RECEIVED By dehloptoxic at 1:26 pm, Oct 18, 2006

ENVIRONMENTAL ENGINEERING, INC 6620 Owens Drive, Suite A • Pleasanton, CA 94588-3334 TEL (925) 734-6400 • FAX (925) 734-6401

October 17, 2006

Ms. Molly Ong East Bay Municipal Utility District P.O. Box 24055 Oakland, California 94623-1055

Re: Wastewater Discharge Permit Renewal (Acct. 504-27421) Site Address: 3609 International Blvd., Oakland, California

Dear Ms. Ong:

This letter and application package is being submitted by SOMA Environmental Engineering, Inc. (SOMA) to comply with EBMUD's requirements for renewal of SOMA's wastewater discharge permit at the above referenced site. Enclosed is an illustration of the site's layout (Figure 2) and treatment system schematic diagram (Figure 3). SOMA collected groundwater samples from the treatment system effluent. The samples were analyzed for suspended solids, as well as chemical oxygen demand parameters. The results of these analyses are also enclosed.

Thank you for your time with regard to this matter. Meanwhile, please do not hesitate to call Tony Perini, Senior Project Engineer, or myself at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepenr, Ph.D., P.E. Principal Hydrogeologist

Enclosures

An application consists of the following forms and documents in this file. Each of the forms listed below must be completed when applying for a wastewater discharge permit for groundwater. The instructions follow each form where applicable.

- Applicant Information name of applicant, facility address, mailing address, contact information.
- Process Description description of wastewater generating processes, pretreatment facilities and type of waste generated.
- Schematic Flow Diagram flow diagram of major processes and pretreatment facilities listed in Process Description.
- Building Layout site layout showing building outline, property lines, water lines, sewer lines, sample point, etc.
- Strength Summary wastewater flow rate, discharge frequency, and wastewater strength determination.
- Water Source and Use incoming and outgoing water/wastewater flow calculations.

Please send the application to:

EBMUD Environmental Services Division P. O. Box 24055, MS#702 Oakland, CA 94623-1055

Questions? Please call the Environmental Services Division information line at (510) 287-1651.

WASTEWATER DISCHARGE PERMIT Terms and Conditions APPLICANT INFORMATION

APPLICANT BUSINESS NAME		PERMIT NUMBER
TONY'S ETPRESS AUTO S	EPEVICE	50427421
ADDRESS OF SITE DISCHARGING WASTEWAT	ER	
3609 InternationAL Blub	Oaklano	94601
STREET ADDRESS	Сптү	ZIP CODE
PERSON TO BE CONTACTED REGARDING THIS		
Mansour Sepen MS	epehr e somacnu.com 925-734-	6400 925-734-6401
NAME ELEC	TRONIC MAIL ADDRESS TELEPHONE NUMBER	R FACSIMILE NUMBER
DEDROM(A) TO DECEME DEDMIT AND CODE	DONDENCE IE DIEEEDENT TUAN DEDOON GIG	NING APPLICATION
PERSON(S) TO RECEIVE PERMIT AND CORRES		
Holshessen Razi	3609 Diternational Blub. 6	arigno un TTOOI
NAME	Mailing Address	
NAME	MAILING ADDRESS	
PERSON TO BE CONTACTED IN THE EVENT OF	⁷ AN EMERGENCY	
	925-734-6400	925-838-3939
Mansour Septhr NAME	DAYTIME TELEPHONE NUMBER	NIGHTTIME TELEPHONE NUMBER
AUTHORIZATION		
Manson Septh is author	ized to sign reports, documents, and other corresp	pondence required by this Permit.
Name & Title		- •
owner and frincipal they		
Temployetand that I am I a Mission MIT C	CERTIFICATION scharge of wastewater from the facility and for con-	mplying with the Torms and
I understand that I am legally responsible for dis Conditions of this Wastewater Discharge Permit.		mprying with the rennis unu
	and all attachments were prepared under my dire	ction or supervision in accordance
with a system designed to assure that qualified p	ersonnel properly gather and evaluate the inform	ation submitted. Based on my
inquiry of the person or persons who manage the	e system, or those persons directly responsible for	gathering information, the
information submitted is, to the best of my knowl penalties for submitting false information, include	edge and belief, true, accurate, and complete. I a ling the possibility of fine and imprisonment for ka	nowing violations.
	Part ID	in the last
Mansour Jepenr	<u>I resident / I r</u>	incipal
- Alk		
SIGNATURE	<u>10~17-06</u> Date	
(TO BE SIGNED BY CHIEF EXECUTIVE OFFICER OR DULY AUT	HORIZED REPRESENTATIVE. SEE CERTIFICATION REQUIREMEN	TS ON REVERSE)
6620 Owens Dove Suite A Mailing Address Pleasanton, cA 94	925-734-6400	
Mailing Address fleas anton, col 94	1588 PHONE NUMBER	

INSTRUCTIONS FOR COMPLETING APPLICANT INFORMATION

Please Type or Print the Requested Information

Applicant's Business Name – Enter the name of the business that has legal responsibility for wastewater discharge, including responsibility for any enforcement actions or penalties imposed by the District.

Permit Number – The permit number will be provided by EBMUD.

Address of Site Discharging Wastewater - Enter the street address of the premises discharging the wastewater.

Application Contact – Enter the name, electronic mail address, telephone number, and facsimile number of the person to be contacted regarding the information reported in this application.

Permit and Correspondence Contact(s) - Enter the name and mailing address of the person(s) who should receive a copy of this permit and respective correspondence.

Emergency Contact - Enter the name, daytime and nighttime telephone numbers of the person to be contacted in case of an emergency regarding discharges/spills to the sanitary sewer system.

Authorization - Enter the name and title of the person authorized to sign all correspondence pertaining to this permit.

Certification – Enter the name and title of the person signing the application, and their mailing address and phone number. The person signing the application must meet the signatory criteria of 40 CFR 403.12 (l). Persons meeting these criteria include:

- 1) A responsible corporate officer, such as:
 - a. a president, vice-president, secretary, treasurer, or other person performing similar policy or decision making functions or;
 - a manager of one or more manufacturing, production, or operating facilities. The facility must employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars). The person must have authority to sign documents.
- 2) A general partner or sole proprietor.
- 3) A duly authorized representative. The duly authorized representative must be:
 - a. an individual having responsibility for the overall operation of the facility from which the wastewater discharge originates. Examples include plant manager, field superintendent, or environmental manager;
 - b. authorized in writing by a person described in paragraph 1) or 2). The written authorization must be submitted to the District.

Return the Signed Original Application to:

East Bay Municipal Utility District Environmental Services Division, MS 702 P.O. Box 24055 Oakland, CA 94623-1055

WASTEWATER DISCHARGE PERMIT

Terms and Conditions

EBMUD APPLICANT BUSINESS NAME TONY'S EXPRESS Anto Sentie PROCESS DESCRIPTION

Gesofne service Station 554/ 4950 PROCESSES Process Description Wastewater Characteristics Schematic Process Number UST ce-fuelring gasofine/benzere/mtBE / Transfer of fuel from UST from gasofine/benzere/mtBE 2 Auto fuelring at pump Tilands gasofine/benzere/mtBE 3 POLLUTION PREVENTION TECHNIQUES/BEST MANAGEMENT PRACTICES (BMPs) For UST re-fuelring with tanker trucks: spill pans are set at each UST "moniforing locations are also set for possible overflow condition For framsfer from UST to pump Tilands: product / Times are Mathematices for lefts, product fines are also primarily and SecondAttil Gontations, for auto fueling: Infect shut off values are Magnitatives at pump dispensers. PRETREATMENT Pretreatment System Design Capacity I grease trap/oil and water separator game continuous of 15/boty 1-2000 16, 1 B granular activated carbon Spm- continuous of 15/boty 1-2000 16, 1 B sedimentation The continuous of 15/boty 1-2000 16, 1	The information on this form provides a de the wastewater, and waste management act	escription of wastew tivities. Instructions	vater generals are on the	ating processes, charad back of this form.	cteristics of		t Number 1-27421	
PROCESSES Process Description Wastewater Characteristics Schematic Process Number UST ce-fuelting 9asofine / benzene / mt BE / Transfer of fuel from UST think gasofine / benzene / mt BE / Auto fuelting at pump Tolands 9asofine / benzene / mt BE 2 Auto fuelting at pump Tolands 9asofine / benzene / mt BE 3 POLLUTION PREVENTION TECHNIQUES / BEST MANAGEMENT PRACTICES (BMPs) For WIT re-fuelting with tanker trucks: spill pans are set at each WIT, "Moniform / locats ons are also set for possible overflow condition For transfer from WSTs to pump Tolands: product / Imes are Magnifames and Monifores for lefts, product / Imes are also primerity and Sclan datally contained. For gut fispensers. PRETREATMENT Pretreatment System Design Capacity Infiltration 1-2000 lb, l gradual activated carbon 8 gpm- continuous e.IS / bs/oty fi-2000 lb, l Begranular activated carbon 8 gpm- continuous e.IS / bs/oty fi-2000 lb, l	BUSINESS ACTIVITY Gesofine Service Sta							
Process Description UST re-fuelting gasoline / benzene / mt BE 1 Transfer of fuel from ust pump gasoline / benzene / mt BE 2 Auto fueling at pump Tlands gasoline / benzene / mt BE 3 POLLUTION PREVENTION TECHNIQUES / BEST MANAGEMENT PRACTICES (BMPs) For Wit re-fueling with tanker trucks: spill points are set at each WST, "Monitoring / ocations are also set for pointible overflow condition For transfer from ust to pump Tilends: product / Thes are Magnitaines and Monitores for letts, product / Thes are also primarily and Scandatily contained. for auto fueling: refety shut-off values are Magnitaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity I grease trap/oil and water separator gasolinus or 15 / 65 / 64 / 1-2000 / 1 Branular activated carbon Spm- continuous or 15 / 65 / 64 / 1-2000 / 6 Beginnentation The second of the seco	PROCESSES							
UST ce-fuelting gasoline / benzene / mt BE / Transfer of fuel from ust print gasoline / benzene / mt BE 2 Auto fuelting at pump Tlanss gasoline / benzene / mt BE 3 POLLUTION PREVENTION TECHNIQUES / BEST MANAGEMENT PRACTICES (BMPs) For WT re-fineling with tanker trucks: Spill pans are set at each WST, "Moniform / locations are also set for possible overflow condition For WT re-fineling with tanker trucks: Spill pans are set at each WST, "Moniform / locations are also set for possible overflow condition For framsfer from usts to pump Ts/ands: product / trues are Magntaines and Monifores for lettes product / trues are also primerity and Sceen default (containes. For auto frieting: refety shut off values are Magntaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number Gibrain advate separator gpm-continuous o. 15 / 6 s/ 6 ft / 2 ooo 16, 1 I Begranular activated carbon gpm-continuous o. 15 / 6 s/ 6 ft / 2 ooo 16, 1 I	Process Description		Wa	stewater Characteri	stics	Schema	tic Process Number	
POLLUTION PREVENTION TECHNIQUES / BEST MANAGEMENT PRACTICES (BMPs) For UST re-fineling with tanker trucks: spill pans are set at each UST, "Monitaring locations are also set for possible overflow condition For transfer from UST: to pump Tilenbi: product ITNES are Maintaines and Monitores for lefts product ITNES are also primarily and Scion datily containes. For auto facting: 1 aferty shut-off values are Maintaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sever Number Granular activated carbon 8 gpm- continuous 0.15 16 s/DAY 1-2000 16 1 Geodementation			gasolo	ne /benzene/	MBE	1	/	
POLLUTION PREVENTION TECHNIQUES / BEST MANAGEMENT PRACTICES (BMPs) For UST re-fineling with tanker trucks: spill pans are set at each UST, "Monitaring locations are also set for possible overflow condition For transfer from UST: to pump Tilenbi: product ITNES are Maintaines and Monitores for lefts product ITNES are also primarily and Scion datily containes. For auto facting: 1 aferty shut-off values are Maintaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sever Number Granular activated carbon 8 gpm- continuous 0.15 16 s/DAY 1-2000 16 1 Geodementation	Transfer of fuel from	UST frome	9250/	melbenzenel	ATTBE	2		
POLLUTION PREVENTION TECHNIQUES / BEST MANAGEMENT PRACTICES (BMPs) For UST re-fineling with tanker trucks: spill pans are set at each UST, "Monitaring locations are also set for possible overflow condition For transfer from UST: to pump Tilenbi: product ITNES are Maintaines and Monitores for lefts product ITNES are also primarily and Scion datily containes. For auto facting: 1 aferty shut-off values are Maintaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sever Number Granular activated carbon 8 gpm- continuous 0.15 16 s/DAY 1-2000 16 1 Geodementation	Auto fueling at pump	Flamos	9950/	melbentene	MHBE	3		
For UST re-fineling with tanker trucks: Spill pans are set at each UST, "Monitaring locations are also set for possible overflow condition For transfer from USTs to pump Tislends: product /Thes are Maintaines and Monitores for letts, product /Thes are also primarily and Scendethild containes, For auto factory: set ety shut-off values are Maintaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Side Sewer Number Initration granular activated carbon 8 gpm- continuous 0.15 /6s/DAY 1-2000 /b,			5					
For UST re-fineling with tanker trucks: Spill pans are set at each UST, "Monitoring locations are also set for possible overflow condition For transfer from UST: to pump Tislends: product /Thes are Maintaines and Monitories for letters product /Thes are also primarily and Scendethild containes. For auto fueling: set ett shut-off values are Maintaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number Initration granular activated carbon 8 granular activated carbon 8 granular activated carbon 9 granular activated carbon 8 granular activated carbon 9 granular activated carbon								
For UST re-fineling with tanker trucks: Spill pans are set at each UST, "Monitaring locations are also set for possible overflow condition For transfer from USTs to pump Tislends: product /Thes are Maintaines and Monitores for letts, product /Thes are also primarily and Scendethild containes, For auto factory: set ety shut-off values are Maintaines at pump dispensers. PRETREATMENT Pretreatment System Design Capacity Loading Rate Side Sewer Number Initration granular activated carbon 8 gpm- continuous 0.15 /6s/DAY 1-2000 /b,	POLLUTION PREVENTION TECHN	IQUES / BEST MA	ANAGEM	ENT PRACTICES (BMPs)			
PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number □ filtration □	General can free for	the took	en tra	ake. soll	Pans o		et at each	
PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number □ filtration □	HIT MARCHAN	trans are	- 1:0	set to - D	ossible	OVE	flow condition	
PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number □ filtration □	For hearth from	1 M. to M	and T	slandi · a	ONW.T	Im	s are	
PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number □ filtration □	Anontone man Marich	aren far la	Ang i	rodut in	es are	also	in marily and	
PRETREATMENT Pretreatment System Design Capacity Loading Rate Size Side Sewer Number □ filtration □	Carao 14411V (astamen	For outo	frel	ma: rafety	chut- a	# 1	elves are	
PRETREATMENT Design Capacity Loading Rate Size Side Sewer Number □ filtration □	Montones at auno	tes nen se	<u> </u>	······································		••••	<u> </u>	
Pretreatment System Design Capacity Loading Rate Size Side Sewer Number □ filtration □ grease trap/oil and water separator □ grease trap/oil and water separator □ grease trap/oil and water separator □ filtration □ grease trap/oil and water separator □ grease trap/oil and water separator □ grease trap/oil and water separator □ filtration □ filtration □ grease trap/oil and water separator □ grease trap/oil and water separator □ filtration	majilaries at pury	a perset	<u> </u>					
□ filtration □ grease trap/oil and water separator ☑ sedimentation	PRETREATMENT	T	[
□ grease trap/oil and water separator	Pretreatment System	Design Capa	city	Loading Rate	Siz	e Side Sewer Number		
Image: sedimentation 8 gpm- confirments 0.15/bs/DAV 1-2000/lb 1 Image: sedimentation TPHg carbon versels 1								
	grease trap/oil and water separator				1-200	14, 1		
	🔀 granular activated carbon	8 gpm- conti	muous	0.13 165/DAY TPHO	1-200 carbon	o 15 versels		
	sedimentation				_			
	D pH adjustment							
chlorination	chlorination							
chemical precipitation	chemical precipitation			·····				
□ other (describe)	□ other (describe)							
	· · · · · · · · · · · · · · · · · · ·					. <u>.</u>		
PROCESS GENERATED WASTE Annual Waste Generation								
	DROCEGO CENTRE ATERE MA OTER				A .	nnual W/	asta Concration	
sount carbon	PROCESS GENERATED WASTE Waste / Disposal Method						1	
non-hazarbous waste Disposal by Baker Tanks 9000 165	Waste / Disposal Method				Quar	ntity	Unit	
	Waste / Disposal Method	lasposal by	y Bake	- Tanks	Quar	ntity	1	
	Waste / Disposal Method	lisposal by	y Bake	- Tanks	Quar	ntity	Unit	

INSTRUCTIONS FOR COMPLETING THE PROCESS DESCRIPTION

(Attach an additional page if more space is required)

Applicant Business Name: Enter the complete business name, including site-specific identification.

Permit Number: The District will provide a permit number for new applicants. Current permit holders, enter existing permit number.

Business Activity: Describe the major activities conducted on the premises.

Standard Industrial Classification: Include the Standard Industrial Classification (SIC) code for the facility (reference the most recent edition of the federal Standard Industrial Classification Manual).

Business Classification Code: The District will provide new applicants with a Business Classification Code (BCC) number (District code system adapted from the federal SIC system). Current permit holders, use existing BCC number.

Processes

Process Description

Describe each water using and wastewater generating process.

Wastewater Characteristics

• List the characteristics of the wastewater that may be discharged from each process to the sanitary sewer.

Schematic Process Number

• List the process number that corresponds to the number on the schematic flow diagram.

Example for Printed Circuit Board Manufacturing

Process Description	Wastewater Characteristics/Pollutants	Schematic Process Number
Surface preparation	Acidic, alkaline, metal oxides	1
Electroless plating rinse	Acidic, alkaline, copper, formaldehyde	2
Pattern printing and mask cleaning	Complex organic solutions	3
Electroplating clean and rinse	Acidic, alkaline, copper, tin, nickel, cyanide	4
Final clean and rinse	Acidic, copper, ammonia	5
Labeling washdown	Copper, chromium, zinc, solvents	6

Pollution Prevention Techniques / Best Management Practices (BMPs)

• Describe all pollution prevention techniques and BMPs in use.

Pretreatment

- Check applicable boxes for wastewater pretreatment.
- For each type of treatment, provide the capacity of the system, the rate of treatment, the size of the system, and the side sewer through which the treated wastewater flows.

Process Generated Waste

Waste / Disposal Method

- List all process generated waste not discharged to the sanitary sewer. Examples: spent solvents, process solutions, waste containing heavy metals, and recycled waste. List disposal method (e.g. manifested hazardous waste disposal). Annual Waste Generation
- Enter the quantity, including units, offhauled and/or recycled.

INSTRUCTIONS FOR COMPLETING SCHEMATIC FLOW DIAGRAM

Submit an 8-1/2" by 11" schematic flow diagram. A larger size drawing may be substituted. The schematic flow diagram is part of the wastewater discharge permit. District inspections may be conducted to verify accuracy of the schematic flow diagram.

Facility Name

Include the facility name.

Permit Number

• Include the permit number. The District provides a permit number to new applicants. Current permit holders, enter existing permit number.

Processes

- Identify all product or production related processes. Show the product flow from process to process.
- Identify all wastewater generating processes. Show the *wastewater* flow from each process. Include the process numbers, which correlate with those shown on the *Process Description* form.
- Show the % of total daily wastewater flow for each wastewater generating process.

Pretreatment System

• Show the flow of wastewater through each step of the pretreatment system. Number and briefly describe each step.

Discharge Meters

• Show each discharge meter in relation to the wastewater flow.

Side Sewers

- Show each process sampling point and side sewer in relation to the wastewater flow.
- Show the wastewater flow in gallons per day through each process sampling point or side sewer.

Other

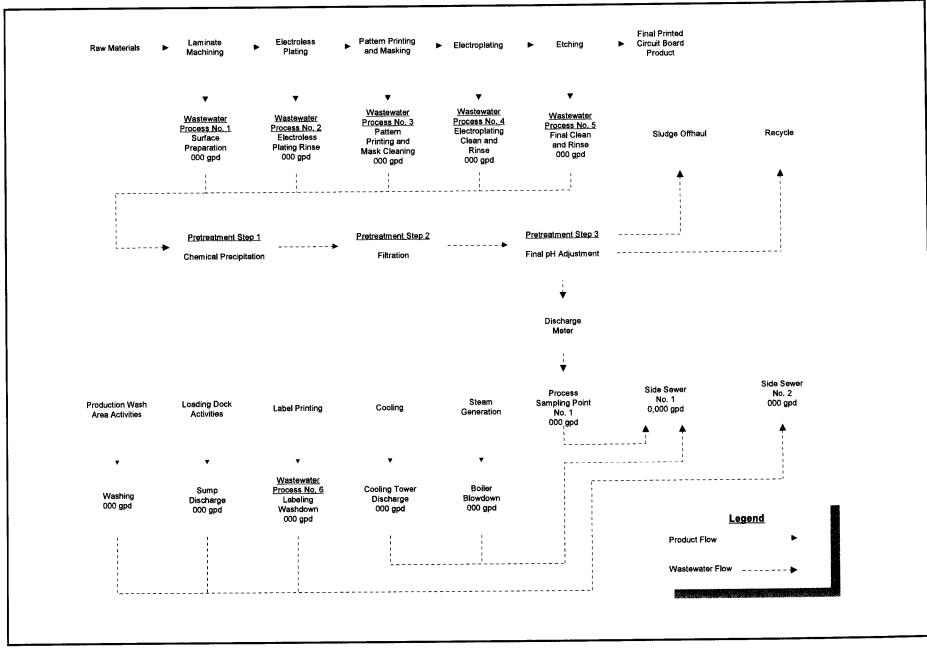
Identify any sludge offhaul or recycling.

Legend

• Include a legend for product and wastewater flow.

Date

• Include the diagram date.



EXAMPLE

WASTEWATER DISCHARGE PERMIT Terms and Conditions SCHEMATIC FLOW DIAGRAM

APPLICANT BUSINESS NAME Printed Circuit Board Company

Permit No. 1234567 8

INSTRUCTIONS FOR COMPLETING FACILITY LAYOUT

Submit an 8-1/2" by 11" facility layout. A larger size drawing or a blueprint may be substituted. The facility layout is part of the wastewater discharge permit. District inspections may be conducted to verify accuracy of the facility layout.

Facility Information

• Add facility name, permit number, and date of drawing.

Facility Outline

- Show facility property lines.
- Show building outline.
- Show streets adjoining the facility.

North Arrow

• Show the North Arrow.

Legend

• Describe the symbols/lines used in the drawing.

Processes

- Identify all wastewater generating processes. Include the process numbers, which correlate with those shown on the *Process* Description form.
- Show the location of all floor drains in these areas.

Pretreatment System

Show the location of all pretreatment systems described on the Process Description form. Designate each system with a letter.

Liquid Storage

- Show the location of all major liquid product and chemical storage areas.
- Show the location of all floor drains in these areas.

Water Meters

- Show the location of all meters and their serial numbers. Differentiate between EBMUD and private meters.
- Label private meters according to use. For example, well, cooling tower, boiler, and production.

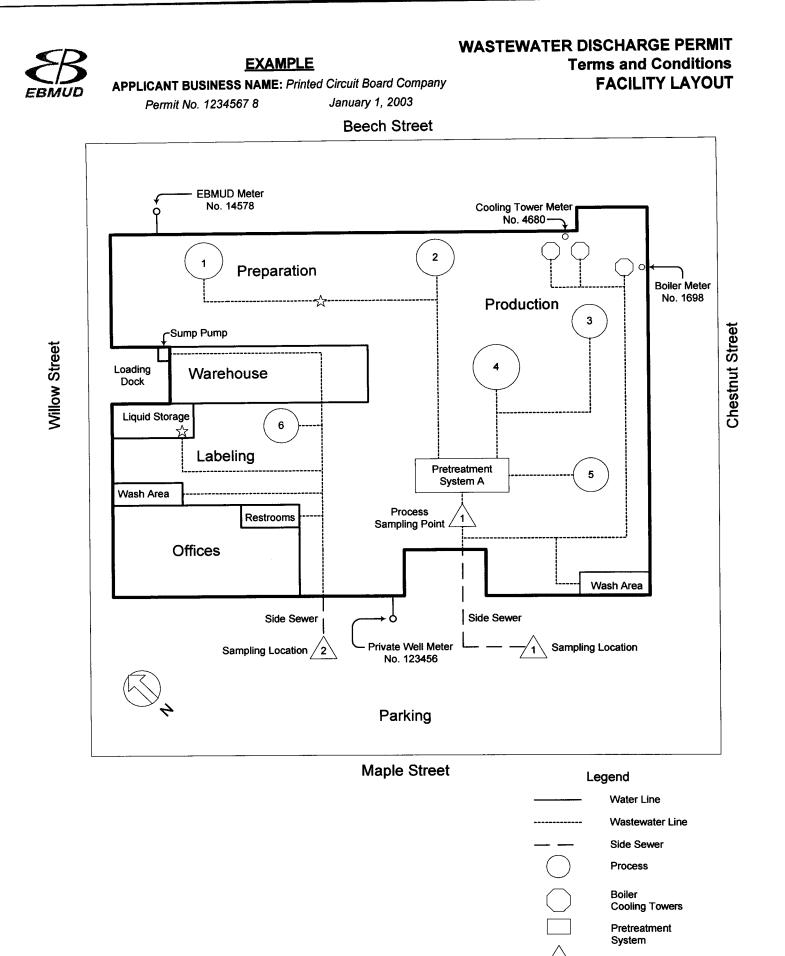
Facility Water Lines

Show the location of all water lines from each source meter to where they enter the building.

Facility Sewer Lines

- Show the location of all sanitary sewer lines from each wastewater generating process to where they join the side sewer.
- Show the location of all sanitary sewer lines from restrooms and wash areas to where they join the side sewer.
- Storm sewer lines are not required to be shown.

Side Sewers


Identify all side sewers. The side sewer numbers must correlate with those shown on the Water Balance/Strength Summary.

Sampling Locations

- Identify all District approved side sewer sampling locations, using the label "Sampling Location."
- Identify all District approved processing sampling points, using the label "Process Sampling Point."

Other

• Show the following required items:

Sampling Location

Floor Drain

 $\overleftarrow{}$

WASTEWATER DISCHARGE PERMIT APPLICANT BUSINESS NAME Tony's ERIRESS AUTO SERVICE Terms and Conditions WATER BALANCE/STRENGTH SUMMARY

The information on this form describes the volume, source, and strength of wastewater	Permit Number
discharged to the community sewer. Instructions are on the back of this form.	50427421

WATER USE AND WASTEWATER DISCHARGE BALANCE

Units expressed in: (gallons per calendar day) or \Box gallons per working day (Number of working days per year 365)

Water	;	Source		W;	astewater Dis	scharge to e	ach Side Sew	er	Water	Code ²
Use	EBMUD	Other	Code ¹	No.	No.	No.	No.	No.	Diverted	Code ⁻
Sanitary										
Processes	1900			1					NIA	
Product	-									
Boiler										1
Cooling			1							
Washing										1
Irrigation										
						Non-Sec.				
									and the	
Sub-total	1900									
Total	All Sources	s 19	00	All Side Sev	wers <u>190</u>	<u>о</u> А	ll Side Sewer	s + Water I	Diverted	
Maximum	Daily Disch	arge (gallo	ons)	2000						
METEREI										
	er Meter Num	ıber	Code ³	F	Percent Discl	harge to eac	h Side Sewer		Total % Di	scharge
N	IA .									

¹Other / Code: Compute the average gallon per day water use from non-EBMUD sources and enter the value in the Other "Sub-total" box. Do not include sources that discharge only to the stormdrain. Allocate the subtotal value to each type of water use. Enter the code(s) that identifies the source water:

A= Well Water / Groundwater B= Stormwater C= Reclaimed Water D= Other (describe)

²Water Diverted/Code: Enter the diverted volume for each type of water use. Enter the code(s) that identifies the diversion:

A = Product B = Evaporation C = Irrigation D = Creek/Bay E = Rail, Truck, Vessel F = Other (describe)

³Metered Water Code(s): E= EBMUD Meter P= Private Meter

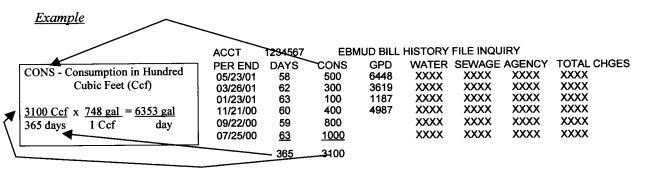
WASTEWATER DISCHARGE PERMIT APPLICANT BUSINESS NAME TONY'S EXPRESS MUTO SERVICE Terms and Conditions WATER BALANCE/STRENGTH SUMMARY

WASTEWATER		W	astewater Di	scharge to eac	h Side Sewer	1
WASTEWATER STRENGTH ESTIMATES	No.	No.	No.	No.	No.	
Total Suspended Solids	Average	1				
mg/L (TSS)	Maximum					
Filtered Chemical	Average	1		at 4 Miles		
Oxygen Demand mg/L (CODF)	Maximum					
DISCHARGE FREQUENC	T V					
Days of Week						
Days of week		7				
Time of Day (Start & Stop 7	Time)	10				
This of Day (Start & Stop	i iiic)	NA				
Volume, if Batch Discharge						
volume, ii Daten Disenarge	λ.					
SIDE SEWER LOCATION	I					
No.						
1						
No.					<u></u>	
No.						
0.49-10		0.15 .0.1 90.00				
No.						
No.						1992
STORMWATER AREA				an (
Total square-foot area expos	sed to stormwa	ater that drain	ns to the sanit	ary sewer:		

INSTRUCTIONS FOR COMPLETING WATER BALANCE/STRENGTH SUMMARY- PAGE 1 OF 2 (Attach an additional page if more space is required.)

Applicant Business Name: Enter the complete business name, including site-specific identification.

Permit Number: The District provides a permit number to new applicants. Current permit holders, enter existing permit number.


Water Use And Wastewater Discharge Balance: This section shows the facility's water use, wastewater discharge, and water diverted from the community sewer. The Water Use must balance with the Total Wastewater Discharge to all Side Sewers and Water Diverted (All Sources = All Side Sewers + Water Diverted). The calculations used to arrive at the values submitted in the Water Balance Strength Summary must be included with the application.

Units

• Check one of the boxes. The selected units must be used to express consumption and discharge rates. If using gallons per working day, provide the number of working days per year.

Source

• Compute the average gallon per day EBMUD water use and enter the value in the EBMUD "Subtotal" box. The "EBMUD Bill History File Inquiry", provided by the District, may be used to calculate the average daily use if projected water use is expected to be similar to the prior year. If not, estimate water use using best available data.

• Allocate the subtotal value to each type of water use. Sanitary water use may be determined using the following data from the Uniform Plumbing Code, 1997:

Field Service Employees: 5 gallons per employee per day Production Employees: 25 gallons per employee per day Office Employees: 20 gallons per employee per day Production Employees with showers: 35 gallons per employee per day

<u>Stormwater Discharge Calculation Example</u> (Assume 18 inches of average annual rainfall.) Sq ft area exposed to rainfall x 1.5 ft average annual rainfall x 7.48 gal/cubic foot = ____ gal ÷ 365 days = ____ gal/day

Note: Some water use may be hard to quantify. In this case, try subtracting the known rates from the "All Sources" total. The difference may be used to estimate the hard to quantify value.

Wastewater Discharge to each Side Sewer

- Enter the side sewer number at the top of each column. The number must correlate with the side sewer number shown on the Facility Layout.
- Enter the wastewater discharge rate for each type of water use. Enter the subtotal for each side sewer.
- Enter the water diverted and the subtotal.
- Enter maximum daily discharge rate for each side sewer.

Metered Water

- Enter meter number(s) for source water.
- Enter the percent of metered water that is discharged to each side sewer.
- For every meter, add the percent discharge for each side sewer and enter the total.

INSTRUCTIONS FOR COMPLETING WATER BALANCE/STRENGTH SUMMARY – PAGE 2 OF 2 (ATTACH AN ADDITIONAL PAGE IF MORE SPACE IS REQUIRED.)

Wastewater Strength Estimates

• Enter the annual average and maximum TSS and CODF concentrations for each side sewer. The average strength should approximate strength for the year.

Discharge Frequency

• Enter the days of the week that discharge is expected for each side sewer. Enter the estimated start and stop time of discharge for each side sewer. For batch discharge, enter the volume of the batch discharges to each side sewer.

Side Sewer Location

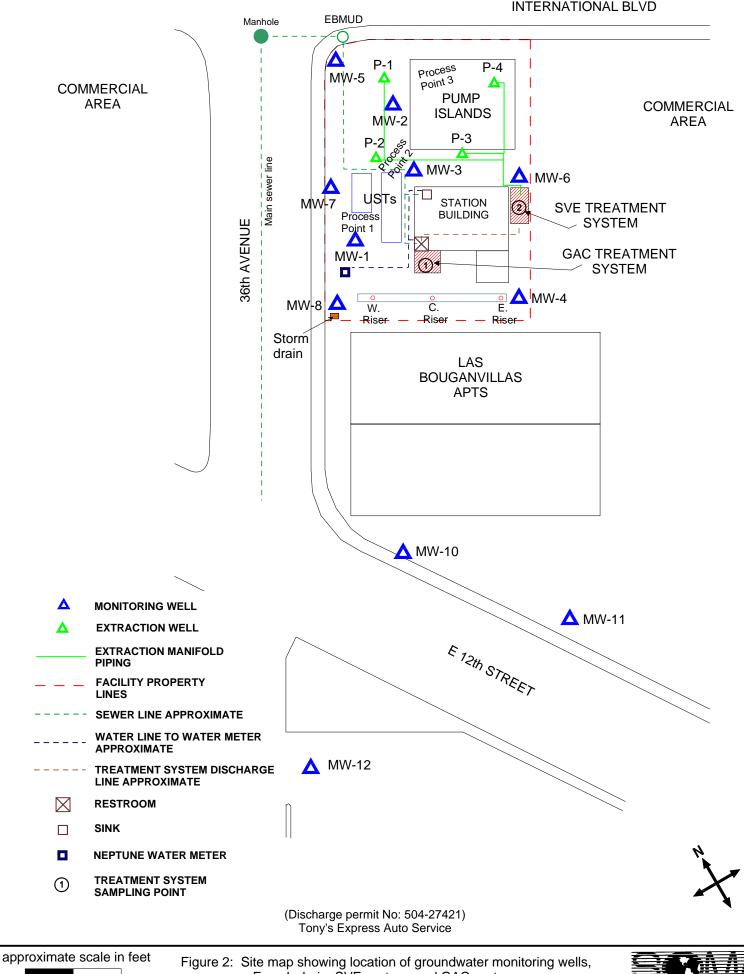
• Describe the precise location of each side sewer listed above.

Stormwater Area

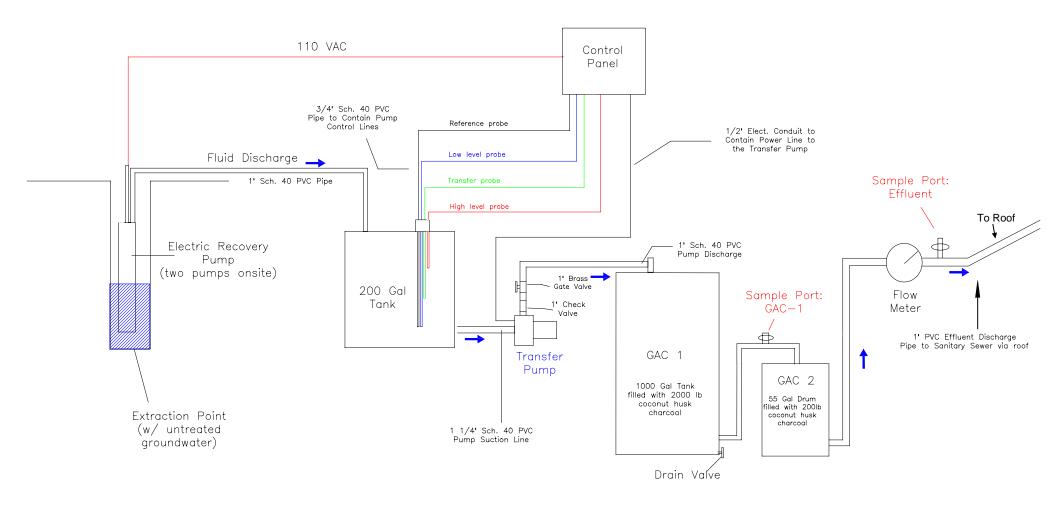
• Enter the total square-foot area exposed to stormwater that drains to the sanitary sewer.

FIGURES

SOMA Environmental Engineering, Inc.

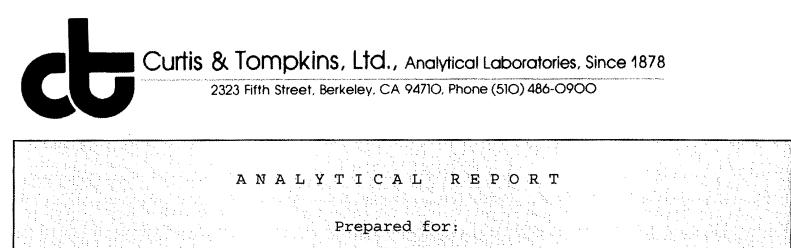


	approximate	e scale in feet	
0	15	50	300


Figure 1: Site vicinity map.

0 25 50 French drain, SVE system, and GAC system.

ENVIRONMENTAL ENGINEERING, INC.



(Discharge permit No: 504-27421) Tony's Express Auto Service. November 14, 2006 permit expires

Figure 3: Schematic of the Groundwater Remediation System. 3609 International Blvd., Oakland, CA

Chain of Custody Form and Laboratory Report for the Treatment System

SOMA Environmental Engineering Inc. 6620 Owens Dr. Suite A Pleasanton, CA 94588

Date: 13-OCT-06 Lab Job Number: 189694 Project ID: 2333 Location: 3609 International Blvd

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:	Project Manager
Reviewed by:	Openations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 3

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 189694 SOMA Environmental Engineering Inc. 2333 3609 International Blvd 09/27/06 09/27/06

This hardcopy data package contains sample and QC results for three water samples, requested for the above referenced project on 09/27/06. The samples were received intact at ambient temperature.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Total Suspended Solids (TSS) (EPA 160.2): No analytical problems were encountered.

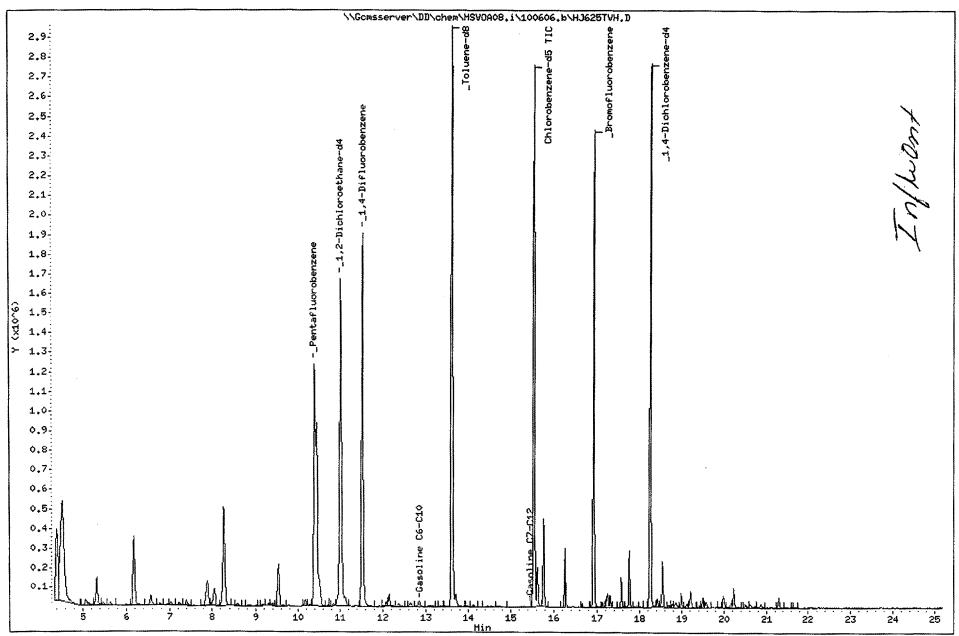
<u>Chemical Oxygen Demand (EPA 410.4):</u> No analytical problems were encountered.

CHAIN OF CUSTODY

Page _1___of _/___

Cur	tis & Tompkins, Ltd.]															An	alys	ses	J			
Anal	ytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone					18969						B											
L	(510)486-0532 Fax	1										8260B											
Projec	et No: 2333		Repor	t T	`0:	Tony Peri	ni					ВШ	Ц										
Projec	t Name:3609 International B	Ivd., Oakland	Comp	an	y :	SOMA Envi	ronr	men	tal			Ĕ	CODF										
Turna	round Time: Standard		Telep	hoi	ne:	925-244-66	00					TEX N	TSS,										
			Fax:			925-244-66	01					TPH-g, BTEX, MtBE	μř										
				N	Matrix		F	Pres	erv	ative	•	H											
Lab No.	Sample ID.	Sampling Time	Date	Soil	Water Waste	# of Containers	HCL	H ₂ SO ₄	HNO ₃	ICE		F											
-	Influent	9/27/02 1	:55 P.M			3-VOAs						*											
-2	GAC-1	9/27/01.	1 40 PM			3-VOAs			ļ			*									<u> </u>	<u> </u>	
	PSP#1	9/21/26 1	30 241.			3-VOAs	ļ	_	ļ			*							+		<u> </u>	 	
36	PSP#t	1 1				4L-Amber			<u> </u>			\vdash		-				<u> </u>				–	┠───┦
$\sim \vdash \rightarrow$	PSP#1	9/27/24	1:20 Pm	-		250 M2	+			┠──╋		-	X		+			+	<u> </u>		╇	+	<u> </u>
	PSP#1	9/27/04 1	130 PM	$\left \right $		250 ML	┼─	<u> </u>					×_					-+-	+	+	+	+	\square
																						<u> </u>	
							_		<u> </u>	╞──┼						_					+	–	
							-		 	$\left \right $			╂───		-+			_+-	+	╋	+	+	┼──
										╞─┼			+		-+	-+		+	+	+	+	+	\mathbf{t}
Notes	EDF OUTPUT REQUIRE	D		RI	ELING	UISHED BY:		-1		l	.	RE	CE	IVE	D BI	r :							
	Grab Sample				Λ			9	127	106	15:2	5							91:	27/	06	15	:25
	Totalizer Reading:			L	D3	mi					E/TIME		10	u l	-) NGA	im					TE/T	
	E Gund	Action from								DAT	e/time					7					DA	TE/T	ГІМЕ
										DAT	e/time										DA	TE/T	пме

	(Gasoline	by GC/MS		
Lab #: 189694 Client: SOMA Enviro Project#: 2333	nmental Engineer	ing Inc.	Location: Prep: Analysis:	3609 Interna EPA 5030B EPA 8260B	tional Blvd
Matrix: Wate Units: ug/L Batch#: 1181			Sampled: Received:	09/27/06 09/27/06	
Field ID: INFLU Type: SAMPL Lab ID: 18969	E		Diln Fac: Analyzed:	7.143 10/07/06	
Analyte Gasoline C7-C12		990		RL 360	
MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		170 240 9.4 37 95		3.6 3.6 3.6 3.6 3.6 3.6	
Surrogate	*REC	55		3.6	
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	98 88 96 106	80-120 80-130 80-120 80-122			
Field ID: GAC-1 Type: SAMPL Lab ID: 18969			Diln Fac: Analyzed:	1.000 10/06/06	
Analyte Gasoline C7-C12	ND	Result		RL 50	
MTBE Benzene Toluene Ethylbenzene m,p-Xylenes	ND ND ND ND ND			0.50 0.50 0.50 0.50 0.50 0.50	
o-Xylène	ND		······································	0.50	
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	8REC 96 91 98 104	Limits 80-120 80-130 80-120 80-122			

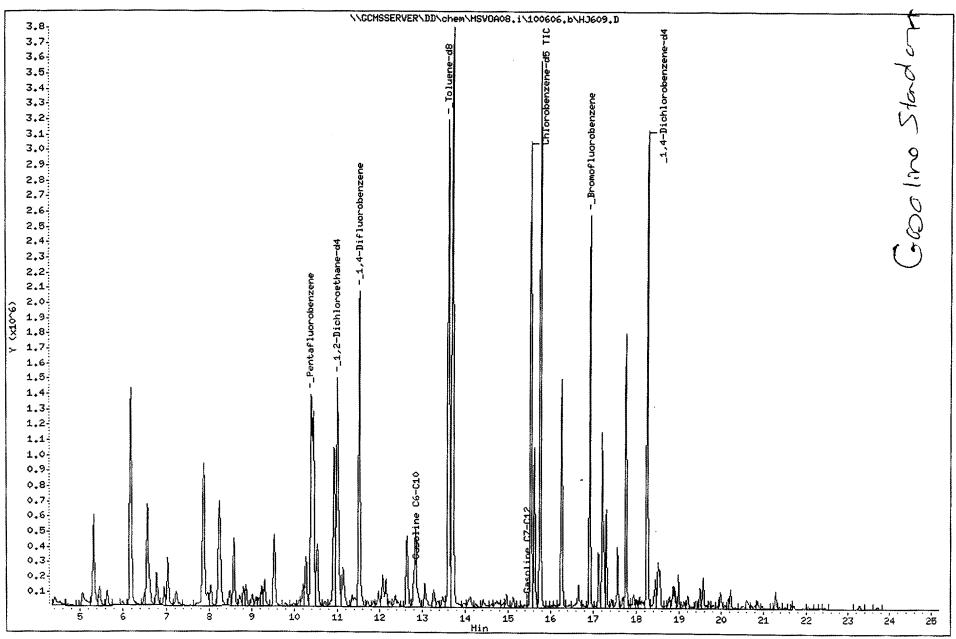

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\100606.b\HJ625TVH.D Date : 07-OCT-2006 00:06 Client ID: DYNA P&T Sample Info: \$,189694-001

Column phase:

Instrument: MSVOA08.i

Operator: BO

Column diameter: 2.00


Data File: \\GCHSSERVER\DD\chem\MSVOA08.i\100606.b\HJ609.D Date : 06-OCT-2006 14:07 Client ID: Sample Info: CCV,S4120,0.015/100

Column phase:

Instrument: HSV0A08.i

Operator: BO

Column diameter: 2.00

Page 2

	Gasc	line by GC/MS		
Lab #: 189694 Client: SOMA Environmental Project#: 2333	Engineering	Analysis:	3609 Internatic EPA 5030B EPA 8260B	nal Blvd
Matrix: Water Units: ug/L Batch#: 118188	1911 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -	Sampled: Received:	09/27/06 09/27/06	
Field ID: PSP#1 Type: SAMPLE Lab ID: 189694-003		Diln Fac: Analyzed:	1.000 10/06/06	
Analyte Gasoline C7-C12 MTBE	ND ND	ilt	50 0.50	
Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND		0.50 0.50 0.50 0.50 0.50 0.50	
Surrogate Dibromofluoromethane	EREC Lin	n its -120		
1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	91 80- 98 80-	-130 -120 -122		
Type: BLANK Lab ID: QC359254		Diln Fac: Analyzed:	1.000 10/06/06	
Analyte Gasoline C7-C12	ND	11t	50	
MTBE Benzene Toluene	ND ND ND		0.50 0.50 0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND		0.50 0.50 0.50 0.50	
Surrogate Dibromofluoromethane		-120		
1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	97 80-	-130 -120 -122		

	Gasoline	by GC/MS	
Lab #:	189694	Location:	3609 International Blvd
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2333	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	118188
Units:	ug/L	Analyzed:	10/06/06
Diln Fac:	1.000		

Analyte	Spiked	Result	&RBC	Limits
MTBE	25.00	21.13	85	72-120
Benzene	25.00	24.63	99	80-120
Toluene	25.00	24.30	97	80-120
Ethylbenzene	25.00	26.42	106	80-120
m,p-Xylenes	50.00	53.42	107	80-121
o-Xylene	25.00	27.38	110	80-120

Dibromofluoromethane	93	80-120
1,2-Dichloroethane-d4	81	80-130
Toluene-d8	96	80-120
Bromofluorobenzene	101	80-122

Туре: 1	BSD	Lab	D ID:	QC359253			
Analyt	;e	Spiked	Result	\$R]	3C Limits	RPD	Lim
MTBE		25.00	20.	79 83	72-120	2	20
Benzene		25.00	24.	62 98	80-120	0	20
Toluene		25.00	24.	13 97	80-120	1	20
Ethylbenzene		25.00	25.	84 103	80-120	2	20
m,p-Xylenes		50.00	53.	27 107	80-121	0	20
o-Xylene		25.00	27.	98 112	80-120	2	20
Surroga	ite %R	BC Limits					
Dibromofluorometh	ane 93	80-120					
1,2-Dichloroethan	e-d4 81	80-130					
Toluene-d8	95	80-120					
Bromofluorobenzen	le101	80-122					

		Gasoline	by GC/MS	
Lab #:	189694		Location:	3609 International Blvd
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2333		Analysis:	EPA 8260B
Matrix:	Water		Batch#:	118188
Units:	ug/L		Analyzed:	10/06/06
Diln Fac:	1.000	х		

Type: BS			Lab ID:	QC	359255		
Analyte		Spiked		Result	%REC	: Limits	
Gasoline C7-C12		1,500		1,651	110	70-130	······································
Surrogate	%REC	: Limits					
Dibromofluoromethane	92	80-120					
1,2-Dichloroethane-d4	84	80-130					
Toluene-d8	94	80-120					
Bromofluorobenzene	102	80-122					
ſype: BSD	102		Lab ID:		359256		
***************************************	102	80-122 Spiked 1,500	Lab ID:	QC Result 1,582	359256 %REC 105		RPD Lim 4 20
Fype: BSD Analyte Gasoline C7-C12		Spiked 1,500	Lab ID:	Result	*RBC	Limits 70-130	
Type: BSD Analyte Gasoline C7-C12 Surrogate	÷RBC	Spiked 1,500 Limits	Lab ID:	Result	*RBC		
Type: BSD Analyte Gasoline C7-C12 Surrogate Dibromofluoromethane	<u>%RBC</u> 91	Spiked 1,500 Limits 80-120	Lab ID:	Result	*RBC		
Type: BSD Analyte Gasoline C7-C12 Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4	%RBC 91 82	Spiked 1,500 Limits 80-120 80-130	Lab ID:	Result	*RBC		
Type: BSD Analyte Gasoline C7-C12 Surrogate Dibromofluoromethane	<u>%RBC</u> 91	Spiked 1,500 Limits 80-120	Lab ID:	Result	*RBC		

	Chemical O	xygen Demand	
Lab #:	189694	Location:	3609 International Blvd
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	2333	Analysis:	SM 5220D
Analyte:	COD (Filtered)	Batch#:	118078
Field ID:	PSP#1	Sampled:	09/27/06 13:30
Matrix:	Water	Received:	09/27/06
Units:	mg/L	Analyzed:	10/03/06 00:00
Diln Fac:	1.000		
Туре	Lab ID Result	RL	
SAMPLE 18	9694-003 14	10	
BLANK QC	358782 ND	10	

Lab #:	189694	4	Location:	3609	Interna	ational Bl	vd	
Client	: SOMA I	Environmental Engineering Inc.	Prep:	METHO	DD			
Project	t#: 2333		Analysis:	SM 52	220D			
Analyt	e:	COD (Filtered)	Diln Fac:	1.000	0			
Field :	ID:	PSP#1	Batch#:	1180	78			
MSS Lal	b ID:	189694-003	Sampled:	09/27	7/06 13:	: 30		
Matrix	:	Water	Received:	09/27	7/06			
Units:		mg/L	Analyzed:	10/03	3/06 00:	:00		
Туре	Lab ID	MSS Result Spike	d	lesult	\$RE(: Limits	RPD	Liı
LCS	QC358783	8(0.00	77.78	97	80-120		
MS	QC358784	13.61 80	0.00	81.67	85	80-120		
MSD	OC358785	80	0.00	77.78	80	80-120	5	20

Lab #:	189694	Location:	3609 International Blvd
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	2333	Analysis:	EPA 160.2
Analyte:	Total Suspended Solids	Batch#:	117975
Field ID:	PSP#1	Sampled:	09/27/06
Matrix:	Water	Received:	09/27/06
Units:	mg/L	Analyzed:	09/29/06
Diln Fac:	1.000		

Туре	Lab ID	Result	RL
SAMPLE	189694-003	ND	5
BLANK	QC358345	ND	5

ND= Not Detected RL= Reporting Limit Page 1 of 1

			Total Suspen	ded Solids (TSS)				
Lab #:	18969	4		Location:	3609 Int	ernat	tional B	lvd	
Client:	SOMA	Environmental	Engineering Inc	. Prep:	METHOD				
Project			-	Analysis:	EPA 160.	2			
Analyte		Total Susper	nded Solids	Diln Fac:	1.000				
Field I	D:	ZZZZZZZZZZZ		Batch#:	117975				
MSS Lab	ID:	189690-001		Sampled:	09/27/06				
Matrix:		Water		Received:	09/27/06				
Units:		mg/L		Analyzed:	09/29/06				
Туре	Lab ID	MSS Result	: Spiked	Result	RL	%REC	Limits	RPD	Lim
	QC358346		50.00	48.00		96	80-120		
BSD			50.00	53.00		106	80-120	10	20
SDUP	_ QC358348	13.00)	16.00	5.000			21	31
	QC358349		50.00	63.00		100	46-152		