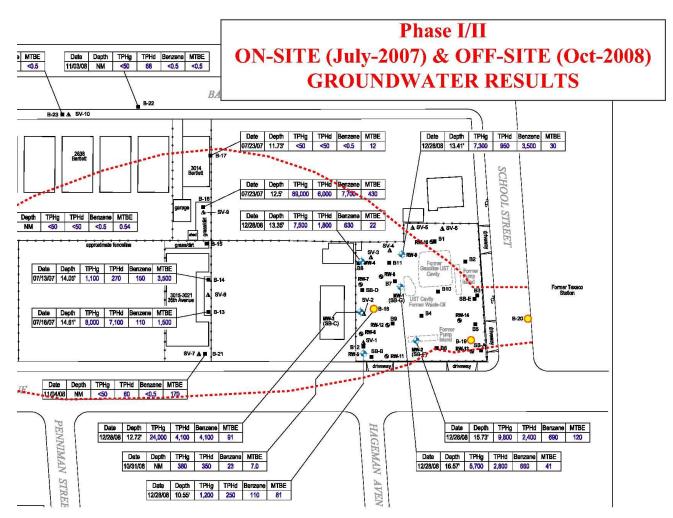
<u>Off-site Soils</u>: No additional <u>off-site</u>, smear zone gasoline contamination was observed during continuous core logging of the second, <u>downgradient</u> boring transect, which indicated smear zone impacts from lateral plume transport/fluctuating groundwater did not extended as far as the second transect. Laboratory analytical results of <u>off-site soil</u> samples confirmed field observations as hydrocarbons were not detected in any of the soil samples analyzed from the second transect borings.


<u>On-site Soils</u>: Smear zone gasoline contamination was observed in continuous soil cores collected from two, post-remediation borings drilled at the downgradient (B-18) and upgradient (B-19) sides of the property. Field observations and laboratory results confirmed elevated concentrations of residual gasoline contamination remained within the smear zone created by fluctuating groundwater, primarily at depths of approximately 12 to 20 feet bgs (see highlighted analytical results in the graphic below). Despite the removal of over 6,500 pounds of gasoline from the subsurface during four years of Dual Phase Extraction, residual hydrocarbon concentrations still exceeded regulatory thresholds. The lack of remedial success using Dual Phase Extraction as a cleanup technique is likely due to:

- 1. Dual phase extraction's inability to remove residual fuel contamination from low permeability soils at any significant distance from the too-widely spaces extraction wells, and
- 2. Contribution from a secondary, <u>upgradient</u> source or sources (the abandoned Texaco Station across School Street and/or the Quick Stop across and upgradient 35th Avenue). Data collected from exploratory boring B-20 (see figure below), which was drilled immediately adjacent to the former Texaco Station's fuel dispenser islands, confirmed field observations as laboratory analytical results of soil samples from this boring contained elevated concentrations of gasoline at very shallow depths (beginning at 5 feet bgs, see graphic below). These elevated, off-site gasoline concentrations, combined with the elevated gasoline concentrations detected in borings installed along the Site's upgradient property line indicate the abandoned Texaco station is an upgradient secondary source of contamination (see the analytical results from boring B-19, and previous borings SB-A & B-4).

In addition to the shallow contamination detected in upgradient boring (DP-20, see figure below) indicating a nearby, off-site source, it is notable that soil and groundwater data suggest this second source has no apparent evidence of the fuel additive MTBE. Specifically:

- MTBE was not detected in soil samples from the upgradient Texaco Station site.
- Results of groundwater collected from upgradient property line wells (RW-13 and 14) did not contain the fuel additive, while samples from mid-site and downgradient property line wells (MW-1 through MW-3 and RW-6 and RW-9) have contained MTBE. These distinctively different fuel fingerprints indicate a second source originates off site and the resulting plume is migrating onto the Site (discussed further below).



Phase II, Post-Remediation On-Site Borings (B-18, B-19) and Upgradient Boring B-20 (2008)

Phase I & II Groundwater Sampling Results

Grab groundwater samples were collected from Phase I and Phase II off-site boring transects, and from on-site boring B-18. The analytical data is compared with monitoring well sample analytical results from the fourth quarter 2008 in the graphic below. A groundwater sample was not collected from the upgradient boring B-20.

Groundwater Analytical Results (Phase I & II borings and monitoring wells)

<u>TPH-g</u> was detected in all on-site wells and borings (concentrations ranged from 380 to 24,000 ppb, with the maximum in MW-3), and five of the six first transect borings (concentrations ranged from "not detected" to 69,000 ppb, with the maximum in B-16, located directly downgradient of the Site). TPH-g was not detected in any of the downgradient, Phase II transect borings, indicating the TPH-g plume did not extend to this transect, approximately 375 feet west of the Site.

- <u>Benzene</u> was detected in all on-site wells and borings (concentrations ranged from 23 to 4,100 ppb, with the maximum in MW-3), and five of the six first transect borings (concentrations ranged from "not detected" to 7,700 ppb, with the maximum in B-16 [directly downgradient of the Site]). Benzene was not detected in any of the downgradient, Phase II transect borings, indicating the benzene plume did not extend to this transect, approximately 375 feet west of the Site.
- <u>MTBE</u>, was detected in all on-site wells and borings (concentrations ranged from 7 to 120 ppb, with the maximum in MW-2), and all first transect borings (concentrations ranged from 12 to 3,500 ppb, with the maximum in B-14). MTBE was detected in five of the seven downgradient, Phase II transect borings, but primarily at trace to non-detectable concentrations (from "not detected" to 150 ppb, with the maximum in B-27), indicating the MTBE plume did just extend to this transect, approximately 375 feet west of the Site, and may be following a specific higher permeability pathway. Based on the attenuation with distance demonstrated in this investigation we estimate the maximum extent of the MTBE plume is approximately 650 feet downgradient of the Site. We note that the nearest surface water body, Peralta Creek, is located approximately 1,150 feet downgradient of the Site.
- The set of groundwater data suggests two mingling sources at the site, because the analytical
 results of groundwater collected from upgradient property line wells (RW-13 and 14) did not
 contain MTBE, while mid-site and downgradient property line wells (MW-1 through MW-3 and
 RW-6 and RW-9) did contain MTBE. These differing fuel fingerprints indicate one source
 originates on-site and a second plume is migrating onto the Site.

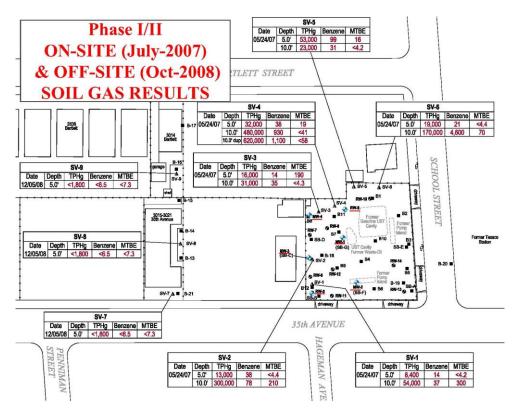
This set of groundwater analytical data indicated that a thin plume of MTBE extended from the Site to the second transect (375 feet downgradient of the site) in 2008. The low concentrations detected in the downgradient grab samples suggest the downgradient limit of the MTBE plume was in close proximity to the Phase II transect borings in 2008. The lack of TPH-g and benzene detections in the second transect indicated the dissolved hydrocarbon plume was stable 2008 and that TPH-g and constituent compounds were attenuating and limited to a distance between the two transects (approximately 250 feet from the Site).

Phase I & II Soil Gas Sampling Results

A round of off-site soil gas samples was collected in December 2008. Phase II soil gas sampling was completed at accessible locations along the two previously described soil and groundwater sampling transects, positioned approximately 150 feet (SV-7 through 9), and approximately 375 feet (SV-10 through 14), from the Site in the downgradient groundwater flow direction. Soil gas sample analytical results are discussed below:

• <u>TPH-g</u> was detected in all on-site, soil gas samples (concentrations at 5-feet bgs: 8,400-53,000 micrograms per cubic meter (ug/m³), with the maximum at SV-5; and increasing at the 10-feet

bgs sampling interval to 23,000-620,000 ug/m^3 , with the maximum at SV-4_{dup}). **TPH-g was not detected in any of the off-site soil gas samples (SV-7 through 14)**. The residential Environmental Screening Level for TPH-g in shallow soil (5 feet bgs) is 370,000 ug/m^3 . There is no LTCP screening Level for TPH-g in shallow soil gas.


- <u>Benzene</u> was also detected in all on-site soil gas samples (concentrations at 5 feet: 14-99 ug/m³, with the maximum at SV-5; and again increasing at the 10 feet bgs sampling interval to 31-4,600 ug/m³, with the maximum at SV-6). Benzene was not detected in any of the seven off-site soil gas sampling locations (SV-7 through SV-14). The LTCP residential/commercial threshold limits for benzene in soil gas is 85/280 ug/m³, respectively³.
- <u>MTBE</u> was detected in all on-site, soil gas samples but in only three of the shallow sampling intervals (concentrations at 5 feet: "not detected" to 190 ug/m³, with the maximum at SV-3; the 10 feet bgs sampling interval concentrations ranged from not detected in three of the soil gas samples to 300 ug/m³, with the maximum at SV-1). MTBE was not detected in any of the soil gas samples from the seven off-site soil gas sampling locations (SV-7 through SV-14). The residential/commercial threshold limits for MTBE in soil gas is 4,000/13,400 ug/m³, respectively⁴.
- <u>Toluene, Ethylbenzene, and Xylenes</u>: Trace concentrations of these constituent gasoline compounds were detected in a few offsite soil gas samples (SV-7, 10 and 13) but at concentrations well below established threshold limits.

Comparison of hydrocarbon concentrations in off-site shallow (5-feet bgs) soil gas (grpahic on page B-15) and groundwater samples (grpahic on page B-12, see also Figure 9 of this report) indicate that the off-site hydrocarbon plume does not pose a risk for off-site soil vapor intrusion by volatile constituents of gasoline. Compare the non-detectable levels of hydrocarbons in soil gas in SV-7, 8, and 9 with the levels of hydrocarbons in groundwater in samples from borings B-13, 14, 15, 16, and 21.

³: State Water Resources Control Board, *Low-Threat UST Case Closure Policy*, August 17, 2012

⁴ Department of Toxic Substances Control, Office of Environmental Health Hazard Assessment, *California Human Health Screening Levels* (CHHSLs), 2005

Soil Gas Sample Analytical Results

Includes Phase I borings (SV-1 thought SV-6, July 2007) and Phase II (SV-7 through SV-14)

The set of <u>soil gas</u> sample analytical results from 2007 and 2008 indicates that elevated soil gas concentrations persisted at the Site, primarily in deeper (10 feet bgs) soils seven years after the Dual Phase Extraction system was decommissioned. Concentrations of hydrocarbons in shallow (5 feet bgs) soil gas samples on-site were below residential LTCP screening levels, except for benzene in SV-5, which slightly exceeded the residential LTCP screening level, but was below the commercial LTCP screening level. The absence of hydrocarbons in in any of the off-site samples indicates there is no risk to off-site residences of vapor intrusion from VOCs off-gassing from smear zone soils or the dissolved plume. **2011 to Present Updated Site Conceptual Site Model, Groundwater Monitoring and Data Gap Investigation**: Weber, Haves and Associates (WHA) became the consultant for the site in 2011. WHA

Investigation: Weber, Hayes and Associates (WHA) became the consultant for the site in 2011. WHA conducted semi-annual groundwater monitoring as required by ACEH and prepared an *Updated Site Conceptual Model* (WHA, June 24, 2011).

WHA conducted a limited soil and groundwater *Data Gap Assessment* at the Site in May 2012 to: 1) confirm whether or not there were significant, contaminant contribution(s) originating from upgradient

active and/or abandoned fueling facilities, and 2) collect soil quality data at a few, previously untested, potential source locations (i.e., beneath the former UST locations and fueling dispensers) to assess both the effectiveness of previous on-site soil and groundwater cleanup efforts and determine the *current* magnitude of residual, on-site extent of hydrocarbons in soil. This *Assessment* was completed in order to fill data gaps identified in the *Site Conceptual Model* and lay the groundwork for selecting an appropriate remedial alternative for the Site.

The *Data Gap Assessment* indicated hydrocarbons were migrating with groundwater to the Site from the upgradient *active* QuikStop station across 35th Avenue and apparently to a lesser extent from the *abandoned* Texaco station across School Street. The observed increase of benzene in Site monitoring wells since 2009 can likely be attributed to these off-site releases.

Elevated levels of residual hydrocarbons in soil were concentrated primarily in the area at (below) the former gasoline USTs and excavation, from 10 to 21 feet bgs. Residual hydrocarbons in soil were also encountered at other locations, but at significantly lower concentrations – below the proposed cleanup goals for the Site.

Groundwater monitoring through July 2015 indicated that though concentrations of petroleum hydrocarbons in groundwater *at the Site* generally decreased over time, hydrocarbons are likely migrating onto the site from off-site, upgradient sources. Overall, groundwater monitoring data indicates the hydrocarbon plume *at the Site* is stable.

APPENDIX C

UPDATED CONCEPTUAL SITE MODEL - 2015

Weber, Hayes and Associates

Appendix C: Updated Conceptual Site Model - 2015

This Appendix presents the Updated Conceptual Site Model (CSM) for the underground storage tank release at 3055 35th Avenue in Oakland, California (the site). The CSM is a progressive assemblage of information regarding the distribution of chemicals of concern and the hydrologic setting of a site where chemicals of concern have been released to the environment. The CSM describes the site, surrounding land use, the source and distribution of the chemicals of concern in all affected environmental media (including soil, soil gas and groundwater), describes regional and site geology and hydrogeology and physical site characteristics that affect contaminant transport and fate, identifies potential exposure pathways and sensitive receptors, describes fate and transport characteristics of the chemicals of concern, other factors relevant to the release, corrective actions and their effects, identifies data gaps, and identifies all confirmed and potential receptors (including water supply wells, surface water bodies, structures and their inhabitants).

The CSM serves as the framework for the investigation, remediation and ultimately the closure of the chemical release site. The CSM is dynamic and is continually updated as more information is gathered. Subsequent investigations provide data to accurately define the conditions at the site. Eventually new data will not change the CSM, and it is considered validated.

The underground storage tanks (USTs) and associated piping that were the apparent source of the gasoline fuel hydrocarbon release (the chemicals of concern) at the site have been removed and the extent of hydrocarbons in soil and groundwater have been adequately defined. The CSM for the site is validated.

Local Geology and Hydrogeology

The Site is located within a large, regional, northwest-trending alluvial basin (the East Bay Plain Subbasin), that extends beneath the San Francisco Bay to the west. The Subbasin's regional aquifer in the vicinity of the Site has a westerly groundwater flow direction, towards San Francisco Bay. The East Bay Municipal Utility District (EBMUD) has supplied potable water to Oakland and other communities in the East Bay since the 1930's because of historical over-pumping that reportedly damaged the water supply aquifers by seepage or saltwater intrusion. EBMUD obtains its water from protected Sierra runoff in the Mokelumne River watershed, which eliminated the need for local groundwater supply wells. Local groundwater is not used for municipal or domestic supply.

Shallow soil conditions in the vicinity of the Site have been logged during the installation of twenty-four (24) on-site borings and seventeen (17) off-site borings drilled to a maximum depth of 45 feet below ground surface (bgs). First-encountered groundwater beneath the Site fluctuates seasonally, roughly between the depths of 8 and 18 feet bgs. Exploratory borings have been logged by a number of field geologists since subsurface drilling investigations were initiated in 1991. Soil samples obtained from the

earlier exploratory borings and well installation borings were collected using hollow stem drill rigs (5foot sample intervals) while more recently sampling (2007-2012) was completed using driven probe rigs (continuous core sampling). Although drill logs show individual geologist variation with logging descriptions, designations, and opinions of permeability, the unifying theme is that the subsurface soils consist of an extremely heterogeneous mix of several soil types (see Figures 18 and 19):

- The dominant soil type encountered consisted of low-permeability soils that included clays, clayey-mixtures (clayey-silts and clayey-sands), and silty-mixtures (sandy-silts);
- The secondary soil type encountered consisted of moderately-permeable sandy units (high silt content, fine-grained sand units identified as silty-sands with clay binder), and
- Occasionally, some relatively thin, discontinuous, highly-permeable sand lenses were encountered (low silt content silty-sands).

The geologic cross-sections show: 1) the interbedded, heterogeneous nature of soils beneath the Site, and 2) the ubiquitous presence of fine-grained clays and/or silts in the soil mixtures (low-to-moderately permeable units), which generally retard the vertical and lateral movement of precipitation, contaminants/Chemicals of Concern and groundwater.

<u>Note</u>: Remediation feasibility testing for soil vapor extraction, air sparging, and groundwater extraction techniques indicated air and groundwater flow rates in the subsurface were relatively low (no vacuum influence was observed in nearby wells during soil vapor extraction testing and groundwater extraction wells dewatered with no groundwater drawdown observed in nearby monitoring wells), which confirmed the low permeability conditions beneath the Site (Cambria, 1996).

First-encountered groundwater levels in Site monitoring wells have been measured to fluctuate from 6 to 19 feet bgs, but seasonal fluctuations generally fall between 8 and 18 feet¹ bgs. The survey-based calculated groundwater flow direction beneath the Site is primarily towards the west, as shown by the cumulative-flow, rose diagram to the right. The average groundwater gradient at the site is approximately 0.009 foot/foot (approximately 1 foot of groundwater drop for 111 feet of lateral run).

Source of Contamination

The on-site gasoline hydrocarbon contamination originated from the former USTs and associated appurtenances that were removed in 1991. Elevated concentrations of gasoline (Total Petroleum Hydrocarbons as gasoline [TPH-g], the volatile constituents of gasoline, benzene, toluene, ethylbenzene,

¹: Note: Water depths for MW-1 and MW-2 are not reflective of groundwater levels below ground surface due to their elevated casing height within monument type well vaults

and xylenes [BTEX], and Methyl tert Butyl Ether [MTBE]) were found in the vicinity of the former UST excavation. This area continues to have the highest concentrations of hydrocarbons during on-going groundwater monitoring. In addition, data collected from recent off-site, upgradient exploratory borings and monitoring wells confirm additional gasoline contamination has migrated onto the Site from both the upgradient Texaco and QuikStop stations (Weber, Hayes and Associates, December 31, 2012). These off-site sources appear to be feeding the residual hydrocarbon plume in groundwater at the Site. It is also suspected that that there may have historically been some limited migration of groundwater contaminants towards the Site from an active fuel release investigation located at 3201 35th Avenue (BP #11132; GeoTracker I.D. T0600100213) situated approximately one block (approximately 300 feet) to the northeast of the Site. It is currently unclear whether or not contaminants from this fuel release have impacted the Site.

Nature and Extent of Contamination

<u>Soil</u>

After the initial UST removal in 1991, gasoline-range petroleum hydrocarbons and the volatile constituent compounds of gasoline were identified as the Contaminants of Concern (COCs) for the Site. Specifically, TPH-g, BTEX, and MTBE were found at concentrations in excess of Tier I Environmental Screening Levels² for Residential/Commercial land uses (ESLs), both in on-site and off-site soils. Diesel-range Total Petroleum Hydrocarbons (TPH-diesel) were also encountered but generally identified as overlapping lighter fraction gasoline hydrocarbons detected within the diesel range. We do not believe a significant amount of diesel-range petroleum hydrocarbons were released to the environment at the Site.

Currently, the COCs and their cleanup levels in soil for gasoline-range petroleum hydrocarbons in soil are specified in the State Water Resources Control Board's *Low-Threat UST Case Closure Policy* (LTCP)³. The COCs for gasoline release sites are: benzene ethylbenzene, and naphthalene. Their respective screening/cleanup levels are summarized in the table below.

C-3

²: Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board - San Francisco Bay Region (interim Final, November 2007, Revised May 2008)

³ Low-Threat UST Case Closure Policy, California State Water Resources Control Board August, 2012

	Resi	dential	Commerc	Utility Worker	
Chemical of Concern	0 to 5 feet bgs (mg/kg) ¹	Volatilization to outdoor air (5 to 10 feet bgs) (mg/kg)	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) (mg/kg)	0 to 10 feet bgs (mg/kg)
Benzene	1.9	2.8	8.2	12	14
Ethylbenzene	21	32	89	134	314
Naphthalene	9.7	9.7	45	45	219

Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health

Notes: ¹ mg/kg = milligrams per kilogram

On-Site Soil

Gasoline contamination was observed in on-site soils primarily in the smear zone created by fluctuating groundwater, which is found between 11 and 18 feet bgs at the Site. Laboratory analysis of <u>shallow</u> onsite soils (i.e., shallower than or at 10 feet bgs) was limited - only 5 of the 50 soil samples collected by previous consultants on-site and analyzed at the laboratory were collected from shallow soils - most likely because there were no visual or other indications of contamination in shallow soils. **Only trace to non-detectable levels of hydrocarbons (below LTCP screening levels) were detected in the five shallow soil samples collected by previous consultants that were analyzed (MW-4-10, B-18-5, B-18-10, B-19-5, and B-19-10, see Table 1)**. Weber, Hayes and Associates collected shallow soil samples from three **locations during the Data Gap Investigation in 2012.** Hydrocarbons were not detected in these shallow soil samples, except for a trace of non-target hydrocarbons in one TPH-g sample (see Table 4).

Laboratory analytical results from two post-remediation, continuously-cored exploratory borings, B-18 and 19, drilled in 2008 confirmed that elevated concentrations of residual gasoline contamination remained in the smear zone (12-18 feet bgs) at that time. Samples collected during the 2012 Data Gap Assessment confirm that there are no hydrocarbons in shallow soil and that residual hydrocarbons in soil are only found in the smear zone from depths of approximately 12 to 21 feet bgs.

Despite the removal of over 6,500 pounds of gasoline during four years of Dual Phase Extraction (DPE 2000-2004), residual hydrocarbons remained in deeper (12 to 21 feet bgs) on-site soils as secondary source hydrocarbons, primarily below the removed USTs. The persistence of on-site petroleum hydrocarbons in deeper soils on-site appears due in part to: 1) The DPE system installed at the site had remediation wells spaced too far apart to effectively remove all secondary source hydrocarbons from the subsurface, and 2) the confirmed contribution from secondary, upgradient sources (the Texaco station across School Street, and the active QuikStop station across 35th Avenue).

Off-Site Soil

The extent of <u>downgradient</u>, <u>off-site</u>, <u>smear zone</u> gasoline contamination was determined by Conestoga Rovers and Associates (CRA) in 2007 and 2008 by installing, logging, and collecting samples from 13 offsite borings installed in two parallel transects installed approximately perpendicular to the groundwater flow direction at distances of 150 and 375 feet from the Site. Laboratory analyses of 91 discrete soil samples collected from these borings indicated hydrocarbons were present in the smear zone in the first transect of borings, placed at accessible locations approximately 150 feet downgradient of the Site. Hydrocarbons were not detected in the soil samples collected from the borings in the second transect, placed at accessible locations approximately 375 feet downgradient of the Site, indicating that transport of hydrocarbons by groundwater did not extend to this distance. See Figures 3 and 4.

Groundwater

Laboratory analyses of groundwater samples collected from the two downgradient transects indicated a portion of the dissolved gasoline plume extended to the first transect (hydrocarbon concentrations were highest directly downgradient of the Site), but only trace amounts of hydrocarbons, primarily MTBE had reached the second transect, approximately 330 feet downgradient of the site. See Figure 6.

On-site groundwater has been sampled seasonally since 1994 and chemicals of concern have consistently been detected at concentrations in excess of groundwater quality objectives, which are summarized in the following table.

<u>Chemical of Concern</u>	<u>Groundwater Quality Objective</u> (micrograms per liter, μg/L, parts per billion, ppb)
Total Petroleum Hydrocarbons	1,000
Benzene	1
Toluene	150
Ethylbenzene	300
Xylenes	1,750
МТВЕ	5

Groundwater Quality Objectives for Gasoline Constituents

We note that the East Bay Municipal Utility District (EBMUD) provides potable water to Oakland, which it obtains from the Mokelumne River watershed in the Sierra Nevada Mountains. Water from EBMUD has eliminated the need for local groundwater supply wells.

C-5

Post remediation groundwater monitoring (water level gauging, water sampling and analyses, and reporting) has been conducted in six on-site wells since 2004. Individual concentration versus time charts for TPH-g and benzene (Figures 9 through 14 of this report) have been prepared to graphically present the changes and trends in hydrocarbon concentrations and/or groundwater levels.

Chart 1 (below) presents seasonal groundwater fluctuation data.

Figures 9 through 14 show the TPH-g and benzene concentrations in all site wells have decreased over time. An increase in benzene concentration (observed since early 2009) and an increase in TPH-g concentration (observed since 2012) in wells MW-1 through MW-4 indicates the influx of off-site dissolved hydrocarbons from upgradient off-site sources. The upward trends may also be the result of post remediation rebound or the lateral transport of source-zone mass (residual fuel release contaminants), or a combination of these processes. There is no new source of hydrocarbons at the site since it has remained undeveloped since 1991. Based on the overall extent of the residual hydrocarbon plume associated with the Site (maximum historical limit 400 feet from site, current length estimated to be 250 feet), we do not expect the off-site upgradient plume to "push" the existing plume beyond its' current limit, a maximum of 250 feet from the site.

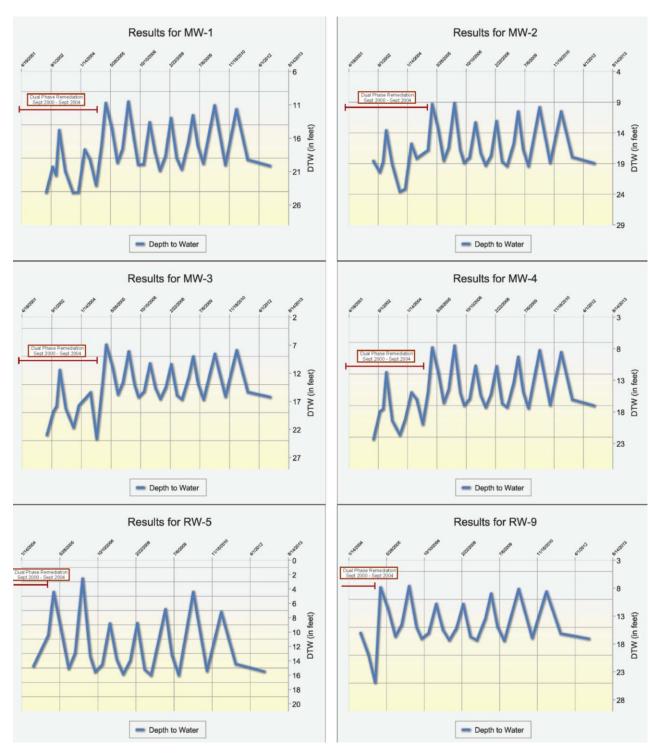


Chart 1: Depth to Groundwater (MW-1 and 2 have monument casings, so the reference point is two feet above the ground surface)

The groundwater analytical data from the site indicates:

- Seasonal fluctuations in groundwater generally fall between 8-18 feet bgs (see Chart 1). Note that the casing in wells MW-1 and MW-2 extends approximately two feet above ground surface, so the reference point is this much higher, meaning the actual groundwater level is also this much higher.
- The average groundwater gradient at the Site is approximately 0.009 ft/ft (approximately 1 foot
 of groundwater drop for 111 feet of lateral run) towards the west
- There is a general inverse relationship between groundwater levels and contaminant concentrations. Groundwater concentrations are elevated when water levels are at their lowest point (i.e., September/October)
- A thin plume of MTBE extended off-site to the second transect of direct push boring/grab groundwater samples in 2008 (approximately 375 feet downgradient of the site, see Figure 6).
 Based on the decrease in concentrations of hydrocarbons in on-site wells, the plume is likely smaller today.
- The low concentrations of MTBE detected in to the second transect samples indicate the downgradient limit of the MTBE plume was in close proximity to the transect in 2008
- Increasing benzene concentrations in wells MW-1 through 4 since early 2009, along with increasing TPH-g concentrations in these wells since 2012, indicates the influx of upgradient offsite dissolved hydrocarbon plumes to the site. The upward trends may also be the result of post remediation rebound, lateral transport of secondary source hydrocarbons (residual fuel release contaminants), or a combination of these processes.
- The lack of TPH-g and benzene detections in the second transect indicates that TPH-g and BTEX compounds attenuated and were limited to a distance between the two transects; approximately 250 feet from the Site in 2008. Based on the decrease in concentrations of hydrocarbons in on-site wells, the plume is likely smaller today.

Soil Gas

<u>Soil gas</u> sample analytical results from two mobilizations (on- and off-site – 2007 and 2008, respectively) indicate that **concentrations of the Chemicals of Concern in shallow (5 feet bgs) soil gas were below commercial LTCP guidelines in 2007 and 2008, and the concentration of benzene exceeded the residential LTCP in only one shallow sample at the site, SV-5**, see Figures 7 and 9. The COCs in soil gas and their respective LTCP Screening Levels/Cleanup Goals are summarized in the Table below.

Concentrations of Petroleum Constituents in Soil Gas That Will Have No Significant Risk of Adversely
Affecting Human Health

	No Bio-Attenuation Zone					
Chemical of Concern	Residential	Commercial				
Benzene	85 μg/m³	280 μg/m ³				
Ethylbenzene	1,100 μg/m ³	3,600 μg/m ³				
Naphthalene	93 μg/m³	310 µg/m ³				
	With Bio-Atte	nuation Zone				
Benzene	85,000 μg/m ³	280,000 μg/m ³				
Ethylbenzene	1,100,000 μg/m³	3,600,000 μg/m ³				
Naphthalene	93,000 μg/m³	310,000 μg/m ³				

 μ g/m³ = micrograms per cubic meter. Bio-Attenuation Zone = Oxygen content greater than 4 percent.

The on-site soil gas samples were not analyzed for ethylbenzene or naphthalene. The off-site soil gas samples were not analyzed for naphthalene. The oxygen concentration was not analyzed in the on-site soil gas samples.

The oxygen concentration in off-site soil gas samples was 16 to 19 percent (along with TPH less than 100 mg/kg in the top 5 feet of soil), indicating a bio-attenuation zone was present, though not necessary, as no hydrocarbons were detected in the off-site soil gas samples.

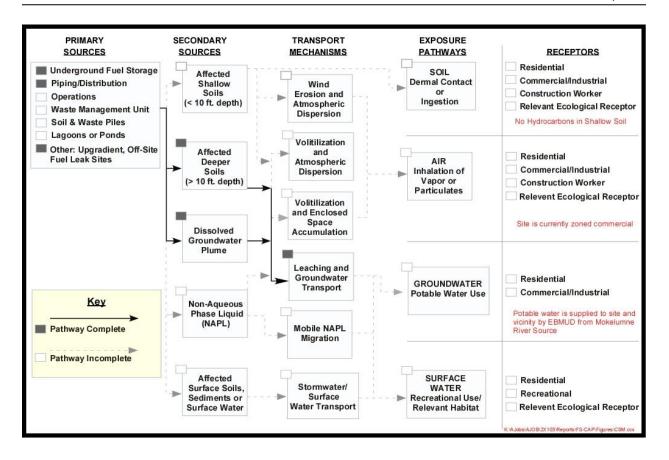
Deeper (greater than 10 feet bgs) on-site soil gas samples contained higher concentrations of hydrocarbons. This is consistent with soil sample analytical results. The low levels of COCs in shallow on-site soil gas samples indicate there is no vapor intrusion risk for a commercial land use scenario at the Site.

The absence of hydrocarbons in off-site soil gas samples indicates that vapor intrusion from VOCs offgassing from smear zone soil or the dissolved hydrocarbon plume is not a risk to off-site residences.

Dominant Fate and Transport Characteristics

The dominant fate and transport characteristics of gasoline fuel hydrocarbons released at the Site are that they drain by gravity through the low-to-moderately permeable soil matrix to groundwater. During

this process the hydrocarbon mass will partition into different phases. It can: 1) be adsorbed onto soil particles, 2) be dispersed into soil gas, 3) remain as free phase gasoline ("light non-aqueous phase liquid", LNAPL, or free product/separate phase hydrocarbons/sheen) in soil interstices or floating on groundwater, and 4) be dissolved into groundwater. Gasoline/VOCs will reach a dynamic equilibrium between these phases, all of which have been observed at the Site, though free product was only observed once at the site (in 2002), and sheen has not been observed on groundwater at the site since 2012.


Hydrocarbons reached the saturated zone in sufficient quantity to form a sheen on top of the first encountered groundwater beneath the Site. Sheen was observed in six wells in the monitoring network between 2002 and 2012.

In the saturated zone at this Site hydrocarbons have been transported by groundwater through advective and dispersive processes in the general downgradient direction (west). Off-site characterization drilling and sampling results suggest that a thin plume of MTBE extended from the Site to the Phase II transect in 2008 (375 feet from the site); however, the low concentrations of TPH-g and BTEX detected in the downgradient grab groundwater samples collected from the Phase II off-site transect borings indicate the downgradient limit of the MTBE plume was in close proximity to the Phase II borings. The lack of TPH-g and BTEX in the second transect groundwater samples indicates that TPH-g and BTEX compounds were attenuated and limited to a distance between the two transects, approximately 250 feet from the Site. The truncated plume indicates natural attenuation processes are at equilibrium with dissolved contaminant flux at the periphery of the plume. Natural attenuation, combined with source removal of the leaking USTs/infrastructure, and four years of dual phase extraction appear to have limited the advective and dispersive transport of hydrocarbons in groundwater to a maximum of 650 from the Site.

Potential Exposure Pathways

Currently there are no buildings present on the property and groundwater in the vicinity is not being used for drinking water. The potential exposure pathways (the ways humans or the environment may be exposed to the hydrocarbons that have been released at the Site) are presented graphically in the CSM flow chart below.

Exposure pathways and receptor risk based on the *Low-Threat UST Case Closure Guidelines* are discussed below:

- Cumulative soil sample analytical data indicates residual hydrocarbons in soil are limited to depths between 10 and 20 feet bgs. The absence of hydrocarbons in the upper 10 feet of soil means the site meets the LTCP guidelines for residual hydrocarbons in soil, and there are no risks to Site users or construction workers. It is unlikely that deeper soils would be encountered during future Site development, unless basements or sub-grade parking were proposed for the Site. LTCP closure guidelines require notification, additional assessment, and proper precautions (including engineering controls/ mitigation) if soil greater than 10 feet bgs is disturbed.
- Exposure to soil gas containing hydrocarbons. The concentration of benzene in on-site soil gas samples was below the commercial LTCP screening levels in 2007 (in five of the six on-site soil gas samples the concentration of benzene was below the residential LTCP screening level also). On-site soil gas samples were not analyzed for ethylbenzene or naphthalene, the other COCs, or for oxygen content to determine if a bio-attenuation zone exists. Based on the concentration of benzene in these soil gas samples and the usual ratios of benzene to ethylbenzene to

naphthalene at UST release sites, we do not believe there is a risk from residual hydrocarbons in soil gas at the Site.

Neither benzene nor ethylbenzene were detected in the off-site soil gas samples collected in 2008. The oxygen concentration in the off-site samples ranged from 16 to 19 percent, indicating a bio-attenuation zone for hydrocarbons in soil gas exists off-site. Off-site soil gas samples were not analyzed for naphthalene. Based on the absence of benzene and ethylbenzene in the off-site soil gas samples, the usual ratios of benzene to ethylbenzene to naphthalene at UST release sites, and the presence of a bio-attenuation zone for hydrocarbons in off-site soil gas, we do not believe there is a risk from hydrocarbons in residual soil gas in the vicinity of the Site.

The low concentrations of hydrocarbons in the 2007 on-site soil gas samples and the absence of hydrocarbons in the 2008 off-site soil gas samples, combined with the concentrations of hydrocarbons detected in groundwater in 2008 (see Figures 7, 8 and 9) indicate that off-gassing of hydrocarbons from smear zone soil or the dissolved plume to soil gas and subsequent exposure to hydrocarbons either outdoors or indoors via vapor intrusion does not exceed LTCP risk levels.

- Ingesting (drinking) hydrocarbon contaminated groundwater. This exposure pathway is incomplete – potable water in Oakland is supplied by East Bay MUD from the Mokolumne River in the Sierra Nevada, and a previously completed 2,000-ft radius well survey investigation determined there are no drinking water wells screened within or near the dissolved hydrocarbon plume (Cambria, July 13, 2006 and Weber, Hayes and Associates, June 24, 2011).
- Groundwater quality is considered a sensitive receptor that must be protected from degradation by hydrocarbons (all groundwater in the State of California is considered a potential water supply resource). Active remediation of groundwater impacted by hydrocarbons was undertaken with the goal of removing hydrocarbons to a point where natural processes will restore groundwater quality to what it was prior to degradation by hydrocarbons. Removal of secondary source hydrocarbons from the site and natural attenuation will restore groundwater quality in a reasonable amount of time at this site.

Potential Sensitive Receptors

A 2,000-ft radius, sensitive receptor survey was completed in 2006 (Cambria, 2006), which looked for potential water supply wells, schools, churches, hospitals, and known daycare facilities within the target radius. The survey concluded that within the target radius, no water supply wells existed and the residual dissolved gasoline plume was not likely to impact the three identified irrigation wells (the closest well is located 750 feet away in a sidegradient direction [north]). Additionally, there are no other potential sensitive receptors (schools, churches, parks) located downgradient of the plume, and

therefore none of these sensitive receptors are likely to be impacted by the residual dissolved hydrocarbon plume.

The nearest surface water body is west-flowing Peralta Creek, located approximately 600 feet northwest of the site, **but 1,150 feet west of the site in the downgradient groundwater flow direction** (see Figure 1). It is extremely unlikely that dissolved gasoline plume compounds could reach Peralta Creek based on the downgradient distance to the Creek, the attenuated plume limits (approximately 400 feet from the site in 2008, estimated to be approximately 250 feet currently), and the low transmissivity of soils at and in the vicinity of the Site.

Potential sensitive receptors that may be exposed to hydrocarbons from the release at the Site include Site users and groundwater as a potential drinking water resource. The release poses no immediate threats to site users because the Site remains undeveloped. As described above, our evaluation of exposure pathways and receptor risk based on the *Low-Threat UST Case Closure Guidelines* indicates:

- There is no risk from residual hydrocarbons in soil, soil gas and groundwater to future Site users in a commercial land use scenario
- The accumulated data indicates there is no risk to off-site residences in the immediate vicinity of the Site from residual hydrocarbons in soil, soil gas and groundwater

Though groundwater is degraded by hydrocarbons at the Site, there is no complete pathway for drinking water ingestion as there are no water supply wells in the immediate vicinity of the Site.

Data Gaps

- 1) The mass of petroleum hydrocarbon contamination originating from the identified upgradient sources remains a data gap. Based on the overall extent of the residual hydrocarbon plume associated with the Site (maximum limit 650 feet from site), we do not expect the off-site upgradient plume to "push" the existing plume beyond its' current limit. This data gap is no longer significant.
- 2) The downgradient extent of the residual dissolved gasoline hydrocarbon plume is not defined by monitoring wells. However, it was reasonably defined using direct-push grab groundwater samples in 2008. We estimate the maximum extent of the residual dissolved hydrocarbon plume is 650 feet from the Site. This data gap is not significant.

There are no remaining significant data gaps at the site. The CSM is validated.

APPENDIX D

2012 LABORATORY ANALYTICAL REPORTS WITH NAPHTHALENE DATA FOR SOIL SAMPLES

Weber, Hayes and Associates

Weber, Hayes & Associates 120 Westgate Dr Watsonville, CA 95076 Tel: 831-722-3580 Fax: 831-662-3100

RE: Oakland / 2X103.B

Work Order No.: 1205066 Rev: 2

Dear Jered Chaney:

Torrent Laboratory, Inc. received 14 sample(s) on May 10, 2012 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa-

Patti Sandrock QA Officer October 29, 2015 Date

Client: Weber, Hayes & Associates Project: Oakland / 2X103.B Work Order: 1205066

CASE NARRATIVE

No issues encountered with the preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Although sample DP-3-d17 (-006A) was listed on the CoC, no sample was received. The client was informed and the sample was submitted under a separate work order.

REVISIONS:

Report revised to identify TPH as Gasoline result for sample -014A as "not typical". No final reported values or QC data was affected byt his revision.

Rev 1 (12/12/12)

Per client request, report revised to report Napthalene data for all soil samples.

Rev. 2 (8/29/15)

Report prepared for:	Jered Chaney			Date	Received: 0)5/10/12	
	Weber, Hayes & Associates				Date	Reported: 1	0/29/15
DP-1						12	05066-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

DP-2					12	05066-002
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Benzene	SW8260B	1	0.087	0.50	72	ug/L
Toluene	SW8260B	1	0.059	0.50	24	ug/L
Ethyl Benzene	SW8260B	1	0.074	0.50	130	ug/L
m,p-Xylene	SW8260B	1	0.13	1.0	140	ug/L
o-Xylene	SW8260B	1	0.076	0.50	5.9	ug/L
TPH as Gasoline	8260TPH	11	350	550	3800	ug/L
TPH DRO (C9-C23)	SW8015B	1	0.0440	0.10	0.31	mg/L

DP-3

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene	SW8260B	1	0.087	0.50	92	ug/L
Toluene	SW8260B	1	0.059	0.50	1.7	ug/L
Ethyl Benzene	SW8260B	1	0.074	0.50	63	ug/L
m,p-Xylene	SW8260B	1	0.13	1.0	21	ug/L
MTBE	SW8260B	1	0.17	0.50	97	ug/L
tert-Butanol	SW8260B	1	1.5	5.0	55	ug/L
TPH as Gasoline	8260TPH	1	31	50	1400	ug/L

DP-1-	d8
-------	----

Parameters:	<u>Analysis</u> D	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
-------------	-------------------	-----------	-----	------------	----------------	-------------

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

1205066-004

1205066-003

Report prepared for:					Received: Reported:		
DP-1-d14						12	205066-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
TPH as Gasoline		8260TPH	5	0.15	0.50	8.4	mg/Kg
DP-1-d17-A						12	205066-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
DP-3-d8						12	205066-007
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
DP-3-d11	•					12	205066-008
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH as Gasoline		8260TPH	1	0.030	0.10	0.33	mg/Kg
DP-3-d14						12	205066-009
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Ethyl Benzene		SW8260B	5	0.0043	0.050	0.30	mg/Kg
Naphthalene		SW8260B	5	0.015	0.050	0.024	mg/Kg
TPH as Gasoline		8260TPH	5	0.15	0.50	10	mg/Kg

Report prepared for:	Jered Chaney				Date	Received:	05/10/12
	Weber, Hayes & Associates				Date	Reported:	10/29/15
DP-3-d20						-	205066-011
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	5	0.0075	0.050	0.060	mg/Kg
Ethyl Benzene		SW8260B	5	0.0043	0.050	0.22	mg/Kg
m,p-Xylene		SW8260B	5	0.0093	0.050	0.17	mg/Kg
Naphthalene		SW8260B	5	0.015	0.050	0.094	mg/Kg
TPH as Gasoline		8260TPH	5	0.15	0.50	6.4	mg/Kg
DP-3-d23						1	205066-012
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Gasoline		8260TPH	1	0.030	0.10	0.93	mg/Kg
Benzene		SW8260B	2.5	0.0038	0.025	0.17	mg/Kg
Ethyl Benzene		SW8260B	2.5	0.0022	0.025	0.046	mg/Kg
МТВЕ		SW8260B	2.5	0.0065	0.025	0.0080	mg/Kg
DP-4-d12						1	205066-013
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
DP-4-d18						1	205066-014
Parameters:		<u>Analysis</u> Method	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

	Method				Results	onn
TPH as Gasoline	8260TPH	100	3.0	10	96	mg/Kg
TPH as Diesel (SG)	SW8015B(M)	1	0.87	2.0	12	mg/Kg
Benzene	SW8260B	5	0.0075	0.050	0.22	mg/Kg
Ethyl Benzene	SW8260B	5	0.0043	0.050	0.91	mg/Kg
m,p-Xylene	SW8260B	5	0.0093	0.050	1.4	mg/Kg
o-Xylene	SW8260B	5	0.0033	0.025	0.046	mg/Kg
Naphthalene	SW8260B	5	0.015	0.050	1.6	mg/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Jered Chaney	Date Received: 05/10/12					
	Weber, Hayes & Associates			Date I	10/29/15		
DP-1-d17-B						12	05066-015
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Ethyl Benzene		SW8260B	1	0.00086	0.010	0.064	mg/Kg
TPH as Gasoline		8260TPH	1	0.030	0.10	0.80	mg/Kg

Report prepared for:	Jered Chaney Weber, Hayes & As	lered Chaney Veber, Hayes & Associates									0/12 9/15
Client Sample ID:	DP-1				Lab Sa	nple ID:	12050	66-001A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Aqueo	ous			
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/11/12	1	0.087	0.50	ND		ug/L	409732	NA
Toluene	SW8260B	NA	05/11/12	1	0.059	0.50	ND		ug/L	409732	NA
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.074	0.50	ND		ug/L	409732	NA
m,p-Xylene	SW8260B	NA	05/11/12	1	0.13	1.0	ND		ug/L	409732	NA
o-Xylene	SW8260B	NA	05/11/12	1	0.076	0.50	ND		ug/L	409732	NA
MTBE	SW8260B	NA	05/11/12	1	0.17	0.50	ND		ug/L	409732	NA
tert-Butanol	SW8260B	NA	05/11/12	1	1.5	5.0	ND		ug/L	409732	NA
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	61.2	131	93.1		%	409732	NA
(S) Toluene-d8	SW8260B	NA	05/11/12	1	75.1	127	88.3		%	409732	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	64.1	120	91.6		%	409732	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	5/11/12	05/11/12	1	31	50	ND		ug/L	409732	5495
(S) 4-Bromofluorobenzene	8260TPH	5/11/12	05/11/12	1	41.5	125	108		%	409732	5495

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/2	
Client Sample ID: Project Name/Location: Project Number:	DP-1 Oakland / 2X10)3.B			Lab Sar Sample	nple ID: Matrix:	12050 Aquec	66-001B ous			
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH DRO (C9-C23)	SW8015B	NA	05/16/12	1	0.0440	0.10	ND	1	mg/L	409779	NA
Pentacosane (S)	SW8015B	NA	05/16/12	1	64.2	123	88.9		%	409779	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	•••
Client Sample ID:	DP-2				Lab Sa	mple ID:	12050)66-002A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Aqueo	ous			
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00)									
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/11/12	1	0.087	0.50	72		ug/L	409732	NA
Toluene	SW8260B	NA	05/11/12	1	0.059	0.50	24		ug/L	409732	NA
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.074	0.50	130		ug/L	409732	NA
m,p-Xylene	SW8260B	NA	05/11/12	1	0.13	1.0	140		ug/L	409732	NA
o-Xylene	SW8260B	NA	05/11/12	1	0.076	0.50	5.9		ug/L	409732	NA
МТВЕ	SW8260B	NA	05/11/12	1	0.17	0.50	ND		ug/L	409732	NA
tert-Butanol	SW8260B	NA	05/11/12	1	1.5	5.0	ND		ug/L	409732	NA
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	61.2	131	94.5		%	409732	NA
(S) Toluene-d8	SW8260B	NA	05/11/12	1	75.1	127	94.8		%	409732	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	64.1	120	92.1		%	409732	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	5/11/12	05/11/12	11	350	550	3800	х	ug/L	409732	5495
(S) 4-Bromofluorobenzene	8260TPH	5/11/12	05/11/12	11	41.5	125	126	S	%	409732	5495
	line Standard pattern. R ue to interference (heav			o cont	ribution fro	om non-tar	get hydrocarbo	ons in C5-C	12 gaso	line range. S	- High

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	
Client Sample ID: Project Name/Location: Project Number:	DP-2 Oakland / 2X10)3.B			Lab Sar Sample	•	12050 Aquec	66-002B ous			
Date/Time Sampled: Tag Number:	05/09/12 / 0:00 Oakland / 2X10										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH DRO (C9-C23) Pentacosane (S)	SW8015B SW8015B	NA NA	05/16/12 05/16/12	1 1	0.0440 64.2	0.10 123	0.31 89.6	1	mg/L %	409779 409779	NA NA

Report prepared for: Jered Chaney Weber, Hayes & Associates Veber, Hayes & Associates										Date Received: 05/10/12 Date Reported: 10/29/15					
Client Sample ID:	DP-3				Lab Sample ID: 120)66-003A							
Project Name/Location:	Oakland / 2X1	03.B			Sample	Matrix:	Aque	ous							
Project Number:															
Date/Time Sampled:	05/09/12 / 0:00)													
Tag Number:	Oakland / 2X1	03.B													
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch				
Benzene	SW8260B	NA	05/11/12	1	0.087	0.50	92		ug/L	409732	NA				
Toluene	SW8260B	NA	05/11/12	1	0.059	0.50	1.7		ug/L	409732	NA				
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.074	0.50	63		ug/L	409732	NA				
m,p-Xylene	SW8260B	NA	05/11/12	1	0.13	1.0	21		ug/L	409732	NA				
o-Xylene	SW8260B	NA	05/11/12	1	0.076	0.50	ND		ug/L	409732	NA				
МТВЕ	SW8260B	NA	05/11/12	1	0.17	0.50	97		ug/L	409732	NA				
tert-Butanol	SW8260B	NA	05/11/12	1	1.5	5.0	55		ug/L	409732	NA				
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	61.2	131	93.3		%	409732	NA				
(S) Toluene-d8	SW8260B	NA	05/11/12	1	75.1	127	87.4		%	409732	NA				
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	64.1	120	87.4		%	409732	NA				
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch				
TPH as Gasoline	8260TPH	5/11/12	05/11/12	1	31	50	1400	х	ug/L	409732	5495				
(S) 4-Bromofluorobenzene	8260TPH	5/11/12	05/11/12	1	41.5	125	114		%	409732	5495				

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	
Client Sample ID: Project Name/Location: Project Number:	DP-3 Oakland / 2X10)3.B			Lab Sar Sample	nple ID: Matrix:	12050 Aquec	66-003B ous			
Date/Time Sampled: Tag Number:	05/09/12 / 0:00 Oakland / 2X10										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH DRO (C9-C23) Pentacosane (S)	SW8015B SW8015B	NA NA	05/16/12 05/16/12	1 1	0.0440 64.2	0.10 123	ND 89.0		mg/L %	409779 409779	NA NA

Report prepared for:											0/12 9/15
Client Sample ID:	DP-1-d8				Lab Sar	nple ID:	12050	66-004A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/14/12	1	0.0015	0.010	ND	1	mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	1	0.00098	0.010	ND		mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	1	0.00086	0.010	ND		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	1	0.0019	0.010	ND		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	1	0.00066	0.0050	ND		mg/Kg	409737	NA
MTBE	SW8260B	NA	05/14/12	1	0.0026	0.010	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	1	0.021	0.050	ND		mg/Kg	409737	NA
Naphthalene	SW8260B	NA	05/14/12	1	0.0030	0.010	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	1	59.8	148	114		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	1	55.2	133	110		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	1	55.8	141	114		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	0.030	0.10	ND		mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	73.8		%	409737	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	
Client Sample ID:	DP-1-d14				Lab Sar	nple ID:	12050	66-005A			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00)									
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
Benzene	SW8260B	NA	05/17/12	5	0.0075	0.050	ND		mg/Kg	409796	NA
Toluene	SW8260B	NA	05/17/12	5	0.0049	0.050	ND		mg/Kg	409796	NA
Ethyl Benzene	SW8260B	NA	05/17/12	5	0.0043	0.050	ND		mg/Kg	409796	NA
m,p-Xylene	SW8260B	NA	05/17/12	5	0.0093	0.050	ND		mg/Kg	409796	NA
o-Xylene	SW8260B	NA	05/17/12	5	0.0033	0.025	ND		mg/Kg	409796	NA
МТВЕ	SW8260B	NA	05/17/12	5	0.013	0.050	ND		mg/Kg	409796	NA
tert-Butanol	SW8260B	NA	05/17/12	5	0.10	0.25	ND		mg/Kg	409796	NA
Naphthalene	SW8260B	NA	05/17/12	5	0.015	0.050	ND		mg/Kg	409796	NA
(S) Dibromofluoromethane	SW8260B	NA	05/17/12	5	59.8	148	103		%	409796	NA
(S) Toluene-d8	SW8260B	NA	05/17/12	5	55.2	133	114		%	409796	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/17/12	5	55.8	141	112		%	409796	NA
NOTE: Reporting limits we	re raised due to high leve	el of non-tai	get hydroca	arbons							
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL			•	-		•		•	
TPH as Gasoline	8260TPH	5/17/12	05/17/12	5	0.15	0.50	8.4	х	mg/Kg	409796	5531
(S) 4-Bromofluorobenzene	8260TPH	5/17/12	05/17/12	5	43.9	127	128	S	%	409796	5531

NOTE: x - Does not match pattern of reference Gasoline standard. Hydrocarbons in the range of C5-C12 quantified as Gasoline. S - High surrogate recovery attributed to matrix interference (heavy end hydrocarbons).

Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	5/15/12	05/15/12	1	0.87	2.0	ND		mg/Kg	409762	5506
TPH as Motor Oil (SG)	SW8015B(M)	5/15/12	05/15/12	1	1.3	10	ND		mg/Kg	409762	5506
Pentacosane (S)	SW8015B(M)	5/15/12	05/15/12	1	61.5	133	81.7		%	409762	5506

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	•••
Client Sample ID:	DP-1-d17-A				Lab Sar	nple ID:	12050	66-006A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/14/12	1	0.0015	0.010	ND		mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	1	0.00098	0.010	ND		mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	1	0.00086	0.010	ND		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	1	0.0019	0.010	ND		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	1	0.00066	0.0050	ND		mg/Kg	409737	NA
MTBE	SW8260B	NA	05/14/12	1	0.0026	0.010	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	1	0.021	0.050	ND		mg/Kg	409737	NA
Naphthalene	SW8260B	NA	05/14/12	1	0.0030	0.010	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	1	59.8	148	141		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	1	55.2	133	110		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	1	55.8	141	124		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	30	100	ND		mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	64.6		%	409737	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	••••
Client Sample ID:	DP-3-d8				Lab Sar	nple ID:	12050	66-007A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/14/12	1	0.0015	0.010	ND	1	mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	1	0.00098	0.010	ND		mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	1	0.00086	0.010	ND		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	1	0.0019	0.010	ND		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	1	0.00066	0.0050	ND		mg/Kg	409737	NA
MTBE	SW8260B	NA	05/14/12	1	0.0026	0.010	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	1	0.021	0.050	ND		mg/Kg	409737	NA
Naphthalene	SW8260B	NA	05/14/12	1	0.0030	0.010	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	1	59.8	148	141		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	1	55.2	133	112		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	1	55.8	141	125		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	0.030	0.10	ND		mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	62.9		%	409737	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	
Client Sample ID:	DP-3-d11				Lab Sar	nple ID:	12050	66-008A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00)									
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/14/12	1	0.0015	0.010	ND		mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	1	0.00098	0.010	ND		mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	1	0.00086	0.010	ND		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	1	0.0019	0.010	ND		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	1	0.00066	0.0050	ND		mg/Kg	409737	NA
МТВЕ	SW8260B	NA	05/14/12	1	0.0026	0.010	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	1	0.021	0.050	ND		mg/Kg	409737	NA
Naphthalene	SW8260B	NA	05/14/12	1	0.0030	0.010	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	1	59.8	148	139		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	1	55.2	133	113		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	1	55.8	141	116		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	0.030	0.10	0.33	х	mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	64.6		%	409737	NA
NOTE: x - Does not match p	attern of reference Gase	oline stand	lard. Hydroc	arbon	s in the ran	ge of C5-C	C12 quantified	as Gasolin	e.		

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/2	••••
Client Sample ID:	DP-3-d14				Lab Sar	nple ID:	12050	66-009A			
Project Name/Location:	Oakland / 2X10	3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10	3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using th	heir MDL	•								
Benzene	SW8260B	NA	05/15/12	5	0.0075	0.050	ND		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	5	0.0049	0.050	ND		mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	5	0.0043	0.050	0.30		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	5	0.0093	0.050	ND		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	5	0.0033	0.025	ND		mg/Kg	409759	NA
МТВЕ	SW8260B	NA	05/15/12	5	0.013	0.050	ND		mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	5	0.10	0.25	ND		mg/Kg	409759	NA
Naphthalene	SW8260B	NA	05/15/12	5	0.015	0.050	0.024	J	mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	5	59.8	148	126		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	5	55.2	133	113		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	5	55.8	141	109		%	409759	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	• •	heir MDL									1
TPH as Gasoline	8260TPH	NA	05/15/12	5	0.15	0.50	10	х	mg/Kg	409759	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/15/12	5	43.9	127	68.5		%	409759	NA
NOTE: x - Does not match	pattern of reference Gase	oline stand	lard. Hydroc	arbons	s in the ran	ge of C5-0	C12 quantified	as Gasolin	e.		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	•••
Client Sample ID:	DP-3-d20				Lab Sar	nple ID:	12050	66-011A			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:					-						
Date/Time Sampled:	05/09/12 / 0:00)									
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
Benzene	SW8260B	NA	05/15/12	5	0.0075	0.050	0.060		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	5	0.0049	0.050	ND		mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	5	0.0043	0.050	0.22		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	5	0.0093	0.050	0.17		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	5	0.0033	0.025	ND		mg/Kg	409759	NA
МТВЕ	SW8260B	NA	05/15/12	5	0.013	0.050	ND		mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	5	0.10	0.25	ND		mg/Kg	409759	NA
Naphthalene	SW8260B	NA	05/15/12	5	0.015	0.050	0.094		mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	5	59.8	148	109		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	5	55.2	133	112		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	5	55.8	141	103		%	409759	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	• •										L
TPH as Gasoline	8260TPH	NA	05/15/12	5	0.15	0.50	6.4		mg/Kg	409759	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/15/12	5	43.9	127	78.1		%	409759	NA

NOTE: Result is elevated due to significant contribution from non-target heavy hydrocarbons in the C5-C12 range quantified as Gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/2	
Client Sample ID:	DP-3-d23				Lab Sar	nple ID:	12050	66-012A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:					-						
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									<u>I</u>
Benzene	SW8260B	NA	05/15/12	2.5	0.0038	0.025	0.17		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	2.5	0.0025	0.025	ND		mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	2.5	0.0022	0.025	0.046		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	2.5	0.0046	0.025	ND		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	2.5	0.0017	0.013	ND		mg/Kg	409759	NA
МТВЕ	SW8260B	NA	05/15/12	2.5	0.0065	0.025	0.0080	J	mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	2.5	0.052	0.13	ND		mg/Kg	409759	NA
Naphthalene	SW8260B	NA	05/15/12	2.5	0.0075	0.025	ND		mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	2.5	59.8	148	114		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	2.5	55.2	133	113		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	2.5	55.8	141	103		%	409759	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	0.030	0.10	0.93	х	mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	64.9		%	409737	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported value is the result of discrete peaks and non-target compounds within range of C5-C12 quantified as Gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/2	••••
Client Sample ID:	DP-4-d12				Lab Sar	nple ID:	12050	66-013A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/14/12	1	0.0015	0.010	ND	1	mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	1	0.00098	0.010	ND		mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	1	0.00086	0.010	ND		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	1	0.0019	0.010	ND		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	1	0.00066	0.0050	ND		mg/Kg	409737	NA
MTBE	SW8260B	NA	05/14/12	1	0.0026	0.010	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	1	0.021	0.050	ND		mg/Kg	409737	NA
Naphthalene	SW8260B	NA	05/14/12	1	0.0030	0.010	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	1	59.8	148	134		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	1	55.2	133	114		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	1	55.8	141	131		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	0.030	0.10	ND		mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	64.6		%	409737	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/2	
Client Sample ID:	DP-4-d18				Lab Sar	nple ID:	12050	066-014A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	/ are reported using t	heir MDL						I		I	
Benzene	SW8260B	NA	05/15/12	5	0.0075	0.050	0.22		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	5	0.0049	0.050	ND		mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	5	0.0043	0.050	0.91		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	5	0.0093	0.050	1.4		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	5	0.0033	0.025	0.046		mg/Kg	409759	NA
MTBE	SW8260B	NA	05/15/12	5	0.013	0.050	ND		mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	5	0.10	0.25	ND		mg/Kg	409759	NA
Naphthalene	SW8260B	NA	05/15/12	5	0.015	0.050	1.6	Е	mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	5	59.8	148	135		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	5	55.2	133	112		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	5	55.8	141	114		%	409759	NA
NOTE: E-reported value ou	utside of calibration range	but within	linear range	Э.							
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	/ are reported using t	heir MDL						I		I	
TPH as Gasoline	8260TPH	NA	05/14/12	100	3.0	10	96	х	mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	100	43.9	127	78.3		%	409737	NA
NOTE: x - Does not match gasoline).	pattern of reference Gase	oline stand	ard. Report	ed TPI	I value inc	ludes cont	ribution from h	heavy end h	lydrocart	oons (possibl	y aged
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batcl
TPH as Diesel (SG)	SW8015B(M)	5/15/12	05/15/12	1	0.87	2.0	12	х	mg/Kg	409762	5506
TPH as Motor Oil (SG)	SW8015B(M)	5/15/12	05/15/12	1	1.3	10	ND		mg/Kg	409762	550
Pentacosane (S)	SW8015B(M)	5/15/12	05/15/12	1	61.5	133	93.8		%	409762	550
NOTE: x-Not typical of TPH	H as Diesel Standard patte	orn (lightor	than Diaco		Irooorbono				tiotod or	Discol	

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/2	•••
Client Sample ID:	DP-1-d17-B				Lab Sar	nple ID:	12050)66-015A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/14/12	1	0.0015	0.010	ND		mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	1	0.00098	0.010	ND		mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	1	0.00086	0.010	0.064		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	1	0.0019	0.010	ND		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	1	0.00066	0.0050	ND		mg/Kg	409737	NA
MTBE	SW8260B	NA	05/14/12	1	0.0026	0.010	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	1	0.021	0.050	ND		mg/Kg	409737	NA
Naphthalene	SW8260B	NA	05/14/12	1	0.0030	0.010	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	1	59.8	148	141		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	1	55.2	133	110		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	1	55.8	141	117		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/14/12	1	0.030	0.10	0.80	х	mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	1	43.9	127	60.2		%	409737	NA
NOTE: x - Does not match	pattern of reference Gase	oline stand	lard. Hydroc	arbon	s in the ran	ge of C5-C	C12 quantified	as Gasolin	e.		

Work Order:	1205066	Prep M	lethod:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW8260B	Anal	yzed Date:	05/11/12	Analytical	409732
Units:	ug/L	Metho	d:					Batch:	
	5								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	0.18	0.50	ND					
Chloromethane		0.16	0.50	ND					
Vinyl Chloride		0.16	0.50	ND					
Bromomethane		0.18	0.50	ND					
Trichlorofluorome	thane	0.18	0.50	ND					
1,1-Dichloroethen	e	0.15	0.50	ND					
Freon 113		0.19	0.50	ND					
Methylene Chloric	le	0.23	5.0	ND					
trans-1,2-Dichloro	ethene	0.19	0.50	ND					
MTBE		0.17	0.50	ND					
tert-Butanol		1.5	5.0	ND					
Diisopropyl ether	(DIPE)	0.13	0.50	ND					
1,1-Dichloroethan	е	0.13	0.50	ND					
ETBE		0.17	0.50	ND					
cis-1,2-Dichloroet	hene	0.19	0.50	ND					
2,2-Dichloropropa	ine	0.15	0.50	ND					
Bromochlorometh	ane	0.20	0.50	ND					
Chloroform		0.13	0.50	ND					
Carbon Tetrachlo	ride	0.15	0.50	ND					
1,1,1-Trichloroeth	ane	0.097	0.50	ND					
1,1-Dichloroprope	ene	0.15	0.50	ND					
Benzene		0.13	0.50	ND					
TAME		0.17	0.50	ND					
1,2-Dichloroethan	е	0.14	0.50	ND					
Trichloroethylene		0.13	0.50	ND					
Dibromomethane		0.15	0.50	ND					
1,2-Dichloropropa	ine	0.17	0.50	ND					
Bromodichlorome		0.13	0.50	ND					
cis-1,3-Dichloropr	opene	0.096	0.50	ND					
Toluene		0.14	0.50	ND					
Tetrachloroethyle	ne	0.14	0.50	ND					
trans-1,3-Dichloro		0.23	0.50	ND					
1,1,2-Trichloroeth		0.14	0.50	ND					
Dibromochlorome		0.096	0.50	ND					
1,3-Dichloropropa		0.10	0.50	ND					
1,2-Dibromoethan		0.19	0.50	ND					
Chlorobenzene		0.14	0.50	ND					
Ethyl Benzene		0.15	0.50	ND					
1,1,1,2-Tetrachlor	oethane	0.096	0.50	ND					
m,p-Xylene		0.13	1.0	0.19					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Vork Order: 1205066		Prep N	lethod:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analyt		SW8260B	Anal	yzed Date:	05/11/12	Analytical	409732
Units:	ug/L	Metho	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
o-Xylene		0.15	0.50	ND					
Styrene		0.21	0.50	ND					
Bromoform		0.21	1.0	ND					
Isopropyl Benzene	9	0.097	0.50	ND					
Bromobenzene		0.15	0.50	ND					
1,1,2,2-Tetrachlor	oethane	0.11	0.50	ND					
n-Propylbenzene		0.078	0.50	ND					
2-Chlorotoluene		0.076	0.50	ND					
1,3,5,-Trimethylbe	nzene	0.074	0.50	ND					
4-Chlorotoluene		0.088	0.50	ND					
tert-Butylbenzene		0.081	0.50	ND					
1,2,3-Trichloroproj	pane	0.14	0.50	ND					
1,2,4-Trimethylber	nzene	0.083	0.50	0.10					
sec-Butyl Benzene	e	0.092	0.50	ND					
p-Isopropyltoluene	9	0.093	0.50	0.11					
1,3-Dichlorobenze	ene	0.10	0.50	ND					
1,4-Dichlorobenze	ene	0.069	0.50	ND					
n-Butylbenzene		0.081	0.50	ND					
1,2-Dichlorobenze	ne	0.057	0.50	ND					
1,2-Dibromo-3-Ch	loropropane	0.15	0.50	ND					
Hexachlorobutadie	ene	0.19	0.50	ND					
1,2,4-Trichloroben	izene	0.12	0.50	ND					
Naphthalene		0.14	0.50	ND					
1,2,3-Trichloroben	izene	0.23	0.50	ND					
(S) Dibromofluoroi	methane			95.8					
(S) Toluene-d8				88.6					
(S) 4-Bromofluorol	benzene			92.6					
Ethanol		0.21	0.50	ND	TIC				

Work Order:	1205066	Prep I	Method:	NA	Prep l	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analy	zed Date:	05/14/12	Analytical	409737
Units:	ug/Kg	Metho	d:					Batch:	
	~ 9 ,9								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorome	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluoromet	hane	2.9	10	ND					
1,1-Dichloroethen	е	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlorid	e	2.0	50	ND					
trans-1,2-Dichloro	ethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether (DIPE)	2.2	10	ND					
1,1-Dichloroethan	е	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroeth	nene	1.8	10	ND					
2,2-Dichloropropa	ne	1.2	10	ND					
Bromochlorometha	ane	2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlor	ide	1.6	10	ND					
1,1,1-Trichloroetha	ane	1.2	10	ND					
1,1-Dichloroprope	ne	1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethan	е	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa	ne	1.3	10	ND					
Bromodichloromet		1.1	10	ND					
cis-1,3-Dichloropro	opene	1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethyler	ne	1.8	10	ND					
trans-1,3-Dichloro		1.2	10	ND					
1,1,2-Trichloroetha	ane	1.8	10	ND					
Dibromochloromet	thane	1.1	10	ND					
1,3-Dichloropropa	ne	2.1	10	ND					
Naphthalene		1.7	10	ND					
Ethyl Benzene		0.86	10	ND					
Chlorobenzene		4.2	10	ND					
1,1,1,2-Tetrachlor	oethane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					
o-Xylene		0.66	5.0	ND					

Vork Order: 1205066 Matrix: Soil		Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analy	zed Date:	05/14/12	Analytical	409737
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzen	e	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor	roethane	3.0	10	ND					
1,3,5-Trimethylbe	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene	•	1.4	10	ND					
1,2,4-Trimethylbe	nzene	1.1	10	ND					
sec-Butyl Benzen	е	1.6	10	ND					
p-Isopropyltoluen	е	1.5	10	ND					
1,3-Dichlorobenze	ene	1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze	ene	1.3	10	ND					
1,2-Dibromo-3-Ch	nloropropane	4.2	10	ND					
Hexachlorobutadi	iene	2.6	10	ND					
1,2,4-Trichlorober	nzene	2.1	10	ND					
Naphthalene		3.0	10	ND					
1,2,3-Trichlorober	nzene	2.9	10	ND					
(S) Dibromofluoro	omethane			115					
(S) Toluene-d8				101					
(S) 4-Bromofluoro	obenzene			106					

Work Order:	1205066	Prep I	Method:	NA	Prep [Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analyz	zed Date:	05/15/12	Analytical	409759
Units:	ug/Kg	Metho	d:					Batch:	
	-99								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorome	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluoromet	hane	2.9	10	ND					
1,1-Dichloroethene	e	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chloride	e	2.0	50	ND					
trans-1,2-Dichloroe	ethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether (DIPE)	2.2	10	ND					
1,1-Dichloroethane	e	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroeth	nene	1.8	10	ND					
2,2-Dichloropropar	ne	1.2	10	ND					
Bromochlorometha	ane	2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlori	ide	1.6	10	ND					
1,1,1-Trichloroetha	ane	1.2	10	ND					
1,1-Dichloroproper	ne	1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethane	e	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropar	ne	1.3	10	ND					
Bromodichloromet		1.1	10	ND					
cis-1,3-Dichloropro	pene	1.4	10	ND					
Toluene	-	0.98	10	ND					
Tetrachloroethylen	e	1.8	10	ND					
trans-1,3-Dichlorop		1.2	10	ND					
1,1,2-Trichloroetha		1.8	10	ND					
Dibromochloromet		1.1	10	ND					
1,3-Dichloropropar		2.1	10	ND					
Naphthalene		1.7	10	ND					
Ethyl Benzene		0.86	10	ND					
Chlorobenzene		4.2	10	ND					
1,1,1,2-Tetrachloro	oethane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					
o-Xylene		0.66	5.0	ND					

Work Order:	1205066	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/15/12	Analytical	409759
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzen	e	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlo	roethane	3.0	10	ND					
1,3,5-Trimethylbe	enzene	1.1	10	ND					
1,2,3-Trichloropro		3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene	9	1.4	10	ND					
1,2,4-Trimethylbe	enzene	1.1	10	ND					
sec-Butyl Benzer		1.6	10	ND					
p-Isopropyltoluen		1.5	10	ND					
1,3-Dichlorobenz	ene	1.8	10	ND					
1,4-Dichlorobenz		1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenz	ene	1.3	10	ND					
1,2-Dibromo-3-Cl		4.2	10	ND					
Hexachlorobutad		2.6	10	ND					
1,2,4-Trichlorobe	nzene	2.1	10	ND					
Naphthalene		3.0	10	ND					
1,2,3-Trichlorobe	nzene	2.9	10	ND					
(S) Dibromofluoro				108					
(S) Toluene-d8				104					
(S) 4-Bromofluor	obenzene			110					
Nork Order:	1205066	Prep l	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Water	Analy		SW8015B	Anal	yzed Date:	05/16/12	Analytical	409779
Units:	mg/L	Metho	oa:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH DRO (C9-C Pentacosane (S)	23)	0.0440	0.10	ND 88.5	ł	L			

Work Order:	1205066	Prep I	Method:	NA	Prep Da	te:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analyze	d Date:	05/17/12	Analytical	409796
Units:	ug/Kg	Metho	od:					Batch:	
	~9/1 ·9								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	4.4	10	ND	· · ·				
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluorome	ethane	2.9	10	ND					
1,1-Dichloroether	ne	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlorid	de	2.0	50	ND					
trans-1,2-Dichloro		1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether	(DIPE)	2.2	10	ND					
1,1-Dichloroethar		1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroet	thene	1.8	10	ND					
2,2-Dichloropropa		1.2	10	ND					
Bromochlorometh		2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlo	ride	1.6	10	ND					
1,1,1-Trichloroeth		1.2	10	ND					
1,1-Dichloroprope		1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethar	he	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa		1.3	10	ND					
Bromodichlorome		1.1	10	ND					
cis-1,3-Dichloropi		1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethyle	ne	1.8	10	ND					
trans-1,3-Dichloro		1.2	10	ND					
1,1,2-Trichloroeth		1.8	10	ND					
Dibromochlorome		1.0	10	ND					
1,3-Dichloropropa		2.1	10	ND					
Naphthalene		2.1 1.7	10	ND					
				ND					
Ethyl Benzene		0.86	10						
Chlorobenzene	raathana	4.2	10	ND					
1,1,1,2-Tetrachlor	roethane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					
o-Xylene		0.66	5.0	ND					

Work Order:	1205066	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/17/12	Analytical	409796
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzer	ne	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlo	roethane	3.0	10	ND					
1,3,5-Trimethylbe		1.1	10	ND					
1,2,3-Trichloropro		3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene	Э	1.4	10	ND					
1,2,4-Trimethylbe		1.1	10	ND					
sec-Butyl Benzer		1.6	10	ND					
p-Isopropyltoluen	ie	1.5	10	ND					
1,3-Dichlorobenz		1.8	10	ND					
1,4-Dichlorobenz	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenz	ene	1.3	10	ND					
1,2-Dibromo-3-C		4.2	10	ND					
Hexachlorobutad		2.6	10	ND					
1,2,4-Trichlorobe	nzene	2.1	10	ND					
Naphthalene		3.0	10	ND					
1,2,3-Trichlorobe	nzene	2.9	10	ND					
(S) Dibromofluor				99.2					
(S) Toluene-d8				113					
(S) 4-Bromofluor	obenzene			104					
Work Order:	1205066	Prep	Method:	5035	Prep	Date:	05/14/12	Prep Batch:	5491
Matrix:	Soil	Analy Metho		8260TPH	Anal	yzed Date:	05/14/12	Analytical Batch:	409737
Units:	ug/Kg							Baton.	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline		30	100	ND	ļ	L			
(S) 4-Bromofluor	obenzene			75.1					

Work Order:	1205066	Prep I	Method:	5030	Prep	Date:	05/11/12	Prep Batch:	5495
Matrix:	Water	Analy		8260TPH	Anal	yzed Date:	05/11/12	Analytical	409732
Units:	ug/L	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline (S) 4-Bromofluoro	benzene	31	50	ND 96.9					
Work Order:	1205066	Prep I	Method:	3545_TPHSG	B Prep	Date:	05/15/12	Prep Batch:	5506
Matrix:	Soil	Analy		SW8015B(M)	Anal	yzed Date:	05/15/12	Analytical	409762
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Diesel (S	G)	0.87 2.0		ND					
TPH as Motor Oil	(SG)	1.3	10	1.9					
Pentacosane (S)				85.2					
Work Order:	1205066	Prep I	Method:	5035	Prep	Date:	05/14/12	Prep Batch:	5511
Matrix:	Soil	Analy		8260TPH	Anal	zed Date:	05/15/12	Analytical	409759
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline		30	100	ND					
(S) 4-Bromofluoro	benzene			69.2					
Work Order:	1205066	Prep I	Method:	5035	Prep	Date:	05/17/12	Prep Batch:	5531
Matrix:				8260TPH	Anal	yzed Date:	05/17/12	Analytical	409796
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline (S) 4-Bromofluoro	benzene	30	100	98 123					

				LC3/1	-030 3	ummary	Report	Raw value	es are used in	quality contro	ol assessme
Work Order:	1205066		Prep Metho	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Water		Analytical	SW82	260B	Analyze	d Date:	05/11/12	Analytic	al 409	732
Units:	ug/L		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	0.14	0.50	ND	17.04	91.6	111	19.3	61.4 - 129	30	
Benzene		0.087	0.50	ND	17.04	98.2	114	14.8	66.9 - 140	30	
Trichloroethylene		0.057	0.50	ND	17.04	91.4	101	9.46	69.3 - 144	30	
Toluene		0.059	0.50	ND	17.04	96.7	104	6.99	76.6 - 123	30	
Chlorobenzene		0.068	0.50	ND	17.04	95.2	101	5.80	73.9 - 137	30	
(S) Dibromofluoro	omethane			ND	11.36	88.9	87.2		61.2 - 131		
(S) Toluene-d8				ND	11.36	91.3	86.9		75.1 - 127		
(S) 4-Bromofluor	obenzene			ND	11.36	91.9	91.0		64.1 - 120		
Work Order:	1205066		Prep Metho	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA	
Matrix:	Soil		Analytical Method:	SW82	260B	Analyze	d Date:	05/14/12	Analytic Batch:	al 409	737
Units:	ug/Kg										
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	1.5	10	ND	50	118	124	5.01	53.7 - 139	30	
Benzene		1.5	10	ND	50	95.3	93.5	2.03	66.5 - 135	30	
Trichloroethylene	ł	3.9	10	ND	50	85.7	89.8	4.83	57.5 - 150	30	
Toluene		0.98	10	ND	50	97.7	104	6.55	56.8 - 134	30	
Chlorobenzene		4.2	10	ND	50	114	121	5.45	57.4 - 134	30	
(S) Dibromofluoro	omethane			ND	50	114	102		59.8 - 148		
(S) Toluene-d8				ND	50	108	110		55.2 - 133		

Raw values are used in quality control assessment.

Work Order:	1205066		Prep Metho	od: NA		Prep Dat	te:	NA	Prep Bat	tch: NA	
Matrix: Units:	Soil ug/Kg		Analytical Method:	SW8	260B	Analyze	d Date:	05/15/12	Analytic Batch:	al 409	759
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	1.5	10	ND	50	80.8	102	23.5	53.7 - 139	30	1
Benzene		1.5	10	ND	50	90.6	99.0	8.86	66.5 - 135	30	
Trichloroethylene	9	3.9	10	ND	50	85.2	89.3	4.74	57.5 - 150	30	
Toluene		0.98	10	ND	50	91.6	104	12.9	56.8 - 134	30	
Chlorobenzene		4.2	10	ND	50	101	96.9	3.99	57.4 - 134	30	
(S) Dibromofluor	omethane			ND	50	115	114		59.8 - 148		
(S) Toluene-d8				ND	50	100	107		55.2 - 133		
(S) 4-Bromofluor	obenzene			ND	50	99.1	101		55.8 - 141		
Work Order:	1205066		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix:	Water		Analytical	SW8	015B	Analyze	d Date:	05/16/12	Analytic	al 409	779
Units:	mg/L		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH DRO (C9-C	223)	0.0440	0.10	ND	15	87.8	86.4	1.52	70.0 - 130	30	
Pentacosane (S)				88.5	200	107	106		70.0 - 130		
Work Order:	1205066		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix: Units:	Soil ug/Kg		Analytical Method:	SW8	260B	Analyze	d Date:	05/17/12	Analytic Batch:	al 409	796
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	1.5	10	ND	50	87.8	114	25.8	53.7 - 139	30	
Benzene		1.5	10	ND	50	89.5	115	24.5	66.5 - 135	30	
Trichloroethylene	9	3.9	10	ND	50	87.2	117	29.0	57.5 - 150	30	
Toluene		0.98	10	ND	50	94.7	121	24.2	56.8 - 134	30	
Chlorobenzene		4.2	10	ND	50	90.4	118	26.5	57.4 - 134	30	
					50	99.1	97.8		59.8 - 148		
(S) Dibromofluor	omethane			ND	50	99.1	57.0		0010 110		
(S) Dibromofluoro (S) Toluene-d8	omethane			ND ND	50 50	111	111		55.2 - 133		

				LUSA		ummary	Report	Raw valu	es are used in o	quality contro	l assessme
Work Order:	1205066		Prep Metho	od: 5035		Prep Da	te:	05/14/12	Prep Bat	ch: 549	1
Matrix:	Soil		Analytical Method:	8260	TPH	Analyze	d Date:	05/14/12	Analytica Batch:	al 409	737
Units:	ug/Kg		wethou.						Batch.		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline	L	30	100	ND	1000	81.1	80.8	0.398	64.0 - 133.2	30	
(S) 4-Bromofluor	obenzene			75.1	50	78.2	74.9		43.9 - 127		
Work Order:	1205066		Prep Metho	d: 5030		Prep Da	te:	05/11/12	Prep Bat	ch: 549	5
Matrix:	Water		Analytical	8260	ТРН	Analyze	d Date:	05/11/12	Analytica	al 409	732
Units:	ug/L		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline		31	50	ND	227.27	97.5	94.5	3.20	52.4 - 127	30	
(S) 4-Bromofluor	obenzene			96.9	11.36	80.2	90.7		41.5 - 125		
Work Order:	1205066		Prep Metho	od: 3545	_TPHSG	Prep Da	te:	05/15/12	Prep Bat	ch: 550	6
Matrix:	Soil		Analytical	SW8	015B(M)	Analyze	d Date:	05/15/12	Analytica	al 409	762
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel (S	iG)	0.87	2.0	ND	33.33	65.6	67.7	3.02	50.8 - 111	30	
Pentacosane (S)				1.9	100	92.9	97.5		61.5 - 133		
Work Order:	1205066		Prep Metho	od: 5035		Prep Da	te:	05/14/12	Prep Bat	ch: 551	1
Matrix:	Soil		Analytical	8260	ТРН	Analyze	d Date:	05/15/12	Analytica	al 409	759
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline		30	100	ND	1000	80.3	80.5	0.307	64.0 - 133.2	30	-
(S) 4-Bromofluor	obenzene			69.2	50	73.1	74.7		43.9 - 127		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Raw values are used in quality control assessment.

Work Order: 1205066			Prep Methe	od: 5035	1: 5035		te:	05/17/12	Prep Bat	ch: 553	1
Matrix:	Soil		Analytical	8260	ТРН	Analyze	d Date:	05/17/12	Analytica	al 409	796
Units: ug/Kg			Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline		30	100	98	1000	113	104	8.23	64.0 - 133.2	30	1
(S) 4-Bromofluoro	benzene			123	50	117	113		43.9 - 127		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1205066		Prep Method	I: NA		Prep Date:	NA		Prep Batch:	NA	
Matrix: Soil			Analytical	SW826	SW8260B		ate: 05/*	4/12	Analytical	409737	7
Spiked Sample:	1205066-006/	Ą	Method:						Batch:		
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Benzene		0.0015	0.010	0	0.05	120	119	0.969	66.5 - 135	30	1
Toluene		0.00098	0.010	0	0.05	119	116	2.75	56.8 - 134	30	
(S) Dibromofluorom	nethane				50	134	135		59.8 - 148		
(S) Toluene-d8					50	110	113		55.2 - 133		
(S) 4-Bromofluorob	enzene				50	122	117		55.8 - 141		

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Weber, Hayes & Associates	Date and Time Received: <u>5/10/2012</u> <u>17:30</u>
Project Name: Oakland / 2X103.B	Received By: <u>NG</u>
Work Order No.: <u>1205066</u>	Physically Logged By: <u>NG</u>
	Checklist Completed By: YB
	Carrier Name: Streetwise Courier
Chain of Custody	COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	<u>No</u>
Sample Recei	ot Information
Custody seals intact on shipping container/cooler?	No
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and H	lold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Temperature: <u>12</u> °C
Water-VOA vials have zero headspace?	
Water-pH acceptable upon receipt?	
pH Checked by:	pH Adjusted by:

Chilling has begun. We received 2 samples with same id-DP-1-d17(006A) and did not receive sample DP-3-d17 (010A).

Login Summary Report

Client ID:	TL5105	Weber, Hayes & Associates	QC Level:	
Project Name:	Oakland / 2X103	3.B	TAT Requested:	5+ day:0
Project # :			Date Received:	5/10/2012
Report Due Date:	10/26/2015		Time Received:	17:30

Comments: 5 Day TAT. Samples originally received on 3 CoCs. Broken into two work orders in order to facilitate batch preparation and reporting. Page 1 samples on WO#1205066 and page 2-3 on WO#1205067.

Work Order # : 1205066

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> <u>On Hold</u>	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1205066-001A	DP-1	05/09/12 0:00	Water	06/24/12			W_GCMS-GRO	
							W_8260PetWHA	
Sample Note:	For petr - BTEX, MTE	BE and TBA only. Use M	IDL for any	diluted sample	S.			
1205066-001B	DP-1	05/09/12 0:00	Water	06/24/12				
1205066-002A	DP-2	05/09/12 0:00	Water	06/24/12			W_DRO	
1203000-002A	DI -2	03/03/12 0.00	valer	00/24/12			W_GCMS-GRO	
	DD 0			00/04/40			W_8260PetWHA	
1205066-002B	DP-2	05/09/12 0:00	Water	06/24/12			W_DRO	
1205066-003A	DP-3	05/09/12 0:00	Water	06/24/12				
							W_GCMS-GRO	
1205066-003B	DP-3	05/09/12 0:00	Water	06/24/12			W_8260PetWHA	
	-						W_DRO	
1205066-004A	DP-1-d8	05/09/12 0:00	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
Sample Note:	For petr - BTEX, MTE	BE and TBA only. Use M	IDL for any	diluted sample	s.			
1205066-005A	DP-1-d14	05/09/12 0:00	Soil	11/06/12				
							S_GCMS-GRO	
							S_GCMS-GRO S_8260PetWHA	
							S_8260PetWHA	
							S_TPHDOSG	
1205066-006A	DP-1-d17-A	05/09/12 0:00	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205066-007A	DP-3-d8	05/09/12 0:00	Soil	11/06/12			0.0010.000	
							S_GCMS-GRO S_8260PetWHA	
1205066-008A	DP-3-d11	05/09/12 0:00	Soil	11/06/12				
							S_GCMS-GRO	
							S_8260PetWHA	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Login Summary Report

Client ID:	TL5105	Weber, Hayes & Associates	QC Level:	
Project Name:	Oakland / 2X10	3.B	TAT Requested:	5+ day:0
Project # :			Date Received:	5/10/2012
Report Due Date:	10/26/2015		Time Received:	17:30

Comments: 5 Day TAT. Samples originally received on 3 CoCs. Broken into two work orders in order to facilitate batch preparation and reporting. Page 1 samples on WO#1205066 and page 2-3 on WO#1205067.

Work Order # : 1205066

<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> <u>On Hold</u>	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	Subbed
DP-3-d14	05/09/12 0:00	Soil	11/06/12			S GCMS-GRO	
						S_8260PetWHA	
DP-3-d17	05/09/12 0:00	Soil	11/06/12				
We did not receive his sam	ple DP-3-d17.						
DP-3-d20	05/09/12 0:00	Soil	11/06/12				
						—	
DP-3-d23	05/09/12 0:00	Soil	11/06/12			5_02001 etwinA	
						S_GCMS-GRO	
DP-4-d12	05/09/12 0:00	Soil	11/06/12			S_0200FelvinA	
						S_GCMS-GRO	
DP-4-d18	05/09/12 0:00	Soil	11/06/12			S_8260PetWHA	
						S_GCMS-GRO	
DP-1-d17-B	05/09/12 0:00	Soil	11/06/12			0_02001 0001	
						S_GCMS-GRO	
	Sample ID DP-3-d14 DP-3-d17 We did not receive his sam DP-3-d20 DP-3-d23 DP-4-d12 DP-4-d18	Sample ID Date/Time DP-3-d14 05/09/12 0:00 DP-3-d17 05/09/12 0:00 We did not receive his sample DP-3-d17. DP-3-d20 05/09/12 0:00 DP-3-d20 05/09/12 0:00 0:00 DP-3-d23 05/09/12 0:00 0:00 DP-4-d12 05/09/12 0:00 0:00	Sample ID Date/Time DP-3-d14 05/09/12 0:00 Soil DP-3-d17 05/09/12 0:00 Soil We did not receive his sample DP-3-d17. DP-3-d20 Soil DP-3-d20 05/09/12 0:00 Soil DP-4-d12 05/09/12 0:00 Soil DP-4-d18 05/09/12 0:00 Soil	Sample ID Date/Time Disposal DP-3-d14 05/09/12 0:00 Soil 11/06/12 DP-3-d17 05/09/12 0:00 Soil 11/06/12 We did not receive his sample DP-3-d17. DP-3-d20 05/09/12 0:00 Soil 11/06/12 DP-4-d12 05/09/12 0:00 Soil 11/06/12 DP-4-d18 05/09/12 0:00 Soil 11/06/12	Sample ID Date/Time Disposal On Hold DP-3-d14 05/09/12 0:00 Soil 11/06/12 DP-3-d17 05/09/12 0:00 Soil 11/06/12 We did not receive his sample DP-3-d17. DP-3-d20 05/09/12 0:00 Soil 11/06/12 DP-3-d20 05/09/12 0:00 Soil 11/06/12 Descent (Control (C	Sample ID Date/Time Disposal On Hold On Hold DP-3-d14 05/09/12 0:00 Soil 11/06/12 DP-3-d17 05/09/12 0:00 Soil 11/06/12 We did not receive his sample DP-3-d17. DP-3-d20 05/09/12 0:00 Soil 11/06/12 DP-3-d20 05/09/12 0:00 Soil 11/06/12 Image: Comparison of the compa	Sample ID Date/Time Disposal On Hold On Hold Tests DP-3-d14 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA DP-3-d17 05/09/12 0:00 Soil 11/06/12 DUMMY We did not receive his sample DP-3-d17. DP-3-d20 05/09/12 0:00 Soil 11/06/12 DUMMY DP-3-d20 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA DP-3-d20 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA DP-3-d23 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA DP-4-d12 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA DP-4-d18 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA DP-1-d17-B 05/09/12 0:00 Soil 11/06/12 S_GCMS-GRO S_8260PetWHA

Hydroge	eber, Haye ology and En 120 Westgate Dr. (831) 722-358 Fax: (8	Watso 0 (8	nville, CA 950 31) 662-3100	iates Engine	ering			CHAIN -O)F-(CUST	ODY	RE	COR	RD	1205	
PROJECT NAME AND JOB #: Oakla	ind / 2X103.B									LAB	RATORY	: Torre	ent			
SEND CERTIFIED RESULTS TO: Webe	r. Haves & Asso	ciates	- Attention:	Jered (Chaney			,	т	URNARO	JND TIME	(Stand	ard	48hr Rush	
CTRONIC DELIVERABLE FORMAT:	YES X NO	-						•			OBAL I.D.					
_											COAL NO.		_		-	
Sampler: Jered Cha	<u> </u>															
Date: 58+91	2															
					ONTAINERS					RE	UESTED	ANALY	SIS			
			5	AMPLE G	UNTAINERS		Total	Petroleum Hydrocar	bons			Volatile	Organic	s	Addition	al Analysis
		×			Terra Core		TPH-dieselw/ silica	TPH-Diesel						1,2-DCA		
Sample Identification	Date Sampled	Matrix	40 mL	60 mL	Prep Kit	Liner	gel cleanup	1	11	H-Gas	BTEX	MtBE	& TBA	& EDB		
			VOAs (preserved)	VOAs	VOAs (preserved)	Acetate or Brass	EPA Method# 8015M	EPA Method 8015M	by EF	A Method 260B	EPA Method# 8260B		Method# 260B	EPA Method# 8260B	Luft 5 Metals	PCBs
PUATB DP-1	5/9/12	Ar.	3	2				×		4	*	+	+			
28/13 DP-2	Sille	1	3	2				X	-	1	Í	+	1			
30/13 DP-3		¥.	3	2				×								
40 DP-1-08	A	<u>s</u> .				1						÷				
DP-1- d14		4				1	×		_		\square		<u> </u>			
A DE-1-914		\vdash				1										
DP-3-d8.		Η-									\square	+ ·	<u> </u>			
A DP-3-014	+	\vdash				1						+				
A DP-3-017		H					*						<u> </u>			all c
4 DP-3 - d20		T													ION	W W
A Dr-3-925		4				Li_										in Onit
# DP-4-d12		4				<u> </u>							<u> </u>		m()	1000
A DP-4-018	<u>v</u>	*			1		×				•		y	1		
RELEASED BY: 5 1) 1 1 2) 1 1 1 3) 1 1 1 1 4) 1 1 1 1 1 5) 1	<u>Date & Time</u> 16/12 1350 10/12 455 10 5 5 30	2			$\rightarrow \rightarrow $	EIVED BY:	Anne Anne Anne Anne Anne Anne Anne Anne	Date & 1 5-1042 1 4 6 5/10/12	5	2. 30 fi/ 	nj	Am Am Am	nbient nbient nbient nbient	Ref Ref Ref	LE CONDITION: Leice I frigerated frigerated frigerated frigerated	Frozen Frozen Frozen Frozen Frozen
Please use MDL (Minimum Detection	n Limit) for any dilute	d samp	les.					S,W ,								
JC/Fieldog/FORMS.xb - CCC							of 1								Weber, Hayes and	d Associates

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Change Order

Work Order: 1205066	Serial #: CO15-0284		Print Date:	10/23/2015
Project Name: Oakland / 2X103.B				
Client: Weber, Hayes & Associates	Requested By:	Craig Drizin		
		<u>Requested</u> Date	<u>Requested</u> <u>Time</u>	Extended Price

10/23/2015

1:00:00PM

Report Napthalene data for samples 004-015; report on "B" fractions in mg/kg

Page 1 of 1

Weber, Hayes & Associates 120 Westgate Dr Watsonville, CA 95076 Tel: 831-722-3580 Fax: 831-662-3100

RE: Oakland / 2X103.B

Work Order No.: 1205067 Rev: 2

Dear Jered Chaney:

Torrent Laboratory, Inc. received 20 sample(s) on May 10, 2012 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa-

Patti Sandrock QA Officer October 19, 2015 Date

Date: 10/19/2015

Client: Weber, Hayes & Associates Project: Oakland / 2X103.B Work Order: 1205067

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

REVISIONS

Per client request, report revised to include Naphthalene data for all samples.

Rev. 1 (10/16/15)

Report revised to report Napthalene data in mg/kg.

Rev. 2 (10/19/15)

Report prepared for:	Jered Chaney					Received:	05/10/12	
DP-4-d24	Weber, Hayes & Associates				Date	Reported:	10/19/15 205067-001	
Parameters:		<u>Analysis</u> <u>Method</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	Unit	
Benzene		SW8260B	10	0.015	0.10	0.30	mg/Kg	
Ethyl Benzene		SW8260B	10	0.0086	0.10	0.025	mg/Kg	
TPH as Gasoline		8260TPH	1	0.030	0.10	0.83	mg/Kg	
DP-5-d8						12	205067-002	
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>	
All compounds were non-	detectable for this sample.							
DP-5-d11						12	205067-003	

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Ethyl Benzene	SW8260B	100	0.086	1.0	1.8	mg/Kg
m,p-Xylene	SW8260B	100	0.19	1.0	3.1	mg/Kg
TPH as Gasoline	8260TPH	100	3.0	10	130	mg/Kg
Naphthalene	SW8260B	100	0.28	1.0	1.2	mg/Kg

DP-5-d17					12	205067-004
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Gasoline	8260TPH	1000	30	100	1000	mg/Kg
Benzene	SW8260B	400	0.60	4.0	6.2	mg/Kg
Toluene	SW8260B	400	0.39	4.0	2.1	mg/Kg
Ethyl Benzene	SW8260B	400	0.34	4.0	37	mg/Kg
m,p-Xylene	SW8260B	400	0.74	4.0	150	mg/Kg
o-Xylene	SW8260B	400	0.26	2.0	47	mg/Kg
Naphthalene	SW8260B	400	1.1	4.0	16	mg/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Jered Chaney				Date	Received:	05/10/12
	Weber, Hayes & Associates				Date	Reported:	10/19/15
DP-5-d23						12	205067-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	5	0.0075	0.050	0.55	mg/Kg
Toluene		SW8260B	5	0.0049	0.050	0.015	mg/Kg
Ethyl Benzene		SW8260B	5	0.0043	0.050	0.14	mg/Kg
m,p-Xylene		SW8260B	5	0.0093	0.050	0.37	mg/Kg
o-Xylene		SW8260B	5	0.0033	0.025	0.13	mg/Kg
TPH as Gasoline		8260TPH	5	0.15	0.50	1.5	mg/Kg
Naphthalene		SW8260B	5	0.014	0.050	0.17	mg/Kg
DP-6-d12						12	205067-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Gasoline		8260TPH	100	3.0	10	13	mg/Kg
Benzene		SW8260B	5	0.0075	0.050	0.010	mg/Kg
Toluene		SW8260B	5	0.0049	0.050	0.020	mg/Kg
Ethyl Benzene		SW8260B	5	0.0043	0.050	0.67	mg/Kg
m,p-Xylene		SW8260B	5	0.0093	0.050	1.2	mg/Kg
o-Xylene		SW8260B	5	0.0033	0.025	0.13	mg/Kg
Naphthalene		SW8260B	5	0.014	0.050	0.55	mg/Kg
DP-6-d23						12	205067-008
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	5	0.0075	0.050	0.47	mg/Kg
Toluene		SW8260B	5	0.0049	0.050	0.064	mg/Kg
Ethyl Benzene		SW8260B	5	0.0043	0.050	0.096	mg/Kg
m,p-Xylene		SW8260B	5	0.0093	0.050	0.19	mg/Kg
o-Xylene		SW8260B	5	0.0033	0.025	0.056	mg/Kg
TPH as Gasoline		8260TPH	5	0.15	0.50	1.3	mg/Kg
Naphthalene		SW8260B		0.014	0.050	0.12	mg/Kg

Report prepared for:	Jered Chaney				Date	Received: (05/10/12
	Weber, Hayes & Associates				Date	Reported: 1	0/19/15
DP-7-d4						12	05067-009
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

DP-7-d8 1205067						05067-010
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH as Gasoline	8260TPH	1	0.030	0.10	0.23	mg/Kg

DP-7-d11

Parameters:	<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene	SW8260B	1	0.0015	0.010	0.11	mg/Kg
TPH as Diesel (SG)	SW8015B(M)	1	0.87	2.0	5.8	mg/Kg
TPH as Gasoline	8260TPH	5	0.15	0.50	2.8	mg/Kg

DP-7-d17

Parameters:	Analysis	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Gasoline	<u>Method</u> 8260TPH	100	3.0	10	15	mg/Kg
Benzene	SW8260B	5	0.0075	0.050	0.024	mg/Kg
Toluene	SW8260B	5	0.0049	0.050	0.043	mg/Kg
Ethyl Benzene	SW8260B	5	0.0043	0.050	0.89	mg/Kg
m,p-Xylene	SW8260B	5	0.0093	0.050	1.5	mg/Kg
o-Xylene	SW8260B	5	0.0033	0.025	0.068	mg/Kg
Naphthalene	SW8260B	5	0.014	0.050	1.1	mg/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

1205067-011

1205067-012

Report prepared for:	rt prepared for: Jered Chaney				Date Received: 05/10/12				
	Weber, Hayes & Associates				Date	Reported:	10/19/15		
DP-7-d23						12	205067-013		
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>		
TPH as Gasoline		8260TPH	1	30	100	1200	ug/Kg		
Benzene		SW8260B	2	0.0030	0.020	0.069	mg/Kg		
Ethyl Benzene		SW8260B	2	0.0017	0.020	0.042	mg/Kg		
m,p-Xylene		SW8260B	2	0.0037	0.020	0.0039	mg/Kg		
Naphthalene		SW8260B	2	0.0057	0.020	0.032	mg/Kg		
DP-8-d8						12	205067-014		
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>		

All compounds were non-detectable for this sample.

DP-8-d17					12	205067-015
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Benzene	SW8260B	100	0.15	1.0	2.6	mg/Kg
Toluene	SW8260B	100	0.098	1.0	0.63	mg/Kg
Ethyl Benzene	SW8260B	100	0.086	1.0	21	mg/Kg
m,p-Xylene	SW8260B	100	0.19	1.0	45	mg/Kg
o-Xylene	SW8260B	100	0.066	0.50	18	mg/Kg
TPH as Gasoline	8260TPH	500	15	50	970	mg/Kg
Naphthalene	SW8260B	100	0.28	1.0	11	mg/Kg

Sample Result Summary

Report prepared for:	Jered Chaney				Date	Received:	05/10/12
	Weber, Hayes & Associates				Date	Reported:	10/19/15
DP-8-d20						12	205067-016
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	100	0.15	1.0	0.81	mg/Kg
Ethyl Benzene		SW8260B	100	0.086	1.0	1.4	mg/Kg
m,p-Xylene		SW8260B	100	0.19	1.0	3.9	mg/Kg
o-Xylene		SW8260B	100	0.066	0.50	1.6	mg/Kg
TPH as Gasoline		8260TPH	100	3.0	10	69	mg/Kg
Naphthalene		SW8260B	100	0.28	1.0	1.4	mg/Kg
DP-8-d23						12	205067-017
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

DP-9-d4					120	05067-018
Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

Sample Result Summary

Report prepared for:	Jered Chaney				Date	Received:	05/10/12
	Weber, Hayes & Associates				Date	Reported:	10/19/15
DP-9-d18						1:	205067-019
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	2.5	0.0038	0.025	0.22	mg/Kg
Toluene		SW8260B	2.5	0.0025	0.025	0.013	mg/Kg
Ethyl Benzene		SW8260B	2.5	0.0022	0.025	0.42	mg/Kg
m,p-Xylene		SW8260B	2.5	0.0046	0.025	0.10	mg/Kg
o-Xylene		SW8260B	2.5	0.0017	0.013	0.011	mg/Kg
TPH as Gasoline		8260TPH	2.5	0.074	0.25	5.8	mg/Kg
TPH as Diesel (SG)		SW8015B(M)	1	0.87	2.0	4.8	mg/Kg
Naphthalene		SW8260B	2.5	0.0071	0.025	0.22	mg/Kg
DP-9-d20						1:	205067-020
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Gasoline		8260TPH	1	0.030	0.10	1.7	mg/Kg
Benzene		SW8260B	2	0.0030	0.020	0.16	mg/Kg
Ethyl Benzene		SW8260B	2	0.0017	0.020	0.065	mg/Kg
m,p-Xylene		SW8260B	2	0.0037	0.020	0.042	mg/Kg
o-Xylene		SW8260B	2	0.0013	0.010	0.0017	mg/Kg
Naphthalene		SW8260B	2	0.0057	0.020	0.069	mg/Kg

Report prepared for:	Jered Chaney Weber, Hayes & A	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-4-d24				Lab Sar	nple ID:	12050	67-001A			
Project Name/Location:	Oakland / 2X1	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X1	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL			•			4			
Benzene	SW8260B	NA	05/17/12	10	0.015	0.10	0.30		mg/Kg	409792	NA
Toluene	SW8260B	NA	05/17/12	10	0.0098	0.10	ND		mg/Kg	409792	NA
Ethyl Benzene	SW8260B	NA	05/17/12	10	0.0086	0.10	0.025	J	mg/Kg	409792	NA
m,p-Xylene	SW8260B	NA	05/17/12	10	0.019	0.10	ND		mg/Kg	409792	NA
o-Xylene	SW8260B	NA	05/17/12	10	0.0066	0.050	ND		mg/Kg	409792	NA
МТВЕ	SW8260B	NA	05/17/12	10	0.026	0.10	ND		mg/Kg	409792	NA
tert-Butanol	SW8260B	NA	05/17/12	10	0.21	0.50	ND		mg/Kg	409792	NA
(S) Dibromofluoromethane	SW8260B	NA	05/17/12	10	59.8	148	109		%	409792	NA
(S) Toluene-d8	SW8260B	NA	05/17/12	10	55.2	133	107		%	409792	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/17/12	10	55.8	141	104		%	409792	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/16/12	1	0.030	0.10	0.83	х	mg/Kg	409788	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/16/12	1	43.9	127	71.8		%	409788	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported value is the result of discrete peak and contribution from non-fuel hydrocarbons to range of C5-C12 quantified as gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-4-d24				Lab Sar	nple ID:	120506	67-001C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/17/12	10	0.028	0.10	ND		mg/Kg	427324	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-5-d8				Lab Sar	nple ID:	12050	67-002A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/17/12	1	0.0015	0.010	ND		mg/Kg	409792	NA
Toluene	SW8260B	NA	05/17/12	1	0.00098	0.010	ND		mg/Kg	409792	NA
Ethyl Benzene	SW8260B	NA	05/17/12	1	0.00086	0.010	ND		mg/Kg	409792	NA
m,p-Xylene	SW8260B	NA	05/17/12	1	0.0019	0.010	ND		mg/Kg	409792	NA
o-Xylene	SW8260B	NA	05/17/12	1	0.00066	0.0050	ND		mg/Kg	409792	NA
MTBE	SW8260B	NA	05/17/12	1	0.0026	0.010	ND		mg/Kg	409792	NA
tert-Butanol	SW8260B	NA	05/17/12	1	0.021	0.050	ND		mg/Kg	409792	NA
(S) Dibromofluoromethane	SW8260B	NA	05/17/12	1	59.8	148	105		%	409792	NA
(S) Toluene-d8	SW8260B	NA	05/17/12	1	55.2	133	106		%	409792	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/17/12	1	55.8	141	109		%	409792	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/17/12	1	0.030	0.10	ND		mg/Kg	409792	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/17/12	1	43.9	127	84.3		%	409792	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-5-d8				Lab Sar	nple ID:	12050	67-002C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/17/12	1	0.0028	0.010	ND	I	mg/Kg	427324	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-5-d11				Lab Sar	nple ID:	12050	67-003A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below a	re reported using t	heir MDL									
Benzene	SW8260B	NA	05/17/12	100	0.15	1.0	ND		mg/Kg	409792	NA
Toluene	SW8260B	NA	05/17/12	100	0.098	1.0	ND		mg/Kg	409792	NA
Ethyl Benzene	SW8260B	NA	05/17/12	100	0.086	1.0	1.8		mg/Kg	409792	NA
m,p-Xylene	SW8260B	NA	05/17/12	100	0.19	1.0	3.1		mg/Kg	409792	NA
o-Xylene	SW8260B	NA	05/17/12	100	0.066	0.50	ND		mg/Kg	409792	NA
МТВЕ	SW8260B	NA	05/17/12	100	0.26	1.0	ND		mg/Kg	409792	NA
tert-Butanol	SW8260B	NA	05/17/12	100	2.1	5.0	ND		mg/Kg	409792	NA
(S) Dibromofluoromethane	SW8260B	NA	05/17/12	100	59.8	148	107		%	409792	NA
(S) Toluene-d8	SW8260B	NA	05/17/12	100	55.2	133	100		%	409792	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/17/12	100	55.8	141	106		%	409792	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below a	re reported using t	heir MDL									
TPH as Gasoline	8260TPH	5/17/12	05/17/12		3.0	10	130	х	mg/Kg	409792	5529
(S) 4-Bromofluorobenzene	8260TPH	5/17/12	05/17/12	100	43.9	127	107		%	409792	5529
NOTE: x - Does not match pa gasoline).	attern of reference Gase	oline stand	ard. Report	ed TPH	I value inc	ludes cont	ribution from h	eavy end h	lydrocart	oons (possibl	y aged

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-5-d11				Lab Sa	nple ID:	120506	67-003C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/17/12	100	0.28	1.0	1.2		mg/Kg	427324	NA

Report prepared for:	Jered Chaney									eived: 05/1	
	Weber, Hayes & As	ssociates						Da	te Repo	orted: 10/1	9/15
Client Sample ID:	DP-5-d17				Lab Sa	mple ID:	12050	67-004A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDI									
Benzene	SW8260B	NA	05/14/12	400	0.60	4.0	6.2		mg/Kg	409737	NA
Toluene	SW8260B	NA	05/14/12	400	0.39	4.0	2.1	J	mg/Kg	409737	NA
Ethyl Benzene	SW8260B	NA	05/14/12	400	0.34	4.0	37		mg/Kg	409737	NA
m,p-Xylene	SW8260B	NA	05/14/12	400	0.74	4.0	150		mg/Kg	409737	NA
o-Xylene	SW8260B	NA	05/14/12	400	0.26	2.0	47		mg/Kg	409737	NA
MTBE	SW8260B	NA	05/14/12	400	1.0	4.0	ND		mg/Kg	409737	NA
tert-Butanol	SW8260B	NA	05/14/12	400	8.3	20	ND		mg/Kg	409737	NA
(S) Dibromofluoromethane	SW8260B	NA	05/14/12	400	59.8	148	105		%	409737	NA
(S) Toluene-d8	SW8260B	NA	05/14/12	400	55.2	133	109		%	409737	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/14/12	400	55.8	141	105		%	409737	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDI									
TPH as Gasoline	8260TPH	NA	05/15/12	1000	30	100	1000		mg/Kg	409759	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/15/12	1000	43.9	127	70.7		%	409759	NA
NOTE: Result is elevated d	ue to contribution from he	eavy end l	nydrocarbon	s (poss	ibly aged	gasoline).					

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-5-d17				Lab Sa	mple ID:	12050	67-004C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/14/12	400	1.1	4.0	16		mg/Kg	427325	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-5-d23				Lab Sar	nple ID:	12050)67-005A			
Project Name/Location:	Oakland / 2X10	3.B			Sample	•	Soil				
Project Number:		0.2									
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10	3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using th	heir MDL									
Benzene	SW8260B	NA	05/15/12	5	0.0075	0.050	0.55		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	5	0.0049	0.050	0.015	J	mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	5	0.0043	0.050	0.14		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	5	0.0093	0.050	0.37		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	5	0.0033	0.025	0.13		mg/Kg	409759	NA
MTBE	SW8260B	NA	05/15/12	5	0.013	0.050	ND		mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	5	0.10	0.25	ND		mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	5	59.8	148	130		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	5	55.2	133	109		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	5	55.8	141	119		%	409759	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	• •										
TPH as Gasoline	8260TPH	NA	05/15/12	5	0.15	0.50	1.5	х	mg/Kg	409759	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/15/12	5	43.9	127	67.3		%	409759	NA

NOTE: x - Not typical of Gasoline standard pattern. Reported value due to discrete peaks of aromatic compounds and non-target heavy hydrocarbons within range of C5-C12 quantified as Gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-5-d23					nple ID:		67-005C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	5	0.014	0.050	0.17		mg/Kg	427327	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-6-d12				Lab Sar	nple ID:	12050	67-006A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL							1		1
Benzene	SW8260B	NA	05/16/12	5	0.0075	0.050	0.010	J	mg/Kg	409788	NA
Toluene	SW8260B	NA	05/16/12	5	0.0049	0.050	0.020	J	mg/Kg	409788	NA
Ethyl Benzene	SW8260B	NA	05/16/12	5	0.0043	0.050	0.67		mg/Kg	409788	NA
m,p-Xylene	SW8260B	NA	05/16/12	5	0.0093	0.050	1.2		mg/Kg	409788	NA
o-Xylene	SW8260B	NA	05/16/12	5	0.0033	0.025	0.13		mg/Kg	409788	NA
ИТВЕ	SW8260B	NA	05/16/12	5	0.013	0.050	ND		mg/Kg	409788	NA
tert-Butanol	SW8260B	NA	05/16/12	5	0.10	0.25	ND		mg/Kg	409788	NA
(S) Dibromofluoromethane	SW8260B	NA	05/16/12	5	59.8	148	118		%	409788	NA
(S) Toluene-d8	SW8260B	NA	05/16/12	5	55.2	133	104		%	409788	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/16/12	5	55.8	141	107		%	409788	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
TPH as Gasoline	8260TPH	NA	05/14/12		3.0	10	13	х	mg/Kg	409737	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	100	43.9	127	67.9		%	409737	NA
NOTE: x - Does not match gasoline).	pattern of reference Gase	oline stand	ard. Report	ed TPH	H value inc	ludes cont	ribution from h	eavy end h	lydrocart	oons (possibl	y aged

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID: Project Name/Location:	DP-6-d12 Oakland / 2X1(03 B				nple ID: Matrix:	120500 Soil	67-006C			
Project Number:		00.2			oumpio	matrixi	Con				
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	5	0.014	0.050	0.55	I	mg/Kg	427328	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-6-d23				Lab Sar	nple ID:	12050)67-008A			
Project Name/Location:	Oakland / 2X10	3.B			Sample	•	Soil				
Project Number:		0.2									
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using th	heir MDL									
Benzene	SW8260B	NA	05/15/12	5	0.0075	0.050	0.47		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	5	0.0049	0.050	0.064		mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	5	0.0043	0.050	0.096		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	5	0.0093	0.050	0.19		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	5	0.0033	0.025	0.056		mg/Kg	409759	NA
MTBE	SW8260B	NA	05/15/12	5	0.013	0.050	ND		mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	5	0.10	0.25	ND		mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	5	59.8	148	135		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	5	55.2	133	107		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	5	55.8	141	116		%	409759	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	• •				•					8	
TPH as Gasoline	8260TPH	NA	05/15/12	5	0.15	0.50	1.3	х	mg/Kg	409759	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/15/12	5	43.9	127	65.9		%	409759	NA

NOTE: x - Not typical of Gasoline standard pattern. Reported value due to discrete peaks of aromatic compounds and non-target heavy hydrocarbons within range of C5-C12 quantified as Gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-6-d23				Lab Sar	nple ID:	12050	67-008C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	5	0.014	0.050	0.12		mg/Kg	427327	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates						Date Received: 05/10/12 Date Reported: 10/19/15						
Client Sample ID:	DP-7-d4				Lab Sar	nple ID:	12050	67-009A						
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil							
Project Number:														
Date/Time Sampled:	05/09/12 /													
Tag Number:	Oakland / 2X10)3.B												
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch			
Benzene	SW8260B	NA	05/11/12	1	0.0015	0.010	ND		mg/Kg	409731	NA			
Toluene	SW8260B	NA	05/11/12	1	0.00098	0.010	ND		mg/Kg	409731	NA			
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.00086	0.010	ND		mg/Kg	409731	NA			
m,p-Xylene	SW8260B	NA	05/11/12	1	0.0019	0.010	ND		mg/Kg	409731	NA			
o-Xylene	SW8260B	NA	05/11/12	1	0.00066	0.0050	ND		mg/Kg	409731	NA			
MTBE	SW8260B	NA	05/11/12	1	0.0026	0.010	ND		mg/Kg	409731	NA			
tert-Butanol	SW8260B	NA	05/11/12	1	0.021	0.050	ND		mg/Kg	409731	NA			
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	59.8	148	131		%	409731	NA			
(S) Toluene-d8	SW8260B	NA	05/11/12	1	55.2	133	113		%	409731	NA			
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	55.8	141	122		%	409731	NA			
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch			
TPH as Gasoline	8260TPH	NA	05/11/12	1	0.030	0.10	ND		mg/Kg	409731	NA			
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	75.2		%	409731	NA			

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	••••
Client Sample ID:	DP-7-d4				Lab Sar	nple ID:	12050	67-009C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	1	0.0028	0.010	ND		mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates			Date Received: 05/10/12 Date Reported: 10/19/15							
Client Sample ID:	DP-7-d8				Lab Sar	nple ID:	12050	67-010A				
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil					
Project Number:												
Date/Time Sampled:	05/09/12 /											
Tag Number:	Oakland / 2X10)3.B										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
Benzene	SW8260B	NA	05/11/12	1	0.0015	0.010	ND		mg/Kg	409731	NA	
Toluene	SW8260B	NA	05/11/12	1	0.00098	0.010	ND		mg/Kg	409731	NA	
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.00086	0.010	ND		mg/Kg	409731	NA	
m,p-Xylene	SW8260B	NA	05/11/12	1	0.0019	0.010	ND		mg/Kg	409731	NA	
o-Xylene	SW8260B	NA	05/11/12	1	0.00066	0.0050	ND		mg/Kg	409731	NA	
МТВЕ	SW8260B	NA	05/11/12	1	0.0026	0.010	ND		mg/Kg	409731	NA	
tert-Butanol	SW8260B	NA	05/11/12	1	0.021	0.050	ND		mg/Kg	409731	NA	
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	59.8	148	116		%	409731	NA	
(S) Toluene-d8	SW8260B	NA	05/11/12	1	55.2	133	104		%	409731	NA	
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	55.8	141	110		%	409731	NA	
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
TPH as Gasoline	8260TPH	NA	05/11/12	1	0.030	0.10	0.23	х	mg/Kg	409731	NA	
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	66.8		%	409731	NA	
NOTE: x - Does not match pa	attern of reference Gase	oline stand	lard. Hydroc	arbon	s in the ran	ge of C5-0	C12 quantified	as Gasolin	e.			

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-7-d8				Lab Sar	nple ID:	12050	67-010C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 / 0:00)									
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	1	0.0028	0.010	ND	I	mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-7-d11				Lab Sar	nple ID:	12050	67-011A			
Project Name/Location:	Oakland / 2X10	3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/11/12	1	0.0015	0.010	0.11		mg/Kg	409731	NA
Toluene	SW8260B	NA	05/11/12	1	0.00098	0.010	ND		mg/Kg	409731	NA
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.00086	0.010	ND		mg/Kg	409731	NA
m,p-Xylene	SW8260B	NA	05/11/12	1	0.0019	0.010	ND		mg/Kg	409731	NA
o-Xylene	SW8260B	NA	05/11/12	1	0.00066	0.0050	ND		mg/Kg	409731	NA
MTBE	SW8260B	NA	05/11/12	1	0.0026	0.010	ND		mg/Kg	409731	NA
tert-Butanol	SW8260B	NA	05/11/12	1	0.021	0.050	ND		mg/Kg	409731	NA
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	59.8	148	119		%	409731	NA
(S) Toluene-d8	SW8260B	NA	05/11/12	1	55.2	133	108		%	409731	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	55.8	141	0.000	S	%	409731	NA
NOTE: S - Surrogate (BFB)	out of limits. No correctiv	ve action r	equired: sur	rogate	not associ	ated with	reported comp	ounds.			
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL						1		1	
TPH as Gasoline	8260TPH	NA	05/17/12	5	0.15	0.50	2.8	х	mg/Kg	409792	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/17/12	5	43.9	127	105		%	409792	NA
NOTE: x - Does not match p	pattern of reference Gase	oline stand	ard. Hydroc	arbon	s in the ran	ge of C5-0	C12 quantified	as Gasolin	e.		
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	5/15/12	05/15/12	1	0.87	2.0	5.8	х	mg/Kg	409762	5506
TPH as Motor Oil (SG)	SW8015B(M)	5/15/12	05/15/12	1	1.3	10	ND		mg/Kg	409762	5506
Pentacosane (S)	SW8015B(M)	5/15/12	05/15/12	1	61.5	133	89.0		%	409762	5506
NOTE: x-Not typical of TPH	as Diesel Standard patte	ern (liahter	than Diesel) Hv	drocarbons	with TPH	as Diesel rand	a are quar	tiated as		

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-7-d11				Lab Sar	nple ID:	120506	67-011C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	1	0.0028	0.010	ND	1	mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates					Date Received: 05/10, Date Reported: 10/19,						
Client Sample ID:	DP-7-d17				Lab Sar	nple ID:	12050	67-012A					
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil						
Project Number:													
Date/Time Sampled:	05/09/12 /												
Tag Number:	Oakland / 2X10)3.B											
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
The results shown below	are reported using t	heir MDL											
Benzene	SW8260B	NA	05/15/12	5	0.0075	0.050	0.024	J	mg/Kg	409759	NA		
oluene	SW8260B	NA	05/15/12	5	0.0049	0.050	0.043	J	mg/Kg	409759	NA		
Ethyl Benzene	SW8260B	NA	05/15/12	5	0.0043	0.050	0.89		mg/Kg	409759	NA		
n,p-Xylene	SW8260B	NA	05/15/12	5	0.0093	0.050	1.5		mg/Kg	409759	NA		
o-Xylene	SW8260B	NA	05/15/12	5	0.0033	0.025	0.068		mg/Kg	409759	NA		
ИТВЕ	SW8260B	NA	05/15/12	5	0.013	0.050	ND		mg/Kg	409759	NA		
ert-Butanol	SW8260B	NA	05/15/12	5	0.10	0.25	ND		mg/Kg	409759	NA		
S) Dibromofluoromethane	SW8260B	NA	05/15/12	5	59.8	148	129		%	409759	NA		
S) Toluene-d8	SW8260B	NA	05/15/12	5	55.2	133	117		%	409759	NA		
S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	5	55.8	141	111		%	409759	NA		
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
The results shown below	• •												
PH as Gasoline	8260TPH	NA	05/14/12	100	3.0	10	15	х	mg/Kg	409737	NA		
S) 4-Bromofluorobenzene	8260TPH	NA	05/14/12	100	43.9	127	70.0		%	409737	NA		

Report prepared for:	Jered Chaney Weber, Hayes & Associates									eived: 05/1 orted: 10/1	
Client Sample ID:	DP-7-d17				Lab Sar	nple ID:	12050	67-012C			
Project Name/Location:	Oakland / 2X1	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X1	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	5	0.014	0.050	1.1		mg/Kg	427327	NA

Report prepared for:	Jered Chaney Weber, Hayes & A	ssociates	;						Date Received: 05/10/12 Date Reported: 10/19/15						
Client Sample ID:	DP-7-d23				Lab Sar	nple ID:	12050)67-013A							
Project Name/Location:	Oakland / 2X1	03.B			Sample	Matrix:	Soil								
Project Number:															
Date/Time Sampled:	05/09/12 /														
Tag Number:	Oakland / 2X1	03.B													
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch				
The results shown below	are reported using t	their MD	L.												
Benzene	SW8260B	NA	05/15/12	2	0.0030	0.020	0.069		mg/Kg	409759	NA				
Toluene	SW8260B	NA	05/15/12	2	0.0020	0.020	ND		mg/Kg	409759	NA				
Ethyl Benzene	SW8260B	NA	05/15/12	2	0.0017	0.020	0.042		mg/Kg	409759	NA				
m,p-Xylene	SW8260B	NA	05/15/12	2	0.0037	0.020	0.0039	J	mg/Kg	409759	NA				
o-Xylene	SW8260B	NA	05/15/12	2	0.0013	0.010	ND		mg/Kg	409759	NA				
MTBE	SW8260B	NA	05/15/12	2	0.0052	0.020	ND		mg/Kg	409759	NA				
tert-Butanol	SW8260B	NA	05/15/12	2	0.042	0.10	ND		mg/Kg	409759	NA				
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	2	59.8	148	136		%	409759	NA				
(S) Toluene-d8	SW8260B	NA	05/15/12	2	55.2	133	107		%	409759	NA				
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	2	55.8	141	119		%	409759	NA				
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch				
TPH as Gasoline	8260TPH	NA	05/11/12	1	30	100	1200	х	ug/Kg	409731	NA				
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	88.2		%	409731	NA				

NOTE: x - Does not match pattern of reference Gasoline standard. Reported value due to discrete peaks and non-target hydrocarbons within range of C5-C12 quantified as gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	••••
Client Sample ID:	DP-7-d23				Lab Sar	nple ID:	12050	67-013C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	2	0.0057	0.020	0.032	1	mg/Kg	427327	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-8-d8				Lab Sar	nple ID:	12050	67-014A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/11/12	1	0.0015	0.010	ND	I	mg/Kg	409731	NA
Toluene	SW8260B	NA	05/11/12	1	0.00098	0.010	ND		mg/Kg	409731	NA
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.00086	0.010	ND		mg/Kg	409731	NA
m,p-Xylene	SW8260B	NA	05/11/12	1	0.0019	0.010	ND		mg/Kg	409731	NA
o-Xylene	SW8260B	NA	05/11/12	1	0.00066	0.0050	ND		mg/Kg	409731	NA
MTBE	SW8260B	NA	05/11/12	1	0.0026	0.010	ND		mg/Kg	409731	NA
tert-Butanol	SW8260B	NA	05/11/12	1	0.021	0.050	ND		mg/Kg	409731	NA
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	59.8	148	128		%	409731	NA
(S) Toluene-d8	SW8260B	NA	05/11/12	1	55.2	133	104		%	409731	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	55.8	141	118		%	409731	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/11/12	1	0.030	0.10	ND	1	mg/Kg	409731	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	81.3		%	409731	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-8-d8					mple ID:		67-014C			
Project Name/Location: Project Number:	Oakland / 2X10	J3.B			Sample	Matrix:	Soil				
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	1	0.0028	0.010	ND		mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates				Date Received: 05/10/ Date Reported: 10/19/							
Client Sample ID:	DP-8-d17				Lab Sar	nple ID:	12050	67-015A					
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil						
Project Number:													
Date/Time Sampled:	05/08/12 /												
Tag Number:	Oakland / 2X10)3.B											
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
The results shown below a	re reported using t	heir MDL									1		
Benzene	SW8260B	NA	05/11/12	100	0.15	1.0	2.6		mg/Kg	409731	NA		
Toluene	SW8260B	NA	05/11/12	100	0.098	1.0	0.63	J	mg/Kg	409731	NA		
Ethyl Benzene	SW8260B	NA	05/11/12	100	0.086	1.0	21		mg/Kg	409731	NA		
m,p-Xylene	SW8260B	NA	05/11/12	100	0.19	1.0	45		mg/Kg	409731	NA		
o-Xylene	SW8260B	NA	05/11/12	100	0.066	0.50	18		mg/Kg	409731	NA		
МТВЕ	SW8260B	NA	05/11/12	100	0.26	1.0	ND		mg/Kg	409731	NA		
tert-Butanol	SW8260B	NA	05/11/12	100	2.1	5.0	ND		mg/Kg	409731	NA		
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	100	59.8	148	128		%	409731	NA		
(S) Toluene-d8	SW8260B	NA	05/11/12	100	55.2	133	112		%	409731	NA		
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	100	55.8	141	104		%	409731	NA		
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
The results shown below a	re reported using t	heir MDL						•					
TPH as Gasoline	8260TPH	5/16/12	05/16/12		15	50	970	х	mg/Kg	409788	5526		
(S) 4-Bromofluorobenzene	8260TPH	5/16/12	05/16/12	500	43.9	127	103		%	409788	5526		
NOTE: x - Does not match pa gasoline).	attern of reference Gase	oline stand	ard. Report	ed TPH	I value inc	ludes cont	tribution from n	on-target h	lydrocart	oons (possibl	y aged		

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-8-d17				Lab Sar	nple ID:	120506	67-015C			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	100	0.28	1.0	11	1	mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates					Date Received: 05/10 Date Reported: 10/19						
Client Sample ID:	DP-8-d20				Lab Sa	mple ID:	12050)67-016A					
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil						
Project Number:					-								
Date/Time Sampled:	05/08/12 /												
Tag Number:	Oakland / 2X10)3.B											
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
The results shown below	are reported using t	heir MDL									<u>.</u>		
Benzene	SW8260B	NA	05/11/12	100	0.15	1.0	0.81	J	mg/Kg	409731	NA		
Toluene	SW8260B	NA	05/11/12	100	0.098	1.0	ND		mg/Kg	409731	NA		
Ethyl Benzene	SW8260B	NA	05/11/12	100	0.086	1.0	1.4		mg/Kg	409731	NA		
m,p-Xylene	SW8260B	NA	05/11/12	100	0.19	1.0	3.9		mg/Kg	409731	NA		
o-Xylene	SW8260B	NA	05/11/12	100	0.066	0.50	1.6		mg/Kg	409731	NA		
MTBE	SW8260B	NA	05/11/12	100	0.26	1.0	ND		mg/Kg	409731	NA		
tert-Butanol	SW8260B	NA	05/11/12	100	2.1	5.0	ND		mg/Kg	409731	NA		
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	100	59.8	148	138		%	409731	NA		
(S) Toluene-d8	SW8260B	NA	05/11/12	100	55.2	133	111		%	409731	NA		
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	100	55.8	141	108		%	409731	NA		
NOTE: Reporting limit raise	ed due to significant amou	unt of hydro	ocarbons.										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
The results shown below	are reported using t	heir MDL			L				1	1	<u> </u>		
TPH as Gasoline	8260TPH	NA	05/11/12	100	3.0	10	69	х	mg/Kg	409731	NA		
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	100	43.9	127	86.5		%	409731	NA		

NOTE: x - Does not match pattern of reference Gasoline standard. Reported TPH value includes contribution from heavy end hydrocarbons (possibly aged gasoline).

Report prepared for:	Jered Chaney Weber, Hayes & Associates									eived: 05/1 orted: 10/1	
Client Sample ID:	DP-8-d20				Lab Sa	nple ID:	120506	67-016C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	100	0.28	1.0	1.4		mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-8-d23				Lab Sar	nple ID:	12050	67-017A			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/11/12	1	0.0015	0.010	ND		mg/Kg	409731	NA
Toluene	SW8260B	NA	05/11/12	1	0.00098	0.010	ND		mg/Kg	409731	NA
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.00086	0.010	ND		mg/Kg	409731	NA
m,p-Xylene	SW8260B	NA	05/11/12	1	0.0019	0.010	ND		mg/Kg	409731	NA
o-Xylene	SW8260B	NA	05/11/12	1	0.00066	0.0050	ND		mg/Kg	409731	NA
MTBE	SW8260B	NA	05/11/12	1	0.0026	0.010	ND		mg/Kg	409731	NA
tert-Butanol	SW8260B	NA	05/11/12	1	0.021	0.050	ND		mg/Kg	409731	NA
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	59.8	148	127		%	409731	NA
(S) Toluene-d8	SW8260B	NA	05/11/12	1	55.2	133	107		%	409731	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	55.8	141	115		%	409731	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/11/12	1	0.030	0.10	ND		mg/Kg	409731	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	85.8		%	409731	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	••••
Client Sample ID:	DP-8-d23				Lab Sar	nple ID:	120506	67-017C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	1	0.0028	0.010	ND	1	mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	•••
Client Sample ID:	DP-9-d4				Lab Sar	nple ID:	12050	67-018A			
Project Name/Location:	Oakland / 2X10)3.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Benzene	SW8260B	NA	05/11/12	1	0.0015	0.010	ND		mg/Kg	409731	NA
Toluene	SW8260B	NA	05/11/12	1	0.00098	0.010	ND		mg/Kg	409731	NA
Ethyl Benzene	SW8260B	NA	05/11/12	1	0.00086	0.010	ND		mg/Kg	409731	NA
m,p-Xylene	SW8260B	NA	05/11/12	1	0.0019	0.010	ND		mg/Kg	409731	NA
o-Xylene	SW8260B	NA	05/11/12	1	0.00066	0.0050	ND		mg/Kg	409731	NA
MTBE	SW8260B	NA	05/11/12	1	0.0026	0.010	ND		mg/Kg	409731	NA
tert-Butanol	SW8260B	NA	05/11/12	1	0.021	0.050	ND		mg/Kg	409731	NA
(S) Dibromofluoromethane	SW8260B	NA	05/11/12	1	59.8	148	123		%	409731	NA
(S) Toluene-d8	SW8260B	NA	05/11/12	1	55.2	133	98.3		%	409731	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/11/12	1	55.8	141	108		%	409731	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/11/12	1	0.030	0.10	ND	1	mg/Kg	409731	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	86.5		%	409731	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-9-d4				Lab Sample ID:		12050	1205067-018C			
Project Name/Location:	Oakland / 2X103.B			Sample Matrix:		Soil					
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X103.B										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/11/12	1	0.0028	0.010	ND	I	mg/Kg	427298	NA

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-9-d18				Lab Sar	nple ID:	1205(067-019A			0,10
Project Name/Location:	Oakland / 2X10)3.B			Sample	•	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X10)3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL						I			
Benzene	SW8260B	NA	05/16/12	2.5	0.0038	0.025	0.22		mg/Kg	409788	NA
Toluene	SW8260B	NA	05/16/12	2.5	0.0025	0.025	0.013	J	mg/Kg	409788	NA
Ethyl Benzene	SW8260B	NA	05/16/12	2.5	0.0022	0.025	0.42		mg/Kg	409788	NA
m,p-Xylene	SW8260B	NA	05/16/12	2.5	0.0046	0.025	0.10		mg/Kg	409788	NA
o-Xylene	SW8260B	NA	05/16/12	2.5	0.0017	0.013	0.011	J	mg/Kg	409788	NA
MTBE	SW8260B	NA	05/16/12	2.5	0.0065	0.025	ND		mg/Kg	409788	NA
tert-Butanol	SW8260B	NA	05/16/12	2.5	0.052	0.13	ND		mg/Kg	409788	NA
(S) Dibromofluoromethane	SW8260B	NA	05/16/12	2.5	59.8	148	126		%	409788	NA
(S) Toluene-d8	SW8260B	NA	05/16/12	2.5	55.2	133	102		%	409788	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/16/12	2.5	55.8	141	114		%	409788	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL			1			I		I	
TPH as Gasoline	8260TPH	5/16/12	05/16/12	2.5	0.074	0.25	5.8	х	mg/Kg	409788	5526
(S) 4-Bromofluorobenzene	8260TPH	5/16/12	05/16/12	2.5	43.9	127	68.0		%	409788	5526
NOTE: x - Does not match p gasoline).	pattern of reference Gase	oline stand	ard. Reporte	ed TPI	l value inc	ludes cont	ribution from 1	non-target h	lydrocart	oons (possibl	y aged
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	5/15/12	05/15/12	1	0.87	2.0	4.8	x	mg/Kg	409762	5506
TPH as Motor Oil (SG)	SW8015B(M)	5/15/12	05/15/12	1	1.3	10	ND		mg/Kg	409762	5506
Pentacosane (S)	SW8015B(M)	5/15/12	05/15/12	1	61.5	133	87.3		%	409762	5506
NOTE: x-Not typical of TPH		<i>// / / /</i>									

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-9-d18				Lab Sar	nple ID:	12050	67-019C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	2.5	0.0071	0.025	0.22	1	mg/Kg	427328	NA

Report prepared for:	Jered Chaney Weber, Hayes & A	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-9-d20				Lab Sar	nple ID:	12050)67-020A			
Project Name/Location:	Oakland / 2X1	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/08/12 /										
Tag Number:	Oakland / 2X1	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDI			•	4				8	
Benzene	SW8260B	NA	05/15/12	2	0.0030	0.020	0.16		mg/Kg	409759	NA
Toluene	SW8260B	NA	05/15/12	2	0.0020	0.020	ND		mg/Kg	409759	NA
Ethyl Benzene	SW8260B	NA	05/15/12	2	0.0017	0.020	0.065		mg/Kg	409759	NA
m,p-Xylene	SW8260B	NA	05/15/12	2	0.0037	0.020	0.042		mg/Kg	409759	NA
o-Xylene	SW8260B	NA	05/15/12	2	0.0013	0.010	0.0017	J	mg/Kg	409759	NA
МТВЕ	SW8260B	NA	05/15/12	2	0.0052	0.020	ND		mg/Kg	409759	NA
tert-Butanol	SW8260B	NA	05/15/12	2	0.042	0.10	ND		mg/Kg	409759	NA
(S) Dibromofluoromethane	SW8260B	NA	05/15/12	2	59.8	148	135		%	409759	NA
(S) Toluene-d8	SW8260B	NA	05/15/12	2	55.2	133	111		%	409759	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/15/12	2	55.8	141	118		%	409759	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Gasoline	8260TPH	NA	05/11/12	1	0.030	0.10	1.7	х	mg/Kg	409731	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	05/11/12	1	43.9	127	86.3		%	409731	NA

NOTE: x - Does not match pattern of reference Gasoline standard. Reported value due to discrete peaks and non-target hydrocarbons within range of C5-C12 quantified as gasoline.

Report prepared for:	Jered Chaney Weber, Hayes & As	ssociates								eived: 05/1 orted: 10/1	
Client Sample ID:	DP-9-d20				Lab Sar	nple ID:	12050	67-020C			
Project Name/Location:	Oakland / 2X10	03.B			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X10	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/16/12	2	0.0057	0.020	0.069		mg/Kg	427327	NA

Work Order:	1205067	Prep I	Method:	NA	Prep [Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analy	zed Date:	05/11/12	Analytical	409731
Units:	ug/Kg	Metho	d:					Batch:	
				-					
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorome	thane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluorometh	nane	2.9	10	ND					
1,1-Dichloroethene	;	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chloride	e	2.0	50	ND					
trans-1,2-Dichloroe	ethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether (l	DIPE)	2.2	10	ND					
1,1-Dichloroethane)	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroeth	ene	1.8	10	ND					
2,2-Dichloropropar	ne	1.2	10	ND					
Bromochlorometha		2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlori	de	1.6	10	ND					
1,1,1-Trichloroetha	ine	1.2	10	ND					
1,1-Dichloroproper		1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethane)	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropar	ne	1.3	10	ND					
Bromodichlorometl		1.1	10	ND					
cis-1,3-Dichloropro		1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethylen	e	1.8	10	ND					
trans-1,3-Dichlorop		1.2	10	ND					
1,1,2-Trichloroetha		1.8	10	ND					
Dibromochloromet		1.1	10	ND					
1,3-Dichloropropar		2.1	10	ND					
1,2-Dibromoethane		1.7	10	ND					
Ethyl Benzene		0.86	10	ND					
Chlorobenzene		4.2	10	ND					
1,1,1,2-Tetrachloro	ethane	4.2 0.86	10	ND					
,,,,,∠-,∈uacii0iC		1.9	10	ND					

Work Order:	1205067	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analy	zed Date:	05/11/12	Analytical	409731
Units:	ug/Kg	Metho	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
o-Xylene		0.66	5.0	ND					
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzene	e	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor		3.0	10	ND					
1,3,5-Trimethylber	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene		1.4	10	ND					
1,2,4-Trimethylber		1.1	10	ND					
sec-Butyl Benzene	е	1.6	10	ND					
p-Isopropyltoluene	Э	1.5	10	ND					
1,3-Dichlorobenze	ene	1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze		1.3	10	ND					
1,2-Dibromo-3-Ch		4.2	10	ND					
Hexachlorobutadie		2.6	10	ND					
1,2,4-Trichlorober	nzene	2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichlorober		2.9	10	ND					
(S) Dibromofluoro	methane			109					
(S) Toluene-d8				106					
(S) 4-Bromofluoro	benzene			110					

Work Order:	1205067	Prep	Method:	NA	Prep Da	ate:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analyzo	ed Date:	05/14/12	Analytical	409737
Units:	ug/Kg	Metho	od:					Batch:	
	-99								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluorome	ethane	2.9	10	ND					
1,1-Dichloroether	ne	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlorid	de	2.0	50	ND					
trans-1,2-Dichloro	pethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether	(DIPE)	2.2	10	ND					
1,1-Dichloroethar	ne	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroet	thene	1.8	10	ND					
2,2-Dichloropropa		1.2	10	ND					
Bromochlorometh		2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlo	ride	1.6	10	ND					
1,1,1-Trichloroeth		1.2	10	ND					
1,1-Dichloroprope		1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethar	he	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa		1.3	10	ND					
Bromodichlorome		1.1	10	ND					
cis-1,3-Dichlorop		1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethyle	ne	1.8	10	ND					
trans-1,3-Dichloro		1.2	10	ND					
1,1,2-Trichloroeth		1.8	10	ND					
Dibromochlorome		1.0	10	ND					
1,3-Dichloropropa		2.1	10	ND					
1,2-Dibromoethar		1.7	10	ND					
Ethyl Benzene				ND					
Chlorobenzene		0.86 4.2	10 10	ND					
	raathana								
1,1,1,2-Tetrachlo	roetnane	0.86	10	ND					
m,p-Xylene		1.9	10 5 0	ND					
o-Xylene		0.66	5.0	ND					

Work Order:	1205067	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/14/12	Analytical	409737
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND	1				
Bromoform		1.9	10	ND					
Isopropyl Benzene	e	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor	oethane	3.0	10	ND					
1,3,5-Trimethylber	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene		1.4	10	ND					
1,2,4-Trimethylber	nzene	1.1	10	ND					
sec-Butyl Benzene	e	1.6	10	ND					
p-Isopropyltoluene	Э	1.5	10	ND					
1,3-Dichlorobenze	ene	1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze	ene	1.3	10	ND					
1,2-Dibromo-3-Ch	lloropropane	4.2	10	ND					
Hexachlorobutadie	ene	2.6	10	ND					
1,2,4-Trichlorober	nzene	2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichlorober	nzene	2.9	10	ND					
(S) Dibromofluoro	methane			115					
(S) Toluene-d8				101					
(S) 4-Bromofluoro	benzene			106					

Work Order:	1205067	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analy	zed Date:	05/15/12	Analytical	409759
Units:	ug/Kg	Metho	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorome	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluoromet	hane	2.9	10	ND					
1,1-Dichloroethene	э	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlorid	e	2.0	50	ND					
trans-1,2-Dichloroe	ethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether (DIPE)	2.2	10	ND					
1,1-Dichloroethane	Э	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroeth	nene	1.8	10	ND					
2,2-Dichloropropa	ne	1.2	10	ND					
Bromochlorometha	ane	2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlor	ide	1.6	10	ND					
1,1,1-Trichloroetha	ane	1.2	10	ND					
1,1-Dichloroproper	ne	1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethane	Э	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa	ne	1.3	10	ND					
Bromodichloromet		1.1	10	ND					
cis-1,3-Dichloropro	opene	1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethylen	ie	1.8	10	ND					
trans-1,3-Dichlorop		1.2	10	ND					
1,1,2-Trichloroetha		1.8	10	ND					
Dibromochloromet		1.1	10	ND					
1,3-Dichloropropa		2.1	10	ND					
1,2-Dibromoethan		1.7	10	ND					
Ethyl Benzene		0.86	10	ND					
Chlorobenzene		4.2	10	ND					
1,1,1,2-Tetrachlor	oethane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					
o-Xylene		0.66	5.0	ND					

Work Order:	1205067	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/15/12	Analytical	409759
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND	1				
Bromoform		1.9	10	ND					
Isopropyl Benzene	e	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor	oethane	3.0	10	ND					
1,3,5-Trimethylber	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene		1.4	10	ND					
1,2,4-Trimethylber	nzene	1.1	10	ND					
sec-Butyl Benzen	е	1.6	10	ND					
p-Isopropyltoluene	e	1.5	10	ND					
1,3-Dichlorobenze	ene	1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze	ene	1.3	10	ND					
1,2-Dibromo-3-Ch	loropropane	4.2	10	ND					
Hexachlorobutadi	ene	2.6	10	ND					
1,2,4-Trichlorober	izene	2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichlorober	izene	2.9	10	ND					
(S) Dibromofluoro	methane			108					
(S) Toluene-d8				104					
(S) 4-Bromofluoro	benzene			110					

Work Order:	1205067	Prep I	Method:	NA	Prep D	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analyz	ed Date:	05/16/12	Analytical	409788
Units:	ug/Kg	Metho	d:					Batch:	
	~ 9 ,9								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorome	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluoromet	hane	2.9	10	ND					
1,1-Dichloroethen	е	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlorid	e	2.0	50	ND					
trans-1,2-Dichloro	ethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether (DIPE)	2.2	10	ND					
1,1-Dichloroethan	е	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroeth	nene	1.8	10	ND					
2,2-Dichloropropa	ne	1.2	10	ND					
Bromochlorometh	ane	2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlor	ide	1.6	10	ND					
1,1,1-Trichloroetha	ane	1.2	10	ND					
1,1-Dichloroprope	ne	1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethan	е	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa	ne	1.3	10	ND					
Bromodichloromet		1.1	10	ND					
cis-1,3-Dichloropro	opene	1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethyler	ne	1.8	10	ND					
trans-1,3-Dichloro		1.2	10	ND					
1,1,2-Trichloroetha		1.8	10	ND					
Dibromochlorome	thane	1.1	10	ND					
1,3-Dichloropropa	ne	2.1	10	ND					
1,2-Dibromoethan		1.7	10	ND					
Ethyl Benzene		0.86	10	ND					
Chlorobenzene		4.2	10	ND					
1,1,1,2-Tetrachlor	oethane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					
o-Xylene		0.66	5.0	ND					

Work Order:	1205067	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/16/12	Analytical	409788
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzene	e	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor	oethane	3.0	10	ND					
1,3,5-Trimethylber	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene		1.4	10	ND					
1,2,4-Trimethylber	nzene	1.1	10	ND					
sec-Butyl Benzene	е	1.6	10	ND					
p-Isopropyltoluene	e	1.5	10	ND					
1,3-Dichlorobenze	ene	1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze	ene	1.3	10	ND					
1,2-Dibromo-3-Ch	loropropane	4.2	10	ND					
Hexachlorobutadie	ene	2.6	10	ND					
1,2,4-Trichloroben	izene	2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichloroben	izene	2.9	10	ND					
(S) Dibromofluoro	methane			99.8					
(S) Toluene-d8				104					
(S) 4-Bromofluoro	benzene			109					

Work Order:	1205067	Prep	Method:	NA	Prep Da	ate:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Analyze	ed Date:	05/17/12	Analytical	409792
Units:	ug/Kg	Metho	od:					Batch:	
	~9/···9								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluorome	ethane	2.9	10	ND					
1,1-Dichloroether	ne	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlori	de	2.0	50	ND					
trans-1,2-Dichloro		1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether	(DIPE)	2.2	10	ND					
1,1-Dichloroethar	ne	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroe	thene	1.8	10	ND					
2,2-Dichloropropa		1.2	10	ND					
Bromochlorometh		2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlo	ride	1.6	10	ND					
1,1,1-Trichloroeth		1.2	10	ND					
1,1-Dichloroprope		1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethar	he	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa		1.3	10	ND					
Bromodichlorome		1.1	10	ND					
cis-1,3-Dichlorop		1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethyle	ne	1.8	10	ND					
trans-1,3-Dichloro		1.2	10	ND					
1,1,2-Trichloroeth		1.8	10	ND					
Dibromochlorome		1.0	10	ND					
1,3-Dichloropropa		2.1	10	ND					
1,2-Dibromoetha		1.7	10	ND					
Ethyl Benzene				ND					
Chlorobenzene		0.86 4.2	10 10	ND					
	raathana								
1,1,1,2-Tetrachlo	roetnane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					
o-Xylene		0.66	5.0	ND					

Work Order:	1205067	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/17/12	Analytical	409792
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzen	е	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlor	oethane	3.0	10	ND					
1,3,5-Trimethylbe	nzene	1.1	10	ND					
1,2,3-Trichloropro	pane	3.3	10	ND					
4-Chlorotoluene	-	1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene		1.4	10	ND					
1,2,4-Trimethylbe		1.1	10	ND					
sec-Butyl Benzen		1.6	10	ND					
p-Isopropyltoluene		1.5	10	ND					
1,3-Dichlorobenze		1.8	10	ND					
1,4-Dichlorobenze	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenze	ene	1.3	10	ND					
1,2-Dibromo-3-Ch		4.2	10	ND					
Hexachlorobutadi		2.6	10	ND					
1,2,4-Trichlorober		2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichlorober	nzene	2.9	10	ND					
(S) Dibromofluoro				111					
(S) Toluene-d8				110					
(S) 4-Bromofluoro	benzene			106					
Work Order:	1205067	Prep	Method:	5035	Prep	Date:	05/11/12	Prep Batch:	5486
Matrix:	Soil	Analy		8260TPH	Anal	yzed Date:	05/11/12	Analytical	409731
Units:	ug/Kg	Metho	oa:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline		30	100	ND	<u> </u>				
(S) 4-Bromofluoro	benzene			91.7					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Work Order:	1205067	Prep I	Method:	5035	Prep	Date:	05/14/12	Prep Batch:	5491
Matrix:	Soil	Analy		8260TPH	Anal	zed Date:	05/14/12	Analytical	409737
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline (S) 4-Bromofluoro	bbenzene	30	100	ND 75.1					
Work Order:	1205067	Prep I	Method:	3545_TPHSG	B Prep	Date:	05/15/12	Prep Batch:	5506
Matrix:	Soil	Analy		SW8015B(M)	Anal	zed Date:	05/15/12	Analytical	409762
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Diesel (S TPH as Motor Oil		0.87 1.3	2.0 10	ND 1.9					
Pentacosane (S)	(30)	1.5	10	85.2					
Work Order:	1205067	Prep l	Method:	5035	Prep	Date:	05/14/12	Prep Batch:	5511
Matrix: Units:	Soil	Analy Metho		8260TPH	Anal	zed Date:	05/15/12	Analytical Batch:	409759
omits.	ug/Kg								
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline (S) 4-Bromofluoro	obenzene	30	100	ND 69.2					
Work Order:	1205067	Prep I	Method:	5035	Prep	Date:	05/16/12	Prep Batch:	5526
Matrix:	Soil	Analy		8260TPH	Anal	zed Date:	05/16/12	Analytical	409788
Units:	ug/Kg	Metho	ba:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline (S) 4-Bromofluoro	obenzene	30	100	ND 72.1					

Work Order:	1205067	Prep	Method:	5035	Prep	Date:	05/17/12	Prep Batch:	5529
Matrix:	Soil	Analy		8260TPH	Analyzed Date:		05/17/12	Analytical	409792
Units:	ug/Kg	Metho	Method:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline (S) 4-Bromofluoro		30	100	92 95.7					

LCS/LCSD Summary Report

				LC3/1	-030 3	ummary	кероп	Raw value	es are used in	quality contro	ol assessme	
Work Order:	1205067		Prep Metho	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA		
Matrix:	Soil		Analytical	SW82	260B	Analyze	d Date:	05/11/12	Analytic	al 409	731	
Units:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
1,1-Dichloroether	ne	1.5	10	ND	50	132	128	3.48	53.7 - 139	30		
Benzene		1.5	10	ND	50	97.6	96.6	1.07	66.5 - 135	30		
Trichloroethylene	1	3.9	10	ND	50	97.0	96.9	0.0825	57.5 - 150	30		
Toluene		0.98	10	ND	50	107	107	0.616	56.8 - 134	30		
Chlorobenzene		4.2	10	ND	50	123	110	11.4	57.4 - 134	30		
(S) Dibromofluoro	omethane			ND	50	105	108		59.8 - 148			
(S) Toluene-d8				ND	50	103	105		55.2 - 133			
(S) 4-Bromofluor	obenzene			ND	50	99.8	107		55.8 - 141			
Work Order:	1205067		Prep Metho	od: NA		Prep Da	te:	NA	Prep Ba	tch: NA		
Matrix:	Soil		Analytical Method:	SW82	260B	Analyze	d Date:	05/14/12	Analytic Batch:	-		
Units:	ug/Kg											
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
1,1-Dichloroether	ne	1.5	10	ND	50	118	124	5.01	53.7 - 139	30		
Benzene		1.5	10	ND	50	95.3	93.5	2.03	66.5 - 135	30		
Trichloroethylene	1	3.9	10	ND	50	85.7	89.8	4.83	57.5 - 150	30		
Toluene		0.98	10	ND	50	97.7	104	6.55	56.8 - 134	30		
Chlorobenzene		4.2	10	ND	50	114	121	5.45	57.4 - 134	30		
(S) Dibromofluor	omethane			ND	50	114	102		59.8 - 148			
(S) Toluene-d8				ND	50	108	110		55.2 - 133			
				ND	50	105	106		55.8 - 141			

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1205067		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix: Units:	Soil ug/Kg		Analytical Method:	SW8	260B	Analyze	d Date:	05/15/12	Analytic Batch:	al 409	759
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethe	ene	1.5	10	ND	50	80.8	102	23.5	53.7 - 139	30	
Benzene		1.5	10	ND	50	90.6	99.0	8.86	66.5 - 135	30	
Trichloroethylen	e	3.9	10	ND	50	85.2	89.3	4.74	57.5 - 150	30	
Toluene		0.98	10	ND	50	91.6	104	12.9	56.8 - 134	30	
Chlorobenzene		4.2	10	ND	50	101	96.9	3.99	57.4 - 134	30	
(S) Dibromofluor	romethane			ND	50	115	114		59.8 - 148		
(S) Toluene-d8				ND	50	100	107		55.2 - 133		
(S) 4-Bromofluo	robenzene			ND	50	99.1	101		55.8 - 141		
Work Order:	1205067		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	tch: NA	
Matrix:	Soil		Analytical Method:	SW8	260B	Analyze	d Date:	05/16/12	Analytic Batch:	al 409	788
Units:	ug/Kg										
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroethe	ene	1.5	10	ND	50	80.2	87.6	8.84	53.7 - 139	30	
Benzene		1.5	10	ND	50	95.7	93.4	2.29	66.5 - 135	30	
Trichloroethylen	e	3.9	10	ND	50	85.4	92.0	7.46	57.5 - 150	30	
Toluene		0.98	10	ND	50	96.3	103	7.06	56.8 - 134	30	
Chlorobenzene		4.2	10	ND	50	108	123	12.6	57.4 - 134	30	
(S) Dibromofluor	romethane			ND	50	123	105		59.8 - 148		
				ND	50	102	106		55.2 - 133		
(S) Toluene-d8				ne -		-					

Work Order:

Parameters

Benzene

Toluene

Trichloroethylene

Chlorobenzene

(S) Toluene-d8

Work Order:

Matrix:

Units:

Matrix:

Units:

LCS/LCSD Summary Report

1205067 Prep Method: NA Prep Date: NA Prep Batch: NA SW8260B 409792 Analytical Analyzed Date: 05/17/12 Analytical Soil Method: Batch: ug/Kg Method LCS % LCSD % LCS/LCSD % Spike PQL % RPD MDL Blank Conc. Recovery Recovery % RPD Recovery Lab Conc. Limits Limits Qualifier 1,1-Dichloroethene 1.5 10 ND 50 114 111 53.7 - 139 30 2.86 10 ND 50 91.2 66.5 - 135 30 1.5 111 19.9 3.9 10 ND 93.6 114 19.7 57.5 - 150 30 50 0.98 10 ND 50 105 112 6.04 56.8 - 134 30 4.2 10 ND 50 109 104 4.65 57.4 - 134 30 (S) Dibromofluoromethane ND 50 102 106 59.8 - 148 ND 109 103 55.2 - 133 50 (S) 4-Bromofluorobenzene ND 50 103 110 55.8 - 141 1205067 Prep Method: 5035 Prep Date: 05/11/12 Prep Batch: 5486 8260TPH 05/11/12 409731 Soil Analytical Analyzed Date: Analytical Method: Batch: ug/Kg

Raw values are used in quality control assessment.

Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline		30	100	ND	1000	87.3	87.7	0.536	64.0 - 133.2	30	•
(S) 4-Bromofluor	obenzene			91.7	50	91.2	93.8		43.9 - 127		
Work Order:	1205067		Prep Metho	od: 5035		Prep Date: 05/14/12 Prep Batch:		ch: 549	1		
Matrix:	Soil		Analytical	•		Analyze	d Date:	05/14/12	Analytic	al 409 ⁻	737
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline		30	100	ND	1000	81.1	80.8	0.398	64.0 - 133.2	30	1
(S) 4-Bromofluor	obenzene			75.1	50	78.2	74.9		43.9 - 127		

Raw values are used in quality control assessment. Work Order: 1205067 Prep Method: 3545_TPHSG Prep Date: 05/15/12 Prep Batch: 5506 Matrix: 409762 Analytical 05/15/12 Analytical Soil SW8015B(M) Analyzed Date: Method: Batch: Units: mg/Kg LCS % Method Spike LCSD % LCS/LCSD % Parameters MDL PQL Blank Conc. Recovery Recovery % RPD Recovery % RPD Lab Conc. Limits Limits Qualifier TPH as Diesel (SG) 0.87 2.0 ND 33.33 3.02 50.8 - 111 65.6 67.7 30 61.5 - 133 Pentacosane (S) 1.9 100 92.9 97.5 Work Order: Prep Method: 1205067 5035 Prep Date: 05/14/12 Prep Batch: 5511 Matrix: Soil Analytical 8260TPH Analyzed Date: 05/15/12 Analytical 409759 Method: Batch: ug/Kg Units: LCS % LCSD % LCS/LCSD Method Spike % MDL PQL Recovery % RPD **Parameters** Blank Conc. Recovery % RPD Recoverv Lab Conc. Limits Limits Qualifier TPH as Gasoline 30 100 ND 1000 80.3 80.5 0.307 64.0 - 133.2 30 (S) 4-Bromofluorobenzene 69.2 50 73.1 74.7 43.9 - 127 5035 05/16/12 5526 Work Order: 1205067 Prep Method: Prep Date: Prep Batch: 409788 Matrix: Analytical 8260TPH 05/16/12 Analytical Soil Analyzed Date: Method: Batch: Units: ug/Kg Method Spike LCS % LCSD % LCS/LCSD % MDL PQL Parameters % RPD Blank Recovery % RPD Recovery Conc. Recovery Lab Conc. Limits Limits Qualifier TPH as Gasoline 30 100 ND 1000 87.9 80.7 8.52 64.0 - 133.2 30 (S) 4-Bromofluorobenzene 72.1 50 76.3 68.5 43.9 - 127 Work Order: Prep Method: Prep Date: 05/17/12 Prep Batch: 5529 1205067 5035 Matrix: Soil Analytical 8260TPH Analyzed Date: 05/17/12 Analytical 409792 Method: Batch: Units: ug/Kg Method Spike LCS % LCSD % LCS/LCSD % Parameters MDL PQL Blank Conc. % RPD Recovery % RPD Lab Recovery Recovery Qualifier Conc. Limits Limits TPH as Gasoline 30 100 92 1000 86.1 88.3 2.61 64.0 - 133.2 30 95.7 50 102 99.4 43.9 - 127 (S) 4-Bromofluorobenzene

LCS/LCSD Summary Report

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: Weber, Hayes & Associates	Date and Time Received: 5/10/2012 17:30
Project Name: Oakland / 2X103.B	Received By: <u>NG</u>
Work Order No.: <u>1205067</u>	Physically Logged By: <u>NG</u>
	Checklist Completed By: YB
	Carrier Name: Streetwise Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	No
Sample Recei	pt Information
Custody seals intact on shipping container/cooler?	No
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and I	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Temperature: <u>12</u> °C
Water-VOA vials have zero headspace?	
Water-pH acceptable upon receipt?	
pH Checked by:	pH Adjusted by:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Chilling has begun. Did not receive sample DP-6-d21(1205067-007A)

Client ID:	TL5105	Weber, Hayes & Associates	QC Level:	
Project Name:	Oakland / 2X10	3.B	TAT Requested:	5+ day:0
Project # :			Date Received:	5/10/2012
Report Due Date:	5/17/2012		Time Received:	17:30

Comments: 5 Day TAT. Samples originally received on 3 CoCs. Broken into two work orders in order to facilitate batch preparation and reporting. Page 1 samples on WO#1205066.

Work Order # : 1205067

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1205067-001A	DP-4-d24	05/09/12	Soil	11/06/12				
							S_GCMS-GRO S_8260PetWHA	
Sample Note:	For petr - BTEX, MTBE	and TBA only. Use M	DL for any	diluted sample	s.			
1205067-001C	DP-4-d24	05/09/12	Soil	11/06/12				
		05/00/40	0.11				S_8260PetE	
1205067-002A	DP-5-d8	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-002C	DP-5-d8	05/09/12	Soil	11/06/12				
							S_8260PetE	
1205067-003A	DP-5-d11	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-003C	DP-5-d11	05/09/12	Soil	11/06/12			0_02000 000000	
							S_8260PetE	
1205067-004A	DP-5-d17	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-004C	DP-5-d17	05/09/12	Soil	11/06/12			0_02001 0001 00	
							S_8260PetE	
1205067-005A	DP-5-d23	05/08/12	Soil	11/06/12			0.0000.000	
							S_GCMS-GRO S_8260PetWHA	
1205067-005C	DP-5-d23	05/09/12	Soil	11/06/12			0_02001 ctivilin	
							S_8260PetE	
1205067-006A	DP-6-d12	05/08/12	Soil	11/06/12			0.0010.000	
							S_GCMS-GRO S_8260PetWHA	
1205067-006C	DP-6-d12	05/09/12	Soil	11/06/12			0_02001 61001A	
	• • •						S_8260PetE	
1205067-007A	DP-6-d21	05/09/12	Soil	11/06/12	On-Hold			
							S_GCMS-GRO	
							S_8260PetWHA	

Sample Note: We did not receive his sample -DP-6-d21.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Client ID:	TL5105	Weber, Hayes & Associates	QC Level:	
Project Name:	Oakland / 2X103	3.B	TAT Requested:	5+ day:0
Project # :			Date Received:	5/10/2012
Report Due Date:	5/17/2012		Time Received:	17:30

Comments: 5 Day TAT. Samples originally received on 3 CoCs. Broken into two work orders in order to facilitate batch preparation and reporting. Page 1 samples on WO#1205066.

Work Order # : 1205067

<u>WO Sample ID</u>	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1205067-007C	DP-6-d21	05/09/12	Soil	11/06/12				
4005007 0004		05/00/40	0	44/00/40			S_8260PetE	
1205067-008A	DP-6-d23	05/09/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-008C	DP-6-d23	05/09/12	Soil	11/06/12				
1205067-009A	DP-7-d4	05/09/12	Soil	11/06/12			S_8260PetE	
1200001 00011		00/03/12	0011	11/00/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-009C	DP-7-d4	05/09/12	Soil	11/06/12				
1205067-010A	DP-7-d8	05/09/12	Soil	11/06/12			S_8260PetE	
							S_GCMS-GRO	
			0."				S_8260PetWHA	
1205067-010C	DP-7-d8	05/09/12 0:00	Soil	11/06/12			S_8260PetE	
1205067-011A	DP-7-d11	05/09/12	Soil	11/06/12			0_02001 012	
							S_GCMS-GRO	
							S_8260PetWHA S_TPHDOSG	
1205067-011C	DP-7-d11	05/09/12	Soil	11/06/12			5_111b056	
							S_8260PetE	
1205067-012A	DP-7-d17	05/09/12	Soil	11/06/12				
							S_GCMS-GRO S_8260PetWHA	
1205067-012C	DP-7-d17	05/09/12	Soil	11/06/12				
		05/00/40	0."				S_8260PetE	
1205067-013A	DP-7-d23	05/09/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-013C	DP-7-d23	05/09/12	Soil	11/06/12				
1205067-014A	DP-8-d8	05/08/12	Soil	11/06/12			S_8260PetE	
1203007-014A		03/00/12	3011	11/00/12			S_GCMS-GRO	
							S_8260PetWHA	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Client ID:	TL5105	Weber, Hayes & Associates	QC Level:	
Project Name:	Oakland / 2X103	3.B	TAT Requested:	5+ day:0
Project # :			Date Received:	5/10/2012
Report Due Date:	5/17/2012		Time Received:	17:30

Comments: 5 Day TAT. Samples originally received on 3 CoCs. Broken into two work orders in order to facilitate batch preparation and reporting. Page 1 samples on WO#1205066.

Work Order # : 1205067

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>		<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1205067-014C	DP-8-d8	05/09/12	Soil	11/06/12				
		05/00/40	o				S_8260PetE	
1205067-015A	DP-8-d17	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-015C	DP-8-d17	05/09/12	Soil	11/06/12			_	
		05/00/40	o ''				S_8260PetE	
1205067-016A	DP-8-d20	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-016C	DP-8-d20	05/09/12	Soil	11/06/12				
		05/00/40	o ''				S_8260PetE	
1205067-017A	DP-8-d23	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-017C	DP-8-d23	05/09/12	Soil	11/06/12			_	
		05/00/40	o ''				S_8260PetE	
1205067-018A	DP-9-d4	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-018C	DP-9-d4	05/09/12	Soil	11/06/12				
		05/00/40	o ''				S_8260PetE	
1205067-019A	DP-9-d18	05/08/12	Soil	11/06/12			S_GCMS-GRO	
							S_TPHDOSG	
							S_8260PetWHA	
1205067-019C	DP-9-d18	05/09/12	Soil	11/06/12				
1205067-020A	DP-9-d20	05/08/12	Soil	11/06/12			S_8260PetE	
1200007 0207		00,00,12	001	11/00/12			S_GCMS-GRO	
							S_8260PetWHA	
1205067-020C	DP-9-d20	05/09/12	Soil	11/06/12			0.00000+5	
							S_8260PetE	

	Hydrog	CHAIN -OF-CUSTODY RECORD 120506子					C	2 of 2									
	PROJECT NAME AND JOB #: Oa	kland / 2X103.B							!		LABO	RATORY	: Torren	nt			
s	END CERTIFIED RESULTS TO: We		•	TUP		UND TIME		Standar	a)	48hr Rush							
ELECTRO	ONIC DELIVERABLE FORMAT:	YES X NO	÷.						•		GL	OBAL I.D.					
	Sampler: Jered C Date: 5/8 4																
				s	AMPLE C	ONTAINERS					REC	UESTED	ANALYS	IS			
				<u> </u>				Total	Petroleum Hydrocar	bons			Volatile O	rganics		Additio	nal Analysis
	Sample Identification	Date Sampled	Matrix	40 mL	60 mL	Terra Core Prep Kit	Liner	TPH-dieselw/ silica gel cleanup	TPH-Diesel	TPH	-Gas	BTEX	MtBE 8	TDA	4,2-DCA & EDB	Luft 5 Metals	PCBs
				VOAs (preserved)	VOAs	VOAs (preserved)	Acetate or Brass	EPA Method# 8015M	EPA Method 8015M	by EPA 826	Method 60B	EPA Method# 8260B	EPA Me 826	OB N	EPA Method# 8260B	Luit o metalo	FUDS
oon	DP-4-d24	5 9 12	Soil			:	1			×	•	*	7				
002 A	DP-5-d8	5 8 12	+							$\left - \right $		+	++				
004A	DP-S-dit		1			7	1				-		+				
0057	DP-5-423						1										
0061	DP-6-d12 DP-6-d21	Flatio	4				1			\vdash			++				×
008A	DP-6-d 23	5/1/12	H							$\left \right $			++		_		12,08
009A	DP-7-04		†				1			-+				-+			of 12 past
8104	DP-7-08						1					-				10	WK m
0114	DP-7-01		4				1	*		_						will	1.es
0124	DP-7-di7	· -	4				1							_		<u> </u>	
0731 0744	DP-7-d23 DP-8-d8	SISIR	1				1					+	-	,			
014H	RELEASED BY:	, Date & Time		L		PEC	ENVED BY:		(Data & J	Time		<u>v</u>		<u> </u>		LE CONDITION:	
		5/10/12 1350				→ [™] 7	Kein	ka	Ban	1350	2		Ambi	iont		(circle 1)	France
	They be	5/10/12 454	5			→ [°]	M. I	6,1, 1	Salas 12 10	557)		Ambi				Frozen
	No I' be	SHAG N'	nom			\rightarrow	The de d	thodas as	Challe	5.2	n P m		Ambi			igerated	Frozen
	» <u> </u>	110 12 5-13	4-7			÷	1	<u>11800 9.8-9</u> 11	A-2/10/12	0.5	(LEI)		Ambi				Frozen
	5) ····	-				→				_			Ambi			igerated	Frozen
1	3.)		_												Real		Frozen
	NOTES:							<u>A</u>	DDITIONAL COMMENTS								
	Please use MDL (Minimum Dete	ction Limit) for any dilute	d samp	vies.													
1			_														
										Sin	/						
																• •	
	JCIFielding/FORMS.xts - COC						,	of 1			2					Weber, Hayes and	Associates
					_												

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

/			-											1		
	We Hydroge		CHAIN -OF-CUSTODY RECORD					2 0 2								
	A Hydroge	120 Westgate Dr. (831) 722-358	, Watso	onville, CA 95 331) 662-3100	2 ngine 076	ering			12	050	67		2 07 _3 OF	3	-	
	PROJECT NAME AND JOB #: Oakla	and / 2X103.B								LAB	ORATORY:	Torrent				
s	END CERTIFIED RESULTS TO: Webe	Chaney				TURNARO	UND TIME:	Stand	ard	48hr Rush		•				
ELECTR	ONIC DELIVERABLE FORMAT:					GL	OBAL I.D.:									
	Sampler: Jered Cha	aney												-		
	Date: 38+9	12				, i										
		1		· .		ONTAINER				RE	QUESTED	ANALYSIS				
							у	Total	Petroleum Hydrocar	bons	\	olatile Organic	s	Additio	nal Analysis	
	Sample Identification	Date Sampled	Matrix	40 mL	60 mL	Terra Core Prep Kit	Liner	TPH-dieselw/ silica	TPH-Diesel	TPH-Gas	BTEX	MtBE & TBA	1,2-DCA			
			ŝ			VOAs		gel cleanup			-		& EDB	Luft 5 Metals	PCBs	
		1		VOAs (preserved)	VOAs	(preserved	Acetate or Brass	EPA Method# 8015M	EPA Method 8015M	by EPA Method 8260B	EPA Method#	EPA Method# 8260B	EPA Method#		-	
0157-	DP-8-d 17	5/8/12	Soil			<u> </u>	<u> </u>			*	8260B ★		8260B			4
OIGA	DP-8-020	5/8/12	20.1			+-	1			×	×	×				ł
OVTA	DP-8-023						1			×	*	*				
0/88	DP-9-64 DP-9-64	+ +	⊢				+	*		*	*	× ×				
019A	DP-9- d20	-	1t			-	i	<u> </u>		*	*	*			00/	
			Ē												14 8	
			–		<u> </u>										N. Wal	
			+	-					1						W. on	Ľ
														- CV	200	1
		+	\vdash	<u> </u>	<u> </u>											Þ
											-					
													SAMP	LE CONDITION:		
	RELEASED BY:	Date & Time					CENCED BY:		Sin In					(circle 1)	(
	the second second	10 1/55				\rightarrow	HATE	yan 5	1.1.	1550.		Ambient	Ref	rigerated	Frozen 1	
	2) and in the state	Junlan 1:2	0Å)	h		-	The a	La Jaco	Silalin E	5 Pm		Ambient Ambient	Ren	rigerated	Frozen /	
	A) WI TARINA D	HOLE 2	1			→`"	- <u>P.</u>	(prayson	5	, <u>zor</u> uj		Ambient		rigerated	Frozen .	
	5.)				·	\rightarrow						Ambient		rigerated	Frozen	
1	NOTES:							A	DDITIONAL COMMENTS							Ē
		-													. j	
	Please use MDL (Minimum Detection	on Limit) for any dilute	ed sam	oles.											ţi.	1
	+7															
l	,	<u> </u>	_						<u> </u>							
									S.W							
									A.A.					1		
	JCIFieldlog/FORMS.xb - COC						1	of 1						Weber, Hayes an	f Associates	
														, 		-

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

12

Change Order

Work Order: 1205067	Serial #: CO15-0272		Print Date:	10/16/2015
Project Name: Oakland / 2X103.B				
Client: Weber, Hayes & Associates	Requested By:	Craig Drizin		
		<u>Requested</u> Date	<u>Requested</u> <u>Time</u>	Extended Price

Report Napthalene data for all samples

10/12/2015

Page 1 of 1

Weber, Hayes & Associates 120 Westgate Dr Watsonville, CA 95076 Tel: 831-722-3580 Fax: 831-662-3100

RE: Oakland / 2X103.B

Work Order No.: 1205092 Rev: 1

Dear Jered Chaney:

Torrent Laboratory, Inc. received 1 sample(s) on May 15, 2012 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa-

Patti Sandrock QA Officer October 16, 2015 Date

Date: 10/16/2015

Client: Weber, Hayes & Associates Project: Oakland / 2X103.B Work Order: 1205092

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

REVISIONS:

Per client request, report re-issued to include Naphthalene data.

Rev 1 (10/16/15)

Sample Result Summary

Report prepared for:	Jered Chaney				Date	Received:	05/15/12
	Weber, Hayes & Associates				Date	Reported:	10/16/15
DP-6-d21						12	205092-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Benzene		SW8260B	2000	3.0	20	36	mg/Kg
Toluene		SW8260B	2000	2.0	20	37	mg/Kg
Ethyl Benzene		SW8260B	2000	1.7	20	81	mg/Kg
m,p-Xylene		SW8260B	2000	3.7	20	330	mg/Kg
o-Xylene		SW8260B	2000	1.3	10	120	mg/Kg
TPH as Gasoline		8260TPH	2000	59	200	4600	mg/Kg
Naphthalene		SW8260B	2000	5.7	20	25	mg/Kg

Report prepared for:	Jered Chaney							Da	te Rece	eived: 05/1	5/12
	Weber, Hayes & A	ssociates						Da	te Repo	orted: 10/1	6/15
Client Sample ID:	DP-6-d21				Lab Sa	mple ID:	12050	92-001A			
Project Name/Location:	Oakland / 2X1	03.B			Sample	Matrix:	Soil				
Project Number:	2X103.B										
Date/Time Sampled:	05/09/12 /										
Tag Number:	Oakland / 2X1	03.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using	their MDL		1				1		l	<u>.</u>
Benzene	SW8260B	NA	05/21/12	2000	3.0	20	36		mg/Kg	409833	NA
Toluene	SW8260B	NA	05/21/12	2000	2.0	20	37		mg/Kg	409833	NA
Ethyl Benzene	SW8260B	NA	05/21/12	2000	1.7	20	81		mg/Kg	409833	NA
m,p-Xylene	SW8260B	NA	05/21/12	2000	3.7	20	330		mg/Kg	409833	NA
o-Xylene	SW8260B	NA	05/21/12	2000	1.3	10	120		mg/Kg	409833	NA
МТВЕ	SW8260B	NA	05/21/12	2000	5.2	20	ND		mg/Kg	409833	NA
tert-Butanol	SW8260B	NA	05/21/12	2000	42	100	ND		mg/Kg	409833	NA
(S) Dibromofluoromethane	SW8260B	NA	05/21/12	2000	59.8	148	80.2		%	409833	NA
(S) Toluene-d8	SW8260B	NA	05/21/12	2000	55.2	133	96.7		%	409833	NA
(S) 4-Bromofluorobenzene	SW8260B	NA	05/21/12	2000	55.8	141	103		%	409833	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using	their MDL				•					L
TPH as Gasoline	8260TPH	5/21/12	05/21/12	2000	59	200	4600	х	mg/Kg	409833	5550
(S) 4-Bromofluorobenzene	8260TPH	5/21/12	05/21/12	2000	43.9	127	105		%	409833	5550

NOTE: x-Although TPH as Gasoline is present, pattern does not match TPH as Gaoline standard. Results are elevated due to heavy end hydrocarbons (possibly aged gasoline).

Report prepared for:	Jered Chaney Weber, Hayes & As	sociates								eived: 05/1 orted: 10/1	
Client Sample ID: Project Name/Location:	DP-6-d21 Oakland / 2X10	3 B				nple ID: Matrix:	12050 Soil	92-001C			
Project Number: Date/Time Sampled:	2X103.B 05/09/12 /	0.0			oumpie	Matrix.	Con				
Tag Number:	Oakland / 2X10	3.B									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8260B	NA	05/21/12	2000	5.7	20	25	I	mg/Kg	427329	NA

Work Order:	1205092	Prep N	lethod:	NA	Prep I	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analyt		SW8260B	Analy	zed Date:	05/21/12	Analytical	409833
Units:	ug/Kg	Metho	d:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Dichlorodifluorom	ethane	4.4	10	ND					
Isopropyl Alcohol		4.6	10	ND					
Vinyl Chloride		2.6	10	ND					
Bromomethane		4.7	10	ND					
Trichlorofluoromet	thane	2.9	10	ND					
1,1-Dichloroethen	e	1.5	10	ND					
Freon 113		3.7	10	ND					
Methylene Chlorid	le	2.0	50	ND					
trans-1,2-Dichloro	ethene	1.1	10	ND					
MTBE		2.6	10	ND					
tert-Butanol		21	50	ND					
Diisopropyl ether ((DIPE)	2.2	10	ND					
1,1-Dichloroethan	е	1.3	10	ND					
ETBE		2.4	10	ND					
cis-1,2-Dichloroetl	hene	1.8	10	ND					
2,2-Dichloropropa	ne	1.2	10	ND					
Bromochlorometh	ane	2.3	10	ND					
Chloroform		1.2	10	ND					
Carbon Tetrachlor	ride	1.6	10	ND					
1,1,1-Trichloroetha	ane	1.2	10	ND					
1,1-Dichloroprope	ne	1.4	10	ND					
Benzene		1.5	10	ND					
TAME		2.1	10	ND					
1,2-Dichloroethan	e	1.9	10	ND					
Trichloroethylene		3.9	10	ND					
Dibromomethane		2.2	10	ND					
1,2-Dichloropropa	ne	1.3	10	ND					
Bromodichlorome		1.1	10	ND					
cis-1,3-Dichloropr		1.4	10	ND					
Toluene		0.98	10	ND					
Tetrachloroethyler	ne	1.8	10	ND					
trans-1,3-Dichloro		1.2	10	ND					
1,1,2-Trichloroeth		1.8	10	ND					
Dibromochlorome		1.1	10	ND					
1,3-Dichloropropa		2.1	10	ND					
1,2-Dibromoethan		1.7	10	ND					
Ethyl Benzene		0.86	10	ND					
Chlorobenzene		4.2	10	ND					
1,1,1,2-Tetrachlor	oethane	0.86	10	ND					
m,p-Xylene		1.9	10	ND					

Work Order:	1205092	Prep	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy		SW8260B	Anal	yzed Date:	05/21/12	Analytical	409833
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
o-Xylene		0.66	5.0	ND					
Styrene		0.77	10	ND					
Bromoform		1.9	10	ND					
Isopropyl Benzen	е	1.2	10	ND					
n-Propylbenzene		1.4	10	ND					
Bromobenzene		1.2	10	ND					
1,1,2,2-Tetrachlo	roethane	3.0	10	ND					
1,3,5-Trimethylbe	nzene	1.1	10	ND					
1,2,3-Trichloropro		3.3	10	ND					
4-Chlorotoluene		1.6	10	ND					
2-Chlorotoluene		1.6	10	ND					
tert-Butylbenzene	•	1.4	10	ND					
1,2,4-Trimethylbe	enzene	1.1	10	ND					
sec-Butyl Benzer	e	1.6	10	ND					
p-Isopropyltoluen	e	1.5	10	ND					
1,3-Dichlorobenz	ene	1.8	10	ND					
1,4-Dichlorobenz	ene	1.5	10	ND					
n-Butylbenzene		2.2	10	ND					
1,2-Dichlorobenz	ene	1.3	10	ND					
1,2-Dibromo-3-Cl	nloropropane	4.2	10	ND					
Hexachlorobutad	iene	2.6	10	ND					
1,2,4-Trichlorobe	nzene	2.1	10	ND					
Naphthalene		2.8	10	ND					
1,2,3-Trichlorobe	nzene	2.9	10	ND					
(S) Dibromofluor	omethane			80.7					
(S) Toluene-d8				96.7					
(S) 4-Bromofluor	obenzene			115					
Work Order:	1205092	Prep	Method:	5035	Prep	Date:	05/21/12	Prep Batch:	5550
Matrix:	Soil	Analy Metho		8260TPH	Anal	yzed Date:	05/21/12	Analytical Batch:	409833
Units:	ug/Kg		<u> </u>					Daton.	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Gasoline		30	100	58	1	1			
(S) 4-Bromofluor	obenzene			92.7					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

LCS/LCSD Summary Report

				L03/1		unnary	кероп	Raw valu	es are used in o	quality contro	ol assessme
Work Order:	1205092		Prep Metho	od: NA		Prep Da	te:	NA	Prep Bat	ch: NA	
Matrix:	Soil		Analytical	SW8	260B	Analyze	d Date:	05/21/12 Analytic		al 409	833
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
1,1-Dichloroether	ne	1.5	10	ND	50	103	93.9	9.63	53.7 - 139	30	
Benzene		1.5	10	ND	50	84.9	85.0	0.000	66.5 - 135	30	
Trichloroethylene	•	3.9	10	ND	50	96.6	89.9	7.21	57.5 - 150	30	
Toluene		0.98	10	ND	50	97.1	81.4	17.5	56.8 - 134	30	
Chlorobenzene		4.2	10	ND	50	98.8	99.4	0.585	57.4 - 134	30	
(S) Dibromofluoro	omethane			ND	50	77.1	96.9		59.8 - 148		
(S) Toluene-d8				ND	50	94.6	96.9		55.2 - 133		
(S) 4-Bromofluoro	obenzene			ND	50	101	113		55.8 - 141		
Nork Order:	1205092		Prep Metho	od: 5035		Prep Da	te:	05/21/12	Prep Bat	ch: 555	0
Matrix:	Soil		Analytical Method:	8260	ТРН	Analyze	d Date:	05/21/12	Analytica Batch:	al 409	833
Units:	ug/Kg		metriou.						Batch.		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Gasoline		30	100	58	1000	86.9	96.0	9.95	64.0 - 133.2	30	
(S) 4-Bromofluor	obenzene			92.7	50	100	99.8		43.9 - 127		

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: <u>Weber, Hayes & Associates</u> Project Name: <u>Oakland / 2X103.B</u> Work Order No.: <u>1205092</u> Date and Time Received: <u>5/15/2012</u> <u>10:40</u> Received By: <u>NG</u> Physically Logged By: <u>NG</u> Checklist Completed By: <u>NG</u> Carrier Name: <u>First Courier</u>

Chain of Custody (COC) Information

Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Receip	ot Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and H	old Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Temperature: <u>6</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by:	pH Adjusted by:

All samples present and correct.

Client ID:	TL5105	Weber, Hayes & Associate	QC	QC Level:					
Project Name:	Oakland / 2X10	3.B			ТА	T Request	t ed: 5+ day:0		
Project # :	2X103.B				Da	te Receive	ed: 5/15/2012		
Report Due Date:	5/22/2012				Tir	ne Receiv	ed: 10:40		
Comments: Work Order # :	5 Day TAT! TP 1205092	HGas/BTEX/MTBE/TBA! Re	eport to Jei	ed!					
WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>	
WO Sample ID 1205092-001A			<u>Matrix</u> Soil					<u>Subbed</u>	
	Sample ID DP-6-d21 Please use MDL	Date/Time	Soil	Disposal 11/11/12			Tests S_8260PetWHA	<u>Subbed</u>	

-

Weber, Hayes & Associates Hydrogeology and Environmental Engineering						CHAIN -OF-CUSTODY RECORD									
	120 Westgate Dr., Watsonville, CA 95076							1205092 -				I OF	<u>۸</u>		
	PROJECT NAME AND JOB #: Oakland / 2X103.B								LABORATORY: Torrent						
s	SEND CERTIFIED RESULTS TO: Weber, Hayes & Associates - Attention: Jered Chaney							TURNAROUND TIME: Standard 48hr Rush							
ELECTRONIC DELIVERABLE FORMAT: YES X NO							GL	OBAL I.D.		_					
	Sampler: Jered Chaney Date: 5/9/(2														
								REQUESTED ANALYSIS							
	·			SAMPLE CONTAINERS			Total I	Volatile Organics			Additional Analysis				
	Sample Identification	Date Sampled	Matrix	40 mL	60 mL	Terra Core Prep Kit	Liner	TPH-dieselw/ silica gel cleanup	TPH-Diesel	TPH-Gas	BTEX	MtBE & TBA	1,2-DCA & EDB		
	5		ž	VOAs (preserved)	VOAs	VOAs (preserved)	Acetate or Brass	EPA Method# 8015M	EPA Method 8015M	by EPA Method 8260B	EPA Method# 8260B	EPA Method# 8260B	EPA Method# 8260B	Luft 5 Metals	PCBs
ODIA	DP-6- d21	5/1/12	50:1				1			~	×	×			
1		17									÷				
			-												
			-											· · · · · · ·	06
1														10	M
			-	<u> </u>										1.0	
I	·		1										L		
	RELEASED BY: 1. John Standard		٤.			\uparrow \uparrow \uparrow \uparrow	Jan Carl	Tare ben	5/10/12 5/14/12 5/15/12 5/15/12	1730 1730 926 10:40		Ambient Ambient Ambient Ambient	Ref Ref	LE CONDITION: (circle 1) rigerated rigerated rigerated	Frozen Frozen Prozen Prozen
	5.)		'	-		\rightarrow				·		Ambient	Ref	rigerated	Frozen
	NOTES: 1 X Please use MDL (Minimum Detection Limit) for any diluted samples. ADDITIONAL COMMENTS - Sample DP-6-d21 inadvertenty not picked up w/ initial batch of samples.														
	F. C,														
	JC/Fieldog/FORMS.xb - COC						1	of 1						Weber, Hayes an	d Associates

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Change Order

Work Order: 1205092	Serial #: CO15-0273		Print Date:	10/16/2015
Project Name: Oakland / 2X103.B				
Client: Weber, Hayes & Associates	Requested By:	Craig Drizin		
		<u>Requested</u> Date	<u>Requested</u> <u>Time</u>	Extended Price

Report Napthalene data for sample 001

10/12/2015

Page 1 of 1