RECEIVED

By Alameda County Environmental Health 11:35 am, Jan 09, 2017

5 January 2017 Project 731641602

Mr. Keith Nowell, PG Alameda County Health Care Services Agency Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Work Plan for Additional Environmental Sampling Fuel Case No. Ro0000247 and Geotracker ID T0600102220 3000 Broadway SPE LLC 260 30<sup>th</sup> Street Oakland, California Alameda County SCP Case No. RO0000247 Langan Project: 731635601

Dear Mr. Nowell:

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

Sincerely yours,

Alan Chamorro 3000 Broadway SPE LLC

# WORK PLAN FOR ADDITIONAL ENVIRONMENTAL SAMPLING 260 30th Street

Oakland, California 94611

Prepared For: Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

Prepared By: Langan Engineering and Environmental Services, Inc. 501 14<sup>th</sup> Street, 3<sup>rd</sup> Floor Oakland, California 94612

Karianne Staehlin Senior Staff Scientist

Joshua Graber, CHMM Senior Project Manager



Dorinda Shipman, PG, CHG Principal

5 January 2017 750635602





501 14th Street, 3rd Floor

T: 510.874.7000

F: 510.874.7001

www.langan.com

New Jersey • New York • Connecticut • Pennsylvania • Washington, DC • Virginia • West Virginia • Ohio • Florida • Texas • Arizona • California Abu Dhabi • Athens • Doha • Dubai • Istanbul • London • Panama

Oakland, CA 94612



Technical Excellence Practical Experience Client Responsiveness

5 January 2017

Mr. Keith Nowell, PG Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

### Re: Work Plan for Additional Environmental Sampling Fuel Leak Case No. RO000247 and GeoTracker ID T060010220 260 30th Street Oakland, California Langan Proposal No.: 750635602

Dear Mr. Nowell,

Langan Engineering and Environmental Services, Inc. (Langan), on behalf of 3000 Broadway SPE LLC (Client), is pleased to submit this *Work Plan for Additional Environmental Sampling* (Work Plan) to further evaluate petroleum impacted soil discovered during a recent geotechnical investigation at 260 30th Street (Site) in Oakland, California.

If you have any questions or need any information clarified, please call Joshua Graber at (510) 874-7086.

Sincerely yours, Langan Engineering and Environmental Services, Inc.

Karianne Staehlin Senior Staff Scientist

Dorinda Shipman, PG, CHG Principal





Joshua Graber, CHMM Associate

cc: Alan Chamorro – Lowe Enterprises Real Estate Group

750635602.01 JDG\_Final Work Plan Additional Subsurface Investigation\_260 30th Street

### TABLE OF CONTENTS

| 1.0   | INTRC  | DUCTION                                                             | 1   |
|-------|--------|---------------------------------------------------------------------|-----|
|       | 1.1    | Site Description and Proposed Redevelopment                         | 2   |
| 2.0   | PREVI  | OUS INVESTIGATIONS                                                  | 3   |
|       | 2.1    | Previous Environmental Documents by Others                          | 4   |
|       | 2.2    | 2016 Phase I Environmental Site Assessment                          | 8   |
|       | 2.3    | 2016 Phase II Environmental Site Assessment                         | 9   |
|       | 2.4    | Request for No Further Action                                       | 10  |
|       | 2.5    | November 2016 Geotechnical Investigation and Environmental Sampling | .10 |
|       | 2.6    | Floor Drain Exploration                                             | .11 |
| 3.0   | ADDIT  | IONAL ENVIRONMENTAL SAMPLING                                        | .11 |
|       | 3.1    | Site Specific Health and Safety Plan                                | .12 |
|       | 3.2    | Pre-investigation Tasks                                             | .12 |
|       | 3.3    | Phase One and Two Proposed Sampling Activities                      | .13 |
|       |        | 3.3.1 Soil and Groundwater Sampling                                 | 13  |
|       |        | 3.3.2 Soil Vapor Sampling                                           | .14 |
|       | 3.4    | Phase Three Proposed Sampling Activities (if necessary)             | 17  |
|       |        | 3.4.1 Soil and Groundwater Sampling                                 | 18  |
|       | 3.5    | Laboratory Analyses                                                 | 18  |
|       | 3.6    | Sample Identification                                               | 19  |
|       | 3.7    | Field Documentation                                                 | 19  |
|       | 3.8    | Chain of Custody                                                    | 20  |
|       | 3.9    | Sample Packing and Shipping                                         | 20  |
|       | 3.10   | Investigation Derived Waste                                         | 20  |
| 4.0   | DATA   | EVALUATION AND REPORTING                                            | 20  |
| 5.0   | PROJ   | ECT SCHEDULE                                                        | 20  |
| REFER | RENCES | S                                                                   | .22 |

TABLE

FIGURES

APPENDICES

### ATTACHMENTS

### TABLE

- Table 1 Boring B-16 Soil Analytical Results
- Table 2 Sampling and Analysis Plan

### **LIST OF FIGURES**

- Figure 1 Site Location Map
- Figure 2 Site Plan and Cross Section
- Figure 3 Idealized Subsurface Profile A-A'
- Figure 4 Site Plan with Boring Locations and TPH Analytical Results in Groundwater

### LIST OF APPENDICES

- Appendix A Laboratory Analytical Reports
- Appendix B Geotechnical Boring Logs

### WORK PLAN FOR ADDITIONAL ENVIRONMENTAL SAMPLING 260 30<sup>th</sup> Street Oakland, California

### 1.0 INTRODUCTION

On behalf of 3000 Broadway SPE LLC (Client), Langan Engineering and Environmental Services, Inc. (Langan) has prepared this *Work Plan for Additional Environmental Sampling* (Work Plan) for the property located at 260 30<sup>th</sup> Street, Oakland, California (Site, Figure 1). The Site and the surrounding area adjacent to the Site is proposed for redevelopment. The additional environmental sampling proposed is intended to further evaluate current conditions prior to redevelopment. The Work Plan is based on discussions with the Alameda County Department of Environmental Health (ACEH) and is intended to further evaluate petroleum hydrocarbon impacts recently encountered at the Site in boring B-16 during a geotechnical investigation.

The Site is currently in the Alameda County Local Oversight Program (LOP) and is associated with active fuel leak case number RO0000247. However, we do not believe the recently discovered petroleum impacts in boring B-16 are related to the former underground storage tank (UST) located in the sidewalk of 30<sup>th</sup> Street due to the upgradient location of the impacts relative to the former UST. We believe the impacts are likely related to a nearby floor drain system, which is proposed for removal during Site redevelopment.

The purpose of the additional environmental sampling proposed in this Work Plan is to:

- 1) Investigate subsurface conditions near floor drains located at 250 and 260 30<sup>th</sup> Street;
- 2) Evaluate the Site for vapor intrusion by collecting soil vapor samples beneath the proposed development excavation depth;
- 3) Further delineate the extent of petroleum impacted soil, confirm the source is related to the floor drains and determine if groundwater has been impacted; and
- 4) Characterize the Site soil planned for excavation and off-Site disposal.

A summary of our proposed additional environmental sampling, including sampling and analytical testing methods, are presented in this Work Plan.

Following the completion of the additional subsurface investigation, we will prepare a technical report summarizing our field activities, sampling methods, analytical results and recommendations. We will also share and discuss the results with ACEH.

### 1.1 Site Description and Proposed Redevelopment

The Site is part of a larger redevelopment plan consisting of four warehouse-like structures (250, 260, and 288 30th Streets and 3020 Broadway), including one former restaurant (3000 Broadway), and two private residential properties (3007 and 3009 Brook Street) in a fully developed mixed-use area of Oakland, commonly referred to as Auto Row. Until recently, the warehouse-like structures were utilized as automobile sales, repair and service shops, a restaurant, or were vacant. Currently, only the 288 30th Street address is an active business (XYZ Motors). The restaurant (3000 Broadway) recently closed; the former showroom (3020 Broadway) is vacant; and the two private residences (3007 and 3009 Brook Street) are vacant and planned for either relocation or demolition.

As show in Figure 2, the larger development area is bound by a commercial property and asphalt parking area to the north, Brook Street to the east, 30th Street to the south, and Broadway to the west. The Site and surrounding area generally slopes to the southeast. The larger development area has an approximate high elevation of 50 feet above mean sea level (MSL) at the northwest corner along Broadway, and an approximate low elevation of 30 feet above MSL at the southeast corner near the corner of 30<sup>th</sup> and Brook Streets.

Current development plans for the Site and surrounding area include the construction of a fivestory, wood-frame apartment building, over a one- to two-story concrete podium with parking. The proposed development will have a single level basement along Broadway leveling out to the current grade at Brook Street, as the ground surface elevation drops. The entrance to the partial below grade parking will be along Brook Street. A cross section presented as Figure 3 illustrates the current approximate grade of the 30<sup>th</sup> Street sidewalk, the approximate elevations of the existing building slabs fronting 30<sup>th</sup> Street and the proposed excavation depths associated with the proposed development. A maximum excavation depth of 18 to 20 feet is expected along Broadway and a minimum excavation of seven to eight feet along Brook Street is expected. The data proposed for collection as part of this Work Plan is to evaluate soil to be excavated and also soil to be left in place as part of the redevelopment.

The Site is generally blanketed by medium dense clayey sand fill at depths up to ten feet, which is underlain by alternating layers of medium stiff to stiff clays and medium dense to very dense sands.



During our most recent geotechnical investigation, groundwater was measured at a depth of 28½ feet and 26½ feet below ground surface (bgs) in borings B-13 and B-14, respectively, along the eastern portion of the Site. Based on exterior elevations along the Broadway sidewalk, we estimate these groundwater elevations to both be at about 20½ feet. Along the western portion of the Site groundwater was measured at a depth of 32½ feet bgs in boring B-15 and a depth of 27 feet bgs in B-16, at elevations estimated to be 8½ and 10 feet. These groundwater measurements with the exception of the measurement recorded in B-15, represent stabilized groundwater within the boring for a period of at least 30 minutes. Groundwater flow at the Site is interpreted to be southeasterly.

During our previous investigations, groundwater was measured in boring B-12 at about 17 feet bgs which corresponds to Elevation 16 feet. During the environmental water sampling at borings B-11 and B-12 the groundwater was measured at depths of about 11 feet and 7 feet below street grade, respectively. These groundwater measurements represent only that of eastern portion of the Site as appreciable groundwater was not encountered during the drilling of environmental borings B-3 through B-6 on the western portion of the Site.

As a result of our field investigations we found that the highest measured groundwater varies from about Elevation 20½ to Elevation 25 feet. All previous boring/sampling locations are shown on Figure 2. A cross section depicting the general Site topography and Site subsurface conditions is presented in both Figures 2 and 3.

### 2.0 PREVIOUS INVESTIGATIONS

Langan reviewed previous environmental reports prepared for the 260 30th Street, the adjacent 3000 Broadway property, and the Hagstrom property located across 30th Street at 265 30th Street. The results of these investigations are summarized below and a summary of available groundwater analytical results for these properties are shown on Figure 4.

Langan Treadwell Rollo (currently Langan) previously prepared the following environmental reports for the Site and larger development area. The reports document previous soil and groundwater sampling at the Site and the analytical results, which are referenced as part of this Work Plan:

• Langan Treadwell Rollo, *Phase I Environmental Site Assessment, 3000 and 3020 Broadway; 3007 and 3009 Brook Street; and 250, 260, and 288 30th Street, Oakland, California* dated 25 April 2016; and



• Langan Treadwell Rollo, *Response to 4 November 2015 Letter and Request for No Further Action, Fuel Leak Case No. RO000247 and Geotracker ID T0600102220, Robert and Ruth Burrows Trust, 260 30<sup>th</sup> Street, Oakland, California dated 24 October 2016.* 

### 2.1 **Previous Environmental Documents by Others**

Prior to Langan's involvement, various environmental activities, including the removal and/or abandonment of underground storage tanks (USTs), soil and groundwater investigations, and sensitive receptor surveys, were completed by others at both the Site and adjacent properties. These reports are summarized below.

## DECON Environmental Services, Inc., Letter Re: Tank Removal Project, 3000 Broadway, Oakland, California dated 28 December 1992

In July 1992, DECON Environmental Services, Inc. (DECON) of Hayward, California was contracted to excavate and remove one 1,000-gallon diesel UST from beneath the 30th Street Site property sidewalk located in the vicinity of the 3000 Broadway and 288 30th Street properties in Oakland, California. At the time of the UST removal, the property was occupied by a Nissan dealership. Reportedly, the UST had not been in use for at least a decade, and was presumed to be empty.

Two soil samples labeled 721-823-01 and 721-823-02 were collected from the bottom of the excavation beneath the western and eastern portions of the former UST. The soil samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPHg), TPH as diesel (TPHd), lead, and benzene, toluene, ethylbenzene, and xylenes (BTEX). No TPH or BTEX compounds were detected at or above laboratory detection limits. A summary of the samples collected from beneath the UST are presented below.

### Summary of TPH and BTEX Results in Soil Former UST Closure 3000 Broadway, Oakland, CA

| Sample ID  | Date      | TPHg | TPHd | Benzene | Toluene | Ethylbenzen | Xylenes |
|------------|-----------|------|------|---------|---------|-------------|---------|
|            |           |      |      |         |         | е           |         |
| 721-823-01 | 7/21/1992 | < 1  | < 10 | < 0.003 | < 0.003 | < 0.003     | < 0.003 |
| 721-823-02 | 7/21/1992 | < 1  | < 10 | < 0.003 | < 0.003 | < 0.003     | < 0.003 |

Above results reported in milligrams per kilogram (mg/kg).

During the UST removal activities, a leaky sewer line, located near the northwest side of the excavation sidewall, was discovered. Reportedly, DECON applied for a sewer repair permit and made the necessary repairs. With the permission of the ACEH, DECON backfilled the UST



excavation with the previously stockpiled soil material and approximately 15 cubic yards of imported Class II base rock, and repaired the sidewalk. During the sidewalk repair, a fuel fill pipe was discovered, which was connected to a 350-gallon gasoline UST located to the west of the diesel UST, towards Broadway. With permission from both the ACEH and the Oakland Fire Department (OFD), the 350-gallon gasoline UST was also removed from beneath the 30th Street sidewalk.

Two soil samples were collected from beneath the 350-gallon gasoline UST and one sample was collected of the stockpiled soil material from the excavation pit. The analytical results of the bottom samples did not detect concentrations of purgeable hydrocarbons at or above the laboratory's reporting limit (one milligram per kilogram (mg/kg)). Of the BTEX compounds analyzed, xylenes were detected at a concentration of 0.007 mg/kg in one sample. No other BTEX compounds were detected in either the bottom samples or the stockpiled soil sample. With the permission of both the ACEH and the OFD, the excavation was backfilled with the stockpiled soil and approximately 12 cubic yards of imported Class II base rock.

In a City of Oakland letter dated 7 February 2000, additional analysis of soil and/or groundwater for methyl tertiary butyl ether (MTBE) was required before no further action (NFA) could be warranted for the removed USTs. According to DECON, a soil sample was collected from beneath the 30th Street sidewalk on 12 May 2000, and submitted for MTBE analysis. MTBE was not detected at or above the laboratory reporting limit (0.005 mg/kg). The 3000 Broadway Site property was granted UST case closure by the City of Oakland's Fire Services Agency, and NFA by OFD and the Hazardous Materials Management Program (HMMP) in a letter dated 7 June 2000. The approximate locations of the former USTs are shown on Figure 4.

## <u>Faultline Associates, Inc., Underground Storage Tank Closure Report, 260 30th Street, Oakland,</u> <u>California dated 22 September 1997</u>

Based on the September 1997 *Underground Storage Tank Closure Report*, prepared by Faultline Associates, Inc. (Faultline) for the 260 30th Street Site property, one 1,000-gallon waste oil UST, was maintained for an unspecified period of time, before being abandoned-in-place in March 1997. The UST closure was recommended in-place to avoid potentially undermining the adjacent building. The UST was rinsed and inerted with dry ice, before being pressure grouted. The 30th Street sidewalk above the abandoned-in-place UST was finished with a concrete patch. Following the abandonment-in-place of the UST, a subsurface soil investigation was conducted by drilling four soil borings (SB-1 through SB-4) to a maximum depth of 20 feet bgs, directly adjacent to the abandoned in-place UST (Figure 2). In order to



characterize the soil underneath the abandoned-in-place UST, boring SB-3 was drilled at a 30° angle and soil was collected from beneath the former UST. Groundwater samples were not collected.

TPHg, TPHd, TPH as oil and grease (TPHog), and BTEX compounds were detected in the upper 15 feet of soil. However, none of these compounds were detected at a depth of 20 feet in borings SB-1, SB-3 or SB-4 or the bottom depth of 15 feet bgs in boring SB-2. Benzene and MTBE were not detected in any soil samples collected. With the exception of the soil sample collected from boring SB-1 at 15 feet bgs (labeled SB-1-15), only low levels of TPH and BTEX compounds were detected, if at all. Boring SB-1 was located adjacent to and immediately downgradient of the former UST. TPHg, TPHd, and TPHog were detected in sample SB-1-15 at maximum concentrations of 9,600 mg/kg, 4,500 mg/kg, and 18,000 mg/kg, respectively. Toluene, ethylbenzene, and xylene were detected at maximum concentrations of 21 mg/kg, 54 mg/kg, and 89 mg/kg, respectively. The soil sample collected from boring SB-1, at a depth of 20 feet bgs, did not contain any of the previous contaminants at or above laboratory reporting limits, which suggests the extent of contamination was vertically limited.

Due to the detected concentrations of TPH and BTEX compounds in soil near the former UST the ACEH required an additional subsurface investigation to determine if groundwater had been impacted. This requirement was documented in a letter from ACEH, addressed to Mr. Bruce Burrows dated 26 August 1999. A follow up investigation was conducted in 2014.

## <u>P&D Environmental, Inc., Soil and Groundwater Investigation Report, 260 30<sup>th</sup> Street, Oakland,</u> <u>California dated 15 October 2014</u>

In a letter from ACEH to Mr. Bruce Burrows dated 25 April 2012, the ACEH requested a soil and groundwater investigation be conducted to determine the potential extent of impacts related to the abandoned-in-place UST. P&D Environmental (P&D) was retained to perform the investigation. P&D's investigation was conducted in September 2014 and consisted of drilling four borings (B1 through B4) for the collection of soil and groundwater samples (Figure 4). The purpose of this subsurface investigation and the resulting October 2014 report was to provide additional data to support administrative case closure through the State of California Regional Water Quality Control Board's (RWQCB) low threat closure policy (LTCP).

The soil analytical results collected from downgradient boring B4 indicated that petroleum hydrocarbons detected in the shallow soil samples analyzed (less than ten feet bgs) did not exceed residential or commercial RWQCB environmental screening levels (ESLs) for direct exposure (ESL Table S-1, February 2016). Furthermore, no soil samples collected at depths



greater than ten feet bgs had detected petroleum hydrocarbon concentrations in excess of the ESLs associated with leaching to groundwater (ESL Table S-2, February 2016). MTBE, BTEX, naphthalene, and semi-volatile organic compounds (SVOCs) (including polycyclic aromatic hydrocarbons (PAHs)) were not detected in any of the soil samples analyzed, with one exception. Ethylbenzene, xylenes, and naphthalene were detected in a single soil sample (B1-15.0) at concentrations below residential and commercial direct exposure ESLs.

Groundwater analytical results from P&D's investigation indicated the following concentrations of TPH and volatile organic compounds (VOCs) were present in groundwater:

- TPHg in samples B1-W and B4-W with concentrations of 2,400 micrograms per liter (μg/L) and 450 μg/L, respectively. TPHg was not detected above the laboratory's reporting limit (50 μg/L) in groundwater samples collected from borings B2 and B3, both of which are located downgradient of the former UST to the east-southeast.
- TPHd was detected in B1-W, B2-W, and B3-W at concentrations of 600 μg/L, 72 μg/L, and 450 μg/L, respectively. TPHd was not detected in the groundwater sample from boring B4.
- B2-W and B3-W with TPHmo concentrations of 350 μg/L and 1,400 μg/L, respectively. TPHmo was not detected in the groundwater samples collected from borings B1 and B4.
- No BTEX compounds or MTBE were detected in groundwater samples collected from borings B2, B3, or B4. The groundwater sample from boring B1 (B1-W) had concentrations of ethylbenzene, xylenes, and naphthalene detected at 60 µg/L, 210 µg/L, and 9.1 µg/L, respectively.

Following investigation, P&D requested closure for the USTs at the Site. ACEH reviewed P&D's request for closure, and found the Site property did not successfully meet the criteria for closure under the LTCP. Technical comments were provided to Mr. Bruce Burrows by ACEH in their correspondence dated 4 November 2015 in which ACEH requested the preparation of an additional work plan and sensitive receptor survey.

### P&D Well Survey Report

As requested in an ACEH letter dated 4 November 2015, P&D performed a well survey for wells not associated with groundwater contamination investigations in their *Well Survey Report*, dated 22 March 2016. The survey was conducted in a 2,000 foot radius circle from the Site properties. P&D identified six additional wells within the 2,000 foot radius of the Site, all of which were north to northwest (upgradient) of the Site. Based on the east-southeast



groundwater flow direction at the Site, no wells were identified within the known extent of petroleum hydrocarbon impacts at the Site or immediately downgradient of the Site. Accordingly, Langan does not expect supply wells to be impacted in the future by the petroleum hydrocarbon impacts associated with the former USTs.

### 2.2 2016 Phase I Environmental Site Assessment

In April 2016, Langan Treadwell Rollo (currently Langan) conducted a Phase I Environmental Site Assessment (ESA) for the Site, which also included the 3000 and 3020 Broadway and 250 and 288 30th Street properties. The following three recognized environmental conditions (RECs) were identified:

### REC 1: Active Fuel Leak Site at 260 30th Street, Oakland, CA

The 260 30th Street on-Site property has a documented history of on-site contamination associated with a leaking underground storage tank (LUST), which has since been abandoned in-place and is presently located within the sidewalk in front of the 250 30th Street on-Site property. Based on the September 1997 *Underground Storage Tank Closure Report* conducted by Faultline, one 1,000-gallon waste oil UST was maintained for an unspecified period of time, before being abandoned in-place in March 1997, via pressure grouting.

Currently, the Site remains an open leak case identified as RWQCB and ACEH-LOP case numbers 01-2411 and RO0000247, respectively.

## <u>REC 2: Presence of Petroleum Hydrocarbons and Volatile Organic Compounds within Soil and</u> <u>Groundwater</u>

A previous soil and groundwater investigation at the Site related to the former UST indicates that the Site's subsurface has been impacted by petroleum hydrocarbons and VOCs, likely associated with the on-site and nearby USTs. Additionally, multiple properties in the vicinity have operated as automotive facilities conducting sales, repairs, and services, all of which are commonly associated with petroleum hydrocarbon or fuel-related products.

Based on the analytical results of P&D Environmental Inc.'s October 2014 subsurface investigation, the highest concentrations of TPHg and VOCs were detected in boring B-1, which was located approximately 25 feet to the west (in the assumed upgradient flow direction) from the existing closed in-place UST location. The detected concentrations generally did not exceed RWQCB ESLs for commercial land use. However, concentrations of TPHg, TPHd, TPH as



motor oil (TPHmo), ethylbenzene, xylenes, and naphthalene were all detected in groundwater samples at concentrations exceeding their respective RWQCB ESLs.

## <u>REC 3: Historical Presence of Undocumented Underground Storage Tanks Containing</u> <u>Petroleum Product(s)</u>

Two previously undocumented USTs were reportedly removed from the sidewalk of 30th Street near the 3000 Broadway and 288 30th Street Site buildings in July 1992. Regulatory documentation regarding these former USTs was limited, and only hard copies were located, with no known associated regulatory case numbers. Considering these findings, in addition to the concentrations of TPHg upgradient of the abandoned in-place waste oil UST discussed in REC 2 (above), this represents an REC for the site.

### 2.3 2016 Phase II Environmental Site Assessment

The purpose of Langan's Phase II ESA was to determine the downgradient extent of TPH impacts in groundwater and to assess the soil proposed for excavation during redevelopment. In April 2016, Langan conducted soil sampling at the Site from a total of 12 soil borings (B-1 through B-12). Grab groundwater samples were collected from two of the borings (B-11 and B-12), to evaluate potential petroleum impacts associated with the former closed-in-place UST located in front of 250 30th Street. All previous sampling locations are shown on Figure 2.

Based on the soil and groundwater sampling conducted in April 2016, and the corresponding analytical results, Langan's Phase II ESA report concluded that low levels of contaminants are present in the subsurface at the Site.

No TPHg, TPHd and TPHmo, VOCs, SVOCs, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), or asbestos were detected above laboratory reporting limits in any of the soil samples analyzed. Of the metals analyzed only lead was detected in one composite sample from borings B-1 and B-2 (beneath the 3020 Broadway building) at elevated levels.

Groundwater samples collected in the area of the closed-in-place UST (B-11) indicate that residual concentrations of TPHg, TPHd, and TPHmo are present. TPHg, TPHd, or TPHmo were not detected in the groundwater sample (B-12) collected from the downgradient area, near 30th and Brook Streets, which suggests that the residual TPH is localized and has not migrated significantly away from the former UST location.

### 2.4 Request for No Further Action

Langan prepared a *Response to 4 November 2015 Letter and Request for No Further Action* letter for the Site dated 24 October 2016. This letter summarized previous environmental work and compared the existing conditions related to the former abandoned in-place UST to criteria required to achieve regulatory site closure under the RWQCB LTCP. Based on our evaluation, we recommended the 1,000-gallon, abandoned in-place UST be granted NFA.

### 2.5 November 2016 Geotechnical Investigation and Environmental Sampling

Langan previously prepared geotechnical reports for the Site related to the proposed redevelopment.

In order to obtain more subsurface data for design, Langan advanced four geotechnical borings (B-13 through B-16) in November 2016 to a maximum depth of 46.5 feet bgs. The borings were advanced into groundwater and a groundwater sample was collected from the upgradient portion of the Site from boring B-13. The groundwater sample from boring B-13 was collected to determine if concentration in groundwater were migrating onto the property near Broadway. The groundwater sample was analyzed for TPHg, TPHd, TPHmo and VOCs. No TPHg, TPHd or TPHmo were detected in the groundwater sample. Low levels of chloroform and trichloroethene (TCE) were detected at concentrations of 0.62 and 1.8 micrograms per liter (µg/L), respectively. No other VOCs were detected.

Additionally, a petroleum odor was noted and responses on a photoionization detector (PID) were detected in soil collected from boring B-16, starting at 6.0 feet bgs. Soil samples were collected from boring B-16 at depths of 6.0, 10, and 20.5 feet bgs and submitted for TPHg, TPHd, TPHmo, VOCs, and lead chemical analysis. All sampling locations are shown on Figure 2.

Elevated concentrations of TPHg, TPHd, and TPHmo were detected in soil samples from boring B-16 collected at depths of six and ten feet bgs. Significantly lower concentrations were detected in soil from 20.5 feet bgs, which is above the observed groundwater table. Low concentrations of tetrachloroethene (PCE), TCE and cis-1,2-dichloroethene were also detected in soil, with the highest concentrations in the six and ten foot samples. Analytical results associated with the soil samples from boring B-16 are included as Table 1.

Langan believes that the source of this contamination may be associated with a nearby floor drain and the long historical use as an automobile service facility. The floor drain located within the 260 30th Street Site property is likely connected to the same drain line as the adjacent 250



30th Street property. The approximate location of both floor drains within the 250 and 260 30th Street properties are shown on Figure 2. The laboratory reports associated with the groundwater and soil samples are included as Appendix A. Geotechnical boring logs associated with the above referenced drilling are included as Appendix B.

### 2.6 Floor Drain Exploration

On 14 November 2016, Langan oversaw exploration activities centered around the existing floor drain located within the northwest portion of the 260 30th Street Site property. Activities included removing portions of the concrete slab and ramp leading to 250 30<sup>th</sup> Street to reveal the cast iron piping leading away (north) from the floor drain toward the existing Site perimeter wall, and excavating the contents of the exposed drain and some of the surrounding soil material. The exposed drain piping was traced by a private utility locator and found to join the sanitary sewer and water cleanout conduits running east to west, which sloped to the east towards Brook Street. The drain piping was found to be about 1.5 feet below the slab by the private utility locator. The drain sump was found to be constructed of concrete walls and bottom and did not have any visible holes. During our exploratory activities, olfactory observations and PID readings of the material contained in the drain sump indicated low-level contamination. Approximate locations of the floor drain sumps and the drain lines are shown on Figure 2.

The proximity and orientation of the drain and associated piping support the conclusion that the impacts observed in boring B-16 are related to the drain and its associated piping.

### 3.0 ADDITIONAL ENVIRONMENTAL SAMPLING

Langan proposes to conduct additional subsurface sampling near boring B-16 and the floor drain system associated with both 250 and 260 30th Street Site properties. The additional environmental sampling is proposed to confirm that the petroleum impacts observed in boring B-16 are associated with the drain system and will help to evaluate the extent of the impacts. The sampling and analysis of soil vapor samples collected beneath the proposed development excavation depth will help to determine if vapor intrusion is a concern for the Site. Borings are proposed near the drains associated with both the 250 and 260 30<sup>th</sup> Street properties, along the drain piping, around former boring B-16, and downgradient of the buildings on Brook Street.

The additional sampling is proposed in up to three phases and will primarily focus on soil to be left in place post-construction. Phase two and three may not be completed if data indicate the soil, soil vapor and groundwater impacts are limited. The first two phases of the investigation (if



needed) will be conducted within the proposed building footprint of the Site and will include the collection of soil, soil vapor and groundwater samples from up to eight locations (B-17 through B-24). The first phase of work will include soil and groundwater sampling from borings B-17 through B-20 and the installation of three temporary soil vapor wells (B-18-SV, B-19-SV, and B-20-SV) for the collection of soil vapor samples.

If phase one analytical results indicate soil and/or groundwater concentrations above ESLs, it may be necessary to conduct additional soil and groundwater sampling within the building footprint to further delineate impacts. If required, phase two of our proposed environmental sampling will include the collection of additional soil and/or groundwater samples for chemical analyses from additional borings, B-21 through B-24 (Figure 2).

If analytical results of the first and second phase of our subsurface sampling indicate groundwater concentrations above ESLs, it may be necessary to conduct additional soil and groundwater sampling downgradient and off-Site within Brook Street. If required, this third phase of our proposed investigation will include the collection of soil and groundwater samples for chemical analyses from two additional off-Site locations, B-25 and B-26 (Figure 2).

The proposed sampling locations, shown on Figure 2, were chosen to delineate the petroleum impacts around boring B-16 and any potential contamination associated with the floor drains. Temporary soil vapor well locations are also proposed to assess the potential for vapor intrusion, if any, from the soil proposed to be left in place during development. Soil vapor samples will be collected from beneath the proposed slab elevation of the future development.

### 3.1 Site Specific Health and Safety Plan

A Site-specific *Health and Safety Plan* has been prepared by Langan as required by the Occupational Health and Safety Administration Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120). The Health and Safety Plan will be reviewed and signed by Langan personnel and subcontractors performing work at the Site, prior to conducting field activities.

### 3.2 **Pre-investigation Tasks**

We will coordinate Site access with all appropriate parties prior to sampling. At least 72 hours prior to all field activities, we will visit the Site to mark out the sample locations and to notify the Underground Service Alert One-Call Notification Center (USA). In addition, we will engage the services of a private utility locator to clear the proposed sample locations for underground



utilities. Langan will also procure the required permits from Alameda County Public Works Agency-Water Resources Department (ACPWA) and/or ACEH for the completion of temporary soil gas monitoring wells and all drilling activities.

### 3.3 Phase One and Two Proposed Sampling Activities

This section outlines the proposed phase one and two soil, groundwater, and soil vapor sampling activities.

### 3.3.1 Soil and Groundwater Sampling

Up to eight borings (B-17 through B-24) will be advanced to facilitate soil and groundwater sample collection. Phase one will consist of borings B-17 through B-20 and phase two will consist of borings B-21 through B-24 (if necessary). Approximate boring locations are shown on Figure 2. If phase one borings do not indicate concentrations of petroleum hydrocarbons and/or related compounds in excess of applicable ESLs then phase two will not be performed.

Borings will be advanced using a limited access direct-push drill rig operated by Gregg Drilling & Testing, Inc. (Gregg Drilling) of Martinez, California. Borings will be advanced to five feet bgs with a hand auger to clear the location for buried utilities, if necessary, and will be drilled to a maximum depth of 32 feet bgs, depending on field conditions and the depth of groundwater.

Soil materials encountered during drilling activities will be logged in the field by a Langan geologist or engineer following the Unified Soil Classification System (USCS). Soils will be examined in the field for evidence of contamination (including visible staining, odors, and/or elevated readings on a PID). Soil samples will be collected at the following approximate depths: 8.0, 10, 15, 20, and 25 feet bgs. Discreet soil samples will be retained starting at eight feet bgs since this is the estimated excavation depth in this area.

Once the boring depth has been achieved, a temporary PVC casing will be placed in the boreholes to facilitate groundwater sampling. Groundwater levels will be measured within the temporary PVC at each location. One grab groundwater sample will be collected from each boring using either a peristaltic pump or a decontaminated or new, disposable bailer.

Soil samples will be collected into acetate liners and sealed with Teflon and plastic end caps. Grab groundwater samples will be collected into laboratory provided bottles and preservative. All samples will be placed on ice in a cooler following collection and shipped under chain-ofcustody (COC) procedures to a State of California-certified analytical laboratory.

To avoid cross contamination, all sampling equipment used during the investigation activities will be thoroughly cleaned between sample locations. All borings will be backfilled with neat cement grout and the surface cover will be restored in accordance with ACPWA requirements.

### 3.3.2 Soil Vapor Sampling

The soil vapor sampling will be conducted in general accordance with the California Department of Toxic Substances Control's (DTSC) documents titled "Advisory – Active Soil Gas Investigation" dated July 2015 and "Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated October 2011. Gregg Drilling will install up to three temporary soil vapor wells, adjacent to proposed borings B-18, B-19, and B-20. The stepout soil vapor borings and samples will be identified as B-18-SV, B-19-SV, and B-20-SV.

### 3.3.2.1 Temporary Soil Vapor Probe Installation

Temporary soil vapor wells will be installed at an approximate depth of ten feet below the existing slab surface, which corresponds to about one foot below the proposed excavation. To install the temporary soil vapor probe, 1/8-inch diameter disposable Teflon tubing will be threaded onto the top of a 1.5-inch long, 3/8-inch diameter nylon soil vapor screen implant. The assembly will then be placed into the boring. The soil vapor screen implant will be surrounded by approximately one-foot of sand filter pack. A three- to six-inch layer of dry bentonite chips will be placed above the sand filter pack. Hydrated bentonite chips will be placed above the dry bentonite to create a seal around the tubing to prevent ambient air intrusion into the soil vapor sample. The Teflon tubing attached to the soil vapor probe will extend at least two feet above the surface and will be fitted with a sealable sample valve or port at the end. The temporary soil vapor wells will be installed using direct push macrocore technology. The vapor probes will be allowed to equilibrate for a minimum of two hours before sampling. After the equilibration period, shut-in testing and leak testing (using a helium shroud) will be performed at each location prior to purging and sample collection.

Clean, laboratory-supplied one-liter summa canisters will be used for both purging and sample collection along with flow controllers set to a maximum rate of 200 milliliters per minute (mL/min). Following sample collection, summa canisters will be delivered to a State of California certified laboratory.

### 3.3.2.2 Sampling Train Assembly

The sampling train will be assembled using the following steps:

- 1. The initial vacuum of the summa canister (or equivalent) will be recorded prior to sampling. If the initial vacuum reading is less than 26 inches mercury (Hg), the canister will not be used. In addition, the canister will be inspected for damage and a canister that has visible damage will not be used.
- 2. Following the initial inspection, a dedicated flow controller and vacuum gauge will be attached to the summa canister and sealed with a compression fitting cap (e.g., Swagelok or equivalent).
- 3. The sample port and sampling manifold will be connected using ¼-inch outside diameter (OD) Teflon tubing and stainless steel compression fitting nut and ferrules. The sampling manifold consists of compression fittings with three valves and one pressure gauge to attach the probe tubing to the summa canister.
- 4. A syringe will also be connected to the sampling manifold using ¼-inch OD Teflon tubing and stainless steel compression fitting nut and ferrules.
- 5. The assembled summa canister, flow controller, and pressure gauge shall be connected to the sampling manifold using stainless steel compression fitting nut and ferrules.

### 3.3.2.3 Shut-in Test

Prior to soil vapor purging and sample collection, a shut-in test will be performed to check for leaks in the aboveground sampling train assembly:

- 1. The valve that connects the soil vapor probe to the sampling manifold will be closed and the valve that connects to the summa canister will be closed.
- 2. The syringe will then be pulled to empty air from the manifold.
- 3. A leak-free system will be evident by observing no loss of vacuum within the sampling manifold system. Noted leaks will be repaired prior to sample collection by checking and tightening the compression fittings on the manifold. The manifold will then be re-checked to make sure it passes the physical leak check before proceeding.

### 3.3.2.4 Leak Check

Helium will be used as a leak-check tracer gas around the Teflon tubing during sampling as a quality assurance/quality control (QA/QC) measure to confirm the sample integrity. The leak check will be conducted using the following steps:

- 1. The helium shroud is placed over the soil vapor probe at ground surface, along with the entire sampling train (sampling manifold, pump, and sampling canister).
- 2. A minimum helium atmosphere of ten percent will be induced within the shroud. The atmosphere within the shroud will be monitored using the Dielectric MGD 2002 instrument (or equivalent), inserted through a small aperture in the shroud. Following the three-volume purge, a small aliquot of soil vapor will be collected into the syringe for helium screening.
- 3. If helium is detected in the aliquot of purged soil vapor at a concentration less than five percent of the atmosphere induced under the shroud during the purge (e.g., if the helium concentration under the shroud is ten percent, the purged soil vapor should contain less than 0.5 percent helium), the sample flow train integrity will be considered adequate and within an acceptable range (DTSC, 2016).
- 4. The leak check test is performed during purging and sample collection at each soil vapor sampling location.

### 3.3.2.5 Sample Collection Methodology

Langan will collect one soil vapor sample from each temporary well. According to DTSC guidelines, if soil vapor wells are installed via hand augering then soil vapor samples will be collected after withdrawing three purge volumes and at least 48 hours after installation of the temporary soil vapor monitoring wells. If soil vapor wells are installed via direct push then soil vapor samples will be collected after withdrawing three purge volumes and at least two hours after installation of the temporary soil vapor monitoring wells. The samples will be collected in a one-liter Summa canister, following protocols:

- 1. Before collecting the sample, confirm that the sampling system values are set as follows: 1) the syringe value is confirmed to be closed, 2) the soil vapor probe value is open, and 3) the summa canister value is open.
- 2. Helium will be reintroduced into the shroud and be allowed to stabilize until at least a ten percent helium concentration has been reached.



- 3. Upon reaching a stable helium concentration, the summa canister inlet valve will be slowly opened (counter-clockwise) one full turn to begin sample collection at approximately 200 mL/min. During the sample collection, the helium concentration will be monitored using a Dielectric MGD 2002 helium detector and the approximate average concentration will be recorded on the sample field data sheet.
- 4. The start time and initial vacuum reading from the vacuum gauge will be recorded on the sample label, chain of custody records, and on the field log, along with the summa canister and flow controller identifications.
- 5. The valve will remain open until the final vacuum reading on the vacuum gauge on the summa canister is between two to four inches Hg. It is important to leave two to four inches of vacuum remaining in the summa canister so the receiving analytical laboratory can verify that the sample was not compromised during shipment.
- 6. The valve on the summa canister will be closed clockwise until it is finger-tight.
- 7. Turn off the helium and close the valve at the soil vapor probe tubing.
- 8. The stop time and final vacuum reading will be recorded on the sample label, chain of custody record, and on the field log. The sampling information on the chain of custody records will be completed and checked against the sample labels and field log.
- 9. The summa canister will be removed from the sampling manifold and placed in the laboratory-supplied cardboard boxes.

The soil vapor samples will be submitted under chain of custody protocol to a State of California-certified analytical laboratory.

### 3.3.2.6 Temporary Soil Gas Well Decommissioning

After soil vapor sampling is completed, the temporary soil vapor wells will be abandoned by removing the tubing assembly and sand pack from the temporary soil vapor well location and the borehole will be grouted.

### 3.4 Phase Three Proposed Sampling Activities (if necessary)

This section briefly outlines the proposed phase two soil and groundwater sampling activities, if necessary. The phase two investigation will be conducted if groundwater concentrations collected during phase one exceed applicable RWQCB ESLs.

### 3.4.1 Soil and Groundwater Sampling

Two additional off-Site borings (B-25 and B-26) will be advanced to facilitate soil and groundwater sample collection. The borings will be located within the Brook Street right-of-way, which is located off-Site and downgradient of the previous borings associated with phase one (Figure 2). The borings will be advanced using a truck-mounted direct-push drill rig operated by Gregg Drilling. Borings will be advanced to five feet bgs with a hand auger to clear the location for buried utilities, if necessary, and will be drilled to a maximum depth of 30 feet bgs, depending on the depth of groundwater.

Soil materials encountered during drilling activities will be logged in the field by a Langan geologist or engineer following the USCS. Soils will be examined in the field for evidence of contamination (including visible staining, odors, and/or elevated readings on a PID). Soil samples will be collected at the following approximate depths: 5, 10, 15, 20, and 25 feet bgs. Once the boring depth has been achieved, a temporary PVC casing will be placed in the boreholes to facilitate grab groundwater sampling. Groundwater levels will be measured within the temporary PVC at each location. One grab groundwater sample will be collected from each boring using either a peristaltic pump or a decontaminated stainless steel bailer.

Soil samples will be collected into acetate liners and sealed with Teflon and plastic end caps. Grab groundwater samples will be collected into laboratory provided bottles and preservative. All samples will be placed on ice in a cooler following collection and shipped under COC procedures to a State of California-certified analytical laboratory in Pittsburgh, California.

To avoid cross contamination, all sampling equipment used during the investigation activities will be thoroughly cleaned between sample locations. All borings will be backfilled with neat cement grout and the surface cover will be restored in accordance with ACPWA requirements.

### 3.5 Laboratory Analyses

We anticipate analyzing up to three soil samples per boring, based on field observations. The soil samples will be submitted for the following analyses on a standard turnaround time.

- TPHg, TPHd, and TPHmo by EPA Method 8015;
- VOCs by EPA Method 8260; and
- PAHs by EPA Method 8270.

Additionally, no more than one soil sample from each of the proposed borings will be submitted for the following analysis, for waste characterization purposes:

• California Assessment Manual (CAM) 17 Metals by EPA Method 6020.

The groundwater samples will be submitted for the following analyses on a standard turnaround time.

- TPHg, TPHd, and TPHmo by EPA Method 8015;
- VOCs by EPA Method 8260; and
- PAHs by EPA Method 8270.

The soil vapor samples will be submitted for the following analyses on a standard turnaround time.

- VOCs by EPA Method TO-15;
- Methane by ASTM D-1946; and
- Helium by ASTM D-1946.

### 3.6 Sample Identification

Sample nomenclature shall be assigned, as follows:

- Soil samples shall be identified by boring location and bottom depth of sample (i.e. a sample collected at boring location B-17 at a depth of 7.0 to 7.5 feet bgs will be labeled as B-17-7.5).
- Groundwater samples shall be identified by boring location (i.e. B-17-GW).
- Soil vapor samples shall be sequentially identified by step out boring/temporary soil vapor well location (i.e. B-19-SV).

### 3.7 Field Documentation

Field activity logs will be completed for each Site visit. Field activity logs shall identify the following: Site name and address, date and time on-Site, on-Site field personnel, general

weather conditions, purpose of Site visit, a summary of field activities, and any other important details.

### 3.8 Chain of Custody

Samples will be collected and transported to the analytical laboratory following chain of custody (COC) procedures. The COC documents the identity and integrity of the sample from the time of collection through receipt at the laboratory. The COC will be completed as samples are collected, and will include the following information: sample ID, date of sample collection, time of sample collection, sample type, and sampler name(s). Additionally, the starting and ending pressures for the summa canisters will be noted on the COC form for the soil vapor samples.

### 3.9 Sample Packing and Shipping

Samples will be packed in boxes and transported, by shipment or courier, to the respective certified analytical laboratories. Each sample will be individually labeled and will be accompanied by the COC. All samples will be transported to the respective analytical laboratories after sample collection. The COC will be signed by the sampler and relinquished to the sample custodian.

### 3.10 Investigation Derived Waste

Investigation derived waste including soil cuttings, used sampling equipment and decontamination rinsate will be placed in 55-gallon drums, sealed and labeled. The drums will be stored on-Site, pending analytical profiling and proper disposal.

### 4.0 DATA EVALUATION AND REPORTING

Upon the completion of the field activities and analytical testing, Langan will prepare a technical report summarizing our field activities, sampling methods, analytical results and recommendations. The report will compare the analytical results to ESLs and describe the nature and extent of petroleum compounds. Based on the results of our environmental sampling and the proposed redevelopment plan, we will determine if any additional environmental mitigation measures are needed.

### 5.0 PROJECT SCHEDULE

We are requesting your review and approval of this Work Plan for completion of field activities that are anticipated to require up to four days. The phase one is expected to take two days and is scheduled to begin on 25 January 2016. If required, the phase two is expected to take an



additional day to complete, but would be conducted subsequent to the completed phase one, including the assessment of the analytical data, and only if deemed necessary. Phase three would be conducted following a review of phase two data and is expected to take one day of field work. Laboratory analyses are expected to be completed within one week after sample collection. The complete technical report is anticipated to be complete within four weeks of receipt of all laboratory analytical data.

### REFERENCES

Department of Toxic Substances Control (DTSC), *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)* dated October 2011.

DTSC, Advisory – Active Soil Gas Investigations dated July 2015.

Faultline Associates, Inc., Underground Storage Tank Closure Report, 260 30th Street, Oakland, California dated 22 September 1997.

P & D Environmental, Inc., *Soil and Groundwater Investigation Report, 260 30th Street, Oakland, California* dated 15 October 2014.

Langan Treadwell Rollo, *Phase I Environmental Site Assessment, 3000 and 3020 Broadway; 3007 and 3009 Brook Street; and 250, 260, and 288 30th Street, Oakland, California* dated 25 April 2016.

Langan Treadwell Rollo, *Phase II Environmental Site Assessment, 3000 and 3020 Broadway, and 250, 260 and 288 30th Street, Oakland, California* dated 27 April 2016.

TABLE

### Table 1 Boring B-16 Soil Analytical Results 260 30th Street Oakland, California

|                                                |                    | Data    | TDHa  | трца    | TDUmo   | VOCs <sup>1</sup> |       |             | Lood |
|------------------------------------------------|--------------------|---------|-------|---------|---------|-------------------|-------|-------------|------|
| Boring                                         | Depth              | Sampled | тгпу  | IFNU    | тепшо   | PCE               | TCE   | cis-1,2-DCE | Leau |
|                                                |                    | Gampiou |       | (mg/kg) |         |                   |       |             |      |
| B-16                                           | 6                  | 11/7/16 | 810   | 2900    | 6100    | 2                 | < 0.2 | < 0.2       | 6.9  |
| B-16                                           | 10                 | 11/7/16 | 460   | 1600    | 3600    | 0.059             | 0.29  | 0.29        | 5.4  |
| B-16                                           | 20.5               | 11/7/16 | 15    | 46      | 100     | 0.013             | 0.017 | < 0.005     | 7.3  |
| Tier 1 ESL                                     |                    |         | 100   | 230     | 5,100   | 0.42              | 0.46  | 0.19        | 80   |
| Residential ESL (Direct Shallow Soil Exposure) |                    |         | 740   | 230     | 11,000  | 0.6               | 1.2   | 19          | 80   |
| Commercial ESL (Direct Shallow Soil Exposure)  |                    |         | 3,900 | 1100    | 140,000 | 2.7               | 8     | 90          | 320  |
| Commercial E                                   | SL (Construction \ | 2,800   | 880   | 32,000  | 33      | 23                | 82    | 160         |      |
| Leaching to 0                                  | Groundwater ESL    | 770     | 570   |         | 0.42    | 0.46              | 0.19  |             |      |

#### Notes:

1 - Low concentrations (less than 1.5 mg/kg) of n-butyl benzene, sec-butyl benzene, 1,2-dichlorobenzene, naphthalene, n-propyl benzene, 1,1,1,2tetrachloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and xylenes were also detected for complete listing of detected VOCs refer to lab report.

mg/kg - Milligrams per kilogram

TPHg - Total Petroleum Hydrocarbons as Gasoline, EPA Method 8015B

TPHd - Total Petroleum Hydrocarbons as Diesel Range, EPA Method 8015B

TPHmo - Total Petroleum Hydrocarbons as Motor Oil, EPA Method 8015B

VOCs - Volatile Organic Compounds, EPA Method 8260

< 1.0 - Analyte was not detected above the laboratory reporting limit (1.0 mg/kg)

ND - Not detected at or above the laboratory reporting limit

--- Not Applicable or criteria not established

ESL - San Francisco Bay Regional Water Quality Control Board, Environmental Screening Level

### Table 2 Sampling Plan 260 30th Street

| Boring ID               | Rationale                                                             | Approximate<br>Sample Depth <sup>1</sup><br>(ft below top of slab) | Sample ID           | Media      | Analytical Suite                      |  |
|-------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|------------|---------------------------------------|--|
| Phase One               |                                                                       | • •                                                                |                     | I          |                                       |  |
|                         |                                                                       | 8                                                                  | B-17-8              |            |                                       |  |
|                         | The state in sector if                                                | 10                                                                 | B-17-10             |            | TPH a d and ma VOCa and               |  |
| D 17                    | To evaluate impacts, if                                               | 15                                                                 | B-17-15             | Soil       |                                       |  |
| D-17                    | any, from floor drain at                                              | 20                                                                 | B-17-20             |            | T ALIS                                |  |
|                         | 250 Solit Sheet                                                       | 25                                                                 | B-17-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-17-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |
|                         |                                                                       | 8                                                                  | B-18-8              |            |                                       |  |
|                         |                                                                       | 10                                                                 | B-18-10             |            | TPH-g -d and -mo VOCs and             |  |
|                         | To evaluate impacts, if                                               | 15                                                                 | B-18-15             | Soil       | PAHs                                  |  |
| B-18                    | any, from floor drain at                                              | 20                                                                 | B-18-20             |            |                                       |  |
|                         | 260 30th street                                                       | 25                                                                 | B-18-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-18-GVV            | VVater     | IPH-g, -d, -mo, VOCs, PAHs            |  |
|                         |                                                                       | 10                                                                 | B-18-SV             | Soil Vapor | VOCs, Methane, and Helium             |  |
|                         |                                                                       | 8                                                                  | B-19-8              |            |                                       |  |
|                         | To evaluate impacts if                                                | 10                                                                 | B-19-10             |            | TPH-g, -d, and -mo, VOCs, and         |  |
|                         | any from floor drain                                                  | 15                                                                 | B-19-15             | Soil       | PAHs                                  |  |
| B-19                    | piping along property                                                 | 20                                                                 | B-19-20             |            |                                       |  |
|                         | boundary                                                              | 25                                                                 | B-19-25             |            | <b></b>                               |  |
|                         |                                                                       | 26-36                                                              | B-19-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |
|                         |                                                                       | 10                                                                 | B-19-SV             | Soil Vapor | VOCs, Methane, and Helium             |  |
|                         |                                                                       | 8                                                                  | B-20-8              |            |                                       |  |
|                         |                                                                       | 10                                                                 | B-20-10             |            | TPH a d and ma VOCs and               |  |
|                         | To evaluate the extent of                                             | 15                                                                 | B-20-15             | Soil       |                                       |  |
| B-20                    | impacts documented                                                    | 20                                                                 | B-20-20             |            | T ANS                                 |  |
|                         | previously at B-16                                                    | 25                                                                 | B-20-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-20-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |
|                         |                                                                       | 10                                                                 | B-20-SV             | Soil Vapor | VOCs, Methane, and Helium             |  |
| Phase Two (if necessary | ()                                                                    |                                                                    |                     |            | ·                                     |  |
|                         |                                                                       | 8                                                                  | B-21-8              | Soil       |                                       |  |
|                         | To evaluate impacts, if                                               | 10                                                                 | B-21-10             |            | TPH-g -d and -mo VOCs and             |  |
| B-21                    | any, from floor drain                                                 | 15                                                                 | B-21-15             |            | PAHs                                  |  |
|                         | piping along property                                                 | 20                                                                 | B-21-20             |            |                                       |  |
|                         | boundary                                                              | 25                                                                 | B-21-25             | \\/otor    |                                       |  |
|                         |                                                                       | 8                                                                  | B-22-8              | vvaler     | TFH-g, -u, -mo, vocs, fans            |  |
|                         | To evolute the evitent of                                             | 10                                                                 | B-22-10             | Soil       |                                       |  |
| P 22                    | impacts desumented                                                    | 15                                                                 | B-22-15             |            | IPH-g, -d, and -mo, VOCs, and         |  |
| D-22                    | nreviously at B-16                                                    | 20                                                                 | B-22-20             |            | FARS                                  |  |
|                         | previously at D-10                                                    | 25                                                                 | B-22-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-22-GW             | Water      | IPH-g, -d, -mo, VOCs, PAHs            |  |
|                         | To evaluate the extent of<br>impacts documented<br>previously at B-16 | 8<br>10                                                            | B-23-8<br>B-23-10   |            |                                       |  |
| 5.00                    |                                                                       | 15                                                                 | B-23-15             | Soil       | TPH-g, -d, and -mo, VOCs, and         |  |
| B-23                    |                                                                       | 20                                                                 | B-23-20             |            | PAHs                                  |  |
|                         |                                                                       | 25                                                                 | B-23-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-23-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |
|                         |                                                                       | 8                                                                  | B-24-8              |            |                                       |  |
|                         | To evaluate the extent of                                             | 10                                                                 | B-24-10<br>B-2/L-15 | Soil       | TPH-g, -d, and -mo, VOCs, and         |  |
| B-24                    | impacts documented                                                    | 20                                                                 | B-24-20             | 0011       | PAHs                                  |  |
|                         | previously at B-16                                                    | 25                                                                 | B-24-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-24-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |
| Phase Three (if necessa | ry)                                                                   | 0                                                                  |                     |            | 1                                     |  |
|                         |                                                                       | <u>ک</u><br>۱۵                                                     | B-25-8              | Soil       |                                       |  |
|                         | To evaluate off-site                                                  | 15                                                                 | B-25-10<br>B-25-15  |            | TPH-g, -d, and -mo, VOCs, and         |  |
| В-25                    | impacts to groundwater,<br>if any                                     | 20                                                                 | B-25-20             |            | PAHs                                  |  |
|                         |                                                                       | 25                                                                 | B-25-25             | <u> </u>   |                                       |  |
|                         |                                                                       | 26-36                                                              | B-25-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |
|                         |                                                                       | 8                                                                  | B-26-8              |            |                                       |  |
|                         | To evaluate off-site<br>impacts to groundwater,<br>if any             | 10                                                                 | B 26 15             | Soil       | TPH-g, -d, and -mo, VOCs, and<br>PAHs |  |
| B-26                    |                                                                       | 20                                                                 | B-26-10             | 5011       |                                       |  |
|                         |                                                                       | 25                                                                 | B-26-25             |            |                                       |  |
|                         |                                                                       | 26-36                                                              | B-26-GW             | Water      | TPH-g, -d, -mo, VOCs, PAHs            |  |

#### Notes:

1 - Sample depths and number are approximate and will be determined in the field based on observations. Up to three soil samples will be analyzed at each boring location.

Laboratory methods for each analysis are listed in the Section 3.5 of the report.

An additional composite sample will be collected for waste disposal purposes, which is not listed on this table.

#### <u>Acronyms</u>

TPHg - Total Petroleum Hydrocarbons as Gasoline, EPA Method 8015B TPHd - Total Petroleum Hydrocarbons as Diesel Range, EPA Method 8015B TPHmo - Total Petroleum Hydrocarbons as Motor Oil, EPA Method 8015B VOCs - Volatile Organic Compounds, EPA Method 8260 for soil and groundwater and EPA Method TO-15 for soil vapor PAHs - Polycyclic Aromatic Hydrocarbons, EPA Method 8270 CAM 17 - California Assessment Manual 17 Metals, EPA Method 6020



FIGURES













### EXPLANATION

| B-11 🖲                                  | Approximate location of boring by Langan<br>Treadwell Rollo, April 2016                                        |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| в1 <del>-ф-</del>                       | Approximate location of boring by P&D<br>Environmental, Inc., September 2014                                   |
| B-1 🌑                                   | Approximate location of boring by Trinity,<br>1999 and 2006                                                    |
|                                         | Approximate location of abandoned in-place 1,000-gallon waste oil UST, March 1997                              |
|                                         | Approximate location of former USTs (350-gallon gasoline and 1,000-gallon diesel), removed in July 1992        |
|                                         | Approximate location of former 1,500-gallon<br>heating oil UST, removed in August 1997                         |
|                                         | Approximate location of former 8,000-gallon gasoline USTs, removed in December 1995                            |
|                                         | Site Boundary                                                                                                  |
| Notes:<br>1. Conc<br>2. Total<br>and mo | entrations in micrograms per liter (µg/L)<br>Petroleum Hydrocarbons as gasoline, diesel<br>tor oil (TPH-gdmo). |

3. San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels, (February 2016)

| Compound      | Human<br>Health Risk<br>Based Only | Fresh<br>Water<br>Ecotox | Gross<br>Contamination<br>Levels<br>(GW-4) | Odor Nuisance<br>Levels<br>(Table GW-5) |                       |  |
|---------------|------------------------------------|--------------------------|--------------------------------------------|-----------------------------------------|-----------------------|--|
|               |                                    |                          |                                            | Drinking<br>Water                       | Non-Drinking<br>Water |  |
| TPH gasoline  | 221                                | 443                      | 50,000                                     | 100                                     | 5,000                 |  |
| TPH diesel    | 147                                | 640                      | 2,500                                      | 100                                     | 5,000                 |  |
| TPH motor oil | 147 1                              | 1                        | 50,000                                     | 100 1                                   | 5000 1                |  |

1 - TPH motor oil is not soluble. TPH motor oil detections in water most likely are petroleum degradates or less likely NAPL. If the detections are degradates, add TPH motor oil and TPH diesel results and compare to TPH diesel criterion. See User's Guide Chapter 9 for further information.

3000 AND 3020 BROADWAY; AND 250, 260, AND 288 30TH STREET Oakland, California

SITE PLAN WITH BORING LOCATIONS AND<br/>TPH ANALYTICAL RESULTS IN GROUNDWATERDate 12/28/16Project No. 750635602Figure 4

APPENDIX A LABORATORY ANALYTICAL REPORTS


McCampbell Analytical, Inc.

"When Quality Counts"

# **Analytical Report**

**WorkOrder:** 1611295

Report Created for: Langan

501 14th Street, 3rd Floor Oakland, CA 94612

| Josh Graber              |
|--------------------------|
|                          |
| 750635601; 3000 Broadway |
|                          |

**Project Received:** 11/07/2016

Analytical Report reviewed & approved for release on 11/10/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.



1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP



### **Glossary of Terms & Qualifier Definitions**

| Client:    | Langan                   |
|------------|--------------------------|
| Project:   | 750635601; 3000 Broadway |
| WorkOrder: | 1611295                  |

#### **Glossary Abbreviation**

| Serial Dilution Percent Difference                                                       |
|------------------------------------------------------------------------------------------|
| 95% Confident Interval                                                                   |
| Dilution Factor                                                                          |
| (DISTLC) Waste Extraction Test using DI water                                            |
| Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)               |
| Dilution Test (Serial Dilution)                                                          |
| Duplicate                                                                                |
| Estimated Detection Limit                                                                |
| International Toxicity Equivalence Factor                                                |
| Laboratory Control Sample                                                                |
| Method Blank                                                                             |
| % Recovery of Surrogate in Method Blank, if applicable                                   |
| Method Detection Limit                                                                   |
| Minimum Level of Quantitation                                                            |
| Matrix Spike                                                                             |
| Matrix Spike Duplicate                                                                   |
| Not Applicable                                                                           |
| Not detected at or above the indicated MDL or RL                                         |
| Data Not Reported due to matrix interference or insufficient sample amount.              |
| Post Digestion Spike                                                                     |
| Post Digestion Spike Duplicate                                                           |
| Prep Factor                                                                              |
| Relative Difference                                                                      |
| Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.) |
| Relative Percent Deviation                                                               |
| Relative Retention Time                                                                  |
| Spike Value                                                                              |
| Spike Reference Value                                                                    |
| Synthetic Precipitation Leachate Procedure                                               |
| Sorbent Tube                                                                             |
| Toxicity Characteristic Leachate Procedure                                               |
| Toxicity Equivalents                                                                     |
| Waste Extraction Test (Soluble Threshold Limit Concentration)                            |
|                                                                                          |



### **Glossary of Terms & Qualifier Definitions**

Client:LanganProject:750635601; 3000 BroadwayWorkOrder:1611295

#### **Analytical Qualifiers**

| S   | surrogate spike recovery outside accepted recovery limits                                   |
|-----|---------------------------------------------------------------------------------------------|
| c2  | surrogate recovery outside of the control limits due to matrix interference.                |
| d7  | strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram |
| e2  | diesel range compounds are significant; no recognizable pattern                             |
| e4  | gasoline range compounds are significant.                                                   |
| e7  | oil range compounds are significant                                                         |
| e11 | stoddard solvent/mineral spirit (?)                                                         |
|     |                                                                                             |

#### **Quality Control Qualifiers**

F10

MS/MSD outside control limits. Physical or chemical interferences exist due to sample matrix.



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Volatile Organics             |               |        |           |                      |                  |
|-------------------------------|---------------|--------|-----------|----------------------|------------------|
| Client ID                     | Lab ID        | Matrix | Date C    | Collected Instrument | Batch ID         |
| B-16-6                        | 1611295-001A  | Soil   | 11/03/2   | 016 GC18             | 129370           |
| Analytes                      | <u>Result</u> |        | <u>RL</u> | DF                   | Date Analyzed    |
| Acetone                       | ND            |        | 4.0       | 40                   | 11/08/2016 17:37 |
| tert-Amyl methyl ether (TAME) | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Benzene                       | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Bromobenzene                  | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Bromochloromethane            | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Bromodichloromethane          | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Bromoform                     | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Bromomethane                  | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 2-Butanone (MEK)              | ND            |        | 0.80      | 40                   | 11/08/2016 17:37 |
| t-Butyl alcohol (TBA)         | ND            |        | 2.0       | 40                   | 11/08/2016 17:37 |
| n-Butyl benzene               | 0.35          |        | 0.20      | 40                   | 11/08/2016 17:37 |
| sec-Butyl benzene             | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| tert-Butyl benzene            | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Carbon Disulfide              | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Carbon Tetrachloride          | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Chlorobenzene                 | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Chloroethane                  | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Chloroform                    | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Chloromethane                 | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 2-Chlorotoluene               | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 4-Chlorotoluene               | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| Dibromochloromethane          | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 1,2-Dibromo-3-chloropropane   | ND            |        | 0.16      | 40                   | 11/08/2016 17:37 |
| 1,2-Dibromoethane (EDB)       | ND            |        | 0.16      | 40                   | 11/08/2016 17:37 |
| Dibromomethane                | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 1,2-Dichlorobenzene           | 0.53          |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 1,3-Dichlorobenzene           | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |
| 1,4-Dichlorobenzene           | ND            |        | 0.20      | 40                   | 11/08/2016 17:37 |

0.20

0.20

0.16

0.20

0.20

0.20

0.20

0.20

0.20

40

40

40

40

40

40

40

40

40

(Cont.) NELAP 4033ORELAP

Dichlorodifluoromethane

1,2-Dichloroethane (1,2-DCA)

1,1-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane 2,2-Dichloropropane ND

ND

ND

ND

ND

ND

ND

ND

ND



11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37



### **Analytical Report**

**Client:** Langan Date Received: 11/7/16 15:00 **Date Prepared:** 11/7/16 **Project:** 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Volatile Organics             |               |        |           |                     |                  |
|-------------------------------|---------------|--------|-----------|---------------------|------------------|
| Client ID                     | Lab ID        | Matrix | Date C    | ollected Instrument | Batch ID         |
| B-16-6                        | 1611295-001A  | Soil   | 11/03/20  | 016 GC18            | 129370           |
| Analytes                      | <u>Result</u> |        | <u>RL</u> | DF                  | Date Analyzed    |
| 1,1-Dichloropropene           | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| cis-1,3-Dichloropropene       | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| trans-1,3-Dichloropropene     | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Diisopropyl ether (DIPE)      | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Ethylbenzene                  | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Ethyl tert-butyl ether (ETBE) | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Freon 113                     | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Hexachlorobutadiene           | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Hexachloroethane              | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 2-Hexanone                    | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Isopropylbenzene              | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 4-Isopropyl toluene           | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Methyl-t-butyl ether (MTBE)   | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Methylene chloride            | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 4-Methyl-2-pentanone (MIBK)   | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Naphthalene                   | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| n-Propyl benzene              | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Styrene                       | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 1,1,1,2-Tetrachloroethane     | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 1,1,2,2-Tetrachloroethane     | 0.35          |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Tetrachloroethene             | 2.0           |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Toluene                       | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 1,2,3-Trichlorobenzene        | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 1,2,4-Trichlorobenzene        | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 1,1,1-Trichloroethane         | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| 1,1,2-Trichloroethane         | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |
| Trichloroethene               | ND            |        | 0.20      | 40                  | 11/08/2016 17:37 |

0.20

0.20

0.20

0.20

0.20

0.20

40

40

40

40

40

40

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl Chloride

Xylenes, Total

ND

ND

ND

ND

1.4

0.44



11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37

11/08/2016 17:37



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Volatile Organics    |                |        |               |              |                  |
|----------------------|----------------|--------|---------------|--------------|------------------|
| Client ID            | Lab ID         | Matrix | Date Collecte | d Instrument | Batch ID         |
| B-16-6               | 1611295-001A   | Soil   | 11/03/2016    | GC18         | 129370           |
| Analytes             | <u>Result</u>  |        | <u>RL</u> DF  |              | Date Analyzed    |
| <u>Surrogates</u>    | <u>REC (%)</u> |        | <u>Limits</u> |              |                  |
| Dibromofluoromethane | 115            |        | 70-130        |              | 11/08/2016 17:37 |
| Toluene-d8           | 85             |        | 70-130        |              | 11/08/2016 17:37 |
| 4-BFB                | 113            |        | 70-130        |              | 11/08/2016 17:37 |
| Benzene-d6           | 74             |        | 60-140        |              | 11/08/2016 17:37 |
| Ethylbenzene-d10     | 76             |        | 60-140        |              | 11/08/2016 17:37 |
| 1,2-DCB-d4           | 136            |        | 60-140        |              | 11/08/2016 17:37 |
| Analyst(s): MW       |                |        |               |              |                  |





 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Volatile Organics             |                   |                               |                  |  |  |
|-------------------------------|-------------------|-------------------------------|------------------|--|--|
| Client ID                     | Lab ID Mat        | rix Date Collected Instrument | Batch ID         |  |  |
| B-16-10                       | 1611295-002A Soil | 11/03/2016 GC18               | 129370           |  |  |
| Analytes                      | <u>Result</u>     | <u>RL</u> <u>DF</u>           | Date Analyzed    |  |  |
| Acetone                       | ND                | 0.67 6.7                      | 11/08/2016 21:33 |  |  |
| tert-Amyl methyl ether (TAME) | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Benzene                       | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Bromobenzene                  | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Bromochloromethane            | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Bromodichloromethane          | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Bromoform                     | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Bromomethane                  | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 2-Butanone (MEK)              | ND                | 0.13 6.7                      | 11/08/2016 21:33 |  |  |
| t-Butyl alcohol (TBA)         | ND                | 0.33 6.7                      | 11/08/2016 21:33 |  |  |
| n-Butyl benzene               | 0.17              | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| sec-Butyl benzene             | 0.072             | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| tert-Butyl benzene            | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Carbon Disulfide              | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Carbon Tetrachloride          | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Chlorobenzene                 | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Chloroethane                  | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Chloroform                    | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Chloromethane                 | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 2-Chlorotoluene               | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 4-Chlorotoluene               | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Dibromochloromethane          | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 1,2-Dibromo-3-chloropropane   | ND                | 0.027 6.7                     | 11/08/2016 21:33 |  |  |
| 1,2-Dibromoethane (EDB)       | ND                | 0.027 6.7                     | 11/08/2016 21:33 |  |  |
| Dibromomethane                | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 1,2-Dichlorobenzene           | 0.37              | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 1,3-Dichlorobenzene           | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 1,4-Dichlorobenzene           | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| Dichlorodifluoromethane       | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 1,1-Dichloroethane            | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| 1,2-Dichloroethane (1,2-DCA)  | ND                | 0.027 6.7                     | 11/08/2016 21:33 |  |  |
| 1,1-Dichloroethene            | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| cis-1,2-Dichloroethene        | 0.29              | 0.033 6.7                     | 11/08/2016 21:33 |  |  |
| trans-1,2-Dichloroethene      | ND                | 0.033 6.7                     | 11/08/2016 21:33 |  |  |

0.033

0.033

0.033

6.7

6.7

6.7

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

ND

ND

ND

11/08/2016 21:33

11/08/2016 21:33

11/08/2016 21:33



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Volatile Organics             |               |        |           |                     |                  |
|-------------------------------|---------------|--------|-----------|---------------------|------------------|
| Client ID                     | Lab ID        | Matrix | Date Co   | ollected Instrument | Batch ID         |
| B-16-10                       | 1611295-002A  | Soil   | 11/03/20  | 16 GC18             | 129370           |
| Analytes                      | <u>Result</u> |        | <u>RL</u> | DF                  | Date Analyzed    |
| 1,1-Dichloropropene           | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| cis-1,3-Dichloropropene       | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| trans-1,3-Dichloropropene     | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Diisopropyl ether (DIPE)      | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Ethylbenzene                  | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Ethyl tert-butyl ether (ETBE) | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Freon 113                     | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Hexachlorobutadiene           | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Hexachloroethane              | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 2-Hexanone                    | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Isopropylbenzene              | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 4-Isopropyl toluene           | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Methyl-t-butyl ether (MTBE)   | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Methylene chloride            | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 4-Methyl-2-pentanone (MIBK)   | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Naphthalene                   | 0.15          |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| n-Propyl benzene              | 0.068         |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Styrene                       | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,1,1,2-Tetrachloroethane     | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,1,2,2-Tetrachloroethane     | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Tetrachloroethene             | 0.059         |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Toluene                       | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,2,3-Trichlorobenzene        | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,2,4-Trichlorobenzene        | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,1,1-Trichloroethane         | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,1,2-Trichloroethane         | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Trichloroethene               | 0.29          |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Trichlorofluoromethane        | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,2,3-Trichloropropane        | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,2,4-Trimethylbenzene        | 0.77          |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| 1,3,5-Trimethylbenzene        | 0.26          |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Vinyl Chloride                | ND            |        | 0.033     | 6.7                 | 11/08/2016 21:33 |
| Xylenes, Total                | 0.15          |        | 0.033     | 6.7                 | 11/08/2016 21:33 |





 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Volatile Organics    |                |        |                     |              |                  |
|----------------------|----------------|--------|---------------------|--------------|------------------|
| Client ID            | Lab ID         | Matrix | Date Collected      | l Instrument | Batch ID         |
| B-16-10              | 1611295-002A   | Soil   | 11/03/2016          | GC18         | 129370           |
| Analytes             | <u>Result</u>  |        | <u>RL</u> <u>DF</u> |              | Date Analyzed    |
| <u>Surrogates</u>    | <u>REC (%)</u> |        | <u>Limits</u>       |              |                  |
| Dibromofluoromethane | 112            |        | 70-130              |              | 11/08/2016 21:33 |
| Toluene-d8           | 91             |        | 70-130              |              | 11/08/2016 21:33 |
| 4-BFB                | 101            |        | 70-130              |              | 11/08/2016 21:33 |
| Benzene-d6           | 75             |        | 60-140              |              | 11/08/2016 21:33 |
| Ethylbenzene-d10     | 79             |        | 60-140              |              | 11/08/2016 21:33 |
| 1,2-DCB-d4           | 123            |        | 60-140              |              | 11/08/2016 21:33 |
| Analyst(s): MW       |                |        |                     |              |                  |





**Client:** Langan Date Received: 11/7/16 15:00 **Date Prepared:** 11/7/16 **Project:** 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

#### **Volatile Organics**

| Client ID                     | Lab ID       | Matrix | Date Co   | ollected Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|---------------------|------------------|
| B-16-20.5                     | 1611295-003A | Soil   | 11/03/201 | 16 GC18             | 129370           |
| Analytes                      | Result       |        | <u>RL</u> | DF                  | Date Analyzed    |
| Acetone                       | ND           |        | 0.10      | 1                   | 11/08/2016 20:54 |
| tert-Amyl methyl ether (TAME) | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Benzene                       | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Bromobenzene                  | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Bromochloromethane            | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Bromodichloromethane          | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Bromoform                     | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Bromomethane                  | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 2-Butanone (MEK)              | ND           |        | 0.020     | 1                   | 11/08/2016 20:54 |
| t-Butyl alcohol (TBA)         | ND           |        | 0.050     | 1                   | 11/08/2016 20:54 |
| n-Butyl benzene               | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| sec-Butyl benzene             | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| tert-Butyl benzene            | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Carbon Disulfide              | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Carbon Tetrachloride          | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Chlorobenzene                 | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Chloroethane                  | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Chloroform                    | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Chloromethane                 | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 2-Chlorotoluene               | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 4-Chlorotoluene               | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Dibromochloromethane          | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,2-Dibromo-3-chloropropane   | ND           |        | 0.0040    | 1                   | 11/08/2016 20:54 |
| 1,2-Dibromoethane (EDB)       | ND           |        | 0.0040    | 1                   | 11/08/2016 20:54 |
| Dibromomethane                | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,2-Dichlorobenzene           | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,3-Dichlorobenzene           | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,4-Dichlorobenzene           | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| Dichlorodifluoromethane       | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,1-Dichloroethane            | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,2-Dichloroethane (1,2-DCA)  | ND           |        | 0.0040    | 1                   | 11/08/2016 20:54 |
| 1,1-Dichloroethene            | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| cis-1,2-Dichloroethene        | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| trans-1,2-Dichloroethene      | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,2-Dichloropropane           | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 1,3-Dichloropropane           | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |
| 2.2-Dichloropropane           | ND           |        | 0.0050    | 1                   | 11/08/2016 20:54 |

(Cont.) NELAP 4033ORELAP



Angela Rydelius, Lab Manager



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

#### **Volatile Organics**

| Client ID                     | Lab ID       | Matrix | Date Co   | llected | Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|---------|------------|------------------|
| B-16-20.5                     | 1611295-003A | Soil   | 11/03/201 | 6       | GC18       | 129370           |
| Analytes                      | Result       |        | <u>RL</u> | DF      |            | Date Analyzed    |
| 1,1-Dichloropropene           | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| cis-1,3-Dichloropropene       | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| trans-1,3-Dichloropropene     | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Diisopropyl ether (DIPE)      | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Ethylbenzene                  | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Ethyl tert-butyl ether (ETBE) | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Freon 113                     | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Hexachlorobutadiene           | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Hexachloroethane              | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 2-Hexanone                    | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Isopropylbenzene              | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 4-Isopropyl toluene           | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Methyl-t-butyl ether (MTBE)   | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Methylene chloride            | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 4-Methyl-2-pentanone (MIBK)   | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Naphthalene                   | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| n-Propyl benzene              | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Styrene                       | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,1,1,2-Tetrachloroethane     | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,1,2,2-Tetrachloroethane     | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Tetrachloroethene             | 0.013        |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Toluene                       | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,2,3-Trichlorobenzene        | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,2,4-Trichlorobenzene        | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,1,1-Trichloroethane         | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,1,2-Trichloroethane         | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Trichloroethene               | 0.017        |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Trichlorofluoromethane        | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,2,3-Trichloropropane        | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,2,4-Trimethylbenzene        | 0.012        |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| 1,3,5-Trimethylbenzene        | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Vinyl Chloride                | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |
| Xylenes, Total                | ND           |        | 0.0050    | 1       |            | 11/08/2016 20:54 |



| Client:        | Langan                   |
|----------------|--------------------------|
| Date Received: | 11/7/16 15:00            |
| Date Prepared: | 11/7/16                  |
| Project:       | 750635601; 3000 Broadway |

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | mg/kg   |

| Client ID            | Lab ID         | Matrix | Date Colle    | ected Instrument | Batch ID         |
|----------------------|----------------|--------|---------------|------------------|------------------|
| B-16-20.5            | 1611295-003A   | Soil   | 11/03/2016    | GC18             | 129370           |
| Analytes             | Result         |        | <u>RL</u>     | DF               | Date Analyzed    |
| Surrogates           | <u>REC (%)</u> |        | <u>Limits</u> |                  |                  |
| Dibromofluoromethane | 110            |        | 70-130        |                  | 11/08/2016 20:54 |
| Toluene-d8           | 94             |        | 70-130        |                  | 11/08/2016 20:54 |
| 4-BFB                | 118            |        | 70-130        |                  | 11/08/2016 20:54 |
| Benzene-d6           | 76             |        | 60-140        |                  | 11/08/2016 20:54 |
| Ethylbenzene-d10     | 91             |        | 60-140        |                  | 11/08/2016 20:54 |
| 1,2-DCB-d4           | 76             |        | 60-140        |                  | 11/08/2016 20:54 |



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/8/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295     |
|---------------------------|-------------|
| <b>Extraction Method:</b> | SW3550B     |
| Analytical Method:        | SW8270C-SIM |
| Unit:                     | mg/kg       |

#### Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode

| Client ID                | Lab ID         | Matrix | Date Colle | ected Instrumer | nt Batch ID      |
|--------------------------|----------------|--------|------------|-----------------|------------------|
| B-16-6                   | 1611295-001A   | Soil   | 11/03/2016 | GC35            | 129457           |
| Analytes                 | <u>Result</u>  |        | RL         | DF              | Date Analyzed    |
| Acenaphthene             | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Acenaphthylene           | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Anthracene               | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Benzo (a) anthracene     | 0.13           |        | 0.10       | 10              | 11/10/2016 12:27 |
| Benzo (a) pyrene         | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Benzo (b) fluoranthene   | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Benzo (g,h,i) perylene   | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Benzo (k) fluoranthene   | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Chrysene                 | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Dibenzo (a,h) anthracene | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Fluoranthene             | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| Fluorene                 | 0.13           |        | 0.10       | 10              | 11/10/2016 12:27 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 0.10       | 10              | 11/10/2016 12:27 |
| 1-Methylnaphthalene      | 0.21           |        | 0.10       | 10              | 11/10/2016 12:27 |
| 2-Methylnaphthalene      | 0.26           |        | 0.10       | 10              | 11/10/2016 12:27 |
| Naphthalene              | 0.22           |        | 0.10       | 10              | 11/10/2016 12:27 |
| Phenanthrene             | 0.38           |        | 0.10       | 10              | 11/10/2016 12:27 |
| Pyrene                   | 0.14           |        | 0.10       | 10              | 11/10/2016 12:27 |
| <u>Surrogates</u>        | <u>REC (%)</u> |        | Limits     |                 |                  |
| 1-Fluoronaphthalene      | 110            |        | 30-130     |                 | 11/10/2016 12:27 |
| 2-Fluorobiphenyl         | 86             |        | 30-130     |                 | 11/10/2016 12:27 |
| Analyst(s): REB          |                |        |            |                 |                  |



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/8/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295     |
|---------------------------|-------------|
| <b>Extraction Method:</b> | SW3550B     |
| Analytical Method:        | SW8270C-SIM |
| Unit:                     | mg/kg       |

#### Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode

| Client ID                | Lab ID         | Matrix | Date Colle    | ected Instrument | Batch ID         |
|--------------------------|----------------|--------|---------------|------------------|------------------|
| B-16-10                  | 1611295-002A   | Soil   | 11/03/2016    | GC35             | 129457           |
| Analytes                 | <u>Result</u>  |        | <u>RL</u>     | <u>DF</u>        | Date Analyzed    |
| Acenaphthene             | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Acenaphthylene           | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Anthracene               | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Benzo (a) anthracene     | 0.10           |        | 0.10          | 10               | 11/09/2016 17:37 |
| Benzo (a) pyrene         | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Benzo (b) fluoranthene   | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Benzo (g,h,i) perylene   | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Benzo (k) fluoranthene   | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Chrysene                 | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Dibenzo (a,h) anthracene | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Fluoranthene             | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Fluorene                 | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| 1-Methylnaphthalene      | 0.13           |        | 0.10          | 10               | 11/09/2016 17:37 |
| 2-Methylnaphthalene      | 0.19           |        | 0.10          | 10               | 11/09/2016 17:37 |
| Naphthalene              | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Phenanthrene             | 0.16           |        | 0.10          | 10               | 11/09/2016 17:37 |
| Pyrene                   | ND             |        | 0.10          | 10               | 11/09/2016 17:37 |
| Surrogates               | <u>REC (%)</u> |        | <u>Limits</u> |                  |                  |
| 1-Fluoronaphthalene      | 93             |        | 30-130        |                  | 11/09/2016 17:37 |
| 2-Fluorobiphenyl         | 90             |        | 30-130        |                  | 11/09/2016 17:37 |
| Analyst(s): REB          |                |        |               |                  |                  |



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/8/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295     |
|---------------------------|-------------|
| <b>Extraction Method:</b> | SW3550B     |
| Analytical Method:        | SW8270C-SIM |
| Unit:                     | mg/kg       |

#### Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode

| Client ID                | Lab ID         | Matrix | Date Co       | llected | Instrument | Batch ID         |
|--------------------------|----------------|--------|---------------|---------|------------|------------------|
| B-16-20.5                | 1611295-003A   | Soil   | 11/03/201     | 6       | GC35       | 129457           |
| Analytes                 | <u>Result</u>  |        | <u>RL</u>     | DF      |            | Date Analyzed    |
| Acenaphthene             | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Acenaphthylene           | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Anthracene               | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Benzo (a) anthracene     | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Benzo (a) pyrene         | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Benzo (b) fluoranthene   | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Benzo (g,h,i) perylene   | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Benzo (k) fluoranthene   | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Chrysene                 | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Dibenzo (a,h) anthracene | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Fluoranthene             | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Fluorene                 | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Indeno (1,2,3-cd) pyrene | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| 1-Methylnaphthalene      | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| 2-Methylnaphthalene      | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Naphthalene              | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Phenanthrene             | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Pyrene                   | ND             |        | 0.010         | 1       |            | 11/09/2016 18:02 |
| Surrogates               | <u>REC (%)</u> |        | <u>Limits</u> |         |            |                  |
| 1-Fluoronaphthalene      | 89             |        | 30-130        |         |            | 11/09/2016 18:02 |
| 2-Fluorobiphenyl         | 88             |        | 30-130        |         |            | 11/09/2016 18:02 |
| Analyst(s): REB          |                |        |               |         |            |                  |



82

### **Analytical Report**

 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295        |
|---------------------------|----------------|
| <b>Extraction Method:</b> | SW5030B        |
| Analytical Method:        | SW8021B/8015Bm |
| Unit:                     | mg/Kg          |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

| Client ID             | Lab ID         | Matrix | Date Collected Instrument | Batch ID         |
|-----------------------|----------------|--------|---------------------------|------------------|
| B-16-6                | 1611295-001A   | Soil   | 11/03/2016 GC7            | 129401           |
| Analytes              | Result         |        | <u>RL</u> <u>DF</u>       | Date Analyzed    |
| TPH(g) (C6-C12)       | 810            |        | 50 50                     | 11/08/2016 01:05 |
| MTBE                  |                |        | 2.5 50                    | 11/08/2016 01:05 |
| Benzene               |                |        | 0.25 50                   | 11/08/2016 01:05 |
| Toluene               |                |        | 0.25 50                   | 11/08/2016 01:05 |
| Ethylbenzene          |                |        | 0.25 50                   | 11/08/2016 01:05 |
| Xylenes               |                |        | 0.75 50                   | 11/08/2016 01:05 |
| Surrogates            | <u>REC (%)</u> |        | Limits                    |                  |
| 2-Fluorotoluene       | 87             |        | 69-117                    | 11/08/2016 01:05 |
| <u>Analyst(s):</u> IA |                |        | Analytical Comments: d7   |                  |
| Client ID             | Lab ID         | Matrix | Date Collected Instrument | Batch ID         |
| B-16-10               | 1611295-002A   | Soil   | 11/03/2016 GC7            | 129401           |
| Analytes              | Result         |        | <u>RL</u> DF              | Date Analyzed    |
| TPH(g) (C6-C12)       | 460            |        | 50 50                     | 11/08/2016 01:35 |
| MTBE                  |                |        | 2.5 50                    | 11/08/2016 01:35 |
| Benzene               |                |        | 0.25 50                   | 11/08/2016 01:35 |
| Toluene               |                |        | 0.25 50                   | 11/08/2016 01:35 |
| Ethylbenzene          |                |        | 0.25 50                   | 11/08/2016 01:35 |
| Xylenes               |                |        | 0.75 50                   | 11/08/2016 01:35 |
| Surrogates            | <u>REC (%)</u> |        | Limits                    |                  |

69-117

Analytical Comments: d7

2-Fluorotoluene

Analyst(s): IA

11/08/2016 01:35



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295        |
|---------------------------|----------------|
| <b>Extraction Method:</b> | SW5030B        |
| Analytical Method:        | SW8021B/8015Bm |
| Unit:                     | mg/Kg          |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

| Client ID             | Lab ID         | Matrix | Date Co         | llected Instrument | Batch ID         |
|-----------------------|----------------|--------|-----------------|--------------------|------------------|
| B-16-20.5             | 1611295-003A   | Soil   | 11/03/201       | 6 GC7              | 129401           |
| Analytes              | <u>Result</u>  |        | <u>RL</u>       | DF                 | Date Analyzed    |
| TPH(g) (C6-C12)       | 15             |        | 1.0             | 1                  | 11/08/2016 03:34 |
| MTBE                  |                |        | 0.050           | 1                  | 11/08/2016 03:34 |
| Benzene               |                |        | 0.0050          | 1                  | 11/08/2016 03:34 |
| Toluene               |                |        | 0.0050          | 1                  | 11/08/2016 03:34 |
| Ethylbenzene          |                |        | 0.0050          | 1                  | 11/08/2016 03:34 |
| Xylenes               |                |        | 0.015           | 1                  | 11/08/2016 03:34 |
| Surrogates            | <u>REC (%)</u> |        | <u>Limits</u>   |                    |                  |
| 2-Fluorotoluene       | 95             |        | 69-117          |                    | 11/08/2016 03:34 |
| <u>Analyst(s):</u> IA |                |        | Analytical Comm | nents: d7          |                  |



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW3050B |
| Analytical Method:        | SW6020  |
| Unit:                     | mg/Kg   |

| LUFT 5 Metals          |                |        |               |           |            |                  |
|------------------------|----------------|--------|---------------|-----------|------------|------------------|
| Client ID              | Lab ID         | Matrix | Date Co       | ollected  | Instrument | Batch ID         |
| B-16-6                 | 1611295-001A   | Soil   | 11/03/20      | 16        | ICP-MS3    | 129385           |
| <u>Analytes</u>        | <u>Result</u>  |        | <u>RL</u>     | DF        |            | Date Analyzed    |
| Cadmium                | ND             |        | 0.25          | 1         |            | 11/08/2016 17:41 |
| Chromium               | 42             |        | 0.50          | 1         |            | 11/08/2016 17:41 |
| Lead                   | 6.9            |        | 0.50          | 1         |            | 11/08/2016 17:41 |
| Nickel                 | 50             |        | 0.50          | 1         |            | 11/08/2016 17:41 |
| Zinc                   | 39             |        | 5.0           | 1         |            | 11/08/2016 17:41 |
| Surrogates             | <u>REC (%)</u> |        | <u>Limits</u> |           |            |                  |
| Terbium                | 107            |        | 70-130        |           |            | 11/08/2016 17:41 |
| <u>Analyst(s):</u> MIG |                |        |               |           |            |                  |
| Client ID              | Lab ID         | Matrix | Date Co       | ollected  | Instrument | Batch ID         |
| B-16-10                | 1611295-002A   | Soil   | 11/03/20      | 16        | ICP-MS3    | 129406           |
| Analytes               | Result         |        | <u>RL</u>     | <u>DF</u> |            | Date Analyzed    |
| Cadmium                | ND             |        | 0.25          | 1         |            | 11/08/2016 17:47 |
| Chromium               | 31             |        | 0.50          | 1         |            | 11/08/2016 17:47 |
| Lead                   | 5.4            |        | 0.50          | 1         |            | 11/08/2016 17:47 |
| Nickel                 | 37             |        | 0.50          | 1         |            | 11/08/2016 17:47 |
| Zinc                   | 37             |        | 5.0           | 1         |            | 11/08/2016 17:47 |
| Surrogates             | <u>REC (%)</u> |        | <u>Limits</u> |           |            |                  |
| Terbium                | 103            |        | 70-130        |           |            | 11/08/2016 17:47 |
| <u>Analyst(s):</u> MIG |                |        |               |           |            |                  |
| Client ID              | Lab ID         | Matrix | Date Co       | ollected  | Instrument | Batch ID         |
| B-16-20.5              | 1611295-003A   | Soil   | 11/03/20      | 16        | ICP-MS3    | 129406           |
| Analytes               | Result         |        | <u>RL</u>     | DF        |            | Date Analyzed    |
| Cadmium                | ND             |        | 0.25          | 1         |            | 11/08/2016 17:53 |
| Chromium               | 46             |        | 0.50          | 1         |            | 11/08/2016 17:53 |
| Lead                   | 7.3            |        | 0.50          | 1         |            | 11/08/2016 17:53 |
| Nickel                 | 46             |        | 0.50          | 1         |            | 11/08/2016 17:53 |
| Zinc                   | 48             |        | 5.0           | 1         |            | 11/08/2016 17:53 |
| Surrogates             | <u>REC (%)</u> |        | <u>Limits</u> |           |            |                  |
| Terbium                | 102            |        | 70-130        |           |            | 11/08/2016 17:53 |
| Analyst(s): MIG        |                |        |               |           |            |                  |



 Client:
 Langan

 Date Received:
 11/7/16 15:00

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611295 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW3550B |
| Analytical Method:        | SW8015B |
| Unit:                     | mg/Kg   |

| Client ID               | Lab ID         | Matrix            | Date Collect         | ed Instrument                           | Batch ID         |
|-------------------------|----------------|-------------------|----------------------|-----------------------------------------|------------------|
| B-16-6                  | 1611295-001A   | Soil              | 11/03/2016           | GC11A                                   | 129400           |
| Analytes                | <u>Result</u>  |                   | <u>RL</u> <u>DF</u>  |                                         | Date Analyzed    |
| TPH-Diesel (C10-C23)    | 2900           |                   | 200 200              | l i i i i i i i i i i i i i i i i i i i | 11/08/2016 14:02 |
| TPH-Motor Oil (C18-C36) | 6100           |                   | 1000 200             |                                         | 11/08/2016 14:02 |
| <u>Surrogates</u>       | <u>REC (%)</u> | <u>Qualifiers</u> | Limits               |                                         |                  |
| C9                      | 173            | S                 | 72-114               |                                         | 11/08/2016 14:02 |
| Analyst(s): TK          |                |                   | Analytical Comments: | e7,e2,e11.c2                            |                  |
| Client ID               | Lab ID         | Matrix            | Date Collect         | ed Instrument                           | Batch ID         |
| B-16-10                 | 1611295-002A   | Soil              | 11/03/2016           | GC11A                                   | 129400           |
| Analytes                | <u>Result</u>  |                   | <u>RL</u> <u>DF</u>  |                                         | Date Analyzed    |
| TPH-Diesel (C10-C23)    | 1600           |                   | 200 200              | I                                       | 11/08/2016 15:21 |
| TPH-Motor Oil (C18-C36) | 3600           |                   | 1000 200             |                                         | 11/08/2016 15:21 |
| Surrogates              | <u>REC (%)</u> | <u>Qualifiers</u> | Limits               |                                         |                  |
| C9                      | 136            | S                 | 72-114               |                                         | 11/08/2016 15:21 |
| Analyst(s): TK          |                |                   | Analytical Comments: | e7,e2,e11,c2                            |                  |
| Client ID               | Lab ID         | Matrix            | Date Collect         | ed Instrument                           | Batch ID         |
| B-16-20.5               | 1611295-003A   | Soil              | 11/03/2016           | GC11A                                   | 129400           |
| Analytes                | <u>Result</u>  |                   | <u>RL</u> DF         |                                         | Date Analyzed    |
| TPH-Diesel (C10-C23)    | 46             |                   | 10 10                |                                         | 11/08/2016 16:39 |
| TPH-Motor Oil (C18-C36) | 100            |                   | 50 10                |                                         | 11/08/2016 16:39 |
| Surrogates              | <u>REC (%)</u> |                   | <u>Limits</u>        |                                         |                  |
| C9                      | 101            |                   | 72-114               |                                         | 11/08/2016 16:39 |
| <u>Analyst(s):</u> TK   |                |                   | Analytical Comments: | e7,e2,e4                                |                  |



| Client:        | Langan                   |
|----------------|--------------------------|
| Date Prepared: | 11/7/16                  |
| Date Analyzed: | 11/7/16                  |
| Instrument:    | GC10                     |
| Matrix:        | Soil                     |
| Project:       | 750635601; 3000 Broadway |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129370             |
| <b>Extraction Method:</b> | SW5030B            |
| Analytical Method:        | SW8260B            |
| Unit:                     | mg/kg              |
| Sample ID:                | MB/LCS-129370      |
| -                         | 1611280-003AMS/MSD |

### QC Summary Report for SW8260B

| Analyte                       | MB<br>Result | LCS<br>Result | RL     | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|-------------------------------|--------------|---------------|--------|------------|---------------|-------------|---------------|
| Acetone                       | ND           | -             | 0.10   | -          | -             | -           | -             |
| tert-Amyl methyl ether (TAME) | ND           | 0.0422        | 0.0050 | 0.050      | -             | 84          | 53-116        |
| Benzene                       | ND           | 0.0496        | 0.0050 | 0.050      | -             | 99          | 63-137        |
| Bromobenzene                  | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Bromochloromethane            | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Bromodichloromethane          | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Bromoform                     | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Bromomethane                  | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 2-Butanone (MEK)              | ND           | -             | 0.020  | -          | -             | -           | -             |
| t-Butyl alcohol (TBA)         | ND           | 0.180         | 0.050  | 0.20       | -             | 90          | 41-135        |
| n-Butyl benzene               | ND           | -             | 0.0050 | -          | -             | -           | -             |
| sec-Butyl benzene             | ND           | -             | 0.0050 | -          | -             | -           | -             |
| tert-Butyl benzene            | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Carbon Disulfide              | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Carbon Tetrachloride          | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Chlorobenzene                 | ND           | 0.0473        | 0.0050 | 0.050      | -             | 95          | 77-121        |
| Chloroethane                  | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Chloroform                    | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Chloromethane                 | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 2-Chlorotoluene               | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 4-Chlorotoluene               | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Dibromochloromethane          | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2-Dibromo-3-chloropropane   | ND           | -             | 0.0040 | -          | -             | -           | -             |
| 1,2-Dibromoethane (EDB)       | ND           | 0.0438        | 0.0040 | 0.050      | -             | 88          | 67-119        |
| Dibromomethane                | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2-Dichlorobenzene           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,3-Dichlorobenzene           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,4-Dichlorobenzene           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Dichlorodifluoromethane       | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,1-Dichloroethane            | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2-Dichloroethane (1,2-DCA)  | ND           | 0.0454        | 0.0040 | 0.050      | -             | 91          | 58-135        |
| 1,1-Dichloroethene            | ND           | 0.0480        | 0.0050 | 0.050      | -             | 96          | 42-145        |
| cis-1,2-Dichloroethene        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| trans-1,2-Dichloroethene      | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2-Dichloropropane           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,3-Dichloropropane           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 2,2-Dichloropropane           | ND           | -             | 0.0050 | -          | -             | -           | -             |

\_\_\_\_\_QA/QC Officer



| Langan                   |
|--------------------------|
| 11/7/16                  |
| 11/7/16                  |
| GC10                     |
| Soil                     |
| 750635601; 3000 Broadway |
|                          |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129370             |
| <b>Extraction Method:</b> | SW5030B            |
| Analytical Method:        | SW8260B            |
| Unit:                     | mg/kg              |
| Sample ID:                | MB/LCS-129370      |
| -                         | 1611280-003AMS/MSD |

### QC Summary Report for SW8260B

| Analyte                       | MB<br>Result | LCS<br>Result | RL     | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|-------------------------------|--------------|---------------|--------|------------|---------------|-------------|---------------|
| 1,1-Dichloropropene           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| cis-1,3-Dichloropropene       | ND           | -             | 0.0050 | -          | -             | -           | -             |
| trans-1,3-Dichloropropene     | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Diisopropyl ether (DIPE)      | ND           | 0.0455        | 0.0050 | 0.050      | -             | 91          | 52-129        |
| Ethylbenzene                  | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Ethyl tert-butyl ether (ETBE) | ND           | 0.0461        | 0.0050 | 0.050      | -             | 92          | 53-125        |
| Freon 113                     | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Hexachlorobutadiene           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Hexachloroethane              | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 2-Hexanone                    | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Isopropylbenzene              | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 4-Isopropyl toluene           | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Methyl-t-butyl ether (MTBE)   | ND           | 0.0450        | 0.0050 | 0.050      | -             | 90          | 58-122        |
| Methylene chloride            | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 4-Methyl-2-pentanone (MIBK)   | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Naphthalene                   | ND           | -             | 0.0050 | -          | -             | -           | -             |
| n-Propyl benzene              | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Styrene                       | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,1,1,2-Tetrachloroethane     | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,1,2,2-Tetrachloroethane     | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Tetrachloroethene             | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Toluene                       | ND           | 0.0515        | 0.0050 | 0.050      | -             | 103         | 76-130        |
| 1,2,3-Trichlorobenzene        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2,4-Trichlorobenzene        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,1,1-Trichloroethane         | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,1,2-Trichloroethane         | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Trichloroethene               | ND           | 0.0483        | 0.0050 | 0.050      | -             | 97          | 72-132        |
| Trichlorofluoromethane        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2,3-Trichloropropane        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,2,4-Trimethylbenzene        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| 1,3,5-Trimethylbenzene        | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Vinyl Chloride                | ND           | -             | 0.0050 | -          | -             | -           | -             |
| Xylenes, Total                | ND           | -             | 0.0050 | -          | -             | -           | -             |

\_\_\_\_\_QA/QC Officer Page 21 of 32



| Client:        | Langan                   | WorkOrder:                | 1611295                             |
|----------------|--------------------------|---------------------------|-------------------------------------|
| Date Prepared: | 11/7/16                  | BatchID:                  | 129370                              |
| Date Analyzed: | 11/7/16                  | <b>Extraction Method:</b> | SW5030B                             |
| Instrument:    | GC10                     | Analytical Method:        | SW8260B                             |
| Matrix:        | Soil                     | Unit:                     | mg/kg                               |
| Project:       | 750635601; 3000 Broadway | Sample ID:                | MB/LCS-129370<br>1611280-003AMS/MSD |

### QC Summary Report for SW8260B

| Analyte              | MB<br>Result | LCS<br>Result | RL | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|----------------------|--------------|---------------|----|------------|---------------|-------------|---------------|
| Surrogate Recovery   |              |               |    |            |               |             |               |
| Dibromofluoromethane | 0.135        | 0.133         |    | 0.12       | 108           | 107         | 70-130        |
| Toluene-d8           | 0.145        | 0.149         |    | 0.12       | 116           | 119         | 70-130        |
| 4-BFB                | 0.0127       | 0.0136        |    | 0.012      | 102           | 109         | 70-130        |
| Benzene-d6           | 0.0821       | 0.103         |    | 0.10       | 82            | 103         | 60-140        |
| Ethylbenzene-d10     | 0.0930       | 0.121         |    | 0.10       | 93            | 121         | 60-140        |
| 1,2-DCB-d4           | 0.0806       | 0.0932        |    | 0.10       | 81            | 93          | 60-140        |

| Analyte                       | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD   | RPD<br>Limit |
|-------------------------------|--------------|---------------|------------|---------------|------------|-------------|------------------|-------|--------------|
| tert-Amyl methyl ether (TAME) | 0.0419       | 0.0412        | 0.050      | ND            | 84         | 82          | 53-116           | 1.58  | 20           |
| Benzene                       | 0.0476       | 0.0475        | 0.050      | ND            | 95         | 95          | 63-137           | 0     | 20           |
| t-Butyl alcohol (TBA)         | 0.169        | 0.164         | 0.20       | ND            | 84         | 82          | 41-135           | 2.72  | 20           |
| Chlorobenzene                 | 0.0451       | 0.0451        | 0.050      | ND            | 90         | 90          | 77-121           | 0     | 20           |
| 1,2-Dibromoethane (EDB)       | 0.0412       | 0.0407        | 0.050      | ND            | 82         | 81          | 67-119           | 1.27  | 20           |
| 1,2-Dichloroethane (1,2-DCA)  | 0.0440       | 0.0430        | 0.050      | ND            | 88         | 86          | 58-135           | 2.14  | 20           |
| 1,1-Dichloroethene            | 0.0449       | 0.0453        | 0.050      | ND            | 90         | 91          | 42-145           | 0.902 | 20           |
| Diisopropyl ether (DIPE)      | 0.0439       | 0.0435        | 0.050      | ND            | 88         | 87          | 52-129           | 0.900 | 20           |
| Ethyl tert-butyl ether (ETBE) | 0.0449       | 0.0445        | 0.050      | ND            | 90         | 89          | 53-125           | 0.963 | 20           |
| Methyl-t-butyl ether (MTBE)   | 0.0440       | 0.0432        | 0.050      | ND            | 88         | 86          | 58-122           | 1.74  | 20           |
| Toluene                       | 0.0486       | 0.0486        | 0.050      | ND            | 97         | 97          | 76-130           | 0     | 20           |
| Trichloroethene               | 0.0460       | 0.0458        | 0.050      | ND            | 92         | 92          | 72-132           | 0     | 20           |
| Surrogate Recovery            |              |               |            |               |            |             |                  |       |              |
| Dibromofluoromethane          | 0.135        | 0.135         | 0.12       |               | 108        | 108         | 70-130           | 0     | 20           |
| Toluene-d8                    | 0.147        | 0.147         | 0.12       |               | 117        | 118         | 70-130           | 0.101 | 20           |
| 4-BFB                         | 0.0135       | 0.0139        | 0.012      |               | 108        | 111         | 70-130           | 3.21  | 20           |
| Benzene-d6                    | 0.0994       | 0.0992        | 0.10       |               | 99         | 99          | 60-140           | 0     | 20           |
| Ethylbenzene-d10              | 0.111        | 0.111         | 0.10       |               | 111        | 111         | 60-140           | 0     | 20           |
| 1,2-DCB-d4                    | 0.0898       | 0.0887        | 0.10       |               | 90         | 89          | 60-140           | 1.19  | 20           |

\_\_\_\_\_QA/QC Officer Page 22 of 32



| Client:        | Langan                   |
|----------------|--------------------------|
| Date Prepared: | 11/8/16                  |
| Date Analyzed: | 11/8/16 - 11/9/16        |
| Instrument:    | GC35                     |
| Matrix:        | Soil                     |
| Project:       | 750635601; 3000 Broadway |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129457             |
| <b>Extraction Method:</b> | SW3550B            |
| Analytical Method:        | SW8270C-SIM        |
| Unit:                     | mg/kg              |
| Sample ID:                | MB/LCS-129457      |
|                           | 1611287-029AMS/MSD |

### QC Summary Report for SW8270C

| Analyte                  | МВ     | LCS    | RL    | SPK  | MB SS | LCS  | LCS    |
|--------------------------|--------|--------|-------|------|-------|------|--------|
|                          | Result | Result |       | Val  | %REC  | %REC | Limits |
| Acenaphthene             | ND     | -      | 0.010 | -    | -     | -    | -      |
| Acenaphthylene           | ND     | -      | 0.010 | -    | -     | -    | -      |
| Anthracene               | ND     | -      | 0.010 | -    | -     | -    | -      |
| Benzo (a) anthracene     | ND     | -      | 0.010 | -    | -     | -    | -      |
| Benzo (a) pyrene         | ND     | 0.129  | 0.010 | 0.20 | -     | 65   | 23-129 |
| Benzo (b) fluoranthene   | ND     | -      | 0.010 | -    | -     | -    | -      |
| Benzo (g,h,i) perylene   | ND     | -      | 0.010 | -    | -     | -    | -      |
| Benzo (k) fluoranthene   | ND     | -      | 0.010 | -    | -     | -    | -      |
| Chrysene                 | ND     | 0.148  | 0.010 | 0.20 | -     | 74   | 38-104 |
| Dibenzo (a,h) anthracene | ND     | -      | 0.010 | -    | -     | -    | -      |
| Fluoranthene             | ND     | -      | 0.010 | -    | -     | -    | -      |
| Fluorene                 | ND     | -      | 0.010 | -    | -     | -    | -      |
| Indeno (1,2,3-cd) pyrene | ND     | -      | 0.010 | -    | -     | -    | -      |
| 1-Methylnaphthalene      | ND     | 0.183  | 0.010 | 0.20 | -     | 91   | 59-106 |
| 2-Methylnaphthalene      | ND     | 0.164  | 0.010 | 0.20 | -     | 82   | 54-108 |
| Naphthalene              | ND     | -      | 0.010 | -    | -     | -    | -      |
| Phenanthrene             | ND     | 0.156  | 0.010 | 0.20 | -     | 78   | 48-107 |
| Pyrene                   | ND     | 0.145  | 0.010 | 0.20 | -     | 73   | 40-104 |
| Surrogate Recovery       |        |        |       |      |       |      |        |
| 1-Fluoronaphthalene      | 0.428  | 0.422  |       | 0.50 | 86    | 84   | 63-123 |
| 2-Fluorobiphenyl         | 0.425  | 0.414  |       | 0.50 | 85    | 83   | 55-127 |

| Analyte             | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD | RPD<br>Limit |
|---------------------|--------------|---------------|------------|---------------|------------|-------------|------------------|-----|--------------|
| Benzo (a) pyrene    | NR           | NR            |            | ND<0.05       | NR         | NR          | -                | NR  |              |
| Chrysene            | NR           | NR            |            | ND<0.05       | NR         | NR          | -                | NR  |              |
| 1-Methylnaphthalene | NR           | NR            |            | ND<0.05       | NR         | NR          | -                | NR  |              |
| 2-Methylnaphthalene | NR           | NR            |            | ND<0.05       | NR         | NR          | -                | NR  |              |
| Phenanthrene        | NR           | NR            |            | ND<0.05       | NR         | NR          | -                | NR  |              |
| Pyrene              | NR           | NR            |            | ND<0.05       | NR         | NR          | -                | NR  |              |
| Surrogate Recovery  |              |               |            |               |            |             |                  |     |              |
| 1-Fluoronaphthalene | NR           | NR            |            |               | NR         | NR          | -                | NR  |              |
| 2-Fluorobiphenyl    | NR           | NR            |            |               | NR         | NR          | -                | NR  |              |

QA/QC Officer



| Client:        | Langan                   |
|----------------|--------------------------|
| Date Prepared: | 11/7/16                  |
| Date Analyzed: | 11/8/16                  |
| Instrument:    | GC19                     |
| Matrix:        | Soil                     |
| Project:       | 750635601; 3000 Broadway |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129401             |
| <b>Extraction Method:</b> | SW5030B            |
| Analytical Method:        | SW8021B/8015Bm     |
| Unit:                     | mg/Kg              |
| Sample ID:                | MB/LCS-129401      |
|                           | 1611295-001AMS/MSD |

#### QC Summary Report for SW8021B/8015Bm

| Analyte            | MB<br>Result | LCS<br>Result |            | RL            | SPK<br>Val | M<br>%      | B SS<br>REC   | LCS<br>%RE | C   | LCS<br>Limits |
|--------------------|--------------|---------------|------------|---------------|------------|-------------|---------------|------------|-----|---------------|
| TPH(btex)          | ND           | 0.576         |            | 0.40          | 0.60       | -           |               | 96         |     | 89-118        |
| MTBE               | ND           | 0.0930        |            | 0.050         | 0.10       | -           |               | 93         |     | 68-116        |
| Benzene            | ND           | 0.112         |            | 0.0050        | 0.10       | -           |               | 112        |     | 85-118        |
| Toluene            | ND           | 0.116         |            | 0.0050        | 0.10       | -           |               | 115        |     | 87-121        |
| Ethylbenzene       | ND           | 0.116         |            | 0.0050        | 0.10       | -           |               | 116        |     | 91-124        |
| Xylenes            | ND           | 0.348         |            | 0.015         | 0.30       | -           |               | 116        |     | 92-126        |
| Surrogate Recovery |              |               |            |               |            |             |               |            |     |               |
| 2-Fluorotoluene    | 0.104        | 0.119         |            |               | 0.10       | 10          | )4            | 119        |     | 88-119        |
| Analyte            | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/N<br>Limit | /ISD<br>ts | RPD | RPD<br>Limit  |
| TPH(btex)          | NR           | NR            |            | 21            | NR         | NR          | -             |            | NR  |               |
| MTBE               | NR           | NR            |            | ND<2.5        | NR         | NR          | -             |            | NR  |               |
| Benzene            | NR           | NR            |            | ND<0.25       | NR         | NR          | -             |            | NR  |               |
| Toluene            | NR           | NR            |            | ND<0.25       | NR         | NR          | -             |            | NR  |               |

| Ethylbenzene       | NR | NR | ND<0.25 | NR | NR | - | NR |
|--------------------|----|----|---------|----|----|---|----|
| Xylenes            | NR | NR | 1.2     | NR | NR | - | NR |
| Surrogate Recovery |    |    |         |    |    |   |    |
| 2-Fluorotoluene    | NR | NR |         | NR | NR | - | NR |

\_\_\_\_\_QA/QC Officer Page 24 of 32



| Client:        | Langan                   |
|----------------|--------------------------|
| Date Prepared: | 11/7/16                  |
| Date Analyzed: | 11/7/16 - 11/8/16        |
| Instrument:    | ICP-MS2                  |
| Matrix:        | Soil                     |
| Project:       | 750635601; 3000 Broadway |
| Project:       | 750635601; 3000 Broadway |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129385             |
| <b>Extraction Method:</b> | SW3050B            |
| Analytical Method:        | SW6020             |
| Unit:                     | mg/Kg              |
| Sample ID:                | MB/LCS-129385      |
|                           | 1611272-055AMS/MSD |

### QC Summary Report for Metals

| Analyte            | MB<br>Result | LCS<br>Result |            | RL            | SPK<br>Val | ME<br>%F    | BISS LO<br>REC %I | S<br>REC | LCS<br>Limits |
|--------------------|--------------|---------------|------------|---------------|------------|-------------|-------------------|----------|---------------|
| Cadmium            | ND           | 48.4          |            | 0.25          | 50         | -           | 97                |          | 75-125        |
| Chromium           | ND           | 48.8          |            | 0.50          | 50         | -           | 98                |          | 75-125        |
| Lead               | ND           | 48.0          |            | 0.50          | 50         | -           | 96                |          | 75-125        |
| Nickel             | ND           | 47.9          |            | 0.50          | 50         | -           | 96                |          | 75-125        |
| Zinc               | ND           | 483           |            | 5.0           | 500        | -           | 97                |          | 75-125        |
| Surrogate Recovery |              |               |            |               |            |             |                   |          |               |
| Terbium            | 525          | 517           |            |               | 500        | 10          | 5 10              | 3        | 70-130        |
| Analyte            | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits  | RPD      | RPD<br>Limit  |
| Cadmium            | 53.8         | 51.8          | 50         | 1.8           | 104        | 100         | 75-125            | 3.96     | 20            |
| Chromium           | 91.6         | 92.5          | 50         | 37            | 109        | 111         | 75-125            | 1.03     | 20            |
| Lead               | 211          | 276           | 50         | 200           | 20,F10     | 150,F10     | 75-125            | 26.7,    | F10 20        |
| Nickel             | 81.8         | 79.3          | 50         | 25            | 114        | 109         | 75-125            | 2.99     | 20            |
| Zinc               | 1360         | 1390          | 500        | 820           | 108        | 114         | 75-125            | 2.18     | 20            |
| Surrogate Recovery |              |               |            |               |            |             |                   |          |               |
| Terbium            | 528          | 515           | 500        |               | 106        | 103         | 70-130            | 2.44     | 20            |

\_\_\_\_\_QA/QC Officer



| Langan                   |
|--------------------------|
| 11/7/16                  |
| 11/8/16                  |
| ICP-MS2                  |
| Soil                     |
| 750635601; 3000 Broadway |
|                          |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129406             |
| <b>Extraction Method:</b> | SW3050B            |
| Analytical Method:        | SW6020             |
| Unit:                     | mg/Kg              |
| Sample ID:                | MB/LCS-129406      |
|                           | 1611288-002AMS/MSD |

|                    | QC Sur        | nmary R       | eport f    | or Metals     |            |             |                          |            |      |               |  |  |  |  |  |  |
|--------------------|---------------|---------------|------------|---------------|------------|-------------|--------------------------|------------|------|---------------|--|--|--|--|--|--|
| Analyte            | MB<br>Result  | LCS<br>Result |            | RL            | SPK<br>Val | M<br>%      | B SS<br>REC              | LCS<br>%RE | C    | LCS<br>Limits |  |  |  |  |  |  |
| Cadmium            | ND            | 53.1          |            | 0.25          | 50         | -           |                          | 106        |      | 75-125        |  |  |  |  |  |  |
| Chromium           | ND            | 54.0          |            | 0.50          | 50         | -           |                          | 108        |      | 75-125        |  |  |  |  |  |  |
| Lead               | ND            | 52.0          |            | 0.50          | 50         | -           |                          | 104        |      | 75-125        |  |  |  |  |  |  |
| Nickel             | ND            | 51.8          |            | 0.50          | 50         | -           |                          | 104        |      | 75-125        |  |  |  |  |  |  |
| Zinc               | ND            | 524           |            | 5.0           | 500        | -           |                          | 105        |      | 75-125        |  |  |  |  |  |  |
| Surrogate Recovery |               |               |            |               |            |             |                          |            |      |               |  |  |  |  |  |  |
| Terbium            | 524           | 504           |            |               | 500        | 10          | )5                       | 101        |      | 70-130        |  |  |  |  |  |  |
| Analyte            | MS<br>Result  | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MSD MS/MS<br>%REC Limits |            | RPD  | RPD<br>Limit  |  |  |  |  |  |  |
| Cadmium            | 52.4          | 52.9          | 50         | ND            | 104        | 106         | 75-1                     | 25         | 1.03 | 20            |  |  |  |  |  |  |
| Chromium           | 79.8          | 78.5          | 50         | 25.34         | 109        | 106         | 75-1                     | 25         | 1.59 | 20            |  |  |  |  |  |  |
| Lead               | 68.3          | 68.4          | 50         | 15.85         | 105        | 105         | 75-1                     | 25         | 0    | 20            |  |  |  |  |  |  |
| Nickel             | 93.7          | 90.4          | 50         | 40.54         | 106        | 100         | 75-1                     | 25         | 3.52 | 20            |  |  |  |  |  |  |
| Zinc               | 597           | 610           | 500        | 88.45         | 102        | 104         | 75-1                     | 25         | 2.12 | 20            |  |  |  |  |  |  |
| Surrogate Recovery |               |               |            |               |            |             |                          |            |      |               |  |  |  |  |  |  |
| Terbium            | 532           | 558           | 500        |               | 106        | 112         | 70-1                     | 30         | 4.77 | 20            |  |  |  |  |  |  |
| Analyte            | DLT<br>Result |               |            | DLTRef<br>Val |            |             |                          |            | %D   | %D<br>Limit   |  |  |  |  |  |  |
| Cadmium            | ND<1.2        |               |            | ND            |            |             |                          |            | -    | -             |  |  |  |  |  |  |
| Chromium           | 26.6          |               |            | 25.34         |            |             |                          |            | 4.97 | 20            |  |  |  |  |  |  |
| Lead               | 16.6          |               |            | 15.85         |            |             |                          |            | 4.73 | 20            |  |  |  |  |  |  |
| Nickel             | 41.2          |               |            | 40.54         |            |             |                          |            | 1.63 | 20            |  |  |  |  |  |  |
| Zinc               | 92.4          |               |            | 88.45         |            |             |                          |            | 4.47 |               |  |  |  |  |  |  |

%D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

A QA/QC Officer Page 26 of 32



| Client:               | Langan                   | WorkOr    |
|-----------------------|--------------------------|-----------|
| <b>Date Prepared:</b> | 11/7/16                  | BatchID   |
| Date Analyzed:        | 11/8/16                  | Extractio |
| Instrument:           | GC11B                    | Analytic  |
| Matrix:               | Soil                     | Unit:     |
| Project:              | 750635601; 3000 Broadway | Sample I  |
|                       |                          |           |

| WorkOrder:                | 1611295            |
|---------------------------|--------------------|
| BatchID:                  | 129400             |
| <b>Extraction Method:</b> | SW3550B            |
| Analytical Method:        | SW8015B            |
| Unit:                     | mg/Kg              |
| Sample ID:                | MB/LCS-129400      |
|                           | 1611287-026AMS/MSD |

#### QC Report for SW8015B w/out SG Clean-Up

| Analyte                 | MB<br>Result | LCS<br>Result |            | RL            | SPK<br>Val | M<br>%      | B SS<br>REC    | LCS<br>%REC | LCS<br>Limits |
|-------------------------|--------------|---------------|------------|---------------|------------|-------------|----------------|-------------|---------------|
| TPH-Diesel (C10-C23)    | ND           | 37.6          |            | 1.0           | 40         | -           |                | 94          | 91-127        |
| TPH-Motor Oil (C18-C36) | ND           | -             |            | 5.0           | -          | -           |                | -           | -             |
| Surrogate Recovery      |              |               |            |               |            |             |                |             |               |
| C9                      | 21.7         | 22.1          |            |               | 25         | 87          | ,              | 88          | 74-110        |
| Analyte                 | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/M<br>Limits | SD RPD      | RPD<br>Limit  |
| TPH-Diesel (C10-C23)    | NR           | NR            |            | 2.1           | NR         | NR          | -              | NR          |               |
| Surrogate Recovery      |              |               |            |               |            |             |                |             |               |
| C9                      | NR           | NR            |            |               | NR         | NR          | -              | NR          |               |

QA/QC Officer Page 27 of 32

| McCampbell Analytic                        | cal, Inc. |                | RECORD        | Pag       |               |         |           |             |
|--------------------------------------------|-----------|----------------|---------------|-----------|---------------|---------|-----------|-------------|
| Pittsburg, CA 94565-1701<br>(925) 252-9262 |           |                |               | WorkOrder | r: 1611295    | ClientC | ode: TWRK |             |
|                                            | WaterTrax | WriteOn        |               | Excel     | EQuIS         | Email   | HardCopy  | ThirdParty  |
| Report to:                                 |           |                |               | Bil       | ll to:        |         | Req       | uested TAT: |
| Josh Graber                                | Email: jo | lgraber@treadw | /ellrollo.com |           | Accounts Paya | ble     |           |             |

ProjectNo: 750635601; 3000 Broadway

Matrix

cc/3rd Party:

PO:

FAX: (415) 955-9041

**Client ID** 

| 1611295-001 | B-16-6    | Soil | 11/3/2016 00:00 | А | А | Α | Α | Α |  |  |  |
|-------------|-----------|------|-----------------|---|---|---|---|---|--|--|--|
| 1611295-002 | B-16-10   | Soil | 11/3/2016 00:00 | А | Α | Α | Α | Α |  |  |  |
| 1611295-003 | B-16-20.5 | Soil | 11/3/2016 00:00 | Α | Α | Α | Α | Α |  |  |  |
|             |           |      |                 |   |   |   |   |   |  |  |  |

Collection Date Hold

#### Test Legend:

Langan

Lab ID

501 14th Street, 3rd Floor

Oakland, CA 94612

(415) 955-9040

| 1 | 8260B_S    |
|---|------------|
| 5 | TPH(DMO)_S |
| 9 |            |

| 2  | 8270_PNA_S |
|----|------------|
| 6  |            |
| 10 |            |

| 3  | G-MBTEX_S |
|----|-----------|
| 7  |           |
| 11 |           |

Langan

2

1

555 Montgomery St., Suite 1300

Langan\_InvoiceCapture@concursolutio

4

5

San Francisco, CA 94111

3

| 4  | LUFTMS_6020_TTLC_S |
|----|--------------------|
| 8  |                    |
| 12 |                    |

Page 1 of 1

□J-flag

11/07/2016

11/07/2016

11

12

2 days;

10

Date Received:

9

Date Logged:

Requested Tests (See legend below)

7

8

6

#### **Prepared by: Agustina Venegas**

The following SampIDs: 001A, 002A, 003A contain testgroup Multi Range\_S.

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.



### WORK ORDER SUMMARY

| Client Name  | e: LANGAN          |                  | F                                       | Project: |                        | Work Order: 1611295<br>OC Level: LEVEL 2 |                    |                    |                           |                        |                                 |  |
|--------------|--------------------|------------------|-----------------------------------------|----------|------------------------|------------------------------------------|--------------------|--------------------|---------------------------|------------------------|---------------------------------|--|
| Contact's Er | mail: jdgraber@tre | eadwellrollo.com | (                                       | Comments | :                      |                                          |                    |                    |                           | Date Logged: 11/7/2016 |                                 |  |
|              |                    | WaterTrax        | WriteOnEDF                              | Exce     | I                      | Fax                                      | Email              | HardC              | opyThirdPart              | ty 🗌                   | J-flag                          |  |
| Lab ID       | Client ID          | Matrix           | Test Name                               | C(<br>/C | ontainers<br>omposites | Bottle &                                 | Preservative       | De-<br>chlorinated | Collection Date<br>& Time | TAT                    | Sediment Hold SubOut<br>Content |  |
| 1611295-001A | B-16-6             | Soil             | SW6020 (LUFT)                           |          | 1                      | Stainless Ste                            | eel tube 2 1/2"x6" |                    | 11/3/2016                 | 2 days                 |                                 |  |
|              |                    |                  | Multi-Range TPH(g,d,mo) by El<br>8015Bm | PA       |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
|              |                    |                  | SW8270C (PAHs/PNAs)                     |          |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
|              |                    |                  | SW8260B (VOCs)                          |          |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
| 1611295-002A | B-16-10            | Soil             | SW6020 (LUFT)                           |          | 1                      | Stainless Ste                            | eel tube 2 1/2"x6" |                    | 11/3/2016                 | 2 days                 |                                 |  |
|              |                    |                  | Multi-Range TPH(g,d,mo) by El<br>8015Bm | PA       |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
|              |                    |                  | SW8270C (PAHs/PNAs)                     |          |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
|              |                    |                  | SW8260B (VOCs)                          |          |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
| 1611295-003A | B-16-20.5          | Soil             | SW6020 (LUFT)                           |          | 1                      | Stainless Ste                            | eel tube 2 1/2"x6" |                    | 11/3/2016                 | 2 days                 |                                 |  |
|              |                    |                  | Multi-Range TPH(g,d,mo) by El<br>8015Bm | PA       |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
|              |                    |                  | SW8270C (PAHs/PNAs)                     |          |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
|              |                    |                  | SW8260B (VOCs)                          |          |                        |                                          |                    |                    |                           | 2 days                 |                                 |  |
| 1611295-004A | B-13-5             | Soil             |                                         |          | 1                      | Stainless S                              | Steel tube 2"x6"   |                    | 11/2/2016                 |                        | ✓                               |  |
| 1611295-005A | B-13-10            | Soil             |                                         |          | 1                      | Stainless S                              | Steel tube 2"x6"   |                    | 11/2/2016                 |                        | ✓                               |  |
| 1611295-006A | B-13-15            | Soil             |                                         |          | 1                      | Stainless S                              | Steel tube 2"x6"   |                    | 11/2/2016                 |                        | ✓                               |  |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

| McCampbell Analytical, Inc.<br>"When Quality Counts" |         |             |                 |           |     | 1534 Willow Pass Road, Pittsburg, CA 94565-1701<br>Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269<br>http://www.mccampbell.com / E-mail: main@mccampbell.com |                         |           |                  |                    |                           |           |                                          |               |  |
|------------------------------------------------------|---------|-------------|-----------------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|------------------|--------------------|---------------------------|-----------|------------------------------------------|---------------|--|
|                                                      |         |             |                 |           | WO  | ORK ORI                                                                                                                                                                 | DER SU                  | MMA       | ARY              |                    |                           |           |                                          |               |  |
| Client Name:LANGANProjectClient Contact:Josh Graber  |         |             |                 |           |     | Project:                                                                                                                                                                | 75063560                | 1; 3000   | Broadway         |                    |                           | We        | Work Order: 1611295<br>QC Level: LEVEL 2 |               |  |
| Contact's En                                         | nail: j | dgraber@tre | adwellrollo.com |           |     | Comments: Date Logged:                                                                                                                                                  |                         |           |                  |                    |                           | 11/7/2016 |                                          |               |  |
|                                                      |         |             | WaterTrax       | WriteOn   | EDF | Exce                                                                                                                                                                    | el 🗌 l                  | Fax       | <b>√</b> Email   |                    | opyThirdPa                | arty      | ]J-flag                                  |               |  |
| Lab ID                                               | Clien   | t ID        | Matrix          | Test Name |     | C<br>/C                                                                                                                                                                 | ontainers<br>Composites | Bottle &  | Preservative     | De-<br>chlorinated | Collection Date<br>& Time | ТАТ       | Sedimen<br>Content                       | t Hold SubOut |  |
| 1611295-007A                                         | B-13-2  | 20          | Soil            |           |     |                                                                                                                                                                         | 1                       | Stainless | Steel tube 2"x6" |                    | 11/2/2016                 |           |                                          | ✓             |  |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

| <b>Treadwa</b><br>Environmental and Ge                                             | otechnical Con                          | ung B<br>Dillo<br>sultant        | Env <sub>RU</sub><br>= c |      | 555 I        | Monto<br>I4th S | )F<br>gome<br>Street | C<br>ry St   | US<br>reet,<br>rd Fl | ST<br>, Suit<br>loor, | O<br>le 13<br>Oaki | <b>D</b><br>00, S<br>and | <b>Y</b><br>San<br>CA | RE<br>Fran<br>9461 | EC<br>cisco<br>12 Ph | <b>OI</b><br>, CA<br>: 510 | <b>RD</b><br>94111<br>.874.4 | l Ph: 4           | 415.9<br>ax: 5  | 55.90       | 040/Fax<br>74.4507 | : 415.95       | 5.9041 | ZI4             | of _    |
|------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|--------------------------|------|--------------|-----------------|----------------------|--------------|----------------------|-----------------------|--------------------|--------------------------|-----------------------|--------------------|----------------------|----------------------------|------------------------------|-------------------|-----------------|-------------|--------------------|----------------|--------|-----------------|---------|
| Site Name:<br>Job Number:<br>Project Manager\Co<br>Samplers:<br>Recorder (Signatur | $\frac{3600}{75063}$                    | Brook<br>SKUI<br>Justy<br>Anstan | a Gabet                  |      | 50 Ai        | -               | No.                  | Con<br>Prese | sui<br>Sui<br>Itain  | ners                  | 5, Sa quarters     |                          | ose,                  | Ana                | lysis                | Re                         | 408.4<br>ques                | sted              | 1: 910<br>08/Fa | a. clean-up | 8.437.7            | ax: 916<br>709 |        | Irnarou<br>Time | nd<br>V |
| Field Sample<br>Identification No.                                                 | Date                                    | Time                             | Lab Sample No            | Soil | Mater<br>Air | Other           | HCL<br>1,SO          | HNO3         | lce                  |                       | P                  | J.                       | H.                    | K                  |                      |                            |                              |                   |                 | lilica g    |                    |                | Dama   | vles            |         |
| B-16-6<br>B-16-10<br>B-16-205<br>B-13-5                                            | 113/16<br>11/3/16<br>11/3/16<br>11/2/16 |                                  |                          | 277  |              |                 |                      |              | *                    |                       | X<br>×<br>×        | × × ×                    | XX                    |                    |                      |                            |                              |                   |                 | X           |                    |                |        |                 |         |
| 3-13-10                                                                            | 11/2/16                                 |                                  |                          | V    |              |                 |                      | $\square$    |                      |                       |                    | 1                        | 1                     | 1                  |                      | 1                          |                              |                   |                 | X           |                    |                |        |                 |         |
| 3-13-20                                                                            | 11/2116                                 |                                  |                          | V    |              |                 |                      |              |                      |                       |                    |                          |                       |                    |                      |                            |                              |                   |                 | ××          |                    |                |        | 1               | Į.      |
|                                                                                    |                                         |                                  |                          |      |              |                 |                      |              |                      |                       |                    |                          |                       |                    |                      |                            |                              |                   |                 |             |                    |                |        |                 |         |
|                                                                                    |                                         | -0                               |                          |      |              | X               |                      |              |                      |                       |                    |                          |                       |                    |                      |                            |                              |                   |                 |             |                    |                |        |                 |         |
| elinquished by: (Signa                                                             | ture)                                   |                                  | Date //- ) - //          |      |              |                 | ime                  |              | 15                   | _                     | Rec                | eive                     | d by                  | : (Sig             | Inatur               | e)                         | /                            |                   | D               | ate /       | 1-)                | -16            | Time   | 1115            | _       |
| elinquished by: (Signa                                                             | ture)                                   | 1                                | Date                     | 2    |              | 1               | ime                  | 7            | $\frac{1}{2}$        | )                     | Rec                | eive                     | d by                  | : (Sig             | natur                | e)                         | 6                            |                   | D               | ate         |                    | / -            | Time   | 11              | )       |
| elinquished by: (Signa                                                             | ture)                                   |                                  | Date                     |      |              | T               | ime                  | >            |                      |                       | Rec                | eive                     | d by                  | Lab:               | (Sigr                | ature                      | 2                            | $\sim$            | D               | ate //      | 1/7                | file           | Time   | 150             | 50      |
| ent to Laboratory<br>aboratory Comme                                               | (Name):<br>nts/Notes:                   |                                  |                          |      |              |                 | ż                    |              |                      |                       | Met                | hoc<br> +                | land                  | Shi<br>Carr        | omer<br>ied          | nt<br>Pri                  | L<br>vate C                  | ab cou<br>Courier | urier<br>(Co    | . Nam       | Fed Ex             |                | Airbo  | rne             | UPS     |
|                                                                                    |                                         | White Copy                       | - Original               | Y    | 'ellov       | v Coj           | py - L               | abo          | rato                 | ry                    | 1                  |                          |                       | Pir                | nk Co                | ру -                       | Field                        | 11                | f .*            | 4           | C                  | OC Nu          | mber:  |                 | л       |



### Sample Receipt Checklist

| Client Name:                       | Langan                                                      |        |                | Date and Time Received: | 11/7/2016 15:00  |
|------------------------------------|-------------------------------------------------------------|--------|----------------|-------------------------|------------------|
| Project Name:                      | 750635601; 3000 Broadway                                    |        |                | Date Logged:            | 11/7/2016        |
|                                    | Addapos                                                     |        |                | Received by:            | Agustina Venegas |
| WorkOrder №:                       | 1611295 Matrix: <u>Soll</u><br>Bernie Cummins (MAL Courier) |        |                | Logged by:              | Agustina Venegas |
| Carrier.                           |                                                             |        |                |                         |                  |
|                                    | Chain of C                                                  | ustody | y (COC) Infor  | mation                  |                  |
| Chain of custody                   | present?                                                    | Yes    | ✓              | No 🗌                    |                  |
| Chain of custody                   | signed when relinquished and received?                      | Yes    | ✓              | No 🗌                    |                  |
| Chain of custody                   | agrees with sample labels?                                  | Yes    | ✓              | No 🗌                    |                  |
| Sample IDs note                    | d by Client on COC?                                         | Yes    | ✓              | No 🗌                    |                  |
| Date and Time of                   | f collection noted by Client on COC?                        | Yes    | ✓              | No 🗌                    |                  |
| Sampler's name                     | noted on COC?                                               | Yes    |                | No 🗌                    |                  |
|                                    | Sampl                                                       | e Rece | eipt Informati | on                      |                  |
| Custody seals int                  | act on shipping container/cooler?                           | Yes    |                | No 🗌                    | NA 🗹             |
| Shipping contain                   | er/cooler in good condition?                                | Yes    |                | No 🗌                    |                  |
| Samples in prope                   | er containers/bottles?                                      | Yes    |                | No 🗌                    |                  |
| Sample containe                    | rs intact?                                                  | Yes    | ✓              | No 🗌                    |                  |
| Sufficient sample                  | volume for indicated test?                                  | Yes    |                | No 🗌                    |                  |
|                                    | Sample Preservation                                         | on and | Hold Time (ł   | HT) Information         |                  |
| All samples recei                  | ved within holding time?                                    | Yes    | ✓              | No 🗌                    |                  |
| Sample/Temp Bl                     | ank temperature                                             |        | Temp: 7.4      | °C                      |                  |
| Water - VOA vial                   | s have zero headspace / no bubbles?                         | Yes    |                | No 🗌                    | NA 🗹             |
| Sample labels ch                   | ecked for correct preservation?                             | Yes    | ✓              | No 🗌                    |                  |
| pH acceptable up                   | oon receipt (Metal: <2; 522: <4; 218.7: >8)?                | Yes    |                | No 🗌                    | NA 🗹             |
| Samples Receive                    | ed on Ice?                                                  | Yes    |                | No 🗌                    |                  |
|                                    | (Ісе Туре                                                   | : WE   | TICE )         |                         |                  |
| UCMR3 Samples                      | <u>.</u>                                                    |        | _              | _                       | _                |
| Total Chlorine                     | tested and acceptable upon receipt for EPA 522?             | Yes    |                | No                      | NA 🗹             |
| Free Chlorine t<br>300.1, 537, 539 | ested and acceptable upon receipt for EPA 218.7,<br>9?      | Yes    |                | No 🗌                    | NA 🗹             |

Comments:



McCampbell Analytical, Inc.

"When Quality Counts"

# **Analytical Report**

**WorkOrder:** 1611262

Report Created for: Langan

501 14th Street, 3rd Floor Oakland, CA 94612

| Project Contact: | Josh Graber              |
|------------------|--------------------------|
| Project P.O.:    |                          |
| Project Name:    | 750635601; 3000 Broadway |

**Project Received:** 11/04/2016

Analytical Report reviewed & approved for release on 11/10/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.



1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP



### **Glossary of Terms & Qualifier Definitions**

| Client:    | Langan                   |
|------------|--------------------------|
| Project:   | 750635601; 3000 Broadway |
| WorkOrder: | 1611262                  |

#### **Glossary Abbreviation**

| %D           | Serial Dilution Percent Difference                                                       |
|--------------|------------------------------------------------------------------------------------------|
| 95% Interval | 95% Confident Interval                                                                   |
| DF           | Dilution Factor                                                                          |
| DI WET       | (DISTLC) Waste Extraction Test using DI water                                            |
| DISS         | Dissolved (direct analysis of 0.45 $\mu$ m filtered and acidified water sample)          |
| DLT          | Dilution Test (Serial Dilution)                                                          |
| DUP          | Duplicate                                                                                |
| EDL          | Estimated Detection Limit                                                                |
| ITEF         | International Toxicity Equivalence Factor                                                |
| LCS          | Laboratory Control Sample                                                                |
| MB           | Method Blank                                                                             |
| MB % Rec     | % Recovery of Surrogate in Method Blank, if applicable                                   |
| MDL          | Method Detection Limit                                                                   |
| ML           | Minimum Level of Quantitation                                                            |
| MS           | Matrix Spike                                                                             |
| MSD          | Matrix Spike Duplicate                                                                   |
| N/A          | Not Applicable                                                                           |
| ND           | Not detected at or above the indicated MDL or RL                                         |
| NR           | Data Not Reported due to matrix interference or insufficient sample amount.              |
| PDS          | Post Digestion Spike                                                                     |
| PDSD         | Post Digestion Spike Duplicate                                                           |
| PF           | Prep Factor                                                                              |
| RD           | Relative Difference                                                                      |
| RL           | Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.) |
| RPD          | Relative Percent Deviation                                                               |
| RRT          | Relative Retention Time                                                                  |
| SPK Val      | Spike Value                                                                              |
| SPKRef Val   | Spike Reference Value                                                                    |
| SPLP         | Synthetic Precipitation Leachate Procedure                                               |
| ST           | Sorbent Tube                                                                             |
| TCLP         | Toxicity Characteristic Leachate Procedure                                               |
| TEQ          | Toxicity Equivalents                                                                     |
| WET (STLC)   | Waste Extraction Test (Soluble Threshold Limit Concentration)                            |



 Client:
 Langan

 Date Received:
 11/4/16 16:45

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611262 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | µg/L    |

#### **Volatile Organics**

| Client ID                     | Lab ID       | Matrix | Date Co   | llected I | nstrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|-----------|-----------|------------------|
| B-13-GW                       | 1611262-001A | Water  | 11/03/201 | 6 09:55 G | GC18      | 129443           |
| Analytes                      | Result       |        | <u>RL</u> | <u>DF</u> |           | Date Analyzed    |
| Acetone                       | ND           |        | 10        | 1         |           | 11/07/2016 17:04 |
| tert-Amyl methyl ether (TAME) | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Benzene                       | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Bromobenzene                  | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Bromochloromethane            | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Bromodichloromethane          | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Bromoform                     | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Bromomethane                  | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 2-Butanone (MEK)              | ND           |        | 2.0       | 1         |           | 11/07/2016 17:04 |
| t-Butyl alcohol (TBA)         | ND           |        | 2.0       | 1         |           | 11/07/2016 17:04 |
| n-Butyl benzene               | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| sec-Butyl benzene             | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| tert-Butyl benzene            | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Carbon Disulfide              | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Carbon Tetrachloride          | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Chlorobenzene                 | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Chloroethane                  | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Chloroform                    | 0.62         |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Chloromethane                 | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 2-Chlorotoluene               | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 4-Chlorotoluene               | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Dibromochloromethane          | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,2-Dibromo-3-chloropropane   | ND           |        | 0.20      | 1         |           | 11/07/2016 17:04 |
| 1,2-Dibromoethane (EDB)       | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Dibromomethane                | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,2-Dichlorobenzene           | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,3-Dichlorobenzene           | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,4-Dichlorobenzene           | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| Dichlorodifluoromethane       | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,1-Dichloroethane            | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,2-Dichloroethane (1,2-DCA)  | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,1-Dichloroethene            | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| cis-1,2-Dichloroethene        | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| trans-1,2-Dichloroethene      | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,2-Dichloropropane           | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 1,3-Dichloropropane           | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |
| 2.2-Dichloropropane           | ND           |        | 0.50      | 1         |           | 11/07/2016 17:04 |





 Client:
 Langan

 Date Received:
 11/4/16 16:45

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611262 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | µg/L    |

#### **Volatile Organics**

| Client ID                     | Lab ID       | Matrix | Date C    | ollected Instrument | Batch ID         |
|-------------------------------|--------------|--------|-----------|---------------------|------------------|
| B-13-GW                       | 1611262-001A | Water  | 11/03/20  | 16 09:55 GC18       | 129443           |
| Analytes                      | Result       |        | <u>RL</u> | DF                  | Date Analyzed    |
| 1,1-Dichloropropene           | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| cis-1,3-Dichloropropene       | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| trans-1,3-Dichloropropene     | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Diisopropyl ether (DIPE)      | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Ethylbenzene                  | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Ethyl tert-butyl ether (ETBE) | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Freon 113                     | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Hexachlorobutadiene           | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Hexachloroethane              | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 2-Hexanone                    | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Isopropylbenzene              | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 4-Isopropyl toluene           | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Methyl-t-butyl ether (MTBE)   | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Methylene chloride            | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 4-Methyl-2-pentanone (MIBK)   | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Naphthalene                   | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| n-Propyl benzene              | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Styrene                       | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,1,1,2-Tetrachloroethane     | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,1,2,2-Tetrachloroethane     | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Tetrachloroethene             | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Toluene                       | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,2,3-Trichlorobenzene        | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,2,4-Trichlorobenzene        | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,1,1-Trichloroethane         | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,1,2-Trichloroethane         | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Trichloroethene               | 1.8          |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Trichlorofluoromethane        | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,2,3-Trichloropropane        | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,2,4-Trimethylbenzene        | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| 1,3,5-Trimethylbenzene        | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Vinyl Chloride                | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |
| Xylenes, Total                | ND           |        | 0.50      | 1                   | 11/07/2016 17:04 |


## **Analytical Report**

 Client:
 Langan

 Date Received:
 11/4/16 16:45

 Date Prepared:
 11/7/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611262 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW5030B |
| Analytical Method:        | SW8260B |
| Unit:                     | µg/L    |

#### **Volatile Organics**

| Client ID             | Lab ID         | Matrix | Date Collected Instrument | Batch ID         |
|-----------------------|----------------|--------|---------------------------|------------------|
| B-13-GW               | 1611262-001A   | Water  | 11/03/2016 09:55 GC18     | 129443           |
| Analytes              | Result         |        | <u>RL</u> <u>DF</u>       | Date Analyzed    |
| Surrogates            | <u>REC (%)</u> |        | <u>Limits</u>             |                  |
| Dibromofluoromethane  | 118            |        | 70-130                    | 11/07/2016 17:04 |
| Toluene-d8            | 84             |        | 70-130                    | 11/07/2016 17:04 |
| 4-BFB                 | 123            |        | 70-130                    | 11/07/2016 17:04 |
| <u>Analyst(s):</u> MW |                |        |                           |                  |



## **Analytical Report**

 Client:
 Langan

 Date Received:
 11/4/16 16:45

 Date Prepared:
 11/6/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611262        |
|---------------------------|----------------|
| <b>Extraction Method:</b> | SW5030B        |
| Analytical Method:        | SW8021B/8015Bm |
| Unit:                     | μg/L           |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

| Client ID             | Lab ID         | Matrix | Date C        | Collected Instrument | Batch ID         |
|-----------------------|----------------|--------|---------------|----------------------|------------------|
| B-13-GW               | 1611262-001B   | Water  | 11/03/2       | 016 09:55 GC7        | 129395           |
| Analytes              | Result         |        | <u>RL</u>     | DF                   | Date Analyzed    |
| TPH(g) (C6-C12)       | ND             |        | 50            | 1                    | 11/06/2016 18:09 |
| MTBE                  |                |        | 5.0           | 1                    | 11/06/2016 18:09 |
| Benzene               |                |        | 0.50          | 1                    | 11/06/2016 18:09 |
| Toluene               |                |        | 0.50          | 1                    | 11/06/2016 18:09 |
| Ethylbenzene          |                |        | 0.50          | 1                    | 11/06/2016 18:09 |
| Xylenes               |                |        | 1.5           | 1                    | 11/06/2016 18:09 |
| Surrogates            | <u>REC (%)</u> |        | <u>Limits</u> |                      |                  |
| aaa-TFT               | 103            |        | 70-130        |                      | 11/06/2016 18:09 |
| <u>Analyst(s):</u> IA |                |        |               |                      |                  |



## **Analytical Report**

 Client:
 Langan

 Date Received:
 11/4/16 16:45

 Date Prepared:
 11/4/16

 Project:
 750635601; 3000 Broadway

| WorkOrder:                | 1611262 |
|---------------------------|---------|
| <b>Extraction Method:</b> | SW3510C |
| Analytical Method:        | SW8015B |
| Unit:                     | µg/L    |

#### Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

| Client ID               | Lab ID         | Matrix | Date C        | ollected Instrument | Batch ID         |
|-------------------------|----------------|--------|---------------|---------------------|------------------|
| B-13-GW                 | 1611262-001B   | Water  | 11/03/20      | 16 09:55 GC11B      | 129329           |
| Analytes                | Result         |        | <u>RL</u>     | DF                  | Date Analyzed    |
| TPH-Diesel (C10-C23)    | ND             |        | 50            | 1                   | 11/07/2016 13:30 |
| TPH-Motor Oil (C18-C36) | ND             |        | 250           | 1                   | 11/07/2016 13:30 |
| Surrogates              | <u>REC (%)</u> |        | <u>Limits</u> |                     |                  |
| C9                      | 89             |        | 72-117        |                     | 11/07/2016 13:30 |
| <u>Analyst(s):</u> TK   |                |        |               |                     |                  |



| gan                   |
|-----------------------|
| //16                  |
| //16                  |
| 18                    |
| er                    |
| 635601; 3000 Broadway |
|                       |

| WorkOrder:                | 1611262            |
|---------------------------|--------------------|
| BatchID:                  | 129443             |
| <b>Extraction Method:</b> | SW5030B            |
| Analytical Method:        | SW8260B            |
| Unit:                     | µg/L               |
| Sample ID:                | MB/LCS-129443      |
|                           | 1611208-001CMS/MSD |

#### QC Summary Report for SW8260B

| Analyte                       | MB<br>Result | LCS<br>Result | RL   | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|-------------------------------|--------------|---------------|------|------------|---------------|-------------|---------------|
| Acetone                       | ND           | -             | 10   | -          | -             | -           | -             |
| tert-Amyl methyl ether (TAME) | ND           | 10.7          | 0.50 | 10         | -             | 107         | 54-140        |
| Benzene                       | ND           | 9.48          | 0.50 | 10         | -             | 95          | 47-158        |
| Bromobenzene                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromochloromethane            | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromodichloromethane          | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromoform                     | ND           | -             | 0.50 | -          | -             | -           | -             |
| Bromomethane                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| 2-Butanone (MEK)              | ND           | -             | 2.0  | -          | -             | -           | -             |
| t-Butyl alcohol (TBA)         | ND           | 42.8          | 2.0  | 40         | -             | 107         | 42-140        |
| n-Butyl benzene               | ND           | -             | 0.50 | -          | -             | -           | -             |
| sec-Butyl benzene             | ND           | -             | 0.50 | -          | -             | -           | -             |
| tert-Butyl benzene            | ND           | -             | 0.50 | -          | -             | -           | -             |
| Carbon Disulfide              | ND           | -             | 0.50 | -          | -             | -           | -             |
| Carbon Tetrachloride          | ND           | -             | 0.50 | -          | -             | -           | -             |
| Chlorobenzene                 | ND           | 10.4          | 0.50 | 10         | -             | 104         | 43-157        |
| Chloroethane                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| Chloroform                    | ND           | -             | 0.50 | -          | -             | -           | -             |
| Chloromethane                 | ND           | -             | 0.50 | -          | -             | -           | -             |
| 2-Chlorotoluene               | ND           | -             | 0.50 | -          | -             | -           | -             |
| 4-Chlorotoluene               | ND           | -             | 0.50 | -          | -             | -           | -             |
| Dibromochloromethane          | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2-Dibromo-3-chloropropane   | ND           | -             | 0.20 | -          | -             | -           | -             |
| 1,2-Dibromoethane (EDB)       | ND           | 10.1          | 0.50 | 10         | -             | 101         | 44-155        |
| Dibromomethane                | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2-Dichlorobenzene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,3-Dichlorobenzene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,4-Dichlorobenzene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| Dichlorodifluoromethane       | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,1-Dichloroethane            | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2-Dichloroethane (1,2-DCA)  | ND           | 12.4          | 0.50 | 10         | -             | 123         | 66-125        |
| 1,1-Dichloroethene            | ND           | 9.56          | 0.50 | 10         | -             | 96          | 47-149        |
| cis-1,2-Dichloroethene        | ND           | -             | 0.50 | -          | -             | -           | -             |
| trans-1,2-Dichloroethene      | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2-Dichloropropane           | ND           | -             | 0.50 | -          | -             | -           |               |
| 1,3-Dichloropropane           | ND           |               | 0.50 | -          | -             | -           | -             |
| 2,2-Dichloropropane           | ND           | -             | 0.50 | -          | -             | -           | -             |

\_\_\_\_\_QA/QC Officer



| Client:             | Langan                            |
|---------------------|-----------------------------------|
| Date Prepared:      | 11/7/16                           |
| Date Analyzed:      | 11/7/16                           |
| Instrument:         | GC18                              |
| Matrix:             | Water                             |
| Project:            | 750635601; 3000 Broadway          |
| Matrix:<br>Project: | Water<br>750635601; 3000 Broadway |

| WorkOrder:                | 1611262            |
|---------------------------|--------------------|
| BatchID:                  | 129443             |
| <b>Extraction Method:</b> | SW5030B            |
| Analytical Method:        | SW8260B            |
| Unit:                     | μg/L               |
| Sample ID:                | MB/LCS-129443      |
|                           | 1611208-001CMS/MSD |

## QC Summary Report for SW8260B

| Analyte                       | MB<br>Result | LCS<br>Result | RL   | SPK<br>Val | MB SS<br>%REC | LCS<br>%REC | LCS<br>Limits |
|-------------------------------|--------------|---------------|------|------------|---------------|-------------|---------------|
| 1,1-Dichloropropene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| cis-1,3-Dichloropropene       | ND           | -             | 0.50 | -          | -             | -           | -             |
| trans-1,3-Dichloropropene     | ND           | -             | 0.50 | -          | -             | -           | -             |
| Diisopropyl ether (DIPE)      | ND           | 7.63          | 0.50 | 10         | -             | 76          | 57-136        |
| Ethylbenzene                  | ND           | -             | 0.50 | -          | -             | -           | -             |
| Ethyl tert-butyl ether (ETBE) | ND           | 10.1          | 0.50 | 10         | -             | 101         | 55-137        |
| Freon 113                     | ND           | -             | 0.50 | -          | -             | -           | -             |
| Hexachlorobutadiene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| Hexachloroethane              | ND           | -             | 0.50 | -          | -             | -           | -             |
| 2-Hexanone                    | ND           | -             | 0.50 | -          | -             | -           | -             |
| Isopropylbenzene              | ND           | -             | 0.50 | -          | -             | -           | -             |
| 4-Isopropyl toluene           | ND           | -             | 0.50 | -          | -             | -           | -             |
| Methyl-t-butyl ether (MTBE)   | ND           | 10.6          | 0.50 | 10         | -             | 105         | 53-139        |
| Methylene chloride            | ND           | -             | 0.50 | -          | -             | -           | -             |
| 4-Methyl-2-pentanone (MIBK)   | ND           | -             | 0.50 | -          | -             | -           | -             |
| Naphthalene                   | ND           | -             | 0.50 | -          | -             | -           | -             |
| n-Propyl benzene              | ND           | -             | 0.50 | -          | -             | -           | -             |
| Styrene                       | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,1,1,2-Tetrachloroethane     | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,1,2,2-Tetrachloroethane     | ND           | -             | 0.50 | -          | -             | -           | -             |
| Tetrachloroethene             | ND           | -             | 0.50 | -          | -             | -           | -             |
| Toluene                       | ND           | 8.58          | 0.50 | 10         | -             | 86          | 52-137        |
| 1,2,3-Trichlorobenzene        | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2,4-Trichlorobenzene        | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,1,1-Trichloroethane         | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,1,2-Trichloroethane         | ND           | -             | 0.50 | -          | -             | -           | -             |
| Trichloroethene               | ND           | 11.3          | 0.50 | 10         | -             | 113         | 43-157        |
| Trichlorofluoromethane        | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2,3-Trichloropropane        | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,2,4-Trimethylbenzene        | ND           | -             | 0.50 | -          | -             | -           | -             |
| 1,3,5-Trimethylbenzene        | ND           | -             | 0.50 | -          | -             | -           | -             |
| Vinyl Chloride                | ND           | -             | 0.50 | -          | -             | -           | -             |
| Xylenes, Total                | ND           | -             | 0.50 | -          | -             | -           | -             |

\_\_\_\_\_QA/QC Officer Page 9 of 16



| Client:        | Langan                   | WorkOrder:                | 1611262            |
|----------------|--------------------------|---------------------------|--------------------|
| Date Prepared: | 11/7/16                  | BatchID:                  | 129443             |
| Date Analyzed: | 11/7/16                  | <b>Extraction Method:</b> | SW5030B            |
| Instrument:    | GC18                     | Analytical Method:        | SW8260B            |
| Matrix:        | Water                    | Unit:                     | μg/L               |
| Project:       | 750635601; 3000 Broadway | Sample ID:                | MB/LCS-129443      |
|                |                          |                           | 1611208-001CMS/MSD |

|                               | QC Sum       | mary Rep      | oort for   | SW8260        | B          |             |                 |             |               |
|-------------------------------|--------------|---------------|------------|---------------|------------|-------------|-----------------|-------------|---------------|
| Analyte                       | MB<br>Result | LCS<br>Result |            | RL            | SPK<br>Val | M<br>%      | B SS I<br>REC S | LCS<br>%REC | LCS<br>Limits |
| Surrogate Recovery            |              |               |            |               |            |             |                 |             |               |
| Dibromofluoromethane          | 29.4         | 28.7          |            |               | 25         | 11          | 8 .             | 115         | 70-130        |
| Toluene-d8                    | 21.6         | 22.1          |            |               | 25         | 86          | ; {             | 38          | 70-130        |
| 4-BFB                         | 2.92         | 2.78          |            |               | 2.5        | 11          | 7 <sup>,</sup>  | 111         | 70-130        |
| Analyte                       | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MS<br>Limits | D RPD       | RPD<br>Limit  |
| tert-Amyl methyl ether (TAME) | 10.7         | 10.6          | 10         | ND            | 107        | 106         | 69-139          | 0.493       | 20            |
| Benzene                       | 9.08         | 9.15          | 10         | ND            | 91         | 91          | 69-141          | 0           | 20            |
| t-Butyl alcohol (TBA)         | 43.4         | 42.3          | 40         | ND            | 109        | 106         | 41-152          | 2.64        | 20            |
| Chlorobenzene                 | 9.63         | 9.83          | 10         | ND            | 96         | 98          | 77-120          | 2.10        | 20            |
| 1,2-Dibromoethane (EDB)       | 10.2         | 10.0          | 10         | ND            | 102        | 101         | 76-135          | 1.29        | 20            |
| 1,2-Dichloroethane (1,2-DCA)  | 12.1         | 11.9          | 10         | ND            | 121        | 119         | 73-139          | 1.66        | 20            |
| 1,1-Dichloroethene            | 9.08         | 9.26          | 10         | ND            | 91         | 93          | 59-140          | 1.95        | 20            |
| Diisopropyl ether (DIPE)      | 7.65         | 7.66          | 10         | ND            | 77         | 77          | 72-140          | 0           | 20            |
| Ethyl tert-butyl ether (ETBE) | 10.0         | 10.0          | 10         | ND            | 101        | 100         | 71-140          | 0.288       | 20            |
| Methyl-t-butyl ether (MTBE)   | 11.1         | 11.0          | 10         | ND            | 111        | 110         | 73-139          | 0.915       | 20            |
| Toluene                       | 7.90         | 7.90          | 10         | ND            | 79         | 79          | 71-128          | 0           | 20            |
| Trichloroethene               | 10.6         | 10.8          | 10         | ND            | 106        | 108         | 64-132          | 1.21        | 20            |
| Surrogate Recovery            |              |               |            |               |            |             |                 |             |               |
| Dibromofluoromethane          | 29.2         | 29.0          | 25         |               | 117        | 116         | 73-131          | 0.76        | 8 20          |
| Toluene-d8                    | 21.7         | 21.4          | 25         |               | 87         | 85          | 72-117          | 1.57        | 20            |
| 4-BFB                         | 2.86         | 3.12          | 2.5        |               | 115        | 125         | 74-116          | 8.46        | 20            |



| Client:        | Langan                   |
|----------------|--------------------------|
| Date Prepared: | 11/6/16                  |
| Date Analyzed: | 11/6/16                  |
| Instrument:    | GC7                      |
| Matrix:        | Water                    |
| Project:       | 750635601; 3000 Broadway |

| WorkOrder:                | 1611262            |
|---------------------------|--------------------|
| BatchID:                  | 129395             |
| <b>Extraction Method:</b> | SW5030B            |
| Analytical Method:        | SW8021B/8015Bm     |
| Unit:                     | µg/L               |
| Sample ID:                | MB/LCS-129395      |
|                           | 1611123-001AMS/MSD |

## QC Summary Report for SW8021B/8015Bm

| Analyte            | MB<br>Result | LCS<br>Result |            | RL            | SPK<br>Val | ME<br>%F    | SS LCS<br>REC %R | S<br>EC | LCS<br>Limits |
|--------------------|--------------|---------------|------------|---------------|------------|-------------|------------------|---------|---------------|
| TPH(btex)          | ND           | 55.9          |            | 40            | 60         | -           | 93               |         | 85-112        |
| MTBE               | ND           | 9.35          |            | 5.0           | 10         | -           | 93               |         | 74-127        |
| Benzene            | ND           | 10.8          |            | 0.50          | 10         | -           | 108              |         | 81-124        |
| Toluene            | ND           | 11.6          |            | 0.50          | 10         | -           | 117              |         | 79-131        |
| Ethylbenzene       | ND           | 11.1          |            | 0.50          | 10         | -           | 111              |         | 86-127        |
| Xylenes            | ND           | 32.6          |            | 1.5           | 30         | -           | 109              |         | 87-133        |
| Surrogate Recovery |              |               |            |               |            |             |                  |         |               |
| aaa-TFT            | 10.7         | 10.6          |            |               | 10         | 107         | 7 106            |         | 87-117        |
| Analyte            | MS<br>Result | MSD<br>Result | SPK<br>Val | SPKRef<br>Val | MS<br>%REC | MSD<br>%REC | MS/MSD<br>Limits | RPD     | RPD<br>Limit  |
|                    | ND           | ND            |            | ND-800        | ND         | ND          |                  | ND      |               |

| TPH(btex)          | NR | NR | ND<800 | NR | NR | - | NR |
|--------------------|----|----|--------|----|----|---|----|
| MTBE               | NR | NR | ND<100 | NR | NR | - | NR |
| Benzene            | NR | NR | 14     | NR | NR | - | NR |
| Toluene            | NR | NR | 55     | NR | NR | - | NR |
| Ethylbenzene       | NR | NR | ND<10  | NR | NR | - | NR |
| Xylenes            | NR | NR | 190    | NR | NR | - | NR |
| Surrogate Recovery |    |    |        |    |    |   |    |
| aaa-TFT            | NR | NR |        | NR | NR | - | NR |

QA/QC Officer Page 11 of 16



| Client:        | Langan                   | WorkOrder:                | 1611262            |
|----------------|--------------------------|---------------------------|--------------------|
| Date Prepared: | 11/4/16                  | BatchID:                  | 129329             |
| Date Analyzed: | 11/7/16                  | <b>Extraction Method:</b> | SW3510C            |
| Instrument:    | GC9a                     | Analytical Method:        | SW8015B            |
| Matrix:        | Water                    | Unit:                     | µg/L               |
| Project:       | 750635601; 3000 Broadway | Sample ID:                | MB/LCS/LCSD-129329 |

#### QC Report for SW8015B w/out SG Clean-Up

| Analyte                 | MB<br>Result  |                |            | RL  | SPK<br>Val  | M<br>%       | B SS<br>REC        |       | MB SS<br>Limits |
|-------------------------|---------------|----------------|------------|-----|-------------|--------------|--------------------|-------|-----------------|
| TPH-Diesel (C10-C23)    | ND            |                |            | 50  | -           | -            |                    |       | -               |
| TPH-Motor Oil (C18-C36) | ND            |                |            | 250 | -           | -            |                    |       | -               |
| Surrogate Recovery      |               |                |            |     |             |              |                    |       |                 |
| C9                      | 553           |                |            |     | 625         | 88           | 6                  |       | 74-107          |
| Analyte                 | LCS<br>Result | LCSD<br>Result | SPK<br>Val |     | LCS<br>%REC | LCSD<br>%REC | LCS/LCSD<br>Limits | RPD   | RPD<br>Limit    |
| TPH-Diesel (C10-C23)    | 1080          | 1080           | 1000       |     | 108         | 108          | 95-136             | 0     | 30              |
| Surrogate Recovery      |               |                |            |     |             |              |                    |       |                 |
| C9                      | 587           | 582            | 625        |     | 94          | 93           | 74-107             | 0.881 | 30              |

QA/QC Officer

| McCampbell Analytical,<br>1534 Willow Pass Rd<br>Pittsburg, CA 94565-1701<br>(925) 252-9262                                  | Inc.                                                 |                                |                             | <b>CHAI</b><br>WorkOrd | <b>N-0</b><br>er: 16                             | <b>F-CU</b><br>11262                                   | STO                                       | <b>DY</b><br>ClientCo      | <b>REC</b><br>ode: T | <b>CORI</b><br>TWRK    |                            | I                              | Page   | 1 of                          | 1          |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|-----------------------------|------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------|----------------------|------------------------|----------------------------|--------------------------------|--------|-------------------------------|------------|
|                                                                                                                              | WaterTrax                                            | WriteOn                        | EDF                         | Excel                  | [                                                | EQuIS                                                  | <b>∠</b> E                                | Email                      |                      | HardCopy               | / [                        | ThirdPa                        | rty    | _J-fla                        | g          |
| Report to:<br>Josh Graber<br>Langan<br>501 14th Street, 3rd Floor<br>Oakland, CA 94612<br>(415) 955-9040 FAX: (415) 955-9041 | Email: jdg<br>cc/3rd Party:<br>PO:<br>ProjectNo: 756 | graber@treadw<br>0635601; 3000 | vellrollo.com<br>) Broadway |                        | Bill to:<br>Acco<br>Lang<br>555 I<br>San<br>Lang | ounts Paya<br>an<br>Montgome<br>Francisco<br>an_Invoic | able<br>ery St., S<br>o, CA 94<br>ceCaptu | Suite 13<br>111<br>ire@con | 00<br>Icursolu       | Re<br>Da<br>Da<br>utio | equest<br>ate Ra<br>ate La | ted TAT:<br>eceived:<br>ogged: | 1<br>1 | 5 days;<br>11/04/2<br>11/04/2 | 016<br>016 |
|                                                                                                                              |                                                      |                                |                             |                        |                                                  |                                                        | Req                                       | uested T                   | ſests (S             | ee legen               | d belo                     | ow)                            | 4.0    |                               | 40         |
| Lab ID Client ID                                                                                                             |                                                      | Matrix                         | Collection Date             | Hold 1                 | 2                                                | 3                                                      | 4                                         | 5                          | 6                    | 1                      | 8                          | 9                              | 10     | 11                            | 12         |

А

В

В

11/3/2016 09:55

#### Test Legend:

1611262-001

| 1 | 8260B_W |
|---|---------|
| 5 |         |
| 9 |         |

| 2  | G-MBTEX_W | 3  |
|----|-----------|----|
| 6  |           | 7  |
| 10 |           | 11 |

Water

| 3  | TPH(DMO)_W |
|----|------------|
| 7  |            |
| 11 |            |

| 4  |  |
|----|--|
| 8  |  |
| 12 |  |

#### Prepared by: Briana Cutino

The following SampID: 001B contains testgroup Multi Range\_W.

B-13-GW

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.



## WORK ORDER SUMMARY

| Client Name         | e: LANGAN       |                    |               | Pr               | oject: 750      | 635601; 3         | 3000 Broadway       |                    |                           | Wor    | k Order:            | 1611262     |
|---------------------|-----------------|--------------------|---------------|------------------|-----------------|-------------------|---------------------|--------------------|---------------------------|--------|---------------------|-------------|
| <b>Client Conta</b> | act: Josh Grab  | er                 |               |                  |                 |                   |                     |                    |                           | Q      | C Level:            | LEVEL 2     |
| Contact's Er        | mail: jdgraber@ | treadwellrollo.com |               | Co               | omments:        |                   |                     |                    |                           | Date   | Logged:             | 11/4/2016   |
| _                   |                 | □WaterTrax         | WriteOn       | EDF              | Excel           | □Fax              | <b>∢</b> Email      | HardCo             | opy                       | /      | I-flag              |             |
| Lab ID              | Client ID       | Matrix             | Test Name     |                  | Contai<br>/Comp | ners Bo<br>osites | ttle & Preservative | De-<br>chlorinated | Collection Date<br>& Time | ТАТ    | Sediment<br>Content | Hold SubOut |
| 1611262-001A        | B-13-GW         | Water              | SW8260B (VC   | Cs)              | 2               |                   | VOA w/ HCl          |                    | 11/3/2016 9:55            | 5 days | Trace               |             |
| 1611262-001B        | B-13-GW         | Water              | Multi-Range T | PH by EPA 8015Bi | m 4             |                   | VOA w/ HCl          |                    | 11/3/2016 9:55            | 5 days | Trace               |             |

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

#### LANGAN TREADWELL ROLLO

# CHAIN OF CUSTODY RECORD

Page

555 Montgomery Street, Suite 1300, San Francisco, CA 94111 Ph: 415.955.9040/Fax: 415.955.9041 501 14th Street, Third Floor, Oakland CA 94612 Ph: 510.874.4500/Fax: 510.874.4507 777 Campus Commons Road, Suite 200, Sacramento, CA 95825 Ph: 916.565.7412/Fax: 916.565.7413

| Site Name:                            | 300                       | OB             | raad way       | and it        |       |                                |                  |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|---------------------------------------|---------------------------|----------------|----------------|---------------|-------|--------------------------------|------------------|------------------|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Job Number:                           | 750                       | 6356           | 01             | -             |       |                                |                  |                  |         |            | Analysis Requested Turnaround                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I   |
| Project Manager\Co<br>Samplers:       | ontact:<br><u>5.</u><br>S | Josh           | GRIBET         |               |       | lo. C                          | onta             | iners            |         | MO         | dn-u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l   |
| Recorder (Signatur                    | e Requireu)               | 0              |                | Matri         | ix    | & Pre                          | eserv            | ative            |         | 30         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Field Sample<br>Identification No.    | Date                      | Time           | Lab Sample No. | Soil<br>Water | Other | H <sub>2</sub> SO <sub>4</sub> | HNU <sub>3</sub> | Other            | Bdl     | 101        | O   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V   B     V <td></td> |     |
| B-13-6W                               | 11 316                    | 9:55           |                | X             |       |                                | 8                |                  | K       | 88         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 100                                   |                           |                |                |               |       | +                              |                  |                  | +-+     | +          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4   |
|                                       |                           |                |                |               |       |                                |                  |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       |                           | distant in the |                |               |       | +                              | +                | $\left  \right $ | ++      | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       | 156                       |                | 10             |               |       |                                | -                |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       |                           | 12             | 1              |               | -     | +                              |                  |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       | 3.4                       |                |                |               |       |                                | -                |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       |                           |                |                |               |       |                                |                  |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       | 1.000                     |                |                | +             |       | ++                             |                  | ++               | +       | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                       |                           |                |                |               |       |                                |                  |                  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Relinquisher by: (Sigr                | pature)                   |                | Date 4/16      |               | Т     | ime<br>12                      | : 3              | S                | Red     | eived      | rectory: (Signature) Date H-4-16 Time 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5   |
| Relinquished by: (Sigr                | nature)                   | 1              | Date 11-4-1    | 6             | Т     | ine<br>16                      | 45               | /                | Rec     | eived      | led by: (Signature) Date 1/4/1/2 Time 1/245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -   |
| Relinquished by: (Sign                | nature)                   |                | Date           | 5             | Т     | ime                            |                  |                  | Red     | elled      | Jed by Lab: (Signature) Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Sent to Laboratory<br>Laboratory Comm | y (Name):<br>ients/Notes: | Mel            | Can'ot all     |               |       |                                | 1                |                  | Me<br>[ | thod<br>Ha | od of Shipment Lab courier Fed Ex Airborne U<br>Hand Carried Private Courier (Co. Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JPS |
|                                       |                           | White Co       | ov - Original  | Ye            | ellow | Сору                           | - Lat            | oorato           | bry     |            | Pink Copy - Field COC Number: 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27  |



## Sample Receipt Checklist

| Client Name:                       | Langan                                                       |        |                    | Date and Time Received | 11/4/2016 16:45 |
|------------------------------------|--------------------------------------------------------------|--------|--------------------|------------------------|-----------------|
| Project Name:                      | 750635601; 3000 Broadway                                     |        |                    | Date Logged:           | 11/4/2016       |
|                                    |                                                              |        |                    | Received by:           | Briana Cutino   |
| WorkOrder №:                       | 1611262 Matrix: <u>Water</u><br>Bernie Cummins (MAL Courier) |        |                    | Logged by:             | Briana Cutino   |
| Camer.                             |                                                              |        |                    |                        |                 |
|                                    | Chain of C                                                   | ustody | / (COC) Infor      | mation                 |                 |
| Chain of custody                   | present?                                                     | Yes    | ✓                  | No 🗌                   |                 |
| Chain of custody                   | signed when relinquished and received?                       | Yes    | ✓                  | No 🗌                   |                 |
| Chain of custody                   | agrees with sample labels?                                   | Yes    | ✓                  | No 🗌                   |                 |
| Sample IDs note                    | d by Client on COC?                                          | Yes    | ✓                  | No 🗌                   |                 |
| Date and Time of                   | collection noted by Client on COC?                           | Yes    | ✓                  | No 🗌                   |                 |
| Sampler's name                     | noted on COC?                                                | Yes    | ✓                  | No 🗌                   |                 |
|                                    | Sampl                                                        | e Rece | eipt Informat      | ion                    |                 |
| Custody seals int                  | act on shipping container/cooler?                            | Yes    |                    | No 🗌                   | NA 🔽            |
| Shipping contain                   | er/cooler in good condition?                                 | Yes    | ✓                  | No 🗌                   |                 |
| Samples in prope                   | er containers/bottles?                                       | Yes    | ✓                  | No 🗌                   |                 |
| Sample containe                    | rs intact?                                                   | Yes    | $\checkmark$       | No 🗌                   |                 |
| Sufficient sample                  | volume for indicated test?                                   | Yes    |                    | No 🗌                   |                 |
|                                    | Sample Preservation                                          | on and | <u>Hold Time (</u> | HT) Information        |                 |
| All samples recei                  | ved within holding time?                                     | Yes    | ✓                  | No 🗌                   |                 |
| Sample/Temp Bl                     | ank temperature                                              |        | Temp: 3.6          | S°C                    |                 |
| Water - VOA vial                   | s have zero headspace / no bubbles?                          | Yes    | ✓                  | No 🗌                   |                 |
| Sample labels ch                   | ecked for correct preservation?                              | Yes    | ✓                  | No 🗌                   |                 |
| pH acceptable up                   | oon receipt (Metal: <2; 522: <4; 218.7: >8)?                 | Yes    |                    | No 🗌                   | NA 🗹            |
| Samples Receive                    | ed on Ice?                                                   | Yes    | ✓                  | No 🗌                   |                 |
|                                    | (Ісе Туре                                                    | e: WE  | TICE)              |                        |                 |
| UCMR3 Samples                      | <u>:</u>                                                     |        |                    |                        |                 |
| Total Chlorine                     | ested and acceptable upon receipt for EPA 522?               | Yes    |                    | No 📖                   | NA 🗹            |
| Free Chlorine t<br>300.1, 537, 539 | ested and acceptable upon receipt for EPA 218.7,<br>??       | Yes    |                    | No 🗌                   | NA 🗹            |

Comments:

**APPENDIX B** 

**GEOTECHNICAL BORING LOGS** 

LANGAN

| PR             | OJEC           | T:      |            |               |             | <b>3000 BROADWAY</b><br>Oakland, California                               | Log of E | Borir                   | ng B                         | - <b>12</b>      | AGE 1     | OF 2                         |                   |
|----------------|----------------|---------|------------|---------------|-------------|---------------------------------------------------------------------------|----------|-------------------------|------------------------------|------------------|-----------|------------------------------|-------------------|
| Bori           | ng loca        | ation:  | S          | ee Fi         | gure        | 2                                                                         |          | Logge                   | ed by:                       | Abraha           | am Eng    |                              |                   |
| Date           | e starte       | ed:     | 4          | /16/1         | 6           | Date finished: 4/16/16                                                    |          | Drilleo                 | a by:                        | Explora          | ation Ge  | oservice                     | s, Inc.           |
| Drill          | ing me         | thod:   | Н          | lollow        | Sten        | n Auger                                                                   |          |                         |                              |                  |           |                              |                   |
| Han            | nmer w         | /eight/ | drop:      | : 14          | 0 lbs.      | /30 inches Hammer type: Downhole                                          |          |                         | LABO                         | RATOR            | Y TEST    | DATA                         |                   |
| San            | nplers:        | Stan    | Idard      | Pene          | etratio     | on Test (SPT), Shelby Tube (ST)                                           |          |                         | D. T                         | gth<br>t         |           |                              | 5.1               |
| т              | -<br>-<br>-    | SAM     | -LES<br>50 | -́Ф           | <u>-0GY</u> | MATERIAL DESCRIPTION                                                      |          | rpe of<br>ength<br>Fest | nfininç<br>sssure<br>:/Sq Ft | Stren<br>//Sq Ft | ines<br>% | atural<br>visture<br>tent, % | Densit<br>//Cu Ft |
| EPTI<br>(feet) | Sample<br>Type | Sampl   | lows/      | SPT<br>J-Valu | ITHOL       | Ground Surface Elevation: 22 feet <sup>2</sup>                            |          | , ŕ ₽́ 5                | Col<br>Lbs                   | Shear<br>Lbs     | <u>ш</u>  | Congram                      | Dry -<br>Lbs      |
|                | 0              | 0,      |            | Z             |             | 2.5 inches asphalt aoncrete (AC)                                          |          |                         |                              |                  |           |                              |                   |
| 1 -            | -              |         |            |               |             | 4 inches aggregate base (AB)                                              | /-       |                         |                              |                  |           |                              |                   |
| 2 -            | -              |         |            |               |             | light brown, medium dense, moist, fine-gra                                | ained, — |                         |                              |                  |           |                              |                   |
| 3 -            | -              |         |            |               |             | pockets of SANDY CLAY (CL), olive-brow<br>stiff, moist, fine-grained sand | /n, very |                         |                              |                  |           |                              |                   |
| 4 -            | -              |         |            |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 5 -            | _              |         |            |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 6 -            |                |         |            |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 7 -            |                |         |            |               |             |                                                                           |          |                         |                              |                  |           |                              |                   |
|                |                |         |            |               | SC          |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 8 -            |                |         |            |               |             |                                                                           |          |                         |                              |                  |           |                              |                   |
| 9 -            |                |         |            |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 10 -           | ерт            |         | 7          |               |             |                                                                           |          |                         |                              |                  |           | 22.0                         |                   |
| 11 -           | - 521          |         | 10<br>14   | 24            |             | LL = 34, PI = 16, see Figure C-1                                          |          |                         |                              |                  |           | 23.6                         |                   |
| 12 -           | -              |         |            |               |             |                                                                           |          |                         |                              |                  |           |                              |                   |
| 13 -           | -              |         |            |               | K           |                                                                           |          |                         |                              |                  |           |                              |                   |
| 14 -           | -              |         |            |               |             | CLAY with SAND (CL)                                                       |          |                         |                              |                  |           |                              |                   |
| 15 -           | -              |         | 7          |               |             | dark brown, very stiff to hard, moist, fine-g                             | grained  |                         |                              |                  |           |                              |                   |
| 16 -           | SPT            |         | 10<br>20   | 30            |             | LL = 40, PI = 23, see Figure C-1                                          | _        |                         |                              |                  |           | 23.1                         |                   |
| 17 -           | _              | V       |            |               |             | ☑ (4/16/16, 11:20 A.M.)                                                   | _        |                         |                              |                  |           |                              |                   |
| 18 -           |                |         |            |               | L           |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 10 -           |                |         |            |               |             | SANDY CLAY (CL)                                                           |          |                         |                              |                  |           |                              |                   |
|                |                |         |            |               |             | green-gray, hard, wet, fine-grained sand                                  | _        |                         |                              |                  |           |                              |                   |
| 20 -           | SPT            |         | 9<br>13    | 33            | CI          | = 37 P  = 18  see Figure C 1                                              |          |                         |                              |                  |           | 22 1                         |                   |
| 21 -           | 1.             |         | 20         |               |             |                                                                           |          |                         |                              |                  |           |                              |                   |
| 5 22 -         | 1              |         |            |               | K           |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 23 -           | -              |         |            |               |             | CLAY with SAND (CL)                                                       |          |                         |                              |                  |           |                              |                   |
| 24 -           | -              |         |            |               |             | green-gray, hard, wet, fine-grained sand                                  | —        |                         |                              |                  |           |                              |                   |
| 25 -           | -              |         | 9          |               |             |                                                                           | —        |                         |                              |                  |           |                              |                   |
| 26 -           | SPT            |         | 13<br>21   | 34            |             | LL = 38, PI = 17, see Figure C-1                                          | _        |                         |                              |                  |           | 26.4                         |                   |
| 27 -           | _              |         | 1          |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 28 -           |                |         |            |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 29 -           |                |         |            |               |             |                                                                           | _        |                         |                              |                  |           |                              |                   |
| 30 -           |                |         |            |               |             |                                                                           |          |                         |                              |                  |           |                              |                   |
|                | _              |         | _          | _             | _           |                                                                           |          |                         | LA                           | N                | 5A)       | N                            | _                 |
|                |                |         |            |               |             |                                                                           |          | Project                 | <sup>No.:</sup><br>75063     | 5601             | Figure:   |                              | B-1a              |

| PRC                  | JEC                      | T:                     |                  |                             |           | <b>3000 BROADWAY</b><br>Oakland, California                                                                                                                                                  | Log of E                                                         | Borir                       | ng B                               | - <b>12</b>                 | AGE 2           | OF 2                              |                          |
|----------------------|--------------------------|------------------------|------------------|-----------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------|-----------------|-----------------------------------|--------------------------|
|                      |                          | SAMF                   | PLES             |                             |           |                                                                                                                                                                                              |                                                                  |                             | LABO                               | RATOR                       | Y TEST          | DATA                              |                          |
| DEPTH<br>(feet)      | Sampler<br>Type          | Sample                 | Blows/ 6"        | SPT<br>N-Value <sup>1</sup> | ГІТНОГОGY | MATERIAL DESCRIPTION                                                                                                                                                                         |                                                                  | Type of<br>Strength<br>Test | Confining<br>Pressure<br>Lbs/Sq Ft | Shear Strength<br>Lbs/Sq Ft | Fines<br>%      | Natural<br>Moisture<br>Content, % | Dry Density<br>Lbs/Cu Ft |
| 31 —<br>32 —         | SPT                      |                        | 7<br>11<br>15    | 26                          | CL        | CLAY with SAND (CL) (continued) very stiff                                                                                                                                                   |                                                                  | -                           |                                    |                             |                 |                                   |                          |
| 33 —<br>34 —         |                          |                        |                  |                             | CL        | CLAY (CL)<br>green-gray, hard, wet                                                                                                                                                           | -                                                                | -                           |                                    |                             |                 |                                   |                          |
| 35 —<br>36 —<br>37 — | SPT                      |                        | 11<br>17<br>24   | 41                          |           | LL = 46, PI = 25, see Figure C-1                                                                                                                                                             | -                                                                | -                           |                                    |                             |                 | 29.5                              |                          |
| 38 —<br>39 —<br>40 — |                          |                        |                  |                             |           |                                                                                                                                                                                              |                                                                  | -                           |                                    |                             |                 |                                   |                          |
| 41 —<br>42 —         |                          |                        |                  |                             |           |                                                                                                                                                                                              | _                                                                | -                           |                                    |                             |                 |                                   |                          |
| 43 —<br>44 —<br>45 — |                          |                        |                  |                             |           |                                                                                                                                                                                              | -                                                                | -                           |                                    |                             |                 |                                   |                          |
| 46 —<br>47 —         |                          |                        |                  |                             |           |                                                                                                                                                                                              | -                                                                |                             |                                    |                             |                 |                                   |                          |
| 49 –<br>50 –         |                          |                        |                  |                             |           |                                                                                                                                                                                              | _                                                                | -                           |                                    |                             |                 |                                   |                          |
| 51 —<br>52 —<br>53 — |                          |                        |                  |                             |           |                                                                                                                                                                                              | -                                                                |                             |                                    |                             |                 |                                   |                          |
| 54 —<br>55 —         |                          |                        |                  |                             |           |                                                                                                                                                                                              | -                                                                | -                           |                                    |                             |                 |                                   |                          |
| 56 —<br>57 —<br>58 — |                          |                        |                  |                             |           |                                                                                                                                                                                              | -                                                                | •                           |                                    |                             |                 |                                   |                          |
| 60 –                 | g termina                | ted at a               | depth c          | of 36.5 fe                  | eet belo  | v ground surface. <sup>1</sup> SPT blow counts for the last two increments v                                                                                                                 | were converted to                                                |                             |                                    |                             |                 |                                   |                          |
| Boring<br>Grour      | g backfille<br>ndwater s | ed with c<br>tabilized | ement<br>at 17 f | grout.<br>feet at tii       | me of dr  | hammer energy.<br><sup>2</sup> Elevations based on Oakland City Datum. Elevations based on Oakland City Datum. Elevations during the ALTA Survey perform<br>Associates, dated 20 April 2016. | nt for sampler type and<br>evations referenced<br>ned by Luk and | Project                     | LA<br>No.:<br>75063                | 5601                        | <b>F</b> igure: | V                                 | B-1b                     |

| PRC              | JEC.            | T:        |            |                             |          | <b>3000 BROADWAY</b><br>Oakland, California             | Log o    | f E | Borir                       | ng B                               | - <b>13</b>               | AGE 1      | OF 2                              |                         |
|------------------|-----------------|-----------|------------|-----------------------------|----------|---------------------------------------------------------|----------|-----|-----------------------------|------------------------------------|---------------------------|------------|-----------------------------------|-------------------------|
| Borin            | g loca          | tion:     | S          | ee Fi                       | gure     | 2                                                       |          |     | Logge                       | d by:                              | J. San                    | glerat     | <u> </u>                          |                         |
| Date             | starte          | d:        | 1          | 1/2/10                      | 6        | Date finished: 11/2/16                                  |          |     | Drilleo                     | d by:                              | Gregg                     | Drilling   |                                   |                         |
| Drillin          | ig met          | hod:      | Н          | ollow                       | Sten     | n Auger                                                 |          |     |                             |                                    |                           |            |                                   |                         |
| Hamr             | mer w           | eight/    | drop:      | 140                         | 0 lbs.   | /30 inches Hammer type: Safety Auto                     |          |     |                             | LABO                               | RATOR                     | Y TEST     | DATA                              |                         |
| Samp             | olers:          | Sprag     | ue & l     | Henwo                       | od (S&   | H), Standard Penetration Test (SPT), Shelby Tube (ST)   |          |     |                             |                                    | gth                       |            |                                   | ~                       |
| DEPTH<br>(feet)  | Sampler<br>Type | Sample    | LES        | SPT<br>N-Value <sup>1</sup> | ITHOLOGY | MATERIAL DESCRIPTION                                    |          |     | Type of<br>Strength<br>Test | Confining<br>Pressure<br>Lbs/Sq Ft | Shear Strenç<br>Lbs/Sq Ft | Fines<br>% | Natural<br>Moisture<br>Content, % | Dry Densit<br>Lbs/Cu Ft |
|                  |                 |           |            |                             |          | 1 inch tile                                             |          |     |                             |                                    |                           |            |                                   |                         |
| 1 —              |                 |           |            |                             |          | 4 inches concrete slab                                  |          | ¥–  |                             |                                    |                           |            |                                   |                         |
| 2 —              |                 |           |            |                             | SC       | dark brown, moist, fine- to medium-graine               | ed sand, |     |                             |                                    |                           |            |                                   |                         |
| 3 —              |                 |           |            |                             |          | CLAYEY SAND with GRAVEL (SC)                            | so moist |     |                             |                                    |                           |            |                                   |                         |
| 4 —              |                 |           |            |                             |          | fine- to medium-grained, fine subangular                | gravel   |     |                             |                                    |                           |            |                                   |                         |
| 5 —              | SDT             | $\square$ | 8          | 24                          |          |                                                         | FLL      |     |                             |                                    |                           |            |                                   |                         |
| 6 —              |                 |           | 9          | 24                          | en       |                                                         |          |     |                             |                                    |                           |            |                                   |                         |
| 7 —              |                 |           |            |                             |          |                                                         |          |     |                             |                                    |                           |            |                                   |                         |
| 8 —              |                 |           |            |                             |          |                                                         |          | -   |                             |                                    |                           |            |                                   |                         |
| 9 —              |                 |           |            |                             |          |                                                         |          | -   |                             |                                    |                           |            |                                   |                         |
| 10 —             |                 |           | 13         |                             |          |                                                         | <u>,</u> | ↓   |                             |                                    |                           |            |                                   |                         |
| 11 —             | S&H             |           | 12<br>12   | 17                          |          | CLAY (CL)<br>light brown to yellow-brown mottling, verv | v stiff, | _   |                             |                                    |                           |            |                                   |                         |
| 12 —             |                 |           |            |                             |          | moist, fine-grained, with trace sand                    |          | _   |                             |                                    |                           |            |                                   |                         |
| 13 —             |                 |           |            |                             |          |                                                         |          | _   |                             |                                    |                           |            |                                   |                         |
| 14 —             |                 |           |            |                             |          |                                                         |          | _   |                             |                                    |                           |            |                                   |                         |
| 15 —             |                 |           |            |                             |          | trace silt                                              |          | _   |                             |                                    |                           |            |                                   |                         |
| 16 —             | ST              |           | 800<br>psi |                             |          | Consolidation Test, see Figure C-4                      |          | _   |                             |                                    |                           |            | 22.9                              | 100                     |
| 17 —             |                 |           |            |                             |          |                                                         |          | _   | PP                          |                                    | 3,500                     |            |                                   |                         |
| 18 —             |                 |           |            |                             |          |                                                         |          | _   |                             |                                    |                           |            |                                   |                         |
| <u>9</u><br>19 — |                 |           |            |                             |          |                                                         |          | _   |                             |                                    |                           |            |                                   |                         |
| 20 —             |                 |           |            |                             |          | olive-gray with gray mottling, medium stif              | f, trace | _   | PP                          |                                    | 3 500                     |            |                                   |                         |
| 21 -             | S&H             |           | 3<br>4     | 6                           |          | sand<br>Triaxial Test, see Figure C-6                   |          | _   | TxUU                        | 2,100                              | 2,850                     |            | 25.4                              | 100                     |
| - <u>-</u>       |                 |           | 5          |                             |          |                                                         |          | _   | 1,000                       | 2,100                              | ,000                      |            | 20.4                              |                         |
| VAV 22 -         |                 |           |            |                             |          |                                                         |          | _   |                             |                                    |                           |            |                                   |                         |
|                  |                 |           |            |                             |          |                                                         |          |     |                             |                                    |                           |            |                                   |                         |
| 19-00<br>0-      |                 |           |            |                             |          |                                                         |          |     |                             |                                    |                           |            |                                   |                         |
| ק 25 —<br>י      | S&H             |           | 12<br>18   | 30                          |          | very stiff, with orange-brown mottling, and             | d trace  |     | _                           |                                    |                           |            | 22.8                              | 103                     |
| 26 -             |                 |           | 25         |                             |          | CLAYEY SAND (SC)                                        |          |     | PP                          |                                    | 3,500                     |            |                                   |                         |
| 5 27 —           |                 |           |            |                             |          | yellow-brown, medium dense to dense, m<br>fine-grained  | noist,   | _   |                             |                                    |                           |            |                                   |                         |
| 28 —             |                 |           |            |                             | SC       | ∑ (11/2/16, 9:45 a.m.)                                  |          | _   |                             |                                    |                           |            |                                   |                         |
| ັ 29 —<br>ງ      |                 |           |            |                             |          |                                                         |          | _   |                             |                                    |                           |            |                                   |                         |
| 30 —             |                 |           | <u> </u>   | <u> </u>                    |          | l                                                       |          |     |                             | LA                                 | N                         | 5A)        | N                                 |                         |
| C<br>C<br>C      |                 |           |            |                             |          |                                                         |          |     | Project                     | No.:                               |                           | Figure:    | _                                 |                         |
| EX               |                 |           |            |                             |          |                                                         |          |     |                             | 75063                              | 5601                      | -          |                                   | B-2a                    |

| PRC                              | PROJECT:               |                      |                    |                             |           | <b>3000 BROADWAY</b><br>Oakland, California                                                                                                  | Log of I                                                | Borir                       | ng B                               | -13<br>P/                   | AGE 2      | OF 2                              |                          |
|----------------------------------|------------------------|----------------------|--------------------|-----------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------|------------|-----------------------------------|--------------------------|
|                                  |                        | SAMF                 | PLES               |                             |           |                                                                                                                                              |                                                         |                             | LABO                               | RATOR                       | Y TEST     | DATA                              |                          |
| DEPTH<br>(feet)                  | Sampler<br>Type        | Sample               | Blows/ 6"          | SPT<br>N-Value <sup>1</sup> | ГІТНОГОGY | MATERIAL DESCRIPTION                                                                                                                         | N                                                       | Type of<br>Strength<br>Test | Confining<br>Pressure<br>Lbs/Sq Ft | Shear Strength<br>Lbs/Sq Ft | Fines<br>% | Natural<br>Moisture<br>Content, % | Dry Density<br>Lbs/Cu Ft |
| 31 —<br>32 —                     | S&H                    |                      | 5<br>12<br>17      | 20                          | CL        | CLAY (CL)<br>olive-gray with dark gray mottling, very<br>CLAY with SAND (CL)<br>gray-brown, very stiff, wet, fine-grained                    | r stiff, wet                                            | PP                          |                                    | 4,000                       |            | 22.1                              | 105                      |
| 33 —<br>34 —<br>35 —             |                        |                      |                    |                             | CL        | LL = 41, PI = 23, see Figure C-2                                                                                                             | -                                                       | -                           |                                    |                             |            |                                   |                          |
| 36 —<br>37 —                     | S&H                    |                      | 10<br>20<br>26     | 32                          | CL        | CLAY (CL)<br>olive-gray with trace gray mottling, har                                                                                        | d, wet _<br>_                                           | -                           |                                    |                             |            |                                   |                          |
| 38 —<br>39 —<br>40 —             | S&H                    |                      | 20<br>31           | 45                          |           | CLAYEY SAND with trace GRAVEL (<br>gray-brown, dense, wet, fine- to mediu<br>fine subangular gravel                                          | SC)<br>m-grained,                                       | -<br>-<br>- PP              |                                    | 3 500                       |            | 15.8                              | 117                      |
| 42 —<br>43 —<br>44 —             |                        |                      | 33                 |                             | sc        | SILT (ML)                                                                                                                                    | -                                                       | -                           |                                    | -,                          |            |                                   |                          |
| 45 —<br>46 —<br>47 —             | S&H                    |                      | 9<br>18<br>35      | 37                          | ML        | olive-gray to brown, hard, wet                                                                                                               | -                                                       | -                           |                                    |                             | 43.1       | 21.5                              | 106                      |
| 48                               |                        |                      |                    |                             |           |                                                                                                                                              | -                                                       | -                           |                                    |                             |            |                                   |                          |
| 51 —<br>52 —                     |                        |                      |                    |                             |           |                                                                                                                                              | -                                                       | _                           |                                    |                             |            |                                   |                          |
| 53 —<br>54 —<br>55 —             |                        |                      |                    |                             |           |                                                                                                                                              | -                                                       |                             |                                    |                             |            |                                   |                          |
| 56 —<br>57 —<br>58 —             |                        |                      |                    |                             |           |                                                                                                                                              | -                                                       | -                           |                                    |                             |            |                                   |                          |
| 59 —<br>60 —<br>Boring<br>Boring | g terminal             | ted at a             | depth c            | of 46.5 fe                  | eet belov | v ground surface. <sup>1</sup> S&H and SPT blow counts for the last two<br>converted to SPT N-Values using factors                           | increments were<br>of 0.7 and 1.2,<br>and harmer energy |                             |                                    |                             | 54         | <b>N</b> /                        |                          |
| Grour<br>PP = p                  | ndwater s<br>pocket pe | tabilized<br>enetrom | l at 28.8<br>eter. | 5 feet at                   | time of   | drilling. <sup>2</sup> Elevations based on Oakland City Datum<br>were obtained from the ALTA Survey perl<br>Associates, dated 20 April 2016. | Elevations referenced<br>ormed by Luk and               | Project                     | No.:<br>75063                      | 5601                        | Figure:    |                                   | B-2b                     |

| PROJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                | <b>3000 BROADWAY</b><br>Oakland, California                                                                                                                                                                                                                                                                                                                                         | Lo                    | g o | f E | Borir                     | ng B                         | <b>-14</b><br>P/     | AGE 1      | OF 2                          |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|-----|---------------------------|------------------------------|----------------------|------------|-------------------------------|--------------------|
| Boring loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation:   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ee Fi                       | gure           | 2                                                                                                                                                                                                                                                                                                                                                                                   | I                     |     |     | Logge                     | ed by:                       | J. San               | glerat     |                               |                    |
| Date starte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed:      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/3/1                       | 6              | Date finished: 11/4/16                                                                                                                                                                                                                                                                                                                                                              |                       |     |     |                           | u by.                        | Gregg                | - ming     |                               |                    |
| Drilling me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thod:    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lollow                      | Sten           | n Auger                                                                                                                                                                                                                                                                                                                                                                             |                       |     |     |                           |                              |                      |            |                               |                    |
| Samplers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /eignt/  | arop:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 140<br>Henwo              | od (SA         | /30 Inches Hammer type: Safety Auto                                                                                                                                                                                                                                                                                                                                                 | <b>)</b>              |     |     |                           | LABO                         | RATOR                | Y TEST     | DATA                          |                    |
| Gampiers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMF     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |                                                                                                                                                                                                                                                                                                                                                                                     | )                     |     |     | <u>س</u> ج                | Бе <u>т</u>                  | ength<br>Ft          |            | - e %                         | sity<br>Ft         |
| DEPTH<br>(feet)<br>Sampler<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample   | Blows/ 6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPT<br>N-Value <sup>1</sup> | LITHOLOG'      | MATERIAL DESCRIPTIO                                                                                                                                                                                                                                                                                                                                                                 | N                     |     |     | Type o<br>Strengt<br>Test | Confinir<br>Pressu<br>Lbs/Sq | Shear Stre<br>Lbs/Sq | Fines<br>% | Natura<br>Moistur<br>Content, | Dry Dens<br>Lbs/Cu |
| $\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ 1 & - & \\ 2 & - & \\ 3 & - & \\ 4 & - & \\ 5 & - & \\ 6 & - & \\ 5 & - & \\ 6 & - & \\ 7 & - & \\ 8 & - & \\ 9 & - & \\ 10 & - & \\ 11 & - & \\ 8 & - & \\ 9 & - & \\ 10 & - & \\ 11 & - & \\ 12 & - & \\ 13 & - & \\ 11 & - & \\ 13 & - & \\ 11 & - & \\ 13 & - & \\ 11 & - & \\ 13 & - & \\ 11 & - & \\ 13 & - & \\ 11 & - & \\ 13 & - & \\ 14 & - & \\ 15 & - & \\ 13 & - & \\ 14 & - & \\ 15 & - & \\ 16 & - & \\ 5 & & \\ 17 & - & \\ 18 & - & \\ 19 & - & \\ 20 & - & \\ 21 & - & \\ 5 & & \\ 22 & - & \\ 23 & - & \\ 24 & - & \\ \end{array}$ |          | <ul> <li> <sup>∂</sup>/<sub>E</sub> <sup>7</sup> <sup>5</sup> <sup>6</sup> <sup>10</sup> <sup>11</sup> <sup>12</sup> <sup>20</sup> <sup>250</sup> <sup>psi</sup> <sup>250</sup> <sup></sup></li></ul> | 13<br>24<br>26              | SC<br>CL<br>CL | 4 inches concrete slab         CLAYEY SAND with GRAVEL (SC)         dark brown, moist, fine- to medium-grasubangular gravel         SANDY CLAY (CL)         yellow-brown with black mottling, stiff, fine-grained sand         CLAY (CL)         yellow-brown, very stiff, mist, trace fin sand         olive-brown with trace black mottling         Triaxial Test, see Figure C-6 | ained, fine<br>moist, |     |     | TxUU                      | 2,000                        | 5<br>3,600<br>4,500  |            | 25.9                          | 100                |
| 24 —<br>25 —<br>26 — S&H<br>27 —<br>27 —<br>28 —<br>28 —<br>28 —<br>29 —<br>29 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6<br>12<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23                          | CL             | SANDY CLAY (CL)<br>yellow-brown, very stiff, wet, fine-grain<br>LL = 33, PI = 17, see Figure C-2<br>(11/3/16, 3:15 p.m.)                                                                                                                                                                                                                                                            | ed sand               |     | -   | PP                        |                              | 3,000                | 57.9       |                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> | <u>l</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                    | <u> </u>       | 1                                                                                                                                                                                                                                                                                                                                                                                   |                       |     |     |                           | LA                           | N                    | 5A)        | N                             | I                  |
| TESI GEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |                                                                                                                                                                                                                                                                                                                                                                                     |                       |     |     | Project                   | <sup>No.:</sup><br>75063     | 5601                 | Figure:    |                               | B-3a               |

| PRC                                       | JEC.                               | T:                               |                               |                                        |                          | <b>3000 BROADWAY</b><br>Oakland, California                                                                                                                                                        | Log of                                                                                       | Borir                       | ng B                               | <b>-14</b><br>P/            | AGE 2      | OF 2                              |                          |
|-------------------------------------------|------------------------------------|----------------------------------|-------------------------------|----------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------|------------|-----------------------------------|--------------------------|
|                                           |                                    | SAMF                             | PLES                          |                                        |                          |                                                                                                                                                                                                    |                                                                                              |                             | LABO                               | RATOR                       | Y TEST     | DATA                              |                          |
| DEPTH<br>(feet)                           | Sampler<br>Type                    | Sample                           | Blows/ 6"                     | SPT<br>N-Value <sup>1</sup>            | ГІТНОГОБҮ                | MATERIAL DESCRIPTIC                                                                                                                                                                                | DN                                                                                           | Type of<br>Strength<br>Test | Confining<br>Pressure<br>Lbs/Sq Ft | Shear Strength<br>Lbs/Sq Ft | Fines<br>% | Natural<br>Moisture<br>Content, % | Dry Density<br>Lbs/Cu Ft |
| 31 —                                      | S&H                                |                                  | 5<br>13                       | 23                                     |                          | CLAY with SAND (CL)                                                                                                                                                                                | l oond -                                                                                     | PP                          |                                    | 3,500                       |            |                                   |                          |
| 32 —                                      |                                    |                                  | 20                            |                                        |                          | olive-gray, very stiff, wet, fine-grained                                                                                                                                                          | i sand                                                                                       |                             |                                    |                             |            |                                   |                          |
| 33 —                                      |                                    |                                  |                               |                                        | CI                       |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 34 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 35 —                                      | S&H                                |                                  | 6                             | 31                                     |                          | olive-gray to gray, hard                                                                                                                                                                           | -                                                                                            |                             |                                    | >4 500                      |            |                                   |                          |
| 36 —                                      | Juli                               |                                  | 25                            |                                        |                          |                                                                                                                                                                                                    | -                                                                                            |                             |                                    | -4,500                      |            |                                   |                          |
| 37 —<br>38 —                              |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            |                             |                                    |                             |            |                                   |                          |
| 39 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 40 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 41 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 42 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            |                             |                                    |                             |            |                                   |                          |
| 43 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            |                             |                                    |                             |            |                                   |                          |
| 45 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 46 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 47 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 48 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 49 —<br>50 —                              |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            |                             |                                    |                             |            |                                   |                          |
| 51 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 52 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 53 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 54 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | 1                           |                                    |                             |            |                                   |                          |
| 5 55 —<br>5 56 —                          |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            |                             |                                    |                             |            |                                   |                          |
| 57 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 58 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 59 —                                      |                                    |                                  |                               |                                        |                          |                                                                                                                                                                                                    | -                                                                                            | -                           |                                    |                             |            |                                   |                          |
| 60<br>Boring<br>Boring<br>Groun<br>PP = 1 | terminat<br>backfille<br>dwater si | ed at a<br>d with c<br>tabilized | depth o<br>ement o<br>at 26.5 | l<br>of 36.5 fe<br>grout.<br>5 feet at | l<br>eet belo<br>time of | w ground surface.<br>transformed to SPT blow counts for the last to<br>converted to SPT N-Values using facto<br>respectively to account for sampler type<br>felevations based on Oakland City Datu | wo increments were<br>rs of 0.7 and 1.2,<br>e and hammer energy.<br>m. Elevations referenced |                             | LA                                 | N                           | 5A)        | N                                 | <u> </u>                 |
|                                           |                                    |                                  |                               |                                        |                          | were obtained from the ALTA Survey p<br>Associates, dated 20 April 2016.                                                                                                                           | erformed by Luk and                                                                          | Project                     | <sup>No.:</sup><br>75063           | 5601                        | Figure:    |                                   | B-3b                     |

| PRC            | JEC.      | T:     |               |               |        | <b>3000 BROADWAY</b><br>Oakland, California                                          | Log of E    | Borir                  | ng B                      | - <b>15</b>     | AGE 1     | OF 2                        |                  |
|----------------|-----------|--------|---------------|---------------|--------|--------------------------------------------------------------------------------------|-------------|------------------------|---------------------------|-----------------|-----------|-----------------------------|------------------|
| Boring         | g loca    | tion:  | S             | ee Fi         | gure   | 2                                                                                    | ·           | Logge                  | ed by:                    | J. San          | glerat    |                             |                  |
| Date           | starte    | d:     | 1             | 1/4/10        | 6      | Date finished: 11/4/16                                                               |             |                        | т ру:                     | Gregg           | Drilling  |                             |                  |
| Drillin        | g met     | hod:   | Н             | ollow         | Sten   | n Auger                                                                              |             |                        |                           |                 |           |                             |                  |
| Hamr           | ner we    | eight/ | drop:         | : 140         | ) lbs. | /30 inches   Hammer type: Safety Auto                                                |             | $\frac{1}{2}$          | LABO                      | RATOR           | Y TEST    | DATA                        |                  |
| Samp           | olers:    | Sprag  |               | Henwo         | od (S8 | H), Standard Penetration Test (SPT), Shelby Tube (ST)                                |             |                        |                           | gth<br>t        |           | , s                         | 2.4              |
| т              | Ъ.        |        | LES<br>ق      | -a            | .0GY   | MATERIAL DESCRIPTION                                                                 |             | pe of<br>ength<br>rest | nfining<br>ssure<br>ssure | Stren<br>//Sq F | ines<br>% | atural<br>isture<br>tent, % | Densit<br>//Cu F |
| EPTI<br>(feet) | Type      | ample  | lows/         | SPT<br>I-Valu | THOL   |                                                                                      |             | ₹₹_                    | Cor<br>Lbs                | Shear<br>Lbs    | ш         | So Mo                       | Dry I<br>Lbs     |
|                | S         | 0      | В             | z             |        | 4 inches of concrete slab                                                            |             |                        |                           |                 |           |                             |                  |
| 1 —<br>2 —     |           |        |               |               |        | CLAYEY SAND with GRAVEL (SC)<br>yellow-brown, moist, fine-grained, fine su<br>gravel | bangular –  | -                      |                           |                 |           |                             |                  |
| 3 —            |           |        |               |               | SC     |                                                                                      | <u> </u>    | -                      |                           |                 |           |                             |                  |
| 4 —            |           |        |               |               |        |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 5 —            |           |        |               |               |        |                                                                                      | <b>.</b>    | 4                      |                           |                 |           |                             |                  |
| 6 —            | S&H       |        | 9<br>11       | 16            |        | SANDY CLAY (CL)<br>yellow-brown with trace black inclusions,                         | very stiff, | PP                     |                           | 1,250           |           |                             |                  |
| 7              |           |        | 12            |               |        | moist, medium-grained                                                                | _           |                        |                           |                 |           | 20.9                        | 80               |
|                |           |        |               |               |        |                                                                                      | _           |                        |                           |                 |           | 50.0                        | 09               |
| 8 —            |           |        |               |               |        |                                                                                      | _           | 1                      |                           |                 |           |                             |                  |
| 9 —            |           |        |               |               |        |                                                                                      | _           | 1                      |                           |                 |           |                             |                  |
| 10 —           |           |        | 3             |               | CL     | olive-gray with trace black mottling, stiff,                                         | moist,      | -                      |                           | 2,500           |           |                             |                  |
| 11 —           | S&H       |        | 5<br>9        | 10            |        | fine- to medium-grained sand                                                         | -           | PP                     |                           | to<br>3,000     |           |                             |                  |
| 12 —           |           |        |               |               |        |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 13 —           |           |        |               |               |        |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 14 —           |           |        |               |               |        |                                                                                      | _           |                        |                           |                 |           |                             |                  |
| 15             |           |        |               |               |        |                                                                                      |             |                        |                           |                 |           |                             |                  |
| 10             | <b>0T</b> |        | 200           |               |        | SANDY CLAY (CL)                                                                      | fine        |                        |                           |                 |           |                             |                  |
| 16 —           | SI        |        | psi           |               |        | subangular gravel                                                                    |             | - PP                   |                           | 1,500           |           |                             |                  |
| 17 —           |           |        |               |               |        | Particle Size Analysis, see Figure C-3                                               | _           | 1                      |                           |                 | 59.9      | 22.9                        | 104              |
| 18 —           |           |        |               |               | CL     |                                                                                      | -           | -                      |                           |                 |           |                             |                  |
| 19 —           |           |        |               |               |        |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 20 —           |           |        |               |               |        |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 21 —           | S&H       |        | 8<br>33<br>31 | 45            | SC     | lense of CLAYEY SAND (SC)                                                            | . /-        | PP                     |                           | 4,000           |           |                             |                  |
| 22 -           |           |        | 51            |               |        | Olive-gray, medium-grained, dense, moist<br>CLAY with trace SAND (CL)                | t/          |                        |                           |                 |           |                             |                  |
|                |           |        |               |               |        | olive-gray, hard, mist, fine- to medium-gr                                           | ained       |                        |                           |                 |           |                             |                  |
| 23 -           |           |        |               |               | GL     | sand                                                                                 | _           | 1                      |                           |                 |           |                             |                  |
| 24 —           |           |        |               |               |        |                                                                                      | _           | 1                      |                           |                 |           |                             |                  |
| 25 —           | 0.001     |        | 4             |               |        | CLAY with trace SAND and SILT (CL)                                                   |             | 1                      |                           |                 |           |                             |                  |
| 26 —           | S&H       |        | 8<br>15       | 16            |        | olive-gray to dark gray, very stiff, moist, fine-grained sand                        | _           | +                      |                           |                 |           |                             |                  |
| g 27 —         |           |        |               |               | CL     |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 28 —           |           |        |               |               |        |                                                                                      | _           | -                      |                           |                 |           |                             |                  |
| 29 —           |           |        |               |               | SP-    | SAND with CLAY (SP-SC)                                                               | –           |                        |                           |                 |           |                             |                  |
| 30 —           |           |        |               |               | SC     | olive-gray, medium dense, moist, fine-gra                                            | ained       |                        |                           |                 |           |                             |                  |
|                |           |        |               |               |        |                                                                                      |             |                        | LA                        | N               | 5A)       | N                           |                  |
|                |           |        |               |               |        |                                                                                      |             | Project                | <sup>No.:</sup><br>75063  | 5601            | Figure:   |                             | B-4a             |

| PRC                                          | JEC.                                                | T:                               |                                        |                                 |                       | <b>3000 BROAL</b><br>Oakland, Cal                                                                 | <b>DWAY</b><br>ifornia                                                                                                     |                                                                                                     | Log of E                                                             | Borir                       | ng B                               | - <b>15</b><br>P/           | AGE 2      | OF 2                              |                          |
|----------------------------------------------|-----------------------------------------------------|----------------------------------|----------------------------------------|---------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------|------------|-----------------------------------|--------------------------|
|                                              |                                                     | SAMF                             | PLES                                   |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     |                                                                      |                             | LABO                               | RATOR                       | Y TEST     | DATA                              |                          |
| DEPTH<br>(feet)                              | Sampler<br>Type                                     | Sample                           | Blows/ 6"                              | SPT<br>N-Value <sup>1</sup>     | ГІТНОГОСУ             | MA                                                                                                | TERIAL DES                                                                                                                 | CRIPTION                                                                                            |                                                                      | Type of<br>Strength<br>Test | Confining<br>Pressure<br>Lbs/Sq Ft | Shear Strength<br>Lbs/Sq Ft | Fines<br>% | Natural<br>Moisture<br>Content, % | Dry Density<br>Lbs/Cu Ft |
|                                              | S&H                                                 |                                  | 8                                      | 26                              |                       | SAND with                                                                                         | CLAY (SP-SC)                                                                                                               | (continued)                                                                                         |                                                                      |                             |                                    |                             |            |                                   |                          |
| 31 —<br>32 —<br>33 —<br>34 —<br>35 —<br>36 — | S&H                                                 |                                  | 6<br>15<br>23                          | 20                              | SC<br>CL              | CLAYEY S<br>olive-gray w<br>moist, fine<br>LL = 36, P<br>CLAY (CL<br>olive-gray w<br>trace fine-g | SAND (SC)<br>with yellow-brown<br>grained<br>I = 17, see Figurn<br>I = 17, see Figurn<br>with brown mottli<br>grained sand | n mottling, ver<br>e C-2<br>ng, wet, very s                                                         | y stiff,<br><br><br>stiff,                                           | -                           |                                    |                             | 45.6       | 20.4                              | 108                      |
| 37 —<br>38 —<br>39 —                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | -                                                                    | -                           |                                    |                             |            |                                   |                          |
| 40 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 41 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    |                             |                                    |                             |            |                                   |                          |
| 43 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    |                             |                                    |                             |            |                                   |                          |
| 44 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 45 —<br>46 —                                 |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 47 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    |                             |                                    |                             |            |                                   |                          |
| 48 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 49 —<br>50 —                                 |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    |                             |                                    |                             |            |                                   |                          |
| 51 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    |                             |                                    |                             |            |                                   |                          |
| 52 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 53 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    |                             |                                    |                             |            |                                   |                          |
| 54 -                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | 1                           |                                    |                             |            |                                   |                          |
| 56 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 57 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 58 —                                         |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | -                           |                                    |                             |            |                                   |                          |
| 59 —<br>60 —                                 |                                                     |                                  |                                        |                                 |                       |                                                                                                   |                                                                                                                            |                                                                                                     | _                                                                    | 1                           |                                    |                             |            |                                   |                          |
| Borine<br>Borine<br>Grour<br>PP =            | g terminat<br>g backfille<br>ndwater e<br>pocket pe | ted at a<br>ed with c<br>ncounte | depth o<br>ement o<br>red at 3<br>eter | f 36.5 fe<br>grout.<br>32.5 fee | eet belo<br>t (not st | w ground surface.                                                                                 | S&H and SPT blow coun<br>converted to SPT N-Valu<br>respectively to account f<br>Elevations based on Oal                   | ts for the last two incr<br>les using factors of 0<br>or sampler type and h<br>dand City Datum. Ele | rements were<br>0.7 and 1.2,<br>hammer energy.<br>vations referenced |                             | LA                                 | N                           | 5A)        | N                                 |                          |
|                                              |                                                     |                                  |                                        |                                 |                       |                                                                                                   | were obtained from the A<br>Associates, dated 20 Ap                                                                        | AL FA Survey perform<br>ril 2016.                                                                   | led by Luk and                                                       | Project                     | <sup>No.:</sup><br>75063           | 5601                        | Figure:    |                                   | B-4b                     |

| PROJECT:       |               |        |               |               |                 | <b>3000 BROADWAY</b><br>Oakland, California                               | Log of                  | LOG OF Boring B-16<br>PAGE 1 OF 2 |                        |        |                 |                             |                  |  |
|----------------|---------------|--------|---------------|---------------|-----------------|---------------------------------------------------------------------------|-------------------------|-----------------------------------|------------------------|--------|-----------------|-----------------------------|------------------|--|
| Boring         | g loca        | tion:  | S             | ee Fi         | gure            | 2                                                                         | Logged by: J. Sanglerat |                                   |                        |        |                 |                             |                  |  |
| Date           | starte        | d:     | 1             | 1/4/10        | 6               | Date finished: 11/4/16                                                    |                         | Gregg Drilling                    |                        |        |                 |                             |                  |  |
| Drillin        | g met         | hod:   | Н             | ollow         | Sten            | n Auger                                                                   | uger                    |                                   |                        |        |                 |                             |                  |  |
| Hamr           | ner we        | eight/ | drop:         | : 140         | ) lbs.          | /30 inches   Hammer type: Safety Auto                                     |                         | 4                                 | _ LABORATORY TEST DATA |        |                 |                             |                  |  |
| Samp           | olers:        | Sprag  |               | Henwo         | od (S&          | KH), Standard Penetration Test (SPT), Shelby Tube (ST)                    |                         | -                                 | - <u></u>              |        |                 |                             | ₹                |  |
|                | 5             | 5AIVIF | rles<br>ق     | -m            | OGY             | MATERIAL DESCRIPTION                                                      | MATERIAL DESCRIPTION    |                                   |                        |        |                 | atural<br>isture<br>tent, % | Jensit<br>/Cu Ft |  |
| EPTŀ<br>(feet) | ampl∈<br>Type | Sample | /swo          | SPT<br>-Value | THOL            |                                                                           | Str 1                   | Cor<br>Pre<br>Lbs                 | Shear<br>Lbs           | ш      | Gont Mo<br>Cont | Dry I<br>Lbs                |                  |  |
|                | S             | 00     | В             | z             |                 | 6 inches of concrete slab                                                 |                         |                                   |                        |        |                 |                             |                  |  |
| 1 —            |               |        |               |               |                 | CLAYEY SAND with GRAVEL (SC)                                              | -                       | -                                 |                        |        |                 |                             |                  |  |
| 2 —            |               |        |               |               | sc              | yellow-brown, moist, line- to medium-gra                                  | שוווג<br>-  ב           | -                                 |                        | >4,500 | )               | 23.9                        |                  |  |
| 3 —            |               |        |               |               |                 |                                                                           | <b>E</b> .              | _                                 |                        |        |                 |                             | 102              |  |
| 4 —            |               |        |               |               |                 |                                                                           | ¥_                      |                                   |                        |        |                 |                             |                  |  |
| 5 —            |               |        |               |               |                 | CLAY with SAND (CL)<br>yellow-brown, very stiff, moist, fine-arair        | ied sand                |                                   |                        |        |                 |                             |                  |  |
| 6              | S&H           |        | 8<br>9        | 18            | CL              | LL = 45, PI = 25, see Figure C-2<br>strong hydrocarbon odor at 6.5 feet   |                         | PP                                | 5                      |        |                 |                             |                  |  |
| 6 —            |               |        | 16            |               |                 |                                                                           | -                       |                                   |                        |        |                 |                             |                  |  |
| 7 —            |               |        |               |               |                 | SAND with CLAY (SP-SC)                                                    | -<br>arained            |                                   |                        |        |                 |                             |                  |  |
| 8 —            |               |        |               |               | 0.5             | yonow brown, mediam dense, molst, mil                                     | - grainea               | -                                 |                        |        |                 |                             |                  |  |
| 9 —            |               |        |               |               | SP-<br>SC       |                                                                           |                         | -                                 |                        |        |                 |                             |                  |  |
| 10 —           |               |        |               |               |                 |                                                                           |                         | -                                 |                        |        |                 |                             |                  |  |
| 11 -           | S&H           |        | о<br>15<br>25 | 28            |                 |                                                                           |                         | _                                 |                        |        |                 | 24.5                        | 99               |  |
| 12 -           |               |        | 25            |               |                 | ULAYEY SAND (SC)<br>yellow-brown, medium dense, mist, fine-               | -grained                |                                   |                        |        |                 |                             |                  |  |
| 40             |               |        |               |               | sc              | reduced hydrocarbon odor at 12 feet<br>H = 30, $PI = 11$ , see Figure C-2 |                         |                                   |                        |        |                 |                             |                  |  |
| 13 -           |               |        |               |               |                 | L = 00, 11 = 11, See Figure 0-2                                           | -                       | 1                                 |                        |        |                 |                             |                  |  |
| 14 —           |               |        |               |               |                 |                                                                           |                         |                                   |                        |        |                 |                             |                  |  |
| 15 —           |               |        | 4             |               |                 | SANDY CLAY (CL)                                                           | brown and               | 7                                 |                        |        |                 |                             |                  |  |
| 16 —           | S&H           |        | 13<br>26      | 27            |                 | black inclusions, very stiff, fine- to coars                              | e-grained               | -                                 |                        |        |                 |                             |                  |  |
| 17 —           |               |        |               |               | CL              | sand<br>color change to grav at 18 feet, strong                           |                         | -                                 |                        |        |                 |                             |                  |  |
| 18 —           |               |        |               |               |                 | hydrocarbon odor                                                          |                         | _                                 |                        |        | 58.2            |                             |                  |  |
| <u> </u>       |               |        |               |               |                 | CLAY (CL)                                                                 |                         |                                   |                        |        |                 |                             |                  |  |
| 20 -           |               |        |               |               |                 | gray, very stiff, wet, fine-grained sand                                  |                         |                                   |                        |        |                 |                             |                  |  |
|                | S&H           |        | 4<br>9        | 21            |                 | strong hydrocarbon odor<br>Triavial Test, see Figure C-6                  |                         | PP                                |                        | >4,500 |                 |                             |                  |  |
| 21 -           |               |        | 21            |               |                 | maniai rest, see rigure 0-0                                               |                         |                                   | 2,100                  | 5,700  |                 | 22.3                        | 105              |  |
| 5 22 -         |               |        |               |               |                 |                                                                           |                         | 1                                 |                        |        |                 |                             |                  |  |
| 23 —           |               |        |               |               |                 |                                                                           |                         | -                                 |                        |        |                 |                             |                  |  |
| 24 —           |               |        |               |               |                 | no hydrocarbon odor at 24 feet, color ch                                  | age to                  | -                                 |                        |        |                 |                             |                  |  |
| 25 —           |               |        |               |               | $\left \right>$ | yellow-brown                                                              |                         | _                                 |                        |        |                 |                             |                  |  |
| 26 —           | S&H           |        | ь<br>15<br>20 | 26            |                 | SANDY CLAY (CL)<br>vellow-brown very stiff moist to wet fin               | e- to                   | PP                                |                        | 2,500  |                 |                             |                  |  |
| 27             |               |        | 20            |               |                 | medium-grained sand                                                       |                         |                                   |                        |        |                 |                             |                  |  |
|                |               |        |               |               | CL              | (11/4/10.12:33 p.m.)                                                      |                         |                                   |                        |        |                 |                             |                  |  |
| 28 -           |               |        |               |               |                 |                                                                           |                         | 1                                 |                        |        |                 |                             |                  |  |
| 29 —<br>2      |               |        |               |               |                 |                                                                           |                         | 1                                 |                        |        |                 |                             |                  |  |
|                |               |        |               | I             | I               | 1                                                                         |                         |                                   | LA                     |        | 5A)             | N                           | 1                |  |
|                |               |        |               |               |                 |                                                                           |                         | Project                           | No.:                   | 5601   | Figure:         |                             | D E C            |  |
| Ŭ              |               |        |               |               |                 |                                                                           |                         |                                   | 10003                  | 1000   |                 |                             | D-09             |  |

| PROJECT:                                                                            |                 |        |           |                             |           | <b>3000 BROAI</b><br>Oakland, Cal | <b>DWAY</b><br>ifornia                                                    |                                                                                    | Log of E                             | Boring B-16<br>PAGE 2 OF 2      |                                    |                             |            |                                   |                          |
|-------------------------------------------------------------------------------------|-----------------|--------|-----------|-----------------------------|-----------|-----------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------------------------------|-----------------------------|------------|-----------------------------------|--------------------------|
|                                                                                     | SAMPLES         |        |           |                             |           |                                   |                                                                           |                                                                                    |                                      | LABO                            | RATOR                              | Y TEST                      | DATA       |                                   |                          |
| DEPTH<br>(feet)                                                                     | Sampler<br>Type | Sample | Blows/ 6" | SPT<br>N-Value <sup>1</sup> | ГІТНОГОGY | MA                                | TERIAL DES                                                                | SCRIPTION                                                                          |                                      | Type of<br>Strength<br>Test     | Confining<br>Pressure<br>Lbs/Sq Ft | Shear Strength<br>Lbs/Sq Ft | Fines<br>% | Natural<br>Moisture<br>Content, % | Dry Density<br>Lbs/Cu Ft |
|                                                                                     | S&H             |        | 8<br>14   | 28                          |           | CLAY (CL                          | )                                                                         | with bord ailty                                                                    | radulaa                              | PP                              |                                    | 4 000                       |            |                                   |                          |
| 31 —                                                                                | ourr            |        | 17        | 20                          | CL        | olive-brow                        | n, very still, wet                                                        | , with hard slity                                                                  | noquies                              |                                 |                                    | 4,000                       |            |                                   |                          |
| 33 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 34 —                                                                                |                 |        |           |                             |           | CLAY (CH<br>brown with            | )<br>I trace black spe                                                    | ecks, very stiff,                                                                  | wet                                  |                                 |                                    |                             |            |                                   |                          |
| 35 —                                                                                | S&H             |        | 7<br>14   | 21                          | СН        | LL = 63, P                        | I = 41, see Figu                                                          | re C-2                                                                             | _                                    |                                 |                                    |                             |            | 30.2                              | 94                       |
| 36 —<br>37 —                                                                        | Curr            |        | 16        |                             |           |                                   |                                                                           |                                                                                    |                                      | PP                              |                                    | 3,000                       |            |                                   |                          |
| 38 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 39 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 40 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 41 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 43 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 44 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 45 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 46 —<br>47 —                                                                        |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 48 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 49 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 50 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | _                               |                                    |                             |            |                                   |                          |
| 51 -                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    |                                      |                                 |                                    |                             |            |                                   |                          |
| 53 -                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 54 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 55 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 56 -                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    |                                 |                                    |                             |            |                                   |                          |
| 57 -                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| 59 —                                                                                |                 |        |           |                             |           |                                   |                                                                           |                                                                                    | _                                    | -                               |                                    |                             |            |                                   |                          |
| Boring terminated at a depth of 36.5 feet below ground surface.                     |                 |        |           |                             |           | w ground surface.                 | S&H and SPT blow cou<br>converted to SPT N-Va<br>respectively to account  | unts for the last two incr<br>alues using factors of 0<br>t for sampler type and b | rements were<br>).7 and 1.2,         |                                 |                                    | <b>\</b> //                 | 74         | <b>N</b> /                        |                          |
| Groundwater stabilized at 27 feet at time of drilling.<br>PP = pocket penetrometer. |                 |        |           |                             |           | illing. :                         | Elevations based on O<br>were obtained from the<br>Associates, dated 20 A | akland City Datum. Ele<br>ALTA Survey perform<br>April 2016.                       | vations referenced<br>and by Luk and | by Luk and Project No.: Figure: |                                    |                             | <b>_</b>   |                                   |                          |
| <u>п</u>                                                                            |                 |        |           |                             |           |                                   |                                                                           |                                                                                    |                                      |                                 | 75063                              | 5601                        |            |                                   | B-5b                     |

|                                                               |                               |         | UNIFIED SOIL CLASSIFICATION SYSTEM                                                   |  |  |  |  |
|---------------------------------------------------------------|-------------------------------|---------|--------------------------------------------------------------------------------------|--|--|--|--|
| м                                                             | ajor Divisions                | Symbols | Typical Names                                                                        |  |  |  |  |
| - <b>Grained Soils</b><br>half of soil > no. 200<br>ieve size |                               | GW      | Well-graded gravels or gravel-sand mixtures, little or no fines                      |  |  |  |  |
|                                                               | Gravels<br>(More than half of | GP      | Poorly-graded gravels or gravel-sand mixtures, little or no fines                    |  |  |  |  |
|                                                               | coarse fraction >             | GM      | Silty gravels, gravel-sand-silt mixtures                                             |  |  |  |  |
|                                                               | no. 4 sieve size)             | GC      | Clayey gravels, gravel-sand-clay mixtures                                            |  |  |  |  |
|                                                               | Sande                         | SW      | Well-graded sands or gravelly sands, little or no fines                              |  |  |  |  |
| arse<br>han                                                   | (More than half of            | SP      | Poorly-graded sands or gravelly sands, little or no fines                            |  |  |  |  |
| Co<br>ore ti                                                  | coarse fraction <             | SM      | Silty sands, sand-silt mixtures                                                      |  |  |  |  |
| (ma                                                           | 10. 4 010 00 0120)            | SC      | Clayey sands, sand-clay mixtures                                                     |  |  |  |  |
| e) eil                                                        |                               | ML      | Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts      |  |  |  |  |
| Soi<br>of s<br>siz                                            | Silts and Clays<br>LL = < 50  | CL      | Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays |  |  |  |  |
| ned<br>half<br>sieve                                          |                               | OL      | Organic silts and organic silt-clays of low plasticity                               |  |  |  |  |
| <b>Grai</b><br>than<br>200 s                                  |                               | МН      | Inorganic silts of high plasticity                                                   |  |  |  |  |
| no. 2                                                         | Silts and Clays               | СН      | Inorganic clays of high plasticity, fat clays                                        |  |  |  |  |
| l ∎ Ĕ v                                                       |                               | ОН      | Organic silts and clays of high plasticity                                           |  |  |  |  |
| Highly Organic Soils PT                                       |                               |         | Peat and other highly organic soils                                                  |  |  |  |  |

|                                  |                        |                                                                              |                                                                  | 1                                                             |                              | •••••••••••••••••••••••••••••••••••••••                           |  |  |  |
|----------------------------------|------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|--|--|--|
|                                  | (                      | GRAIN SIZE CHA                                                               | RT                                                               |                                                               | Sample t                     | aken with Sprague & Henwood sr                                    |  |  |  |
| Classification                   |                        | Range of Gra                                                                 | ain Sizes                                                        |                                                               | a 3.0-inc                    | h outside diameter and a 2.43-inc                                 |  |  |  |
|                                  |                        | U.S. Standard<br>Sieve Size                                                  | Grain Size<br>in Millimeters                                     |                                                               | Darkene                      | d area indicates soil recovered                                   |  |  |  |
| Boulde                           | ers                    | Above 12"                                                                    | Above 305                                                        |                                                               | sampler                      | ation sample taken with Standard                                  |  |  |  |
| Cobble                           | es                     | 12" to 3"                                                                    | 305 to 76.2                                                      |                                                               |                              |                                                                   |  |  |  |
| Gravel<br>coarse<br>fine         |                        | 3" to No. 4<br>3" to 3/4"<br>3/4" to No. 4                                   | 76.2 to 4.76<br>76.2 to 19.1<br>19.1 to 4.76                     |                                                               |                              |                                                                   |  |  |  |
| Sand<br>coarse<br>medium<br>fine |                        | No. 4 to No. 200<br>No. 4 to No. 10<br>No. 10 to No. 40<br>No. 40 to No. 200 | 4.76 to 0.075<br>4.76 to 2.00<br>2.00 to 0.420<br>0.420 to 0.075 |                                                               | Disturbed                    | a sample                                                          |  |  |  |
| Silt an                          | nd Clay                | Below No. 200                                                                | Below 0.075                                                      |                                                               | _                            |                                                                   |  |  |  |
|                                  |                        |                                                                              |                                                                  |                                                               | Core sample                  |                                                                   |  |  |  |
| <u> </u>                         | Unstabili              | zed groundwater lev                                                          | el                                                               | •                                                             | Analytical laboratory sample |                                                                   |  |  |  |
|                                  | Stabilize              | d groundwater level                                                          |                                                                  |                                                               | Sample t                     | aken with Direct Push or Drive sa                                 |  |  |  |
|                                  |                        |                                                                              |                                                                  | SAMPL                                                         | ER TYPE                      |                                                                   |  |  |  |
| С                                | Core bar               | rel                                                                          |                                                                  |                                                               | PT                           | Pitcher tube sampler using 3.0-i thin-walled Shelby tube          |  |  |  |
| CA                               | California<br>diameter | a split-barrel sample<br>and a 1.93-inch insi                                | r with 2.5-inch outs<br>de diameter                              | side<br>S&H Sprague & Henwood spl<br>outside diameter and a 2 |                              |                                                                   |  |  |  |
| D&M                              | Dames 8<br>diameter    | & Moore piston samp<br>, thin-walled tube                                    | ler using 2.5-inch                                               | outside                                                       | SPT                          | Standard Penetration Test (SPT<br>2.0-inch outside diameter and a |  |  |  |
| 0                                | Osterber<br>diameter   | g piston sampler usi<br>, thin-walled Shelby                                 | ng 3.0-inch outside<br>tube                                      | 9                                                             | ST                           | Shelby Tube (3.0-inch outside di                                  |  |  |  |

#### SAMPLE DESIGNATIONS/SYMBOLS

|              |                                                                              |                                                                  |         | Sample                                                                          | taken with S                                                                               | Sprague & Henv                                                                | vood split-barre | I sampler with |   |  |  |  |
|--------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|----------------|---|--|--|--|
|              | Range of Gra                                                                 | ain Sizes                                                        |         | a 3.0-inc                                                                       | ch outside di                                                                              | ameter and a 2                                                                | 43-inch inside   | diameter.      |   |  |  |  |
| on           | U.S. Standard                                                                | Grain Size                                                       |         | Darkene                                                                         | ed area indic                                                                              | ates soil recove                                                              | red              |                |   |  |  |  |
|              | Sieve Size                                                                   | in Millimeters                                                   |         | Classification sample taken with Standard Penetration Test                      |                                                                                            |                                                                               |                  |                |   |  |  |  |
|              | Above 12"                                                                    | Above 305                                                        |         | sampler                                                                         |                                                                                            |                                                                               |                  |                |   |  |  |  |
|              | 12" to 3"                                                                    | 305 to 76.2                                                      |         | I have the developed on a second to the term of which the term of the developed |                                                                                            |                                                                               |                  |                |   |  |  |  |
|              | 3" to No. 4<br>3" to 3/4"<br>3/4" to No. 4                                   | 76.2 to 4.76<br>76.2 to 19.1<br>19.1 to 4.76                     |         |                                                                                 |                                                                                            |                                                                               |                  |                |   |  |  |  |
|              | No. 4 to No. 200<br>No. 4 to No. 10<br>No. 10 to No. 40<br>No. 40 to No. 200 | 4.76 to 0.075<br>4.76 to 2.00<br>2.00 to 0.420<br>0.420 to 0.075 |         | Sampling attempted with no recovery                                             |                                                                                            |                                                                               |                  |                |   |  |  |  |
| y            | Below No. 200                                                                | Below 0.075                                                      |         | Core sample                                                                     |                                                                                            |                                                                               |                  |                |   |  |  |  |
| bili         | zed groundwater lev                                                          | el                                                               | •       | Analytical laboratory sample                                                    |                                                                                            |                                                                               |                  |                |   |  |  |  |
| ize          | d groundwater level                                                          |                                                                  |         | Sample taken with Direct Push or Drive sampler                                  |                                                                                            |                                                                               |                  |                |   |  |  |  |
|              |                                                                              |                                                                  | SAMPLI  | ER TYP                                                                          | E                                                                                          |                                                                               |                  |                |   |  |  |  |
| bar          | rel                                                                          |                                                                  |         | PT                                                                              | Pitcher tul                                                                                | Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube |                  |                |   |  |  |  |
| rnia<br>eter | a split-barrel sample<br>and a 1.93-inch insi                                | r with 2.5-inch outs<br>de diameter                              | side    | S&H                                                                             | Sprague & Henwood split-barrel sampler with a 3.0-inch                                     |                                                                               |                  |                |   |  |  |  |
| es 8<br>eter | Moore piston samp<br>, thin-walled tube                                      | ler using 2.5-inch                                               | outside | SPT                                                                             | Standard                                                                                   | Standard Penetration Test (SPT) split-barrel sampler with a                   |                  |                |   |  |  |  |
| ber<br>eter  | g piston sampler usi<br>, thin-walled Shelby                                 | ng 3.0-inch outside<br>tube                                      | e       | ST                                                                              | Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure |                                                                               |                  |                |   |  |  |  |
|              | <b>3000 BROA</b><br>Oakland, Ca                                              | <b>DWAY</b><br>alifornia                                         |         |                                                                                 | CLA                                                                                        | ASSIFICA                                                                      | TION CHA         | RT             |   |  |  |  |
|              |                                                                              |                                                                  |         | ]                                                                               |                                                                                            |                                                                               |                  |                |   |  |  |  |
|              |                                                                              |                                                                  |         | Date                                                                            | 12/7/16                                                                                    | Project No.                                                                   | 750635601        | Figure B-6     | - |  |  |  |