RECEIVED

9:19 am, Jul 07, 2011 Alameda County Environmental Health

June 30, 2011

Mr. Mark Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502-6577

Subject: First Semi-Annual 2011 Groundwater Monitoring Report, 17715 Mission

Boulevard, Hayward, California

Dear Mr. Detterman:

Enclosed please find a copy of First Semi-Annual 2011 Groundwater Monitoring Report dated June 28, 2011 for the subject property. With my authorization, the work was performed by Sierra Environmental, Inc. (Sierra).

I Declare, under penalty of perjury, that the information and/or recommendations contained in the report is true and correct to the best of my knowledge.

Please call me at (925) 383-5131 if you have questions.

Sincerely Yours,

Paul Garg

ABE Petroleum LLC

Enclosure

FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING

ABE Petroleum LLC 17715 Mission Boulevard Hayward, California 94539

> Prepared for Mr. Paul Garg ABE Petroleum LLC

Prepared by Sierra Environmental, Inc.

June 28, 2011 Project 11-103.00

June 28, 2010 Project 11-103.00

Mr. Paul Garg ABE Petroleum LLC 33090 Mission Boulevard Union City, California 94587

Subject:

Report for First Semi-Annual 2011 Groundwater Monitoring, ABE

Petroleum LLC, 17715 Mission Boulevard, Hayward, California

Dear Mr. Garg:

Sierra Environmental, Inc. (Sierra) is pleased to present this report summarizing the results for the first semi-annual 2011 groundwater monitoring at the subject location, hereafter, referred to as Site. Figure 1 shows the Site location. The groundwater monitoring was concurred by Alameda County Health Care Services (ACHCS) in a letter dated February 16, 2000, as result of gasoline impact to groundwater beneath the Site.

On June 3, 2011, Sierra obtained and recorded groundwater data, and collected groundwater samples from five (5) groundwater monitoring wells at and near the Site for chemical analysis. Sierra submitted the samples to Accutest Laboratories (Accutest) for chemical analysis. Accutest is a State-certified analytical laboratory (08258CA).

GROUNDWATER MONITORING

On June 3, 2011, Sierra performed the first semi-annual 2011 groundwater monitoring at the Site. Sierra's field personnel measured the groundwater levels at MW1, MW2, MW3, MW6, and MW7 (Figure 2) using an electronic sounder. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 15.93' to 19.69' feet below TOC with a westerly flow direction during this monitoring event. Table I presents the groundwater measurement data.

MW4 and MW5 were inaccessible due to route 238 expansion project. CalTrans covered the location of MW4 and MW5 with imported fill material without notifying Sierra.

Sierra's field personnel purged the wells using bailers. pH, temperature, and electrical conductivity of groundwater were recorded during the purging activities to affirm that groundwater in the wells have stabilized. After completion of the purging, groundwater samples MW-1, MW-2, MW-3, MW-6, and MW-7 were collected from the wells. After collection, the groundwater from each well was transferred into clean volatile organic analysis vials. The vials were sealed with Teflon-septum screw caps, labeled, placed on ice in a cooler, and delivered to Accutest with chain-of-custody documentation.

All sampling and measurement equipment were washed with Liqui-Nox[®] (a phosphate free laboratory detergent), and rinsed with tap water at each measurement and sampling interval. Purged and wash water was stored in 55-gallon drums at a designated location at the Site. Sierra's quality assurance/quality control (QA/QC) protocol is presented in Appendix A.

CHEMICAL ANALYSIS

The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHG) using the United States Environmental Protection Agency (EPA) GC-MS/8260B method. The samples were also analyzed for benzene, toluene, ethyl benzene, total xylenes (BTEX), and fuel oxygenates also using EPA method 8260B. Copies of certified analytical results and chain-of-custody documentation are presented in Appendix B. Copies of the field notes are presented in Appendix C.

ANALYTICAL RESULTS

Table II presents Summary of the analytical results.

CONCLUSION AND RECOMMENDATIONS

No gasoline constituents were detected in offsite monitoring well MW6 and MW7. Concentrations of the gasoline constituents in the groundwater samples collected from onsite wells have slightly decreased during this monitoring event, compared to the 1st and 2nd semi-annual 2010 groundwater monitoring events. Sierra recommends continuing the semi-annual groundwater monitoring at the Site in 2011.

As requested by ACEH in a letter dated June 17, 2011, Sierra will address and submit requested technical comments in a revised pilot test work plan on or before August 26, 2011. In addition Sierra will retain the services of a registered land surveyor to resurvey all accessible monitoring wells and upload the results to the GeoTracker database, shortly.

LIMITATIONS

The content and conclusion provided by Sierra in this report are based on information collected during its assessment/monitoring, which include, but are not limited to field observations and analytical results for the groundwater samples collected at the Site. Sierra assumes that the samples collected and laboratory results are reasonably representative of the whole Site, which may not be the case at unsampled areas. This assessment/monitoring was performed in accordance with generally accepted principles and practices of environmental engineering and assessment in Northern California at the time of the work. This report presents our professional opinion based on our findings, technical knowledge, and experience working on similar projects. No warranty, either expressed or implied, is made. The conclusions presented are based on the analytical results and current regulatory requirements. We are not responsible for the impact of any changes in environmental standards or regulations in the future.

Please feel welcome to call us if you have questions.

Very Truly Yours, Sierra Environmental, Inc.

Reza Baradaran, PE, GE Principal

Mitch Hajiaghai, REA II, CAC Principal

Attachments:

Table I - Groundwater Elevation Data

Table II - Analytical Results for Groundwater Samples

Figure 1 - Site Location Map

Figure 2 - Groundwater Monitoring Well Locations

Appendix A - QA/QC Protocol

Appendix B - Certified Analytical Results and Chain-of-Custody Documentation

Appendix B - Certified An Appendix C - Field Notes

cc: Mr. Mark Detterman ACHCS (1 Copy)

R11-103.00\FirstSemi-Annual2011GW\MH06282011

TABLE I GROUNDWATER ELEVATION DATA

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to ¹ Water (ft)	Water Table ² Elevation (ft)
MW1	8-18-00 3-30-01 6-22-01 9-20-01 12-27-01 9-24-02 12-17-02 4-2-03 6-12-03 9-29-03 12-04-03 03-09-04 6-24-04 9-09-04 12-21-04 3-16-05 6-09-05 9-22-05 12-07-05 3-10-06 6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 12-14-07 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09 12-03-09	(in) 2	(ft) 99.46	(ft) 20.32 20.30 21.91 23.56 22.59 23.69 22.75 21.15 20.64 22.95 23.70 19.80 21.44 23.30 22.92 18.99 20.02 20.69 21.90 17.85 15.91 18.60 20.05 19.47 21.11 22.61 23.50 20.09 22.08 23.57 24.42 21.22 22.52 24.18	(ft) 79.14 79.16 77.55 75.90 76.87 75.77 76.71 78.31 78.82 76.51 75.76 79.66 78.02 76.16 76.54 80.47 79.44 78.77 77.56 81.61 43.59 40.90 39.45 40.03 38.39 36.89 36.00 39.41 37.42 35.93 35.08 38.28 36.98 35.32
	06-02-10 12-01-10 06-03-11			19.85 22.73 18.48	39.65 36.77 41.02

TABLE I GROUNDWATER ELEVATION DATA (CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
MW2	8-18-00 3-30-01 6-22-01 9-20-01 12-27-01 9-24-02 12-17-02 4-2-03 6-12-03 9-29-03 12-04-03 03-09-04 6-24-04 9-09-04 12-21-04 3-16-05 6-09-05 9-22-05 12-7-05 3-10-06 6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09 12-03-09 06-02-10	2	60.61	21.55 21.55 23.15 24.78 23.82 24.89 23.99 22.32 21.84 24.15 24.91 21.05 22.95 24.55 24.21 20.29 21.68 21.98 23.22 19.15 17.31 19.99 21.48 20.71 22.33 23.85 24.71 21.34 23.29 24.82 25.65 22.45 23.68 25.33 21.01	79.03 79.03 77.43 75.80 76.76 75.69 76.59 78.26 78.74 76.43 75.67 79.53 77.63 76.03 76.37 80.29 78.90 78.60 77.36 81.43 43.30 40.62 39.13 39.90 38.28 36.76 35.90 39.27 37.32 35.79 34.96 38.16 36.93 35.28 39.60
	12-01-10 06-03-11			23.96 19.69	36.65 40.92

TABLE I
GROUNDWATER ELEVATION DATA
(CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
	8-18-00 3-30-01 6-22-01 9-20-01 12-27-01 9-24-02 12-17-02 4-2-03 6-12-03 9-29-03 12-04-03 03-09-04 6-24-04 9-09-04 12-21-04 3-16-05 6-09-05 9-22-05 12-7-05 3-10-06	Diameter	Elevation (ft) 99.69	Water (ft) 20.68 20.68 22.31 23.92 22.95 24.03 23.09 21.46 20.99 23.30 24.05 20.20 22.11 20.20 23.35 19.43 20.47 21.13 22.36 18.30	79.01 79.01 79.01 77.38 75.77 76.74 75.66 76.60 78.23 78.70 76.39 75.64 79.49 77.58 79.49 77.58 79.49 76.34 80.26 79.22 78.56 77.33 81.39
	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09 12-03-09 06-02-10 12-01-10 06-03-11		59.73	16.47 19.13 20.66 19.88 21.48 22.99 23.85 20.47 22.43 23.98 24.91 21.57 22.82 24.49 20.16 23.07 18.84	43.26 40.60 39.07 39.85 38.25 36.74 35.88 39.26 37.30 35.75 34.82 38.16 36.91 35.24 39.57 36.66 40.89

TABLE I GROUNDWATER ELEVATION DATA (CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
MW4	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-08 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09 12-03-09	2	59.29	15.71 18.40 19.64 19.13 N/A ³ N/A N/A N/A N/A N/A N/A N/A	43.58 40.89 39.65 40.16 N/A N/A N/A N/A N/A N/A N/A N/A N/A
	06-02-10 12-01-10 06-03-11			N/A N/A N/A	N/A N/A N/A
MW5	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-08 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09 12-03-09 06-02-10 12-01-10 06-03-11	2	56.31	13.35 15.99 17.45 16.68 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	42.96 40.32 38.86 39.63 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

TABLE I GROUNDWATER ELEVATION DATA (CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
MW6	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09	2	56.63	13.64 16.25 17.72 16.95 18.47 19.96 20.81 17.46 19.38 20.96 21.81 18.58 19.77	42.99 40.38 38.91 39.68 38.16 36.67 35.82 39.17 37.25 35.67 34.82 38.05 36.86
	12-03-09 06-02-10 12-01-10 06-03-11			21.45 17.13 20.04 15.93	35.18 39.50 36.59 40.70
MW7	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08 12-12-08 03-12-09 06-04-09 12-03-09 06-02-10 12-01-10 06-03-11	2	57.50	14.50 17.12 18.58 17.81 19.32 20.87 21.30 18.34 20.15 21.31 22.29 19.45 20.36 22.13 18.01 20.89 16.81	43.00 40.38 38.92 39.69 38.18 36.63 36.20 39.16 37.35 36.19 35.21 38.05 37.14 35.37 39.49 36.61 40.69

Depths to groundwater were measured to the top of the well casings Water table elevations were measured in relation to mean sea level (MSL)

^{2.} N/A = Not Accessible

TABLE II ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

Sample ID	Sample Date	Sample Location	TPHG ¹ μg/L	Benzene Toluene μg/L μg/L		Ethylbenzene μg/L	Xylenes μg/L	MTBE² μg/L
MW-1	8-18-00 3-30-01	MW1	280,000 98,000	10,000 8,600	16,000 14,000	11,000 6,300	49,000 26,000	4,000 7,600
	6-22-01		110,000	7,500	12,000	5,700	24,000	3,800
	9-20-01		93,000	8,700	11,000	6,300	27,000	4,600
	12-27-01		140,000	7,700	11,000	6,500	28,000	7,700
	9-24-02		110,000	4,600	4,000	4,000	18,000	3,400
	12-17-02		110,000	6,600	6,700	5,400	23,000	2,900
	4-2-03		89,000	4,800	6,000	4,600	20,000	5,900
	6-12-03		69,000	4,100	4,300	3,900	17,000	4,700
	9-29-03		96,000	7,000	7,700	5,100	22,000	6,200
	12-04-03		110,000	5,800	5,900	4,300	18,000	4,500
	03-09-04		130,000	5,900	9,700	4,900	22,000	6,000
	6-24-04		48,000	5,800	7,500	4,000	18,000	4,000
	9-09-04		64,000	4,800	7,500	4,500	19,000	2,200
	12-21-04		53,000	4,800	6,000	3,600	15,000	2,600
	3-16-05		82,000	4,000	8,600	3,900	18,000	4,300
	6-09-05		52,000	3,600	6,400	3,300	17,000	3,500
	9-22-05		62,000	3,500	5,400	3,900	17,000	2,100
	12-7-05		40,000	3,300	7,500	3,700	18,000	2,500
	3-10-06		53,000	3,600	6,900	4,000	18,000	3,300
	6-07-06		57,000	4,200	12,000	3,700	16,000	3,900
	9-11-06		120,000	3,600	9,500	5,200	23,000	3,000
	12-13-06		21,000	2,600	8,400	4,300	20,000	1,200
	3-12-07		96,000	2,300	5,600	5,900	26,000	1,400
	6-6-07		58,000	2,000	3,400	3,900	16,000	1,500
	9-6-07		84,000	3,000	4,300	6,000	25,000	2,300
	12-14-07		55,000	2,500	2,400	4,400	18,000	1,900
	3-13-08		80,000	2,400	5,400	4,700 5,000	22,000	2,000
	6-13-08 09-09-08		87,000	2,800	2,200	5,000	21,000	3,100 1,890
	12-12-08		34,400 91,000	2,040 2,110	1,120 1,240	2,390 3,660	10,100 17,200	1,890
	03-12-08		91,000	2,110 1,510	1,240	2,630	17,200 16,500	1,040
	06-04-09		92,000 61,200	1,510	711	3,840	14,600	1,580
	12-03-09		66,300	2,300	346	4,100	15,400	2,690
	06-02-10		63,000	2,300 2,100	1,300	2,600	13,600	2,500
	12-01-10		54,000	2,100 2,520	180	4,240	10,200	2,300
	06-03-11		46,600	1,900	689	2,670	8,110	2,080

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
(CONTINUED)

Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethyl benzene μg/L	Xylenes μg/L	MTBE μg/L
				3700 3,200 2,500 2,300 2,900 1,600 2,400 1,000 380 1,700 1,500 1,500 1,200 1,600 1,400 1,700 420 1,400 1,600 2,100 2,400 1,100 1,400 1,200 1,100 1,600 1,200 1,100 1,600 1,200 1,100	990 470 350 230 390 200 340 130 52 200 210 2,000 72 110 84 140 ND³ ND 130 170 250 140 220 250 170 290 160 190	-	26,000 13,000 12,000 12,000 14,000 9,100 13,000 5,100 2,000 9,800 9,200 8,500 6,000 8,500 5,400 8,900 51 5,700 6,000 7,500 5,100 3,500 4,900 5,700 4,200 6,800 3,700 7,500	
	6-13-08 09-09-08		40,000 20,300	950 706	170 121	4,600 2,680	4,800 2,580	1,400 1,180
	12-12-08 03-12-09		48,000 43,000	826 686	114 128	4,050 2,740	4,250 4,520	1,610 974
	06-04-09 12-03-09 06-02-10 12-01-10		20,600 26,600 21,000 14,300	440 372 130 127	94.3 29.7 13 ND	2,770 3,250 2,400 1,890	2,270 2,250 1,500 697	717 608 160 206
*	06-03-11		8,150	72.0	ND	845	352	130

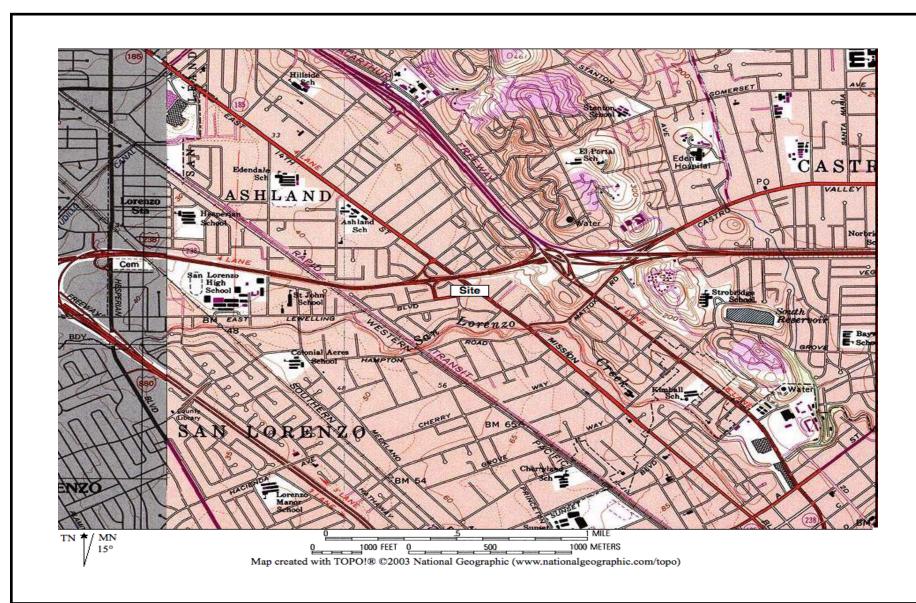
TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
(CONTINUED)

Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes μg/L	MTBE μg/L
MW-3	8-18-00 3-30-01 6-22-01 9-20-01 12-27-01 9-24-02	MW3	46,000 30,000 35,000 30,000 39,000 53,000	3,200 3,300 4,000 3,800 4,400 4,100	550 340 340 260 340 270	3,700 2,800 2,900 2,500 3,000 3,100	14,000 9,100 7,600 6,600 6,700 6,600	2,200 4,700 4,100 5,300 5,500 6,400
	12-17-02 4-2-03 6-12-03 9-29-03 12-04-03		40,000 24,000 26,000 39,000 40,000	3,600 2,000 2,700 4,000 3,200	240 130 180 220 180	2,200 1,800 2,000 3,200 2,200	5,700 3,300 4,200 5,300 4,300	5,200 3,000 5,500 4,800 4,400
	03-09-04 6-24-04 9-09-04 12-21-04 3-16-05		39,000 21,000 26,000 20,000 35,000	3,100 3,000 4,100 3,400 1,800	160 110 140 99 78	2,100 2,300 2,200 1,700 1,900	4,400 3,800 4,300 2,900 2,600	4,000 3,400 6,000 6,400 4,000
	6-09-05 9-22-05 12-7-05 3-10-06 6-07-06		2,000 17,000 11,000 9,100 3,000	55 2,000 1,800 1,100 440	ND 69 62 24 16	120 1,500 1,500 990 180	30 1,900 1,700 810 450	150 3,500 2,300 1,300 320
	9-11-06 12-13-06 3-12-07 6-6-07 9-6-07		17,000 13,000 120,000 13,000 22,000	1,300 1,200 10,000 1,200 1,900	38 ND 210 19 32	1,000 1,000 11,000 1,100 2,000	1,600 1,300 11,000 1,100 1,600	690 520 ND 590 1,000
	12-14-07 3-13-08 6-13-08 09-09-08		16,000 10,000 15,000 9,030	1,400 870 1,300 890	23 ND 27 <10	1,200 1,000 1,300 695	1,300 670 1,200 372	600 420 660 460
	12-12-08 03-12-09 06-04-09 12-03-09 06-02-10		26,000 15,000 11,500 19,500 8,800	1,200 759 1,250 2,250 1,100	15.4 18.3 34.9 25.1 9.7	995 704 821 1330 200	875 1,010 1,040 1,050 530	423 300 422 577 320
*	12-01-10 06-03-11		7,910 2,910	1,020 93.7	ND ND	358 104	128 55.5	257 43.9

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
(CONTINUED)

Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes μg/L	MTBE μg/L
MW-4	6-7-06	MW4	<25	<0.5	<0.5	<0.5	<0.5	<1
	9-11-06		<25	<0.5	<0.5	<0.5	<0.5	<1
	12-13-06		<25	<0.5	<0.5	<0.5	<0.5	<1
	3-12-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-6-07		NS^4	NS	NS	NS	NS	NS
	9-6-07		NS	NS	NS	NS	NS	NS
	12-14-07		NS	NS	NS	NS	NS	NS
	3-13-08		NS	NS	NS	NS	NS	NS
	6-13-08		NS	NS	NS	NS	NS	NS
	09-09-08		NS	NS	NS	NS	NS	NS
	12-12-08		NS	NS	NS	NS	NS	NS
	03-12-09		NS	NS	NS	NS	NS	NS
	06-04-09		NS	NS	NS	NS	NS	NS
	12-03-09		NS	NS	NS	NS	NS	NS
	06-02-10		NS	NS	NS	NS	NS	NS
	12-01-10		NS	NS	NS	NS	NS	NS
	06-03-11		NS	NS	NS	NS	NS	NS
MW-5	6-7-06	MW5	<25	<0.5	<0.5	<0.5	<0.5	<1
	9-11-06		<25	<0.5	<0.5	<0.5	<0.5	<1
	12-13-06		<25	<0.5	<0.5	<0.5	<0.5	<1
	3-12-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-6-07		NS	NS	NS	NS	NS	NS
	9-6-07		NS	NS	NS	NS	NS	NS
	12-14-07		NS	NS	NS	NS	NS	NS
	3-13-08		NS	NS	NS	NS	NS	NS
	6-13-08		NS	NS	NS	NS	NS	NS
	09-09-08		NS	NS	NS	NS	NS	NS
	12-12-08		NS	NS	NS	NS	NS	NS
	03-12-09		NS	NS	NS	NS	NS	NS
	06-04-09		NS	NS	NS	NS	NS	NS
	12-03-09		NS	NS	NS	NS	NS	NS
	06-02-10		NS	NS	NS	NS	NS	NS
	12-01-10		NS	NS	NS	NS	NS	NS
	06-03-11		NS	NS	NS	NS	NS	NS

TABLE II ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES (CONTINUED)


Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes μg/L	MTBE μg/L
MW-6	6-7-06	MW6	<25	<0.5	<0.5	<0.5	<0.5	<1
	9-11-06		<25	<0.5	<0.5	<0.5	<0.5	<1
	12-13-06		<25	<0.5	<0.5	<0.5	<0.5	<1
	3-12-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	9-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	12-14-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	3-13-08		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-13-08		<25	<0.5	<0.5	<0.5	<1	<1
	09-09-08		<25	<0.3	<0.5	<0.3	<0.7	<0.5
	12-12-08		<50	<0.5	<0.5	<0.5	<1.5	<0.5
	03-12-09		<50	<0.5	<0.5	<0.5	<1.5	<0.5
	06-04-09		<25	<0.3	<0.5	<0.3	<0.7	<0.5
	12-03-09		<25	<0.3	<0.5	<0.3	<0.7	<0.5
	06-02-10		<50	<0.5	<0.5	<0.5	<0.5	<0.5
	12-01-10		<25	<0.3	<0.5	<0.3	<0.7	<0.5
	06-03-11		<25	<0.3	<0.5	<0.3	<0.7	<0.5
MW-7	6-7-06	MW7	<25	<0.5	<0.5	<0.5	<0.5	<1
	9-11-06		<25	<0.5	<0.5	<0.5	< 0.5	<1
	12-13-06		<25	<0.5	<0.5	<0.5	< 0.5	<1
	3-12-07		27	<0.5	<0.5	<0.5	<0.5	<1
	6-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	9-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	12-14-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	3-13-08		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-13-08		<25	<0.5	<0.5	<0.5	<1	<1
	09-09-08		<25	<0.5	<0.5	<0.5	<1	<1
	12-12-08		<50	<0.5	<0.5	<0.5	<1.5	<0.5
	03-12-09		<50	<0.5	<0.5	<0.5	<1.5	<0.5
	06-04-09		<25	<0.3	<0.5	<0.3	<0.7	<0.5
	06-02-10		<50	<0.5	<0.5	<0.5	<0.5	<0.5
	12-01-10		<25	<0.3	<0.5	<0.3	<0.7	<0.5
	06-03-11		<25	<0.3	<0.5	<0.3	<0.7	<0.5

Total Petroleum Hydrocarbons as Gasoline Methyl Tertiary Butyl Ether 1. **TPHG**

MTBE 2. ND 3. Below Laboratory Detection Limit =

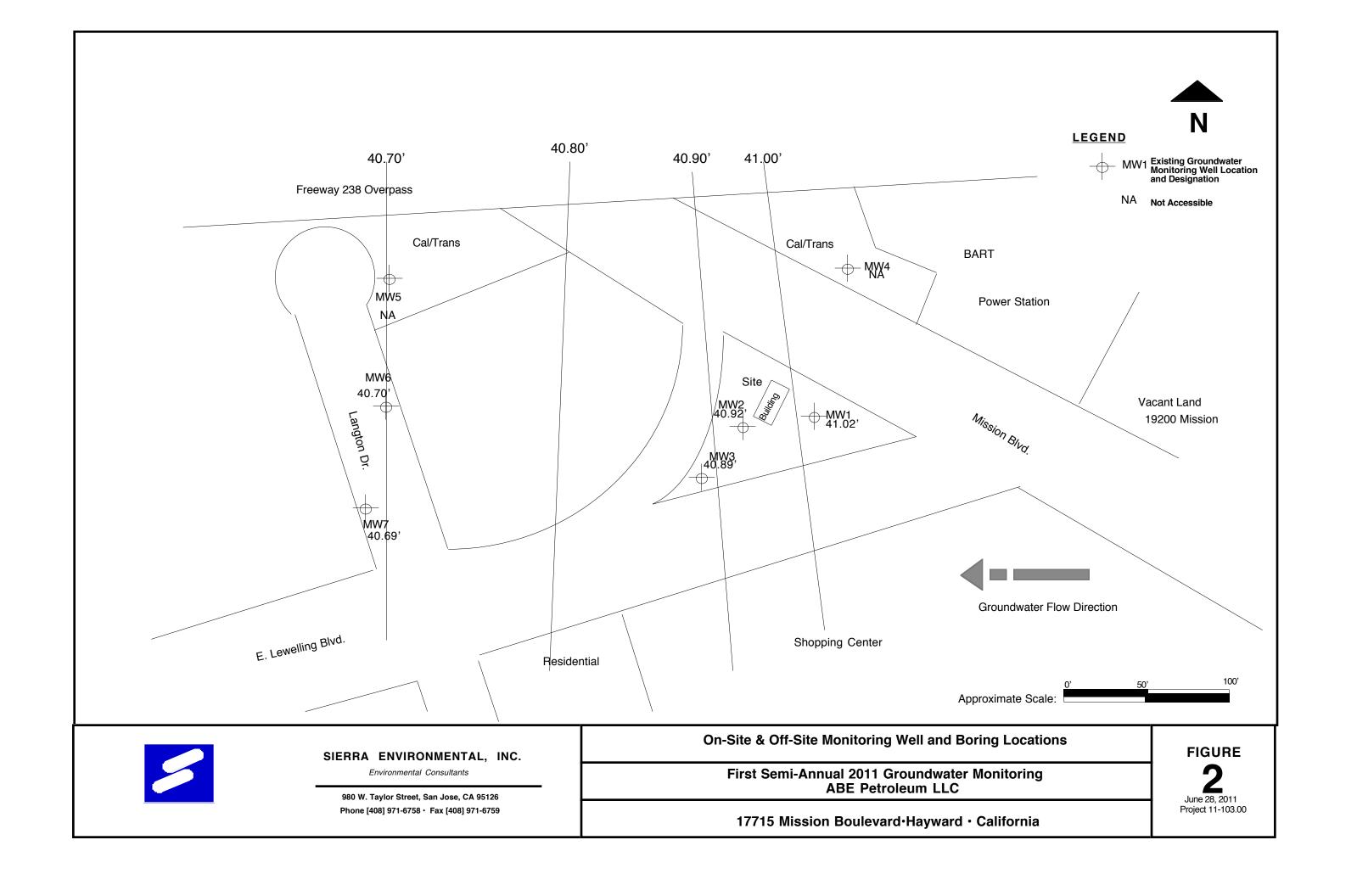
4. NS

Not Sampled 78.3 ug/L of TertButyl Alcohol was detected in sample MW-2, and 84.2 ug/L of Tert-Butyl Alcohol was detected in sample MW-3.

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

980 W. Taylor Street, San Jose, CA 95126 Phone [408] 971-6758 • Fax [408] 971-6759

SITE LOCATION MAP


First Semi-Annual 2011 Groundwater Monitoring ABE Petroleum LLC

17715 Mission Boulevard · Hayward · California

FIGURE

1

June 28, 2011 Project 11-103.00

Appendix A QA/QC PROTOCOL

QA/QC PROTOCOL

Groundwater Level and Well Depth Measurements

Groundwater level and well depths are measured using electrical sounder. An electrical sounder consists of a reel, two-conductor cable, a water sensor, and a control panel with a buzzer. To measure groundwater level, the sensor is lowered into a well. A low current circuit is completed when the sensor makes contact with water. The current in the circuit is then amplified and activates a buzzer which produce an audible signal. Cable markings are divided at 0.05-foot increments. Well depths are measured to the nearest 0.01 foot. Groundwater levels are measured before and after sample collection to ensure data accuracy.

Well Purging

Low flow submersible electrical pumps or bailers are used to purge groundwater monitoring wells. Approximately 3 to 5 well casing volume of water is removed from the well as a measure to stabilize natural, and representative groundwater in each well. pH, electrical conductivity, and temperature of the purged water is measured and recorded at approximately each casing volume interval. Purge water is stabilized when pH is recorded within 0.5 unit, electrical conductivity is within 5 percent, and temperature is within 1.0 degree Celsius.

Groundwater Sampling

Groundwater samples are transferred into appropriate containers provided by certified analytical laboratories. The containers include proper preservatives, and labels with appropriate project information. Groundwater is transferred into the containers with as little agitation as possible. After collection, containers are sealed and checked to ensure that no head space or air bubbles are present in the sample.

After collection, if required, samples are kept in a cooler to be delivered to analytical laboratory with chain-of-custody documentation.

Equipment Decontamination

All sampling equipment are washed with Liqui-Nox® (a phosphate free laboratory detergent), and rinsed with tap water before each sampling event, and at each sampling interval. To reduce the risk of cross contamination, wells which have shown lower levels of contamination historically are purged and sampled first.

Analytical Procedures

Samples are analyzed by an accredited State-certified analytical laboratory using procedures prescribed by United State Environmental Protection Agency (EPA) and other Federal, State, and Local agencies. At minimum a field blank is analyzed with each group of samples for quality assurance measures. At minimum two qualified personnel review analytical results and compare them with historical data for consistency and accuracy.

Field Reports

All field observations are documented in field reports. A field report contain project information, climatic condition, contractor/subcontractor information, field observation, discussions and communications during each particular field activity. Field reports are stored in appropriate project files. Project managers review field reports to obtain necessary information regarding the status of each project on daily basis.

Appendix B CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

06/17/11

Technical Report for

Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA

11-103.00

Accutest Job Number: C16376

Sampling Date: 06/03/11

Report to:

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 maz.sierra@sbcglobal.net

ATTN: Mitch Hajiaghai

Total number of pages in report: 18

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Laurie Glantz-Murphy Laboratory Director

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA) AZ (AZ0762) DoD/ISO/IEC 17025:2005 (L2242)

 $This \ report \ shall \ not \ be \ reproduced, \ except \ in \ its \ entirety, \ without \ the \ written \ approval \ of \ Accutest \ Laboratories.$

Test results relate only to samples analyzed.

Sections:

_

-1-

Table of Contents

Section 1: Sample Summary 3	3
Section 2: Sample Results	4
2.1: C16376-1: MW-1	5
2.2: C16376-2: MW-2	6
2.3: C16376-3: MW-3	7
2.4: C16376-4: MW-6	8
2.5: C16376-5: MW-7	
Section 3: Misc. Forms	10
3.1: Chain of Custody	11
Section 4: GC/MS Volatiles - QC Data Summaries	13
4.1: Method Blank Summary	
4.2: Blank Spike Summary	16
4.3: Blank Spike/Blank Spike Duplicate Summary	17
4.4: Matrix Spike/Matrix Spike Duplicate Summary	18

Sample Summary

Sierra Environmental, Inc.

Job No: C16376

T0600102154-ABE, 17715 Mission Boulevard, CA Project No: 11-103.00

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C16376-1	06/03/11	00:00 MH	06/03/11		Ground Water	MW-1
C16376-2	06/03/11	00:00 MH	06/03/11	AQ	Ground Water	MW-2
C16376-3	06/03/11	00:00 MH	06/03/11	AQ	Ground Water	MW-3
0.1.10 0 .1.1	0.4/0.0/4.4		0.1/0.7/11			
C16376-4	06/03/11	00:00 MH	06/03/11	AQ	Ground Water	MW-6
C16376-5	06/03/11	00:00 MH	06/03/11	AQ	Ground Water	MW-7

Sample Results	
Report of Analysis	

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 C16376-1
 Date Sampled:
 06/03/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/03/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 W22819.D 100 06/13/11 TN n/a n/a VW772

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	1900	100	30	ug/l	
Toluene	689	100	50	ug/l	
Ethylbenzene	2670	100	30	ug/l	
Xylene (total)	8110	200	70	ug/l	
Di-Isopropyl ether	ND	500	50	ug/l	
Ethyl Tert Butyl Ether	ND	500	50	ug/l	
Methyl Tert Butyl Ether	2080	100	50	ug/l	
Tert-Amyl Methyl Ether	ND	500	50	ug/l	
Tert-Butyl Alcohol	ND	1000	500	ug/l	
TPH-GRO (C6-C10)	46600	5000	2500	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Dibromofluoromethane	94%		60-1	30%	
Toluene-D8	100%		60-1	30%	
4-Bromofluorobenzene	96%		60-1	30%	
	Benzene Toluene Ethylbenzene Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene 1900 Toluene 689 Ethylbenzene 2670 Xylene (total) 8110 Di-Isopropyl ether ND Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether 2080 Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) 46600 Surrogate Recoveries Run# 1 Dibromofluoromethane 94% Toluene-D8 100%	Benzene 1900 100 Toluene 689 100 Ethylbenzene 2670 100 Xylene (total) 8110 200 Di-Isopropyl ether ND 500 Ethyl Tert Butyl Ether ND 500 Methyl Tert Butyl Ether ND 500 Tert-Amyl Methyl Ether ND 500 Tert-Butyl Alcohol ND 1000 TPH-GRO (C6-C10) 46600 5000 Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane 94% Toluene-D8 100%	Benzene 1900 100 30 Toluene 689 100 50 Ethylbenzene 2670 100 30 Xylene (total) 8110 200 70 Di-Isopropyl ether ND 500 50 Ethyl Tert Butyl Ether ND 500 50 Methyl Tert Butyl Ether ND 500 50 Tert-Amyl Methyl Ether ND 500 50 Tert-Butyl Alcohol ND 1000 500 TPH-GRO (C6-C10) 46600 5000 2500 Surrogate Recoveries Run# 1 Run# 2 Lim Dibromofluoromethane 94% 60-1 Toluene-D8 100% 60-1	Benzene 1900 100 30 ug/l Toluene 689 100 50 ug/l Ethylbenzene 2670 100 30 ug/l Xylene (total) 8110 200 70 ug/l Di-Isopropyl ether ND 500 50 ug/l Ethyl Tert Butyl Ether ND 500 50 ug/l Methyl Tert Butyl Ether 2080 100 50 ug/l Tert-Amyl Methyl Ether ND 500 50 ug/l Tert-Butyl Alcohol ND 1000 500 ug/l TPH-GRO (C6-C10) 46600 5000 2500 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 94% 60-130% Toluene-D8 100% 60-130%

ND = Not detected MDL - Method Detection Limit <math>J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-2

 Lab Sample ID:
 C16376-2
 Date Sampled:
 06/03/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/03/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 W22829.D 10 06/13/11 TN n/a n/a VW772

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	72.0	10	3.0	ug/l	
Toluene	ND	10	5.0	ug/l	
Ethylbenzene	845	10	3.0	ug/l	
Xylene (total)	352	20	7.0	ug/l	
Di-Isopropyl ether	ND	50	5.0	ug/l	
Ethyl Tert Butyl Ether	ND	50	5.0	ug/l	
Methyl Tert Butyl Ether	130	10	5.0	ug/l	
Tert-Amyl Methyl Ether	ND	50	5.0	ug/l	
Tert-Butyl Alcohol	78.3	100	50	ug/l	J
TPH-GRO (C6-C10)	8150	500	250	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Dibromofluoromethane	99%		60-1	30%	
Toluene-D8	102%		60-1	30%	
4-Bromofluorobenzene	100%		60-1	30%	
	Benzene Toluene Ethylbenzene Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene 72.0 Toluene ND Ethylbenzene 845 Xylene (total) 352 Di-Isopropyl ether ND Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether 130 Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol 78.3 TPH-GRO (C6-C10) 8150 Surrogate Recoveries Run# 1 Dibromofluoromethane 99% Toluene-D8 102%	Benzene 72.0 10 Toluene ND 10 Ethylbenzene 845 10 Xylene (total) 352 20 Di-Isopropyl ether ND 50 Ethyl Tert Butyl Ether ND 50 Methyl Tert Butyl Ether 130 10 Tert-Amyl Methyl Ether ND 50 Tert-Butyl Alcohol 78.3 100 TPH-GRO (C6-C10) 8150 500 Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane 99% Toluene-D8 102%	Benzene 72.0 10 3.0 Toluene ND 10 5.0 Ethylbenzene 845 10 3.0 Xylene (total) 352 20 7.0 Di-Isopropyl ether ND 50 5.0 Ethyl Tert Butyl Ether ND 50 5.0 Methyl Tert Butyl Ether 130 10 5.0 Tert-Amyl Methyl Ether ND 50 5.0 Tert-Butyl Alcohol 78.3 100 50 TPH-GRO (C6-C10) 8150 500 250 Surrogate Recoveries Run# 1 Run# 2 Lim Dibromofluoromethane 99% 60-1 Toluene-D8 102% 60-1	Benzene 72.0 10 3.0 ug/l Toluene ND 10 5.0 ug/l Ethylbenzene 845 10 3.0 ug/l Xylene (total) 352 20 7.0 ug/l Di-Isopropyl ether ND 50 5.0 ug/l Ethyl Tert Butyl Ether ND 50 5.0 ug/l Methyl Tert Butyl Ether 130 10 5.0 ug/l Tert-Amyl Methyl Ether ND 50 5.0 ug/l Tert-Butyl Alcohol 78.3 100 50 ug/l TPH-GRO (C6-C10) 8150 500 250 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 99% 60-130% Toluene-D8 102% 60-130%

ND = Not detected MDL - Method Detection Limit J = Indicates an expression of the property of the proper

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-3

 Lab Sample ID:
 C16376-3
 Date Sampled:
 06/03/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/03/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 W22830.D 5 06/13/11 TN n/a n/a VW772

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	93.7	5.0	1.5	ug/l	
108-88-3	Toluene	ND	5.0	2.5	ug/l	
100-41-4	Ethylbenzene	104	5.0	1.5	ug/l	
1330-20-7	Xylene (total)	55.5	10	3.5	ug/l	
108-20-3	Di-Isopropyl ether	ND	25	2.5	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	25	2.5	ug/l	
1634-04-4	Methyl Tert Butyl Ether	43.9	5.0	2.5	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	25	2.5	ug/l	
75-65-0	Tert-Butyl Alcohol	84.2	50	25	ug/l	
	TPH-GRO (C6-C10)	2910	250	130	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	96%		60-1	30%	
2037-26-5	Toluene-D8	99%		60-1	30%	
460-00-4	4-Bromofluorobenzene	98%		60-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-6

 Lab Sample ID:
 C16376-4
 Date Sampled:
 06/03/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/03/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 W22822.D 1 06/13/11 TN n/a n/a VW772

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	96%		60-1	30%	
2037-26-5	Toluene-D8	100%		60-1	30%	
460-00-4	4-Bromofluorobenzene	96%		60-1	30%	

ND = Not detected MDL - Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-7

 Lab Sample ID:
 C16376-5
 Date Sampled:
 06/03/11

 Matrix:
 AQ - Ground Water
 Date Received:
 06/03/11

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 W22831.D 1 06/13/11 TN n/a n/a VW772

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	94%		60-1	30%	
2037-26-5	Toluene-D8	101%		60-1	30%	
460-00-4	4-Bromofluorobenzene	95%		60-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Misc. I	Forms		

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

						CHAIN	I OF	Custo	DY	SECASTI37				
	Project Na	ame:	ABE			Project N	o: <u>1</u> 1	l-103.00		Date:	_06-	03-11		
	Project Lo	ocation:	<u>17715 Mi</u>	ssion Bo	ulevard (Client:	Paul	Garg		Samp	ler:	Mike Ha	agi	
	Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers			А	nalysis	Requested			Turna	round Time
						TPHG, BTEX, Fuel Oxygenates 8260B								
	MW-1	6/03/11		Water	3								24-hour Other	Normal
-	MW-2	ì	_										24-hour Other	Hormal
)	12W-3												24-hour Other	Normal
4	MW-6												24-hour Other	Normat
5	MW-7	V		V	V	V							24-hour Other	Normal
													24-hour Other	Normal
													24-hour Other	Normal
	Remarks: Pl	lease email	the results in	EDF forma	t for Geotrack	er ID# T060	010215	i4 to mazyar	@sierra	invironmentalinc	.com	430.	5-38	39
	Relinguished	by		>	Date (1)	.3:	Time 30	Received	by	Mari	$\overline{}$	P	ate .3.11	Time
	Relinquished	d by			Date		Time	Received	by	- 1 4 0 0000			ate (Time

980 W. Taylor Street • San Jose • California • 95126 Phone (408) 971-6758 • Fax (408) 9716759

C16376: Chain of Custody

Page 1 of 2

ccutest Laboratories Northern California	Sample Receiving Check List	Job#: C <u>16.276</u>	Initial:	Jm
--	-----------------------------	-----------------------	----------	----

Accutest Laboratories Northern Camornia Cample Nece	_	.131 00011. 0	10310	
Review Chain of Custody Chain of Custody is to be comp				
Are these regulatory (NPDES) samples? CWA	(Yes) / No	Client Sample ID	pH Check	Other Comments/Issues
s pH requested?	Ýes/(No)			
	Yes/No			
	Yes / No		······	
Are sample within hold time?	(es)/No			
Are sample in danger of exceeding hold-time	Yes (No)			
p∕Existing Client? (feg/ / No Existing Project? If No: Is Report to info complete and legible, including;	Yes No			
□ deliverable □ Name □ Address □ phone □ e-mail				
Is Bill to info complete and legible, including;				
□ PO# □ Credit card □ Contact □address □ phone □ e-mail				
Is Contact and/or Project Manager Identified, including;				
• •				
a phone a e-mail				
□ Project name / number Special requirements?	Yes (No			
Sample IDs / date & time of collection provided?	€/No			
s Matrix listed and correct?	€9/No			
Analyses listed, we do, or client has authorized a subcontract?	(GS/No			
Chain is signed and dated by both client and sample custodian?	∕©s)/No			
TAT requested available? Yes / No Approved by Pm				
Review Coolers:				
www.were all Coolers temperatures measured at ≤6°C?	No No			
If cooler is outside the ≤6°C; note down the affected bottles in that cooler on the left Are samples on ice?	(Yes) / No			
Note that ANC does NOT accept evidentiary samples. (We do not lock refrigerators	, •			
Shipment Received Method walk M				
Custody Seals: Present: Yes / No If Yes; Unbroken:	Yes / No			
Review of Sample Bottles: If you answer no, explain to the side				
Chain matches bottle labels? Yes / No Sample bottle intact?	(fegl/No			
of sthere enough sample volume in proper bottle for requested analyses?	(Yes / No			
to Proper Preservatives?	(Test / NO			
Check pH on preserved samples except 1664, 625, 8270 and VOAs; make notes on left				
Headspace-VOAs? Greater than 6mm in diameter List sample ID and affected container	Yes /No)			

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

 $\verb|\Accurrent_active_sop_oct_2010| sc001f1_0_form1_sample control_sample receiving checklist_2009-01-01. document_active_sop_oct_2010| sc001f1_0_form1_sample control_sample receiving checklist_2010| sc001f1_0_form1_sample receiving checklist_2010| sc001f1_0_form1_sam$

C16376: Chain of Custody

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: C16376

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW772-MB	W22817.D	1	06/13/11	TN	n/a	n/a	VW772

The QC reported here applies to the following samples:

C16376-1, C16376-4

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	93%	60-130%
2037-26-5	Toluene-D8	100%	60-130%
460-00-4	4-Bromofluorobenzene	94%	60-130%

Method Blank Summary Job Number: C16376

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VW772-MB2	W22827.D	1	06/13/11	TN	n/a	n/a VW772	

The QC reported here applies to the following samples:

C16376-2, C16376-3, C16376-5

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	95%	60-130%
2037-26-5	Toluene-D8	100%	60-130%
460-00-4	4-Bromofluorobenzene	97%	60-130%

Blank Spike Summary Job Number: C16376

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch VW772-BS1 W22816.D 1 06/13/11 TN n/a n/a VW772	-			•	, -	, -	Analytical Batch VW772
--	---	--	--	---	-----	----------------	---------------------------

The QC reported here applies to the following samples:

C16376-1, C16376-2, C16376-3, C16376-4, C16376-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	128	102	60-130
CAS No. Surrogate Recoveries		BSP	Lin	nits	
1868-53-7	Dibromofluoromethane	93%	60-	130%	
2037-26-5	Toluene-D8	101%		130%	
460-00-4	4-Bromofluorobenzene	95%		130%	

Blank Spike/Blank Spike Duplicate Summary

Job Number: C16376

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample VW772-BS VW772-BSD	File ID W22814.D W22815.D	DF 1	Analyzed 06/13/11 06/13/11	By TN TN	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VW772 VW772

The QC reported here applies to the following samples:

C16376-1, C16376-2, C16376-3, C16376-4, C16376-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	20	19.2	96	19.1	96	1	60-130/30
108-20-3	Di-Isopropyl ether	20	17.9	90	17.4	87	3	60-130/30
100-41-4	Ethylbenzene	20	19.9	100	19.4	97	3	60-130/30
637-92-3	Ethyl Tert Butyl Ether	20	19.5	98	19.2	96	2	60-130/30
1634-04-4	Methyl Tert Butyl Ether	20	18.8	94	18.9	95	1	60-130/30
994-05-8	Tert-Amyl Methyl Ether	20	19.1	96	18.9	95	1	60-130/30
75-65-0	Tert-Butyl Alcohol	100	70.7	71	81.2	81	14	60-130/30
108-88-3	Toluene	20	19.9	100	19.7	99	1	60-130/30
1330-20-7	Xylene (total)	60	61.6	103	60.3	101	2	60-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	94%	95%	60-130%
2037-26-5	Toluene-D8	99%	99%	60-130%
460-00-4	4-Bromofluorobenzene	97%	96%	60-130%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C16376

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
C16376-5MS	W22845.D	1	06/14/11	TN	n/a	n/a	VW772
C16376-5MSD	W22846.D	1	06/14/11	TN	n/a	n/a	VW772
C16376-5	W22831.D	1	06/13/11	TN	n/a	n/a	VW772

The QC reported here applies to the following samples:

C16376-1, C16376-2, C16376-3, C16376-4, C16376-5

CAS No.	Compound	C16376-5 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	19.5	98	20.0	100	3	60-130/25
108-20-3	Di-Isopropyl ether	ND	20	19.1	96	19.2	96	1	60-130/25
100-41-4	Ethylbenzene	ND	20	19.6	98	20.0	100	2	60-130/25
637-92-3	Ethyl Tert Butyl Ether	ND	20	21.6	108	21.6	108	0	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND	20	21.6	108	21.4	107	1	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND	20	21.3	107	21.4	107	0	60-130/25
75-65-0	Tert-Butyl Alcohol	ND	100	90.4	90	92.4	92	2	60-130/25
108-88-3	Toluene	ND	20	19.7	99	20.3	102	3	60-130/25
1330-20-7	Xylene (total)	ND	60	61.7	103	62.6	104	1	60-130/25
			-						

CAS No.	Surrogate Recoveries	MS	MSD	C16376-5	Limits
1868-53-7	Dibromofluoromethane	100%	98%	94%	60-130%
2037-26-5	Toluene-D8	98%	99%	101%	60-130%
460-00-4	4-Bromofluorobenzene	100%	96%	95%	60-130%

Appendix C FIELD NOTES

Project No: 11-10		Date:06-03-11											
Project Name ABE		Well N°: —MW1											
Field Personnel:	Mike					Weather:							
Project Location:	17715 Mission Boulevard, Hayward												
PURGE WATER VOLUME	Total Well Depth (ft)	Depth to Water (ft		Water Column (ft)		Multipl Casing Dia		Muitipli sing Dia			Casing Volume (gal)	Purged Volume (gal)	
CALCULATION	33 25	10	2 4 G i		4,77		2" 4"		6"				
	33.25		2.48		,		0.16	0.64	34 1.44		2.)0	47.0	
Purge Method: Bailer Measuring Reference: TOC													
Time													
Volume Purged (gal)			0		2.5		2	0	,	7-0			
Temperature (° F)			64.1		63.	9	63	Γ· 8	4	3.5	+	***************************************	
рН			6.39		6.37		. م)	6.36 6.3		4,75	-		
Specific Conductivity	(umhos/cm)		691		69		0 680		690				
Turbidity/Color			100 3C	メン	,		1-1						
Odor			× e	2				づ					
comments: Sherve were observed in the wed													

Project No: 11-100	Date: _06-03-11										
						'ell N°:		₩ <u>2</u>			
Field Personnel: _	Mike				W	eathe	r: <u> </u>	found	/		
Project Location: 17715 Mission Boulevard, Hayward											
PURGE WATER VOLUME	1			Water Column (ft)		Ca	Multipli sing Dia		Casing Volume (gal)	Purged Volume (gal)	
CALCULATION		10 (4	Γ.			2" 4		6"			
	33.75	19.69	(14.06		0.16	0.64	1.44	- 2.24		
Purge Method: Bailer Measuring Reference: TOC											
Time											
Volume Purged (gal)		6	İ	2,5	5	S	5.0	7.0			
Temperature (° F)		64.	3	64.	$\overline{\mathcal{D}}$	6	3.9	63.9			
рН		6.6	<i>i</i>	6.58	ŝ	Б.	59	6.57	·		
Specific Conductivity (umhos/cm)	690	,	700	>			700			
Turbidity/Color		270	オソ	,		-	-	J			
Odor		/e	1)	,	•	1	4			
Comments: ND Shews											

Project No: 11-103	Date:06-03-11								_						
Project Name ABE								Well N°: — MW3							
Field Personnel:	Mike					W	eathe	r:	<u>_</u>	boud	<u>/</u>				
Project Location:	17715 N	lissi	on Boule	var	d, Haywaı	rd									
PURGE WATER VOLUME	Total Well Depth (ft)	Depth to Water (ft		Water Column (ft)		Multipil Casing Dia					Casing Volume (gal)	Purged Volume (gal)			
CALCULATION	22.75	15	8.84		14.91		2" 4"		6"					_	
	33.75	10			ן אייון		0.16	0.64	1 1.44		2,38	7	- Jr	0	
Purge Method: Bailer Measuring Reference: TOC															
Time															
Volume Purged (gal)			6	,	2	5	2	0.		7-0					
Temperature (° F)			64.2		2 63.0		63.9			63.7					
рН	7774.1		6.37		6.5	7	6.55		ĺ	5-53					
Specific Conductivity (umhos/cm)	ï	690	,	700		710			700					
Turbidity/Color			278/6	<i>‡</i> Ý		•		7		7					
Odor			NO	ς	()	,		-1		J					
Comments: ND Shews															

Project No: 11-10 Project Name ABE Field Personnel: Project Location:	Mike	sion Boule	vard, Haywa	Date: — Well N°: Weathe	—MV		(<i>y</i>	
PURGE WATER VOLUME	VATER VOLUME Depth (ft) V		Water Column (ft)	Ca	Multiplie sing Dian		Casing Volume (gal)	Purged Volume (gal)
CALCULATION	25	15.93	9.07	2"	4"	6"	1.45	1×4-5
Purge Method: Bailer Measuring Reference: TOC								
Time								
Volume Purged (gal)		, 00	(-)	7	5-0	4.5		
Temperature (° F)		63.	7 63.	5 6.	3-5	63.3		
рН		6.5	0 6.5	7 6	. 55	6.55		
Specific Conductivity	(umhos/cm)	710	o 7 00	\mathcal{F}	00	690		
Turbidity/Color		BROW	7 -1	• July -	-5	-9		
Odor		Mo)	\rightarrow		
Comments:	,							

Project No: 11-103.00 Date:06-03-11 Project Name ABE Well No:MW7 Field Personnel:Mike Weather:									4	
PURGE WATER VOLUME	Total Well Depth (ft)	Depth to Water (ft		Water Column (ft)		Cas	Multipli sing Dia		Casing Volume (gal)	Purged Volume (gal)
CALCULATION	25	168	<i>i</i>	8.19		2 "	4 " 0.64	1.44	1.31	74.0
Purge Method: Bailer Measuring Reference: TOC										
Time										
Volume Purged (gal)			0	1.5		3.	0	4.0		
Temperature (° F)			0. PG	63.8		5 63-6		63.6		
рН		- (6:37	6.36		6.37		6.39		
Specific Conductivity (umhos/cm)	Co	00	670	>	(c)	70 660			
Turbidity/Color		18	sut	→				-		
Odor			No	\rightarrow		-	′. د	7		
Comments: ——										