RECEIVED By Alameda County Environmental Health 8:57 am, Jan 10, 2017

SECOND SEMIANNUAL 2016 GROUNDWATER AND PERMEABLE REACTIVE BARRIER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

December 2016

GEOSCIENCE & ENGINEERING CONSULTING

Environmental Solutions, Inc.

SECOND SEMIANNUAL 2016 GROUNDWATER AND PERMEABLE REACTIVE BARRIER MONITORING AND ANNUAL SUMMARY REPORT

REDWOOD REGIONAL PARK SERVICE YARD OAKLAND, CALIFORNIA

Prepared for:

EAST BAY REGIONAL PARK DISTRICT OAKLAND, CALIFORNIA

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

December 1, 2016

Project No. 2016-02

GEOSCIENCE & ENGINEERING CONSULTING

December 1, 2016

Ms. Anne Jurek Hazardous Materials Specialist Local Oversight Program Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Semiannual 2016 Groundwater and Permeable Reactive Barrier Monitoring, and Annual Summary Report Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246)

Dear Ms. Jurek:

Attached is the referenced report for the underground fuel storage tank (UFST) site at the Redwood Regional Park Service Yard, located at 7867 Redwood Road, Oakland, California. This project is being conducted for the East Bay Regional Park District (EBRPD), and follows previous site investigation and remediation activities (conducted since 1993) associated with former leaking UFSTs. The key regulatory agencies for this investigation are the Alameda County Department of Environmental Health, the Regional Water Quality Control Board, and the California Department of Fish and Game.

This report summarizes the Second Semiannual 2016 groundwater and surface water monitoring activities conducted on September 6, 2016 and summarizes the annual trends. In addition to the activities typically conducted during the monitoring event, the water quality parameters including oxygen demand, dissolved oxygen and oxygen reduction potential were collected to assess the effectiveness of the permeable reactive barrier (PRB) that was installed in November 2013.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding this report, please contact either Mr. Matt Graul of the EBRPD or me at 510-644-3123.

Sincerely,

Junat S. Makdin

Richard S. Makdisi, P.G., R.E.A. Principal Geochemist/President

Matthew Loul

Matt Graul, Stewardship Manager East Bay Regional Park Distric

cc: State of California GeoTracker database Alameda County Department of Environmental Health 'ftp' system

TABLE OF CONTENTS

Section	n Page
1.0	INTRODUCTION
	Project Background
2.0	PHYSICAL SETTING
	Site Topography
3.0	REGULATORY CONSIDERATIONS
	Groundwater Contamination
4.0	SECOND SEMIANNUAL 2016 ACTIVITIES
	Groundwater Monitoring and Sampling
5.0	EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY19
	Contaminant Source Assessment19Water Level Trends20Hydrochemical Trends21Plume Geometry and Migration IndicationsError! Bookmark not defined.Closure Criteria Assessment and Proposed Actions34
6.0	SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS
	Summary and Conclusions36Proposed Ongoing Actions38Proposed Remedial Alternative38
7.0	REFERENCES
8.0	LIMITATIONS47

Appendices

- Appendix A Historical Groundwater Monitoring Water Level Data
- Appendix B Groundwater Monitoring Field Documentation
- Appendix C Analytical Laboratory Report and Chain-of-Custody Record
- Appendix D Historical Analytical Results

TABLES AND FIGURES

Tables Page
Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data – September 6, 2016
Table 2 Groundwater and Surface Water Samples Analytical Results –September 6, 2016Redwood Regional Park Corporation Yard, Oakland, California
Table 3 Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Well September 6, 2016 17

Figures	Page
Figure 1 Site Location Map	1
Figure 2 Site Plan showing Location of Historical Borings, Wells and Geologic Cross-S 2	Section
Figure 3 Geologic Cross-Section A-A' showing Subsurface Features and the PRB in Relation to the Hydrocarbon Contaminant Plume	4
Figure 4 Groundwater Elevation Map –September 6, 2016	12
Figure 5 Groundwater Analytical Results and Hydrocarbon Plume – September 6, 2016	515
Figure 6 Historical Groundwater Elevations in Key Site Wells	22
Figure 7 Gasoline and Diesel Hydrochemical Trends in Well MW-2	25
Figure 8 Gasoline and Diesel Hydrochemical Trends in Well MW-8	26
Figure 9 Gasoline and Diesel Hydrochemical Trends in Well MW-11	27
Figure 10 Gasoline and Diesel Hydrochemical Trends in Well MW-7	30
Figure 11 Gasoline and Diesel Hydrochemical Trends in Well MW-9	31
Figure 12 Gasoline and Diesel Hydrochemical Trends in Well MW-10	32
Figure 13 Gasoline and Diesel Hydrochemical Trends in Well MW-12	33

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property is the East Bay Regional Park District (EBRPD) Redwood Regional Park Service Yard located at 7867 Redwood Road in Oakland, Alameda County, California. The site has undergone extensive site investigations and remediation since 1993 to address subsurface contamination caused by leakage from one or both former underground fuel storage tanks (UFSTs) that contained gasoline and diesel fuel. The Alameda County Department of Environmental Health (ACEH) has provided regulatory oversight of the investigation since its inception (ACEH Fuel Leak Case No. RO0000246). Other regulatory agencies with historical involvement in site review include the Regional Water Quality Control Board (Water Board) and the California Department of Fish and Game (CDFG). This report presents the results of the second semiannual 2016 groundwater monitoring activities along with the annual trend analyses and recommendations for future work.

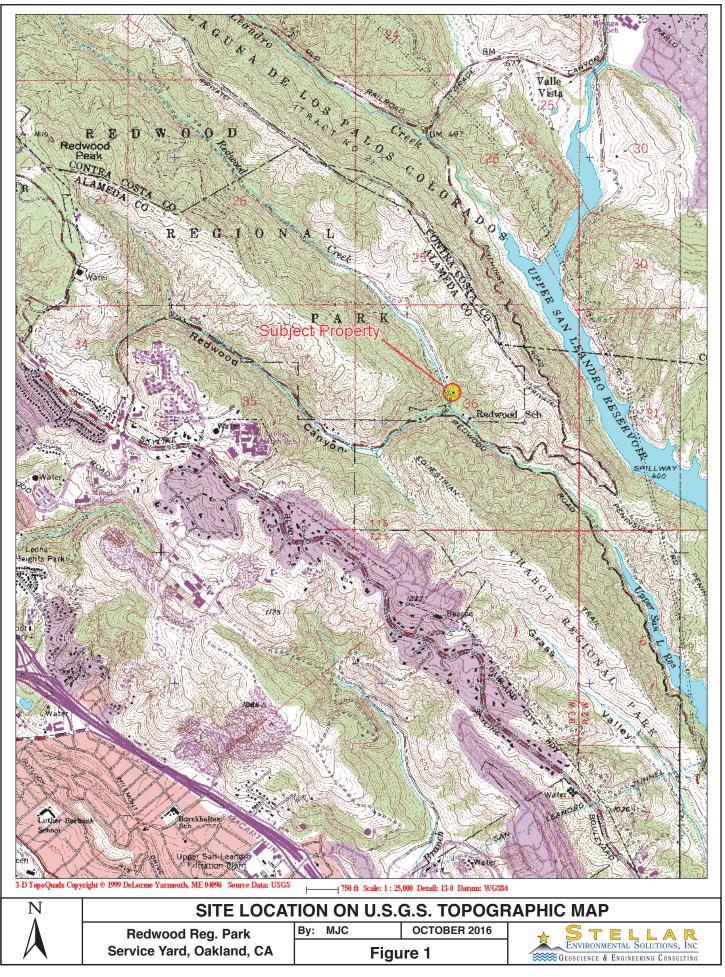
Figure 1 shows the location of the project site. Figure 2 presents the site plan.

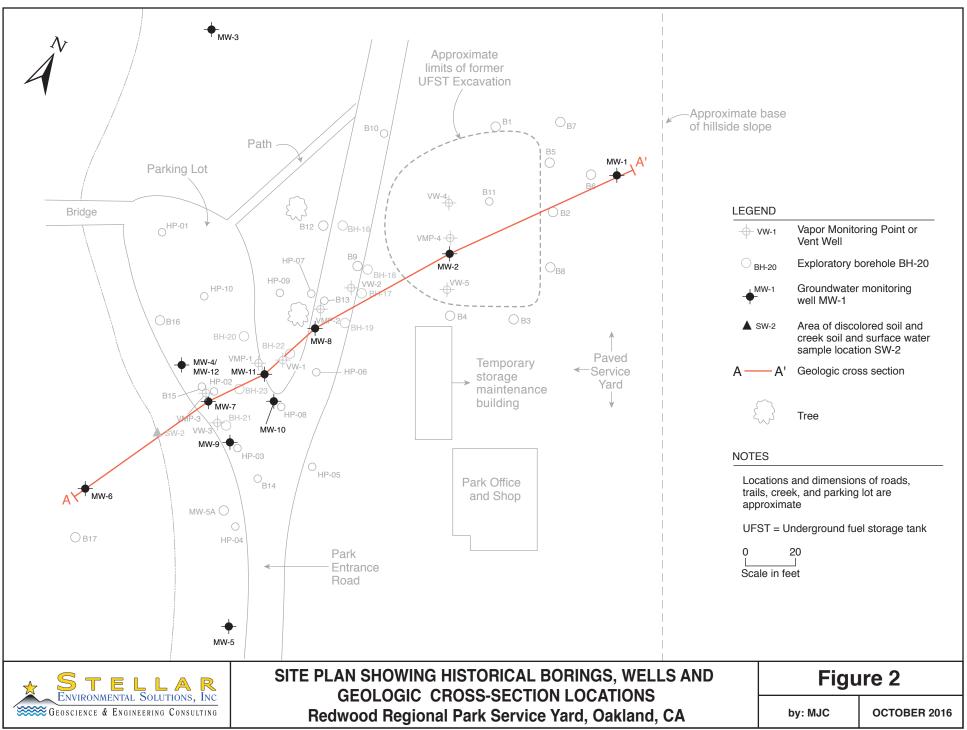
OBJECTIVES AND SCOPE OF WORK

The overall objective of site monitoring and the latest remedial action is to continue trying to reduce the site residual hydrocarbons. Historical remedial efforts have shown that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. This report discusses the following activities conducted/coordinated by Stellar Environmental Solutions, Inc. (Stellar Environmental) for the second 2016 semiannual period from July 1, 2016 to December 31, 2016:

- Collecting water levels in all 12 site wells to determine shallow groundwater flow direction.
- Collecting post-purge groundwater samples for contaminant analysis as well as the water quality parameters pH, temperature, conductivity, dissolved oxygen (DO), and turbidity.
- Collecting surface water samples from Redwood Creek for contaminant analysis.
- Continue post-purge measurement of DO and redox to evaluate the effect of the permeable reactive barrier (PRB) that was installed across the distal contaminant plume. In addition, wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, were analyzed for alternate electron acceptors including nitrates, sulfates, biological oxygen

demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation.


HISTORICAL CORRECTIVE ACTIONS AND INVESTIGATIONS


Other Stellar Environmental reports have discussed previous site remediation and investigations, site geology and hydrogeology, residual site contamination, conceptual model for contaminant fate and transport, and hydrochemical trends and plume stability. The References section of this report lists all technical reports for the site.

The general phases of site work included:

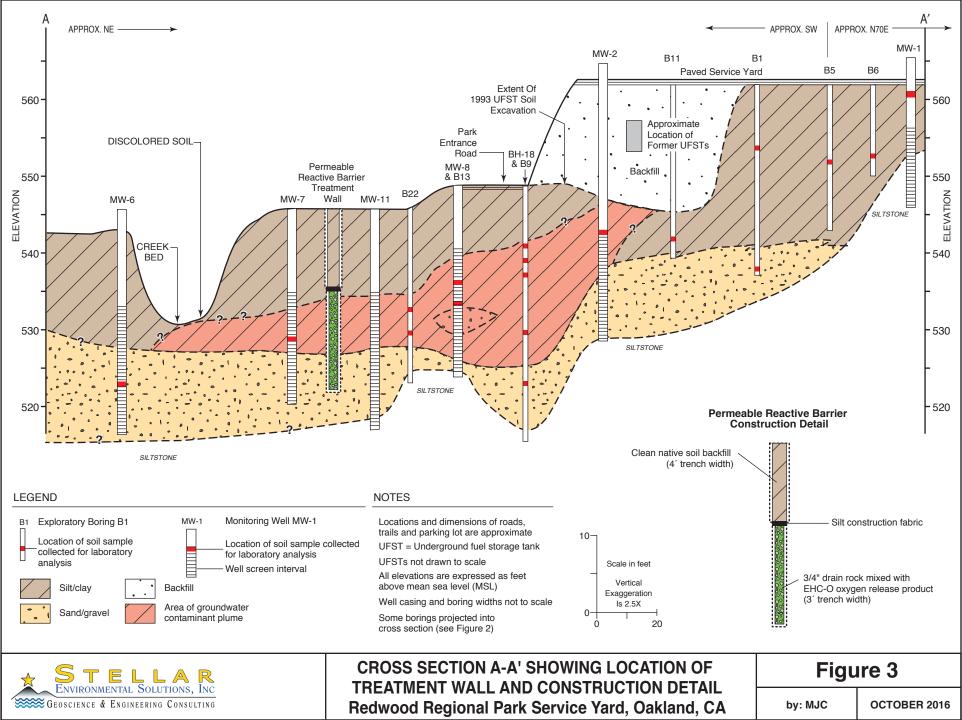
- An October 2000 Feasibility Study report for the site, submitted to ACEH, which provided detailed analyses of the regulatory implications of the site contamination and an assessment of viable corrective actions (Stellar Environmental, 2000d).
- Two instream bioassessment events, conducted in April 1999 and January 2000, to evaluate potential impacts to stream biota associated with the site contamination. No impacts were documented.
- Additional monitoring well installations and corrective action by ORCTM injection proposed by Stellar Environmental and approved by ACEH in its January 8, 2001 letter to the EBRPD. Two phases of ORCTM injection were conducted: in September 2001 and July 2002.
- A total of 58 groundwater monitoring events have been conducted since project inception (February 1994). A total of 10 groundwater monitoring wells are currently available for monitoring.
- A bioventing pilot test conducted in September and October 2004 to evaluate the feasibility of this corrective action strategy, and installation of the full-scale bioventing system in November and December 2005. Bioventing well VW-3 was decommissioned, and two additional bioventing wells (VW-4 and VW-5) were installed on March 4, 2008. Bioventing activities conducted to date have been discussed in bioventing-specific technical reports, and updates were provided in groundwater monitoring progress reports as they relate to this ongoing program.
- An ORCTM injection pilot test, conducted by Stellar Environmental on March 10, 2009, to control historical high levels of hydrocarbons contamination that began to appear in September 2007 in source well MW-2.
- A Remedial Action Workplan (RAW), dated August 20, 2009, prepared by Stellar Environmental in response to a letter from ACEH. ACEH approved the RAW in a letter (dated October 2, 2009) to the EBRPD.

- An ORCTM injection conducted over the full footprint of plume during First Quarter 2010 (on February 1-2), followed by 30-day post-injection monitoring and sampling of key site wells (on March 2).
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual by ACEH at the request of Stellar Environmental on behalf of Park District occurred in June 2011.
- In concurrence with ACEH, the site bioventing system having accomplished its design purpose, was discontinued on July 18, 2011.
- The November 2011 Stellar Environmental PRB RAW, was approved by ACEH and installed in November 2013. While the initial results appeared promising the subsequent drought conditions resulted in the PRB being less then optimally effective and 3 years after its installation its effectiveness at reducing hydrocarbon impacted groundwater moving through it is absent.

2016-02-02

2.0 PHYSICAL SETTING

This section discusses the site hydrogeologic conditions based on geologic logging and water level measurements collected at the site since September 1993. Previous Stellar Environmental reports have included detailed discussions of site lithologic and hydrogeologic conditions. In May 2004, ACEH requested, via email, an additional evaluation of site lithology—specifically, the preparation of multiple geologic cross-sections both parallel and perpendicular to the contaminant plume's long axis. Those cross-sections were included in previous monitoring reports from July 2004 through the first semiannual 2014 monitoring event, after which updated geologic cross-section A-A' along the long axis of the groundwater contaminant plume (i.e., along local groundwater flow direction) showing the permeable reactive barrier (PRB) is presented here as Figure 3. The location of cross-section A-A' is shown on Figure 2.


SITE TOPOGRAPHY

The site slopes to the west—from an elevation of approximately 564 feet above mean sea level at the eastern edge of the service yard to approximately 530 feet above mean sea level at Redwood Creek, which defines the approximate western edge of the project site with regard to this investigation.

SITE LITHOLOGY

Shallow soil stratigraphy consists of a surficial 3- to 10-foot-thick clayey silt unit underlain by a 5- to 15-foot-thick silty clay unit. In the majority of boreholes, a 5- to 10-foot-thick clayey coarse-grained sand and clayey gravel unit that laterally grades to a clay or silty clay was encountered. This unit overlies a weathered siltstone at the base of the observed soil profile. Soils in the vicinity of MW-1 are inferred to be landslide debris.

A previous Stellar Environmental report (Stellar Environmental, 2004c) presented a bedrock surface isopleth map (elevation contours for the top of the bedrock surface) in the contaminant plume area. The isopleth map showed the bedrock surface slopes steeply, approximately 0.3 feet/foot from east to west (toward Redwood Creek) in the upgradient portion of the site (from the service yard to under the entrance road), then slopes gently from east to west in the downgradient portion of the site (under the gravel parking area) toward Redwood Creek.

2016-02-07

This general gradient corresponds to the local groundwater flow direction. On the southern side of the plume area, bedrock slopes gently from south to north (the opposite of the general topographic gradient). Bedrock topography on the northern side of the plume cannot be determined from the available data.

In the central and downgradient portions of the groundwater contaminant plume (under the entrance road and the parking area), the bedrock surface has local, fairly steep elevation highs and lows, expressing a hummocky surface. Bedrock elevations vary by up to 10 feet over distances of less than 20 feet in this area. Local bedrock elevation highs are observed at upgradient location BH-13 and at downgradient location B15/HP-02. Intervening elevation lows create troughs that trend north-south in the central portion of the plume and east-west in the downgradient portion of the plume.

The bedrock surface (and overlying unconsolidated sediment lithology) suggests that the bedrock surface may have at one time undergone channel erosion from a paleostream(s) flowing subparallel to present-day Redwood Creek. Because groundwater flows in the unconsolidated sediments that directly overlie the bedrock surface, it is likely that the hummocky bedrock surface affects local groundwater depth and flow direction. This is an important hydrogeologic control that should be considered if groundwater-specific corrective action is contemplated.

HYDROGEOLOGY

Groundwater at the site occurs under unconfined and semi-confined conditions, generally within the clayey, silty, sand-gravel zone. The top of this zone varies between approximately 12 and 19 feet below ground surface (bgs); the bottom of the water-bearing zone (approximately 25 to 28 feet bgs) corresponds to the top of the siltstone bedrock unit. Seasonal fluctuations in groundwater depth create a capillary fringe of several feet that is saturated in the rainy period (late fall through early spring) and unsaturated during the remainder of the year. The thickness of the saturated zone plus the capillary fringe varies between approximately 10 and 15 feet in the area of contamination. Local perched water zones have been observed well above the top of the capillary fringe. Consistent with the bedrock isopleth map showing an elevation depression in the vicinity of MW-11, historical groundwater elevations in MW-11 are sporadically lower than in the surrounding area. As discussed in the previous subsection, local groundwater flow direction likely is more variable than expressed by groundwater monitoring well data, due to local variations in bedrock surface topography.

We estimate a site groundwater velocity of 7 to 10 feet per year, using general look-up tables for permeability characteristics for the site-specific lithologic data obtained from site investigations. This velocity estimate is conservatively low, but does meet minimum-distance-traveled criteria from the date when contamination was first observed in Redwood Creek (1993) relative to the

time of the UST installations (late 1970s). Locally, however, the groundwater velocity could vary significantly. Calculating the specific hydraulic conductivity critical to accurately estimating site-specific groundwater velocity would require direct testing of the water-bearing zone through a slug or pumping test.

Redwood Creek, which borders the site to the west, is a seasonal creek known for occurrence of rainbow trout. Creek flow in the vicinity of the site shows significant seasonal variation, with little to no flow during the summer and fall dry season, and vigorous flow with depths exceeding 1 foot during the winter and spring wet season. The creek is a gaining stream (i.e., it is recharged by groundwater seeps and springs) in the vicinity of the site, and discharges into Upper San Leandro Reservoir located approximately 1 mile southeast of the site. During low-flow conditions, the groundwater table is below the creek bed in most locations (including the area of historical contaminated groundwater discharge); consequently, there is little to no observable creek flow at these times.

The following groundwater gradient information is based on the monitoring data contained in Section 4.0 of this report. In the upgradient portion of the site (between well MW-1 and MW-2, in landslide debris and the former UFST excavation backfill) the groundwater gradient was measured at approximately 0.26 feet per foot. Downgradient from (west of) the UFST source area (between MW-2 and Redwood Creek) the groundwater gradient flattens out to approximately 0.074 feet per foot. The average groundwater elevation was 2.77 feet lower than the previous (March 2016) event, with the greatest decrease of 3.81 feet measured in MW-10 and the lowest increase measured in MW-2 of 1.48 feet. The direction of shallow groundwater flow during the current event was to the west-southwest (toward Redwood Creek), which is consistent with historical site groundwater flow direction.

3.0 REGULATORY CONSIDERATIONS AND OVERSIGHT

This section summarizes the regulatory considerations with regard to surface water and groundwater contamination. There are no ACEH or Water Board cleanup orders for the site, although all site work has been conducted under oversight of these agencies.

GROUNDWATER CONTAMINATION

As specified in the Water Board's *San Francisco Bay Region Water Quality Control Plan* (Water Board, 1995), all groundwater are considered potential sources of drinking water unless otherwise approved by the Water Board, and are also assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. While it is likely that site groundwater would satisfy geology-related criteria for exclusion as a drinking water source (excessive total dissolved solids and/or insufficient sustained yield), Water Board approval for this exclusion has not been obtained for the site. As summarized in Table 2 (in Section 5.0), site groundwater contaminant levels are compared to two sets of criteria: 1) Water Board Tier 1 Environmental Screening Levels (ESLs) for residential sites where groundwater <u>is not</u> a current or potential drinking water source.

As stipulated in the ESL guidance (Water Board, February 2013), the ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of multiple components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted. While drinking water standards [e.g., Maximum Contaminant Levels (MCLs)] are published for the site contaminants of concern, ACEH has indicated that impacts to nearby Redwood Creek are of primary importance, and that site target cleanup standards should be evaluated primarily in the context of surface water quality criteria.

SURFACE WATER CONTAMINATION

As summarized in Table 3 (in Section 5.0), site surface water contaminant levels are compared to the most stringent screening level criteria published by the State of California, U.S. Environmental Protection Agency, and U.S. Department of Energy. These screening criteria address chronic and acute exposures to aquatic life. As discussed in the ESL document (Water

Board, 2008), benthic communities at the groundwater/surface water interface (e.g., at site groundwater discharge location SW-2) are assumed to be exposed to the full concentration of groundwater contamination prior to dilution/mixing with the surface water). This was also a fundamental assumption in the instream benthic macro-invertebrate bioassessment events, which documented no measurable impacts.

Historical surface water sampling in the immediate vicinity of contaminated groundwater discharge (SW-2) has sporadically documented petroleum contamination, usually in periods of low stream flow, and generally at concentrations several orders of magnitude less than adjacent (within 20 feet) groundwater monitoring well concentrations. It is likely that mixing/dilution between groundwater and surface water precludes obtaining an "instantaneous discharge" surface water sample that is wholly representative of groundwater contamination at the discharge location. Therefore, the most conservative assumption is that surface water contamination at the groundwater/surface water interface is equivalent to the upgradient groundwater contamination (e.g., site downgradient wells MW-7, MW-9, and MW-12).

While site target cleanup standards for groundwater have not been determined, it is likely that no further action will be required by regulatory agencies when groundwater (and surface water) contaminant concentrations are all below their respective ESL criteria. Residual contaminant concentrations in excess of screening level criteria might be acceptable to regulatory agencies if a more detailed risk assessment (e.g., Tier 2 and/or Tier 3) demonstrates that no significant impacts are likely.

REGULATORY OVERSIGHT

The lead regulatory agency for the site investigation and remediation is ACEH (Case No. RO0000246), with oversight of ACEH provided by the Water Board (GeoTracker Global ID T0600100489). The CDFG is also involved with regard to surface water quality impacts to Redwood Creek, however, no surface water quality impacts to aquatic organisms were found. The ACEH-approved revisions to the site monitoring program as of this date include:

- Discontinuing hydrochemical sampling and analysis in wells MW-1, MW-3, MW-5, and MW-6.
- Discontinuing creek surface water sampling at upstream location SW-1.
- Conversion of surface and groundwater monitoring frequency from quarterly to semiannual.
- The bioventing system was discontinued in July 2011.
- Monitoring the effectiveness of the PRB for a period of 3 years after its installation.

The site is in compliance with State Water Resources Control Board's GeoTracker requirements for uploading electronic data and reports. In addition, electronic copies of technical documentation reports published since Second Quarter 2005 have been uploaded to ACEH's file transfer protocol (ftp) system.

The ACEH case officers provide regulatory communication, workplan approvals and review of investigation and corrective action progress have been Mr. Scott O. Seery (1995-2004), Mr. Jerry Wickham, P.G. (2005-2015), and Ms. Anne Jurek (2016-present).

4.0 SECOND SEMIANNUAL 2016 ACTIVITIES

This section presents the creek surface water and groundwater sampling procedures and methods for the groundwater monitoring event (Second Semiannual 2016), conducted on September 6, 2016, along with the analytical results. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs (State Water Resources Control Board, 1989), and followed the methods and protocols approved by ACEH in the Stellar Environmental workplan (Stellar Environmental, 1998a).

The current monitoring period activities included:

- Measuring static water levels in all 11 site wells;
- Collecting post-purge groundwater samples for laboratory analysis of site contaminants and as well as the water quality parameters pH, temperature, conductivity, and turbidity during purging from wells located within (or potentially within) the groundwater plume (MW-2, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12);
- Collecting Redwood Creek surface water samples for laboratory analysis from locations SW-2 and SW-3 could not be collected this event as the creek was dry.
- Continued post-purge measurement of dissolved oxygen (DO) and redox to monitor the effect of the permeable reactive barrier (PRB) that was installed on November 20, 2013 across the distal contaminant plume. In addition, Stellar Environmental also analyzed wells MW-7, MW-9 and MW-12, located directly downgradient of the PRB, for alternate electron acceptors including nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to evaluate the effect of PRB after installation.

The locations of all site monitoring wells and creek water sampling locations are shown on Figure 2 (in Section 1.0). Appendix A contains historical groundwater elevation data. Appendix B contains the groundwater monitoring field records for the current event.

Well construction information and the September 6, 2016 groundwater elevation data are summarized in Table 1. Figure 4 is a groundwater elevation map constructed from the current event monitoring well groundwater elevation data.

Well	Well Depth	Screened Interval	TOC Elevation	Groundwater Depth (btoc)	Groundwater Elevation
MW-1	18	7 to17	565.83	4.77	561.06
MW-2	36	20 to 35	566.42	22.64	543.78
MW-3	42	7 to 41	560.81	23.58	537.23
MW-5	26	10 to 25	547.41	17.09	530.32
MW-6	26	10 to 25	545.43	NA	NA
MW-7	24	9 to24	547.56	14.23	533.33
MW-8	23	8 to 23	549.13	13.63	535.50
MW-9	26	11 to 26	549.28	16.40	532.88
MW-10	26	11 to 26	547.22	13.47	533.75
MW-11	26	11 to 26	547.75	13.68	534.07
MW-12	25	10 to 25	544.67	11.01	533.66

Table 1Groundwater Monitoring Well Constructionand Groundwater Elevation Data – September 6, 2016

Notes:

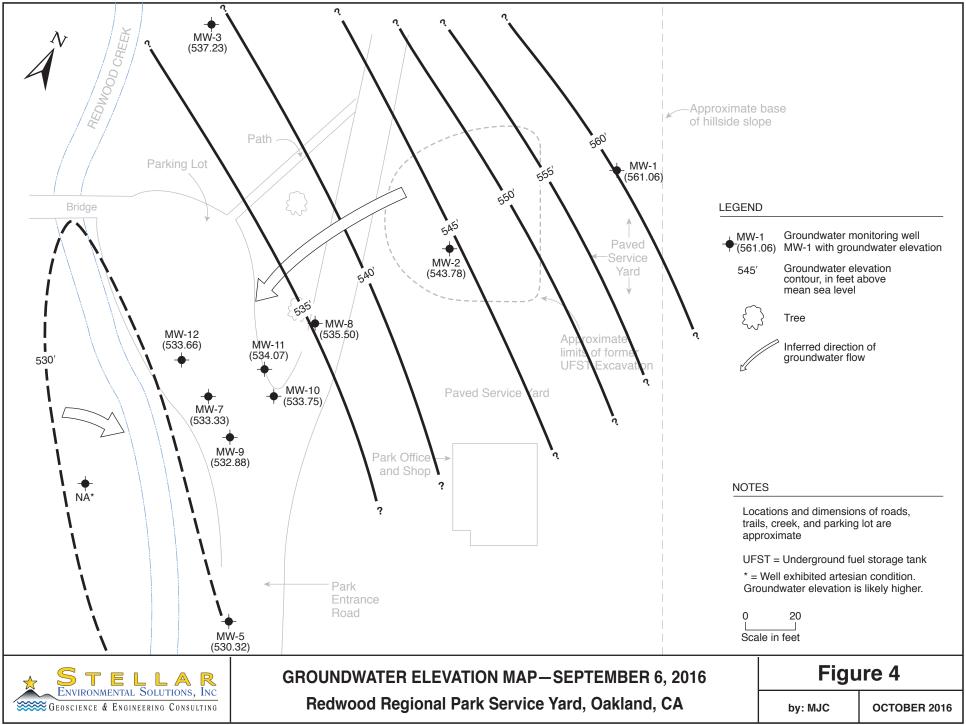
All measurements expressed in feet

TOC = top of casing

bgs = below ground surface

Wells MW-1 through MW-6 are 4-inch diameter; all other wells are 2-inch diameter.

All elevations are expressed in feet above mean sea level. (U.S. Geological Survey)


The PRB inoculated treatment zone is located from 10-22 feet bgs which correlates to an elevation ranging from 525.5 - 537.5 feet amsl

 $\mathbf{N}\mathbf{A} = \mathbf{N}\mathbf{o}\mathbf{t}$ assessable for monitoring due to fallen tree

GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring well water level measurements, purging, sampling, and field measurements were conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel. As the first task of the monitoring event, static water levels were measured using an electric water level indicator. The wells to be sampled for contaminant analyses were then purged (by bailing and/or pumping) of three wetted casing volumes. Aquifer stability parameters (temperature, pH, electrical conductivity and turbidity) were measured after each purged casing volume to ensure that representative formation water would be sampled. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the analytical results of the previous event).

The sampling-derived purge water and decontamination rinseate (approximately 65.4 gallons) from the current event was containerized in the onsite above-ground storage tank. Purgewater is accumulated in the onsite tank until it is full, at which time the water is transported offsite for proper disposal.

2016-02-03

REDWOOD CREEK SURFACE WATER SAMPLING

Surface water sampling usually conducted by Blaine Tech Services under the supervision of Stellar Environmental personnel could not be done this period as the creek was dry at both of the prescribed creek sampling locations: location SW-2 immediately downgradient of the former UFST source area and within the area of documented creek bank soil contamination; and surface water sampling location SW-3 (located approximately 500 feet downstream of the SW-2 location). In accordance with a previous Stellar Environmental recommendation approved by ACEH, upstream sample location SW-1 is no longer part of the surface water sampling program.

At the time of the September 2016 sampling event, the entire stretch of creek was dry with no areas of visible ponded water between location SW-3 and location SW-2. Blaine Tech personnel did not report observing orange algae in the creek bank at location SW-2 or petroleum odors during this event.

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

The September 2016 semiannual field and analytical laboratory results are summarized on Table 2. Figure 5 shows the distribution of the contaminant analytical results and the inferred limits of the gasoline groundwater plume. Appendix C contains the certified analytical laboratory report and chain-of-custody record. Appendix D summarizes the historical groundwater and surface water analytical results.

Second Semiannual 2016 groundwater contaminant concentrations were as follows: The ESLs for residential areas where groundwater is a drinking water resource were exceeded for TEHd in six of the seven wells sampled and for TVHg in five of the seven wells sampled. Benzene was detected in two wells but was exceeded only in well MW-9. Ethylbenzene was detected in four wells and above the ESL in wells MW-7, MW-9 and MW-11. Total xylenes were detected in four wells but only MW-9 showed concentrations above the ESL. Toluene was not detected in any of the seven wells. MTBE was detected in 3 wells but none exceeded the ESL.

Well MW-9 contained both the maximum TVHg and TEHd groundwater with TVHg detected at 120,000 ug/L being the historical highest site detection of this contaminant. MW-7, MW-9 and MW-12 are located in the downgradient central area of the plume, adjacent to Redwood Creek. The northern edge of the downgradient edge of the plume is defined by well MW-12. The southern edge of the plume in the downgradient area is not strictly defined; however, based on historical groundwater data, it appears to be located between well MW-9 and well MW-5. The current event contaminant plume geometry is consistent with historical contaminant distribution.

Surface water sampling could not be conducted this event at either of the prescribed sampling locations; SW-2 or SW-3 due to insufficient creek water for sampling.

Table 2Groundwater and Surface Water SamplesAnalytical Results –September 6, 2016Redwood Regional Park Corporation Yard, Oakland, California

			Contaminant Concentrations						
Location	Dissolved Oxygen	ORP	TEHd	TVHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
GROUNDWATER SAMPLES									
MW-2	3.45	-126	400	410	<0.5	<0.5	< 0.5	<0.5	2.5
MW-7	0.82	-110	2,100	6,800	<0.5	<0.5	69	5.3	<2.0
MW-8	0.59	-90	430	220	0.53	<0.5	3.6	5.52	4.5
MW-9	0.59	-93	6,400	120,000	550	<8.3	7,600	490	<33
MW-10	1.05	-40	120	63	<0.5	<0.5	<0.5	<0.5	4.4
MW-11	0.62	-73	1,500	1,500	<0.5	<0.5	11	0.62	<2.0
MW-12	0.78	67	58	<50	<0.5	<0.5	<0.5	<0.5	<2.0
Groundwater ESLs ^(a)			100	100	1.0	40	13	20	5.0
REDWOOD CREEK SURFACE WATER SAMPLES									
SW-2 (dry this event)	NS	NS	NS	NS	NS	NS	NS	NS	NS
SW-3 (dry this event)	NS	NS	NS	NS	NS	NS	NS	NS	NS
Surface Water Screening Levels ^(b)			100	100	1.0	40	13	20	5.0

Notes:

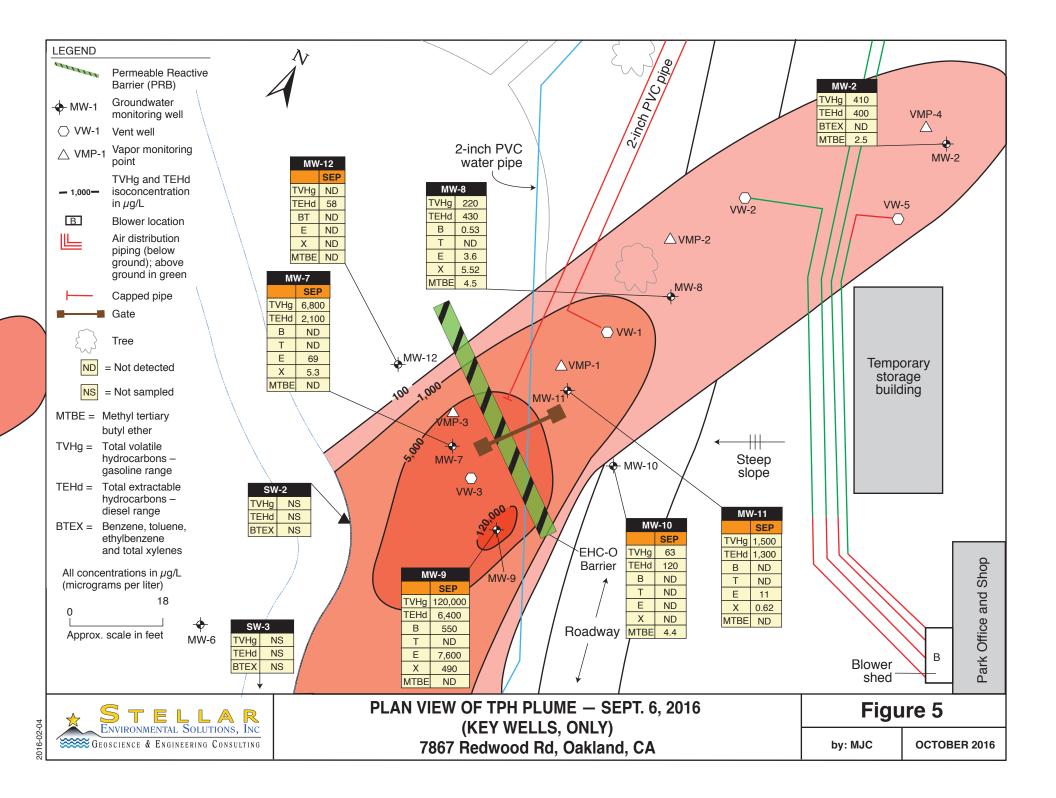
(a) ESLs = Water Board Environmental Screening Levels (where groundwater is a potential drinking water resource) (Water Board, 2016).

^(b) Water Board Surface Water Screening Levels for freshwater habitats (Water Board, 2008).

Samples in **bold-face type** exceed the ESLs and/or surface water screening levels where groundwater <u>is</u> a potential drinking water resource. Analytical results shown as < and indicate a non-detection or less than the laboratory detection limit.

NA = not analyzed NLP = no level published NS = not sampled

MTBE = methyl tertiary-butyl ether


TVHg = total volatile hydrocarbons – gasoline range

TEHd = total extractable hydrocarbons - diesel range

All contaminant concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion. Dissolved oxygen concentrations are expressed in milligrams per liter (mg/L); post-purge measurement in all wells. ORP = redox or oxidation reduction potential measured in millivolts (mV)

Quality Control Sample Analytical Results

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (see Appendix C).

PERMEABLE REACTIVE BARRIER (PRB) DESIGN AND BACKGROUND

The PRB was installed on November 20, 2013 and was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination as they migrate in the groundwater flow and before they reach Redwood Creek. The PRB trench was constructed by excavating a trench approximately 40 feet long and 3 feet wide and 22 feet bgs in the distal downgradient contaminated zone. A total of 1,250 pounds of AdventusTM EHC-O oxygen release product was mixed in a relatively more permeable drain rock backfill and emplaced in the trench from 22 to 10 feet bgs as it was backfilled.

The main active ingredient in Adventus EHC-OTM is calcium peroxide. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a pH range of 6.74 to 7.18, mostly within the optimum range. Under these conditions, the Adventus EHC-OTM remedy product will react to release hydrogen peroxide and oxygen. This allows for the initial chemical oxidation to take place; starting the breakup of the contaminants in groundwater as they reach the PRB. The oxygen is then released more slowly, which will assist bioremediation for several years.

The PRB should be effective in reducing the toxicity of the plume by accelerating the biodegradation significantly within the first approximately 6-12 months. The volume of dissolved hydrocarbons within the generalized area is expected to be reduced within the first 12 months by 50 percent or more—according to the manufacturer's data. However, groundwater flow through the reactive wall is needed to trigger the treatment and the until December 2014 rainfall the recent year drought conditions kept the groundwater elevations low.

Permeable Reactive Barrier Monitoring Indicators

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12, all located downgradient of the PRB location; which included nitrates, sulfates, biological oxygen demand (BOD), and chemical oxygen demand (COD) to track the effect of the oxygen release product (Adventus EHC-OTM) utilization. One concern about the use of Adventus EHC-OTM is that other non-hydrocarbon-utilizing microorganisms will use the product as well, without the benefit of hydrocarbon reduction occurring as effectively. The oxygen demand exerted by extraneous oxygen sinks, such as nitrates and sulfates can then be estimated to evaluate its equivalent to the oxygen demand exerted by the contaminants of concern.

Table 3 includes the results of these additional analyses that have been collected in site monitoring wells located immediately downgradient of the proposed PRB.

Table 3 Analytical Results of Electron Acceptors and Oxygen Demand in Downgradient Wells September 6, 2016

	Analytical Concentrations (mg/L)						
Location	Nitrates	Sulfates	BOD	COD			
MW-7	< 0.05	6.1	<5.0	15			
MW-9	< 0.05	3.4	8.7	26			
MW-12	< 0.05	47	<5.0	14			

Notes: COD = Chemical oxygen demand; BOD = biochemical oxygen demand;

Dissolved Oxygen

DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of hydrocarbons. Active aerobic biodegradation of petroleum hydrocarbon compounds requires at least one to two milligrams per liter (mg/L) of DO in groundwater. During aerobic biodegradation, DO levels are reduced in the hydrocarbon plume as respiration occurs. Therefore, DO levels that vary inversely to hydrocarbon concentrations are consistent with the occurrence of aerobic biodegradation. However, no significant reduction of total hydrocarbons has been recorded so far.

The DO concentrations, downgradient of the PRB, at monitoring wells MW-7, MW-9 and MW-12, of which MW-9 currently shows the highest concentrations of hydrocarbons, ranges from 0.59 – 0.82 mg/L. The DO at well MW-7 is relatively high (0.82 mg/L) suggesting a more active aerobic biodegradation. DO is relatively low in MW-9 (0.59 mg/L) showing an inverse relationship of hydrocarbons that the active aerobic biodegradation the PRB is designed to promote. The average DO in the 7 site wells showed an overall decrease from 3.20 mg/L in September 2015 compared to 1.13 mg/L during this September 2016 event. However, the average DO in the 3 wells (MW-7, MW-9 and MW-12) downgradient of the PRB, showed less of an average decrease in DO from 0.95 mg/L in March 2016 to 0.73 mg/L this September 2016, suggesting the marginal decrease in DO is less of a function of the effect of the PRB, but more likely attributed to seasonal fluctuations.

Oxidation-Reduction Potential

The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800 mV. In oxidizing (aerobic) conditions favorable to bioremediation, the ORP of groundwater is typically positive; in reducing (anaerobic) conditions, the ORP is typically negative (or less positive). Measurement of the baseline ORP during this sampling event ranged from -110 to 67 mV in wells MW-7, MW-9 and MW-12 located within 15 feet downgradient of the PRB, and from -40 to - 73 mV in wells MW-10 and MW-11, respectfully, located within 15 feet upgradient of the PRB, respectfully. As with the DO, the ORP trend will be monitored to evaluate the effectiveness of the PRB in subsequent monitoring events. Measurements collected during the September 2016 monitoring event are included in Table 3.

Chemical and Biochemical Oxygen Demand, Nitrates, and Sulfates

Alternate electron acceptors were measured during this monitoring and sampling event in wells MW-7, MW-9 and MW-12 located downgradient of the PRB location; which included nitrates, sulfates, BOD and COD to track the effect of the oxygen release product (Adventus EHC-OTM) utilization.

The presence of sulfates and absence of nitrates in wells MW-7, MW-9 and MW-12 is generally consistent with the DO and ORP data. These results indicate that some degree of aerobic degradation is likely occurring at the site; however there is a slight decrease in sulfates but no discernable trend and/or correlation to hydrocarbon concentration in this event.

PERMEABLE REACTIVE BARRIER EFFECTIVENESS

The PRB has had disappointing results as being an effective reactive barrier that clearly shows a significant and sustained reduction of hydrocarbons at the two of the three key wells; MW-7 and MW-9, downgradient of the PRB. The main active ingredient in Adventus EHC-OTM is calcium peroxide. This initial chemical oxidation to take place starts the breakup of the contaminants in groundwater as they reach and react within the PRB. The oxygen is released slowly but at a high enough level that is designed to assist bioremediation for several years. The optimal pH for hydrocarbon reduction is between seven and nine. The groundwater measured in site wells during this event had a post-purge pH range of 6.24 to 7.21, only partially within the optimum range, however the effective principal reaction timeframe of the EHC-OTM estimated at two to a maximum of 3 years has essentially run out.

The data did not showing any appreciable or significant reduction in the hydrocarbon compounds in two of the three key wells, (MW-7 and MW-9), downgradient of the PRB. The drought over the last two years may be in part responsible for not recharging groundwater in area to the full height of the PRB resulting in less mobilization of the EHC-OTM product. In addition, saturation of the PRB due to the greater than average 2015-2016 rainfall season may have created a hydrologic pressure that mobilized contaminants that resulted in the historical high concentrations of TPH-g and benzene detected in MW-9 this September 2016 event.

5.0 EVALUATION OF HYDROCHEMICAL TRENDS AND PLUME STABILITY

This section evaluates the observed hydrochemical trends with regard to plume stability and migration of the center of contaminant mass toward Redwood Creek. An assessment is made as to the nature of residual contaminated soil that acts as a continued source of groundwater contamination. A conceptual model (incorporating site lithology, hydrogeology, and hydrochemistry is presented to explain the spatial extent and magnitude of the dissolved hydrocarbon plume.

CONTAMINANT SOURCE ASSESSMENT

Site UFSTs were removed (i.e., discharge was discontinued) in 1993, and some but not all of the source area excavation contaminated soil was removed. That residual hydrocarbon contamination entrained in the soil and capillary fringe has been extremely hard to mitigate, with only partial success achieved through the bioventing and oxygen producing products in-situ injection that has been implemented since 2005. The vadose smear zone is estimated to be 3-4 feet wide based on monitored groundwater elevation and recent observations made in 2013 during excavation trenching for installation of the PRB.

Success at reducing the significant contamination in the mid-field plume area represented by well MW-8 has been achieved along with mitigation of the 2007 timeframe increase at the upper plume area represented by well MW-2. The contaminant plume has historically appeared split into an upper zone of contamination around MW-2 and a lower zone around well MW-7, MW-9 and MW-12 with very low detection, all below the applicable ESLs, surrounding MW-8. The lower plume area represented by the "guard" wells MW-7 and MW-9 were not significantly reduced by the combination of bioventing and March 2010 ORC[™] injection. The PRB was installed in November 2013 in an effort to treat the downgradient distal plume area and mitigate against hydrocarbon impact to Redwood Creek.

The September 2014 event showed historical maximum high concentrations of TVHg in wells MW-9 and MW-12 and of benzene in MW-12 immediately downgradient of the PRB and this September 2016 showed historical maximum high TPHg and benzene in MW-9. These historical high concentrations are likely attributed to the effect of saturation of the PRB creating hydrostatic pressure that mobilizes contaminants in this area of distal plume area. This

September 2016 monitoring shows the contaminant mass to be concentrated in the distal area of the plume, however concentrations of TPHd and TPHg in excess of applicable ESLs still persist in the mid-plume and upper source area.

Borehole soil sampling has provided data on the extent and magnitude of soil contamination in the vicinity of the former UFSTs ("source area") and the outlying area (in the capillary fringe above the groundwater plume). Soil contamination appears constrained to the unsaturated zone and the underlying saturated sediments on the weathered bedrock surface. The 2010 ORC[™] injection effort was aimed at mitigating the apparent large mass of residual TPH contamination in the unsaturated zone, primarily in the area between the former UFSTs and the park entrance roadway, with the contaminated zone thinning toward Redwood Creek. Seasonal desorption of contamination in this unsaturated zone occurs during the rainy season and during high-water periods, acting as a long-term source of dissolved contamination. Previous ORC[™] injection programs—which resulted in permanent reductions at the peripheral plume margins, but were followed by rebound (to pre-injection conditions) within the central portions of the plume—indicate that site conditions support aerobic biodegradation. However, biodegradation is limited by oxygen deficiency in the unsaturated zone.

Based on this conceptual model—and using conservative assumptions for equilibrium partitioning, contaminant geometry, soil moisture, and previous laboratory analytical results for TPH in soil—estimates of TPH mass in soil were calculated based on 2004 and earlier borehole data. Residual TPH in vadose zone soil is estimated at 1,400 to 7,000 pounds (100 to 600 gallons of gasoline), compared to a mass of TPH in groundwater estimated at 1 to 10 pounds (0.1 to 1.0 gallon of gasoline). The hydrocarbon mass in groundwater is likely higher than originally estimated (based on post-2004 data).

Soil and groundwater contamination distribution and site lithologic and hydrogeologic conditions have shown that residual soil contamination, unless abated, will continue to be a source of long-term groundwater contamination via seasonal desorption and migration.

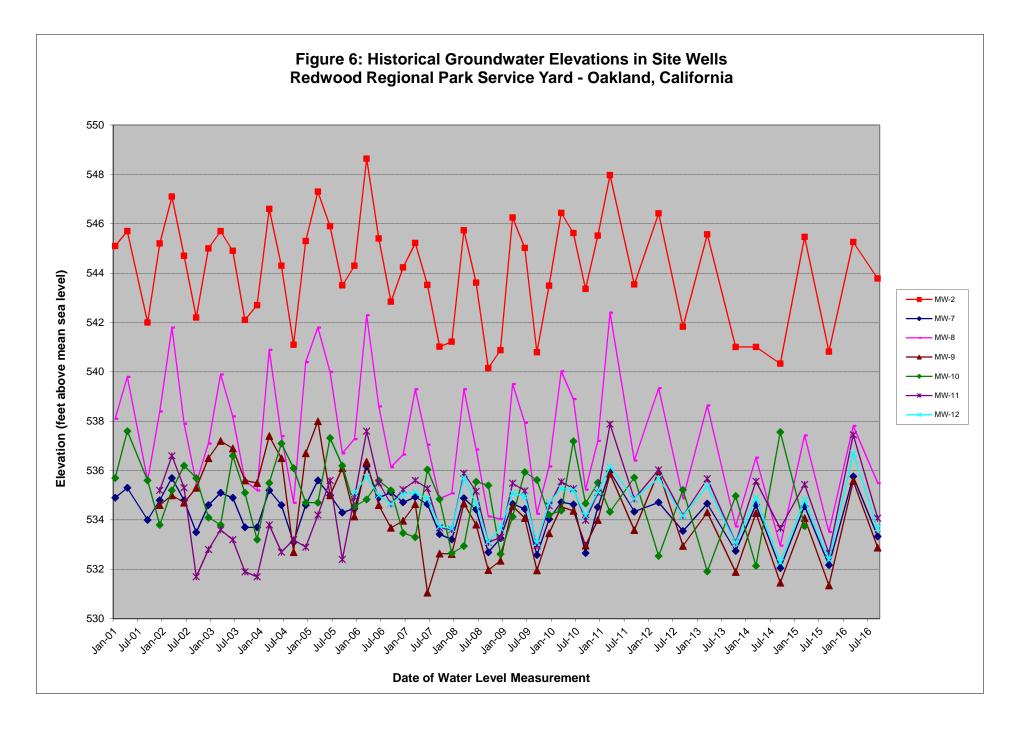
WATER LEVEL TRENDS

Appendix D contains historical groundwater elevation data. Figure 10 shows a trendline of site groundwater elevations in key wells (those within the contaminant plume). The data support the following conclusions:

Groundwater elevations in all of the monitored site wells showed a seasonal fluctuation in 2015-2016—with an average increase of 4.19 feet (from September 2015 to March 2016) to an average decrease of 1.74 feet (from March 2016 to September 2016). When comparing groundwater elevations from September 2015 and this September monitoring

event, there was an average increase of 2.46 feet in groundwater elevation reflecting the high 2015-2016 rainfall season.

- In all wells, the lowest elevations have generally been observed during the end of the dry season and the highest elevations at the peak of the rainy season. This is a common seasonal trend observed in the upper water-bearing zone in the Bay Area.
- Groundwater elevation trends and magnitudes are similar between wells.
- Overall groundwater flow direction is consistently to the west-southwest (toward Redwood Creek). Localized (on the scale of tens of feet) groundwater flow direction appears to vary within the general flow direction, likely controlled by bedrock surface topography.
- The groundwater gradient varies with the topography across the plume but consistently averages around 0.1 feet/foot from the historical UST source area to Redwood Creek.


HYDROCHEMICAL TRENDS

Concentrations of contaminants in an individual well can fluctuate over time for one or more reasons—contaminant migration, seasonal effects due to fluctuating groundwater levels (i.e., desorption from the unsaturated zone and/or dilution of saturated zone contamination), and/or natural attenuation (plus enhancement by active remediation measures such as ORC[™] injection, bioventing and the PRB). These hydrochemical trends can result in changes in the lateral extent and magnitude of a dissolved contaminant plume.

The most consistent trend in the wells located within the centerline of the plume has been a seasonal influence of desorption following winter rains, with a resultant increase in dissolved hydrocarbon concentration in the groundwater.

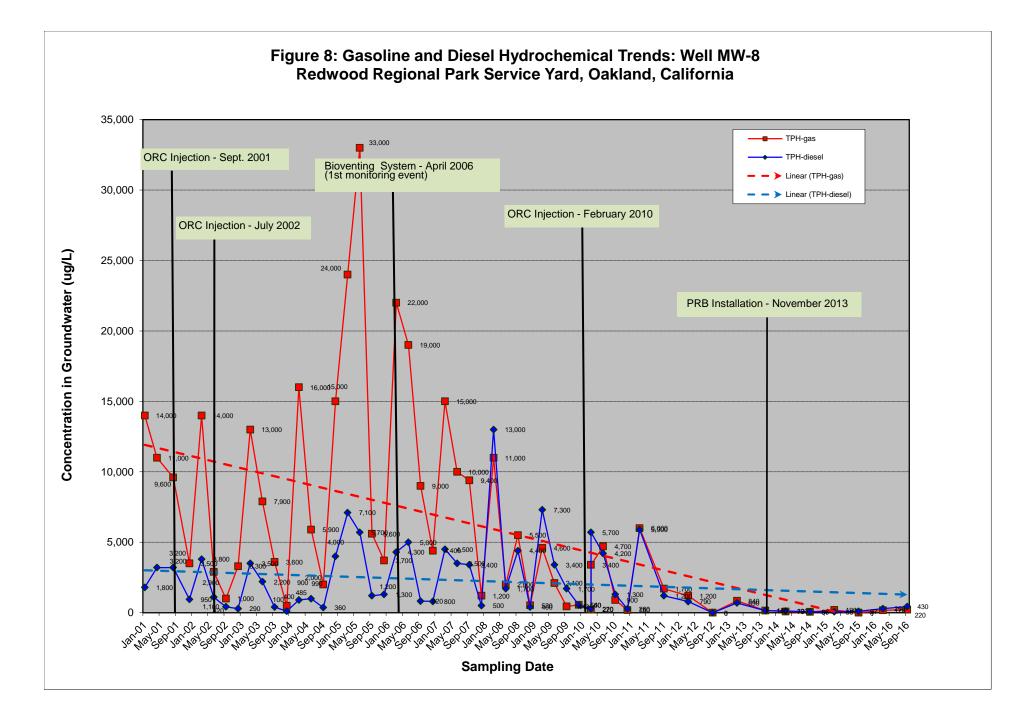
Because the quarter-to-quarter comparisons can be unduly influenced by seasonal effects that mask longer trends, it is useful to compare same-season data over time to determine if concentrations are increasing, decreasing, or remaining stable. Our evaluation of hydrochemical trends focuses on gasoline and diesel, which, when combined, represent the majority of the contaminant mass. To more closely evaluate plume stability differences, the following discussion focuses on four separate portions of the plume relative to the long axis (along the hydraulic gradient): "upgradient" (trailing edge of plume); "mid-plume"; "downgradient"; and "plume fringe."

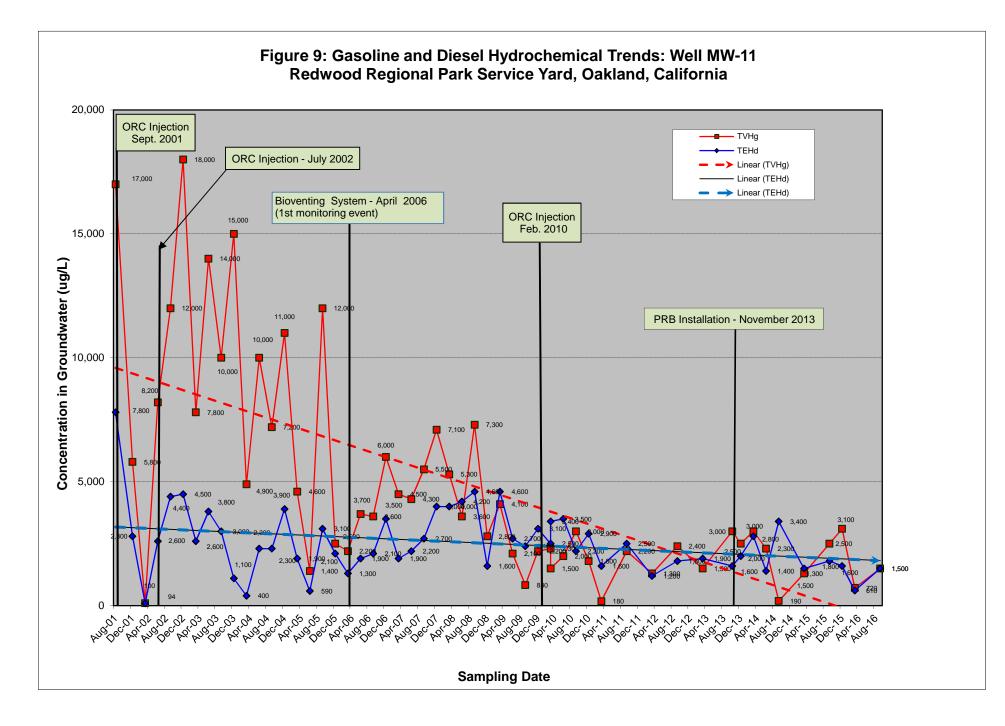
Important components of plume stability include: degree of contaminant fluctuations in individual wells over time; changes in the lateral extent of the plume; and changes in the location of the center of contaminant mass within the plume.

This September 2016 contaminant plume pattern is observed similar as historically seen where the lowest contaminant concentrations are detected in the mid-plume area represented by well MW-8. In the past this lowering of concentrations in mid-plume area suggested the contaminant plume to have disconnected from the source such that historical downgradient concentrations were higher than upgradient (near the source) concentrations. However, a significant increase in gasoline and diesel concentrations in source area well MW-2 was observed beginning in approximately September 2007. The increase continued, even after individual purging events, into 2010. Stellar Environmental commenced with ORC[™] injection near this well and in the general area of the plume in February 2010. Based on that apparent success, in March 2010, a wider ORCTM injection into areas of the plume was initiated. This injection did not result in the same success at reducing concentrations in the lower plume area as it did in the upper and midfield of the plume. The two guard wells MW-7 and MW-9 historically have comparable TPHg + TEHd, however since there have large differences since 2011. Well MW-7 showed a combined 9,100 µg/L TPHg + TEHd in September 2011 compared with 8,700 µg/L TPHg + TEHd in September 2012, which is pretty comparable. But well MW-9 showed a combined 4,500 µg/L TPHg + TEHd in September 2011 compared with a significant increase to 18,600 μ g/L TPHg + TEHd in September 2012 with MW-9 showing the historical highest since site detection of TVHg this September 2016. The contaminants in source area MW-2 have showed a steady decrease since March 2010, with the lower middle and downgradient areas of the plume (MW-7, MW-9, MW-11 and MW-12 exhibiting the highest contaminant concentrations

The permeable reactive barrier (PRB) was installed on November 20, 2013 and was designed to treat and/or intercept accessible subsurface groundwater hydrocarbon contamination as they migrate in the groundwater flow and before they reach Redwood Creek. This September 2016 event, approximately 34 months after installation of the PRB, show the TVHg concentration in wells MW-7, MW-9 and MW-12, immediately downgradient of the PRB to be within historical range with the exception of TVHg in MW-9 which was detected at a historical high and likely attributed to hydrostatic pressure created by the PRB that mobilizes contaminants in this area of distal plume area.

To evaluate plume stability with regard to changes in the center of contaminant mass, we evaluated concentrations of TPH (gasoline and diesel combined) in individual wells over time. The data show no obvious correlation between maximum TPH concentrations and well locations, suggesting high plume instability. Since January 2001, maximum TPH concentrations have been variously detected in upgradient, mid-plume, and downgradient wells. These variations are likely due in large part to differing contaminant mass in unsaturated zone soils at particular locations, resulting in variable amounts of desorbed mass to the plume during high water conditions. The following discusses hydrochemical trends in each of the upgradient, mid-plume, and downgradient portions of the site, as well as at the fringes of the plume.


Upgradient Hydrochemical Trends


MW-2. As described in Section 4.0, this source area well historically has shown low to trace (sometimes non-detectable) contaminant levels. However, starting in the September 2007 monitoring event, the well MW-2 concentrations increased dramatically, suggesting desorption from the original upgradient source area as a result of the drought-induced drop in water levels. In September 2008, a new historic maximum of 40,000 µg/L of gasoline was observed in MW-2 and a new historic maximum of diesel at 37,000 µg/L was observed in March 2009. In March 2010, Stellar Environmental conducted a limited ORCTM injection, which decreased concentrations significantly by the October 2013 event both gasoline and diesel concentrations measured 120 µg/L TPHg and 67 µg/L TPHd. The 2014 and 2015 events showed some marginal increasing TVHg and TPHd concentration followed by the March 2016 event which showed no detection which was likely the result of the above average 2015-2016 rainfall condition. In this September 2016 event TVHg and 400 µg/L TPHd, which are above the site ESLs. Figure 7 shows hydrochemical trends for gasoline and diesel in MW-2.

Mid-Plume Trends

MW-8. Concentrations of TVHg in MW-8, located approximately 60 feet downgradient of MW-2, have been generally decreasing since 2005: from a historic high of 33,000 TPHg μ g/L observed in June 2005 to the lowest TPHg concentration of 180 μ g/L in December 2010 to 1,700 μ g/L in this latest event. TEHd concentrations had remained fairly stable until a TEHd spike of 13,000 μ g/L was observed in March 2008; decreased to below the applicable ESLs in the September 2014 and 2015 events but was above the ESLs this last September 2016. This fluctuation demonstrates that significant contaminant mass entrained in the soil continues to "feed" the dissolved concentration, as demonstrated by periods of recharge represented during the March 2008 sampling event. As contaminant concentrations decrease in the source area, contaminant concentrations in this well will most likely decrease as the plume migrates downgradient. Both gasoline and diesel concentrations have fluctuated widely but follow a well-established seasonal fluctuation pattern. The strong seasonal effect is visually apparent, with annual maximum concentrations generally occurring in late winter/early spring and annual minimum concentrations generally occurring in the fall/winter.

Figure 8 features gasoline and diesel hydrochemical trends in MW-8.

MW-11. This well is located in the lower part of the mid plume zone, along the plume centerline, approximately midway between upgradient well MW-8 and downgradient guard well MW-7. Gasoline and diesel concentrations were greatly reduced in 2001, and this was followed by an equally large increase by late 2002. Since that time, concentrations have fluctuated widely, with a strong seasonal effect. However, both diesel and gasoline concentrations in this well demonstrated a generally decreasing trend since 2008 and were within historical range during this event.

Figure 9 features gasoline and diesel hydrochemical trends in MW-11 and Figure 10 shows hydrochemical trends for gasoline and diesel in well MW-7.

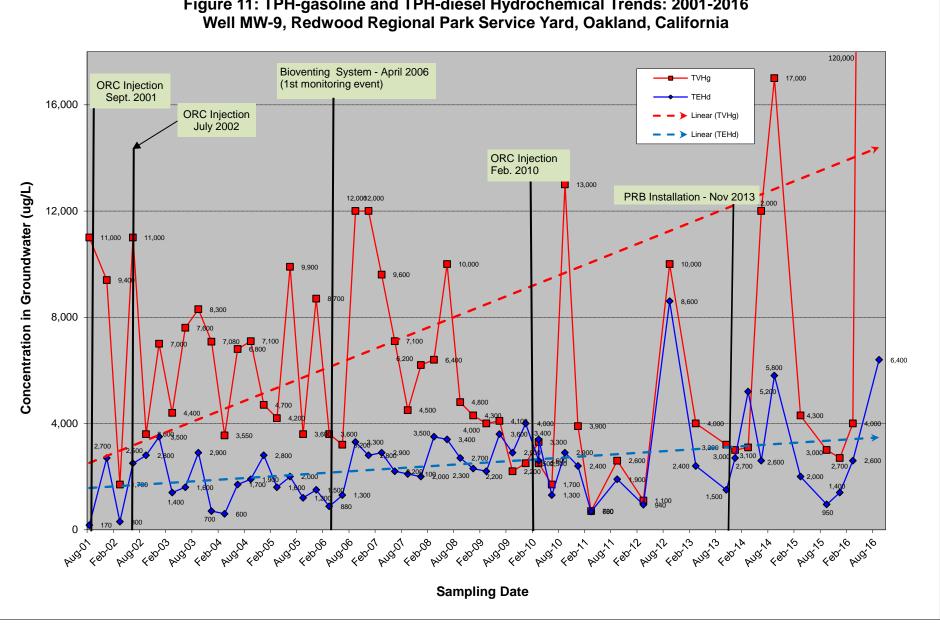
Downgradient Hydrochemical Trends

MW-7 and MW-9. These wells represent the high-concentration area of the central plume at the downgradient area approximately 20 feet from Redwood Creek. Well MW-7 shows concentrations of diesel and gasoline within historical ranges through to this September 2015 and a significant drop in both TPHd and TVHg observed in the limited December 2015 monitoring event. Gasoline and diesel concentrations have been generally stable and within historical range since 2008 with no apparent effect from the PRB, however the December 2015 event showed the lowest TPHd in MW-7 since March 2004. Both diesel and gasoline concentrations increased steadily in well MW-9 since December 2013 following the PRB installation with diesel showing a historical high of 17,000 μ g/L, but showed a steady decrease in gasoline and diesel concentration to within historical ranges observed in 2015. As discussed previously, this 2014 contaminant spike is attributed to the effect of the installation of the PRB initially releasing hydrocarbons entrained in the soil and concentration spikes in 2015 and this 2016 event are likely due to hydrostatic pressure from the PRB mobilizing contaminants in this area of distal plume area. Figures 10 and 11 show the hydrochemical trends for gasoline and diesel in wells MW-7 and MW-9, respectfully.

Plume Fringe Zone Trends

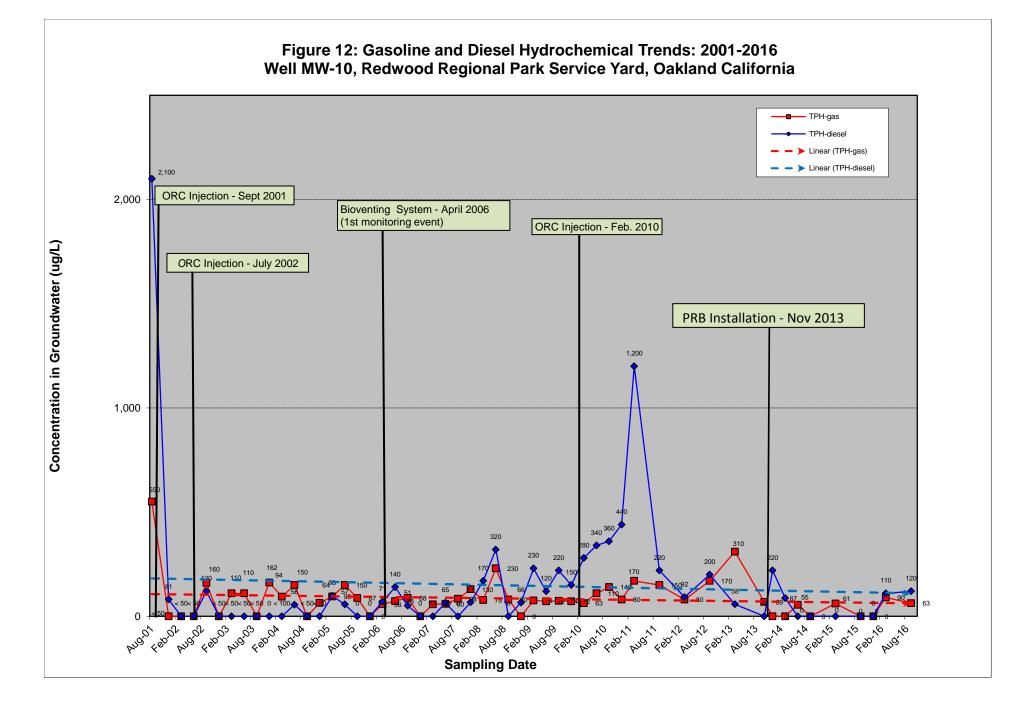
MW-10. This well is located on the southern edge of the plume, in the mid-plume portion relative to the longitudinal axis. Figure 16 shows hydrochemical trends for gasoline and diesel in this well. Concentrations of gasoline generally remained stable compared to 2009, with only slight increases observed above $100 \mu g/L$ and a downward trend in 2013. The diesel concentration trend appears stable with a slightly increasing trend. The historic maximum of 2,100 $\mu g/L$ diesel was recorded in 2001 and the second highest of 1,200 $\mu g/L$ diesel was observed during in March 2011. This well had shown no contaminants in excess of the applicable ESLs since December 2013 until the 2016 monitoring year, which is likely attributed to the above normal 2015-2016 rainfall season. Figure 12 shows hydrochemical trends for gasoline and diesel in well MW-10.

MW-4 (former). This well was located on the northern edge of the plume, just upgradient of Redwood Creek. Other than anomalous diesel detection in June 2004, no contamination had been detected in this well since December 2001. The well was destroyed in November 2005 and replaced by well MW-12 (in an adjacent position).


MW-12. The initial sampling of MW-12 showed elevated petroleum concentrations up to 1,300 μ g/L TVHg, but those concentrations declined until March 2008 when a spike was observed. Concentrations have fluctuated since then, but are below the historical maximum observed and show a decreasing contaminant trend. The September 2014 event following the PRB installation showed historical maximum high concentration of TVHg (2,500 μ g/L), but has remained below ESLs since then. Figure 13 shows hydrochemical trends in well MW-12.

PLUME GEOMETRY AND MIGRATION INDICATIONS

The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination historically fluctuated between the upper portion of the plume (MW-2), the mid-portion of the plume (near MW-8), and the downgradient portion of the plume (at MW-7 and MW-9). The 2015 and 2016 monitoring years showed a decreasing concentration trend in the mid-plume wells (MW-8 and MW-11) and an increasing concentration in the downgradient wells (MW-7, MW-9 and MW-12) with a historical site high concentration of TPH-g and a historical high concentration benzene detected in MW-9 this September 2016 event. The contaminant mass in the distal area of the plume appears to have disconnected and migrated from the source area, however concentration above the applicable ESLs still remain in all areas of the plume.


The plume geometry has not varied substantially over the past years of monitoring, although seasonal fluctuations in contaminant concentrations have been observed. This is exhibited by higher concentrations in downgradient wells in some events, and in mid-plume or upgradient wells in other events.

The October 2013 monitoring event showed the historical highest detection of TEHd detected at surface sampling location SW-2, the most distal point from the source where the plume seeps from the Redwood Creek bank.

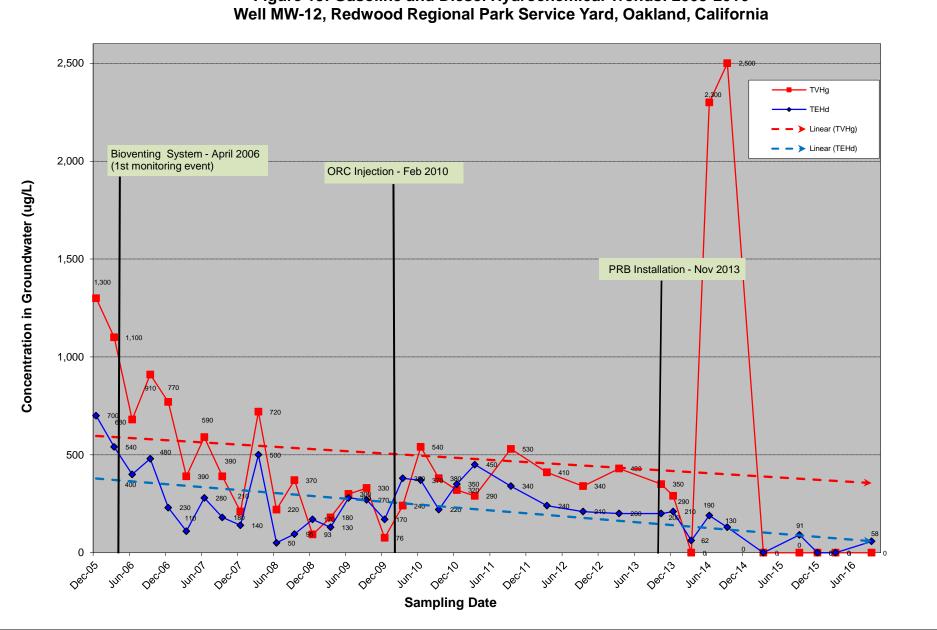
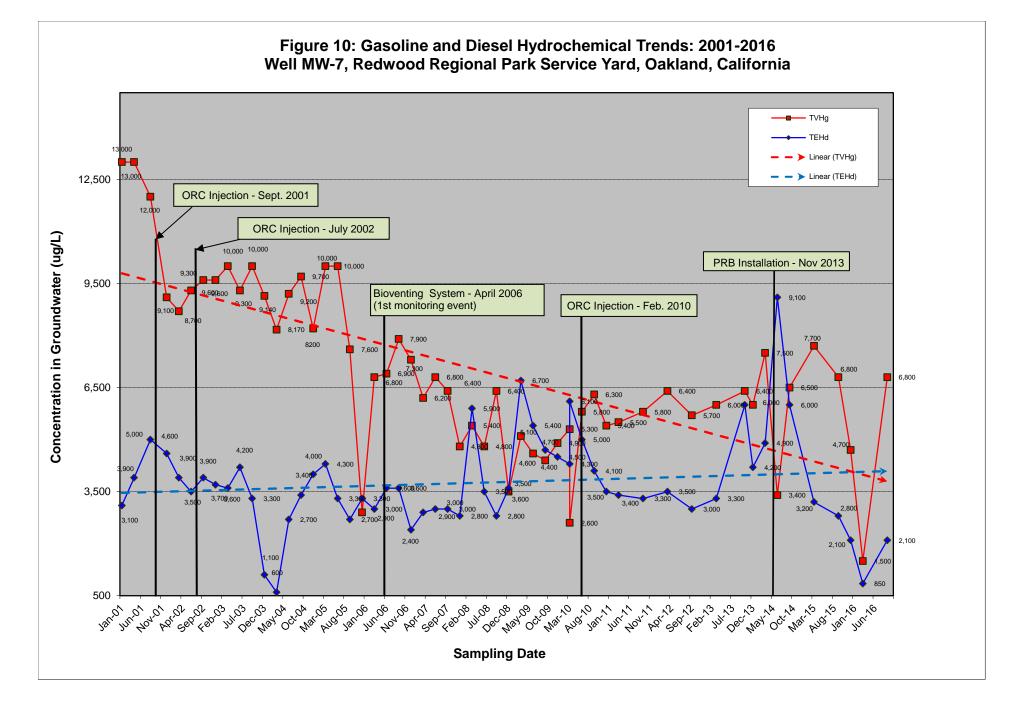


Figure 11: TPH-gasoline and TPH-diesel Hydrochemical Trends: 2001-2016


Stellar Environmental Solutions, Inc.

Stellar Environmental Solutions, Inc.

Figure 13: Gasoline and Diesel Hydrochemical Trends: 2005-2016

CLOSURE CRITERIA ASSESSMENT AND PROPOSED ACTIONS

The Water Board and ACEH generally require that the following criteria be met before issuing regulatory closure of contaminant cases:

- 1. The contaminant source has been removed (i.e., the source of the discharge and obviously-contaminated soil). This criterion has not been partially met. While the UFSTs have been removed, along with 600 cubic yards of contaminated soil, borehole soil sampling has shown a substantial mass of residual source area soil contamination that will act as an ongoing source of groundwater contamination. A bioventing system was installed and began operating in December 2005 as a corrective action to reduce gross contaminant mass in soil. The bioventing system resulted in an estimated magnitude drop in soil contaminant concentrations and thus having accomplished its design purpose, was turned off in June 2011. Four remedial product injection events (2002, 2001, 2009 and 2010) have been conducted at the site prior to installation of the PRB in 2013 to prevent contaminants from reaching Redwood Creek. Installation of the PRB appears to have been effectual in lowering contaminant concentrations as observed in MW-12 in 2014 and 2015, however the other wells MW-7 and MW-9 downgradient of the PRB have returned to historical concentrations. The effectiveness of the EHC-O product in the PRB has expired (product effective period estimated to be 2-3 years) and the PRB may have possibly cause mobilization of contaminants, however additional monitoring will be required to evaluate the hydrologic effect of the PRB.
- 2. The groundwater contaminant plume is well characterized, and is stable or reducing in magnitude and extent. As discussed above, in our professional opinion, this criterion has not been largely met although drought versus heavier rainfall years can significantly affect the plume stability through the taking hydrocarbon out of solution through sorption into the capillary fringe "smear" zone during drought years and coming back into solution during heavy infiltration years when the groundwater table rises. Continued groundwater monitoring will be needed to demonstrate plume stability.
- 3. If residual contamination (soil or groundwater) exists, there is no reasonable risk to sensitive receptors (i.e., contaminant discharge to surface water or water supply wells) or to site occupants. This criterion is generally met by conducting a Risk-Based Corrective Action assessment that models the fate and transport of residual contamination in the context of potential impacts to sensitive receptors (e.g., water wells, residential and use). The newly installed PRB corrective action was designed to remedy the magnitude and duration of future contaminated groundwater discharge to Redwood Creek; considered the primary sensitive receptor, however the effectiveness of the PRB has

timed out and elevated contaminant concentrations were detected downgradient of the PRB during this last September 2016 event. Additional monitoring is needed to evaluate the contaminant trend and potential implementation of additional remedial action as discussed in the proposed actions in the last section of this report.

6.0 SUMMARY, CONCLUSIONS AND PROPOSED ACTIONS

The following conclusions and proposed actions are based on the findings of the current event activities, as well as on salient historical data.

SUMMARY AND CONCLUSIONS

- Groundwater sampling has been conducted on an approximately quarterly basis from November 1994 to June 2011 and on a semiannual basis since September 2011. A total of eleven site wells are available for monitoring; seven of the available wells are currently monitored for contamination.
- Site contaminants of concern include TVH-gasoline, TEH-diesel, BTEX, and MTBE. Current groundwater concentrations exceed regulatory screening levels for gasoline, diesel, benzene, ethylbenzene and MTBE in groundwater.
- The primary environmental risk is discharge of contaminated groundwater to the adjacent Redwood Creek. An in-stream bioassessment conducted in 1999 to 2000 concluded that there were no direct impacts to the surface water benthic macro-invertebrate community; however, groundwater contamination is sporadically detected in surface water samples, and there is historical visual evidence of plume discharge at the creek/groundwater interface. Surface water samples have sporadically exceeded surface water ESL criteria for gasoline, diesel, benzene, total xylenes, and ethylbenzene but generally only under low creek flow conditions.
- The existing well layout adequately constrains the lateral extent of groundwater contamination, and the vertical depth limit is very likely the top of the near-surface (25 to 28 feet) siltstone bedrock. The saturated interval extends approximately 12 to 15 feet from top of bedrock through the capillary fringe. Groundwater elevations fluctuate seasonally, creating a capillary fringe that varies seasonally in thickness.
- The plume of groundwater contamination above screening levels appears to be approximately 130 feet long and approximately 50 feet wide. The zone of greatest contamination, greater than 1,000 µg/L of TVHg and TEHd, is currently centered on wells MW-7, MW-9 and MW-11, all of which are in the downgradient area of the plume. However, prior to the ORCTM injection in March 2010, the greatest zone of contamination was observed in MW-2, the historical source area well.

- The ESLs for residential areas where groundwater is a drinking water resource were exceeded for TEHd in six of the seven wells sampled and for TVHg in five of the seven wells sampled. Well MW-9 contained both the maximum TVHg and TEHd groundwater with TVHg detected at 120,000 ug/L being the historical highest site detection of this contaminant. Benzene was detected in only two wells with the ESL being exceeded at a historical high concentration of 550 ug/L in MW-9.
- The contaminant plume has historically appeared neither stable nor reducing, the groundwater contaminant concentrations fluctuate seasonally, and the center of mass of the contaminant plume (represented by maximum concentrations) has alternated between the upgradient, mid-plume, and downgradient wells, however the contaminants in upgradient source area MW-2 have showed a steady decrease since March 2010 but still exist above ESL. The mid and downgradient areas of the plume (MW-7, MW-9 and MW-11) currently exhibit the highest contaminant concentrations with the site historical high concentrations of TPH-g detected in MW-9 this September 2016 event.
- Historical remedial efforts indicate that residual hydrocarbons entrained in subsurface material and/or stratigraphic traps are continuing to release significant amounts of hydrocarbons into the groundwater. The dissolved fraction that results from this release forms a recalcitrant plume that still daylights at the Redwood Creek interface.
- A September 2003 exploratory borehole program confirmed that sorbed-phase contamination in the seasonally unsaturated zone is a primary source of long-term contaminant contribution to the groundwater plume. Reduction/removal of this contamination will be necessary to eliminate continued discharge of contaminated groundwater to Redwood Creek, and to ultimately obtain site closure. The vadose smear zone is estimated to be 3-4 feet wide based on monitored groundwater elevation and recent observations made in 2013 during excavation trenching for installation of the PRB.
- At the time of the September 2016 sampling event, the entire stretch of Redwood Creek was dry with no areas of visible ponded water between location SW-3 and location SW-2. The October 2013 monitoring event showed the historical highest detection of TEHd detected at surface sampling location SW-2, the most distal point from the source where the plume seeps from the Redwood Creek bank.
- The EHC-OTM product activity in the PRB that was installed on November 20, 2013 is estimated at two to a maximum of 3 years and has essentially run out. While the initial results appeared promising the subsequent drought conditions in the 2013-2014 and 2014-2015 rainfall season followed by the 2015-2016 above average rainfall season may have mobilized contaminants resulting in the historical high concentrations of TPH-g and benzene detected in MW-9 this September 2016 event.

The site historical high concentrations of TPH-g detected in guard well MW-9, downgradient of the PRB during the September 2016 event could be interpreted as evidence that the primary contaminant mass has migrated to the distal area of the plume, however concentrations of this magnitude have never been detected anywhere else in the plume and thus we think this high detection is a result of the PRB and the high 2015-2016 rainfall season. Additional site monitoring would be needed to determine the contaminant trend. Because concentrations in excess of the ESLs remain in all areas of the plume we are advancing the proposal for additional remedial action discussed in the following subsection.

PROPOSED ACTIONS

The EBRPD proposes to implement the following actions to address the current site conditions and regulatory concerns:

- The effectiveness of the PRB has expired, thus we recommend discontinuing analysis for the additional site chemical parameters that was previously conducted to track the effect of the oxygen release product utilization in key wells downgradient of the PRB;
- Develop a workplan, discussed below, to present to new remedial approach to ACEH to address the persistent site-wide elevated concentrations of TPH and related constituents;
- Continue to monitor and sample the site wells and creek on a semiannual frequency;
- Continue to inform regulators of site progress and seek their concurrence with proposed actions; and
- Continue to make the required electronic data and report uploads to the State of California GeoTracker database, and upload an electronic copy of technical reports to ACEH's ftp database.

PROPOSED REMEDIAL ALTERNATIVE

We propose to research and evaluate additional remedial products to mitigate the elevated hydrocarbon concentrations entrained in soil and groundwater to prevent contaminants from reaching Redwood Creek.

The construction and remediation functionality of the existing PRB was sound; however its planned effect was only marginally achieved due to minimal groundwater movement during recent drought conditions and the timed expiration of the oxygenating product. The principal difficulty in more effectively remediating the site is and has always been associated with the manner in which the residual contamination following the original UST excavation left significant hydrocarbons entrained in the soil beneath the service yard slope and roadway leading to the service years that is not feasible to excavate given the operation aspects of the EBRPD

service yard. The Site conceptual model presented in previous reports and summarized again in this one discuss the manner in which the entrained hydrocarbons acts as a secondary source to feed the plume.

We have reviewed remedial technologies, such as excavation, thermal desorption and capture, and additional in-situ injection of oxygen release product. These alternatives are either cost prohibitive or, when effective as in the in-situ application, are effective within the timeframe of the in-situ product activity and following the reduction archived the secondary source feeds the plume again.

We propose preparation of a workplan that would entail either: 1) focused injection in the service yard area upgradient using a recently developed remedial product that immobilizes the contaminant movement with colloidal carbon; and/or 2) to augment the existing PRB such that additional remedial oxygenating product could be periodically introduced into it. This would be accomplished with by trenching down to the top of the PRB (to the depth of the PRB drain rock) and installing a line of standpipe wells through which product solution could be introduced. In addition, in view of persistence contaminants detected above ESLs in all wells across the length of the plume, we also propose installation of a line of standpipe delivery wells situated normal to the plume in the source area, which is in the approximate position of the former UST. In theory, introduced bioremedial solution would migrate along a similar path as the leaked fuel had done. The source area standpipe wells could be used to deliver bioremedial solutions interspersed with additions of water alone that would flush through the entire length of the plume and move contaminants toward the downgradient PRB. Additional product also applied in the PRB standpipe wells would treat those contaminants in soil located downgradient of the PRB and that those that migrate to the PRB from the upgradient plume to protect Redwood Creek. The objective would be to maintain a year round influx and saturation of oxygenating product solution and water to effectively induce biodegradation over the full extent of the vertical thickness and width the contaminant plume. We anticipate that at least four standpipe wells, spaced approximately 10 feet apart in a normal position across the plume would be needed to be installed in a trench excavated above both the existing PRB trench which is 40 feet long and in the source area, This array would ensure treatment coverage across the entire plume width that historical investigations have estimated to be no greater than 50 feet.

Stellar Environmental recommends having a conference or a site meeting with the newly assigned ACEH regulator to discuss alternative remedial options.

7.0 REFERENCES

- Parsons Engineering Science (Parsons), 1998. Quarterly Progress Report 11, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Parsons Engineering Science (Parsons), 1997a. Quarterly Progress Report 7, Redwood Regional Park Service Yard, Oakland, California. January 31.
- Parsons Engineering Science (Parsons), 1997b. Quarterly Progress Report 8 and Annual Summary Assessment, Redwood Regional Park Service Yard, Oakland, California. April 4.
- Parsons Engineering Science (Parsons), 1997c. Quarterly Progress Report 9, Redwood Regional Park Service Yard, Oakland, California. June 30.
- Parsons Engineering Science (Parsons), 1997d. Quarterly Progress Report 10, Redwood Regional Park Service Yard, Oakland, California. September 22.
- Parsons Engineering Science (Parsons), 1996a. Quarterly Progress Report 5, Redwood Regional Park Service Yard, Oakland, California. June 6.
- Parsons Engineering Science (Parsons), 1996b. Quarterly Progress Report 6, Redwood Regional Park Service Yard, Oakland, California. September 24.
- Parsons Engineering Science (Parsons), 1995a. Quarterly Progress Report 2, Redwood Regional Park Service Yard, Oakland, California. March 8.
- Parsons Engineering Science (Parsons), 1995b. Quarterly Progress Report 3, Redwood Regional Park Service Yard, Oakland, California. June 23.
- Parsons Engineering Science (Parsons), 1995c. Quarterly Progress Report 4 and Annual Summary Assessment (November 1994 - August 1995), Redwood Regional Park Service Yard, Oakland, California. November 13.
- Parsons Engineering Science (Parsons), 1994a. Creek and Soil Sampling at Redwood Regional Park, Oakland, California. March 2.

- Parsons Engineering Science (Parsons), 1994b. Creek Surface Water at Redwood Regional Park, Oakland, California. May 13.
- Parsons Engineering Science (Parsons), 1994c. Workplan for Groundwater Characterization Program at East Bay Regional Park Service Yard, Oakland, California. August 17.
- Parsons Engineering Science (Parsons), 1994d. Quarterly Progress Report 1, Redwood Regional Park Service Yard, Oakland, California. December 28.
- Parsons Engineering Science (Parsons), 1993a. Closure of Underground Fuel Storage Tanks and Initial Site Characterization at Redwood Regional Park Service Yard, Oakland, California. December 16.
- Parsons Engineering Science (Parsons), 1993b. Workplan for Site Characterization at East Bay Regional Park District, Redwood Regional Park Corporation Yard, Oakland, Alameda County, California. September 3.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 2016. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater and Surface Water Screening Levels for Freshwater Aquatic Habitats. Revised February.
- Regional Water Quality Control Board, San Francisco Bay Region (Water Board), 1995. San Francisco Bay Region Water Quality Control Plan.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual: Guidelines for Site Assessment, Cleanup, and Underground Storage Tank Closure. State of California Leaking Underground Fuel Tank Task Force. October.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2016 First Semiannual 2016 Groundwater Monitoring and PRB Evaluation Report of the Redwood Regional Park Service Yard Site – Oakland, California (ACEH Fuel Leak Case No. RO0000246). March 1.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2015a First Semiannual 2015 Groundwater Monitoring and PRB Evaluation Report of the Redwood Regional Park Service Yard Site – Oakland, California (ACEH Leak Case No. RO0000246). April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. Second Semiannual 2014 Groundwater Monitoring, Permeable Reactive Barrier Evaluation and Annual Summary Report Redwood Regional Park Service Yard Site. December 19.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014a. First Semiannual 2014 Groundwater Monitoring, Permeable Reactive Barrier Evaluation. Redwood Regional Park Service Yard Site. April 1.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014 Second Semiannual 2013 Groundwater Monitoring, Permeable Reactive Barrier installation, and Annual Summary Report Redwood Regional Park Service Yard Site. January 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater and Surface Water Monitoring Report, Redwood Regional Park Service Yard Site, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012a. Second Semiannual Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. November 13.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012b. First Semiannual Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 8.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Remedial Action Workplan for Installation of a Permeable Reactive Barrier for Hydrocarbon Contamination Treatment, Redwood Regional Park Service Yard 7867 Redwood Road, Oakland, California. November 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. Second Semiannual 2011 Groundwater Monitoring Report and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011b. First Quarter 2011 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011c. Fourth Quarter 2010 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010a. Third Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 8.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. Second Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010c. First Quarter 2010 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 20.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2009b. First Quarter 2009 Groundwater Monitoring and Oxygen Release Compound ORC[™] Treatment Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. April 10.
- Stellar Environmental Solutions, Inc. (SES), 2009c. Second Quarter 2009 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 1.
- Stellar Environmental Solutions, Inc. (SES), 2009d. Third Quarter 2009 Groundwater Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 2009e. Workplan for Insitu Injection. Redwood Regional Park Service Yard, Oakland, California. August 20.
- Stellar Environmental Solutions, Inc. (SES), 2008a. Fourth Quarter 2007 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 8.
- Stellar Environmental Solutions, Inc. (SES), 2008b. First Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. April 29.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. July 15.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. October 7.

- Stellar Environmental Solutions, Inc. (SES), 2007a. First Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 25.
- Stellar Environmental Solutions, Inc. (SES), 2007b. Second Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 9.
- Stellar Environmental Solutions, Inc. (SES), 2007c. Third Quarter 2007 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 2006a. Fourth Quarter 2005 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 20.
- Stellar Environmental Solutions, Inc. (SES), 2006b. First Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.
- Stellar Environmental Solutions, Inc. (SES), 2006c. Second Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 5.
- Stellar Environmental Solutions, Inc. (SES), 2006d. Third Quarter 2006 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. November 21.
- Stellar Environmental Solutions, Inc. (SES), 2005a. First Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. March 31.
- Stellar Environmental Solutions, Inc. (SES), 2005b. Second Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 12.
- Stellar Environmental Solutions, Inc. (SES), 2005c. Third Quarter 2005 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 13.
- Stellar Environmental Solutions, Inc. (SES), 2005d. Fourth Quarter 2004 Groundwater Monitoring and Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 24.
- Stellar Environmental Solutions, Inc. (SES), 2004a. Year 2003 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 15.
- Stellar Environmental Solutions, Inc. (SES), 2004b. First Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 14.

- Stellar Environmental Solutions, Inc. (SES), 2004c. Second Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 16.
- Stellar Environmental Solutions, Inc. (SES), 2004d. Third Quarter 2004 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 12.
- Stellar Environmental Solutions, Inc. (SES), 2003a. Year 2002 Annual Summary Report, Redwood Regional Park Service Yard, Oakland, California. January 27.
- Stellar Environmental Solutions, Inc. (SES), 2003b. First Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 5.
- Stellar Environmental Solutions, Inc. (SES), 2003c. Second Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 29.
- Stellar Environmental Solutions, Inc. (SES), 2003d. Third Quarter 2003 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 3.
- Stellar Environmental Solutions, Inc. (SES), 2002a. First Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 16.
- Stellar Environmental Solutions, Inc. (SES), 2002b. Second Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. July 23.
- Stellar Environmental Solutions, Inc. (SES), 2002c. Third Quarter 2002 Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 14.
- Stellar Environmental Solutions, Inc. (SES), 2001a. Monitoring Well Installation and Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. February 8.
- Stellar Environmental Solutions, Inc. (SES), 2001b. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. May 4.
- Stellar Environmental Solutions, Inc. (SES), 2001c. Well Installation, Site Monitoring, and Corrective Action Report, Redwood Regional Park Service Yard, Oakland, California. October 26.
- Stellar Environmental Solutions, Inc. (SES), 2000a. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. April 21.

- Stellar Environmental Solutions, Inc. (SES), 2000b. Workplan for Groundwater Monitoring Well Installations, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000c. Site Monitoring Report, Redwood Regional Park Service Yard, Oakland, California. October 19.
- Stellar Environmental Solutions, Inc. (SES), 2000d. Site Feasibility Study Report, Redwood Regional Park Service Yard, Oakland, California. October 20.
- Stellar Environmental Solutions, Inc. (SES), 1999a. Workplan for Subsurface Investigation, Redwood Regional Park Service Yard, Oakland, California. April 8.
- Stellar Environmental Solutions, Inc. (SES), 1999b. Residual Contamination Investigation and Remedial Action Assessment Report, Redwood Regional Park Service Yard, Oakland, California. June 9.
- Stellar Environmental Solutions, Inc. (SES), 1998a. Workplan for Continued Site Investigation and Closure Assessment, Redwood Regional Park Service Yard, Oakland, California. October 9.
- Stellar Environmental Solutions, Inc. (SES), 1998b. Site Investigation and Closure Assessment Report, Redwood Regional Park Service Yard, Oakland, California. December 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of the East Bay Regional Park District, its authorized representatives, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as onsite activities conducted by SES since September 1998. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this work are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on site characterization and corrective actions completed.

APPENDIX A

Historical Groundwater Monitoring Well Water Level Data

HISTORICAL GROUNDWATER ELEVATIONS IN MONITORING WELLS REDWOOD REGIONAL PARK SERVICE YARD

Well I.D.	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
TOC Elevation (a)	565.83	566.42	560.81	548.10	547.41	545.43	547.56	549.13	549.28	547.22	547.75	544.67
Date Monitored		Groundwater Elevations (feet above mean sea level)										
09/18/98	563.7	544.2	540.8	534.5	531.1	531.4						
04/06/99	565.2	546.9	542.3	535.6	532.3	532.9						
12/20/99	562.9	544.7	541.5	534.9	531.2	532.2					-	
09/28/00	562.8	542.7	538.3	532.2	530.9	532.0						
01/11/01	562.9	545.1	541.7	535.0	531.2	532.3	534.9	538.1				
04/13/01	562.1	545.7	541.7	535.1	531.5	532.4	535.3	539.8				
09/01/01	560.9	542.0	537.7	533.9	530.7	531.8	534.0	535.6				
12/17/01	562.2	545.2	542.2	534.8	531.4	532.4	534.8	538.4	534.6	535.7	535.2	
03/14/02	563.0	547.1	542.2	535.5	532.4	533.3	535.7	541.8	535.0	537.6	536.6	
06/18/02	562.1	544.7	541.1	534.6	531.2	532.2	534.8	537.9	534.7	535.6	535.3	
09/24/02	561.4	542.2	537.3	533.5	530.6	531.8	533.5	535.5	535.3	533.8	531.7	
12/18/02	562.4	545.0	542.0	534.8	531.5	532.5	534.6	537.1	536.5	535.2	532.8	
03/27/03	562.6	545.7	541.7	534.8	531.6	532.4	535.1	539.9	537.2	536.2	533.6	
06/19/03	562.3	544.9 542.1	541.5 537.9	534.8 533.8	531.3 530.8	532.3 531.9	534.9 533.7	538.2 535.6	536.9 535.6	535.7 534.1	533.2 531.9	
09/10/03 12/10/03	561.6 562.4	542.1	537.9	533.7	530.8	531.9	533.7	535.0	535.5	533.8	531.9	
03/18/04	563.1	546.6	541.9	535.0	531.7	532.4	535.2	540.9	537.4	536.6	533.8	
06/17/04	562.1	544.3	540.7	534.3	531.0	532.4	534.6	537.4	536.5	535.1	532.7	
09/21/04	561.5	541.1	536.5	533.1	530.5	531.6	533.1	534.7	532.7	533.2	533.2	
12/14/04	562.2	545.3	541.7	534.7	531.4	532.2	534.6	540.4	536.7	535.5	532.9	
03/16/05	563.8	547.3	541.7	535.3	532.4	532.8	535.6	541.8	538.0	537.1	534.2	
06/15/05	562.9	545.9	541.6	535.0	531.7	532.5	535.0	540.0	535.0	536.1	535.6	
09/13/05	562.3	543.5	539.7	534.4	530.9	532.2	534.3	536.7	536.1	534.7	532.4	
12/15/05	562.2	544.3	541.4	(b)	531.0	532.2	534.5	537.3	534.1	534.7	534.9	535.1
03/30/06	565.8	548.6	542.7	(b)	533.9	534.4	536.2	542.3	536.4	537.3	537.6	535.7
06/20/06	563.6	545.4	541.6	(b)	531.5	532.5	534.9	538.6	534.6	536.2	535.5	535.0
09/29/06	561.9	542.8	539.0	(b)	530.7	532.1	535.1	536.1	533.7	534.6	534.7	534.7
12/14/06	562.9	544.2	541.5	(b)	531.1	532.3	534.7	536.7	534.0	534.8	535.2	535.0
03/21/07	562.5	545.2	541.7	(b)	531.4	532.4	534.9	539.3	534.6	535.6	535.6	535.1
06/20/07	561.5	543.5	540.8	(b)	531.4	532.4	534.6	537.1	531.1	535.2	535.3	534.9
9/14/2007	560.71	541.02	536.99	(b)	530.46	531.58	533.42	534.86	532.64	533.47	533.68	533.74
	560.62	541.22	536.85		530.40		533.21	535.08	532.64	533.3	533.61	533.64
12/6/2007				(b)		531.48						
3/14/2008	561.76	545.73	541.63	(b)	531.34	532.30	534.88	539.30	534.67	536.04	535.89	535.72
6/13/2008	560.92	543.61	540.6	(b)	530.83	532.02	534.42	536.86	533.81	534.84	535.16	534.67
9/18/2008	560.43	540.15	536.41	(b)	529.85	531.11	532.69	534.15	531.97	532.65	533.09	533.12
12/17/2008	561.11	540.88	536.77	(b)	530.68	531.67	533.26	534.04	532.35	532.94	533.29	533.66
3/16/2009	561.84	546.25	539.51	(b)	531.63	532.58	534.65	539.51	534.56	535.55	535.49	535.08
6/10/2009	561.05	545.02	541.38	(b)	531.02	532.08	534.45	537.94	534.08	535.40	535.18	534.96
9/25/2009	560.00	540.79	536.33	(b)	529.98	Dry	532.58	534.25	531.96	532.62	532.97	533.08
12/21/2009	560.93	543.49	541.22	(b)	530.96	532.06	534.03	536.17	533.46	534.13	534.57	534.69
3/29/2010	561.48	546.44	541.59	(b)	531.52	532.58	534.72	540.03	534.53	535.94	535.55	535.28
6/22/2010	561.17	545.62	541.40	(b)	531.26	532.41	534.63	538.90	534.37	535.62	535.27	535.21
9/28/2010	560.32	543.36	537.91	(b)	530.6	532.02	532.66	535.23	532.96	534.21	533.99	534.16
12/16/2010	561.33	545.52	541.51	(b)	531.11	532.31	534.52	537.21	534.00	534.38	535.10	535.15
3/23/2011	563.68	547.97	542.49	(b)	532.78	534.43	535.96	542.40	535.87	537.19	537.88	536.15
9/23/2011	561.03	543.54	539.52	(b)	530.81	532.31	534.34	536.41	533.59	534.67	534.85	534.86
3/22/2012	562.25	546.42	542.02	(b)	531.83	533.13	534.71	539.34	535.97	535.51	536.03	535.69
9/19/2012	560.93	541.83	537.53	(b)	530.6	531.91	533.55	534.88	532.95	534.33	534.17	534.17
3/14/2013	561.80	545.57	541.74	(b)	531.01	532.11	534.66	538.64	534.31	535.72	535.67	535.37
10/3/2013	560.95	541.01	536.21	(b)	530.02	531.14	532.74	533.74	531.89	532.54	533.08	533.06
3/10/2014	561.68	541.01	541.67	(b)	531.99	532.02	534.61	536.53	534.28	535.22	535.57	534.89
9/19/2014	560.40	540.33	535.53	(b)	529.31	530.50	532.05	532.96	531.46	531.91	533.66	532.28
3/23/2015	561.41	545.47	541.46	(b)	531.01	532.09	534.56	537.43	534.08	534.97	535.44	534.82
9/24/2015	560.26	540.82	535.79	(b)	529.34	530.39	532.17	533.52	531.35	532.14	532.65	532.4
3/21/2016	563.95	545.26	539.95	(b)	533.22	534.16	535.76	537.81	535.58	537.56	537.45	536.69
9/6/2016	561.06	543.78	537.23	(b)	530.32	NM	533.33	535.50	532.88	533.75	534.07	533.66

7867 REDWOOD ROAD, OAKLAND, CALIFORNIA

TOC = Top of well Casing
(a) TOC Elevations resurveyed on December 15, 2005 in accordance GeoTracker requirements.
(b) Well decomissioned and replaced by MW-12 in December 2005.
NM = not measured

APPENDIX B

Groundwater Monitoring Field Documentation

WELL GAUGING DATA

Project # 160906-MM1 Date 9-6-16 Client Steller

Site Reductod Regional Park Service Vard Ockland, cA

	Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	· · ·	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
	MW-1	0831	4					4,77	19.26		
	MW Z	0825	4			-		22,64	37,44		
3	MIN 3	0837	4					23:58 DH6.40	45,06		ЪТШ! 23,58
	Mr. 5	0845	4					17.09	26,98		
	MW-6		UNA	BLE 7	O ACCG	TS, FA	LLEN TH POFST	REE RESTIA AND PIPE	IG GN		
	MW-7	0859	2					14,23	25,35		
	111)-8	6915	2					13.63	22,25		
1	MW-9	0909	2	odor				16,40			
μ μ	<u>nw-10</u>	0853	2					13.47			
Ł	1W-1/	0923	2					13.68	28,76		
1	110-12	0905	2						23,80	Ţ	
										A .	
											2
	n 19. Ma Marina - La Ala										*
		4									

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

WELL MONITORING DATA SHEET

				the second s				
Project #: /66906	-MMI		Client	Client: $5fe/ar$				
Sampler: MM	-		1	Date: 9-6-16				
Well I.D.: MW - Z			Well I	Well Diameter: 2 3 4 6 8				
Total Well Depth (7		.44	Depth	to Wate	r (DTW): 22	.64		
Depth to Free Produ	ict:		Thick	ness of F	Free Product (fe	eet):		
Referenced to:	PVC	Grade	D.O. 1	Meter (if	req'd):	YSI HACH		
DTW with 80% Rec	harge [(H	leight of Water	Colum	n x 0.20))+DTW]: 23	5,60		
Purge Method: Bailer Disposable Positive A Electric Su	r Displacem	ent Extrac Other	Waterra Peristaltic tion Pump	;	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing		
<u>9,6</u> (Gals.) X <u>1 Case Volume</u> Spe	<u>3</u> cified Volun			1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65		
Temp Time (°F or °C) pH	Cond. (mS or(µS))	1	bidity TUs)	Gals. Removed	Observations		
0946 14.7	6.15	812	24	16	10			
0955 14.9	6,20	809	>10	300	20			
WELL	DEWA	TERED AT	22 (A				
1335 15,2	6.41	782	1.4	//				
Did well dewater?	Yes	No	Gallon	s actually	y evacuated: 7	2		
Sampling Date: 9-6	-16	Sampling Time	;. /339	>	Depth to Wate	r: 27.92		
Sample I.D.: Mu)-			Labora		Kiff CalScience			
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SCL COC								
EB I.D. (if applicable): ^(a) _{Time} Duplicate I.D. (if applicable):								
Analyzed for: TPH-C	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:			
D.O. (if req'd):	Pre-purge:		$^{mg}/_{L}$ Post-purge: 3.45					
O.R.P. (if req'd):	re-purge:		mV	Po	ost-purge:	-126 mV		

				•					
Project #: /	60906-N	111		Client	Client: <u>Stellar</u>				
Sampler: N				Date:	Date: 9-6-16				
Well I.D.:					Well Diameter 2 3 4 6 8				
Total Well)): 25,	35 .	Depth	Depth to Water (DTW): 14,73				
Depth to Fr						Free Product (fe			
Referenced	to:	PVC	Grade		Meter (if		YSI HACH		
DTW with	80% Rech	arge [(H	leight of Water			······			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extrac Electric Submersible Other $1, \mathcal{E}$ (Gals.) X $3 = 5, 4$					Well Diamete	Sampling Method	l: Bailer Disposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume		fied Volum		_ Gals. olume	3"	0.37 Othe	r radius ² * 0.163		
Time	Temp (°F or °C)	pH	Cond. (mS or (µS)	1	bidity ΓUs)	Gals. Removed	Observations		
1055	14,9	6.61	1070		12	2	cloudy lodor		
1057	14.6	6.52	1084	10	09	4	1 1		
1160	15.0	6,50	1078	18	30	6	1 1		
Did well dev	water?	Yes 🤇	No	Gallons	s actually	y evacuated: (5		
Sampling Da	ate: 9-6-/	6	Sampling Time	: 1105	>	Depth to Wate	r:16,29		
Sample I.D.:	MW-7		•	Laborat		Kiff CalScience	(
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: SCE G	n C.		
Ø .						if applicable):			
Analyzed for	r: TPH-G	BTEX		Oxygena		Other:			
D.O. (if req'o	l): Pro	e-purge:		^{mg} /L	Po	ost-purge:	O. EZ mg/L		
D.R.P. (if red	q'd): Pre	e-purge:		mV	Po	ost-purge:	//O mV		

... LL MONITORING DATA SHEET

p			LL MONIT	ORIN	G DATA	SHLET			
Project #:	160966-	MMI		Client	Client: Stellar				
Sampler: N				Date: 9-6-16					
Well I.D.:	MW-8			Well I	Well Diameter: 2 3 4 6 8				
Total Well)): ZZ.	25	Depth	to Wate	r (DTW): /3.	63		
Depth to F1	ree Produc	t:	<			'ree Product (fe			
Referenced to: PVC Grade					Aeter (if	req'd):	(YSI) HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20))+DTW]: /5	,35		
Purge Method:	Bailer Disp <u>osable F</u> Positive Air Electric Subr	Displacem		Waterra Peristaltic tion Pump		Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing		
]	Well Diamete 1"	er Multiplier Well 0.04 4"	Diameter Multiplier 0.65		
<u> </u>		<u> </u>	$\frac{1}{1} = \frac{4.2}{\text{Calculated Vo}}$	_Gals. lume	2" 3"	0.16 6" 0.37 Othe	1.47 r radius ² * 0.163		
Time	Temp (°F o℃)	pH	Cond. (mS or µS)		oidity FUs)	Gals. Removed	Observations		
1205	17.0	7.04	982	01 لا	66	1,5	cloudy		
1208		6.61	976	>100	56	3.0	, 		
1210	16,5	6,55	- 980	210	60	4,5	\checkmark		
· · · ·									
Did well dev	water?					y evacuated: 4	5		
Sampling Da	ate: 9 - 6 -	16	Sampling Time	:1300	2	Depth to Wate	r:/5,02		
Sample I.D.:	MW-8			Laborat	ory:	Kiff CalScience	Other_ <u>C</u> & Ţ		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: See c	oc		
EB I.D. (if a	pplicable):		@ . Time	Duplica	•	if applicable):			
analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:			
0.0. (if req'o	l): Pro	e-purge:	·	^{mg} /L	Ро	ost-purge:	0.59 ^{mg} /L		
).R.P. (if red	q'd): Pre	e-purge:		mV	Po	ost-purge:	- 90 mV		

۰ ĽLL N	MONIT	ORING	DATA	SHEET
---------	-------	-------	------	-------

•

r									
Project #: /	160906	MM	1	Client	:stell	lar			
Sampler: N		· •		Date:	Date: 9-6-16				
Well I.D.:	MW-9			Well Diameter: 2 3 4 6 8					
Total Well)):3 _{0,}	28	Depth to Water (DTW): 16,40					
Depth to Fr				Thick	ness of F	ree Product (fe			
Referenced	to:	PVC	> Grade	D.O. 1	Meter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20))+DTW]: /9	17		
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extrac Electric Submersible Other					a 5 -	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing		
					Well Diamete	er Multiplier Well 0.04 4"	Diameter Multiplier 0.65		
<u>2, 7</u> (0 1 Case Volume	Gals.) X Speci	<u> </u>	$\underline{} = \underline{} \underbrace{}_{\text{calculated Vo}} \underbrace{}_{\text{calculated Vo}}$	_ Gals. Jume	2" 3"	0.16 6" 0.37 Othe	1.47		
Time	Temp (°F or °C)	pH	Cond. (mS or (µS)	1	bidity TUs)	Gals. Removed	Observations		
1147	15.7	6,42	1006	Z	59	2,2	odor clady		
1151	15.8	6,58	1047	4	102	4,4			
1155	15,9	6,60	10.59	- 4	29	6,4	4 4		

Did well dev	votor?	Van	NI-	Caller	~ ~ ~ 11-				
							7.0		
Sampling Da		<u>//</u>	Sampling Time	: 174	5	Depth to Wate	r: 18,87		
Sample I.D.:	MU-	9		Labora	tory:	Kiff CalScience	Other <u>CAT</u>		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: <u>See</u>	Col		
EB I.D. (if a	pplicable)		@ . Time	Duplica		if applicable):			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:			
D.O. (if req'o	d): Pr	e-purge:		^{mg} /L	Po	ost-purge:	0,59 mg/L		
D.R.P. (if red	q'd): Pro	e-purge:		mV	Po	ost-purge:	-93 mV		

		. ¥	ELL MONIT	ORING DAT	A SHLET				
Project #:	160906	-MM I		Client: Sfe	Client: Steller				
Sampler: N	1M			Date: 9-6-16					
Well I.D.:				Well Diameter: 2 3 4 6 8					
Total Well)): ZB	.44	Depth to Water (DTW): 13, 47-					
Depth to Fi	ree Produc	t:			Free Product (fe				
Referenced	to:	PVC	Grade	D.O. Meter (i	f req'd): <	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]: /	6,46			
Purge Method:	Bailer Disp <u>esable</u> Positive Air Electric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing			
/				Well Diame	0.04 4"	Diameter Multiplier 0.65			
$\frac{2, 4}{1 \text{ Case Volume}}$		<u>3</u> fied Volun		Gals. 2" 3"	0.16 6" 0.37 Othe	1.47 r radius ² * 0.163			
	speci		nes Calculated Vo						
Time	Temp (°F or Ĉ	pH	Cond. (mS or(uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1035	15.5	7,17	826	112	2,5	cloudy			
1039	15.2	7,13	851	149	5.0				
1043	15.3	7.15	860	155	7,5	J			
·····									
Did well dev	water?	Yes	No	Gallons actual	ly evacuated: 7	7,5			
Sampling Da	ate: 9-6-	16	Sampling Time	://30	Depth to Wate	r: 16,17			
Sample I.D.:	MW-10)		Laboratory:	Kiff CalScience	e Other <u>C 47</u>			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Cal			
EB I.D. (if a	pplicable):		@ · Time	Duplicate I.D.	(if applicable):				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'o	d): Pro	e-purge:		^{mg} /L F	ost-purge:	1.05 mg/L			
D.R.P. (if red	q'd): Pro	e-purge:		mV F	ost-purge:	40 mV			

MONITORING DATA SHEET

			•							
Project #:	Project #: 160906-MM1					Client: Stellar				
Sampler: N					Date: 9-6-16					
Well I.D.:	MW-11				Well Diameter: 2 3 4 6 8					
Total Well	•)): Z8,	76	Depth	Depth to Water (DTW): 13,68					
Depth to Fr						ree Product (fe				
Referenced	to:	PVC	Grade	D.O. 1	Meter (if	req'd):	YSI HACH			
DTW with 80% Recharge [(Height of Water					n x 0.20))+DTW]: /6	,69			
Purge Method:	Bailer Disp <u>esable</u> E Positive Air Electric Subr	Bailer Displaceme		Waterra Peristaltic tion Pump	1 ;	Sampling Method Other	: Bailer Disposable Bailer Extraction Port Dedicated Tubing			
Z, Y 1 Case Volume	Gals.) X Speci	3 fied Volun	$\frac{1}{1} = \frac{7}{2}$ Calculated Vo		1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65			
Time	Temp (°F o€℃)	pH	Cond. (mS or µS)	1	bidity TUs)	Gals. Removed	Observations			
1221	16.3	6.53	942	17	-8	2.5	cloudy			
1225	15.8	6.49	945	14	17	5,0	,			
1230	15.7	6,47	942	15	5	7,5				
							-			
			-							
Did well dev	water?	Yes	No	Gallon	s actually	y evacuated: -	7,5			
Sampling Da	ate: 9-6.	16	Sampling Time	:: <u>13</u> 15	,)	Depth to Wate	r:15,87			
Sample I.D.:	Mus-1	1		Labora	tory:	Kiff CalScience	• Other_ <u>C\$7</u>			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: SCC C	oc			
EB I.D. (if a	pplicable)	•	@ · Time	Duplica		if applicable):				
Analyzed for	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'o	d): Pr	e-purge:		^{mg} /L	Po	ost-purge:	0.62 mg/L			
D.R.P. (if red	q'd): Pr	e-purge:		mV	Po	ost-purge:	-73 mV			

... LL MONITORING DATA SHEET

				_						
Project #:	60906	-MMI		Client	Client: Stellar					
Sampler: /				1	Date: 9-6-16					
Well I.D.:					Well Diameter: 2 3 4 6 8					
Total Well			. 80	Depth	Depth to Water (DTW): // 0/					
Depth to Fi	ree Produc	et:		Thick	ness of F	Free Product (fe				
Referenced	l to:	PVC	Grade		Meter (if		YSI HACH			
DTW with	80% Rech	harge [(H	leight of Water	Colum	n x 0.20))+DTW]: /3	3,56			
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Displacem	ent Extrac Other	Waterra Peristaltic ction Pump	•	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
2(1 Case Volume	Gals.) X Spec	<u>3</u> ified Volum	= <u>6</u> nes Calculated Vo	_Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65			
Time	Temp (°F or °C)	pH	Cond. (mS of µS)	1	bidity TUs)	Gals. Removed	Observations			
1115	15.3	7.19	754		59	2	cloudy			
1119	15.1	6.75	750	19	?/	4				
1124	15,0	6.71	742	20	5	6	ł			
Did well de	water?	Yes (No	Gallon	s actually	y evacuated: C				
Sampling D	ate: 9-6-	16	Sampling Time		·····	Depth to Wate				
Sample I.D.	: MW-12	2		Labora		Kiff CalScience				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: SCe	CNC			
EB I.D. (if a	pplicable)	•	@ · Time	Duplica		if applicable):				
Analyzed fo	r: TPH-G	BTEX		Oxygena		Other:				
D.O. (if req'	d): Pr	e-purge:		$^{mg}/_{L}$ Post-purge: $O.78$						
D.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	Ģ7−mV			

··· LL MON	NITORING DAT	A SHLET				
Project #: 160906 - MM 1	Client: Ste	Client: Stellar				
Sampler: MM7		Date: 9-6-16				
Well I.D.: SW-Z		Well Diameter: 2 3 4 6 8				
Total Well Depth (TD):	Depth to Wat	Depth to Water (DTW):				
Depth to Free Product:		Free Product (f	eet):			
Referenced to: PVC Grade	D.O. Meter (i		YSI HACH			
DTW with 80% Recharge [(Height of Wa	ter Column x 0.20	0) + DTW]:				
Purge Method: Bailer Disposable Bailer Positive Air Displacement Ex Electric Submersible Other_	Watérra Peristaltic traction Pump	Sampling Metho Othe	Disposable Bailer Extraction Port Dedicated Tubing			
	Well Diame	eter Multiplier Wel 0.04 4"	<u>I Diameter Multiplier</u> 0.65			
(Gals.) X = I Case Volume Specified Volumes Calculated	Gals. 2" I Volume 3"	0.16 6" 0.37 Oth	1.47 er radius ² * 0.163			
Temp (°F or °C)Cond. (mS or μS)Creek15 dryΛΙΟ SAMPLETAKEN	Turbidity (NTUs)	Gals. Removed	Observations			
Did well dewater? Yes No	Gallons actual	y evacuated:	1			
ampling Date: Sampling Ti	me:	Depth to Wate	er:			
ample I.D.:	Laboratory:	Kiff CalScience	-/			
nalyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other:				
B I.D. (if applicable): @	Duplicate I.D.	(if applicable):				
nalyzed for: TPH-G BTEX MTBE TPH-D		Other:				
.O. (if req'd): Pre-purge:	^{mg} / _L P	ost-purge:	mg/L			
.R.P. (if req'd): Pre-purge:	mV P	ost-purge:	mV			

LL MONIT که ۱۰	'ORING :	DATA	SHEET
----------------	----------	------	-------

.

Project #:	160906	-MMI		Client	: stell	2	*****	
Sampler:				Date:	9-6-1	10		
1	SW-3				Diameter		4	6 8
	Depth (TI)): ⁻	`.	Depth	to Wate	r (DTW):		~
Depth to F	ree Produc	t:		Thick	ness of F	Free Produ	ict (fe	et):
Referenced	l to:	PVC	Grade	D.O. 1	Meter (if	req'd):		YSI HACH
DTW with	80% Rech	arge [(H	Height of Water	Colum	n x 0.20)) + DTW]	: -	
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displacem		Waterra Peristaltic tion Pump	-	Sampling I	Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing
					Well Diamete	er Multiplier 0.04	Well I 4"	Diaméter Multiplier 0.65
1 Case Volume	Gals.) X	fied Volur	= nes Calculated Vo	_ Gals.	2" 3"	0.16 0.37	6" Other	1.47 radius ² * 0.163
Time	Temp (°F or °C) <i>Creek</i>	pH _/S	Cond. (mS or µS)	1	bidity TUs)	Gals. Ren	noved	Observations
Did well de	NG S water?	<u>AMPC</u> Yes		Gallon	∮actually	y evacuate	ed:	
Sampling D	ate:		Sampling Time	; /		Depth to	Water	/
Sample I.D.	:/		******	Labora	tory:	Kiff CalS	cionce	Other
Analyzed fo	r: TPH-G	BTEX	мтве трн-д	Oxygena	ates (5)	Other: /	/	
EB I.D./(if a	pplicable):		@ · ·	Duplica	ate I.D. (if applical	ole):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	utes (5)	Other:		
D.Ø. (if req'	d): Pre	e-purge:		^{mg} /L	Po	ost-purge:	Γ	mg/L
D.R.P. (if re	q'd): Pre	e-purge:		mV	Po	ost-purge:		mV

		: (•	. Participation		
		•					٠	
	÷.				•			·
	1	NELLHE				VLICT		
	•	/ W Jana Jana Jana J J Jana		ECHO	N UNEU	NLIŞI	Page_	of
Client <u>steller</u>					Date	9.1	16	
Site Address Re	durond R	equali	Pack S	enure				
Site Address <u>Re</u> Job Number <u>//</u>	1906-MIN		din Of	Tooh	<u></u>	O	ek/ena,	<u>C7</u>
<u></u>				Tech	Inician	MM		
	Well Inspected - No Corrective	Water Bailed From	Wellbox Components	Сар	Lock	Other Action Taken	Well Not Inspected	Repair Order
Well ID	Action Required	Wellbox	Cleaned	Replaced	Replaced	(explain below)	(explain below)	Submitted
MW-1						X		
MW Z	X							
MW-3	X					•		
MW-5	Χ.		•					
MW-6	X					· ·		
MW.7	X					·]	
MW 8		X	~			X		[.]
MW-9	X							
MW-10						~		
MW-11	<u>. ×</u>							
MW-12	:					×		
				•				
		•						
		_						
NOTES:				I	1	J L	[
Man	10 2/2 hor	le mar	nge DIC	Ken	1 1			
M/1)~	12 2/7 L	TO MISSI	<u>ng 72</u>	1005 1 1/2 11	broken	kan		
NOTES: <u>MW</u> MW- MW-	8 -3/3 h	olls mis	ss/ng_	16 [0]	w.O/Q			•••••••••••••••••
		~(75) _////5	sorrage -			•		

•

•

.

'n
X
4
Ž
Ο
F
4
R
Ξ
7
A C
U
IENT O
Ζ
Ш
Σ
ā
Ξ
2
Ø
Ш
EST
S.
ш
-

[<u> </u>			 	 	
		W W	MW	CAN VA	ww					
A (TEMP	• 1101		D. 57						
PROJECT NUMBER / 60000000	CALIBRATED TO: OR WITHIN 10%:	yw	yw	yes	yer	-				
PROJECT NUN	EQUIPMENT READING	11	Cord, 3904 ml	0RP 230,2m	Do 100,8%		~			
Oskland ut	11	, 2.0, HG	Cend, 3900	CRP23/MU	DO 100%					
Ad Park SV	Шν.			l	9-6-16 0625					
PROJECT NAME Steller Reduned Reduned Psyk	EQUIPMENT NUMBER	6215733		\rightarrow	BTS 001					
PROJECT NAN	EQUIPMENT NAME	MYRON C WLTRAMETERN			251 550					

()

					Chain of Custody Record	f Cus	tody R	ecor	σ				Lab job no. —	1
Laboratory <u>Curtis and Tompkins, Ltd.</u> 2323 Fifth Street	ns, Ltd.			- Meti	Method of Shipment <u>Hand Delivery</u>	and Deliv	very	1					Date <u>7- (</u> Page 1	₫- <i>€</i>
Address	94710			- Ship	Shipment No.			1	Į					
510-486-0900				- Airb	Airbill No.			1	/	\square		Analysis Required		
Project Owner <u>East Bay Regional Park District</u> Site Address <u>7867 Redwood Road</u> Oakland, California	nal Park Road rnia	Distric		Coo Proj	Cooler No Project ManagerRichard M Telenhone No. (510) 644-3123	Richard Makdisi) 644-3123	lisi		Containers Wered	XZIA		1		
1	onal Parl				Eax No. (510) 644-3859	-3859	Ĩ		10:01	0	Y	1 + 1 / /	Rei	Remarks
Project Number 2013-02				Sarr	Samplers: (Signature)				5.	140	22	2 2 0 0 0 V	/	
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler Cooler	Preservation rr Chemicat		Fat	5	'2' ?\	38		
MW-2		9-6-	/335	: 3	MIX	X		N	$\left \right $					
MW.7			1/05]]		,		7	X X		X X	XX		
Mur-B			1360					1 5	X X'					
Mu) 9			1245						$X \times X$		X X	X Y		
M(u) - /0			1130					4	X X					
//-\(Y)W			13/5					7	X X					
MW-12			1140	\rightarrow	7	>		ΨŢ	XX	\sim	(X)			
		-								`				
Relinquished by: K			Received by: Signature -		2	Date 91616	Relinquished by: Signature				Date	Received by: Signature		Date
Printed Mark MCColloch	<u>- 1</u> 	ر الم	Printed	Printed Dirve	· Al'	Time	Printed				Time	Printed		Time
Stellar Environmental		1415	Company	C57	1	14.0	Company -					Company		
Turnaround Time: 5 Day TAT	-						Relinquished by:	ž			Date	Received by:		Date
comments: Samples on ice							Signature -					Signature		-
				-			Printed				Time	Printed		Time
							Company					Company	an barron o an	·
* Stellar Environmental Solutions	ions											2198 Sixth Street #201, Berkeley, CA 94710	#201, Berkeley,	CA 94710

- - /

10-00-002

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

and setting to the

H

Laboratory Job Number 280540 ANALYTICAL REPORT

Stellar Environmental Solutions	Project : 2013-02.
2198 6th Street	Location : Redwood Regional Park
Berkeley, CA 94710	Level : II

<u>Lab ID</u>
280540-001
280540-002
280540-003
280540-004
280540-005
280540-006
280540-007

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>09/14/2016</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 280540 Stellar Environmental Solutions 2013-02. Redwood Regional Park 09/06/16 09/06/16

This data package contains sample and QC results for seven water samples, requested for the above referenced project on 09/06/16. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

MW-9 (lab # 280540-004) was diluted due to client history of high non-target or organic acid interference. MW-9 (lab # 280540-004) was diluted due to high non-target analytes. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Ion Chromatography (EPA 300.0):

No analytical problems were encountered.

Chemical Oxygen Demand (SM5220D):

No analytical problems were encountered.

Biochemical Oxygen Demand (SM5210B):

No analytical problems were encountered.

			rks	<u> </u>												Date		Time		Date		Time		CACAD AT
$\frac{\text{Date } \frac{7 \cdot (c \cdot)}{1}}{1}$			/ / Remarks										-											noted and
	Analysis Required		4	40 60 /2	very y		$\times x $		ر کر کر			X X				Received by:	signature	Printed	Company	Received by:	Signature	Printed	Company	0100 0: -++ C11 #001
		1		24	27		${}^{\lambda}$		$\frac{\lambda}{\lambda}$					 	 	Date		Time		Date		Time		
		Conteners Conteners	A A ON	H, O		NYXX	X X X X	$ \chi \times \lambda $	X X X L	XXX	$X \times \sqrt{7}$	XXXE/												
elivery		akdisi			Preservation							<i>→</i>			 	ď	1/16 signature	e Printed	S Company	Relinquished by:	Signature	Printed	- Company	
Method of Shipment <u>Hand Delivery</u> Shipment No	Airbill No.	Cooler No	No. (510) 644-3859	Samplers: (<i>Signature</i>)	Type/Size of Container Cooler Cooler	MIX										Date	916/16	Al.	1		18 Br			
Meth Ship	Airbi	Cool Proje	Fax No.	Sam	Time Sample Type	1335 W	1105	1360	1245	//30	13/5	140 1		 		Received by:		Printed 01	Company Cc 7					
td. 710		Park District ad	Park		Date	9-6-13 2016 13	1 //	13	2/							Date Re			5///				49 au	
Laboratory <u>Curtis and Tompkins, Ltd.</u> Address <u>2323 Fifth Street</u> Berkelev. California 94710	510-486-0900	East Bay Regional Park District 7867 Redwood Road Oakland, California	Redwood Regional Park	er 2013-02	Field Sample Number Depth	1.2	1	ŝ) - G) - /0	// - //	5-12				// X _		KMCC/10CV	Stellar Environmental	Turnaround Time: 5 Day TAT	Samples on ice			Otollar Environmental Calutiona
Laboratory <u>C</u> Address <u>B</u>		Project Owner Site Address	Project Name	Project Number	Field Sarr	MIN 1	Z MW	3 MUJ- &	H Mu)	5 MW	G Mul-	- MW	•			Relinquished by:		Printed MAK MUC	Company	Turnaround Time:	Comments:	10-01	5000-0	

★ Stettar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login #2 8.0 5 40Date Received $\frac{9/6/16}{16}$ NuClient $5TELLAP$ ProjectRedwoodDate Opened $\frac{9/6}{16}$ By (print) $\frac{6}{16}$ (sign)Date Logged in 1 By (print) $5c$ (sign)Date Labeled 4 By (print) $5c$ (sign)	Imber of coolers 1 d Regional Park Aumunt Junion
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? YES (circle) on cooler How many Name 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of 6. Indicate the packing in cooler: (if other, describe) 	on samples NO DateYES NO N/A YES NO MES NO form)_YES NO
Bubble WrapFoam blocksBagsCloth materialCardboardStyrofoam7. Temperature documentation:* Notify PM if temperature exc	None Paper towels eeds 6°C
Type of ice used: X Wet Blue/Gel None	21
Temperature blank(s) included? Thermometer#	^
Samples received on ice directly from the field. Cooling proc	
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer?	YES RO
9. Did all bottles arrive unbroken/unopened?	
10 Are there any missing / extra samples?	VES NO
11. Are samples in the appropriate containers for indicated tests?	YES CO
11. Are samples in the appropriate containers for indicated tests?	YES (AO) S NO S NO
11. Are samples in the appropriate containers for indicated tests?	YES (NO TES NO TES NO
 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 	YES (MO) (DBS NO (DBS NO (DBS NO (DBS NO (DBS NO (DBS NO
 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 	YES CO YES NO YES NO YES NO NO N/A NO N/A
 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# 308.01) 	YES (NO (TES NO (TES NO (TES NO (TES NO (TES NO NO N/A (TES NO N/A (TES NO N/A (TES NO N/A (TES NO N/A (TES NO N/A
 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# SobD) 18. Did you change the hold time in LIMS for unpreserved VOAs? 	YES (NO (TBS NO (TBS NO (TB
 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# <u>GOBD</u>) 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 	YES NO YES NO YES NO YES NO YES NO NO N/A YES NO N/A YES NO N/A YES NO N/A YES NO M/A YES NO M/A
 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# goß) 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 	YES (10) YES (1

COMMENTS

<u>Sample</u>	pH:	<2	>9	>12	Other
-002a b c d e f g			[] [] [] [] [] []	[] [] [] [] [] []	
-004a b c d e f g			[] [] [] [] []	[] [] [] [] []	
-007a b c d e f g			[] [] [] [] [] []	[] [] [] [] [] []	

Analyst: $\frac{CP}{Date: - \frac{q/6}{16}}$

5 of 39

Detections Summary for 280540

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions Project : 2013-02. Location : Redwood Regional Park

Client Sample ID : MW-2

Laboratory Sample ID :

Laboratory Sample ID :

280540-001

280540-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	410	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	2.5		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	400	Y	47	uq/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-7

Analyte Result Flags RL Units Basis IDF Method Prep Method Gasoline C7-C12 6,800 ug/L As Recd 1.000 EPA 8015B EPA 5030B 50 ug/L As Recd 1.000 EPA 8021B EPA 5030B Ethylbenzene 69 0.50 As Recd 1.000 EPA 8021B EPA 5030B o-Xylene 5.3 0.50 ug/L Diesel C10-C24 2,100 Υ 47 ug/L As Recd 1.000 EPA 8015B EPA 3520C Sulfate 6.1 0.50 mg/L TOTAL 1.000 EPA 300.0 METHOD Chemical Oxygen Demand 10 TOTAL 1.000 SM5220D 28 mg/L METHOD

Client Sample ID : MW-8

Laboratory Sample ID :

280540-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	220		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	4.5		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	430	Y	47	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-9

Laboratory Sample ID :

280540-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	120,000		830	ug/L	As Recd	16.67	EPA 8015B	EPA 5030B
Benzene	550	С	8.3	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
Ethylbenzene	7,600		13	ug/L	As Recd	25.00	EPA 8021B	EPA 5030B
m,p-Xylenes	350	С	8.3	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
o-Xylene	140	С	8.3	ug/L	As Recd	16.67	EPA 8021B	EPA 5030B
Diesel C10-C24	6,400	Y	47	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	3.4		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Biochemical Oxygen Demand	25		7.5	mg/L	TOTAL	1.000	SM5210B	METHOD
Chemical Oxygen Demand	79		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Client Sample ID : MW-10 Laboratory Sample ID :

280540-005

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	63	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	4.4		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	120	Y	47	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-11

Laboratory Sample ID :

280540-006

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	1,500	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Ethylbenzene	11		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	0.62	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,500	Y	47	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-12

Laboratory Sample ID :

280540-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	58	Y	47	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Sulfate	47		0.50	mg/L	TOTAL	1.000	EPA 300.0	METHOD
Chemical Oxygen Demand	19		10	mg/L	TOTAL	1.000	SM5220D	METHOD

Curtis &	Tompkins Labo	ratories Ar	alytical	Report	
Lab #: 280540 Client: Stellar Environme Project#: 2013-02.	ntal Solutions	Location: Prep:		ood Regional Park 5030B	
Matrix: Water Units: ug/L		Sampled: Received:		6/16 6/16	
Field ID: MW-2		Diln Fac:	1.00		
Type: SAMPLE Lab ID: 280540-001		Batch#: Analyzed:	2388 09/0	7/16	
Analyte Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Result 410 Y 2.5 ND ND ND ND ND ND ND ND		RL 50 2.0 0.50 0.50 0.50 0.50 0.50	Analysis EPA 8015B EPA 8021B EPA 8021B	
Surrogate Bromofluorobenzene (FID)	%REC Limits 107 80-132	Analy: EPA 8015B	sis		
Bromofluorobenzene (PID)	107 71-141	EPA 8021B			
Field ID: MW-7 Type: SAMPLE Lab ID: 280540-002		Diln Fac: Batch#: Analyzed:	1.00 2388 09/0	50	
Analyte	Result		RL	Analysis	
Gasoline C7-C12 MTBE Benzene	6,800 ND ND		50 2.0 0.50	EPA 8015B EPA 8021B EPA 8021B	
Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND 69 ND 5.3		0.50 0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Ethylbenzene m,p-Xylenes o-Xylene Surrogate	ND 69 ND 5.3 %REC Limits	Analy	0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B	
Ethylbenzene m,p-Xylenes o-Xylene	ND 69 ND 5.3	Analy: EPA 8015B EPA 8021B	0.50 0.50 0.50 0.50	EPA 8021B EPA 8021B	
Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenzene (FID)	ND 69 ND 5.3 *REC Limits 125 80-132	EPA 8015B	0.50 0.50 0.50 0.50 sis 1.00 2388	EPA 8021B EPA 8021B EPA 8021B	
Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenzene (FID) Bromofluorobenzene (PID) Field ID: MW-8 Type: SAMPLE Lab ID: 280540-003 Analyte	ND 69 ND 5.3 *REC Limits 125 80-132 129 71-141 *Result	EPA 8015B EPA 8021B Diln Fac: Batch#:	0.50 0.50 0.50 sis 1.00 2388 09/0 RL	EPA 8021B EPA 8021B EPA 8021B 0 50 7/16 Analysis	
Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenzene (FID) Bromofluorobenzene (PID) Field ID: MW-8 Type: SAMPLE Lab ID: 280540-003	ND 69 ND 5.3 %REC Limits 125 80-132 129 71-141	EPA 8015B EPA 8021B Diln Fac: Batch#:	0.50 0.50 0.50 0.50 sis 1.00 2388 09/0	EPA 8021B EPA 8021B EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

Page 1 of 3

	Curtis	& Tompkin	s Laboi	ratories A	nalytical	Report	
Lab #: 280540 Client: Stella Project#: 2013-0	ar Environm	mental Solut	ions	Location: Prep:		ood Region 5030B	al Park
Matrix: Units:	Water ug/L			Sampled: Received:	09/00 09/00		
0111123.	ug/1			Received:	00/00	5710	
	MW-9 SAMPLE			Lab ID:	28054	40-004	
Analyte		Result	R		Fac Batch#	Analyzed	Analysis
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene		120,000 ND 550 C ND 7,600 350 C 140 C	1	3 16.67 8.3 16.67 8.3 16.67	238850 238850 238850 238929 238850	09/07/16 09/07/16 09/07/16 09/07/16 09/10/16 09/07/16 09/07/16	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B
Surrog		%REC	Limits	Diln Fac	Batch# Analy	zed	Analysis
Bromofluorobenze Bromofluorobenze	ene (FID) ene (PID)	130 126	80-132 71-141		238850 09/0 238850 09/0		8015B 8021B
Type:	MW-10 SAMPLE	_		Diln Fac: Batch#:	1.000	50	
	280540-005			Analyzed:	09/07		<u> </u>
Analy			Result 63 Y	Analyzed:	RL	A	nalysis 58
			Result 63 Y 4.4	Analyzed:			5B 1B 1B 1B 1B 1B
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrog	yte gate	ND ND ND ND	63 Y	Analyzed: Analy	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802	5B 1B 1B 1B 1B 1B
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	yte gate ene (FID)	ND ND ND ND	63 Y 4.4		RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802	5B 1B 1B 1B 1B 1B
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Field ID: Type:	yte gate ene (FID)	ND ND ND ND ND %REC 98 101	63 Y 4.4 <u>Limits</u> 80-132		RL 50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	2 EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802	5B 1B 1B 1B 1B 1B
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Field ID: Type: Lab ID: Analy	gate ene (FID) ene (PID) MW-11 SAMPLE 280540-006	ND ND ND %REC 98 101	63 Y 4.4 <u>Limits</u> 80-132 71-141 Result	Analy EPA 8015B EPA 8021B Diln Fac: Batch#:	RL 50 2.0 0.50 0.50 0.50 0.50 sis 1.000 23885 09/08	2 EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 50 3/16	5B 1B 1B 1B 1B 1B 1B malysis
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Field ID: Type: Lab ID:	gate ene (FID) ene (PID) MW-11 SAMPLE 280540-006	ND ND ND %REC 98 101	63 Y 4.4 <u>Limits</u> 80-132 71-141	Analy EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 sis 1.000 2388 09/08	20 EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 60 3/16	5B 1B 1B 1B 1B 1B 1B 5B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1
Analy Gasoline C7-Cl2 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Field ID: Type: Lab ID: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	gate ene (FID) ene (PID) MW-11 SAMPLE 280540-006 yte	ND ND ND ND ND %REC 98 101 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	63 Y 4.4 <u>Limits</u> 80-132 71-141 1,500 Y 11 0.62 Limits	Analy EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed: C Analy	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 3515 1.000 23885 09/08 RL 50 2.0 0.50 0	2 EPA 801 EPA 802 EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802	5B 1B 1B 1B 1B 1B 1B 5B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1
Analy Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Bromofluorobenze Bromofluorobenze Bromofluorobenze Field ID: Type: Lab ID: MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	gate ene (FID) ene (PID) MW-11 SAMPLE 280540-006 yte gate ene (FID)	ND ND ND ND ND %REC 98 101	63 Y 4.4 <u>Limits</u> 80-132 71-141 Result 1,500 Y	Analy EPA 8015B EPA 8021B Diln Fac: Batch#: Analyzed:	RL 50 2.0 0.50 0.50 0.50 0.50 0.50 3515 1.000 23885 09/08 RL 50 2.0 0.50 0	2 EPA 801 EPA 802 EPA 801 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802 EPA 802	5B 1B 1B 1B 1B 1B 1B 5B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 3

Curtis &	Tompkins Labo	ratories An	alytical	Report	
Lab #: 280540 Client: Stellar Environment Project#: 2013-02.	al Solutions	Location: Prep:		ood Regional Park 5030B	
Matrix: Water Units: ug/L		Sampled: Received:	09/0 09/0		
Field ID: MW-12 Type: SAMPLE Lab ID: 280540-007		Diln Fac: Batch#: Analyzed:	1.00 2388 09/0	50	
Analyte	Result		RL	Analysis	
Gasoline C7-C12 MTBE Benzene Toluene	ND ND ND ND		50 2.0 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B	
Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND		0.50 0.50 0.50	EPA 8021B EPA 8021B EPA 8021B	
Surrogate	%REC Limits	Analys	sis		
Bromofluorobenzene (FID) Bromofluorobenzene (PID)	103 80-132 125 71-141	EPA 8015B EPA 8021B			
Type: BLANK Lab ID: QC850548 Diln Fac: 1.000		Batch#: Analyzed:	2388 09/0		
Analyte	Result		RL	Analysis	
Gasoline C7-C12 MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND ND		50 2.0 0.50 0.50 0.50 0.50 0.50 0.50	EPA 8015B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B EPA 8021B	
Surrogate	%REC Limits	Analys	sis		
Bromofluorobenzene (FID) Bromofluorobenzene (PID)	96 80-132 101 71-141	EPA 8015B EPA 8021B			
Type: BLANK Lab ID: QC850854 Diln Fac: 1.000		Batch#: Analyzed:	2389 09/0	9/16	
Analyte	Result		RL	Analysis	
Ethylbenzene	ND		0.50	EPA 8021B	
Surrogate Bromofluorobenzene (FID)	%REC Limits 102 80-132	Analys EPA 8015B	sis		
Bromofluorobenzene (FID) Bromofluorobenzene (PID)	102 80-132 98 71-141	EPA 8015B EPA 8021B			

C= Presence confirmed, but RPD between columns exceeds 40% Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 3

Curtis & Tompkins Laboratories Analytical Report								
Lab #:	280540	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B					
Project#:	2013-02.	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC850549	Batch#:	238850					
Matrix:	Water	Analyzed:	09/07/16					
Units:	ug/L							

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,118	112	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	107	80-132

Curtis & Tompkins Laboratories Analytical Report								
Lab #: 280540		Location:	Redwood Regional Park					
Client: Stella	r Environmental Solutions	Prep:	EPA 5030B					
Project#: 2013-0	2.	Analysis:	EPA 8015B					
Field ID:	MW-2	Batch#:	238850					
MSS Lab ID:	280540-001	Sampled:	09/06/16					
Matrix:	Water	Received:	09/06/16					
Units:	ug/L	Analyzed:	09/07/16					
Diln Fac:	1.000							

Туре:	MS			Lab ID:	QC850550		
An	alyte	MSS Re	sult	Spiked	Result	t %REC	Limits
Gasoline C7-	-C12	40	8.4	2,000	2,299	95	76-120
Su	irrogate	%REC	Limits				
Bromofluorob	enzene (FID)	108	80-132				

Type:	MSD			Lab ID:	Q	C850551			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		2,344	97	76-120	2	20
	Surrogate	%REC	Limits						
Bromoflu	orobenzene (FID)	112	80-132						

	Curtis & Tompkins Laboratories Analytical Report									
Lab #:	280540	Location:	Redwood Regional Park							
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B							
Project#:	2013-02.	Analysis:	EPA 8021B							
Matrix:	Water	Batch#:	238850							
Units:	ug/L	Analyzed:	09/07/16							
Diln Fac:	1.000									

Type:

BS

Lab ID:

QC850552

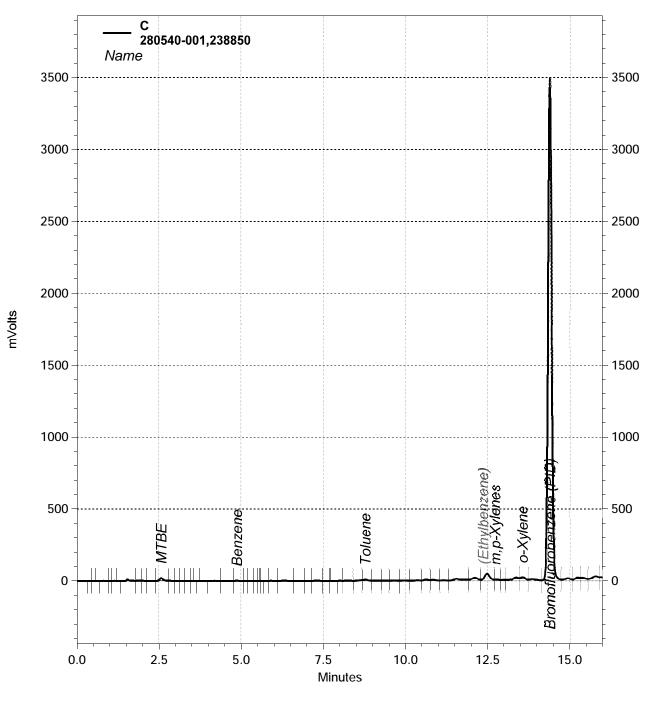
Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	8.884	89	74-137
Benzene	10.00	10.22	102	80-120
Toluene	10.00	10.38	104	80-120
Ethylbenzene	10.00	10.38	104	80-120
m,p-Xylenes	10.00	10.72	107	80-120
o-Xylene	10.00	10.71	107	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	106	71-141

Type:

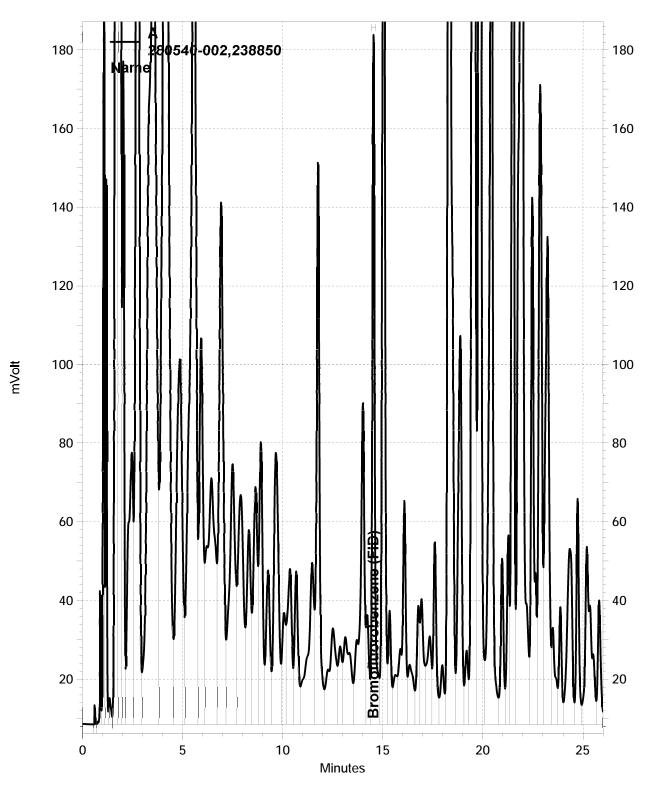
BSD

Lab ID:

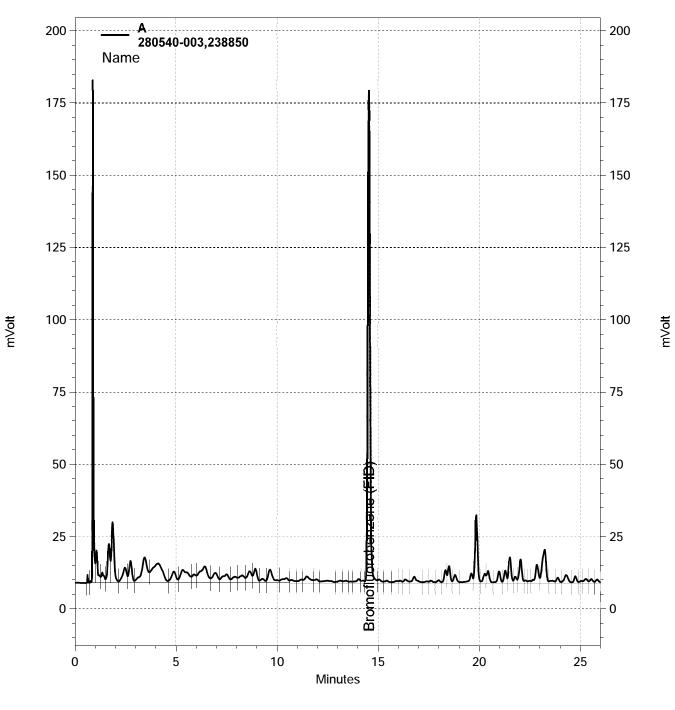

QC850553

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.505	95	74-137	7	37
Benzene	10.00	10.72	107	80-120	5	20
Toluene	10.00	10.85	109	80-120	4	20
Ethylbenzene	10.00	10.83	108	80-120	4	20
m,p-Xylenes	10.00	11.06	111	80-120	3	20
o-Xylene	10.00	11.05	111	80-120	3	20
Gummagaha	CDEC Limits					

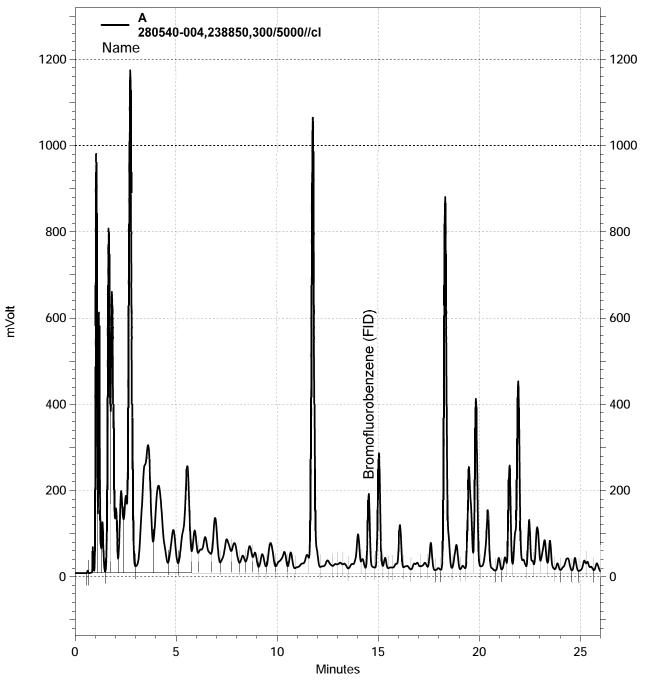
Surrogate	%REC	Limits
Bromofluorobenzene (PID)	99	71-141



	Curtis & To	ompkin	ns Labor	atories A	nalytical	Report			
Lab #:	280540			Location:	Redv	vood Regio	nal Park		
Client:	Stellar Environmenta	l Solut	ions	Prep:	EPA	5030B			
Project#:	2013-02.			Analysis:	EPA	8021B			
Matrix:	Water			Batch#:	2389	929			
Units:	ug/L			Analyzed:	09/0	9/16			
Diln Fac:	1.000								
Туре:	BS			Lab ID:	QC85	50858			
	Analyte		Spiked		Result	%REC	Limits		
Ethylbenze	ene		10.00		11.31	113	80-120		
	Surrogate	%REC	Limits						
Bromofluo	robenzene (PID)	99	71-141						
Туре:	BSD			Lab ID:	QC85	50859			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Ethylbenze	ene		10.00		11.04	110	80-120	2	20
	Surrogate	%REC	Limits						
Bromofluo	robenzene (PID)	101	71-141						

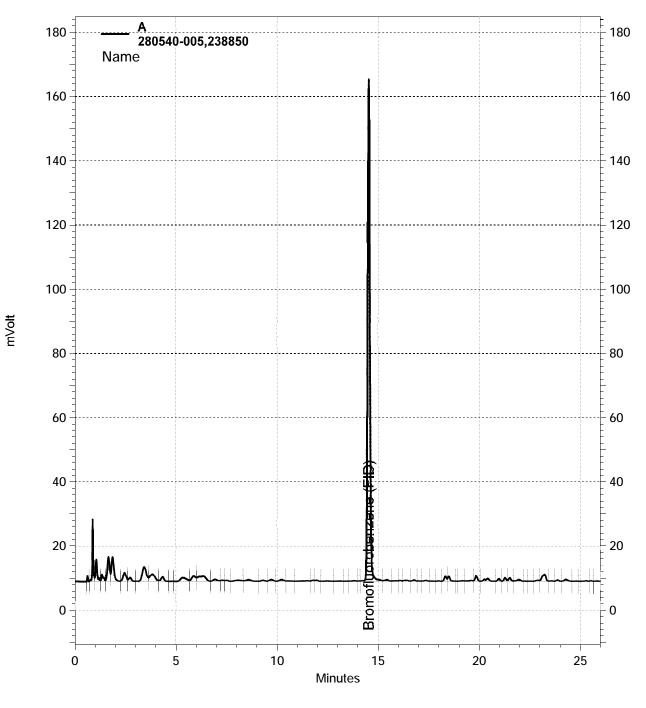

----- \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-005, C

mVolts

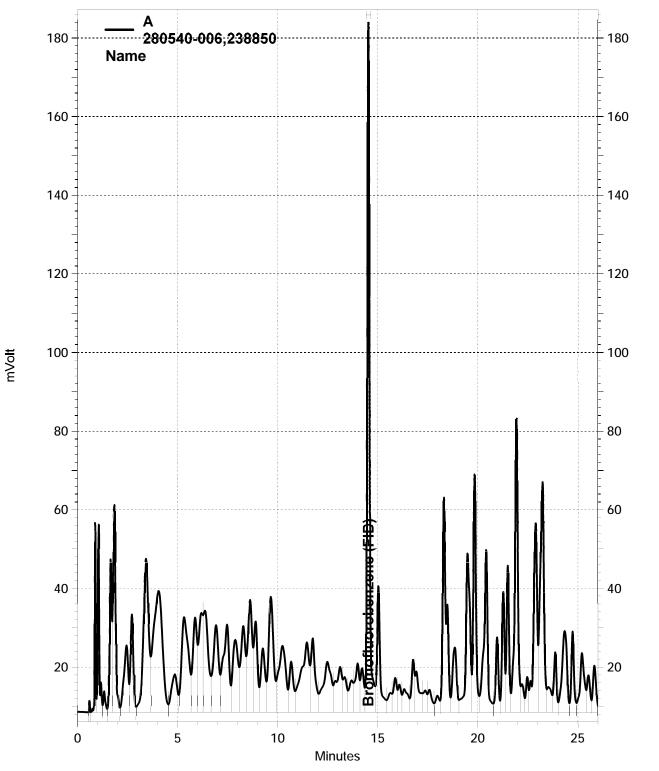


- \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-026, A

mValt



----- \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-009, A


—— \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-012, A

mValt

----- \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-010, A

mVolt

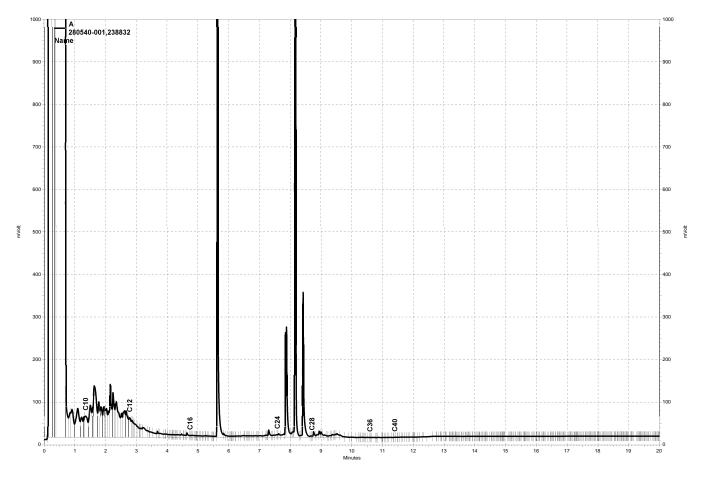
- \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-020, A

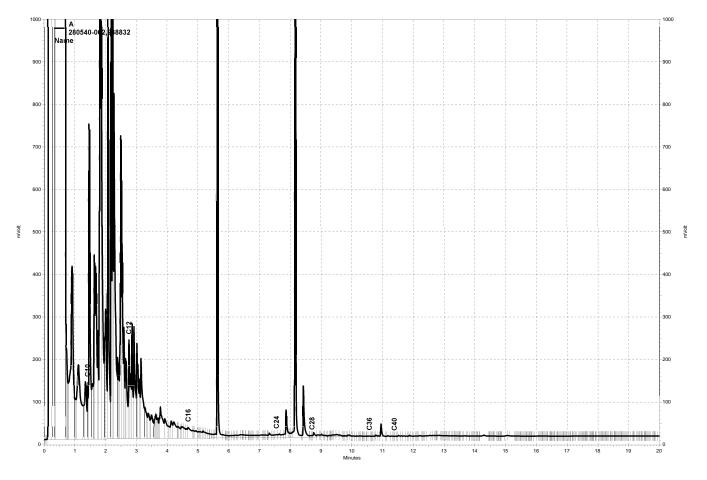
mVolt

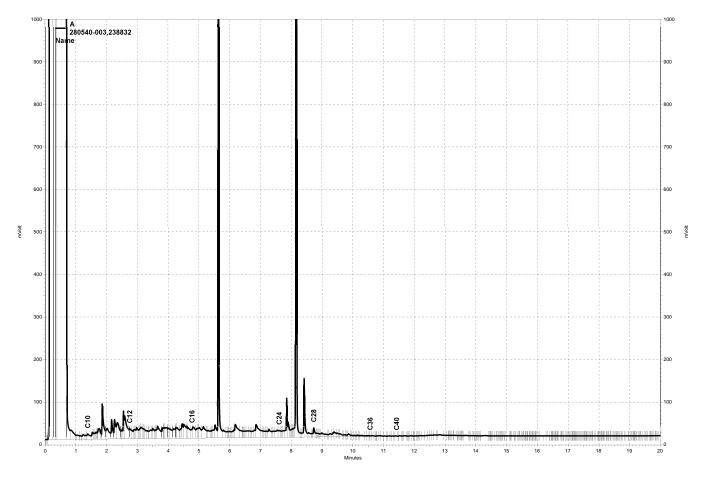
- \\Lims\gdrive\ezchrom\Projects\GC19\Data\251-002, A

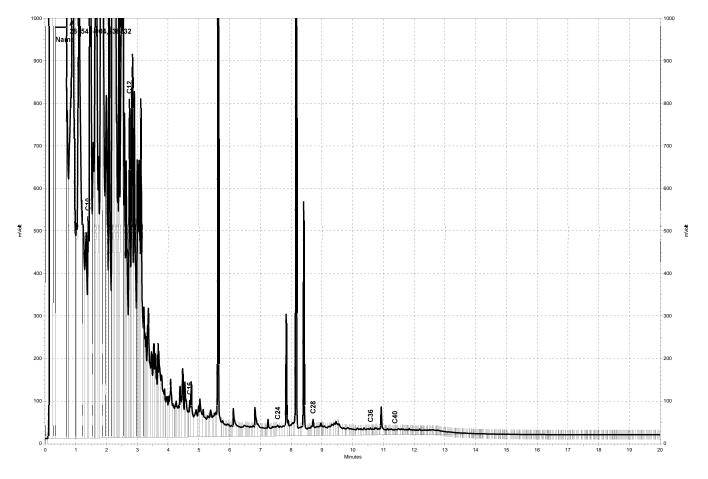
mValt

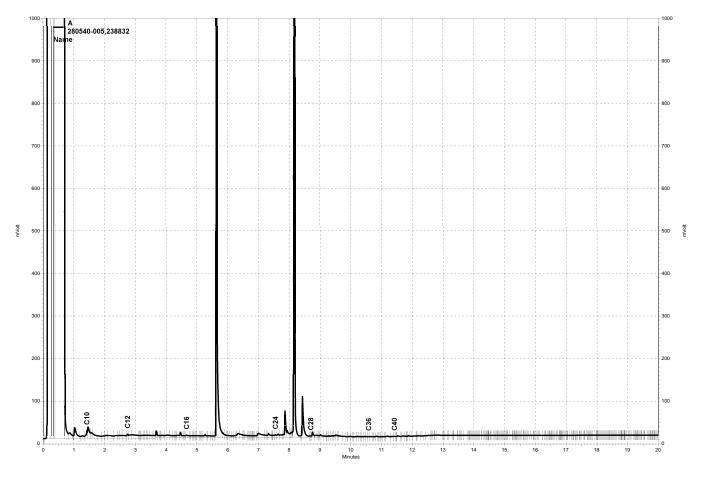
	3	otal 1	Extracta	ble Hydroc	arboi	ns
Lab #: Client: Project#:	280540 Stellar Environmenta 2013-02.	al Solut	cions	Location: Prep: Analysis:		Redwood Regional Park EPA 3520C EPA 8015B
Matrix: Units: Diln Fac:	Water ug/L 1.000			Batch#: Sampled: Received:		238832 09/06/16 09/06/16
Field ID: Type: Lab ID:	MW-2 SAMPLE 280540-001			Prepared: Analyzed:		09/07/16 09/09/16
Diesel Cl(Analyte D-C24		Result 400 Y		RL 47	
o-Terpheny	Surrogate	%REC 107	Limits 67-136			
	2					
Field ID: Type: Lab ID:	MW-7 SAMPLE 280540-002			Prepared: Analyzed:		09/07/16 09/09/16
Diesel Cl(Analyte		Result 2,100 Y		RL 47	
	Surrogate	%REC	Limits			
o-Terpheny	yl	102	67-136			
Field ID: Type: Lab ID:	MW-8 SAMPLE 280540-003			Prepared: Analyzed:		09/07/16 09/09/16
Diesel C10	Analyte		Result 430 Y		RL 47	
	Surrogate	%REC	Limits			
o-Terpheny	yl	104	67-136			
Field ID: Type: Lab ID:	MW-9 SAMPLE 280540-004			Prepared: Analyzed:		09/07/16 09/09/16
Diesel Cl(Analyte D-C24		Result 6,400 Y		RL 47	
o-Terpheny	Surrogate yl	%REC 94	Limits 67-136			

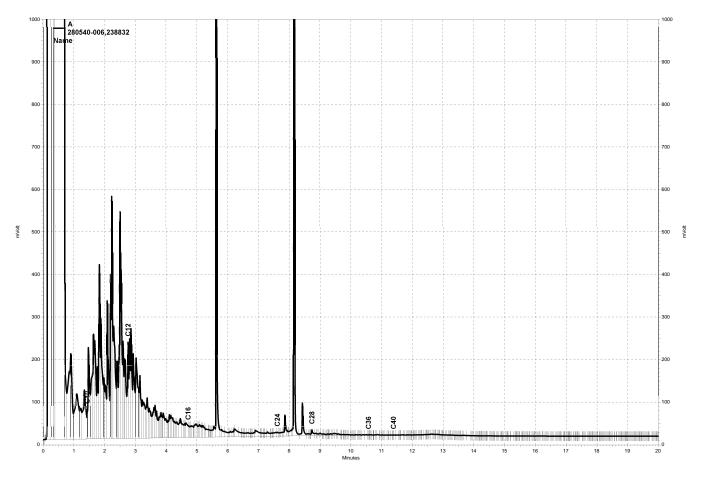

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 1\ of\ 2}$

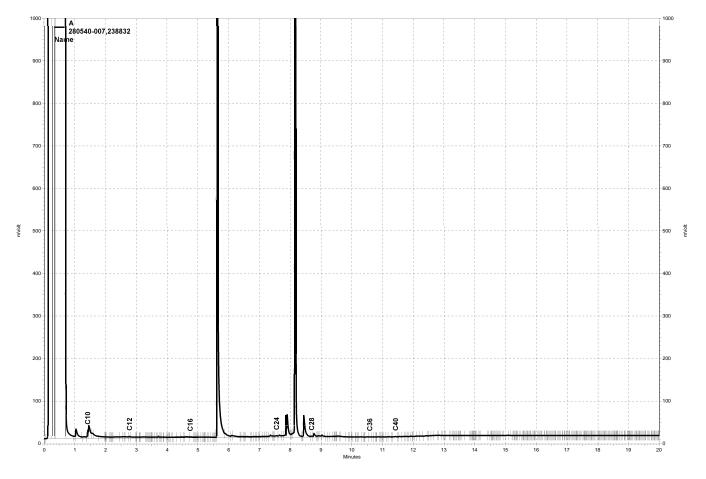

		Total Extracta	able Hydroca	arbons	
Lab #: Client: Project#:	280540 Stellar Environment 2013-02.	al Solutions	Location: Prep: Analysis:	Redwood Region EPA 3520C EPA 8015B	al Park
Matrix: Units: Diln Fac:	Water ug/L		Batch#: Sampled: Received:	238832 09/06/16 09/06/16	
Field ID:	MW-10		Droparad	09/07/16	
Type: Lab ID:	SAMPLE 280540-005		Prepared: Analyzed:	09/09/16	
	Analyte	Result		RL	
Diesel Cl	0-C24	120 Y		47	
	Surrogate	%REC Limits			
o-Terphen		112 67-136			
Field ID: Type: Lab ID:	MW-11 SAMPLE 280540-006		Prepared: Analyzed:	09/07/16 09/09/16	
	June last e				
	ANALVEA	Regult		RI.	
Diesel Cl	Analyte 0-C24	Result 1,500 Y		RL 47	
Diesel Cl	0-C24	1,500 Y			
Diesel Cl	0-C24 Surrogate				
	0-C24 Surrogate	1,500 Y %REC Limits	Prepared: Analyzed:		
o-Terphen Field ID: Type: Lab ID:	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte	1,500 Y %REC Limits 100 67-136 Result		47 09/07/16 09/09/16 RL	
o-Terphen Field ID: Type:	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte	1,500 Y %REC Limits 100 67-136		47 09/07/16 09/09/16	
o-Terphen Field ID: Type: Lab ID:	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte	1,500 Y %REC Limits 100 67-136 Result 58 Y %REC Limits		47 09/07/16 09/09/16 RL	
o-Terphen Field ID: Type: Lab ID:	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte 0-C24 Surrogate	1,500 Y %REC Limits 100 67-136 Result 58 Y		47 09/07/16 09/09/16 RL	
o-Terphen Field ID: Type: Lab ID: Diesel Cl	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte 0-C24 Surrogate	1,500 Y %REC Limits 100 67-136 Result 58 Y %REC Limits		47 09/07/16 09/09/16 RL	
o-Terphen Field ID: Type: Lab ID: Diesel Cl o-Terphen Type: Lab ID:	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte 0-C24 Surrogate yl BLANK QC850477 Analyte	1,500 Y %REC Limits 100 67-136 Result 58 Y %REC Limits 113 67-136 Result	Analyzed:	47 09/07/16 09/09/16 RL 47 09/06/16 09/07/16 RL	
o-Terphen Field ID: Type: Lab ID: Diesel Cl o-Terphen Type:	0-C24 Surrogate yl MW-12 SAMPLE 280540-007 Analyte 0-C24 Surrogate yl BLANK QC850477 Analyte	1,500 Y %REC Limits 100 67-136 Result 58 Y %REC Limits 113 67-136	Analyzed:	47 09/07/16 09/09/16 RL 47 09/06/16 09/07/16	

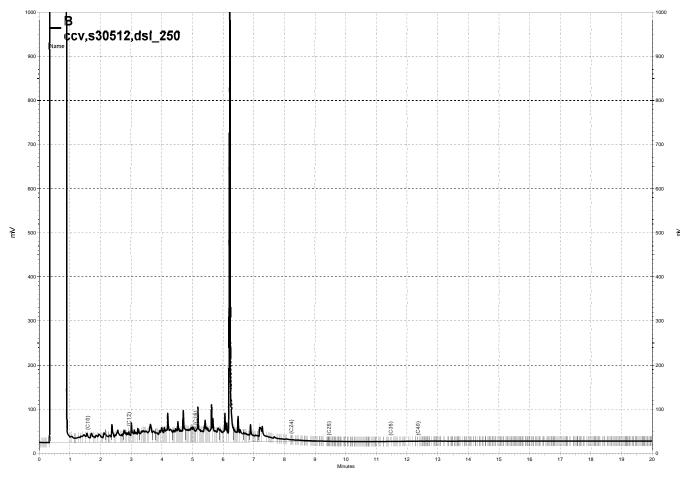

		Total 1	Extracta	able Hydro	ocarbor	ns			
Lab #:	280540			Location:		Redwood Regio	nal Park		
Client:	Stellar Environment	al Solut	cions	Prep:		EPA 3520C			
Project#:	2013-02.			Analysis:		EPA 8015B			
Matrix:	Water			Batch#:		238832			
Units:	ug/L			Prepared:		09/06/16			
Diln Fac:	1.000			Analyzed:		09/07/16			
Туре:	BS			Lab ID:		QC850478			
	Analyte		Spiked		Result	%REC	Limits		
Diesel C1	0-C24		2,500		2,233	89	60-121		
	Surrogate	%REC	Limits						
o-Terphen	yl	102	67-136						
Туре:	BSD			Lab ID:		QC850479			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C1	0-C24		2,500		1,860	74	60-121	18	32
	Surrogate	%REC	Limits						
o-Terphen	yl	82	67-136						


-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a024, A


-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a025, A


-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a026, A


-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a027, A


-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a028, A

-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a029, A

-\\kraken\gdrive\ezchrom\Projects\GC26\data\253a030, A

\kraken\gdrive\ezchrom\Projects\GC14B\Data\251B004, B

	Curtis & To	mpkins Labor	atories Ana	alytical Report
Lab #:	280540		Location:	Redwood Regional Park
Client:	Stellar Environmental	Solutions	Prep:	METHOD
Project#:	2013-02.		Analysis:	EPA 300.0
Matrix:	Water		Batch#:	238824
Units:	mg/L		Received:	09/06/16
Diln Fac:	-			
Field ID:	MW-7		Sampled:	09/06/16 11:05
Туре:	SAMPLE		Analyzed:	09/06/16 14:51
Lab ID:	280540-002		-	
	Analyte	Result		RL
Nitrogen,		ND		0.05
Sulfate		6.1		0.50
Field ID: Type: Lab ID:	MW-9 SAMPLE 280540-004		Sampled: Analyzed:	09/06/16 12:45 09/06/16 15:26
	Analyte	Result		RL
Nitrogen,		ND		0.05
Nitrogen, Sulfate				
Sulfate	Nitrate	ND	Sampled:	0.05 0.50
Sulfate Field ID:	Nitrate MW-12	ND	Sampled:	0.05 0.50 09/06/16 11:40
Sulfate Field ID: Type:	Nitrate	ND	Sampled: Analyzed:	0.05 0.50
Sulfate Field ID: Type:	Nitrate MW-12 SAMPLE 280540-007	ND 3.4	-	0.05 0.50 09/06/16 11:40 09/06/16 16:01
Sulfate Field ID: Type: Lab ID:	Nitrate MW-12 SAMPLE 280540-007 Analyte	ND 3.4 Result	-	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL
Sulfate Field ID: Type: Lab ID: Nitrogen,	Nitrate MW-12 SAMPLE 280540-007 Analyte	ND 3.4 Result ND	-	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL 0.05
Sulfate Field ID: Type: Lab ID:	Nitrate MW-12 SAMPLE 280540-007 Analyte	ND 3.4 Result	-	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 280540-007 Analyte	ND 3.4 Result ND	-	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL 0.05
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 280540-007 Analyte Nitrate BLANK	ND 3.4 Result ND	Analyzed:	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL 0.05 0.50
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type:	Nitrate MW-12 SAMPLE 280540-007 Analyte Nitrate BLANK QC850447 Analyte	ND 3.4 Result ND 47	Analyzed:	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL 0.05 0.50 09/06/16 13:04
Sulfate Field ID: Type: Lab ID: Nitrogen, Sulfate Type: Lab ID:	Nitrate MW-12 SAMPLE 280540-007 Analyte Nitrate BLANK QC850447 Analyte	ND 3.4 Result ND 47 Result	Analyzed:	0.05 0.50 09/06/16 11:40 09/06/16 16:01 RL 0.05 0.50 09/06/16 13:04 RL

ND= Not Detected RL= Reporting Limit Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report							
Lab #:	280540	Location:	Redwood Regional Park				
Client:	Stellar Environmental Solutions	Prep:	METHOD				
Project#:	2013-02.	Analysis:	EPA 300.0				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC850448	Batch#:	238824				
Matrix:	Water	Analyzed:	09/06/16 13:22				
Units:	mg/L						

Analyte	Spiked	Result	%REC	Limits
Nitrogen, Nitrate	1.000	0.9662	97	80-120
Sulfate	10.00	10.00	100	80-120

Batch QC Report

	Curtis &	Tompkins Labor	atories Analy	ytical	Report			
Lab #:	280540		Location:	Redwo	ood Regio	nal Park		
Client:	Stellar Environment	al Solutions	Prep:	METHO	DD			
Project#:	2013-02.		Analysis:	EPA 3	300.0			
Field ID:	MW-7		Diln Fac:	10.00	C			
MSS Lab II	D: 280540-002		Batch#:	23882	24			
Matrix:	Water		Sampled:	09/00	5/16 11:0	5		
Units:	mg/L		Received:	09/06	5/16			
Type: Lab ID:	MS QC850449 Analyte	MSS Result	Analyzed: Spiked		5/16 17:3 Result	3 %REC	Lim	lits
Nitrogen,		<0.01127	5.000		4.844	97	80-	120
Sulfate		6.108	50.00		53.42	95	80-	120
Type: Lab ID:	MSD QC850450		Analyzed:	09/06	5/16 17:5:	1		
	Analyte	Spiked	Resi	ılt	%REC	Limits	RPD	Lim
Nitrogen,	Nitrate	5.000)	4.790	96	80-120	1	20
Sulfate		50.00	4	48.76	85	80-120	9	20

	Biochemical Oxygen Demand Lab #: 280540 Logation: Redwood Regional Dark								
Lab #:	280540	Location:	Redwood Regional Park						
Client:	Stellar Environmental Solutions	Prep:	METHOD						
Project#:	2013-02.	Analysis:	SM5210B						
Analyte:	Biochemical Oxygen Demand	Batch#:	238847						
Matrix:	Water	Received:	09/06/16						
Units:	mg/L	Prepared:	09/07/16 12:58						
Diln Fac:	1.000	Analyzed:	09/12/16 10:26						

Field ID	Type Lab ID	Result	RL	Sampled
MW-7	SAMPLE 280540-002	ND	5.0	09/06/16 11:05
MW-9	SAMPLE 280540-004	25	7.5	09/06/16 12:45
MW-12	SAMPLE 280540-007	ND	5.0	09/06/16 11:40
	BLANK QC850535	ND	5.0	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Batch QC Report

		E	Biochemical	Oxygen Demand					
Lab #:	280540			Location:	Redwood Regional Park				
Client:	Stellar	Environmental	Solutions	Prep:	METHOD				
Project#:	2013-02			Analysis:	SM5210B				
Analyte:		Biochemical Oxy	gen Demand	Batch#:	238847				
Field ID: ZZZZZZZZZ			Sampled:	09/06/1	6 06:0	0			
MSS Lab 1	D:	280571-001		Received:	09/06/1	6			
Matrix:		Water		Prepared:	09/07/1	6 12:5	8		
Units:		mg/L		Analyzed:	09/12/1	6 10:2	6		
Diln Fac:		1.000							
Type La	ab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
	250526		100 0	200 1		101	85-115		

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC850536		198.0	200.1		101	85-115		
BSD	QC850537		198.0	204.6		103	85-115	2	20
SDUP	QC850538	<300.0		<300.0	300.0			NC	26

NC= Not Calculated RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

Chemical Oxygen Demand								
Lab #:	280540	Location:	Redwood Regional Park					
Client:	Stellar Environmental Solutions	Prep:	METHOD					
Project#:	2013-02.	Analysis:	SM5220D					
Analyte:	Chemical Oxygen Demand	Batch#:	238936					
Matrix:	Water	Received:	09/06/16					
Units:	mg/L	Prepared:	09/09/16 10:00					
Diln Fac:	1.000	Analyzed:	09/09/16 12:00					

Field ID	Туре	Lab ID	Result	RL	Sampled
MW-7	SAMPLE	280540-002	28	10	09/06/16 11:05
MW-9	SAMPLE	280540-004	79	10	09/06/16 12:45
MW-12	SAMPLE	280540-007	19	10	09/06/16 11:40
	BLANK	QC850884	ND	10	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Batch QC Report

Chemical Oxygen Demand										
Lab #: 28054	0	Location:	Redwood Regional Park							
Client: Stella	ar Environmental Solutions	Prep:	METHOD							
Project#: 2013-	02.	Analysis:	SM5220D							
Analyte:	Chemical Oxygen Demand	Batch#:	238936							
Field ID:	MW-12	Sampled:	09/06/16 11:40							
MSS Lab ID:	280540-007	Received:	09/06/16							
Matrix:	Water	Prepared:	09/09/16 10:00							
Units:	mg/L	Analyzed:	09/09/16 12:00							
Diln Fac:	1.000									
Type Lab ID	MSS Result S	piked R	Result %REC Limits RPD Lim							

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC850885		50.00	53.34	107	90-110		
MS	QC850886	18.54	100.0	121.5	103	57-126		
MSD	QC850887		100.0	120.3	102	57-126	1	20

APPENDIX D

Historical Analytical Results

			VOOD REG	GIONAL PA	RK SERVI		NALYTICAL RES AND, CALIFORM r billion [ppb])		
			(
Event	Date	TVHg	TEHd	Benzene	Well M Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	66	< 50	3.4	< 0.5	< 0.5	0.9	4.3	NA
2	Feb-95	89	< 50		2.4	1.7	7.5	30	NA
3	May-95	< 50	< 50	3.9	< 0.5	1.7	2.5	8.0	NA
4	Aug-95	< 50	< 50	5.7	< 0.5	< 0.5	< 0.5	5.7	NA
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.1	NA
6	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5		NA
7	Dec-96	< 50	< 50	6.3	< 0.5	1.6	< 0.5	7.9	NA
8	Feb-97	< 50	< 50	0.69	< 0.5	0.55	< 0.5	1.3	NA
9	May-97	67	< 50	8.9	< 0.5	5.1	< 1.0	1.2	NA
10	Aug-97	< 50	< 50	4.5	< 0.5	1.1	< 0.5	5.6	NA
10	Dec-97	61	< 50	4.5 21	< 0.5	6.5	3.9	31	NA
12	Feb-98	2,000	200	270	92	150	600	1,112	NA
12	Sep-98	2,000 < 50	< 50	< 0.5	92 < 0.5	< 0.5	< 0.5	1,112	7.0
13		82	710	4.2		3.4	4.0	12	7.5
14	Apr-99 Dec-99	82 57	< 50	4.2	< 0.5 0.6	3.4 5.9	4.0 <0.5	27	4.5
15	Sep-00	57 < 50	< 50	0.72	< 0.5	5.9 < 0.5	< 0.5	0.7	4.5
17	Jan-01	51	< 50	8.3	< 0.5	1.5	< 0.5	9.8	8.0
18	Apr-01	110	< 50	10	< 0.5	11	6.4	27	10
19	Aug-01	260	120	30	6.7	1.6	6.4	45	27
20	Dec-01	74	69	14	0.8	3.7	3.5	22	6.6
21	Mar-02	< 50	< 50	2.3	0.51	1.9	1.3	8.3	8.2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	7.7
23	Sep-02	98	< 50	5.0	< 0.5	< 0.5	< 0.5	-	13
24	Dec-02	< 50	< 50	4.3	< 0.5	< 0.5	< 0.5	-	< 2.0
25	Mar-03	130	82	39	< 0.5	20	4.1	63	16
26	Jun-03	< 50	< 50	1.9	< 0.5	< 0.5	< 0.5	1.9	8.7
27	Sep-03	120	< 50	8.6	0.51	0.53	< 0.5	9.6	23
28	Dec-03	282	<100	4.3	1.6	1.3	1.2	8.4	9.4
29	Mar-04	374	<100	81	1.2	36	7.3	126	18
30	Jun-04	< 50	< 50	0.75	< 0.5	< 0.5	< 0.5	< 0.5	15
31	Sep-04	200	< 50	23	< 0.5	< 0.5	0.70	24	16
32	Dec-04	80	< 50	14	< 0.5	2.9	0.72	18	20
33	Mar-05	190	68	27	<0.5	14	11	52	26
34	Jun-05	68	< 50	7.1	< 0.5	6.9	1.8	16	24
35	Sep-05	< 50	< 50	2.5	< 0.5	< 0.5	< 1.0	2.5	23
36	Dec-05	< 50	< 50	3.9	< 0.5	< 0.5	< 1.0	3.9	23
37	Mar-06	1300	300	77	4.4	91	250	422	18
38	Jun-06	< 50	60	< 0.5	< 0.5	< 0.5	< 1.0	-	17
39	Sep-06	270	52	31	< 0.5	15	6.69	53	17
40	Dec-06	< 50	< 50	2.1	< 0.5	< 0.5	< 0.5	2	16
41	Mar-07	59	< 50	4	< 0.5	< 0.5	< 0.5	< 0.5	14
42	Jun-07	<50	<50	3.5	<0.5	<0.5	<0.5	3.5	8
43	Sep-07	2,600	260	160	44	86	431	721	15
44	Dec-07	16,000	5,800	23	91	230	2,420	2764	16
44a	Jan-08	480	200	1.1	3.2	5.5	68	77.8	11
45	Mar-08	20,000	24,000	21	39	300	2,620	2980	13
45a	Apr-08	800	640	2.6	2.1	13	155	172.7	13
46a	May-08	7,100	3,900	14	8.8	140	710	872.8	11
46	Jun-08	5,700	1,000	9.4	5.2	80	550	644.6	11
46a	Jul-08	6,400	2,200	13	5.1	140	570	728.1	2.9
46b	Jul-08	390	55	1.3	0.77	4.6	44.4	51.07	9
46c	Aug-08	28,000	7,100	12	19	260	2,740	3031	<20
46d	Aug-08	8,700	2,700	5.7	7.4	130	900.0	1043.1	3.5
47	Sep-08	40,000	9,100	1.6	<0.5	110	910.0	1021.6	9.5
48	Dec-08	9,200	2,200	0.52	<0.5	<0.5	201.0	201.52	12
49	Mar-09	3,100	37,000	1.1	1.4	7.9	35.0	45.4	14
50	May-09	5,000	15,000	1.5	<0.5	9.8	39.0	50	13
51	Jun-09	2,400	8,000	5.4	<0.5	9.8 11	20.2	36.6	13
52	Aug-09	1,900	3,100	5.4 1.6	<0.5 1.8	11	20.2	38.2	7.1
		1,900	1,800			<0.5	4.2	4.24	12
53	Sep-09			<0.5 <0.5	<0.5 <0.5	<0.5 1.2	4.2	4.24 2.4	
54	Dec-09	590	1,800	<0.5	<0.5	1.2	1.2	2.4	3.6

Well MW-2 Continued

					Well MW-2	2			
55	Mar-10	1,900	3,200	<0.5	<0.5	<0.5	2.2	2.2	2.2
56	Mar-10	2,000	4,300	<0.5	<0.5	<0.5	3.5	3.45	<2.0
57	Jun-10	1,300	2,400	<0.5	<0.5	<0.5	1.7	-	<2.0
58	Sep-10	910	<50	<0.5	<0.5	<0.5	1.5	1.45	<2.0
59	Dec-10	910	1,600	<0.5	<0.5	<0.5	<0.5	<0.5	2.6
60	Mar-11	860	1,100	<0.5	<0.5	<0.5	<0.5	_	3.1
61	Sep-11	780	810	<0.5	<0.5	<0.5	<0.5	—	<2.0
62	Mar-12	460	610	<0.5	<0.5	<0.5	<0.5	_	<2.0
63	Sep-12	160	190	<0.5	<0.5	<0.5	<0.5	—	<2.0
64	Mar-13	470	810	<0.5	<0.5	<0.5	<0.5	_	<2.0
65	Oct-13	120	67	<0.5	<0.5	<0.5	<0.5	_	2.3
66	Mar-14	320	290	<0.5	<0.5	<0.5	<0.5	_	<2.0
67	Sep-14	610	480	<0.5	1	4.7	1.9	7.6	3.7
68	Mar-15	370	450	<0.5	<0.5	<0.5	<0.5	_	<2.0
69	Sep-15	790	980	<0.5	0.6	<0.5	3.3	—	<2.0
70	Mar-16	< 50	< 50	<0.5	<0.5	<0.5	<0.5	_	<2.0
71	Sep-16	410	400	<0.5	<0.5	<0.5	<0.5	0	<2.0

					Well N	/W-4			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Nov-94	2,600	230	120	4.8	150	88	363	N
2	Feb-95	11,000	330	420	17	440	460	1,337	N
3	May-95	7,200	440	300	13	390	330	1,033	N
4	Aug-95	1,800	240	65	6.8	89	67	227	N
5	May-96	1,100	140	51	< 0.5	< 0.5	47	98	N
6	Aug-96	3,700	120	63	2.0	200	144	409	N
7	Dec-96	2,700	240	19	< 0.5	130	93	242	N
8	Feb-97	3,300	< 50	120	1.0	150	103	374	N
9	May-97	490	< 50	2.6	6.7	6.4	6.7	22	N
10	Aug-97	1,900	150	8.6	3.5	78	53	143	N
11	Dec-97	1,000	84	4.6	2.7	61	54	123	N
12	Feb-98	5,300	340	110	24	320	402	856	N
13	Sep-98	1,800	< 50	8.9	< 0.5	68	27	104	23
14	Apr-99	2,900	710	61	1.2	120	80	263	32
15	Dec-99	1,000	430	4.0	2.0	26	14	46	< 2.
16	Sep-00	570	380	< 0.5	< 0.5	16	4.1	20	2.4
17	Jan-01	1,600	650	4.2	0.89	46	13.8	65	8.4
18	Apr-01	1,700	1,100	4.5	2.8	48	10.7	66	5.0
19	Aug-01	1,300	810	3.2	4.0	29	9.7	46	< 2.
20	Dec-01	< 50	110	< 0.5	< 0.5	< 0.5	1.2	1.2	< 2
21	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
22	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2
23	Sep-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
24	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
25	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
26	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
27	Sep-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2
28	Dec-03	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5
29	Mar-04	<50	<100	<0.3	<0.3	<0.3	<0.6	_	< 5
30	Jun-04	<50	2,500	< 0.3	<0.3	<0.3	<0.6	_	< 5
31	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
32	Dec-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
33	Mar-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
34	Jun-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
35	Sep-05	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2
G	roundwate	r monitoring	in this we	Il discontinu	ied with Al	ameda County H	ealth Care Servic	es Agency appro	ival

		Well MW-5												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE					
1	Nov-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
2	Feb-95	70	< 50	0.6	< 0.5	< 0.5	< 0.5	0.6	NA					
3	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
4	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA					
5	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
6	Aug-96	80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
7	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA					
8	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
9	May-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
10	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
11	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA					
12	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA					
13	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	—	< 2					
Grour	ndwater mo	onitoring in t	his well dis	scontinued	in 1998 wit	h Alameda Coun	ty Health Care Se	ervices Agency a	oproval.					
	Subsequent groundwater monitoring conducted to confirm plume's southern limit													
14	Jun-04	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	—	5.9					
15	Sep-04	<50	< 50	< 0.5	< 0.5	< 0.5	< 1.0	_	< 2.0					

					Well N	1W-7			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	13,000	3,100	95	4	500	289	888	95
2	Apr-01	13,000	3,900	140	< 0.5	530	278	948	52
3	Aug-01	12,000	5,000	55	25	440	198	718	19
4	Dec-01	9,100	4,600	89	< 2.5	460	228	777	<
5	Mar-02	8,700	3,900	220	6.2	450	191	867	200
6	Jun-02	9,300	3,500	210	6.3	380	155	751	18
7	Sep-02	9,600	3,900	180	< 0.5	380	160	720	< 2
8	Dec-02	9,600	3,700	110	< 0.5	400	189	699	< 2
9	Mar-03	10,000	3,600	210	12	360	143	725	45
10	Jun-03	9,300	4,200	190	< 10	250	130	570	200
11	Sep-03	10,000		150	11	300	136		< 2
12	Dec-03	9,140	3,300 1,100	62	45	295	136	597 586	< 2 89
13	Mar-04	8,170	600	104	41	306	129	580	84
14	Jun-04	9,200	2,700	150	< 0.5	290	91	531	< 2
15	Sep-04	9,700	3,400	98	< 0.5	300	125	523	< 2
16	Dec-04	8200	4,000	95	< 0.5	290	124	509	< 2
17	Mar-05	10,000	4,300	150	<0.5	370	71	591	<2
18	Jun-05	10,000	3,300	210	<1.0	410	56	676	<4
19	Sep-05	7,600	2,700	110	<1.0	310	54	474	<4
20	Dec-05	2,900	3,300	31	<1.0	140	41	212	<4
21	Mar-06	6,800	3,000	110	< 1.0	280	42	432	110
22	Jun-06	6,900	3,600	63	< 2.5	290	43	396	<
23	Sep-06	7,900	3,600	64	< 0.5	260	58	382	
24	Dec-06	7,300	2,400	50	< 0.5	220	42	312	< 2
25	Mar-07	6,200	2,900	34	< 0.5	190	15	239	<2
26	Jun-07	6,800	3,000	30	<1.0	160	27	217	<4
27	Sep-07	6,400	3,000	<0.5	<0.5	170	43	213	<
28	Dec-07	4,800	2,800	< 0.5	< 0.5	100	26.5	126.5	2
30	Mar-08	5,400	5,900	21	<0.5	150	15	186	51
31	Jun-08	4,800	3,500	55	< 0.5	140	7.0	202	<2.0
32	Sep-08	6,400	2,800	22	< 0.5	100	9.3	131	<2.0
33	Dec-08	3,500	3,600	5	<0.5	100	9.1	114	<2.0
34	Mar-09	5,100	6,700	19	<0.5	140	12.3	171	51
35	Jun-09	4,600	5,400	40	< 0.5	140	5.1	185	260
		,	,			96		102	
36 37	Sep-09	4,400	4,700 4,500	<0.5 < 0.5	< 0.5	90	5.6		3.5
	Dec-09	4,900	,		< 0.5		2.9	93	57.0
38	Mar-10	5,300	4,300	17	<0.5	110	2.6	130	16.0
39	Mar-10	2,600	6,100	11	<0.5	76	4.5	92	<
40	Jun-10	5,800	5,000	20	<0.5	140	9.9	170	<
41	Sep-10	6,300	4,100	<0.5	<0.5	93	6.0	99	69.0
42	Dec-10	5,400	3,500	<0.5	<0.5	99	9.2	108	87.0
43	Mar-11	5,500	3,400	11	<0.5	94	8.5	114	<2
44	Sep-11	5,800	3,300	<0.5	<0.5	97	3.1	100	<
45	Mar-12	6,400	3,500	<0.5	<0.5	110	5.6	116	<
46	Sep-12	5,700	3,000	<0.5	<0.5	84	<0.5	84	<
47	Mar-13	6,000	3,300	<0.5	<0.5	82	<0.5	82	<
48	Oct-13	6,400	6,000	35	<0.5	75	5.10	115	<2
49	Dec-13	6,000	4,200	<0.5	<0.5	100	<0.5	100	Ŷ
50	Mar-14	7,500	4,900	<0.5	<0.5	130	2.0	132	<
51	Jun-14	3,400	9,100	<0.5	<0.5	170	6.9	177	4
52	Sep-14	6,500	6,000	<0.5	<0.5	150	5.1	155	<
53	Mar-15	7,700	3,200	<0.5	<0.5	91	<0.5	91	<
54	Sep-15	6,800	2,800	< 0.5	<0.5	85	<0.5	85	4
55	Dec-15	4,700	2,100	<0.5	<0.5	64	<0.5	64	43
56	Mar-16	1,500	850	<0.5	<0.5	12	<0.5	12	
55	mat-10	6,800	2,100	69	<0.5	<0.5	5.3	74.3	~

					Well N	/W-8			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Jan-01	14,000	1,800	430	17	360	1230	2,037	96
2	Apr-01	11,000	3,200	320	13	560	1,163	2,056	42
3	Aug-01	9,600	3,200	130	14	470	463	1,077	14
4	Dec-01	3,500	950	69	2.4	310	431	812	< 4
5	Mar-02	14,000	3,800	650	17	1,200	1,510	3,377	240
6	Jun-02	2,900	1,100	70	2.0	170	148	390	19
7	Sep-02	1,000	420	22	< 0.5	64	50	136	< 2
8	Dec-02	3,300	290	67	< 0.5	190	203	460	< 2
9	Mar-03	13,000	3,500	610	12	1,100	958	2,680	<
10	Jun-03	7,900	2,200	370	7.4	620	562	1,559	< 4
11	Sep-03	3,600	400	120	3.3	300	221	644	< 2
12	Dec-03	485	100	19	1.5	26	36	83	< 5
13	Mar-04	16,000	900	592	24	1,060	1,870	3,546	90
14	Jun-04	5,900	990	260	9.9	460	390	1,120	<
15	Sep-04	2,000	360	100	< 2.5	180	102	382	<
16	Dec-04	15,000	4,000	840	21	1,200	1,520	3,581	<
17	Mar-05	24,000	7,100	840	51	1,800	2,410	5,101	<10
18	Jun-05	33,000	5,700	930	39	2,500	3,860	7,329	<20
19	Sep-05	5,600	1,200	270	6.6	400	390	1,067	<20
20	Dec-05	3,700	1,300	110	< 5.0	320	356	786	<20
21	Mar-06	22,000	4,300	550	30	1,800	2,380	4,760	<20
22	Jun-06	19,000	5,000	500	28	1,800	1,897	4,225	<20
23	Sep-06	9,000	820	170	7.7	730	539	1,447	<10
24	Dec-06	4,400	800	75	4.2	320	246	645	< 2
25	Mar-07	15,000	4,500	340	19	1,300	1,275	2,934	<
26	Jun-07	10,000	3,500	220	11	670	675	1,576	<4
27	Sep-07	9,400	3,400	200	6.9	1,000	773	1,980	<8
28	Dec-07	1,200	500	15	0.88	95	57.7	168.58	<2
30	Mar-08	11,000	13,000	150	13	1,100	950.0	2,213	76
31	Jun-08	2.000	1.700	27	2.5	190	113.2	333	<2
32	Sep-08	5,500	4,400	89	3.9	630	194.4	917	<2
33	Dec-08	520	400	1.5	<0.5	20	4.4	26	4.5
34	Mar-09	4,600	7,300	55	<5.0	410	639.0	1,104	<
35	Jun-09	2,100	3,400	32	< 0.5	260	80.8	373	55
36	Sep-09	440	1,700	2.8	<0.5	33	2.7	39	3.7
37	Dec-09	560	540	1.5	< 0.5	39	7.1	48	4.2
38	Mar-10	220	270	0.8	<0.5	14	3.1	18	3.9
39	Mar-10	3,400	5,700	28.0	< 0.5	340	255.7	624	<2
40	Jun-10	4,700	4,200	27.0	2.9	400	103.2	533	27
41	Sep-10	900	1,300	2.9	< 0.5	22	<2.5	25	<
42	Dec-10	180	260	< 0.5	< 0.5	5	1.0	6.4	7.2
43	Mar-11	6,000	5,900	39	<0.5	510	431.0	980.0	<2
44	Sep-11	1,700	1,200	7	0.9	120	12.2	139.7	4
45	Mar-12	1,200	790	11	0.9	<0.5	99.0	110.9	<
46	Sep-12	730	430	4.7	< 0.5	45	3.8	53.5	9.2
47	Mar-13	840	690	5.6	< 0.5	47	9.9	62.51	15
48	Oct-13	150	140	< 0.5	<0.5	3.3	<0.5	3.3	~
49	Mar-14	79	120	<0.5	<0.5	2.1	<0.5	2.1	
50	Sep-14	57	66	<0.5	<0.5	1.5	0.66	2.16	11
51	Mar-15	190	68	< 0.5	<0.5	1.6	<0.5	1.6	11
52	Sep-15	<50	97	<0.5	<0.5	<0.5	<0.5	0	6
53	Mar-16	170	290	0.53	<0.5	3.6	5.52	9.65	3
53 54	Sep-16	220	430	<0.5	<0.5	3.0 <0.5	<0.5	9.05 <0.5	4.5

	Well MW-9											
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE			
1	Aug-01	11,000	170	340	13	720	616	1,689	48			
2	Dec-01	9,400	2,700	250	5.1	520	317	1,092	< 1			
3	Mar-02	1,700	300	53	4.2	120	67	244	20			
4	Jun-02	11,000	2,500	200	16	600	509	1,325	85			
5	Sep-02	3,600	2,800	440	11	260	39	750	< 4.			
6	Dec-02	7,000	3,500	380	9.5	730	147	1,266	< 1			
7	Mar-03	4,400	1,400	320	6.9	400	93	820	< 2			
8	Jun-03	7,600		490	10	620	167	1,287	< 4			
			1,600		10							
9 10	Sep-03 Dec-03	8,300 7,080	2,900 700	420 287	31	870 901	200 255	1,504 1,474	< 1			
-		,		-	-							
11	Mar-04	3,550	600	122	15	313	84	534	35			
12	Jun-04	6,800	1,700	350	< 2.5	620	99	1,069	< 1			
13	Sep-04	7,100	1,900	160	8.1	600	406	1,174	< 1			
14	Dec-04	4,700	2,800	160	< 2.5	470	< 0.5	630	< 1			
15	Mar-05	4,200	1,600	97	<2.5	310	42	449	< 1			
16	Jun-05	9,900	2,000	170	<2.5	590	359	1,119	< 1			
17	Sep-05	3,600	1,200	250	<0.5	330	36	616	< 2			
18	Dec-05	8,700	1,500	150	4	650	551	1,355	< 4			
19	Mar-06	3,600	880	37	<1.0	210	165	412	< 4			
20	Jun-06	3,200	1,300	39	<1.0	220	144	403	4.2			
21	Sep-06	12,000	3,300	130	8	850	604	1,592	<1			
22	Dec-06	12,000	2,800	140	9.4	880	634	1,663	<			
23	Mar-07	9,600	2,900	120	8.7	780	453	1,362	<			
24	Jun-07	7,100	2,200	75	5.2	480	298	858	<4			
25	Sep-07	4,500	2,100	60	3.8	420	230	710	<4			
26	Dec-07	6,200	2,000	51	<0.5	340	128.8	519.8	<2			
20	Mar-08	6,400	3,500	67	5.2	480	177.6	724.6	38			
27	Jun-08			67 89	3.2 <2.5	480 510	231.0	830.0				
		10,000	3,400						<			
29	Sep-08	4,800	2,700	53	<0.5	250	66.4	369.4	<2			
30	Dec-08	4,300	2,300	45	<0.5	330	39.1	414.1	<2			
31	Mar-09	4,000	2,200	<2.0	<0.5	160	34.9	194.9	<2			
32	Jun-09	4,100	3,600	62	< 0.5	280	41.7	383.7	160			
33	Sep-09	2,200	2,900	15	<0.5	110	11.8	136.8	<2			
34	Dec-09	2,500	4,000	27	<0.5	170	8.7	205.7	<2			
35	Mar-10	3,300	2,600	15	<0.5	140	12.0	167.0	8.6			
36	Mar-10	2,500	3,400	16	<0.5	70	15.4	101.4	2.1			
37	Jun-10	1,700	1,300	13	<0.5	48	4.9	65.9	11			
38	Sep-10	13,000	2,900	43	<0.5	300	47.9	390.9	43			
39	Dec-10	3,900	2,400	32	<0.5	240	20.5	292.5	82			
40	Mar-11	700	680	1.6	<0.5	10	3.5	15.1	14			
41	Sep-11	2,600	1,900	12	<0.5	160	10.2	182.2	<2			
42	Mar-12	1,100	940	9	<0.5	25	1.6	35.6	<			
43	Sep-12	10,000	8,600	25	< 0.5	260	19.0	304.0	<2			
44	Mar-13	4.000	2,400	9.1	< 0.5	73	9.7	91.8	4			
45	Oct-13	3,200	1,500	20	<0.5	51	6.6	77.6	<			
49	Dec-13	3,000	2,700	22	<0.5	120	4.6	147	<			
50	Mar-14	3,100	5,200	49	<0.5	420	83	552	4			
50 51		,		49 54		610						
51 52	Jun-14 Son 14	12,000 17,000	2,600 5,800	54 65	<0.5 13.0	<u>610</u> 51	160 204	824 333				
	Sep-14											
53	Mar-15	4,300	2,000	24	<0.5	150	19	193	<2			
54	Sep-15	3,000	950	25	<0.5	59	3	87	46			
55	Dec-15	2,700	1,400	9.6	<0.5	<8.3	<8.3	10	<			
56	Mar-16	4,000	2,600	18.0	<8.3	84	<8.3	102	<			
57	Sep-16	120,000	6,400	550	<8.3	7,600	490	8,640	<			

					Well M	W-10			
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	550	2,100	17	< 0.5	31	44	92	40
2	Dec-01	< 50	81	< 0.5	< 0.5	< 0.5	< 0.5	_	25
3	Mar-02	< 50	< 50	0.61	< 0.5	< 0.5	< 0.5	0.61	6.0
4	Jun-02	< 50	< 50	0.59	< 0.5	0.58	< 0.5	1.2	9.0
5	Sep-02	160	120	10	< 0.5	6.7	3.6	20	26
6	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	16
7	Mar-03	110	< 50	11	< 0.5	12	1.3	24	15
8	Jun-03	110	< 50	9.6	< 0.5	6.8	< 0.5	16	9.0
9	Sep-03	< 50	< 50	1.1	< 0.5	1.5	< 0.5	2.6	7.0
10	Dec-03	162	<100	6.9	<0.3	8.0	<0.6	15	9.9
11	Mar-04	94	<100	2.8	<0.3	5.7	7.0	16	<5
12	Jun-04	150	56	11	< 0.5	12	< 0.5	23	15
13	Sep-04	< 50	< 50	1.6	< 0.5	1.9	< 1.0	3.5	5.8
14	Dec-04	64	< 50	3.7	< 0.5	3.7	0.7	8.1	10
15	Mar-05	95	98	8.3	<0.5	7.7	0.77	17	13
16	Jun-05	150	57	14	<0.5	10	1.0	25	<2
17	Sep-05	87	< 50	5.0	<0.5	3.6	<1.0	8.6	<2
18	Dec-05	< 50	< 50	1.2	<0.5	<0.5	<1.0	1.2	7.8
19	Mar-06	58	71	3.2	<0.5	2.2	<1.0	5.4	8.8
20	Jun-06	73	140	4.9	<0.5	2.5	<1.0	7.4	5.3
21	Sep-06	88	51	<0.5	<0.5	<0.5	<0.5	<0.5	9.6
22	Dec-06	<50	<50	0.61	<0.5	0.55	<0.5	1.2	3.7
23	Mar-07	57	<50	3.6	<0.5	2.2	<0.5	5.8	3.1
24	Jun-07	60	65	2.4	<0.5	1.6	<0.5	4.0	4.0
25	Sep-07	84	<50	3.6	<0.5	2.3	0.52	6.4	3.6
26	Dec-07	130	67	0.77	<0.5	340	0.83	341.6	<2
27	Mar-08	78	170	1.7	<0.5	3.1	0.97	5.8	2.4
28	Jun-08	230	320	12	<0.5	9.9	3.50	25.4	<2
29	Sep-08	80	<50	1.6	<0.5	0.52	<0.5	2.1	3.0
30	Dec-08	<50	66	0.89	<0.5	<0.5	<0.5	0.9	2.1
31	Mar-09	76	230	<2.0	<0.5	1.4	<0.5	1.4	<2
32	Jun-09	72	120	2.0	< 0.5	4.4	1.3	7.7	<2
33	Sep-09	74	220	1.6	<0.5	<0.5	<0.5	1.6	<2
34	Dec-09	72	150	0.6	< 0.5	1.6	1.2	3.4	<2
36	Mar-10	63	280	1.3	<0.5	48	<0.5	49.3	<2
37	Jun-10	110	340	1.4	< 0.5	2.6	0.74	4.7	2.4
38	Sep-10	140	360	2.1	< 0.5	1.4	<0.5	3.5	4.3
39	Dec-10	80	440	< 0.5	< 0.5	0.69	<0.5	0.7	4.1
40	Mar-11	170	1,200	1.0	< 0.5	3.7	1.8	6.5	6.3
41	Sep-11	150	220	0.8	< 0.5	1.9	1	3.7	<2
42	Mar-12	80	92	0.81	< 0.5	1.5	<0.5	2.3	3.4
43	Sep-12	170	200	< 0.5	< 0.5	2	0.94	2.9	<2
44	Mar-13	310	58	< 0.5	< 0.5	7.3	7.94	15.2	<2
45	Oct-13	69	<50	< 0.5	< 0.5	0.84	<0.5	0.8	4.8
46	Dec-13	<52	220	< 0.5	0.61	2	1.5	4.1	3.7
47	Mar-14	<50	87	<0.5	<0.5	0.51	<0.5	0.5	3.7
48	Jun-14	55	<50	<0.5	0.61	2	1.5	4.1	<2
40	Sep-14	<50	<50	<0.5	<0.5	<0.5	<0.5	0.0	4.5
50	Mar-15	61	<49	<0.5	<0.5	<0.5	<0.5	0.0	3.3
50	Sep-15	<50	<49	<0.5	<0.5	<0.5	<0.5	0.0	2.6
51	Dec-15	<50 <50	<49 <50	<0.5	<0.5	<0.5	<0.5	0.0	2.6
									-
53	Mar-16 Sep-16	90 63	110 120	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.0	<2.0 4.4

					Well M	W-11			
Event	Date	TVHg	TEHd	Benzene		Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	Aug-01	17,000	7,800	390	17	820	344	1,571	< 10
2	Dec-01	5,800	2,800	280	7.8	500	213	1,001	< 10
3	Mar-02	100	94	< 0.5	< 0.5	0.64	< 0.5	0.64	2.4
4	Jun-02	8,200	2,600	570	13	560	170	1,313	< 4
5	Sep-02	12,000	4,400	330	13	880	654	1,877	< 10
6	Dec-02	18,000	4,500	420	< 2.5	1,100	912	2,432	< 10
7	Mar-03	7,800	2,600	170	4.7	530	337	1,042	53
8	Jun-03	14,000	3,800	250	< 2.5	870	693	1,813	< 10
9	Sep-03	10,000	3,000	250	9.9	700	527	1,487	< -
10	Dec-03	15,000	1,100	314	60	1,070	802	2,246	173
11	Mar-04	4,900	400	72	17	342	233	664	61
12	Jun-04	10,000	2,300	210	2.8	690	514	1,417	< 1
12	Sep-04	7.200	2,300	340		840	75	1,255	< 1
13	Dec-04	11,000	3,900	180	< 2.5 5.1	780	695	1,255	< 1
					-			,	
15	Mar-05	4,600	1,900	69	<2.5	300	206	575	< 1
16	Jun-05	1,400	590	85	<0.5	110	8.2	203	< 2.
17	Sep-05	12,000	3,100	220	< 1.0	840	762	1,822	< 4.
18	Dec-05	2,500	2,100	120	< 2.5	260	16	396	< 1
19	Mar-06	2,200	1,300	27	<2.5	130	5.2	162	< 1
20	Jun-06	3,700	1,900	170	<1.0	230	14	414	< 4.
21	Sep-06	3,600	2,100	80	<0.5	230	8.8	319	< 2.
22	Dec-06	6,000	3,500	83	<1.0	260	16.4	359	< 4.
23	Mar-07	4,500	1,900	110	< 0.5	170	7.9	288	< 2.
24	Jun-07	4,300	2,200	120	<0.5	140	6.6	267	<4.
25	Sep-07	5,500	2,700	86	<0.5	180	16.1	282	<2.
26	Dec-07	7,100	4,000	68	<0.5	140	14	222	35
27	Mar-08	5,300	4,000	130	<0.5	120	13	263	8.8
28	Jun-08	3,600	4,200	190	<0.5	140	11	341	<2.
29	Sep-08	7,300	4,600	130	<0.5	110	4.5	245	<2.
30	Dec-08	2,800	1,600	93	<0.5	82	0.69	176	<2.
31	Mar-09	4,100	4,600	18	<0.5	82	8	108	8.0
32	Jun-09	2,100	2,700	38	< 0.5	80	3.3	121	3.3
33	Sep-09	830	2,400	11	< 0.5	19	<0.5	30	<2.
34	Dec-09	2,200	3,100	19	< 0.5	46	0.78	66	14.0
35	Mar-10	2,300	2,500	13	<0.5	59	0.79	73	3.4
36	Mar-10	1,500	3,400	12	<0.5	48	<0.5	60	<2.
30	Jun-10	2.000	3,400	12	<0.5	40	0.92	57	< <u>2.</u> 7.9
38	Sep-10	3,000	2,200	14	<0.5	42	0.55	60	8.0
39	Dec-10	1,800	2,200	13	<0.5	41	1.9	64	8.0 15.0
				-		-			
40	Mar-11	180 2,200	1,600 2,500	<0.5	< 0.5	1.2 44	<0.5 2.2	1.2	6.9
41	Sep-11	,			<0.5			58.2	<2.
42	Mar-12	1,300	1,200	8.7	<0.5	29	<0.5	37.7	<2.
43	Sep-12	2,400	1,800	7.7	<0.5	29	<0.5	36.7	<2.
44	Mar-13	1,500	1,900	4.8	<0.5	22	<0.5	26.8	<2.
45	Oct-13	3,000	1,600	14	<0.5	35	<0.5	49	<2.
46	Dec-13	2,500	2,000	<0.5	13	<0.5	0.68	13.7	<2.
47	Mar-14	3,000	2,800	13	<0.5	34	<0.5	47.0	<2.
48	Jun-14	2,300	1,400	6	<0.5	20	6.1	32.1	<2.
49	Sep-14	190	3,400	6.8	<0.5	26	<0.5	32.8	3.7
50	Mar-15	1,300	1,500	<0.5	<0.5	8.4	<0.5	8.4	<2.
51	Sep-15	2,500	1,800	<0.5	<0.5	25	<0.5	25.0	24.
52	Dec-15	3,100	1,600	<0.5	<0.5	30	<0.5	30.0	<2.
53	Mar-16	720	610	<0.5	<0.5	6.1	<0.5	6.1	<2.
54	Sep-16	1,500	1,500	< 0.5	< 0.5	11	0.62	11.6	<2.

	Well MW-12												
Event	Date	TVHg	TEHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE				
1	Dec-05	1,300	700	< 0.5	< 0.5	33	5.6	39	< 2.0				
2	Mar-06	1,100	540	<0.5	<0.5	8.5	1.5	10	49				
3	Jun-06	680	400	<0.5	<0.5	5.8	1.4	7.2	< 2.0				
4	Sep-06	910	480	<0.5	<0.5	9.9	1.5	11.4	21				
5	Dec-06	770	230	< 0.5	< 0.5	7.4	2.0	9.4	< 2.0				
6	Mar-07	390	110	< 0.5	< 0.5	1.7	1.7	3.4	< 2.0				
7	Jun-07	590	280	<0.5	<0.5	4.5	0.9	5.4	<2.0				
8	Sep-07	390	180	<0.5	<0.5	2.4	2.4	4.8	<2.0				
9	Dec-07	210	140	<0.5	<0.5	2.1	1.3	3.4	<2.0				
10	Mar-08	720	500	<0.5	4.4	9.0	2.8	16.2	<2.0				
11	Jun-08	220	50	<0.5	<0.5	2.0	<0.5	2.0	<2.0				
12	Sep-08	370	95	<0.5	<0.5	2.8	0.98	3.8	<2.0				
13	Dec-08	93	170	<0.5	<0.5	0.76	<0.5	0.8	<2.0				
14	Mar-09	180	130	<0.5	<0.5	1.70	<0.5	1.7	<2.0				
15	Jun-09	300	280	< 0.5	< 0.5	4.60	< 0.5	4.6	<2.0				
16	Sep-09	330	270	<0.5	<0.5	2.30	<0.5	2.3	<2.0				
17	Dec-09	76	170	<0.5	<0.5	<0.5	<0.5	0.0	<2.0				
18	Mar-10	240	380	<0.5	<0.5	2.7	<0.5	2.7	<2.0				
19	Jun-10	540	370	<0.5	<0.5	3.5	0.92	4.4	7.9				
20	Sep-10	380	220	<0.5	<0.5	1.7	<0.5	1.7	8				
21	Dec-10	320	350	<0.5	<0.5	1.5	<0.5	1.5	3.9				
22	Mar-11	290	450	<0.5	0.74	1.3	<0.5	2.0	11				
23	Sep-11	530	340	<0.5	<0.5	2.2	<0.5	2.2	<2.0				
24	Mar-12	410	240	<0.5	<0.5	1.9	<0.5	1.9	<2.0				
25	Sep-12	340	210	<0.5	<0.5	1.1	<0.5	1.1	<2.0				
26	Mar-13	430	200	<0.5	<0.5	1.2	<0.5	1.2	7.1				
27	Oct-13	350	200	<0.5	<0.5	0.92	<0.5	0.92	<2.0				
28	Dec-13	290	210	<0.5	<0.5	0.68	<0.5	0.68	2.5				
29	Mar-14	<50	62	<0.5	<0.5	<0.5	<0.5	0	2.8				
30	Jun-14	2,300	190	<0.5	<0.5	0.65	<0.5	0.65	<2.0				
31	Sep-14	2,500	130	<0.5	6.8	26	<0.5	32.8	<2.0				
32	Mar-15	<50	<49	<0.5	<0.5	<0.5	<0.5	0	<2.0				
33	Sep-15	<50	91	<0.5	<0.5	<0.5	<0.5	0	<2.0				
34	Dec-15	<50	<49	<0.5	<0.5	<0.5	<0.5	0	2.1				
35	Mar-16	<50	<50	<0.5	<0.5	<0.5	<0.5	0	<2.0				
36	Sep-16	<50	58	<0.5	<0.5	<0.5	<0.5	0	<2.0				

	HISTORICAL SURFACE WATER ANALYTICAL RESULTS REDWOOD REGIONAL PARK SERVICE YARD, OAKLAND, CALIFORNIA (all concentrations in ug/L, equivalent to parts per billion [ppb])												
	Surface Water Sampling Location SW-1 (Upstream of Contaminated Groundwater Discharge Location SW-2)												
Event	Date	TVHg	TEHd	Benzene	Toluene		,	Total BTEX	MTBE				
1	Feb-94	50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
3	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
4	Aug-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	—	NA				
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	NA				
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	< 2.0				
11	11 Apr-99 < 50 <50 < 0.5 < 0.5 < 0.5 < 0.5 - <2.0												
S	ampling at	Sampling at this location discontinued after April 1999 with Alameda County Health Services Agency approval.											

Surface Water Sampling Location SW-2 (Area of Historical Contaminated Groundwater Discharge)											
Event	Date	TVHg	TEHd		Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE		
1	Feb-94	130	< 50	1.9	< 0.5	4.4	3.2	9.5	NA		
2	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
3	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
4	May-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
5	Aug-96	200	< 50	7.5	< 0.5	5.4	< 0.5	13	NA		
6	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
7	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
8	Aug-97	350	130	13	0.89	19	11	44	NA		
9	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
10	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	NA		
11	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
12	Apr-99	81	<50	2.0	< 0.5	2.5	1.3	5.8	2.3		
13	Dec-99	1,300	250	10	1.0	47	27	85	2.2		
14	Sep-00	160	100	2.1	< 0.5	5.2	1.9	9.2	3.4		
15	Jan-01	< 50	< 50	< 0.5	< 0.5	0.53	< 0.5	0.5	< 2.0		
16	Apr-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
17	Sep-01	440	200	2.1	< 0.5	17	1.3	20	10		
18	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
19	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
20	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
21	Sep-02	220	590	10	< 0.5	13	< 0.5	23	< 2.0		
22	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
23	Mar-03	< 50	< 50	< 0.5	< 0.5	0.56	< 0.5	0.56	2.8		
24	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 2.0		
25	Sep-03	190	92	2.1	< 0.5	4.2	< 0.5	6.3	< 2.0		
26	Dec-03	86	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0		
27	Mar-04	<50	<100	<0.3	<0.3	1.1	<0.6	1.1	< 5.0		
28	Jun-04	<50	<50	<0.5	<0.5	0.83	<0.5	0.83	< 2.0		
29	Sep-04	260	370	4.4	<0.5	6.3	< 1.0	11	< 2.0		
30	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	1.0	< 2.0		
31	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
32	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
33	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
34	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
35	Mar-06	<50	62	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
36	Jun-06	<50	110	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
37	Sep-06	62	94	<0.5	<0.5	0.81	<0.5	0.8	< 2.0		
38	Dec-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
39	Mar-07	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0		
40	Jun-07	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0		
41	Sep-07	<50	77	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0		
42	Dec-07	130	430	<0.5	<0.5	1.5	<0.5	1.5	<2.0		
43	Mar-08	<50	130	<0.5	<0.5	<0.5	0.61	0.61	<2.0		
44	Jun-08	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0		
45	Sep-08	530	690	<0.5	<0.5	4.3	<0.5	4.3	<2.0		
46	Dec-08	<50	83	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0		

Surface	Water Sar	npling Locat	tion SW-2	Continued					
47	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<2.0
48	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
49	Sep-09	110	220	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
50	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Jun-10	<50	240	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
53	Sep-10	<50	66	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
54	Dec-10	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
55	Mar-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
56	Sep-11	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	NA
57	Mar-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
60	Oct-13	<50	930	<0.5	<0.5	<0.5	<5.0	<0.5	4.8
61	Mar-14	<50	<49	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
62	Sep-14	NS	NS	NS	NS	NS	NS	NS	NS
63	Mar-15	<50	<51	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
64	Sep-15	NS	NS	NS	NS	NS	NS	NS	NS
65	Mar-16	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
66	Sep-16	NS	NS	NS	NS	NS	NS	NS	NS

Surface Water Sampling Location SW-2 Continued

Surfa	ce Water	Sampling L	ocation S	W-3 (Dowr	stream of	Contaminated 0	Groundwater Dis	charge Location	SW-2)
Event	Date	TVHg	TEHd	Benzene		Ethylbenzene	Total Xylenes	Total BTEX	MTBE
1	May-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
2	Aug-95	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
3	May-96	< 50	74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
4	Aug-96	69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
5	Dec-96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
6	Feb-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
7	Aug-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
8	Dec-97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
9	Feb-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
10	Sep-98	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
11	Apr-99	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
12 13	Dec-99 Sep-00	< 50 NS	<50 NS	< 0.5 NS	< 0.5 NS	< 0.5 NS	< 0.5 NS	< 0.5 NS	< 2.0 NS
13	Jan-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
14	Apr-01	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
15	Sep-01	< 50 NS	<50 NS	< 0.5 NS	< 0.5 NS	< 0.5 NS	< 0.5 NS	< 0.5	< 2.0 NS
10	Dec-01	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
18	Mar-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
10	Jun-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4
20	Sep-02	NS	NS NS	< 0.5 NS	< 0.5 NS	NS	NS	NS	NS
21	Dec-02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
22	Mar-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
23	Jun-03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
24	Sep-03	NS	NS	NS	NS	NS	NS	NS	NS
25	Dec-03	60	< 100	< 0.3	< 0.3	< 0.3	< 0.6	<0.6	< 5.0
26	Mar-04	<50	<100	<0.3	<0.3	<0.6	<0.6	<0.6	< 5.0
27	Jun-04	NS	NS	NS	NS	NS	NS	NS	NS
28	Sep-04	NS	NS	NS	NS	NS	NS	NS	NS
29	Dec-04	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
30	Mar-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
31	Jun-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
32	Sep-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
33	Dec-05	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
34	Mar-06	<50	<50	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
35	Jun-06	<50	120	<0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
36	Sep-06	<50	120	< 0.5	<0.5	<0.5	<0.5	0.5	7.8
37	Dec-06	<50	<50	< 0.5	<0.5	<0.5	< 1.0	<1.0	< 2.0
38	Mar-07	<50	<50	< 0.5	<0.5	<0.5	< 1.0	<1.0	3.3
39 40	Jun-07 Sep-07	<50 NS	<50 NS	<0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	0.5 NS	<2.0 NS
40	Dec-07	NS	NS	NS	NS	NS	NS	NS	NS
42	Mar-08	<50	200	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
43	Jun-08	<50	55	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
44	Sep-08	NS	NS	NS	NS	NS	NS	NS	NS
45	Dec-08	<50	360	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
46	Mar-09	<50	<50	<0.5	<0.5	<0.5	<0.5	0.5	<2.0
47	Jun-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
48	Sep-09	NS	NS	NS	NS	NS	NS	NS	NS
49	Dec-09	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
50	Mar-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
51	Jun-10	<50	<50	<5.0	<5.0	<5.0	<5.0	<0.5	<2.0
52	Sep-10	NS	NS	NS	NS	NS	NS	NS	NS
53	Dec-10	<50	<50	<0.5	0.57	<0.5	0.81	1.4	NA
54	Mar-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
55	Sep-11	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NA
57	Mar-12	<50	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	<2.0
58	Sep-12	<50	<50	<0.5	<0.5	<0.5	<5.0	<0.5	<2.0
59	Mar-13	<50	<50	< 0.5	< 0.5	<0.5	<5.0	<0.5	<2.0
60	Oct-13	NS	NS	NS	NS	NS	NS	NS	NS
61	Mar-14	<50	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	<2.0
62	Sep-14	NS 150	NS 150	NS 10 F	NS 10.5	NS 10.5	NS 10 F	NS -0.5	NS 12.0
63 64	Mar-15 Sep-15	<50 NS	<50 NS	<0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	<0.5 NS	<2.0 NS
65	Mar-16	<50	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	<2.0
66	Sep-16	NS	NS	NS	NS	NS	NS	NS	NS
		las and an		a a set al contra ac	sampling e	u (a pat)			