

GETTLER-RYAN INC.

TRANSMITTAL

October 8, 1999

G-R #:180064

ROZS

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. David Vossler

Gettler-Ryan Inc.

Novato, California 94945

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

RE:

Tosco (Unocal) SS #3538

411 West MacArthur Blvd.

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	October 5, 1999	Groundwater Monitoring and Sampling Report Semi-Annual 1999 - Event of August 31, 1999

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *October 20*, 1999, this report will be distributed to the following:

Enclosure

cc:

Ms. Susan Hugo

Alameda County Health Care Services

1131 Harbor Bay Parkway Alameda, California 94502

agency/3538dbd.qmt

October 5, 1999 G-R Job #180064

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: Semi-Annual 1999 Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #3538 411 West MacArthur Boulevard

Oakland, California

Dear Mr. De Witt:

This report documents the semi-annual groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On August 31, 1999, field personnel monitored six wells (MW-1 through MW-6) and sampled four wells (MW-1, MW-2, MW-5, and MW-6) at the above referenced site. Two wells (MW-3 and MW-4) were blocked.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2, and a Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Deanna L. Harding Rroject Coordinator

Douglas J. Lee

Senior Geologist, R.G. No. 6882

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

No. 6882

3538.qml

Gettler - Ryan Inc.

6747 Sierra Cl., Suite J Dublin, CA 94568 (925) 551-7555 Tosco (Unocal) Service Station No. 3538 411 West MacArthur Boulevard Oakland, California

August 31, 1999

JOB NUMBER 180064

REVIEWED BY

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
тос•		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
				ND.	NITS.	0.61	ND	ND	
MW-1	09/15/89			ND	ND	0.61	ND		
	01/23/90			ND	1.5	2.3	ND	4.3	
	04/19/90			ND	ND	ND	ND	ND	
	07/17/90			ND	ND	ND	ND	ND	
	10/16/90			ND	ND	ND	ND	ND	
	01/15/91			ND	ND	ND	ND	ND	
	04/12/91			ND	ND	ND	ND	ND	
	07/15/91			ND	ND	ND	ND	ND	
	07/14/92			ND	ND	ND	ND	ND	
72.43	04/13/93	17.70	54.73	SAMPLED A		••			
	07/14/93	18.49	53.94	ND	2.2	2.1	1.1	6.2	
72.10	10/14/93	18.32	53.78						
	01/12/94	18.18	53.92						
	04/11/94	17.80	54.30						
	07/07/94	18.28	53.82	ND	ND	ND	ND	ND	
	10/05/94	18.55	53.55						_
	01/09/95	17.90	54.20			••			
	04/17/95	17.22	54.88						
	07/19/95	18.03	54.07	ND	ND	ND	ND	ND	
	10/26/95	18.67	53.43					~ -	
	01/16/95	17.20	54.90						
	04/15/96	17.40	54.70						
	07/11/96	18.03	54.07	ND	ND	ND	ND	ND	ND
	01/17/97	16.54	55.56						
	07/21/97	18.16	53.94	ND	ND	NĐ	ND	ND	ND
	01/14/98	16.05	56.05						
	07/06/98 ⁵	16.46	55.64	ND	ND	ND	ND	ND	ND
	01/13/99	17.37	54.73				••		
72.12	08/31/99	17.00	55.12	ND	ND	ND	ND	ND	ND
MW-2	09/15/89			290	ND	12	ND	ND	
	01/23/90			400	73	36	10	40	
	04/19/90			3,900	550	5.1	91	390	
	07/17/90			490	76	0.59	11	46	
	10/16/90			1,400	430	2.0	48	240	

Table 1
Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard

				Oakland, C					
Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-2	01/15/91			680	170	0.7	19	81	
(cont)	04/12/91			2,200	160	4.3	23	62	
	07/15/91			2,200	770	12	72	370	
	10/15/91			140	44	0.56	1.5	12	
	01/15/92			220	37	0.52	1.1	7	
	04/14/92			150	6.2	ND	ND	1.4	
	07/14/92			130	3.7	ND	ND	ND	
	10/12/92			370	3.4	0.56	ND	11	·
	01/08/93			510 ¹	ND	ND	ND	ND	
71.63	04/13/93	17.86	53.77	410^{2}	42	7.7	6.4	28	200
	07/14/93	18.38	53.25	110 ¹	6.5	ND	ND	1.1	250
71.38	10/14/93	18.20	53.18	230¹	5.3	ND	ND	2.1	
	01/12/94	18.08	53.30	300	7.8	3.8	1.8	10	
	04/09/94	17.97	53.41	120	10	0.88	1.1	4.9	
	04/11/94	17.88	53.50						
	07/07/94	17.81	53.57	110 ¹	4.4	ND	ND	ND	
	10/05/94	18.33	53.05	720 ¹	20	ND	ND	3.1	
	01/09/95	17.40	53.98	ND	ND	ND	ND	ND	
	04/17/95	17.50	53.88	93	5.6	0.62	1.7	5.5	
	07/19/95	18.01	53.37	77	32	0.58	1.7	4.1	
	10/26/95	18.21	53.17	54 ²	13	ND	ND	0.72	220
	01/16/96 ³	16.58	54.80	120	23	ND	ND	0.99	
	04/15/96	17.61	53.77	340	21	ND	2.2	3.7	45
	07/11/96	17.98	53.40	540	34	ND	4.3	12	150
	01/17/97	17.08	54.30	320	63	2.4	9.4	26	260
	07/21/97	18.06	53.32	160	13	ND	1.3	1.6	180
	01/14/98	16.52	54.86	66	6.3	ND	ND	0.98	100
	07/06/98	16.87	54.51	ND	2.3	ND	ND	ND	11
	01/13/99	17.88	53.50	53	24	ND	0.52	0.98	120
71.34	08/31/99	18.45	52.89	86 ¹⁰	14	ND	0.63	ND	21
MW-3	09/15/89			32	ND	ND	ND	ND	
	01/23/90			450	110	1.2	4.4	11	~-
	04/19/90			3,100	600	27	54	220	te-m
	07/17/90			4,000	270	48	130	250	

Table 1
Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard

Well ID/	Date	DTW	GWE	Oakland, Carrell (G)	В	T	R	X	MTBE
TOC*	2.00	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
100		V7		W1 /					
MW-3	10/16/90			740	210	1.4	2.5	82	
(cont)	01/15/91	*-		3,200	460	1.5	120	270	
(,	04/12/91			880	170	1.1	34	110	
	07/15/91	 .	**	9,200	1,300	230	490	1,900	
	10/15/91			3,100	390	34	150	390	
	01/15/92			3,000	590	14	310	750	
	04/14/92			14,000	660	48	560	2,000	
	07/14/92			21,000	890	200	1,200	4,300	
	10/12/92			3,200	160	10	230	540	
	01/08/93			$1,100^2$	48	0.99	0.9	93	
72.06	04/13/93	17.96	54.10	$12,000^2$	290	38	760	2,300	1,400
	07/14/93	18.54	53.52	6,300	190	ND	430	1,000	860
71.86	10/14/93	18.45	53.41	2,500	52	ND	110	250	
	01/12/94	18.34	53.52	3,800	78	ND	180	390	
	04/09/94	18.19	53.67	1,800	22	ND	140	280	
	04/11/94	18.12	53.74					•-	
	07/07/94	18.21	53.65	110¹	4.5	ND	ND	ND	
	10/05/94	18.58	53.28	ND	ND	ND	ND	ND	
	01/09/95	17.69	54.17	ND	0.68	ND	ND	ND	
	04/17/95	17.68	54.18	3,700	80	10	270	510	
	07/19/95	18.20	53.66	15,000	330	27	990	2,400	
	10/26/95	18.32	53.54	14,000	420	180	750	1,600	4,800
	01/16/96 ³	17.95	53.91	920	38	ND	30	57	
	04/15/96	17.78	54.08	9,700	240	ND	570	860	3,200
	07/11/96	18.19	53.67	13,000	69	5.5	430	900	740
	01/17/97	17.23	54.63	4,400	25	ND	270	580	1,600
	07/21/97	18.29	53.57	9,000	36	ND	450	800	950
	01/14/98	16.71	55.15	7,100	40	ND⁴	380	360	930
	07/06/98	17.03	54.83	6,800 ⁶	39	ND⁴	320	360	370
	01/13/99 ⁷	18.00	53.86	1,800	9.4	ND⁴	58	36	180
71.40	08/31/99	8		· 					
MW-4	09/15/89			ND	ND	ND	ND	ND	
	01/23/90			ND	ND	0.4	ND	ND	
	04/19/90			ND	ND	0.48	ND	ND	

Table 1
Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1,00									
MW-4	07/17/90			ND	ND	ND	ND	ND	
(cont)	10/16/ 9 0		**	ND	ND	ND	ND	ND	
	01/15/91	**		ND	ND	ND		ND	
	04/12/91			ND	ND	ND	ND	ND	
	07/15/91			ND	ND	ND	ND	ND	
	07/14/92	••	••	ND	1.3	2.5	ND	1.0	
71.98	04/13/93	17.67	54.31	SAMPLED A		-			
	07/14/93	18.31	53.67	ND	ND	ND	ND	ND	
71.64	10/14/93	18.08	53.56						
	01/12/94	17.97	53.67						
	04/11/94	17.70	53.94						
	07/07/94	17.80	53.84	ND	ND	ND	ND	ND	
	10/05/94	18.28	53.36						***
	01/09/95	17.38	54.26						
	04/17/95	17.21	54.43						
	07/19/95	17.82	53.82	ND	ND	ND	ND	ND	
	10/26/95	18.17	53.47						
	01/16/96	16.45	55.19						
	04/15/96	17.35	54.29						
	07/11/96	17.81	53.83	ND	ND	ND	ND	ND	ND
	01/17/97	16.73	54.91						
	07/21/97	17.91	53.73	ND	ND	ND	ND	ND	ND
	01/14/98	16.18	55.46						
	07/06/98	16.49	55.15	ND	ND	ND	ND	ND	ND
	01/13/99	17.29	54.35						
71.54	08/31/99	9		-		-			
MW-5	11/30/92			ND	ND	ND	ND	ND	
	01/08/93			ND	ND	ND	ND	ND	
71.51	04/13/93	17.49	54.02	ND	ND	ND	ND	ND	
	07/14/93	18.02	53.49	ND	ND	0.57	ND	ND	
71.23	10/14/93	17.82	53.41	ND	ND	ND	ND	ND	÷=
	01/12/94	17.74	53.49	ND	ND	0.84	ND	1.6	
	04/11/94	17.56	53.67	SAMPLED A	ANNUALLY		••		
	07/07/94	17.50	53.73	ND	ND	ND	ND	ND	

Table 1
Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
тос•		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-5	10/05/94	17.98	53.25						
(cont)	01/09/95	17.13	54.10				* =		
	04/17/95	17.05	54.18						
	07/19/95	17.59	53.64	ND	ND	ND	ND	ND	
	10/26/95	18.10	53.13						
	01/16/96	17.11	54.12						
	04/15/96	17.22	54.01						
	07/11/96	17.59	53.64	ND	ND	ND	ND	ND	' ND
	01/17/97	16.75	54.48						
	07/21/97	17.59	53.64	ND	ND	ND	ND	ND	ND
	01/14/98	16.16	55.07						
	07/06/98	16.52	54.71	ND	ND	ND	ND	ND	ND
	01/13/99	17.62	53.61						
71.16	08/31/99	17.76	53.47	ND	ND	ND	ND	ND	ND
MW-6	11/30/92			ND	ND	ND	ND	ND	
	01/08/93			ND	ND	ND	ND	ND	
71.79	04/13/93	11.94	59.85	ND	ND	ND	ND	ND	
	07/14/93	17.20	54.59	ND	0.99	2.4	ND	1.9	
71.44	10/14/93	17.21	54.23	ND	ND	0.64	ND	ND	
,	01/12/94	17.44	54.00	ND	ND	1.2	ND	2.9	
	04/11/94	13.66	57.78	SAMPLED A					
	07/07/94	14.05	57.39	ND	ND	ND	ND	ND	
	10/05/94	14.16	57.28					+-	
	01/09/95	13.73	57.71						
	04/17/95	11.30	60.14	**					
	07/19/95	12.32	59.12	ND	ND	ND	ND	ND	
	10/26/95	17.88	53.56						
	01/16/96	16.38	55.06						
	04/15/96	14.00	57.44						
	07/11/96	13.58	57.86	ND	ND	ND	ND	ND	ND
	01/17/97	15.42	56.02						
	07/21/97	13.78	57.66	ND	ND	ND	ND	ND	ND

Table 1
Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard

Well ID/	Date	DTW	GWE	TPH(G)	В	T	B	x	MTBE
тос*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-6	01/14/98	13.65	57.79			- -			
(cont)	07/06/98	13.90	57.54	ND	ND	ND	ND	ND	ND
(22)	01/13/99	14.93	56.51						
71.37	08/31/99	15.81	55.56	ND	ND	ND	ND	ND	ND
Trip Blank	01114/00			ND	ND	ND	ND	ND	ND
TB-LB	01/14/98 07/06/98			ND ND	ND	ND	ND	ND	ND
	01/13/99			ND	ND	ND	ND	ND	ND
	08/31/99			ND	ND	1.5	ND	2.3	39

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #3538
411 West MacArthur Boulevard
Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing elevation

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary butyl ether

DTW = Depth to Water

B = Benzene

ppb = Parts per billion

(ft.) = Feet

T = Toluene

ND = Not detected

GWE = Groundwater Elevation

E = Ethylbenzene

-- = Not Measured/Not Analyzed

msl = Referenced relative to sea level

X = Xylenes

- * TOC elevations are relative to mean sea level (msl), per the City of Oakland Benchmark #9NW10. (Elevation = 75.50 feet msl). Prior to October 14, 1994, the DTW measurements were taken from the top of well covers. On September 15, 1999, TOC elevations were resurveyed City of Oakland Benchmark being a square brass pin in the concrete gutter at the southwest corner of Webster & MacArthur. The stationing data is with reference to the back of sidewalk on MacArthur in front of the site.

 Benchmark (Elevation = 71.055 feet, msl)
- Laboratory report indicates the hydrocarbons detected did not appear to be gasoline.
- Laboratory report indicates the hydrocarbons detected appeared to be a gasoline and a non-gasoline mixture.
- 3 Laboratory report indicates the presence of MTBE at a level above or equal to the taste and odor threshold of 40 ppb.
- Detection limit raised. Refer to analytical reports.
- 5 All EPA Method 8010 constituents were ND.
- 6 Laboratory report indicates gasoline and unidentified hydrocarbons < C7.</p>
- 7 TOC measurement may have been altered due to damaged casing.
- Well was obstructed by a solid at 0.5 feet.
- Well was obstructed by a solid (concrete or soil) at 10.4 feet.
- Laboratory report indicates gasoline C6-C12.

Table 2 Groundwater Analytical Results

Tosco (Unocal) Service Station #3538 411 West MacArthur Boulevard Oakland, California

Well ID	Date	TPH(D)	TOG	Tetrachloroethene ¹
		(ppb)	(ppb)	(ppb)
MW-1	09/15/89	ND	ND	2.7
	01/23/90	ND	1.5	2.1
	04/19/90	ND	ND	2.2
	07/17/90	ND	ND	1.7
	10/16/90	ND	ND	2.0
	01/15/91	ND	ND	2.1
	04/12/91	ND	ND	2.0
	07/15/91	ND	ND	1.8
	07/14/92			1.4
	07/14/93			0.95
	07/07/94			0.83
	07/19/95			0.52
	07/11/96 ²			0.73
	07/21/97 ³			0.70
	08/31/99			ND

EXPLANATIONS:

Groundwater analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TPH(D) = Total Petroleum Hydrocarbons as Diesel

TOG = Total Oil and Grease

ppb = Parts per billion

ND = Not Detected

-- = Not Analyzed

All other EPA Method 8010 constituents were ND.

² Chloroform was detected at a concentration of 0.96 ppb.

³ Chloroform was detected at a concentration of 1.0 ppb.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexidip interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

Client/ Facility <u># 3-5</u>	38		<u>.</u>	Job#:		1800	64	
Address: 41	w. Mach	Hur	<u> </u>	Date:		8-31	-99	
	tland			Sample	er:	To	2	
Well ID	_Mw-(W	ell Condition	n:	0	.k.		
Well Diameter	2 in	_ ,	drocarbon	8		Amount B	_	(Gallons)
Total Depth	23.30 fr	· [/olume		7	3" = 0.38	4	" = 0.66
Depth to Water	17.00 #	. L	factor (VF)		6 = 1.	50 .	12" = 5.80	
	<u>6.3</u> ×	VF <u>0.1</u>	<u> </u>	X 3 (case vo	ilume) =	Estimated Pu	ırge Volume: _	3. 5 (gal.)
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfos Other:			mpling uipment:	Bail Pre Gra	posable Baller ssure Balle ab Sample ner:	er	
Sampling Time: Purging Flow Ra	10 11:1 arte:	O H .m	Water Co Sediment	olor: Descripti	<u> </u>	done	Odor:	<u> </u>
Time	Volume pH (gal.)	Co.	nductivity mhos/cm × 7.38	Temper:	ature	D.O. (mg/L)		Alkalinity (ppm)
	2 7.30	<u> </u>	8.14	65.	3			
11:02-	7.4		2.22	65.5				
SAMPLE ID	(#) - CONTAINER	LABO REFRIG.	RATORY IN	NFORMAT		RATORY	ANAL	YSES
MW-1	3×01	Y	HС	(!	SEQUOIA		TPH(G)/btex/r	ntbe
	2 40 A	<u></u>	//			(8010	
	-	 						
	1							
COMMENTS:								
	· • • • • • • • • • • • • • • • • • • •		 	<u>. </u>				

9/97-fieldat.frm

Client/ Facility <u> </u>	38		Job#	t: <u>18</u> 4	0064
	W. Mack	thur	Date	: _ % -	31-99
City:	tland		Sam	pler:	
Well ID	MW.2	Well C	Condition: _	O.K	
Well Diameter	2 in		carbon A		ount Bailed
Total Depth	24.30 H	Thickr Volum	· · · · · · · · · · · · · · · · · · ·	<u>(feet)</u> (prod	= 0.38 4" = 0.66
Depth to Water	18.45	Facto	r (VF)	6" = 1.50	12" = 5.80
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfos Other:	r	ار بن ^ی x 3 (case Sampling Equipment	t: Disposa Bailer Pressure Grab Sa	
_		4 f.m W	ater Color: ediment Descrip	clear	Odor:
	olume pH (gal.) 7,10 7,07 7,11	μmhos 		erature D	o.O. ORP Alkal
SAMPLE ID	(#) - CONTAINER		PRESERV. TYPE /	•	Y ANALYSES TPH(G)/btex/mtbe

Client/ Facility <u>#</u> 2	538		Job#:	18006	4	
	1 W. Mach	11thur	Date:	8-31-6	99	
City:	et (and		Sampler:			-
City.						
Well ID	MW-3	Well Condition	on: Dele	1.		
Well Diameter	<u> 2 in.</u>	Hydrocarbon Thickness: _		Amount Ba		(Gallons)
Total Depth	<u> </u>	Volume Factor (VF)	2" = 0.17 6" = 1	3" = 0.38		' = 0.66
Depth to Water	<u>ft.</u>					
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	E	ampling quipment: Qi Ba Pr Gr	sposable Bai sposable Bai liler essure Bailer rab Sample ther:	iler	(qal.)
Starting Time: Sampling Time: Purging Flow Ra	ite:	Water C	Conditions: tolor: to Description:		Odor:	·· ··-
Did well de-wate	er?	If yes;	Time:	Volum	e:	(qal.
Time	Volume pH (gal.)	Conductivity µmhos/cm	Temperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
<u> </u>				<u> </u>		
		LABORATORY I	,			
SAMPLE ID	(#) - CONTAINER	REFRIG. PRESER	V. TYPE / LABO	RATORY	ANAL\	
				1		
COMMENTS:	Well was	obstructed	Ly a	solid	at 0.5	/
						·
	_					

9/97-fieldst.fm

Facility #35	538		····	Job#:	18006.	4	
Address: 4				Date:	8-31	-99	
City:				Sampler:	Joe	<u></u>	···
Well ID	M	N-4	Well Condition	on:			
Well Diameter		Zīn.	Hydrocarbon Thickness: _		Amount Ba		(Gallons)
Total Depth		ft.	Volume	2" = 0.17	3" = 0.38 .50		' = 0.66
Depth to Wate	er	ft.	Factor (VF)			12 - 5.50	
		× v	/F =	X 3 (case volume) =	Estimated Pur	ge Volume: _	(gal.)
Purge Equipment:	Bailer Stack Suction Grundf		E	Ba Pro Gr	sposable Bai iler essure Bailer ab Sample her:		
Starting Time:			Weather	Conditions:			
Sampling Time		_	Water C	olor:		Odor:	
Purging Flow I	Rate:	q		nt Description:			
Did well de-wa	ater?	 .	If yes;	Time:	Volum	e:	(gal_
Time	Volume (gal.)	pН	Conductivity µmhos/cm	Temperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
			LABORATORY I		PRATORY	ANAL	VSES
SAMPLE ID	(#) - CO	NTAINER	REFRIG. PRESER	SEQUEL	 -	TPH(G)/btex/r	
COMMENTS:	: Well	was	olctructed	Lya	solid (oaccete	06 201
<u>at 10</u>					- 1 (-		

9/97-fleklet.frm

Client/ Facility <u># 35</u>	38		Job:	#:/	8006	4	
	W. Mach	Hu!	Date	:	8-31-5	99	
•	. (aud			pler:		Je	
Well ID	mw-5		II Condition:	O.Ł			
Well Diameter		<u>.</u> Hy	drocarbon	7	Amount B	,	
Total Depth	30.10 ft	1111	ckness: 2" =	(feet) 0.17	(product/wa 3" = 0.38		(Gallons) " = 0.66
Depth to Water	17.76 tt	F:	ordine 2 –	6" = I.		12" = 5.80	_ 0.00
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfos Other:	<u> </u>	_ = <u>2 · l</u>	r t: Di€ Bai Pre Gra	posable Ba	ailer er	G. S (gal.)
Sampling Time:		7 Am	Weather Conditi Water Color: Sediment Descr	ے ا iption:	ee (Odor: <u>⊿</u>	<i>ن</i>
Did well de-wate	er?		If yes; Time:		Volun	ne:	(gal.)
Time \\ \\ \(10.25 \) \\ \(\sigma \) \(\sigma \) \\ \(\sigma \) \(\sigma \) \\ \(\sigma \) \(\sigma \) \\ \(\sigma \) \\\ \(\sigma \) \\ \(\sigma \) \\\ \(\sigma \) \\\\ \(\sigma \) \\\\ \(\sigma \) \\\ \(\sigma \) \\\ \(\sigma \) \\\\\ \(\sigma \) \\\\ \(\sigma \) \\\\\ \\ \\	Volume pH (gal.) 7.91 4 7.38 7.46	- μπ - 8	67 65	5.9	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
			RATORY INFORM	,			
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE	SEQUOIA	ATORY	ANAL' TPH(G)/btex/r	
100.5	3 V A		1,(1			
		-					
				1		1	
COMMENTS: _							

,	38		Job#:	18006	4	
Address: 4!	W. MacArth	w	Date:	8-31-	99	
City:	Eland		Sample	er:	Joe_	
Well ID	mw.c	Well Condi	tion:	J.K.		
Well Diameter	2 _{in.}	. Hydrocarbo		Amount B		(Gallons)
Total Depth	30.05 tt	Volume		3" = 0.38	8 4	£" = 0.66
Depth to Water	15.8 t	Factor (VF)		6" = 1.50	12* = 5.80	
Purge Equipment:	pisposable Bailer Bailer Stack Suction Grundfos Other:		X 3 (case vo Sampling Equipment:	Disposable Bailer Pressure Baile Grab Sample Other:	ai ler er	7 (gal.)
Starting Time:	9:	Z3 VVEALIN	et condition	s: (lea/		
	te:	gom. Sedime	Color: ent Descripti	on: <u>AeA</u>	Odor: <u></u> ध	<u> </u>
Purging Flow Ra Did well de-wate	te:	Conductivity µmhos/cm	Color:ent Descripti Time: Temper:	on: AOA Volum Ture D.O. (mg/L)	Odor:61ne:	0 1/4
Purging Flow Ra Did well de-wate	te:	Conductivity µmhos/cm 8.58 9.02 9.14 LABORATORY REFRIG. PRESE	Color:ent Descripti Time: Temper:	on:	Odor:61ne:	(gal Alkalinity (ppm)

9/97-fieldet.frm

Tours Endeding Company 2008 Core Corpus PL, San 408 San Russen, Collects 24443

Foolity Number UNOCAL SS #3538	Contact (Name) MR. DAVID DEWITT
Facility Address 411 W. MACARTHUR BLVD. OAKLAND, CA	(Phone) (925) 277-2384
Consultant Project Humber 180064.85	Laboratory Name Sequoia Analytical
Consultant Name Gettler-Ryan Inc. (G-R Inc.)	Laborolary Relages Number
Address 6747 Sterra Court, Suite J. Dublin, CA 94568	1
Project Contact (Name) Deanna L. Harding	Collection Date 8-31-99
,	

Supplied Supplied Indian

		'	rioject C			<u>r-551-75</u>			1)425	-551-	7888	_ `	Ignature		\$ -	Q~	سند				
Semple Number	Lab Sample Number	Number of Containers	Matrix S - Sol A - Ar Y - Water C - Charteed	Type G = Grab C = Composite D = Discrete	Time	. Sample Preservation	load (Yes or No.)	TPH Gas+ STEX WINITEE (2015) (2020)	TPH Dieses (8015)	Oil and Graces (5520)	Purpeable Halacarbans (5010)	Purpeable Aramatics (8020)	Purpedie Organica (8240)	Die.	Westers CACTPEZANS (CAP or AA)						DO NOT BILL TB-LB ANALYSI: Remarks
TB-LB	OIA	7.A	64	G	_	HCL	Y	~										·			
mw-1	OPAZ	SVOL	,	/	110 N.W	1	,	1			/							``.	• .		
MW-2-	0346	SYOK	,	,	11134 AN	1.	,	7													
mw-5	OYA-C		,	,	10:37	,	,	/													
mw-6	05 A-C	3 veg	,	,	9150	,	1	7													
				1 1		,										<u> </u>					
						•															
											<u> </u>				<u> </u>		<u> </u>			ļ	
							,						ļ	ļ		ļ 	 	<u> </u>	ļ	ļ	
														<u>l</u>		· .					
· · · · · · · · · · · · · · · · · · ·																					
																			<u> </u>		
ilingulahed By	(Signature)			noltation	1	ote/Time	Reo	AV-4 B	(Slang	giany)		C	, Souls of	lon	Date	/IIme	1435	•	Turn Ar	ound Tin	ne (Circle Cheles)
Sur	Ju-			R Inc		-31-90		10v		2											Hro. Hro.
· unquestone av	[Sighatue)	(X	1 1	onizotion DWI		199 190199	Rec	alved B	y (Signa	iture)			rganizat	100	Pate	/Im•				6	Daye Daye
-Haquished By	(Signature)		Oto	ouizatiou		Dale/Time	1				y (Signa		WC		Date 9	/Ilme ///9	9				ntracted

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2	W909075-03	Water	31-Aug-99 11:34	31-Aug-99 14:35
MW-1	W909075-02	Water	31-Aug-99 11:10	31-Aug-99 14:35
MW-5	W909075-04	Water	31-Aug-99 10:37	31-Aug-99 14:35
TB-LB	W 909075-01	Water	31-Aug-99 00:00	31-Aug-99 14:35
MW-6	W909075-05	Water	31-Aug-99 09:50	31-Aug-99 14:35

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Juliania Fegley, Project Manager

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673

Gettler Ryan, Inc. - Dublin

,6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (W909075-01) Water	Sampled: 31-Aug-99 00:00	Receive	ed: 31-A	ug-99 14:35	5				
Purgeable Hydrocarbons	ND	50	ug/l	1	9108017	07-Sep-99	07-Sep-99	DHS LUFT	
Benzene	ND	0.50	17	n	n	IP	**	tt.	
Toluene	1.5	0.50	11	TT	II .	II	"	II.	
Ethylbenzene	ND	0.50	•	19	п	II	"	D	
Xylenes (total)	2.3	0.50	"	Ħ	п	II		II	
Methyl tert-butyl ether	39	2.5	*	**	p.	11	•	II	
Surrogate: a,a,a-Trifluorotoluei	16	90.0%	70-	-130	"	· · · ·	"	п	· · · · · · · · · · · · · · · · · · ·
MW-1 (W909075-02) Water	Sampled: 31-Aug-99 11:10	Receive	d: 31-Au	ıg-99 14:35					
Purgeable Hydrocarbons	ND	50	ug/l	1	9108017	07-Sep-99	07-Sep-99	DHS LUFT	
Benzene	ND	0.50	**	11	11	II .	•	п	
Toluene	ND	0.50	"	11	n	II	**	ш	
Ethylbenzene	ND	0.50	**	"	n	n		п	
Xylenes (total)	ND	0.50	11	**	"	ıı .	"	"	
Methyl tert-butyl ether	ND	2.5	11	**	II.	"	**	ii .	
Surrogate: a,a,a-Trifluorotoluer	16	86.7 %	70-	-130	"	"	"	п	
MW-2 (W909075-03) Water	Sampled: 31-Aug-99 11:34	Receive	d: 31-Aı	ıg-99 14:35					P-01
Purgeable Hydrocarbons	86	50	ug/l	1	9108017	07-Sep-99	07-Sep-99	DHS LUFT	
Benzene	14	0.50	tf	**	n	"	"	11	
Toluene	ND	0.50	**	**	n	**	H	11	
Ethylbenzene	0.63	0.50	lt.	H	11	"	π	"	
Xylenes (total)	ND	0.50	lt .	**	n	11	н	**	
Methyl tert-butyl ether	21	2.5	u	**	**		"	"	
Surrogate: a,a,a-Trifluorotoluer	re	86.7%	70-	-130	n	"	"	"	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Julianne Fegley, Project Manager

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 (W909075-04) Water	Sampled: 31-Aug-99 10:37	Receive	d: 31-Au	ıg-99 14:35					
Purgeable Hydrocarbons	ND	50	ug/l	ı	9108017	07-Sep-99	07-Sep-99	DHS LUFT	
Benzene	ND	0.50	Ħ	**		"	n	**	
Toluene	ND	0.50	n	11			п	н	
Ethylbenzene	ND	0.50	W	**	"	н	Ħ	**	
Xylenes (total)	ND	0.50	rt	**	**	**	"	n ·	
Methyl tert-butyl ether	ND	2.5	H	"	"	n	н	tt	
Surrogate: a,a,a-Trifluorotolue	ene	86.7%	70-	130	"	"	"	rr .	
MW-6 (W909075-05) Water	Sampled: 31-Aug-99 09:50	Receive	d: 31-Au	g-99 14:35					
Purgeable Hydrocarbons	ND	50	ug/l	1	9108017	07-Sep-99	07-Sep-99	DHS LUFT	
Benzene	ND	0.50	11	**	п	"	н	п	
Toluene	ND	0.50	**	u	17	II	"	n .	
Ethylbenzene	ND	0.50	**	u	11	п	n	п	
Xylenes (total)	ND	0.50	ır	и	**	ч	11	п	
Methyl tert-butyl ether	ND	2.5	**	· ·	**	п	**	"	
Surrogate: a,a,a-Trifluorotolue	ene	86.7%	70-	130	"	13	,,	ŋ	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding Reported: 20-Sep-99 16:26

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W909075-02) Water	Sampled: 31-Aug-99 11:10	Receive	d: 31-Au	ıg-99 14:35					<u></u>
Bromodichloromethane	ND	0.50	ug/l	1	9110017	10-Ѕер-99	10-Sep-99	EPA 8010B	
Bromoform	ND	0.50	"	"	••	"	"	п	
Bromomethane	ND	1.0	11	•		**	"	н	
Carbon tetrachloride	ND	0.50	11	n	n	D	**	11	
Chlorobenzene	ND	0.50	11	**	**	If	**	"	
Chloroethane	ND	1.0	17	"	11	п	n	**	
Chloroform	ND	0.50	19	**	**	II	n	**	
Chloromethane	ND	1.0		"	"	II	H	**	
Dibromochloromethane	ND	0.50	19	**	**	н	ц	**	
1,3-Dichlorobenzene	ND	0.50	**	"	+*	"	II		
1,4-Dichlorobenzene	ND	0.50	11	H	u	**	ij	17	
1,2-Dichlorobenzene	ND	0.50	tt.	u	u	,,	II.	**	
1,1-Dichloroethane	ND	0.50	u	u	п	**	п	**	
1,2-Dichloroethane	ND	0.50	II	n n	п	**	n	79	
1.1-Dichloroethene	ND	0.50	II .		п	**	11	**	
cis-1,2-Dichloroethene	ND	0.50	ч	u u	n .	**	,,	**	
trans-1.2-Dichloroethene	ND	0.50	II		п		"	u	
1,2-Dichloropropane	ND	0.50	II .	n .	II	11	•	и	
cis-1,3-Dichloropropene	ND	0.50	п	II .	n n	**	**	ш	
trans-1,3-Dichloropropene	ND	0.50	п	н	n	"	п	п	
Methylene chloride	ND	5.0	ij	"	н	"	**	и	
1,1,2,2-Tetrachloroethane	ND	0.50	D	**	••	.,	н	п	
Tetrachloroethene	ND	0.50	11	*	**	**	11	u .	
1,1,1-Trichloroethane	ND	0.50	**	er	111	ш	**		
1,1,2-Trichloroethane	ND	0.50	Ħ	н		ч	**		
Trichloroethene	ND	0.50	**	"	"	п			
Trichlorofluoromethane	ND	0.50	u	"	79	п	tt.	**	
Vinyl chloride	ND	1.0	ц	••	**	n	n.	11	
Surrogate: Dibromodifluorome	thane	89.0 %	50-	150	#	и	"	p p	
Surrogate: 4-Bromofluorobenze	ene	59.0 %	50-	150	"		"	"	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9108017:	Prepared 07-Sep-99	Using E	PA 5030B [F	·/T]							
Blank (9108017-BL	K1)										
Purgeable Hydrocarbon	s	ND	50	ug/l							
Benzene		ND	0.50	H							
Toluene		ND	0.50	11							
Ethylbenzene		ND	0.50	II							
Xylenes (total)		ND	0.50	и							
Methyl tert-butyl ether		ND	2.5	n							
Surrogate: a,a,a-Triflu	protoluene	26.1		,,	30.0		87.0	70-130	·		
LCS (9108017-BS1)	H										
Benzene		20.7	0.50	ug/I	20.0		104	70-130			
Toluene		20.8	0.50	"	20.0		104	70-130			
Ethylbenzene		20.7	0.50	"	20.0		104	70-130			
Nylenes (total)		65.4	0.50	19	60.0		109	70-130			
Surrogate: a.a.a-Triflue	protoluene	26.2		11	30.0		87.3	70-130			
Matrix Spike (9108	017-MS1)					Source: V	V909069-	02			
Benzene		20.8	0.50	บg/ใ	20.0	ND	104	70-130			
l'oluene		21.1	0.50	н	20.0	ND	106	70-130			
Ethylbenzene		20.9	0.50	н	20.0	ND	104	70-130			
Yylenes (total)		65.1	0.50	"	60.0	ND	108	70-130			
Surrogate: a,a,a-Trifluc	protoluene	27.1		ŋ	30.0		90.3	70-130			
Matrix Spike Dup (9I08017-MSD1)					Source: V	V909069-	02			
Benzene		20.1	0.50	ug/l	20.0	ND	101	70-130	3.42	20	
l'oluene		20.5	0.50	**	20.0	ND	103	70-130	2.88	20	
Ethylbenzene		20.4	0.50	11	20.0	ND	102	70-130	2.42	20	
Nylenes (total)		63.4	0.50	17	60.0	ND	106	70-130	2.65	20	
Surrogate: a,a,a-Trifluo	rotoluene	28.4		<u>"</u>	30.0		94.7	70-130			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Julianie Fegley, Project Manager

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9110017: Pr	epared 10-Sep-99	Using El	PA 5030B [P	·/T]							
Blank (9I10017-BLK1)											
Bromodichloromethane		ND	0.50	ug/l						<u>-</u>	· · ·
Bromoform		ND	0.50	"							
Bromomethane		ND	1.0	**							
Carbon tetrachloride		ND	0.50	**			*				
Chlorobenzene		ND	0.50	••							
Chloroethane		ND	1.0	**							
Chloroform		ND	0.50	**							
Chloromethane		ND	1.0	**							
Dibromochloromethane		ND	0.50	**							
1,3-Dichlorobenzene		ND	0.50								
1.4-Dichlorobenzene		ND	0.50	11							
1,2-Dichlorohenzene		ND	0.50								
1.1-Dichloroethane		ND	0.50								
1,2-Dichloroethane		ND	0.50	"							
1.1-Dichloroethene		ND	0.50	**							
cis-1,2-Dichloroethene		ND	0.50	**							
rans-1,2-Dichloroethene		ND	0.50	**							
1.2-Dichloropropane		ND	0.50	**							
cis-1,3-Dichloropropene		ND	0.50	**							
rans-1,3-Dichloropropene		ND	0.50	••							
Methylene chloride		ND	5.0	**							
1,1,2,2-Tetrachloroethane		ND	0.50	**							
Fetrachloroethene		ND	0.50								
1,1,1-Trichloroethane		ND	0.50	u							
1,1,2-Trichloroethane		ND	0.50	n							
Frichloroethene		ND	0.50	u							
Trichlorofluoromethane		ND	0.50								
Vinyl chloride		ND	1.0	ıı							
Surrogate: Dibromodifluoro	methane	10.0		. n	10.0		100	50-150	<u> </u>		
Surrogate: 1-Chloro-2-fluor	oberzene	0		"	10.0			50-150			
Surrogate: 4-Bromofluorobe	nzene	5.90		**	10.0		59.0	50-150			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9I10017:	Prepared 13-Sep-99	Using El	PA 5030B [F	P/T]							
Blank (9110017-BL	K2)										•
Bromodichloromethane	;	ND	0.50	ug/l							
Bromoform		ND	0.50	•							
Bromomethane		ND	1.0	**							
Carbon tetrachloride		ND	0.50	**							
Chlorobenzene		ND	0.50	**							
Chloroethane		ND	1.0	**							
Chloroform		ND	0.50	"							
Chloromethane		ND	1.0	**							
Dibromochloromethane	•	ND	0.50	*							
1,3-Dichlorobenzene		ND	0.50	••							
1.4-Dichlorobenzene		ND	0.50	11							
1.2-Dichlorobenzene		ND	0.50	*							
l,1-Dichloroethane		ND	0.50	,,							
1,2-Dichloroethane		ND	0.50	n							
1.1-Dichloroethene		ND	0.50	"							
eis-1,2-Dichloroethene		ND	0.50	н							
trans-1,2-Dichloroether	ne e	ND	0.50	•							
1.2-Dichloropropane		ND	0.50	n							
cis-1,3-Dichloropropen	e	ND	0.50								
trans-1,3-Dichloroprop	ene	ND	0.50	н							
Methylene chloride		ND	5.0	n							
1,1,2,2-Tetrachloroetha	ne	ND	0.50	II.							
Tetrachloroethene		ND	0.50	u							
1,1,1-Trichloroethane		ND	0.50	н							
1,1,2-Trichloroethane		ND	0.50	н							
Trichloroethene		ND	0.50	н							
Trichlorofluoromethan	:	ND	0.50	II.							
Vinyl chloride		ND	1.0	n							
Surrogate: Dibromodif	luoromethane	9.00		п	10.0		90.0	50-150			
Surrogate: 1-Chloro-2	fluorobenzene	0		"	10.0			50-150			
Surrogate: 4-Bromoflu	orobenzene	6.00		a	10.0		60.0	50-150			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Julianne Fegley, Project Manager

Gettler Ryan, Inc. - Dublin ,6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported**: 20-Sep-99 16:26

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 9I10017: Pr	repared 10-Sep-99	Using El	PA 5030B [P	'/T]							
LCS (9I10017-BS1)								·			
Chlorobenzene	· · · ·	19.0	0.50	ug/l	20.0		95.0	70-130			
1,1-Dichloroethene		22.0	0.50	n	20.0		110	65-135			
Trichloroethene		20.0	0.50	п	20.0		100	70-130			
Surrogate: Dibromodifluor	omethane	9.70		"	10.0		97.0	50-150	·		
Surrogate: 4-Bromofluorol	penzene	6.30		"	10.0		63.0	50-150			
LCS (9I10017-BS2)											
Chlorobenzene		20.0	0.50	ug/l	20.0		100	70-130			
I, I-Dichloroethene		26.0	0.50	u	20.0		130	65-135			
Trichloroethene		21.0	0.50	U	20.0		105	70-130			
Surrogate: Dibromodifluor	omethane	9.50			10.0		95.0	50-150			
Surrogate: 4-Bromofluorol	nenzene	5.50		"	10.0		55.0	50-150			
Matrix Spike (9110017	'-MS1)					Source: V	W909156-	02			
Chlorobenzene		18.0	0.50	ug/l	20.0	ND	90.0	60-140			
1.1-Dichloroethene		18.0	0.50	n	20.0	ND	90.0	60-140			
Trichloroethene		19.0	0.50	11	20.0	ND	95.0	60-140			
Surrogate: Dibromodifluor	omethane	8.00		"	10.0		80.0	50-150			
Surrogate: 4-Bromofluorol	nercene	6.00		n	10.0		60.0	50-150			
Matrix Spike Dup (911	(0017-MSD1)					Source: V	W909156-	02			
Chlorobenzene		16.0	0.50	ug/l	20.0	ND	80.0	60-140	11.8	25	
I,1-Dichloroethene		16.0	0.50	ш	20.0	ND	80.0	60-140	11.8	25	
Trichloroethene		16.0	0.50	п	20.0	ND	80.0	60-140	17.1	25	
Surrogate: Dibromodifluor	omethane	7.50		"	10.0		75.0	50-150			
Surrogate: 4-Bromofluorol)ercene	5.00		"	10.0		50.0	50-150			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal SS# 3538 Project Manager: Deanna L. Harding **Reported:** 20-Sep-99 16:26

Notes and Definitions

P-01 Chromatogram Pattern: Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Julianne Fegley, Project Manager