RECEIVED

10:28 am, Oct 29, 2008

Alameda County Environmental Health

THIRD QUARTER 2008 GROUNDWATER MONITORING

ABE Petroleum LLC 17715 Mission Boulevard Hayward, California 94539

> Prepared for Mr. Paul Garg ABE Petroleum LLC

Prepared by Sierra Environmental, Inc.

September 25, 2008 Project 03-103.00

September 25, 2008 Project 03-103.00

Mr. Paul Garg ABE Petroleum LLC 33090 Mission Boulevard Union City, California 94587

Subject:

Report for Third Quarter 2008 Groundwater Monitoring, ABE

Petroleum LLC, 17715 Mission Boulevard, Hayward, California

Dear Mr. Garg:

Sierra Environmental, Inc. (Sierra) is pleased to present this report summarizing the results for the third quarter 2008 groundwater monitoring at the subject location, hereafter, referred to as Site. Figure 1 shows the Site location. The groundwater monitoring was concurred by Alameda County Health Care Services (ACHCS) in a letter dated February 16, 2000, as result of gasoline impact to groundwater beneath the Site.

On September 9, 2008, Sierra obtained and recorded groundwater data, and collected groundwater samples from five (5) groundwater monitoring wells at and near the Site for chemical analysis. Sierra submitted the samples to Accutest Laboratories of Northern California (Accutest) for chemical analysis. Accutest is a State-certified analytical laboratory (#08258CA).

BACKGROUND

Please refer to Appendix A for Site's background information.

GROUNDWATER MONITORING

On September 9, 2008, Sierra performed the third quarter 2008 groundwater monitoring at the Site. Sierra's field personnel measured the groundwater levels at MW1, MW2, MW3, MW6, and MW7 (Figure 2) using an electronic sounder. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 20.96' to 24.82' feet below TOC with a northwesterly flow direction during this monitoring event. Table I presents the groundwater measurement data.

MW4 and MW5 were inaccessible due to route 238 expansion project.

Sierra's field personnel purged the wells using bailers. pH, temperature, and electrical conductivity of groundwater were recorded during the purging activities to affirm that groundwater in the wells have stabilized. After completion of the purging, groundwater samples MW-1, MW-2, MW-3, MW-6, and MW-7 were collected from the wells. After collection, the groundwater from each well was transferred into clean volatile organic analysis vials. The vials were sealed with Teflon-septum screw caps, labeled, placed on ice in a cooler, and delivered to Accutest with chain-of-custody documentation.

All sampling and measurement equipment were washed with Liqui-Nox® (a phosphate free laboratory detergent), and rinsed with tap water at each measurement and sampling interval. Purged and wash water was stored in 55-gallon drums at a designated location at the Site. Sierra's quality assurance/quality control (QA/QC) protocol is presented in Appendix B.

CHEMICAL ANALYSIS

The samples were analyzed using the United States Environmental Protection Agency (EPA) GC-MS method. The samples were also analyzed for TPHG, benzene, toluene, ethyl benzene, total xylenes (BTEX), and fuel oxygenates using EPA method 8260B. Copies of certified analytical results and chain-of-custody documentation are presented in Appendix C. Copies of the field notes are presented in Appendix D.

ANALYTICAL RESULTS

Table II presents Summary of the analytical results.

CONCLUSION AND RECOMMENDATIONS

No gasoline constituents were detected in offsite monitoring well MW6 and MW7. Concentrations of the gasoline constituents in the groundwater samples collected from the onsite wells have decreased during this monitoring event. Sierra recommends continuing the guarterly groundwater monitoring at the Site.

LIMITATIONS

The content and conclusion provided by Sierra in this report are based on information collected during its assessment/monitoring, which include, but are not limited to field observations and analytical results for the groundwater samples collected at the Site. Sierra assumes that the samples collected and laboratory results are reasonably representative of the whole Site, which may not be the case at unsampled areas. This assessment/monitoring was performed in accordance with generally accepted principles and practices of environmental engineering and assessment in Northern California at the time of the work. This report presents our professional opinion based on our findings, technical knowledge, and experience working on similar projects. No warranty, either expressed or implied, is made. The conclusions presented are based on the analytical results and current regulatory requirements. We are not responsible for the impact of any changes in environmental standards or regulations in the future.

Please feel welcome to call us if you have questions.

Mitch Hajiaghai, REA II, CAC

Principal

Attachments:

Table I Groundwater Elevation Data

Analytical Results for Groundwater Samples Table II

Figure 1 Site Location Map

Figure 2 **Groundwater Monitoring Well Locations**

Background Information Appendix A

Appendix B QA/QC Protocol

Certified Analytical Results and Chain-of-Custody Documentation Appendix C

Appendix D Field Notes

cc: Mr. Paresh Khatri ACHCS (1 Copy)

TABLE I GROUNDWATER ELEVATION DATA

MW1 8-18-00 2 99.46 20.32 79.14 3-30-01 20.30 79.16 20.30 79.16 6-22-01 21.91 77.55 75.90 9-20-01 23.56 75.90 12-27-01 22.59 76.87 9-24-02 23.69 75.77 12-17-02 22.75 76.71 4-2-03 21.15 78.31 6-12-03 20.64 78.82 9-29-03 22.95 76.51 12-04-03 23.70 75.76 03-09-04 19.80 79.66 6-24-04 21.44 78.02 9-09-04 23.30 76.16 12-21-04 22.92 76.54 3-16-05 18.99 80.47 6-09-05 20.02 79.44 9-22-05 21.90 77.56 3-10-06 17.85 81.61 6-7-06 59.50 15.91 43.59 9-11-06 18.60 40.90 </th <th>Well ID</th> <th>Measurement Date</th> <th>Well Casing Diameter (in)</th> <th>Well Casing Elevation (ft)</th> <th>Depth to¹ Water (ft)</th> <th>Water Table² Elevation (ft)</th>	Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to ¹ Water (ft)	Water Table ² Elevation (ft)
3-13-08 20.09 39.41 6-13-08 22.08 37.42 09-09-08 23.57 35.93	MW1	3-30-01 6-22-01 9-20-01 12-27-01 9-24-02 12-17-02 4-2-03 6-12-03 9-29-03 12-04-03 03-09-04 6-24-04 9-09-04 12-21-04 3-16-05 6-09-05 9-22-05 12-07-05 3-10-06 6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08	2		20.30 21.91 23.56 22.59 23.69 22.75 21.15 20.64 22.95 23.70 19.80 21.44 23.30 22.92 18.99 20.02 20.69 21.90 17.85 15.91 18.60 20.05 19.47 21.11 22.61 23.50 20.09 22.08	79.16 77.55 75.90 76.87 75.77 76.71 78.31 78.82 76.51 75.76 79.66 78.02 76.16 76.54 80.47 79.44 78.77 77.56 81.61 43.59 40.90 39.45 40.03 38.39 36.89 36.00 39.41 37.42

TABLE I GROUNDWATER ELEVATION DATA (CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
MW2	8-18-00 3-30-01 6-22-01 9-20-01 12-27-01 9-24-02 12-17-02 4-2-03 6-12-03 9-29-03 12-04-03 03-09-04 6-24-04	2	100.58	21.55 21.55 23.15 24.78 23.82 24.89 23.99 22.32 21.84 24.15 24.91 21.05 22.95	79.03 79.03 77.43 75.80 76.76 75.69 76.59 78.26 78.74 76.43 75.67 79.53 77.63
	9-09-04 12-21-04 3-16-05 6-09-05 9-22-05 12-7-05 3-10-06 6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08		60.61	24.55 24.21 20.29 21.68 21.98 23.22 19.15 17.31 19.99 21.48 20.71 22.33 23.85 24.71 21.34 23.29 24.82	76.03 76.37 80.29 78.90 78.60 77.36 81.43 43.30 40.62 39.13 39.90 38.28 36.76 35.90 39.27 37.32 35.79

TABLE I GROUNDWATER ELEVATION DATA (CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
MW3	8-18-00	2	99.69	20.68	79.01
	3-30-01			20.68	79.01
	6-22-01			22.31	77.38
	9-20-01			23.92	75.77
	12-27-01			22.95	76.74
	9-24-02			24.03	75.66
	12-17-02			23.09	76.60
	4-2-03			21.46	78.23
	6-12-03			20.99	78.70
	9-29-03			23.30	76.39
	12-04-03			24.05	75.64
	03-09-04			20.20	79.49
	6-24-04			22.11	77.58
	9-09-04			20.20	79.49
	12-21-04			23.35	76.34
	3-16-05			19.43	80.26
	6-09-05			20.47	79.22
	9-22-05			21.13	78.56
	12-7-05			22.36	77.33
	3-10-06			18.30	81.39
	6-7-06		59.73	16.47	43.26
	9-11-06			19.13	40.60
	12-13-06			20.66	39.07
	3-12-07			19.88	39.85
	6-6-07			21.48	38.25
	9-6-07			22.99	36.74
	12-14-07			23.85	35.88
	3-13-08			20.47	39.26
	6-13-08			22.43	37.30
	09-09-08			23.98	35.75

TABLE I GROUNDWATER ELEVATION DATA (CONTINUED)

Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water (ft)	Water Table Elevation (ft)
MW4	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-08 3-13-08 6-13-08	2	59.29	15.71 18.40 19.64 19.13 N/A ³ N/A N/A N/A N/A	43.58 40.89 39.65 40.16 N/A N/A N/A N/A N/A
MW5	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-08 3-13-08 6-13-08 09-09-08	2	56.31	13.35 15.99 17.45 16.68 N/A N/A N/A N/A N/A	42.96 40.32 38.86 39.63 N/A N/A N/A N/A N/A
MW6	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08	2	56.63	13.64 16.25 17.72 16.95 18.47 19.96 20.81 17.46 19.38 20.96	42.99 40.38 38.91 39.68 38.16 36.67 35.82 39.17 37.25 35.67
MW7	6-7-06 9-11-06 12-13-06 3-12-07 6-6-07 9-6-07 12-14-07 3-13-08 6-13-08 09-09-08	2	57.50	14.50 17.12 18.58 17.81 19.32 20.87 21.30 18.34 20.15 21.31	43.00 40.38 38.92 39.69 38.18 36.63 36.20 39.16 37.35 36.19

^{1.}

Depths to groundwater were measured to the top of the well casings Water table elevations were measured in relation to mean sea level (MSL) 2.

^{3.} N/A = Not Accessible

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

Sample ID	Sample Date	Sample Location	TPHG¹ μg/L	Benzene μg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes μg/L	MTBE² μg/L
MW-1	8-18-00	MW1	280,000	10,000	16,000	11,000	49,000	4,000
*	3-30-01		98,000	8,600	14,000	6,300	26,000	7,600
*	6-22-01		110,000	7,500	12,000	5,700	24,000	3,800
*	9-20-01		93,000	8,700	11,000	6,300	27,000	4,600
*	12-27-01		140,000	7,700	11,000	6,500	28,000	7,700
*	9-24-02		110,000	4,600	4,000	4,000	18,000	3,400
*	12-17-02		110,000	6,600	6,700	5,400	23,000	2,900
*	4-2-03		89,000	4,800	6,000	4,600	20,000	5,900
*	6-12-03		69,000	4,100	4,300	3,900	17,000	4,700
*	9-29-03		96,000	7,000	7,700	5,100	22,000	6,200
*	12-04-03		110,000	5,800	5,900	4,300	18,000	4,500
*	03-09-04		130,000	5,900	9,700	4,900	22,000	6,000
*	6-24-04		48,000	5,800	7,500	4,000	18,000	4,000
*	9-09-04		64,000	4,800	7,500	4,500	19,000	2,200
*	12-21-04		53,000	4,800	6,000	3,600	15,000	2,600
*	3-16-05		82,000	4,000	8,600	3,900	18,000	4,300
*	6-09-05		52,000	3,600	6,400	3,300	17,000	3,500
*	9-22-05		62,000	3,500	5,400	3,900	17,000	2,100
*	12-7-05		40,000	3,300	7,500	3,700	18,000	2,500
*	3-10-06		53,000	3,600	6,900	4,000	18,000	3,300
*	6-07-06		57,000	4,200	12,000	3,700	16,000	3,900
*	9-11-06		120,000	3,600	9,500	5,200	23,000	3,000
*	12-13-06		21,000	2,600	8,400	4,300	20,000	1,200
*	3-12-07		96,000	2,300	5,600	5,900	26,000	1,400
*	6-6-07		58,000	2,000	3,400	3,900	16,000	1,500
*	9-6-07		84,000	3,000	4,300	6,000	25,000	2,300
*	12-14-07		55,000	2,500	2,400	4,400	18,000	1,900
*	3-13-08		80,000	2,400	5,400	4,700	22,000	2,000
*	6-13-08		87,000	2,800	2,200	5,000	21,000	3,100
*	09-09-08		34,400	2,040	1,120	2,390	10,100	1,890

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
(CONTINUED)

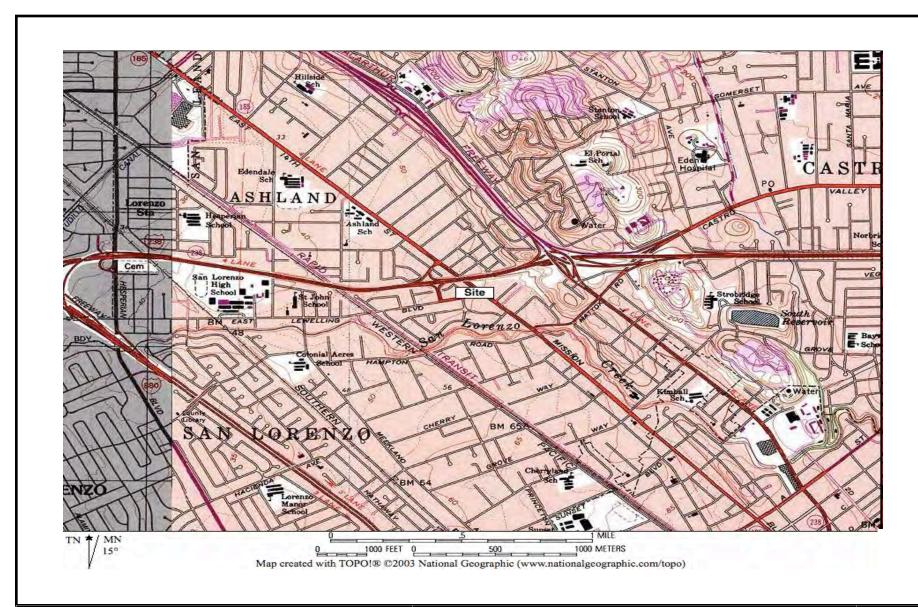
Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethyl benzene μg/L	Xylenes μg/L	MTBE μg/L
MW-2	8-18-00	MW2	290,000	3700	990	7,300	26,000	ND ³
*	3-30-01		47,000	3,200	470	4,500	13,000	3,100
*	6-22-01		57,000	2,500	350	4,200	12,000	1,800
*	9-20-01		42,000	2,300	230	4,300	12,000	2,200
*	12-27-01		70,000	2,900	390	4,800	14,000	2,400
*	9-24-02		110,000	1,600	200	3,400	9,100	2,500
*	12-17-02		66,000	2,400	340	4,600	13,000	1,900
*	4-2-03		29,000	1,000	130	2,300	5,100	2,000
*	6-12-03		8,700	380	52	790	2,000	2,200
*	9-29-03		52,000	1,700	200	4,500	9,800	2,300
*	12-04-03		66,000	1,500	210	4,500	9,200	1,900
*	03-09-04		61,000	1,500	2,000	4,200	8,500	2,200
*	6-24-04		29,000	1,200	72	3,100	6,000	2,100
*	9-09-04		37,000	1,600	110	4,000	8,500	3,100
*	12-21-04		27,000	1,400	84	3,100	5,400	3,200
*	3-16-05		54,000	1,700	140	4,500	8,900	4,000
*	6-09-05		2,800	420	ND₃	180	51	930
*	9-22-05		33,000	1,400	ND	3,400	5,700	2,200
*	12-7-05		20,000	1,600	130	3,400	6,000	3,000
*	3-10-06		34,000	2,100	170	4,200	7,500	4,400
*	6-07-06		29,000	2,400	250	3,600	5,100	3,200
*	9-11-06		32,000	1,100	140	2,400	3,500	1,600
*	12-13-06		36,000	1,400	220	3,400	4,900	1,900
*	3-12-07		36,000	1,200	250	3,800	5,700	1,800
*	6-6-07		24,000	1,100	170	3,000	4,200	1,400
*	9-6-07		44,000	1,600	290	5,700	6,800	1,900
*	12-14-07		28,000	1,200	160	3,600	3,700	1,500
*	3-13-08		47,000	1,100	190	5,800	7,500	1,200
*	6-13-08		40,000	950	170	4,600	4,800	1,400
*	09-09-08		20,300	706	121	2,680	2580	1,180

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
(CONTINUED)

Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes μg/L	MTBE μg/L
MW-3	8-18-00	MW3	46,000	3,200	550	3,700	14,000	2,200
*	3-30-01		30,000	3,300	340	2,800	9,100	4,700
*	6-22-01		35,000	4,000	340	2,900	7,600	4,100
*	9-20-01		30,000	3,800	260	2,500	6,600	5,300
*	12-27-01		39,000	4,400	340	3,000	6,700	5,500
*	9-24-02		53,000	4,100	270	3,100	6,600	6,400
*	12-17-02		40,000	3,600	240	2,200	5,700	5,200
*	4-2-03		24,000	2,000	130	1,800	3,300	3,000
*	6-12-03		26,000	2,700	180	2,000	4,200	5,500
*	9-29-03		39,000	4,000	220	3,200	5,300	4,800
*	12-04-03		40,000	3,200	180	2,200	4,300	4,400
*	03-09-04		39,000	3,100	160	2,100	4,400	4,000
*	6-24-04		21,000	3,000	110	2,300	3,800	3,400
*	9-09-04		26,000	4,100	140	2,200	4,300	6,000
*	12-21-04		20,000	3,400	99	1,700	2,900	6,400
*	3-16-05		35,000	1,800	78	1,900	2,600	4,000
*	6-09-05		2,000	55	ND	120	30	150
*	9-22-05		17,000	2,000	69	1,500	1,900	3,500
*	12-7-05		11,000	1,800	62	1,500	1,700	2,300
*	3-10-06		9,100	1,100	24	990	810	1,300
*	6-07-06		3,000	440	16	180	450	320
*	9-11-06		17,000	1,300	38	1,000	1,600	690
*	12-13-06		13,000	1,200	ND	1,000	1,300	520
*	3-12-07		120,000	10,000	210	11,000	11,000	ND
*	6-6-07		13,000	1,200	19	1,100	1,100	590
*	9-6-07		22,000	1,900	32	2,000	1,600	1,000
*	12-14-07		16,000	1,400	23	1,200	1,300	600
*	3-13-08		10,000	870	ND	1,000	670	420
*	6-13-08		15,000	1,300	27	1,300	1,200	660
*	09-09-08		9,030	890	<10	695	372	460

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
(CONTINUED)

Sample ID	Sample Date	Sample Location	TPHG μg/L	Benzene μg/L	Toluene μg/L	Ethylbenzene μg/L	Xylenes μg/L	MTBE μg/L
MW-4	6-7-06	MW4	<25	<0.5	<0.5	<0.5	<0.5	<1
*	9-11-06		<25	<0.5	<0.5	<0.5	<0.5	<1
*	12-13-06		<25	<0.5	<0.5	<0.5	<0.5	<1
*	3-12-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-6-07		NS^3	NS	NS	NS	NS	NS
	9-6-07		NS	NS	NS	NS	NS	NS
	12-14-07		NS	NS	NS	NS	NS	NS
	3-13-08		NS	NS	NS	NS	NS	NS
	6-13-08		NS	NS	NS	NS	NS	NS
	09-09-08		NS	NS	NS	NS	NS	NS
MW-5	6-7-06	MW5	<25	<0.5	<0.5	<0.5	<0.5	<1
*	9-11-06		<25	<0.5	<0.5	<0.5	< 0.5	<1
*	12-13-06		<25	<0.5	<0.5	<0.5	< 0.5	<1
*	3-12-07		<25	<0.5	<0.5	<0.5	<0.5	<1
	6-6-07		NS	NS	NS	NS	NS	NS
	9-6-07		NS	NS	NS	NS	NS	NS
	12-14-07		NS	NS	NS	NS	NS	NS
	3-13-08		NS	NS	NS	NS	NS	NS
	6-13-08		NS	NS	NS	NS	NS	NS
	09-09-08		NS	NS	NS	NS	NS	NS
MW-6	6-7-06	MW6	<25	<0.5	<0.5	<0.5	<0.5	<1
*	9-11-06		<25	<0.5	<0.5	<0.5	<0.5	<1
*	12-13-06		<25	<0.5	<0.5	<0.5	<0.5	<1
*	3-12-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	6-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	9-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	12-14-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	3-13-08		<25	<0.5	<0.5	<0.5	<0.5	<1
*	6-13-08		<25	<0.5	<0.5	<0.5	<1	<1
*	09-09-08		<25	<0.30	<0.5	<0.30	<0.70	<0.5
MW-7	6-7-06	MW7	<25	<0.5	<0.5	<0.5	<0.5	<1
*	9-11-06		<25	<0.5	<0.5	<0.5	<0.5	<1
*	12-13-06		<25	<0.5	<0.5	<0.5	<0.5	<1
*	3-12-07		27	<0.5	<0.5	<0.5	<0.5	<1
*	6-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	9-6-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	12-14-07		<25	<0.5	<0.5	<0.5	<0.5	<1
*	3-13-08		<25	<0.5	<0.5	<0.5	<0.5	<1
*	6-13-08		<25	<0.5	<0.5	<0.5	<1	<1
*	09-09-08		<25	<0.5	<0.5	<0.5	<1	<1


NOTE: 387μg/L tert-Butanol (TBA) was detected in sample MW-2, and 962μg/L tert-Butanol (TBA) was detected in sample MW-3.

1. TPHG = Total Petroleum Hydrocarbons as Gasoline

2. MTBE = Methyl Tertiary Butyl Ether

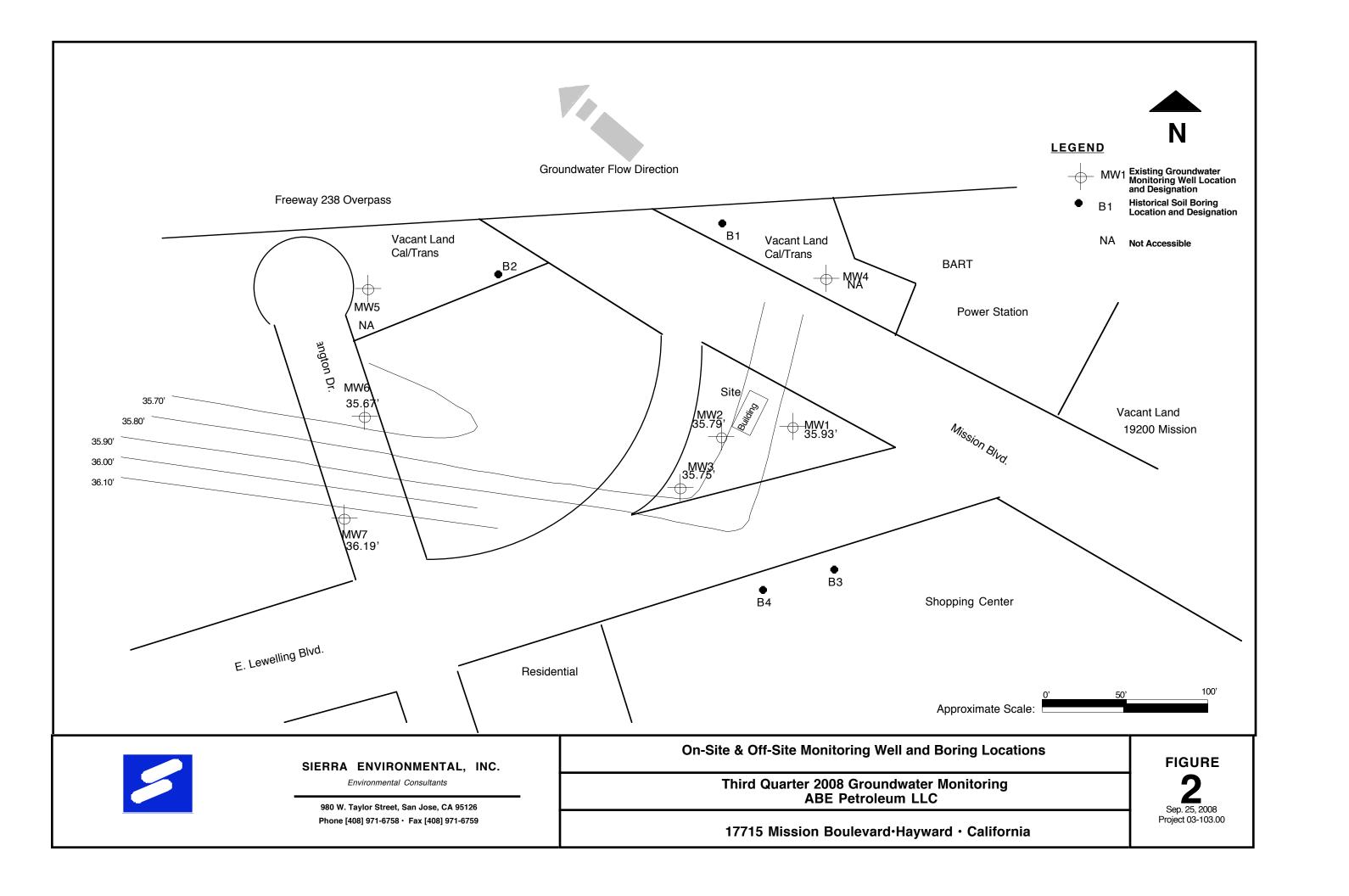
3. NS = Not Sampled

The Sample was analyzed for Fuel Oxygenates using EPA Method 8260B. Analytical result is for MTBE

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

980 W. Taylor Street, San Jose, CA 95126 Phone [408] 971-6758 • Fax [408] 971-6759

SITE LOCATION MAP


Third Quarter 2008 Groundwater Monitoring Report ABE Petroleum LLC

17715 Mission Boulevard · Hayward · California

FIGURE

1

Sep. 25, 2008 Project 03-103.00

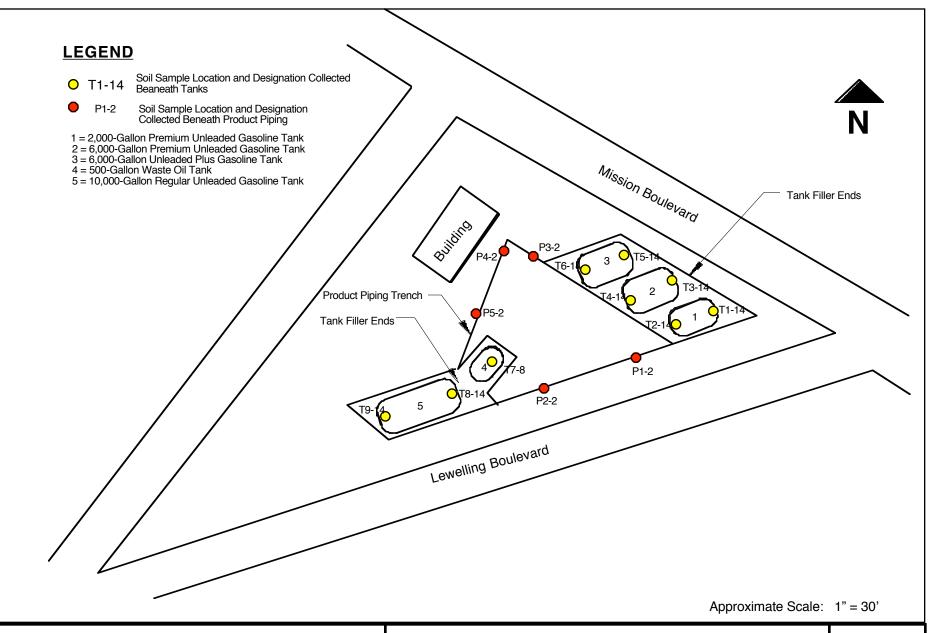
Appendix A BACKGROUND INFORMATION

BACKGROUND

On September 16, 1997, Balch Petroleum Contractors & Builders, Inc. (Balch) of Milpitas, California, removed one 2,000-gallon, two 6,000-gallon, one 10,000-gallon single-wall steel gasoline, and one 500-gallon single-wall steel waste oil USTs from the Site. Former UST locations are shown in Figure A of this appendix.

No hole or damage was observed in the tanks. No groundwater was encountered in the tank excavations. After UST removal, Sierra collected soil samples from the tank excavations for chemical analysis.

Up to 2,300 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPHG) was detected in the soil samples collected from beneath the tanks at approximately 14 feet below ground surface (bgs). The soil sample locations are shown in Figure A.


On August 14, 2000, Sierra drilled three exploratory soil borings and converted them to groundwater monitoring well MW1 through MW3. The wells are approximately 35 feet deep. Sierra collected soil and groundwater samples from the borings/wells for chemical analysis. The analytical results showed up to 720 ppm TPHG, 2.2 ppm benzene, and 3.4 ppm methyl tertiary butyl ether (MTBE) in the soil samples. Up to 290000 ppb TPHG, 10000 ppb benzene, and 4300 ppb MTBE were detected in the groundwater samples. Gasoline constituents were detected in groundwater samples collected from all three monitoring wells. Groundwater monitoring well locations are shown on Figure 2.

Starting March 30, 2001, Sierra performed quarterly groundwater monitoring at the Site. The field and analytical results are presented in Table I and II.

On May 4, 2006, Sierra retained services of Vironex Environmental Services (Vironex) to drill soil boring B1 through B4 at the Jack In The Box and Cal/Trans properties. Sierra collected grab groundwater samples from the borings for chemical analysis. Up to 370 μg/l total petroleum hydrocarbons as gasoline (TPHG), 16 μg/l toluene 15 μg/l ethylbenzene, and 100 µg/l xylenes were detected in the water sample collected from the borings (B3 and B4) advanced at the Jack In The Box property. No benzene or MTBE was detected in water samples collected at this property. 3.2 µg/l MTBE was detected in the water samples collected from the borings advanced at the Cal/Trans properties. The MTBE was detected in boring B2 located within 300 feet northwest at hydraulic down gradient of the Site. On May 10 and 11, 2006, Sierra retained services of Hew Drilling Company, Inc. (Hew) to construct 4 groundwater monitoring wells (MW4 through MW7) at the CalTrans properties, and Langton Drive. construction. Sierra had the wellheads surveyed, developed the wells, and collected groundwater samples from the wells for chemical analysis. No gasoline constituents were detected in the groundwater samples collected from the wells. The analytical results for the soil and groundwater samples collected from the boring and the wells

suggest the tip of the dissolved MTBE plume in the groundwater is confined within 300 feet northwest of the Site. The length of the dissolved plume of other gasoline constituents in groundwater is shorter than the MTBE plume. Figure 2 shows the groundwater monitoring well locations.

On September 11, 2006, Sierra started quarterly groundwater monitoring of MW1 through MW7. Table I and II presents the groundwater measurement and analytical data.

SIERRA ENVIRONMENTAL, INC.

Environmental Consultants

980 W. Taylor St., San Jose, CA 95126 Phone [408]971-6758 • Fax [408] 971-6759 Former UST and Soil Sample Locations

Third Quarter 2008 Groundwater Monitoring ABE Petroleum LLC

17715 Mission Boulevard • Hayward • California

FIGURE

Sep. 25, 2008 Project 03-103.00

Appendix B QA/QC PROTOCOL

QA/QC PROTOCOL

Groundwater Level and Well Depth Measurements

Groundwater level and well depths are measured using electrical sounder. An electrical sounder consists of a reel, two-conductor cable, a water sensor, and a control panel with a buzzer. To measure groundwater level, the sensor is lowered into a well. A low current circuit is completed when the sensor makes contact with water. The current in the circuit is then amplified and activates a buzzer which produce an audible signal. Cable markings are divided at 0.05-foot increments. Well depths are measured to the nearest 0.01 foot. Groundwater levels are measured before and after sample collection to ensure data accuracy.

Well Purging

Low flow submersible electrical pumps or bailers are used to purge groundwater monitoring wells. Approximately 3 to 5 well casing volume of water is removed from the well as a measure to stabilize natural, and representative groundwater in each well. pH, electrical conductivity, and temperature of the purged water is measured and recorded at approximately each casing volume interval. Purge water is stabilized when pH is recorded within 0.5 unit, electrical conductivity is within 5 percent, and temperature is within 1.0 degree Celsius.

Groundwater Sampling

Groundwater samples are transferred into appropriate containers provided by certified analytical laboratories. The containers include proper preservatives, and labels with appropriate project information. Groundwater is transferred into the containers with as little agitation as possible. After collection, containers are sealed and checked to ensure that no head space or air bubbles are present in the sample.

After collection, if required, samples are kept in a cooler to be delivered to analytical laboratory with chain-of-custody documentation.

Equipment Decontamination

All sampling equipment are washed with Liqui-Nox® (a phosphate free laboratory detergent), and rinsed with tap water before each sampling event, and at each sampling interval. To reduce the risk of cross contamination, wells which have shown lower levels of contamination historically are purged and sampled first.

Analytical Procedures

Samples are analyzed by an accredited State-certified analytical laboratory using procedures prescribed by United State Environmental Protection Agency (EPA) and other Federal, State, and Local agencies. At minimum a field blank is analyzed with each group of samples for quality assurance measures. At minimum two qualified personnel review analytical results and compare them with historical data for consistency and accuracy.

Field Reports

All field observations are documented in field reports. A field report contain project information, climatic condition, contractor/subcontractor information, field observation, discussions and communications during each particular field activity. Field reports are stored in appropriate project files. Project managers review field reports to obtain necessary information regarding the status of each project on daily basis.

Appendix C CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

09/22/08

Technical Report for

Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA

03-103.00

Accutest Job Number: C2261

Sampling Date: 09/09/08

Report to:

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 maz.sierra@sbcglobal.net

ATTN: Mitch Hajiaghai

Total number of pages in report: 23

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Laurie Glantz-Murphy Laboratory Director

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

_

. .

6.3

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C2261-1: MW-1	5
2.2: C2261-2: MW-2	6
2.3: C2261-3: MW-3	7
2.4: C2261-4: MW-6	8
2.5: C2261-5: MW-7	
Section 3: Misc. Forms	10
3.1: Chain of Custody	11
Section 4: GC/MS Volatiles - QC Data Summaries	13
4.1: Method Blank Summary	14
4.2: Blank Spike Summary	18
4.3: Matrix Spike/Matrix Spike Duplicate Summary	22.

Sample Summary

Sierra Environmental, Inc.

Job No: C2261

T0600102154-ABE, 17715 Mission Boulevard, CA Project No: 03-103.00

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C2261-1	09/09/08	10:50 MH	09/09/08	AQ	Ground Water	MW-1
C2261-2	09/09/08	10:35 MH	09/09/08	AQ	Ground Water	MW-2
C2261-3	09/09/08	10:10 MH	09/09/08	AQ	Ground Water	MW-3
C2261-4	09/09/08	09:30 MH	09/09/08	AQ	Ground Water	MW-6
C2261-5	09/09/08	09:40 MH	09/09/08	AQ	Ground Water	MW-7

Sample Results

Report of Analysis

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 C2261-1
 Date Sampled:
 09/09/08

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/08

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M1515.D 200 09/19/08 XB n/a n/a VM46

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	2040	200	60	ug/l	
108-88-3	Toluene	1120	200	100	ug/l	
100-41-4	Ethylbenzene	2390	200	60	ug/l	
1330-20-7	Xylene (total)	10100	400	140	ug/l	
108-20-3	Di-Isopropyl ether	ND	1000	100	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	1000	100	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1890	200	100	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	1000	100	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	2000	1000	ug/l	
	TPH-GRO (C6-C10)	34400	10000	5000	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	106%		60-13	30%	
2037-26-5	Toluene-D8	96%		60-13	30%	
460-00-4	4-Bromofluorobenzene	102%		60-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-2

Lab Sample ID: C2261-2 **Date Sampled:** 09/09/08 Matrix: AQ - Ground Water **Date Received:** 09/09/08 Method: SW846 8260B Percent Solids: n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 M1516.D 66.7 09/19/08 XBn/aVM46 n/a

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	706	67	20	ug/l	
108-88-3	Toluene	121	67	33	ug/l	
100-41-4	Ethylbenzene	2680	67	20	ug/l	
1330-20-7	Xylene (total)	2580	130	47	ug/l	
108-20-3	Di-Isopropyl ether	ND	330	33	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	330	33	ug/l	
1634-04-4	Methyl Tert Butyl Ether	1180	67	33	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	330	33	ug/l	
75-65-0	Tert-Butyl Alcohol	387	670	330	ug/l	J
	TPH-GRO (C6-C10)	20300	3300	1700	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
C115 110.	Sull'ogute Recoveries	11011111 1	110111111111111111111111111111111111111	2,111	165	
1868-53-7	Dibromofluoromethane	105%		60-1	30%	
2037-26-5	Toluene-D8	99%		60-1	30%	
460-00-4	4-Bromofluorobenzene	101%		60-1	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-3

 Lab Sample ID:
 C2261-3
 Date Sampled:
 09/09/08

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/08

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a M1557.D 20 09/20/08 XB n/a n/a VM47

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	890	20	6.0	ug/l	
108-88-3	Toluene	ND	20	10	ug/l	
100-41-4	Ethylbenzene	695	20	6.0	ug/l	
1330-20-7	Xylene (total)	372	40	14	ug/l	
108-20-3	Di-Isopropyl ether	ND	100	10	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	100	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	460	20	10	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	100	10	ug/l	
75-65-0	Tert-Butyl Alcohol	962	200	100	ug/l	
	TPH-GRO (C6-C10)	9030	1000	500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	101%		60-1	30%	
2037-26-5	Toluene-D8	104%		60-1	30%	
460-00-4	4-Bromofluorobenzene	100%		60-1	30%	

⁽a) Sample was not preserved to a pH < 2.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-6

 Lab Sample ID:
 C2261-4
 Date Sampled:
 09/09/08

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/08

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M1502.D 1 09/18/08 XB n/a n/a VM46

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	ND	1.0	0.30	ug/l	
Toluene	ND	1.0	0.50	ug/l	
Ethylbenzene	ND	1.0	0.30	ug/l	
Xylene (total)	ND	2.0	0.70	ug/l	
Di-Isopropyl ether	ND	5.0	0.50	ug/l	
Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
Tert-Butyl Alcohol	ND	10	5.0	ug/l	
TPH-GRO (C6-C10)	ND	50	25	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
Dibromofluoromethane	102%		60-1	30%	
Toluene-D8	97%	60-130%			
4-Bromofluorobenzene	98%		60-1	30%	
	Benzene Toluene Ethylbenzene Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene Toluene Ethylbenzene Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Run# 1 Dibromofluoromethane Toluene-D8	Benzene Toluene Ethylbenzene ND ND 1.0 Ethylbenzene ND 1.0 Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) ND Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane Toluene-D8 ND 1.0 T.0 T.0 T.0 T.0 T.0 T.0 T.0 T.0 T.0 T	ND	ND

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-7

 Lab Sample ID:
 C2261-5
 Date Sampled:
 09/09/08

 Matrix:
 AQ - Ground Water
 Date Received:
 09/09/08

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M1501.D 1 09/18/08 XB n/a n/a VM46

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

BTEX, Oxygenates

Compound	Result	RL	MDL	Units	Q
Benzene	ND	1.0	0.30	ug/l	
Toluene	ND	1.0	0.50	ug/l	
Ethylbenzene	ND	1.0	0.30	ug/l	
Xylene (total)	ND	2.0	0.70	ug/l	
Di-Isopropyl ether	ND	5.0	0.50	ug/l	
Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
Tert-Butyl Alcohol	ND	10	5.0	ug/l	
TPH-GRO (C6-C10)	ND	50	25	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Dibromofluoromethane	105%		60-1	30%	
Toluene-D8	98%		60-130%		
4-Bromofluorobenzene	98%		60-1	30%	
	Benzene Toluene Ethylbenzene Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether Tert-Amyl Methyl Ether Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Dibromofluoromethane Toluene-D8	Benzene ND Toluene ND Ethylbenzene ND Xylene (total) ND Di-Isopropyl ether ND Ethyl Tert Butyl Ether ND Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol ND TPH-GRO (C6-C10) ND Surrogate Recoveries Run# 1 Dibromofluoromethane 105% Toluene-D8 98%	Benzene Toluene Ethylbenzene Xylene (total) Di-Isopropyl ether Ethyl Tert Butyl Ether Methyl Tert Butyl Ether ND Tert-Amyl Methyl Ether ND Tert-Butyl Alcohol TPH-GRO (C6-C10) Surrogate Recoveries Run# 1 Run# 2 Dibromofluoromethane Toluene-D8	Benzene ND 1.0 0.30 Toluene ND 1.0 0.50 Ethylbenzene ND 1.0 0.30 Xylene (total) ND 2.0 0.70 Di-Isopropyl ether ND 5.0 0.50 Ethyl Tert Butyl Ether ND 5.0 0.50 Methyl Tert Butyl Ether ND 1.0 0.50 Tert-Amyl Methyl Ether ND 5.0 0.50 Tert-Butyl Alcohol ND 10 5.0 TPH-GRO (C6-C10) ND 50 25 Surrogate Recoveries Run# 1 Run# 2 Lim Dibromofluoromethane 105% 60-1 Toluene-D8 98% 60-1	Benzene ND 1.0 0.30 ug/l Toluene ND 1.0 0.50 ug/l Ethylbenzene ND 1.0 0.30 ug/l Xylene (total) ND 2.0 0.70 ug/l Di-Isopropyl ether ND 5.0 0.50 ug/l Ethyl Tert Butyl Ether ND 5.0 0.50 ug/l Methyl Tert Butyl Ether ND 1.0 0.50 ug/l Tert-Amyl Methyl Ether ND 5.0 0.50 ug/l Tert-Butyl Alcohol ND 10 5.0 ug/l TPH-GRO (C6-C10) ND 50 25 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 105% 60-130% Toluene-D8 98% 60-130%

ND = Not detected MDL - Method Detection Limit J = Indetection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

	CHAIN OF CUSTODY											
-	Project Name:ABE Project No:O3_\oscilos 3 \oscilos 0 Date:O9/\oscilos 9/\oscilos 8 Project No:O3_\oscilos 3 \oscilos 0 Date:O9/\oscilos 9/\oscilos 8 Date:O9/\oscilos 9/\oscilos 9/\osci											
Project L	Project Location: _17715 Mission Boulevard Client:Paul GargSampler: _Mike Hagi											
Sample ID	Date Sampled	Sampling Time	Matrix	N° of Containers			A	nalysis Re	•		Turnaro	und Time
			C	2261	8015/8020 TPHG BTEX,,MTBE	8015 TPHD	418.1 TRPH	BTEX 8020	TPHG&BTEX Fuel Oxygenates 8260B			
MW-1	9/09/08	10.50	inter	- 3	001						24-hour Other	Normal
MW, 2	1 1	12:35	-		.002				\times		24-hour Other	Normal
MW.3		10:10			063				\geq		24-hour Other	Normal
MWB		9/30			604						24-hour Other	Normal
MW.	<u> </u>	9140	V	1	00\$						24-hour Other	Normal
7 (00)	 										24-hour Other	Normal
	3 Noas (WHCL) Rewid @ Termograture: 8.6°C 24-hour Normal Other											
Remarks: Samples contain preservative. Please email the results in EDF format for Geotracker ID# T0600102154 to maz.sierra@sbcglobal.net												
Relinquishe		///	2	Date / 07/	08 1	Time //ˈve	Received	1 by Ro	seph Mac	had	Date 9 09 08	Time 1137
Relinquishe	ed by	- 1 -		Date		Time	Received	by \			Date	Time

980 W. Taylor Street • San Jose • California • 95126 Phone (408) 971-6758 • Fax (408) 9716759

SIERRA Form 104-02

C2261: Chain of Custody
Page 1 of 2

Sample Receiving Checklist

Job# C226

Review Chain of Custody: The Chain of Custody: Are these regulatory (NPDES) samples? Was Client informed that the hold time is 1 Are-sample within one-half hold-time? Year Report to info is complete and legible, including the contact and/or Project Mgr identified, including Project name / number in Special requirers Sample IDs / date & time of collection proving Matrix listed and correct? Analyses listed are those we do or client had a Chain is signed / dated by both client and services.	Yes / No. 5mins Yes / 5 / No circle o ucling; me _ address g: _ PO# _ t iding; _ phori ments? Yes vided? Yes as authorized a	No circle one If yes, did they consent to come If no, was the lab informed? Credit card contact chadress one cernall of No circle one No circle one a subcontract Yes / No circle one	ss / No circle one continue?
TAT requested available? Approved by	adiripio addiodi		V
Review Coolers:		•	
	If sampled w	vithin 4hrs, then "on ice" is acceptable.	F. 1
 Samples / Coolers are at 0-6°C? If a cooler is outside the 0-6°C range; note be Note that ANC does NOT accept evidentiary 	elow the bottles	s in that cooler below.	•
Shipment Method:	No sinds one	Un-broken: Yes / No circle one	,
Custody Seals Present: Yes /		Ottatoven 1 so 1 140 circle one	
Review of Sample Bottles: If you answer no, e. p. 10s / bottle number / Date / Time of bottle I	abels match Co	oC?	•
Sample bottle intact? Yes / No crole on Proper containers and volumes? Yes / Proper preservatives? Check pH on preser VOAs received without headspace? Yes	e · · · No circle one rved samples e	except 1664, 625, 8270, and VOAs and lis	st below.
Lah# Client Samule ID	pH Check:	Other Comments / Issu	ies

Lab#	Client Sample ID	pH Check:	Other Comments / Issues
Julio ir			
			;
 	· · · · · · · · · · · · · · · · · · ·		,
			·
	Ę		
	•		
<u> </u>			
<u> </u>			

C2261: Chain of Custody Page 2 of 2

ם .	Client informed of irregularities at rec	eiving
Con	nments:	

:T:\Laboratory\Forms\SampleControl\Form_SampleReceiving_2008-04-12.doc

[☐] Project Mgr needs to contact Client for issues

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample VM46-MB2	File ID M1500.D	DF 1	Analyzed 09/18/08	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM46

The QC reported here applies to the following samples:

C2261-1, C2261-2, C2261-4, C2261-5

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	104%	60-130%
2037-26-5	Toluene-D8	96%	60-130%
460-00-4	4-Bromofluorobenzene	99%	60-130%

Page 1 of 1

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample VM47-MB2	File ID M1541.D	DF 1	Analyzed 09/19/08	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM47

The QC reported here applies to the following samples:

C2261-3

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	95%	60-130%
2037-26-5	Toluene-D8	104%	60-130%
460-00-4	4-Bromofluorobenzene	95%	60-130%

Page 1 of 1

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample VM46-MB1	File ID M1492.D	DF 1	Analyzed 09/18/08	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM46

The QC reported here applies to the following samples:

VM46-BS

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	60-130%
2037-26-5	Toluene-D8	97%	60-130%
460-00-4	4-Bromofluorobenzene	97%	60-130%

Page 1 of 1

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample VM47-MB	File ID M1532.D	DF 1	Analyzed 09/19/08	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM47

The QC reported here applies to the following samples: **Method:** SW846 8260B

VM47-BS

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	96%	60-130%
2037-26-5	Toluene-D8	104%	60-130%
460-00-4	4-Bromofluorobenzene	95%	60-130%

Page 1 of 1

Blank Spike Summary Job Number: C2261

Account: SECASJ Sierra Environmental, Inc.

T0600102154-ABE, 17715 Mission Boulevard, CA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM46-BS	M1478.D	1	09/18/08	XB	n/a	n/a	VM46

The QC reported here applies to the following samples:

C2261-1, C2261-2, C2261-4, C2261-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	20.5	103	60-130
108-20-3	Di-Isopropyl ether	20	20.9	105	60-130
100-41-4	Ethylbenzene	20	20.0	100	60-130
637-92-3	Ethyl Tert Butyl Ether	20	20.1	101	60-130
1634-04-4	Methyl Tert Butyl Ether	20	20.4	102	60-130
994-05-8	Tert-Amyl Methyl Ether	20	20.2	101	60-130
75-65-0	Tert-Butyl Alcohol	100	96.7	97	60-130
108-88-3	Toluene	20	19.1	96	60-130
1330-20-7	Xylene (total)	60	58.8	98	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	60-130%
2037-26-5	Toluene-D8	96%	60-130%
460-00-4	4-Bromofluorobenzene	102%	60-130%

Blank Spike Summary Job Number: C2261

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample VM46-BS	File ID M1499.D	DF 1	Analyzed 09/18/08	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM46

60-130%

60-130%

The QC reported here applies to the following samples:

C2261-1, C2261-2, C2261-4, C2261-5

2037-26-5 Toluene-D8

4-Bromofluorobenzene

460-00-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	109	87	60-130
CAS No. Surrogate Recoveries		BSP	Lim		
1868-53-7	Dibromofluoromethane	105%	60-1	130%	

95%

100%

Blank Spike Summary Job Number: C2261

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM47-BS	M1528.D	1	09/19/08	XB	n/a	n/a	VM47

The QC reported here applies to the following samples:

C2261-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	19.2	96	60-130
108-20-3	Di-Isopropyl ether	20	18.3	92	60-130
100-41-4	Ethylbenzene	20	20.7	104	60-130
637-92-3	Ethyl Tert Butyl Ether	20	17.7	89	60-130
1634-04-4	Methyl Tert Butyl Ether	20	17.3	87	60-130
994-05-8	Tert-Amyl Methyl Ether	20	17.4	87	60-130
75-65-0	Tert-Butyl Alcohol	100	79.3	79	60-130
108-88-3	Toluene	20	20.4	102	60-130
1330-20-7	Xylene (total)	60	61.4	102	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	99%	60-130%
2037-26-5	Toluene-D8	101%	60-130%
460-00-4	4-Bromofluorobenzene	100%	60-130%

.

Blank Spike Summary Job Number: C2261

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM47-BS	M1540.D	1	09/19/08	XB	n/a	n/a	VM47

The QC reported here applies to the following samples:

C2261-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	120	96	60-130
CAS No. Surrogate Recoveries		BSP	Lin	nits	
1868-53-7	Dibromofluoromethane	100%	60-	130%	
2037-26-5	Toluene-D8	101%	60-	130%	
460-00-4	4-Bromofluorobenzene	97%	(0)	130%	

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C2261

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C2305-3MS	M1518.D	1	09/19/08	XB	n/a	n/a	VM46
C2305-3MSD	M1519.D	1	09/19/08	XB	n/a	n/a	VM46
C2305-3 a	M1495.D	1	09/18/08	XB	n/a	n/a	VM46

The QC reported here applies to the following samples:

C2261-1, C2261-2, C2261-4, C2261-5

CAS No.	Compound	C2305-3 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	18.9	95	17.4	87	8	60-130/25
108-20-3	Di-Isopropyl ether	ND	20	20.0	100	19.8	99	1	60-130/25
100-41-4	Ethylbenzene	ND	20	14.3	72	12.9	65	10	60-130/25
637-92-3	Ethyl Tert Butyl Ether	ND	20	19.7	99	19.7	99	0	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND	20	20.0	100	20.3	102	1	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND	20	19.3	97	19.5	98	1	60-130/25
75-65-0	Tert-Butyl Alcohol	ND	100	86.7	87	95.1	95	9	60-130/25
108-88-3	Toluene	ND	20	14.5	73	14.0	70	4	60-130/25
1330-20-7	Xylene (total)	ND	60	39.9	67	37.2	62	7	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C2305-3	Limits
	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	106% 91% 100%	105% 94% 103%	107% 96% 100%	60-130% 60-130% 60-130%

(a) Sample was not preserved to a pH < 2.

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: C2261

Account: SECASJ Sierra Environmental, Inc.

Project: T0600102154-ABE, 17715 Mission Boulevard, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C2289-1MS	M1558.D	1	09/20/08	XB	n/a	n/a	VM47
C2289-1MSD	M1559.D	1	09/20/08	XB	n/a	n/a	VM47
C2289-1	M1549.D	1	09/19/08	XB	n/a	n/a	VM47

The QC reported here applies to the following samples:

C2261-3

CAS No.	Compound	C2289-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	17.9	90	17.7	89	1	60-130/25
108-20-3	Di-Isopropyl ether	ND	20	16.8	84	17.7	89	5	60-130/25
100-41-4	Ethylbenzene	ND	20	16.9	85	16.3	82	4	60-130/25
637-92-3	Ethyl Tert Butyl Ether	ND	20	16.2	81	16.6	83	2	60-130/25
1634-04-4	Methyl Tert Butyl Ether	8.8	20	23.5	74	24.6	79	5	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND	20	15.1	76	16.0	80	6	60-130/25
75-65-0	Tert-Butyl Alcohol	ND	100	66.0	66	72.9	73	10	60-130/25
108-88-3	Toluene	ND	20	17.3	87	16.6	83	4	60-130/25
1330-20-7	Xylene (total)	ND	60	48.3	81	46.7	78	3	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C2289-1	Limits
1868-53-7	Dibromofluoromethane	96%	98%	99%	60-130%
2037-26-5	Toluene-D8	103%	102%	104%	60-130%
460-00-4	4-Bromofluorobenzene	99%	99%	93%	60-130%

Page 1 of 1

Appendix D FIELD NOTES

GROUNDWATER MONITORING DATA FORM

Project Name: —Al	3E					Well N°: — WW1							
Field Personnel:	Mike & Ma	z				Weat	her	·	Clon	Jy			
Project Location:	17715 M	issic	n Boulev	arc	1								
PURGE WATER VOLUME	Total Well Depth (ft)		epth to ater (ft	Wa	ter Column (ft)			Multipli		Casing Volume (gal)	Purged Volume (gal)		
CALCULATION	33.25	23	1.57	9	1.68	2"		4"	6"	1.548	450		
						0.10	6	0.64	1.44	1.370	75.0		
Purge Method: _	Bailer				_ Measu	ina R	efei	rence'					
r arge memoar					_ incusu	g	0101			_			
Time													
Volume Purged (gal)			0		1.5		3,	0	5.0				
Temperature (° F)			67.7	2	67.55	-	5	1.51	67.52				
рН			6.21	-	6.20	6	2 i (6	6.05				
Specific Conductivity ((umhos/cm)		700		2100	- اد	21	ay	2110				
Turbidity/Color			2.30	8	\rightarrow		1	4	-				
Odor			Ye	3	-		_)	7				
Comments:				_									

980 W. Taylor Street · San Jose · California · 95126 Phone (408) 971-6758 · Fax (408) 971-6759

Project No: 03-103.00

SIERRA ENVIRONMENTAL, INC.

GROUNDWATER MONITORING DATA FORM

Project Location:	17715 M	issior	Boulev	ard							
PURGE WATER VOLUME CALCULATION	Total Well Depth (ft)		pth to	Wate	er Column (ft)		Cas	Multiplie		Casing Volume (gal)	Purged Volume (gal)
	33.75	24	1.82	8,93			2"	4 "	6"	1.43	24.5
Purge Method:	Bailer							erence:			
Volume Purged (gal)			0		1.2	-	3	.0	4.5		
Temperature (° F)			67.	30	67.7	8	وا	1.14	66.93		
рН			6.7	15	6.2	2	0	.19	6.13		
Specific Conductivity	(umhos/cm)	190		190	9-6	1950		200	0	
Turbidity/Color			1:8:	my	•)		-)	->		
Odor			Xe)	\rightarrow)	-		
Comments: —											

GROUNDWATER MONITORING DATA FORM

Project No: 03-103	3.00			_		Da	ıte: _	9/9	108			
Project Name: —Al	BE					W	ell N°:	·N	IW3			
Field Personnel:	Mike & Maz			Weather: Cloudy								
Project Location:	17715 Mi	ssic	n Boulev	arc	L							
	T					_						
PURGE WATER VOLUME	Total Well Depth (ft)		epth to ater (ft	Wa	ter Column (ft)		Ca	Multipli sing Dia		Casing Volume (gal)	Purged Volume (gal)	
CALCULATION	33.75	,	2 tare.	0	7.77		2"	4"	6"	1 .54	4.5-	
		۷.,	3. 98	'	. ,		0.16	0.64	1.44	(1.7 %	25.0	
	Doiler				Manau	wi m	n Dofe	ronoo!				
Purge Method: Bailer Measuring Reference: TOC												
	· · · · · · · · · · · · · · · · · · ·								-			
Time		+		_		_					-	
Volume Purged (gal)			0		1.5		3	o.	2.0			
Temperature (° F)			67.0		69.83		5 69.		69.73	+		
рН			6.2	حف	6.18		6.12		80.0			
Specific Conductivity	(umhos/cm)		2100	>	210	0	2	013	2100			
Turbidity/Color			1350	イソ	7		-	-)	j			
Odor			ye,	,	->		-	-)	-9			
Comments:				_								

980 W. Taylor Street • San Jose • California • 95126 Phone (408) 971-6758 • Fax (408) 971-6759

Project No: 03-103.00

Project Name: ABE

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

Date: 9/9/08

Weather: Cloudy

GROUNDWATER MONITORING DATA FORM

Field Personnel: _ Project Location:	Mike & Maz 17715 Mis	ssion	Boulev	ard									
PURGE	Total Well Depth (ft)		oth to ter (ft	Wate	er Column (ft)	Multiplier Casing Diameter					ing Volume (gal)		Purged ume (gal)
WATER VOLUME CALCULATION	25		5.96	4	1.04		2" 4"		6"		64	1 2	2.0
Purge Method:	Bailer				. Meası	uring	Refe	erence:		:	,		
Time										+		+	
Volume Purged (gal)			0		,5		1.0		2-0	+		+	
Temperature (° F)			67.9	67.42		87 6		7.80	67.7	\neg		+	
рН			6.7	-:21		3	6.	20	6.18			+	
Specific Conductivity	(umhos/cm)	190		195	0	10	120	196	0		+	
Turbidity/Color			By	~ \ \ \ \ \	-	•)		-		+	
Odor			M	0	-)		\rightarrow	7				
Comments: —													

Project No: 03-103.00

Project Name: ABE

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

Well No: -

GROUNDWATER MONITORING DATA FORM

Field Personnel:	Mike & Maz				W	eathe	r: <u>ک</u>	loud	1/	
Project Location:	17715 M	issic	n Bouley	/ard						
		_								
PURGE WATER VOLUME	Total Well Depth (ft)	Depth to Water (ft		Water Colum	ın	Ca	Multipl sing Dia		Casing Volume (gal)	Purged Volume (gal)
CALCULATION	25	.2	1.31	3.69		2"	4"	6".4	200	
		_	.,,	3.01		0.16	0.64	1.44	,59	200
Purge Method: .	Bailer			Mood	urin	a Pote	rence	: _тос		
r drge method.				ivicas	suriii	y nere	i ence	. ——	//	
Time					١,					
Volume Purged (gal)			0	, 5	-	١.	0	ر چ		
Temperature (° F)			69.0	5 68:	28	68	.81	77.82		
рН			6.18	8.1	3	6.	O	6.00		
Specific Conductivity ((umhos/cm)		200			21	००	2000)	
Turbidity/Color			9.30	4	>)	7		
Odor			210	1				-		
Comments:										