RECEIVED

By Alameda County Environmental Health at 2:44 pm, May 05, 2014

April 30, 2014

Timothy L. BishopProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6463 TimBishop@chevron.com

Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Unocal No. 3538 (351642)

411 West MacArthur Boulevard, Oakland, California

Fuel Leak Case No. RO0000251

GeoTracker Global ID # T0600101472

I have reviewed the attached report dated April 30, 2014.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by AECOM, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13257(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Tim Bishop Project Manager

Attachment: First Semi-Annual 2014 Groundwater Monitoring Report by AECOM

AECOM 2020 L Street Suite 400 Sacramento, CA 95811 www.aecom.com 916 414 5800 tel 916 414 5850 fax

April 30, 2014

Mr. Keith Nowell
Alameda County Health Care Services Agency
Environmental Health Services
Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

Subject: First Semi-Annual 2014 Groundwater Monitoring Report

Unocal No. 3538 (351642)

411 West MacArthur Boulevard, Oakland, California

Fuel Leak Case No. RO0000251 Geotracker Global ID # T0600101472

Dear Mr. Nowell,

On behalf of Chevron Environmental Management Company's (EMC's) affiliate Union Oil Company of California ("Union Oil"), AECOM is pleased to present the first semi-annual 2014 groundwater monitoring report for the site located at 411 West MacArthur Boulevard, Oakland, California (site) (**Figure 1**). The locations of former and current site features are illustrated on **Figure 2**. Semi-annual groundwater monitoring is intended to evaluate the distribution of petroleum hydrocarbon constituents in groundwater beneath the site. Groundwater sampling was performed by Gettler-Ryan Inc. of Dublin, California. This report summarizes sample results collected from the site during the first semi-annual 2014 monitoring event.

Groundwater Monitoring Field Data

The depth to groundwater was measured in five monitoring wells, MW-1 through MW-3, MW-5, and MW-6 at the site on Febuary 5, 2014. MW-4 was not able accessible due to a parked car. The resulting measurements were used to calculate groundwater elevations (**Table 1**). Temperature, pH, and electrical conductivity readings were collected during purging. Copies of the groundwater sampling/purge logs are included in **Attachment A**. The groundwater flow direction was calculated to flow to the south/southwest with an average hydraulic gradient of approximately 0.01 feet per foot (**Figure 2**). The depth to groundwater ranged from 15.69 to 18.75 feet below the top of well casings, and groundwater elevation ranged from 53.00 to 55.68 feet above mean sea level.

Groundwater Sampling and Analytical Results

Groundwater samples were collected from monitoring wells MW-2 and MW-3 on Febuary 5, 2014. Laboratory analyses were performed by BC Laboratories, Inc. (BC Labs) of Bakersfield, California. The BC Labs analytical report dated Febuary 19, 2014, is included as **Attachment B**. Samples were analyzed for the following analytes based on historical trends for each monitoring well:

- Benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl t-butyl ether (MTBE) by Environmental Protection Agency (EPA) Method 8021B;
- Total petroleum hydrocarbons-gasoline range organics TPH-GRO by EPA Method 8015B; and

1,2-Dibromoethane (EDB), 1,2-Dichloroethane (EDC), and ethanol by EPA Method 8260B

Analytical results are presented in **Tables 1 and 2** for this groundwater monitoring event. A map depicting dissolved concentrations of benzene, TPH-GRO, and MTBE in groundwater samples collected on Febuary 5, 2014, is included as **Figure 3**. The following presents a brief summary of the analytical sample results:

- TPH-GRO was not detected in any samples.
- BTEX constituents were not detected in any samples.
- Ethanol was not detected in any samples.
- EDC and EDB was not detected in any samples.
- MTBE was detected in samples collected from monitoring wells MW-2 and MW-3 at concentrations of 1.7 micrograms per liter (μg/L) and 7.2 μg/L, respectively. The concentration detected for MW-3 is slightly above the environmental screening level (ESL) of 5.0 μg/L.

A summary of historical groundwater analytical data is presented in **Tables 3 and 4**. Approximately 8 gallons of groundwater was generated during purging activities. Purged water was transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California as non-hazardous waste.

Conclusions and Recommendations

The sample results of the groundwater monitoring activities at the site indicate the following:

- MTBE was detected at a concentration slightly above the ESL of 5.0 μg/L for MW-3.
- Based on analytical results from this and previous sampling events, dissolved-phase hydrocarbons in groundwater are adequately delineated.

Future Activities

AECOM will submit a revised Data Gap Assessment Work Plan by April 27, 2014.

Remarks/Signatures

The interpretations in this report represent AECOM's professional opinions and are based, in part, on the information supplied by Gettler-Ryan Inc and BC Labs. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeologic and engineering practices at this time and location. Other than this, no warranty is implied or intended.

If you have any questions regarding this project, please contact James Harms at (916) 414-5800 or James.Harms@aecom.com.

Sincerely,

James Harms
Project Manager

Robert Perez, PG #8684 Project Geologist

4/30/2014

ROMAN PEREZ

No. 8684

cc: Mr. Timothy Bishop, EMC (via electronic copy)

Mr. Kevin Ma and Mr. Arthur Yu, property owner (via paper copy)

Tables:

Table 1	Current Groundwater Monitoring Data and Analytical Results
Table 2	Current Groundwater Analytical Results - Oxygenate Compounds
Table 3	Historical Groundwater Monitoring Data and Analytical Results
Table 4	Historical Groundwater Analytical Results - Oxygenate Compounds

Figures:

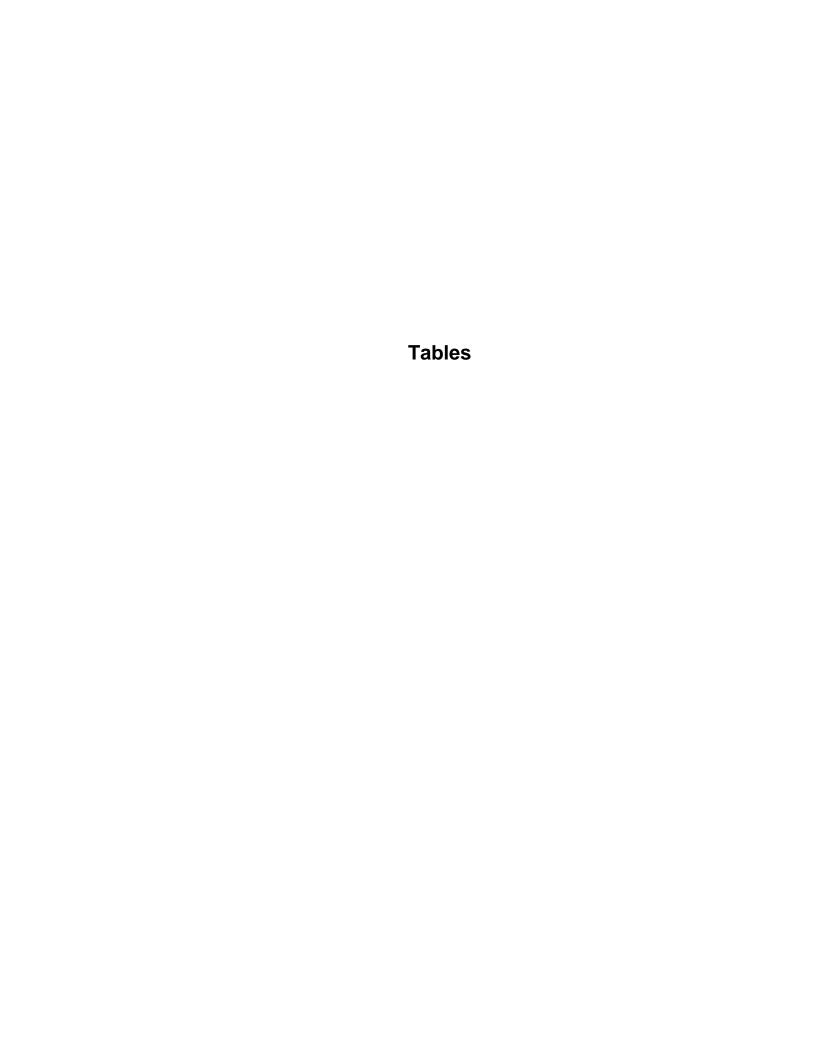

Figure 1	Site Location Map
Figure 2	Groundwater Elevation Contour Map - First Semi-Annual 2014

Figure 3 Groundwater Concentration Map - First Semi-Annual 2014

Attachments:

Attachment A Febuary 5, 2014, Groundwater Data Field Sheets

Attachment B BC Labs Analytical Report #1402896

Table 1 Current Groundwater Monitoring Data and Analytical Results

Unocal No. 3538 (351642) 411 West MacArthur Boulevard

Oakland, California

WELL ID	TOC*	DATE	DTW	GWE*	TPH-GRO	В	T	E	Х
	(ft)		(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	72.12	2/5/2014	18.75	53.37					
MW-2	71.34	2/5/2014	18.34	53.00	<50	<0.30	<0.30	<0.30	<0.60
MW-3	71.40	2/5/2014	18.24	53.16	<50	< 0.30	<0.30	<0.30	<0.60
MW-4	71.54	2/5/2014							
MW-5	71.16	2/5/2014	17.96	53.20					
MW-6	71.37	2/5/2014	15.69	55.68					

NOTES:

TPH-GRO analyzed by Environmental Protection Agency Method 8015B

BTEX analyzed by Environmental Protection Agency Method 8021B

<# = Analyte not detected at or above indicated laboratory practical quantitation limit</pre>

-- = Not Sampled

TOC = Top of casing

ft = Feet

DTW = Depth to water GWE = Groundwater elevation

μg/L = Micrograms per liter

ID = Identification

TPH-GRO = Total Petroleum Hydrocarbons as

Gasoline/Gasoline Range Organics

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total xylenes

60284077 1 of 1 AECOM

^{*} TOC and GWE are in feet above mean sea level

Table 2

Current Groundwater Analytical Results - Oxygenate Compounds Unocal No. 3538 (351642) 411 West MacArthur Boulevard Oakland, California

WELL ID	DATE	MTBE (μg/L)	ETHANOL (μg/L)	EDB (µg/L)	EDC (µg/L)
MW-1	2/5/2014	-		-	
MW-2	2/5/2014	1.7	<250	<0.50	<0.50
MW-3	2/5/2014	7.2	<250	<0.50	<0.50
MW-4	2/5/2014				
MW-5	2/5/2014				
MW-6	2/5/2014				

NOTES:

MTBE analyzed by Environmental Protection Agency Method 8021B

Ethanol, EDB, and EDC analyzed by Environmental Protection Agency Method 8260B

<# = Analyte not detected at or above indicated laboratory practical quantitation limit</p>

-- = Not sampled

μg/L = Micrograms per liter

MTBE = Methyl t-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

ID = Identification

				akiaila, Gai					
WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	T	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	9/15/1989				ND	ND	0.61	ND	ND
	1/23/1990				ND	1.5	2.3	ND	4.3
	4/19/1990				ND	ND	ND	ND	ND
	7/17/1990				ND	ND	ND	ND	ND
	10/16/1990				ND	ND	ND	ND	ND
	1/15/1991				ND	ND	ND	ND	ND
	4/12/1991				ND	ND	ND	ND	ND
	7/15/1991				ND	ND	ND	ND	ND
	7/14/1992				ND	ND	ND	ND	ND
	4/13/1993	72.43	17.70	54.73	S	Sampled Ar	nually in th	e Third Quarte	er
	7/14/1993	72.43	18.49	53.94	ND	2.2	2.1	1.1	6.2
	10/14/1993	72.10	18.32	53.78	S	Sampled Ar	nually in th	e Third Quarte	er
	1/12/1994	72.10	18.18	53.92	S	Sampled Ar	nually in th	e Third Quarte	er
	4/11/1994	72.10	17.80	54.30	S	Sampled Ar	nually in th	e Third Quarte	er
	7/7/1994	72.10	18.28	53.82	ND	ND	ND	ND	ND
	10/5/1994	72.10	18.55	53.55	S	Sampled Ar	nually in th	e Third Quarte	er
	1/9/1995	72.10	17.90	54.20	S	Sampled Ar	nually in th	e Third Quarte	er
	4/17/1995	72.10	17.22	54.88	S	Sampled Ar	nually in th	e Third Quarte	er
	7/19/1995	72.10	18.03	54.07	ND	ND	ND	ND	ND
	10/26/1995	72.10	18.67	53.43	S	Sampled Ar	nually in th	e Third Quarte	er
	1/16/1996	72.10	17.20	54.90	S	Sampled Ar	nually in th	e Third Quarte	er
	4/15/1996	72.10	17.40	54.70	S	Sampled Ar	nually in th	e Third Quarte	er
	7/11/1996	72.10	18.03	54.07	ND	ND	ND	ND	ND
	1/17/1997	72.10	16.54	55.56	S	Sampled Ar	nually in th	e Third Quarte	er
	7/21/1997	72.10	18.16	53.94	ND	ND	ND	ND	ND
	1/14/1998	72.10	16.05	56.05	S	Sampled Ar	nually in th	e Third Quarte	er
	7/6/1998	72.10	16.46	55.64	ND	ND	ND	ND	ND
	1/13/1999	72.10	17.37	54.73	S	Sampled Ar	nually in th	e Third Quarte	er
	8/31/1999	72.12	17.00	55.12	ND	ND	ND	ND	ND
	1/21/2000	72.12	17.04	55.08	S	Sampled Ar	nually in th	e Third Quarte	er
	7/10/2000	72.12	18.10	54.02	ND	ND	ND	ND	ND

Table 3
Historical Groundwater Monitoring Data and Analytical Results
Unocal No. 3538 (351642)
411 West MacArthur Boulevard
Oakland, California

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO) В	Т	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 cont.	1/4/2001	72.12	17.95	54.17		Sampled A	nnually in th	ne Third Quarter	
	7/16/2001	72.12	18.03	54.09	ND	ND	ND	ND	ND
	1/28/2002	72.12	17.31	54.81		Sampled A	nnually in th	ne Third Quarter	
	7/12/2002	72.12	18.15	53.97	<50	< 0.50	< 0.50	<0.50	<0.50
	1/14/2003	72.12	17.66	54.46		Sampled A	nnually in th	ne Third Quarter	
	7/10/2003	72.12	17.86	54.26	<50	< 0.50	<0.50	<0.50	<0.50
	2/4/2004	72.12	17.43	54.69		Sampled A	nnually in th	ne Third Quarter	
	7/29/2004	72.12	18.12	54.00	<50	< 0.30	0.38	<0.30	<0.6
	3/2/2005	72.12	16.15	55.97		Sampled A	nnually in th	ne Third Quarter	
	9/30/2005	72.12	18.04	54.08	<50	< 0.30	< 0.30	<0.30	<0.6
	3/23/2006	72.12				Sampled A	nnually in th	ne Third Quarter	
	9/26/2006	72.12	17.90	54.22	<50	< 0.30	< 0.30	<0.30	<0.6
	3/15/2007	72.12	17.22	54.90		Sampled A	nnually in th	e Third Quarter	
	9/27/2007	72.12	18.49	53.63	<50	< 0.30	< 0.30	<0.30	<0.6
	3/27/2008	72.12	17.57	54.55		Sampled A	nnually in th	ne Third Quarter	
	9/17/2008	72.12	18.20	53.92	<50	< 0.30	< 0.30	<0.30	<0.6
	3/27/2009	72.12	16.75	55.37		Sampled A	nnually in th	ne Third Quarter	
	9/17/2009	72.12	18.18	53.94	<50	< 0.30	< 0.30	<0.30	<0.6
	3/23/2010	72.12	17.34	54.78		Sampled A	nnually in th	ne Third Quarter	
	9/21/2010	72.12	18.74	53.38	<50	< 0.30	< 0.30	<0.30	<0.6
	3/30/2011	72.12	16.68	55.44		Sampled A	nnually in th	ne Third Quarter	
	9/6/2011	72.12	18.36	53.76	<50	< 0.30	< 0.30	<0.30	<0.60
	02/03/2012	72.12	18.02	54.10		Sampled A	nnually in th	ne Third Quarter	
	8/17/2012	72.12	18.50	53.62	<50	< 0.30	< 0.30	<0.30	<0.60
	2/14/2013	72.12	17.98	54.14		Sampled A	nnually in th	ne Third Quarter	
	8/1/2013	72.12	18.45	53.67	<50	< 0.30	< 0.30	<0.30	<0.60
	2/5/2014	72.12	18.75	53.37	Sampled A	Annually in	the Third C	luarter	
MW-2	9/15/1989				290	ND	12	ND	ND
	1/23/1990				400	73	36	10	40
MW-2 cont.	4/19/1990				3900	550	5.1	91	390

Table 3
Historical Groundwater Monitoring Data and Analytical Results
Unocal No. 3538 (351642)
411 West MacArthur Boulevard
Oakland, California

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	T	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
	7/17/1990				490	76	0.59	11	46
	10/16/1990				1400	430	2.0	48	240
	1/15/1991				680	170	0.7	19	81
	4/12/1991				2200	160	4.3	23	62
	7/15/1991				2200	770	12	72	370
	10/15/1991				140	44	0.56	1.5	12
	1/15/1992				220	37	0.52	1.1	7
	4/14/1992				150	6.2	ND	ND	1.4
	7/14/1992				130	3.7	ND	ND	ND
	10/12/1992				370	3.4	0.56	ND	11
	1/8/1993				510	ND	ND	ND	ND
	4/13/1993	71.63	17.86	53.77	410	42	7.7	6.4	28
	7/14/1993	71.63	18.38	53.25	110	6.5	ND	ND	1.1
	10/14/1993	71.38	18.20	53.18	230	5.3	ND	ND	2.1
	1/12/1994	71.38	18.08	53.30	300	7.8	3.8	1.8	10
	4/9/1994	71.38	17.97	53.41	120	10	0.88	1.1	4.9
	4/11/1994	71.38	17.88	53.50					
	7/7/1994	71.38	17.81	53.57	110	4.4	ND	ND	ND
	10/5/1994	71.38	18.33	53.05	720	20	ND	ND	3.1
	1/9/1995	71.38	17.40	53.98	ND	ND	ND	ND	ND
	4/17/1995	71.38	17.50	53.88	93	5.6	0.62	1.7	5.5
	7/19/1995	71.38	18.01	53.37	77	32	0.58	1.7	4.1
	10/26/1995	71.38	18.21	53.17	54	13	ND	ND	0.72
	1/16/1996	71.38	16.58	54.80	120	23	ND	ND	0.99
	4/15/1996	71.38	17.61	53.77	340	21	ND	2.2	3.7
	7/11/1996	71.38	17.98	53.40	540	34	ND	4.3	12
	1/17/1997	71.38	17.08	54.30	320	63	2.4	9.4	26
	7/21/1997	71.38	18.06	53.32	160	13	ND	1.3	1.6
	1/14/1998	71.38	16.52	54.86	66	6.3	ND	ND	0.98
MW-2 cont.	7/6/1998	71.38	16.87	54.51	ND	2.3	ND	ND	ND
	1/13/1999	71.38	17.88	53.50	53	24	ND	0.52	0.98

Table 3
Historical Groundwater Monitoring Data and Analytical Results
Unocal No. 3538 (351642)
411 West MacArthur Boulevard
Oakland, California

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	Т	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	8/31/1999	71.34	18.45	52.89	86	14	ND	0.63	ND
	1/21/2000	71.34	17.73	53.61	ND	1.94	ND	ND	ND
	7/10/2000	71.34	18.14	53.20	ND	ND	ND	ND	ND
	1/4/2001	71.34	18.02	53.32	ND	0.925	ND	ND	ND
	7/16/2001	71.34	18.02	53.32	ND	ND	ND	ND	ND
	1/28/2002	71.34	17.57	53.77	<50	<0.50	<0.50	<0.50	<0.50
	7/12/2002	71.34	18.05	53.29	<50	<0.50	<0.50	<0.50	<0.50
	1/14/2003	71.34	17.44	53.90	<50	<0.50	<0.50	<0.50	<0.50
	7/10/2003	71.34							
	2/4/2004	71.34	17.22	54.12	<50	<0.50	<0.50	<0.50	<0.50
	7/29/2004	71.34							
	3/2/2005	71.34	16.63	54.71	99	26	<0.50	3.5	2.8
	9/30/2005	71.34	17.94	53.40	<50	1.2	< 0.30	<0.30	<0.60
	3/23/2006	71.34	16.74	54.60	<50	3.6	<0.30	0.35	<0.60
	9/26/2006	71.34	17.91	53.43	<50	1.2	<0.30	<0.30	<0.60
	3/15/2007	71.34	17.45	53.89	110	6.5	<0.30	0.70	<0.60
	9/27/2007	71.34	18.23	53.11	<50	< 0.30	< 0.30	<0.30	<0.60
	3/27/2008	71.34	17.77	53.57	<50	1.8	< 0.30	<0.30	<0.60
	9/17/2008	71.34	18.06	53.28	<50	1.6	< 0.30	<0.30	<0.60
	3/27/2009	71.34	17.43	53.91	<50	3.5	< 0.30	<0.30	<0.60
	9/17/2009	71.34	18.01	53.33	<50	2.7	< 0.30	<0.30	<0.60
	3/23/2010	71.34	17.47	53.87	<50	0.68	<0.30	<0.30	<0.60
	9/21/2010	71.34	18.41	52.93	69	1.6	<0.30	<0.30	<0.60
	3/30/2011	71.34	16.58	54.76	<50	< 0.30	<0.30	<0.30	<0.60
	9/6/2011	71.34	18.14	53.20	<50	<0.30	<0.30	<0.30	<0.60
	2/3/2012	71.34	17.97	53.37	<50	<0.30	<0.30	<0.30	<0.60
	8/17/2012	71.34	18.20	53.14	57	1.2	< 0.30	<0.30	<0.60
	2/14/2013	71.34	17.88	53.46	<50	<0.30	<0.30	<0.30	<0.60
MW-2 cont.	8/1/2013	71.34	16.30	55.04	<50	< 0.30	< 0.30	<0.30	<0.60
	2/5/2014	71.34	18.34	53.00	<50	<0.30	<0.30	<0.30	<0.60

Table 3
Historical Groundwater Monitoring Data and Analytical Results
Unocal No. 3538 (351642)
411 West MacArthur Boulevard
Oakland, California

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	T	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3	9/15/1989				32	ND	ND	ND	ND
	1/23/1990				450	110	1.2	4.4	11
	4/19/1990				3100	600	27	54	220
	7/17/1990				4000	270	48	130	250
	10/16/1990				740	210	1.4	2.5	82
	1/15/1991				3200	460	1.5	120	270
	4/12/1991				880	170	1.1	34	110
	7/15/1991				9200	1300	230	490	1900
	10/15/1991				3100	390	34	150	390
	1/15/1992				3000	590	14	310	750
	4/14/1992				14000	660	48	560	2000
	7/14/1992				21000	890	200	1200	4300
	10/12/1992				3200	160	10	230	540
	1/8/1993				1100	48	0.99	0.9	93
	4/13/1993	72.06	17.96	54.10	12000	290	38	760	2300
	7/14/1993	72.06	18.54	53.52	6300	190	ND	430	1000
	10/14/1993	71.86	18.45	53.41	2500	52	ND	110	250
	1/12/1994	71.86	18.34	53.52	3800	78	ND	180	390
	4/9/1994	71.86	18.19	53.67	1800	22	ND	140	280
	4/11/1994	71.86	18.12	53.74					
	7/7/1994	71.86	18.21	53.65	110	4.5	ND	ND	ND
	10/5/1994	71.86	18.58	53.28	ND	ND	ND	ND	ND
	1/9/1995	71.86	17.69	54.17	ND	0.68	ND	ND	ND
	4/17/1995	71.86	17.68	54.18	3700	80	10	270	510
	7/19/1995	71.86	18.20	53.66	15000	330	27	990	2400
	10/26/1995	71.86	18.32	53.54	14000	420	180	750	1600
	1/16/1996	71.86	17.95	53.91	920	38	ND	30	57
MW-3 cont.	4/15/1996	71.86	17.78	54.08	9700	240	ND	570	860
	7/11/1996	71.86	18.19	53.67	13000	69	5.5	430	900
	1/17/1997	71.86	17.23	54.63	4400	25	ND	270	580
	7/21/1997	71.86	18.29	53.57	9000	36	ND	450	800

Table 3
Historical Groundwater Monitoring Data and Analytical Results
Unocal No. 3538 (351642)
411 West MacArthur Boulevard
Oakland, California

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	T	Е	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
	1/14/1998	71.86	16.71	55.15	7100	40	ND	380	360
	7/6/1998	71.86	17.03	54.83	6800	39	ND	320	360
	1/13/1999	71.86	18.00	53.86	1800	9.4	ND	58	36
	8/31/1999	71.40							
	1/21/2000	71.40	17.58	53.82	ND	ND	ND	ND	ND
	7/10/2000	71.40	18.05	53.35	ND	ND	ND	ND	ND
	8/25/2000	71.40	17.82	53.58					
	1/4/2001	71.40	18.16	53.24	ND	ND	ND	ND	ND
	7/16/2001	71.40	17.98	53.42	ND	ND	ND	ND	ND
	1/28/2002	71.40	17.84	53.56	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	7/12/2002	71.40	17.87	53.53	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	1/14/2003	71.40	17.28	54.12	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	7/10/2003	71.40	17.64	53.76	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/4/2004	71.40	17.05	54.35	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	7/29/2004	71.40	17.82	53.58	<50	<0.30	<0.30	<0.30	<0.60
	3/2/2005	71.40	16.47	54.93	93	<0.50	<0.50	<0.50	<0.50
	9/30/2005	71.40	17.79	53.61	65	< 0.30	<0.30	< 0.30	<0.60
	3/23/2006	71.40	16.61	54.79	54	< 0.30	0.41	ND<0.30	0.98
	9/26/2006	71.40	17.77	53.63	51	< 0.30	<0.30	< 0.30	<0.60
	3/15/2007	71.40	17.27	54.13	140	< 0.30	<0.30	< 0.30	<0.60
	9/27/2007	71.40	18.48	52.92	<50	< 0.30	<0.30	< 0.30	<0.60
	3/27/2008	71.40	17.67	53.73	<50	<0.30	<0.30	<0.30	<0.60
	9/17/2008	71.40	17.91	53.49	56	< 0.30	<0.30	<0.30	<0.60
	3/27/2009	71.40	17.34	54.06	<50	<0.30	<0.30	<0.30	<0.60
	9/17/2009	71.40	17.88	53.52	<50	< 0.30	<0.30	<0.30	<0.60
	3/23/2010	71.40	17.33	54.07	<50	< 0.30	<0.30	<0.30	<0.60
MW-3 cont.	9/21/2010	71.40	18.28	53.12	69	< 0.30	<0.30	< 0.30	<0.60
	3/30/2011	71.40	16.50	54.90	110	< 0.30	<0.30	< 0.30	<0.60
	9/6/2011	71.40	18.03	53.37	<50	< 0.30	<0.30	< 0.30	<0.60
	2/3/2012	71.40	17.83	53.57	<50	< 0.30	<0.30	< 0.30	<0.60
	8/17/2012	71.40	18.07	53.33	<50	< 0.30	<0.30	<0.30	<0.60

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	Т	E	Х
WELLID	DATE	(ft)	(ft)	(ft)		ь (μg/L)	ι (μg/L)		
	2/14/2013	71.40	17.72	53.68	(μg/L) <50	(μ g /L) <0.30	(μ g/L) <0.30	(μ g/L) <0.30	(μ g/L) <0.60
	8/1/2013	71.40	18.02	53.38	<50	<0.30	<0.30	<0.30	<0.60
	2/5/2014	71.40 71.40	18.24	53.16	< 50	< 0.30	< 0.30	<0.30	< 0.60
						-			
MW-4	9/15/1989				ND	ND	ND	ND	ND
	1/23/1990				ND	ND	0.4	ND	ND
	4/19/1990				ND	ND	0.48	ND	ND
	7/17/1990				ND	ND	ND	ND	ND
	10/16/1990				ND	ND	ND	ND	ND
	1/15/1991				ND	ND	ND		ND
	4/12/1991				ND	ND	ND	ND	ND
	7/15/1991				ND	ND	ND	ND	ND
	7/14/1992				ND	1.3	2.5	ND	1.0
	4/13/1993	71.98	17.67	54.31	5	Sampled Ar	nually in th	e Third Quarte	er
	7/14/1993	71.98	18.31	53.67	ND	ND	ND	ND	ND
	10/14/1993	71.64	18.08	53.56	5	Sampled Ar	nually in th	e Third Quarte	er
	1/12/1994	71.64	17.97	53.67	5	Sampled Ar	nually in th	e Third Quarte	er
	4/11/1994	71.64	17.70	53.94	5	Sampled Ar	nually in th	e Third Quarte	er
	7/7/1994	71.64	17.80	53.84	ND	ND	ND	ND	ND
	10/5/1994	71.64	18.28	53.36	5	Sampled Ar	nually in th	e Third Quarte	er
	1/9/1995	71.64	17.38	54.26	5	Sampled Ar	nually in th	e Third Quarte	er
	4/17/1995	71.64	17.21	54.43	5	Sampled Ar	nually in th	e Third Quarte	er
	7/19/1995	71.64	17.82	53.82	ND	ND	ND	ND	ND
	10/26/1995	71.64	18.17	53.47	5	Sampled Ar	nually in th	e Third Quarte	er
	1/16/1996	71.64	16.45	55.19	5	Sampled Ar	nually in th	e Third Quarte	er
MW-4 cont.	4/15/1996	71.64	17.35	54.29	9	Sampled Ar	nually in th	e Third Quarte	er
	7/11/1996	71.64	17.81	53.83	ND	ND	ND	ND	ND
	1/17/1997	71.64	16.73	54.91	9	Sampled Ar	nually in th	e Third Quarte	er
	7/21/1997	71.64	17.91	53.73	ND	ND	ND	ND	ND
	1/14/1998	71.64	16.18	55.46	9	Sampled Ar	nually in th	e Third Quarte	er
	7/6/1998	71.64	16.49	55.15	ND	ND	ND	ND	ND

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	T	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	1/13/1999	71.64	17.29	54.35		Sampled Ar	nnually in th	e Third Quarter	
	8/31/1999	71.54				Sampled Ar	nnually in th	e Third Quarter	
	1/21/2000	71.54	17.51	54.03		Sampled Ar	nnually in th	e Third Quarter	
	7/10/2000	71.54	17.93	53.61	ND	ND	ND	ND	ND
	1/4/2001	71.54	18.10	53.44		Sampled Ar	nnually in th	e Third Quarter	
	7/16/2001	71.54	17.76	53.78	ND	ND	ND	ND	ND
	1/28/2002	71.54	17.20	54.34		Sampled Ar	nnually in th	e Third Quarter	
	7/12/2002	71.54	17.81	53.73	<50	<0.50	<0.50	<0.50	<0.50
	1/14/2003	71.54	17.30	54.24		Sampled Ar	nnually in th	e Third Quarter	
	7/10/2003	71.54	17.58	53.96	<50	<0.50	<0.50	<0.50	<0.50
	2/4/2004	71.54	17.07	54.47		Sampled Ar	nnually in th	e Third Quarter	
	7/29/2004	71.54	17.81	53.73	<50	< 0.30	< 0.30	<0.30	<0.60
	3/2/2005	71.54	16.25	55.29		Sampled Ar	nnually in th	e Third Quarter	
	9/30/2005	71.54	17.74	53.80	<50	< 0.30	< 0.30	<0.30	<0.60
	3/23/2006	71.54				Sampled Ar	nnually in th	e Third Quarter	
	9/26/2006	71.54	17.71	53.83	<50	< 0.30	< 0.30	<0.30	<0.60
	3/15/2007	71.54	17.56	53.98		Sampled Ar	nnually in th	e Third Quarter	
	9/27/2007	71.54	18.16	53.38	<50	< 0.30	< 0.30	<0.30	<0.60
	3/27/2008	71.54	17.58	53.96		Sampled Ar	nnually in th	e Third Quarter	
	9/17/2008	71.54	17.87	53.67	<50	< 0.30	< 0.30	<0.30	<0.60
	3/27/2009	71.54	17.17	54.37		Sampled Ar	nnually in th	e Third Quarter	
	9/17/2009	71.54	17.86	53.68	<50	< 0.30	< 0.30	<0.30	<0.60
	3/23/2010	71.54	17.25	54.29		Sampled Ar	nnually in th	e Third Quarter	
	9/21/2010	71.54	18.31	53.23	<50	< 0.30	< 0.30	<0.30	<0.60
MW-4 cont.	3/30/2011	71.54	16.35	55.19		Sampled Ar	nnually in th	e Third Quarter	
	09/06/2011	71.54	18.00	53.54	<50	< 0.30	< 0.30	< 0.30	<0.60
	02/03/2012	71.54	17.81	53.73		Sampled Ar	nnually in th	e Third Quarter	
	08/17/2012	71.54	18.09	53.45	<50	< 0.30	< 0.30	< 0.30	<0.60
	2/14/2013	71.54	17.68	53.86		Sampled Ar	nnually in th	e Third Quarter	
	8/1/2013	71.54	18.05	53.49	<50	< 0.30	<0.30	< 0.30	<0.60
	2/5/2014				Sampled A	nnually in t	the Third Q	uarter	

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	Т	E	Х
-		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-5	11/30/1992				ND	ND	ND	ND	ND
	1/8/1993				ND	ND	ND	ND	ND
	4/13/1993	71.51	17.49	54.02	ND	ND	ND	ND	ND
	7/14/1993	71.51	18.02	53.49	ND	ND	0.57	ND	ND
	10/14/1993	71.23	17.82	53.41	ND	ND	ND	ND	ND
	1/12/1994	71.23	17.74	53.49	ND	ND	0.84	ND	1.6
	4/11/1994	71.23	17.56	53.67		=	-	e Third Quarte	
	7/7/1994	71.23	17.50	53.73	ND	ND	ND	ND	ND
	10/5/1994	71.23	17.98	53.25	;	Sampled Ar	nnually in th	e Third Quarte	٢
	1/9/1995	71.23	17.13	53.25		Sampled Ar	nnually in th	e Third Quarte	٢
	4/17/1995	71.23	17.05	53.25		Sampled Ar	nnually in th	e Third Quarte	٢
	7/19/1995	71.23	17.59	53.25	ND	ND	ND	ND	ND
	10/26/1995	71.23	18.10	53.25		Sampled Ar	nnually in th	e Third Quarte	Г
	1/16/1996	71.23	17.11	53.25		Sampled Ar	nnually in th	e Third Quarte	Г
	4/15/1996	71.23	17.22	53.25	,	Sampled Ar	nually in th	e Third Quarte	r
	7/11/1996	71.23	17.59	53.25	ND	ND	ND	ND	ND
	1/17/1997	71.23	16.75	53.25	9	Sampled Ar	nually in th	e Third Quarte	٢
	7/21/1997	71.23	17.59	53.25	ND	ND	ND	ND	ND
	1/14/1998	71.23	16.16	53.25	,	Sampled Ar	nually in th	e Third Quarte	r
	7/6/1998	71.23	16.52	53.25	ND	ND	ND	ND	ND
	1/13/1999	71.23	17.62	53.25	;	Sampled Ar	nually in th	e Third Quarte	r
	8/31/1999	71.16	17.76	53.25	ND	ND	ND	ND	ND
MW-5 cont.	1/21/2000	71.16	16.83	53.25		Sampled Ar	nually in th	e Third Quarter	r
	7/10/2000	71.16	17.46	53.25	ND	ND	ND	ND	ND
	1/4/2001	71.16	17.51	53.25		Sampled Ar	nually in th	e Third Quarter	Г
	7/16/2001	71.16	17.32	53.25	ND	ND	ND	ND	ND
	1/28/2002	71.16	17.12	53.25	(Sampled Ar	nually in th	e Third Quarte	ſ
	7/12/2002	71.16	17.12	53.25	<50	<0.50	<0.50	<0.50	<0.50
	1/14/2003	71.16	16.67	53.25	(Sampled Ar	nually in th	e Third Quarte	
	7/10/2003	71.16	17.39	53.25	<50	<0.50	<0.50	<0.50	<0.50

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	Т	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	2/4/2004	71.16	16.23	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	7/29/2004	71.16	16.02	53.25	<50	< 0.30	0.64	<0.30	0.79
	3/2/2005	71.16	16.43	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/30/2005	71.16	17.41	53.25	<50	<0.30	<0.30	<0.30	<0.60
	3/23/2006	71.16	16.37	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/26/2006	71.16	15.54	53.25	<50	<0.30	<0.30	<0.30	<0.60
	3/15/2007	71.16	17.20	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/27/2007	71.16	18.01	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	3/27/2008	71.16	17.57	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/17/2008	71.16	17.68	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	3/27/2009	71.16	17.14	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/17/2009	71.16	17.60	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	3/23/2010	71.16	17.84	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/21/2010	71.16	17.92	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	3/30/2011	71.16	15.87	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	9/6/2011	71.16	17.74	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	2/3/2012	71.16	17.69	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	8/17/2012	71.16	17.75	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	2/14/2013	71.16	17.51	53.25	5	Sampled Ar	nnually in th	e Third Quarte	er
	8/1/2013	71.16	17.71	53.25	<50	< 0.30	< 0.30	<0.30	<0.60
	2/5/2014	71.16	17.96	53.25	Sampled Ar	nually in t	the Third Q	uarter	
MW-6	11/30/1992				ND	ND	ND	ND	ND
	1/8/1993				ND	ND	ND	ND	ND
	4/13/1993	71.79	11.94	59.85	ND	ND	ND	ND	ND
	7/14/1993	71.79	17.20	54.59	ND	0.99	2.4	ND	1.9
	10/14/1993	71.44	17.21	54.23	ND	ND	0.64	ND	ND
	1/12/1994	71.44	17.44	54.00	ND	ND	1.2	ND	2.9
	4/11/1994	71.44	13.66	57.78	5	Sampled Ar	nually in th	e Third Quarte	er
	7/7/1994	71.44	14.05	57.39	ND	ND	ND	ND	ND
	10/5/1994	71.44	14.16	57.28	5	Sampled Ar	nually in th	e Third Quarte	er

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO) В	T	E	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
	1/9/1995	71.44	13.73	57.71		Sampled A	nnually in th	e Third Quarter	
	4/17/1995	71.44	11.30	60.14		Sampled A	nnually in th	e Third Quarter	
	7/19/1995	71.44	12.32	59.12	ND	ND	ND	ND	ND
	10/26/1995	71.44	17.88	53.56		Sampled A	nnually in th	e Third Quarter	
	1/16/1996	71.44	16.38	55.06		Sampled A	nnually in th	e Third Quarter	
	4/15/1996	71.44	14.00	57.44		Sampled A	nnually in th	e Third Quarter	
	7/11/1996	71.44	13.58	57.86	ND	ND	ND	ND	ND
	1/17/1997	71.44	15.42	56.02		Sampled A	nnually in th	e Third Quarter	
	7/21/1997	71.44	13.78	57.66	ND	ND	ND	ND	ND
	1/14/1998	71.44	13.65	57.79		Sampled A	nnually in th	e Third Quarter	
	7/6/1998	71.44	13.90	57.54	ND	ND	ND	ND	ND
	1/13/1999	71.44	14.93	56.51		Sampled A	nnually in th	e Third Quarter	
	8/31/1999	71.37	15.81	55.56	ND	ND	ND	ND	ND
	1/21/2000	71.37	16.13	55.24		Sampled A	nnually in th	e Third Quarter	
	7/10/2000	71.37	16.95	54.42	ND	ND	ND	ND	ND
	1/4/2001	71.37	17.09	54.28		Sampled A	nnually in th	e Third Quarter	
	7/16/2001	71.37	16.83	54.54	ND	ND	ND	ND	ND
	1/28/2002	71.37	14.58	56.79		Sampled A	nnually in th	e Third Quarter	
	7/12/2002	71.37	16.76	54.61	<50	< 0.50	< 0.50	<0.50	<0.50
	1/14/2003	71.37	16.25	55.12		Sampled A	nnually in th	e Third Quarter	
	7/10/2003	71.37	12.97	58.40	<50	<0.50	< 0.50	<0.50	<0.50
MW-6 cont.	2/4/2004	71.37	16.20	55.17		Sampled A	nnually in th	e Third Quarter	
	7/29/2004	71.37	14.98	56.39	<50	< 0.30	< 0.30	<0.30	<0.6
	3/2/2005	71.37	14.51	56.86		Sampled A	nnually in th	e Third Quarter	
	9/30/2005	71.37	14.45	56.92	<50	< 0.30	< 0.30	<0.30	<0.6
	3/23/2006	71.37	16.55	54.82		Sampled A	nnually in th	e Third Quarter	
	9/26/2006	71.37	17.58	53.79	<50	< 0.30	< 0.30	<0.30	<0.60
	3/15/2007	71.37	13.72	57.65		Sampled A	nnually in th	e Third Quarter	
	9/27/2007	71.37	14.18	57.19	<50	< 0.30	< 0.30	<0.30	<0.60
	3/27/2008	71.37	14.83	56.54		Sampled A	nnually in th	e Third Quarter	
	9/17/2008	71.37	14.70	56.67	<50	< 0.30	<0.30	<0.30	<0.6

60284077 11 of 12 AECOM

WELL ID	DATE	TOC*	DTW	GWE*	TPH-GRO	В	Т	Е	Х
		(ft)	(ft)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	3/27/2009	71.37	15.66	55.71	5	Sampled Ar	nually in th	e Third Quart	er
	9/17/2009	71.37	15.31	56.06	<50	< 0.30	<0.30	<0.30	<0.60
	3/23/2010	71.37	15.42	55.95	5	Sampled Ar	nually in th	e Third Quart	er
	9/21/2010	71.37	15.62	55.75	<50	< 0.30	< 0.30	<0.30	<0.60
	3/30/2011	71.37	14.12	57.25	5	Sampled Ar	nually in th	e Third Quart	er
	09/06/2011	71.37	15.07	56.30	<50	< 0.30	<0.30	<0.30	<0.60
	02/03/2012	71.37	14.88	56.49	9	Sampled Ar	nually in th	e Third Quart	er
	08/17/2012	71.37	16.08	55.29	<50	< 0.30	< 0.30	< 0.30	<0.60
	2/14/2013	71.37	13.66	57.71	9	Sampled Ar	nually in th	e Third Quart	er
	8/1/2013	71.37	13.58	57.79	<50	< 0.30	< 0.30	< 0.30	<0.60
	2/14/2013	71.37	15.69	55.68	Sampled Ar	nually in t	he Third Q	uarter	

NOTES:

TPH-GRO analyzed by Environmental Protection Agency Method 8015B

BTEX analyzed by Environmental Protection Agency Method 8021B

TOC = Top of casing

ft = Feet

DTW = Depth to water

GWE = Groundwater elevation

μg/L = Micrograms per liter

ID = Identification

-- = Not available/applicable

TPH-GRO = Total Petroleum Hydrocarbons as

Gasoline/Gasoline Range Organics

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total xylenes

^{*} TOC and GWE are in feet above mean sea level

<# = Analyte not detected at or above indicated laboratory practical quantitation limit</p>

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(μg/L)	(µg/L)	(µg/L)
MW-1	9/15/1989				
	1/23/1990				
	4/19/1990				
	7/17/1990				
	10/16/1990				
	1/15/1991				
	4/12/1991				
	7/15/1991				
	7/14/1992				
	4/13/1993		Sampled Annually in	the Third Quarter	
	7/14/1993				
	10/14/1993		Sampled Annually in		
	1/12/1994		Sampled Annually in	the Third Quarter	
	4/11/1994		Sampled Annually in	the Third Quarter	
	7/7/1994				
	10/5/1994		Sampled Annually in	the Third Quarter	
	1/9/1995		Sampled Annually in	the Third Quarter	
	4/17/1995		Sampled Annually in	the Third Quarter	
	7/19/1995				
	10/26/1995		Sampled Annually in	the Third Quarter	
	1/16/1996		Sampled Annually in	the Third Quarter	
	4/15/1996		Sampled Annually in	the Third Quarter	
	7/11/1996	ND			
	1/17/1997		Sampled Annually in	the Third Quarter	
	7/21/1997	ND			
	1/14/1998		Sampled Annually in	the Third Quarter	
	7/6/1998	ND			
	1/13/1999		Sampled Annually in	the Third Quarter	
	8/31/1999	ND			
	1/21/2000		Sampled Annually in	the Third Quarter	
	7/10/2000	ND			
	1/4/2001		Sampled Annually in	the Third Quarter	
	7/16/2001	ND			
	1/28/2002		Sampled Annually in	the Third Quarter	
	7/12/2002	<2.5			
	1/14/2003		Sampled Annually in	the Third Quarter	
	7/10/2003	<2.0			
	2/4/2004		Sampled Annually in	the Third Quarter	
	7/29/2004	<1			
	3/2/2005		Sampled Annually in	the Third Quarter	
	9/30/2005	<1.0			
	3/23/2006		Sampled Annually in	the Third Quarter	
	9/26/2006	<1.0			
/IW-1 cont.	3/15/2007		Sampled Annually in	the Third Quarter	
-	9/27/2007	<1.0			

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(μg/L)	(µg/L)	(µg/L)
	3/27/2008		Sampled Annually in	the Third Quarter	
	9/17/2008	<1.0			
	3/27/2009		Sampled Annually in	the Third Quarter	
	9/17/2009	<1.0			
	3/23/2010		Sampled Annually in	the Third Quarter	
	9/21/2010	<1.0			
	3/30/2011		Sampled Annually in		
	9/6/2011	<1.0		<0.50	
	02/03/2012		Sampled Annually in		
	8/17/2012	<1.0	<250	<0.50	<0.50
	2/14/2013		Sampled Annually in	the Third Quarter	
	8/1/2013	<1.0	<250	<0.50	<0.50
	2/5/2014	Sampled Ani	nually in the Third Qเ	ıarter	
MW-2	9/15/1989				
	1/23/1990				
	4/19/1990				
	7/17/1990				
	10/16/1990				
	1/15/1991				
	4/12/1991				
	7/15/1991				
	10/15/1991				
	1/15/1992				
	4/14/1992				
	7/14/1992				
	10/12/1992				
	1/8/1993				
	4/13/1993	200			
	7/14/1993	250			
	10/14/1993				
	1/12/1994				
	4/9/1994				
	4/11/1994				
	7/7/1994				
	10/5/1994				
	1/9/1995				
	4/17/1995				
	7/19/1995				
	10/26/1995	220			
	1/16/1996				
MW-2 cont.	4/15/1996	45			
	7/11/1996	150			
	1/17/1997	260			

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(µg/L)	(µg/L)	(µg/L)
	1/14/1998	100			
	7/6/1998	11			
	1/13/1999	120			
	8/31/1999	21			
	1/21/2000	10.1			
	7/10/2000	46.6			
	1/4/2001	ND			
	7/16/2001	ND			
	1/28/2002	<2.5			
	7/12/2002	<2.5			
	1/14/2003				
		<2.0			
	7/10/2003				
	2/4/2004	<5.0			
	7/29/2004				
	3/2/2005	<5.0			
	9/30/2005	1.6			
	3/23/2006	2.5			
	9/26/2006	<1.0			
	3/15/2007	1.7			
	9/27/2007	<1.0			
	3/27/2008	1.3			
	9/17/2008	3.1			
	3/27/2009	<1.0			
	9/17/2009	1.1			
	3/23/2010	<1.0			
	9/21/2010	1.6			
	3/30/2011	1.6			
	9/6/2011	<1.0		<0.50	
	2/3/2012	<1.0		<0.50	
	8/17/2012	<1.0	<250	<0.50	<0.50
	2/14/2013	<1.0	<250	<0.50	<0.50
	8/1/2013	<1.0	<250	<0.50	<0.50
	2/5/2014	1.7	< 250	<0.50	<0.50
	2/0/2014		1200	40.00	40.00
MW-3	9/15/1989				
11111-0	1/23/1990				
	4/19/1990				
	7/17/1990				
	10/16/1990				
MM 2 cant					
MW-3 cont.	1/15/1991				
	4/12/1991				
	7/15/1991				
	10/15/1991				
	1/15/1992				
	4/14/1992				

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
	7/44//000	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	7/14/1992				
	10/12/1992				
	1/8/1993				
	4/13/1993	1400			
	7/14/1993	860			
	10/14/1993				
	1/12/1994				
	4/9/1994				
	4/11/1994				
	7/7/1994				
	10/5/1994				
	1/9/1995				
	4/17/1995				
	7/19/1995				
	10/26/1995	4800			
	1/16/1996				
	4/15/1996	3200			
	7/11/1996	740			
	1/17/1997	1600			
	7/21/1997	950			
	1/14/1998	930			
	7/6/1998	370			
	1/13/1999	180			
	8/31/1999				
	1/21/2000	21.4			
	7/10/2000	162			
	8/25/2000	180			
	1/4/2001	193			
	7/16/2001	660			
	1/28/2002	34			
	7/12/2002	11			
	1/14/2003	12			
	7/10/2003	23			
	2/4/2004	26			
	7/29/2004	<1			
	3/2/2005	140			
	9/30/2005	61			
/IW-3 cont.	3/23/2006	63			
	9/26/2006	41			
	3/15/2007	110			
	9/27/2007	20			
	3/27/2008	19			
	9/17/2008	43			
	3/27/2009	15			
	9/17/2009	30			

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(µg/L)	(µg/L)	(µg/L)
	3/23/2010	22			
	9/21/2010	48			
	3/30/2011	73			
	9/6/2011	4.7		<0.50	
	2/3/2012	8.2		<0.50	
	8/17/2012	4.7	<250	<0.50	<0.50
	2/14/2013	5.1	<250	<0.50	< 0.50
	8/1/2013	5.5	<250	<0.50	< 0.50
	2/5/2014	7.2	<250	<0.50	<0.50
MW-4	9/15/1989				
	1/23/1990				
	4/19/1990				
	7/17/1990				
	10/16/1990				
	1/15/1991				
	4/12/1991				
	7/15/1991				
	7/14/1992				
	4/13/1993		Sampled Annually in	the Third Quarter	
	7/14/1993				
	10/14/1993		Sampled Annually in	the Third Quarter	
	1/12/1994		Sampled Annually in		
	4/11/1994		Sampled Annually in		
	7/7/1994				
	10/5/1994		Sampled Annually in	the Third Quarter	
	1/9/1995		Sampled Annually in		
	4/17/1995		Sampled Annually in		
	7/19/1995				
	10/26/1995		Sampled Annually in	the Third Quarter	
	1/16/1996		Sampled Annually in		
	4/15/1996		Sampled Annually in		
	7/11/1996	ND			
	1/17/1997	·	Sampled Annually in	the Third Quarter	
	7/21/1997	ND			
/IW-4 cont.	1/14/1998	·	Sampled Annually in	the Third Quarter	
	7/6/1998	ND			
	1/13/1999	·	Sampled Annually in	the Third Quarter	
	8/31/1999		Sampled Annually in		
	1/21/2000		Sampled Annually in		
	7/10/2000	ND			
	1/4/2001	.,,,	Sampled Annually ir	the Third Quarter	
	7/16/2001	ND			
	1/28/2002	ND	Sampled Annually ir	the Third Quarter	
	1/20/2002		Jampica Amidally II	i ino irina Quarici	

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(µg/L)	(µg/L)	(µg/L)
	1/14/2003		Sampled Annually in	the Third Quarter	
	7/10/2003	<2.0			
	2/4/2004		Sampled Annually in	the Third Quarter	
	7/29/2004	<1	·		
	3/2/2005		Sampled Annually in	the Third Quarter	
	9/30/2005	<1.0			
	3/23/2006		Sampled Annually in	the Third Quarter	
	9/26/2006	<1.0			
	3/15/2007	1.0	Sampled Annually in	the Third Quarter	
	9/27/2007	<1.0			
	3/27/2008	11.0	Sampled Annually in	the Third Quarter	
	9/17/2008	<1.0			
	3/27/2009	11.0	Sampled Annually in	the Third Quarter	
	9/17/2009	<1.0			
	3/23/2010	`1.0	Sampled Annually in	the Third Quarter	-
	9/21/2010	<1.0			
	3/30/2011	1.0	Sampled Annually in	the Third Ouarter	
	09/06/2011	<1.0	Sampled Amidally in	<0.50	
	02/03/2012	\1.0	Sampled Annually in		
	08/17/2012	<1.0	<250	<0.50	<0.50
	2/14/2013	\1.0	Sampled Annually in		\0.50
		<1.0	<250	<0.50	<0.50
	8/1/2013				<0.50
	2/5/2014	Sampled Am	nually in the Third Qu	iarter	
MW-5	11/30/1992				
11111-0	1/8/1993				
	4/13/1993				
	7/14/1993				
	10/14/1993				
	1/12/1994				
	4/11/1994		Sampled Annually in	the Third Ouarter	
			Jampieu Amually III	ine milu Qualtel	
	7/7/1994 10/5/1004		Campled Appually in	the Third Overter	
MW-5 cont.	10/5/1994		Sampled Annually in		
IVIVV-5 COIII.	1/9/1995		Sampled Annually in		
	4/17/1995		Sampled Annually in	tile Tillu Quarter	
	7/19/1995		Campled Appually in	the Third Overter	
	10/26/1995		Sampled Annually in		
	1/16/1996		Sampled Annually in		
	4/15/1996	ND	Sampled Annually in	ine inira Quarter	
	7/11/1996	ND			
	1/17/1997	NB	Sampled Annually in	the Third Quarter	
	7/21/1997	ND			
	1/14/1998		Sampled Annually in	tne Third Quarter	
	7/6/1998	ND			
	1/13/1999		Sampled Annually in	the Third Quarter	

WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(µg/L)	(µg/L)	(µg/L)
	8/31/1999	ND			
	1/21/2000		Sampled Annually in	the Third Quarter	
	7/10/2000	ND			
	1/4/2001		Sampled Annually in	the Third Quarter	
	7/16/2001	ND			
	1/28/2002		Sampled Annually in	the Third Quarter	
	7/12/2002	<2.5			
	1/14/2003		Sampled Annually in	the Third Quarter	
	7/10/2003	<2.0			
	2/4/2004		Sampled Annually in	the Third Quarter	
	7/29/2004	<1			
	3/2/2005		Sampled Annually in	the Third Quarter	
	9/30/2005	<1.0			
	3/23/2006		Sampled Annually in	the Third Quarter	
	9/26/2006	<1.0			
	3/15/2007		Sampled Annually in	the Third Quarter	
	9/27/2007	<1.0			
	3/27/2008		Sampled Annually in	the Third Quarter	
	9/17/2008	<1.0			
	3/27/2009		Sampled Annually in	the Third Quarter	
	9/17/2009	<1.0			
	3/23/2010		Sampled Annually in	the Third Quarter	
	9/21/2010	<1.0			
	3/30/2011		Sampled Annually in	the Third Quarter	
	9/6/2011	<1.0		<0.50	
	2/3/2012		Sampled Annually in		
	8/17/2012	<1.0	<250	<0.50	<0.50
	2/14/2013		Sampled Annually in		0.00
	8/1/2013	1.9	<250	<0.50	<0.50
	2/5/2014		nually in the Third Qu		0.00
	2/0/2011	Campica 7 m	auny u.oa q		
MW-6	11/30/1992				
	1/8/1993				
	4/13/1993				
	7/14/1993				
	10/14/1993				
	1/12/1994				
	4/11/1994		Sampled Annually in	the Third Quarter	
	7/7/1994				
	10/5/1994		Sampled Annually ir	the Third Quarter	
	1/9/1995		Sampled Annually in		
	4/17/1995		Sampled Annually in		
	7/19/1995				
			Compled Appually in	the Third Overtor	
	1()/26/1995		SAUDIEU ADDITAIN II	i ilie i liim Cinanei	
	10/26/1995 1/16/1996		Sampled Annually in Sampled Annually in		

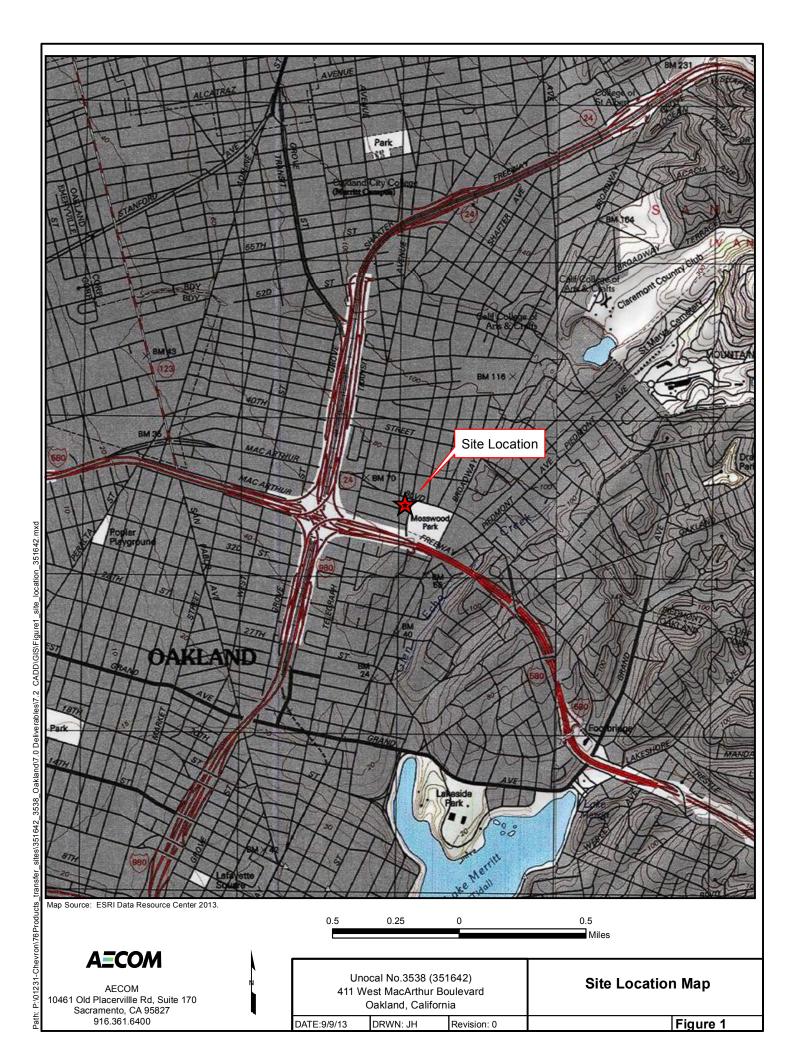
WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(µg/L)	(µg/L)	(µg/L)
	4/15/1996		Sampled Annually in	n the Third Quarter	
	7/11/1996	ND			
	1/17/1997		Sampled Annually in	n the Third Quarter	
	7/21/1997	ND			
	1/14/1998		Sampled Annually in	n the Third Quarter	
	7/6/1998	ND			
	1/13/1999		Sampled Annually in	n the Third Quarter	
	8/31/1999	ND			
	1/21/2000		Sampled Annually in	n the Third Quarter	
	7/10/2000	ND			
	1/4/2001		Sampled Annually in	n the Third Quarter	
	7/16/2001	ND			
	1/28/2002		Sampled Annually in	n the Third Quarter	
	7/12/2002	<2.5			
	1/14/2003		Sampled Annually in	n the Third Quarter	
	7/10/2003	<2.0			
	2/4/2004		Sampled Annually in	n the Third Quarter	
	7/29/2004	1.3			
	3/2/2005		Sampled Annually in	n the Third Quarter	
	9/30/2005	1.7			
	3/23/2006		Sampled Annually in	n the Third Quarter	
	9/26/2006	<1.0			
	3/15/2007		Sampled Annually in	the Third Quarter	
	9/27/2007	<1.0			
	3/27/2008	11.0	Sampled Annually in	the Third Quarter	
	9/17/2008	2.8			
	3/27/2009	2.0	Sampled Annually in	n the Third Quarter	
	9/17/2009	<1.0			
	3/23/2010	~1.0	Sampled Annually in	n the Third Ouarter	_
MW-6 cont.	9/21/2010	<1.0	Campieu Ailiually II		_
WIVY-O COIIL.	3/30/2011	~1.0	Sampled Annually in	the Third Ouartar	
	09/06/2011	<1.0	Sampled Amidally II	<0.50	
		<1.0	Compled Approlls is		
	02/03/2012	-1.0	Sampled Annually in		<0.F0
	08/17/2012	<1.0	<250	<0.50	<0.50
	2/14/2013		Sampled Annually in		.0.=0
	8/1/2013	<1.0	<250	<0.50	<0.50
	2/5/2014	Sampled An	nually in the Third Q	uarter	

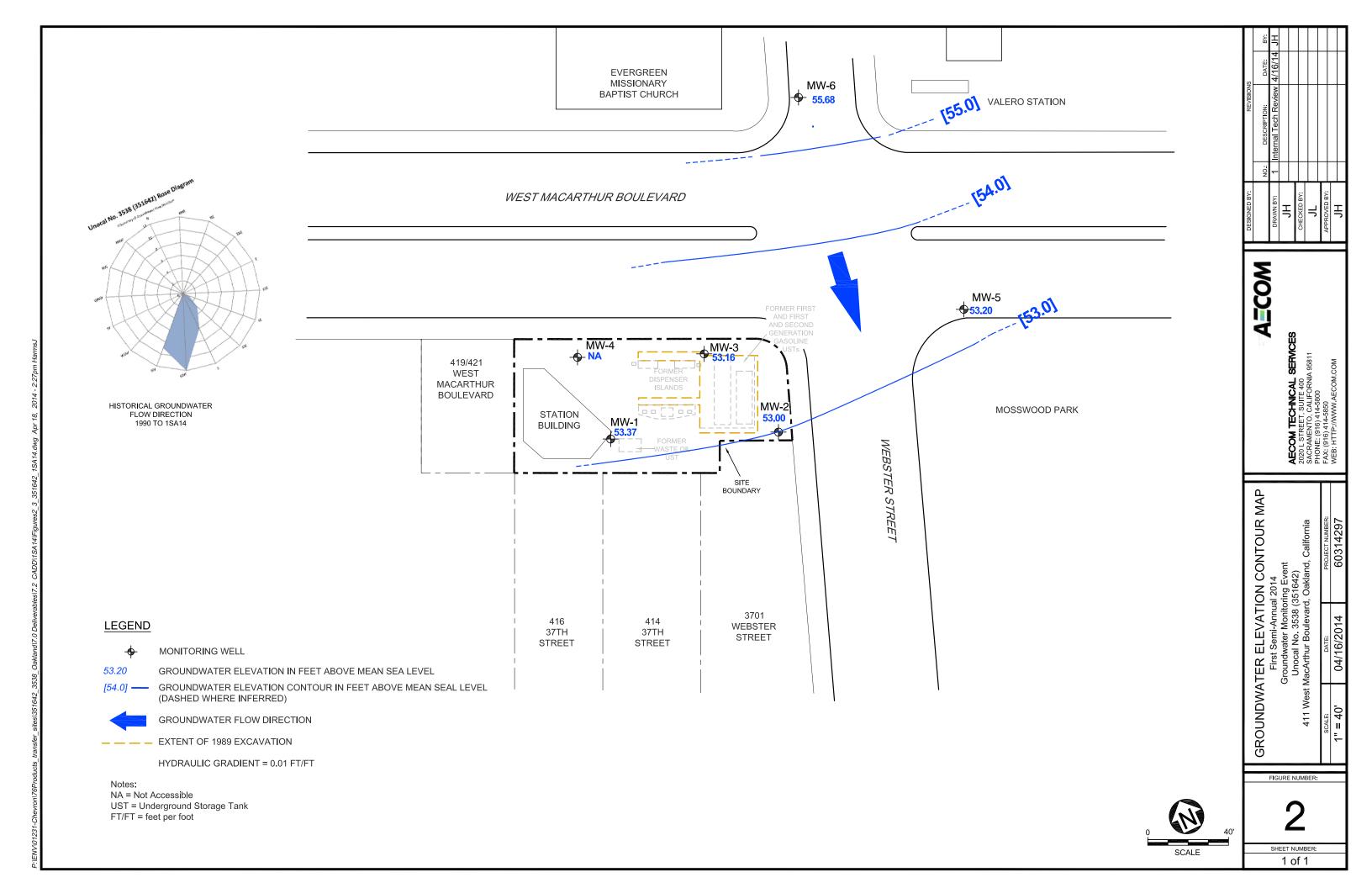
NOTES:

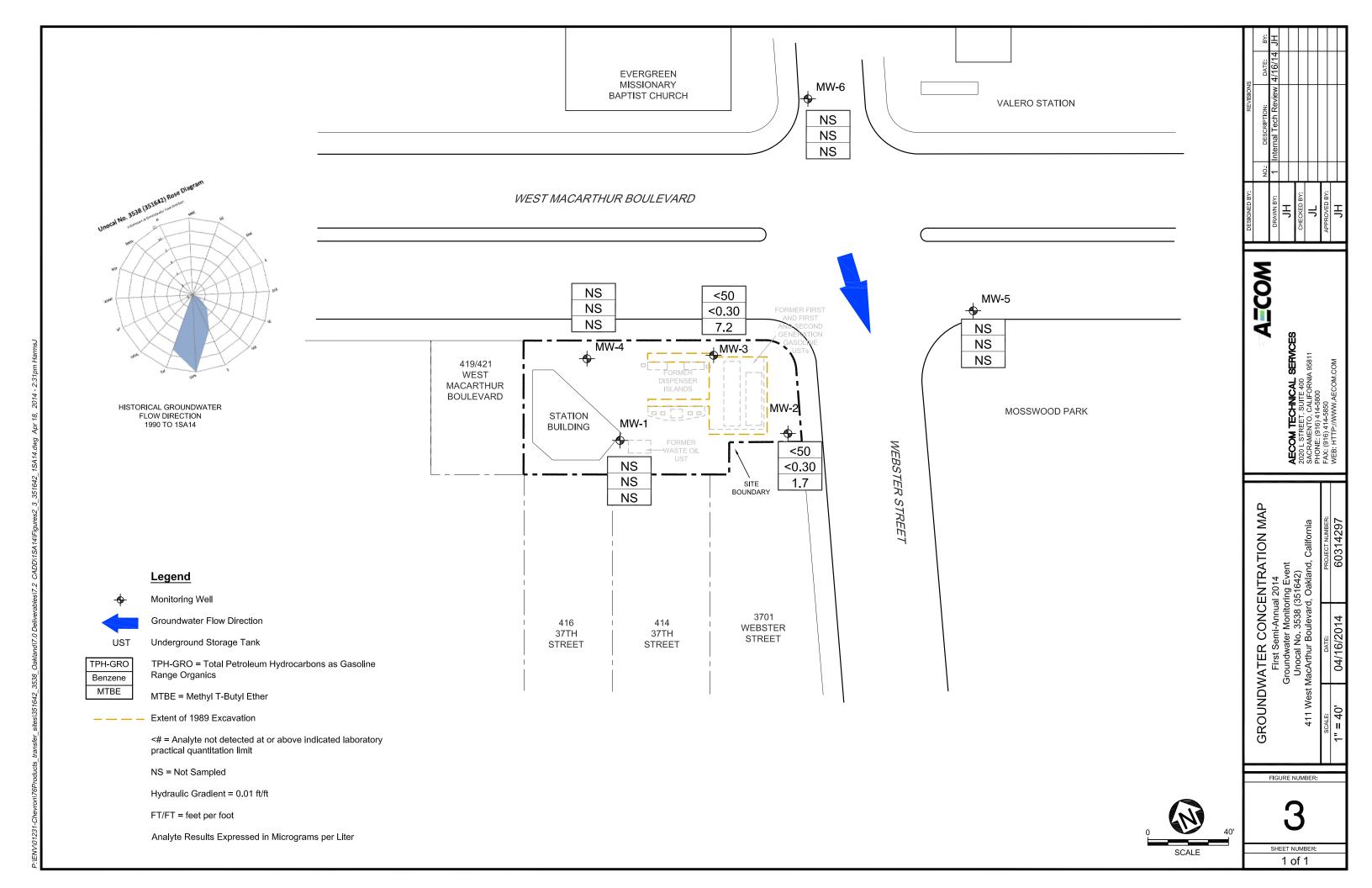
MTBE analyzed by Environmental Protection Agency Method 8021B Ethanol, EDB, and EDC analyzed by Environmental Protection Agency Method 8260B <# = Analyte not detected at or above indicated laboratory practical quantitation limit

-- = Not available/applicable µg/L = Micrograms per liter MTBE = Methyl t-butyl ether EDB = 1,2-Dibromoethane

Oakland, California


WELL ID	DATE	MTBE	ETHANOL	EDB	EDC
		(µg/L)	(µg/L)	(µg/L)	(µg/L)


EDC = 1,2-Dichloroethane


ID = Identification

ND = Not detected

Attachment A

Febuary 5, 2014, Groundwater Data Field Sheets

TRANSMITTAL

February 18, 2014 G-R #385643

TO:

Mr. Jim Harms

AECOM

10461 Old Placerville Road #170 Sacramento, California 95827

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6805 Sierra Court, Suite G Dublin, California 94568 RE: Chevron Facility #351642/3538

411 West MacArthur Boulevard

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package First Semi-Annual Event of February 5, 2014
	21100 20111 111111111 21 01 1 01 1 02 1 1 1 1

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/351642/3538

WELL CONDITION STATUS SHEET

Client/	THE CONDITION CIAICO CHEET										
Facility #:	Chevro	n #351642 /	3538				Job #:	385643			
Site Address:	411 West Macarthur Blvd.					-	Event Date:				_
City:	Oakland, CA					-	Sampler:	G115		MEDIVA	-
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retap	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	T T		REPLACE CAP Y/N		Pictures Taken Y/N
MW-1	ok						->	a	W	EMCO /12/2	K/
Mw-2	SK				glas y il in oliverga salagemetrico i spilando stato il	and the state of t	5	1	'	1 1 1	/~
MW-7	012-						> - S				
Mw.4	OK						7				-
nw-5	06-	>	mal	3(1)	et-		->>			BRAINALD KILLMAN/8/2	+-
MW-6	OK-	-7	M(1)	B(I)	de		7	V		PIGHT PHED KILLMAN SI	
		,						1	4		
	i.										
Comments											

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

Client/Facility#:	Chevron #351642	2 / 3538	Job Number:	385643	
Site Address:	411 West Macart	hur Blvd.	Event Date:	2/5/14	(inclusive)
City:	Oakland, CA		Sampler:	GM	()
			•		
Well ID	MW-	ſ	Date Monitored:	2/5/14	
Well Diameter	2 in.	Volu	ıme 3/4"= 0	0.02 1"= 0.04 2"= 0.17	3"= 0.38
Total Depth	23.69 ft.		tor (VF) 4"= 0.		2"= 5.80
Depth to Water	18.75 ft. 4.94 xVF	Check if water colum			•
Depth to Water	w/ 80% Recharge [(Heigh	nt of Water Column x 0.20)	x3 case volume =	Estimated Purge Volume:	
Purge Equipment:		Sampling Equipment:		Time Started:Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disposable Bailer	,	Depth to Product:	ft
Stainless Steel Baile	er /	Pressure Bailer		Depth to Water:	ft
Stack Pump		Metal Filters		Hydrocarbon Thickness	
Suction Pump		Peristaltic Pump		Visual Confirmation/Des	cription:
Grundfos		QED Bladder Pump		Chimana d Aba a da a d Ca	
Peristaltic Pump		Other:		Skimmer / Absorbant Sc Amt Removed from Skir	
QED Bladder Pump				Amt Removed from Wel	l: gal
Other:				Water Removed:	gu
	\		<u>/</u>		
Start Time (purge	e):	Weather Cor	nditions:		
	te: /	Water Color:	-	Odor: Y / N	
	te: gpm.	Sediment De			
Did well de-water		\ /		gal. DTW @ Sampling:	
		V		_ gai. Divv @ Camping.	
Time	Volume (gal.) pH	Conductivity	Temperature	D.O. ORF	
(2400 hr.)	,	(μm/los/cm - μS)	(C / F)	(mg/L) (mV	
	·				
		_/\			
	· · · · · · · · · · · · · · · · · · ·	/ `			
		/			
SAMPLE ID	(#) CONTAINER RÉF	LABORATORY IN RIG. PRESERV. TYPE	LABORATORY	ANALY	ese
MVV-	x voa vial / YE		BC LABS	TPH-GRO(8015)/BTEX+MTBE	
				ETHANOL (8260)	(0021)/1208/1200(6260)/
				<u> </u>	
		+			
COMMENTS:	Min				
COMMENTS	1.110				
Add/Replaced Gas	ket: Add/Re	placed Bolt:	Add/Replaced Lock	k. Add/Replaced	Plug

Client/Facility#: Site Address: City:	Chevron #35 411 West Ma Oakland, CA	carthur		Job Number: Event Date: Sampler:	385643 2/5/14 GM	(inclusive)
Well ID Well Diameter Total Depth Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		xVF 0 · / Control of Williams	Volu Fact	or (VF) 4"= 0 n is less then 0.50 - x3 case volume =	0.66 5"= 1.02 6"= 1.50 Oft. Estimated Purge Volume:	(2400 hrs)ftft s:ft scription: ock (circle one) mmer: gal
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.) 0314 0316	te: 0735/7 e:	gpm.	Weather Cor Water Color: Sediment De ne: Vo Conductivity (pminos/cm - ps) 0	Scription:	Odor: ON SUC SICT gal. DTW @ Sampling D.O. OR (mg/L) (mV	: 19.50
		L	ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANAL	rses
MW-7	(_o x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE ETHANOL (8260)	E(8021)/EDB/EDC(8260)/
COMMENTS: Add/Replaced Gas		Add/Renlaced		Add/Replaced Loc		

Client/Facility#: Site Address: City:	Chevron #35 411 West Ma Oakland, CA	acarthur		Job Number: Event Date: Sampler:	385643 2/5/14 Gun	(inclusive)
Well ID Well Diameter Total Depth Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		xVF 21 (Height of V	Volui Facto Check if water column	or (VF) 4"= 0 n is less then 0.50 x3 case volume =	Depth to Water: Hydrocarbon Thickn Visual Confirmation/ Skimmer / Absorban	(2400 hrs)
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) D752 0754	te: <u>08201</u>	0 L/S/14 gpm. If yes, Tir pH 6.92 6.90 4.39	Sediment Des	Brown scription:		ng:
			_ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANA	ALYSES
MW- 3	⊘ x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MT ETHANOL (8260)	BE(8021)/EDB/EDC(8260)/
COMMENTS:						
Add/Replaced Gas	sket:	Add/Replace	d Bolt	Add/Replaced Loc	k. Add/Penla	nced Dina:

Client/Facility#:	Chevron #351	642 / 3538	3	Job Number:	385643		
Site Address:	411 West Mad	arthur Blv	/d.	Event Date:	2/5/1		(inclusive)
City:	Oakland, CA			Sampler:	GM		
Well ID	MW- 11 4	_	[Date Monitored:	2/5/1	4	
Well Diameter	2 in.		Volu	me 3/4"= 0	0.02 1"= 0.04 2"	'= 0.17 3"= 0.38	
Total Depth	ft.			or (VF) 4"= 0		= 1.50 12"= 5.80	
Depth to Water	U ft.	Chec	k if water colum	n is less then 0.50	O ft.		
	<u>'</u> / 	(VF	_ =	x3 case volume =	Estimated Purge Vol	ume:	gal.
Depth to Water v	w/ 80% Recharge [(
					Time Started	: ted:	
Purge Equipment:	6		ling Equipment:		III.	luct:	
Disposable Bailer	\	-	sable Bailer		Depth to Wat		n ft
Stainless Steel Baile	r ————————————————————————————————————		ure Bailer		Hydrocarbon		t fi
Stack Pump		Metal				nation/Description:	
Suction Pump Grundfos	/\	\	altic Pump		1		
Peristaltic Pump			Bladder Pump			sorbant Sock (circl	
QED Bladder Pump	 	Other.	····	· · · · · · · · · · · · · · · · · · ·	Amt Removet	from Skimmer:	gal
Other:					Amt Removed	from Well:	gal
011011					vvaler Kenlov	ed:	
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)		5 U		scription	gal. DTW @ S gal. DTW @ S 	ampling:	
				FORMATION			
SAMPLE ID MW-	(#) CONTAINER x voa vial	REPRIG. P	HCL	BC LABS		ANALYSES	
10,00	A Voda Vilai	7 120	TICL	BC LABS	TPH-GRO(8015)/BTI ETHANQL (8260)	=X+MTBE(8021)/E	DB/EDC(8260)/

COMMENTS:	NIGHT.	MBLE	TO AC	cess C	AR PARK	ED ON	SITE
Add/Replaced Gas	ket: Ac	ld/Replaced Bo	lt:	Add/Replaced Loc	k: Ado	I/Replaced Plug: _	

Client/Facility#:	Chevron #351642	2 / 3538	Job Number:	385643		
Site Address:	411 West Macart	hur Blvd.	Event Date:	2/5/14	,	(inclusive)
City:	Oakland, CA		– Sampler:	Gun		(
			<u> </u>			
Well ID	MW- 5		Date Monitored:	2/5/14		
Well Diameter	2 in.	T _v	/olume 3/4"= (0.02 1"= 0.04 2"	= 0.17 3"= 0.38	,
Total Depth	30.15 ft.		actor (VF) 4"= (_	= 1.50 12"= 5.80	,
Depth to Water	17.90 ft. 12.19 xVF	Check if water colu		0 ft. = Estimated Purge Volu	ıme:	nal len
Depth to Water v	w/ 80% Recharge [(Heig	nt of Water Column x 0.20	D) + DTW]:			
Purge Equipment:	\sim	Sampling Equipme	n#-		ted:	
Disposable Bailer		Disposable Bailer			uct:	
Stainless Steel Baile	, —	Pressure Bailer	}		er:	
Stack Pump	· —	Metal Filters	/	Hydrocarbon	Thickness:	Øft
Suction Pump		Peristaltic Pump		Visual Confirm	nation/Description	:
Grundfos		QED Bladder Pump	/	Skimmer / Abr	sorbant Sock (circ	
Peristaltic Pump		Other:			sorbani Sock (circ I from Skimmer:	
QED Bladder Pump		\ /		Amt Removed	from Well:	gal gal
Other:				Water Remov	ed:	
Start Time (purge):	Weather C	conditions:			
Sample Time/Da	te: /		or:	Odor: Y / N		·
Approx. Flow Rat			Description:			
Did well de-water		,	· -	gal. DTW @ Sa	ampling:	
		/——			p9	
Time (2400 hr.)	Volume (gal.) pH	Conductivity	Temperature	D.O.	ORP	
(2400 HI.)		/ (μmhos/cm - μS)	(C) F)	(mg/L)	(mV)	
		/				
		<u> </u>				
						
		LABORATORY	INFORMATION			
SAMPLE ID	(#) CONTAINER / REF		INFORMATION E LABORATORY		ANALYSES	
MVV-	x voa viai YE		BC LABS	TPH-GRO(8015)/BTE		EDB/EDC/9360V
				ETHANOL (8260)	.X 1 W11 BL (802 1)/E	DB/EDC(6260)/
	/_					
				 		
					<u></u>	
						
COMMENTS:	MID					
	Ψ.					
Add/Replaced Gas	ket: Add/Re	placed Bolt:	Add/Replaced Loc	ck: Add	Replaced Plug:	

Client/Facility#:	Chevron #35164	2 / 3538	Job Number:	385643	
Site Address:	411 West Macar	thur Blvd.	Event Date:	2/5/14	(inclusive)
City:	Oakland, CA		Sampler:	Cm	()
			•		
Well ID	MW-/ _{\(\rac{1}{2}\)}		Date Monitored:	2/5/14	
Well Diameter	2 V in.	Vot	ume 3/4"= 0.0		'= 0.38
Total Depth	30.0 ft.		tor (VF) 4"= 0.6		= 0.38 '= 5.80
Depth to Water	15.69 ft. 14.41 xVF	Check if water column			
Depth to Water		ght of Water Column x 0.20)	+ DTW]:		
Purge Equipment:		Sampling Equipment:		Time Started: Time Completed:	
Disposable Bailer	•			Depth to Product:	
Stainless Steel Baile	· ———	Disposable Bailer		Depth to Water:	
Stack Pump	" —	Pressure Bailer Metal Filters		Hydrocarbon Thickness:_	
Suction Pump		Peristaltic Pump		Visual Confirmation/Descr	
Grundfos		QED Bladder Pump			
Peristaltic Pump		Other:		Skimmer / Absorbant Soci	
QED Bladder Pump		Outer		Amt Removed from Skimn	ner: gal
Other:		,		Amt Removed from Well:_ Water Removed:	
<u> </u>		\		Water Kenloved.	
Start Time (purge	7).	Weather Co	nditions:		
	ite: /		-	Odor: Y / N	
	te: gpm			Odor. 1 / 14	
Did well de-water		\ /			
Did Well de-Water	r? If ye	es, Time Vo	olume:	_gal. DTW @ Sampling: ₋	
Time	Mahama (==1)	Conductivity	Temperature	D.O. ORP	
(2400 hr.)	Volume (gal.) pł	1 (μmhos/cm - μS)	(C/F)	(mg/L) (mV)	
	,	/			
					
	·				
		LABORATORY I	FORMATION		8
SAMPLE ID		RIG. PRESERV. TYPE	LABORATORY	ANALYS	
MVV-	x voa vial Y	ES HCL		TPH-GRO(8015)/BTEX+MTBE(8	021)/EDB/EDC(8260)/
			 	ETHANOL (8260)	
	/				
	/				
./					
COMMENTS:	M, 10				

Add/Replaced Gas	sket Add/R	eplaced Boit:	Add/Replaced Lock	· Add/Replaced P	lua

CHAIN OF CUSTODY FORM

Union Oil Company of California ■ 6101 Bollinger Canyon Road ■ San Ramon, CA 94583

Union Oil Site ID: 3539				Union Oil Consultant: A	COM ENVIRONMENT							ANAL	YSE	SRE	QUIR	RED		
Site Global ID: 706001	FHIC	2		Consultant Contact:					3								Turnaround	Time (TAT):
Site Address: 411 we-	7 /V\A	CARTONE	BEND	Consultant Phone No.:	AMA (916)361-6412			1	15								Standard 🎾	24 Hours □
DAKLA				Sampling Company: TIME	CHITTLES JUNN			3021	ن								48 Hours □	72 Hours □
Union Oil PM: TIMOTE	1 -	1 CHO		Sampled By (PRINT):	11			/ E	2								Special II	nstructions
Union Oil PM Phone No.: (4	75)30	10 10 10 10 1	<u> </u>	Oli	TERS MITTEL		1	3898	2/ 5	ا ۾ ا								
Charge Code: NWRTB- 0	516	4.2 -0- LAB		Sampler Signature:		8015	8015 M	y EPA 6	3/658	ith OXY:								
This is a LEGAL document. COMPLETELY.	<u>ALL</u> fields i	must be filled out	t CORRECTLY and	Project Mana 4100 Atlas Court,	oratories, Inc. ger: Molly Meyers Bakersfield, CA 93308 . 661-327-4911	Diesel by EPA	by @Gutas	BTEX/MTBE/@xxxxiby EPA 82688	Ethanol by EPA 8260B	EPA 8260B Full List with OXYS								
	SAMPL	E ID		_		1	Ő	×	<u></u>	826								
Field Point Name	Matrix	DTW	Date (yymmdd)	Sample Time	# of Containers	ТРН	TPH	BTE	Etha	EPA							Notes (6	
(DA	W-S-A	2	140005	Sumple Time	2		X	X		\vdash	_	\dashv	\dashv				Notes / C	omments
	T		1	2775	/		1	 `	1. 7	\vdash			\dashv					
MW-3	W-S-A			0735	6		\vdash	-	Y	$\vdash \vdash$		_	_					
MW 3	W-S-A		4	0970	6		1	1	X		\perp						t	
	W-S-A																	
	W-S-A																V.	
	W-S-A																	
	W-S-A																	
	W-S-A																	-
	W-S-A																	
	W-S-A																	
•	W-S-A																	
	W-S-A											ı						
Relinquished By Con	npany	Date / Time:	(1330)		ompany Date / Time :	·	15	1.7.	Relin	quishe	ed By		Co	mpar	ny .	D	ate / Time:	
Received By Com	pany	Date / Time:		Received By Co	ompany Date / Time :	•	· · · · · ,	11/2	Rece	ived E	у		С	ompa	ny	D	ate / Time:	
RETTLEL-RYAN	Fine	- (= - 7 ° - 7)	14 13.0	May Bogan	Beloh 24-111	,	50											

Attachment B

BC Labs Analytical Report #1402896

Date of Report: 02/19/2014

Jim Harms

AECOM

10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Client Project: 351642
BCL Project: 3538
BCL Work Order: 1402896
Invoice ID: B166521

Enclosed are the results of analyses for samples received by the laboratory on 2/6/2014. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1402896-01 - QA-W-140205	
Purgeable Aromatics and Total Petroleum Hydrocarbons	6
1402896-02 - MW-2-W-140205	
Volatile Organic Analysis (EPA Method 8260B)	7
Purgeable Aromatics and Total Petroleum Hydrocarbons	8
1402896-03 - MW-3-W-140205	
Volatile Organic Analysis (EPA Method 8260B)	9
Purgeable Aromatics and Total Petroleum Hydrocarbons	10
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	11
Laboratory Control Sample	
Precision and Accuracy	13
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	14
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	17

Chain of Custody and Cooler Receipt Form for 1402896 Page 1 of 2 24 Hours
72 Hours Turnaround Time (TAT): Votes / Comments Special Instructions 5 Standard 🗷 48 Hours ログメイン ŝ Relinquished By Union Oil Company of California 🗷 6101 Bollinger Canyon Road 🗷 San Ramon, CA 94583 EPA 8260B Full List with OXYS (0°28) Ethanol by EPA 8260B / EDK / ETOC AT S AT S VALUE (SO 2) BETWIND SO 2 2951 TPH-G by (8015 M) TPH - Diesel by EPA 8015 CHAIN OF CUSTODY FORM Union Oil Consultant: AECOM ENVIRONMENT Date / Time Consultant Phone No.: 169464 (416)361-6412 # of Containers Project Manager: Molly Meyers 4100 Atlas Court, Bakersfield, CA 93308 Phone No. 661-327-4911 O Sampling Company: 📭 (みなび) و Laboratories, Inc. Sampled By (PRINT) Sample Time Sampler Signature 033 289 Relinquished By $\lfloor 4\cdot C2896$ This is a LEGAL document. <u>ALL</u> fields must be filled out CORRECTLY and COMPLETELY. Date (yymmdd) 14 orus 2.6.14 (1330 MACARTHUR Jnion Oil PM Phone No.: (名25) つみっ かくし Date / Time Charge Code: NWRTB- 0 35 1 642-0-LAB ΣLO SAMPLE W-S-A V-S-A M-S-A W-S-A W-S-A W-S-A W-S-A W-S-A W-S-A W-S-A W-S-A Matrix OAKLAND Site Global ID: TO600014 Union Oil PM: TIMOTHY Site Address: 4(1) NEST Union Oil Site ID: 3538 AP. Fleid Point Name 6 Z **(**\(\rapprox) 1

Chain of Custody and Cooler Receipt Form for 1402896 Page 2 of 2

Refrigerant:	Submission #: 4 - 0 2 8 SHIPPING INF Federal Express □ UPS □	ORMATIO					G CONTA			FREE LIC	
Custody Seals Ice Chest			fy)							1E5 L	NO L
All samples received? Yes P No C All samples containers intact? Yes No D Descriptiontal match COC? Yes No D EVER COC Received PYES No	Refrigerant: Ice Blue Id	ce □ No	ne 🗆	Other □	Com	ments:					
COC Received PYES	[[April 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	100000000000000000000000000000000000000		1	e Ø Con	nments:			•		
EMISSIVITY:	All samples received? Yes ₩ No □	All sampl	es containe	rs intact? \	res 🗩 N	o 🗆	Descrip	tion(s) mat	tch COC?	Yesy⊒∕ No	
SAMPLE CONTAINERS 1 2 3 4 5 6 7 8 9 10 DT GENERAL MINERAL JCEREERAL PT PE UNPRESENTED OT INFORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS PT CYCANDE PT CYCANDE PT CYCANDE PT TOTAL SULFIDE ON INTRATE INTRITE PT TOTAL ORGANIC CARBON T TOTAL SULFILE T TOTAL ORGANIC CARBON T TOTAL ORGANIC CARBON T TOTAL SULFILE T TOTAL ORGANIC CARBON T TOTAL ORGANIC CARBON T TOTAL SULFILE T TOTAL ORGANIC CARBON T TOTAL SULFILE T TOTAL ORGANIC CARBON T TOTAL ORGANIC CHEMICAL T									1		14
TT GENERAL MINERAL/ GENERAL TT PE UNPRESERVED OT GENERAL MINERAL/ GENERAL TT PE UNPRESERVED OT RONGANIC CHEMICAL METALS PT NORGANIC CHEMICAL METALS PT NORGANIC CHEMICAL METALS PT NORGANIC CHEMICAL METALS PT NOTAL SULFIDE DOWN INTRATE / INTRITE PT TOTAL SULFIDE DOWN INTRATE / INTRITE PT TOTAL ORGANIC CARBON PT TOX PT CHEMICAL OXYGEN DEMAND APPENCALICS DOWN VOA VIAL TRAVEL BLANK PT COMMINION ORGANIC CARBON PT CHEMICAL OXYGEN DEMAND APPENCALICS DOWN VOA VIAL TRAVEL BLANK PT CODOR ADDIOLOGICAL DOWN OA VIAL SULFACE DOWN VOA VIAL SULFACE PT PA 4315, 4132, 418.1 TO DOOR ADDIOLOGICAL DOWN OA VIAL SULFACE DOWN VOA VIAL SULFACE PT PA 525 STRAVEL BLANK PT PA 525 STRAVEL BLANK PT PA 525 STRAVEL BLANK PT PA 535 STRAVEL BLANK PT PA 535 STRAVEL BLANK PT PA 535 STRAVEL BLANK PT PA 545 STRAVEL BLANK PT PA 550 THE PA	SAMPLE CONTAINERS .			 T	<u> </u>	7			·		
PT PE UNPRESERVED OT INORGANIC CHEMICAL METALS PT CYANIDE PT OTAL SULPIDE DOE, NITRATE / NITRITE PT TOTAL ORGANIC CARBON PT CHEMICAL OXYGEN DEMAND PA PIEROLICS DOM: VOA VIAL TO TOX PT CHEMICAL OXYGEN DEMAND PA PIEROLICS DOM: VOA VIAL TRAVEL BLANK PT CO DOM: TO TO	OT GENERAL MINERAL/ GENERAL		1 2	3	4	5		 	1 8	+ 9-	1 10
FT INORGANIC CHEMICAL METALS FT CYANIDE FT CYANIDE FT POTATA SULTIPE PURTREGEN FORMS FT TOTAL SURTIPE PURTREGEN FOR						1 .		1	1	†	1
PT CYANIDE 7T NITROGEN FORMS 7T NITROGEN FORMS 800. NITRATE / NITRITE 7T TOTAL SULFIDE 801. NITRATE / NITRITE 7T TOX 81. TOX 82. TOX 83. TOX 84. TOX 85. TOX 85. TOX 86. T	QT INORGANIC CHEMICAL METALS					1					
PT NITROGEN FORMS PT TOTAL SULFIDE C. NITRATE / NITRITE PT TOTAL ORGANIC CARBON PT TOX PT CHEMICAL OXYGEN DEMAND 1A PHENOLICS Goal VOA VIAL TRAVEL BLANK PT PEPA 413.4, 413.2, 418.1 TODOR ANDICLOGICAL ANDICLOGICAL DO WOA VIAL 594 TEPA 588/608/9089 TEPA 515.10150 TEPA 515.10150 TEPA 535.11 TEPA 547 Good EPA 547 Good EPA 547 Good EPA 549 TEPA 548 TEPA 548 TEPA 548 TEPA 549 TEPA 549 TEPA 550 TEPA 550	PT INORGANIC CHEMICAL METALS								1		
T TOTAL SULFIDE 02. NITRATE / NITRITE 12. TOTAL ORGANIC CARBON T TOX T CHEMICAL OXYGEN DEMAND 13. PERPACULCS 03. MI VOA VIAL 14. PERPACULCS 05. MI VOA VIAL 15. PERA 431. 413.2, 418.1 17. ODOR ACTERIOLOGICAL ACTERIOLOGICAL 15. MI VOA VIAL-504 15. TEPA 515.18150 15. TEPA 525. TRAVEL BLANK 16. TEPA 525. TRAVEL BLANK 17. EPA 525. TRAVEL BLANK 18. TEPA 525. TRAVEL BLANK 19. MI VOA VIAL-504 19. MI VOA VIAL-504 10. MI VOA VIAL-504	T CYANIDE										
22. NITRATE / NITRITE T TOTAL ORGANIC CARBON T CHEMICAL OXYGEN DEMAND 1A PHENOLICS 0ml VOA VIAL TRAVEL BLANK 1	T NITROGEN FORMS										
T TOTAL ORGANIC CARBON T TOX T CHEMICAL OXYGEN DEMAND AD PIERNOLICS Only VOA VIAL TRAVEL BLANK ONLY VOA VIAL T EPA 413.1, 413.2, 418.1 T ODOR ADIOLOGICAL ACTERIOLOGICAL JOHN VOA VIAL 594 T EPA 598-6080808 T EPA 515.18150 T EPA 515.18150 T EPA 525 T EPA 535.2 T EPA 535.3 T EPA 535.1 T EPA 535.3 T EPA 535.1 T EPA 535.1 T EPA 535.1 T EPA 536.1 T EPA 548 T EPA 550 T EPA 550 T EPA 551 T EPA 548 T EPA 548 T EPA 550 T EPA 561 T EPA 568 T EPA 561 T EPA 562 T EPA 561 T EPA 563 T EPA 561 T EPA 563 T EPA 564 T EPA 564 T EPA 565 T EPA 565 T EPA 565 T EPA 566 T EPA 567 T EPA 568 T EPA 662 T EPA 663 T EPA 663 T EPA 663 T EPA 663 T EPA 664 T EPA 664 T EPA 664 T EPA 665 T EPA 666 T EPA 666 T EPA 666 T EPA 667 T E	T TOTAL SULFIDE										
T TOX T CHEMICAL OXYGEN DEMAND 14 PHENOLICS 50ml YOA VIAL 1	oz. NITRATE / NITRITE					ļ	<u> </u>	<u> </u>			
TA CHEMICAL OXYGEN DEMAND 1A PHENOLICS 0mi VOA VIAL TRAVEL BLANK 0mi VOA VIAL TRAVEL BLANK 1T EPA 413.1, 413.2, 418.1 1 C O			<u> </u>				 		<u> </u>		
A PHENOLICS Omi VOA VIAL TRAVEL BLANK Omi VOA VIAL T EPA 403.1, 413.2, 418.1 T ODOR ADIOLOGICAL ACTERIOLOGICAL I EVA 508.608.7080 T EPA 508.608.7080 T EPA 515.18150 T EPA 525 TRAVEL BLANK Omi EPA 531.1 T EPA 531.1 T EPA 532 T EPA 534 T EPA 534 T EPA 534 T EPA 535.1 T EPA 535.1 T EPA 535.1 T EPA 535.1 T EPA 548 T EPA 549 T EPA 549 T EPA 542 T EPA 543 T EPA 549 T EPA 549 T EPA 540 T EPA 540 T EPA 541 T EPA 543 T EPA 545 T EPA 545 T EPA 545 T EPA 545 T EPA 546 T EPA 547 T EPA 548 T EPA 548 T EPA 549 T EPA 540 T EPA 540 T EPA 541 T EPA 542 T EPA 543 T EPA 543 T EPA 543 T EPA 544 T EPA 545 T EPA 547 T EPA 548 T EPA 549 T EPA 549 T EPA 540 T EPA 5	•	_				 	 				
Omit VOA VIAL TRAVEL BLANK Omit VOA VIAL Omi	1 CHEMICAL OAT GEN DEMAND		<u> </u>			 	ļ	· · · · · · · · · · · · · · · · · · ·	 		
Omi VOA VIAL IT EPA 413.1, 413.2, 418.1 T ODOR ADIOLOGICAL ACTERIOLOGICAL Omi VOA VIAL- 504 T EPA 508/608/8080 T EPA 515.1/8150 T EPA 525 T EPA 525 T EPA 525 T EPA 545 Omi EPA 531.1 T EPA 548 T EPA 549 T EPA 549 T EPA 549 T EPA 549 T EPA 530 T EPA 630 T EPA 530 T EPA 630 T EPA 530 T EPA 549 T EPA 549 T EPA 549 T EPA 549 T EPA 540 T E		12				 	 		<u> </u>	<u> </u>	
TT EPA 413.1, 413.2, 418.1 T ODOR ADIOLOGICAL ACTERIOLOGICAL D DI VOA VIAL- 504 T EPA 508/608/8080 T EPA 515.1/8150 T EPA 525 T EPA 525 T EPA 525 T EPA 547 Donl EPA 531.1 T EPA 548 T EPA 548 T EPA 549 T EPA 549 T EPA 549 T EPA 502 T EPA 5015M T AMBER DZ. JAR DZ		HE	11 1/01	h./.	,	 	 	, ,			
TODOR			# 10	13.4		` \	 	· · · · · · · · · · · · · · · · · · ·		/	1 1
ADDIOLOGICAL ACTERIOLOGICAL D ml VOA VIAL- 504 T EPA 508/608/8080 T EPA 515.1/8150 T EPA 525 T EPA 525 T EPA 547 Doml EPA 547 Doml EPA 548 T EPA 532 T EPA 532 T EPA 632 T EPA 6315M T AMBER DOZ. JAR DOZ. JAR DIL SLEEVE' EB VIAL ASTIC BAG ERROUS IRON ICORE					•		1				
0 ml VOA VIAL - 504 IT EPA 508/608/8080 IT EPA 515.1/8150 T EPA 525 T EPA 525 T EPA 525 TAVEL BLANK 10ml EPA 547 10ml EPA 531.1 T EPA 548 T EPA 549 T EPA 632 T EPA 632 T EPA 632 T EPA 630 T EPA 6							7				
T EPA 508/608/80800 T EPA 515.1/8150 T EPA 525 T EPA 525							1				
T EPA 515.1/8150 T EPA 525 T EPA 525 TRAVEL BLANK DOME EPA 547 DOME EPA 531.1 T EPA 548 T EPA 549 T EPA 632 T EPA 8015M T AMBER OZ. JAR DIL SLEEVE' B VIAL ASTIC BAG ERROUS IRON NCORE	0 ml VOA VIAL- 504										
T EPA 525 T EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 531.1 T EPA 548 T EPA 549 T EPA 632 T EPA 632 T EPA 632 T EPA 8015M T AMBER OZ. JAR	T EPA 508/608/8080										
T EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 531.1 T EPA 548 T EPA 549 T EPA 632 T EPA 8015M T EPA 8015M OZ. JAR	T EPA 515.1/8150										
10ml EPA 547	T EPA 525										
100ml EPA 531.1	T EPA 525 TRAVEL BLANK		•								
Γ EPA 548 Γ EPA 549 Γ EPA 632 Γ EPA 8015M Γ AMBER ΟΖ. JAR ΟΖ. JAR ΟΖ. JAR ΟΖ. JAR ΘΙΙ SLEEVE΄ ΕΝ VIAL ΔΑSTIC BAG ΕΠΚΟUS IRON Ι ΟΙΚΑΙ ΕΙΚΑΙ ΕΙΚ	0ml EPA 547										L
Γ EPA 549 Γ EPA 632 Γ EPA 8015M Γ AMBER OZ. JAR OZ.		_									I
FEPA 632											
CEPA 8015M		1									
CAMBER		1									
OZ. JAR OZ. JA		1									
OZ. JAR DIL SLEEVE BE VIAL ASTIC BAG RROUS IRON CORE											
DIL SLEEVE STATE S		1				·					
ASTIC BAG RROUS IRON CORE	· · · · · · · · · · · · · · · · · · ·							1			
RROUS IRON CORE	B VIAL										
CORE											
	RROUS IRON										
IART KIT	CORE										,
	ART KIT										
mma Canister	mma Canister										

10461 Old Placerville Rd, Suite 170

Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538 Project Number: 351642 Project Manager: Jim Harms

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1402896-01 COC Number:

> **Project Number:** 3538 Sampling Location:

Sampling Point: QA-W-140205

Sampled By:

GRD

02/06/2014 23:00 Receive Date: Sampling Date: 02/05/2014 00:00

Sample Depth: Water

Lab Matrix: Blank Water Sample Type:

Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): QA

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1402896-02 **COC Number:**

> **Project Number:** 3538 Sampling Location:

MW-2-W-140205 Sampling Point:

GRD Sampled By:

02/06/2014 23:00 Receive Date: 02/05/2014 07:35 Sampling Date:

Sample Depth: Water Lab Matrix: Blank Water Sample Type:

Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-2

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1402896-03 COC Number:

> 3538 **Project Number:** Sampling Location:

MW-3-W-140205 Sampling Point:

GRD Sampled By:

Receive Date: 02/06/2014 23:00

02/05/2014 08:20 Sampling Date:

Sample Depth: Water Lab Matrix: Blank Water Sample Type:

Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-3

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

10461 Old Placerville Rd, Suite 170

Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538

Project Number: 351642 Project Manager: Jim Harms

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 1	402896-01	Client Sampl	e Name:	3538, QA-W-14020	5, 2/5/2014 12:00	:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.30	EPA-8021B	ND		1
Toluene		ND	ug/L	0.30	EPA-8021B	ND		1
Ethylbenzene		ND	ug/L	0.30	EPA-8021B	ND		1
Methyl t-butyl ether		ND	ug/L	1.0	EPA-8021B	ND		1
Total Xylenes		ND	ug/L	0.60	EPA-8021B	ND		1
Gasoline Range Organics (C4 - C12)	ND	ug/L	50	EPA-8015B	ND		2
a,a,a-Trifluorotoluene (PID	Surrogate)	90.4	%	70 - 130 (LCL - UCL)	EPA-8021B			1
a,a,a-Trifluorotoluene (FID S	Surrogate)	91.4	%	70 - 130 (LCL - UCL)	EPA-8015B			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8021B	02/14/14	02/14/14 15:59	jjh	GC-V9	1	BXB1042	
2	EPA-8015B	02/14/14	02/14/14 15:59	jjh	GC-V9	1	BXB1042	

10461 Old Placerville Rd, Suite 170

Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538

Project Number: 351642 Project Manager: Jim Harms

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1402896-02	Client Sampl	e Name:	3538, MW-2-W-140	205, 2/5/2014 7:	35:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (S	urrogate)	104	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		102	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (S	Surrogate)	100	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	02/07/14	02/07/14 16:58	JMS	MS-V12	1	BXB0431	

10461 Old Placerville Rd, Suite 170

Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538
Project Number: 351642
Project Manager: Jim Harms

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 14	102896-02	Client Sampl	e Name:	3538, MW-2-W-140	205, 2/5/2014	7:35:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.30	EPA-8021B	ND		1
Toluene		ND	ug/L	0.30	EPA-8021B	ND		1
Ethylbenzene		ND	ug/L	0.30	EPA-8021B	ND		1
Methyl t-butyl ether		1.7	ug/L	1.0	EPA-8021B	ND		1
Total Xylenes		ND	ug/L	0.60	EPA-8021B	ND		1
Gasoline Range Organics (C	4 - C12)	ND	ug/L	50	EPA-8015B	ND		2
a,a,a-Trifluorotoluene (PID S	urrogate)	90.6	%	70 - 130 (LCL - UCL)	EPA-8021B			1
a,a,a-Trifluorotoluene (FID Si	urrogate)	94.1	%	70 - 130 (LCL - UCL)	EPA-8015B			2

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8021B	02/14/14	02/14/14 16:19	jjh	GC-V9	1	BXB1042	
2	EPA-8015B	02/14/14	02/14/14 16:19	jjh	GC-V9	1	BXB1042	

MU

AECOM

10461 Old Placerville Rd, Suite 170

Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538

Project Number: 351642 Project Manager: Jim Harms

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1402896-03	Client Sampl	e Name:	3538, MW-3-W-140	205, 2/5/2014 8:	20:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	102	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.2	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	92.2	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	02/07/14	02/07/14 17:15	JMS	MS-V12	1	BXB0431	

Project: 3538
Project Number: 351642
Project Manager: Jim Harms

Reported:

02/19/2014 13:31

AECOM 10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 14	402896-03	Client Sampl	e Name:	3538, MW-3-W-140	205, 2/5/2014	8:20:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.30	EPA-8021B	ND		1
Toluene		ND	ug/L	0.30	EPA-8021B	ND		1
Ethylbenzene		ND	ug/L	0.30	EPA-8021B	ND		1
Methyl t-butyl ether		7.2	ug/L	1.0	EPA-8021B	ND		1
Total Xylenes		ND	ug/L	0.60	EPA-8021B	ND		1
Gasoline Range Organics (C	C4 - C12)	ND	ug/L	50	EPA-8015B	ND		2
a,a,a-Trifluorotoluene (PID S	Surrogate)	83.7	%	70 - 130 (LCL - UCL)	EPA-8021B			1
a,a,a-Trifluorotoluene (FID S	urrogate)	98.5	%	70 - 130 (LCL - UCL)	EPA-8015B			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8021B	02/14/14	02/14/14 16:39	jjh	GC-V9	1	BXB1042	
2	EPA-8015B	02/14/14	02/14/14 16:39	jjh	GC-V9	1	BXB1042	

10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538
Project Number: 351642

Project Manager: Jim Harms

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BXB0431						
1,2-Dibromoethane	BXB0431-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BXB0431-BLK1	ND	ug/L	0.50		
Ethanol	BXB0431-BLK1	ND	ug/L	250		
1,2-Dichloroethane-d4 (Surrogate)	BXB0431-BLK1	105	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BXB0431-BLK1	104	%	80 - 120	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BXB0431-BLK1	98.9	%	80 - 120	(LCL - UCL)	

10461 Old Placerville Rd, Suite 170

Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538
Project Number: 351642
Project Manager: Jim Harms

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

								Control Limits			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BXB0431											
1,2-Dichloroethane-d4 (Surrogate)	BXB0431-BS1	LCS	10.080	10.000	ug/L	101		75 - 125			
Toluene-d8 (Surrogate)	BXB0431-BS1	LCS	10.150	10.000	ug/L	102		80 - 120			
4-Bromofluorobenzene (Surrogate)	BXB0431-BS1	LCS	10.090	10.000	ug/L	101		80 - 120			

10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538

Project Number: 351642 Project Manager: Jim Harms

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

									Cont		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BXB0431	Use	ed client samp	ole: N								
1,2-Dichloroethane-d4 (Surrogate)	MS	1400811-74	ND	9.6600	10.000	ug/L		96.6	75 - 125		
	MSD	1400811-74	ND	9.7800	10.000	ug/L	1.2	97.8		75 - 125	
Toluene-d8 (Surrogate)	MS	1400811-74	ND	9.9100	10.000	ug/L		99.1		80 - 120	
	MSD	1400811-74	ND	10.090	10.000	ug/L	1.8	101		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1400811-74	ND	10.160	10.000	ug/L		102		80 - 120	
	MSD	1400811-74	ND	10.440	10.000	ug/L	2.7	104		80 - 120	

10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538
Project Number: 351642
Project Manager: Jim Harms

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL L	ab Quals
QC Batch ID: BXB1042						
Benzene	BXB1042-BLK1	ND	ug/L	0.30		
Toluene	BXB1042-BLK1	ND	ug/L	0.30		
Ethylbenzene	BXB1042-BLK1	ND	ug/L	0.30		
Methyl t-butyl ether	BXB1042-BLK1	ND	ug/L	1.0		
Total Xylenes	BXB1042-BLK1	ND	ug/L	0.60		
Gasoline Range Organics (C4 - C12)	BXB1042-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (PID Surrogate)	BXB1042-BLK1	108	%	70 - 130	(LCL - UCL)	
a,a,a-Trifluorotoluene (FID Surrogate)	BXB1042-BLK1	110	%	70 - 130	(LCL - UCL)	

10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538
Project Number: 351642
Project Manager: Jim Harms

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

	•		•		•		•				
								Control I	imits		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BXB1042											
Benzene	BXB1042-BS1	LCS	45.028	40.000	ug/L	113		85 - 115			
Toluene	BXB1042-BS1	LCS	42.987	40.000	ug/L	107		85 - 115			
Ethylbenzene	BXB1042-BS1	LCS	41.740	40.000	ug/L	104		85 - 115			
Methyl t-butyl ether	BXB1042-BS1	LCS	40.905	40.000	ug/L	102		85 - 115			
Total Xylenes	BXB1042-BS1	LCS	134.43	120.00	ug/L	112		85 - 115			
Gasoline Range Organics (C4 - C12)	BXB1042-BS1	LCS	957.13	1000.0	ug/L	95.7		85 - 115			
a,a,a-Trifluorotoluene (PID Surrogate)	BXB1042-BS1	LCS	44.229	40.000	ug/L	111		70 - 130			
a,a,a-Trifluorotoluene (FID Surrogate)	BXB1042-BS1	LCS	42.424	40.000	ug/L	106		70 - 130			

10461 Old Placerville Rd, Suite 170 Sacramento, CA 95827

Reported: 02/19/2014 13:31

Project: 3538
Project Number: 351642
Project Manager: Jim Harms

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

									Control Limits		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BXB1042	Use	d client samp	ole: N								
Benzene	MS	1400811-90	ND	47.763	40.000	ug/L		119		70 - 130	
	MSD	1400811-90	ND	46.180	40.000	ug/L	3.4	115	20	70 - 130	
Toluene	MS	1400811-90	ND	45.204	40.000	ug/L		113		70 - 130	
	MSD	1400811-90	ND	43.934	40.000	ug/L	2.8	110	20	70 - 130	
Ethylbenzene	MS	1400811-90	ND	43.043	40.000	ug/L		108		70 - 130	
	MSD	1400811-90	ND	42.486	40.000	ug/L	1.3	106	20	70 - 130	
Methyl t-butyl ether	MS	1400811-90	ND	41.779	40.000	ug/L		104		70 - 130	
	MSD	1400811-90	ND	41.625	40.000	ug/L	0.4	104	20	70 - 130	
Total Xylenes	MS	1400811-90	ND	138.54	120.00	ug/L		115		70 - 130	
	MSD	1400811-90	ND	136.20	120.00	ug/L	1.7	114	20	70 - 130	
Gasoline Range Organics (C4 - C12)	MS	1400811-90	ND	1019.7	1000.0	ug/L		102		70 - 130	
	MSD	1400811-90	ND	954.69	1000.0	ug/L	6.6	95.5	20	70 - 130	
a,a,a-Trifluorotoluene (PID Surrogate)	MS	1400811-90	ND	43.417	40.000	ug/L		109		70 - 130	
	MSD	1400811-90	ND	45.004	40.000	ug/L	3.6	113		70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1400811-90	ND	45.798	40.000	ug/L		114		70 - 130	
	MSD	1400811-90	ND	43.212	40.000	ug/L	5.8	108		70 - 130	

AECOM Reported: 02/19/2014 13:31

10461 Old Placerville Rd, Suite 170 Project: 3538 Sacramento, CA 95827 Project Number: 351642 Project Manager: Jim Harms

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

Practical Quantitation Limit PQL RPD Relative Percent Difference