RECEIVED

2:50 pm, Feb 14, 2008

Alameda County Environmental Health

ENVIRONMENTAL ENGINEERING, INC 6620 Owens Drive, Suite A • Pleasanton, CA 94588-3334 TEL (925) 734-6400 • FAX (925) 734-6401

February 13, 2008

Mr. Jerry Wickham Alameda County Department of Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: StID#3337 Site Address: 3609 International Blvd., Oakland, California

Dear Mr. Wickham:

SOMA's "Multi-Phase Extraction Pilot Test" for the subject property has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. If you have any questions or comments, please call me at (925) 734-6400.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

Enclosure

cc: Mr. Abolghassem Razi w/report enclosure Tony's Express Auto Service

> Mr. Vince Tong w/report enclosure Traction International

Multi-Phase Extraction Pilot Test

3609 International Boulevard Oakland, California

February 13, 2007

Project 2334

Prepared for: Abolghassem Razi 3609 International Boulevard Oakland, California 94601

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this document on behalf of Mr. Abolghassem Razi, current property owner of 3609 International Boulevard, Oakland, California. It was prepared in compliance with directives of the Alameda County Environmental Health Services in correspondence dated November 21, 2007. This document presents SOMA's Multi-Phase Extraction Pilot Test performed at the site between December 3 and December 7, 2007.

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

Multi-Phase Extraction Pilot Test, December 2007

TABLE OF CONTENTS

CERTIFICATION	i
TABLE OF CONTENTS	ii
LIST OF FIGURES i	ii
LIST OF TABLES i	ii
LIST OF APPENDICES i	ii
1. INTRODUCTION	1
2. PHYSICAL SETTING AND HISTORY	1
2.1 Site Location and Description	1
2.2 Site Background	1
2.3 Previous Environmental Assessments and Remediation Background	1
3. SITE GEOLOGY AND HYDROGEOLOGY	2
3.1 Smear Zone	2
4. MULTI-PHASE EXTRACTION PILOT TEST	3
4.1 Pre-Test Activities	3
4.2 Pilot Test Summary	4
4.2.1 Extraction Well MW-3	4
4.2.2 Extraction Well MW-1	5
4.3 Pilot Test Results	5
4.3.1 Extraction Well MW-3	5
4.3.2 Extraction Well MW-1	5
4.4 Soil Vapor Sample Laboratory Analytical Results	6
4.4.1 Extraction Well MW-3	6
4.4.2 Extraction Well MW-1	7
4.5 Soil Vapor Removal	7
4.6 Smear Zone Dewatering	8
4.7 Zone of Influence	9
5. CONCLUSIONS AND RECOMMENDATIONS	9
5.1 Conclusions	9
5.2 Recommendations10	0
6. REFERENCES	1

LIST OF FIGURES

Figure 1:

Figure 2:	Map Showing Site Features and Monitoring Well Locations

Figure 3: Pilot Test PID Concentrations – MW-3

Site Vicinity Map

- Figure 4: Pilot Test PID Concentrations MW-1
- Figure 5: Zone of Influence Logarithmic Plot of MW-3 and MW-1
- Figure 6: Zone of Influence Site Map Centering MW-3 and MW-1

LIST OF TABLES

Table 1:	MPE Pilot Test Operational Data
Table 2:	Extraction Data and Mass Removal Rate – MW-3
Table 3:	Extraction Data and Mass Removal Rate – MW-1
Table 4:	Mass Removal – MW-3 and MW-1
Table 5:	Dissolved-Phase Hydrocarbon Concentrations in Groundwater Pre- and Post-MPE Pilot Test – MW-3 and MW-1
Table 6:	Multi-Phase Extraction Comparison Costs Permanent Installation Versus MTS

LIST OF APPENDICES

- Appendix A: Boring Logs
- Appendix B: Certified Laboratory Analytical Reports and Chain-Of-Custody Documentation
- Appendix C: MPE Pilot Test Field Data Sheets

1. INTRODUCTION

On behalf of the property owner, Mr. Abolghassem Razi, SOMA Environmental Engineering, Inc. (SOMA) has prepared this Multi-Phase Extraction (MPE) Pilot Test Report for the property located at 3609 International Boulevard, Oakland, California (Site). This document has been prepared in compliance with directives of the Alameda County Environmental Health Services (ACEHS) in correspondence dated November 21, 2007.

2. PHYSICAL SETTING AND HISTORY

2.1 Site Location and Description

Tony's Express Auto Service is located on the Site at the intersection of 3609 International Boulevard and 36th Avenue, as shown in Figure 1. The Site is located in an area of commercial and residential use. The station no longer has an auto repair facility. Figure 2 shows the location of the main service station, dispenser islands, underground storage tanks (USTs), the on-site and off-site groundwater monitoring wells, and neighboring properties.

2.2 Site Background

In July 1993, Soil Tech Engineering removed one single-walled 10,000-gallon gasoline tank and one single-walled 6,000-gallon gasoline tank along with a 550-gallon waste oil tank from the Site. Three double-walled USTs replaced these tanks. Currently, one 10,000-gallon double-walled gasoline UST and two 6,000-gallon double-walled gasoline USTs are beneath the Site. UST locations are shown in Figure 2.

2.3 Previous Environmental Assessments and Remediation Background

In December 1997, Western Geo-Engineers (WEGE) conducted additional investigations and groundwater monitoring events. Groundwater monitoring results indicated elevated levels of petroleum hydrocarbons and methyl tertiary-butyl ether (MtBE) in the groundwater.

In April 1999, Mr. Razi, the owner, retained SOMA to conduct groundwater monitoring, prepare a risk-based corrective action (RBCA) report and a corrective action plan (CAP) report, and perform soil and groundwater remediation at the Site. RBCA study results indicated that the Site was a high-risk groundwater contamination site; therefore, soil and groundwater in on- and off-site areas warranted remedial action.

The former USTs were determined to be the source of petroleum hydrocarbons in groundwater. Following CAP report recommendations, installation of a French drain began in late August 1999; in July 2000, SOMA installed a vapor extraction system. The French drain and groundwater treatment system prevent further migration of the chemically impacted groundwater, while the vapor extraction system remediates impacted soil.

On July 25, 2003, SOMA installed an additional on-site extraction pump in the western French drain riser. The extraction pump was installed to create a capture zone in the region around the USTs and to contain off-site migration in the southwestern corner of the Site.

On April 1, 2005, SOMA conducted a pilot test to evaluate use of ozone sparging to actively remediate groundwater at the Site. Based on test results, the sediment was determined to be permeable enough to allow for operation of an ozone sparging system.

On February 22, 2006 to March 6, 2006, SOMA oversaw installation of an air sparging system to supplement the vapor extraction system.

On February 5, 2007, an extraction well, EX-1, was installed within the UST cavity due to continued detection of contaminants within this region. The well diameter is 4 inches with an approximate depth of 20 feet. SOMA began extracting groundwater from EX-1 in April 2007.

SOMA continues to perform quarterly groundwater monitoring events at the Site.

3. SITE GEOLOGY AND HYDROGEOLOGY

Groundwater over the period of record for quarterly monitoring at the Site has been encountered at depths ranging between 7 and 14 feet. Figure 2 shows locations of on- and off-site groundwater monitoring wells. Groundwater flows from north to south with an average gradient of 0.014 ft/ft. Hydraulic conductivity of the saturated sediments ranges between 1.5 and 18.3 feet per day. Groundwater flow velocity ranges between 22 and 267 feet per year.

3.1 Smear Zone

A smear zone is developed as mobile light fuel hydrocarbons (light non-aqueous phase liquids [LNAPL]) are released to the water table, spread laterally as a nonwetting phase in soils below the water table, and are distributed vertically through the upper aquifer during seasonal water table fluctuations. As smearing continues, the LNAPL become trapped as discontinuous ganglia within soil pores of the upper aquifer. Thus, the smear zone is an area of intimate contact between LNAPL and groundwater, representing a long-term source for dissolved-phase hydrocarbons in the groundwater.

SOMA's review of boring logs for MW-1 and MW-3 disclosed the presence of a hydrocarbon smear zone above, at, and below the capillary fringe. The smear zone represents an area of contamination identified as light gray, gray to blue-green gray staining of soils above, at, and below the capillary fringe, accompanied by moderate to strong hydrocarbon odor. Over the period of record for quarterly monitoring at the Site, groundwater samples collected from monitoring wells MW-1 and MW-3 have consistently exhibited elevated levels of dissolved-phase constituents. The presence of dissolved-phase constituents in the groundwater suggests that the smear zone at these locations is potentially a source of the dissolved-phase hydrocarbons in the samples collected from these wells. Figure 2 shows locations of groundwater monitoring wells.

4. MULTI-PHASE EXTRACTION PILOT TEST

The purpose of the MPE pilot test is to determine the feasibility of dewatering the smear zone and removing LNAPL through vacuum-enhanced volatilization. Smear zone dewatering is critical to MPE success. Pilot testing is required to determine air/water yields necessary to completely expose the smear zone for successful mass removal of volatile organic compounds (VOCs) from the subsurface. In addition, the vacuum zone of influence (ZOI) will be determined using vacuum measurements collected at observation wells.

MPE systems have two primary configurations; dual-phase extraction (DPE) and two-phase extraction (TPE). DPE utilizes separate mechanical systems for pumping groundwater and extracting soil vapor from the smear zone. TPE utilizes a single vacuum pump to extract both groundwater and soil vapor through small-diameter drop tube (stinger) piping inserted in the well. The most cost-effective MPE configuration is determined by aquifer permeability and the corresponding yield of both air and water. The water production rate needed to dewater the smear zone, and the induced vacuum generated for soil vapor extraction, will determine if DPE or TPE is appropriate. If the water production rate is high (>2 gpm/well), then DPE would be the system of choice. If the water production rate is low (<2 gpm/well), then TPE would be the system of choice.

4.1 Pre-Test Activities

Prior to initiating field activities, SOMA prepared a site-specific health and safety plan (HASP), a requirement of the Occupational Safety and Health Administration (OSHA) "Hazardous Waste Operation and Emergency Response"

guidelines (29 CFR 1910.120) and the California Occupational Safety and Health Administration (Cal/OSHA) "Hazardous Waste Operation and Emergency Response" guidelines (CCR Title 8, section 5192). The HASP is designed to address safety provisions during field activities and protect the field crew from physical and chemical hazards resulting from drilling and sampling. The HASP establishes personnel responsibilities, general safe work practices, field procedures, personal protective equipment standards, decontamination procedures, and emergency action plans. The HASP was reviewed by field staff and contractors prior to beginning field operations at the Site.

4.2 Pilot Test Summary

SOMA performed an MPE pilot test at the Site between December 3 and 7, 2007. Current groundwater monitoring wells were utilized as the extraction wells and the vacuum observation wells. MW-1 and MW-3 were utilized as extraction wells and observation wells when not in use as an extraction well. MW-2, MW-6, MW-7, and MW-8 were utilized as vacuum observation wells (well locations in Figure 2).

The MPE pilot test was performed using a self-contained mobile treatment system (MTS), equipped with electrical generator, propane tank, air compressors, liquid ring vacuum pump rated at 25-horsepower and 428-standard cubic feet per minute (scfm), electrical/pneumatic submersible pumps, air/water separator vessel, discharge hoses and traffic-rated hose ramps, downhole stingers, and a thermal/catalytic oxidizer for vapor abatement. The oxidizer operates under a valid various locations BAAQMD permit. Both soil vapor and groundwater were extracted from the subsurface. Extracted groundwater was discharged into an existing treatment system.

Physical and chemical parameters including applied vacuum, soil vapor extraction flow rates, oxidizer temperature, volume of groundwater extracted, VOC concentrations, and induced vacuum, were monitored, measured and recorded. Induced vacuum in the observation wells was measured using magnehellic vacuum gauges fitted to airtight well caps. VOC concentrations in the extracted soil vapor stream were continuously monitored using a photoionization detector (PID) calibrated to hexane. MPE pilot test operational data is presented in Table 1. Extraction well data is presented in Tables 2 and 3 (MW-3 and MW-1). Field data sheets are presented in Appendix C. Extracted soil vapor sample were collected from MW-3 and MW-1 during MPE pilot testing. Table 4 lists sample identifiers and analysis results.

4.2.1 Extraction Well MW-3

Pilot testing at MW-3 began at 13:30 on December 3, 2007 and was terminated at 11:00 on December 5, 2007. Testing time at MW-3 was 2,730 minutes, or 45.5

hours. During pilot testing, induced vacuum was measured at observation wells MW-1, MW-2, MW-6, and MW-7 located approximately 35, 30, 55, and 35 feet, respectively, from MW-3.

4.2.2 Extraction Well MW-1

Pilot testing at MW-1 began at 12:00 on December 5, 2007 and was terminated at 12:00 on December 7, 2007. Testing time at MW-1 was 2,910 minutes, or 48.5 hours. During pilot testing, induced vacuum was measured at observation wells MW-3, MW-6, MW-7, and MW-8 located approximately 35, 75, 30, and 35 feet, respectively, from MW-1.

4.3 Pilot Test Results

4.3.1 Extraction Well MW-3

During pilot testing at MW-3, applied vacuum ranged from 24 to 25 inches of mercury, and vapor extraction flow rate ranged from 19 to 31 scfm (Table 1). VOC concentrations in the extracted soil vapor stream ranged from 975 parts per million vapor (ppmv) as hexane to 7,150 ppmv (Tables 1 and 2, Figure 3). Approximately 2,524 gallons of groundwater (Table 1) were extracted at a rate of 0.92 gallon per minute (gpm).

Note:

Although groundwater levels were measured at the observation well, drawdown could not be estimated because of precipitation during the week influencing data recorded (Table 1).

Induced vacuum was measured in MW-1, MW-2, MW-6, and MW-7. Vacuum was detected only from MW-2 with values ranging from a peak of 0.6 inches of water near the beginning of pilot testing to 0.32 inches of water toward the end of pilot testing at MW-3 (Table 1).

Note:

Induced vacuum was measured in EX-1 (Table 1) during extraction from MW-3. See section 4.7.

4.3.2 Extraction Well MW-1

During pilot testing at MW-1, applied vacuum ranged from 23 to 24 inches of mercury, and vapor extraction flow rates ranged from 25 to 44 scfm (Table 1). VOC concentrations in the extracted soil vapor stream ranged from 1,050 ppmv as hexane to 8,300 ppmv (Tables 1 and 2, Figure 4). Approximately 1,469 gallons of groundwater (Table 1) were extracted at a rate of 0.5 gpm.

Note:

Although groundwater levels were measured at the observation well, drawdown could not be estimated because of precipitation during the week influencing data recorded (Table 1).

Induced vacuum was measured in MW-3, MW-6, MW-7, and MW-8. Vacuum was detected from MW-3 and MW-8. Vacuum from MW-3 reached a peak value of 0.05 inches of water at the end of pilot testing from MW-1. Vacuum from MW-8 ranged from 0.3 inches of water near the end of pilot testing reaching a peak value of 3.0 inches of water at the end of pilot testing from MW-1.

Note:

Induced vacuum was measured in EX-1 (Table 1) during extraction from MW-1. See section 4.7.

4.4 Soil Vapor Sample Laboratory Analytical Results

Influent soil vapor samples were collected through a sampling port located on the vacuum pump discharge manifold. Thermal oxidizer stack vapor samples were collected through a sampling port located at the top of the stack. The air samples were submitted under chain-of-custody (COC) documentation to a California state-certified analytical laboratory (Air Toxics Ltd.) and analyzed for total petroleum hydrocarbons as gasoline (TPH-g) using USEPA Analytical Method TO-3; and for benzene, toluene, ethylbenzene, total xylenes (collectively termed BTEX), MtBE, tertiary-butyl alcohol (TBA), and fuel oxygenates diisopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), and tertiary-amyl methyl ether (TAME), using USEPA Analytical Method TO-15. Soil vapor analytical results are presented in Table 4. Certified laboratory analytical reports and COC documentation are included in Appendix B.

4.4.1 Extraction Well MW-3

Two influent soil vapor samples were taken from MW-3 during extraction. The first influent sample was taken during the first 24 hours of operation with the second sample taken near the end of pilot testing at MW-3 (Table 4).

TPH-g, BTEX, and MtBE concentrations were detected in the soil vapor samples collected from MW-3. Concentrations of fuel oxygenates were below laboratory-detection limits at MW-3.

The first influent soil vapor sample revealed concentrations of TPH-g at 9,200,000 micrograms per cubic meter (μ g/m³), benzene at 76,000 μ g/m³, toluene at 12,000 μ g/m³, ethylbenzene at 55,000 μ g/m³, and total xylenes at 162,000 μ g/m³. In the same sample, MtBE was detected at 1,900 μ g/m³.

In the second sample, TPH-g at 5,300,000 μ g/m³, benzene at 76,000 μ g/m³, toluene at 33,000 μ g/m³, ethylbenzene at 10,000 μ g/m³, and total xylenes at 41,400 μ g/m³. In the same sample, MtBE concentrations fell below laboratory-detection limits.

A vapor sample collected at the oxidizer stack was used to demonstrate compliance with BAAQMD various locations permit. Removal efficiencies exceed 98.5 percent, demonstrating compliance. Removal efficiencies are listed in Table 4.

4.4.2 Extraction Well MW-1

Two influent soil vapor samples were taken during extraction from MW-1. The first influent sample was taken during the first 24 hours of operation with the second sample taken near the end of pilot testing at MW-1 (Table 4).

TPH-g and BTEX concentrations were detected in the soil vapor samples collected from MW-3. Concentrations of fuel oxygenates including MtBE were below laboratory-detection limits at MW-1.

The first influent soil vapor sample revealed concentrations of TPH-g at 4,700,000 μ g/m³, benzene at 3,400 μ g/m³, toluene at 2,100 μ g/m³, ethylbenzene at 7,000 μ g/m³, and total xylenes at 17,800 μ g/m³.

In the second sample, TPH-g at 4,900,000 μ g/m³, benzene at 2,900 μ g/m³, toluene at 1,400 μ g/m³, ethylbenzene at 4,300 μ g/m³, and total xylenes at 10,900 μ g/m³.

A vapor sample collected at the oxidizer stack was used to demonstrate compliance with BAAQMD various locations permit. Removal efficiencies exceed 98.5 percent, demonstrating compliance. Removal efficiencies are listed in Table 4.

4.5 Soil Vapor Removal

Estimated VOC mass removal rates and VOC mass removed for the pilot test are presented in Tables 2 and 3 for MW-3 and MW-1, respectively. The estimated total mass of TPH-g, benzene and MtBE removed during the pilot test is presented in Table 4.

Total VOC mass removed was estimated using flow rates during the pilot test, total volume of air extracted during the pilot test, and VOC concentrations in ppmv as hexane measured by the PID during the pilot test. The estimated total

Multi-Phase Extraction Pilot Test, December 2007

mass of VOCs removed from the soil vapor extracted from wells MW-3 and MW-1 was 64 lbs, with 32 lbs from MW-3 and 32 lbs from MW-1.

The total VOC mass removal rate in lbs/day is estimated by dividing the estimated VOC mass removed during the pilot test by the elapsed time for the pilot test. For the pilot tests conducted on MW-3 and MW-1, the estimated total VOC mass removal rate was approximately 16 lbs/day.

The total mass of TPH-g, benzene and MtBE removed by the pilot test is estimated using the soil vapor analytical results for the pilot test and the median flow rate for the extraction wells. The estimated total mass of TPH-g removed from extracted soil vapor by the pilot tests conducted on wells MW-3 and MW-1 was 64 lbs; of benzene removed, 0.31 lbs; and of MtBE removed, 0.0092 lbs.

<u>*Note</u>

The discrepancy between the estimated total mass of VOCs removed and the total mass of TPH-g, benzene, and MtBE removed is based on the difference between PID measurements as hexane and laboratory analyses of the extracted vapor stream. The concentrations based on laboratory analysis are representative only of that moment in the pilot test at which the extracted vapor stream was sampled. Since the laboratory analytical results are not representative of the entire length of the pilot test, unlike the PID measurements which are collected continuously over the length of the pilot test, the total mass of VOCs removed as measured by PID is used to estimate mass removals.

4.6 Smear Zone Dewatering

Steady-state dewatering of the smear zone at wells MW-3 and MW-1 was achieved and maintained during the pilot test by vacuum. Dewatering was achieved by opening the dilution control valve at the extraction well to allow atmospheric air into the well casing, accelerating the removal of water from the well casing by vacuum. As the stinger was advanced into the well casing, water was removed by vacuum. As water was removed, vacuum was reestablished in the well casing and the stinger was advanced farther into the well casing. When the stinger reached the base of the well casing, and water ceased to be removed by vacuum, the stinger was elevated off the bottom of the well to maintain steady-state groundwater flow into the well and to maximize mass removal rate out of the well, and then the dilution control valve was closed. At MW-3 and MW-1, steady-state dewatering was achieved when the dilution control valve was closed 1 hour into pilot testing at each well (Tables 2 and 3). The estimated groundwater extraction rate for the pilot test at MW-3 based on gallons extracted and elapsed time (Table 1) was 0.92 gpm. The estimated groundwater extraction rate for the pilot test at MW-1 was 0.5 gpm.

4.7 Zone of Influence

The ZOI for the MPE pilot test is estimated by determining pressure change in observation wells versus distance from the extraction well at the end of the pilot test (EPA 1995). The log of vacuum pressure measured in the observation well at the end of pilot testing is plotted versus the distance from the MPE well. Figure 5 illustrates this plot for extraction wells MW-3 and MW-1. The data points describe straight lines. The lines intersect the pressure axis at 0.1 inches of water and the distance axis to estimate the MPE ZOI. For pilot testing using MW-3, MPE ZOI is up to 35 ft. For pilot testing using MW-1 MPE ZOI is up to 42 ft. The MPE ZOI is plotted on Figure 6, centered on monitoring wells MW-3 and MW-1.

Note:

Although induced vacuum was measured in EX-1, EX-1 data was not considered in MPE ZOI calculations because it is set at a different depth than the surrounding monitoring/observation wells and it is within a tank pit cavity.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The estimated total mass of VOCs removed by the MPE pilot test was determined to be 64 lbs. The estimated total VOC mass removal rate for the MPE pilot test was determined to be 16 lbs/day at wells MW-3 and MW-1 over 94 hours.

Table 5 lists analysis results for groundwater samples collected from wells MW-3 and MW-1 prior to and after the MPE pilot test. Certified laboratory analytical reports and COC documentation are included in Appendix B. Analytical results reveal that concentrations of TPH-g, toluene, ethylbenzene, and total xylenes increased following MPE pilot testing at MW-3. However, concentrations of benzene and MtBE decreased in MW-3 following the MPE test. Concentrations of TPH-g, BTEX, and MtBE in MW-1 increased following MPE pilot testing. Increased concentrations of dissolved hydrocarbon constituents suggest that significant fuel hydrocarbon constituents are adsorbed to the smear zone in proximity to wells MW-3 and MW-1. Decreased concentrations of dissolved hydrocarbon constituents suggest that MPE is effective in stripping and removing fuel hydrocarbon constituents from the smear zone in proximity to MW-3.

5.2 Recommendations

SOMA proposes the use of MPE using an MTS to extract fuel hydrocarbons from the smear zone. An MTS rather than a dedicated permanent treatment system is proposed to conduct the MPE events. SOMA recommends monthly MPE events at the Site using wells MW-3 and MW-1 as extraction wells until extracted soil vapor concentrations are equivalent, or asymptotic, from one MPE event to the next. Each MPE event would extend over a 5-day period. Separate monthly events are recommended over continuous operation because mass removals generated by intermittent operation or pulsing tend to be greater than mass removals obtained by continuous operation. In addition to the substantial cost savings using an MTS versus a dedicated permanent system, the MTS will provide the flexibility to extract from other wells on the Site if necessary. Additionally, groundwater extracted during each event would be routed through the existing groundwater treatment system for treatment and disposal. BAAQMD permitting requirements for operation of an MTS at the Site are already fulfilled. A permanent system may be objectionable to nearby residential neighborhoods due to elevated noise levels generated by a permanent system in operation. Lastly, regardless of the initial capital costs for a permanent system, the monthly costs for each MPE event using an MTS would be less than the combined monthly O&M and utilities costs for a permanent system (Table 6).

To prevent further migration of dissolved-phase hydrocarbons and help restore the beneficial use of groundwater beneath on- and off-site areas, the existing groundwater treatment system already operating on the Site will be utilized.

Groundwater samples would be collected from the extraction wells before and after each MPE event and analyzed for dissolved-phase hydrocarbons in the same manner as for quarterly groundwater monitoring/sampling events at the Site. Analytical results would be used to evaluate the effectiveness of MPE in reducing dissolved-phase constituents in the groundwater and, consequently, in stripping and removing liquid-phase hydrocarbons adsorbed to the smear zone. Upon reaching asymptotic conditions, and when dissolved-phase constituent concentrations have dropped below the Environmental Screening Levels, a Closure Report will be submitted requesting that no further action be undertaken at the Site.

6. REFERENCES

Environmental Protection Agency, Manual, September 1995. "Bioventing Principles and Practice, Volumes 1 and 2."

SOMA Environmental Engineering, Inc., May 3, 2007. "Extraction Well Installation Report, 3609 International Boulevard, Oakland, California."

SOMA Environmental Engineering, Inc., October 11, 2007. "Third Quarter 2007 Groundwater Monitoring and Groundwater Remediation System Operation Report, 3609 International Boulevard, Oakland, California."

FIGURES

Multi-Phase Extraction Pilot Test, December 2007

	approximate	e scale in feet	
0	15	50	300
0		<i>,</i>	000

Figure 1: Site vicinity map.

Figure 3: December 2007 Pilot Test PID Concentrations, MW-3

Figure 4: December 2007 Pilot Test PID Concentrations, MW-1

TABLES

Multi-Phase Extraction Pilot Test, December 2007

	Table 1																	
	December 2007 MPE Pilot Test Operational Data																	
	3609 International Boulevard Oakland, California																	
			WELL	OXIDIZER	WELL FIELD	TOTAL SYSTEM	DILUTION AIR	SYSTEM	SYSTEM	M	N/-1	M	N-2	M	V.6	M	V-7	
DATE	TIME	PID (ppp)	MANIFOLD	TEMPERATURE		VAPOR FLOW	FLOW RATE	(BLOWER)		DTW	Vacuum	DTW	Vacuum		Vacuum		Vacuum	COMMENTS
		(ppinv)	(In of Hg)	(⁰ F)	(scfm)	(scfm)	(scfm)	(In of Hg)	(gallons)	(feet, bgs)	(In of H ₂ 0)	(feet, bgs)	(In of H ₂ 0)	(feet, bgs)	(In of H ₂ 0)	(feet, bgs)	(In of H ₂ 0)	
12/3/2007	1330 1345	7,000	24.6	1,582	19	19	0	28.2	0	13.1 13.16	0	12.9 13	0.6	13.51 13.64	0	12.62 12.8	0	collected Pre-GW sample from MW-1,3; begin extraction from MW-3
	1400	7,150	24.8	1,611	22	22	0	28	0									
	1415	6,900	24.4	1,620	22	22	0	28	36	40.04		40.05	0.40	40.07		40.70	0	
	1430	6,910	24.4	1,629	22	22	U	28	30	13.21	0	13.05	0.48	13.67	0	12.76	0	
	1500																	
	1530	5,650	24.4	1,601	22	22	0	28	142	13.21	0	12.48	0.26	13.69	0	12.83	0	
10/4/2007	1630	4,780	25	1,584	22	22	0	28	212	13.23	0	12.68	0.25	13.7	0	12.85	0	
12/4/2007	730	2,570	24.4	1,536	22	22	0	28	1,100	13.24	0	12.75	0.32	13.07	0	12.9	0	
	830	2,560	24.4	1,543	25	25	ō	27.8	1,212									
	930	2,500	24.4	1,539	22	22	0	28	1,276									
	1030	2,420	24.3	1,546	23	23	0	27.9	1,344	40.04	0	40.05	0.00			40.05	0	
	1230	2,360	24.3	1,536	23	23	0	27.9	1,378	13.21	0	12.65	0.33			12.85	0	
	1330	2,180	24.3	1,539	25	25	0	27.8	1,480	13.2	0	12.63	0.33	13.64	0	12.82	0	
	1430	2,160	24.2	1,535	27	27	0	27.7	1,547									
	1530	1,919	24.1	1,535	27	27	0	27.7	1,615	13.16	0	12.62	0.32	13.63	0	12.8	0	
	1730	1,870	24.1 24.1	1,535	28 27	28 27	0	27.6	1,648	13 17	0	12 59	0.33	13.62	0	12 79	0	
	1800	1,770	24.1	1,527	28	28	Ő	27.6	1,716		, , , , , , , , , , , , , , , , , , ,		2.00		5		5	

E

	Table 1																	
	December 2007 MPE Pilot Test Operational Data																	
	3609 International Boulevard Oakland, California																	
			WELL	OXIDIZER	WELL FIELD	TOTAL SYSTEM	DILUTION AIR	SYSTEM	SYSTEM	M	N/ 1		N 2	141	N G	M	N 7	
DATE	TIME	PID	MANIFOLD	TEMPERATURE	VAPOR	VAPOR FLOW	FLOW RATE	(BLOWER)	TOTALIZER	IVIV	V-1	DTW	V-Z	DTW	V-0	DTM	VV-7	COMMENTS
		(ppmv)	(In of Hg)	(⁰ F)	(scfm)	(scfm)	(scfm)	(In of Hg)	(gallons)	(feet, bgs)	(In of H ₂ 0)	(feet, bgs)	(In of H ₂ 0)	(feet, bgs)	(In of H ₂ 0)	(feet, bgs)	(In of H ₂ 0)	
12/5/2007	800	975	24	1,508	31	31	0	27.4	2,390	13.13	0	12.57	0.32	13.72	0	12.73	0	EX-1 vac = 0.03
	900	1,075	24	1,514	35	35	0	27.2	2,457	13.14	0	12.58	0.32	13.73	0	12.74	0	EX-1 vac = 0.03
	1000	1,040	24	1,515	31	31	0	27.4	2,490	13.14	0	12.58	0.32	13.73	0	12.74	0	
	1100 1,020 24 1,515 31 31 0 27.4 2,524 MW-3 MW-6 MW-7 MW-8 stop extraction from MW-3: begin extraction from MW-1																	
	1200									14 59	V-5	13.62	V-0	12.7	v- <i>1</i>	12 43	W-0	stop extraction non www-5, begin extraction non www-1
	1215	8.300	24	1.604	25	25	0	27.8	2.558	14.13	0.03	13.6	0	12.7	0	12.52	0.35	EX-1 vac = 0.05
	1230	4,040	24	1,591	31	31	0	27.4	2,558	14.1	0.03	13.6	0	12.7	0	12.52	0.3	
	1245	3,650	24	1,584	31	31	0	27.4	2,558	14.04	0.03	13.6	0	12.7	0	12.53	0.3	
	1300	3,450	24	1,575	31	31	0	27.4	2,591	14	0.03	13.6	0	12.7	0	12.53	0.3	
	1500	1,215	24	1,509	31	31	0	27.4	2,658	14	0	13.6	0	12.71	0	12.53	0.9	
	1600	1,080	24	1,509	31	31	0	27.4	2,691			10.0		40.74		10.50		
10/6/2007	1700	1,050	23.6	1,508	35	35	0	27.2	2,720	13.11	0.03	13.6	0	12.71	0	12.53	0.9	
12/0/2007	930	1,100	23.2	1,510	41	41	0	26.8	3,100	13.71	0.03	13.0	0	12.7	0	12.00	1.2	
	1030	1,161	23.5	1,515	41	41	ő	26.8	3.252	13.73	0.03	13.6	0	12.73	0	12.67	1.3	
	1130	1,143	23.5	1,508	41	41	0	26.8	3,285					-				
	1230	1,142	23.5	1,503	43	43	0	26.7	3,318	13.72	0.03	13.6	0	12.7	0	12.51	2	
	1330	1,157	23.5	1,505	44	44	0	26.6	3,318									
	1430	1,186	23.4	1,505	44	44	0	26.6	3,350	13.69	0.03	13.6	0	12.69	0	12.54	2.3	
	1530	1,159	23.4	1,505	41	41	0	26.8	3,383	10.00	0.005	10.0						
	1630	1,183	23.4	1,506	43	43	0	26.7	3,416	13.68	0.035	13.6	0	12.61	0	11.37	2.8	
12/7/2007	800	1 150	22.4	1,430	44	44	0	26.6	3 844	13.60	0.055	13.37	0	12.03	0	12.33	2.5	
.2	1000	1.130	23.6	1,524	44	44	ŏ	26.6	3,910	13.55	0.05	13.37	õ	12.4	ŏ	12.55	3	
	1100	1,130	23	1,521	44	44	0	26.6	3,910									EX-1 vac = 0.05
	1200	1,116	23.6	1,523	44	44	0	26.6	3,993									
																		collected Post-GW sample from MW-1,3
Totalizer re	eadings = 3	3,993 gallo	ns Od have	-														

Total tim Notes

ppmv parts per million vapor In of Hg inches of mercury

In of H₂0 inches of water

^oF degrees Fahrenheit scfm standard cubic feet per minute

Table 2

December 2007 MPE Pilot Test **Extraction Data and VOC Mass Removal Rate**

3609 International Boulevard Oakland, California

WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME		Q		F	PID	MASS REMOV	AL	
							ft3 of extracted	Moles of extracted	ppmv as	VOC mole			
				minutes	minutes	SCFM	air	air	hexane	%	Ib VOC mass removal as hexane	lbs/min	lbs/day
MW-3	START	12/3/2007	1330	0									
			1345	15	15	19	281	0.7410	7,000	0.0070	0.4471	0.0298	43
			1400	15	30	22	328	0.8666	7,150	0.0072	0.5341	0.0356	51
			1415	15	45	22	328	0.8666	6,900	0.0069	0.5154	0.0344	49
	STEADY-STATE		1430	15	60	22	328	0.8666	6,910	0.0069	0.5162	0.0344	50
			1445	0	60								
			1500	0	60								
			1530	60	120	22	1,314	3.4664	5,650	0.0057	1.6882	0.0281	41
		40/4/0007	1630	60	180	22	1,314	3.4664	4,780	0.0048	1.4283	0.0238	34
		12/4/2007	630	840	1,020	22	18,393	48.5294	2,570	0.0026	10.7509	0.0128	18
			730	60	1,080	22	1,314	3.4664	2,560	0.0026	0.7649	0.0127	18
			830	60	1,140	25	1,504	3.9688	2,560	0.0026	0.8758	0.0146	21
			930	60	1,200	22	1,314	3.4664	2,500	0.0025	0.7470	0.0125	18
			1030	60	1,200	23	1,409	3.7170	2,420	0.0024	0.7755	0.0129	19
			1020	60	1,320	23	1,409	3.7176	2,300	0.0024	0.7505	0.0126	10
			1230	60	1,360	23	1,409	3.7170	2,270	0.0023	0.7274	0.0121	10
			1420	60	1,440	23	1,504	4 2200	2,100	0.0022	0.7458	0.0124	10
			1530	60	1,500	27	1,535	4.2200	1 010	0.0022	0.6981	0.0131	17
			1630	60	1,620	28	1,695	4 4712	1,870	0.0019	0.7207	0.0120	17
			1730	60	1,680	27	1,599	4 2200	1,728	0.0017	0.6286	0.0105	15
			1800	30	1,710	28	847	2.2356	1.770	0.0018	0.3411	0.0114	16
		12/5/2007	800	840	2,550	31	26.390	69.6309	975	0.0010	5.8521	0.0070	10
			900	60	2,610	35	2.075	5.4761	1.075	0.0011	0.5074	0.0085	12
			1000	60	2,670	31	1,885	4.9736	1,040	0.0010	0.4459	0.0074	11
	STOP		1100	60	2,730	31	1,885	4.9736	1,020	0.0010	0.4373	0.0073	10
	τοται				2 730		71 725	189			32	0.0116	17
	MEDIAN				2,750	23	11,125	.55	2,360	0.0024	52	0.0110	.,

Notes

Q volumetric flow rate

SCFM standard cubic feet per minute

ft³ cubic feet per minute

volatile organic compounds photo-ionization detector VOC

PID

parts per million vapor ppmv

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole % ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as hexane (lbs of VOC mass removed as hexane)(elapsed time) = lbs/min of VOC removed as hexane (lbs/min of VOC removed as hexane)(60 min/1 hour)(24 hours/1 day) = lbs/day of VOC removed as hexane

Table 3

December 2007 MPE Pilot Test Extraction Data and VOC Mass Removal Rate

3609 International Boulevard Oakland, California

WELL	COMMENT	DATE	CLOCK TIME	INCREMENTAL TIME	ELAPSED TIME	Q				PID	MASS REMOV	AL	
							ft3 of extracted	Moles of extracted	ppmv as	VOC mole			
				minutes	minutes	SCFM	air	air	hexane	%	Ib VOC mass removal as hexane	lbs/min	lbs/day
MW-1	START	12/5/2007	1200	0	0								
			1215	15	15	25	376	0.9922	8,300	0.0083	0.7099	0.0473	68
			1230	15	30	31	471	1.2434	4,040	0.0040	0.4330	0.0289	42
			1245	15	45	31	471	1.2434	3,650	0.0037	0.3912	0.0261	38
	STEADY-STATE		1300	15	60	31	471	1.2434	3,450	0.0035	0.3698	0.0247	35
			1500	120	180	31	3,770	9.9473	1,215	0.0012	1.0418	0.0087	13
			1600	60	240	31	1,885	4.9736	1,080	0.0011	0.4630	0.0077	11
			1700	60	300	35	2,075	5.4761	1,050	0.0011	0.4956	0.0083	12
		12/6/2007	830	930	1,230	41	38,072	100.4537	1,100	0.0011	9.5250	0.0102	15
			930	60	1,290	41	2,456	6.4809	1,125	0.0011	0.6285	0.0105	15
			1030	60	1,350	41	2,456	6.4809	1,161	0.0012	0.6486	0.0108	16
			1130	60	1,410	41	2,456	6.4809	1,143	0.0011	0.6385	0.0106	15
			1230	60	1,470	43	2,551	6.7321	1,142	0.0011	0.6627	0.0110	16
			1330	60	1,530	44	2,647	6.9833	1,157	0.0012	0.6965	0.0116	17
			1430	60	1,590	44	2,647	6.9833	1,186	0.0012	0.7139	0.0119	17
			1530	60	1,650	41	2,456	6.4809	1,159	0.0012	0.6475	0.0108	16
			1630	60	1,710	43	2,551	6.7321	1,183	0.0012	0.6865	0.0114	16
			1745	75	1,785	44	3,308	8.7291	1,135	0.0011	0.8540	0.0114	16
		12/7/2007	800	855	2,640	44	37,715	99.5121	1,150	0.0012	9.8646	0.0115	17
			1000	120	2,760	44	5,293	13.9666	1,130	0.0011	1.3604	0.0113	16
			1100	60	2,820	44	2,647	6.9833	1,130	0.0011	0.6802	0.0113	16
	STOP		1200	60	2,880	44	2,647	6.9833	1,116	0.0011	0.6718	0.0112	16
	TOTAL				2,880		119,424	315			32	0.0112	16
	MEDIAN					41			1,150	0.0012			

Notes

Q volumetric flow rate

SCFM standard cubic feet per minute

ft³ cubic feet per minute

VOC volatile organic compounds PID photo-ionization detector

ppmv parts per million vapor

DERIVATION OF MASS REMOVAL RATE

ppmv as hexane/1,000,000 = VOC mole % ft3 of extracted air/(379 ft3 air/lb-mole air) = moles of extracted air (moles of extracted air)(VOC mole %)(86.2 lb/lb-mole hexane) = lbs of VOC removed as hexane (lbs of VOC mass removed as hexane)(elapsed time) = lbs/min of VOC removed as hexane (lbs/min of VOC removed as hexane)(60 min/1 hour)(24 hours/1 day) = lbs/day of VOC removed as hexane

Table 4

December Pilot Test Mass Removal

3609 International Boulevard Oakland, California

Extraction Sa	Vapor	Collection	USEPA TO-3 MODIFIED				I	USEPA TO-15 MODIFIED			Q	Mass Removal Rate	Total Test time	Total Mass Removed		
Well	ID Sample	Date/Time	TPHg (ug/m³)	Benzene (ug/m³)	MtBE (ug/m ³)	Toluene (ug/m³)	Ethyl benzene (ug/m ³)	Total Xylenes (ug/m³)	DIPE (ug/m³)	ETBE (ug/m³)	TAME (ug/m³)	TBA (ug/m³)	(CFM)	(Ibs/day) (TPHg/benzene/MtBE)	(minutes/days)	(Ibs) (TPHg/benzene/MtBE)
MW-3	Influent	12/4/07 @ 1015	9,200,000(a)	76,000(b)	1,900(b)	12,000(b)	55,000(b)	162,000(b)	<1,000(b)	<1,000(b)	<1,000(b)	<760(b)	23	14 96/0 16/0 0029	2 730/1 90	28 42(a) / 0 30(a) / 0 0055(a)
MW-3	Influent	12/5/07 @ 1000	5,300,000(c)	76,000(c)	<900(c)	33,000(c)	10,000(c)	41,400(c)	<1,000(c)	<1,000(c)	<1,000(c)	<760(c)	23	14.90/0.10/0.0029	2,730/1.90	20.42(0) / 0.00(0) / 0.0000(0)
MW-3	Stack	12/4/07 @ 1000	<7,000(d)	16(d)	<18(d)	150(d)	<17(d)	125(d)	<21(d)	<21(d)	<21(d)	<15	N/A	N/A	N/A	N/A
		REMOVAL EFFICIENCIES	99.9239%	99.9789%	99.0526%	98.7500%	99.9691%	99.9228%	97.9000%	97.9000%	97.9000%	98.0263%				
MW-1	Influent	12/6/07 @ 0900	4,700,000(b)	3,400(c)	<900(c)	2,100(c)	7,000(c)	17,800(c)	<1,000(c)	<1,000(c)	<1,000(c)	<760(c)	41	17 66/0 0065/0 0010	2 990/2	25 21(a) / 0.012(a) / 0.0027(a)
MW-1	Influent	12/7/07 @ 0815	4,900,000(b)	2,900(c)	<900(c)	1,400(c)	4,300(c)	10,900(c)	<1,000(c)	<1,000(c)	<1,000(c)	<760(c)	41	17.00/0.0005/0.0019	2,000/2	55.51(e) / 0.015(e) / 0.0057(e)
MW-1	Stack	12/6/07 @ 0855	3,500(d)	<16(d)	<19(d)	130(d)	<17(d)	102(d)	<21(d)	<21(d)	<82(d)	<15(d)	N/A	N/A	N/A	N/A
		REMOVAL	99.9255%	99.5294%	97.8889%	93.8095%	99.7571%	99.4270%	97.9000%	97.9000%	91.8000%	98.0263%				

Notes

CFM	cubic feet per minute	DERIVATION OF MASS REMOVAL RATE
lbs/day	pounds per day	(un/m³) [/1mg/4000un) /1m ³ /4000 [)] = mg/
ug/m ³	micrograms per cubic meter	$(m_{\rm eff}) = (0.832 (1.4 {\rm ft}^3)) (10) (1.3 {\rm ft}^3) (10) = m_{\rm eff} / m_{\rm eff}$
DIPE	di-isopropyl ether	(mg/min)(1g/1000mg)(1kg/1000g)(60min/1hr)(24hr/1day) = kg/day
ETBE	ethyl tertiary butyl ether	(kg/day)(2.2lbs/1kg) = lbs/day
TAME	methyl tertiary amyl ether	DERIVATION OF TOTAL MASS REMOVED
TBA	tertiary butyl alcohol	
(a)	dilution factor 5000	Total time of test = days (Tables 1, 2 and 3) (many sequence test (Hard) (statistics) and a sequence (
(b)	dilution factor 1000	
(c)	dilution factor 500	DERIVATION OF REMOVAL EFFICIENCIES
(d)	dilution factor 10	Influent sample concentration / STACK sample concentration
(e)	average value	

ed (**Ibs**)

	Table 5													
	Dissolved-Phase Hydrocarbon Concentrations Pre- and Post-MPE Pilot Test 3609 International Boulevard Oakland, California													
Monitoring Well	Monitoring Well Date MPE Event TPH-g (µg/L) Benzene (µg/L) Toluene (µg/L) Columnation (µg/L) Columnation (µg/L) Columnation (µg/L) Columnation (µg/L) Columnation (µg/L) Columnation (µg/L) (µg/L) Columnation (µg/L) Columnat													
MW-3	12/3/2007	Pilot Test	2,040	2,200	<22	115	33	25						
	12/7/2007	Pilot Test	4,610	785	57.1	275	262	6						
MW-1	12/3/2007	Pilot Test	839	9	<2	1	<2.5	4						
	12/7/2007 Pilot Test 2,270 20 6 34.3 50 11													

Notes:

TPHg = Total petroleum hydrocarbons as gasoline

MTBE = methyl-tertiary-butyl ether

ug/I - Micrograms per liter

Table 6												
Multi-Phase Extraction Comparative Costs Permanent Installation versus MTS												
3609 International Boulevard Oakland, California												
COST ITEM	PEF	MANENT	INSTALLA	ΓΙΟΝ	MTS							
Equipment and Installation Cost												
Equipment Cost liquid-ring pump, oxidizer, air/water separator, extracted water treatment (carbon polish)	\$175,000				Unit rented from Golden Gate Remediation Technology							
Installation Cost compound construction control panel (100 amp) EQUIPMENT/INSTALLATION COST TOTAL	\$12,000				N/A - MTS is mobile unit							
Utilities Installation Cost Natural Gas Service for Oxidizer (PG&E) trenching, conveyance piping hookup and meter Alternative Propane Service for Oxidizer tank setup, installation of traffic bollards line install to oxidizer		\$18,000 \$12,000			N/A - MTS has onboard propane tank							
Monthly Utilities Costs		\$30,000										
(continuous operation) electrical service natural gas service			\$5,500 \$4,000		N/A - MTS not operated continuously N/A - MTS not operated							
alternative propane service			\$4,500		N/A - MTS not operated continuously							
MONTHLY UTILITIES COST TOTAL ELECTRICAL + NATURAL GAS ELECTRICAL + PROPANE			\$9,500 \$10,000									
Monthly O&M labor/equipment/supplies/vehicle laboratory analyses				\$3,000 \$600	N/A - MTS not operated continuously N/A - MTS not operated continuously							
MONTHLY O&M COST TOTAL Monthly Utilities and O&M Total Cost ELECTRIC + NATURAL GAS ELECTRIC + PROPANE				\$3,600 \$13,100 \$13,600								
MPE EVENT COST (5 DAY EVENT/MONTH)				+ 10,000	\$12,500 (5 days @ \$2,500/day)							

APPENDIX A

Boring Logs

Multi-Phase Extraction Pilot Test, December 2007

File	File No 7-92-514-SA							
Lo	gged E	w Noori	Ameli		Exploratory Boring Log		Boilng No. B-14	
D.	te Drill	•# 8/31	0/95		Approx. Elevation		Boring Diameter 8-inch	
Dri	ing Mol	einos bile dr.	ill rig E	3-40L		Sampling Helhod		
Deoth, F1,	Sartola No.	Field Test for Total Ionization	Panaltation Rasistance Bigwar 6"	Unified Sall Classification	DES	CRIPTION		
1					6-inch concrete. Very dark grey silty pea gravelly clay, hard. Munsell Soil Color: HUE 10YR 3/1			
2								
з.								
4			:					
5.	8-14	-5	- - - -	a	Color gets lighter to dark greyish-brown silty clay, hard.			
6.					Munsell Soil Color: HUE 10YR 4/2 Dark greyish-brown silty clay, hard. Munsell Color: HUE 10YR 4/2			
7 -								
8					Color gets lighter to brown silty clay, hard. Munsell Soil Color: HUE 10YR 4/3			
9	D 1	1 10	, .	CT.	Color charges to alive more silty glay, hard			
11.	0-1	=-10			Munsell Soil Color: HUE 5Y 4/2			
12				· .				
13								
14								
15 16					∇ First groundwater encountered at 15 feet. Olive-grey silty clay, stiff, moist, hard. Munsell Soil Color: HUE 5Y 4/2 Boring terminated at 15 feet.			
Re	Remarks							

.

...

.

В1

File No 7-92-514-SA

Lopped By. NOOrl Amell					Exploratory Boring Log		Boiling No STMW-4		
Date Drilled 8/30/95					Approx. Elevation		Boring Dismater 8-inch		
Dilling Method Mobile drill rig B-40L						Samphop Helhod			
Depth. Ft,	Sample Ng.	Field Test for Total Ionization	Parialtalion Resistance Blows/6"	Unified Soll Classification	DESCRIPTION				
1.					2-inch asphalt, 10-inch dark brown baserock. Munsell Soil Color: HUE 10YR 4/3				
2.					Very dark grey silty pea gravelly clay, stiff. Munsell Soil Color: HUE 10YR 3/1				
4 5.					Very dark grey silty clay, hard. Munsell Soil Color: HUE 10YR 3/1 Color gets lighter to dark brown silty clay, hard. Munsell Soil Color: HUE 10YR 3/3				
7 - 8 - 9 - 10-	SIM	-4-8		CL	Brown silty clay, hard. Munsell Soil Color: HUE 10YR 4/3				
11.									
12									
14 15 16			·		Color changes t light petroleum Munsell Soil Co First grou	o dark olive-grey a odor. plor: HUE 5Y undwater encounter	silty clay, hard, very 3/2 ed at 16 feet.		
Rei	Remarks								

B2

7_92_51	4	

Lopped By Noori Ameli					Lepioratory Boring Log		boilng No STIGW-4		
DH	e Della	•ø. 8/3	30/95		Appion, Elevellon		Boiling Diameter 8-inch		
Drill	hng M MOl	ethod Dile dri	ill rig B	-40IJ		Eampling Mathod			
Dreth. Fl.	Sumple Ng.	Field Test for Total Ionization	Beselfgligh Baditange Bigwa Ko	لاستامو کونا کانههایادهانوس	DESC	RIPTION			
17					Color changes to dark olive-grey silty clay, hard, very light petroleum odor. Munsell Soil Color: HUE 5Y 3/2				
19 20 21. 22.					Color changes to dark greyish-brown silty clay, hard, light petroleum odor. Munsell Soil Color: HUE 2.5Y 4/2				
23. 24 25 26									
27 28 29	and the second se				Dark greyish-br petroleum odor, Munsell Soil Co Boring terminat	rown fine sandy cl stiff. plor: HUE 2.5Y ed at 27 feet.	ay, moist, light 4/2		
30 31 32									
A	Remerks								

•

-

-

.

THE NO 7-92-514-SA

Lopped By NOOri Ameli					Exploratory Boring Log		Boring No. STMW-5		
Del	le Drill	^{lod} 8/30)/95		Approx, Elevation		Boiling Diameter 8-inch		
Drill	lling M Mot	oile dri	ll rig B-	-40L		Sampling Method			
Daolh, Fl.	Sample Zo.	Field Test for Total Ionization	Baratislion Resistance Blows/6"	Unified Soli Classification	DESCRIPTION				
1 2 3					6-inch concrete. Very dark grey silty clay, hard. Munsell Soil Color: HUE 10YR 3/1				
5 - 7 - 8 - 9 -	STM	V-5-5		CL.	Color gets lighter to very dark greyish-brown silty clay with minor gravel, hard. Munsell Soil Color: HUE 10YR 3/2 Color gets lighter to dark greyish-brown silty clay, hard. Munsell Soil Color: HUE 2.5Y 4/2				
10. 11. 12.	LO.STMW-5-10 CL				Color changes to dark olive-grey silty clay, hard. Munsell Soil Color: HUE 5Y 3/2				
13 14	and the second secon				Munsell Soil Co	lor: HUE 2.5Y	4/2		
15 16							and we have not received and a second se		
Re	Remarks								

.

В4
1115 HD 7-92-514-SA

10;) 0 ∎d B	" Noor.	i Ameli		Exploratory Boring Lop		Boring Ho STMW-5				
[]] 	n Dritt	•• 8/30	/95		Appros. Elsestion		8-inch				
Dill	ling M Mob.	ile dri	ll rig B-	40L		Eampling Method					
Decth, Fl.	Gerecie X.c.	Field Test for Total Ionization	تعسفانها! تعسفانها! تاريسم برج	Unitrad Soli Classification	DESC	DESCRIPTION					
h7					Very light petr	coleum odor.					
18											
19											
20											
21.					Dark greyish-br	indwater encounter rown silty pea gra	ed at 21 feet. velly clay, stiff, moist.				
22.					Munsell Soil Q	olor: HUE 2.5Y	4/2				
23.											
24	•										
25											
26.					Boring terminat	ted at 26 feet.					
27											
28											
29											
30											
31											
32											
Ri	Remerks										

-

File No 7-92-514-SA

Ĺo	pped E	37. NOOI	i Ameli		Exploratory Boring Log		Boring No. STMW-6			
Dr	le Drill	^{led} 8/31	/95	~	Approx, Elevation		Boring Diameter 8-inch			
Dri	Mo <u>t</u> Mot	vinos Dile dri	ll rig B	-40L		Sampling Method				
Depth, Ft.	Semple No.	Field Test for Total Ionization	Banarcallan Resistance Blows/6"	Unitied Soti Cleation	DESCRIPTION					
1					6-inch concrete, 4-inch dark brown baserock. Munsell Soil Color: HUE 10YR 4/3 Very dark grey silty clay, hard. Munsell Soil Color: HUE 10YR 3/1					
3 · 4					Color changes to dark olive-grey silty clay, hard. Munsell Soil Color: HUE 5Y 3/2					
5.	STM	7-6-5		CL	Dark olive-grey Munsell Soil Cold	silty clay, hard. or: HUE 5Y	3/2			
7 - 8 · 9 · 10.	STM	₩-6-10		CL	Color gets light Munsell Soil Col Dark greyish-bro	er to dark greyis or: HUE 2.5Y wn silty clay, ha	sh-brown silty clay, hard. 4/2 ard.			
11. 12- 13				•	Munseli Soli Col	OF: HUE 2.5Y	4/2			
14 15 16			·		Very light petrol	eum odor.				
Rei	LD									

-

.

B6

7-92-514-SA

Log	oped B	Noor	i Ameli		Exploratory Boring Log		Boring Ha STMW-6			
Del	s Driik	•¤ 8/31/	/95		Approx, Elevation		Boring Diamatar 8-inch			
Drif	hng M MOÌ	sihoo Dile dri	ill rig B	-40L		Sempling Method				
Copth. FI.	Sanote No.	rield Test for Total Ionization	لافتقاد والالم. العزاد والاسن والوضر الآ	Unitred Sou Clessification	DESCRIPTION					
17 - 18 - 19 -					_√_ First groundwater encountered at 17 feet. Dark greyish-brown fine sandy clay, hard, very light petroleum odor. Munsell Soil Color: HUE 2.5Y 4/2					
20 21. 22.					Dark greyish-brown fine sandy gravelly clay, wet, stiff. Munsell Soil Color: HUE 2.5Y 4/2					
24 25 -	and the second secon						ovolly oldy unt stiff			
26 27 28	and the second				Dark greyish-br Munsell Soil Co Boring terminat	own rine sandy gra plor: HUE 2.5Y red at 26 feet.	averiy Clay, wer, Still. 4/2			
29										
30 31										
32										
 R:	Rematka									

.

-

-

- . - . .

•

THE NO. 7-92-514-SA

·····

Log	ged B	v Noori	Ameli		Exploratory Boring Log		Boring No. SIMW-7				
Del	e Drilli	rd 8/31,	/95		Approx, Elevation		Boring Diameter 8-inch				
Dril	ling M Moł	rihod Lie dri	וון דות ם	I		Sampling Method					
	PIOL	Jite ui.	LTT TTÀ D		<u> </u>						
Ĕ	NQ.	est al ion	llon Sce 6''	Sall allon							
Depth.	Sample	eld T r Tot nizat	Penelre Restata Blows ⁽	Uniting							
		H O O H H H H			DESCRIPTION						
1.					6-inch concrete pea gravel, har	, very dark grey : d.	silty clay with minor				
2.					Munsell Soil Co	lor: HUE 10YR	3/1				
з.											
4											
5	STM	1-7-5		CL	Very dark grev	silty clay with m	inor pea gravel, hard.				
6					Munsell Soil Color: HUE 10YR 3/1						
-											
/ -					Color changes t Munsell Soil Co	o dark olive-grey blor: HUE 5/Y	silty clay, hard. 3/2				
8				-							
9 ·											
10.	STM	√-7-10		æ	Color gets ligh Munsell Soil Co	nter to olive-grey plor: HUE 5Y	silty clay, hard. 4/2				
11											
12				•							
13				•							
14											
15											
16					∇ First groundwater encountered at 16 feet.						
Re	Remerks										

-

-

.

-

B8

-

Lopped B Dete Drill	r Nooi	ri Ameli 1/95		Exploselory Boring Log Apples, Elevelion		Boring No STMW-7 Boring Diamater 8-1nch			
Dilling H Mob	The dri	ll rig B-	I	Sempling Meltipo					
Gerih, FJ. Gerpie No.	field Test for Total Ionization	Benetralion Besistance Bigues	Uningd Scil Cfessincarton	DES	CRIPTION	CRIPTION			
7 -				Olive-grey fine sandy clay, stiff, very light petroleum odor, moist. Munsell Soil Color: HUE 5Y 4/2					
9				Olive-grey sa petroleum odo Munsell Soil (ndy pea gravell r, wet. Color: HUE	ly clay, stiff, very light 5y 4/2			
22 - 23 - 23 - 24 -									
25 26				Boring terminated at 26 feet.					
27 28-									
29- 30-									
31- 32-									
Remeti	:	<u>.</u>	_ l		<u></u>				

-

-

•

.

FILE No 7-92-514-SA

- '

÷

-

. .

Lo	gged t	5y. No	cori Amel	Ĺ	Exploratory Boring Log		Boring No. STMW-8			
Dat	le Drill	led (8,	/30/95		Approx, Elevelion		Boring Diameter 8-inch			
Dri	Hing M MO	oile dr.	ill rig B	-401.		Sampling Method	L,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Deoth, Fl.	Samue Xo	Field Test for Total Ionization	Penelcalion Rasialanco Blowy/6"	Unitied Soll Classification	DESCRIPTION					
1 .					2-inch asphalt Munsell Soil C Very dark grey Munsell Soil C	, 6-inch dark brow blor: HUE 10YN silty clay with r blor: HUE 10YN	wn baserock. R 4/3 minor pea gravel, hard. R 3/1			
4 5 .	STM	1-8-4		CL .	Color changes to dark olive-grey silty clay, hard. Munsell Soil Color: HUE 5Y 3/2					
8 9 10	SIM	<i>1</i> −8−8	• •	CL	Color gets ligh Munsell Soil Co	ter to olive-grey lor: HUE 5y	silty clay, hard. 4/2			
12.				, .		:	•			
14 15 16			ň		∑ First groun Olive-grey silt Munsell Soil Co	ndwater encountered y clay, moist, lig plor: HUE 5Y	d at 15 feet. ght petroleum odor, hard. 4/2			
Rei	Remarks									

SOIL TECH ENGINEERING, INC.

в10

	* HD 7-92-514-SA											
Lo	og≠d B	v Noor	i Ameli		Exploratory Boring Lop		Boring HD STMW-8					
Del	s Driff	•ø 8/31	/95		Approx, Elevation		Boring Diamster 8-inch					
Dul	iling M Mot	elhod Dile dri	ll rig B	-40L		Bampling Mattiod						
0 •r!*. F1.	Semple No.	rield Test for Total Ionization	لاهمواد واز وم کاهمواوز و مرد ۲۰ ومهواوژ	Unined Soli Cfsttification	DESCRIPTION							
					Olive-grey sil	ty clay, moist	, light petroleum odor, hard.					
17					MUNSELL SOLL C	OTOL: HOR	5¥ 4/2					
18												
19												
20					Color gets lig	bter to dark c	revish_brown silty fine sandy					
21.					clay, stiff, w Munsell Soil C	et, light petr blor: HUE	coleum odor. 2.5Y 4/2					
22.												
23.					Dark greyish-b Light petroleu Munsell Soil C	mown sandy gra m odor. blor: HUE	2.5Y 4/2					
24												
25.												
26.												
27					Boring termina	ited at 27 feet	· ····· · ·					
28.												
29.												
30												
31-												
32.	ļ											
				L								
Re	Remarks											

-

File No. 7-92-514-SA

-	Lo	gged E	ay: Noor.	i Ameli		Exploratory Boring Log		Boring No. B-1
	Dal	le Drill	^{ed:} 8/19,	/93		Approz. Elevation		Boring Diameter 8-inch
	Drii	iling IV] T	Mobile (drill rig	B-40L		Sampling Method	
	Depth, Ft.	Sample No.	Field Test for Total Ionization	Panetralion Rasiatance Blows/6"	Unified Sail Cleasification	DESC	RIPTION	
	1				ĊĹ.	6-inches dark y Munsell Color: Very dark grey mild petroleum Munsell Color:	ellowish-brown bas HUE 10YR 3/4 silty pea gravelly odor. HUE 5Y 3/1	serock. 4 y clay, hard,
	3				CL	Color gets ligh Munsell Color:	nter to dark olive- HUE 5Y 3/2	-grey silty clay, stiff.
	5	3-1-	5		CL	Dark olive-grey Munsell Color:	y silty clay, stift HUE 5Y 3/2	£.
	7 - 8 9 110-1 11	3-1	10		Ч	Dark olive-grey petroleum odor. Munsell Color: Color gets ligh mild petroleum Munsell Color:	y silty gravelly c HUE 5Y 3/2 nter to òlive-grey odor. HUE 5Y 4/2	lay, stiff, light silty clay, stiff,
	13 14 158- 16	-1-1	5		CL	Olive grey sili Munsell Color:	ty clay, mild petr HUE 5Y 4/2	oleum odor.
L	Rem	arka						

SOIL TECH ENGINEERING, INC.

÷

B1

FILE NO 7-92-514-SA

Logged By NOOri Ameli	Exploratory Boring Log	Boring No. B-1									
Date Drilled: 8/19/93'	Approx. Elevation	Boring Diameter 8-inch									
Drilling Helhod	Sampho	g Melhad									
Mobile drill rig B-40	L										
-											
No.											
Depth Sample Dr Tol Dr Tol Banelr Banelr Blows											
	DESCRIPTI	DN									
CL	Color changes to ol	ive-brown silty clay, very									
17	Munsell Color: HU	E 2.5 Y 4/4									
18											
	∇_ First groundwa	ter encountered at 19 feet.									
19	olter brown cilty (lay, mild petroleum odor, wet.									
20 CL	Munsell Color: H	E 2.5Y 4/4									
21	Boring terminateu a	at 20 2000									
22											
23											
24											
25 -											
26-											
27											
28 -											
29-											
30											
31-											
32-											
	n										
Bamerks											
		CINEERING, INC. B2									

SOIL TECH ENGINEERING, INC.

.....

	File No. 7-92-514-SA											
Log	iged B	^{r:} Noori	Ameli		Exploratory Boring Log		Boring No. B-2/S'IMW-2					
Dal	s Drilli	^{od.} 8/19/	'93 <u>,</u>		Approx. Elevation		Boring Dismoler 8-inch					
Dril	ling M	elhod			5.	Sampling Mathod						
	1	Mobile	drill riq	ј B-40L	2							
Dapth, Fl.	Sample No.	Field Test for Total Ionization	Pensitation Rasiatance Biows/6*	Unitind Soll Classification	DES	DESCRIPTION						
1 2				CL	6-inches dark y Munsell Color: Very dark grey Munsell Color:	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1						
3				CL	Color gets lig Munsell Color:	Color gets lighter to dark olive-grey silty clay, stiff. Munsell Color: HUE 5Y 3/2						
5 6 7	B-2	-6		CL	Dark olive-grey silty clay, stiff. Munsell Color: HUE 5Y 3/2							
9	- - L-			æ	Color changes mild petroleu Munsell Color	to olive-brown m odor. : HUE 2.5Y	silty clay, stiff, 4/4					
	213-2 3 4 5-	_12		CL	Olive-brown silty clay, stiff, stronger petroleum odor. Munsell Color: HUE 2.5Y 4/4							
1	6		-		_√_ First gro	oundwater encou	ntered at 16 feet.					
	Bemerks											

SOIL TECH ENGINEERING, INC.

B3

File No 7-92-514-SA

Log	ged By	^{r:} Noor	i Ameli		Exploratory Boring Log		Boring No. B-2/STMW-2				
Dati	a Drilla	^{.d.} 8/19	/93		Approx, Elevation		Boring Diameter 8-inch				
Drill	ing Mi	eihod				Sampling Method					
	M: T	obile d	1r11 r1g	в-40L	1						
Depth, Ft.	Sample No.	Field Test for Total Ionization	Ponetralion Fasiatanca Blows/Fi	Unified Solf Classification	DESCRIPTION						
17				CL.	Olive-brown si odor, wet. Munsell Color:	Olive-brown silty clay, stiff, strong petroleum odor, wet. Munsell Color: HUE 2.5Y 4/4					
18											
19											
20											
21.											
22				e de la companya de la							
23	-										
24											
25											
26											
27											
2.8											
20											
				CT.	Olive-brown	silty clay, stiff,	, strong petroleum odor,				
31	/ 1 -				wet, yellowish-brown sheen on the water. Munsell Color: HUE 2.5Y 4/4 Boring terminated at 30 feet.						
3:	2										
	Remarks										
L											

SOIL TECH ENGINEERING, INC.

.

В4

File No. 7-92-514-SA

	Log	god E	r: Nooi	i Ameli		Exploratory Boring Log		Boring No. B-3/P-1			
-	Dat	e Dritt	^{ed.} 8/19	9/93		Approx, Elevation		Boring Diameter 8-1nch			
	Dril	ling M	ethod Mobile	drill rig	g B-40L	9	Sampling Method				
	Depth. Fl.	Sample Na,	Field Test for Total Ionization	Penelrallôn Resistance Blows/6*	Unified Solf Classification	DESCR	IPTION				
	1				cl	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1					
	3 - 4 - 5 - 6 -	В-3	-5		cl	Colro gets light Munsell Color:	er to dark olive- HUE 5Y 3/2	grey silty clay, stiff.			
	7 8 9 10- 11- 12-	в–3	-10		cl	Color changes to very light petro Munsell Color: Color changes to petroleum odor. Munsell Color:	b olive-brown silt bleum odor. HUE 5Y 3/2 b olive silty clay HUE 5Y 4/3	y clay, stiff, , stiff, light			
	13 14 15 16	B3-	.15		CL	Olive silty clay Munsell Color: Boring terminated	, stiff, mild pet HUE 5Y 4/3 d at 15 feet.	roleum odor, damp.			
	Asmarka										

an an an Arrange. An an Arrange an

Logged By: NOORI Ameli Date Drilled: 8/19/93				Exploratory Boring Log Approx, Elavation		Boring Dismeter		
		8/19					8-inch	
Dril	lling M	ennod Mobile (drill riq	J B-40L	•	Sampling Method		
				[<u></u>
Depih, Fl.	Sample Ng.	Field Test for Total Ionization	Pgnetration Restalance Blowi/6"	Unilled Soll Classification	DESC	CRIPTION		
- , - ,				CL	6-inches dark Munsell Color: Very dark grey Munsell Color:	yellowish-brow HUE 10YR silty pea gra HUE 5Y	m baserock. 3/4 avell clay, hard. 3/1	
3								
5.	в-4	-5		G	Color gets lighter to dark olive-grey silty clay, stiff. Munsell Color: HUE 5Y 3/2			:iff.
6,								
9 10 11 12		-10		CL	Color changes t petroleum odor. Munsell Color:	o olive silty HUE 5Y	clay, stiff, very light 1/3	
14 14 19	5 B-4	1-15		CL	Olive silty cl Munsell Color: Boring termina	ay, stiff, ver HUE 5Y ted at 15 feet	y light petroleum odor. 4/3 •	
A	emark	8		<u></u>				
, , , , , , , , , , , , , , , , , , , 			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SOIL TECH	ENGINEERIN	G, INC.	В6
	• - •		•		5 - 1 - 1 - -	•		

1 LLC IV. /-J2-J 4-6	ЪA
----------------------	----

~-	Log	lged	^{3y:} Noo	ri Ameli		Exploratory Boring Log		Baring No. B-5			
┞	Dat	e Dril	^{led:} 8/1	9/93		Approx. Elevation		Boring Diameter 8-inch			
Drilling Method Mobile drill rig B-40L							Sampling Method				
	Depth, Fi.	Sample No.	Field Test for Total Ionization	Penetralion Rosistance Blows/6"	Unitied Soft Circatton	DESC	RIPTION				
1 2 CL						6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell color: HUE 5Y 3/1					
3 4 5 6 7	, в	5-	5		сĿ	Color gets light Munsell Color:	er to dark olive-g HUE 5y 3/2	rey silty clay, stiff.			
8 9 1(1) 1	р-в 1	-5-	10		сĻ	Color changes to Munsell Color:	olive silty clay, HUE 5Y 4/3	stiff.			
14 14 .5		5-1:	5		CL	Olive silty clay Munsell Color: Boring terminate	, stiff, damp. HUE 5Y 4/3 d at 15 feet.				
7.0	Pemarks										

File No. 7	7-92-514-	SA
------------	-----------	----

	ogged	By: NOO	ri Ameli		Exploratory Boring Log E		Boring Na. B-5			
	ata Drii	^{led:} 8/1	9/93		Approx, Elevation	Approx, Elevation Boring Diameter 8-inch				
D	rilling A	telhod				Sampling Method				
		MODILE	arill ri	g B-40L	1 	·				
Depth, FJ,	Sample No.	Field Test for Total Ionization	Pansiralign Rosisianca Blows/6"	Unilisd Soll Classification						
	<u> </u>			······································	DESC	RIPTION				
1				CL	6-inches dark y Munsell Color: Very dark grey Munsell Color:	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 4/3 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1				
3										
5.	B5-	5		CL	Color gets lighter to dark olive-grey silty clay, silty. Munsell Color: HUE 5y 3/2					
7 -										
8										
10.	B–5-	10		CL	Color changes to Munsell Color:	o olive silty clay, HUE 5Y 4/5	, stiff.			
11. 12-										
1 ₁₃										
14 15	B-5-	15		CL	Olive silty clay Munsell Color:	y, stiff, damp. HUE 5Y 4/3				
					Boring terminate	ed at 15 feet.				
16 	nerks									

B8

File No. 7-92-514-SA										
Loggod By: NOOri Ameli	Exploratory Boring Log		Boring No. B-6/P-3							
Date Drilled: 8/20/93	Approx, Elevation		Boring Diameter 8-inch							
Drilling Melhod Mobile drill rig B-40	L	Sampling Method								
Depth. Fl. Ssmple No. Ssmple No. Field Test for Total Ionization Resistance Blows/6" Unified Self Classification	DES	DESCRIPTION								
Г2 Г2	6-inches dark y Munsell Color: Very dark grey Munsell Color: Mild petroleum	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1 Mild petroleum odor.								
4 5 _{B-6-5} 6 7	Color changes stiff, mild pe Munsell Color:	Color changes to dark olive-grey silty clay, stiff, mild petroleum odor. Munsell Color: HUE 5Y 3/2								
8 9 10-B-6-10 11 12 12 13 14 B-6-14 15 16	Color changes stiff, strong Munsell Color Very dark gre strong petrol Munsell Color Color gets li strong petrol Munsell Color Dark greyish- odor, damp. Munsell Color V_First gre Boring termin	to very dark gre petroleum odor. : HUE 2.5Y yish-brown silty eum odor. : HUE 2.5Y .ghter to dark gre eum odor, stiff. : HUE 2.5Y -brown silty clay r: HUE 2.5Y oundwater encount ated at 16 feet.	eyish-brown silty clay, 3/2 clay, stiff, 3/2 eyish-brown silty clay, 4/2 , stiff, mild petroleum 4/2 cered at 16 feet.							
Remarka										

	File No. 7-92-514-SA										
Log	gged B	y: Noori	Ameli		Exploratory Boring Log		Boring No. B-7/STMW-3				
Dat	le Drille	^{rd:} 8/20,	/93		Approx, Elevation		Boring Dismoter 8-inches				
	lling M	Mobile	drill ri	g B-40	L	Sampling Method					
Depth, Ft.	Sample No.	Field Test for Total Ionization	Panstrallan . Resiatance Blows/6"	Unified Soli Classification	DES	DESCRIPTION					
 1 2				CL	6-inches dark y Munsell Color: Very dark grey light sewage o Munsell Color:	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard, light sewage odor. Munsell Color: HUE 5Y 3/1					
4 5 6 7	_B-7	-5		CL	Color changes Munsell Color:	to dark olive-grey HUE 5Y 3/2	silty clay, stiff.				
8 9 1 1 1	0-B- 1- 2-	7-10		CL	Color gets lig light petroleu Munsell Color:	nter to olive-grey m odor. HUE 5Y 4/2	silty clay, stiff,				
1	.3 .4 B- .5 .6	-7-14		CI	Olive-brown si Munsell Color:	lty clay, stiff, l HUE 2.5Y 4, bundwater encounter	light petroleum odor. /4 red at 16 feet.				
	Remei		<u></u>								

.

.

•

B10

File No 7-92-514-SA

Date Drilled. 8/23/93 Approx. Elevation Boring Diameter Drilling Method Mobile drill rig B-40L Sampling Method Image: State of the state of								
Drilling Method Mobile drill rig B-40L Sempling Method Mobile drill rig B-40L Child Sold Test for the sold for the sol								
Depth, Fl. Semple No. Field Test for Total Idnited Sali Clessification Noticefon								
DESCRIPTION								
CL Olive-brown silty clay, stiff, light petroleum odor Munsell Color: HUE 2.5Y 4/4								
20								
23								
24								
25 -								
27								
28								
CL Olive-brown silty clay, stiff, strong petroleum odor wet, yellowish sheen on the water. Munsell Color: HUE 2.5Y 4/4 Boring terminated at 30 feet	÷,							
Remarks								

File	File No 7-92-514-SA										
L (oggad E	^{iy} Noor.	i Ameli		Exploratory Boring Log		Boring No. B-8/P-2				
Di	ale Drill	•d 8/20,	/93		Approx, Elevation		Boring Diameter 8-inch				
Dr	illing M M	enhod Obile di	rill rig	B-40L		Sampling Method	J				
		41 F	4	E							
Depth, Fl.	Sample No	tield Tes for Total conizatio	Penstalion Resistance Bigwa/Fi.	Unified Sol							
					DESC	CRIPTION					
1 2				CL	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1						
3 4											
5	-B8	-5		æ	Color changes t Munsell Color:	o dark olive-grey HUE 5Y 3/2	silty clay, stiff.				
7 8 0	and a second										
10	-B-8	-10		CL	Color changes t light petroleum Munsell Color:	o olive-grey silty odor. HUE 5Y 4/2	y clay, stiff,				
12 13											
14	B-8	14		CL	Olive-grey silt odor, damp. Munsell Color:	ty clay, stiff, lid HUE 5Y 4/2	ght petroleum				
16				Œ	Olive-grey silt Munsell Color: First grour Boring terminat	y clay, stiff, mi HUE 5Y 4/2 ndwater encountered at 16 feet.	ld petroleum odor, moist. d at 16 feet.				
Re	marks										

File	File No 7-92-514-SA									
L0	ogged i	³ Y: NOO1	i Ameli		Exploratory Boring Log Bo Approx. Elevation Bo		Boring No. B-9	*********		
D:	ite Drill	^{led;} 8/2()/93				Boring Diamster 8-inch			
Dri	illing N l	Mobile d	brill rig	B-40L		Sampling Method		*******		
Depth, Fl.	Sample No.	Field Test for Total Ionization	Penetralion Asistance Blows/Ft	Unified Soli Clessification	DESCRIPTION					
1 2 -				ст	6-inch dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1					
4 5 - 6 -	в-9	-5		CL.	Color changes to Munsell Color:	dark olive-grey HUE 5Y 3/2	silty clay, stiff.			
7 - 8 -				сL	Color changes to light petroleum Munsell Color:	o olive-grey silty odor. HUE 5Y 4/2	clay, stiff,			
10- 11- 12-	B-9	-10		CL	Olive-grey silty Munsell Color:	clay, stiff, lig HUE 5Y 4/2	ht petroleum odor.			
13 14 15 16	B-9	-14		CL	Olive-grey silty Munsell Color: Olive-grey silty Munsell Color: First grou Boring terminate	HUE 5Y 4/2 HUE 5Y 4/2 Clay, stiff, mile HUE 5Y 4/2 ndwater encountered at 16 feet.	ht petroleum odor, dam d petroleum odor, mois ed at 16 feet.	np. st.		
Ren	nerks		<u> </u>			на н				

.

.

÷

a ser esta a

Flie N	۵ _
--------	-----

7-92-514-SA

Loppod By Noori Ameli					Exploratory Boring Log		Boring No. B-10			
Dal	le Drill	° ^d 8/20	/93		Approx, Elevation		Boring Diamater 8–inch			
Dril	lling M M	™od obile d	rill rig	B-40L		Sampling Method				
Depth, Ft,	Sample No.	Field Test for Total Ionization	Penetration Restance Blowa/FL	Unihed Soll Classification	DESC	RIPTION				
1 - 2 - 3 - 4				CL	6-inches dark y Munsell Color: Very dark grey Munsell Color:	ellowish-brown bas HUE 10YR 3/4 silty pea gravelly HUE 5Y 3/1	erock. clay, hard.			
5 -	B–10	-5		æ	Color changes to Munsell Color:	dark olive-grey s HUE 5Y 3/2	ilty clay, stiff.			
7 - 8 - 9 -				CL	Color changes t Munsell Color:	o olive-grey silty HUE 5Y 4/2	clay, stiff.			
10- 11- 12-	B10	-10		CL	Olive-grey Silt Munsell Color:	y clay, stiff. HUE 5Y 4/2				
13 14) 15 16	B-10	14		CL CL	Color changes t light petroleum Munsell Color: Olive-brown sil Munsell Color: First grou Boring terminat	o olive-brown silt odor. HUE 2.5Y 4/4 ty clay, stiff, li HUE 2.5Y 4/4 ndwater encountere ed at 16 feet.	y clay, stiff, ght petroleum odor. d at 16 feet.			
Bern	isiks	Boring terminated at 16 feet.								

والمعادي المعادية والمراجع العرف والمراجع

. · •

File No 7-92-514-SA

Lo.	gged E	' Noor	i Ameli		Exploratory Baring Log		Boring No. B-11/SIMW-1					
Dat	ie Drill	•ª 8/20	/93		Approx. Elevation		Boring Diameter 8-inch					
Dri	lling M M	einod Obile d	rill rig	B-40L		Sampling Melhod						
Depth, Fl.	Sampla Ng.	Field Test for Total Ionization	Penaitallon Resisiance Blowa/Fl.	Unilled Soll Classification	DESCR	HPTION						
1 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4				ar.	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5y 3/1							
5 - 7 - 8 -	B-1	5		CT CT	Color changes to Munsell Color: Color changes to Munsell Color:	0 dark olive-grey HUE 5Y 3/2 0 olive-grey silty HUE 5Y 4/2	silty clay, stiff.					
9 - 10- 11-	B–11	-10		CL	Olive-grey silty Munsell Color:	vclay, stiff, ver HUE 5Y 4/2	ry light petroleum odor.					
12 13					Mild petroleum o	dor.						
14	B-11	-14		CL	Olive-grey silty clay, stiff, strong petroleum odor, damp. Munsell Color: HUE 5Y 4/2							
15 16				CL	Olive-grey silty clay, stiff, strong petroleum odor, moist. Munsell Color: HUE 5Y 4/2 First groundwater encountered at 16 feet.							
Rem	nerks				ang manang kanang ka							

в15

FILE No 7-92-514-SA

Loggod By Noori Ameli				Exploratory Boring Log		Baring No. B-11/STMW-1								
Da	Le Dritte	^{ad} 8/2:	Ś/93	5 - <u>1</u>	Approx, Elevation		Boring Diameter 8-inch							
Dril	King M N	thod Nobile (brill rig	B-40L		Sampling Method								
Depth, Ft.	Sample No.	Field Test for Total Ionization	Panairailan Rasiaianca Blows/Fl.	Unified Soil Classification	DESC	RIPTION								
17				CL	Olive-grey silt Munsell Color:	Olive-grey silty clay, stiff, strong petroleum odor, moist. Munsell Color: HUE 5Y 4/2								
18														
19	and the second													
20 21			1 1 1 1											
22														
23_														
24														
25.														
26.														
27				ſ										
28-														
29- 30				ĊŢ										
31				ىلى	Wet, yellowish-brown sheen on the water. Munsell Color: HUE 5Y 4/2									
32-														
Rem	iðrks		l											

File No	7-92-514-SA
---------	-------------

L 	oggad f	y Noor	i Ameli		Exploratory Boring Log		Boring No. B-12							
D	ste Dell	•• 8/20	/93		Approx, Elevation		Boring Diameter 8-inch							
D	rilling N N	iobile d	rill rig	B-40L		Sampling Method								
Depth, Fl.	Samtle NG.	Field Test for Total Ionization	Penaltallon Resistance Blows/Fl.	Unified Solf Classification	DESC	DESCRIPTION								
1 2 3	and a second			СГ	6-inches dark Munsell Color: Very dark grey Munsell Color:	6-inches dark yellowish-brown baserock. Munsell Color: HUE 10YR 3/4 Very dark grey silty pea gravelly clay, hard. Munsell Color: HUE 5Y 3/1								
4 5 6	•B12	5		CL	Color changes to dark grey silty pea gravelly clay, stiff. Munsell Color: HUE 5Y 3/2									
7 8 9				CL	Color changes t Munsell Color:	o olive-grey silty HUE 5Y 4/2	clay, stiff.							
10 11 12 13	в-12	-10		Ч	Olive-grey silt Munsell Color:	y clay, stiff, ver HUE 5y 4/2	y light petroleum odor.							
14 15 16	B-12	-14		CL	Olive-grey silt Munsell Color: Boring terminat	y clay, stiff, lig HUE 5Y 4/2 ed at 14 feet.	ht petroleum odor.							
Rei	markı					hannan (ann an an ann an A								

B17

· ;

File No. 7-92-514-SA

Dai Drii	le Drill Hing M	^{ed.} 8/24	1/93		Appros. Elevation						
Drii	lling V					Boring Diameter 8_inch					
		cihod		<u>I</u>							
	·	Mobile	drill rig	g B-40L		Sampling Method					
			х								
Depth, Fl.	Sample No	ield Teg or Total onizatio	Penetralion Restatance Blows/6"	Unilied Soli Ciessilication							
		<u>ы</u> чн			DESCF	RIPTION					
				CL.	6-inches dark y Munsell Color: Very dark grey Munsell Color:	ellowish-brown bas HUE 10YR 3/4 silty pea gravelly HUE 5Y 3/1	serock. v clay, hard.				
	B—13	-5		CL	Color gets lighter to dark olive-grey silty clay, hard. Munsell Color: HUE 5Y 3/2						
				сг	Color changes to Munsell Color:	dark greyish-brow HUE 2.5Y 4/2	m silty clay, stiff.				
.0 _B .	-13	10		сг	Dark greyish-brow Munsell Color:	wn silty clay, sti HUE 2.5Y 4/2	ff.				
2- 3				CL	Color changes to olive silty clay, stiff, light petroleum odor. Munsell Color: HUE 5Y 4/3						
4 ⁸⁻	-13-	14		CL	Olive silty clay, stiff, mild petroleum odor. Munsell Color: HUE 5Y 4/3						
5				CL	Olive silty pea gravelly clay, stiff, mild petroleum odor. Munsell Color: HUE 5Y 4/3 Boring terminated at 15 feet.						
			0 ^{B-13-10} B-13-10 1 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	- B-13-10 B-13-14 B-13	I.I. Openities I.I. B=13-5 CL B=13-5 CL CB=13-10 CL CB=13-10 CL CI CL CI	Image: Section of the section of th	Image: Section of the section of th				

Romarks

SOIL TECH ENGINEERING, INC.

.

ENYIRON	J.C.	A Contraction of the second se	GEOLOGIC LOG	OF BOREHOLE:	PAGE 1 OF 1						
PF	ROJECT:	2332		DATE DRILLED: 02/05/200	7						
Sľ	TE LOCA	ÁTION: 3	609 International Blvd. Dakland, CA	CASING ELEVATION:							
DF	RILLER:	Gregg D	rilling	DEPTH TO GW: 10 feet bgs	DEPTH TO GW: 10 feet bgs						
DF	RILLING	METHO): Hollow Stem Auger (HSA)	T.O.C. TO SCREEN: 5 feel	T.O.C. TO SCREEN: 5 feet						
BC	DRING D	IAMETE	R: 10"	SCREEN LENGTH: 15 feet	SCREEN LENGTH: 15 feet						
LC	GGED E	BY: E. Hi	ghtower	APPROVED BY: M. Sepehr	, Ph.D., P.E.						
DEPTH	BRAPHIC LOG	DIL CLASS	GEOLOGIC	DESCRIPTION		L AM					

	GRAPI- LOG	SOIL CL	GEOLOGIC DESCRIPTION	SPLIT SPOON	CORE SA	GW LE	BLOWCO		DIAGRAM	
5 10 15		GW	Gravel (GW), : Dark grey; loose; moist; medium grained; strong petroleum hydrocarbon (PHC) odor.			V		0.02 Stotted Screen Cement Grou	Monteeverses	Bentantie
25-		CL S:	Sandy Clay (CL), 7.5YR4/2: Brown; medium stiff; molst; fine-grained sand; mottling throughout (2.5Y4/3); strong PHC odor.							

APPENDIX B

Certified Laboratory Analytical Reports Chain-of-Custody Documentation

Multi-Phase Extraction Pilot Test, December 2007

CHAIN OF CUSTODY FORM

Page <u>|</u> of <u>|</u>

TORRENT Lab. PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite/201B Alameda, CA 94501 510-864-0364 Telephone 510/864-0365 Fax

PAL Login#

Projec	Project No: 2334 Sampler						Jesse	4	e	di	110					Ar	alyses	/Metho	t
Projec	it Name: 3609 Oaki	Interna and, (tional Blu	l. Re	port	То:	Jesse	Ac	ed	ill	0				H gas	The form			
		,		Co	mpa	any:	SOMA En	viror	nmer	ntal	Engi	neering, Inc.			Å	50			
Turna	round Time: Stan	dard		Tel Faz	Tel: 925-734-6400 Fax: 925-734-6401										ň	·S:			
67	-12034	Sampling	Date/Time	M	latrix	ĸ	# of Containers		Prese	rvati	ives				10-	-0F			
Lab No.	Sample ID	Date	Time	Soil	Water	Waste	AF	HCL	H ₂ So4	HNO ₃	ICE	Fie	eld Notes						
012	MW-1 Stack	12/6/07	0855				X TEDLAR		_		******	Soil w	portiene	diation	X-	Χ -		P	· _ · · = ·
02N	MW-1 Influt	12/607	0900				X rease	-				Soil U	apor / re	mediation	X	\times			
03A	MW-1 Influent	12/7/07	0815				XTÉDRE					Soll	Japes Tre	mediation	X	メ	j		
	- <u></u>			-				ļ				· · · · · · · · · · · · · · · · · · ·	<u> </u>					<u> </u>	<u></u>
					<u>. </u>													\vdash	+
	······													_					
Samp	ler Remarks:		<u>_</u>				Relinguis	hed I	by:		Dat	e/Time:	Received	d by:	J		Dat	e/Time:	┹╾╴┺╾╾┥
	TOPRENT	Lab	•		-		Go	a.	0	Q	12/	4/0701030	Chuis	No	d	2	15	17107	1040
	EDF Req	jd					(huis	N	1 696	-	12	7/08 1220	Dalle	tos			/	2/2/2	712:0
									_						5				_

Q illidox

December 14, 2007

Jesse Acedillo Soma Environmnental Engineering, Inc. 6620 Owens Dr. Suite A Pleasanton, CA 94588

TEL: 925-734-6400 FAX

RE: 2334

Dear Jesse Acedillo:

Order No.: 0712034

Torrent Laboratory, Inc. received 3 samples on 12/7/2007 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director

12/14/02

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Jesse Acedillo

Soma Environmnental Engineering, Inc.

Client Sample ID:MW-1 StackSample Location:3609 International BlvdSample Matrix:AIRDate/Time Sampled12/6/2007 8:55:00 AM

Date Received: 12/7/2007 **Date Reported:** 12/14/2007

Lab Sample ID: 0712034-001 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
Ethyl Benzene	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
Ethyl tert-butyl ether (ETBE)	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
Isopropyl ether (DIPE)	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
m,p-Xylene	TO-15	12/7/2007	1	10	10	13	ppbv	P14815
МТВЕ	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
o-xylene	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
t-Butyl alcohol (t-Butanol)	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
tert-Amyl methyl ether (TAME)	TO-15	12/7/2007	0.5	10	5.0	ND	ppbv	P14815
Toluene	TO-15	12/7/2007	0.5	10	5.0	7.1	ppbv	P14815
Surr: 4-Bromofluorobenzene	TO-15	12/7/2007	0	10	65-135	102	%REC	P14815
Benzene	TO-15	12/7/2007	1.6	10	16	ND	ua/m³	P14815
Ethyl Benzene	TO-15	12/7/2007	1.67	10	17	ND	µg/m ³	P14815
Ethyl tert-butyl ether (ETBE)	TO-15	12/7/2007	2.09	10	21	ND	ua/m ³	P14815
Isopropyl ether (DIPE)	TO-15	12/7/2007	2.09	10	21	ND	µg/m³	P14815
m,p-Xylene	TO-15	12/7/2007	2.05	10	20	55	µg/m³	P14815
MTBE	TO-15	12/7/2007	1.81	10	18	ND	µg/m³	P14815
o-xylene	TO-15	12/7/2007	2.7	10	27	ND	µg/m³	P14815
t-Butyl alcohol (t-Butanol)	TO-15	12/7/2007	1.515	10	15	ND	µg/m³	P14815
tert-Amyl methyl ether (TAME)	TO-15	12/7/2007	2.09	10	21	ND	µg/m³	P14815
Toluene	TO-15	12/7/2007	1.89	10	19	ND	µg/m³	P14815
Surr: 4-Bromofluorobenzene	TO-15	12/7/2007	0	10	65-135	102	%REC	P14815
Gasoline	TO-3(MOD)	12/8/2007	100	10	1000	ND	ppbv	G14815
Note: The reporting limits were raised	due to insufficient sam	ple volume.						
Gasoline	TO-3(MOD)	12/8/2007	352	10	3500	ND	µg/m³	R14815

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Jesse Acedillo Soma Environmnental Engineering, Inc.

Date Received: 12/7/2007 Date Reported: 12/14/2007

Client Sample ID:MW-1 InfluentSample Location:International BlvdSample Matrix:AIRDate/Time Sampled12/6/2007 9:00:00 AM

Lab Sample ID: 0712034-002 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	TO-15	12/7/2007	0.5	500	250	1100	ppbv	P14815
Ethyl Benzene	TO-15	12/7/2007	0.5	500	250	1600	ppbv	P14815
Ethyl tert-butyl ether (ETBE)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815
Isopropyl ether (DIPE)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815
m,p-Xylene	TO-15	12/7/2007	1	500	500	3300	ppbv	P14815
МТВЕ	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815
o-xylene	TO-15	12/7/2007	0.5	500	250	640	ppbv	P14815
t-Butyl alcohol (t-Butanol)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815
tert-Amyl methyl ether (TAME)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815
Toluene	TO-15	12/7/2007	0.5	500	250	860	ppbv	P14815
Surr: 4-Bromofluorobenzene	TO-15	12/7/2007	0	500	65-135	102	%REC	P14815
Note: The reporting limits were raised du	e to high concentrati	on of non-target a	nalytes.					
Benzene	TO-15	12/7/2007	1.6	500	800	3400	µg/m³	P14815
Ethyl Benzene	TO-15	12/7/2007	1.67	500	840	7000	µg/m³	P14815
Ethyl tert-butyl ether (ETBE)	TO-15	12/7/2007	2.09	500	1000	ND	µg/m³	P14815
Isopropyl ether (DIPE)	TO-15	12/7/2007	2.09	500	1000	ND	µg/m³	P14815
m,p-Xylene	TO-15	12/7/2007	2.05	500	1000	15000	µg/m³	P14815
МТВЕ	TO-15	12/7/2007	1.81	500	900	ND	µg/m³	P14815
o-xylene	TO-15	12/7/2007	2.7	500	1400	2800	µg/m³	P14815
t-Butyl alcohol (t-Butanol)	TO-15	12/7/2007	1.515	500	760	ND	µg/m³	P14815
tert-Amyl methyl ether (TAME)	TO-15	12/7/2007	2.09	500	1000	ND	µg/m³	P14815
Toluene	TO-15	12/7/2007	1.89	500	940	2100	µg/m³	P14815
Surr: 4-Bromofluorobenzene	TO-15	12/7/2007	0	500	65-135	102	%REC	P14815
Gasoline	TO-3(MOD)	12/8/2007	100	1000	100000	1340000x	ppbv	G14815
Note: x - Does not match typical gasoline gasoline quantitative range.	e pattern. Reported v	alue contains a sig	gnificant am	ount of non-g	asoline hydi	rocarbons respo	onded within	
Gasoline	TO-3(MOD)	12/8/2007	352	1000	350000	4700000x	µg/m³	R14815

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Jesse Acedillo

Soma Environmnental Engineering, Inc.

Date Received:	12/7/2007
Date Reported:	12/14/2007

Lab Sample ID: 0712034-003 **Date Prepared:**

Client Sample ID:	MW-1 Influent
Sample Location:	3609 International Blvd
Sample Matrix:	AIR
Date/Time Sampled	12/7/2007 8:15:00 AM

Parameters	eters Analysis Method		RL	Dilution Factor	MRL	Result	Units	Analytical Batch	
Benzene	TO-15	12/7/2007	0.5	500	250	920	ppbv	P14815	
Ethyl Benzene	TO-15	12/7/2007	0.5	500	250	980	ppbv	P14815	
Ethyl tert-butyl ether (ETBE)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815	
Isopropyl ether (DIPE)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815	
m,p-Xylene	TO-15	12/7/2007	1	500	500	2200	ppbv	P14815	
MTBE	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815	
o-xylene	TO-15	12/7/2007	0.5	500	250	360	ppbv	P14815	
t-Butyl alcohol (t-Butanol)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815	
tert-Amyl methyl ether (TAME)	TO-15	12/7/2007	0.5	500	250	ND	ppbv	P14815	
Toluene	TO-15	12/7/2007	0.5	500	250	580	ppbv	P14815	
Surr: 4-Bromofluorobenzene	TO-15	12/7/2007	0	500	65-135	102	%REC	P14815	
Note: The reporting limits were raised due	to high concentrati	on of non-target a	nalytes.						
Benzene	TO-15	12/7/2007	1.6	500	800	2900	µg/m³	P14815	
Ethyl Benzene	TO-15	12/7/2007	1.67	500	840	4300	µg/m³	P14815	
Ethyl tert-butyl ether (ETBE)	TO-15	12/7/2007	2.09	500	1000	ND	µg/m³	P14815	
Isopropyl ether (DIPE)	TO-15	12/7/2007	2.09	500	1000	ND	µg/m³	P14815	
m,p-Xylene	TO-15	12/7/2007	2.05	500	1000	9400	µg/m³	P14815	
MTBE	TO-15	12/7/2007	1.81	500	900	ND	µg/m³	P14815	
o-xylene	TO-15	12/7/2007	2.7	500	1400	1500	µg/m³	P14815	
t-Butyl alcohol (t-Butanol)	TO-15	12/7/2007	1.515	500	760	ND	µg/m³	P14815	
tert-Amyl methyl ether (TAME)	TO-15	12/7/2007	2.09	500	1000	ND	µg/m³	P14815	
Toluene	TO-15	12/7/2007	1.89	500	940	1400	µg/m³	P14815	
Surr: 4-Bromofluorobenzene	TO-15	12/7/2007	0	500	65-135	102	%REC	P14815	
Gasoline	TO-3(MOD)	12/8/2007	100	1000	100000	1390000x	ppbv	G14815	
Note: x - Does not match typical gasoline p gasoline quantitative range.	oattern. Reported v	alue contains a sig	gnificant am	ount of non-g	asoline hydr	ocarbons respo	onded within		
Gasoline	TO-3(MOD)	12/8/2007	352	1000	350000	4900000x	µg/m³	R14815	

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

CLIENT: Soma Environmnental Engineering, Inc. Work Order: 0712034 **Project:** 2334

ANALYTICAL QC SUMMARY REPORT

BatchID: G14815

Sample ID MB-G Client ID: ZZZZZ	SampType: MBLK Batch ID: G14815	TestCode: TO-3Gas (MO Units: ppbv TestNo: TO-3(MOD)	Prep Date: 12/8/2007 Analysis Date: 12/8/2007	RunNo: 14815 SeqNo: 213048		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	ND	100				
Sample ID LCS-G Client ID: ZZZZZ	SampType: LCS Batch ID: G14815	TestCode: TO-3Gas (MO Units: ppbv TestNo: TO-3(MOD)	Prep Date: 12/8/2007 Analysis Date: 12/8/2007	RunNo: 14815 SeqNo: 213049		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Gasoline	554.0	100 500 0	111 50 150			
Sample ID LCSD-G Client ID: ZZZZ	SampType: LCSD Batch ID: G14815	TestCode: TO-3Gas (MO Units: ppbv TestNo: TO-3(MOD)	Prep Date: 12/8/2007 Analysis Date: 12/8/2007	RunNo: 14815 SeqNo: 213050		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		

R

S

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits Page 1 of 5

CLIENT: Soma Environmnental Engineering, Inc. Work Order: 0712034

2334

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: P14815

Sample ID BLK	SampType: MBLK	TestCode: TO-15 Petrol Units: ppbv			Prep Date: 12/7/2007				RunNo: 14815		
Client ID: ZZZZZ	Batch ID: P14815	TestNo: TO-15			Analysis Date: 12/7/2007				SeqNo: 213027		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.50									
Ethyl Benzene	ND	0.50									
Ethyl tert-butyl ether (ETBE)	ND	0.50									
Isopropyl ether (DIPE)	ND	0.50									
m,p-Xylene	ND	1.0									
MTBE	ND	0.50									
o-xylene	ND	0.50									
t-Butyl alcohol (t-Butanol)	ND	0.50									
tert-Amyl methyl ether (TAME)	ND	0.50									
Toluene	ND	0.50									
Surr: 4-Bromofluorobenzene	21.14	0	20	0	106	65	135				
Sample ID LCS	SampType: LCS	TestCo	de: TO-15 Pet	trol Units: ppbv		Prep Dat	te: 12/7/20	07	RunNo: 14	815	
Sample ID LCS Client ID: ZZZZZ	SampType: LCS Batch ID: P14815	TestCoo TestN	de: TO-15 Pet	trol Units: ppbv		Prep Dat Analysis Dat	te: 12/7/20	07 07	RunNo: 14 SeqNo: 21	815 3028	
Sample ID LCS Client ID: ZZZZZ Analyte	SampType: LCS Batch ID: P14815 Result	TestCoo TestN PQL	de: TO-15 Pet lo: TO-15 SPK value	t rol Units: ppbv SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	te: 12/7/20 te: 12/7/20 HighLimit	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene	SampType: LCS Batch ID: P14815 Result 20.07	TestCoo TestN PQL 0.50	de: TO-15 Pet lo: TO-15 SPK value 20	trol Units: ppbv SPK Ref Val 0	%REC 100	Prep Dat Analysis Dat LowLimit 50	te: 12/7/20 te: 12/7/20 HighLimit 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene	SampType: LCS Batch ID: P14815 Result 20.07 20.88	TestCoo TestN PQL 0.50 0.50	de: TO-15 Pet lo: TO-15 SPK value 20 20	trol Units: ppbv SPK Ref Val 0 0	%REC 100 104	Prep Dat Analysis Dat LowLimit 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE)	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90	TestCoo TestM PQL 0.50 0.50 0.50	de: TO-15 Pet lo: TO-15 SPK value 20 20 20	trol Units: ppbv SPK Ref Val 0 0 0	%REC 100 104 99.5	Prep Dat Analysis Dat LowLimit 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE)	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32	TestCoo TestM PQL 0.50 0.50 0.50 0.50	de: TO-15 Pet lo: TO-15 SPK value 20 20 20 20 20	trol Units: ppbv SPK Ref Val 0 0 0 0	%REC 100 104 99.5 102	Prep Dat Analysis Dat LowLimit 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE) m,p-Xylene	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32 41.24	TestCoo TestN PQL 0.50 0.50 0.50 0.50 1.0	de: TO-15 Pet lo: TO-15 SPK value 20 20 20 20 40	trol Units: ppbv SPK Ref Val 0 0 0 0 0 0 0	%REC 100 104 99.5 102 103	Prep Dat Analysis Dat LowLimit 50 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE) m,p-Xylene MTBE	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32 41.24 19.96	TestCoo TestN PQL 0.50 0.50 0.50 0.50 1.0 0.50	de: TO-15 Pet lo: TO-15 SPK value 20 20 20 20 40 20	trol Units: ppbv SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 100 104 99.5 102 103 99.8	Prep Dat Analysis Dat LowLimit 50 50 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE) m,p-Xylene MTBE o-xylene	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32 41.24 19.96 20.52	TestCoo TestM PQL 0.50 0.50 0.50 0.50 1.0 0.50 0.50 0.50	de: TO-15 Pet No: TO-15 SPK value 20 20 20 20 40 20 20 20 20 20	trol Units: ppbv SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 104 99.5 102 103 99.8 103	Prep Dat Analysis Dat LowLimit 50 50 50 50 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE) m,p-Xylene MTBE o-xylene t-Butyl alcohol (t-Butanol)	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32 41.24 19.96 20.52 18.68	TestCoo TestN PQL 0.50 0.50 0.50 0.50 1.0 0.50 0.50 0.50	de: TO-15 Pet No: TO-15 SPK value 20 20 20 20 40 20 20 20 20 20 20 20	trol Units: ppbv SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 104 99.5 102 103 99.8 103 93.4	Prep Dat Analysis Dat LowLimit 50 50 50 50 50 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE) m,p-Xylene MTBE o-xylene t-Butyl alcohol (t-Butanol) tert-Amyl methyl ether (TAME)	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32 41.24 19.96 20.52 18.68 22.19	TestCoo TestN PQL 0.50 0.50 0.50 0.50 1.0 0.50 0.50 0.50	de: TO-15 Pet lo: TO-15 SPK value 20 20 20 20 20 20 20 20 20 20 20 20 20	trol Units: ppbv SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 104 99.5 102 103 99.8 103 93.4 111	Prep Dat Analysis Dat LowLimit 50 50 50 50 50 50 50 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150 150 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual
Sample ID LCS Client ID: ZZZZZ Analyte Benzene Ethyl Benzene Ethyl tert-butyl ether (ETBE) Isopropyl ether (DIPE) m,p-Xylene MTBE o-xylene t-Butyl alcohol (t-Butanol) tert-Amyl methyl ether (TAME) Toluene	SampType: LCS Batch ID: P14815 Result 20.07 20.88 19.90 20.32 41.24 19.96 20.52 18.68 22.19 21.81	TestCoo TestN PQL 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	de: TO-15 Pet lo: TO-15 SPK value 20 20 20 20 20 20 20 20 20 20 20 20 20	trol Units: ppbv SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 104 99.5 102 103 99.8 103 93.4 111 109	Prep Dat Analysis Dat LowLimit 50 50 50 50 50 50 50 50 50 50 50 50	te: 12/7/20 te: 12/7/20 HighLimit 150 150 150 150 150 150 150 150 150 150	07 07 RPD Ref Val	RunNo: 14 SeqNo: 21 %RPD	815 3028 RPDLimit	Qual

Qualifiers:

Value above quantitation range Е

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits Page 2 of 5

S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

R

CLIENT: Soma Environmnental Engineering, Inc. Work Order: 0712034

2334

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: P14815

Sample ID LCSD	SampType: LCSD	ampType: LCSD TestCode: TO-15 Petrol Units: ppbv			Prep Date: 12/7/2007				RunNo: 14815		
Client ID: ZZZZZ	Batch ID: P14815	Test	No: TO-15			Analysis Da	te: 12/7/20	007	SeqNo: 21	3029	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	19.61	0.50	20	0	98.0	50	150	20.07	2.32	0	
Ethyl Benzene	20.50	0.50	20	0	103	50	150	20.88	1.84	0	
Ethyl tert-butyl ether (ETBE)	19.84	0.50	20	0	99.2	50	150	19.9	0.302	0	
Isopropyl ether (DIPE)	21.58	0.50	20	0	108	50	150	20.32	6.01	0	
m,p-Xylene	40.39	1.0	40	0	101	50	150	41.24	2.08	0	
МТВЕ	20.08	0.50	20	0	100	50	150	19.96	0.599	0	
o-xylene	20.28	0.50	20	0	101	50	150	20.52	1.18	0	
t-Butyl alcohol (t-Butanol)	19.44	0.50	20	0	97.2	50	150	18.68	3.99	0	
tert-Amyl methyl ether (TAME)	22.86	0.50	20	0	114	50	150	22.19	2.97	0	
Toluene	21.40	0.50	20	0	107	50	150	21.81	1.90	0	
Surr: 4-Bromofluorobenzene	20.26	0	20	0	101	65	135	0	0	0	

Value above quantitation range **Qualifiers:** Е ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J

S

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 3 of 5
CLIENT: Soma Environmnental Engineering, Inc. Work Order: 0712034

2334

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R14815

Sample ID MB-TED	SampType: MBLK	TestCo	de: TO-14 (Te	_	Prep Date	e: 12/8/20)07	RunNo: 148	315	_				
Client ID: ZZZZZ	Batch ID: R14815	Test	No: TO-14			Analysis Date	e: 12/8/20	107	SeqNo: 212	2967				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene	ND	0.28												
Ethyl Benzene	ND	0.090												
Isopropanol	ND	0.40												
m,p-xylene	ND	0.11												
MTBE	ND	0.14												
o-xylene	ND	0.14												
Toluene	ND	0.14												
Surr: 4-Bromofluorobenzene	19.91	0	20	0	99.6	65	135							
Sample ID LCS-TED	SampType: LCS	TestCo	TestCode: TO-14 (Tedlar Units: ppbv			Prep Date	e: 12/7/20)07	RunNo: 148	RunNo: 14815				
Client ID: ZZZZZ	Batch ID: R14815	Test	TestNo: TO-14			Analysis Date: 12/7/2007			SeqNo: 212968					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene	17.73	0.28	20	0	88.6	50	150							
Ethyl Benzene	22.37	0.090	20	0	112	50	150							
Isopropanol	20.57	0.40	20	0	103	50	150							
m,p-xylene	43.73	0.11	40	0	109	50	150							
MTBE	23.03	0.14	20	0	115	50	150							
o-xylene	22.07	0.14	20	0	110	50	150							
Toluene	20.06	0.14	20	0	100	50	150							
Surr: 4-Bromofluorobenzene	17.87	0	20	0	89.4	50	150							
Sample ID LCSD-TED	SampType: LCSD	TestCo	de: TO-14 (Te	dlar Units: ppbv		Prep Date	e: 12/7/20)07	RunNo: 148	315				
Client ID: ZZZZZ	Batch ID: R14815	Test	No: TO-14			Analysis Date	e: 12/7/20	107	SeqNo: 212	2969				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene	20.90	0.28	20	0	104	50	150	17.73	16.4	25				
Ethyl Benzene	22.90	0.090	20	0	114	50	150	22.37	2.34	25				
Isopropanol	21.29	0.40	20	0	106	50	150	20.57	3.44	0				
m,p-xylene	45.94	0.11	40	0	115	50	150	43.73	4.93	25				
МТВЕ	26.08	0.14	20	0	130	50	150	23.03	12.4	0				
						· · · ·								

Qualifiers: Е

Value above quantitation range

Holding times for preparation or analysis exceeded Н

Analyte detected below quantitation limits J S

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits Page 4 of 5

CLIENT: Soma Environmnental Engineering, Inc. Work Order: 0712034

2334 **Project:**

ANALYTICAL QC SUMMARY REPORT

BatchID: R14815

Sample ID LCSD-TED	SampType: LCSD	TestCode: TO-14 (Tedlar Units: ppbv				Prep Date: 12/7/2007			RunNo: 14815			
Client ID: ZZZZZ	Batch ID: R14815	TestNo: TO-14				Analysis Da	te: 12/7/20	07	SeqNo: 212	SeqNo: 212969		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
o-xylene	22.44	0.14	20	0	112	50	150	22.07	1.66	25		
Toluene	20.63	0.14	20	0	103	50	150	20.06	2.80	25		
Surr: 4-Bromofluorobenzene	18.34	0	20	0	91.7	50	150	0	0	0		

R

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits Page 5 of 5 S

	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.525 FAX: 408.263.8293 www.torrentlab.com	e Road 58 RESE	T • NC	(Teish/		NIN REAS			FOD` Ittlabiu	Y Seonlyo		3 WORK ORDER NO
Company Name: SOMA Enviro	n mental E	Engr.	Inc.	Locat	ion of S	ampling	: 3609	7 Inte	irnati	onal F	31 vd. (Dakland, CA
Address: 6620 Owens D	r. Suite	A		Purpo	se:Sc	il ()apor	- Extra	actio	+ Re	metic	ation
City: Pleasantan State	: CA	Zip Code:	9458	8 Speci	al Instru	ctions /	Commer	nts:				
Telephone: 925.734.6400FAX:	925.734.	6401										
REPORT TO: Jusse Acedillo SAMPLER: Jesse Acedillo P.O. #: 2334 EMAIL: jacedillo a Somaenv. cor										naenv.com		
TURNAROUND TIME: Standard	SAMPLE TYPE:		REPORT	FORMAT:		5						
10 Work Days 3 Work Days Noon - Nxt D 7 Work Days 2 Work Days 2 - 8 Hours 5 Work Days 1 Work Day Other	Day Storm Water Waste Water Ground Water Soil	Air Other	QC Lev EDF Excel /	el IV EDD	10-3 24921	0-15 BE, Xygerad	5					ANALYSIS REQUESTED
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	F	TEN						REMARKS
UIA MW-3 Stack	12/4/07		1	Tedlar Bag	X	$\boldsymbol{\lambda}$						
12A MW-3 InFluent	12/4/07		i	Tedlar Brg	\mathcal{X}	Х						
03P MW-3 Influent	12/5/07		l	TEDIAN	X	У						
				•								
					+							
				-								
											· · · · ·	
Belinquished By: Print: Print: Tess Ace	Lilly 12/51	07	Time:		Receiv	ed By:	Patel	Print:	<u>Ani</u>	Date:	2.5.0)	Time: //.66
2 Relinquished By: Print:	Date:		Time:		Receiv	ed By: `	e dan yeka Lan 221	Print:		Date:		Time:
Were Samples Received in Good Condition?	Yes 🔲 NO Sa	mples on Ic	e? 🔲 Ye		Method	l of Ship	ment			Sample s	eals intact?	Yes 🚺 NO 🚺 N/A
NOTE: Samples are discarded by the laborat	tory 30 days from date	e of receipt u	unless othe og In Revie	arrange wed By:	-ment	s are ma	ıde.	Di	ate:	ಎಂದ ಈ ಪ್ರತಿ ನಿನ್ನೆ ಸ್ಟ್ರಾಕ್ ಕ್ರಿ ^{ಕ್ರಿಕ} ್ರಾಗಿ	Page	of

December 12, 2007

Jesse Acedillo Soma Environmnental Engineering, Inc. 6620 Owens Dr. Suite A Pleasanton, CA 94588

TEL: 925-734-6400 FAX:

RE: 2334

Dear Jesse Acedillo:

Order No.: 0712024

Torrent Laboratory, Inc. received 3 samples on 12/5/2007 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

Laboratory Director Date

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Report prepared for: Jesse Acedillo

Soma Environmnental Engineering, Inc.

Date Received: 12/5/2007 **Date Reported:** 12/12/2007

Client Sample ID:	MW-3 Stack
Sample Location:	3609 International Blvd., Oaklan
Sample Matrix:	AIR
Date/Time Sampled	12/4/2007

Lab Sample ID: 0712024-001 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	TO-15	12/5/2007	0.5	10	5.0	5.0	ppbv	R14787
Ethyl Benzene	TO-15	12/5/2007	0.5	10	5.0	ND	ppbv	R14787
Ethyl tert-butyl ether (ETBE)	TO-15	12/5/2007	0.5	10	5.0	ND	ppbv	R14787
Isopropyl ether (DIPE)	TO-15	12/5/2007	0.5	10	5.0	ND	ppbv	R14787
m,p-Xylene	TO-15	12/5/2007	1	10	10	22	ppbv	R14787
МТВЕ	TO-15	12/5/2007	0.5	10	5.0	ND	ppbv	R14787
o-xylene	TO-15	12/5/2007	0.5	10	5.0	6.4	ppbv	R14787
t-Butyl alcohol (t-Butanol)	TO-15	12/5/2007	0.5	10	5.0	ND	ppbv	R14787
tert-Amyl methyl ether (TAME)	TO-15	12/5/2007	0.5	10	5.0	ND	ppbv	R14787
Toluene	TO-15	12/5/2007	0.5	10	5.0	40	ppbv	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/5/2007	0	10	65-135	94.2	%REC	R14787
Note: The reporting limits were raised due	to insufficient samp	ole volume.						
Benzene	TO-15	12/5/2007	1.6	10	16	16	µg/m³	R14787
Ethyl Benzene	TO-15	12/5/2007	1.67	10	17	ND	µg/m³	R14787
Ethyl tert-butyl ether (ETBE)	TO-15	12/5/2007	2.09	10	21	ND	µg/m³	R14787
Isopropyl ether (DIPE)	TO-15	12/5/2007	2.09	10	21	ND	µg/m³	R14787
m,p-Xylene	TO-15	12/5/2007	2.05	10	20	97	µg/m³	R14787
МТВЕ	TO-15	12/5/2007	1.81	10	18	ND	µg/m³	R14787
o-xylene	TO-15	12/5/2007	2.7	10	27	28	µg/m³	R14787
t-Butyl alcohol (t-Butanol)	TO-15	12/5/2007	1.515	10	15	ND	µg/m³	R14787
tert-Amyl methyl ether (TAME)	TO-15	12/5/2007	2.09	10	21	ND	µg/m³	R14787
Toluene	TO-15	12/5/2007	1.89	10	19	150	µg/m³	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/5/2007	0	10	65-135	94.2	%REC	R14787
Gasoline	TO-3(MOD)	12/6/2007	100	20	2000	ND	ppbv	G14787
Note: See comment for TO-15 Petroleum.								
Gasoline	TO-3(MOD)	12/6/2007	352	20	7000	ND	µg/m³	G14787

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Jesse Acedillo Soma Environmnental Engineering, Inc.

Date Received: 12/5/2007 **Date Reported:** 12/12/2007

Client Sample ID:MW-3 InfluentSample Location:3609 International Blvd., OaklanSample Matrix:AIRDate/Time Sampled12/4/2007

Lab Sample ID: 0712024-002 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	TO-15	12/6/2007	0.5	1000	500	24000	ppbv	R14787
Ethyl Benzene	TO-15	12/6/2007	0.5	500	250	13000	ppbv	R14787
Ethyl tert-butyl ether (ETBE)	TO-15	12/6/2007	0.5	500	250	ND	ppbv	R14787
Isopropyl ether (DIPE)	TO-15	12/6/2007	0.5	500	250	ND	ppbv	R14787
m,p-Xylene	TO-15	12/6/2007	1	500	500	33000	ppbv	R14787
МТВЕ	TO-15	12/6/2007	0.5	500	250	540	ppbv	R14787
o-xylene	TO-15	12/6/2007	0.5	500	250	5000	ppbv	R14787
t-Butyl alcohol (t-Butanol)	TO-15	12/6/2007	0.5	500	250	ND	ppbv	R14787
tert-Amyl methyl ether (TAME)	TO-15	12/6/2007	0.5	500	250	ND	ppbv	R14787
Toluene	TO-15	12/6/2007	0.5	500	250	3200	ppbv	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/6/2007	0	500	65-135	99.6	%REC	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/6/2007	0	1000	65-135	95.8	%REC	R14787
Benzene	TO-15	12/6/2007	1.6	1000	1600	76000	µg/m³	R14787
Ethyl Benzene	TO-15	12/6/2007	1.67	500	840	55000	µg/m³	R14787
Ethyl tert-butyl ether (ETBE)	TO-15	12/6/2007	2.09	500	1000	ND	µg/m³	R14787
Isopropyl ether (DIPE)	TO-15	12/6/2007	2.09	500	1000	ND	µg/m³	R14787
m,p-Xylene	TO-15	12/6/2007	2.05	500	1000	140000	µg/m³	R14787
MTBE	TO-15	12/6/2007	1.81	500	900	1900	µg/m³	R14787
o-xylene	TO-15	12/6/2007	2.7	500	1400	22000	µg/m³	R14787
t-Butyl alcohol (t-Butanol)	TO-15	12/6/2007	1.515	500	760	ND	µg/m³	R14787
tert-Amyl methyl ether (TAME)	TO-15	12/6/2007	2.09	500	1000	ND	µg/m³	R14787
Toluene	TO-15	12/6/2007	1.89	500	940	12000	µg/m³	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/6/2007	0	1000	65-135	95.8	%REC	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/6/2007	0	500	65-135	99.6	%REC	R14787
Gasoline	TO-3(MOD)	12/6/2007	100	5000	500000	2600000x	ppbv	G14787
Note: x - Although TPH as Gasoline c gasoline range.	onstituents are present,	results are elevate	ed due to th	e presence o	f non-target	compounds wit	hin the	
Gasoline	TO-3(MOD)	12/6/2007	352	5000	1800000	9200000x	µg/m³	G14787

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Jesse Acedillo Soma Environmnental Engineering, Inc.

Date Received: 12/5/2007 **Date Reported:** 12/12/2007

Client Sample ID:MW-3 InfluentSample Location:3609 International Blvd., OaklanSample Matrix:AIRDate/Time Sampled12/5/2007

Lab Sample ID: 0712024-003 Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Benzene	TO-15	12/5/2007	0.5	500	250	24000	ppbv	R14787
Ethyl Benzene	TO-15	12/5/2007	0.5	500	250	2300	ppbv	R14787
Ethyl tert-butyl ether (ETBE)	TO-15	12/5/2007	0.5	500	250	ND	ppbv	R14787
Isopropyl ether (DIPE)	TO-15	12/5/2007	0.5	500	250	ND	ppbv	R14787
m,p-Xylene	TO-15	12/5/2007	1	500	500	7900	ppbv	R14787
МТВЕ	TO-15	12/5/2007	0.5	500	250	ND	ppbv	R14787
o-xylene	TO-15	12/5/2007	0.5	500	250	1700	ppbv	R14787
t-Butyl alcohol (t-Butanol)	TO-15	12/5/2007	0.5	500	250	ND	ppbv	R14787
tert-Amyl methyl ether (TAME)	TO-15	12/5/2007	0.5	500	250	ND	ppbv	R14787
Toluene	TO-15	12/5/2007	0.5	500	250	8700	ppbv	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/5/2007	0	500	65-135	93.7	%REC	R14787
Benzene	TO-15	12/5/2007	1.6	500	800	76000	µg/m³	R14787
Ethyl Benzene	TO-15	12/5/2007	1.67	500	840	10000	µg/m³	R14787
Ethyl tert-butyl ether (ETBE)	TO-15	12/5/2007	2.09	500	1000	ND	µg/m³	R14787
Isopropyl ether (DIPE)	TO-15	12/5/2007	2.09	500	1000	ND	µg/m³	R14787
m,p-Xylene	TO-15	12/5/2007	2.05	500	1000	34000	µg/m³	R14787
МТВЕ	TO-15	12/5/2007	1.81	500	900	ND	µg/m³	R14787
o-xylene	TO-15	12/5/2007	2.7	500	1400	7400	µg/m³	R14787
t-Butyl alcohol (t-Butanol)	TO-15	12/5/2007	1.515	500	760	ND	µg/m³	R14787
tert-Amyl methyl ether (TAME)	TO-15	12/5/2007	2.09	500	1000	ND	µg/m³	R14787
Toluene	TO-15	12/5/2007	1.89	500	940	33000	µg/m³	R14787
Surr: 4-Bromofluorobenzene	TO-15	12/5/2007	0	500	65-135	93.7	%REC	R14787
Gasoline	TO-3(MOD)	12/6/2007	100	500	50000	1520000x	ppbv	G14787
Note: x - Although TPH as Gasoline co gasoline range.	onstituents are present,	results are elevate	ed due to th	e presence of	non-target	compounds wit	hin the	
Gasoline	TO-3(MOD)	12/6/2007	352	500	180000	5300000x	µg/m³	G14787

Torrent Laboratory, Inc.

CLIENT:Soma Environmnental Engineering, Inc.Work Order:0712024Project:2334

ANALYTICAL QC SUMMARY REPORT

BatchID: G14787

Sample ID: MB-G Client ID: ZZZZZ	SampType: MBLK Batch ID: G14787	TestCode: TO-3Gas (MO Units: ppbv TestNo: TO-3(MOD)	Prep Date: 12/6/2007 Analysis Date: 12/6/2007	RunNo: 14787 SeqNo: 212730
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	ND	100		
Sample ID: LCS-G Client ID: ZZZZZ	SampType: LCS Batch ID: G14787	TestCode: TO-3Gas (MO Units: ppbv TestNo: TO-3(MOD)	Prep Date: 12/5/2007 Analysis Date: 12/5/2007	RunNo: 14787 SeqNo: 212764
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	1189	100 1000 0	119 50 150	
Sample ID: LCSD-G Client ID: ZZZZZ	SampType: LCSD Batch ID: G14787	TestCode: TO-3Gas (MO Units: ppbv TestNo: TO-3(MOD)	Prep Date: 12/6/2007 Analysis Date: 12/6/2007	RunNo: 14787 SeqNo: 212765
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	1200	100 1000 0	120 50 150 1189	0.887 30

CLIENT: Soma Environmnental Engineering, Inc. Work Order: 0712024

2334

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R14787

Sample ID: MB	SampType: MBLK	TestCode: TO-15		Units: ppbv		Prep Da	te: 12/5/20	07	RunNo: 14787			
Client ID: ZZZZZ	Batch ID: R14787	TestN	lo: TO-15			Analysis Da	te: 12/5/20	07	SeqNo: 212	2525		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	ND	0.50										
Ethyl Benzene	ND	0.50										
m,p-Xylene	ND	0.50										
MTBE	ND	0.50										
o-xylene	ND	0.50										
Toluene	ND	0.50										
Surr: 4-Bromofluorobenzene	21.95	0	20	0	110	50	150					
Sample ID: LCS	SampType: LCS	TestCoo	de: TO-15	Units: ppbv		Prep Da	te: 12/5/20	07	RunNo: 147	787		
Client ID: ZZZZZ	Batch ID: R14787	TestN	lo: TO-15		Analysis Date: 12/5/2007		SeqNo: 212					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	19.57	0.50	20	0	97.8	50	150					
Ethyl Benzene	21.44	0.50	20	0	107	50	150					
m,p-Xylene	41.96	0.50	40	0	105	50	150					
MTBE	20.39	0.50	20	0	102	50	150					
o-xylene	20.94	0.50	20	0	105	50	150					
Toluene	22.47	0.50	20	0	112	50	150					
Surr: 4-Bromofluorobenzene	21.04	0	20	0	105	50	150					
Sample ID: LCSD	SampType: LCSD	TestCoo	de: TO-15	Units: ppbv		Prep Da	te: 12/6/20	07	RunNo: 147	787		
Client ID: ZZZZZ	Batch ID: R14787	TestN	lo: TO-15			Analysis Da	te: 12/6/20	07	SeqNo: 212	2527		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	18.43	0.50	20	0	92.2	50	150	19.57	6.00	30		
Ethyl Benzene	19.73	0.50	20	0	98.6	50	150	21.44	8.31	30		
m,p-Xylene	39.00	0.50	40	0	97.5	50	150	41.96	7.31	30		
МТВЕ	18.68	0.50	20	0	93.4	50	150	20.39	8.75	30		
o-xylene	19.30	0.50	20	0	96.5	50	150	20.94	8.15	30		
Toluene	20.44	0.50	20	0	102	50	150	22.47	9.46	30		
Surr: 4-Bromofluorobenzene	18.68	0	20	0	93.4	50	150	0	0	30		

Recovery of the MS and/or MSD was out of control due t 4 **Qualifiers:** 3

R

RPD outside accepted recovery limits

The MS/MSD RPD was out of control due to matrix inter Q Spike recovery and RPD control limits do not apply result

S

Spike Recovery outside accepted recovery limits

CHAIN OF CUSTODY FORM

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B

PAL Login# 7120004

Alameda, CA 94501 510-864-0364 Telephone

510-864-0365 Fax

Projec	t No: 2334			Sa	mple	ər:	Eric bas	isne		wa	1100	rge		621	Ana	lyses/	Method	
Projec	t Name: Oakl	Internation and, CA	mal Bluel.	Re	port	To:	Jesse	A	æð	216		0		MTBE				
				Co	mpa	any:	SOMA En	viror	nme	ntal	Engi	neering, Inc.		TX				
Turna	around Time: St	andard		Te Fa	l: x:	925 925	5-734-6400 5-734-6401							3,87				
- 1		Sampling	Date/Time	N	latri	x	# of Containers	1	Prese	rvati	ves			HALL				
Lab No.	Sample ID	Date	Time	Soil	Water	Waste		HCL	H ₂ So4	HNO ₃	ICE	Fi	eld Notes					
	MW-1	12/03/07	1134		X		4VOA	X			×			X	+	++	_	
	MW-3	12/03/07	1145		x		4 VOA	x			X			X				
															+			
Camp	las Damaskas																	
Samp	ler Kemarks:					-	Relinquist	ned I	by:	-	Date	e/Time:	Received by:			Date/	Time:	
	EDF Re	eq'd					(5	~		12/3	3/07 6:200	Sep O	nd	4	2/3/	of a	,:20pm
							Aco	æ	mD	B	12)	4/07	V. Vasquez	-		12/4	107	16:25

8-

19 December 2007

Mansour Sepehr SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

RE: 3609 International Blvd, Oakland

Work Order Number: 7120004

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Mapd Ach

Maiid Akhavan Laboratorv Director

SOMA Environmental Engineering Inc.	Project:	3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number:	2334	Reported:
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	19-Dec-07 19:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	7120004-01	Water	03-Dec-07 11:34	04-Dec-07 16:25
MW-3	7120004-02	Water	03-Dec-07 11:45	04-Dec-07 16:25

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd, Oakland Project Number: 2334 Project Manager: Mansour Sepehr

Reported: 19-Dec-07 19:02

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (7120004-01) Water Sampled: 0.	3-Dec-07 11:34 Receiv	ved: 04-Dec-0	7 16:25						
Gasoline (C6-C12)	839	50.0	ug/l	1	BL71301	04-Dec-07	13-Dec-07	EPA 8260B	
Benzene	8.83	0.500	"	"	"			"	
Ethylbenzene	0.830	0.500	"	"	"	"		"	
m&p-Xylene	ND	2.00	"	"	"	"		"	
o-xylene	ND	0.500	"	"	"	"		"	
Toluene	ND	2.00	"	"	"			"	
MTBE	3.99	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	70-	-130	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	70-	-130	"	"	"	"	
Surrogate: Perdeuterotoluene		105 %	70-	-130	"	"	"	"	
MW-3 (7120004-02) Water Sampled: 0.	3-Dec-07 11:45 Receiv	ved: 04-Dec-0	7 16:25						
Gasoline (C6-C12)	2040	550	ug/l	11	BL71301	04-Dec-07	13-Dec-07	EPA 8260B	
Benzene	2200	5.50	"	"	"	"		"	
Ethylbenzene	115	5.50	"	"	"	"		"	
m&p-Xylene	24.0	22.0	"	"	"	"		"	
o-xylene	8.76	5.50	"	"	"	"		"	
Toluene	ND	22.0	"	"	"			"	
MTBE	25.4	5.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.6 %	70-	-130	"	"	"	"	
Surrogate: Dibromofluoromethane	110 %	70-	-130	"	"	"	"		
Surrogate: Perdeuterotoluene		104 %	70-	-130	"	"	"	"	

Pacific Analytical Laboratory

SOMA Environmental Engineering Inc.	Project:	3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number:	2334	Reported:
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	19-Dec-07 19:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		
Batch BL71301 - EPA 5030 Water MS												
Blank (BL71301-BLK1)				Prepared &	Analyzed:	13-Dec-07						
Surrogate: 4-Bromofluorobenzene	47.2		ug/l	50.0		94.4	70-130					
Surrogate: Dibromofluoromethane	54.9		"	50.0		110	70-130					
Surrogate: Perdeuterotoluene	51.9		"	50.0		104	70-130					
Gasoline (C6-C12)	ND	50.0	"									
Benzene	ND	0.500	"									
Ethylbenzene	ND	0.500	"									
m&p-Xylene	ND	2.00	"									
o-xylene	ND	0.500	"									
Toluene	ND	2.00	"									
MTBE	ND	0.500	"									
LCS (BL71301-BS1)				Prepared &	Prepared & Analyzed: 13-Dec-07 50.0 77.4 70-130 50.0 74.0 70-130 50.0 89.0 70-130 2000 116 70-130							
Surrogate: 4-Bromofluorobenzene	38.7		ug/l	50.0		77.4	70-130					
Surrogate: Dibromofluoromethane	37.0		"	50.0		74.0	70-130					
Surrogate: Perdeuterotoluene	44.5		"	50.0		89.0	70-130					
Gasoline (C6-C12)	2310	50.0	"	2000		116	70-130					
Benzene	132	0.500	"	100		132	70-140					
Toluene	91.5	2.00	"	100		91.5	70-130					
MTBE	121	0.500	"	100		121	70-130					
LCS Dup (BL71301-BSD1)				Prepared &	Analyzed:	13-Dec-07						
Surrogate: 4-Bromofluorobenzene	38.9		ug/l	50.0		77.8	70-130					
Surrogate: Dibromofluoromethane	38.0		"	50.0		76.0	70-130					
Surrogate: Perdeuterotoluene	45.0		"	50.0		90.0	70-130					
Gasoline (C6-C12)	2260	50.0	"	2000		113	70-130	2.19	20			
Benzene	137	0.500	"	100		137	70-140	3.72	20			
Toluene	92.5	2.00	"	100		92.5	70-130	1.09	20			
MTBE	106	0.500	"	100		106	70-130	13.2	20			

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd, Oakland Project Number: 2334 Project Manager: Mansour Sepehr

Reported: 19-Dec-07 19:02

Notes and Definitions

DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2007-Dec-12-1920.b\12120706.D Operator : dh Acquired : 12 Dec 2007 10:19 pm using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BL71301-BLK1 Misc Info : Vial Number: 6


```
File :C:\MSDChem\1\DATA\2007-Dec-12-1920.b\12120703.D
Operator : dh
Acquired : 12 Dec 2007 8:47 pm using AcqMethod OXY21506.M
Instrument : PAL GCMS
Sample Name: BL71301-BS1@voc
Misc Info :
Vial Number: 3
```



```
File :C:\MSDChem\1\DATA\2007-Dec-12-1920.b\12120704.D
Operator : dh
Acquired : 12 Dec 2007 9:18 pm using AcqMethod OXY21506.M
Instrument : PAL GCMS
Sample Name: BL71301-BS1@gas
Misc Info :
Vial Number: 4
```


CHAIN OF CUSTODY FORM

Page _ | of _ |

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 Telephone

510-864-0365 Fax

Analyses/Method 2334 Sampler: Eric Gassner-Wollwage Project No: 00 826 3609 International Blud Dakland, CA Report To: Jesse Acedillo Project Name: BTEX, MEBE Company: SOMA Environmental Engineering, Inc. **Turnaround Time: Standard** 925-734-6400 Tel: Fax: 925-734-6401 TPHA # of Sampling Date/Time Matrix Containers Preservatives Waste Water Sample ID Soil H₂So4 Lab Date Time HNO₃ HCL ICE **Field Notes** No. 12/7/07/1246 X 4 VOAS × MU-1 X + + MU-3 1243 X × x 10 11 × X Sampler Remarks: Relinquished by: Date/Time: Received by: Date/Time: 12/7/07 13:50 p. 12/7/07 13:35 EDFRegid ye Vasquez

PAL Login# 7/20008

19 December 2007

Mansour Sepehr SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

RE: 3609 International Blvd, Oakland

Work Order Number: 7120008

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Mapd Ach

Maiid Akhavan Laboratorv Director

SOMA Environmental Engineering Inc.	Project:	3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number:	2334	Reported:
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	19-Dec-07 19:28

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	7120008-01	Water	07-Dec-07 12:46	07-Dec-07 13:44
MW-3	7120008-02	Water	07-Dec-07 12:43	07-Dec-07 13:44

Pacific Analytical Laboratory

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd, Oakland Project Number: 2334 Project Manager: Mansour Sepehr

Reported: 19-Dec-07 19:28

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (7120008-01RE1) Water	Sampled: 07-Dec-07 12:46	Received: 07-D	ec-07 13:	44					
Gasoline (C6-C12)	2270	50.0	ug/l	1	BL71301	09-Dec-07	17-Dec-07	EPA 8260B	
Benzene	20.4	0.500	"	"	"	"		"	
Ethylbenzene	34.3	0.500	"	"	"	"		"	
m&p-Xylene	36.5	2.00	"	"	"	"		"	
o-xylene	13.2	0.500	"	"	"	"		"	
Toluene	6.47	2.00	"	"	"	"		"	
MTBE	10.5	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	70	-130	"	"	"	"	
Surrogate: Dibromofluoromethane	2	112 %	70	-130	"	"	"	"	
Surrogate: Perdeuterotoluene		108 %	70	-130	"	"	"	"	
MW-3 (7120008-02) Water San	npled: 07-Dec-07 12:43 Rec	eived: 07-Dec-0	7 13:44						
Gasoline (C6-C12)	4610	550	ug/l	11	BL71301	09-Dec-07	14-Dec-07	EPA 8260B	
Benzene	785	5.50	"	"	"	"		"	
Ethylbenzene	275	5.50	"	"	"	"		"	
m&p-Xylene	179	22.0	"	"	"	"		"	
o-xylene	82.6	5.50	"	"	"	"		"	
Toluene	57.1	22.0	"	"	"	"		"	
MTBE	6.40	5.50	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	70	-130	"	"	"	"	
Surrogate: Dibromofluoromethane	2	114 %	70	-130	"	"	"	"	
Surrogate: Perdeuterotoluene		107 %	70	-130	"	"	"	"	

SOMA Environmental Engineering Inc.	Project: 36	609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number: 23	334	Reported:
Pleasanton CA, 94588	Project Manager: Ma	Iansour Sepehr	19-Dec-07 19:28

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BL71301 - EPA 5030 Water MS										
Blank (BL71301-BLK1)				Prepared &	Analyzed:	13-Dec-07				
Surrogate: 4-Bromofluorobenzene	47.2		ug/l	50.0		94.4	70-130			
Surrogate: Dibromofluoromethane	54.9		"	50.0		110	70-130			
Surrogate: Perdeuterotoluene	51.9		"	50.0		104	70-130			
Gasoline (C6-C12)	ND	50.0	"							
Benzene	ND	0.500	"							
Ethylbenzene	ND	0.500	"							
m&p-Xylene	ND	2.00	"							
o-xylene	ND	0.500	"							
Toluene	ND	2.00	"							
MTBE	ND	0.500	"							
LCS (BL71301-BS1)				Prepared & Analyzed: 13-Dec-07						
Surrogate: 4-Bromofluorobenzene	38.7		ug/l	50.0		77.4	70-130			
Surrogate: Dibromofluoromethane	37.0		"	50.0		74.0	70-130			
Surrogate: Perdeuterotoluene	44.5		"	50.0		89.0	70-130			
Gasoline (C6-C12)	2310	50.0	"	2000		116	70-130			
Benzene	132	0.500	"	100		132	70-140			
Toluene	91.5	2.00	"	100		91.5	70-130			
MTBE	121	0.500	"	100		121	70-130			
LCS Dup (BL71301-BSD1)				Prepared &	Analyzed:	13-Dec-07				
Surrogate: 4-Bromofluorobenzene	38.9		ug/l	50.0		77.8	70-130			
Surrogate: Dibromofluoromethane	38.0		"	50.0		76.0	70-130			
Surrogate: Perdeuterotoluene	45.0		"	50.0		90.0	70-130			
Gasoline (C6-C12)	2260	50.0	"	2000		113	70-130	2.19	20	
Benzene	137	0.500	"	100		137	70-140	3.72	20	
Toluene	92.5	2.00	"	100		92.5	70-130	1.09	20	
MTBE	106	0.500	"	100		106	70-130	13.2	20	

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd, Oakland Project Number: 2334 Project Manager: Mansour Sepehr

Reported: 19-Dec-07 19:28

Notes and Definitions

DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2007-Dec-12-1920.b\12120706.D Operator : dh Acquired : 12 Dec 2007 10:19 pm using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BL71301-BLK1 Misc Info : Vial Number: 6


```
File :C:\MSDChem\1\DATA\2007-Dec-12-1920.b\12120703.D
Operator : dh
Acquired : 12 Dec 2007 8:47 pm using AcqMethod OXY21506.M
Instrument : PAL GCMS
Sample Name: BL71301-BS1@voc
Misc Info :
Vial Number: 3
```



```
File :C:\MSDChem\1\DATA\2007-Dec-12-1920.b\12120704.D
Operator : dh
Acquired : 12 Dec 2007 9:18 pm using AcqMethod OXY21506.M
Instrument : PAL GCMS
Sample Name: BL71301-BS1@gas
Misc Info :
Vial Number: 4
```


APPENDIX C

MPE Pilot Test Field Data Sheets

Multi-Phase Extraction Pilot Test, December 2007

SITE: ADDRESS:

3609 International Blvd., Oakland, CA

PERSONNEL: Jesse Acedillo

PROJECT #: 2334

				MTS	OPERATIONA	L DATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	PUMP/AIR TEMPERATURE (F)	STINGER VACUUM (IN-Hg)	PUMP VACUUM (IN-Hg)	TOTAL FLOW (SCFM)	DILUTION FLOW (SCFM)	WELL FLOW (SCFM)	INFLUENT CONCENTRATION (PPMV)	WATER TOTALIZER
12/3/2007	1330	collected Pre-GW sa	mple from MW-1,3; beg	in extraction	from MW-3					
	1345	1582	169	24.6	28.2	19	0	19	7,000	0
	1400	1611	169	24.8	28	22	0	22	7,150	0
	1415	1620	170	24.4	28	22	0	22	6,900	36
	1430	1629	169	24.4	28	22	0	22	6,910	36
	1445									
	1500									
	1530	1601	171	24.4	28	22	0	22	5,650	142
	1630	1584	169	25	28	22	0	22	4,780	212
12/4/2007	630	1538	168	24.4	28	22	0	22	2,570	1,106
	730	1545	168	24.4	28	22	0	22	2,560	1,174
	830	1543	168	24.4	27.8	25	0	25	2,560	1,212
	930	1539	167	24.4	28	22	0	22	2,500	1,276
	1030	1546	167	24.3	27.9	23	0	23	2,420	1,344
	1130	1536	168	24.3	27.9	23	0	23	2,360	1,378
	1230	1547	168	24.3	27.9	23	0	23	2,270	1,446
	1330	1539	168	24.3	27.8	25	0	25	2,180	1,480
	1430	1535	169	24.2	27.7	27	0	27	2,160	1,547
	1530	1535	169	24.1	27.7	27	0	27	1,919	1,615
	1630	1535	168	24.1	27.6	28	0	28	1,870	1,648
	1730	1530	168	24.1	27.7	27	0	27	1,728	1,682

SITE: ADDRESS: PROJECT #: 2334

3609 International Blvd., Oakland, CA

PERSONNEL: Jesse Acedillo

				MTS	OPERATIONA	L DATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	PUMP/AIR TEMPERATURE (F)	STINGER VACUUM (IN-Hg)	PUMP VACUUM (IN-Hg)	TOTAL FLOW (SCFM)	DILUTION FLOW (SCFM)	WELL FLOW (SCFM)	INFLUENT CONCENTRATION (PPMV)	WATER TOTALIZER
	1800	1527	168	24.1	27.6	28	0	28	1,770	1,716
12/5/2007	800	1508	165	24	27.4	31	0	31	975	2,390
	900	1514	167	24	27.2	35	0	35	1,075	2,457
	1000	1515	169	24	27.4	31	0	31	1,040	2,490
	1100	1515	169	24	27.4	31	0	31	1,020	2,524
		stop extraction from	MW-3; begin extraction	n from MW-1						
	1200									
	1215	1604	168	24	27.8	25	0	25	8,300	2,558
	1230	1591	168	24	27.4	31	0	31	4,040	2,558
	1245	1584	168	24	27.4	31	0	31	3,650	2,558
	1300	1575	168	24	27.4	31	0	31	3,450	2,591
	1500	1509	170	24	27.4	31	0	31	1,215	2,658
	1600	1509	169	24	27.4	31	0	31	1,080	2,691
	1700	1508	169	23.6	27.2	35	0	35	1,050	2,720
12/6/2007	830	1510	166	23.2	26.8	41	0	41	1,100	3,186
	930	1514	167	23.8	26.8	41	0	41	1,125	3,219
	1030	1515	169	23.5	26.8	41	0	41	1,161	3,252
	1130	1508	169	23.5	26.8	41	0	41	1,143	3,285
	1230	1503	169	23.5	26.7	43	0	43	1,142	3,318
	1330	1505	168	23.5	26.6	44	0	44	1,157	3,318
	1430	1505	170	23.4	26.6	44	0	44	1,186	3,350

SITE: ADDRESS: PROJECT #: 2334

3609 International Blvd., Oakland, CA

PERSONNEL: Jesse Acedillo

				MTS	OPERATIONA	L DATA				
DATE	TIME	OXIDIZER TEMPERATURE (F)	DXIDIZER PUMP/AIR STINGER PUMP TOTAL DILUTION IPERATURE TEMPERATURE VACUUM VACUUM FLOW FLOW (SCFM) (F) (F) (IN-Hg) (IN-Hg) (SCFM) SCFM) SCFM)						INFLUENT CONCENTRATION (PPMV)	WATER TOTALIZER
	1530	1505	169	23.4	26.8	41	0	41	1,159	3,383
	1630	1506	169	23.4	26.7	43	0	43	1,183	3,416
	1745	1498	170	23.4	26.6	44	0	44	1,135	3,449
12/7/2007	800	1523	166	22.8	26.6	44	0	44	1,150	3,844
	1000	1524	167	23.6	26.6	44	0	44	1,130	3,910
	1100	1521	170	23	26.6	44	0	44	1,130	3,910
	1200	1523	169	23.6	26.6	44	0	44	1,116	3,993
		collected Post-GW s	ample from MW-1,3							

Golden Gate Remediation Technology

PERSONNEL: J. Acedillo, E. G-W

SITE: Rino Gas ADDRES<u>3609 International Blvd., Oakland</u> PROJEC<u>2334</u>

							MTS MOI		DINT DATA						
DATE	тіме	w	/ELL ID MW-1	v	/ELL ID MW-2	W	ELL ID /IW-3	v	/ELL ID MW-6	v	/ELL ID MW-7	v	/ELL ID MW-8	v	/ELL ID EX-1
		VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)												
		extraction from N	/W-3												
			13.10		12.9		13.55		13.51		12.62				
12/3/2007	1345	0	13.16	0.6	13			0	13.64	0	12.8				
	1430	0	13.21	0.48	13.05			0	13.67	0	12.76				
	1530	0	13.21	0.26	12.48			0	13.69	0	12.83				
	1630	0	13.23	0.25	12.68			0	13.7	0	12.85				
12/4/2007	900	0	13.24	0.32	12.73					0	12.9				
	1100	0	13.21	0.33	12.65			0	13.67	0	12.85				
	1300	0	13.20	0.33	12.63			0	13.64	0	12.82				
	1500	0	13.16	0.32	12.62			0	13.63	0	12.8				
	1700	0	13.17	0.33	12.59			0	13.62	0	12.79				
12/5/2007	730	0	13.13	0.32	12.57			0	13.72	0	12.73				
	930	0	13.14	0.32	12.58			0	13.73	0	12.74			0.03	
	1030	0	13.14	0.32	12.58			0	13.73	0	12.74			0.03	
		extraction from N	/IW-1												
	1200		13.07				14.59		13.62		12.7		12.43		
	1215					0.03	14.13	0	13.6	0	12.7	0.35	12.52	0.05	
	1230					0.03	14.1	0	13.6	0	12.7	0.3	12.52		
	1245					0.03	14.04	0	13.6	0	12.7	0.3	12.53		
	1300					0.03	14	0	13.6	0	12.7	0.3	12.53		
	1500					0.03	13.57	0	13.6	0	12.71	0.9	12.53		
	1700					0.03	13.11	0	13.6	0	12.71	0.9	12.53		
12/6/2007	830					0.03	13.71	0	13.6	0	12.7	1.2	12.65		
	1030					0.03	13.73	0	13.6	0	12.73	1.3	12.67		
	1230					0.03	13.72	0	13.6	0	12.7	2	12.51		
	1430					0.03	13.69	0	13.6	0	12.69	2.3	12.54		
	1630					0.035	13.68	0	13.6	0	12.61	2.8	11.37		

Golden Gate Remediation Technology

PERSONNEL: J. Acedillo, E. G-W

SITE:	Rino Ga	no Gas					PERSONNEL: J. Acedillo, E. G-W										
ADDRE	S <u>3609 In</u>	ternational Blvd.	, Oakland			-											
PROJEC 2334						-											
MTS MONITORING POINT DATA																	
DATE	ТІМЕ	WELL ID MW-1		WELL ID MW-2		WELL ID MW-3		WELL ID MW-6		WELL ID MW-7		WELL ID MW-8		WELL ID EX-1			
		VACCUM (IN WATER)	GW ELEVATION (FEET BELOW TOC)														
	1800					0.035	13.88	0	13.6	0	12.63	2.3	12.39				
12/7/2007	800					0.05	13.6	0	13.37	0	12.52	3	12.34				
	1100					0.05	13.55	0	13.37	0	12.4	3	12.55	0.05			