

ENVIRONMENTAL ENGINEERING, INC 6620 Owens Drive, Suite A • Pleasanton, CA 94588-3334 TEL (925)734-6400 • FAX(925)734-6401

October 13, 2006

Mr. Jerry Wickham Alameda County Department of Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: **StID#3337** Site Address: 3609 International Blvd., Oakland, California

Dear Mr. Wickham:

SOMA's "Third Quarter 2006 Groundwater Monitoring and Remediation System Operation Report" for the subject property has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. If you have any questions or comments, please call me at (925) 734-6400.

Sincerely,

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

Enclosure

cc: Mr. Abolghassem Razi w/report enclosure Tony's Express Auto Service

> Mr. Vince Tong w/report enclosure Traction International

RECEIVED By dehloptoxic at 8:50 am, Oct 16, 2006

ENVIRONMENTAL ENGINEERING, INC 6620 Owens Drive, Suite A • Pleasanton, CA 94588-3334 TEL (925)734-6400 • FAX(925)734-6401

Third Quarter 2006 Groundwater Monitoring and Remediation System Operation Report Tony's Express Auto Service

3609 International Boulevard Oakland, California

October 13, 2006

Project 2331

Prepared for Tony's Express Auto Service 3609 International Boulevard Oakland, California

Prepared by SOMA Environmental Engineering, Inc. 6620 Owens Drive, Suite A Pleasanton, California

Certification

This report has been prepared by SOMA Environmental Engineering, Inc. on behalf of Mr. Abolghassem Razi, the property owner of 3609 International Boulevard, Oakland, California, to comply with the Alameda County Environmental Health Services' requirements for the Third Quarter 2006 groundwater monitoring event.

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

Table of Contents

CER	TIFICATIONI
TAB	LE OF CONTENTSII
LIST	OF TABLESIII
LIST	OF FIGURESIII
LIST	OF APPENDICES IV
1.0	INTRODUCTION1
1.1	Background 1
2.0	RESULTS
2.1	Field Measurements
2.2	Laboratory Analysis
3.0	GROUNDWATER TREATMENT SYSTEM OPERATION4
4.0	OPERATION OF AIR SPARGING SYSTEM5
5.0	CONCLUSIONS AND RECOMMENDATIONS6
6.0	REPORT LIMITATIONS

List of Tables

- Table 1:
 Historical Groundwater Elevation Data & Analytical Results
- Table 2:Total Volume of Water Treated, Historical Operational Data, andEffluent and GAC-1 Analytical Results
- Table 3:Total Mass of Petroleum Hydrocarbons Removed by the VaporExtraction System & Historical Operational Data

List of Figures

Figure 1: S	ite vicinity map.
-------------	-------------------

Figure 2:	Site map showing the locations of air sparging wells,
	Groundwater monitoring wells, additional soil vapor wells,
	GAC system, and SVE system.
Figure 3:	Groundwater elevation contour map in feet. September 7, 2006.
Figure 4:	Contour map of TPH-g concentrations in the groundwater.
	September 7 & 8, 2006.
Figure 5:	Contour map of Benzene concentrations in the groundwater.
	September 7 & 8, 2006.
Figure 6:	Contour map of MtBE concentrations in the groundwater.
	(EPA Method 8260B). September 7 & 8, 2006.
Figure 7:	Schematic of the Groundwater Remediation System
Figure 8:	Cumulative mass of TPH-g and MtBE removed from groundwater
	since the installation of the treatment system.
Figure 9:	Block diagram of the SVE System
Figure 10:	Block diagram of the Air Sparge System

List of Appendices

Appendix A: SOMA's Groundwater Monitoring Procedures

- Appendix B: Table of Elevations & Coordinates on Monitoring Wells Surveyed by Kier Wright Civil Engineers Surveyors, Inc., & Harrington Surveys, Inc. and Field Measurements of Physical, Chemical, and Biodegradation Parameters of Groundwater
- Appendix C: Chain of Custody Form and Laboratory Report for the Third Quarter 2006 Monitoring Event
- Appendix D: Chain of Custody Forms and Laboratory Reports for the Groundwater Extraction Treatment System
- Appendix E: Chain of Custody Forms and Laboratory Reports for the Soil Vapor Extraction Treatment System

1.0 Introduction

This monitoring report has been prepared by SOMA Environmental Engineering, Inc. (SOMA) on behalf of Mr. Abolghassem Razi, the owner of Tony's Express Auto Service, which is located at 3609 International Boulevard, at the intersection of 36th Avenue in Oakland, California (the "Site"), as shown in Figure 1.

This report summarizes the results of the Third Quarter 2006 groundwater monitoring event conducted at the Site on September 7 and 8, 2006, and includes the laboratory analytical results on the groundwater samples.

A natural attenuation study was conducted during this monitoring event. The objective of the natural attenuation study was to evaluate whether the petroleum hydrocarbons found in the groundwater were biodegrading.

The groundwater monitoring activities were performed in accordance with the general guidelines of the Regional Water Quality Control Board (RWQCB) and the Alameda County Environmental Health Services (ACEHS). A description of SOMA's groundwater monitoring procedures is included in Appendix A. Figure 2 shows the locations of the wells and risers.

This report also describes the operation of the groundwater extraction system installed by SOMA in December 1999. The vapor extraction system was installed by SOMA in July 2000. The locations of the groundwater extraction system and the vapor extraction system are displayed in Figure 2.

1.1 Background

In July 1993, Soil Tech Engineering removed one single-walled 10,000-gallon gasoline tank and one single-walled 6,000-gallon gasoline tank along with a 550-gallon waste oil tank from the Site. Three double-walled underground storage tanks (USTs) replaced these tanks. Currently, there is one 10,000-gallon double-walled gasoline tank and two 6,000-gallon double-walled gasoline tanks beneath the Site. The locations of the USTs are shown in Figure 2.

In December 1997, Western Geo-Engineers (WEGE) conducted additional investigations and groundwater monitoring events. The results of the groundwater monitoring events indicated elevated levels of petroleum hydrocarbons and Methyl tertiary Butyl Ether (MtBE) in the groundwater.

In April 1999, Mr. Razi, the owner, retained SOMA to conduct groundwater monitoring, risk-based corrective action (RBCA), a corrective action plan (CAP), as well as soil and groundwater remediation at the Site. The results of the RBCA study indicated that the Site is a high-risk groundwater site; therefore, the soil and groundwater in the on and off-site areas warranted remedial action.

The source of the petroleum hydrocarbons in the groundwater was believed to have been the former USTs, which were used to store gasoline at the Site. The

results of the CAP study indicated that the installation of a French drain combined with a vapor extraction system would be the most cost effective alternative for the Site's remediation.

In late August 1999, SOMA installed a French drain and groundwater treatment system to prevent further migration of the chemically-impacted groundwater. In July 2000, SOMA installed a vapor extraction system.

In January 2002, Environmental Fabric removed the former product dispensers and installed new ones.

On July 25, 2003, SOMA installed an additional on-site extraction pump in the western French drain riser. The extraction pump was installed to create a capture zone in the region around the USTs and to contain off-site migration in the southwestern corner of the Site.

On April 1, 2005, SOMA conducted a pilot test to evaluate the use of ozone sparging to actively remediate the groundwater at the Site. The test revealed that the unsaturated zone was permeable enough to allow for the operation of an ozone sparging system. However, ozone injection, especially in the region of more impacted wells (MW-1 and MW-3), which are in the vicinity of the UST cavity, could have possibly lead to an explosive condition. Therefore, based on safety concerns, air-sparging technology was enacted for site remediation.

From November 17 to 23, 2005, SOMA oversaw the installation of the air sparge wells and vapor extraction wells by Woodward Drilling, of Rio Vista, California. From February 22, 2006 to March 6, 2006, SOMA oversaw the installation of the air sparge system by ACRC, Inc. (ACRC), a construction company in San Ramon, California.

2.0 Results

The following sections provide the results of the field measurements and laboratory analyses for the September 7 and 8, 2006 groundwater monitoring event.

2.1 Field Measurements

As shown in Table 1, the depths to groundwater for the monitoring wells ranged from 10.90 feet in well MW-10 to 14.52 feet in well MW-7. The corresponding groundwater elevations ranged from 25.40 feet in well MW-12 to 28.38 feet in well MW-5. The groundwater elevations for the center, east, and west risers were 24.30 feet, 26.54 feet, and 23.36 feet, respectively.

Figure 3 displays the groundwater elevation contour map. The groundwater flows towards the French drain at an approximate gradient of 0.10 feet/feet. The lowest site-wide groundwater elevation was measured in the western French drain riser.

The French drain is providing excellent hydraulic control in preventing the contaminants from migrating further off-site.

The field notes for the physical, chemical and biodegradation parameters measured during this monitoring event are included in Appendix B.

The more positive the redox potential of an electron acceptor, the more energetically favorable the reaction utilizing that electron acceptor is. The most energetically preferred electron acceptor for redox reactions is dissolved oxygen (DO). Evaluating the distribution of electron acceptors can provide evidence of where and to what extent hydrocarbon biodegradation is occurring.

Detectable DO concentrations ranged from 8.92 mg/L in well MW-1 to 9.90 mg/L in well MW-4R. The DO measurements were taken upon terminating the purge cycle. ORP showed negative redox potentials in wells MW-1, MW-3, MW-5, MW-6, MW-8, and MW-12. Oxidation of petroleum hydrocarbons could have occurred in these monitoring wells. Negative redox potentials indicate that contaminants in the groundwater are conducive to anaerobic biodegradation.

Ferrous iron concentrations can be used as an indicator of anaerobic biodegradation. Ferrous iron concentrations ranged from 0.37 mg/L in well MW-10 to the equipment's maximum allowable tolerance range of 3.30 mg/L in wells MW-1, MW-3, and MW-6.

Nitrate concentrations were below the equipment's minimum allowable level in wells MW-5 and MW-8. Detectable nitrate concentrations ranged from 0.5 mg/L in well MW-12 to the maximum allowable tolerance range of 35 mg/L in wells MW-2, MW-4R, and MW-7. High ferrous iron concentrations in combination with non-detectable nitrate levels are indicative of anaerobic biodegradation beneath the Site.

The absence of sulfate in the groundwater samples may be indicative of an anaerobic methanogenesis process. Sulfate was below the equipment's tolerance level in wells MW-1, MW-3, MW-8, and MW-12. Detectable sulfate concentrations ranged from 3 mg/L in well MW-6 to 48 mg/L in well MW-7.

2.2 Laboratory Analysis

Table 1 presents the results of the laboratory analyses on the groundwater samples collected during this monitoring event.

Total petroleum hydrocarbons as gasoline (TPH-g) was detected throughout the Site. Detectable TPH-g concentrations ranged from 97.70 ug/L in well MW-4R to 37,200 ug/L in well MW-1. Figure 4 displays the contour map of TPH-g concentrations in the groundwater. The majority of the TPH-g impacted groundwater were in wells that are in the vicinity of the UST cavity (MW-1 and MW-3), as well as east of the station building (MW-6).

The following BTEX concentration trends were observed during this monitoring event.

- In well MW-1, the highest BTEX analytes were observed at 3,280 ug/L, 1,460 ug/L, 1,290 ug/L, and 2,685 ug/L, respectively.
- In wells MW-2, MW-4R, MW-7, and MW-10, toluene was below the laboratory reporting limit.
- In well MW-5, all BTEX analytes, with the exception of ethylbenzene, were below the laboratory reporting limit. Ethylbenzene was detected at 2.02 ug/L.
- In well MW-12, both toluene and total xylenes were below the laboratory reporting limit, and both benzene and ethylbenzene were detected at low levels.

Figure 5 displays the contour map of benzene concentrations in the groundwater. The highest benzene concentration was detected in the vicinity of the USTs, in well MW-1.

Methyl tertiary Butyl Ether (MtBE) was below the laboratory reporting limit in wells MW-2, MW-4R, and MW-5 to MW-7. Detectable MtBE concentrations ranged from 23.7 ug/L in well MW-12 to 2,180 ug/L in well MW-1. Figure 6 displays the contour map of MtBE concentrations in the groundwater. MtBE, with the exception of well MW-1, has only minimally impacted the Site's groundwater.

The laboratory report and chain-of-custody form for this monitoring event are included in Appendix C.

3.0 Groundwater Treatment System Operation

The treatment system began operating on December 9, 1999. Since the start-up, 3,441,500 gallons of groundwater has been treated and discharged, under the existing discharge permit (as of September 27, 2006), into the East Bay Municipal Utility District's (EBMUD's) sewer system.

As of January 9, 2004, the previously installed pneumatic downhole pumps in the western and center French drain risers were removed and replaced with electrical downhole pumps. On May 4, 2005, to maintain accurate recordings of the total flow through the system, a newer totalizer meter was installed. On September 29, 2005, the existing 2,000-pound carbon vessel was replaced with a newer 2,000-pound carbon vessel. The newer vessel was refurbished with new carbon; the 55-gallon carbon drum was also replaced. The former 2,000-pound vessel had become rusted due to prolonged usage. A schematic diagram of the remediation system is displayed in Figure 7.

On June 15, 2006, a carbon change-out was conducted on the remedial system. During this change-out the 2,000-pound vessel was refurbished with new carbon and the 200-pound carbon drum was replaced.

Table 2 presents the total volume of treated groundwater and the groundwater analytical results. Table 2 shows that all of the effluent samples have remained below the discharge limits set forth by EBMUD. The most current laboratory reports for the groundwater treatment system are included in Appendix D.

As of September 27, 2006, the treatment system has removed approximately 212 pounds of hydrocarbons and 86.3 pounds of MtBE. Figure 8 shows the approximate masses of TPH-g and MtBE removed from the impacted groundwater during the operation of the treatment system.

4.0 Operation of Air Sparging System

From February 22, 2006 to March 6, 2006, SOMA oversaw the installation of the air sparge system. The system consists of nine-vapor extraction wells and three air sparge wells. The air sparge wells were installed in the vicinity of the UST cavity, pump islands, and near well MW-6. Figure 2 shows the locations of the air sparge wells. Figures 9 and 10 show the block diagrams of the air sparging and vapor extraction units. The operating permit for the SVE system was extended by BAAQMD until August 2007.

Prior to the installation of the air sparge system, in November 2005, SOMA collected air samples from the previously existing SVE wells. Based on the sample results, which were non-detectable, the lines from SVE wells P-4 and ISL-1 to the vacuum pump were closed. This allowed for a greater vacuum at the more impacted SVE wells.

The air sparge system was initially started on March 15, 2006. However, due to the close proximity of the system to a residential area, the system was modified to reduce the noise level. As such, a timer was installed on the compressor to control operation hours of the air sparge system and limit the operation time to daytime hours. Currently, the system is operating from 8 AM to 7 PM. In addition, to further suppress the noise level, the existing blower unit, which was installed in 2000, was rebuilt and foam was placed around it to act as a noise suppressant.

To more effectively increase the removal of contaminants in the soil, an additional vacuum blower was installed in series to the existing vacuum blower. The additional equipment was installed on July 24, 2006. The laboratory results from the August 2006 and September 2006 sampling of the SVE system are shown in Appendix E.

5.0 Conclusions and Recommendations

The findings of the Third Quarter 2006 groundwater monitoring event can be summarized as follows:

- 1. The groundwater remediation system is providing excellent hydraulic control and preventing further migration of the contaminants to the off-site areas.
- 2. The bio-attenuation study confirmed the occurrence of biodegradation beneath the Site. Based on this study, the affected areas appear to be in the vicinity of the USTs, around wells MW-1 and MW-3, as well as the eastern section of the Site, around well MW-6. The source area still remains in the vicinity of wells MW-1, MW-3, and MW-6.
- 3. Since the previous monitoring event, TPH-g decreased in well MW-1. In well MW-3, both TPH-g and benzene increased. In well MW-6, benzene decreased and MtBE remained non-detectable. The TPH-g concentrations in wells MW-1, MW-3, and MW-6 are all well below the historical peak values.
- 4. In general, the GAC and SVE systems have effectively reduced the contaminants beneath the Site. Since initial start-up, approximately 212 pounds of hydrocarbons and 86.3 pounds of MtBE (as of September 27, 2006) have been removed from the groundwater. Approximately 886.14 pounds of petroleum hydrocarbons have been removed from the vadose zone.
- 5. To further reduce the groundwater and soil concentrations, an air sparge system and additional SVE wells have been installed at the Site. Based on the sampling of the SVE wells in August 2006, TPH-g was detected as high as 6,300 mg/m^3 air at well SVE-1. This corresponds to the high groundwater contaminant level in the vicinity of the UST cavity, in MW-1.

Based on the results of this monitoring event, SOMA recommends:

- Continual operation of the pump-and-treat system to maintain the removal rate of the contaminant masses in the groundwater;
- Continual monitoring of the biodegradation parameters to determine whether the injection of concentrated solutions of terminal electron receptors into the groundwater, in the vicinity of the more contaminated wells, may enhance the biodegradation process;
- Continued quarterly monitoring programs to better understand the seasonal variations in the groundwater quality conditions; and

• Continued operation of the air sparge system in order to determine the effectiveness of the air sparge unit in reducing the contaminant mass in the unsaturated zone. At a minimum, quarterly samples will be collected from wells SVE-1 to SVE-3 and throughout the vapor extraction system.

6.0 Report Limitations

This report is the summary of work done by SOMA including observations and descriptions of the Site's conditions. It includes the analytical results produced by Pacific Analytical Laboratory, for the current monitoring event, as well as, Curtis & Tompkins, Ltd and summaries of data produced by previous environmental consultants for the previous monitoring events. The number and location of the wells were selected to provide the required information, but may not be completely representative of the entire site's conditions. All conclusions and recommendations are based on the results of the laboratory analysis. Conclusions beyond those specifically stated in this document should not be inferred from this report.

SOMA warrants that the services provided were done in accordance with the generally accepted practices in the environmental engineering and consulting field at the time of this sampling.

TABLES

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260B (μg/L)
MW-1	10/5/1994	97.99	15.39	82.60	320,000	24,000	21,000	2,600	15,000	NA
	12/5/1994	97.99	9.32	88.67	80,000	3,800	6,600	2,300	11,000	NA
	3/2/1995	97.99	8.07	89.92	32,000	190	160	150	490	NA
	6/6/1995	97.99	9.53	88.46	21,000	950	650	570	150	NA
	10/5/1995	97.99	13.29	84.70	59,000	140	130	140	390	NA
	1/2/1996	97.99	10.07	87.92	30,000	71	73	50	120	NA
	4/1/1996	97.99	8.29	89.70	31,000	98	120	63	170	NA
	12/3/1996	97.99	11.67	86.32	NA	NA	NA	NA	NA	NA
	4/9/1997	97.99	11.14	86.85	NA	NA	NA	NA	NA	NA
	12/10/1997	97.99	9.30	88.69	27,000	2,300	2,100	1,400	5,100	NA
	9/10/1998	97.99	13.58	84.41	NA	NA	NA	NA	NA	NA
	12/16/1998	97.99	11.10	86.89	65,000	2,500	2,400	2,300	9,500	160
	3/16/1999	97.99	9.91	88.08	17,000	480	860	850	3,000	190
	6/10/1999	97.99	11.10	86.89	25,000	1,110	1,460	1,330	5,265	77
	8/23/1999	97.99	13.35	84.64	19,750	678	463	893	2,938	38
	11/9/1999	97.99	14.45	83.54	10,000	693	15	<5	3,471	50
	2/7/2000	97.99	11.20	86.79	40,000	2,280	1,380	8	6,130	47
	5/31/2000	97.99	11.49	86.50	15,610	610	350	310	1,400	<5
	8/9/2000	97.99	13.36	84.63	11,000	638	<5	<5	<5	17.1
	11/2/2000	97.99	13.20	84.79	7,050	435	52	ND	689	10
	3/13/2001	97.99	8.96	89.03	14,570	1,005	440	108	2,030	16
	5/22/2001	97.99	11.50	86.49	4,900	310	81	82	388	150
	8/8/2001 11/19/2001	97.99 97.99	13.51 14.01	84.48 83.98	14,820 41,000	852 2,700	342 5,100	568 1,000	1,606 4,570	2,000 74,000

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

										1
		Top Of								
		Casing	Depth to	Groundwater				Ethyl-	Total	MtBE ²
Monitoring		Elevation ¹	Groundwater	Elevation	TPH-g	Benzene	Toluene	Benzene	Xylenes	EPA 8260B
Well	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW-1 cont.	2/21/2002	97.99	10.11	87.88	260,000	3,700	12,000	3,700	19,200	23,000
	5/7/2002	97.99	10.86	87.13	53,000	4,400	5,100	1300	7,000	32,000
	7/30/2002	40.11	12.80	27.31	29,000	2,400	2,500	920	4,400	13,000
	10/2/2002	40.11	15.50	24.61	27,000	2,200	2,400	950	4,500	34,000
	1/3/2003	40.11	9.73	30.38	62,000	3,500	6,000	1600	9,700	48,000
	5/3/2003	40.11	9.71	30.40	59,000	3,100	2,700	1500	7,000	14,000
	7/24/2003	40.11	12.44	27.67	36,000	4,800	1,800	1300	5,600	25,000
	10/22/2003	40.11	13.89	26.22	630,000 H	3,300	1900 C	3600	27,700	15,000
	1/22/2004	40.11	10.45	29.66	39,000	3,100	1,600	950	4,300	8,500
	4/1/2004	40.11	11.49	28.62	41,000	1,200	350C	830	2,740	4,300
	8/20/2004	40.11	13.81	26.30	22,000	2,000	220	560	3,090	6,900
	12/8/2004	40.11	11.10	29.01	22,790	1,634	319	895	2,851	5,504
	3/16/2005	40.11	8.40	31.71	44,400	3,150	811	1,090	2,856	7,180
	5/16/2005	40.11	9.72	30.39	33,900	3,440	1,700	1,090	2,276	3,210
	7/14/2005	40.11	11.31	28.80	50,100	4,350	1,760	1,500	2,853	3,980
	10/13/2005	40.11	13.51	26.60	43,100	1,960	325	639	3,080	3,000
	1/3/2006	40.11	8.82	31.29	55,000	1,100	510	1,100	4,070	2,200
	4/7/2006	40.11	7.12	32.99	42,500	1,780	1,010	1,610	2,449	2,110
	9/8/2006	40.11	12.64	27.47	37,200	3,280	1,460	1,290	2,685	2,180
									1	T
MW-2	10/1/1994	98.58	15.36	83.22	NA	NA	NA	NA	NA	NA
	12/1/1994	98.58	8.60	89.98	NA	NA	NA	NA	NA	NA
	3/6/1995	98.58	7.68	90.90	490	3	3	3	1	NA
	6/5/1995	98.58	9.59	88.99	8,000	220	330	350	660	NA
	10/2/1995	98.58	13.42	85.16	46,000	160	130	93	240	NA
	1/3/1996	98.58	9.93	88.65	46,000	160	130	93	240	NA
	4/3/1996	98.58	8.13	90.45	27,000	0.1	92	44	13	NA
	12/9/1996	98.58	11.67	86.91	6,200	11	7	2	14	ND
	4/10/1997	98.58	11.40	87.18	53,000	150	110	37	0.12	ND
	12/30/1997	98.58	9.04	89.54	35,000	4,900	4,900	1,600	7,000	NA
	6/30/1998	98.58	NM	NM	25,000	2,000	2,000	1,300	4,300	NA
	9/29/1998	98.58	13.58	85.00	29,000	290	180	160	360	<0.5
	12/16/1998	98.58	10.94	87.64	26,000	1,400	1,600	880	9,500	<5

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

		_								
		Top Of								
		Casing	Depth to	Groundwater		_		Ethyl-	Total	MtBE ²
Monitoring		Elevation ¹	Groundwater	Elevation	TPH-g	Benzene	Toluene	Benzene	Xylenes	EPA 8260B
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-2 cont.	3/16/1999	98.58	7.60	90.98	7,600	730	830	610	1,900	55
	6/10/1999	98.58	11.24	87.34	3,500	290	428	211	744	ND
	8/23/1999	98.58	13.50	85.08	60	6	9	4	11	ND
	11/9/1999	98.58	14.10	84.48	<50	<5	<5	<5	<5	<5
	2/7/2000	98.58	9.85	88.73	6,400	372	639	46	134	8
	5/31/2000	98.58	10.88	87.70	2,930	130	330	130	570	<5
	8/9/2000	98.58	13.03	85.55	<50	<5	<5	<5	<5	<5
	11/2/2000	98.58	12.60	85.98	ND	ND	ND	ND	ND	ND
	3/13/2001	98.58	8.55	90.03	932	18	34	1.3	225	ND
	5/22/2001	98.58	11.00	87.58	870	37	75	55	179	2.7
	8/8/2001	98.58	13.53	85.05	125	4	4	3	11	ND
	11/19/2001	98.58	13.43	85.15	470	13	64	22	83	14
	2/21/2002	98.58	8.99	89.59	1,700	26	180	95	360	<2
	5/7/2002	98.58	10.59	87.99	1,800	31	140	110	348	<2
	7/30/2002	40.71	12.70	28.01	180	11	6.3	9.4	27	<2.0
	10/2/2002	40.71	14.23	26.48	<50	<0.5	<0.5	<0.5	0.64	<2.0
	1/3/2003	40.71	8.66	32.05	510	5	30.0	24.0	92	<2.0
	5/3/2003	40.71	9.17	31.54	1,300	14	88.0	78.0	271	<2.0
	7/24/2003	40.71	12.23	28.48	220	3.9	4.3	7	14.5	<2.0
	10/22/2003	40.71	13.65	27.06	170 H	1.9	<0.5	2.2	2.2	<2.0
	1/22/2004	40.71	9.54	31.17	860	7.2	37	50	151	<2.0
	4/1/2004	40.71	10.80	29.91	730	6.6	19	38	87	<2.0
	8/20/2004	40.71	13.54	27.17	220	2.2	1.9	7	11.7	<0.5
	12/8/2004	40.71	10.52	30.19	99	1.7	3.3	8.3	25.1	<0.5
	3/15/2005	40.71	8.06	32.65	5,690	18.7	120	315	876	<1.0
	5/17/2005	40.71	9.10	31.61	6,320	12.5	75	429	557	<2.15
	7/14/2005	40.71	11.10	29.61	7,680	14.1	46.3	522	471	<2.15
	10/13/2005	40.71	13.25	27.46	562	4.25	3.28	15	8.29	< 0.50
	1/3/2006	40.71	6.72	33.99	340	2.5	4.4	22	50.2	<0.5
	4/7/2006	40.71	5.75	34.96	6,160	24	84.8	385	474	<2.15
	9/7/2006	40.71	12.58	28.13	114	2.45	<2.0	8.62	6.85	<0.5

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260B (μg/L)
							I		1	
MW-3	10/5/1994	97.78	15.79	81.99	3,000,000	190,000	740,000	310,000	130,000	NA
	12/2/1994	97.78	9.79	87.99	250,000	19,000	22,000	4,400	28,000	NA
	3/6/1995	97.78	8.69	89.09	350,000	20,000	42,000	5,800	36,000	NA
	6/5/1995	97.78	10.25	87.53	350,000	20,000	42,000	5,800	36,000	NA
	10/2/1995	97.78	12.91	84.87	150,000	510	410	210	65	NA
	1/3/1996	97.78	10.55	87.23	150,000	510	410	210	650	NA
	4/3/1996	97.78	8.76	89.02	NA	NA	NA	NA	NA	NA
	12/3/1996	97.78	12.02	85.76	NA	NA	NA	NA	NA	NA
	4/1/1997	97.78	11.73	86.05	NA	NA	NA	NA	NA	NA
	12/1/1997	97.78	NM	NM	NA	NA	NA	NA	NA	NA
	9/1/1998	97.78	14.68	83.10	NA	NA	NA	NA	NA	NA
	12/16/1998	97.78	11.55	86.23	51,000	5,700	3,900	1,200	6,300	410
	3/16/1999	97.78	8.44	89.34	45,000	4,100	6,400	1,000	6,100	470
	6/10/1999	97.78	11.8	85.98	46,000	8,245	6,425	1,015	7,173	274
	8/23/1999	97.78	13.85	83.93	64,000	7,484	8,052	1,744	9,749	141
	11/9/1999	97.78	14.7	83.08	26,000	3,218	1,319	<5	6,697	126
	2/7/2000	97.78	10.95	86.83	44,000	6,090	3,360	<5	5,780	276
	5/31/2000	97.78	11.68	86.10	68,000	15,000	8,900	1,500	7,400	<5
	8/9/2000	97.78	13.73	84.05	76,000	8,900	5,636	883	7,356	176
	11/2/2000	97.78	13.4	84.38	48,000	6,789	4,816	676	7,258	83
	3/13/2001	97.78	9.43	88.35	14,754	2,250	140	ND	1,284	110
	5/22/2001	97.78	11.81	85.97	44,000	5,400	3,100	1,400	6,400	200
	8/8/2001	97.78	14.1	83.68	41,750	3,485	2,670	1,255	5,420	52
	11/19/2001	97.78	14.32	83.46	NA	NA	NA	NA	NA	NA
	2/21/2002	97.78	10.01	87.77	62,000	6,000	7,600	1,900	9,200	12,000
	5/7/2002	97.78	11.28	86.50	54,000	6,700	3,200	1,800	7,100	9,100
	7/30/2002	40.91	13.25	27.66	45,000	8,900	1,700	1,600	5,600	2,600
	10/2/2002	40.91	14.98	25.93	70,000	4,900	5,100	2,100	11,900	21,000
	1/3/2003	40.91	9.79	31.12	35,000	2,900	1,300	860	5,200	13,000
	5/3/2003	40.91	10.01	30.90	48,000	5,800	1,400	1,600	7,400	5,900
	7/24/2003	40.91	12.94	27.97	31,000	4,700	990	1,400	5,200	16,000
	10/22/2003	40.91	14.29	26.62	30,000	4,400	930	1,600	5,400	7,400

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260B (μg/L)
MW-3 cont.	1/22/2004	40.91	10.57	30.34	45,000	2,100	850	1,500	5,700	2,900
	4/1/2004	40.91	11.84	29.07	31,000	4,200	590	1,600	4,370	900
	8/20/2004	40.91	14.24	26.67	21,000	3,400	370	1,000	2,350	1,100
	12/8/2004	40.91	11.32	29.59	6,441	978	109	490	941	201
	3/16/2005	40.91	8.87	32.04	22,300	1,280	456	729	1,870	2,400
	5/17/2005	40.91	9.96	30.95	17,600	764	302	735	1,227	1,800
	7/14/2005	40.91	11.50	29.41	34,600	1,390	492	1,460	2,054	1,090
	10/13/2005	40.91	13.78	27.13	15,000	1,290	267	675	838	893
	1/3/2006	40.91	7.50	33.41	8,700	650	98	330	860	280
	4/7/2006	40.91	6.74	34.17	16,800	677	239	802	1,018	564
	9/8/2006	40.91	12.95	27.96	26,400	1,660	381	933	1,545	332
MW-4	1/3/1996	97.85	10.11	87.74	9,300	230	110	10	29	NA
	4/3/1996	97.85	8.35	89.50	1,900	12	8	5	14	NA
	12/9/1996	97.85	11.58	86.27	4,000	14	6	4	12	ND
	4/10/1997	97.85	11.23	86.62	ND	ND	ND	ND	ND	ND
	12/30/1997	97.85	9.43	88.42	2,300	410	270	100	1,500	NA
	6/30/1998	97.85	NM	NM	1,700	780	160	54	200	NA
	9/29/1998	97.85	13.64	84.21	6,200	910	77	68	200	18
	12/16/1998	97.85	11.13	86.72	1,400	590	33	28	94	24
	3/16/1999	97.85	8.46	89.39	600	200	35	19	56	11
	6/10/1999	97.85	11.30	86.55	1,000	298	44	19	64	13
	8/23/1999	97.85	13.20	84.65	660	497	41	54	145	6
	11/9/1999	97.85	14.10	83.75	<50	<5	<5	<5	<5	<5
	2/7/2000	97.85	11.25	86.60	7,800	1,200	61	<5	781	<5
	5/31/2000	97.85	11.46	86.39	552	42	19	16	67	<5
	8/9/2000	97.85	13.35	84.50	370	5.08	<5	<5	<5	<5
	11/2/2000	97.85	13.05	84.80	ND	5.30	ND	ND	8	ND
	3/13/2001	97.85	9.24	88.61	62	ND	ND	3.2	8.7	ND
	5/22/2001	97.85	11.50	86.35	80	12	1.9	4.1	9.8	ND
	8/8/2001	97.85	13.80	84.05	133	12	2.2	3.9	9	ND
	11/19/2001	97.85	13.68	84.17	670	180	5	17	53	ND

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

									1	T
		Top Of								
		Casing	Depth to	Groundwater				Ethyl-	Total	MtBE ²
Monitoring		Elevation ¹	Groundwater	Elevation	TPH-g	Benzene	Toluene	Benzene	Xylenes	EPA 8260
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-4 cont.	2/21/2002	97.85	9.97	87.88	450	63	4.1	22	28.7	<2
	5/7/2002	97.85	10.81	87.04	570	72	29	27	74	<2
	7/30/2002	40.01	12.62	27.39	450	20	24	19	74	<2.0
	10/2/2002	40.01	14.34	25.67	320	69	0.99	9	5.49	<2.0
	1/3/2003	40.01	9.79	30.22	310	49	2.5	13	26.7	<2.0
	7/24/2003	40.01	12.44	27.57	<50	1	<0.5	<0.5	<0.5	<0.5
	10/22/2003	40.01	13.72	26.29	70	12	<0.5	4.7	3.0	<2.0
	1/22/2004	40.01	10.55	29.46	230	18	2.1	8.1	17.1	<2.0
	4/1/2004	40.01	11.39	28.62	<50	3.8	<0.5	1.6	1.9	<2.0
	8/20/2004	40.01	13.68	26.33	<50	1.6	<0.5	0.66	0.53	<2.0
	12/7/2004	40.01	10.95	29.06	<50	1.3	<0.5	2.80	<1.0	<0.5
	3/15/2005	40.01	8.61	31.40	661	72	4.13	39.7	48.42	<0.5
					•					•
MW-4R	5/17/2005	40.34	9.88	30.46	7,780	170	11.1	192	121.2	<0.5
	7/14/2005	40.34	11.61	28.73	847	25.3	<2.0	28.2	10.9	<0.5
	10/13/2005	40.34	13.73	26.61	785	35.5	<2.0	48.2	8.35	< 0.50
	1/3/2006	40.34	9.18	31.16	2,500	65	3.8	70	62	<0.5
	4/6/2006	40.34	7.70	32.64	852	42.4	2.25	28.4	17.13	<0.5
	9/7/2006	40.34	12.96	27.38	97.7	9.29	<2.0	4.05	1.03	<0.5
	1	-	-	-		1		-	T	T
MW-5	10/2/1995	99.04	13.57	85.47	1,500	1	1	4	5	NA
	1/3/1996	99.04	10.03	89.01	1,500	1	1	4	5	NA
	4/3/1996	99.04	8.24	90.80	780	1	1	5	4	NA
	12/9/1996	99.04	11.48	87.56	NA	NA	NA	NA	NA	NA
	4/10/1997	99.04	11.35	87.69	NA	NA	NA	NA	NA	NA
	12/30/1997	99.04	9.15	89.89	790	82	66	59	160	NA
	6/30/1998	99.04	NM	NM	400	<5	<5	15	<10	NA
	9/29/1998	99.04	13.82	85.22	270	2	1	3	3	<.5
	12/16/1998	99.04	11.20	87.84	1,400	1	1	ND	2	ND
	3/16/1999	99.04	7.73	91.31	650	3	1	16	2	10
	6/10/1999	99.04	11.50	87.54	270	4	3	6	4	ND
	8/23/1999	99.04	13.55	85.49	120	ND	4	ND	4	ND
	11/9/1999	99.04	14.30	84.74	<50	<5	<5	<5	<5	<5

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

		Top Of								
		Casing	Depth to	Groundwater		_		Ethyl-	Total	MtBE ²
Monitoring		Elevation ¹	Groundwater	Elevation	TPH-g	Benzene	Toluene	Benzene	Xylenes	EPA 8260E
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-5 cont.	2/7/2000	99.04	9.85	89.19	70	<5	<5	<5	7	<5
	5/31/2000	99.04	11.03	88.01	627.4	7.4	24	12	32.4	<5
	8/9/2000	99.04	13.22	85.82	<50	<5	<5	<5	<5	<5
	11/2/2000	99.04	13.55	85.49	ND	ND	ND	ND	ND	ND
	3/13/2001	99.04	8.67	90.37	382	6.1	1.9	6.6	5.9	ND
	5/22/2001	99.04	11.12	87.92	180	ND	ND	2.1	0.57	4.4
	8/8/2001	99.04	13.79	85.25	258	1	1.1	3.4	7.3	1.4
	11/19/2001	99.04	13.72	85.32	920	17	160	26	135	40
	2/21/2002	99.04	9.04	90.00	290	3.5	2	6.2	6.2	<0.5
	5/7/2002	99.04	10.69	88.35	160	<0.5	0.78 C	2	2.15	2.3
	7/30/2002	41.16	12.94	28.22	110	<0.5	<0.5	0.77	<0.5	<0.5
	10/20/2002	41.16	14.51	26.65	77	<0.5	<0.5	<0.5	<0.5	<2.0
	1/3/2003	41.16	8.73	32.43	450 Y	<0.5	<0.5	4	0.54	2.1
	5/3/2003	41.16	9.24	31.92	130	<0.5	<0.5	1	<0.5	3.1
	7/24/2003	41.16	12.45	28.71	300	<0.5	1.9 C	0.76	<0.5	<2.0
	10/22/2003	41.16	13.89	27.27	460 H	<0.5	<0.5	<0.5	<0.5	1.9
	1/22/2004	41.16	9.60	31.56	160	<0.5	<0.5	0.55 C	<0.5	<5.0
	4/1/2004	41.16	11.06	30.10	280	<0.5	0.74C	0.62	<0.5	2.1
	8/20/2004	41.16	13.75	27.41	250	<0.5	<0.5	<0.5	<0.5	2
	12/7/2004	41.16	10.73	30.43	150	<0.5	<0.5	<0.5	<1.0	2.6
	3/15/2005	41.16	8.18	32.98	496	<0.5	<0.5	<0.5	<1.0	1.91
	5/17/2005	41.16	9.22	31.94	360	<0.5	<0.5	<0.5	<1.0	1.72
	7/14/2005	41.16	11.30	29.86	267	<0.5	<2.0	<0.5	<1.0	1.74
	10/13/2005	41.16	13.57	27.59	404	<0.50	<2.0	<0.50	<1.0	0.93
	1/3/2006	41.16	6.81	34.35	170	2.2	<0.5	1.8	3.1	1.1
	4/7/2006	41.16	5.81	35.35	449	<0.5	<2.0	0.53	<1.0	1.16
	9/7/2006	41.16	12.78	28.38	185	<0.5	<2.0	2.02	<1.0	<0.5
	-	-	-	-		-	-		-	
MW-6	10/1/1995	98.77	13.94	84.83	NA	NA	NA	NA	NA	NA
	1/1/1996	98.77	10.55	88.22	120,000	350	310	200	610	NA
	4/1/1996	98.77	8.76	90.01	NA	NA	NA	NA	NA	NA
	12/1/1996	98.77	12.04	86.73	NA	NA	NA	NA	NA	NA
	4/1/1997	98.77	11.76	87.01	NA	NA	NA	NA	NA	NA
	12/1/1997	98.77	9.30	89.47	NA	NA	NA	NA	NA	NA

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260E (µg/L)
MW-6 cont.	9/1/1998 12/1/1998	98.77 98.77	14.10 11.60	84.67 87.17	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	3/16/1999	98.77	8.40	90.37	37,000	3,900	4,300	1,600	7,000	180
	6/10/1999	98.77	11.90	86.87	18,500	2,060	4,500 1,650	735	3,170	ND
	8/23/1999	98.77	13.90	84.87	42,000	3,806	3,649	1,554	7,996	10
	11/9/1999	98.77	14.75	84.02	40.000	1.084	130	<5	10.940	<5
	2/7/2000	98.77	10.95	87.82	17,000	1,360	521	<5	4,150	6
	8/9/2000	98.77	13.78	84.99	24,000	1,306	870	<5	5,162	<5
	11/2/2000	98.77	13.40	85.37	19,000	1,387	618	ND	5,250	ND
	3/13/2001	98.77	9.49	89.28	15,637	713	459	238	2,363	ND
	5/22/2001	98.77	11.82	86.95	27,000	760	450	1,600	4,270	ND
	8/8/2001	98.77	NM	NM	NA	NA	NA	NA	NA	NA
	11/19/2001	98.77	NM	NM	NA	NA	NA	NA	NA	NA
	2/21/2002	98.77	9.92	88.85	14,000	440	180	750	1,020	<10
	5/7/2002	98.77	11.33	87.44	10,000	400	160	470	970	<2
	7/30/2002	40.92	13.28	27.64	24,000	1,000	410	1,400	3,770	<20
	10/20/2002	40.92	14.93	25.99	22,000	1,200	620	1,300	2,800	<20
	1/3/2003	40.92	9.78	31.14	12,000	730	230	740	1,690	<20
	5/3/2003	40.92	9.92	31.00	150,000 H	1,400	780	2,500	8,700	<40
	7/24/2003	40.92	12.98	27.94	29,000	1,600	520	1,500	4,400	<200
	10/22/2003	40.92	14.35	26.57	36,000	1,300	430	1,600	4,570	<40
	1/22/2004	40.92	10.60	30.32	30,000	1,300	320	1,500	3,040	<50
	4/1/2004	40.92	11.80	29.12	99,000	1,700	580 C	2,200	5,200	<50
	8/20/2004	40.92	14.36	26.56	12,000	580	130	520	1,020	<10
	12/8/2004	40.92	11.22	29.70	12,631	649	134	1,009	2,037	<2.15
	3/16/2005	40.92	8.94	31.98	18,300	546	126	705	1,069	<2.15
	5/17/2005	40.92	10.02	30.90	38,500	1,290	395	1,550	1,652	<5.50
	7/15/2005	40.92	11.78	29.14	50,100	1,510	409	1,900	1,920	<5.50
	10/13/2005	40.92	14.04	26.88	9,620	513	97.4	523	422.3	<2.15
	1/3/2006	40.92	7.86	33.06	13,000	260	79.0	680	750	<4.2
	4/7/2006	40.92	6.93	33.99	18,200	650	151	918	715	<5.5
	9/8/2006	40.92	13.12	27.80	18,600	604	98.80	639	659	<2.15

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260B (μg/L)
MW-7	10/2/1995	97.83	12.95	84.88	NA	10	12	17	NA	3,300
	1/3/1996	97.83	9.57	88.26	3,300	9	12	17	45	NA
	4/3/1996	97.83	7.75	90.08	1,900	2	3	5	7	NA
	12/9/1996	97.83	10.97	86.86	NA	NA	NA	NA	NA	NA
	4/10/1997	97.83	12.95	84.88	NA	NA	NA	NA	NA	NA
	12/30/1997	97.83	8.65	89.18	1,400	130	98	75	200	NA
	6/30/1998	97.83	NM	NM	620	4	<5	9	<10	NA
	9/29/1998	97.83	13.09	84.74	1,800	1	1	1	2	68
	12/16/1998	97.83	10.52	87.31	990	5	10	5	20	160
	3/16/1999	97.83	7.00	90.83	300	3	1	1	1	62
	6/10/1999	97.83	10.70	87.13	320	3	7	4	3	26
	8/23/1999	97.83	12.80	85.03	570	5	10	ND	ND	ND
	11/9/1999	97.83	13.25	84.58	290	<5	9	<5	<5	12
	2/7/2000	97.83	9.50	88.33	80	<5	<5	<5	<5	23
	5/31/2000	97.83	10.52	87.31	494.9	4.9	22	4.2	21.9	29
	8/9/2000	97.83	12.63	85.20	80	<5	<5	<5	<5	11.7
	11/2/2000	97.83	11.95	85.88	50	ND	ND	ND	ND	9.1
	3/13/2001	97.83	8.04	89.79	82	0.97	ND	0.76	ND	78
	5/22/2001	97.83	10.60	87.23	370	ND	9.1	1.3	2.3	28
	8/8/2001	97.83	13.02	84.81	610	3.7	3	6.2	18.9	10
	11/19/2001	97.83	12.83	85.00	1,700	24	220	41	205	69
	2/21/2002	97.83	8.91	88.92	380	<0.5	2.5	2	3.8	78
	5/7/2002	97.83	10.13	87.70	560	15	28.0	9.2	44.0	37
	7/30/2002	39.94	12.15	27.79	270	5.3	1.3 C	2.3	8.1	46
	10/20/2002	39.94	13.74	26.20	350	< 0.5	2.1 C	<0.5	3.1 C	43
	1/3/2003 5/3/2003	39.94 39.94	8.45 7.69	31.49 32.25	220 Y 280	<0.5 <0.5	<0.5 <0.5	0.78 <0.5	0.55 <0.5	19 11
	5/3/2003 7/24/2003	39.94 39.94	7.69 11.72	28.22	280	<0.5 <0.5	<0.5 1.3 C	<0.5 <0.5	<0.5 0.63	5.9
	10/22/2003	39.94 39.94	13.10	28.22 26.84	230 460	<0.5 <0.5	<0.5	<0.5 <0.5	0.63 <0.5	5.9 5.0
	1/22/2003	39.94	9.23	30.71	380	<0.5	1.4 C	<0.5	<0.5	<5.0
	4/1/2004	39.94 39.94	10.40	29.54	480	<0.5	2.5 C	<0.5	0.90	0.62
	8/20/2004	39.94	12.92	29.04	400	<0.5	.81 C	<0.5	< 0.5	1.70
	12/7/2004	39.94	10.28	29.66	96	<0.5	<0.5	<0.5	<1.0	< 0.5

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well MW-7 cont.	Date 3/16/2005 5/16/2005 7/14/2005 10/13/2005 1/3/2006 4/7/2006 9/7/2006	Top Of Casing Elevation ¹ (feet) 39.94 39.94 39.94 39.94 39.94 39.94 39.94	Depth to Groundwater (feet) 7.44 8.53 10.61 12.80 6.39 8.10 14.52	Groundwater Elevation (feet) 32.50 31.41 29.33 27.14 33.55 31.84 25.42	TPH-g (μg/L) 209 262 753 1,690 250 Υ 3,440 320	Benzene (μg/L) <0.5 4.85 20.6 5.3 0.80 0.64 2.87	Toluene (μg/L) <0.5 2.19 11.9 2.71 <0.5 <2.0 <2.0	Ethyl- Benzene (μg/L) <0.5 2.36 16.8 12.6 0.61 17 4.76	Total Xylenes (μg/L) <1.0 4.24 33.23 54 <0.5 <1.0 1.34	MtBE ² EPA 8260B (μg/L) 1.74 0.73 2.36 1.93 1.1 <0.5 <0.5
	3/1/2000	33.34	14.52	23.42	520	2.07	\2.0	4.70	1.54	<0.5
MW-8	10/2/1995	97.25	12.86	84.39	NA	NA	NA	NA	NA	NA
	1/3/1996	97.25	9.79	87.46	94,000	310	250	180	480	NA
	4/3/1996	97.25	7.98	89.27	58,000	250	170	140	330	NA
	12/9/1996	97.25	11.13	86.12	27,000	88	43	44	80	ND
	4/10/1997	97.25	12.95	84.30	24,000	86	55	50	100	ND
	12/30/1997	97.25	8.95	88.30	28,000	6,000	1,600	2,100	4,700	NA
	6/30/1998	97.25	NM	NM	54,000	4,600	2,800	3,500	7,300	NA
	9/29/1998	97.25	13.02	84.23	NA	NA	NA	NA	NA	NA
	12/16/1998	97.25	10.75	86.50	61,000	6,300	1,700	2,200	4,400	1,300
	3/16/1999	97.25	7.58	89.67	22,000	1,800	470	2,000	2,000	820
	6/10/1999	97.25	10.80	86.45	39,500	3,610	1,635	2,175	5,913	988
	8/23/1999	97.25	12.75	84.50	58,000	5,379	2,438	3,001	6,960	639
	11/9/1999	97.25	13.65	83.60	10,500	92	<5	<5	3,414	769
	2/7/2000	97.25	10.85	86.40	44,200	1,080	617	<5	4,160	240
	5/31/2000	97.25	11.15	86.10	25,940	940	130	1,600	3,960	75
	8/9/2000	97.25	12.87	84.38	22,000	632	5.38	<5	2,686	37.3
	11/2/2000	97.25	12.55	84.70	3,000	278	350	209	980	21
	3/13/2001	97.25	8.75	88.50	2,360	81	16	71	270	221
	8/8/2001	97.25	12.97	84.28	5,620	153	46	373	345	174
	11/19/2001	97.25	13.19 9.88	84.06	13,000	600	270	750	1,200	400
	2/21/2002 5/7/2002	97.25 97.25	9.88 10.32	87.37 86.93	240,000 9,000	1,400 360	<25 56	4,200 560	6,560 622	<100 2,100
	5/7/2002 7/30/2002	97.25 39.38	10.32	27.59	9,000 8,400	360 340	56 78	560 530	622 517	2,100
	10/20/2002	39.38	13.80	25.58	8,400 18,000	950	78 75	1,400	1,269	700
	1/3/2002	39.38	9.48	29.90	8,100	300	29	370	302	1,100
	5/3/2003	39.38	9.48	29.90	18,000	380	33 C	1,000	516	540
	7/24/2003	39.38	11.92	27.46	12,000	460	54 C	910	435	890
	10/22/2003	39.38	13.09	26.29	16,000	830	87	2,000	675	280

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring		Top Of Casing Elevation ¹	Depth to Groundwater	Groundwater Elevation	TPH-g	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MtBE ² EPA 8260E
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-8 cont.	1/22/2004	39.38	10.32	29.06	18,000	330	37 C	860	239	500
	4/1/2004	39.38	11.23	28.15	12,000	240	26 C	650	128.8 C	<4
	8/20/2004	39.38	13.02	26.36	6,000	310	27	660	56.8 C	<4
	12/8/2004	39.38	10.79	28.59	6,650	171	15	360	35	166
	3/15/2005	39.38	7.62	31.76	11,400	125	21	418	55.3	865
	5/16/2005	39.38	9.15	30.23	10,100	122	13.2	440	34.73	406
	7/14/2005	39.38	10.81	28.57	11,600	213	27.8	854	71.51	184
	10/13/2005	39.38	12.81	26.57	6,590	256	27.7	655	48.50	375
	1/3/2006	39.38	7.40	31.98	4,800	53	5.2	130	21	210
	4/6/2006	39.38	6.04	33.34	8,240	82.5	14.6	364	28.06	771
	9/7/2006	39.38	12.15	27.23	4,130	86.80	7.32	173	19.73	48.60
			-	-	-		-			
MW-10	12/1/1996	94.54	10.44	84.10	NA	NA	NA	NA	NA	NA
	4/10/1997	94.54	10.07	84.47	1,000	21	9	3	3	ND
	12/30/1997	94.54	8.78	85.76	10,000	5,300	76	1,100	780	NA
	9/29/1998	94.54	11.93	82.61	9,900	5,400	66	970	620	2,600
	12/16/1998	94.54	10.19	84.35	8,700	3,800	51	790	420	1,800
	3/16/1999	94.54	7.30	87.24	4,100	15	28	420	250	2,800
	6/10/1999	94.54	9.95	84.59	4,200	1,168	34	264	154	1,195
	8/23/1999	94.54	11.60	82.94	3,250	2,135	97	600	248	1,800
	11/9/1999	94.54	12.50	82.04	2,950	1,134	20	<5	70	652
	2/7/2000	94.54	9.25	85.29	<50	<5	<5	<5	<5	448
	5/31/2000	94.54	9.45	85.09	4,400	1,500	25	390	107.1	580
	8/9/2000	94.54	11.52	83.02	6,800	1,055	26	54	53.8	1,283
	11/2/2000	94.54	11.35	83.19	ND	ND	ND	ND	ND	145
	3/13/2001	94.54	8.07	86.47	4,935	969	18	41	72	630
	5/22/2001	94.54	9.80	84.74	2,900	630	11	200	31	270
	8/8/2001	94.54	11.64	82.90	242	35	1	11	2	64
	11/19/2001	94.54	12.06	82.48	3,500	900	260	310	258	410
	2/21/2002	94.54	8.28	86.26	4,700	1,100	20	370	63.7	500
	5/7/2002	94.54	9.49	85.05	3,400	660	13	260	48.0	270
	7/30/2002	36.71	10.93	25.78	160	26	0.55	8.1	1.0	72
	10/20/2002	36.71	12.54	24.17	550	130	3.00	31.0	2.7	70
	1/3/2003	36.71	8.23	28.48	17,000	870	11	290	27	270
	5/3/2003	36.71	8.30	28.41	2,500	650	10	190	15.81 C	180
	7/24/2003	36.71	10.76	25.95	750	160	4	58	6.66 C	79
	10/22/2003	36.71	11.91	24.80	2,000	410	11	170	9.14 C	110

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

										I
		Top Of								
		Casing	Depth to	Groundwater				Ethyl-	Total	MtBE ²
Monitoring		Elevation ¹	Groundwater	Elevation	TPH-g	Benzene	Toluene	Benzene	Xylenes	EPA 8260
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-10 cont.	1/22/2004	36.71	8.91	27.80	4,000	600	15	280	15.3 C	110
	4/1/2004	36.71	9.62	27.09	5,100	580	<1	330	26.4	160
	8/20/2004	36.71	11.50	25.21	3,400	550	13	240	17.0	100
	12/7/2004	36.71	9.29	27.42	2,524	556	10	184	16.0	144
	3/15/2005	36.71	7.48	29.23	4,340	354	6.07	166	17.1	258
	5/16/2005	36.71	8.24	28.47	4,750	415	6.87	254	10.4	126
	7/14/2005	36.71	9.78	26.93	6,050	594	9.53	297	10.7	190
	10/13/2005	36.71	11.32	25.39	6,230	811	11.3	355	5.6	167
	1/3/2006	36.71	6.81	29.90	2,000	350	6.0	210	16	88
	4/6/2006	36.71	6.03	30.68	600	86.5	<2.0	59.1	2.36	30.4
	9/7/2006	36.71	10.90	25.81	6,960	360	<8.60	253	11.30	103.0
MW-11	12/1/1996	95.94	11.99	83.95	NA	NA	NA	NA	NA	NA
	4/1/1997	95.94	11.47	84.47	NA	NA	NA	NA	NA	NA
	12/30/1997	95.94	10.40	85.54	710	66	97	59	190	NA
	6/30/1998	95.94	NM	NM	1,100	45	24	71	100	NA
	9/29/1998	95.94	13.24	82.70	170	7	1	4	9	22
	12/16/1998	95.94	11.58	84.36	650	27	4	25	33	>0.5
	3/16/1999	95.94	8.81	87.13	710	30	6	53	84	8
	6/10/1999	95.94	11.50	84.44	4,600	1,240	35	290	159	1,291
	8/23/1999	95.94	12.75	83.19	170	4	4	ND	6	ND
	11/9/1999	95.94	13.85	82.09	<50	<5	<5	<5	<5	<5
	2/7/2000	95.94	13.60	82.34	700	20	15	<5	35	<5
	8/9/2000	95.94	14.87	81.07	590	10.5	5.94	<5	7.75	<5
	11/2/2000	95.94	12.55	83.39	60	ND	ND	ND	ND	ND
	3/13/2001	95.94	9.61	86.33	273	8.6	2.1	10	14	ND
	5/22/2001	95.94	11.15	84.79	280	12	8.3	3.3	9.8	12
	8/8/2001	95.94	13.04	82.90	NA	NA	NA	NA	NA	NA
	11/19/2001	95.94	13.48	82.46	300	7.9	26	5.1	28.9	ND
	2/21/2002	95.94	9.69	86.25	560	34	20	32	37.3	< 0.5
	5/7/2002	95.94	10.99	84.95	280	16	3	7.6	7.6	<2
	7/30/2002	NS	13.24	NC	120	5.6	<0.5	0.61	0.53	<2.0
	10/20/2002	NS	NM	NC	NA	NA	NA	NA	NA	NA

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260 (μg/L)
MW-11 cont.	1/3/2003	NS	9.76	NC	700	32	5.7	25	14.10	<2.0
	5/3/2003	NS	9.66	NC	280	17	1.5 C	8	4.10	<2.0
	7/24/2003	NS	12.30	NC	340	19 C	3.2	0.58	0.89	<2.0
	10/22/2003	NS	13.38	NC	210	5.0 C	<0.5	<0.5	<0.5	<0.5
	1/22/2004	NS	NM	NC	NA	NA	NA	NA	NA	NA
	4/1/2004	NS	NM	NC	NA	NA	NA	NA	NA	NA
	8/20/2004	NS	NM	NC	NA	NA	NA	NA	NA	NA
	12/7/2004	NS	10.54	NC	486	24	3.0	18	4.00	<0.5
	3/15/2005	NS	NM	NC	NA	NA	NA	NA	NA	NA
	5/16/2005	NS	NM	NC	NA	NA	NA	NA	NA	NA
	7/14/2005	NS	NM	NC	NA	NA	NA	NA	NA	NA
	10/13/2005	NS	NM	NC	NA	NA	NA	NA	NA	NA
	1/3/2006	NS	NM	NC	NA	NA	NA	NA	NA	NA
	4/6/2006	NS	7.72	NC	872	19.8	3.63	37.5	3.28	<0.5
MW-12	11/9/1999	94.84	13.20	81.64	80	<5	<5	<5	<5	229
	2/7/2000	94.84	10.20	84.64	4,000	351	37	<5	24	513
	5/31/2000	94.84	10.48	84.36	3,930	230	10	34	12	200
	8/9/2000	94.84	12.07	82.77	1,730	15.4	12.4	<5	<5	185
	11/2/2000	94.84	12.05	82.79	1,010	9.3	19.0	ND	7.40	215
	3/13/2001	94.84	9.04	85.80	1,517	13	5.6	5.5	11	214
	5/22/2001	94.84	10.52	84.32	31,000	1,200	ND	95	165	1,900
	8/8/2001	94.84	12.24	82.60	2,090	71	1.8	3	4	142
	11/19/2001	94.84	12.76	82.08	3,000	81	69	13	73	120
	2/21/2002	94.84	8.78	86.06	2,500	77	<0.5	5.7	7.4	95
	5/7/2002	94.84	10.26	84.58	2,700	74	< 0.5	20	5.1	94
	7/30/2002	36.84	10.93	25.91	2,200	57	<0.5	11	2.6	100
	10/20/2002	36.84	13.13	23.71	2,600	71	<0.5	<0.5	10.3	84
	1/3/2003	36.84	9.23	27.61	2,300	65	<0.5	1	4.00	86
	5/3/2003	36.84	9.24	27.60	2,200	58	<0.5	4.2 C	4.1 C	96
	5,0,2000	36.84	11.44	25.40	2,200	32 C	16 C	<0.5	9.20	66
	7/24/2003				2200 H	31 C	< 0.5	<0.5	3.5 C	49
	7/24/2003 10/22/2003		12 50	24.34			-0.0	-0.0		
	10/22/2003	36.84	12.50 9.56	24.34 27.28		24 C	14 C	3	5.00	72
	10/22/2003 1/22/2004	36.84 36.84	9.56	27.28	1,700	24 C 11 C	14 C <0.5	3 <0.5	5.00 5 C	72 36
	10/22/2003	36.84				24 C 11 C 8.9 C	14 C <0.5 <0.5	3 <0.5 <0.5	5.00 5 C 1.1 C	72 36 26

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260 (μg/L)
MW-12 cont.	3/15/2005	36.84	8.49	28.35	1,890	4.25	<0.5	6.38	<1.0	30.6
	5/16/2005	36.84	9.07	27.77	1,080	<0.5	<0.5	<0.5	<1.0	20.6
	7/14/2005	36.84	10.43	26.41	1,580	2.71	<2.0	3.33	<1.0	29.3
	10/13/2005	36.84	12.08	24.76	1,560	0.74	<2.0	<0.50	<1.0	28.1
	1/3/2006	36.84	7.89	28.95	480 Y	13	<0.5	<0.5	<0.5	30
	4/6/2006	36.84	7.92	28.92	1,310	<0.5	<2.0	<0.5	<1.0	31.1
	9/7/2006	36.84	11.44	25.40	1,220	0.61	<2.0	2.69	<1.0	23.7
FDC	2/7/2000	97.10	15.40	81.70	NA	NA	NA	NA	NA	NA
	5/31/2000	97.10	12.41	84.69	NA	NA	NA	NA	NA	NA
	8/9/2000	97.10	15.70	81.40	NA	NA	NA	NA	NA	NA
	11/2/2000	97.10	16.85	80.25	NA	NA	NA	NA	NA	NA
	3/13/2001	97.10	9.39	87.71	NA	NA	NA	NA	NA	NA
	5/22/2001	97.10	15.85	81.25	NA	NA	NA	NA	NA	NA
	8/8/2001	97.10	13.30	83.80	NA	NA	NA	NA	NA	NA
	11/19/2001	97.10	17.82	79.28	NA	NA	NA	NA	NA	NA
	2/21/2002	97.10	16.74	80.36	NA	NA	NA	NA	NA	NA
	5/7/2002	97.10	10.36	86.74	NA	NA	NA	NA	NA	NA
	7/30/2002	39.35	11.93	27.42	NA	NA	NA	NA	NA	NA
	10/20/2002	39.35	13.74	25.61	NA	NA	NA	NA	NA	NA
	1/3/2003	39.35	15.18	24.17	NA	NA	NA	NA	NA	NA
	5/3/2003	39.35	16.20	23.15	NA	NA	NA	NA	NA	NA
	7/24/2003	39.35	16.45	22.90	NA	NA	NA	NA	NA	NA
	10/22/2003	39.35	16.53	22.82	NA	NA	NA	NA	NA	NA
	1/22/2004	39.35	13.74	25.61	NA	NA	NA	NA	NA	NA
	4/1/2004	39.35	16.30	23.05	NA	NA	NA	NA	NA	NA
	8/20/2004	39.35	16.05	23.30	NA	NA	NA	NA	NA	NA
	12/7/2004	39.35	14.56	24.79	NA	NA	NA	NA	NA	NA
	3/16/2005	39.35	13.55	25.80	NA	NA	NA	NA	NA	NA
	5/17/2005	39.35	14.88	24.47	NA	NA	NA	NA	NA	NA
	7/14/2005	39.35	14.32	25.03	NA	NA	NA	NA	NA	NA
	10/13/2005	39.35	14.99	24.36	NA	NA	NA	NA	NA	NA
	1/3/2006	39.35	11.82	27.53	NA	NA	NA	NA	NA	NA
	4/6/2006	39.35	13.60	25.75	NA	NA	NA	NA	NA	NA
	9/7/2006	39.35	15.05	24.30	NA	NA	NA	NA	NA	NA

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260B (μg/L)
FDE	5/31/2000	97.90	13.22	84.68	NA	NA	NA	NA	NA	NA
	8/9/2000	97.90	NM	NM	NA	NA	NA	NA	NA	NA
	11/2/2000	97.90	12.75	85.15	NA	NA	NA	NA	NA	NA
	3/13/2001	97.90	9.14	88.76	NA	NA	NA	NA	NA	NA
	5/22/2001	97.90	13.05	84.85	NA	NA	NA	NA	NA	NA
	8/8/2001	97.90	13.69	84.21	NA	NA	NA	NA	NA	NA
	11/19/2001	97.90	13.92	83.98	NA	NA	NA	NA	NA	NA
	2/21/2002	97.90	13.18	84.72	NA	NA	NA	NA	NA	NA
	5/7/2002	97.90	11.18	86.72	NA	NA	NA	NA	NA	NA
	7/30/2002	40.06	12.81	27.25	NA	NA	NA	NA	NA	NA
	10/20/2002	40.06	14.53	25.53	NA	NA	NA	NA	NA	NA
	1/3/2003	40.06	13.13	26.93	NA	NA	NA	NA	NA	NA
	5/3/2003	40.06	11.79	28.27	NA	NA	NA	NA	NA	NA
	7/24/2003	40.06	13.10	26.96	NA	NA	NA	NA	NA	NA
	10/22/2003	40.06	13.85	26.21	NA	NA	NA	NA	NA	NA
	1/22/2004	40.06	13.27	26.79	NA	NA	NA	NA	NA	NA
	4/1/2004	40.06	13.20	26.86	NA	NA	NA	NA	NA	NA
	8/20/2004	40.06	14.97	25.09	NA	NA	NA	NA	NA	NA
	12/7/2004	40.06	14.25	25.81	NA	NA	NA	NA	NA	NA
	3/16/2005	40.06	12.50	27.56	NA	NA	NA	NA	NA	NA
	5/17/2005	40.06	13.93	26.13	NA	NA	NA	NA	NA	NA
	7/14/2005	40.06	13.98	26.08	NA	NA	NA	NA	NA	NA
	10/13/2005	40.06	13.60	26.46	NA	NA	NA	NA	NA	NA
	1/3/2006	40.06	9.83	30.23	NA	NA	NA	NA	NA	NA
	4/6/2006	40.06	11.30	28.76	NA	NA	NA	NA	NA	NA
	9/7/2006	40.06	13.52	26.54	NA	NA	NA	NA	NA	NA
							<u> </u>			
FDW	5/31/2000	96.90	12.20	84.70	NA	NA	NA	NA	NA	NA
	8/9/2000	96.90	NM	NM	NA	NA	NA	NA	NA	NA
	11/2/2000	96.90	15.50	81.40	NA	NA	NA	NA	NA	NA
	3/13/2001	96.90	10.12	86.78	NA	NA	NA	NA	NA	NA
	5/22/2001	96.90	13.50	83.40	NA	NA	NA	NA	NA	NA
	8/8/2001	96.90	13.08	83.82	NA	NA	NA	NA	NA	NA
	11/19/2001	96.90	14.31	82.59	NA	NA	NA	NA	NA	NA

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Monitoring Well	Date	Top Of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Groundwater Elevation (feet)	TPH-g (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- Benzene (μg/L)	Total Xylenes (μg/L)	MtBE ² EPA 8260B (µg/L)
FDW cont.	2/21/2002	96.90	12.78	84.12	NA	NA	NA	NA	NA	NA
	5/7/2002	96.90	10.14	86.76	NA	NA	NA	NA	NA	NA
	7/30/2002	39.16	11.79	27.37	NA	NA	NA	NA	NA	NA
	10/20/2002	39.16	13.50	25.66	NA	NA	NA	NA	NA	NA
	1/3/2003	39.16	12.13	27.03	NA	NA	NA	NA	NA	NA
	5/3/2003	39.16	10.84	28.32	NA	NA	NA	NA	NA	NA
	7/24/2003	39.16	12.12	27.04	NA	NA	NA	NA	NA	NA
	10/22/2003	39.16	13.48	25.68	NA	NA	NA	NA	NA	NA
	1/22/2004	39.16	13.58	25.58	NA	NA	NA	NA	NA	NA
	4/1/2004	39.16	13.90	25.26	NA	NA	NA	NA	NA	NA
	8/20/2004	39.16	15.69	23.47	NA	NA	NA	NA	NA	NA
	12/7/2004	39.16	14.85	24.31	NA	NA	NA	NA	NA	NA
	3/16/2005	39.16	13.10	26.06	NA	NA	NA	NA	NA	NA
	5/17/2005	39.16	14.60	24.56	NA	NA	NA	NA	NA	NA
	7/14/2005	39.16	15.10	24.06	NA	NA	NA	NA	NA	NA
	10/13/2005	39.16	13.34	25.82	NA	NA	NA	NA	NA	NA
	1/3/2006	39.16	12.61	26.55	NA	NA	NA	NA	NA	NA
	4/6/2006	39.16	12.80	26.36	NA	NA	NA	NA	NA	NA
	9/7/2006	39.16	15.80	23.36	NA	NA	NA	NA	NA	NA

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

Notes:

1

Top of casing elevations were re-surveyed to comply with the EDF requirements for electronic reporting of data to the State Water Resources Control Board Database on August 9, 2002.

- ² MtBE was analyzed using the EPA Method 8021B and confirmed using 8260B.
- C Presence confirmed, but confirmation concentration differed by more than a factor of two.
- H: Heavier hydrocarbons may have contributed to the quantitation.
- NA: Not Analyzed
- NA: Not Applicable, Well/Drain did not exist at time of sampling
- NC: Not calculated. No top of casing elevation was available for MW-11.
- ND, <: Not Detected above laboratory reporting limits.
- NM: Not Measured
- NS: Not Surveyed.
- Y: Sample exhibits fuel pattern which does not resemble standard.

FDC: French drain center riser.

- FDE: French drain east riser.
- FDW: French drain west riser.

Well MW-4R replaced damaged well MW-4 on April 11, 2005. The first time well MW-4R was monitored was in the Second Quarter 2005

 Table 1

 Historical Groundwater Elevation Data & Analytical Results

 3609 International Boulevard, Oakland, California

NS: Not surveyed. Well MW-11 was not surveyed due to obstructions surrounding well.

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Effluer	nt ¹ and GAC	C-1		
		Reading	(concentrat	ions in ug/L)			
			2		_		Ethyl	
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	benzene	Total Xylenes
	0/07/0000	0.444.500		2006				
September	9/27/2006	3,441,500	<0.5	<50	<0.5	<0.5	<0.5	<0.5
			<0.5	<50	<0.5	<0.5	<0.5	<0.5
August	8/14/2006	3,425,340	<0.5	<50	<0.5	<2.0	<0.5	<1.0
ruguot	0/14/2000	0,120,010	<0.5	<50	< 0.5	<2.0	<0.5	<1.0
July	7/24/2006	3,414,800	<0.5	<50	<0.5	<2.0	<0.5	<1.0
			<0.5	<50	0.94	<2.0	<0.5	<1.0
June	6/15/2006		Carbo	n Change-c	ut of 2000 lt	o vessel and	d 55 gallon po	lishing vessel
	6/7/2006	3,379,880	<0.5	<50	<0.5	<2.0	<0.5	<1.0
			2.89	<50	5.3	<2.0	1.24	4.91
May	5/18/2006	3,350,260	roplac	od ovisting	200 gallon h	olding tank	with nowor 2	00 gallon tank
way	5/10/2000	3,330,200	теріас	eu existing	200 gailoit fi	oluling tarik		oo gallon tarik
	5/11/2006	3,337,750	<0.5	<50	<0.5	<2.0	<0.5	<1.0
		, ,	0.61	<50	<0.5	<2.0	<0.5	<1.0
April	4/19/2006	3,268,110	<0.5	<50	<0.5	<2.0	<0.5	<1.0
			1.66	<50	<0.5	<2.0	<0.5	<1.0
	4/4.0/0000	0.000.770	Carbo	n Change a			d FF gallan ng	liching vocal
	4/10/2006	3,236,770	1	-				olishing vessel
March	3/10/2006	3,220,570	<0.5	<50	<0.5	<2.0	<0.5	<1.0
			<0.5	<50	<0.5	<2.0	<0.5	<1.0
February	2/10/2006	3,186,590	<0.5	<50	<0.5	<2.0	<0.5	<1.0
rebluary	2/10/2000	3,100,390	<0.5 <0.5	<50 <50	<0.5	<2.0 <2.0	<0.5 <0.5	<1.0 <1.0
			-0.0	~00	-0.0	~2.0	-0.0	\$1.0
January	1/4/2006	3,122,610	<0.5	<50	<0.5	<0.5	<0.5	<0.5
,		-,,-,•	< 0.5	<50	<0.5	<0.5	<0.5	<0.5

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Effluer	nt ¹ and GAC	C-1		
		Reading	(concentrat	ions in ug/L)			
		<i>.</i>			_		Ethyl	
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	benzene	Total Xylenes
		T	1	2005				
December	12/9/2005	3,081,750	<0.5	<50	<0.5	<2.0	<0.5	<1.0
			<0.5	<50	<0.5	<2.0	<0.5	<1.0
November	11/1/2005	2 072 5 40	-0 F	-50	-0 F	-0.0	-0 E	<1.0
November	11/14/2005	3,072,540	<0.5 <0.5	<50 <50	<0.5 <0.5	<2.0 <2.0	<0.5 <0.5	<1.0
			<0.5	<00	<0.5	<2.0	<0.5	<1.0
October	10/17/2005	3,065,260	<0.5	<50	<0.5	<2.0	<0.5	<1.0
0010001	10/11/2000	0,000,200	< 0.5	<50	< 0.5	<2.0	<0.5	<1.0
			8					000 lb vessel,
September	9/29/2005	3,060,640	Керіа				ishing vessel	000 10 vessel,
				alot		o ganon poi	loning receel	
	9/12/2005	3,055,676	<0.5	<50	<0.5	<2.0	<0.5	<1.0
		, ,	<0.5	<50	<0.5	<2.0	<0.5	<1.0
August	8/8/2005	3,042,586	<0.5	<200	<0.5	<2.0	<0.5	<1.0
			0.51	<200	<0.5	<2.0	<0.5	<1.0
July	7/7/2005	3,026,010	<0.5 <0.5	<200 <200	<0.5 <0.5	<2.0 <2.0	<0.5 <0.5	<1.0
			<0.5	2005	<0.5	<2.0	<0.5	<1.0
luna	C/0/2005	2,000,286	-0 F		<0.5	-2.0	<0.5	<1.0
June	6/9/2005	3,000,386	<0.5 0.61	<200 <200	<0.5	<2.0 <2.0	<0.5 <0.5	<1.0
			0.01	<200	<0.5	<2.0	<0.5	<1.0
May	5/9/2005	2,971,430	<0.5	<200	<0.5	<0.5	<0.5	<1.0
	0,0,2000	2,01 1,100	< 0.5	<200	< 0.5	<0.5	<0.5	<1.0
	5/4/2005	2,964,270	Carbo	n Change-o	ut of 2000 lt	o vessel and	d 55 gallon po	lishing vessel
				totalize	r changed a	t meter read	ling of 2,189,	270
April	4/4/2005	2,904,500	<0.5	<200	<0.5	<0.5	<0.5	<1.0
			<0.5	<200	<0.5	<0.5	<0.5	<1.0

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter			nt ¹ and GAC	D-1		
		Reading	(concentrat	ions in ug/L	.)			
Manth	Data	(MtBE ²		Deverse	Taluana	Ethyl benzene	Total Video e
Month	Date	(gallons)	WILDE	TPH-g 2005	Benzene	Toluene	Denzene	Total Xylenes
March	3/21/2005	2,874,170	<0.5	<2003	<0.5	<0.5	<0.5	<1.0
March	5/21/2003	2,074,170	<0.5	<200	<0.5	<0.5	<0.5	<1.0
February	2/14/2005	2,828,000			55 Gallon	Drum Chan	ged Out	
	- /- /							
	2/7/2005	2,819,000	<5.0	<50	<5.0	<5.0	<5.0	<5.0
			<5.0	<50	<5.0	<5.0	<5.0	<5.0
January	1/19/2005	2,775,000	Carbo	n Change-o	but of 2000 II	b vessel and	d 55 gallon po	blishing vessel
-				_				
	1/3/2005	2,730,480	3.6	<50	<0.5	<0.5	<0.5	<0.5
			3.8	<50 2004	<0.5	<0.5	<0.5	<0.5
December	12/6/2004	2,667,620	<0.5	< <u>-</u> 50	<0.5	<0.5	<0.5	<1.0
December	12/0/2004	2,007,020	<0.5	<50 <50	<0.5	<0.5	< 0.5	<1.0
November	11/8/2004	2,631,600	<0.5	<50	<0.5	<0.5	<0.5	<0.5
			<0.5	<50	<0.5	<0.5	<0.5	<0.5
October	10/13/2004	2,606,420	. 2.0	. 50	<0.5	-0 F	<0.5	<0.5
October	10/13/2004	2,606,420	< 2.0 <2.0	< 50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
September	9/13/2004	2,594,390	< 2.0	< 50	<0.5	<0.5	<0.5	<0.5
Geptember	3/13/2004	2,004,000	< 2.0	< 50	<0.5	<0.5	<0.5	<0.5
						1010		
August	8/25/2004	2,586,010			55 Gallon	Drum Chan	ged Out	
	0/0/0004	0.504.050			0.5	0.5	0.5	0.5
	8/9/2004	2,581,250	< 2.0 < 2.0	< 50 < 50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
		1	< 2.0	< 50	<0.0	<0.5	×0.5	<0.5
July	7/13/2004	2,568,830	< 2.0	< 50	<0.5	<0.5	<0.5	<0.5
			< 2.0	< 50	<0.5	<0.5	<0.5	<0.5
	7/04/0000	0.504.742						
	7/21/2004	2,564,710			55 Gallon	Drum Chan	ged Out	

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Efflue	nt ¹ and GAC	D-1						
		Reading	(concentrat	ions in ug/L	.)							
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes				
				2004								
June	6/14/2004	2,549,470	< 2.0	< 50	<0.5	<0.5	<0.5	<0.5				
		-	< 2.0	< 50	<0.5	<0.5	<0.5	<0.5				
Мау	5/26/2004	2,530,000	Carbon Change-out of 2000 lb vessel and 55 gallon polishing vessel									
	5/10/2004	2,488,760		Semi Annual Treatment System Meeting With Ebmud								
	5/17/2004	2,518,910	Replaced 55-gallon polishing vessel and restarted the system									
	5/5/2004	2,500,650	Carbon Changed Out and 55 Gallon Drum Changed Out									
	5/3/2004	2,497,350	< 2.0	< 50	<0.5	<0.5	<0.5	<0.5				
			< 2.0	< 50	<0.5	<0.5	<0.5	<0.5				
April	4/15/2004	2,436,190	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				
•			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				
March	3/17/2004	2,376,200	Carbo	n Change-o	out of 2000 l	b vessel an	d 55 gallon po	lishing vessel				
February	2/24/2004	2,276,770	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0				
		_	<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				
January	1/27/2004	2,165,220	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				
,			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				
	1/13/2004	2,116,720	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				
		_,,0	<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0				

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Results For Effluent ¹ and GAC-1 (concentrations in ug/L)					
		Reading					Ethyl	
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	benzene	Total Xylenes
				2003				
December	12/8/2003	2,092,330	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
November	11/17/2003	2,087,670	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
	11/17/2003	2,007,070	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
	11/3/2003	2,079,460	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
October	10/13/2003	2,073,060	5.3	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
	10/1/2003	2,072,610	Carbon Change-out of 2000 lb vessel and 55 gallon polishing vessel					
September	9/15/2003	2,056,910	<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			6	< 50	< 5.0	< 5.0	< 5.0	< 5.0
	9/2/2003	2,040,040	<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
August	8/19/2003	2,021,040	<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			<5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
July	7/21/2003	1.005.240	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
	1/21/2003	1,995,240	< 5.0 40	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0
		1			× 0.0	< 0.0	< 0.0	10.0
	7/9/2003	1,990,260	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0
			36	< 50	< 5.0	< 5.0	< 5.0	< 5.0

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Effluer	nt ¹ and GAC	C-1		
		Reading	(concentrat	ions in ug/L)			
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes
				2003				
June	6/18/2003	1,978,560	Carbo	n Change-o	out of 2000 II	o vessel and	d 55 gallon po	lishing vessel
	6/10/2003	1,972,780	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0
			< 5.0	< 00	< 5.0	< 5.0	< 0.0	< 5.0
May	5/21/2003	1,951,830	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0
			< 0.0		< 0.0	< 0.0	< 0.0	< 5.0
	5/1/2003	1,918,270	< 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0 < 5.0
			< 5.0	< 30	< 5.0	< 5.0	< 5.0	< 5.0
April	4/11/2003	1,882,440	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0
	0/10/0000	4 9 4 9 4 9 9				< 5.0	< 5.0	< 5.0
March	3/19/2003	1,846,490	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0
February	2/25/2003	1,804,960	replac	ced 55-gallo	n polishing v	essel with	new 55 gallor	carbon drum
	2/19/2003	1,791,720	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0
1	4/07/0000	4 700 500	1					
January	1/27/2003	1,733,500	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0
	1/2/2003	1,675,600	< 5.0 < 5.0	< 50 < 50	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Effluer	nt ¹ and GAC	C-1				
		Reading	(concentra	tions in ug/L))					
							Ethyl			
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	benzene	Total Xylenes		
				2002						
December	12/10/2002	1,672,870	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0		
			< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0		
November	11/22/2002	1,668,650	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0		
		.,,	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0		
	11/13/2002	1,664,780	replace	d gasket on	top of 2000	lb GAC ve	ssel, slight lea	ak was detected		
11/7/2002 1,663,880 Carbon Change-out of 2000 lb vessel and 55 gallon polishing										
	11/1/2002	1,003,000	Carbon Change-out of 2000 ib vessel and 55 gallon polishing vessel							
October	10/16/02 ³	1,661,590	< 310	2,000 Y Z	< 310	< 310	< 310	< 310		
			< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
September	9/19/2002	1,653,600	< 5	< 50	< 5	< 5	< 5	< 5		
-			< 5	< 50	< 5	< 5	< 5	< 5		
August	8/23/2002	1,641,650	1	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
Augusi	0/23/2002	1,041,030	< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
			< 0.0		< 0.0	< 0.0	< 0.0	< 0.0		
July	7/23/2002	1,632,834	<5.0	< 50	<5.0	<5.0	<5.0	<5.0		
,		, ,	< 5.0	< 50	< 5.0	< 5.0	< 5.0	< 5.0		
June	6/24/2002	1,610,050	1.7	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
			< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
May	5/30/2002	1,571,630	< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
			< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	5/20/2002	1,548,000	remo	oved newly in				r compressor		
	5/8/2002	1,538,850	-			new comp				
	5/1/2002	1,529,650		IN	stalled new	55 gallon G	AC Vessel			
April	4/24/2002	1,528,740	< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
дрш	4/24/2002	1,520,740	< 0.5	< 50 < 50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5		
	4/1/2002	1,478,500	× 0.5				on compress			

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Effluer	nt ¹ and GAC	D-1			
		Reading	(concentrat	ions in ug/L)				
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes	
				2002					
March	3/25/2002	1,478,420	performed carbon change-out on treatment system						
	3/18/2002	NR				ston on cor			
	3/14/2002	1,478,330		CC	mpressor n	ot building	up pressure		
February	2/27/2002	1,449,830	< 0.5	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
			1.1	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
January	1/22/2002	1,381,370	< 2.0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
			< 2.0	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	1	I	1	2001	-	-	T		
December	12/12/2001	1,311,340	ND	ND	ND	ND	ND	ND	
			ND	ND	ND	ND	ND	ND	
November	11/2/2001	1,272,660	ND	ND	ND	ND	ND	ND	
			0.6	ND	ND	ND	ND	ND	
September	9/28/2001	NA	ND	ND	ND	ND	ND	ND	
			ND	ND	ND	ND	ND	ND	
August	8/22/2001	1,243,100	ND	ND	ND	ND	ND	ND	
			ND	ND	ND	ND	ND	ND	
July	7/26/2001	1,227,270	ND	ND	ND	ND	ND	ND	
			ND	ND	ND	ND	ND	ND	
	7/11/2001	1,226,730	NA	NA	NA	NA	NA	NA	
			NA	NA	NA	NA	NA	NA	

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Results	s For Effluer	nt ¹ and GAC	D-1		
		Reading	(concentrat	ions in ug/L)			
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes
				2001				
June	6/29/2001	1,224,600	NA	NA	NA	NA	NA	NA
			ND	ND	ND	ND	ND	ND
	6/26/2001	NR			installed	new comp	ressor	
	6/16/2001	1,216,580	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA
				compr	essor not wo	orking, repa	ired compres	
	6/7/2001	1,216,580	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA
	5/00/0004	4 005 400						
May	5/30/2001	1,205,198	NA	NA	NA	NA	NA	NA
	5/00/0004	4 404 000	NA	NA	NA	NA	NA	NA
	5/23/2001	1,194,390	NA	NA	NA	NA	NA	NA
	5/17/2001	1,182,360	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND
	5/17/2001	1,102,300	ND	ND	ND	ND	ND	ND
	5/10/2001	1,166,850	NA	NA	NA	NA	NA	NA
	5/10/2001	1,100,000	NA	NA	NA	NA	NA	NA
	5/5/2001	1,151,600	NA	NA	NA	NA	NA	NA
	0/0/2001	1,101,000	NA	NA	NA	NA	NA	NA
April	4/28/2001	1,135,690	NA	NA	NA	NA	NA	NA
•			NA	NA	NA	NA	NA	NA
	4/21/2001	1,113,570	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA
	4/11/2001	1,082,700	NA	ND	ND	ND	ND	ND
			ND	ND	ND	ND	ND	ND
	4/6/2001	1,065,540	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Results	s For Efflue	nt ¹ and GAC	D-1			
		Reading	(concentrat	ions in ug/L	.)				
							Ethyl		
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	benzene	Total Xylenes	
				2001					
March	3/29/2001	1,036,330	NA	NA	NA	NA	NA	NA	
			NA	NA	NA	NA	NA	NA	
					system	i was re-sta			
	3/21/2001	1,036,070	NA	NA	NA	NA	NA	NA	
			NA	NA	NA	NA	NA	NA	
					belt replace	ced on com	pressor		
	3/17/2001	1,035,100	NA	NA	NA	NA	NA	NA	
			NA	NA	NA	NA	NA	NA	
	3/13/2001	1,032,500	ND	ND	ND	ND	ND	ND	
			NA	NA	NA	NA	NA	NA	
	3/2/2001	996,520	NA	NA	NA	NA	NA	NA	
			NA	NA	NA	NA	NA	NA	
	3/1/2001	NR		syste	em re-starte	d after carbo	on change-ou	it	
February	2/28/2001	NR	Carbon Change-out was performed on GAC-1, washed algae from holding tank						
			cleaned 2000 lb GAC, re-started system						
	2/10/2001	975,490	System shut down for maintenance and cleaning.						
					1	1		1	
January	1/29/2001	957,880	ND	ND	ND	ND	ND	ND	
			ND	ND	ND	ND	ND	ND	
	-	T	•	2000	I				
December	12/5/2000	883,000	ND	ND	ND	ND	ND	ND	
			ND	ND	ND	ND	ND	ND	
November	11/24/2000	NR	ND	ND	ND	ND	ND	ND	
	11/2-7/2000		ND	ND	ND	ND	ND	ND	
	11/1/2000	842,000	ND	ND	ND	ND	ND	ND	
	11/1/2000	072,000	ND	ND	ND	ND	ND	ND	
							ND		

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Results	s For Effluer	nt ¹ and GAC	C-1		
		Reading	(concentrat	ions in ug/L)			
			0				Ethyl	
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	benzene	Total Xylenes
				2000				
October	10/1/2000	809,000	ND	ND	ND	ND	ND	ND
			ND	ND	ND	ND	ND	ND
August	8/27/2000	781,000	ND	ND	ND	ND	ND	ND
rugust	8/24/2000						ding of 775,0	
	0/21/2000	110,000		totanzo				00
July	7/26/2000	726,000	ND	ND	ND	ND	ND	ND
	7/19/2000	718,000	ND	ND	ND	ND	ND	ND
	7/13/2000	712,000	ND	ND	ND	ND	ND	ND
	7/7/2000	706,000	ND	ND	ND	ND	ND	ND
June	6/29/2000	700,000	ND	ND	ND	ND	ND	ND
	6/21/2000	682,220	ND	ND	ND	ND	ND	ND
	6/16/2000	669,720	ND	ND	ND	ND	ND	ND
	6/10/2000	651,200	ND	ND	ND	ND	ND	ND
Мау	5/31/2000	629,000	ND	ND	ND	ND	ND	ND
inay	5/23/2000	,	ND	ND	ND	ND	ND	ND
	5/18/2000		ND	ND	ND	ND	ND	ND
	5/10/2000		ND	ND	ND	ND	ND	ND
April	4/30/2000	488,300	ND	ND	ND	ND	ND	ND
	4/18/2000	485,300	ND	ND	ND	ND	ND	0.51
			CC	ompressor s	topped, sys	tem shut do	wn until April	29, 2000
	4/10/2000	440,200	ND	ND	ND	ND	ND	ND
	4/4/2000	,	ND	ND	ND	ND	ND	ND
	4/2/2000	NR		perfo	ormed a carb	on change	-out on GAC-	1

 Table 2

 Total Volume of Water Treated, Historical Operational Data, and Effluent and GAC-1 Analytical Results

 3609 International Boulevard, Oakland, California

		Meter	Lab Result	s For Effluer				
		Reading	(concentrat	ions in ug/L)			
Month	Date	(gallons)	MtBE ²	TPH-g	Benzene	Toluene	Ethyl benzene	Total Xylenes
				2000				
March	3/31/2000	NR	repla	ced GAC-2	with a speci	al GAC des	igned for rem	oval of MtBE
	3/24/2000	388,000	ND	ND	ND	ND	ND	ND
	3/17/2000	357,100	ND	ND	ND	ND	ND	ND
	3/10/2000	329,000	ND	ND	ND	ND	ND	ND
	3/3/2000	300,000	transfer overheated, repaired pump, restarted system 3/6/00					
February	2/25/2000	274,000	ND	ND	ND	ND	ND	ND
	2/18/2000	,	ND	ND	ND	ND	ND	ND
	2/11/2000		ND	ND	ND	ND	ND	ND
	2/4/2000	160,800	ND	ND	ND	ND	ND	ND
January	1/28/2000	130.600	ND	ND	ND	ND	ND	ND
oundary	1/21/2000	/	ND	ND	ND	ND	ND	ND
	1/17/2000	,		GAC-	1 was repla	ced with 2,0	00 lb GAC ur	nit
			se	cond polish	ing GAC wa	s replaced	with 55 gallor	GAC unit
	1/14/2000	83,500	185	ND	ND	ND	ND	ND
				1999				
December	12/23/1999	51,680	1486	NA	ND	ND	ND	ND
			ND	NA	ND	ND	ND	ND
	12/16/1999	30,450	963	NA	ND	ND	ND	ND
			ND	NA	ND	ND	ND	ND
	12/9/1999	- ,	230	ND	ND	ND	ND	ND
		Pu	mping begar	n on Decem	ber 6, 1999			

Notes:

1 Effluent is equivalent to PSP#1

2 MTBE was analyzed using EPA Method 8260B, prior to the September 2003. After September 2003, MtBE was only analyzed by EPA Method 8021B.

3 Lab data as shown for Oct. 2002 is erroneous data. During lab analysis a high detection of 2-Butanone was detected in only the effluent sample. The influent sample for 2-Butanone was at only 20 ppb. This caused a high dilution factor causing a high non-detectable value. The high TPH-g value was misrepresentative due to the Y and Z flags.

ND, <: Not Detected above laboratory reporting limits

- NA: Not Analyzed
- NR: Not recorded. Totalizer reading not recorded.
- Y: Sample exhibits fuel pattern which does not resemble standard
- Z: Sample exhibits unknown single peak or peaks

Table 3
Total Mass of Petroleum Hydrocarbons Removed
by the Vapor Extraction System & Historical Operational Data
3609 International Boulevard, Oakland, California

		PID (opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
					2000			
7/24/2000	5:00 PM	394	0	85	0.0	0	0	0.00
7/25/2000	5:15 PM	38	2	95	24.3	3,911,768	138,225	1.35
7/26/2000	5:05 PM	207	1	80	24.0	3,260,160	115,200	6.15
7/27/2000	9:00 AM	160	5	92	16.0	2,499,456	88,320	3.64
7/28/2000	4:30 PM	141	7	87	31.5	4,653,369	164,430	5.98
7/29/2000	1:30 PM	225	8	85	21.0	3,030,930	107,100	6.21
7/30/2000	9:00 AM	226	12	85	19.5	2,814,435	99,450	5.79
7/31/2000	3:00 PM	141	5	85	30.0	4,329,900	153,000	5.56
8/1/2000	5:00 PM	135	4	80	26.0	3,531,840	124,800	4.34
8/2/2000	4:00 PM	80	4	80	23.0	3,124,320	110,400	2.28
8/3/2000	5:00 PM	60	5	85	25.0	3,608,250	127,500	1.97
8/4/2000	3:00 PM	57	4	85	22.0	3,175,260	112,200	1.65
8/5/2000	2:00 PM	97	8	87	23.0	3,397,698	120,060	3.00
8/6/2000	12:00 PM	114	8	80	22.0	2,988,480	105,600	3.10
8/7/2000	12:00 PM	93	9	85	24.0	3,463,920	122,400	2.93
8/8/2000	4:30 PM	152	10	85	28.5	4,113,405	145,350	5.70
8/10/2000	10:00 AM	173	1	85	41.5	5,989,695	211,650	9.44
8/11/2000	7:00 AM	78	4	70	21.0	2,496,060	88,200	1.77
8/12/2000	9:00 AM	100	6	70	26.0	3,090,360	109,200	2.82
8/13/2000	5:00 PM	107	9	70	32.0	3,803,520	134,400	3.71
8/14/2000	12:30 PM	122	5	70	19.5	2,317,770	81,900	2.58
8/15/2000	6:00 PM	103	12	70	29.5	3,506,370	123,900	3.29
8/16/2000	12:30 PM	112	0	70	18.5	2,198,910	77,700	2.24
8/18/2000	9:00 AM	90	0	75	44.5	5,667,075	200,250	4.65
8/21/2000	12:00 PM	74	5	80	75.0	10,188,000	360,000	6.87
8/24/2000	12:00 PM	68	13	80	72.0	9,780,480	345,600	6.06
8/27/2000	12:30 PM	68.5	2	80	72.5	9,848,400	348,000	6.15
8/31/2000	1:30 PM	52	6	80	97.0	13,176,480	465,600	6.24

Table 3
Total Mass of Petroleum Hydrocarbons Removed
by the Vapor Extraction System & Historical Operational Data
3609 International Boulevard, Oakland, California

		PID (p	opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
					2000			
9/4/2000	12:30 PM	54	5	80	95.0	12,904,800	456,000	6.35
9/7/2000	12:00 PM	55	3	80	71.5	9,712,560	343,200	4.87
9/11/2000	4:30 PM ²	141	0	80	100.5	13,651,920	482,400	17.54
9/14/2000	9:30 AM	56	5	80	65.0	8,829,600	312,000	4.50
9/18/2000	2:00 PM	46	9.5	80	100.5	13,651,920	482,400	5.72
9/18/2000	4:30 PM ³	34	0	80	2.5	339,600	12,000	0.11
9/21/2000	4:30 PM	43	1	80	72.0	9,780,480	345,600	3.83
9/25/2000	5:30 PM	55	6	80	97.0	13,176,480	465,600	6.60
9/28/2000	9:00 AM	47.5	7.5	80	63.5	8,625,840	304,800	3.73
10/1/2000	1:00 PM	38.5	6	80	76.0	10,323,840	364,800	3.62
10/5/2000	3:00 PM 4	28.5	3	80	98.0	13,312,320	470,400	3.46
10/5/2000	5:00 PM	36	0	80	2.0	271,680	9,600	0.09
10/8/2000	3:00 PM	28.5	3	80	70.0	9,508,800	336,000	2.47
10/14/2000	3:00 PM	24.5	2.5	80	144.0	19,560,960	691,200	4.37
10/17/2000	2:00 PM	36.5	3.5	80	71.0	9,644,640	340,800	3.21
10/20/2000	8:30 AM	18.5	3.5	80	66.5	9,033,360	319,200	1.52
10/25/2000	2:00 PM	38	3.7	80	125.5	17,047,920	602,400	5.90
10/29/2000	10:00 AM	35	4	80	93.0	12,633,120	446,400	4.03
11/2/2000	4:00 PM	30.5	4	80	102.0	13,855,680	489,600	3.85
11/7/2000	4:00 PM	30	6	80	120.0	16,300,800	576,000	4.46
11/19/2000	12:00 PM	92.7	5.5	80	284.0	38,578,560	1,363,200	32.57
11/24/2000	1:30 PM	25	6.5	80	121.5	16,504,560	583,200	3.76
11/29/2000	3:00 PM	14.5	3.5	80	121.5	16,504,560	583,200	2.18
12/4/2000	4:30 PM	10.7	1	80	121.5	16,504,560	583,200	1.61
12/13/2000	3:30 PM	24	3	80	263.0	35,725,920	1,262,400	7.81
12/28/2000	2:30 PM	10	6	85	359.0	51,814,470	1,830,900	4.72
		-		2001				
1/4/2001 ⁵	2:00 PM	8.7	3.7	85	167.5	24,175,275	854,250	1.92
8/8/2001	3:00 PM	217	0	85	0.5	72,165	2,550	0.14
9/6/2001	12:00 PM	85	0	85	693.0	100,020,690	3,534,300	77.45
9/13/2001	4:00 PM	186	8	85	172.0	24,824,760	877,200	42.07
9/18/2001	3:00 PM	184	9	85	119.0	17,175,270	606,900	28.79
9/21/2001 ⁶					NC	NC	NC	NC

		PID (p	opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
				2001				
10/12/01 7					NC	NC	NC	NC
10/23/2001	5:00 PM	114	58	87	0.5	73,863	2,610	0.08
10/25/01 4	3:00 PM	133	0	85	46.0	6,639,180	234,600	8.04
10/29/2001 8	1:20 PM	569	0	85	94.5	13,639,185	481,950	70.70
11/7/2001	3:30 PM	177	0	87	218.0	32,204,268	1,137,960	51.93
11/16/2001	3:00 PM	117	0	87	215.5	31,834,953	1,124,910	33.93
11/21/01 ⁹	12:00 PM	85	72	87	117.0	17,283,942	610,740	13.38
				2002				
2/15/02 10	4:30 PM	49	0	80	0.5	67,920	2,400	0.03
2/16/2002	3:45 PM	50	0	80	23.3	3,158,280	111,600	1.44
2/21/2002	4:00 PM	37	4	80	120.3	16,334,760	577,200	5.51
2/27/2002	10:30 AM	11	0	83	138.5	19,519,359	689,730	1.96
3/7/02 11	12:20 PM	10		80	194.0	26,352,960	931,200	2.40
6/12/2002 12	4:15 PM	53	2	75	NA	NA	NA	NA
6/17/2002	11:00 AM	28	2	80	120.0	16,306,560	576,204	4.16
6/24/2002	11:20 AM	24	3.1	80	168.3	22,866,400	808,000	5.00
7/5/2002	1:25 PM	20	5	80	266.0	36,133,440	1,276,800	6.58
7/11/2002	3:30 PM	26	8.0	80	146.0	19,832,640	700,800	4.70
7/23/2002	10:10 AM	28	7.5	83	282.8	39,849,089	1,408,095	10.16
8/9/2002	12:20 PM	7.5	0	80	410.3	55,728,360	1,969,200	3.81
8/15/2002 11	3:00 PM	7.0	1	80	146.5	19,900,560	703,200	1.27
8/23/2002 13	3:20 PM	NC	NC	NC	NC	NC	NC	NC
8/26/2002	11:15 AM	14.0	2.0	80	71.0	9,644,640	340,800	1.23
9/11/2002	10:10 AM	34.4	0	80	383.0	52,020,588	1,838,183	16.30
9/19/2002	10:55 AM	8.8	1.1	80	192.8	26,183,160	925,200	2.10
9/25/2002	10:30 AM	18.8	1.8	80	143.5	19,493,040	688,800	3.34

		PID (p	opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
				2002				
10/2/2002	8:10 AM	17.1	2.5	80	165.70	22,508,688	795,360	3.51
10/9/2002		PID ma	function	80	NC	NC	NC	NC
10/16/2002	1:45 PM	17.0	4.0	80	341.50	46,389,360	1,639,200	7.18
10/24/2002	10:00 AM	16.5	6.4	80	188.25	25,571,880	903,600	3.84
11/1/2002	10:00 AM	21.1	0.0	85	192.00	27,711,360	979,200	5.33
11/6/2002	10:12 AM	PID ma	function	87	NC	NC	NC	NC
11/7/2002	11:00 AM	17.5	0.0	85	24.75	3,572,168	126,225	0.57
11/13/2002	11:30 AM	15.0	0.0	85	144.50	20,855,685	736,950	2.85
11/22/2002	2:30 PM	6.6	0.0	80	219.00	29,748,960	1,051,200	1.79
11/22/2002			system s	hut-down due	to rainy season	and low influer	t readings	
				2003				
5/9/2003	10:30 AM	0.1	0.0	82	0.5	69,618	2,460	0.00
5/12/2003	10:30 AM	0.4	0.3	85	72.00	10,391,760	367,200	0.04
5/21/2003	11:00 AM	2.2	2.2	83	216.50	30,512,211	1,078,170	0.61
6/4/2003	10:30 AM	2.5	0.1	82	335.50	46,713,678	1,650,660	1.06
6/10/2003	10:30 AM	2.2	0.08	82	144.00	20,049,984	708,480	0.40
6/16/2003	12:15 PM	2.1	0.07	82	146.25	20,363,265	719,550	0.39
6/24/2003	4:55 PM	2.6	0.08	82	196.75	27,394,683	968,010	0.65
6/30/2003	11:30 AM	2.2	0.1	82	138.50	19,284,186	681,420	0.39
7/16/2003	12:00 PM	2.2	0.22	82	384.50	53,536,242	1,891,740	1.07
7/21/2003	10:50 AM	2.1	0.21	82	119.00	16,569,084	585,480	0.32
7/28/2003	11:15 AM	2.2	0.22	82	168.25	23,426,457	827,790	0.47
8/11/2003	12:15 PM	2.1	0.21	82	337.00	46,922,532	1,658,040	0.90
8/19/2003	10:05 AM	2.1	0.22	82	190.00	26,454,840	934,800	0.51
8/25/2003	11:30 AM	2.2	0.23	81	145.50	20,011,779	707,130	0.40
9/2/2003	10:50 AM	2.1	0.21	80	191.50	26,013,360	919,200	0.50
9/8/2003	2:10 PM	9.1	3.19	83	147.30	20,759,578	733,554	1.72
9/11/2003	10:00 AM			All	4 SVE carbon dr	ums changed-	out	
9/22/2003	1:30 PM	7	0.2	88	334.25	49,944,972	1,764,840	3.19

		PID (p	opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
				2003				
10/1/2003	10:30 AM	6.5	0.2	85	213.00	30,742,290	1,086,300	1.82
10/6/2003	11:00 AM	7	0.3	85	120.50	17,391,765	614,550	1.11
10/13/2003	11:15 AM	5	0.2	85	168.25	24,283,523	858,075	1.11
10/29/2003	10:00 AM	2.4	0	85	382.75	55,242,308	1,952,025	1.21
11/3/2003	11:30 AM	3	0	85	121.50	17,536,095	619,650	0.48
11/10/2003	11:10 AM	3.5	0	85	167.67	24,199,330	855,100	0.77
11/17/2003	1:50 PM	4.1	0	85	170.70	24,637,131	870,570	0.92
11/24/2003	11:00 AM	3.8	0	85	165.20	23,843,316	842,520	0.83
11/24/2003			system s	hut-down due	to rainy season	and low influer	t readings	
				2004				
4/5/2004	1:00 PM	5.6	0.11	85	0.5	72165	2550	0.004
4/12/2004	10:30 AM	6.5	0.2	83	165.5	23,324,577	824,190	1.38
4/20/2004	12:00 PM	7.1	0.9	84	193.5	27,599,292	975,240	1.79
4/23/2004	11:00 AM	7.2	2.3	80	71	9,644,640	340,800	0.63
5/3/2004	12:00 PM	7.1	3.4	80	241	32,737,440	1,156,800	2.12
5/5/2004	11:00 PM			All 4 SVE	carbon drums ch	anged-out		
5/17/2004	12:00 PM	2.7	0.8	82	336	46,783,296	1,653,120	1.15
5/26/2004	11:00 AM	3.8	0.5	82	215	29,935,740	1,057,800	1.04
6/1/2004	1:00 PM	3.6	0.9	82	146	20,328,456	718,320	0.67
6/7/2004	11:50 AM	3.2	0	82	142.75	19,875,939	702,330	0.58
6/14/2004	11:50 AM	10.9	0	86	168	24,532,704	866,880	2.44
6/21/2004	10:50: AM	13.5	0	83	167	23,535,978	831,660	2.89
6/28/2004	11:50 AM	10.9	0.5	85	169	24,391,770	861,900	2.42
		-						-
7/2/2004	11:30 AM	8.7	0	85	95.8	13,826,814	488,580	1.10
7/13/2004	2:00 PM	9.1	0.22	85	266.5	38,463,945	1,359,150	3.19
7/21/2004	12:00 PM	8.9	0.5	85	190	27,422,700	969,000	2.22
7/26/2004	11:50 AM	8.5	0.4	85	119.5	17,247,435	609,450	1.34
8/2/2004	11:30 AM	4.9	0.1	85	167.8	24,218,574	855,780	1.08
8/9/2004	11:50 AM	5.6	0.2	85	168.3	24,290,739	858,330	1.24
8/16/2004	12:00 PM	6	0.4	85	168.1	24,261,873	857,310	1.33
8/24/2004	11:50 AM	6.2	1.2	85	191.9	27,696,927	978,690	1.56
8/30/2004	11:30 AM	6	0.4	85	143.66	20,734,448	732,666	1.13
9/7/2004	1:05 PM	5.5	0.8	85	193.5	27,927,855	986,850	1.40
9/13/2004	12:05 PM	5.3	0.9	85	143	20,639,190	729,300	1.00
9/20/2004	11:08 AM	7	2.9	85	167	24,103,110	851,700	1.54
9/27/2004	2:50 PM	6.5	2.1	85	171.75	24,788,678	875,925	1.47

		PID (p	opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
				2004				
10/4/2004	11:30 AM	6.9	3	85	164.55	23,749,502	839,205	1.49
10/13/2004	10:30 AM	6.5	2.9	85	215	31,030,950	1,096,500	1.84
10/18/2004	2:30 PM	6	1.5	85	124	17,896,920	632,400	0.98
10/28/2004	2:00 PM	3.1	0.9	85	239.5	34,567,035	1,221,450	0.98
10/28/2004			system s	hut-down due	to rainy season	and low influer	t readings	
				2005				
4/11/2005		syster	m re-starte	d, all four vapo	r phase carbon	drums replaced	with new carb	oon
4/18/2005	10:50 AM	6.5	0.8	85	167.83	24,223,481	855,953	1.43
4/25/2005	5:30 PM	6	0.7	85	174.33	25,161,626	889,103	1.38
5/4/2005	11:20 AM	0.4	0	85	209.83	30,285,341	1,070,153	0.11
5/9/2005	11:00 AM	1	0.4	85	119.67	17,271,538	610,302	0.16
5/16/2005	10:15 AM	3	0	85	167.25	24,139,193	852,975	0.66
5/23/2005	11:05 AM	0.4	0	90	168.83	25,801,110	911,700	0.09
6/3/2005	3:30 PM	0.2	0	90	268.48	41,029,114	1,449,792	0.07
6/9/2005	3:00 PM	0.2	0	90	143.50	21,929,670	774,900	0.04
6/15/2005	2:15 PM	1	0	85	143.25	20,675,273	730,575	0.19
6/20/2005	12:00 PM	0.6	0	88	117.75	17,594,676	621,720	0.10
6/26/2005	12:00 PM	0.5	0	85	144.00	20,783,520	734,400	0.09
7/7/2005	2:45 PM	0.2	0	90	266.75	40,764,735	1,440,450	0.07
7/11/2005	3:00 PM	0.3	0	90	96.25	14,708,925	519,750	0.04
7/18/2005	1:00 PM	1	0	85	166.00	23,958,780	846,600	0.22
7/25/2005	12:00 PM	1.5	0	87	167.00	24,670,242	871,740	0.34
8/1/2005	1:30 PM	1	0	85	169.50	24,463,935	864,450	0.22
8/8/2005	11:50 AM	0.7	0	80	166.40	22,603,776	798,720	0.14
8/15/2005	1:30 PM	0.9	0	83	169.60	23,902,406	844,608	0.20
8/24/2005	12:00 PM	0.8	0	85	214.50	30,958,785	1,093,950	0.23
8/29/2005	11:45 AM	0.7	0	85	119.75	17,283,518	610,725	0.11
9/6/2005	12:15 PM	0.8	0	85	192.50	27,783,525	981,750	0.20
9/12/2005	12:10 PM	1.2	0	85	144.00	20,783,520	734,400	0.23
9/20/2005	11:30 AM	1.1	0	84	192.60	27,470,923	970,704	0.28

Table 3

Total Mass of Petroleum Hydrocarbons Removed by the Vapor Extraction System & Historical Operational Data . 3609 International Boulevard, Oakland, California

		PID (p	opmv)	Flow Rate	Time Elapsed	Air Flow	Air Flow	Mass Removed ¹
Date	Time	Influent	Effluent	(ft^3/min)	(Hours)	(Liters)	(ft^3)	(Pounds)
				2005				
10/6/2005	3:00 PM		all	4 vapor phase	carbon drums re	eplaced with ne	ew carbon drur	ns
10/14/2005	3:30 PM	33	5	83	192.5	27,129,795	958,650	8.16
10/17/2005	12:00 PM	33	5	86	68.5	10,002,918	353,460	3.01
10/28/2005	11:00 AM	77	1.5	83	263	37,065,642	1,309,740	26.00
11/1/2005	9:40 AM	33	7	86	94.75	13,836,153	488,910	4.16
11/3/2005	3:30 PM	33	7	87	54	7,977,204	281,880	2.40
11/9/2005	3:15 PM		all	4 vapor phase	carbon drums re	eplaced with ne	ew carbon drur	ns
11/14/2005	11:30 AM	0.3	0	89	260	39,291,720	1,388,400	0.11
11/22/2005		0.8	0	88	195	29,137,680	1,029,600	0.21
11/17/2005-	11/23/2005				new vapor wells	installed onsit	e	
					2006			
1/6/2006	10:00 AM				m shut-down du			
2/22/2006-	-3/6/2006			\ \	ge and Additiona			
4/8/2006				0	eductor, which which			,
			Wa		educe the noise			d
					m eductor to act			
4/14/2006	2:00 PM		i	· ·	oor phase carbor			
4/14/2006	2:30 PM	33	0	85	0.5	72,165	2,550	0.02
5/18/2006	12:00 PM	14	0	87	813.5	120,175,101	4,246,470	15.33
5/31/2006	12:30 PM	15	2	83	312.5	44,041,875	1,556,250	6.02
6/7/2006	10:00 AM	17.7	5.8	85	165.5	23,886,615	844,050	3.85
6/14/2006	10:00 AM	8.2	0	89	168	25,388,496	897,120	1.90
6/19/2006	2:30 PM	220	0	88	124.5	18,603,288	657,360	37.29
6/22/2006	11:00 AM	18	0	85	68.5	9,886,605	349,350	1.62
7/6/2006	2:45 PM	3.2	0	80	339.75	46,151,640	1,630,800	1.35
7/24/2006	2:00 PM				eductor installed		ě.	
8/2/2006	11:00 AM	25	0	65	644.25	71,105,873	2,512,575	16.19
8/9/2006	11:30 AM	7.3	3.5	110	168.5	31,472,430	1,112,100	2.09
8/14/2006	12:00 PM	8	2.3	100	120.5	20,460,900	723,000	1.49
8/25/2006	12:30 PM	2	0	100	264.5	44,912,100	1,587,000	0.82
8/28/2006	2:30 PM	2.5	0	110	74.5	13,915,110	491,700	0.32
9/7/2006	2:30 PM	1.4	0	105	240	42,789,600	1,512,000	0.55
9/13/2006	12:45 PM	1.6	0	105	142.25	25,361,753	896,175	0.37
9/22/2006	3:00 PM	1.3	0	115	219.25	42,812,948	1,512,825	0.51
9/27/2006	2:15 PM	5.6	1.1	110	119.25	22,273,515	787,050	1.14
			Total Mas	s of Petroleu	m Hydrocarbon	s Removed –		886.14
					emoval Rate (po			0.39
				nage Daily Ne				0.03

Notes:

¹ The representative molecular weight of hydrocarbons was assumed to be 150 gram/mole and use

the measured temperature of Vapor (25°C) in converting ppm-v to ppm on mass basis.

² System accidentally shut down from main box, readings taken 30 minutes after startur

³ GAC Replaced

⁴ GAC-1 removed, new GAC installed at effluent enc

⁵SVE System turned off for rainy season due to low influent concentration

⁶ system down, hoses disconnected and GAC moved for replacemen

⁷ system down for electrical repair
 ⁸ Carbon change-out of three drums, moved new effluent drum on 10/25/01 to GAC-

⁹ system setarted (since November 21, 2001), installed new 4-55 gallon vapor phase carbon vessels, repaired blowe

¹¹ System was shut-down due to low influent reading

¹² System was restarted on 6/12/02

¹³System was re-started but no readings were taker

Data for October 28, 2005 based on lab data

NC: Not Calculated

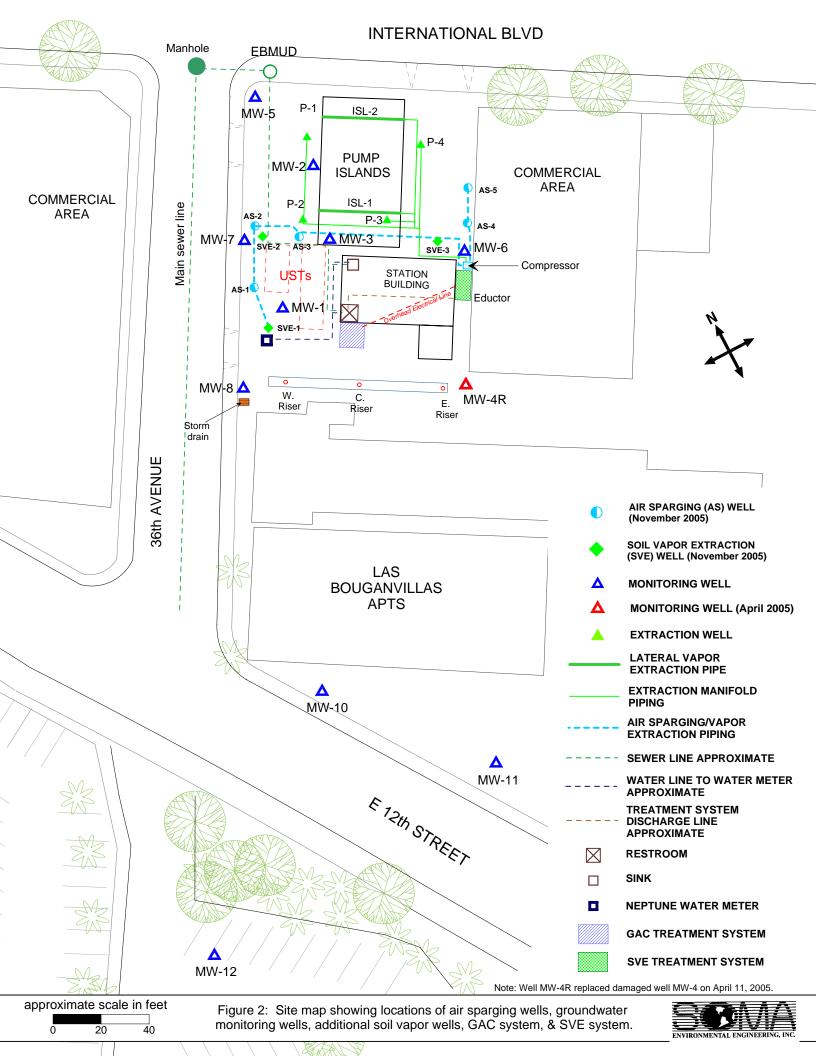
Calculations

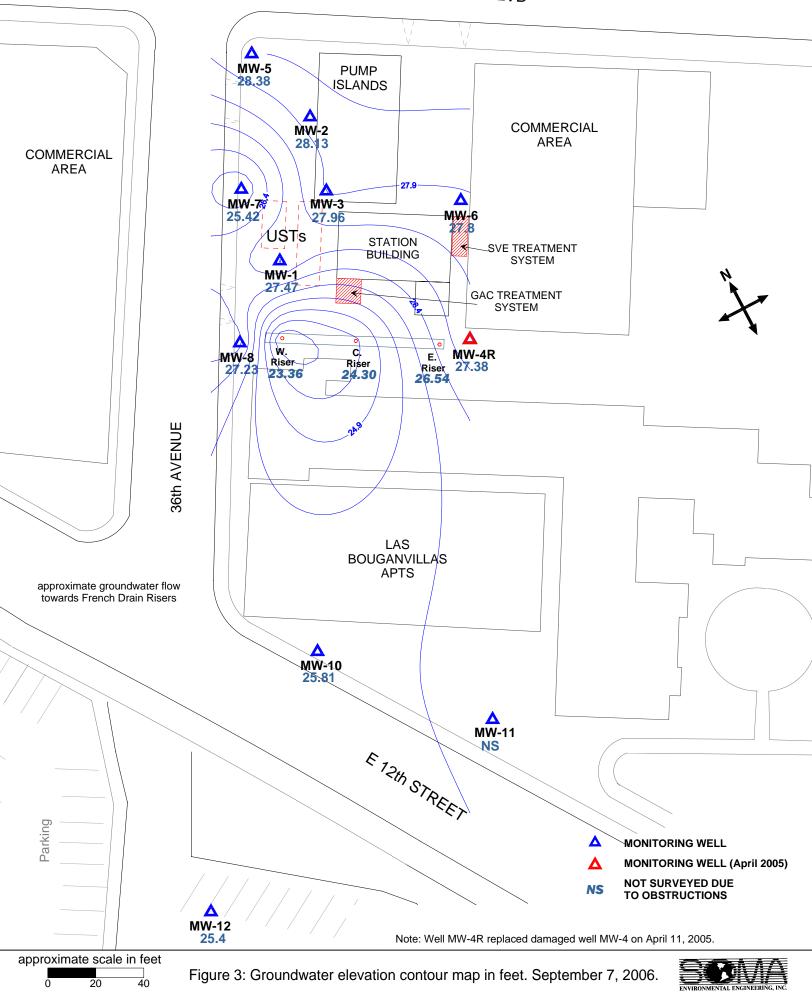
Airflow: Flowrate (ft^3/min)* 60 min * Time Elapsed (hrs)* 28.3 liters/ft^3

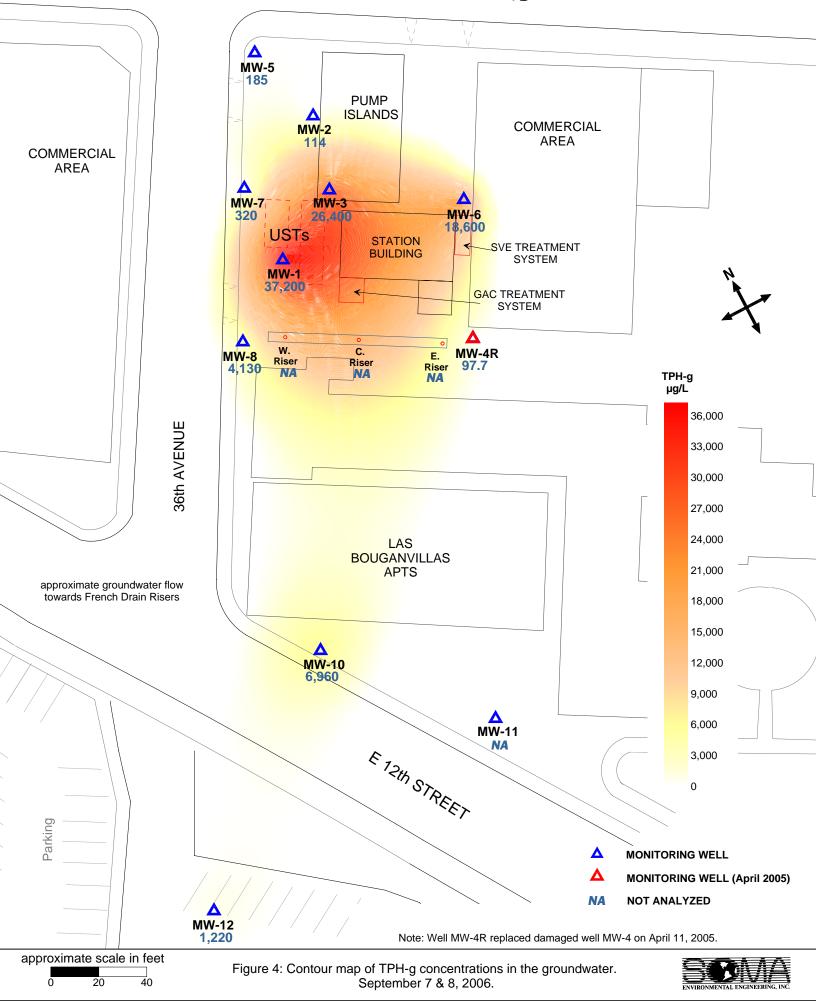
Mass Removed: Time Elapsed (hrs) * 60 min* Flowrate (ft^3/min)* (28.3 m^3/ft^3)*

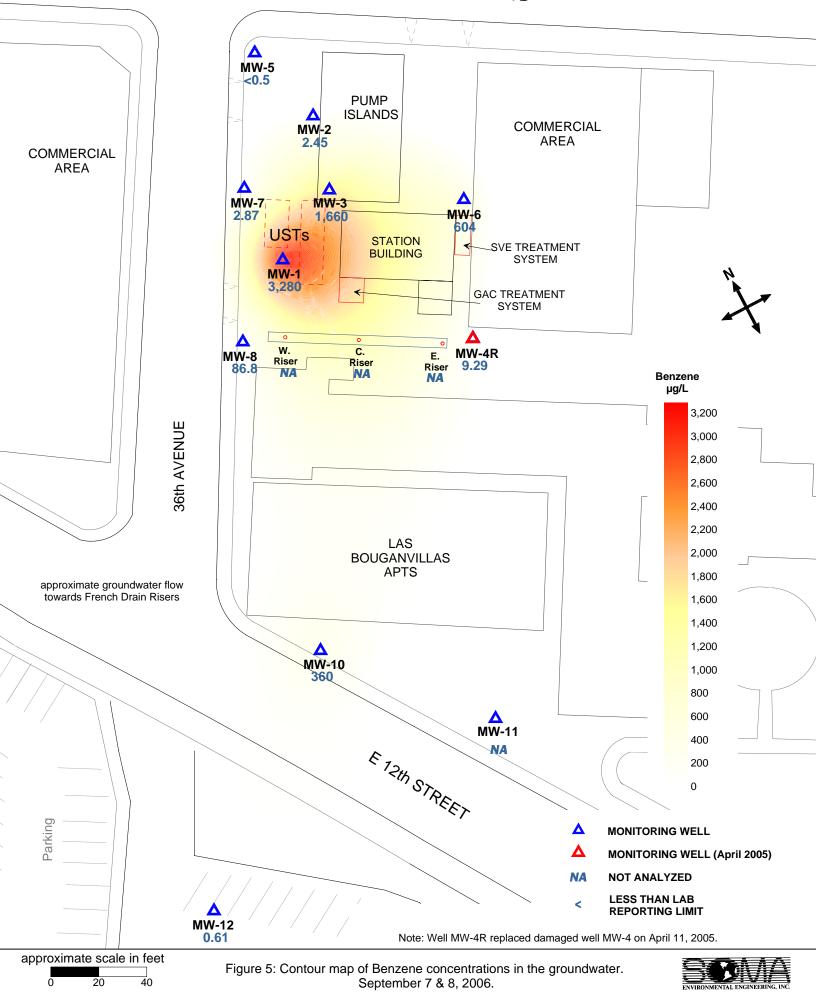
(((PID reading * (102 grams TPH-g /mole)* (1 mole / 24.4 L))*(1/1000 m^3)) * (1 lb/454 grams)

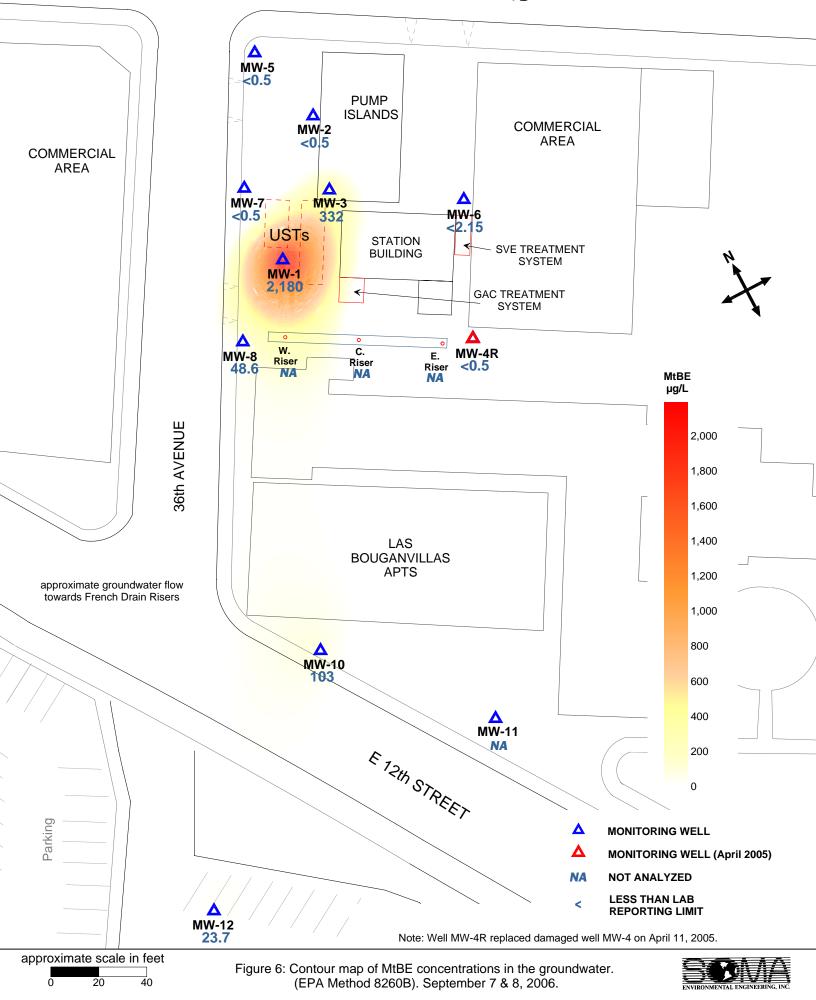
FIGURES

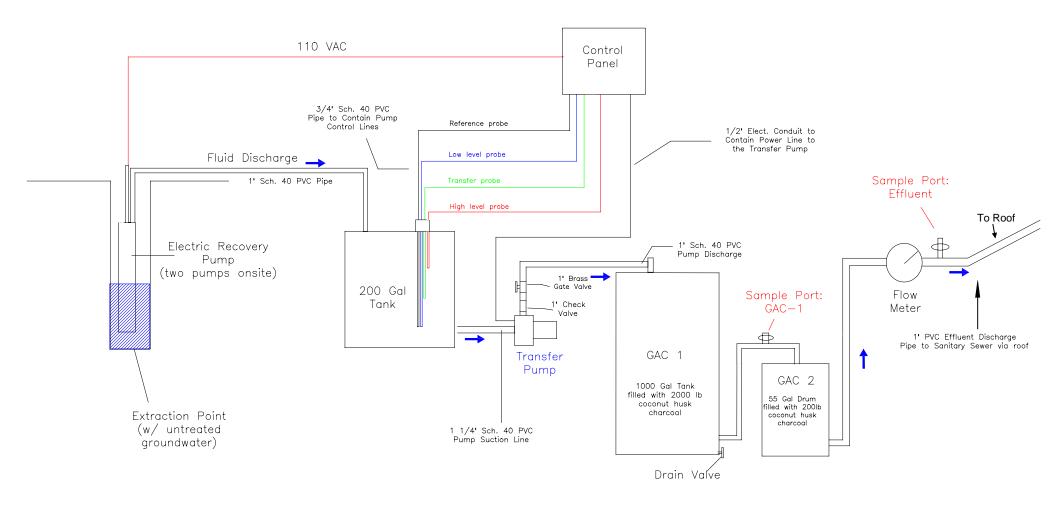


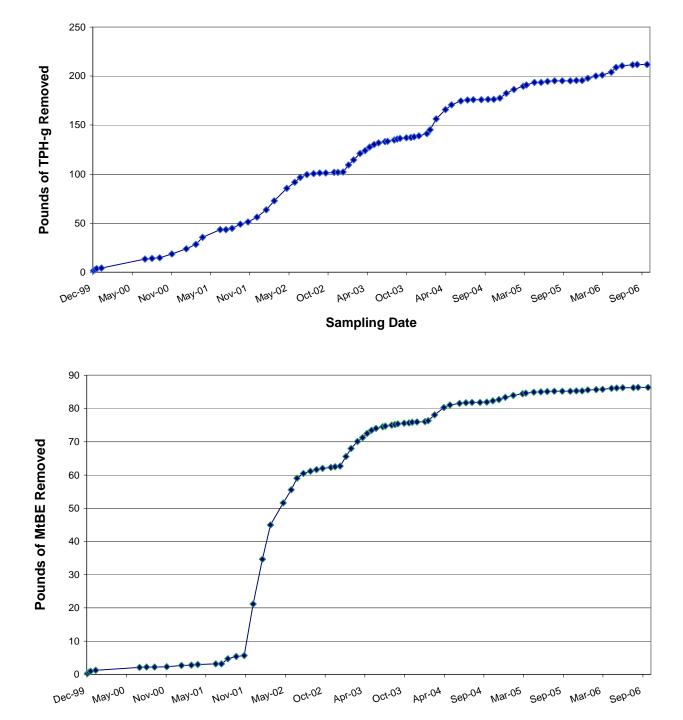



	approximate	e scale in feet	
0	15	50	300

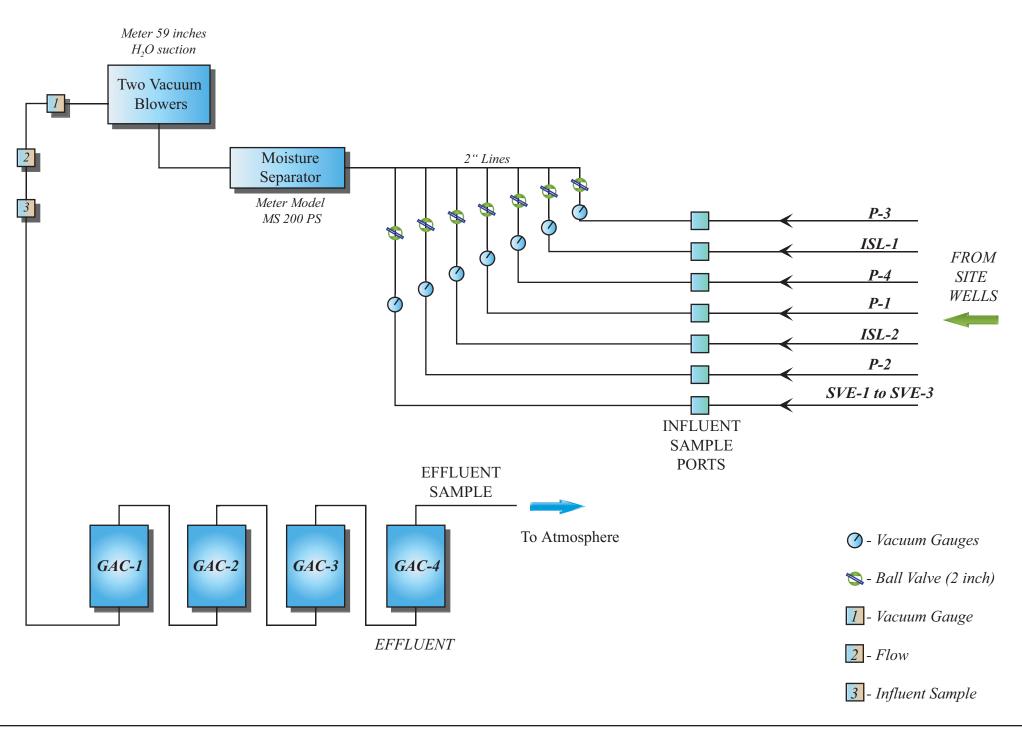

Figure 1: Site vicinity map.







(Discharge permit No: 504-27421) Tony's Express Auto Service. November 14, 2006 permit expires


Figure 7: Schematic of the Groundwater Remediation System. 3609 International Blvd., Oakland, CA

Sampling Date

Figure 8. Cumulative mass of TPH-g and MtBE removed from groundwater since the installation of the treatment system.

ENVIRONMENTAL ENGINEERING, INC.

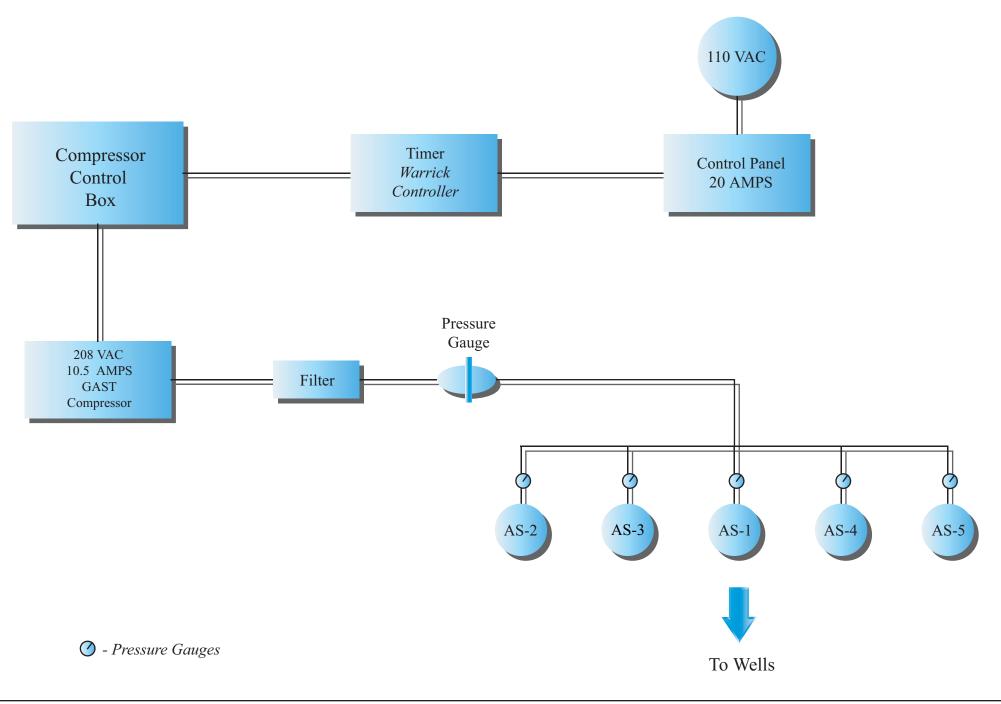


Figure 10: Block diagram of the Air Sparge System

APPENDIX A

SOMA's Groundwater Monitoring Procedures

Field Activities

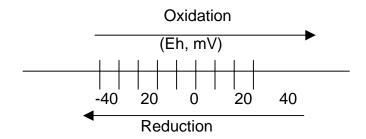
On September 7, 2006, a total of eight on-site monitoring wells (MW-1 to MW-8), two off-site monitoring wells (MW-10 and MW-12), and three on-site French drain risers were measured for depth to groundwater. On September 7 and 8, 2006, additional field measurements and grab groundwater samples were collected from all of the monitoring wells. This monitoring event was conducted in accordance with the procedures and guidelines of the RWQCB, San Francisco Bay Region.

Prior to measuring the groundwater depth at each well, equalization with the surrounding aquifer was achieved. The well cap was removed each well, and the pressure in each well was then allowed to dissipate. This allowed for a more stable water table level within the well. After a few minutes, and once the water level in the well stabilized, the depth to groundwater in each monitoring well was measured from the top of the casing to the nearest 0.01 foot using an electric sounder. Since the French drain is part of the remedial system, the risers were measured with the system still operational.

The top of the casing elevation data and the depth to groundwater in each monitoring well and riser were used to calculate the groundwater elevation. Kier and Wright Civil Engineers Surveyors, Inc. surveyed the wells and risers on August 9, 2002. At the time of the survey, monitoring well MW-11 could not be accessed due to obstacles preventing the proper use of surveying equipment; therefore, this well was not surveyed. The top of casing elevations were based on the survey data measured at this time. The elevation data was based on a datum of 14.20 NAVD88. The new survey was conducted to comply with an Electronically Deliverable Format (EDF) request made by the State Water Resources Control Board (SWRCB) Database.

Harrington Surveys, Inc. surveyed the newly installed well MW-4R on April 20, 2005. The elevation data for well MW-4R was referenced from wells MW-5 and MW-7. The survey data measured by Kier and Wright and Harrington Surveys are both presented in Appendix B.

Prior to collecting samples, each well was purged using a battery operated 2-inch diameter pump (Model ES-60 DC). During the purging activities, in order to obtain accurate measurements of groundwater parameters and especially to avoid the intrusion of oxygen from ambient air into the groundwater samples, field measurements were conducted in-situ (i.e., down-hole inside each monitoring well). The groundwater parameters such as DO, pH, temperature, EC, turbidity, and the ORP were measured in-situ using a Horiba, Model U-22 multiparameter instrument. The equipment was calibrated at the Site using standard solutions and procedures provided by the manufacturer.


The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of

bacteria. The groundwater conductivity (EC) is directly related to the concentration of ions in solution.

There is a strong correlation between the turbidity level and the biological oxygen demand of natural water bodies. The main purpose for checking the turbidity level is to provide a general overview of the extent of the suspended solids in the groundwater.

ORP (oxidation reduction potential) is the measure of the potential for an oxidation or reduction process to occur. In the oxidation process a molecule or ion loses one or several electrons. In the reduction process a molecule or ion gains one or several electrons. The unit of the redox potential is the Volt or m-Volt. The most important redox reaction in petroleum-contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O_2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O_2 replenishment in subsurface environments is limited, DO can be entirely consumed, when the oxidation of only a small amount of petroleum hydrocarbons occurs.

Oxidation of petroleum hydrocarbons can still occur, when all the dissolved O_2 in the groundwater is consumed, however, the oxidizing agents (i.e., the constituents that undergo reduction) now become NO⁻³, MnO₂, Fe (OH)₃, SO₄²⁻³ and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process proceeds far enough, the environment may become so strongly reduced that the petroleum hydrocarbons may undergo anaerobic degradation, resulting in the production of methane and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below.

The purging of the wells continued until the parameters for DO, pH, temperature, EC, turbidity, and redox stabilized or three casing volumes were purged.

Once stabilization occurred, the groundwater samples were also tested on-site for ferrous iron (Fe⁺²), nitrate (NO₃⁻), and sulfate (SO₄⁻²) concentrations.

 Fe^{+2} , NO_3^{-1} , and SO_4^{-2} were measured colorimetrically using the Hach Colorimeter Model 890. The Hach Model 890 Colorimeter is a microprocessor-controlled

photometer suitable for colorimetric testing in the laboratory or the field. The required reagents for each specific test are provided in AccuVac ampuls.

Detailed field measurements are shown in Appendix B.

For sampling purposes, after purging, a disposable polyethylene bailer was used to collect sufficient samples from each monitoring well for laboratory analyses. The groundwater sample was transferred into four 40-mL VOA vials and preserved with hydrochloric acid. The vials were then sealed to prevent development of air bubbles within the headspace. After the groundwater samples were collected, they were placed on ice and maintained at 4°C in a cooler. A chain of custody (COC) form was written and placed along with the samples in the cooler. On September 8, 2006, SOMA's field crew delivered the groundwater samples to Pacific Analytical Laboratory in Alameda, California.

Laboratory Analysis

Pacific Analytical Laboratory, a state certified laboratory, analyzed the groundwater samples for TPH-g, BTEX and MtBE. TPH-g, BTEX, and MtBE was prepared using EPA Method 5030B and measured using EPA Method 8260B.

Appendix B

Table of Elevations & Coordinates on Monitoring Wells Surveyed by Kier Wright Civil Engineers Surveyors, Inc. & Harrington Surveys, Inc., and Field Measurements of Physical, Chemical, and

Biodegradation Parameters of Groundwater

JUH# AU25/5

TABLE OF ELEVATIONS & COORDINATES ON MONITORING WELLS

۰.

SOMA ENVIRONMENTAL

Oakland-E. 14 the St. "International Blvd"

FD-C 2109299 FD-E 2109281 FD-W 2109314 MW-1 210933 MW-2 210938	1,13 6064067.87 4.99 6064017.5	40.25 7 40.06 40.55	Notch on north side of PVC Punch north rim of box Notch on north side of PVC Punch north rim of box
FD-W 2109314 MW-1 210933	4.99 6064017.5	40.55 · 9 39.16	, Punch north rim of box Notch on north side of PVC
MW-1 210933		-	
	8.74 6064025.9		
MW-2 210938		97 40.11 40.76	Notch on north side of PVC Punch north rim of box
	3.20 6064073.0)6 40.71 41.61	Notch on north side of PVC Punch north rim of box
. MW-3 210935	6064064.6	53 40.91 41.68	Notch on north side of PVC Punch north rim of box
MW-4 210927	78.18 6064076.4	40 40.01 40.67	Notch on north side of PVC Punch north rim of box
MW-5 21094	10.84 6064058.	46 41.16 41.60	Notch on south side of PVC Punch south rim of box
·MW-6 21093;	20.46 6064105.	06 40.92 41.52	Notch on north side of PVC Punch north rim of box
MW-7 21093	68.19 6064025.	.54 39.94 40.54	Notch on north side of PVC Punch north rim of box
MW-8 21093	21 .6 8 6064000.	.45 39.38 39.72	Notch on north side of PVC Punch north rim of box
		ht Clvil Engineers : Lane, Suite 145, Ple i) 249-6555 (925)	- · ·

ľ

·____

DATE: 08/27/02 JOB#

A02576

TABLE OF ELEVATIONS & COORDINATES **ON MONITORING WELLS**

. . *.* .

SOMA ENVIRONMENTAL

Oakland-E, 14 the St. "international Blvd"

WELL NO.	NORTHING	EASTING	ELEVATION	DESCRIPTION
MW-10	2109193.97	6063957.39	36.71 37.70	Notch on north side of PVC Punch north rim of box
MW-11	2109125.26	6064007.52	XXXX	NO ELEVATION , BOAT ON TOP
MW-12	2109121.85	6063865.00	36.84 36.87	Notch on north side of PVC

Bench mark: NGS Bench mark No.M 554. To reach the station from the intersection of Interstate Highway 880 and Hegenberger Rd in South Oakland go northeast on Hegenberger Rd for 0.5 MI to a side road right Baldwin St. Turn right and go south on Baldwin St for 0.35 MI to a T-intersection, 85th Ave. for 0.1 MI to a side road right, Railroad Ave. Turn right and go south on Railroad Ave. for 0.1 MI to the station on the left, east, side of the road in a large concrete headwall for a culvert.

Elevation = 14.20 NAVD88 Datum

Coordinate values are based on the California Coordinate System, Zone III NAD 83 Datum.

Kier Wright Civil Engineers Surveyors, Inc. 1233 Quarry Lane, Suite 145, Pleasanton, CA 94566 (925) 249-6555 (925) 249-6563

Harrington Surveys Inc.

Land Surveying & Mapping

2278 Larkey Lane, Walnut Creek, Ca. 94597 Phone (925)935-7228 Fax (925)935-5118 Cell (925)788-7359 E-Mail (ben5132@pacbell.net)

SOMA ENVIRONMENTAL ENGINEERING 2680 BISHOP DR. # 203 SAN RAMON, CA. 94583 MAY 20, 2005

ATTN: ELENA

3609 INTERNATIONAL BLVD. OAKLAND CA.

SURVEY REPORT

CONTROLING POINTS FRON SURVEY BY KIER & WRIGHT, DATED 08-27-02:

MW-5 NOTCH, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,109,410.84 - EAST 6,064,058.45, LAT. N37°46'17.42024" W122°13'18.51054". ELEVATION 41.06, NAVD 88,

MW-7 NOTCH, CALIFORNIA COORDINATE SYSTEM, ZONE 3, NORTH 2,109,368.19 - EAST 6,064,025.54. LAT N37*46'30.32592", W122*13'18.88771" ELEVATION 39.94 NAVD 88,

INSTRUMENTATION: TRIMBLE GPS, MODEL 5800 AND LEICA TCA 1800, 1" HORZ. & VERT. OBSERVATION: EPOCH = 180.

FIELD SURVEY: APRIL 20, 2005.

BEN HARRINGTON PLS 5132

SURVEY REPORT 3600 INTERNATIONAL BLYD OAKLAND CA.

HARRINGTON SURVEYS INC. 2278 LARKEY LN. WALNUT CREEK CA. 94597

PTE	-	NORTH	EAST	ELEV	LATITUDE N.	LONGTIDUDE W.	DESCRIPTION
	13	2109276.287	6064078.999	40.34	37"46"30.41532"	122*13'18.24871"	MW-4R NOTCH TOP 2" PVC
	14	2109276.63	6064076.962	40.70			MAN-4R PUNCH N. RIM
	15	2100277 144	6064076.433	40.68			MW-4R PAVINC
	-		1				
1			1				
	-						
<u>.</u>							
		-		·····			
	: :						
				ala a			
		1.					
					· ·		
ь.	· • .		a ta sa				A STREET
				· · · · · · · · · · · · · · · · · · ·			
۵ ۲							
	÷						
e.		· · · · · · · · · · · · · · · · · · ·					
							20122210 Contraction Contracti
	1						

Well No.:MultipleCasing Diameter:2Depth of Well:30Top of Casing Elevation:40.11Depth to Groundwater:12.64Groundwater Elevation:21.41Water Column Height:17.36Purged Volume:11

2 inches 30 feet 40.11 feet 12.64 feet 21.47 feet

eet

gallons

Address: Date: Sampler:

Project No.:

3609 International Blvd. Oakland, CA 9/8/06 Tony PERINI Musous Marsai

2331

Purging Method:			Bailer		Pump		• • • • • • • • • • • • • • •	
Sampling Method:	•		Bailer		Pump			
Color:	No	Ģ		Yes 🗹	· .	Describe:	Blacksh	
Sheen:	No			Yes D		Describe:	slight shear	•
Odor:	No			Yes B		Describe:	petro obet	

Field Measurements:

Time	Vol	Ha	Temp	E.C.	D.O.	Turbidity	ORP	Fe ⁺²	NO3 ⁻¹	SO4-2
	(galions)		(°C)	(µS/cm)	(mg/L)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)
8:35 AM	sta	res	Dury)	ngu	e11	1. <i>28</i> 27 10 28 - 27 28 5	rente de la companya de comp		al an ann ann an an ann an an	la ser a
_ 8:37 Am	2	6.95	19.70	1/20	9.06	28	-21		geologian Geologian	
8.39 AM	4	6.86	19.50	970	9.47	209	-182			
8:41 Am	7	6.93	19.10	862	9.14	153	-194	en e	2000 - 2000 1910 - 2010 - 2010 1910 - 2010 - 2010	
8:45 AM	10	6.89	20.00	912	8.92	135	-190	terter i san an ang	aba ann in Clause a	
8:47 AM	11	DR	ED					· · · · ·		
8:50 AM	50	mple	5					3.30	17.1	0

Well No.: Casing Diameter: Depth of Well: Top of Casing Elevation: Depth to Groundwater: Groundwater Elevation: Water Column Height: Purged Volume:	40 12 28 18	.58 .13 .42	inches feet feet feet		Project Address Date: Samples	s:	2331 3609 International Blvd. Oakland, CA 9/2/06 7011 PERINA Massai
Purging Method: Sampling Method:	• •		Bailer Bailer		Pump Pump		
Color: Sheen: Odor:	No No No			Yes ☑ Yes Ŋ Yes Ŋ	-	Describe Describe Describe	······································

Field Measurements:

Time	Vol	Ha	Temp	E.C.	D.O.	Turbidity	ORP	Fe ⁺²	NO3 ⁻¹	SO4 ⁻²
	(gallons)		(°C)	(µS/cm)	(mg/L)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)
1115 Am	stan	teo	Rungt	29 4	1		nama, sasarta balan Arabita da Arabita	an a		Law and the second
11:20 Am	5	7.21	19.90	699	9.90	74	53	an a	$\left(\begin{array}{c} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{j=1}^{n}$	
11:25 AM	9	7.as	20.00	698	9.87	52	50			
11:30 AM	15	7.04	20.10		9.84		51			
1135 Am	22	7.07	19,90	693	9.89	150	48	97797.97.00 (A. 1977) 1	ana manangangkan K	
11:38 AM	lar	exples						0.93	35	30
					· .					
· · · · · · · · · · · · · · · · · · ·										

inches

feet

feet

feet

gallons

46 feet <u>S</u>ieet

Well No.:	MW-3
Casing Diameter:	4
Depth of Well:	31.50
Top of Casing Elevation:	40.91
Depth to Groundwater:	12.95
Groundwater Elevation:	27.96
Water Column Height:	18.55
Purged Volume:	_19

Date: Sampler:

Project No.:

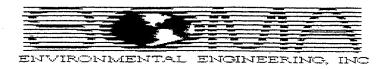
Address:

3609 International Blvd. Oakland, CA 1/8/06 Jony Perivi Musous Mursus

2331

Purging Method:			Bailer		Pump			
Sampling Method:			Bailer	31	Pump			
Color:	No	<u> </u>		Yes 🗗	-	Describe:	cloudy	
Sheen:	No			Yes]]		Describe:		
Odor:	No			Yes F		Describe:	slight petro obor	

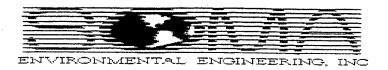
Field Measurements:


	Time	Vol (gallons)	рН	Temp	E.C. (µS/cm)	D.O. (mg/L)	Turbidity (NTU)	ORP (mV)	Fe ⁺²	NO3 ⁻¹	S04 ⁻²
	9:03 AM	د ک	arko	pur		vell	(1410) No construction (2016)	(IIIV) NAMAR ARTONA	(mg/L)	(mg/L)	(mg/L)
1	9:05 AM	2	6.87	19.10	1040	9.44	241	-127	aand van oerreeese Hereidense Van Staar (* 1945)	en an an thair an eile An thair an thair an thair an thair An thair an t	inini i la la contratio Al contration de la contration Al contration de la contration
	9:08 AM	. 7	6.82	19.50	1000	9.21	30	-245			
	9:11 AM	12	6.78	19.50	970	9.27	27	-238	9		
	9:15 Am	16	6.80	19.60	990	9.21	139	-/85	17 97 8 1 10 10 10 10 10		
	9:20 AM	19	6.80	19.50	990	9.23	129	-230		· · · · ·	
	9:23 Am	14	mples						3.30	11	0
			-								

Well No.: Casing Diameter:	Mu- 2	Y <i>R</i> inches		Project Addres		2331 3609 International Blvd.
Depth of Well:	26	feet		Audica		
Top of Casing Elevation:	40.31	feet		Date:		Oakland, CA 7/7/06
Depth to Groundwater:	12.96			Sample	r:	Tary PERINI Masous Massat
Groundwater Elevation:	27.38	feet			4	Masous Marsas
Water Column Height:	13.04	eet				
Purged Volume:	12	gallons				
Purging Method:		Bailer		Pump		
Sampling Method:		Bailer		Pump		
Color:	No 📮	<i>i</i>	Yes Z	•	Describe:	cloudy
Sheen:	No 🗹	~	Yes D		Describe:	•
Odor:	No 🗹	•	Yes D		Describe:	

Field Measurements:

Time	Vol	На	Temp	E.C.	D.O.	Turbidity	ORP	Fe ⁺²	NO3 ⁻¹	SO4-2
	(galions)		(°C)	(µS/cm)	(mg/L)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)
12:45 Pm	. A	rko	purg	ng	ul			a an	randas a contrastrologicas as	
12:47 PM	2	7.24	20.30	1050	9.64	92	30			
12:49 PM	5	7.05	19.20	660	9.24	130	15			
12:51 PM	9	7.03	19.90	664	9.89	530	.25	9.		
12:53 PM	12	7.02	19.80	664	9.90	999	12	rines and		
12:55 PM	San	ples						2.03	35	13
						1.				



Well No.:	Mu-s	Project	No.:	2331
Casing Diameter:	> inches	Address	5:	3609 International Blvd.
Depth of Well:	26.25 feet			Oakland, CA
Top of Casing Elevation:	<u>41.16</u> feet	Date:		9/7/06 TONY PERINI Masoup Marsai
Depth to Groundwater:	12.78 feet	Sampler	;	TONY PERINI
Groundwater Elevation:	28.38 feet			Masoup Mansai
Water Column Height:	13.47 eet			
Purged Volume:	gallons			
Purging Method:	Bailer	Pump		
Sampling Method:	Bailer	Pump		

Color:	No	<u>م</u>	Yes		Describe:	cloudy
Sheen:	No		Yes	מ	Describe:	· · · · · · · · · · · · · · · · · · ·
Odor:	No		Yes	D	Describe:	

Field Measurements:

Time	Vol (galions)	рН	Temp (°C)	E.C. (µS/cm)	D.O. (mg/L)	Turbidity (NTU)	ORP (mV)	Fe ⁺² (mg/L)	NO3 ⁻¹ (mg/L)	SO4 ⁻² (mg/L)
11:53 AM	_st	erto	prov	Mg	well	n o og kongener for en v	terring, gazerie milija	an a	an daga sa sa kabutat daga sa	F
_ 11:55 AM	2	7.05	20.90	787	9.46	124	65			
11:57 Am	5	7.07	21.00	757	9.37	17	3			
11:59 Am	9	7.06	20.80	752	9.49	12	-102			
12:01 PM	12	7.01	20.80	751	9.51	2	tin india Constanti	1997 - Angelan Sanatari, 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 1997 -	ere en sicciones. S	
12:04 MM	Sam	0/00						0.64	0	44
										-
						· [

-

Well No.:	Mu-6	_
Casing Diameter:	<u> </u>	inches
Depth of Well:	25	feet
Top of Casing Elevation:	40.92	feet
Depth to Groundwater:	13.12	feet
Groundwater Elevation:	27.80	feet
Water Column Height:	11.88	leet
Purged Volume:		gallons

Address: Date: Sampier:

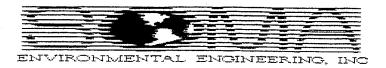
Project No.:

2331 3609 International Blvd. Oakland, CA 9/8/06 70ny PERMI Musous Mariai

Purging Method:		Bailer		Pump			
Sampling Method:	•	Bailer		Pump			
Color:	No 🗇	×	Yes 🛛	.	Describe:	douty	
Sheen:	No 🛛		Yes]]		Describe:	•	
Odor:	No 🗹	/	Yes D		Describe:		

Field Measurements:

SO4 ⁻²	NO3 ⁻¹	Fe ⁺²	ORP	Turbidity	D.O.	E.C.	Temp	Ηα	Vol	Time
(mg/L)	(mg/L)	(mg/L)	(mV)	(NTU)	(mg/L)	(µS/cm)	(°C)		(gallons)	
		an a	eria na Valverir engan	n ann airrigean a' a' anna	a	1 ind	ungra	to 1	star	9:31 Am
			-284	81	9.55	892	18.90	7.03	2	9:41 AM
			-298	257	7.39	743	19.10	6.90	. 4	9:43 AM
		C	-275	150	1.46	720	18.90	6.86	6	9:45 pm
	and the second second	and a second	-280	58	9.41	713	18.90	6.88	9	9:47 Am
3	24.2	3.30						ples	1 an	9:50 Am
	24.2	3.30						fes	I an	7-J0 Am



Well No.:	Mu	1-1	-		Project	No.: 2	2331
Casing Diameter:			inches		Address	s: 3	3609 International Blvd.
Depth of Well:		26	feet			C	Dakland, CA
Top of Casing Elevation:	-39	194	feet		Date:	4	9/106
Depth to Groundwater:		.52			Sample	··	nany PERINI Nasous Marsni
Groundwater Elevation:	25	5.42	feet			p	nasoup Marsni
Water Column Height:	16.	48	eet				
Purged Volume:	_7	<u>! </u>	gallons				· ·
Purging Method:			Bailer		Pump		· · · ·
Sampling Method:	•		Bailer		Pump		
Coler:	No	p '		Yes 🗹		Describe:	stitu
			,			_	
Sheen:	No	Z		Yes]]		Describe:	
Odor:	No			$^{Yes}\mathcal{D}$		Describe:	

Field Measurements:

Time	Vol	Hq	Temp	E.C.	D.O.	Turbidity	ORP	Fe ⁺²	NO3 ⁻¹	SO4 ⁻²	
	(gallons)		(°C)	(µS/cm)	(mg/L)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)	
10:13 AM	140	who	purg	m u	ell		nar al Marrier Val	an a	orientary a construction with the second	l'	
_ 10:11 Am	2	7.33	20.40	688	9.31	62	36				
10:16 AM	3	DR	EB		9.44		ан 12 12				
10:18 Am	4	7.30	21.10	699	9.44	979	15				
19:20 Am	4.5	and the second second second second	100					and a second	arcania internetia Noti		
10:22 AM	san	ples						1.24	35	48	
						1					

notes tow recharge rate observed much stopped purge cycle after well drives ture

inches

gallons

Well No.: mw-8 Casing Diameter: 26.50 feet Depth of Well: Top of Casing Elevation: 39.38 feet 12.15_feet Depth to Groundwater: 21.23 feet Groundwater Elevation: 14.35 eet Water Column Height: Purged Volume: Z

Address: Date: Sampler:

2331 3609 International Blvd. Oakland, CA 9/7/06 Tony PERINI Masoup Marsis

Purging Method:			Bailer		Pump	3	
Sampling Method:			Bailer		Pump		
Color:	No	, D		Yes 🗹	4	Describe:	cloudy
Sheen:	No		• .	Yes 🗋		Describe:	
Odor:	No	22		Yes 🝠	-	Describe:	petro obok

Project No.:

Field Measurements:

Time	Vol (gallons)	рН	Temp (°C)	E.C. (μS/cm)	D.O. (mg/L)	Turbidity (NTU)	ORP (mV)	Fe ⁺² (mg/L)	NO3 ⁻¹	SO4 ⁻²
1:20 PM	17	artes	pung	mg u	ar sa panana		norme VAperis, mode	(mg/L)	(mg/L)	(mg/L)
1:22 pm	2	7.37	20.60	679	9.55	200	-42		en en en selven han sen sen andere en selven en sen sen selven en se andere en selven en s	e en de construir de la constru Construir de la construir de la Construir de la construir de la
1:21PM	\mathcal{F}	7.11	20,30	689	9.80	146	-237	and a second		
1:26 PM	8	7.04	20.40	696	9.67		-228			
1:28 PM	10	7.06	20.40	714	9.62	226	-205		ara marata Data .	
1:30 PM	13	7.07	20.30	722	9.15	95	-193			
1:33 PM	Sam	les						2.49	0	0

MU-10

Project No.: 2331 2 Casing Diameter: inches Address: 3609 International Blvd. 23.40 feet Depth of Well: Oakland, CA Top of Casing Elevation: 36.71 feet Date: 9/1/06 10.90 feet Depth to Groundwater: TONY PERINI Sampler: Masous Marsai 25.81 feet Groundwater Elevation: Water Column Height: 12,50 eet Purged Volume: gallons Purging Method: Bailer Pump Sampling Method: Bailer Pump Color: No Yes 🗀 Describe: Sheen: No Yes D Describe: Yes Ø Odor: No **Describe:**

Field Measurements:

Well No.:

Time	Vol (galions)	рН	Temp (°C)	E.C. (μS/cm)	D.O. (mg/L)	Turbidity (NTU)	ORP (mV)	Fe ⁺² (mg/L)	NO3 ⁻¹ (mg/L)	SO₄ ⁻² (mg/L)
9:50 AM	sta.	Ko	awyn	19 ut	11		anatananatana manat			
9:50 AM 952 12:02 AM	2	7.13	18.60	728	9.82	21	-/3	Alexandra (and the of the Alexandra Alexandra Alexandra () and a second second Alexandra () and a second		
9:54 Are	5	6.97	19.00	715	294	5	-4			
9:56 AM	8	6.93	19.20	723	9.40	3	1			
9:58 Am	11				9.37	2	6	And a second		e n esta a constan Service
10 AM	Sar	urko						0.37	5.8	22

Well No.: Casing Diameter: Depth of Well: Top of Casing Elevation: Depth to Groundwater: Groundwater Elevation: Water Column Height: Purged Volume:

MW-12 <u>4</u> inches <u>30</u> feet <u>36.94</u> feet <u>11.97</u> feet <u>25.40</u> feet <u>18.56</u> set

20

gallons

Project No.: Address:

Date: Sampler:

Oakland, CA 917/06 Tony Perlin 1 Musoup Marsai

3609 International Blvd.

2331

Purging Method:		Bailer		Pump		
Sampling Method:	•	Bailer		Pump		
Color:	No <i>[</i>	2	Yes 🗆		Describe:	
Sheen:	No I	2	Yes D		Describe:	
Odor:	No 🕻	-	Yes D		Describe:	

Field Measurements:

Time	Vol	Ha	Temp	E.C.	D.O.	Turbidity	ORP	Fe ⁺²	NO3 ⁻¹	SO4 ⁻²
	(gallons)		(°C)	(µS/cm)	(mg/L)	(NTU)	(mV)	(mg/L)	(mg/L)	(mg/L)
920 Am	sta	rtes	purgr	29 u	4	a a car a tagan a cara	an a sharada a sa		an ann a' an an an Artain An	I.
9:23 AM	3	7.48		1120	9.36	8	77	an an an an ann an an an an an an an an		andre and the
9:26 AM	6	6.96	18.90	787	9.39	15	-23			
9:29 Am	11	6.88	18.90	754	9.27	10	-42	*		
9:32 AM	16	6.87	19.30	747	9.34	5	-64	terra com moi	ara matage and a second	an an tha an
9:35 AM	20	6.88	19.20	740	9.25	3	-94			1 .
9:38 Am	San	ples						2.29	0.5	0

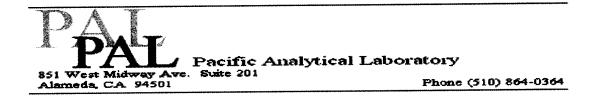
Appendix C

Chain of Custody Form and Laboratory Report

for the

Third Quarter 2006 Monitoring Event

CHAIN OF CUSTODY FORM


PAL

Login# 6090005

Page _ of _

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 Telephone 510-864-0365 Fax

Proje	et No; 2331			8m	nple	r. 1	SAY Port	Mali	///	ia.	1000	Mase			Ane	l ysos/i	lethod		
Proje	ct Name: 3609 M Oaklan	ternetional I Id	Bivd	Rej	port	To:	Tony Perin	1						MBR					
	<u></u>			Co	mp	iny:	SOMA Em	viron	me	ntal	Eng	neering, inc] 🖌 🛛					
Tum	around Time: §	Standard		Tel Par	.	925	734-6400 734-6401												
		Sampling	Date/Time	M	latri	x	# of Containers	,	rese	rvat	lves			1PH9.					
Lab No.	Sample ID	Date	Time	8	Water	Waste		HCL.	HsSed	HNO,	5	1	Pield Notes						
	MNV-1	9k de	JSD AM		X		4 VOAS	X			X	Grab Sample	9	X	1	8 1 - 5			
	MN-2	A 2/24	12 1.1		X		4 VOAS	X			X			X					
	MW-3	11100	688 CI		X		4 VOAS	X			X			X					
	MW-4R	191005	WY and Call		X		4 VOAS	X			X	T		X					
	MW-5	9197/16	mr. South		X		4 VOAS	X			X			X	 ,		++	4.	
	MW-6	98/0	9.0 MM		X		4 VOAS	X			X			X					1
	MW-7	912100	Wears.		X		AVOAS	X			X			<u>X</u>					
	MW-8	<u>Genal</u>	JA Mais	en en en	X		4 VOAS	<u>↓X</u>		<u> </u>	<u>X</u>			X	-		++		-
	MW-10	9/2/06	a de		X		4 VOAS	X			X			the state of the s	+ +			100 A	
	MW-12	9/2/01	238 Am		XX		4 VOAS	XX			X	I.		X		1	1.1		1
Sam	pler Remarks:	11.112	1 1-14 1171		L	1	Relinquia		by:		Dô	e/Time:	Received by:		Row	De	entin	0;	
	REQUIRED						Tony .			с к. С. – С.		rm. sloc							
																			

25 September 2006

Mansour Sepehr SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

RE: 3609 International Blvd., Oakland

Work Order Number: 6090005

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Mapd Ach

Maiid Akhavan Laboratorv Director

Sample ID	Laboratory ID Matrix		Date Sampled	Date Received
	ANALYTICAL REPORT	FOR SAMPLES		·
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr		25-Sep-06 17:06
6620 Owens Drive, Suite A	Project Number:			Reported:
SOMA Environmental Engineering Inc.	Project:	3609 International Blvd., Oakland		

Sampicin				
MW-1	6090005-01	Water	08-Sep-06 08:50	08-Sep-06 14:33
MW-2	6090005-02	Water	07-Sep-06 11:38	08-Sep-06 14:33
MW-3	6090005-03	Water	08-Sep-06 09:23	08-Sep-06 14:33
MW-4R	6090005-04	Water	07-Sep-06 12:55	08-Sep-06 14:33
MW-5	6090005-05	Water	07-Sep-06 12:04	08-Sep-06 14:33
MW-6	6090005-06	Water	08-Sep-06 09:50	08-Sep-06 14:33
MW-7	6090005-07	Water	07-Sep-06 10:22	08-Sep-06 14:33
MW-8	6090005-08	Water	07-Sep-06 13:33	08-Sep-06 14:33
MW-10	6090005-09	Water	07-Sep-06 10:00	08-Sep-06 14:33
MW-12	6090005-10	Water	07-Sep-06 09:38	08-Sep-06 14:33

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ł

SOMA Environmental Engineering Inc.	Project:	3609 International Blvd., Oakland	
6620 Owens Drive, Suite A	Project Number:	2331	Reported:
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	25-Sep-06 17:06

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6090005-01) Water Sampled: 08-5	Sep-06 08:50 Rece	ived: 08-Sep-0	6 14:33						
Gasoline (C6-C12)	37200	1080	ug/l	21.5	BI61301	08-Sep-06	11-Sep-06	EPA 8260B	
Benzene	3280	10.8	"	"	"	"	"	**	
Ethylbenzene	1290	10.8	*	"	"		"	n	
n&p-Xylene	1880	21.5	**	"	"	"	"		
p-xylene	805	10.8	"	"	*	"	"	н	
Foluene	1460	43.0	"		"	н		**	
мтве	2180	10.8	"	"	"	"	**	11	
Surrogate: 4-Bromofluorobenzene		98.6 %	70-13	30	"	"	"	"	
Surrogate: Dibromofluoromethane		99.6 %	70-13	30	"	"	"	11	
Surrogate: Perdeuterotoluene		91.8 %	70-13	30	"	"	"	"	
MW-2 (6090005-02) Water Sampled: 07-	Sep-06 11:38 Reco	eived: 08-Sep-0	6 14:33						
Gasoline (C6-C12)	114	50.0	ug/l	1	BI61301	08-Sep-06	11-Sep-06	EPA 8260B	
Benzene	2.45	0.500		11	"	**	*	H	
Ethylbenzene	8.62	0.500		"	"	**	u	"	
m&p-Xylene	5.77	1.00	**	п		*	"	**	
o-xylene	1.08	0.500		н	*	"	93	"	
Toluene	ND	2.00		"		**	"	"	
MTBE	ND	0.500	*	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.4 %	70-1.	30	"	"	"	n	
Surrogate: Dibromofluoromethane		105 %	70-1.	30	"	"	"	"	
Surrogate: Perdeuterotoluene		87.2 %	70-1.	30	"	"	n	"	
MW-3 (6090005-03) Water Sampled: 08-	Sep-06 09:23 Rec	eived: 08-Sep-0	6 14:33						
Gasoline (C6-C12)	26400	550	ug/l	11	BI61301	08-Sep-06	11-Sep-06	EPA 8260B	
Benzene	1660	5.50	n	"	"	**	n	n	
Ethylbenzene	933	5.50	"	**	"	"	н		
m&p-Xylene	1060	11.0	"	"	"	11	"		
o-xylene	485	5.50	"	"	"	н	11		
Toluene	381	22.0	"	**	"	"		"	
МТВЕ	332	5.50	"	"	"	**	"	11	
Surrogate: 4-Bromofluorobenzene		96.6 %	70-1	30	"	n	"	"	
Surrogate: Dibromofluoromethane		97.6 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		91.6 %	70-1	30	"	"	"	"	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SOMA Environmental Engineering Inc.Project:3609 International Blvd., Oakland6620 Owens Drive, Suite AProject Number:2331Reported:Pleasanton CA, 94588Project Manager:Mansour Sepehr25-Sep-06 17:06

Volatile Organic Compounds by EPA Method 8260B

Analysia	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte							-		
MW-4R (6090005-04) Water Sampled: 07	-Sep-06 12:55 Rec	ceived: 08-Sep-	06 14:33						
Gasoline (C6-C12)	97.7	50.0	ug/l	1	BI61301	08-Sep-06	11-Sep-06	EPA 8260B	
Benzene	9.29	0.500	**	"	**	79	**	11	
Ethylbenzene	4.05	0.500	"	"	•	"	*	n	
m&p-Xylene	1.03	1.00		"	"		"	"	
o-xylene	ND	0.500		"	"	"	••	H	
Toluene	ND	2.00	*	"	n	*	**	"	
MTBE	ND	0.500	**	"	11	"	"	*	
Surrogate: 4-Bromofluorobenzene		93.2 %	70-	130	"	"	"	"	
Surrogate: Dibromofluoromethane		99.6 %	70-	130	"	n	"	п	
Surrogate: Perdeuterotoluene		90.8 %	70-	130	"	"	п	"	

Gasoline (C6-C12)	185	50.0	ug/l	1	BI61301	08-Sep-06	12-Sep-06	EPA 8260B
Benzene	ND	0.500		11	"	*		n
Ethylbenzene	2.02	0.500	*	"	"	*	**	"
m&p-Xylene	ND	1.00	"	n		"	*	"
o-xylene	ND	0.500	"	"		n	"	н
Toluene	ND	2.00	"	"	"	"	11	"
MTBE	ND	0.500	"	11	"	"	n	"
Surrogate: 4-Bromofluorobenzene		93.2 %	70-	130	"	"	"	"
Surrogate: Dibromofluoromethane		98.6 %	70-	130	"	n	"	**
Surrogate: Perdeuterotoluene		93.0 %	70-	130	"	"	"	#

MW-6 (6090005-06RE1) Water Sampled: 08-Sep-06 09:50 Received: 08-Sep-06 14:33

Gasoline (C6-C12)	18600	100	ug/l	2	BI61301	08-Sep-06	12-Sep-06	EPA 8260B	
Benzene	604	2.15	"	4.3			**	"	
Ethylbenzene	639	2.15	"	"	"	•	"	**	
m&p-Xylene	520	4.30	*	н	"	**	17	71	
o-xylene	139	2.15	"	**	"		"		
Toluene	98.8	8.60	"		"	*	*1		
MTBE	ND	2.15				"	11	19	
Surrogate: 4-Bromofluorobenzene		97.4 %	70-	130	"	"	"	"	
Surrogate: Dibromofluoromethane		94.8 %	70-	130	"	n	"	"	
Surrogate: Perdeuterotoluene		92.2 %	70-	130	"	"	"	"	
Surrogue. I er deuter oronaene									

Ļ

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd., Oakland

Project Number: 2331 Project Manager: Mansour Sepehr **Reported:** 25-Sep-06 17:06

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (6090005-07) Water Sampled: 07	-Sep-06 10:22 Recei	ved: 08-Sep-0	6 14:33						
Gasoline (C6-C12)	320	50.0	ug/l	1	BI61301	08-Sep-06	12-Sep-06	EPA 8260B	
Benzene	2.87	0.500	"	H	11	*	"	"	
Ethylbenzene	4.76	0.500	n	n	"	"		"	
m&p-Xylene	1.34	1.00		"	"	"	ч	м	
o-xylene	ND	0.500	"	"	"	**	"	"	
Toluene	ND	2.00		н	"	"	11	н	
MTBE	ND	0.500	•	"	n	"	11	17	
Surrogate: 4-Bromofluorobenzene		96.2 %	70-1	30	"	"	11	"	
Surrogate: Dibromofluoromethane		97.2 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		91.0 %	70-1	30	"	"	n	"	

MW-8 (6090005-08RE1) Water Sampled: 07-Sep-06 13:33 Received: 08-Sep-06 14:33

-									
Gasoline (C6-C12)	4130	50.0	ug/l	1	BI61301	08-Sep-06	12-Sep-06	EPA 8260B	
Benzene	86.8	0.500	n	R	"	"	"	"	
Ethylbenzene	173	0.500	"	*		"	"		
m&p-Xylene	18.0	1.00	н	*	"	"	**	11	
o-xylene	1.73	0.500	н	"	**	"	н	**	
Toluene	7.32	2.00		"		"	"	"	
мтве	48.6	0.500	"	"	"	"	n	11	
Surrogate: 4-Bromofluorobenzene		100 %	70-	130	"	n	"	"	
Surrogate: Dibromofluoromethane		91.4 %	7 0 -	130	"	"	"	**	
Surrogate: Perdeuterotoluene		96.0 %	70-	130	"	"	n	"	

MW-10 (6090005-09RE1) Water Sampled: 07-Sep-06 10:00 Received: 08-Sep-06 14:33

Gasoline (C6-C12)	6960	50.0	ug/l	1	BI61301	08-Sep-06	12-Sep-06	EPA 8260B
Benzene	360	2.15	*	4.3	*	"		*
Ethylbenzene	253	2.15	"	"	"	"	•	n
m&p-Xylene	11.3	4.30	"	"	"	"	n	"
o-xylene	ND	2.15	"	"	"	11	**	Ħ
Toluene	ND	8.60		н	"	**	**	II
мтве	103	2.15	"	۳	н	n	n	"
Surrogate: 4-Bromofluorobenzene		106 %	70-,	130	"	"	"	11
Surrogate: Dibromofluoromethane		87.2 %	70-2	130	"	"	n	n
Surrogate: Perdeuterotoluene		96.4 %	70	130	"	н	"	11

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SOMA Environmental Engineering Inc.	Project: 3609 International Blvd., Oakland	
6620 Owens Drive, Suite A	Project Number: 2331	Reported:
Pleasanton CA, 94588	Project Manager: Mansour Sepehr	25-Sep-06 17:06
	Volatile Organic Compounds by EPA Method 8260B	

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-12 (6090005-10) Water Sampled: 0	7-Sep-06 09:38 Rec	eived: 08-Sep-	06 14:33						<u> </u>
Gasoline (C6-C12)	1220	50.0	ug/l	1	BI61301	08-Sep-06	12-Sep-06	EPA 8260B	
Benzene	0.610	0.500	"		"	"		n	
Ethylbenzene	2.69	0.500	11	"	"		**	H	
m&p-Xylene	ND	1.00	*		"		11	"	
o-xylene	ND	0.500	"	"	**	н	**	*	
Toluene	ND	2.00	"	**	"	*	*	"	
мтве	23.7	0.500	*		"	u	n	"	
Surrogate: 4-Bromofluorobenzene		104 %	70-13	80	"	"	п	n	
Surrogate: Dibromofluoromethane		97.6 %	70-13	80	"	"	"	"	
Surrogate: Perdeuterotoluene		93.4 %	70-13	30	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

l

SOMA Environmental Engineering Inc.	Project: 3609 International Blvd., Oakland	
6620 Owens Drive, Suite A	Project Number: 2331	Reported:
Pleasanton CA, 94588	Project Manager: Mansour Sepehr	25-Sep-06 17:06

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BI61301 - EPA 5030 Water MS										<u> </u>
Blank (BI61301-BLK1)				Prepared &	Analyzed:	13-Sep-06				
Surrogate: 4-Bromofluorobenzene	41.6		ug/l	50.0		83.2	70-130			
Surrogate: Dibromofluoromethane	54.5		"	50.0		109	70-130			
Surrogate: Perdeuterotoluene	44.1		"	50.0		88.2	70-130			
Gasoline (C6-C12)	ND	50.0	*							
Benzene	ND	0.500	и							
Ethylbenzene	ND	0.500								
m&p-Xylene	ND	1.00	11							
o-xylene	ND	0.500	*							
Toluene	ND	2.00	"							
MTBE	ND	0.500	"							
LCS (BI61301-BS1)				Prepared &	k Analyzed	: 13-Sep-06				
Surrogate: 4-Bromofluorobenzene	37.7		ug/l	50.0		75.4	70-130			
Surrogate: Dibromofluoromethane	47.4		п	50.0		94.8	70-130			
Surrogate: Perdeuterotoluene	43.5		"	50.0		87.0	70-130			
Gasoline (C6-C12)	1780	50.0	"	2000		89.0	70-130			
Benzene	89.8	0.500	Ħ	100		89.8	70-130			
Toluene	93.0	2.00	"	100		93.0	70-130			
MTBE	90.4	0.500		100		90.4	70-130			
LCS Dup (BI61301-BSD1)				Prepared &	& Analyzed	: 13-Sep-06	i .		<i>,</i>	
Surrogate: 4-Bromofluorobenzene	41.5		ug/l	50.0		83.0	70-130			
Surrogate: Dibromofluoromethane	44.8		"	50.0		89.6	70-130			
Surrogate: Perdeuterotoluene	47.4		n	50.0		94.8	70-130			
Gasoline (C6-C12)	1760	50.0	61	2000		88.0	70-130	1.13	20	
Benzene	95.1	0.500	*	100		95.1	70-130	5.73	20	
Toluene	100	2.00	"	100		100	70-130	7.25	20	
MTBE	84.0	0.500		100		84.0	70-130	7.34	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

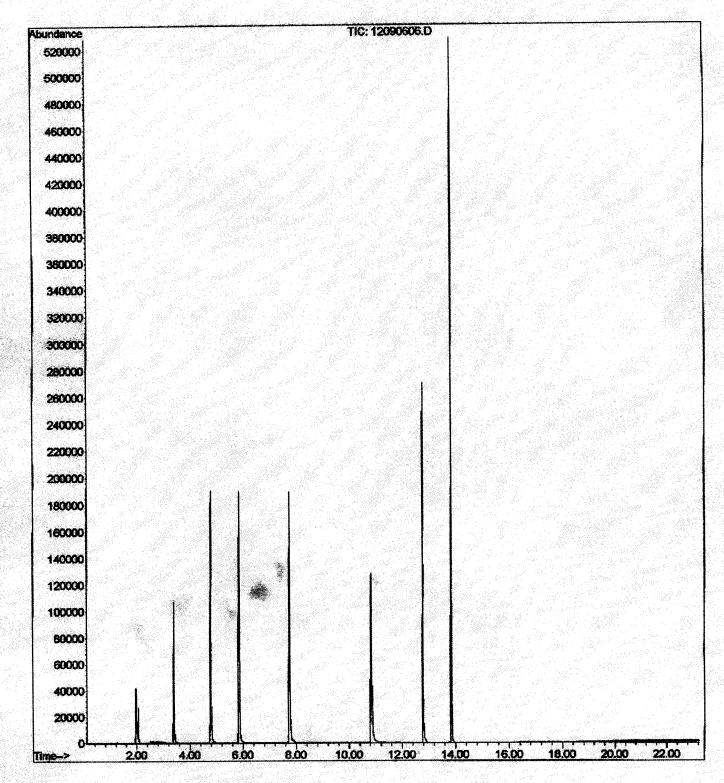
SOMA Environmental Engineering Inc.	Project: 3609 International Blvd., Oakland	
6620 Owens Drive, Suite A	Project Number: 2331	Reported:
Pleasanton CA, 94588	Project Manager: Mansour Sepehr	25-Sep-06 17:06

Notes and Definitions

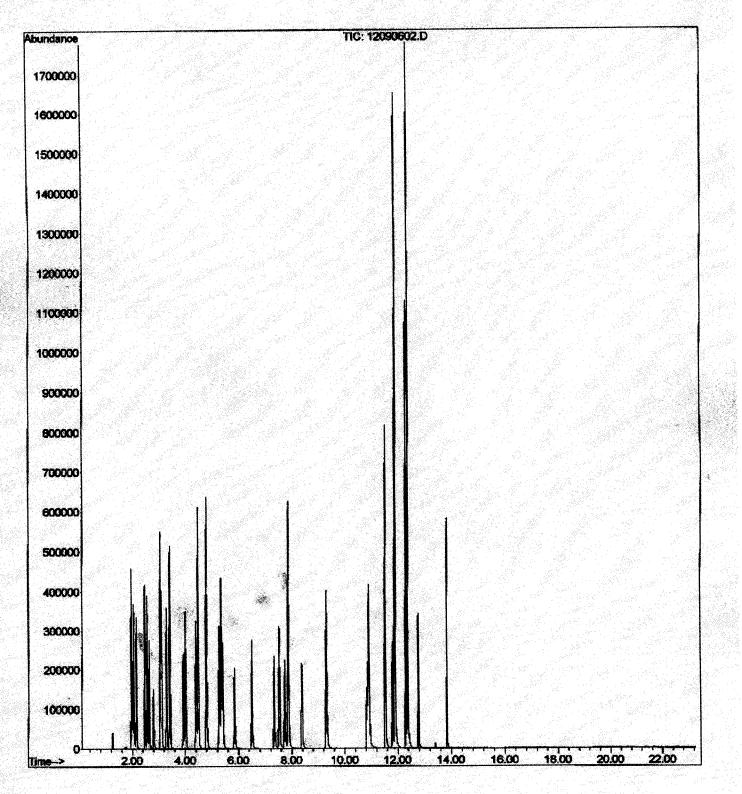
 DET
 Analyte DETECTED

 ND
 Analyte NOT DETECTED at or above the reporting limit

 NR
 Not Reported

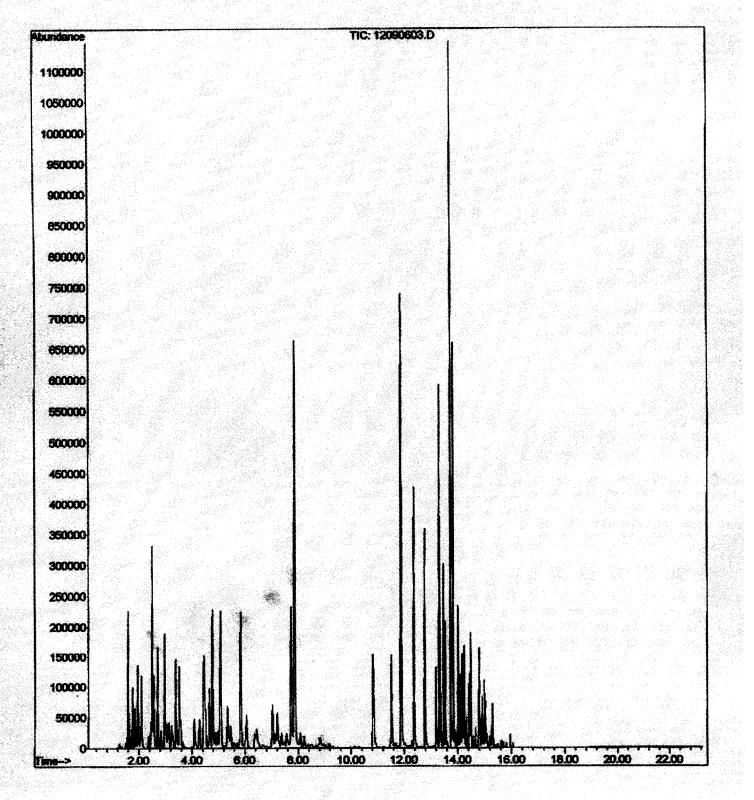

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference


Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

File :C:\MSDChem\1\DATA\2006-Sep-12-0948.b\12090606.D Operator : Acquired : 12 Sep 2006 1:00 pm using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BI61301-BLK1 Misc Info : Vial Number: 6



File :C:\MSDChem\1\DATA\2006-Sep-12-0948.b\12090602.D Operator : Acquired : 12 Sep 2006 10:37 am using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BI61301-BS1@voc Misc Info : Vial Number: 2

and the last of the same the set

:C:\MSDChem\1\DATA\2006-Sep-12-0948.b\12090603.D File Operator 2 : 12 Sep 2006 11:12 am using AcqMethod OXY21506.M Acquired PAL GCMS Instrument : Sample Name: BI61301-BS1@gas Misc Info ंः Vial Number: 3

Appendix D

Chain of Custody Forms and Laboratory Reports

for the

Groundwater Extraction Treatment System

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 6620 Owens Dr. Suite A Pleasanton, CA 94588

Date: 13-OCT-06 Lab Job Number: 189694 Project ID: 2333 Location: 3609 International Blvd

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:	Project Manager
Reviewed by:	Operations Manager
	\bigcirc

This package may be reproduced only in its entirety.

Page 1 of _____

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 189694 SOMA Environmental Engineering Inc. 2333 3609 International Blvd 09/27/06 09/27/06

This hardcopy data package contains sample and QC results for three water samples, requested for the above referenced project on 09/27/06. The samples were received intact at ambient temperature.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Total Suspended Solids (TSS) (EPA 160.2): No analytical problems were encountered.

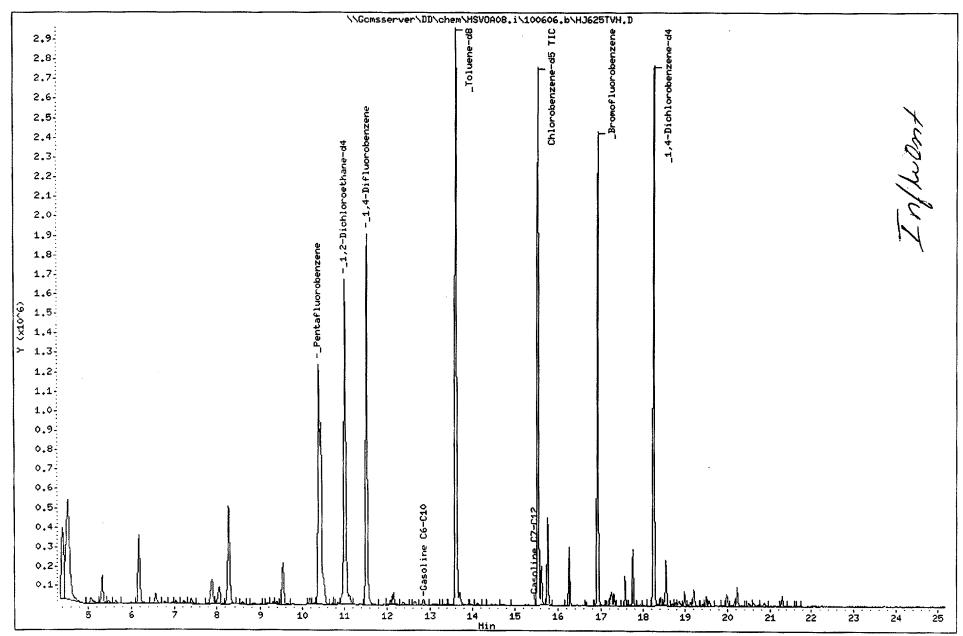
<u>Chemical Oxygen Demand (EPA 410.4):</u> No analytical problems were encountered.

CHAIN OF CUSTODY

Page _1___of _/___

Cur	tis & Tompkins, Ltd.															A	naly	ses			
Anal	ytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax					18969						8260B									
Projec	et No: 2333	-	Repor			Tony Perin					_										
	t Name:3609 International B	lvd., Oakland	Comp			SOMA Envi		nen	tal			BTEX, MtBE	CODF								
Turna	round Time: Standard		Telep	hone):	925-244-660	00					TEX,	TSS, C								
			Fax:			925-244-660	01														
				Ma	trix]	F	Pres	serv	ative		TPH-g,									
Lab No.	Sample ID.	Sampling Time	Date	Soil Water	Waste	# of Containers	HCL	H₂SO₄	HNO ₃	Ы											
-	Influent	9/27/02 1	: SS P.M			3-VOAs	\uparrow					*									
-2	GAC-1		1 40 PM			3-VOAs						*									
	PSP#1	9/27/24 1	30 241.			3-VOAs			<u> </u>			*	<u> </u>								
	PSP#1					- 1L-Amber-	-	ļ	ļ								\downarrow				
$' \mid \searrow$	PSP#1	9/27/26	1:30 PM			250 ML	<u> </u>	<u> </u>	<u> </u>				X			┥_	┼─┼			┝─┼	
	PSP#1	<u> 9/2 1/04 1</u>	30 PM			250 ML	-	<u> </u>		$\left \right $			×			+	╋	- -	-	┝─┼	
			<u></u>										_				\square	_	—	F	\square
					┼╌┝		┼──			┝╼┝			┼──	$\left \right $	-+		╉╌╋			┢──┼	
					┼╌┼╴		+	+		+		-	┼──	╏──┤			┿╌╂	-+		╞─┼	
	······································	+		┼┼─	┿╋		+		+	┝─┼╸		┢			-+	+	┼╌┽	-+-		┢──┼	
				╄╾╉╴	+		-		+		-	\vdash					+		+		-
Notes		-n		REI		UISHED BY:		1	J		L	RE	ECE) BY	 :	┶┶╼╍╍╸┠╍		-	<u>1</u>	i
	Grab Sample Totalizer Reading:		■ ,∓ ^{ana} l		53			4	/27		75:20 E/TIME	t	J	n Q		Kra	m_	9/2	27/0	G / DATI	
	E Cord	VASSA /								DAT	E/TIME		-			<i>u</i>				DAT	E/T
										DAT	E/TIME									DAT	E/T

		G	asoline	by GC/MS		
Lab #: 189694				Location:	3609 Internation	al Blvd
Client: SOMA 1	Environmental	Engineer	ing Inc.	Prep:	EPA 5030B	
Project#: 2333	1.7			Analysis:	EPA 8260B	
Matrix: Units:	Water ug/L			Sampled:	09/27/06	
Batch#:	118188			Received:	09/27/06	
Field ID: Type: Lab ID:	INFLUENT SAMPLE 189694-001			Diln Fac: Analyzed:	7.143 10/07/06	
Analy	/te		Result		RL	
Gasoline C7-C12			990		360	
MTBE Benzene			170		3.6	[
Toluene			240 9.4		3.6 3.6	
Ethylbenzene			37		3.6	
m,p-Xylenes			95		3.6	
o-Xylene	·····		55		3.6	
Surroc		*REC	Rimitza			
Dibromofluoromet	hane	98	80-120			
1,2-Dichloroetha	ane-d4	88	80-130			
Toluene-d8 Bromofluorobenze		96	80-120			
BIOMOLIUOIODENZE		106	80-122			
Field ID:	GAC-1			Diln Fac:	1.000	
Type :	SAMPLE			Analyzed:	10/06/06	
Lab ID:	189694-002			-		
Analy	te		Result		RL	
Gasoline C7-C12		ND			50	
MTBE		ND			0.50	
Benzene Toluene		ND ND			0.50	
Ethylbenzene		ND			0.50 0.50	
m,p-Xylenes		ND			0.50	
o-Xylene		ND			0.50	
Surroe	ate	SPR0	li inciti s			
Dibromofluoromet	hane	96	80-120			
1,2-Dichloroetha	ne-d4	91	80-130			
Toluene-d8		98	80-120			
Bromofluorobenze		104	80-120			1

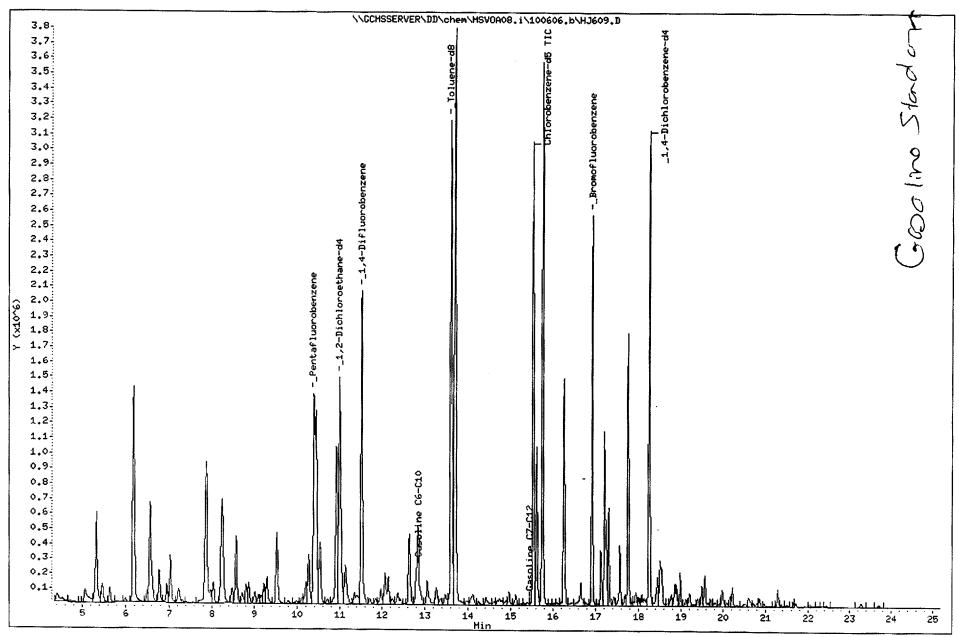

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\100606.b\HJ625TVH.D Date : 07-OCT-2006 00:06 Client ID: DYNA P&T Sample Info: S,189694-001

Column phase:

Instrument: MSV0A08.i

Operator: BO

Column diameter: 2.00



Data File: \\GCHSSERVER\DD\chem\HSVOA08.i\100606.b\HJ609.D
Date : 06-OCT-2006 14:07
Client ID:
Sample Info: CCV,S4120,0.015/100

Instrument: HSVOA08.i

Operator: BO

Column diameter: 2.00

Column phase:

		G	asoline	by GC/MS		
Lab #: 18969 Client: SOMA Project#: 2333	4 Environmental	Engineeri	ing Inc.	Location: Prep: Analysis:	3609 Internationa EPA 5030B EPA 8260B	l Blvd
Matrix: Units: Batch#:	Water ug/L 118188			Sampled: Received:	09/27/06 09/27/06	
Field ID: Type: Lab ID:	PSP#1 SAMPLE 189694-003			Diln Fac: Analyzed:	1.000 10/06/06	
Anal Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND ND	Kesult		RL 50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	ane-d4	8REC 101 91 98 108	Limits 80-120 80-130 80-120 80-122			
Type: Lab ID:	BLANK QC359254			Diln Fac: Analyzed:	1.000 10/06/06	
Anal Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		ND ND ND ND ND ND			RL 50 0.50 0.50 0.50 0.50 0.50 0.50	
Surro Dibromofluorome 1,2-Dichloroeth Toluene-d8 Bromofluorobenz	ane-d4	91 84 97 103	Limits 80-120 80-130 80-120 80-122			

Batch QC Report

Bromofluorobenzene

	Gasoline	by GC/MS	
Lab #:	189694	Location:	3609 International Blvd
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2333	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	118188
Units:	ug/L	Analyzed:	10/06/06
Diln Fac:	1.000	-	

Type: I	35			Lab ID:	QC3	59252	
Analy	9		Spiked		Result	%RBC	' Limite
MTBE			25.00		21.13	85	72-120
Benzene			25.00		24.63	99	80-120
Toluene			25.00		24.30	97	80-120
Ethylbenzene			25.00		26.42	106	80-120
m,p-Xylenes			50.00		53.42	107	80-121
o-Xylene			25.00		27.38	110	80-120
Surroga	ite	%REC	Limits				
Dibromofluorometh	lane	93	80-120				
1,2-Dichloroethar	ne-d4	81	80-130				
Toluene-d8		96	80-120				

101

80-122

Туре: Е	SD	Lab	ID:	QC3	59253			
Analyt	.8	Spiked	Resu	Lt	&RBC	Limits	RPD	Lin
MTBE		25.00	2	0.79	83	72-120	2	20
Benzene		25.00	2	4.62	98	80-120	0	20
Toluene		25.00	2	4.13	97	80-120	1	20
Ethylbenzene		25.00	2	5.84	103	80-120	2	20
m,p-Xylenes		50.00	5	3.27	107	80-121	0	20
o-Xylene		25.00	2	7.98	112	80-120	2	20
Surroga	te %RB	C Limits						
Dibromofluorometh	ane 93	80-120						
1,2-Dichloroethan	e-d4 81	80-130						
Toluene-d8	95	80-120						
Bromofluorobenzen	.e101	80-122						

Batch QC Report

	Gasoline	by GC/MS	
Lab #:	189694	Location:	3609 International Blvd
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2333	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	118188
Units:	ug/L	Analyzed:	10/06/06
Diln Fac:	1.000		

Type: BS			Lab ID:	QC	359255		
Analyte		Spiked		Result	%RBC	Limits	
Gasoline C7-C12		1,500		1,651	110	70-130	
Surrogate	%REC) Limits					
Dibromofluoromethane	92	80-120					
1,2-Dichloroethane-d4	84	80-130					
Toluene-d8	94	80-120					
Bromofluorobenzene	102	80-122	<u>n na seconda da da</u>				
ſype: BSD	102		Lab ID:	_	359256		
Type: BSD Analyte	102	Spiked	Lab ID:	Result	%RBC		RPD Lim
ſype: BSD	102		Lab ID:	_		Limits 70-130	RPD Lim 4 20
Type: BSD Analyte Gasoline C7-C12 Surrogate	102	Spiked 1,500 : Limits	Lab ID:	Result	%RBC		
Type: BSD Analyte Gasoline C7-C12 Surrogate Dibromofluoromethane		Spiked 1,500	Lab ID:	Result	%RBC		
Type: BSD Analyte Gasoline C7-C12 Surrogate	*RBC	Spiked 1,500 : Limits	Lab ID:	Result	%RBC		
Type: BSD Analyte Gasoline C7-C12 Surrogate Dibromofluoromethane	%RBC 91	Spiked 1,500 Limits 80-120	Lab ID:	Result	%RBC		

Lab #:	189694	Location:	3609 International Blvd
Client:	SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	2333	Analysis:	SM 5220D
Analyte:	COD (Filtered)	Batch#:	118078
Field ID:	PSP#1	Sampled:	09/27/06 13:30
Matrix:	Water	Received:	09/27/06
Units:	mg/L	Analyzed:	10/03/06 00:00
Diln Fac:	1.000		
		······································	
Туре	Lab ID Result	RL	
	9694-003 14	10	
BLANK OC	358782 ND	10	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Batch QC Report

		Chemical (Oxygen Dema	nd				
Lab #	: 18969	94	Location:	3609	Interna	ational Bl	.vd	20000000000
Clien		Environmental Engineering Inc.	c. Prep:	METHOD				
	ct#: 2333	2 2	Analysis:	SM 52	20D			
Analy		COD (Filtered)	Diln Fac:	1.000)			
Field		PSP#1	Batch#:	11807	78			
MSS L	ab ID:	189694-003	Sampled:	09/27	/06 13:	:30		
Matri	x :	Water	Received:	09/27	7/06			
Units	:	mg/L	Analyzed:	10/03	3/06 00:	:00	<u></u>	
Туре	Lab II	M88 Result Spik	ed	Result	\$RE(2 Limits	RPD	Lin
LCS	QC358783	8	0.00	77.78	97	80-120		
MS	QC358784	13.61 8	0.00	81.67	85	80-120		
MSD	QC358785	; 8	0.00	77.78	80	80-120	5	20

- 1 11	10000	Location:	3609 International Blvd
Lab #: Client:	189694 SOMA Environmental Engineering Inc.	Prep:	METHOD
Project#:	_	Analysis:	EPA 160.2
Analyte:	Total Suspended Solids	Batch#:	117975
Field ID:	-	Sampled:	09/27/06
Matrix:	Water	Received:	09/27/06
Units:	mg/L	Analyzed:	09/29/06
Diln Fac:	1.000		

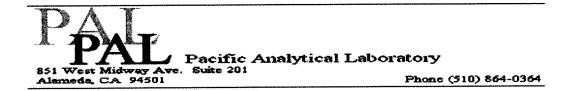
Contraction of the advantages				÷
SAMPLE	189694-003	ND	5	
BLANK	QC358345	ND	5	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Batch QC Report

			Total Suspend	ed Solids ((TSS)				
Lab #:	18969	4		Location:	3609 In	terna	tional Bly	rd	
Client:	SOMA	Environmental	Engineering Inc.	Prep:	METHOD				
Project#	: 2333		_	Analysis:	EPA 160	. 2			_
Analyte:		Total Susper	nded Solids	Diln Fac:	1.000				
Field ID):	ZZZZZZZZZZZ		Batch#:	117975				
MSS Lab	ID:	189690-001		Sampled:	09/27/0	6			
Matrix:		Water		Received:	09/27/0	6			
Units:		mg/L	······	Analyzed:	09/29/0	6			
Туре	Lab ID	MSS Resul	: Spiked	Result	RL	% REC	Limits H	2PD	Lim
	C358346	;	50.00	48.00		96	80-120		
BSD C	C358347	,	50.00	53.00		106	80-120 1	10	20
SDUP C	C358348	13.00)	16.00	5.000		2	21	31
SSPIKE Q	C358349	13.00	50.00	63.00		100	46-152		

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1


CHAIN OF COSTODY FORM

We have the second sound a second

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 Telephone 510-864-0365 Fax

Project No: 2333 Project Name: 3609 International Blvd. Oakland Turnaround Time: Standard				Sampler: Brian Tims									Analyses/Method				
				Report To: Tony Petini Company: SOMA Environmental Engineering, Inc. Tel: 925-734-6400 Fax: 928-734-6401										MBR D			
														×			
														BTEX,			
Sampling Dute/Tim			Dute/Time	Matrix		-	# of Containers	Preservative			ver			17H9. 82608			
Lab No.	Sample ID	Date	Thue	Sell	Water	Waste		HC.	H.Set	HNO,	B	Field Notes					
	Influent	Shula	10-904M		•		S-VOAs	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			•	Grab Sample	Ala				
	GAC-1	Plulay	10,30AM		+		3-VOAs	•				Grab Sample					
	PSP-1	41.4/04	10120 4.1				3-7045			i de la Referencia Referencia		Grab Semple		* 53			3. J
											Artonia Artonia Artonia			and and a			
Sam	pler Remarks:						Relinguis	hed	ov;		Dat	be/Time;	Received by:		Date/T	lme:	
EDF Output Required						RE					Janes Zminge			6/14/00 12:15 pm			
							1.										<u></u>
1.4							L					4	<u> </u>				

PAL Login# 6080009

22 August 2006

Mansour Sepehr SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

RE: 3609 International Blvd, Oakland

Work Order Number: 6080009

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Mapd Ach

Maiid Akhavan Laboratorv Director

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd, Oakland Project Number: 2333 Project Manager: Mansour Sepehr

Reported: 22-Aug-06 10:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Influent	6080009-01	Water	14-Aug-06 10:40	14-Aug-06 13:15
GAC-1	6080009-02	Water	14-Aug-06 10:30	14-Aug-06 13:15
Effluent	6080009-03	Water	14-Aug-06 10:20	14-Aug-06 13:15

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SOMA Environmental Engineering Inc.	Project: 3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number: 2333	Reported:
Pleasanton CA, 94588	Project Manager: Mansour Sepehr	22-Aug-06 10:37

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
influent (6080009-01RE1) Water Sampl	ed: 14-Aug-06 10:40	Received: 14-	Aug-06 13:	15			······································		
Gasoline (C6-C12)	2360	100	ug/l	2	BH61801	14-Aug-06	17-Aug-06	EPA 8260B	
Benzene	326	1.00	"	"	"	"	11	"	
Ethylbenzene	86.1	1.00	"	"	"	п	"	"	
m&p-Xylene	133	2.00	"	*	"	"		**	
p-xylene	83.6	1.00		"	"	"	"	"	
Foluene	15.3	4.00		"	n	"	"	"	
мтве	164	1.00	"	"		"	11	tt.	
Surrogate: 4-Bromofluorobenzene		101 %	70-13	0	n	"	"	"	
Surrogate: Dibromofluoromethane		98.2 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		97.4 %	70-13	0	n	n	"	п	
GAC-1 (6080009-02) Water Sampled: 1	4-Aug-06 10:30 Rec	eived: 14-Aug	-06 13:15						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BH61801	14-Aug-06	16-Aug-06	EPA 8260B	
Benzene	ND	0.500	"	"	u	11		"	
Ethylbenzene	ND	0.500	*		"		**	n	
m&p-Xylene	ND	1.00			n	"		"	
o-xylene	ND	0.500	11	н	"	N	•	**	
Toluene	ND	2.00	**	"	"	"	"	"	
MTBE	ND	0.500	"	n	"	11	*	"	
Surrogate: 4-Bromofluorobenzene		120 %	70-1.	80	n	"	"	"	
Surrogate: Dibromofluoromethane		120 %	70-1.	80	n	"	"	"	
Surrogate: Perdeuterotoluene		112 %	7 0-1 .	80	"	"	"	"	
Effluent (6080009-03) Water Sampled:	14-Aug-06 10:20 Re	ceived: 14-Au	g-06 13:15						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BH61801	14-Aug-06	16-Aug-06	EPA 8260B	
Benzene	ND	0.500	**	n	**	"	n	"	
Ethylbenzene	ND	0.500	"		*	н	"	"	
m&p-Xylene	ND	1.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	47	"	"	n	"	
Toluene	ND	2.00	"	"	"	**	Ħ	"	
MTBE	ND	0.500	н	"	"	"	"	11	
		120 %	70-1	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene									
Surrogate: 4-Bromojiuorobenzene Surrogate: Dibromofluoromethane		122 %	70-1	30	"	"	"	"	

1

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

		PAL
SOMA Environmental Engineering Inc.	Project: 3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number: 2333	Reported:
Pleasanton CA, 94588	Project Manager: Mansour Sepehr	22-Aug-06 10:37
Va	latile Organic Compounds by EPA Method 8260)B
	Pacific Analytical Laboratory	
· · · · · · · · · · · · · · · · · · ·		

		Reporting							1
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SOMA Environmental Engineering Inc.	Project:	3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number:	2333	Reported:
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	22-Aug-06 10:37

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BH61801 - EPA 5030 Water MS										
Blank (BH61801-BLK1)				Prepared &	2 Analyzed	18-Aug-06				
Surrogate: 4-Bromofluorobenzene	43.4		ug/l	50.0		86.8	70-130			
Surrogate: Dibromofluoromethane	50.6		"	50.0		101	70-130			
Surrogate: Perdeuterotoluene	46.2		n	50.0		92.4	70-130			
Gasoline (C6-C12)	ND	50.0								
Benzene	ND	0.500	"							
Ethylbenzene	ND	0.500	*							
m&p-Xylene	ND	1.00	"							
o-xylene	ND	0,500	"							
Toluene	ND	2.00	"							
MTBE	ND	0.500	"							
LCS (BH61801-BS1)				Prepared &	k Analyzed	: 18-Aug-06	5			
Surrogate: 4-Bromofluorobenzene	55.1		ug/l	50.0		110	70-130			
Surrogate: Dibromofluoromethane	52.9		"	50.0		106	70-130			
Surrogate: Perdeuterotoluene	54.4		"	50.0		109	70-130			
Gasoline (C6-C12)	2110	50.0	"	2000		106	70-130			
Benzene	121	0.500	"	100		121	70-130			
Toluene	121	2.00		100		121	70-130			
MTBE	122	0.500	"	100		122	70-130			
LCS Dup (BH61801-BSD1)				Prepared &	& Analyzed	: 18-Aug-0	6			
Surrogate: 4-Bromofluorobenzene	48.8		ug/l	50.0		97.6	70-130	-		
Surrogate: Dibromofluoromethane	44.9		"	50.0		89.8	70-130			
Surrogate: Perdeuterotoluene	42.6		"	50.0		<i>85.2</i>	70-130			
Gasoline (C6-C12)	1830	50.0	**	2000		91.5	70-130	14.2	20	
Benzene	84.1	0.500	"	100		84.1	70-130	36,0	20	QR-
Toluene	84.8	2.00	"	100		84.8	70-130	35.2	20	QR-
MTBE	80.1	0.500		100		80.1	70-130	41.5	20	QR-

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Notes and Definitions	
6620 Owens Drive, Suite A Pleasanton CA, 94588	Project Number: 2333 Project Manager: Mansour Sepehr	Reported: 22-Aug-06 10:37
SOMA Environmental Engineering Inc.	Project: 3609 International Blvd, Oakland	

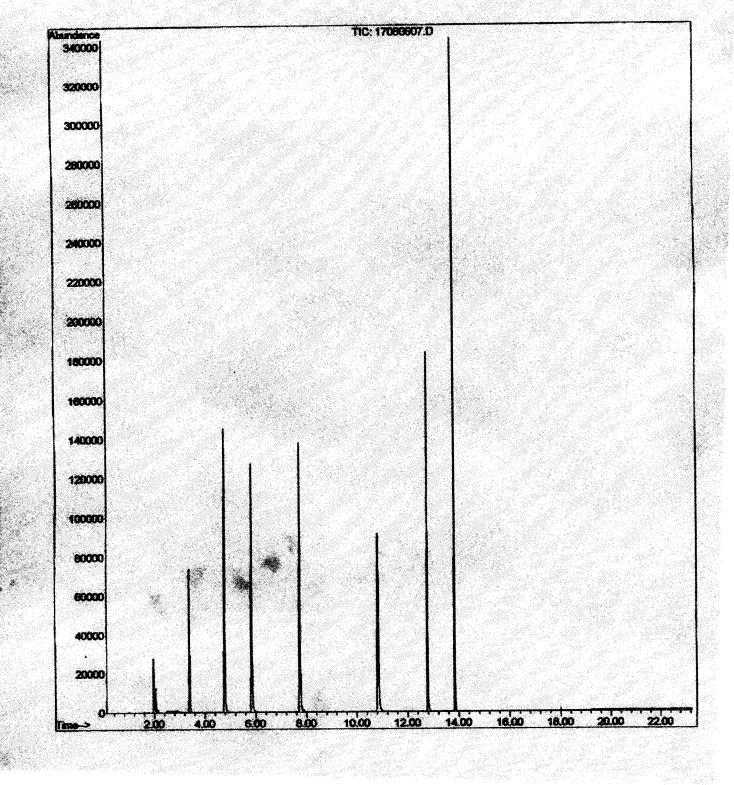
Notes and Definitions

QR-02	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch
	were accepted based on percent recoveries and completeness of QC data.

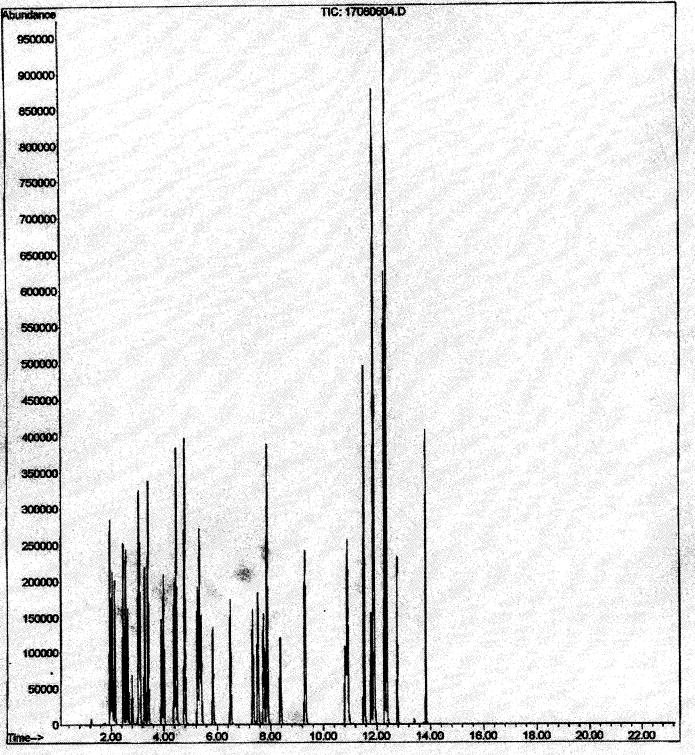
 DET
 Analyte DETECTED

 ND
 Analyte NOT DETECTED at or above the reporting limit

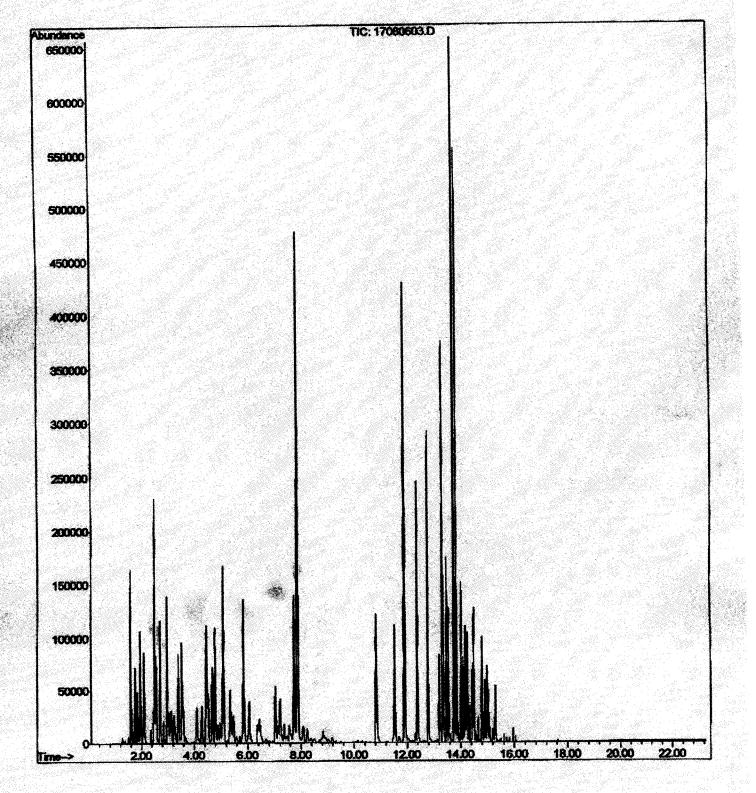
 NR
 Not Reported


 dry
 Sample results reported on a dry weight basis

RPD Relative Percent Difference


Pacific Analytical Laboratory

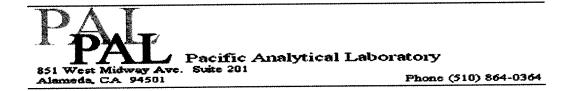
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


File :C:\MSDChem\1\DATA\2006-Aug-17-1052.b\17080607.D Operator : Acquired : 17 Aug 2006 4:32 pm using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BH61801-BLK1 Misc Info : Vial Number: 7

File	:C:\MSDChem\1\DATA\2006-Aug-17-1052.b\17080604.D
Operator	
Acquired	: 17 Aug 2006 2:18 pm using AcqMethod OXY21506.M
Instrument	: PAL GCMS
	: BH61801-BS1@voc
Misc Info	
Vial Number	:4

File :C:\MSDChem\1\DATA\2006-Aug-17-1052.b\17080603.D Operator : Acquired : 17 Aug 2006 1:16 pm using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BH61801-BS1@gas Misc Info : Vial Number: 3

CHAIN OF CUSTODY FORM


Page 2 of 2

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B 510-864-0364 Telephone Alameda, CA 94501

РАL Login# 6070005

510-864-0365 Fax

Project Name: 3609 International Blvd. Report To:: Tony Perini Cattand Company: SOMA Environmental Engineering, Inc. Imarcund Time: Standard Company: SOMA Environmental Engineering, Inc. Turnaround Time: Standard Fax: 925/34/6400 Turnaround Time: Standard Fax: 925/34/6401 Sampling Date/Time Matrix Container Preservatives Imberit J/Le/Jeg Vio Bar Imberit J/Le/Jeg Vio Bar Bar Catabar Bar Bar Contunterted Bar Contruct Required N/Holo	Project No:	t No: 2333			Samp	,	Sampler: Be, n- Tins		٤.	5			•	Analyses/Method	po	T
Restorned Time: Standard Company: SOMA Environmental Envitervice Environmental Environmental Environmental Environ	Projec	t Name: 3609 Inter Oaklan	national E d	Shd.	Repor	t To:	Tony Perir	-					MBE	· · · · · · · · · · · · · · · · · · ·		
Tel: 925-734-6400 arround Time: Standard Fax: 925-734-6400 Sample ID Sample ID Date Time Ratrix Containers Sample ID Date Time Ratrix Containers Preservative Sample ID Date Time Ratrix Containers Preservative Imfuent 7/24/0s 3: iQe:A - 3-VOAs - CAC:1 7/24/0s 3: iQe:A - 3-VOAs - PSP-1 7/24/0s 3: iQe:A - - - PSP-1 7/24/0s - - - - PSP-1 7/24/0s - - - - Poutput Required 9 - - - -					S	Sun	SOMA En	Noly	Lew	tal	ngineering, Inc		ΈΧ ²			
Matrix Matrix Containers Preservative Sample ID Date Time Antrix Containers Preservative Sample ID Date Time Antrix Containers Preservative Sample ID Date Time Antrix Containers Preservative Millent 7/2/4/36 3.145 7m - 3.VOAs - HCL Acti 7/2/4/36 3.145 7m - 3.VOAs - - Actin 7/2/4/36 3.145 7m - 3.VOAs - - Actin - 3.124/36 3.145 7m - 3.VOAs - - Actin - - 3.124/36 3.145 7m - - - - Actin - - - 3.VOAs - - - - Actin - - - - 3.VOAs - - - <tr< th=""><th>Turna</th><th></th><th>ndard</th><th></th><th>[</th><th>22.22</th><th>-734-6400 -734-6401</th><th></th><th></th><th></th><th></th><th></th><th>118</th><th></th><th></th><th></th></tr<>	Turna		ndard		[22.22	-734-6400 -734-6401						118			
Sample ID Date Time Time Hundle Sample ID Date Time Time Hundle Influent 7/2-1/54 3: 10,2,0,0 Naste Hundle CAC-1 7/2-1/54 3: 10,2,0 Naste Hundle CAC-1 7/2-1/54 3: 10,2,0 Naste Hundle CAC-1 7/2-1/54 3: 10,2,0 Naste Naste PSP-1 7/2-1/54 3:			Sampling	Date/Time		4	# of Containers		reser	vative			,8H9T 80928			
1/L-1/32 3: 13.0.0.45 · 3.00.45 · 3.00.45 · 3.00.45 · 3.00.45 · 3.00.45 · 3.00.45 · 3.00.45 · 1.	No.	Sample ID	Date	Time				HCL				Pield Notes				
1/2//26 2.55 /	¢.,,	Influent	712412	3: 100.0	ŀ	ļ	3-VOAs		t	ŀ	Grab Sample					Γ
7124/06 2:45 7m · 3-VOAs · 3-VOAs · 3-VOAs · 3-45 7m · 3-VOAs · 3-45 7m · 3-	_		12/2		ŀ	 	3-VOAs		t	ŀ	Grab Semple		•			
			712916		ŀ	 	3-VOAs	·		ŀ	Grab Sample		•			
	Ī										-					
Relinquished by:										╉						Т
Relinquished by:					+					+-						Τ
Relinquished by:					┢┼	┞╌┨		\square		+						Π
<i>M</i>		lar Damarka.				_	Relinquis	pet	_ ;	╀	Date/Time:	Received by:		Date/Time:		Τ
		Output Require	J				Ŕ				7/a4/06 5:05	en while w		1201	71371.6 0 PM	No.

31 July 2006

Mansour Sepehr SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

RE: 3609 International Blvd, Oakland

Work Order Number: 6070005

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

1

Sincerely,

Mapd Ach

Maiid Akhavan Laboratorv Director

SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588 Project: 3609 International Blvd, Oakland Project Number: 2333 Project Manager: Mansour Sepehr

Reported: 31-Jul-06 10:50

ANALYTICAL REPORT FOR SAMPLES

				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Influent	6070005-01	Water	24-Jul-06 15:10	24-Jul-06 17:05
GAC-1	6070005-02	Water	24-Jul-06 14:55	24-Jul-06 17:05
PSP-1	6070005-03	Water	24-Jul-06 14:45	24-Jul-06 17:05

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SOMA Environmental Engineering Inc.	Project:	3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number:		Reported:
Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	31-Jul-06 10:50

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

A 1- 44	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte									
Influent (6070005-01) Water Sampled: 24	-Jul-06 15:10 Rece		0 17:05						
Gasoline (C6-C12)	2990	100	ug/l	2	BG62801	26-Jul-06	26-Jul-06	EPA 8260B	
Benzene	450	1.00	"	"	н		"	"	
Ethylbenzene	114	1.00	"	11	H.	"	n		
m&p-Xylene	141	2.00	17	"		н			
o-xylene	92.5	1.00	"	"	н	"	"		
Toluene	26.4	4.00	"	11	"	11	"	н	
мтве	199	1.00	"	H	"	H	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	70-	130	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	70-	130	"	"	"	"	
Surrogate: Perdeuterotoluene		100 %	70-	130	п	"	7	"	
GAC-1 (6070005-02) Water Sampled: 24	-Jul-06 14:55 Recei	ved: 24-Jul-00	6 17:05						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BG62801	26-Jul-06	26-Jul-06	EPA 8260B	
Benzene	0.940	0.500		u	"	**	"	н	
Ethylbenzene	ND	0.500	"	"	"	*	"	te	
m&p-Xylene	ND	1.00	н	"	n	*	n	"	
o-xylene	ND	0.500	"	"	**	u	"	н	
Toluene	ND	2.00	"		"	"	n	"	
MTBE	ND	0.500	N	"	"	11	"	11	
Surrogate: 4-Bromofluorobenzene		103 %	70-	130	"	"	"	n	
Surrogate: Dibromofluoromethane		107 %	70 -	130	"	"	"	"	
Surrogate: Perdeuterotoluene		99.8 %	70-	-130	"	"	"	"	
PSP-1 (6070005-03) Water Sampled: 24-	Jul-06 14:45 Receiv	ed: 24-Jul-06	17:05						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BG62801	26-Jul-06	26-Jul-06	EPA 8260B	
Benzene	ND	0.500	μ	"	"	"	"	**	
Ethylbenzene	ND	0.500	"	н	"	H	"		
m&p-Xylene	ND	1.00	"	**	11	"	"		
o-xylene	ND	0.500	"	u	**	"	н	19	
Toluene	ND	2.00	"		"	"	*		
MTBE	ND	0.500	"	"	H	"	"	**	
Surrogate: 4-Bromofluorobenzene		99.6 %	70	-130	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	70	-130	"	"	"	"	
		99.4 %		-130	"	"	"	"	

1

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

								PAI	Ł
SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton CA, 94588		Projec Project Numbe Project Manage	er: 2333		Blvd, Oak	cland		Reported: 31-Jul-06 10:50)
-		ganic Compe Pacific Anal	ounds	by EPA		8260B	<u>18 - 19</u>		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Pacific Analytical Laboratory

Analyte

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Pf	AL

	SOMA Environmental Engineering Inc.	Project:	3609 International Blvd, Oakland	
1	6620 Owens Drive, Suite A	Project Number:	2333	Reported:
	Pleasanton CA, 94588	Project Manager:	Mansour Sepehr	31-Jul-06 10:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BG62801 - EPA 5030 Water MS										
Blank (BG62801-BLK1)				Prepared &	Analyzed:	28-Jul-06				
Surrogate: 4-Bromofluorobenzene	49.8		ug/l	50.0		99.6	70-130			
Surrogate: Dibromofluoromethane	53.3		"	50.0		107	70-130			
Surrogate: Perdeuterotoluene	49 .7		"	50.0		99.4	70-130			
Basoline (C6-C12)	ND	50.0	"							
Benzene	ND	0.500	"							
Ethylbenzene	ND	0.500	"							
n&p-Xylene	ND	1.00	"							
-xylene	ND	0.500	"							
Toluene	ND	2.00	"							
ИТВЕ	ND	0.500	"							
LCS (BG62801-BS1)				Prepared &	z Analyzed	28-Jul-06				
Surrogate: 4-Bromofluorobenzene	49.8		ug/l	50.0		99.6	70-130			
Surrogate: Dibromofluoromethane	49.0		"	50.0		98.0	70-130			
Surrogate: Perdeuterotoluene	49.3		"	50.0		98.6	70-130			
Gasoline (C6-C12)	1880	50.0	"	2000		94.0	70-130			
Benzene	98.0	0.500	*	100		98.0	70-130			
Toluene	101	2.00	"	100		101	70-130			
МТВЕ	87.6	0.500		100		87.6	70-130			
LCS Dup (BG62801-BSD1)				Prepared &	& Analyzed	: 28-Jul-06				
Surrogate: 4-Bromofluorobenzene	50.9		ug/l	50.0		102	70-130			
Surrogate: Dibromofluoromethane	49.4		"	50.0		98.8	70-130			
Surrogate: Perdeuterotoluene	48.5		"	50.0		97.0	70-130			
Gasoline (C6-C12)	1850	50.0	*	2000		92.5	70-130	1.61	20	
Benzene	102	0.500	"	100		102	70-130	4.00	20	
Toluene	104	2.00	"	100		104	70-130	2.93	20	
MTBE	85.8	0.500	11	100		85.8	70-130	2.08	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

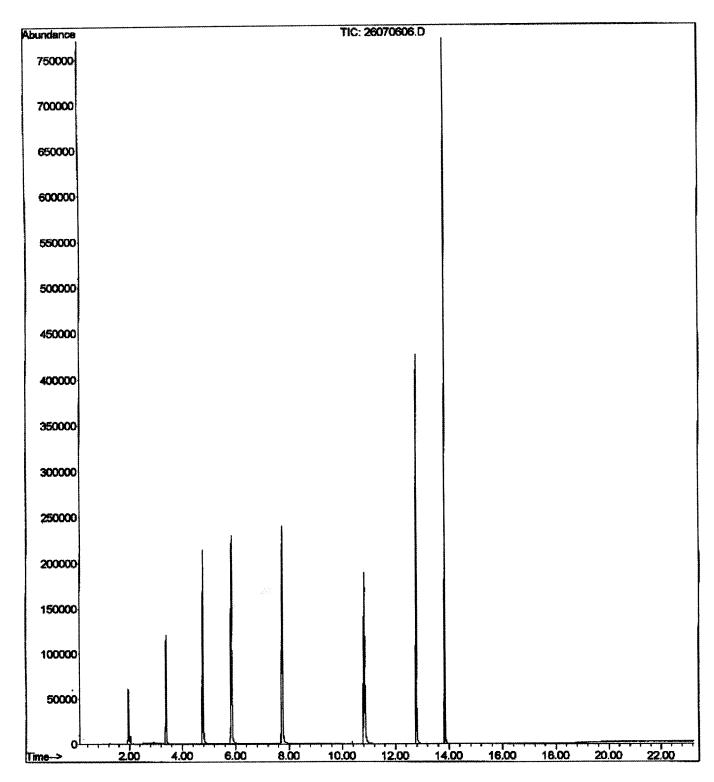
SOMA Environmental Engineering Inc.	Project: 3609 International Blvd, Oakland	
6620 Owens Drive, Suite A	Project Number: 2333	Reported:
Pleasanton CA, 94588	Project Manager: Mansour Sepehr	31-Jul-06 10:50
		1 - 27 - 29 - 1

Notes and Definitions

 DET
 Analyte DETECTED

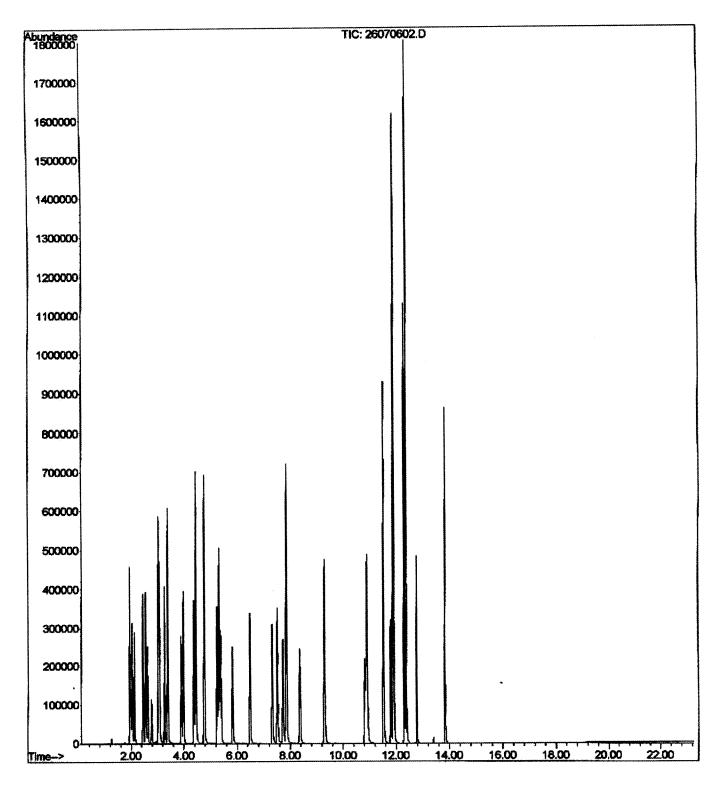
 ND
 Analyte NOT DETECTED at or above the reporting limit

 NR
 Not Reported

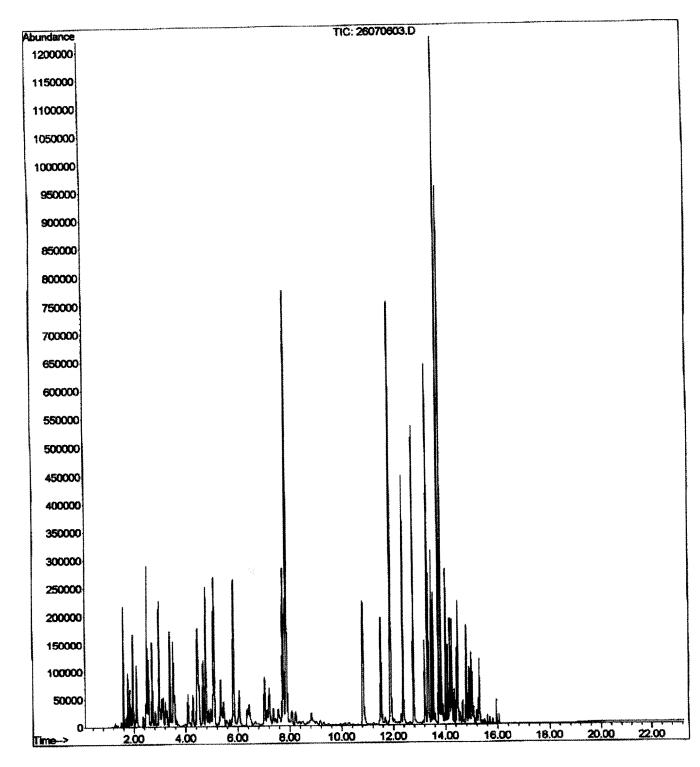

 dry
 Sample results reported on a dry weight basis

 RPD
 Relative Percent Difference

Pacific Analytical Laboratory


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

File :C:\MSDChem\1\DATA\2006-Jul-26-0957.b\26070606.D Operator : Acquired : 26 Jul 2006 2:12 pm using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BG62801-BLK1 Misc Info : Vial Number: 6


and the second state of the second states of the second states of the second states of the second states of the

File :C:\MSDChem\1\DATA\2006-Jul-26-0957.b\26070602.D Operator : Acquired : 26 Jul 2006 10:54 am using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BG62801-BS1@voc Misc Info : Vial Number: 2

Contraction of the

:C:\MSDChem\1\DATA\2006-Jul-26-0957.b\26070603.D Operator : Acquired : 26 Jul 2006 11:50 am using AcqMethod OXY21506.M Instrument : PAL GCMS Sample Name: BG62801-BS1@gas Misc Info : Vial Number: 3

File

あるとうないないというないないないであるというというという

Appendix E

Chain of Custody Forms and Laboratory Reports

for the

Soil Vapor Extraction Treatment System

	OIA ANALY N OF CUST			Jarvis Drive + M 5 N. McDowell B Striker Ave., Sui N. Wiget Lane +	ivd, Sui te 8 + 5 Wainu	lte D. + Sacran It Cree	Petalur iento, C k, CA 94	na, CA A 9583 4598 + (94954 + 4 + (916) 925) 988	(707) 792 921-960 -9600 • 1	2-1865 10 + Fai Fax (92	• FAX (X (916) 25) 988-	(707) 791 921-010 9673	10
Company Name: So M	1A Envilon	MEMAL		•	Proj	ect: 2	334-	Dek	Ano-	Dete	nati	ont	Blut	>
Mailing Address: 66	a owne	Sore Sus	te A				ess (If di							
City: Pleasanton		tate: CA Z	.ip Code: 94	1588					÷					
Telephone: 925-73		ax #: 925= 7			P.O.	#:					0			
Report To: Port / P		-mail Address:	TRICKO	Somach. Co	2 QC	Data:	O I	_evel II (standard	ىرە (avel III		Level IV	
Sampler:		ate / Time Resu	its Required	stanop	25		Sec	quola's l	Nork Ord	er#	sla	Th	1 1 -	5
Turnaround I 10-15 W Time: (Standar 7 Workin 5 Workin	orking Days D rd TAT) D g Days D	72 Hours 48 Hours		DATORY: DWA (Drinking Wat NA (Waste Water) CRA (Hazardous W	er)		1200 CAN		ES REQ	UESTED	(Pleas	e provic	<u>ie methr</u>	
Client Sample I.D.	Date / Time Sampled	Matrix # of Desc. Cont.	Container Type	Sequoia's Sample #	/		N. NY	¥/_/			\angle	\square		mments/ if required)
	2/2/106 2:40pm	ATR 1	TelAR	< O	~	~	~							
1. SVE-1 2. SVE-2	9/27/06 3:00pm			·02	<u> </u>									
3. SUE-3	3:00pm 9/27/06 250pm			- 03									S	
4. In / Bottom)	129 PM		<u> </u>	04	<u> </u>	<u> </u>	┝┟╌╌┾			·				
5. D1-2 (top) 6. Effluent	1.25 PM			- 0K		<u>v</u>	J J							
6. Ettluent	1:20 P.M.			-04		<u> </u>							•	
7.				-	<u> </u>									
8.														
9.						-1						1	1	
10.		of the am	Popphind +	w/Co:	2]	Date / Tim	e / Temp.	9	727	100	11/11/2
Relinquished by / Co.:	one girge	the group m	Received t	y/Co.	/		<u> </u>		Date / Tim		7			
Relinquished by / Co.:	·····	·							Date / Tim					
Relinquished by / Co.:			Received t						Date / Tim					
Relinquished by / Co.:		<u></u>	Received t			NI					ins	Ps	age_(o	f(
Were Samples Received	l in Good Condition? White: Sequola	Yes CI N	lo Sample:	s on Ice? 🗔 Ya Yellow: S	(-	No M	lethod of	Subue	ιω <u></u>		Pink: Cl		20	

.

13 October, 2006

Tony Perini Soma Environmental Eng. 6620 Owens Drive, Suite A Pleasanton, CA. 94588

RE: N/A Work Order: S609473

Enclosed are the results of analyses for samples received by the laboratory on 09/27/06 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ron Chew For Tami Lindsay Project Manager

CA ELAP Certificate # 2630

Page 1 of 7

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.testamericainc.com

Soma Environmental Eng.	Project: N/A	S609473
6620 Owens Drive, Suite A	Project Number: 2334- Oakland-International Blvd.	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	10/13/06 14:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SVE-1	S609473-01	Air	09/27/06 14:40	09/27/06 16:30
SVE-2	S609473-02	Air	09/27/06 15:00	09/27/06 16:30
SVE-3	S609473-03	Air	09/27/06 14:50	09/27/06 16:30
IN-1 (Bottom)	S609473-04	Air	09/27/06 13:29	09/27/06 16:30
IN-1 (Top)	S609473-05	Air	09/27/06 13:25	09/27/06 16:30
Effluent	\$609473-06	Air	09/27/06 13:20	09/27/06 16:30

TestAmerica - Sacramento, CA

Soma Environmental Eng.	Project: N/A	S609473
6620 Owens Drive, Suite A	Project Number: 2334- Oakland-International Blvd.	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	10/13/06 14:37

Gasoline\BTEX\Oxygenates by GCMS\8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SVE-1 (8609473-01) Air S	ampled: 09/27/06 14:40	Received: 09/2	27/06 16:30)					
Benzene	ND	0.50	mg/m³ Air	1	6100032	09/29/06	09/29/06	GCMS \ 8260B	
Toluene	ND	0.50		"	н	"	"	II	
Ethylbenzene	ND	0.50	11	н	"	"		"	
Xylenes (total)	ND	0.50	"	n	"	*1	**	"	
Methyl tert-butyl ether	ND	0.50		"	н		n	u	
Gasoline Range Organics (C	C4-C12) 54	50	11	51	"	"	"		
Surrogate: 1,2-DCA-d4		113 %	60-1	40	"	"	"	"	
Surrogate: Toluene-d8		104 %	60-1	40	"	"	"	"	
Surrogate: 4-BFB		116 %	60-1	40	"	"	"	"	
SVE-2 (S609473-02) Air S	ampled: 09/27/06 15:00	Received: 09/	27/06 16:30)					
Benzene	ND	0.50	mg/m³ Air	1	6100032	09/29/06	09/29/06	GCMS \ 8260B	
Toluene	ND	0.50	"	"	"	Ħ	"	"	
Ethylbenzene	ND	0.50	"		н	H	"	84	
Xylenes (total)	ND	0.50	н	н	**	"	"	м	
Methyl tert-butyl ether	ND	0.50		**	11	н		"	
Gasoline Range Organics (C4-C12) 56	50	н	H	"	"		II	
Surrogate: 1,2-DCA-d4		130 %	60-1	40	"	"	"	"	
Surrogate: Toluene-d8		91 %	60-1	40	"	"	"	"	
Surrogate: 4-BFB		101 %	60-1	40	"	"	"	"	
SVE-3 (S609473-03) Air	Sampled: 09/27/06 14:50	Received: 09/	27/06 16:30)					
Benzene	ND	0.50	mg/m ³ Air	1	6100032	09/29/06	09/29/06	GCMS \ 8260B	
Toluene	ND	0.50	н	н	"		"	н	
Ethylbenzene	ND	0.50	"	"	II	н	**	"	
Xylenes (total)	ND	0.50	11	**	"	"	11	41	
Methyl tert-butyl ether	ND	0.50	"	"	11	"	"	n	
Gasoline Range Organics (C	4-C12) ND	50	"	"	11	"	"		
Surrogate: 1,2-DCA-d4		120 %	60-	140	"	"	"	"	
Surrogate: Toluene-d8		101 %	60	140	"	"	"	"	
Surrogate: 4-BFB		108 %	60-	140	"	"	"	n	

Soma Environmental Eng.	Project: N/A	\$609473
6620 Owens Drive, Suite A	Project Number: 2334- Oakland-Internation	al Blvd. Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	10/13/06 14:37

Gasoline\BTEX\Oxygenates by GCMS\8260B

TestAmerica - Sacramento, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
IN-1 (Bottom) (S609473-04) Air	Sampled: 09/27/06 13:29	Receiv	ved: 09/27	/06 16:30					
Benzene	ND	0.50	mg/m³ Air	1	6100032	09/29/06	09/29/06	GCMS \ 8260B	
Toluene	ND	0.50	Ħ	n	"	"	n	"	
Ethylbenzene	ND	0.50	"	"	n	н	11	н	
Xylenes (total)	ND	0.50	11	"	n	"	"		
Methyl tert-butyl ether	ND	0.50	н	"	"	"	67		
Gasoline Range Organics (C4-C1	2) 71	50	"	"		#	"	11	
Surrogate: 1,2-DCA-d4		126 %	60-	140	"	"	"	"	
Surrogate: Toluene-d8		92 %	60-	140	"	"	"	"	
Surrogate: 4-BFB		98 %	60-	140	n	n	"	n	
IN-1 (Top) (S609473-05) Air Sa	mpled: 09/27/06 13:25 F	leceived	: 09/27/06	16:30					
Benzene	ND	0.50	mg/m³ Air	1	6100032	09/29/06	09/29/06	GCMS \ 8260B	
Toluene	ND	0.50	-	"	"	"		H	
Ethylbenzene	ND	0.50	"	**	"	w	"	n	
Xylenes (total)	ND	0.50	**	н	"	"	11	"	
Methyl tert-butyl ether	ND	0.50	"			"	*	н	
Gasoline Range Organics (C4-C1	2) 63	50		11	"	"	"	"	
Surrogate: 1,2-DCA-d4		126 %	60-	140	"	"	"	"	
Surrogate: Toluene-d8		96 %	60-	140	"	"	"	"	
Surrogate: 4-BFB		9 8 %	60-	140	"	"	"	"	
Effluent (S609473-06) Air Samj	pled: 09/27/06 13:20 Rec	eived: 0	9/27/06 16	:30					
Benzene	ND	0.50	mg/m ³ Air	1	6100032	09/29/06	09/29/06	GCMS \ 8260B	
Toluene	ND	0.50	"	п	н	"	"	"	
Ethylbenzene	ND	0.50	"	"	n	n	11	"	
Xylenes (total)	ND	0.50	н	н	"	"	**	89	
Methyl tert-butyl ether	ND	0.50			н	н	н	*1	
Gasoline Range Organics (C4-C12) ND	50	н	"	11		"	"	
Surrogate: 1,2-DCA-d4		121 %	60-	140	"	"	"	"	
Surrogate: Toluene-d8		84 %	60-	140	"	"	"	"	
Surrogate: 4-BFB		100 %	60-	-140	"	"	"	"	

Soma Environmental Eng.	Project:	N/A	S609473
6620 Owens Drive, Suite	A Project Number:	2334- Oakland-International Blvd.	Reported:
Pleasanton CA., 94588	Project Manager:	Tony Perini	10/13/06 14:37

Gasoline\BTEX\Oxygenates by GCMS\8260B - Quality Control

TestAmerica - Sacramento, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6100032 - EPA 5030B [P/T] / G	GCMS \ 8260	B								
Blank (6100032-BLK1)				Prepared	& Analyze	ed: 09/29/	06			
Benzene	ND	0.50	mg/m³ Air	•— —						
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	n							
Xylenes (total)	ND	0.50	"							
Methyl tert-butyl ether	ND	0.50	"							
Gasoline Range Organics (C4-C12)	ND	50	"							
Surrogate: 1,2-DCA-d4	2.06		"	2.00		103	60-140			
Surrogate: Toluene-d8	2.21		"	2.00		110	60-140			
Surrogate: 4-BFB	1.97		"	2.00		<i>98</i>	60-140			
Laboratory Control Sample (6100032-BS	51)			Prepared	& Analyz	ed: 09/28/	06			
Benzene	3.73	0.50	mg/m³ Air	4.00		93	70-130			
Foluene	4.09	0.50	"	4.00		102	70-130			
Methyl tert-butyl ether	3.96	0.50	"	4.00		99	60-140			
Surrogate: 1,2-DCA-d4	2.16		"	2.00		108	60-140			
Surrogate: Toluene-d8	1.92		"	2.00		96	60-140			
Surrogate: 4-BFB	1.92		"	2.00		96	60-140			
Laboratory Control Sample (6100032-BS	(2)			Prepared	& Analyz	ed: 09/28/	06			
Toluene	35.7	0.50	mg/m ³ Air	37.6		95	70-130			
Methyl tert-butyl ether	7.73	0.50	"	10.4		74	60-140			
Gasoline Range Organics (C4-C12)	516	50	*	440		117	70-130			
Surrogate: 1,2-DCA-d4	2.16	<u> </u>	"	2.00		108	60-140			
Surrogate: Toluene-d8	1.97		"	2.00		98	60-140			
Surrogate: 4-BFB	2.05		"	2.00		102	60-140			
Laboratory Control Sample Dup (61000	32-BSD1)			Prepared	: 09/28/06	Analyze	d: 09/29/06	5		
Benzene	3.79	0.50	mg/m ³ Air	4.00		95	70-130	2	25	
Toluene	4.07	0.50	-	4.00		102	70-130	0.5	25	
Methyl tert-butyl ether	4.40	0.50	н	4.00		110	60-140	11	25	
Surrogate: 1,2-DCA-d4	2.29		"	2.00		114	60-140			
Surrogate: Toluene-d8	1.87		"	2.00		94	60-140			
Surrogate: 4-BFB	2.00		"	2.00		100	60-140			

TestAmerica - Sacramento, CA

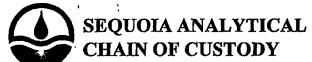
Soma Environmental Eng.	Project: N/A	S609473
6620 Owens Drive, Suite A	Project Number: 2334- Oakland-International Blvd.	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	10/13/06 14:37

Gasoline\BTEX\Oxygenates by GCMS\8260B - Quality Control

TestAmerica - Sacramento, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6100032 - EPA 5030B [P/T]	/ GCMS \ 8260	B								
Laboratory Control Sample Dup (610	0032-BSD2)			Prepared:	09/28/06	Analyzed	l: 09/29/06			
Toluene	35.5	0.50	mg/m³ Air	37.6		94	70-130	0.6	25	
Methyl tert-butyl ether	6.85	0.50	н	10.4		66	60-140	12	25	
Gasoline Range Organics (C4-C12)	450	50		440		102	70-130	14	25	
Surrogate: 1,2-DCA-d4	2.09		"	2.00		104	60-140			
Surrogate: Toluene-d8	2.03		"	2.00		102	60-140			
Surrogate: 4-BFB	1.92		"	2.00		96	60-140			

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.testamericainc.com


Soma Environmental Eng. 6620 Owens Drive, Suite A Pleasanton CA., 94588		Project: Project Number: Project Manager:	2334- Oakland-International Blvd.	S609473 Reported: 10/13/06 14:37								
	Notes and Definitions											
DET	Analyte DETECTED											
ND	Analyte NOT DETECTED at or above	e the reporting limit or MDL, if M	IDL is specified									

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

TestAmerica - Sacramento, CA

B85 Jarvis Drive + Morgan Hill, CA 95037 + (408) 776-9600 + FAX (408) 782-6308

1455 N. McDowell Blvd, Suite D. + Petaluma, CA 94954 + (707) 792-1865 + FAX (707) 792-0342

B19 Striker Ave., Suite 8 + Sacramento, CA 95834 + (916) 921-9600 + FAX (916) 921-0100

404 N. Wiget Lane + Walnut Creek, CA 94598 + (925) 988-9600 + FAX (925) 988-9673

Company Name: Son	A Empleanno	MAL	-			Proj	ect:	2334	- Da	Elas	ea			·····	
Mailing Address: 66-20	, overs brine	, Suit	hA			Billir	ng Addi	ress (lf	differer	nt):					
City: Pleasenton		tate: C	A ZI	p Code:						7					
Telephone: 734				734-620		P.O.									
Report To: TONY PER	elal E	-mail Ad	dress: 🤈	Boseke	Jama con		Data:			ll (stan		(evel/N		Level IV
Sampler: TONY PERI-	1/Brien Tropo	ate / Tirr	ne Resul			5		S		's Work			\mathcal{I}	DR	288
Turnaround Dielectropy 72 Hours Time: (Standard TAT) 48 Hours 0 7 Working Days 24 Hours 0 5 Working Days 2-8 Hours				MANDATORY: SDWA (Drinking Water) CWA (Waste Water) RCRA (Hazardous Waste) Other				_	YSES	REQU	ESTED	(Pleas	e provi	de method)	
Client Sample I.D.	Date / Time Sampled	Matrix Desc.	# of Cont.	Container Type	Sequola's Sample #		Ň	AST N	L. Con		/				Comments/ Temp.(If required)
	8/2/06 225PM	ATR	1	Telan	-01	1	~	/							
2. SVE-1	3 PM			1	-02										
3.505-3	250 PM				-03							ļ			
4. Player 1	245PM				-04	∐									
5. Blower 2	4 315 PM	\checkmark	4	J.	105	1	*	K						ļ	
6.													<u> </u>		
7.															
8.						. 					<u> </u>				
9.														<u> ·</u>	
10.		<u> </u>					1				I	(7-		1 ~	$\int O I (I \Lambda)$
Relinquished by / Co.:	8 - 0	206	41109	Received by		A	₩>					/ Temp.		2-0	b~ 1010
Relinquished by / Co.:				Received by			\$					/ Temp.		<u>\${0</u>	c lours
Relinquished by / Co.:				Received by								/ Temp. / Temp.			
Relinquished by / Co.:				Received by	//00.:					Date		/ remp.	•		

Were Samples Received in Good Condition? 24-Yes D No Samples on Ice? D Yes 2 No Method of Shipment:

-0

Pink: Client

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.testamericainc.com

21 August, 2006

Tony Perini Soma Environmental Eng. 6620 Owens Drive, Suite A Pleasanton, CA. 94588

RE: N/A Work Order: S608088

Enclosed are the results of analyses for samples received by the laboratory on 08/03/06 12:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ron Chew For Tami Lindsay Project Manager

CA ELAP Certificate # 2630

Page 1 of 7

,

Soma Environmental Eng.	Project: N/A	S608088
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 15:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
Effluent	S608088-01	Air	08/02/06 14:25	08/03/06 12:00	
SVE - 1	S608088-02	Air	08/02/06 15:00	08/03/06 12:00	
SVE - 3	S608088-03	Air	08/02/06 14:50	08/03/06 12:00	
Influent Blower 1	S608088-04	Air	08/02/06 14:45	08/03/06 12:00	
Influent Blower 2	S608088-05	Air	08/02/06 15:15	08/03/06 12:00	

.

Soma Environmental Eng.	Project: N/A	S608088
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 15:32

Gasoline\BTEX\Oxygenates by EPA method 8260B

TestAmerica - Sacramento, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Effluent (S608088-01) Air			8/03/06	12:00		-			
Benzene	ND	0.50	mg/m³ A	Air 1	6080092	08/04/06	08/04/06	EPA 8260B	
Toluene	ND	0.50	**	"	11	**	**	"	
Ethylbenzene	ND	0.50	Ħ		"	"	"	11	
Xylenes (total)	ND	0.50			"	"	"	11	
Methyl tert-butyl ether	ND	0.50	"	**		n	n	17	
Gasoline Range Organics (C	4-C12) ND	50	"	"	11	"	"	11	
Surrogate: 1,2-DCA-d4		99 %	6	50-140	"	"	"	"	
Surrogate: Toluene-d8		102 %	Ċ	50-140	н	н	"	"	
Surrogate: 4-BFB		98 %	Ċ	50-140	н	"	"	"	
SVE - 1 (S608088-02) Air	Sampled: 08/02/06 15:00	Received: 08	3/03/06 :	12:00					
Benzene	4.7	0.50	mg/m³ /	Air 1	6080092	08/04/06	08/04/06	EPA 8260B	
Toluene	2.4	0.50		**	*1	"	H	n	
Ethylbenzene	0.52	0.50	11	"	"	"	"	"	
Xylenes (total)	1.6	0.50	Ħ	"	"	*1		"	
Methyl tert-butyl ether	ND	0.50	n	11	11	"		15	
Surrogate: 1,2-DCA-d4		110 %	(50-140	"	"	"	"	
Surrogate: Toluene-d8		123 %	(60-140	"	"	"	"	
Surrogate: 4-BFB		106 %	(60-140	"	"	"	"	
SVE - 1 (S608088-02RE1)	Air Sampled: 08/02/06 15	:00 Receive	d: 08/0	3/06 12:00				· · · · · · · · · · · · · · · · · · ·	
Gasoline Range Organics	(C4-C12) 6300	1200	mg/m³	Air 25	6080092	08/04/06	08/04/06	EPA 8260B	1.50
Surrogate: 1,2-DCA-d4		96 %	(60-140	"	"	"	"	
Surrogate: Toluene-d8		106 %	(60-140	"	"	"	"	
-									

60-140

102 %

"

Surrogate: 4-BFB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

"

C	Casoline\BTFX\Ovygenates by FPA method 8266	NB
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 15:32
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Soma Environmental Eng.	Project: N/A	S608088

Gasoline\BTEX\Oxygenates by EPA method 8260B

TestAmerica - Sacramento, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SVE - 3 (S608088-03) Air Sampled	: 08/02/06 14:50	Received: 08	8/03/06 12:0)0					
Benzene	ND	0.50	mg/m³ Air	1	6080092	08/04/06	08/04/06	EPA 8260B	
Toluene	ND	0.50	*	57	"	n	n	"	
Ethylbenzene	ND	0.50	*	"	11	"	H	"	
Xylenes (total)	ND	0.50	"	"	11	"	H	n	
Methyl tert-butyl ether	ND	0.50	н	"	n	**	W	"	
Gasoline Range Organics (C4-C12)	ND	50	"	**	N	"	"	19	
Surrogate: 1,2-DCA-d4		98 %	60-1	40	n	n	"	"	
Surrogate: Toluene-d8		105 %	60-1	40	"	"	"	"	
Surrogate: 4-BFB		98 %	60-1	40	"	"	"	"	
Influent Blower 1 (S608088-04) Air	Sampled: 08/02	2/06 14:45 Re	eceived: 08	/03/06 12:	:00				
Benzene	ND	0.50	mg/m ³ Air	1	6080092	08/04/06	08/04/06	EPA 8260B	
Toluene	0.53	0.50	"	61	"	"	11	**	
Ethylbenzene	ND	0.50	**	17	n	n	"	*	
Xylenes (total)	0.51	0.50		н	"	11	n	"	
Methyl tert-butyl ether	ND	0.50	"	"	"	W	n	*	
Gasoline Range Organics (C4-C12)	ND	50	н	"	11	11	"	**	
Surrogate: 1,2-DCA-d4		92 %	60-1	40	"	"	"	"	
Surrogate: Toluene-d8		106 %	60-1	40	"	"	"	"	
Surrogate: 4-BFB		100 %	60-1	40	"	"	"	"	
Influent Blower 2 (S608088-05) Air	Sampled: 08/02	2/06 15:15 R	eceived: 08	/03/06 12	:00				
Benzene	ND	0.50	mg/m³ Air	1	6080092	08/04/06	08/04/06	EPA 8260B	
Toluene	ND	0.50	"	*	"	и	**	"	
Ethylbenzene	ND	0.50	"	"	"	8	н	"	
Xylenes (total)	ND	0.50		"	"	"	**	"	
Methyl tert-butyl ether	ND	0.50	"	**	11		"	"	
Gasoline Range Organics (C4-C12)	760	50	"	"	"	н	"	11	
Surrogate: 1,2-DCA-d4		100 %	60	140	"	n	"	"	
Surrogate: Toluene-d8		106 %	60	140	"	"	"	"	
Surrogate: 4-BFB		97 %	60	140	"	"	"	H	

Soma Environmental Eng.	Project: N/A	S608088
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 15:32

Gasoline\BTEX\Oxygenates by EPA method 8260B - Quality Control

TestAmerica - Sacramento, CA

i estamenta - batramento, CA												
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 6080092 - EPA 5030B [P/T] /	EPA 8260B											
Blank (6080092-BLK1)				Prepared	& Analyze	ed: 08/04/	06					
Benzene	ND	0.50	mg/m³ Air									
Toluene	ND	0.50	11									
Ethylbenzene	ND	0.50	Ħ									
Kylenes (total)	ND	0.50	*									
Methyl tert-butyl ether	ND	0.50	*									
Gasoline Range Organics (C4-C12)	ND	50	"									
Surrogate: 1,2-DCA-d4	1.90		H	2.00		95	60-140					
Surrogate: Toluene-d8	2.11		"	2.00		106	60-140					
Surrogate: 4-BFB	2.01		"	2.00		100	60-140					
Laboratory Control Sample (6080092-1	BS1)			Prepared	& Analyz	ed: 08/04/	06					
Foluene	34.3	0.50	mg/m³ Air	37.6		91	70-130					
Methyl tert-butyl ether	6.36	0.50	11	10.4		61	60-140					
Gasoline Range Organics (C4-C12)	430	50	H	440		98	70-130					
Surrogate: 1,2-DCA-d4	1.93		"	2.00		96	60-140					
Surrogate: Toluene-d8	2.09		"	2.00		104	60-140					
Surrogate: 4-BFB	2.01		"	2.00		100	60-140					
Laboratory Control Sample (6080092-	BS2)			Prepared	& Analyz	ed: 08/04/	06					
Benzene	3.45	0.50	mg/m³ Air	4.00		86	70-130					
Toluene	3.74	0.50	**	4.00		94	70-130					
Methyl tert-butyl ether	3.64	0.50	н	4.00		91	60-140					
Surrogate: 1,2-DCA-d4	1.94		n	2.00		97	60-140					
Surrogate: Toluene-d8	1.96		H	2.00		98	60-140					
Surrogate: 4-BFB	2.08		"	2.00		104	60-140					
Laboratory Control Sample Dup (6080	092-BSD1)			Prepared	: 08/04/06		d: 08/05/06					
Toluene	32.7	0.50	mg/m ³ Air	37.6		87	70-130	5	25			
Gasoline Range Organics (C4-C12)	382	50	11	440		87	70-130	12	25			
Surrogate: 1,2-DCA-d4	1.92		"	2.00		96	60-140					
Surrogate: Toluene-d8	2.11		"	2.00		106	60-140					
Surrogate: 4-BFB	2.05		"	2.00		102	60-140					

Soma Environmental Eng.	Project: N/A	S608088
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 15:32

Gasoline\BTEX\Oxygenates by EPA method 8260B - Quality Control

TestAmerica - Sacramento, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6080092 - EPA 5030B [P/T] / EPA 8260B									
Laboratory Control Sample Dup	(6080092-BSD2)			Prepared:	08/04/06	Analyzed	: 08/05/06			
Benzene	3.41	0.50	mg/m ³ Air	4.00		85	70-130	1	25	
Toluene	3.82	0.50	"	4.00		96	70-130	2	25	
Methyl tert-butyl ether	3.68	0.50	*	4.00		92	60-140	1	25	
Surrogate: 1,2-DCA-d4	1.86		"	2.00		93	60-140		2 TT 10	
Surrogate: Toluene-d8	2.17		"	2.00		108	60-140			
Surrogate: 4-BFB	2.00		"	2.00		100	60-140			

819 Striker Avenue, Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.testamericainc.com

6620 Ov	avironmental Eng. vens Drive, Suite A on CA., 94588	Project: N/A Project Number: 2334-Oakland Project Manager: Tony Perini	S608088 Reported: 08/21/06 15:32
		Notes and Definitions	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above	the reporting limit or MDL, if MDL is specified	
NR	Not Reported		
dry	Sample results reported on a dry weigh	ht basis	
RPD	Relative Percent Difference		

.

TestAmerica - Sacramento, CA

SEQUOIA ANALYTICAL CHAIN OF CUSTODY

1

- → 885 Jarvis Drive + Morgan Hill, CA 95037 + (408) 776-9600 + FAX (408) 782 6308
- U 1455 N. McDowell Blvd, Suite D. Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342

1

!

- B19 Striker Ave., Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100
- □ 404 N. Wiget Lane + Walnut Creek, CA 94598 + (925) 988-9600 + FAX (925) 988-9673

Company Name: Som	nd en Man	MENT	46			Project: 2334									
Mailing Address: 66	20 Quent	Dire	Lai	Fe A		Billin	ig Addr	ess (if	differen	nt):					
Mailing Address: 66 City: <u>Pleasants</u> ~ Telephone: 925-72	, ,	State: c	A Z	p Code: 94	F588										n an
Telephone: 925-7	34-6400	Fax #: 🌹	25.	734-640	2/	P.O.		<u></u>							
Report To: Tony p	ERIL/	E-mail Ad	dress:	J Bobek	e same env	QC	Data: Level II (standard) Level III Level IV								
Sampler: Briting	Time	Date / Tim	e Resu	ts Required:			Sequoia's Work Order # 5608 H ANALYSES REQUESTED (Please provide method						and the second se		
Turnaround I 10-15 W Time: (Standa 7 Workii 5 Workii	ard TAT) ng Days	 72 Hour 48 Hour 24 Hour 2-8 Hour 	48 Hours D SDWA (Drinking Water) 24 Hours D CWA (Waste Water)		/aste)	AHT.			<u>YSES I</u>	REQUI	ESTED	(Please	<u>ə provi</u>	de method)	
Client Sampie I.D.	Date / Time Sampled	Matrix Desc.	# of Cont.	Container Type	Sequoia's Sample #		V	Nor N		\square	\square	\square	\square		Comments/ Temp.(If required)
1. SVE-2	11.00: - 3-3	AIR	1	TelAx	OIA		<u>با</u>	~							
2.						<u> </u>	<u> </u>								
3.			ļ												
4.						ļ									
5.						1		 			 				
6							+								
7									 		+				
8.	_			<u> </u>				1	1	<u> </u>		+			
9.															
10.	1			<u> </u>			1 . 1.1	1	<u> </u>	<u> </u>	<u> </u>			l	
Relinquished by / Co.:	15	X	1/14/14/10	Received b	y/Co.: 🗙	1	VI.	$\underline{\leftarrow}$	•				: 84	- ü (- 14:10
Relinquished by / Co.:	~~~~			Received b	y / Co.:					Date	/ Time	/ Temp.	:		•
Relinquished by / Co.: Received by / Co.:							<u>.</u>				/ Temp.	··· · · · · -			
Relinquished by / Co.:				Received b								/Temp.		····	
Were Samples Receive				o Samples	on Ice? 🖸 Y	'es Der	No N	lethod (of Shipr	nent:			·····	Pa	age_/_of/
	White: Sequola	Hack	. ts										Pink: Cl	ient	
			56	0508	8 Repor										

25 August, 2006

Tony Perini Soma Environmental Eng. 6620 Owens Drive, Suite A Pleasanton, CA. 94588

RE: N/A Work Order: S608111

Enclosed are the results of analyses for samples received by the laboratory on 08/04/06 14:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tami Lindsay Project Manager

CA ELAP Certificate # 2630

Page 1 of 6

.

819 Striker Avenue. Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.testamericainc.com

ANALYTICAL REPORT FOR SAMPLES									
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 12:34							
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:							
Soma Environmental Eng.	Project: N/A	S608111							

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SVE - 2	S608111-01	Air	08/03/06 11:00	08/04/06 14:10

TestAmerica - Sacramento, CA

Soma Environmental Eng.	Project: N/A	S608111
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 12:34

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B TestAmerica - Morgan Hill, CA

				-					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SVE - 2 (S608111-01) Air Sampled: 08/	03/06 11:00	Received: 08	/04/06 14:1	0					HT-05
Gasoline Range Organics (C4-C12)	83	10	mg/m³ Air	1	6H08004	08/08/06	08/08/06 13:46	EPA 8015B/8021B	
Benzene	2.2	0.10	**	**	11	"	"	"	CFI
Toluene	0.81	0.10	"	"	"	"	н	"	CF
Ethylbenzene	ND	0.10	"	**	и		**	"	
Xylenes (total)	0.29	0.20	"	"	"	"	"	H	
Methyl tert-butyl ether	4.5	0.50	"	n	"	**	11	"	CF
Surrogate: a,a,a-Trifluorotoluene		104 %	65-1	40	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90 %	70-1	25	"	"	"	"	
Gasoline Range Organics (C4-C12)	23	2.4	ppmv	**		11	"	**	
Benzene	0.68	0.031	**	"	11	**	"	"	CF
Toluene	0.22	0.027	"	**	"	"	**	11	CF
Ethylbenzene	ND	0.023	11	**	"	11	**	**	
Xylenes (total)	0.066	0.047	**	"	"	"	"	*	
Methyl tert-butyl ether	1.2	0.14	n	**	"	11	**	"	CF
Surrogate: a,a,a-Trifluorotoluene		104 %	65-1	40	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90 %	70-1	25	"	"	"	"	

Soma Environmental Eng.	Project: N/A	S608111
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 12:34

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control

TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6H08004 - EPA 5030B [P/T] /	EPA 8015B/8	8021B								
Blank (6H08004-BLK1)			J	Prepared a	& Analyze	d: 08/08/0)6			
Gasoline Range Organics (C4-C12)	ND	10	mg/m³ Air							
Gasoline Range Organics (C4-C12)	ND	2.4	ppmv							
Benzene	ND	0.10	mg/m³ Air							
Benzene	ND	0.031	ppmv							
Toluene	ND	0.10	mg/m³ Air							
Toluene	ND	0.027	ppmv							
Ethylbenzene	ND	0.10	mg/m³ Air							
Ethylbenzene	ND	0.023	ppmv							
Xylenes (total)	ND	0.20	mg/m³ Air							
Xylenes (total)	ND	0.047	ppmv							
Methyl tert-butyl ether	ND	0.50	mg/m³ Air							
Methyl tert-butyl ether	ND	0.14	ppmv							
Surrogate: a,a,a-Trifluorotoluene	7.05		mg/m³ Air	8.00		88	65-140			
Surrogate: a,a,a-Trifluorotoluene	1.18		ppmv	1.34		88	65-140			
Surrogate: 4-Bromofluorobenzene	6.28		mg/m³ Air	8.00		78	70-125			
Surrogate: 4-Bromofluorobenzene	0.878		ppmv	1.12		78	70-125			
Laboratory Control Sample (6H08004-)	BS1)		1	Prepared	& Analyz	ed: 08/08/	06			
Gasoline Range Organics (C4-C12)	44.4	10	mg/m³ Air	55.0		81	70-115			
Gasoline Range Organics (C4-C12)	12.6	2.4	ppmv	15.6		81	70-115			
Benzene	1.41	0.10	mg/m³ Air	0.970		145	80-150			
Benzene	0.443	0.031	ppmv	0.304		146	80-150			
Toluene	5.11	0.10	mg/m³ Air	4.70		109	75-125			
Toluene	1.36	0.027	ppmv	1.25		109	75-125			
Ethylbenzene	1.04	0.10	mg/m³ Air	0.940		111	75-135			
Ethylbenzene	0.239	0.023	ppmv	0.217		110	75-135			
Xylenes (total)	5.63	0.20	mg/m³ Air	5.30		106	75-135			
Xylenes (total)	1.30	0.047	ppmv	1.22		107	75-135			
Methyl tert-butyl ether	1.16	0.50	mg/m³ Air	1.30		89	60-140			
Methyl tert-butyl ether	0.322	0.14	ppmv	0.361		89	60-140			
Surrogate: a,a,a-Trifluorotoluene	8.92		mg/m³ Air	8.00		112	65-140			
Surrogate: a,a,a-Trifluorotoluene	1.49		ppmv	1.34		111	65-140			
Surrogate: 4-Bromofluorobenzene	6.81		mg/m³ Air	8.00		85	70-125			
Surrogate: 4-Bromofluorobenzene	0.952		ppmv	1.12		85	70-125			

TestAmerica - Sacramento, CA

Soma Environmental Eng.	Project: N/A	S608111
6620 Owens Drive, Suite A	Project Number: 2334-Oakland	Reported:
Pleasanton CA., 94588	Project Manager: Tony Perini	08/21/06 12:34

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control

TestAmerica - Morgan Hill, CA

A	Deert	Reporting	T. T	Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch 6H08004 - EPA 5030B [P/T]	/ EPA 8015B/	8021B					-			
Laboratory Control Sample Dup (6H0	8004-BSD1)			Prepared	& Analyze	ed: 08/08/	06			
Gasoline Range Organics (C4-C12)	40.5	10	mg/m³ Air	55.0		74	70-115	9	35	
Gasoline Range Organics (C4-C12)	11.5	2.4	ppmv	15.6		74	70-115	9	35	
Benzene	1.21	0.10	mg/m³ Air	0.970		125	80-150	15	35	
Benzene	0.379	0.031	ppmv	0.304		125	80-150	16	35	
Toluene	1.17	0.027	*	1.25		94	75-125	15	30	
Toluene	4.40	0.10	mg/m³ Air	4.70		94	75-125	15	30	
Ethylbenzene	0.894	0.10	"	0.940		95	75-135	15	30	
Ethylbenzene	0.206	0.023	ppmv	0.217		95	75-135	15	30	
Xylenes (total)	4.86	0.20	mg/m³ Air	5.30		92	75-135	15	30	
Xylenes (total)	1.12	0.047	ppmv	1.22		92	75-135	15	30	
Methyl tert-butyl ether	1.06	0.50	mg/m³ Air	1.30		82	60-140	9	30	
Methyl tert-butyl ether	0.295	0.14	ppmv	0.361		82	60-140	9	30	
Surrogate: a,a,a-Trifluorotoluene	8.25		mg/m³ Air	8.00		103	65-140			
Surrogate: a,a,a-Trifluorotoluene	1.38		ppmv	1.34		103	65-140			
Surrogate: 4-Bromofluorobenzene	7.20		mg/m³ Air	8.00		90	70-125			
Surrogate: 4-Bromofluorobenzene	1.01		ppmv	1.12		90	70-125			

819 Striker Avenue. Suite 8 Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 www.testamericainc.com

Soma Environmental Eng. 6620 Owens Drive, Suite A Pleasanton CA., 94588		Project: N/A Project Number: 2334-Oakland Project Manager: Tony Perini	S608111 Reported: 08/21/06 12:34			
		Notes and Definitions				
HT-05	05 This sample was requested to be analyzed beyond the EPA recommended holding time.					
CF1	Primary and confirmation results varied by greater than 40% RPD.					
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified					
NR	Not Reported					
dry	Sample results reported on a dry weight basis					

RPD Relative Percent Difference

TestAmerica - Sacramento, CA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.